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Preface

The European Conferences on Machine Learning (ECML) and on Principles and
Practice of Knowledge Discovery in Data Bases (PKDD) have been organized
jointly since 2001, after some years of mutual independence. Going one step
further, the two conferences were merged into a single one in 2008, and these are
the proceedings of the 2014 edition of ECML/PKDD. Today, this conference is
a world-wide leading scientific event. It aims at further exploiting the synergies
between the two scientific fields, focusing on the development and employment
of methods and tools capable of solving real-life problems.

ECML PKDD 2014 was held in Nancy, France, during September 15–19,
co-located with ILP 2014, the premier international forum on logic-based and
relational learning. The two conferences were organized by Inria Nancy Grand
Est with support from LORIA, a joint research unit of CNRS, Inria, and Uni-
versité de Lorraine.

Continuing the tradition, ECML/PKDD 2014 combined an extensive techni-
cal program with a demo track and an industrial track. Recently, the so-called
Nectar track was added, focusing on the latest high-quality interdisciplinary re-
search results in all areas related to machine learning and knowledge discovery
in databases. Moreover, the conference program included a discovery challenge,
a variety of workshops, and many tutorials.

The main technical program included five plenary talks by invited speakers,
namely, Charu Aggarwal, Francis Bach, Lise Getoor, Tie-Yan Liu, and Ray-
mond Ng, while four invited speakers contributed to the industrial track: George
Hébrail (EDF Lab), Alexandre Cotarmanac’h (Twenga), Arthur Von Eschen
(Activision Publishing Inc.) and Mike Bodkin (Evotec Ltd.).

The discovery challenge focused on “Neural Connectomics and on Predictive
Web Analytics” this year. Fifteen workshops were held, providing an opportunity
to discuss current topics in a small and interactive atmosphere: Dynamic Net-
works and Knowledge Discovery, Interactions Between Data Mining and Natural
Language Processing, Mining Ubiquitous and Social Environments, Statistically
Sound Data Mining, Machine Learning for Urban Sensor Data, Multi-Target
Prediction, Representation Learning, Neural Connectomics: From Imaging to
Connectivity, Data Analytics for Renewable Energy Integration, Linked Data for
Knowledge Discovery, New Frontiers in Mining Complex Patterns, Experimental
Economics and Machine Learning, Learning with Multiple Views: Applications
to Computer Vision and Multimedia Mining, Generalization and Reuse of Ma-
chine Learning Models over Multiple Contexts, and Predictive Web Analytics.

Nine tutorials were included in the conference program, providing a com-
prehensive introduction to core techniques and areas of interest for the scien-
tific community: Medical Mining for Clinical Knowledge Discovery, Patterns
in Noisy and Multidimensional Relations and Graphs, The Pervasiveness of
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Machine Learning in Omics Science, Conformal Predictions for Reliable Ma-
chine Learning, The Lunch Is Never Free: How Information Theory, MDL, and
Statistics are Connected, Information Theoretic Methods in Data Mining, Ma-
chine Learning with Analogical Proportions, Preference Learning Problems, and
Deep Learning.

The main track received 481 paper submissions, of which 115 were accepted.
Such a high volume of scientific work required a tremendous effort by the area
chairs, Program Committee members, and many additional reviewers. We man-
aged to collect three highly qualified independent reviews per paper and one
additional overall input from one of the area chairs. Papers were evaluated on
the basis of their relevance to the conference, their scientific contribution, rigor
and correctness, the quality of presentation and reproducibility of experiments.
As a separate organization, the demo track received 24 and the Nectar track 23
paper submissions.

For the second time, the conference used a double submission model: next to
the regular conference track, papers submitted to the Springer journals Machine
Learning (MACH) and Data Mining and Knowledge Discovery (DAMI) were
considered for presentation in the conference. These papers were submitted to
the ECML/PKDD 2014 special issue of the respective journals, and underwent
the normal editorial process of these journals. Those papers accepted for the
of these journals were assigned a presentation slot at the ECML/PKDD 2014
conference. A total of 107 original manuscripts were submitted to the journal
track, 15 were accepted in DAMI or MACH and were scheduled for presentation
at the conference. Overall, this resulted in a number of 588 submissions, of
which 130 were selected for presentation at the conference, making an overall
acceptance rate of about 22%.

These proceedings of the ECML/PKDD 2014 conference contain the full pa-
pers of the contributions presented in the main technical track, abstracts of the in-
vited talks and short papers describing the demonstrations, and theNectar papers.
First of all, wewould like to express our gratitude to the general chairs of the confer-
ence, AmedeoNapoli andChedyRäıssi, as well as to all members of theOrganizing
Committee, for managing this event in a very competent and professional way. In
particular, we thank the demo, workshop, industrial, and Nectar track chairs. Spe-
cial thanks go to the proceedings chairs, Élisa Fromont, Stefano Ferilli and Pascal
Poncelet, for the hard work of putting these proceedings together. We thank the
tutorial chairs, the Discovery Challenge organizers and all the people involved in
the conference, who worked hard for its success. Last but not least, we would like
to sincerely thank the authors for submitting their work to the conference and the
reviewers and area chairs for their tremendous effort in guaranteeing the quality
of the reviewing process, thereby improving the quality of these proceedings.

July 2014 Toon Calders
Floriana Esposito
Eyke Hüllermeier

Rosa Meo



Organization

ECML/PKDD 2014 Organization

Conference Co-chairs

Amedeo Napoli Inria Nancy Grand Est/LORIA, France
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Élisa Fromont University of Saint Etienne, France
Stefano Ferilli University of Bari, Italy

EMCL PKDD Steering Committee

Fosca Giannotti University of Pisa, Italy
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Élisa Fromont
Fabio Fumarola
Patrick Gallinari
Jing Gao
Byron Gao
Roman Garnett
Paolo Garza
Eric Gaussier
Floris Geerts
Pierre Geurts
Rayid Ghani
Fosca Giannotti
Aris Gkoulalas-Divanis
Vibhav Gogate
Marco Gori
Michael Granitzer
Oded Green



Organization XI

Tias Guns
Maria Halkidi
Jiawei Han
Daniel Hernandez

Lobato
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Scalable Collective Reasoning Using

Probabilistic Soft Logic

Lise Getoor

University of California, Santa Cruz
Santa Cruz, CA, USA

getoor@cs.umd.edu

Abstract. One of the challenges in big data analytics is to efficiently
learn and reason collectively about extremely large, heterogeneous, in-
complete, noisy interlinked data. Collective reasoning requires the ability
to exploit both the logical and relational structure in the data and the
probabilistic dependencies. In this talk I will overview our recent work
on probabilistic soft logic (PSL), a framework for collective, probabilistic
reasoning in relational domains. PSL is able to reason holistically about
both entity attributes and relationships among the entities. The under-
lying mathematical framework, which we refer to as a hinge-loss Markov
random field, supports extremely efficient, exact inference. This family of
graphical models captures logic-like dependencies with convex hinge-loss
potentials. I will survey applications of PSL to diverse problems ranging
from information extraction to computational social science. Our recent
results show that by building on state-of-the-art optimization methods
in a distributed implementation, we can solve large-scale problems with
millions of random variables orders of magnitude faster than existing
approaches.

Bio. In 1995, Lise Getoor decided to return to school to get her PhD in Com-
puter Science at Stanford University. She received a National Physical Sciences
Consortium fellowship, which in addition to supporting her for six years, sup-
ported a summer internship at Xerox PARC, where she worked with Markus
Fromherz and his group. Daphne Koller was her PhD advisor; in addition, she
worked closely with Nir Friedman, and many other members of the DAGS group,
including Avi Pfeffer, Mehran Sahami, Ben Taskar, Carlos Guestrin, Uri Lerner,
Ron Parr, Eran Segal, Simon Tong.

In 2001, Lise Getoor joined the Computer Science Department at the
University of Maryland, College Park.



Network Analysis in the Big Data Age: Mining

Graph and Social Streams

Charu Aggarwal

IBM T.J. Watson Research Center, New York
Yorktown, NY, USA

charu@us.ibm.com

Abstract. The advent of large interaction-based communication and
social networks has led to challenging streaming scenarios in graph and
social stream analysis. The graphs that result from such interactions
are large, transient, and very often cannot even be stored on disk. In
such cases, even simple frequency-based aggregation operations become
challenging, whereas traditional mining operations are far more com-
plex. When the graph cannot be explicitly stored on disk, mining algo-
rithms must work with a limited knowledge of the network structure.
Social streams add yet another layer of complexity, wherein the stream-
ing content associated with the nodes and edges needs to be incorporated
into the mining process. A significant gap exists between the problems
that need to be solved, and the techniques that are available for stream-
ing graph analysis. In spite of these challenges, recent years have seen
some advances in which carefully chosen synopses of the graph and social
streams are leveraged for approximate analysis. This talk will focus on
several recent advances in this direction.

Bio. Charu Aggarwal is a Research Scientist at the IBM T. J. Watson Research
Center in Yorktown Heights, New York. He completed his B.S. from IIT Kan-
pur in 1993 and his Ph.D. from Massachusetts Institute of Technology in 1996.
His research interest during his Ph.D. years was in combinatorial optimization
(network flow algorithms), and his thesis advisor was Professor James B. Orlin.
He has since worked in the field of data mining, with particular interests in data
streams, privacy, uncertain data and social network analysis. He has published
over 200 papers in refereed venues, and has applied for or been granted over 80
patents. Because of the commercial value of the above-mentioned patents, he has
received several invention achievement awards and has thrice been designated a
Master Inventor at IBM. He is a recipient of an IBM Corporate Award (2003) for
his work on bio-terrorist threat detection in data streams, a recipient of the IBM
Outstanding Innovation Award (2008) for his scientific contributions to privacy
technology, and a recipient of an IBM Research Division Award (2008) for his
scientific contributions to data stream research. He has served on the program
committees of most major database/data mining conferences, and served as pro-
gram vice-chairs of the SIAM Conference on Data Mining, 2007, the IEEE ICDM
Conference, 2007, the WWW Conference 2009, and the IEEE ICDM Conference,
2009. He served as an associate editor of the IEEE Transactions on Knowledge
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and Data Engineering Journal from 2004 to 2008. He is an associate editor of
the ACM TKDD Journal, an action editor of the Data Mining and Knowledge
Discovery Journal, an associate editor of the ACM SIGKDD Explorations, and
an associate editor of the Knowledge and Information Systems Journal. He is a
fellow of the ACM (2013) and the IEEE (2010) for contributions to knowledge
discovery and data mining techniques.



Big Data for Personalized Medicine: A Case

Study of Biomarker Discovery

Raymond Ng

University of British Columbia
Vancouver, B.C., Canada

mg@cs.ubc.ca

Abstract. Personalized medicine has been hailed as one of the main
frontiers for medical research in this century. In the first half of the
talk, we will give an overview on our projects that use gene expression,
proteomics, DNA and clinical features for biomarker discovery. In the
second half of the talk, we will describe some of the challenges involved
in biomarker discovery. One of the challenges is the lack of quality assess-
ment tools for data generated by ever-evolving genomics platforms. We
will conclude the talk by giving an overview of some of the techniques
we have developed on data cleansing and pre-processing.

Bio. Dr. Raymond Ng is a professor in Computer Science at the University of
British Columbia. His main research area for the past two decades is on data
mining, with a specific focus on health informatics and text mining. He has pub-
lished over 180 peer-reviewed publications on data clustering, outlier detection,
OLAP processing, health informatics and text mining. He is the recipient of two
best paper awards from 2001 ACM SIGKDD conference, which is the premier
data mining conference worldwide, and the 2005 ACM SIGMOD conference,
which is one of the top database conferences worldwide. He was one of the pro-
gram co-chairs of the 2009 International conference on Data Engineering, and
one of the program co-chairs of the 2002 ACM SIGKDD conference. He was
also one of the general co-chairs of the 2008 ACM SIGMOD conference. For the
past decade, Dr. Ng has co-led several large scale genomic projects, funded by
Genome Canada, Genome BC and industrial collaborators. The total amount of
funding of those projects well exceeded $40 million Canadian dollars. He now
holds the Chief Informatics Officer position of the PROOF Centre of Excellence,
which focuses on biomarker development for end-stage organ failures.



Machine Learning for Search Ranking

and Ad Auction

Tie-Yan Liu

Microsoft Research Asia
Beijing, P.R. China

tyliu@microsoft.com

Abstract. In the era of information explosion, search has become an
important tool for people to retrieve useful information. Every day, bil-
lions of search queries are submitted to commercial search engines. In
response to a query, search engines return a list of relevant documents
according to a ranking model. In addition, they also return some ads
to users, and extract revenue by running an auction among advertisers
if users click on these ads. This “search + ads” paradigm has become a
key business model in today’s Internet industry, and has incubated a few
hundred-billion-dollar companies. Recently, machine learning has been
widely adopted in search and advertising, mainly due to the availabil-
ity of huge amount of interaction data between users, advertisers, and
search engines. In this talk, we discuss how to use machine learning to
build effective ranking models (which we call learning to rank) and to
optimize auction mechanisms. (i) The difficulty of learning to rank lies
in the interdependency between documents in the ranked list. To tackle
it, we propose the so-called listwise ranking algorithms, whose loss func-
tions are defined on the permutations of documents, instead of individ-
ual documents or document pairs. We prove the effectiveness of these
algorithms by analyzing their generalization ability and statistical con-
sistency, based on the assumption of a two-layer probabilistic sampling
procedure for queries and documents, and the characterization of the re-
lationship between their loss functions and the evaluation measures used
by search engines (e.g., NDCG and MAP). (ii) The difficulty of learning
the optimal auction mechanism lies in that advertisers’ behavior data
are strategically generated in response to the auction mechanism, but
not randomly sampled in an i.i.d. manner. To tackle this challenge, we
propose a game-theoretic learning method, which first models the strate-
gic behaviors of advertisers, and then optimizes the auction mechanism
by assuming the advertisers to respond to new auction mechanisms ac-
cording to the learned behavior model. We prove the effectiveness of the
proposed method by analyzing the generalization bounds for both behav-
ior learning and auction mechanism learning based on a novel Markov
framework.

Bio. Tie-Yan Liu is a senior researcher and research manager at Microsoft Re-
search. His research interests include machine learning (learning to rank, online
learning, statistical learning theory, and deep learning), algorithmic game theory,
and computational economics. He is well known for his work on learning to rank
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for information retrieval. He has authored the first book in this area, and pub-
lished tens of highly-cited papers on both algorithms and theorems of learning
to rank. He has also published extensively on other related topics. In particular,
his paper won the best student paper award of SIGIR (2008), and the most cited
paper award of the Journal of Visual Communication and Image Representation
(2004-2006); his group won the research break-through award of Microsoft Re-
search Asia (2012). Tie-Yan is very active in serving the research community. He
is a program committee co-chair of ACML (2015), WINE (2014), AIRS (2013),
and RIAO (2010), a local co-chair of ICML 2014, a tutorial co-chair of WWW
2014, a demo/exhibit co-chair of KDD (2012), and an area/track chair of many
conferences including ACML (2014), SIGIR (2008-2011), AIRS (2009-2011), and
WWW (2011). He is an associate editor of ACM Transactions on Information
System (TOIS), an editorial board member of Information Retrieval Journal and
Foundations and Trends in Information Retrieval. He has given keynote speeches
at CCML (2013), CCIR (2011), and PCM (2010), and tutorials at SIGIR (2008,
2010, 2012), WWW (2008, 2009, 2011), and KDD (2012). He is a senior member
of the IEEE and the ACM.
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Paris, France
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Abstract. Many machine learning and signal processing problems are
traditionally cast as convex optimization problems. A common difficulty
in solving these problems is the size of the data, where there are many
observations (“large n”) and each of these is large (“large p”). In this
setting, online algorithms such as stochastic gradient descent which pass
over the data only once, are usually preferred over batch algorithms,
which require multiple passes over the data. In this talk, I will show how
the smoothness of loss functions may be used to design novel algorithms
with improved behavior, both in theory and practice: in the ideal infinite-
data setting, an efficient novel Newton-based stochastic approximation
algorithm leads to a convergence rate of O(1/n) without strong convex-
ity assumptions, while in the practical finite-data setting, an appropriate
combination of batch and online algorithms leads to unexpected behav-
iors, such as a linear convergence rate for strongly convex problems, with
an iteration cost similar to stochastic gradient descent.
(joint work with Nicolas Le Roux, Eric Moulines and Mark Schmidt)

Bio. Francis Bach is a researcher at INRIA, leading since 2011 the SIERRA
project-team, which is part of the Computer Science Laboratory at Ecole Nor-
male Superieure. He completed his Ph.D. in Computer Science at U.C. Berkeley,
working with Professor Michael Jordan, and spent two years in the Mathemati-
cal Morphology group at Ecole des Mines de Paris, then he joined the WILLOW
project-team at INRIA/Ecole Normale Superieure from 2007 to 2010. Francis
Bach is interested in statistical machine learning, and especially in graphical
models, sparse methods, kernel-based learning, convex optimization vision and
signal processing.
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Making Smart Metering Smarter

by Applying Data Analytics

Georges Hébrail

EDF Lab
CLAMART, France

georges.hebrail@edf.fr

Abstract. New data is being collected from electric smart meters which
are deployed in many countries. Electric power meters measure and trans-
mit to a central information system electric power consumption from ev-
ery individual household or enterprise. The sampling rate may vary from
10 minutes to 24 hours and the latency to reach the central informa-
tion system may vary from a few minutes to 24h. This generates a large
amount of - possibly streaming - data if we consider customers from an
entire country (ex. 35 millions in France). This data is collected firstly
for billing purposes but can be processed with data analytics tools with
several other goals. The first part of the talk will recall the structure of
electric power smart metering data and review the different applications
which are considered today for applying data analytics to such data. In
a second part of the talk, we will focus on a specific problem: spatio-
temporal estimation of aggregated electric power consumption from in-
complete metering data.

Bio. Georges Hébrail is a senior researcher at EDF Lab, the research centre
of Electricité de France, one of the world’s leading electric utility. His back-
ground is in Business Intelligence covering many aspects from data storage and
querying to data analytics. From 2002 to 2010, he was a professor of computer
science at Telecom ParisTech, teaching and doing research in the field of informa-
tion systems and business intelligence, with a focus on time series management,
stream processing and mining. His current research interest is on distributed and
privacy-preserving data mining on electric power related data.
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Alexandre Cotarmanac’h

VP Platform & Distribution
Twenga

alexandre.cotarmanach@twenga.com

Abstract. The advent of realtime bidding and online ad-exchanges has
created a new and fast-growing competitive marketplace. In this new
setting, media-buyers can make fine-grained decisions for each of the
impressions being auctioned taking into account information from the
context, the user and his/her past behavior. This new landscape is par-
ticularly interesting for online e-commerce players where user actions can
also be measured online and thus allow for a complete measure of return
on ad-spend.
Despite those benefits, new challenges need to be addressed such as:

– the design of a real-time bidding architecture handling high volumes
of queries at low latencies,

– the exploration of a sparse and volatile high-dimensional space,
– as well as several statistical modeling problems (e.g. pricing, offer

and creative selection).

In this talk, I will present an approach to realtime media buying for
online e-commerce from our experience working in the field. I will review
the aforementioned challenges and discuss open problems for serving ads
that matter.

Bio. Alexandre Cotarmanac’h is Vice-President Distribution & Platform for
Twenga.

Twenga is a services and solutions provider generating high value-added
leads to online merchants that was founded in 2006.

Originally hired to help launch Twenga’s second generation search engine
and to manage the optimization of revenue, he launched in 2011 the affinitAD line
of business and Twenga’s publisher network. Thanks to the advanced contextual
analysis which allows for targeting the right audience according to their desire to
buy e-commerce goods whilst keeping in line with the content offered, affinitAD
brings Twenga’s e-commerce expertise to web publishers. Alexandre also oversees
Twenga’s merchant programme and strives to offer Twenga’s merchants new
services and solutions to improve their acquisition of customers.

With over 14 years of experience, Alexandre has held a succession of in-
creasingly responsible positions focusing on advertising and web development.
Prior to joining Twenga, he was responsible for the development of Search and
Advertising at Orange. Alexandre graduated from Ecole polytechnique.
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Arthur Von Eschen
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Arthur.VonEschen@activision.com

Abstract. Data science is relatively new to the video game industry, but
it has quickly emerged as one of the main resources for ensuring game
quality. At Activision, we leverage data science to analyze the behavior
of our games and our players to improve in-game algorithms and the
player experience. We use machine learning and data mining techniques
to influence creative decisions and help inform the game design process.
We also build analytic services that support the game in real-time; one
example is a cheating detection system which is very similar to fraud
detection systems used for credit cards and insurance. This talk will
focus on our data science work for Call of Duty, one of the bestselling
video games in the world.

Bio. Arthur Von Eschen is Senior Director of Game Analytics at Activision. He
and his team are responsible for analytics work that supports video game design
on franchises such as Call of Duty and Skylanders. In addition to holding a
PhD in Operations Research, Arthur has over 15 years of experience in analytics
consulting and R&D with the U.S. Fortune 500. His work has spanned across
industries such as banking, financial services, insurance, retail, CPG and now
interactive entertainment (video games). Prior to Activision he worked at Fair
Isaac Corporation (FICO). Before FICO he ran his own analytics consulting firm
for six years.



Algorithms, Evolution and Network-Based

Approaches in Molecular Discovery

Mike Bodkin

Evotec Ltd.
Oxfordshire, UK

Mike.Bodkin@evotec.com

Abstract. Drug research generates huge quantities of data around tar-
gets, compounds and their effects. Network modelling can be used to
describe such relationships with the aim to couple our understanding of
disease networks with the changes in small molecule properties. This talk
will build off of the data that is routinely captured in drug discovery and
describe the methods and tools that we have developed for compound
design using predictive modelling, evolutionary algorithms and network-
based mining.

Bio. Mike did his PhD in protein de-novo design for Nobel laureate sir James
Black before taking up a fellowship in computational drug design at Cambridge
University. He moved to AstraZeneca as a computational chemist before joining
Eli Lilly in 2000. As head of the computational drug discovery group at Lilly since
2003 he recently jumped ship to Evotec to work as the VP for computational
chemistry and cheminformatics. His research aims are to continue to develop new
algorithms and software in the fields of drug discovery and systems informatics
and to deliver and apply current and novel methods as tools for use in drug
research.
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Relative Comparison Kernel Learning with Auxiliary Kernels . . . . . . . . . . 563
Eric Heim, Hamed Valizadegan, and Milos Hauskrecht

Transductive Minimax Probability Machine . . . . . . . . . . . . . . . . . . . . . . . . . 579
Gao Huang, Shiji Song, Zhixiang (Eddie) Xu, and Kilian Weinberger

Covariate-Correlated Lasso for Feature Selection . . . . . . . . . . . . . . . . . . . . . 595
Bo Jiang, Chris Ding, and Bin Luo

Random Forests with Random Projections of the Output Space for
High Dimensional Multi-label Classification . . . . . . . . . . . . . . . . . . . . . . . . . 607

Arnaud Joly, Pierre Geurts, and Louis Wehenkel



XXXIV Table of Contents – Part I

Communication-Efficient Distributed Online Prediction by Dynamic
Model Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 623

Michael Kamp, Mario Boley, Daniel Keren, Assaf Schuster, and
Izchak Sharfman

Hetero-Labeled LDA: A Partially Supervised Topic Model with
Heterogeneous Labels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 640

Dongyeop Kang, Youngja Park, and Suresh N. Chari

Bayesian Multi-view Tensor Factorization . . . . . . . . . . . . . . . . . . . . . . . . . . . 656
Suleiman A. Khan and Samuel Kaski

Conditional Log-Linear Models for Mobile Application Usage
Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 672

Jingu Kim and Taneli Mielikäinen
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Hierarchical Latent Tree Analysis for Topic Detection . . . . . . . . . . . . . . . . . 256
Tengfei Liu, Nevin L. Zhang, and Peixian Chen

Bayesian Models for Structured Sparse Estimation via Set Cover
Prior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273

Xianghang Liu, Xinhua Zhang, and Tibério Caetano
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Abstract. Classifying streams of data, for instance financial transac-
tions or emails, is an essential element in applications such as online
advertising and spam or fraud detection. The data stream is often large
or even unbounded; furthermore, the stream is in many instances non-
stationary. Therefore, an adaptive approach is required that can manage
concept drift in an online fashion. This paper presents a probabilistic
non-parametric generative model for stream classification that can han-
dle concept drift efficiently and adjust its complexity over time. Unlike
recent methods, the proposed model handles concept drift by adapting
data-concept association without unnecessary i.i.d. assumption among
the data of a batch. This allows the model to efficiently classify data us-
ing fewer and simpler base classifiers. Moreover, an online algorithm for
making inference on the proposed non-conjugate time-dependent non-
parametric model is proposed. Extensive experimental results on several
stream datasets demonstrate the effectiveness of the proposed model.

Keywords: Stream classification, Concept drift, Bayesian non-
parametric, Online inference.

1 Introduction

The emergence of applications such as spam detection [29] and online advertising
[1, 23] coupled with the dramatic growth of user-generated content [7, 35] has
attracted more and more attention to stream classification.The data stream in
such applications is large or even unbounded; moreover, the system is often
required to respond in an online manner. Due to these constraints, a common
scenario is usually used in stream classification: At each instant, a batch of data
arrives at the system. The system is required to process the data and predict their
labels before the next batch comes in. It is assumed that after prediction, the
true labels of the data are revealed to the system. Also due to limited additional
memory the system can only access one previous batch of data and their labels.
For example, in online advertising, at each instant, a large number of requests
arrive and the system is required to predict for each ad, the probability that
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it will be clicked by each user. After a short time, the result is revealed to the
system and the system can use it to adapt the model parameters.

One of the main challenges of stream classification is that often the process
that generates the data is non-stationary. This phenomenon, known as concept
drift, poses different challenges to the classification problem. For example, in a
stationary classification task, one can model the underlying distribution of data
and improve estimates of model parameters as more data become available; but
this is not the case in a non-stationary environment. If we can not model the
change of the underlying distribution of data, more data may even reduce the
model’s efficiency. Formally, concept drift between time t1 and t2 occurs when
the posterior probability of an instance changes, that is [19]:

∃x : pt1(y|x) �= pt2(y|x) (1)

When modeling change in the underlying distribution of data, a common as-
sumption is that the data is generated by different sources and the underlying
distribution of each source, which is called its concept, is constant over time [19].
If the classification algorithm can find the correct source of each data item, then
the problem reduces to an online classification task with stationary distribution,
because each concept can be modeled separately. While the main focus in classifi-
cation literature is on stationary problems, recent methods have been introduced
for classification in non-stationary environments [19]. However, these algorithms
are often restricted to simple scenarios such as finite concepts, slow concept drift,
or non-cyclical environment [16]. Furthermore, usually heuristic rules are applied
to update the models and classifiers, which may cause overfitting.

Existing stream classification methods belong to one of two main categories.
Uni-model methods use only one classifier to classify incoming data and hence
need a forgetting mechanism to mitigate the effect of data that are not relevant to
the current concept. These methods use two main approaches to handle concept
drift: sample selection and sample weighting [30]. Sample selection methods keep
a sliding window over the incoming data and only consider the most recent
data that are relevant to the current concept. One of the challenges in these
methods is determining the size of the window, since a very large window may
cause non-relevant data to be included in the model and a small window may
decrease the efficiency of the model by preventing the model from using all
relevant data. Sample weighting methods weigh samples so that more recent data
have more impact on the classifier parameters [13, 38]. In contrast to uni-model
methods, ensemble methods keep a pool of classifiers and classify data either by
choosing an appropriate classifier from the pool (model selection) or combining
the answers of the classifiers (model combination) to find the correct label [31].
Inspired by the ability of ensemble methods to model different concepts, these
models have been used in stream classification with encouraging results [16, 27,
29, 34]. The main problem is that many of these models update the pool of
classifiers heuristically and hence may overfit to the data. Moreover, a common
assumption among all existing ensemble methods is that all data of a batch
are i.i.d. samples of a distribution that are generated from the same source and
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hence have the same concept. This assumption may cause several problems. For
example, since the data of a batch are not necessarily from the same source or
may even belong to conflicting concepts, we may not be able to classify them with
high accuracy even using complex base classifiers. Moreover, since the diversity
of batches of data can be very high, the number of needed base classifiers may
become very large.

In this paper, we propose a principled probabilistic framework for stream
classification that is impervious to the aforementioned issues and is able to adapt
the complexity of the model to the data over time. The idea is to model the
data stream using a non-parametric generative model in which each concept is
modeled by an incremental probabilistic classifier and concepts can emerge or
die over time. Moreover, instead of the restrictive i.i.d. assumption among data
of a batch, we assume that the data of a batch are exchangeable which is a much
weaker assumption (refer to Section 3.1 for a detailed definition). This is realized
by modeling each concept with an incremental probabilistic classifier and using
the temporal Dirichlet process mixture model (TDPM) [3]. For inference, we
propose a variation of forward Gibbs sampling.

To summarize, we make the following main contributions: (i) We propose a
coherent generative model for stream classification. (ii) The model manages its
complexity by adapting the size of the latent space and the number of classifiers
over time. (iii) The proposed model handles concept drift by adapting data-
concept association without unnecessary i.i.d. assumption among data of a batch.
(iv) An online algorithm is proposed for inference on the non-conjugate non-
parametric time-dependent model.

The remainder of this paper is organized as follows: Section 2 briefly discusses
the prior art on this subject. The details of the proposed generative model are
discussed in Section 3. To demonstrate the effectiveness of the proposed model,
extensive experimental results on several stream datasets are reported and an-
alyzed in Section 4. Finally, Section 5 concludes this paper and discusses paths
for future research.

2 Review on Prior Art

Stream classification methods can be categorized based on different criteria. As is
mentioned in [19], based on how concept drift is handled the different strategies
can be categorized into informed adaptation and blind adaptation. In informed
adaptation-based models, there is a separate building block that detects the drift
allowing the system to act according to these triggers [8, 22]. However, blind
adaptation models adapt the model without any explicit detection of concept
drift [19]. In this paper, the focus is on blind adaptation.

Chu et al. proposed a probabilistic uni-model method for stream classification
in [13] that uses sample weighting to handle concept drift. This method, uses a
probit regression model as a classifier and adaptive density filtering (ADF) [32]
to make inference on the model and update it. Probit regression, is a linear
classifier with parameter w and prior distribution N(w;μ0, Σ0). After observing
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each new data, the posterior of w is updated and approximated by a Gaussian
distribution, that is:

wt ∼ N(wt;μt, Σt) (2)

p(yt|xt, wt) = Φ(ytw
T
t xt) (3)

p(wt+1|xt, yt) ∝ Φ(ytw
T
t xt)N(wt;μt, Σt) (4)

In order to decrease the effect of old data, this method introduces a memory
loss factor and incorporates the prior of wt with this factor in computing the
posterior of w, that is:

p(wt+1|xt, yt) ∝ Φ(ytw
T
t xt)N(wt;μt, Σt)

γ 0� γ < 1 (5)

Using this method, the effect of out-of-date data is reduced as new data arrives
into the system. As it is evident in (5), this method forgets old data gradually
and hence can not handle abrupt changes in the distribution of data. On the
other hand, since sample selection methods only consider the selected data, they
easily can handle abrupt drift but they miss the information in the old data that
are relevant to the current concept.

As mentioned in Section 1, ensemble methods can be categorized into model
selection and model combination methods. Model combination methods assume
that each data item is generated by a linear combination of base classifiers and
thereby enrich the hypothesis space [15]. There have been different methods
for stream classification based on model combination [16, 34]. These methods
maintain a pool of classifiers and estimate the label of each datum of batch t by
combining base classifiers using:

ŷti = argmax
c

∑
k

W t
kI[hk(xt

i)=c] (6)

where W t
k is the weight of base classifier k for batch t, which is an estimate of its

accuracy relative to other classifiers. After observing the true labels of a batch,
these methods update the model by adding new classifiers or removing inefficient
classifiers, or changing the weights of classifiers.

The main idea of model selection methods, is to find the concept of each data
item, hence reducing the problem to an online classification task. The challenge
is that finding the concepts of the data is an unsupervised task. There have
been different methods to tackle this issue. The simplifying assumption that is
common among almost all of these methods is that all of the data of a batch
are i.i.d. and hence generated from one concept. For example, [29] uses this
assumption and extracts some feature from each batch and finds their concept
by clustering the extracted feature vectors. This method assumes that all of the
batches that lie in the same cluster, can be classified using a single classifier.
This assumption may not be true in many applications, which may decrease
the efficiency. Since this method finds the concepts of data by clustering the
features that are extracted from the whole batch and the diversity of batches
may be very high, the number of clusters may become very large and hence the
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model can become very complex. Hosseini et al. proposed an improved version of
this method in [27]. This method introduces a new distance metric in the feature
space together with pool management operations such as splitting or merging of
concepts.

There is some prior work on classification using Dirichlet process mixture
models [14,24,36]. All of these methods have been designed for classifying batch
data and can’t be applied to stream classification due to two main reasons.
First, these methods does not model the temporal dependency among data and
second, the inference algorithm in these methods is offline which is not suitable
for stream classification. In order to solve these two issues, we proposed a time-
dependent non-parametric generative model and an online inference algorithm
based on forward collapsed Gibbs sampling which is an online version of Gibbs
sampling [1].

3 Proposed Method

In this section, we introduce our proposed method for stream classification. In
order to model concept drift, we propose a non-parametric mixture model with
potentially infinite number of mixtures, in which each mixture represents a con-
cept. This model uses a Bayesian model selection approach [31] and assumes
that each data item is generated by one concept. Each concept is modeled with
a generative classifier. In order to model the change in popularity of concepts
over time and their emergence and death, we use TDPM. After observing the
true labels of a batch, this model allows the number of concepts and the data-
concept associations to be determined by inference, for which we propose an
online inference algorithm based on Gibbs sampling.

For clarity, we define the problem setting and notations in Section 3.1. To
make the presentation self-sufficient, TDPM is reviewed in Section 3.2. The
proposed generative model is described in Section 3.3, followed by the details of
the inference algorithm in Section 3.4.

3.1 Problem Setting and Notation

Consider a stream classification problem in which each data item consists of
an l − tuple feature vector and a label that associates it to one of C predefined
classes. In this setting, data arrive in consecutive batches. The system is required
to predict the labels for each batch, after which the true labels are revealed.
Moreover due to limited memory, the system only has access to one previous
batch of data. In summery, our goal is to classify a stream of data (D1, . . . , DT ),
where T denotes the number of batches and Dt is the batch of data that arrives
at time t. Also, Dt = (dti)

nt

i=1 where dti is the ith data item in batch t and nt

is the number of data in that batch. Furthermore, each data item is denoted by
(xti, yti), where xti is an l − tuple vector with l1 discrete features x1,...,l1ti and l2
continuous features xl1+1,...,l

ti and y ∈ {1, . . . , C}.
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For a general variable z, zt denotes the set of all z values of batch t and zt,i:j
denotes the corresponding z values of data i to j in batch t. Moreover, by z−i

t ,
we mean all z values of batch t except the i’th one.

3.2 Temporal Dirichlet Process Mixture Model

Suppose that we assume that the data (x1, . . . , xN ) are infinitely exchangeable,
that is, the joint probability distribution underlying the data is invariant to
permutation, then according to De Finetti theorem [26], the joint probability
p(x1, . . . , xN ) has a representation as a mixture:

p(x1, . . . , xN ) =

∫ ( N∏
i=1

p(xi|G)

)
dP (G) (7)

for some random variable G. The theorem needs G to range over measures, in
which case P (G) is a measure on measures. The Dirichlet process denoted by
DP (G0, α) is a measure on measures with base measure G0 and concentration
parameter α [17], and hence can be used to model exchangeable data . We write
G ∼ DP (G0, α) if G is drawn from a Dirichlet process in which case G itself is
a measure on the given parameter space θ. Integrating out G, the parameters
θ follow the Chinese Restaurant Process (CRP) [9], in which the probability of
redrawing a previously drawn value of θ is strictly positive which makes G a
discrete probability measure with probability one; that is:

p(θi|θ1:i−1) =
∑
k

mk

i− 1 + α
δ(φk) +

α

i− 1 + α
G0 (8)

where φks are unique θ values and mk is the number of θis having value φk.
The CRP metaphor explains (8) clearly. In this metaphor, there is a Chinese
restaurant with infinite number of tables. When a new customer xi comes into
the restaurant, she either sits on one of the previously occupied tables φk with
probability mk

i−1+α or sits on a new table with probability α
i−1+α . Using the

Dirichlet process as the prior distribution of a hierarchical model, one obtains the
Dirichlet process mixture model (DPM) [6]. As is evident from (8), DPM assumes
the data are exchangeable. Since there are temporal dependencies among data
in a stream, DPM is not appropriate for modeling.

There are several methods to incorporate temporal dependency in DPM [1,3,
11, 37]. In this paper, we focus on TDPM introduced in [3], and use a variation
of that in our proposed model for stream classification. TDPM assumes that
the stream of data arrives in consecutive batches. Moreover, this model assumes
that data are partially exchangeable, i.e., the data that belong to one batch are
exchangeable but exchangeability does not hold among batches. A sample Gt

drawn from TDP (G0, α, λ,Δ) is a time dependent probability measure over the
parameter space θ:

Gt|φ1:k, G0, α ∼ DP

(∑
k

m′
kt∑

lm
′
lt + α

δ(φk) +
α∑

lm
′
lt + α

G0, α+
∑
k

m′
kt

)
(9)
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where φ1:k are the set of unique θi values used in recent Δ batches and m′
kt is

the weighted number of θis having value φk. More formally, if mkt denotes the
number of θs in batch t with value φk, then:

m′
kt =

Δ∑
τ=1

e−
τ
λmk,t−τ (10)

As it is evident from Eq. (9), the data in each batch are modeled by a DP
and hence it is assumed that they are exchangeable. However, the parameters
of these processes evolve over time and are dependent. By marginalizing over
Gt, the parameters θ follow the Recurrent Chinese Restaurant Process (RCRP)
introduced in [3]:

θt,i|θt−Δ, θ
−i
t , α,G0 ∝

∑
k

(m′
kt +mkt)δ(φk) + αG0 (11)

According to (11), when customer xi comes to the restaurant, the probability of
choosing table φk is proportional to the weighted number of customers in previ-
ous Δ batches that chose that table and the number of customers in the current
batch that chose the same table. In fact, RCRP in (10), uses sample selection
and sample weighting to model the evolution of the probability distribution over
parameters. Moreover, this process assumes that the data in a batch are only
exchangeable and doesn’t force them to select the same mixture. Therefore, we
use this process as the prior over the parameters of a classifier which uses model
selection.

3.3 Infinite Concept Stream Classifier

In this section, we introduce our generative model for stream classification. In
order to model concept drift, we propose a Bayesian model selection method [31].
Figure 1 depicts the graphical representation of the proposed generative model.
In this graph, observed variables are depicted using shaded nodes and blank
nodes represent latent variables. Moreover, arrows are used to represent the
dependency among random variables. The plate structure is used to act as a for
loop to represent repetition. As it can be seen, there are in total T batches of
data, in which batch t, contains nt data. Each data item consists of a feature
vector x which is an observed variable and a latent variable label y which will be
revealed to the system after it is estimated. In this model, there are potentially
infinite number of concepts. Each concept is in fact a classifier with parameter set
φ. Moreover, since it is based on model selection, it assumes that each (xti, yti) is
generated by a single concept, where zti is the concept indicator. More formally,
if data (xti, yti) is generated by a classifier with parameters θti, then θti = φzti .
Since the size of data is very large in data streams, it is not possible to keep them
all. Therefore, we need an incremental model for the base classifiers. The classifier
model that we used in our model is a naive Bayes classifier. In this model, each
continuous feature in each class is modeled by a Gaussian distribution and each
discrete feature is modeled by a categorical distribution. In order to model the
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α

z
t−1 z

ti
z
t+1

x
ti

y
ti

i=1:nt

t=1:T

k=1:∞

φkG0

Fig. 1. The Graphical Model of the Proposed Method

temporal dependency among the data of the stream, we used RCRP (G0, α, λ,Δ)
as the prior over concept indicators. The generative process of this model is
described in Algorithm 1. According to this process, in order to generate the
ith element of batch t, one may either choose one of the existing classifiers that
have generated at least one data item in last Δ batches, or a new classifier. The
probability of choosing each classifier is determined by RCRP. Furthermore, if a
new classifier is needed to generate dti, then the parameters of the classifiers are
obtained by drawing a sample from G0. In order to make inference easier, we
selectedG0 conjugate to the classifier’s likelihoods. That is, Dirichlet distribution
is used for the prior over class prior probabilities as well as the distribution of
discrete features in each class, and Gaussian-Gamma distribution is used for the
prior over continuous features in each class.

Indeed, this model assumes that the amount of activity of classifier k at batch
t is proportional to the weighted number of data that this model has classified in
the lastΔ batches and hence uses sample selection and sample weighting concur-
rently to handle concept drift. Moreover, this model allows the data of a batch to
select different concepts. This assumption increases the efficiency of the model
in applications where the data of a batch are not necessarily i.i.d. Furthermore,
unlike most existent ensemble methods that set the number and the weights of
classifiers using heuristic rules, the number of classifiers and their corresponding
weights are determined consistently in this method through Bayesian inference
on the proposed model. The details of the inference algorithm are discussed next.

3.4 Inference

When a new batch of data arrives at the system, we need to find their labels by
estimating the posterior probability of labels given all previously observed data,
that is:
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Algorithm 1. The proposed Generative Model

for all batch t ∈ {1, 2, . . . , T} do
for all data i ∈ {1, . . . , nt} do

Draw zt,i|z1:t−1, z
−i
t ∼ RCRP (α,λ,Δ)

if zt,i is a new concept then
Draw βznew |G0 ∼ Dir(π)
for all c ∈ {1, . . . , C} do

for all j ∈ {1, . . . ,m1} do
Draw ρznew,j,c|G0 ∼ Dir(γj,c)

for all j ∈ {1, . . . ,m2} do
Draw λznew,j,c|G0 ∼ Gam(aj,c, bj,c)
Draw μznew,j,c|G0 ∼ N(ηj,c, (νj,cλznew,j,c)

−1)

Draw yt,i ∼ Cat(yt,i;βzt,i)

Draw x1,...,l1
t,i |yt,i ∼

∏l1
j=1 Cat(xj

t,i; ρzt,i,j,yt,i)

Draw xl1+1,...,l
t,i |yt,i ∼

∏l2
j=1 N(xj+l1

t,i ;μzt,i,j,yt,i , λ
−1
zt,i,j,yt,i

)

p(yt|xt, x1:t−1, y1:t−1, G0, α, λ,Δ) (12)

This can be done by marginalizing over concept indicators z1:t and concepts’
parameters φks. However, since the posterior of TDPM is not available in closed
form, we need an algorithm to approximate it. Moreover, in stream classification,
the algorithm only has access to one previous batch of data and hence, the
inference algorithm must be online. Therefore, we approximate the posterior (12)
in two phases. First, after observing the true labels of batch t − 1, we update
the model accordingly and then, after batch t is available, we approximate (12)
using the updated model.

Several approximate algorithms have been introduced for inference on DPM
models [21]. These methods either use Markov Chain Monte Carlo (MCMC)
sampling methods [3,33] or Variational methods [10,28] to estimate the posterior
distribution of desired latent variables. Moreover, online inference algorithms
have been proposed for making inference on TDPMwhich are based on sequential
Monte Carlo estimation [2] or Gibbs sampling [1]. The proposed algorithm for
making inference on the proposed model is a variation of forward Gibbs sampling
[1] which we explain next.

Generally, the main idea of MCMC estimation is to design a Markov Chain
over the desired latent variables in which the equilibrium distribution of the
Markov chain is the posterior of the variables [5]. By drawing samples from this
Markov chain, one can obtain samples from the posterior of the desired ran-
dom variables. Gibbs sampling is a widely used variation of MCMC sampling.
If p(z1:m) is the distribution that we want to draw samples from, then Gibbs
chooses an initial value for z1:m and in each iteration, chooses one of the ran-
dom variables zi and replaces its value by the value drawn from p(zi|z−i

1:m). This
process is repeated by iterating over zis [20]. Gibbs sampling can not be applied
to online applications such as stream classification where there is temporal de-
pendency among latent variables. The reason is that in these models, the system
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doesn’t have access to old data and hence iterating over all latent variables is
not practical.

After observing the labels of batch t, the set of latent variables in our model is
z1:t and φks. In order to use Gibbs sampling to draw samples from the posterior
of these variables, it is necessary to access all previous batches of data. In order
to solve this issue, we use forward Gibbs sampling, an online variation of Gibbs
sampling [1]. In this method, at each time step t, we estimate the posterior of
new random variables zt using the estimates of concept indicators in previous
batches. In order to do so, we run batch Gibbs sampling over newly added
random variables given the state of the sampler in the last batch. In fact, in this
method, the value of latent variables that are set in previous batches is no longer
changed and the dependency of these variables on future data is not considered.
Although this causes suboptimal estimates for initial batches, the estimates will
improve over time.

Formally, for inference on the proposed model, we use a collapsed Gibbs sam-
pler, the state of which at time t is z1:t. In order to draw a sample at time t,
we collapse the concepts’ parameters φks and compute the posterior of zt,i given
the values assigned to z1:t−1 in previous batches. To compute this conditional
distribution, we use the exchangeability among data of a batch and assume that
data i is the last data of the batch. Moreover, using the independency relations
among random variables, which can be inferred from the graphical model in Fig.
1, we have:

p(zti = k|z−(ti)
1:t , D1:t, G0, α, λ,Δ) ∝ (13)

p(zti = k|z−(ti)
1:t , G0, α, λ,Δ) p(dti|zti = k, z

−(ti)
1:t , d

−(ti)
1:t )

According to Algorithm 1, the prior over zti obeys RCRP (G0, α, λ,Δ), i.e.:

p(zt,i = k|z−(t,i)
1:t , G0, α, λ,Δ) ∝

{
m′

k,t +mk,t, if k ∈ It−Δ:t

α, if k is a new concept
(14)

where It−Δ:t is the set of all concept indices that generated at least one data
in the last Δ batches. Since we chose G0 conjugate to the likelihood functions
of the base classifiers, the second term in (13) can be analytically computed by
marginalizing over φk; that is:

p(dt,i|zt,i = k, z
−(t,i)
1:t , d

−(t,i)
1:t ) =

∫
p(dt,i|φk)p(φk|{dτ,j : zτ,j = k})dφk (15)

where p(φk|{dτ,j : zτ,j = k}) is the posterior of the parameters of classifier
k given all data that was generated by this classifier. Since the base classifier
is a naive Bayes classifier with normal likelihood for continuous features and
categorical likelihood for discrete features and due to the conjugacy relationship
between G0 and classifier likelihoods, the posterior of the parameters of these
classifiers can be easily computed using a few sufficient statistics.
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When a new batch of data arrives to be classified, we find the labels by
approximating their posteriors by:

p (yt+1,i|xt+1, d1:t, z1:t) � p(yt+1,i|xt+1,i, d1:t, z1:t) (16)

=
∑
k

p(yt+1,i|xt+1,i, zt+1,i = k, z1:t, d1:t)p(zt+1,i = k|xt+1,i, z1:t, d1:t) (17)

In this approximation, we have discarded the information that x−i
t+1 may have

about zt+1,i. The first term of (17) can be calculated similar to (15) and the
second term is calculated by:

p(zt+1,i|xt+1,i, z1:t, d1:t) ∝ p(xt+1,i|zt+1,i, z1:t, d1:t)p(zt+1,i|z1:t) (18)

where the first term is calculated using (15) and marginalizing over yt+1,i.

4 Experimental Results

In this section, we provide experimental results and analysis regarding applica-
tion of the proposed non-parametric generative model on real stream classifica-
tion datasets, known as spam [29], weather [16], and electricity [25]1.

The spam dataset consists of 9324 emails extracted from the Spam Assassin
Collection. Each email is represented by 500 binary features which indicate the
existence of words derived using feature selection. The ratio of spam messages is
approximately 20%, hence the classification problem is imbalanced. The emails
are sorted according to their arrival date in to batches of 50 emails.

The weather dataset consists of 18,159 daily readings including features such
as temperature, pressure, and wind speed. The data were collected by The U.S.
National Oceanic and Atmospheric Administration from 1949 to 1999 in the
Offutt Air Force Base in Bellevue, Nebraska which has diverse weather patterns
making it a suitable dataset for evaluating concept drift. We use the same eight
features as [16]. The samples belong to one of two classes: “rain” with 5698
(31%) and “no rain” with 12461 (69%) samples, and are sorted into 606 30-day
batches. The model must predict the weather forecast for 30 days, after which
the true forecast is revealed.

The electricity dataset consists of 45,312 samples from the Australian New
SouthWales Electricity Market. Each sample is described by 4 attributes, namely
time stamp, day of the week, and 2 electricity demand values. The data was
collected from May 1996 to December 1998, during which period the prices vary
due to changes in demand and supply. The samples were taken every 30 minutes
and sorted into batches of 48 samples each. The target is to predict whether the
prices related to a moving average of the last 24 hours, increase or decrease.

In order to compare different stream classification methods on the above
datasets, we use two well known measures, namely accuracy defined as the ratio
of samples classified correctly and the κ coefficient [12] which is a robust mea-
sure of agreement that corrects for random classification. Furthermore, in order

1 All codes for the experiments are available at http://ml.dml.ir/research/npsc
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to evaluate accuracy over time, we use prequential accuracy with fading factor
α = 0.95 defined as [18]:

Aα(t) =

∑t
τ=1 α

t−τa(τ)∑t
τ=1 α

t−τ
(19)

where a(τ) is the ratio of correctly classified samples in batch τ . The reason
for choosing this measure is two fold: First, at time t, all previous accuracies
contribute to Aα(t), providing an overall picture for evaluation. Second, the
forgetting factor αmitigates the impact of older accuracies allowing us to observe
how well the algorithm responds to concept drift.

We compare the proposed Non-Parametric Stream Classifier (NPSC) with
Naive Bayes (NB) and Probit [13] as uni-model methods and with Conceptual
Clustering and Prediction (CCP) [29] and Pool Management base Recurring
Concepts Detection (PMRCD) [27] as state-of-the-art model selection algorithms
that attempt to handle concept drift. The results are depicted in Table 1 and
Fig. 2.

The parameters of Probit, CCP and PMRCD are set according to their cor-
responding publications. The proposed method has hyper-parameters that need
to be set, namely (G0, α, λ,Δ). The baseline distribution G0 can be treated as
the expected distribution Gt, which is the prior distribution over the parameters
of the base classifiers at time t. According to [37], it is unrealistic to assume
that this parameter is constant over time. Therefore, we learn this parameter
by training a single naive Bayes classifier on all observed data until time t.
The precision parameter α, controls how much Gt can deviate from the base-
line distribution G0. Moreover, this parameter controls how often new classifiers
emerge.This parameter was set equal to the batch size of each dataset. The pa-
rameter λ is the forgetting factor which determines how fast the effect of old
data is mitigated. This parameter was set to 0.4 for all datasets. The parameter
Δ can be safely set to any large value for which e−

Δ
λ is sufficiently small [4]; to

incur less computation cost, we set Δ to 30 for all datasets.
The results show that although Probit is a uni-model method, it provides

better results than CCP and PMRCD on the spam dataset. The reason is that
CCP and PMRCD assume that all data in a batch belong to the same concept.
This assumption coupled with the fact that initial batches in the dataset consist
of data from a single class, causes their classifiers to overfit to a single class.
Later batches in this dataset consist of data from different classes, which the
classifiers of CCP and PMRCD can not classify correctly. We have observed
that CCP and PMRCD tend to classify each batch with an accuracy similar to
the ratio of the majority label. The single classifier of Probit can better handle
this situation because it observes all the data and forgets older data gradually.
NPSC Provides the best accuracy on this dataset, because it can use multiple
classifiers without the unrealistic assumption that all data in a batch belong to
the same concept.

The weather dataset exhibits recurrent and gradual concept drift, for which
modeling with a finite number of concepts may be sufficient, but the assumption
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Table 1. Classification Accuracy (%) And κ Measure For Different Classifiers For
Different Methods

NB Probit CCP PMRCD NPSC

Spam Accuracy 90.7 92.4 91.6 89.7 94.5
κ 0.8 0.8 0.76 0.7 0.85

Weather Accuracy 73.8 73 73.2 73.0 75.5
κ 0.31 0.41 0.37 0.32 0.41

Electricity Accuracy 62.4 62.4 66.5 69.9 69.8
κ 0.23 0.20 0.30 0.38 0.38

that all days in a month (one batch) belong to the same concept is still un-
realistic. That may be the reason for the better performance of NPSC on this
dataset (Table 1). According to Fig. 2, the ensemble methods (CCP, PMRCD,
and NPSC) handle concept drift better than uni-model methods (NB and Pro-
bit), but it is hard to distinguish which performs better. This was expected due
to the recurrent nature of weather which can be modeled by a finite number of
concepts without the need for a complex management scheme for the pool of
classifiers.

Finally, the results show that uni-model methods (NB and Probit) perform
poorly on the Electricity dataset. The reason is that this dataset exhibits com-
plex concept drift, due to the complex nature of demand and supply. Ensemble
methods (CCP, PMRCD, and NPSC) perform better, because they can handle
multiple concepts. On the other hand, CCP lacks a management scheme for the
pool of classifiers which explains its poor performance in comparison to PMRCD
and NPSC. Moreover, since each batch of data corresponds to a single day, the
assumption that data in a batch belong to the same concept is not unrealistic.
This explains the similar performance of PMRCD and NPSC.

5 Conclusions and Future Works

In this paper, we addressed the problem of stream classification and introduced a
probabilistic framework. The proposed method handles concept drift using a non-
parametric temporal model that builds a model selection based classifier via a
mixture model with potentially infinite mixtures. This method finds the number
of concepts and the data-concept association through inference on the proposed
model. In order to make inference on the proposed model, we introduced an
online algorithm which is based on Gibbs sampling.

Several directions of future research are possible. The proposed method yields
accurate results using simple naive Bayes classifier. As it was mentioned in Sec-
tion 4, more complex classifiers such as probit may provide better results. The
challenge is that there are no conjugate priors for probit’s parameters and hence,
it may be necessary to use some approximate inference algorithms such as Expec-
tation Propagation (EP) in each iteration of Gibbs sampling. Another direction
is to use model combination instead of model selection. The assumption that
each data is generated by one classifier may be a constraining assumption and
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Fig. 2. Classification results of classifiers on (a) Spam, (b) Weather, and (c) Electricity

since model combination methods enrich the hypothesis space by combining dif-
ferent classifiers, they may increase the efficiency of the model. Furthermore,
sampling based inference methods are non-deterministic and their convergence
can not be verified easily. A direction we are currently pursuing is to develop an
online variational inference algorithm based on the idea proposed in [28].
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Abstract. Finding the k nearest neighbors (k-nns) of a given vertex in
a graph has many applications such as link prediction, keyword search,
and image tagging. An established measure of vertex-proximity in graphs
is the Personalized Page Rank (ppr) score based on random walk with
restarts. Since ppr scores have long-range correlations, computing them
accurately and efficiently is challenging when the graph is too large to
fit in main memory, especially when it also changes over time. In this
work, we propose an efficient algorithm to answer ppr-based k-nn queries
in large time-evolving graphs. Our key approach is to use a divide-and-
conquer framework and efficiently compute answers in a distributed fash-
ion. We represent a given graph as a collection of dense vertex-clusters
with their inter connections. Each vertex-cluster maintains certain infor-
mation related to internal random walks and updates this information
as the graph changes. At query time, we combine this information from
a small set of relevant clusters and compute ppr scores efficiently. We
validate the effectiveness of our method on large real-world graphs from
diverse domains. To the best of our knowledge, this is one of the few
works that simultaneously addresses answering k-nn queries in possibly
disk-resident and time-evolving graphs.

Keywords: vertex proximity, personalized pagerank, time-evolving
graphs, disk-resident graphs, distributed pagerank, dynamic updates.

1 Introduction

Quantifying the proximity, relevance, or similarity between vertices, and more
generally finding the k nearest neighbors (k-nns) of a given vertex in a large, time-
evolving graph is a fundamental building block formany applications. Personalized
PageRank (ppr) has proved to be a very effective proximity measure for the link
prediction and recommendation problems in such applications. Thanks to its effec-
tiveness, there existmany algorithms in the literature that are designed to compute

T. Calders et al. (Eds.): ECML PKDD 2014, Part I, LNCS 8724, pp. 17–33, 2014.
c© Springer-Verlag Berlin Heidelberg 2014



18 L. Akoglu et al.

the ppr scores of a given vertex in a graph efficiently [4, 10–13, 25]. These works,
however, cannot handle graphs that are larger than a certain size, that is, they are
not optimally designed for very large disk-resident graphs. Moreover, they cannot
work with graphs that dynamically change over time. Other previous works deal
with computing ppr queries on either disk-resident static graphs [21, 3] or special
families of time-evolving graphs [26].

In this work we propose ClusterRank, an algorithm for efficient computa-
tion of ppr queries for both disk-resident and time-evolving general graphs. Our
main motivation is to build a unified framework that will enable us to tackle both
of these two challenges. Our key idea is to take a divide-and-conquer approach;
simply put, we split the graph into relatively small vertex-clusters and decom-
pose the overall problem into simulating intra-cluster and inter-cluster random
walks. This decomposition enables us to handle disk-resident graphs since the
work is carefully split across distributed compute nodes. What is more, thanks
to this modular design of our approach, our updates are local and fast when the
graph changes over time. We summarize our main contributions as follows.

– Fast query processing: We propose a fast algorithm to answer k-nn queries
on large graphs, with query response time sub-linear in input graph size.

– Dynamic updates: The algorithm includes fast, incremental update proce-
dures for handling additions or deletions of edges and vertices. Thus it also
works with time-evolving graphs.

– Disk-resident graphs: Our method can operate when the graph resides en-
tirely on disk. Moreover, it loads only a small and relevant portion of the
graph into memory to answer a query or perform dynamic updates.

We demonstrate the effectiveness and efficiency of our method, w.r.t. query
accuracy and response time, on large real-world graphs from various domains.

2 Preliminaries and Overview

Vertex-Proximity. We consider finding the k-nn’s of a given vertex in a graph.
To calculate the k-nn’s of a vertex, one needs to define a distance metric between
two vertices. A widely used proximity measure that is based on random walks
is Personalized Page Rank (ppr). Given a restart vertex q and a parameter
α ∈ (0, 1), consider the random walk with restart starting at vertex q, such that
at any step when currently present at a vertex v, it chooses any of its neighbors
with equal probability α/dv, and returns to the restart vertex q with probability
(1−α). The stationary probability at vertex u of the random walk with restart is
defined as the ppr score of u with respect to the query vertex q. The ppr score
is known to be robust under noise or small changes in the graph, in contrast
to shortest paths, and favors existence of many short paths between vertices.
Therefore, in this paper we consider the problem of finding the k-nn’s of any
given vertex in a graph, where proximity is measured by the ppr score.

Overview. The main challenge in answering a k-nn query is the computational
overhead involved in simulating a random walk on a large graph that may not
even fit in memory. We employ a divide-and-conquer principle to handle this



Fast Nearest Neighbor Search on Large Time-Evolving Graphs 19

1. Pre-computation (Offline)

a. Cluster the graph into low-conductance, possibly overlapping clusters. For each
vertex v, we identify a unique cluster containing v and call it the parent of v.
Store these clusters on one or more compute nodes.

b. For each cluster, compute and store some auxiliary information relating to
intra-cluster random walks, independently of other clusters.

2. Query processing (Online)

a. Given a query vertex, identify the ‘right’ subset of clusters to consider. (If all
the clusters are considered, then the final answer is exact.)

b. Combine the auxiliary information of identified clusters to compute ppr scores.

3. Graph update processing (Online/Batch)

a. Given an update (addition/deletion of one or more vertices/edges), identify
the ‘right’ subset of clusters to update.

b. Update the identified clusters and their auxiliary information.

Fig. 1. Main components of proposed framework

challenge. We cluster the graph into relatively small vertex-clusters and decom-
pose the problem into simulating intra-cluster and inter-cluster random walks.

For a subset S of vertices, conditioned on the event that the random walk is in
S, the probability that it steps out of S is proportional to its conductance—the
ratio of the weight of edges crossing S to the weight of all edges incident to S.
Thus a low-conductance cluster “holds” the random walk longer than a high-
conductance cluster. This makes low conductance a natural choice for estimating
quality of a cluster for our purposes. We allow the clusters to overlap since it is
natural for a vertex to belong to multiple communities.

Consider a random walk with restart starting at q. Let the sequence of ver-
tices the walk visits be v0, v1, v2, . . .. A vertex may appear several times in this
sequence. The stationary distribution of this walk is the relative frequency with
which different vertices appear in this walk. Now suppose q ∈ Si. As the random
walk steps through this sequence, it stays in cluster Si for a while, then jumps
to another cluster Sj. Next it stays in Sj for a while before jumping to yet an-
other cluster, and so on. The clusters thus visited by the walk may also repeat.
As a result, one can partition the walk into a sequence of contiguous blocks of
vertices where each block represents a portion of the walk inside a cluster and
consecutive blocks represent a jump from a cluster to another.

Now it is easy to describe how to simulate the random walk based on the clus-
ters. For each cluster Si and each “entry” vertex v ∈ Si, one can compute the
characteristics of the random walk inside Si assuming it entered Si through v.
These characteristics include the probabilities with which it exits Si to different
“exit” vertices and the expected number of times it visits various vertices in Si

before exiting. Interestingly this information can be computed for each cluster Si

independent of other clusters. Our method pre-computes and stores this informa-
tion for each cluster. At query time, it combines this information across different
clusters to compute the desired ppr scores. Whenever the graph changes, due
to addition/deletion of vertices/edges, it updates the relevant clusters and their
information appropriately. Our overall framework is given in Figure 1.
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3 Proposed Method

We propose ClusterRank, a method to address the following two problems.

P1) Given a large edge-weighted graph G, a query vertex q in G and an integer
k, find k vertices in G that have highest ppr scores w.r.t. q.

P2) Given a large edge-weighted graph G(t) at time t, a subset D(t) of existing
edges in G(t) and a set A(t) of new edges, update the graph structure and
the relevant auxiliary information to delete the edges in D(t) and add the
edges in A(t), i.e., compute G(t+ 1) := (G(t) \D(t)) ∪A(t).

We next describe the components in Fig. 1 in detail. To simplify the presen-
tation, we assume the graph is unweighted. Our techniques, however, extend to
graphs with non-negative edge-weights and directed graphs.1

3.1 Pre-computation

The pre-computation involves two steps which can be performed offline.

3.1.1. Clustering the Graph
Todistribute a graph across compute nodes, one can use any top-performing known
graph partitioning algorithm [1, 8, 15, 19, 23, 22]. In this work, we use [1] which
finds low-conductance clusters and allows clusters to overlap. We assign each ver-
tex v to a unique cluster S containing v that contains the maximum number of
v’s neighbors. We call such a cluster the parent cluster of v. The notion of parent
clusters is used while query processing.

3.1.2. Computing Auxiliary Information for Clusters
Given the overlapping clustering computed as S = {S1, S2, . . . , Sp}, we next
compute certain auxiliary information for each cluster Si ∈ S independently
of others clusters. Assume that the query vertex q �∈ Si and assume that the
random walk with restart enters Si through a vertex u ∈ Si. We simulate this
random walk with restart till it exits cluster Si. Suppose the random walk is
at vertex v ∈ Si. In one step, with probability 1 − α, the random walk restarts
at q and hence exits Si. With probability α, it picks a neighbor w ∈ Γ (v) at
random. Here Γ (v) denotes the set of neighbors of v in G. If w ∈ Si, the random
walk continues within Si. If w �∈ Si, the random walk exits Si to vertex w. The
auxiliary information for each cluster Si consists of two matrices, the Count
matrix and the Exit matrix.

Count Matrix. The count matrix Ci is an |Si| × |Si| matrix defined as follows.
The entry Ci(u, v), for u, v ∈ Si, equals the expected number of times a random
walk with restart (restarting at q �∈ Si) starting at u visits v before exiting Si.
The following lemma gives a closed-form expression for Ci. Let Ti be an |Si|×|Si|
matrix that gives transition probabilities of a random walk within Si without
restart, i.e., for u, v ∈ Si, let Ti(u, v) = 1/|Γ (u)| if v ∈ Γ (u) and 0 otherwise.

1 We modify directed graphs by adding a self-loop to each vertex, such that no vertex
has out-degree zero. This ensures the random walk matrix remains a Markov chain.
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Lemma 1. Ci = (I − αTi)
−1 where I is the |Si| × |Si| identity matrix.

Proof. It is easy to see that Ci satisfies the following relation for all u, v ∈ Si.

Ci(u, v) =

⎧⎪⎪⎨⎪⎪⎩
1 + α

∑
w∈Γ (u)∩S

Ti(u,w)Ci(w, v), if v = u;

α
∑

w∈Γ (u)∩S

Ti(u,w)Ci(w, v), otherwise.
(1)

In matrix form, the above relation can be written as Ci = I + αTiCi. 
�

Exit Matrix. Let Bi = Γ (Si) \ Si denote the set of vertices not in Si that
are adjacent to vertices in Si. The exit matrix Ei is an |Si| × (|Bi|+ 1) matrix
defined as follows. The entry Ei(u, b), for u ∈ Si and b ∈ Bi, is the probability
that a random walk with restart (restarting at q �∈ Si) starting at u exits Si while
jumping to vertex b ∈ Bi. Since the random walk can exit Si while jumping to a
restart vertex q (assumed not to be in Si), we have an additional column in Ei

corresponding to q. Of course, we do not know the identity of the restart vertex q
at the pre-computation phase. Therefore we treat q as a symbolic representative
of the restart vertex. The entry Ei(u, q), for u ∈ Si, is the probability that
the random walk exits Si while jumping to the restart vertex q. The following
lemma gives a closed-form expression for Ei. Let T

+
i be an |Si|×(|Bi|+1) matrix

that gives exit probabilities of a random walk from vertices in Si to vertices in
Bi ∪ {q}, i.e., for u ∈ Si and b ∈ Bi, let T

+
i (u, b) = α/|Γ (u)| if b ∈ Γ (u) and 0

otherwise; and for u ∈ Si, T
+
i (u, q) = 1− α.

Lemma 2. Ei = (I − αTi)
−1T+

i = CiT
+
i where I is the identity matrix.

Proof. It is easy to see that Ei satisfies the following relation ∀u ∈ Si and
∀b ∈ Bi ∪ {q}.

Ei(u, b) =

⎧⎪⎪⎨⎪⎪⎩
1− α+ α

∑
w∈Γ (u)∩S

Ti(u,w)Ei(w, v), if b = q;

T+
i (u, b) + α

∑
w∈Γ (u)∩S

Ti(u,w)Ei(w, v), otherwise.
(2)

In matrix form, the above relation can be written as Ei = T+
i + αTiEi. 
�

There are a couple of ways in which one can compute matrices Ci and Ei

for a cluster. One can directly use the closed-form expressions given above. In
this case, computing auxiliary information for a cluster Si containing s vertices
and containing b vertices in the neighborhood Γ (Si) \ Si involves, computing
an inverse (I − αTi)

−1 of an s× s matrix and multiplying an s× s matrix and
an s × (b + 1) matrix. This takes a total of O(s3 + s2b) time using Gaussian
elimination for inverting and textbook matrix products. One can reduce this
time complexity by using Strassen’s algorithm [24]. An alternative is to use the
relations (1) and (2) to compute these matrices in an iterative fashion. This ap-
proach, however, is often found less effective than computing the matrix inverse.
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3.2 Query Processing

The second component of ClusterRank deals with query answering, and con-
sists of two steps: (1) updating the auxiliary information for those clusters that
contain the query vertex, and (2) combining such information from a subset of
“relevant” clusters to compute the final ppr scores.

3.2.1. Updating the Matrices Given a Query Vertex
Given a query vertex q, we first identify its unique parent cluster Si. We then
update the count matrix Ci and the exit matrix Ei to reflect the fact that the
restart vertex now lies inside the cluster Si. We remark that the count and exit
matrices corresponding to any other cluster, say Sj with j �= i, containing the
query vertex are not updated.
Count matrix with a query vertex inside. Given a query vertex q and its parent
cluster Si, the count matrix Cq

i is an |Si| × |Si| matrix defined analogously. The
entry Cq

i (u, v), for u, v ∈ Si, equals the expected number of times a random walk
with restart (restarting at q ∈ Si) starting at u visits v before exiting Si. The
following lemma gives a closed-form expression for Cq

i . Let Qq be an |Si| × |Si|
matrix with all entries in the column q equal to 1 and all other entries zero.

Lemma 3. Cq
i = (I − αTi − (1− α)Qq)

−1 where I is the |Si| × |Si| identity.

Proof. Recall that the random walk restarts at q ∈ Si at every step with prob-
ability 1− α. Therefore Cq

i satisfies the following relation for all u, v ∈ Si.

Cq
i (u, v) =

⎧⎪⎪⎨⎪⎪⎩
1 + (1− α)Cq

i (q, v) + α
∑

w∈Γ (u)∩S

Ti(u,w)C
q
i (w, v), if v = u;

(1− α)Cq
i (q, v) + α

∑
w∈Γ (u)∩S

Ti(u,w)C
q
i (w, v), otherwise.

(3)

In matrix form, the above relation becomes Cq
i = I +(1−α)QqC

q
i +αTiC

q
i . 
�

Exit matrix given a query vertex inside. Given a query vertex q ∈ Si, the exit
matrix Eq

i is an |Si| × |Bi| matrix defined analogously. The entry Eq
i (u, b), for

u ∈ Si and b ∈ Bi, is the probability that a random walk with restart (restarting
at q ∈ Si) starting at u exits Si while jumping to vertex b ∈ Bi. Note that since
the random walk does not exit Si due to a restart, Eq

i has only |Bi| columns.
The following lemma gives a closed-form expression for Eq

i . Let T
+q
i be an

|Si| × |Bi| matrix that gives exit probabilities of a random walk from vertices
in Si to vertices in Bi, i.e., for u ∈ Si and b ∈ Bi, let T

+
i (u, b) = α/|Γ (u)| if

b ∈ Γ (u) and 0 otherwise. This matrix is T+
i with the last column dropped.

Lemma 4. Eq
i = (I − αTi − (1 − α)Qq)

−1T+q
i = Cq

i T
+q
i .

Proof. Recall that the random walk restarts at q ∈ Si at every step with prob-
ability 1− α. Therefore Eq

i satisfies the following relation ∀u ∈ Si and ∀b ∈ Bi.

Eq
i (u, b) = T+q

i (u, b) + (1 − α)Eq
i (q, b) + α

∑
w∈Γ (u)∩S

Ti(u,w)E
q
i (w, v).

In matrix form, we can write the above as Eq
i = T+q

i +(1−α)QqE
q
i +αTiE

q
i . 
�
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Updating the matrices using Sherman-Morrison formula. Observe, from Lem-
mas 1 and 3, that the expressions for Ci and Cq

i are quite similar—Ci is the
inverse of a matrix and Cq

i is the inverse of the same matrix with (1−α)Qq sub-
tracted. Note also that (1−α)Qq is a rank-1 matrix. We can update the inverse
of a matrix efficiently when the matrix undergoes such a low-rank update. To
this end, we first quote a well-known lemma.

Lemma 5 (Sherman-Morrison-Woodbury [27]). Let n and k be any pos-
itive integers, A ∈ n×n, U ∈ n×k, Σ ∈ k×k, V ∈ k×n be any matrices:

(A+ UΣV )−1 = A−1 −A−1U(Σ−1 + V A−1U)−1V A−1.

Note that UΣV is a rank-k matrix. Thus after updating A with a rank-k matrix,
its inverse can be computed from A−1 by doing 4 multiplications of n× n and
n× k matrices, 2 multiplications of n× k and k × k matrices and 1 inverse of a
k × k matrix. Thus overall time is O(n2k) since k ≤ n. This can be much more
efficient than computing the inverse of an n× n matrix from scratch, especially
if k is much smaller than n. If k = 1, the above formula reduces to what is
commonly known as Sherman-Morrison formula. We refer to the formula in the
above lemma as the smw formula in the remainder of the text.

To use this approach, we have to express the rank-1 matrix (1 − α)Qq as
UΣV where Σ is a 1 × 1 matrix, i.e., a scalar. This can be done simply by
setting Σ = (1 − α)

√
|Si|, U to be an |Si|-size column vector with all entries

1/
√
|Si| and V to be an |Si|-size row vector with all entries 0 except the entry

corresponding to q equal to 1. Thus Cq
i can be computed from Ci in O(|Si|2)

time. Similarly, Eq
i can be computed from Ci and Ei in O(|Si|2 + |Si||Bi|) time.

To simplify the notation in the following discussion, we let Ĉi (resp. Êi) denote
Cq

i (resp. Eq
i ) if Si is the parent cluster of q, and Ci (resp. Ei) otherwise.

3.2.2. Computing the PPR Scores
Recall that to compute the ppr scores, our method decomposes the random
walk with restart starting from the query vertex q into intra-cluster and inter-
cluster random walks. Since the information about intra-cluster random walks
is already pre-computed (or appropriately updated for the parent cluster of the
query vertex), we next compute the necessary information about the inter-cluster
random walk. As a first step, we identify the clusters “relevant” for answering
the k-nn query for q. If we want to compute ppr scores exactly, we label all the
clusters as relevant. Working with all the clusters to answer a query, however,
leads to excessive query response time. It turns out that one can reduce the
query response time significantly by limiting the number of relevant clusters.
We employ two heuristics called 1-hop and 2-hop to limit the relevant clusters.
In the former, we label a cluster S as relevant if and only if q ∈ S. In the latter,
we label a cluster S as relevant if and only if either q ∈ S or S is the parent
cluster of some vertex b ∈ Bi = Γ (Si) \ Si for some cluster Si such that q ∈ Si.
Intuitively, these heuristics quickly identify the vertices that are expected to
have high ppr scores w.r.t. q.

Suppose Sq is the set of relevant clusters. Let ∪Sq denote the union of these
clusters. Recall that Bi = Γ (Si)\Si denotes the set of vertices which the random
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walk inside Si may jump to while exiting Si. Now let Bq = ((∪Sq)∩(∪Si∈SqBi))∪
{q}. As the number of vertices in Bq relates to the efficiency of our method, we
explicitly limit |Bq|; we fix a parameter β, and while using either 1-hop or 2-
hop heuristic, we continue labeling the clusters relevant as long as |Bq| does not
exceed β or all the clusters according to the heuristic are labeled relevant.

Computing the inter-cluster random walk matrix. After identifying the relevant
clusters Sq, we gather their auxiliary information to compute the inter-cluster
random walk matrix. Recall that when the random walk with restart enters
u ∈ Si ∈ Sq, it exits Si while jumping to some vertex b ∈ Bi ∪ {q} (or b ∈ Bi if
Si is the parent cluster of q). The probability of this event is exactly given by
Êi(u, b). Clearly, this vertex b can belong to multiple clusters. When the random
walk jumps to b, we assume that it enters the parent cluster of b.

Thus we can think of inter-cluster jumps as a random walk on the vertices
in Bq. Whenever the random walk jumps to a vertex b ∈ Bi \ ∪Sq that is not
in the relevant clusters, we assume that the random walk jumps back to q. The
transition matrix (of dimensions |Bq| × |Bq|) of this walk is as follows. For any
b1, b2 ∈ Bq, the probability that this random walk jumps from b1 to b2 is

Mq(b1, b2) =

{
Êi(b1, b2), if b2 �= q, Si is theparent cluster of b1;

1−
∑

b∈Bq\{q}Mq(b1, b), if b2 = q.
(4)

We compute Mq from the auxiliary information stored (or appropriately up-
dated) for the relevant clusters. Recall that the random walk (or the correspond-
ing Markov chain) is called ergodic if it is possible to go from every state to every
other state (not necessarily in one move), and if the walk is aperiodic. Now we
can assume that the given graph G is connected without loss of generality.2 Thus,
if we label all clusters as relevant, the resulting Markov chain Mq is ergodic (un-
der very mild assumptions satisfied by large real-world graph topologies). Also,
from the definition of 1-hop or 2-hop heuristics, the resulting Markov chain Mq

is still ergodic even if we use these heuristics.
From the standard theorem of ergodic chains [9], we conclude that there is a

unique probability row-vector μ ∈ |Bq| such that μMq = μ. This vector gives
the expected fraction of steps the random walk spends at any vertex b ∈ Bq.
This vector can be computed either by doing repeated multiplications of Mq

with the starting probability distribution (which is 1 at the coordinate q and
0 elsewhere); or by computing the top eigenvector of I −M�

q corresponding to
eigenvalue 1. The eigenvector computation can be done in time O(|Bq|3).

We now “lift” this random walk back to the random walk with restart on the
union of the relevant clusters ∪Sq. Since a cluster Si ∈ Sq, the value Ĉi(u, v)
gives the expected number of times the random walk with restart (starting at
q) visits v ∈ Si before exiting Si. Therefore, for a vertex v ∈ ∪Sq, the quantity

πv =
∑

Si∈Sq :v∈Si

∑
b∈Bq :Si parent of v

μbĈi(b, v) (5)

2 If G is not connected, we focus on the connected component containing q.
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gives the expected number of times the random walk with restart visits v ∈ ∪Sq
between consecutive inter-cluster jumps. Scaling these values so that they sum
up to 1, gives the fraction of steps the random walk visits v ∈ ∪Sq, i.e., π̂v =

πv∑
u∈∪Sq πu

. The k-nn query can then be answered by identifying k vertices with

the highest values of π̂v. The following theorem is now evident.

Theorem 1. If we label all the clusters as relevant, the computed values {π̂v |
v ∈ G} equal the exact ppr values w.r.t. the query vertex q.3

The k-nn query is then answered by top k vertices with the highest π̂v.

3.3 Dynamic Updates

To simplify the presentation, we describe how to handle addition of a single
edge e = {u, v}. When an edge is added, the transition probability matrices Ti

and T+
i for some clusters Si are changed, resulting in the change of Ci and Ei

according to Lemmas 1 and 2. The key observation here is that the changes in
Ti and T+

i are low-rank. Therefore, new Ci and Ei can be computed from their
old versions using the smw formula. Let S(u) be the set of clusters containing
u and S(v) containing v. We consider several cases.

Case 1: S(u) = S(v) = ∅. This case arises when both vertices u and v are new
vertices. In this case, we add both these vertices to a cluster Si with the smallest
size. We also designate Si as the parent cluster of both u and v. Note that the
edge e forms a disconnected component in Si. Therefore, the matrices Ci and
Ei can be computed directly without resorting to the smw formula.

Consider a random walk with restart (restarting at q) starting at u. Since the
random walk restarts with probability 1− α, it is easy to see that the expected
number of times the random walk visits u before exiting {u, v} is 1

1−α2 and the
expected number of times the random walk visits v before exiting {u, v} is α

1−α2 .
It is now easy to observe that if the edge e = {u, v} is added to cluster Si, it’s
count matrix can be computed from the original count matrix Ci as on the left.⎡⎢⎢⎢⎢⎢⎣

0 0

Ci

...
...

0 0

0 . . . 0 1
1−α2

α
1−α2

0 . . . 0 α
1−α2

1
1−α2

⎤⎥⎥⎥⎥⎥⎦
We then use Lemma 2 to compute the new Ei as CiT

+
i

where the new T+
i is computed as

⎡⎣ T+
i

0 . . . 0 α
0 . . . 0 α

⎤⎦ .
Case 2: S(v) = ∅. In this case, vertex v is a new vertex.
We add vertex v to each cluster Si ∈ S(u) and designate
some cluster picked arbitrarily among these as the parent

cluster of v. We now use the smw formula along with Lemma 1 to compute the
new count matrix Ci. The probability transition matrix Ti is updated as follows.
Let du be the degree of u before adding v. Add a new row and a new column both
corresponding to vertex v to Ti and add matrix Ai of the same dimensions where
Ai has all entries zero except Ai(u,w) = −1/du(du + 1) for all w ∈ Si ∩ Γ (u),
Ai(u, v) = 1/(du + 1), Ai(v, u) = 1. Since Ai has only two non-zero rows that

3 For directed graphs, only vertices reachable from q by a directed path get non-zero
ppr values, i.e. {π̂v > 0 | q � v ∈ G}.
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are linearly-independent, it has rank 2. Thus we compute an svd decomposition
Ai = UΣV where Σ is a 2× 2 matrix and update Ci using Lemma 5. We again
use Lemma 2 to compute the new matrix Ei as CiT

+
i where the matrix T+

i is
updated by adding a new row corresponding to v with all entries zero and adding
a matrix A+

i of the same dimensions. Here A+
i is a matrix with all zero entries

except A+
i (u, b) = −α/du(du + 1) for all b ∈ Bi ∩ Γ (u) and Ai(v, q) = 1− α.

Case 3: u ∈ Si and v �∈ Si. We again use the smw formula along with Lemma 1
to compute the new count matrix Ci. The probability transition matrix Ti is now
updated as follows. Let du be the degree of u before adding edge e = {u, v}. The
matrix Ti is updated by adding a matrix Ai of the same dimensions where Ai

has all entries zero except Ai(u,w) = −1/du(du +1) for all w ∈ Si ∩Γ (u). Since
Ai has only one non-zero row, it has rank 1. Thus again we compute an svd

decomposition Ai = UΣV where Σ is a scalar and update Ci using Lemma 5.
We use Lemma 2 to compute the new Ei as CiT

+
i where T+

i is updated as
follows. If v �∈ Bi currently, we add a column corresponding to v with all entries
zero. Next we update T+

i as T+
i +A+

i where A+
i is a matrix with all zero entries

except A+
i (u, b) = −α/du(du+1) for all b ∈ Bi∩Γ (u) and A+

i (u, v) = α/(dv+1).
The case where u ∈ Si and v �∈ Si is analogous and is omitted.

Case 4: u,v ∈ Si. The probability transition matrix Ti is now updated as fol-
lows. Let du be the degree of u and dv be the degree of v before adding edge
e = {u, v}. The matrix Ti is updated by adding a matrix Ai of the same di-
mensions where Ai has all entries zero except Ai(u,w) = −1/du(du + 1) for
all w ∈ Si ∩ Γ (u), Ai(u, v) = 1/(du + 1), Ai(v, w) = −1/dv(dv + 1) for all
w ∈ Si ∩ Γ (v), Ai(v, u) = 1/(dv + 1). Since Ai has only two non-zero rows that
are linearly-independent, it has rank 2. Thus again we compute an svd decom-
position Ai = UΣV where Σ is a 2× 2 matrix and update Ci using Lemma 5.

We use Lemma 2 to compute the new Ei as CiT
+
i where T+

i is updated
by adding a matrix A+

i of the same dimensions. Here A+
i is a matrix with

all zero entries except A+
i (u, b) = −α/du(du + 1) for all b ∈ Bi ∩ Γ (u) and

A+
i (v, b) = −α/dv(dv + 1) for all b ∈ Bi ∩ Γ (v).

4 Empirical Study

We evaluate our method, with respect to accuracy and efficiency, on both syn-
thetic and real-world graphs. We first give dataset description including synthetic
data generation and follow with experiment results.4

Synthetic Data Generation. Our graph generation algorithm is based on the
planted partitions model [6]. Simply put, given the desired number of vertices
in each partition we split the adjacency matrix into blocks defined by the parti-
tioning. For each block Bij , the user provides a probability pij . Using a random
process based on this probability we assign a 1, i.e. an edge, to each entry in each
block, and 0 otherwise. In other words, pij specifies the density of each block.

4 All experiments are performed on a 3-CPU 2.8 GHz AMD Opteron 854 server with
32GB RAM. The fly-back probability α for random walks is set to 0.15.
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Table 1. Graph datasets (E: #edges, N: #vertices, real graph data source:
http://snap.stanford.edu/data) — C: #clusters and median conductance φ and size

Dataset E N Description C med. φ med. size

Synthetic 300K 909K Planted partitions [6] 100 0.0210 3050
Web 1100K 325K http://nd.edu links 2793 0.0625 31
Amazon 900K 262K Product co-purchases 3739 0.1385 17
DBLP 1100K 329K Co-authorships 4670 0.2117 27
Live Journal 21500K 2700K Friendships 15252 0.5500 43

Using the above planted partitions model, we simulated a graph of 300K ver-
tices, with 100 partitions of equal size. We set pii = 10−3 and pi =

∑
j,j �=i pij =

10−5, which yielded 909, 333 edges in the graph.

Real Datasets. Our real graph datasets come from diverse domains such as
social, Web, and co-authorship networks, and vary in size from 1 million edges
to more than 20 million edges. We give a summary of our datasets in Table 1.

4.1 Pre-computation

The first phase involves clustering a given graph and then computing auxiliary
information, i.e., the count and exit matrices C and E for each cluster.

There are several top-performing algorithms known for graph clustering such
as [1, 8, 15, 19]. We performed experiments using both METIS [15] and the
Andersen et. al. algorithm [1]. For moderate sized graphs (e.g., with 1.1 million
edges), the qualities of query results obtained with either of the clustering algo-
rithms were comparable, both in running time and accuracy. However, for large
graphs (e.g., Live Journal with 21.5 million edges), METIS could not complete
the clustering computation while Andersen et. al. algorithm was able to compute
a clustering—it took about 35 seconds to compute each of the 15,000 clusters.
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Fig. 2. Average time per cluster for two
phases of pre-computation: (1) clustering
and (2) C,E computation, for real graphs

Table 1 shows the median conduc-
tance and size of the clusters found
in each dataset. As shown in [17], we
observe that good conductance clus-
ters are often of small size. Moreover,
graphs from different domains cluster
differently, where lower conductance
implies higher quality clusters.

In Figure 2, we show the pre-
computation time for our graphs
which consists of two parts; the first
(blue) bars show the average time to
extract a single cluster, and the sec-
ond (red) bars give the average time to compute its corresponding C and E
matrices. Note that as each graph clustered into different number of clusters,
and hence we show the average time per cluster.
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Fig. 3. Average accuracy (RAG(50)) vs. response time (sec.) for (from left to right)
Web, Amazon, DBLP and Live Journal of ClusterRank 1-hop and 2-hop heuristics
compared to Exppr. The optimal point is depicted with a star.

4.2 Query Processing

After pre-computation, our method is ready to process queries. In order to mea-
sure performance, we conducted experiments with 100 randomly chosen query
vertices from each graph. We report average running time and average accuracy
on all graphs. To compute accuracy, we need the “true” ppr scores. Thus, we
also compute the exact ppr (Exppr) scores using power-iterations [10].

One of the measures for accuracy is “precision at k” which can be defined as
|Tk ∩ T̂k|/k ∈ [0, 1], where Tk and T̂k denote the sets of top-k vertices using the
exact and the test algorithm, respectively. However, precision can be excessively
severe. In many real graphs, ties and near-ties in ppr scores are very common.
In such a case, we would like to say that the test algorithm works well if the
“true” scores of T̂k are large. Therefore we use the Relative Average Goodness

(rag) at k which is defined as rag(k) =
∑

v∈T̂k
p(v)∑

v∈Tk
p(v) ∈ [0, 1] where p(v) denotes

the “true” ppr score of vertex v w.r.t. the query vertex.
Figure 3 shows the average rag accuracy versus response time achieved by

ClusterRank for all four real-world graphs.Exppr response time is also shown
with an rag score of 1. For the Web graph, both 1-hop and 2-hop average
accuracy is quite close to that of the exact algorithm (0.90 and 0.97, respectively).
As one might expect, the best accuracy is achieved using 2-hop with β=5K (i.e.,
max. number of boundary vertices) since in that case more clusters are considered
as relevant. Notice the results are similar for other graphs.
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Fig. 4. NCDF distribution of RAG(50) scores for (a.1) Web, (b.1) Live Journal; and
CDF distribution of query response times for (a.2) Web, (b.2) Live Journal. (using the
1-hop heuristic and β=5K). Our method performs better on Web graph than on Live
Journal, possibly due to higher quality clusters. Optimal point is depicted with a star.

2-hop 1-hop

β =5K 0.9986 / 5.12 0.9865 / 2.18

β =1K 0.9892 / 2.86 0.9865 / 2.12

We show the accuracy and response
times on our synthetic graph on the
right, which suggests that high accuracy is
achieved for graphs with well-pronounced
clusters.

In Figure 4, we show the distribution of (a) accuracy scores and (b) running
times of all the 100 queries in Web and Live Journal. The ideal point is also
marked with a star on each figure. We observe that around 80% of the queries in
Web (and around 20% in Live Journal) have an accuracy more than 0.9. Also,
90% of the queries take less than 5 seconds in both graphs.
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Fig. 5. Accuracy and response time for
ClusterRank (squares) and Exppr (tri-
angles) with increasing graph size

We further study the per-
formance of ClusterRank on
increasing graph sizes. We first merge
clusters from our largest graph Live
Journal to build a connected graph
G1/2M with half a million edges, and
keep growing the number of clusters
to obtain a set of increasingly larger
graphs, {G1M ,G2M , . . . ,G21M}. As
before, we conduct experiments on
100 randomly chosen query vertices
from G1/2M and keep the same query
set for the larger graphs to ensure
that the query vertices exist in all
graphs.

Figure 5 shows both rag accuracy
and response time versus graph size for ClusterRank and Exppr. Cluster-

Rank’s accuracy remains ≈ 0.70 when the graph becomes more than 40× larger.
Moreover, its response time stays almost constant at around 13 seconds across
graphs with increasing size, while Exppr’s response time grows up to 150 sec-
onds following a quadratic trend.



30 L. Akoglu et al.

’Christoph Zenger’ ’Shigehiko Katsuragawa’

’Hans-Joachim Bungartz’ ’Joo Kooi Tan’
’Ralf-Peter Mundani’ ’Yoshinori Otsuka’

’Ralf Ebner’ ’Feng Li’
’Tobias Weinzierl’ ’Masahito Aoyama’

’Anton Frank’ ’Shusuke Sone’
’Ioan Lucian Muntean’ ’Takashi Shinomiya’
’Thomas Gerstner’ ’Heber MacMahon’
’Clemens Simmer’ ’Junji Shiraishi’
’Dirk Meetschen’ ’Roger Engelmann’
’Susanne Crewell’ ’Kenya Murase’

Next, we analyze our
results qualitatively. We
build the DBLP graph
for years 2000-2007, and
run our method on 100
randomly chosen authors.
We list the top-proximity
authors we found to two
example authors.5 Bold-
faced authors are found to
be past or future collab-
orators, while others are
highly related with overlapping research interests (respectively, parallel com-
puting and biomedical imaging).

4.3 Dynamic Updates

To study the performance of ClusterRank on dynamic updates, we use DBLP
which is a time-varying graph by years. First, we build a DBLP co-authorship
graph of 500K edges which spans from 1959 to 2001. Then, we perform updates
to our clusters by introducing the next 1K edges in time. Note that some new
edges also introduce new vertices to the graph.

Figure 6 (left) shows the distribution of the number of clusters affected per
edge for the 1K new edges added, and (right) the distribution of update times.
We note that more than 90% of the new edges cause fewer than 5 clusters to
be updated. Moreover, 90% of the updates take less than 100 seconds, including
reading/writing of the C and E matrices of the affected clusters from/to the
disk.
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Fig. 6. Distributions of (left) number of clusters affected
and (right) affected cluster update times, per new edge

Finally Table 2 shows
ClusterRank’s accu-
racy on the time-evolving
DBLP graph; i.e., after
the addition of (a) 1K
and (b) 500K new edges
to it, which initially
had 500K edges. We
notice that the accuracy
remains quite stable over
the course of the changes
to the graph, even after when the graph size doubles.

5 Note that direct neighbors, i.e. co-authors, are omitted from the top list as they
constitute trivial nearest neighbors.
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Table 2. Accuracy on DBLP with 500K, and after it grows to 501K, and 1M edges

DBLP(500K) DBLP(501K) DBLP(1M)

2-hop 1-hop 2-hop 1-hop 2-hop 1-hop

β =5K 0.8887 0.8241 0.8717 0.8124 0.8840 0.8375
β =1K 0.8565 0.8210 0.8446 0.8095 0.8583 0.8327

5 Related Work

Scalable and efficient algorithms for exact as well as approximate computation of
Page Rank (pr) scores in graphs has been studied widely [5, 7, 14, 16, 18, 20]. On
the other hand, computing the Personalized Page Rank (ppr) scores for a given
vertex, which is the central topic of our paper, is a considerably more general
and harder problem than computing pr scores. The reason is that pr scores
of vertices in a graph are stationary probabilities over a network-wide random
walk; hence, there is a single (global) pr score of each vertex. On the contrary,
ppr scores change as a function of the start vertex, and thus are a significant
generalization of pr scores.

Designing efficient algorithms to compute ppr scores has been an active
topic of relatively recent research due to its many applications including link-
prediction, proximity tracking in social networks and personalized web-search.
Tong et al. [25] develop fast methods for computing ppr scores. They exploit
community structure by graph partitioning and correlations among partitions
by low-rank approximation. However, their method is tuned for static graphs
and does not address dynamic updates. The later work by Tong et al. [26] is
the one which is closely related to our work; here, the authors consider prox-
imity tracking in time-evolving bipartite graphs and develop matrix algebraic
algorithms for efficiently answering proximity queries. The assumption that the
graph is bipartite, and further, the assumption that one of its partitions is of a
small size is critical to their design. For instance, these assumptions play a key
role in constructing a low-rank approximation of the graph adjacency matrix,
which is then perturbed to account for edge additions over time.

Sarkar and Moore [21] develop fast external memory algorithms for computing
ppr scores on disk-resident graphs. They focus on suitable cluster representations
in order to optimize disk accesses for minimizing query-time latency for static
graphs. MapReduce based methods [3] optimized for disk-resident graphs also
cannot deal with dynamic graphs.

The development of efficient algorithms based on linear algebraic techniques
and segmented random-walks for fast computation of ppr scores on static graphs
has also been the subject of several works. Haveliwala [12] pre-compute multiple
importance scores w.r.t. various topics for each Web page towards personaliza-
tion; at query time, these scores are combined to form a context-specific, com-
posite ppr scores. Jeh and Widom [13] propose efficient algorithms to compute
“partial vectors” encoding personalized views, which are incrementally used to
construct the fully personalized view at query time. Fogaras et al. [10] use sim-
ulated random walk segments to approximate ppr scores by stitching the walk
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segments to form longer walks. Chakrabarti et al. [4, 11] pre-compute random
walk “fingerprints” for a small fraction of the so-called hub vertices. At query
time, an “active” subgraph bounded by hubs is identified where ppr scores are
estimated by iterative ppv decompositions.

Most related to ours is the work by Bahmani et al. [2], which also uses a divide-
and-conquer approach: pre-computation (random walk segments) and query-
time combination of intermediate results (random walk using segments), with
fast query and update times. The main difference is their underlying infrastruc-
ture; [2] needs distributed shared memory for its employed random-access Monte
Carlo method, while we can work with fully distributed commodity systems—
once the graph is partitioned, the compute nodes operate independently, and a
dedicated node combines results only from relevant nodes.

6 Conclusion

We propose ClusterRank, an efficient method for answering ppr-based k-nn
queries in large time-evolving graphs. Our method addresses three major chal-
lenges associated with this problem: (1) fast k-nn queries; at query time, we
operate on a small subset of clusters and their pre-computed information, and
achieve a response time sub-linear in the size of the graph, (2) efficient incre-
mental dynamic updates; thanks to our divide-and-conquer approach, addition
or deletion of an edge/vertex triggers the update of only a small subset of clus-
ters, which involves at most rank-2 updates to their pre-computed information,
and (3) spilling to disk; as both query processing and dynamic updates operate
on subset of clusters, only a small fraction of the graph is loaded into memory at
all times while the rest sits on disk. As such, the modular design of our approach
is a natural way to handle both large and time-evolving graphs simultaneously.
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Abstract. This paper studies the following problem: Given an SVM (kernel)-
based binary classifier C as a black-box oracle, how much can we learn of its
internal working by querying it? Specifically, we assume the feature space Rd

is known and the kernel machine has m support vectors such that d > m (or
d >> m), and in addition, the classifier C is laconic in the sense that for a
feature vector, it only provides a predicted label (±1) without divulging other
information such as margin or confidence level. We formulate the problem of un-
derstanding the inner working of C as characterizing the decision boundary of
the classifier, and we introduce the simple notion of bracketing to sample points
on the decision boundary within a prescribed accuracy. For the five most common
types of kernel function, linear, quadratic and cubic polynomial kernels, hyper-
bolic tangent kernel and Gaussian kernel, we show that with O(dm) number of
queries, the type of kernel function and the (kernel) subspace spanned by the sup-
port vectors can be determined. In particular, for polynomial kernels, additional
O(m3) queries are sufficient to reconstruct the entire decision boundary, pro-
viding a set of quasi-support vectors that can be used to efficiently evaluate the
deconstructed classifier. We speculate briefly on the future application potential
of deconstructing kernel machines and we present experimental results validating
the proposed method.

Keywords: deconstruction, support vector machines, RBF.

1 Introduction

This paper proposes to investigate a new type of learning problems we called decon-
structive learning. While the ultimate objective of most learning problems is the de-
termination of classifiers from labeled training data, for deconstructive learning, the
objects of study are the classifiers themselves. As its name suggests, the goal of decon-
structive learning is to deconstruct a given classifier C by determining and character-
izing (as much as possible) the full extent of its capability, revealing all of its powers,
subtleties and limitations. Since classifiers in machine learning come in a variety of
forms, deconstructive learning correspondingly can be formulated and posed in many
different ways. This paper focuses on a family of binary classifiers based on support
vector machines [1], and deconstructive learning will be formulated and studied using
geometric and algebraic methods without recourse to probability and statistics. Specif-
ically, the (continuous) feature space in which the classifier C is defined is assumed to
be a d-dimensional vector space Rd, and the classifier C is given as a binary-valued
function C : Rd → {−1, +1}, indicating the class assignment of each feature x ∈ Rd.
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As a kernel machine, C is specified by a set of m support vectors y1, · · · ,ym ∈ Rd

and a kernel function K(x,y) such that the decision function Ψ(x) is given as the sum

Ψ(x) = ω1K(x,y1) + · · ·ωmK(x,ym), (1)

where ω1, · · · , ωm are the weights. With the bias b,

C(x) =

{
+1 if Ψ(x) ≤ b,

−1 if Ψ(x) > b.
(2)

The classifier C is also assumed to be laconic in the sense that except for the binary
label, it does not divulge any other potentially useful information such as margin or
confidence level. With these assumptions, we formulate the problem of deconstructing
C through the following list of four questions (ordered in increasing difficulty)

– Can the kernel function K(x,y) be determined?
– Can the subspace SY spanned by the support vectors be determined?
– Can the number m of support vectors be determined?
– Can the support vectors themselves be determined?

Without loss of generality, we will henceforth assume b = 1. Therefore, if the support
vectors and the kernel function are known, the weightsωi can be determined completely
given enough points x on the decision boundary

Σ = {x ‖ x ∈ Rd, Ψ(x) = b }. (3)

That is, a kernel machine C can be completely deconstructed if its support vectors and
kernel function are known.

The four questions above are impossible to answer without further quantification on
the type of kernel function and the number of support vectors. In this paper, we assume
1) the unknown kernel function belongs to one of the following five types: polynomial
kernels of degree one, two and three (linear, quadratic and cubic kernels), hyperbolic
tangent kernel and RBF kernel, and 2) the number of support vectors is less than the
feature dimension, d > m (or d >> m) and they are linearly independent. For most
applications of kernel machines, these two assumptions are not particularly restrictive
since the five types of kernel are arguably among the most popular ones. Furthermore,
as the feature dimensions are often very high and the support vectors are often thought
to be a small number of the original training features that are critical for the given
classification problem, it is generally observed that d > m. With these two assumptions,
the method proposed in this paper shows that the first three questions can be answered
affirmatively. While the last question cannot be answered for transcendental kernels, we
show that using recent results on tensor decomposition (e.g., [2]), a set of quasi-support
vectors can be computed for a polynomial kernel that recover the decision boundary
exactly.

Given the laconic nature of C, it seems that the only effective approach is to probe
the feature space by locating points on the decision boundary Σ and to answer the
above questions using local geometric features computed from these sampled points.
More precisely, the proposed algorithm takes the classifier C and a small number of
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positive features in Rd as the only inputs. Starting with these small number of positive
features, the algorithm proceeds to explore the feature space by generating new features
and utilizing these new features and their class labels provided by C to produce points
on the decision boundary. The challenge is therefore to use only a comparably small
number of sampled features (i.e., queries to C) to learn enough about Σ in order to
answer the questions, and our main contribution is an algorithm that has complexity (to
be defined later) linear in the dimension d of the ambient space.

Sampling points on Σ can be accomplished easily using bracketing, the same idea
used in finding the root of a function (e.g., [3]). Given a pair of positive and negative
features (PN-pair), the intersection of Σ and the line segment joining the two features
cannot be empty, and bracketing allows at least one such point on Σ to be determined
up to any prescribed precision. Using bracketing as the main tool, the first two ques-
tions can be answered by exploring the geometry of Σ in two different ways. First,
the decision boundary Σ is given as the implicit surface of the multi-variate function,
Ψ(x) = b. With high-dimensional features, it is difficult to work directly with Σ or
Ψ(x); instead, the idea is to examine the intersection of Σ with a two-dimension sub-
space formed by a PN-pair. The locus of such intersection is in fact determined by the
kernel function, and by computing such intersection, we can ascertain the kernel func-
tion on this two-dimensional subspace. For the second question, the answer is to be
found in the normal vectors of the hypersurface Σ. Using bracketing, the normal vector
at a given point on Σ can be determined, again in principle, up to prescribed precision.
From the parametric forms of the kernel functions, it readily follows that the normal
vectors of Σ are generally quite well-behaved in the sense that they either belong to the
kernel subspace SY spanned by the support vectors or they are affine-translations of the
kernel subspace SY . For the former, a quick application of singular value decomposi-
tion immediately yields the kernel subspace SY, and for the latter, the kernel subspace
SY can be computed via a rank-minimization problem that can be solved (in many
cases) as a convex optimization problem with the nuclear norm. If we define the com-
plexity of the algorithm as the required number of sampled points in the feature space,
it will be shown that the complexity of the proposed method is essentially O(dm) as
it requires O(m) normal vectors to determine the m-dimensional kernel subspace and
O(d) points to determine the normal vector at a point in Rd. The constant depends on
the number of steps used for bracketing, and if the features are assumed to be drawn
from a bounded subset in Rd, this constant is then independent of the dimension d.

We note that for a polynomial kernel of degree D, its decision function Ψ(x) is a
degree-D polynomial with d variables. Therefore, in principle, C can be deconstructed
by fitting a polynomial of degreeD in Rd given enough sampled points on Σ. However,
this solution is in general not useful because it does not extend readily to transcendental
kernels. Furthermore, the number of required points is in the order of dD, and cor-
respondingly, a direct polynomial fitting would require the inversion of a large dense
(Vandermonde) matrix that is in the order of dD × dD. With a moderate dimension of
d = 100 and D = 3, this would require 106 points and the inversion of a 106 × 106

dense matrix. Our method, on the other hand, encompasses both the transcendental and
polynomial kernels and at the same time, it avoids the direct polynomial fitting in Rd

and has the overall complexity that is linear in d, making it a truly practical algorithm.
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We conclude the introduction with a brief discussion on the potential usefulness of
deconstructive learning, providing several examples that illustrate its significance in
terms of its future prospects for theoretical development as well as practical applica-
tions. The geometric approach taken in this paper shares some visible similarities with
low-dimensional reconstruction problems studied in computational geometry [4], and
in fact, it is partially inspired by various 3D surface reconstruction algorithms studied in
computational geometry (and computer vision) [5] [6]. However, due to the high dimen-
sionality of the feature space, deconstructive learning offers a brand new setting that is
qualitatively different from those low-dimensional spaces studied in computational ge-
ometry and various branches of geometry in mathematics. High dimensionality of the
feature space has been a hallmark of machine learning, a realm that has not be actively
explored by geometers, mainly for the lack of interesting examples and motivation. Per-
haps deconstructive learning’s emphasis on the geometry of the decision boundary in
high dimensional space and its connection with machine learning could provide stimu-
lating examples or even counterexamples unbeknown to the geometers, and therefore,
provide the needed motivation for the development of new type of high-dimensional
geometry [7].

On the practical side, we believe that deconstructive learning can provide a greater
flexibility to the users of AI/machine learning products because it allows the users to
determine the full extent of an AI/ML program/system, and therefore, create his/her
own adaptation or modification of the given system for specific and specialized tasks.
For example, once a kernel machine has been deconstructed, it can be subject to various
kinds of improvement and upgrade in terms of its application scope, runtime efficiency
and others. Imagine a kernel machine that was originally trained to recognize humans
in images. By deconstructing the kernel machine and knowing its kernel type and pos-
sibly its support vectors, we can improve and upgrade it to a kernel machine that also
recognizes other objects such as vehicles, scenes and other animals. The actual pro-
cess of upgrading the kernel machine can be managed using existing methods such as
incremental SMV or online SVM [8] [9], and at the same time, its efficiency can be
improved using, for example, suitable parallelization. This provides the users with the
unprecedent capability of modifying a kernel machine without access to its source code,
something that to the best of our knowledge has not been studied or reported in the ma-
chine learning literature. As the kernel machines are often the main workhorse of many
existing machine learning programs/systems, the ability to deconstruct a given kernel
machine should have other surprising and interesting consequences and applications
unforeseen at this point. Furthermore, in the context of adversarial learning [10] [11],
deconstructive learning allows a kernel machine to be defeated and its deficiencies re-
vealed. For example, how would an UAI reviewer know that a submitted binary code of
a paper really does implement the algorithm proposed in the paper, not some clever im-
plementation of a kernel machine? Deconstructive learning proposed in this paper offers
a possible solution without the need to ask for the source code1. For more interesting
examples in this direction, we leave it to the reader’s imagination. Finally, perhaps the
most compelling reason (to the authors) for studying deconstructive hboxlearning is

1 Asking for source code is certainly not an affordable panacea for all tech problems.
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inscribed by the famous motto uttered by David Hilbert more than eighty years ago:
we must know and we will know! Indeed, when presented with a black-box classifier
(especially the one with great repute), we have found the problem of determining the
secret of its inner working by simply querying it both fascinating and challenging, a
problem with its peculiar elegance and charm.

Related Work To the best of our knowledge, there is no previous work on de-
constructing general kernel machines as described above. However, [10] studied the
problem of deconstructing linear classifiers in a context that is slightly different from
ours. This corresponds to linear kernel machines and consequently, their scope is con-
siderably narrower than ours as (single) linear classifiers are relatively straightforward
to deconstruct. Active learning (e.g., [12] [13] [14]) shares certain similarities with de-
constructive learning (DL) in that it also has a notion of querying a source. However,
the main distinction is their specificities and outlooks: for active learning, it is gen-
eral and relative while for DL, it is specific and absolute. More precisely, for active
learning, the goal is to determine a classifier from a concept class with some prescribed
(PAC-like) learning error bound using samples generated from the underlying joint dis-
tribution of feature and label. In this model, the learning target is the joint distribution
and the optimal learned classifier is relative to the given concept class. On the other
hand, in DL, the learning target is a given classifier and the classifier defines an ab-
solute partition of the feature space into two disjoint regions of positive and negative
features. Furthermore, the classifier is assumed to belong to a specific concept class
(e.g., kernel machines with known types of kernel function) such that the goal of DL
is to identify the classifier within the concept class using the geometric features of the
decision boundary. In this absolute setting, geometry replaces probability as the joint
feature-label distribution gives way to the geometric notion of decision boundary as the
main target of learning. In particular, bracketing is a fundamentally geometric notion
that is generally incompatible with a probabilistic approach, and with it, DL possesses
a much more efficient and precise tool for exploring the spatial partition of the feature
space, and consequently, it allows for a direct and geometric approach without requiring
much probability.

2 Preliminaries

Let Rd denote the feature space equipped with its standard Euclidean inner product,
and for x,y ∈ Rd, ‖x− y‖2 = (x − y)�(x − y). For the kernel machines studied in
this paper, we assume their kernel functions are of the following five types:

Linear Kernel K(x,y) = x�y,

Quadratic Kernel K(x,y) = (x�y + 1)2,

Cubic Kernel K(x,y) = (x�y + 1)3,

Hyperbolic Tangent Kernel K(x,y) = tanh(αx�y + β),

Gaussian Kernel K(x,y) = exp(−‖x− y‖2
2σ2

),
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for some constants α, β, σ. We will further refer to the three polynomial kernels and
the hyperbolic tangent kernel as the Type-A kernels and the Gaussian kernel as the
Type-B kernel. This particular taxonomy is based on their forms that can be generically
written as

K(x,y) = f(x�y), K(x,y) = g(‖x− y‖2),
for some smooth univariate function f, g : R→ R.

Given the forms of the kernel function, an important consequence is that the decision
boundary Σ is determined in large part by its intersection with the kernel subspace SY

spanned by the support vectors. More precisely, for x ∈ Rd, let x denote the projection
of x on SY:

x = arg min
y∈SY

‖x− y‖2.

For Type-A kernel K(x,y) = f(x�y), we have K(x, yi) = K(x, yi) for every
support vector yi. In particular, x is on the decision boundary if and only if x is. For
Type-B kernels, we have (using Pythagorean theorem with q2 = ‖x‖2 − ‖x‖2)

K(x, yi) = g(‖x− yi‖2) = g(‖x− yi‖2 + q2),

and with the Gaussian kernel g, we have g(‖x− yi‖2 + q2) = e−
q2

2σ2 g(‖x− yi‖2). It
then follows that for any x ∈ Σ, its projection x on SY must satisfy

Ψ(x) = e
q2

2σ2 Ψ(x) = e
q2

2σ2 b.

In other words, the decision boundary Σ is essentially determined by the level-sets of
Ψ(x) on the kernel subspace SY.

Since the decision boundary Σ is given as the implicit surface Ψ(x) = b, a normal
vector n(x) at a point x ∈ S can be given as the gradient of Ψ(x):

n(x) = ∇Ψ(x) =

m∑
i=1

ωi∇xK(x,yi). (4)

For the two types of kernels we are interested in, their gradient vectors assume the
following forms:

∇xK(x,y) = f ′(x�y)y, (5)

∇xK(x,y) = 2g′(‖x− y‖2) (x− y). (6)

Using the above formulas, it is clear that for Type-A kernels, the normal vector n(x)
depends on x only through the coefficients in the linear combination of the support
vectors, while for Type-B kernels, x actually contributes to the vectorial component of
n(x). It will follow that an important element in the deconstruction method introduced
below is to exploit this difference in how the normal vectors are computed for the two
types of kernels. For example, for a polynomial kernel of degree D, a normal vector at
a point x ∈ Σ is

n(x) =

m∑
i=1

Dωi (x
�yi + 1)D−1 yi. (7)
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As a special case, for linear kernel D = 1, we have

n(x) =

m∑
i=1

ωi yi,

that is independent of x. For the Gaussian kernel, we have

n(x) =

m∑
i=1

−ωi

σ2
exp(−‖x− yi‖2

2σ2
) (x− yi). (8)

3 Deconstruction Method

The deconstruction algorithm requires two inputs: 1) an SVM-based binary classifier
Ψ(x) that uses one of the five kernel types indicated above, and 2) a small number of
positive and negative features. The algorithm uses the small number of input features
to generate other pairs of positive and negative features. For a pair p,n of positive and
negative features (a PN-pair), we can be certain that the line segment joining p,n must
intersect the decision boundary in at least one point. Using bracketing, we can locate
one such point x on the decision boundary within any given accuracy, i.e., we can use
bracketing to obtain a PN-pair p,n such that ‖p − n‖ < ε for some prescribed ε > 0.
With a small enough ε, the midpoint between p,n can be considered approximately
as a sampled point x on Σ and its normal vector can then be estimated. The algorithm
proceeds to sample a collection of points and their normals on the decision boundaryΣ,
and using this information, the algorithm first computes the kernel subspace SY and this
step separates the Type-A kernels from the Type-B kernels (Gaussian kernel). The four
Type-A kernels can further be identified by computing the intersection of Σ with a few
randomly chosen two-dimensional subspaces. These two steps provide the affirmative
answers to the first three questions in the introduction. For polynomial kernels, we can
determine a set of quasi-support vectors that provide the exact recovery of the decision
boundary Σ. However, no such results for the two transcendental kernels are known at
present and we leave its resolution to future research.

3.1 Bracketing

Given a PN-pair, p,n, the decision boundary must intersect the line segment joining
the two features. Therefore, we can use bracketing, the well-known root-finding method
(e.g., [3]), to locate the point on Σ. Note that bracketing does not require the function
value, only its sign. This is compatible with our classifier C that only gives binary
values ±1. In particular, if we bisect the interval in each step of bracketing, the length
of the interval is halved at each iteration, and for a given precision requirement ε > 0,
the number of steps required to reach it is in the order of | log ε|. If we further assume
that the features are generated from a bounded subset of Rd (which is often the case)
with diameter less than K , then for any PN-pair p,n, bracketing terminates after at
most

log2 K − log2 ε+ 1 (9)

steps, a number that is independent of the ambient dimension d.
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3.2 Estimating Normal Vectors

Given the pair p,n, let p̄, n̄ denote the two points near Σ after the bracketing step
and x denote their midpoint. To estimate the normal vector at x, we use the fact that
the (unknown) kernel function is assumed to be smooth and Σ is a level-surface of the
decision function Ψ(x) that is a linear combination of smooth functions. Consequently,
a randomly chosen point on Σ is almost surely non-singular [15] in that it has a small
neighborhood in Σ that can be well-approximated using a linear hyperplane (its tangent
space) in Rd. Accordingly, we will estimate the normal vector at x by linearly fitting
a set of points on Σ that belong to a small neighborhood of x. More specifically, we
chose a small δ > ε > 0 and generate PN-pairs on the sphere centered at x with radius
δ. Using bracketing and the convexity of the ball enclosed by the sphere, we obtain PN-
pairs that are near Σ and no more than δ away from x. Taking the midpoint of these PN-
pairs, we obtain a set of randomly generatedO(d) points on Σ. We linearly fit a (d−1)-
dimensional hyperplane to these points and the normal vector is then computed as the
eigenvector associated to the smallest eigenvalues of the normalized covariance matrix.
The result can be further sharpened by repeating the step over multiple δ and taking the
(spherical) average of the unit normal vectors. However, in practice, we have observed
that good normal estimates can be consistently obtained using one small δ ≈ 10−3

(with ε = 10−6) and 2d sampled points2.

3.3 Determining Kernel Subspace SY

To determine the kernel subspace SY, we will use the formulas for the normal vectors
given in Equations 5 and 6. Assume that we have sampled s > m points on Σ and their
corresponding normal vectors. Let N,X denote the following two matrices

X = [x1 x2 ...xs], N = [n1 n2 ...ns] (10)

that horizontally stack together the points xi and their normal vectors ni, respectively.
If all ni are correctly recovered (without noise), we have the following:

– For Type-A kernels, ni ∈ SY, i.e., ni is a linear combination of the support vectors.
– For Type-B kernels, ni ∈ γixi + SY , for some γi ∈ R, i.e., ni − γixi ∈ SY .

Note that γi depends on xi and the two statements can be readily checked using Equa-
tions 4 - 6. Therefore, the kernel subspace SY can be recovered, for Type-A kernels,
using Singular Value Decomposition (SVD). Specifically, let N = UDV� denote the
singular value decomposition of N. There are precisely m nonzero singular values and
SY is spanned by the first m columns of U. For Type-B, a slight complication arises
because we must determine s constants γ1, · · · , γs such that the span of the following
matrix is SY:

N−XΓ ≡ [n1 n2 ...ns]− [γ1x1 γ2x2 ... γsxs], (11)

where Γ is a diagonal matrix with γi as its entries. Note that in general, N,X are of
full-rank min(d, s), and we are trying to find a set of γi such that the above matrix has

2 We note that for sufficiently small δ, the angular error of the estimated normal is approximately
in the order of tan−1( ε

2δ
).
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Fig. 1. Intersections of Σ and two-dimensional affine subspaces An SVM using the cubic
kernel is trained on MINST dataset. Top Row: Midpoints of PN-pairs near the decision boundary
Σ after bracketing. Bottom Row: Sampled polynomial curves given the intersections of the
decision boundary with two-dimensional affine subspaces containing the images above.

rank m < s. However, for a generically chosen set of x1, · · · ,xs, the rank of N−XΓ
is at least m because the support vectors are linearly independent. Therefore, γi can be
determined via the following rank-minimization problem

argmin
γi

Rank([n1 n2 ...ns]− [γ1x1 γ2x2 ... γsxs]). (12)

As is well-known, a convex relaxation of the above problem uses the nuclear norm ‖·‖∗
(sum of singular values) as the surrogate

arg min
diagonal Γ

‖N−XΓ‖∗, (13)

and there are efficient algorithms for solving this type of convex optimization prob-
lem [16]. We note that for Type-A kernels, the rank is minimized at γ1 = · · · = γs = 0.
In both cases, the span of N−XΓ gives the kernel subspace SY. As the support vectors
are assumed to be linearly independent, the dimension of SY then gives the number of
support vectors. For noisy recovery, the above method requires the standard modifica-
tion that uses the significant gap between singular values as the indicator. For Type-A
kernels, this is applied to the SVD decomposition of N directly, and for Type-B kernels,
this is applied to the SVD decomposition of N−XΓ with Γ determined by the nuclear
norm minimization.

3.4 Determining Kernel Type

For determining the four Type-A kernels, we will examine the locus of the intersec-
tion of the decision boundary with a two-dimensional affine subspace containing a
point close to the decision boundary. More specifically, let x+,x− denote a PN-pair
that is sufficiently close to the decision boundary Σ. We can randomly generate a
two-dimensional subspace containing x+,x− by, for example, taking the subspace A
formed by x+,x− and the origin. For a generic two-dimensional subspace A, its in-
tersection with Σ is a one-dimensional curve, and the parametric form of this curve
is determined by the (yet unknown) kernel function. See Figure 1. Take a polyno-
mial kernel of degree D as an example. By its construction, the intersection of the
decision boundary and the affine subspace A is nonempty, and the locus of the inter-
section formed a curve in A that satisfies a polynomial equation of degree D. This
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can be easily seen as follows: take x+ as the origin on A and choose (arbitrary) or-
thonormal vectors U1,U2 ∈ Rd such that the triplet x+,U1,U2 identifies A with R2.
Therefore, any point p ∈ A can be uniquely identified with a two-dimensional vector
p = [p1,p2] ∈ R2 as

p = x+ + p1U1 + p2U2.

If p ∈ A is a point in the intersection of A with the decision boundary Ψ(p) = b, we
have

m∑
i=1

wi((x
�
+Yi + p1U

�
1 Yi + p2U

�
2 Yi)1)

D = b, (14)

which is a polynomial of degree D in the two variables p1,p2. Therefore, to ascertain
the degree of the polynomial kernel, we can (assuming D < 4)

– Sample at least nine points on the intersection of the decision boundary and A.
– Fit a bivariate polynomial of degreeD to the points. If the fitting error is sufficiently

small, this gives an indication that the polynomial kernel is indeed of degree D.

We note that up to a multiplicative constant, a bivariate cubic polynomial in R2 has nine
coefficients and this gives the minimum number of points required to fit a cubic polyno-
mial. In addition, since the degree of the polynomial is invariant under any linear trans-
form, this shows that the choice of the two basis vectors is immaterial. The advantage of
the reduction from Rd to R2 is considerable as it implies that the complexity of this step
is essentially independent of the ambient dimension d. For a transcendental kernel such
as the hyperbolic tangent kernel, the locus of the intersection is generally not a polyno-
mial curve and this can be detected by the curve-fitting error. Although, in principle, one
affine subspace A is sufficient to distinguish between four Type-A kernels (as shown
by the above equation), in practice, due to various issues such as possible degeneracy
of the polynomial curve and the curve fitting error, we randomly sample several affine
subspaces and use a majority voting scheme to determine the kernel type.

3.5 Complexity Analysis and Exact Recovery of Σ

The steps outlined above essentially aim to ascertain the parametric form of the decision
boundaryΣ using a (relatively) small number of sampled points on Σ. We note that the
bracketing error in general can be explicitly controlled, and there are only two steps
above that incur uncertainty: the normal estimate and the nuclear norm relaxation of the
rank minimization problem. Our approach of using the local linear approximation to
estimate the normal vector at a point is the standard one common in computational ge-
ometry and machine learning (e.g., [17,18] [19]), and the nuclear norm relaxation is the
standard convex relaxation for the original NP-hard rank minimization problem [20]. A
complete complexity analysis of the proposed algorithm would require detailed proba-
bilistic estimates pertaining to these two steps, and although there are partial and related
results scattered in the literature (e.g.,[20] [21]), we are unable to provide a definitive
result at this point. Instead, we present a simple complexity analysis below under the
assumption that these two steps can be determined exactly, i.e., the convex relaxation
using the nuclear norm gives the same result as the original rank minimization problem.

The computational complexity can be defined as the number of features (not neces-
sarily only on the decision boundary) in Rd sampled during the process and this number
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is the same as the number of queries to the classifier C. From the above, it is clear that
to determine the m-dimensional kernel subspace, at least O(m) sampled normals are
required, i.e., N has at least m columns. Furthermore, to determine each normal vector
at a given point x O(d) number of points are required, as the ambient dimension is d.
Therefore, the total complexity is O(dm). The multiplicative constant here, as can be
readily seen, is bounded by the maximum number of steps required for the bracketing,
and this number is independent of the dimensions d,m, provided the features are drawn
from a bounded subset of Rd (Equation 9).

Once the kernel subspace SY and the kernel type are determined, this allows us to
focus on the intersection Σ ∩ SY. In the case m << d, this reduction from Σ ⊂ Rd

to Σ ∩ SY ⊂ SY is computationally significant. In particular, for polynomial kernels,
we can sample O(mD) points on Σ ∩ SY to reconstruct the polynomial Ψ(x) on SY.
At this point, Ψ(x) is a degree-D polynomial in m variables, and using recent results
on tensor decomposition (e.g., [2] [22])3, we can decompose Ψ(x) (more precisely, its
homogenized version)

Ψ(x) =

r∑
i=1

�i(x)
D, (15)

where �1, · · · , �r are linear (homogeneous) polynomials. The smallest integer r for such
decomposition gives the rank of the (homogeneous) polynomial (as a symmetric tensor)
and in general, such decomposition is also possible for r greater than the rank. If we
write the linear polynomials (after de-homogenization) as �i(x) = z�i x + 1 for some
vector zi, it is tempting to infer zi as the support vector yi from the above equation.
However, because the non-uniqueness of the decomposition, zi �= yi in general. Nev-
ertheless, zi do act as if they are support vectors in the sense that the evaluation of
the polynomial Ψ(x) becomes computationally trivial using the above decomposition.
For polynomial kernels, the recovery of these quasi-support vectors zi then determines
the decision boundary Σ exactly, essentially completing the deconstruction process.
Although the general algorithms for tensor decomposition [2] [22] require some math-
ematical machinery, the special case of quadratic kernels (degree-two polynomials) can
be readily solved using eigen-decomposition of a symmetric matrix (the details are pro-
vided in the supplemental material). For transcendental kernels, no similar results are
known at present. Although the reduction from Σ ⊂ Rd to Σ ∩ SY ⊂ SY offers the
possibility of reconstructing the decision boundary in SY, due to the nature of the tran-
scendental functions, the details are considerably more difficult than the polynomial
case, and we leave its resolution to future research.

4 Experiments

We present two sets of experiments in this section. The first set of experiments evaluates
various components of the proposed method and the second set of experiments applies
the proposed method to explicitly deconstruct a kernel machine and subsequently im-
prove it using incremental SVM [9].

3 Algorithm 5.1 in http://arxiv.org/pdf/0901.3706v2.pdf, the archived version
of [2].

http://arxiv.org/pdf/0901.3706v2.pdf
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4.1 Evaluation of the Deconstruction Algorithm

We present two experiments using kernel machines whose support vectors are randomly
generated (first experiment) and support vectors trained using real image data (second
experiment). We remark that there is no qualitative differences between deconstructing
kernel machines with randomly-generated support vectors and deconstructing kernel
machines trained with real data since, in both cases, the kernel function and decision
function (Eq 1) are the same. Using randomly-generated kernel machines allow us to
study the behavior of the deconstruction algorithm over a much wider range of sup-
port vector configuration, demonstrating its accuracy and robustness. In the first set of
experiments, we set the feature dimension d = 30, and we randomly generate 12 sup-
port vectors. For determining the kernel type, we sample 25 points close to the decision
boundaryΣ and at each point, we compute the intersection of Σ and a two-dimensional
subspace. We fit a quadratic and then a cubic polynomial to these points, and the small-
est degree giving an error below some threshold value is declared as the degree of the
kernel. However, if in both cases the fitting errors are greater than the threshold value,
the kernel is declared to be a Gaussian kernel at this location. This is repeated at 25 sam-
pled locations and a majority vote is used to determine the kernel type. Once the kernel
type is determined, we use SVD to determine the dimension of the kernel subspace
SY and the subspace itself. For the Gaussian kernel, the nuclear-norm minimization is
performed before using SVD to locate the subspace SY . In this experiment, we sam-
ple s = 100 points on the decision boundary in order to form the matrices N,X and
the tolerance in the bracketing step is set at 10−6. Let SY denote the kernel subspace
computed by our method. We use the principal angles [23] between the two subspaces
SY,SY as the metric for quantifying the error.

Summary. The gap between the singular values of N is an important indicator of the
dimension of the kernel subspace, and it is affected by the accuracy of the normals.
Figure 2 shows the effect in terms of the radius δ used in computing the normals, show-
ing the expected result that the ratio of δ/ε is directly related to the accuracy of the
recovered normals (larger ratios provide more accuracy). For determining the kernel
type, the specificity for the polynomial kernels is close to 100% with the specificity of
approximately 80% for the Gaussian kernel (and hyperbolic tangent kernel). This can
be attributed to the majority voting scheme used in assigning the kernel type, and we
leave it as important future work for designing more robust criteria. The accuracy of
the recovered kernel subspaces is shown in Figure 3 and 4a. The first figure shows the
means and variances of the (cosine of) twelve principal angles, taken over one hundred
randomly generated kernel machines using polynomial kernels. Note that cos−1(0.99)
is approximately 8◦ and this gives a good indication of the accuracy. In the second fig-
ure, the twelve principal angles computed before and after the rank-minimization are
shown, indicating the correctness and necessity of performing rank-minimization. Fi-
nally, each deconstruction makes between 60, 000 and 70, 000 queries to the classifier,
and on a typical 3Ghz machine, it takes no more than a few minutes to complete the
deconstruction process. Since the algorithm is readily parallelizable (which would be
important for deconstruction in high-dimensional feature spaces), a full parallelized and
optimized implementation can be expected to shorten the running time considerably,
perhaps in the range of only a few seconds.
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Fig. 2. Singular Values of the normal matrix N for different choices of δ. The kernel machine uses
a polynomial cubic kernel with 12 support vectors. The expected gaps between the 12th and 13th

singular values are indicated by the green markers. Note that for a fixed tolerance ε = 10−6, the
optimal δ = 10−3. For smaller δ without changing ε accordingly, the estimated normals become
less accurate. (Image best viewed in color).
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Fig. 3. Means and variances of the cosines of the twelve principal angles between SY and SY .
Means and variances are taken over one hundred independent deconstruction results for kernel
machines with twelve support vectors using a polynomial kernel (Quadratic kernel on the left and
cubic kernel on the right). (best viewed in color).

In the second experiment, we train a kernel machine with cubic polynomial kernel
using 1000 images from MNIST dataset [24]. The positive class consists of images
of the digit 2 and the negative class consists of 0, 5, 7, 8. The trained kernel machine
has 275 support vectors. Figure 1 displays the intersections of the decision boundary
with several two-dimensional affine subspaces, noticing the superpositions of the im-
ages of 2 with images of other digits. In this experiment, we randomly generate 200
two-dimensional affine subspaces and for each subspace, its vote on the type of kernel
is determined as above. Figure 4b shows the distribution of votes, clearly indicating the
correct result. For this experiment, the gap in the singular values of N indicates the cor-
rect dimension of the kernel subspace (275) and the kernel subspace is also successfully
recovered.
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Fig. 4. Left: Means and variances of the the twelve principal angles between SY and SY . Means
and variances are taken over one hundred independent deconstruction results for kernel machines
with twelve support vectors using a Gaussian kernel. The principal angles before and after rank
minimization are shown. (best viewed in color). Right:Distribution of Votes on Kernel Type
For a cubic kernel machine trained on 1000 MNIST images, the distribution of votes on kernel
type for 200 randomly sampled two-dimensional affine subspaces. The correct result is clearly
indicated.

4.2 Kernel Machine Upgrade without Source Code

In the second experiment, we demonstrate the possibility of upgrading a kernel machine
without access to the kernel machine’s source code. As outlined in the introduction,
we apply the deconstruction algorithm to deconstruct the kernel machine. This step
provides us with the kernel type and quasi-support vectors (for a polynomial kernel
machine). For the subsequent upgrade (or update), we use the incremental SVM algo-
rithm [9] to retrain the kernel machine given the new training data. Specifically, we first
train a kernel machine using MNIST dataset: images of digit 1 as positive samples and
the negative training samples comprise the remaining digits except 8. Dimensionality
reduction is applied to the images using PCA to a feature space of dimension 60. An
SVM with quadratic kernel is trained on these training samples, resulting in 97.30%
true positive detection rate and 99.17% true negative detection rate on the test dataset.
The initial kernel machine has 48 support vectors. During deconstruction, the kernel
subspace is recovered using 800 sampled normal vectors. Let N denote the matrix ob-
tained by horizontally stacking together the normal vectors and N = USD, its SVD
decomposition. The plot of the singular values is shown in Figure 5b and the signifi-
cant gap between the 48th and 49th singular values indicate the correct dimension (and
the number of support vectors). The principle angles between the kernel subspace esti-
mated by the first 48 columns of U and the ground-truth is shown in Figure 5a. Once
the kernel subspace is recovered, we proceed to recover the quasi-support vectors. The
kernel machine defined by the quasi-support vectors should be a good approximation
of the original kernel machine and this is shown in Table 1a, where we compare the
classification results using the recovered kernel machine and the original one. In this
example, the results as expected are quite similar, with the recovered kernel machine
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Fig. 5. Left:Cosines of the principal angles between the recovered kernel subspace and the
ground-truth kernel subspace. Right:Singular values of the matrix N. The gap between 48th and
49th singular values is significant as the gaps among the remaining singular values are substan-
tially smaller. The correct dimension of the kernel subspace (and the number of support vectors)
is 48.

actually performing slightly better. Once we have recovered the quasi-support vectors,
we next proceed to upgrade the kernel machine. The task is to upgrade a kernel ma-
chine that recognizes only digit 1 to a kernel machine that recognizes digits 1 and 8.
The classification results for the initial and upgraded kernel machines are tabulated in
Table 1b. As shown in the table, before the upgrade, the original kernel machine per-
forms poorly on the images of digit 8 and for the upgraded machine, both digits can
now be successfully classified.

Table 1. Left:Confusion matrices for the original kernel machine and the kernel machine de-
fined by the recovered quasi-support vectors. Both machines are tested on the same test dataset.
Right:Comparisons of classification results for the original kernel machine and the upgraded
kernel machine.

(a)

Quasi-SV Machine Original Machine
outcome outcome

+ve -ve +ve -ve
Positive 100.00% 00.00% 97.30% 2.70%
Negative 3.73% 96.27% 0.83% 99.17%

(b)

Classification Rate
Original Machine Upgraded Machine

Digit 1 97.30% 100.00%
Digit 8 00.00% 92.31%
Negative 99.17% 97.93%

5 Conclusion
We have introduced the novel notion of deconstructive learning and proposed an
algorithm for deconstructing kernel machines. Preliminary experimental results have
demonstrated both the viability and effectiveness of the proposed method. Although
much work remains for the future, the results presented in this paper serve as a small
first step in understanding the full implication and potential of deconstructive learning.
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Abstract. What do real communities in social networks look like? Com-
munity detection plays a key role in understanding the structure of real-
life graphs with impact on recommendation systems, load balancing and
routing. Previous community detection methods look for uniform blocks
in adjacency matrices. However, after studying four real networks with
ground-truth communities, we provide empirical evidence that commu-
nities are best represented as having an hyperbolic structure. We detail
HyCoM - the Hyperbolic Community Model - as a better representation
of communities and the relationships between their members, and show
improvements in compression compared to standard methods.

We also introduce HyCoM-FIT, a fast, parameter free algorithm to
detect communities with hyperbolic structure. We show that our method
is effective in finding communities with a similar structure to self-declared
ones. We report findings in real social networks, including a community
in a blogging platform with over 34 million edges in which more than
1000 users established over 300 000 relations.

1 Introduction

Given a large social network, what do real communities look like? How does their
size affect their structure, shape, and density1 of connections? Are the communi-
ties’ degree distributions uniform as implied by traditional community detection
algorithms that look for quasi-cliques (i.e., dense rectangles or blocks of uniform
density in the adjacency matrix)? One would intuitively expect that larger com-
munities exhibit similar relational patterns to the whole graph. Accordingly, do
the communities’ degree distributions obey power laws?

The present paper deals with the following problems: what is the structure of
communities in large, real social networks and what are suitable models to de-
scribe them? Moreover, how can one find these communities in an effective and
scalable way by leveraging this particular structure and without any user-defined
parameters? We analyze four real-world social networks with ground-truth com-
munities and provide empirical evidence that communities exhibit power law

1 Density equals the number of edges divided by the number of nodes squared.

T. Calders et al. (Eds.): ECML PKDD 2014, Part I, LNCS 8724, pp. 50–65, 2014.
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Fig. 2. Result of our work: Commu-
nity found by HyCoM-FIT

degree distributions. As such, they are typically best represented as having an
hyperbolic structure in the adjacency matrix, rather than rectangular (uniform)
structure. We detail HyCoM - the Hyperbolic Community Model - as a bet-
ter representation of communities and the relationships between their members,
and introduce HyCoM-FIT as a scalable algorithm to detect communities with
hyperbolic structure. To illustrate our model and algorithm, Figure 1 represents
the adjacency matrix of a real (ground-truth) community externally provided
when nodes are ordered by degree, and Figure 2 shows the adjacency matrix of
an exemplary community found by our algorithm. Clearly, both communities do
not show uniform density. In a nutshell, the main contributions of our work are:

– Introduction of the Hyperbolic Community Model: We provide empiri-
cal evidence that communities in large, real social graphs are better modeled
using an hyperbolic model. We also show that this model is better from a
compression perspective than previous models.

– Scalability: We develop HyCoM-FIT, an algorithm for the detection of
hyperbolic communities that scales linearly with the number of edges.

– No user-defined parameters: HyCoM-FIT detects communities in a
parameter-free fashion, transparent to the end-user.

– Effectiveness: We applied HyCoM-FIT on real data where we discovered
communities that agree with intuition.

– Generality: HyCoM includes uniform block communities used by other
algorithms as a special case.

2 Background and Related Work

Nodes in real-world networks organize into communities or clusters, which tend
to exhibit a higher degree of ‘cohesiveness’ with respect to the underlying rela-
tional patterns. Group formation is natural in social networks as people organize
in families, clubs and political organizations; see e.g., [19]. Communities also
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emerge in protein-protein interaction or gene-regulatory networks whereby genes
associated to a common metabolic function tend to be more densely connected
[16], or in the World Wide Web where hyperlinks between theme-related web-
sites are more prevalent [6]. In this context, an important problem is to identify
these groups of nodes from given (unlabeled) graph data.

Formally, unveiling communities in networks can be cast as a graph parti-
tioning or clustering problem, e.g., [13]. While a fairly large number of standard
methods have been proposed to this end [7], network community detection nev-
ertheless remains a very active area of research – arguably an indicator of the
problem’s inherent difficulty. As discussed in [21], the threefold challenge faced
is due to (c1) a lack of consensus on the structural definition of network com-
munity; (c2) the fact that node subset selection overlaid to the combinatorial
structure of graphs typically leads to intractable formulations; and (c3) the lack
of ground-truth to carry out an objective validation on real data.

The widespread notion of cohesiveness used to group nodes has typically
reflected that community members are (i) well connected among themselves,
while they are (ii) relatively well separated from the remaining nodes. Building
on this intuition, methods based on adaptations of hierarchical and spectral
clustering have been proposed [9,11], in addition to those relying on block-
modeling [19], co-clustering or cross-associations [3]. Generative model-based
approaches have been also proposed [20], while traditional methods rely on op-
timization of judicious criteria such as conductance and normalized cut [17], as
well as modularity [14], to name a few. Similar to the proposed method, model
selection approaches based on Minimum Description Length (MDL) were put
forth in [2,8,18]. MDL-based algorithms are attractive since they are devoid of
user-defined parameters. For a comprehensive tutorial on community detection
methods and their multiple variants, the reader is referred to [7].

All previous community detection methods have been either explicitly or im-
plicitly aimed at extracting areas of high and/or uniform density in the adjacency
matrix (e.g., near cliques in the corresponding graphs). In this paper, we argue
that communities in real networks do not show such a density profile but are
better represented by using a hyperbolic model.

3 Empirical Observations

The goal of this section is to provide empirical evidence that real communities are
not blocks of uniform density and are best represented as hyperbolic structures.
We examined a collection of four real networks (Table 1) previously used in the
literature [20,21] with significantly different ground-truth definitions, available
in the Stanford Network Analysis Project (SNAP) collection. These datasets
have externally provided community labels for a number of communities and, in
the following, we analyze the meaning of these different community definitions
and explore their underlying structure.

The YouTube and LiveJournal datasets are standard friendship networks.
Each node represents a user of the website and friendship relations establish links
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Table 1. Summary of real-world networks used

Networks with ground-truth communities Network with node labels

Dataset Amazon DBLP YouTube LiveJournal Wikipedia

Nodes 334 863 317 081 1 134 890 3 997 962 143 508

Edges 1 851 744 2 099 732 5 975 248 34 681 889 3 753 156

between them. In these websites, users are also able to form groups that others
can join. We consider each of these groups as a ground-truth community.

The DBLP dataset is a computer science co-authorship network: two authors
(nodes) are connected if they published at least one paper together. Publica-
tion venues (i.e. specific journal or conference series like ECML/PKDD) define
ground-truth communities. In this case, ground-truth communities roughly cor-
respond to scientific fields.

The Amazon dataset was collected by crawling the Amazon website and is
based on the “customers who bought this item also bought” feature. Each indi-
vidual node corresponds to a product and an edge exists if products i and j are
frequently co-purchased. Products are organized hierarchically in categories and
we view products in the same category as forming a ground-truth community.
In this scenario, communities represent product similarity.

Observations. Exploring the communities in these networks allows for a better
understanding of common community structures.
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Fig. 3. Big communities are sparse:
Community size vs density

Density. Firstly, in Figure 3 we see
that community size impacts edge den-
sity (here plotted for the DBLP data).
While small communities might have any
density, big communities are consistently
less dense. These simple observations al-
ready indicate that blocks of uniform
density are not the appropriate represen-
tation for a wide range of communities:
small communities might go from small
stars to full-cliques and big communities are usually not dense enough for a uni-
form block representation to be the most suitable. We hypothesize that nodes
in big communities might play different roles and have different characteristics,
in a process analogous to the differences between nodes in the global graph.

Power-law degrees. One well documented relationship in real networks is the
power-law between the degree of a node and its rank (i.e. position in decreasing
order of degree) [5], which means the degree of a node i can be approximated as
di = K ·pαi , where α is the power-law exponent,K is the scaling factor correlated
with number of edges and pi the rank of node i.
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Fig. 4. Big ground-truth communities are hyperbolic (× indicates good fit).
Community size vs α.

Our first hypothesis is that big communities follow a similar degree distri-
bution. Figure 4 shows the calculated α values for different ground-truth com-
munities in the 4 datasets. Communities have been marked according to their
coefficient of determination (r2) when we approximate the degree distribution
within each community with a power-law. The power-law was approximated
using a linear-regression in the log-log data and the coefficient was calculated
using the same transformation (more details can be found in Section 5.1). It
can be seen, agreeing with intuition, that power-law degree distributions repre-
sent big communities fairly well. In fact, most of the ground-truth communities
do not show uniform degree distribution (which would be α = 0) but strongly
skewed ones. Interestingly, α appears to decrease with community size (note the
differences in the x-axis) and to be between -0.6 and -1.5 for communities with
thousands of elements. Furthermore, as the frequently used uniform block model
for communities indirectly assumes a uniform degree distribution, the power-law
model necessarily achieves a better fit – the uniform model is a special case of
the power-law model where α = 0.

Some variations between the datasets are yet to be explained but can most
likely be attributed to the different community definitions. For example, some
communities with uniform degree distribution in the DBLP dataset are due
to anomalies such as venues with a single paper creating artificial cliques (e.g.
recording errors, conference proceedings with a single entry, workshops, etc.).

Again, we want to highlight that the observations made above are based on the
communities which were externally provided for these datasets (“ground-truth
communities”) – not based on the results of a specific algorithm.
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4 Hyperbolic Community Model

The previous analysis shows that, in order to detect big communities with re-
alistic properties, models must be able to represent non-uniform degree distri-
butions. In this section, we first propose HyCoM, a community model that
assumes communities to have a power-law degree distribution. We then detail
the MDL-based formalization that will guide the community discovery process
and that is used as a metric for community quality.

4.1 Community Definition

We are given an undirected network consisting of nodes N and edges E . We
represent this network as an adjacency matrix M ∈ {0, 1}|N |×|N|. As an abbre-
viation, we use N = |N |. The goal is to detect Hyperbolic Communities:

Definition 1. Hyperbolic Community
A hyperbolic community is a triplet C = (S, α, τ) with S = [S1, .., S|S|], Si ∈ N
and Si �= Sj if i �= j, representing an ordered list of nodes, α ≤ 0 being the
exponent when the degree distribution of the nodes is approximated by a power-
law, and 0 ≤ τ ≤ 1 a threshold that determines the number of edges represented
by the community.
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α = -0.5, τ = 0.1, 380 edges 

Fig. 5. Adjacency Matrix of a syn-
thetic Hyperbolic Community

Given the above triplet, and knowing that
the nodes in S are sorted by degree in the
community, the degree of a node is di ∝ iα.
If we assume conditional independence given
the community (i.e. we assume edge indepen-
dence when we know both nodes belong to the
current community), then the probability pi,j
that the edge between nodes i and j is part of
the community is also proportional to iα · jα.
Therefore, we can define the edges of an hy-
perbolic community to be the most probable
edges given exponent α and threshold τ :

E(C) = {(Si, Sj) ∈ S × S : iα · jα > τ}.
Figure 5 illustrates the adjacency matrix induced by the set E(C) given a

certain degree distribution and value of τ . Its characteristic shape, an hyperbola,
gave name to this model.

We propose to measure the importance of a community via the principle of
compression, i.e. by its ability to compress the matrix M: if most edges of E(C)
are in fact part of M, then we can compress this community easily. Finding the
most important communities will lead to the best compression of M.

More specifically, we use the MDL principle [10]. We aim to minimize the num-
ber of bits required to simultaneously encode the communities (i.e. the model)
and the data (effects not captured by the model, e.g. missing edges), in a trade
off between model complexity and goodness of fit. In the following, we provide
details on how to compute the description cost in this setting.
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4.2 MDL Description Cost

The first part of the description cost accounts for encoding the detected com-
munities C = {C1, . . . , Cn} (where n is part of the optimization and not a priori
given). Each community Ci = (Si, αi, τi) can be described by the list Si, the
number of bits used for αi, denoted as kαi

2, and by the number of edges |E(C)|
in the community. Please note that we actually do not need to encode the real-
valued variable τ , but it is sufficient to encode the natural number |E(C)|. The
coding cost for a pattern Ci is

L1(Ci) = logN + |Si| · logN + kαi + log(|Si|2).

The first two terms encode the list of nodes, there are up to N elements in the
community and we can encode each element using logN bits. The second term
encodes αi and the last term encodes the number of edges in the community.
Since the number of edges is bounded by |Si|2, we can encode it with log(|Si|2)
bits. Similarly, the set of patterns C = {C1, . . . , Cl} can be encoded by the
following number of bits:

L2(C) = log∗ |C|+
∑
C∈C

L1(C).

Since the cardinality of C is not known a priori, we encode it via the function
log∗ using the universal code length for integers [15].

The second part of the description cost accounts for encoding the actual data
given the detected communities. Since one might expect to find overlapping
communities, we refer to the principle of Boolean Algebra and patterns are
combined by a logical disjunction: if an edge occurs in at least one of the patterns,
it is also present in the reconstructed data. More formally, we reconstruct the
given matrix by:

Definition 2. Matrix reconstruction
Given a community C, we define an indicator matrix IC ∈ {0, 1}N×N (using the
same ordering of nodes as imposed by M) that represents the edges of the graph
encoded by community C, i.e. ICx,y = 1⇔ (x, y) ∈ E(C).

Given a set of communities C, the reconstructed network MC
r is defined as

MC
r =
∨

C∈C I
C where ∨ denotes the element-wise disjunction.

Since MDL requires a lossless reconstruction of the network, the matrix MC
r ,

however, likely does not perfectly reconstruct the data, the second part of the
description cost encodes the data given the model. Here, an ‘error’ might be
either an edge appearing in MC

r but not in M or vice versa. As we are considering
binary matrices, the number of errors can be computed based on the squared

Frobenius norm of the residual matrix, i.e.
∥∥M −MC

r

∥∥2
F
.

2 The number of bits does not affect the results as the previous term is significantly
bigger. We use 32 bits in our experiments.
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Finally, as ‘errors’ correspond to edges in the graph, the description cost of
the data can be computed as

L3(M|C) = log∗
∥∥M−MC

r

∥∥2
F
+ 2 ·

∥∥M−MC
r

∥∥2
F
· logN.

Overall model. Given the functions L2 and L3, we are now able to define the
communities that minimize the overall number of bits required to describe the
model and the data:

Definition 3. Finding hyperbolic communities
Given a matrix M ∈ {0, 1}N×N , the problem of finding hyperbolic communities
is defined as finding a set of patterns C∗ ⊆ (P(N )× R× R) such that

C∗ = argmin
C

[L2(C) + L3(M|C)].

Computing the optimal solution to this problem is NP-hard, given that the
column reordering problem in two dimensions is NP-hard as well [12]. In the next
section we present an approximate but scalable solution based on an iterative
processing scheme.

5 HyCoM-FIT: Fitting Hyperbolic Communities

In this section, we introduce HyCoM-FIT, a scalable and efficient algorithm
that approximates the optimal solution via an iterative method of sequentially
detecting important communities. The general idea is to find in each step a
single community Ci that contributes the most to the MDL-compression based
on local evaluation. That is, given the already detected communities Ci−1 =
{C1, . . . , Ci−1}, we are interested in finding a novel community Ci which mini-
mizes L2({Ci}∪Ci−1)+L3(M|{Ci}∪Ci−1). Since Ci−1 is given, this is equivalent
to minimizing

L1(Ci) + L3(M|{Ci} ∪ Ci−1). (1)

Obviously, enumerating all possible communities is infeasible. Therefore, to
detect a single community Ci, the following steps are performed:

– Step 1: Community candidates: We spot candidate nodes by performing
a rank-1 approximation of the matrix M. This step provides a normalized
vector with the score of each node.

– Step 2: Community construction: The scores from the previous step are
used in a hill climbing search as a bias for connectivity, while minimizing
the MDL costs is used as the objective function for determining the correct
community size.

– Step 3: Matrix deflation: Based on the current community detected, we
deflate the matrix so that the rank-1 approximation is steered to find novel
communities in later iterations.
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In the following, we will discuss each step of the iterative procedure.
Community Candidates. As mentioned, exhaustively enumerating all pos-

sible communities is infeasible. Therefore we propose to iteratively let the com-
munities grow. The challenge, however, is how to spot nodes which should be
added to a community. For this purpose, we refer to the idea of matrix decompo-
sition. Given the matrix M (or as we will explain in step 3, the deflated matrix
M(i)), we compute a vector a such that a · aT ≈ M. The vector a reflects the
community structure in the data and we treat the elements ai as an indication
of the importance of node i to this community.

Community Construction. Given the vector a, we construct a new com-
munity. Algorithm 1 shows an overview of this step. We start by selecting an
initial seed S = {v1, v2} of two connected nodes with high score in a.3 We then
let the community grow incrementally: We randomly select a neighbor vi that
is not currently part of the community, where the score vector a is used as the
sampling bias. That is, given the current nodes S, we sample according to

vi ∝
{
ai vi /∈ S ∧ ∃v′ ∈ S : (vi, v

′) ∈ E
0 else

.

If the MDL score (cf. Equation 1) of the new community, i.e. using the vertices
S∪{vi}, is smaller than the MDL score using the previous community, the vertex
vi is accepted. Otherwise, a new sample is generated. This process is repeated
until Δ consecutive rejections have been observed. Since the probability that an
element that should have been included in the community but which was not
sampled, i.e. P (“i not selected”|“i should have been selected”), decreases expo-
nentially as a function of Δ and of its initial score, i.e. it can be bounded by aΔi ,
a small value of Δ is sufficient. In our experimental analysis, a value of Δ = 50
has proven to be sufficient; we consider this parameter to be general and it does
not need to be defined by the user of the algorithm.

After growing the community, we then try to remove elements from the com-
munity, once again checking the change in the description cost. This alternating
process is repeated until the community stabilizes. This process is guaranteed to
converge as the description cost of matrix M is strictly decreasing.

Matrix Deflation. While the first two steps build a single community Ci,
the objective of this step is to transform the matrix so that the process can be
iterated in such a way that we don’t get the same community repeatedly. In
particular, we aim at steering the rank-1 decomposition to novel solutions.

To solve this problem we propose the principle of matrix deflation. Starting
with the original matrix M =: M(1), we remove after each iteration those edges
which are already described by the detected community. That is, we obtain the
recursion

M(i+1) := M(i) − ICi ◦M(i) [ = M−MCi
r ◦M ]

3 We tested different methods with no significant differences found in the results.
Selecting the edge (i, j) with highest min(ai, aj) provides a good initial seed.
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Algorithm 1. HyCoM-FIT- Community Construction

function CommunityConstruction(ScoreVector a)
S ← initialSeed(a)
repeat

t ← 0
while t < Δ do

vi ← newBiasedNode(S, a)
if MDL(S ∪ {vi}) < MDL(S) then S ← S ∪ {vi} , t ← 0
else t ← t+ 1

end while
for all nodes n in S do

if MDL(S\{n}) < MDL(S) then S ← S\{n}
end for

until S has converged
return S

where ◦ denotes the Hadamard product. As seen, the matrix M(i+1) incorporates
all communities detected so far. Using the deflated matrix, our objective in
Equation 1 is replaced by

L1(Ci) + L3(M
(i)|{Ci}). (2)

Overall, the algorithm might either terminate when the matrix is fully de-
flated, or when a pre-defined number of communities has been found, or when
some other measure of community quality (i.e. size) has not been achieved in
the most recent communities.

5.1 Fast MDL Calculation

The key task of Algorithm 1 is to compute the MDL score (Equation 2) based
on the current set of nodes S. Besides the set S, estimating the number of bits
requires to determine the value of α, to specify a value for τ (or |E(C)|), and to
count the number of errors made by the model. Since the MDL score is computed
several times, we propose an efficient approximation for these tasks:

Approximating the Exponent of the Degree Distribution. Exhaustive
test of different approximation methods is beyond the scope of this paper; for
an in-depth analysis on power-law exponent estimation from empirical data we
refer the reader to the review by Aaron Clauset et al. [4]. The method chosen has
to be robust in degenerate situations (e.g. uniform distributions) and efficient.
We opted for a linear regression of the log-log data, as it not only respects
both requirements, but also because it is known to over fit to the tail of the
distribution and edges between high degree nodes are already expected under
the independence assumption.

Number of Edges and Value of τ . The value of |E(C)| is selected as
the number of edges between the nodes in S, i.e. |(S × S) ∩ E|, since this value
can efficiently be obtained by an incremental computation each time a node is
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added/removed from the current community. Efficiency is ensured by indexing
the edges in M by node.

Fixing the value of |E(C)|, we need to derive the value of τ leading to the
desired cardinality. For efficiency, we exploit the following approximation:

Lemma 1. The value of |E(C)| can be approximated by

|E(C)| ≈ (istart − 1) · |S|+ τ
1
α · (log(iend)− log(istart)),

where istart := max{�τ 1
α · |S|−1�, 1} and iend := min{�τ 1

α �, |S|+ 1}.
Proof. Instead of exactly counting the number of elements iα · jα > τ (cf. Fig-
ure 5), we do a continuous approximation by computing the area under the
τ -isoline (intuitively: the area shaded in Figure 5). More precisely, given a spe-
cific τ (and assuming α �= 0), we use the isoline derived by

iα · jα = τ ⇔ j = τ
1
α · i−1 =: f(i).

Considering the integral
∫ |S|+1

1
f(i) di leads to an approximation of |E(C)|. To

achieve a more accurate approximation, we consider two further improvements:
(a) For each i with f(i) < 1, no edges are generated. Thus, we also don’t need
to consider the area under this part of the curve. It holds

f(i) ≥ 1⇒ i ≤ τ
1
α ⇒ iend := min{�τ 1

α �, |S|+ 1}.
The integration interval can end at iend.
(b) The number of edges for each node is bounded by |S|. Thus, for each i with
f(i) > S, we can restrict the function value to |S|. It holds

f(i) ≤ |S| ⇒ i ≥ τ
1
α · |S|−1 ⇒ istart := max{�τ 1

α · |S|−1�, 1}.
Thus, overall, given a specific τ , the value of |E(C)| can be approximated by∫ istart

1

|S| di+
∫ iend

istart

f(i) di = (istart − 1) · |S|+ τ
1
α · (log(iend)− log(istart)).


�
Based on Lemma 1, we find the appropriate τ by performing a binary search

on the value of log τ until the given value of |E(C)| is (approximately) obtained.
This step can be done in time O(log |S|2).

Calculating the Number of Errors. Determining the number of errors
can be reduced to the problem of counting the number of existing edges in IC .
In other words, the goal is to determine how many edges (Si, Sj) ∈ (S × S) ∩ E
fulfill iα · jα > τ . Knowing this number, e.g. denoted as x, the number of errors
is given by

(M(i) − x) + (|E(C)| − x).

We have to encode all edges of M(i) as errors which are not covered by C (i.e.
M(i)−x many) and we additionally have to encode all non-existing edges which
are unnecessarily included in C (i.e. |E(C)| − x many).

Obviously, the value of x can be determined by simply iterating over all edges
(S × S) ∩ E of the community, i.e. linear in the number of edges.
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5.2 Complexity Analysis

Lemma 2. HyCoM-FIT has a runtime complexity of O(K ·(|E|+|S|·(log |S|2+
E))), where K is the number of communities we obtain, |E| is the number of edges
in the network, |S| is the average size of a community and E is the number of
edges between the elements of S.

Proof. Steps 1 to 3 are repeated K times, the number of communities to be
obtained. Step 1, the rank-1 approximation, requires O(|E|) time. Step 2, the
core of the algorithm, can be executed using O(|S|) additions and removals to
the community, each with complexity O(log |S|2+E) as detailed in the previous
sub-section. Finally, step 3, the matrix deflation, can be done in O(E) with a
single pass over the edges of the community. 
�

6 Experiments on Real Data

In this section, we start by evaluating the quality of the Hyperbolic Community
Model using the datasets of Table 1. We subsequently evaluate HyCoM-FIT by
studying its scalability and its ability to obtain empirically correct communities
through the use of the node-labeled dataset.

We focus on three quality metrics: Q1) Model quality, Q2) HyCoM-FIT

scalability and Q3) Effectiveness.

Q1) Model Quality

While Section 4 describes how to encode hyperbolic communities, it does not
show whether this model is preferable over simpler models such as edge lists
when encoding real communities. This aspect is not immediately clear because,
even though block communities of uniform density are a special case (α = 0) of
hyperbolic, HyCoM explicitly encodes missing edges (i.e. errors made by the
model). This observation implies that HyCoM must create dense hyperbolas to
ensure that the overall cost of encoding the errors and the model is not higher
than to the cost of simply encoding all edges in the graph. Since big communities
are usually very sparse, it is not obvious whether better compression can be
achieved by our model.

Figure 6 shows the number of bits required to encode the ground-truth com-
munities using the hyperbolic model and the edge-list format. In this scenario,
the cost of each community using HyCoM can be obtained using Definition 3
when setting |C| = 1. As seen, the hyperbolic model consistently requires less
bits to represent the ground-truth communities. While for the datasets shown
in (a)-(c), the savings are substantial, the savings on the LiveJournal are
less strong. In any case, though, compression based on hyperbolic structure is
preferable.
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Fig. 6. Number of bits required to encode ground truth communities: HyCoM con-
sistently requires less bits

Q2) HyCoM-FIT Scalability

We compared HyCoM-FIT to several popular community detection methods
found in the literature: the community affiliation graph model [20], clique per-
colation [1] and cross-associations [3]. We obtained realistic graphs of different
sizes by doing a weighted-snowball sampling4 in the LiveJournal dataset.

Figure 7 shows the run-time of the different algorithms using their default
parameters. [1] ran out of memory on a graph with 100 000 edges. HyCoM-

FIT was run without any special stopping criteria (i.e. until the deflation was
complete); as a consequence, bigger graphs required more communities to be
fully deflated. HyCoM-FIT shows a fully linear run-time when the required
number of communities is constant.

Q3) Effectiveness

In addition to the datasets with ground-truth communities previously used,
we also applied HyCoM-FIT to a copy of the simple-english Wikipedia pages
from March 8, 2014. In this dataset, nodes represent articles and edges repre-
sent hyperlinks between them. Unlike previous datasets, we don’t consider any

4 In this weighted-snowball sampling, weights correspond to the number of connections
from a node to the current sample. This was done in an effort to preserve community
structure.
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Fig. 8. Anomalous community found by
HyCoM-FIT in the LiveJournal data:
HyCoM-FIT can also be used to de-
tect anomalies

ground-truth communities in the Wikipedia data; however, as nodes are labeled,
this dataset allows us to assert the effectiveness of HyCoM-FIT.

Detecting Hyperbolic Communities. Figures 1 and 2 presented in the
introduction illustrate both a ground-truth community and a community found
by HyCoM-FIT in the YouTube dataset. They show not only the existence
of hyperbolic communities in real data, but also the ability of our method to
successfully find them. Note the similarity in the shape of both communities.
Existing methods trying to find communities of uniform density would fail to
detect such communities.

Anomaly Detection. HyCoM-FIT is also able to detect anomalous struc-
tures in data. Figure 8 shows a detected community from the LiveJournal

dataset. We can see the adjacency matrix (here represented as an heatmap) of
suspiciously highly connected accounts. Approximately 1 000 users established
over 300 000 friendship relations forming a very dense community (compared
to a common distribution as shown in Figure 3). Clearly, also this anomalous
community shows the characteristic shape of an hyperbola.

Communities in Wikipedia. Figures 9 and 10 show two communities de-
tected in the Wikipedia dataset. Figure 9 illustrates an hyperbolic community
mostly consisting of temporal articles. The first 6 articles correspond to coun-
tries heavily mentioned in events (e.g. United States, France, Germany, etc.)
then we have articles corresponding to months (e.g. April, July), then articles
representing individual years (e.g. 2002, 1973) and finally articles corresponding
to particular dates (e.g. November 25, May 13).

Figure 10 shows HyCoM-FIT’s generality and its ability of detecting bi-
partite cores given their close resemblance to hyperbolas. In this community,
the approximately 20 articles of highest degree represent articles with lists (e.g.
“Country”, “List of countries by area”, “Members of the United Nations”) while
the remaining 140 articles are all individual countries.
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7 Conclusions

We focused on the problem of representing communities in real graph data,
and specifically on the resemblance between structure of the full graph and the
structure of big communities. The main contributions are the following:
- Hyperbolic Community Model: We provide empirical evidence that com-
munities in real data are better modeled using an hyperbolic model, termed
HyCoM. Our model includes communities of uniform density as used by other
approaches as a special case. We also show that this model is better from a
compression perspective than previous models.

- Scalability: HyCoM-FIT is a scalable algorithm for the detection of com-
munities fitting the HyCoM model. We leverage rank-1 decompositions and
the MDL principle to guide the search process.

- No user-defined parameters: HyCoM-FIT detects communities in a
parameter-free fashion, transparent to the end-user.

- Effectiveness: We applied HyCoM-FIT on various real datasets, where we
discovered communities that agree with intuition.

HyCoM-FIT is available at http://cs.cmu.edu/∼maraujo/hycom/.
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Abstract. We consider the problem of multiple users targeting the arms
of a single multi-armed stochastic bandit. The motivation for this prob-
lem comes from cognitive radio networks, where selfish users need to
coexist without any side communication between them, implicit cooper-
ation or common control. Even the number of users may be unknown
and can vary as users join or leave the network. We propose an algo-
rithm that combines an ε-greedy learning rule with a collision avoidance
mechanism. We analyze its regret with respect to the system-wide op-
timum and show that sub-linear regret can be obtained in this setting.
Experiments show dramatic improvement compared to other algorithms
for this setting.

Keywords: Bandits, Multi-user, Epsilon-greedy.

1 Introduction

In this paper we address a fundamental challenge arising in dynamic multi-
user communication networks, inspired by the field of Cognitive Radio Networks
(CRNs). We model a network of independent users competing over communica-
tion channels, represented by the arms of a stochastic multi-armed bandit. We
begin by explaining the background, describing the general model, reviewing
previous work and introducing our contribution.

1.1 Cognitive Radio Networks

Cognitive radio networks, introduced in [19], refer to an emerging field in multi-
user multi-media communication networks. They encompass a wide range of
challenges stemming from the dynamic and stochastic nature of these networks.
Users in such networks are often divided into primary and secondary users. The
primary users are licensed users who enjoy precedence over secondary users in
terms of access to network resources. The secondary users face the challenge of
identifying and exploiting available resources. Typically, the characteristics of
the primary users vary slowly, while the characteristics of secondary users tend
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to be dynamic. In most realistic scenarios, secondary users are unaware of each
other. Thus, there is no reason to assume the existence of any cooperation or
communication between them. Furthermore, they are unlikely to know even the
number of secondary users in the system. Another dominant feature of CRNs is
their distributed nature, in the sense that a central control does not exist.

The resulting problem is quite challenging: multiple users, coexisting in an
environment whose characteristics are initially unknown, acting selfishly in or-
der to achieve an individual performance criterion. We approach this problem
from the point of view of a single secondary user, and introduce an algorithm
which, when applied by all secondary users in the network, enjoys promising
performance guarantees.

1.2 Multi-armed Bandits

Multi-Armed Bandits (MABs) are a well-known framework in machine learning
[6]. They succeed in capturing the trade-off between exploration and exploitation
in sequential decision problems, and have been used in the context of learning
in CRNs over the last few years [4,5], [11]. Classical bandit problems comprise
an agent (user) repeatedly choosing a single option (arm) from a set of options
whose characteristics are initially unknown, receiving a certain reward based on
each choice. The agent wishes to maximize the acquired reward, and in order
to do so she must balance exploration of unknown arms and exploitation of
seemingly attractive ones. Different algorithms have been proposed and proved
optimal for the stochastic setting of this problem [2],[10], as well as for the
adversarial setting [3].

We adopt the MAB framework in order to capture the challenge presented to
a secondary user choosing between several unknown communication channels.
The characteristics of the channels are assumed to be fixed, corresponding to
a relatively slow evolution of primary user characteristics. The challenge we
address in this paper arises from the fact that there are multiple secondary users
in the network.

1.3 Multiple Users Playing a MAB

A natural extension of the CRN-MAB framework described above considers
multiple users attempting to exploit resources represented by the same bandit.
The multi-user setting leads to collisions between users, due to both exploration
and exploitation; an “attractive” arm in terms of reward will be targeted by all
users, once it has been identified as such. In real-life communication systems,
collisions result in impaired performance. In our model, reward loss is the natural
manifestation of collisions.

As one might expect, straightforward applications of classical bandit algo-
rithms designed for the single-user case, e.g., KL-UCB [10], are hardly beneficial.
The reason is that in the absence of some form of a collision avoidance mecha-
nism, all users attempt to sample the same arm after some time. We illustrate
this in Section 5.



68 O. Avner and S. Mannor

We therefore face the problem of sharing a resource and learning its char-
acteristics when users cannot communicate and are oblivious to each other’s
existence.

1.4 Related Work

Recently, considerable effort has been put into finding a solution for the multi-
user CRN-MAB problem. One approach, considered in [16], is based on a Time-
Division Fair Sharing (TDFS) of the best arms between all users. This policy
enjoys good performance guarantees but has two significant drawbacks. First,
the number of users is assumed to be fixed and known to all users, and second,
the implementation of a TDFS mechanism requires pre-agreement among users
to coordinate a time division schedule. Another work that deals with multi-user
access to resources, but does not incorporate the MAB setting, is presented in
[14]. The users reach an orthogonal configuration without pre-agreement or com-
munication, using multiplicative updates of channel sampling probabilities based
on collision information. However, this approach does not handle the learning
aspect of the problem and disregards differences in the performance of different
channels. Thus, it cannot be applied to our problem. The authors in [12] consider
a form of the CRN-MAB problem in which channels appear different to differ-
ent users, and propose an algorithm which enjoys good performance guarantees.
However, their algorithm includes a negotiation phase, based on the Bertsekas
auction algorithm, during which the users communicate in order to reach an
orthogonal configuration. Another work that considers this form of problem and
uses calibrated forecasting in order to reach an orthogonal configuration is de-
scribed in [17]. The analysis is based on a game theoretic approach, and shows
asymptotic convergence to an optimal strategy. Additional papers such as [9] and
[13] also consider the CRN-MAB setting, offering only asymptotic performance
guarantees.

The work closest in spirit to ours is [1]. The authors propose different algo-
rithms for solving the CRN-MAB problem, attempting to lift assumptions of
cooperation and communication as they go along. Their main contribution is
expressed in an algorithm which is coordination and communication free, but
relies on exact knowledge of the number of users in the network. In order to re-
solve this issue, an algorithm which is based on estimating the number of users
is proposed. Performance guarantees for this algorithm are asymptotic, and it
does not address the scenario of a time-varying number of users.

A different approach to resource allocation with multiple noncooperative users
involves game theoretic concepts [20,21]. In our work we focus on cognitive,
rather than strategic, users. Yet another perspective includes work on CRNs with
multiple secondary users, where the emphasis is placed on collision avoidance
and sensing. References such as [7] and [15] propose ALOHA based algorithms,
achieving favorable results. However, these works do not consider the learning
problem we are facing, and assume all channels to be known and identical.
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1.5 Contribution

The main contribution of our paper is suggesting an algorithm for the multi-user
CRN-MAB problem, which guarantees convergence to an optimal configuration
when employed by all users. Our algorithm adheres to the strict demands im-
posed by the CRN environment: no communication, cooperation or coordination
(control) between users, and strictly local knowledge - even the number of users
is unknown to the algorithm.

Also, to the best of our knowledge, ours is the only algorithm that handles a
dynamic number of users in the network successfully.

The remainder of this paper is structured as follows. Section 2 includes a de-
tailed description of the framework and problem formulation. Section 3 presents
our algorithm along with its theoretical analysis, while Section 4 discusses the
setup of a dynamic number of users. Section 5 displays experimental results
and Section 6 concludes our work. The proofs of our results are provided in the
supplementary material.

2 Framework

Our framework consists of two components: the environment and the users.
The environment is a communication system that consists of K channels with
different, initially unknown, reward characteristics. We model these channels as
the arms of a stochastic Multi-Armed Bandit (MAB). We denote the expected
values of the reward distributions by μ = (μ1, μ2, . . . , μK), and assume that
channel characteristics are fixed. Rewards are assumed to be bounded in the
interval [0, 1].

The users are a group of non-cooperative, selfish agents. They have no means
of communicating with each other and they are not subject to any form of central
control. Unlike some of the previous work on this problem, we assume users have
no knowledge of the total number of users. In Section 3 we assume the number
of users is fixed and equal to N , and in Section 4 we relax this assumption; in
both cases we assume K ≥ N . Scenarios in which K < N correspond to over-
crowded networks and should be dealt with separately. The fact that the users
share the communication network is modeled by their playing the same MAB.
Two users or more attempting to sample the same arm at the same time will
encounter a collision, resulting in a zero reward for all of them in that round. A
user sampling an arm k alone at a certain time t receives a reward r (t), drawn
i.i.d from the distribution of arm k.

We would like to devise a policy that, when applied by all users, results in
convergence to the system-optimal solution. A common performance measure in
bandit problems is the expected regret, whose definition for the case of a single
user is

E [R (t)] � μk∗t−
t∑

τ=1

E [r (τ)] ,

where μk∗ = maxk∈{1,...,K} μk is the expected reward of the optimal arm.
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Naturally, in the multi-user scenario not all users can be allowed to select
the optimal arm. Therefore, the number of users defines a set of optimal arms,
namely the N best arms, which we denote byK∗. Thus, the appropriate expected
regret definition is

E [R (t)] � t
∑
k∈K∗

μk −
N∑

n=1

t∑
τ=1

E [rn (τ)] ,

where rn (τ) is the reward user n acquired at time τ . We note that this definition
corresponds to the expected loss due to a suboptimal sampling policy.

The socially optimal solution, which minimizes the expected regret for all
users as a group, is for each to sample a different arm in K∗. Adopting such a
system-wide approach makes the most sense from an engineering point of view,
since it maximizes network utilization without discriminating between users.

3 Fixed Number of Users

In this section we introduce the policy applied by each of the users, described in
Algorithm 1. Our policy is based on several principles:

1. Assuming an arm that experiences a collision is an “attractive” arm in terms of
expected reward, we would like one of the colliding users to continue sampling
it.

2. Since all users need to learn the characteristics of all arms, we would like to
ensure that an arm is not sampled by a single user exclusively.

3. To avoid frequent collisions on optimal arms, we need users to back off of arms
on which they have experienced collisions.

4. To avoid interfering with on-going transmissions in the steady state, we would
like to prevent exploring users from “throwing off” exploiting users.

3.1 The MEGA Algorithm

The Multi-user ε-Greedy collision Avoiding (MEGA) algorithm is based on the
ε-greedy algorithm introduced in [2], augmented by a collision avoidance mech-
anism that is inspired by the classical ALOHA protocol.

Learning is achieved by balancing exploration and exploitation through a
time-dependant exploration probability. The collision avoidance mechanism is
implemented using a persistence probability, p, that controls users’ “determina-
tion” once a collision occurs. Its initial value is p0, and it is incremented with
each successful sample. Once a collision event begins, the persistence probability
remains fixed until it ends.

A collision event ends when all users but one have “given up” and stopped
sampling the arm under dispute. Upon giving up, each user resets her persistence
and draws a random interval of time during which she refrains from sampling
the arm under dispute. The length of these intervals increases over time in order
to ensure sub-linear regret.
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Algorithm 1. Multi-user ε-Greedy collision Avoiding (MEGA) algorithm

input Parameters c, d, p0, α and β
1: init p ← p0, t ← 1, η (0) ← 0, a (0) ∼ U ({1, . . . ,K}), tnext,k ← 1 ∀k
2: note: η (t) is a collision indicator, μ̂k is the empirical mean of arm k’s reward
3: loop
4: Sample arm a (t) and observe r (t) , η (t)
5: if η (t) == 1 then
6: With probability p persist:
7: a (t+ 1) ← a (t)
8: continue loop
9: With probability 1− p give up:
10: Mark arm as taken until time tnext,k, where tnext,k ∼ U

([
t, t+ tβ

])
11: else
12: p ← p · α+ (1− α)
13: Update μ̂a(t) with r (t)
14: end if
15: Identify available arms: A = {k : tnext,k ≤ t}
16: if A = ∅ then
17: a (t+ 1) ← ∅, i.e., refrain from transmitting in next round
18: continue loop
19: end if
20: With probability εt = min

{
1, cK2

d2(K−1)t

}
explore: a (t+ 1) ∼ U (A)

21: With probability 1− εt exploit: a (t+ 1) ← argmaxk∈A μ̂k

22: if a (t+ 1) 	= a (t) then
23: p ← p0
24: end if
25: end loop

Each agent executes Algorithm 1 on every round. First, she samples an arm
based on her last decision and observes the reward and collision indicator. Her
next decision is based on the collision indicator. If a collision occurred, she sticks
to her previous decision w.p. p (line 6) or steps down and marks the arm as taken
w.p. 1−p (line 9). If a collision did not occur, p is incremented and the empirical
mean of the sampled arm is updated (lines 12, 13).

The next arm to be sampled is chosen from the set of available (i.e., not
“taken”) arms. If this set is empty, the user refrains from transmitting in the
following round (line 17). Otherwise, an arm is chosen according to the ε-greedy
algorithm (lines 20, 21). The value of the persistence probability, p, is reset every
time the choice of arms changes between rounds (line 23).

The parameters in Algorithm 1 are chosen so that p0, α and β lie in the
interval (0, 1). In the original ε-greedy algorithm, the parameter d is set to be
μk∗ −μk2 , where μk2 is the expected reward of the second-best arm. In our case,
learning the N best arms requires that d be modified and set to μkN−1 − μkN .
However, since the expected rewards of the arms are unknown in practice and we
assume the number of users to be unknown, we use a fixed value for d. For further
details see Section 5. The exploration probability, εt, is modified compared to the
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original ε-greedy algorithm [2], in order to account for the decreased efficiency of

samples, caused by collisions. For our algorithm we use εt = min
{
1, cK2

d2(K−1)t

}
.

Also, the empirical mean which determines the ranking of the arms is calculated
based on the number of successful samples of each arm.

3.2 Analysis of the MEGA Algorithm

We now turn to a theoretical analysis of the MEGA algorithm. Our analysis
shows that when all users apply MEGA, the expected regret grows at a sub-
linear rate, i.e., MEGA is a no-regret algorithm.

The regret obtained by users employing the MEGA algorithm consists of three
components. The first component is the loss of reward due to collisions: in a cer-
tain round t, all colliding users receive zero reward. We denote the expected
reward loss due to collisions by E

[
RC (t)

]
. The second and third components

reflect the loss of reward due to sampling of suboptimal arms, i.e., arms k �∈ K∗.
Once the users have learned the ranking of the different arms, suboptimal sam-
pling is caused either by random exploration, dictated by the ε-greedy algorithm,
or due to the fact that all arms in K∗ are marked unavailable by a user at a cer-
tain time. We denote the expected reward loss due to these issues by E

[
RE (t)

]
and E

[
RA (t)

]
, respectively.

We begin by showing that all users succeed in learning the correct ranking of
the N -best arms in finite time in Lemma 1. This result will serve as a base for
the bounds of the different regret components.

Definition 1 An ε-correct ranking of M arms is a sorted M -vector of empirical
mean rewards of arms (i.e., i < j ⇐⇒ μ̂i ≤ μ̂j), such that

μ̂i ≤ μ̂j ⇐⇒ μi + ε ≤ μj ∀i, j ∈ {1, . . . ,M} , i �= j.

Lemma 1 For a system of K arms and N users, N ≤ K, in which all users

employ MEGA, there exists a finite time T = 2 4KNN
ε2

∏N−1
i=1 (K−i)

log
(
2K
δ

)
such that

∀t > T , all users have learned an ε-correct ranking of the N -best arms with a
probability of at least 1− δ.
Note: we assume that μi − μj ≥ ε for all i, j ∈ {1, . . . ,K} , i �= j.

Proof. We prove the existence of a finite T by combining the sample complexity
of stochastic MABs with the characteristics of MEGA.

First, we note that as long as εt = 1, if the availability mechanism is disabled,
each of the users performs uniform sampling on average. We therefore examine
a slightly modified version of MEGA for the sake of this theoretical analysis.

Based on [8], a näıve algorithm that samples each arm �K = 4
ε2 log

(
2K
δ

)
times,

identifies an ε-best arm with probability of at least 1− δ. A loose bound on the
number of samples needed in order to produce a correct ranking of the N-best
arms of a K-armed bandit is obtained by applying an iterative procedure: sample
each of the K arms �K times and select the best arm; then sample each of the
remaining K− 1 arms �K−1 times and select the best arm; repeat the procedure
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N times. Such an approach requires no more than S = 4N
ε2 log

(
2K
δ

)
samples of

each arm, for each user.
The collision probability of N users uniformly sampling K channels (in the

absence of an availability mechanism) is given by the solution of the well-known
“birthday problem” [18]:

P [C] = 1−
N−1∏
d=1

(
1− d

K

)
.

As a result of the collisions, the number of samples which are “effective” in terms
of learning arm statistics is reduced. For a certain arm k, sampled by a user n,
the expected number of successful samples up till time t is given by

E [sk,n (t)] = (1− P [C])
t

K
=

t

K

N−1∏
i=1

(
1− i

K

)
.

In order to ensure an adequate number of samples we need to choose a certain
T ′ for which E [sk,n (T

′)] = S:

T ′

K

N−1∏
i=1

(
1− i

K

)
= S,

meaning that

T ′ =
4KNN

ε2
∏N−1

i=1 (K − i)
log

(
2K

δ

)
.

Since the users’ sampling is random, it is only uniform on average. By choosing
T = 2T ′, we ensure that the number of samples is sufficient with high probability:

P [E [sk,n (2T
′)]− sk,n (2T

′) > S] ≤ e − S2/T ′ ≤
(
2K

δ

)− 1
ε2

4N
K (K−N

K )N−1

,

which is due to Hoeffding’s inequality.
We note that Lemma 1 holds for a choice of the parameter c which ensures

that εt = 1 ∀t < T :

c =
d2 (K − 1)T

K2
.

�

Based on Lemma 1 we proceed with the analysis of MEGA, incorporating the
fact that for all t > T , all users know the correct ranking of the N best arms.

Back to our regret analysis - since the reward is bounded in [0, 1], the expected
regret is also bounded:

E [R (t)] ≤ E
[
RC (t)

]
+ E
[
RE (t)

]
+ E
[
RA (t)

]
.
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We begin by addressing the expected regret due to collisions, denoted by
E
[
RC (t)

]
. The bound on collision regret is derived from a bound on the total

number of collisions between two users on a single channel up till t, Cp (t), whose
expected value is bounded in Lemma 2.

Lemma 2 The expected number of collisions between two users on a single chan-
nel up till time t is bounded:

E [Cp (t)] ≤ 2

√
1 + p0
1− p0

t1−β/2, (1)

where β and p0 are parameters of MEGA.

Once we have a bound for the pairwise, per-arm, number of collisions, we can
bound the mean number of collisions for all users.

Corollary 1 The expected number of collisions between all users over all chan-
nels up till time t is bounded:

E [C (t)] ≤ 1

2
N (N − 1)KE [Cp (t)] ≤ N2K

√
1 + p0
1− p0

t1−β/2.

Since the reward is bounded in [0, 1], the expected regret acquired as a result of
collisions up till time t is bounded by the same value:

E
[
RC (t)

]
≤ 1

2
N (N − 1)KE [Cp (t)] ≤ C1N

2Kt1−β/2,

where C1 =
√

1+p0

1−p0
.

Corollary 1 follows from Lemma 2, since each pair of users can collide on each
arm, before the dictated “quiet” period, and so we obtain a bound on the ex-
pected regret accumulated due to collisions.

Next, we examine the expected regret caused by the unavailability of arms in
K∗, denoted by E

[
RA (t)

]
. The availability mechanism contributes to a user’s

regret if it marks all arms in K∗ as taken, causing the user to choose an arm
k �∈ K∗ until one of the arms in K∗ becomes available once again.

We compute an upper bound on the regret by analyzing the regret due to
unavailability when the number of users is N = 2. When there are more users,
the regret is bounded by the worst case, in which all of them declare an optimal
arm unavailable at the same time:

E
[
RA (t)

]
≤ NE

[
RA

2 (t)
]
,

where E
[
RA

2 (t)
]
is the availability regret accumulated up till time t in the two

user scenario for a single channel.

Lemma 3 The expected regret accumulated due to unavailability of optimal arms
in the interval [T, t] is bounded:

E
[
RA

2 (t)
]
≤ C3t

β ,

where C3 = 1 + 8
(

2cK2

d(K−1) +
7−3α
1−α

)
and β is a parameter of MEGA.
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Corollary 2 The expected regret contributed by the availability-detection mech-
anism up till time t is bounded:

E
[
RA (t)

]
≤ NKT +NKC3t

β .

Corollary 2 follows from Lemma 3, where the first term represents the as-
sumption that the collision mechanism is disabled up until t = T .

Our next goal is to bound the regret due to exploration, which is dictated by
the ε-greedy approach adopted in MEGA.

Lemma 4 The expected regret accumulated by all users employing the MEGA
algorithm due to random exploration up till time t is bounded ∀t > m:

E
[
RE (t)

]
≤ Nm+

cK2N

d2K − 1
log t,

where c, d are parameters of the MEGA algorithm and m = cK2

d2(K−1) .

Based on the lemmas and corollaries above, we have the following regret bound
for the MEGA algorithm:

Theorem 1 Assume a network consisting of N users playing a single K-armed
stochastic bandit, N ≤ K. If all users employ the policy of MEGA, the system-
wide regret is bounded for all t > max (m,T ) as follows:

E [R (t)] ≤ C1N
2Kt1−β/2 +NKT +NKC3t

β +Nm+
cK2N

d2K − 1
log t

= O
(
t1−β/2 + log t+ tβ

)
.

The dominant term in the regret bound above depends on the value of β. For
β > 2/3, the term tβ dominates the bound, while for smaller values the dominant
term is t1−β/2. This tradeoff is intuitive - large values of β correspond to longer
“quiet” intervals, reducing the regret contributed by collisions. However, such
long intervals also result in longer unavailability periods, increasing the regret
contributed by the availability mechanism. Optimizing over β yields β = 2/3,
and so the corresponding regret bound is

R (t) ≤ O
(
t
2
3

)
.

The regret bounds for the algorithms proposed in [1] and [12] are O (log t)
and O

(
log2 t

)
, respectively. It is worth noting that the constants in the bound

provided in [1] are very large, as they involve a binomial coefficient which depends
on the numbers of users and channels. Also, the assumptions our algorithm
makes are much more strict. Reference [1] requires knowing the number of users,
and [12] requires ongoing communication between users, through the Bertsekas
auction algorithm. Reference [1] does propose an algorithm which estimates the
number of users, but its regret bound is asymptotic. In addition, the empirical
results our algorithm provides are considerably better (see Section 5).
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4 Dynamic Number of Users

So far, we have focused on several traits of the MEGA algorithm: it does not
require communication, cooperation or coordination among users, and it does
not assume prior knowledge of the number of users. Simply put, the user operates
as though she were the only user in the system, and the algorithm ensures this
approach does not result in the users’ interfering with each other once the system
reaches a “steady state”.

However, communication networks like the ones we wish to model often evolve
over time - users come and go, affecting the performance of other users by their
mere presence or absence. As mentioned in Section 1, the algorithms proposed
in [1] attempt to address scenarios similar to ours. However, they rely on either
knowing or estimating the number of users. Thus, a varying number of users is
beyond their scope.

It is evident from the experiments in Section 5 that the MEGA algorithm
is applicable not only to a fixed number of users, but also in the case that
the number of active users in the network varies over time. To the best of our
knowledge, this is the only algorithm that is able to handle such a setup.

We defer a thorough analysis of the dynamic scenario to our future work.
However, a simple performance guarantee can be obtained for the event in which
a user leaves the network. Let us begin by defining the regret. Let N (t) denote
the number of users in the network at time t. Accordingly, K∗ (t) is the set of
N (t)-best arms. The series t1, t2, t3 . . . denotes change events in the number of
users - arrival or departure. Time intervals during which the number of users is
fixed are denoted by Ti � [ti−1, ti − 1], with t0 � 0. Following the definition of
the regret introduced in Section 2, the regret for the dynamic scenario is

R (t) �
∑
Ti

∑
k∈K∗(ti−1)

μk −
∑
τ∈Ti

∑
n∈N(ti−1)

E [rn (τ)] ,

where we allow a slight abuse of notation for the sake of readability.
Let us assume that a user n leaves the network at some time t, and that the

number of users without him is N (t). We also assume that the users had reached
a steady state before this departure, i.e., the optimal configuration was being
sampled with high probability. Unless user n was sampling the N (t) + 1-best
arm, regret will start building up at this point. Based on Proposition 1, which
follows directly from the definition of the MEGA algorithm, we bound the regret
accumulated until the system “settles down” in the new optimal configuration,
in Proposition 2.

Proposition 1 Let K∗
n denote the set of n-optimal arms. For an arm such that

k ∈ K∗
n and also k ∈ K∗

n−1, if a user occupying k becomes inactive at time t, k
will return to the set of regularly sampled arms within a period of no more than
tβ, with a probability greater than 1− εt.



Concurrent Bandits and Cognitive Radio Networks 77

Proposition 2 The regret accumulated in the period between user n’s departure
at time t and the new optimal configuration’s being reached is bounded by

R (t) ≤ 2(β+1)(N(t)−1) − 1

2β+1 − 1
tβ = O

(
tβ
)
.

Proposition 2 follows from Proposition 1 and from the worst case analysis de-
scribed in Figure 1: if the freed arm was the best one, and the user sampling
the second-best arm re-occupied it, then the second-best arm would be left to
be occupied, etc.. In the worst case, the time intervals before users “upgrade”

their arms are back-to-back, creating a series of the form tβ ,
(
t+ tβ

)β
, . . .. For

detailed proofs of these propositions see the supplementary material.

 
Fig. 1. Worst case occupation of new optimal configuration after a user has left the
network

Proposition 2 shows that for a sufficiently low departure rate, regret remains
sub-linear even in the scenario of a dynamic number of users. Clearly, frequent
changes in the number of users will result in linear regret for practically any
distributed algorithm, including ours.

5 Experiments

Our experiments simulate a cognitive radio network with K channels and N
users. The existence of primary users is manifested in the differences in expected
reward yielded by the channels (i.e., a channel taken by a primary user will yield
a low reward). Over the course of the experiment, the secondary users learn
the characteristics of the communication channels and settle into an orthogonal,
reward-optimal transmission configuration.

The first experiments concern a fixed number of users, N , and channels, K.
We assume channel rewards to be Bernoulli random variables with expected
values μ = (μ1, μ2, . . . , μK) drawn uniformly from the interval [0, 1]. The initial
knowledge users have is only of the number of channels.

Once again, we stress that our users do not communicate among themselves,
nor do they receive external control signals. Their only feedback is the instanta-
neous reward and an instantaneous collision indicator.
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We begin by showing that straightforward application of classic bandit algo-
rithms does not suffice in this case. Figure 2a and Figure 2b present simulation
results for a basic scenario in which N = K = 2. Even in this rather simple case,
the KL-UCB and ε-greedy algorithms fail to converge to an orthogonal configu-
ration, and the number of collisions between users grows linearly with time. The
experiment was repeated 50 times.
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Fig. 2. KL-UCB, ε-greedy and MEGA performance in basic scenario

Having demonstrated the need for an algorithm tailored to our problem, we
compare the performance of our algorithm, MEGA, with the ρRAND algorithm,
proposed in [1]. Figure 3a displays the average regret over time and Figure 3b
displays the cumulative number of collisions over time, averaged over all users.
An important note is that in our experiments we provide ρRAND with the exact
number of users, as it requires. The MEGA algorithm does not require this
input. We did not implement the algorithm ρEST [1], as its pseudo-code was
rather complicated.

The set of parameters used for MEGA was determined by cross validation:
c = 0.1, p0 = 0.6, α = 0.5, β = 0.8. The value of d as dictated by the ε-greedy
algorithm should be d ≤ Δ = μkN−1 −μkN . Calculating this value requires prior
knowledge of both the number of users and the channels’ expected rewards. In
order to avoid this issue, we set d = 0.05 and avoided distributions for which this
condition does not hold in our experiments. The algorithm ρRAND is parameter-
free, as it is a modification of the UCB1 algorithm [2].

The results in Figure 3a and Figure 3b present a scenario in which N < K. In
the more challenging scenario of N = K our algorithm’s advantage is even more
pronounced, as is evident from Figure 4a and Figure 4b. Here, ρRAND actually
fails to converge to the optimal configuration, yielding constant average regret.

Next, we display the results of experiments in which the number of users
changes over time. Initially, the number of users is 1, gradually increasing until
it is equal to 4, decreasing back to 1 again. Since ρRAND needs a fixed value for
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(a) Average regret over time (b) Collisions over time

Fig. 3. Performance of MEGA compared to ρRAND. The shaded area around the line
plots represents result variance over 50 repetitions. The experiment was run with N = 6
users and K = 9 channels, and the number of collisions was averaged over all users.

(a) Average regret over time (b) Collisions over time

Fig. 4. Performance of MEGA compared to ρRAND. The shaded area around the line
plots represents result variance over 50 repetitions. It is barely visible due to the small
variance. The experiment was run with N = 12 users and K = 12 channels, and the
number of collisions was averaged over all users.

the number of users, we gave it the value N0 = 2, which is the average number
of users in the system over time. For different values of N0 the performance of
ρRAND was rather similar; we present a single value for the sake of clarity.

As before, Figure 5a displays the average regret over time and Figure 5b
displays the cumulative number of collisions over time, averaged over all users.

Clearly, MEGA exhibits better performance in terms of regret and collision
rate for both scenarios. The significant improvement in the variance (represented
by the shaded area around the line plots) of MEGA compared to ρRAND is also
noteworthy.
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(a) Average regret over time (b) Collisions over time

Fig. 5. Performance of MEGA compared to ρRAND in the dynamic scenario. The
shaded area represents result variance over 20 repetitions. The experiment was run
with K = 12 channels, and the number of collisions was averaged over all users.

6 Conclusion

We formulate the problem of multiple selfish users learning to split the resources
of a multi-channel communication system modeled by a stochastic MAB. Our
proposed algorithm, a combination of an ε-greedy policy with an availability
detection mechanism, exhibits good experimental results for both fixed and dy-
namic numbers of users in the network. We augment these results with a theoret-
ical analysis guaranteeing sub-linear regret. It is worth noting that this algorithm
is subject to a very strict set of demands, as mentioned in Sections 1 and 2.

We plan to look into additional scenarios of this problem. For example, an
explicit collision indication isn’t always available in practice. Also, collisions may
result in partial, instead of zero, reward. Another challenge is presented when dif-
ferent users have different views of the arms’ characteristics (i.e., receive different
rewards). We believe that since our algorithm does not involve communication
between users, the different views might actually result in fewer collisions. We
would also like to expand our theoretical analysis of the scenario in which the
number of users is dynamic, deriving concrete regret bounds for it.
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Abstract. Kernel principal component analysis (kPCA) has been proposed as
a dimensionality-reduction technique that achieves nonlinear, low-dimensional
representations of data via the mapping to kernel feature space. Conventionally,
kPCA relies on Euclidean statistics in kernel feature space. However, Euclidean
analysis can make kPCA inefficient or incorrect for many popular kernels that
map input points to a hypersphere in kernel feature space. To address this prob-
lem, this paper proposes a novel adaptation of kPCA, namely kernel principal
geodesic analysis (kPGA), for hyperspherical statistical analysis in kernel fea-
ture space. This paper proposes tools for statistical analyses on the Riemannian
manifold of the Hilbert sphere in the reproducing kernel Hilbert space, including
algorithms for computing the sample weighted Karcher mean and eigen anal-
ysis of the sample weighted Karcher covariance. It then applies these tools to
propose novel methods for (i) dimensionality reduction and (ii) clustering using
mixture-model fitting. The results, on simulated and real-world data, show that
kPGA-based methods perform favorably relative to their kPCA-based analogs.

1 Introduction

Kernel principal component analysis (kPCA) [47] maps points in input space to a (high-
dimensional) kernel feature space where it estimates a best-fitting linear subspace via
PCA. This mapping to the kernel feature space is typically denoted byΦ(·). For many of
the most useful and widely used kernels (e.g., Gaussian, exponential, Matern, spherical,
circular, wave, power, log, rational quadratic), the input data x gets mapped to a hyper-
sphere, or a Hilbert sphere, in the kernel feature space. Such a mapping also occurs
when using (i) kernel normalization, which is common, e.g., in pyramid match ker-
nel [28], and (ii) polynomial and sigmoid kernels when the input points have constant
l2 norm, which is common in digit image analysis [46]. This special structure arises
because for these kernels k(·, ·), the self similarity of any data point x equals unity (or
some constant), i.e., k(x, x) = 1. The kernel defines the inner product in the kernel
feature space F , and thus, 〈Φ(x), Φ(x)〉F = 1, which, in turn, equals the distance of
the mapped point Φ(x) from the origin in F . Thus, all of the mapped points Φ(x) lie on
a Hilbert sphere in kernel feature space. Figure 1(a) illustrates this behavior.

The literature shows that for many high-dimensional real-world datasets, where the
data representation uses a large number of dimensions, the intrinsic dimension is often
quite small, e.g., between 5–20 in [18,43,24,29,42]. The utility of kPCA lies in captur-
ing the intrinsic dimension of the data through the few principal (linear) modes of vari-
ation in kernel feature space. This paper proposes a novel extension of kPCA to model
� We thank NIH support via NCRR CIBC P41-RR12553 and NCBC NAMIC U54-EB005149.
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distributions on the Hilbert sphere manifold in kernel feature space. Manifold-based
statistical analysis explicitly models data to reside in a lower dimensional subspace of
the ambient space, representing variability in the data more efficiently (fewer degrees
of freedom). In this way, the proposed method extends kPCA to (i) define more mean-
ingful modes of variation in kernel feature space by explicitly modeling the data on the
Hilbert sphere in kernel feature space, (ii) represent variability using fewer modes, and
(iii) reduce curvature of distributions by modeling them explicitly on the Hilbert sphere,
instead of modeling them in the ambient space, to avoid artificially large measurements
of variability observed in the ambient space. Figure 1(b) illustrates this idea.

Typically, Euclidean PCA of spherical data introduces one additional (unnecessary)
component, aligned orthogonally to the sphere and proportional to the sectional curva-
ture. In practice, however, PCA in high-dimensional spaces (e.g., kernel feature space)
is known to be unstable and prone to error [4], which interacts with the curvature of the
Hilbert sphere on which the data resides. Thus, our empirical results demonstrate that
the actual gains in our hyperspherical analysis in kernel feature space surpass what we
would expect for the low-dimensional case.

While several works in the literature [3,21,23,27,46] address the properties and uses
of kernel feature spaces, these works do not systematically explore this special structure
of kernel feature space and its implications for PCA in kernel feature space; that is the
focus of this paper. Recently, [21] have, in an independent development, examined the
use of the Karcher mean in kernel feature spaces, but they propose a different estima-
tion strategy and they do not formulate, estimate, or demonstrate the use of principle
components on the sphere, which is the main purpose of this work.

This paper makes several contributions. It proposes new formulations and algorithms
for computing the sample Karcher mean on a Hilbert sphere in reproducing kernel
Hilbert space (RKHS). To analyze sample Karcher covariance, this paper proposes a
kernel-based PCA on the Hilbert sphere in RKHS, namely, kernel principal geodesic
analysis (kPGA). It shows that just as kPCA leads to a standard eigen-analysis problem,
kPGA leads to a generalized eigen-analysis problem. This paper evaluates the utility of
kPGA for (i) nonlinear dimensionality reduction and (ii) clustering with a Gaussian
mixture model (GMM) and an associated expectation maximization (EM) algorithm
on the Hilbert sphere in RKHS. Results on simulated and real-world data show that
kPGA-based methods perform favorably with their kPCA-based analogs.

2 Related Work

There are several areas of related work that inform the results in this paper. The Karcher
mean and associated covariance have recently become important tools for statistical
analysis [39]. The algorithm for the Karcher mean proposed in [17] is restricted to
analyzing the intrinsic mean and does not address how to capture covariance for data
lying on spheres, even in finite-dimensional spaces. Other algorithms for the Karcher
mean exist and may be more efficient numerically [34]. To capture covariance structure
on Riemannian manifolds, Fletcher et al. [25] propose PGA and an associated set of
algorithms. Likewise, a small body of work relies on the local geometric structure of
Riemannian spaces of covariance matrices for subsequent statistical analysis [7,20,50].
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Because many RKHSs are infinite dimensional, we must acknowledge the problem
of modeling distributions in such spaces [30] and the corresponding theoretical prob-
lems [16]. Of course, these same theoretical concerns arise in kPCA, and other well-
known kernel methods, and thus the justification for this work is similar. First, we may
assume or assert that the covariance operator of the mapped data is of trace class or, even
more strongly, restricted to a finite-dimensional manifold defined by the cardinality of
the input data. Second, the proposed methods are intended primarily for data analy-
sis rather than statistical estimation, and, thus, we intentionally work in the subspace
defined by the data (which is limited by the data sample size).

In addition to the dimensionality structure, the Hilbert sphere imposes its own struc-
ture and has an associated geometry with underlying theoretical implications. The pro-
posed approach in this paper extends PGA [25] to the Hilbert sphere in RKHS. The im-
portant geometrical properties of the sphere for the proposed extension concern (i) the
geodesic distance between two points, which depends on the arc cosine of their dot
product, and (ii) the existence and formulation of tangent spaces [11,15,31].

The work in [21] is more directly related to the proposed method, because it uses
logarithmic and exponential maps on the Hilbert sphere in RKHS for data analysis.
However, [21] does not define a mean or a covariance on the Hilbert sphere in RKHS;
it also requires the solution of the ill-posed preimage problem. Unlike [21], we define
covariance and its low-dimensional approximations on the Hilbert sphere, represented
in terms of the Gram matrix of the data, and incorporate this formulation directly into
novel algorithms for dimensionality reduction and clustering via EM [22], including
geodesic Mahalanobis distance on the Hilbert sphere in RKHS.

We apply the proposed method for (i) dimensionality reduction for machine-learning
applications and (ii) mixture modeling. This builds on the work in kPCA [47], and
therefore represents an alternative to other nonlinear mapping methods, such as Sam-
mon’s nonlinear mapping [45], Isomap [51] and other kernel-based methods [35,52].
For applications to clustering, the proposed approach generalizes kernel k-means [47]
and kernel GMMs [53], where we use formulations of means and/or covariances that
respect the hyperspherical geometry of the mapped points in RKHS.

3 Geometry of the Hilbert Sphere in Kernel Feature Space

Many popular kernels are associated with a RKHS that is infinite dimensional. Thus,
the analysis in this paper focuses on such spaces. Nevertheless, analogous theory holds
for other important kernels (e.g., normalized polynomial) where the RKHS is finite
dimensional.

Let X be a random variable taking values x in input space X . Let {xn}Nn=1 be a
set of observations in input space. Let k(·, ·) be a real-valued Mercer kernel with an
associated map Φ(·) that maps x to Φ(x) := k(·, x) in a RKHS F [6,46]. Consider two
points in RKHS: f :=

∑I
i=1 αiΦ(xi) and f ′ :=

∑J
j=1 βjΦ(xj). The inner product

〈f, f ′〉F :=
∑I

i=1

∑J
j=1 αiβjk(xi, xj). The norm ‖f‖F :=

√
〈f, f〉F . When f, f ′ ∈

F\{0}, let f ⊗ f ′ be the rank-one operator defined as f ⊗ f ′(h) := 〈f ′, h〉Ff . Let
Y := Φ(X) be the random variable taking values y in RKHS.
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(a) (b)
Fig. 1. Kernel Principal Geodesic Analysis (kPGA). (a) Points in input space get mapped,
via several popular Mercer kernels, to a hypersphere or a Hilbert sphere in kernel feature space.
(b) Principal geodesic analysis on the Hilbert sphere in kernel feature space.

Assuming Y is bounded and assuming the expectation and covariance operators of
Y exist and are well defined, kPCA uses observations {yn := Φ(xn)}Nn=1 to estimate
the eigenvalues, and associated eigenfunctions, of the covariance operator of Y [14,47].
The analysis in this paper applies to kernels that map points in input space to a Hilbert
sphere in RKHS, i.e., ∀x : k(x, x) = κ, a constant (without loss of generality, we
assume κ = 1). For such kernels, the proposed kPGA modifies kPCA using statistical
modeling on the Riemannian manifold of the unit Hilbert sphere [5,10] in RKHS.

Consider a and b on the unit Hilbert sphere in RKHS represented, in general, as
a :=

∑
n γnΦ(xn) and b :=

∑
n δnΦ(xn). The logarithmic map, or Log map, of a

with respect to b is the vector

Logb(a) =
a− 〈a, b〉Fb

‖a− 〈a, b〉Fb‖F
arccos(〈a, b〉F ) =

∑
n

ζnΦ(xn), where ∀n : ζn ∈ R.

(1)

Clearly, Logb(a) can always be written as a weighted sum of the vectors {Φ(xn)}Nn=1.
The tangent vector Logb(a) lies in the tangent space, at b, of the unit Hilbert sphere. The
tangent space to the Hilbert sphere in RKHS inherits the same structure (inner product)
as the ambient space and, thus, is also a RKHS. The geodesic distance between a and b
is dg(a, b) = ‖Logb(a)‖F = ‖Loga(b)‖F .

Now, consider a tangent vector t :=
∑

n βnΦ(xn) lying in the tangent space at b.
The exponential map, or Exp map, of t with respect to b is

Expb(t) = cos(‖t‖F)b + sin(‖t‖F)
t

‖t‖F
=
∑
n

ωnΦ(xn), where ∀n : ωn ∈ R. (2)

Clearly, Expb(t) can always be written as a weighted sum of the vectors {Φ(xn)}Nn=1.
Expb(t) maps a tangent vector t to the unit Hilbert sphere, i.e., ‖Expb(t)‖F = 1.

4 PCA on the Hilbert Sphere in Kernel Feature Space

This section proposes the kPGA algorithm for PCA on the unit Hilbert sphere in RKHS.
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4.1 Sample Karcher Mean

The sample Karcher mean on Riemannian manifolds is a consistent estimator of the the-
oretical Karcher mean of the underlying random variable [12,13]. The sample weighted
Karcher mean of set of observations {ym}Mm=1, on the unit Hilbert sphere in RKHS,
with associated weights {pm ∈ R+}Mm=1 is defined as

μ := argmin
ν

∑
m

pmd
2
g(ν, ym). (3)

The existence and uniqueness properties of the Karcher mean on the Riemannian man-
ifold of the unit Hilbert sphere are well studied [1,32,33]; a study on finite-dimensional
Hilbert spheres appears in [17]. The sample Karcher mean on a Hilbert sphere exists
and is unique if the pointset is contained within (i) an open convex Riemannian ball
of radius π/2 [33], i.e., an open hemisphere, or (ii) a similar closed ball if one of the
points lies in its interior [17]. Thus, the sample Karcher mean exists and is unique for
all kernels that map points within a single orthant of the Hilbert sphere in RKHS; this
is true for all positive-valued kernels, e.g., the Gaussian kernel.

Clearly, a Karcher mean μ must lie within the space spanned by {ym}Mm=1; if not,
we could project the assumed “mean” ν′ onto the span of {ym}Mm=1 and reduce all
distances dg(ym, ν′) on the Hilbert sphere because of the spherical Pythagoras theorem,
thereby resulting in a more-optimal mean ν′′ with dg(ym, ν′′) < dg(ym, ν

′), ∀m and a
contradiction to the initial assumption. Therefore, if the points ym are represented using
another set of points {Φ(xn)}Nn=1, i.e., ∀m, ym :=

∑
n wmnΦ(xn), then the mean μ

can be represented as μ =
∑

n ξnΦ(xn), where ∀n : ξn ∈ R.
We propose the following gradient-descent algorithm to compute the mean μ.

1. Input: A set of points {ym}Mm=1 on the unit Hilbert sphere in RKHS. Weights
{pm}Mm=1. As described previously, we assume that, in general, each ym is repre-
sented using another set of points {Φ(xn)}Nn=1 and weights wmn on the unit Hilbert
sphere in RKHS, i.e., ym :=

∑
n wmnΦ(xn).

2. Initialize iteration count: i = 0. Initialize the mean estimate to

μ0 =

∑
m pmym

‖
∑

m pmym‖F
=
∑
n

ξnΦ(xn),where ξn =

∑
m pmwmn

‖
∑

m pmym‖F
. (4)

3. Iteratively update the mean estimate, until convergence, by (i) taking the Log maps
of all points with respect to the current mean estimate, (ii) performing a weighted
average of the resulting tangent vectors, and (iii) taking the Exp map of the weighted
average scaled by a step size τ i, i.e.,

μi+1 = Expμi

(
τ i

M

∑
m

pmLogμi(ym)

)
, where τ i ∈ (0, 1). (5)

4. Output: Mean μ lying on the unit Hilbert sphere in RKHS.

In practice, we use a gradient-descent algorithm with an adaptive step size τ i such that
the algorithm (i) guarantees that the objective-function value is non increasing every it-
eration and (ii) increases/decreases the step size each iteration to aid faster convergence.
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We detect convergence as the point when the objective function cannot be reduced using
any non-zero step size. Typically, in practice, a few iterations suffice for convergence.

The convergence of gradient descent for finding Karcher means has been studied
[2,17]. In certain conditions, such as those described earlier when the sample Karcher
mean on a Hilbert sphere is unique, the objective function becomes convex [19], which
leads the gradient descent to the global minimum.

4.2 Sample Karcher Covariance and Eigen Analysis

Given the sample weighted Karcher mean μ, consider a random variableZ := Logμ(Y )
taking values in the tangent space at μ. Assuming that both the expectation and covari-
ance operators of Z exist and are well defined (this follows from the similar assumption
on Y ), the sample weighted Karcher covariance operator, in the tangent space at μ, is

C := (1/M)
∑
m

pmzm ⊗ zm, where zm := Logμ(ym). (6)

Because the tangent space is a RKHS, the theoretical analysis of covariance in RKHS in
standard kPCA [14,48] applies to C as well (note that the set {zm}Mm=1 is empirically
centered by construction; i.e.,

∑
m zm = 0). Thus, as the sample size M → ∞, the

partial sums of the empirically-computed eigenvalues converge to the partial sums of
the eigenvalues of the theoretical covariance operator of Z .

Using the Log map representation in Section 3, zm =
∑

n′ βn′mΦ(xn′ ) leading to

C =
∑
n′

∑
n′′

En′n′′Φ(xn′ )⊗ Φ(xn′′ ), where En′n′′ =
1

M

∑
m

pmβn′mβn′′m. (7)

If λ is a positive eigenvalue of C and v is the corresponding eigenfunction, then

v =
Cv

λ
=

1

λ

∑
n′

∑
n′′

En′n′′Φ(xn′)⊗ Φ(xn′′ )v =
∑
n′

αn′Φ(xn′ ),

where αn′ =
∑
n′′

En′n′′

λ
〈Φ(xn′′ ), v〉F . (8)

Thus, any eigenfunction v of C lies within the span of the set of points {Φ(xn)}Nn=1

used to represent {ym}Mm=1. For any Φ(xη) ∈ {Φ(xn)}Nn=1 and the eigenfunction v,

〈Φ(xη), Cv〉F = λ〈Φ(xη), v〉F . (9)

Thus, 〈Φ(xη),
∑
n′

∑
n′′

En′n′′Φ(xn′)⊗Φ(xn′′ )
∑
n′′′

αn′′′Φ(xn′′′ )〉F =

λ〈Φ(xη),
∑
n′′′

αn′′′Φ(xn′′′ )〉F . (10)

Thus,
∑
n′′′

(∑
n′

Kηn′
∑
n′′

En′n′′Kn′′n′′′

)
αn′′′ = λ

∑
n′′′

Kηn′′′αn′′′ , (11)

where Kij := 〈Φ(xi), Φ(xj)〉F
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is the element in row i and column j of the Gram matrix K . Considering E and K as
N ×N real matrices and defining F := EK and G := KF leads to∑

n′′
En′n′′Kn′′n′′′ = Fn′n′′′ and

∑
n′

Kηn′
∑
n′′

En′n′′Kn′′n′′′ = Gηn′′′ . (12)

Therefore, the left hand side of Equation 9 equals Gη•α, where (i) Gη• is the ηth row of
the N ×N matrix G and (ii) α is the N × 1 column vector with the nth component as
αn. Similarly, the right hand side of Equation 9 equals Kη•α, where Kη• is the ηth row
of the N ×N matrix K . Using Equation 9 to form one equation for all η = 1, · · · , N ,
gives the following generalized eigen-analysis problem

Gα = λKα. (13)

If k(·, ·) is a symmetric positive-definite (SPD) Mercer kernel and the points {Φ(xn)}Nn=1

are distinct, thenK is SPD (hence, invertible) and the generalized eigen-analysis problem
reduces to the standard eigen-analysis problem

EKα = λα. (14)

Thus, (i) the eigenvalues {λn}Nn=1 are same as the eigenvalues of the sample covariance
operatorC and (ii) each eigenvectorα gives one eigenfunction ofC through Equation 8.
Note that standard kPCA requires eigen decomposition of the (centralized) matrix K .

The definition of the sample covariance operator C implies that the rank of C is
upper bounded by the sample size M . Because the eigenvalues of C are the same as
those for EK or for the pair (G,K), if M < N , then the rank of the N × N matrices
EK and G are also upper bounded by M . While K is an N × N symmetric positive
(semi) definite matrix of rank at-most N , E is an N × N symmetric positive (semi)
definite matrix of rank at-most M becauseE = BPBT where (i) B is a N×M matrix
where Bnm = βnm and (ii) P is an M ×M diagonal matrix where Pmm = pm/M .

4.3 Kernel Principal Geodesic Analysis (kPGA) Algorithm

We summarize the proposed kPGA algorithm below.

1. Input: (i) A set of points {ym}Mm=1 on the unit Hilbert sphere in RKHS. (ii) Weights
{pm}Mm=1. As described previously, we assume that, in general, each ym is repre-
sented using another set of points {Φ(xn)}Nn=1 and weights wmn on the unit Hilbert
sphere in RKHS, i.e., ym :=

∑
n wmnΦ(xn).

2. Compute the Gram matrix K .
3. Compute the Karcher mean μ using the algorithm in Section 4.1.
4. Compute the matrix E or G = KEK as described in Section 4.2.
5. To analyze the Karcher covariance, perform eigen analysis for the linear system

Gα = λKα or EKα = λα to give eigenvalues {λη}Nη=1 (sorted in non-increasing
order) and eigenvectors {αη}Nη=1.

6. Output: (i) Mean μ lying on the unit Hilbert sphere in RKHS. (ii) Principal com-
ponents or eigenfunctions {vn =

∑
n′ αηn′Φ(xn′ )}Nn=1 in the tangent space at μ.

(iii) Eigenvalues {λn = λη}Nn=1 capturing variance along principal components.
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5 Applications

This section proposes kPGA-based algorithms for (i) nonlinear dimensionality reduc-
tion and (ii) clustering using a mixture model fitted using EM.

5.1 Nonlinear Dimensionality Reduction

First, we propose the following algorithm for dimensionality reduction using kPGA.

1. Input: A set of points {xn}Nn=1 along with their maps {Φ(xn)}Nn=1 on the unit
Hilbert sphere in RKHS. Weights {pn = 1}Nn=1.

2. Apply the kPGA algorithm in Section 4.2 to the observed sample {Φ(xn)}Nn=1 to
compute mean μ, eigenvalues {λn}Nn=1 (sorted in non-increasing order), and corre-
sponding eigenfunctions {vn}Nn=1.

3. Select the largest Q < N eigenvalues {λq}Qq=1 that capture a certain fraction of en-
ergy in the eigenspectrum. Select the corresponding subspaceGQ =< v1, · · · , vQ >.

4. Project the Log map of each point Φ(xn) on the subspace GQ to give the embed-
ding coordinates enq := 〈LogμΦ(xn), vq〉F and projected tangent vectors tn =∑

q enqvq in the tangent space at the mean μ.

5. Take the Exp map of projections {tn}Nn=1 to produce {yn = Expμ(tn)}Nn=1 lying
within a Q-dimensional subsphere on the unit Hilbert sphere in RKHS.

6. Output: Embedding subspace (lower dimensional) GQ, embedding coordinates
{(en1, · · · , enQ)}Nn=1, and (re)mapped points on the Hilbert subsphere {yn}Nn=1.

5.2 Clustering Using Mixture Modeling and Expectation Maximization

We now propose an algorithm for clustering a set of points {xn}Nn=1, into a fixed num-
ber of clusters, by fitting a mixture model on the unit Hilbert sphere in RKHS.

The proposed approach entails mixture modeling in a finite-dimensional subsphere
of the unit Hilbert sphere in RKHS, after the dimensionality reduction of the points
{Φ(xn)} to a new set of points {yn} (as in Section 5.1). Modeling PDFs on Hilbert
spheres entails fundamental trade-offs between model generality and the viability of
the underlying parameter estimation. For instance, although Fisher-Bingham PDFs on
Sd are able to model generic anisotropic distributions (anisotropy around the mean)
using O(d2) parameters, their parameter estimation may be intractable [9,37,40]. On
the other hand, parameter estimation for the O(d)-parameter von Mises-Fisher PDF
is tractable [9], but that PDF can only model isotropic distributions. We take another
approach that uses a tractable approximation of a normal law on a Riemannian mani-
fold [41], allowing modeling of anisotropic distributions through its covariance param-
eter in the tangent space at the mean. Thus, the proposed PDF evaluated at Φ(x) is
P (Φ(x)|μ,C)

.
= exp

(
−0.5d2g(μ, Φ(x);C)

)
/((2π)Q/2|C|1/2), where |C| = ΠQ

q=1λq
and dg(μ, ν;C) is the geodesic Mahalanobis distance between the pointΦ(x) and mean
μ, given covariance C.

The geodesic Mahalanobis distance relies on a regularized sample inverse-covariance
operator [38] C−1 :=

∑Q
q=1(1/λq)vq ⊗ vq , where λq is the qth sorted eigenvalue of
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C, vq is the corresponding eigenfunction, and Q ≤ min(M,N) is a regularization pa-
rameter. Then, the corresponding square-root inverse-covariance operator is C−1/2 :=∑

q(1/
√
λq)vq ⊗ vq and the geodesic Mahalanobis distance of the point ν from mean

μ is dg(ν, μ;C) := (〈C−1/2t, C−1/2t〉F )0.5 where t := Logμ(ν).
Let Y be a random variable that generates the N independent and identically-

distributed data points {yn}Nn=1 as follows. For each n, we first draw a cluster num-
ber l ∈ {1, 2, · · · , L} with probability wl (where ∀l : wl > 0 and

∑
l wl = 1) and

then draw yn from P (Y |μl, Cl). Thus, the probability of observing yn is P (yn) =∑
l wlP (yn|μl, Cl).
The parameters for P (Y ) are θ = {wl, μl, Cl}Ll=1. We solve for the maximum-

likelihood estimate of θ via EM. Let {Sn}Nn=1 be hidden random variables that give, for
each n, the cluster number sn ∈ {1, · · · , L} that generated data point yn.

EM performs iterative optimization. Each EM iteration involves an E step and an
M step. At iteration i, given parameter estimates θi, the E step defines a function
Q(θ|θi) := EP ({Sn}N

n=1|{yn}N
n=1,θ

i)[logP ({Sn, yn}Nn=1|θ)]. For our mixture model,

Q(θ|θi) =
∑
n

∑
l

P (sn = l|yn, θi)
(
logwl − 0.5 log |Cl| − 0.5d2g(μl, yn;Cl)

)
+ constant, where (15)

P (sn = l|yn, θi) =
P (sn = l|θi)P (yn|sn = l, θi)

P (yn|θi)
=

wi
lP (yn|μi

l , C
i
l )∑

l w
i
lP (yn|μi

l, C
i
l )
. (16)

We denote P (sn = l|yn, θi) in shorthand by the class membership P i
nl. We denote∑

n P
i
nl in shorthand by P i

l . Simplifying gives

Q(θ|θi) =
∑
l

P i
l (logwl − 0.5 log |Cl|)− 0.5

∑
n

∑
l

P i
nld

2
g(μl, yn;Cl) + constant.

(17)

The M step maximizesQ(θ), under the constraints onwl, using the method of Lagrange
multipliers, to give the optimal values and, hence, the updates, for parameters θ.

Thus, the proposed clustering algorithm is as follows.

1. Input: A set of points {Φ(xn)}Nn=1 on the unit Hilbert sphere in RKHS with all
associated weights pn set to unity.

2. Reduce the dimensionality of the input using the algorithm in Section 5.1 to give
points {yn}Nn=1 on a lower-dimensional subsphere of the Hilbert sphere in RKHS.

3. Initialize iteration count i := 0. Initialize parameters θ0 = {w0
l , μ

0
l , C

0
l }Ll=1 as fol-

lows: run farthest-point clustering [26] (with kernel-based distances; with randomly-
selected first point) to initialize kernel k means [47] that, in turn, initializes μ0

l and
C0

l to be the mean and covariances of cluster l, respectively, and w0
l equal to the

number of points in cluster l divided by N .
4. Iteratively update the parameter estimates, until convergence, as follows.
5. Evaluate probabilities {P i

nl} using current parameter estimates θi.
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6. Update means μi+1
l = argminμ

∑
n P

i
nld

2
g(μl, yn;Cl) using a gradient-descent

algorithm similar to that used in Section 4.1 for the sample weighted Karcher mean.
7. Update covariances Ci+1

l =
∑

n(P
i
nl/P

i
l )Logμi+1

l
(yn)⊗ Logμi+1

l
(yn).

8. Update probabilities wi+1
l = P i

l /(
∑

l P
i
l ).

9. Output: Parameters: θ = {wl, μl, Cl}Ll=1. Labeling: Assign Φ(xn) to the cluster l
that maximizes P (yn|μl, Cl).

6 Results and Discussion

This section shows results on simulated data, real-world face images from the Olivetti
Research Laboratory (ORL) [44], and real-world data from the University of California
Irvine (UCI) machine learning repository [8].

6.1 Nonlinear Dimensionality Reduction

We employ kPCA and the proposed kPGA for nonlinear dimensionality reduction on
simulated and real-world databases. To evaluate the quality of dimensionality reduction,
we use the co-ranking matrix [36] to compare rankings of pairwise distances between
(i) data points in the original high-dimensional space (i.e., without any dimensionality
reduction) and (ii) the projected data points in the lower-dimensional embedding found
by the algorithm. Based on this motivation, a standard measure to evaluate the quality
of dimensionality-reduction algorithms is to average, over all data points, the fraction
of other data points that remain inside a κ neighborhood defined based on the original
distances [36]. For a fixed number of reduced dimensions, an ideal dimensionality-
reduction algorithm would lead to this quality measure being 1 for every value of κ ∈
{1, 2, · · · , N − 1}, where N is the total number of points in the dataset.

Simulated Data – Points on a High-Dimensional Unit Hilbert Sphere. We generate
N = 200 data points lying on the unit Hilbert sphere in R100. We ensure the intrinsic

Reduced Dimension Q = 1 Reduced Dimension Q = 2

Fig. 2. Nonlinear Dimensionality Reduction on Simulated Data. The performance for the
proposed kPGA is in blue and that for the standard kPCA is in red. The horizontal axis shows
values of κ in the κ neighborhood [36]. The quality measure on the vertical axis indicates the
preservation of κ-sized neighborhoods based on distances in the original space (see text). For a
fixed number of reduced dimensions Q, the ideal performance is a quality measure of 1 for all κ.
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Dimension Q=2, Degree d=4 Dimension Q=2, Degree d=5 Dimension Q=2, Degree d=6

Dimension Q=4, Degree d=4 Dimension Q=4, Degree d=5 Dimension Q=4, Degree d=6

Dimension Q=8, Degree d=4 Dimension Q=8, Degree d=5 Dimension Q=8, Degree d=6

Dimension Q=16, Degree d=4 Dimension Q=16, Degree d=5 Dimension Q=16, Degree d=6

Fig. 3. Nonlinear Dimensionality Reduction on ORL Face Images. The blue curves represent
the proposed kPGA and the red curves represent standard kPCA. Each subfigure plots quality
measures (on vertical axis) for reduced-dimension values Q = 2, 4, 8, 16 and polynomial-kernel-
parameter values d = 4, 5, 6. Within each subfigure (on horizontal axis), κ = 1, · · · , 399. See
Figure 4 for additional results with reduced-dimension values Q = 32, 64, 128, 256.

dimensionality of the dataset to be 2 by considering a subsphere S2 of dimension 2 and
sampling points from a von Mises-Fisher distribution on S2 [37]. We set the kernel as
k(x, y) := 〈x, y〉 that reduces the map Φ(·) to identity (i.e., Φ(x) := x) and, thereby,
performs the analysis on the original data that lies on a Hilbert sphere in input space.
Figure 2 shows the results of the dimensionality reduction using kPCA and kPGA.
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Dimension Q=32, Degree d=4 Dimension Q=32, Degree d=5 Dimension Q=32, Degree d=6

Dimension Q=64, Degree d=4 Dimension Q=64, Degree d=5 Dimension Q=64, Degree d=6

Dimension=128, Degree d=4 Dimension Q=128, Degree d=5 Dimension Q=128, Degree d=6

Dimension=256, Degree d=4 Dimension Q=256, Degree d=5 Dimension Q=256, Degree d=6

Fig. 4. Nonlinear Dimensionality Reduction on ORL Face Images. Continued from Figure 3.

When the reduced dimensionality is forced to be 1, which we know is suboptimal,
both kPCA and kPGA perform comparably. However, when the reduced dimensionality
is forced to 2 (which equals the intrinsic dimension of the data), then kPGA clearly
outperforms kPCA; kPGA preserves the distance-based κ neighborhoods for almost
every value of κ ∈ {1, · · · , 199}. The result in Figure 2 is also consistent with the
covariance eigenspectra produced by kPCA and kPGA. Standard kPCA, undesirably,
gives 3 non-zero eigenvalues (0.106, 0.0961, 0.0113) that reflect the dimensionality of
the data representation for points on S2. On the other hand, the proposed kPGA gives
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 5. Clustering on UCI Datasets. Box plots of error rates from clustering random subsets of
the dataset. We use a Gaussian kernel. (a)–(h) show results on Wine, Haberman, Iris, Vote, Heart,
Ecoli, Blood, and Liver datasets, respectively.
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only 2 non-zero eigenvalues (0.1246, 0.1211) that reflect the intrinsic dimension of the
data. Thus, kPGA needs fewer components/dimensions to represent the data.

Real-World Data – ORL Face Image Database. The ORL database [44] comprises
N = 400 face images of size 112 × 92 pixels. To measure image similarity, a justi-
fiable kernel is the polynomial kernel k(x, y) := (〈x, y〉)d after normalizing the in-
tensities in each image x (i.e., subtract mean and divide by standard deviation) so that
〈x, x〉 = 1 = k(x, x) [46]. Figure 3 and Figure 4 show the results of nonlinear dimen-
sionality reduction using standard kPCA and the proposed kPGA. For a range of values
of the reduced dimension (i.e., 2, 4, 8, 16, 32, 64, 128, 256) and a range of values of the
polynomial kernel degree d (i.e., d = 4, 5, 6), the proposed kPGA outperforms standard
kPCA with respect to the κ-neighborhood based quality measure.

6.2 Clustering Using Mixture Modeling and Expectation Maximization

We use the UCI repository to evaluate clustering in RKHS. Interestingly, for all but 2 of
the UCI datasets used in this paper, the number of modes in kPCA (using the Gaussian
kernel) capturing 90% of the spectrum energy ranges from 3–15 (mean 8.5, standard
deviation 4.5). For only 2 datasets is the corresponding number of modes more than 20.
This number is usually close to the intrinsic dimension of the data.

Real-World Data – UCI Machine Learning Repository. We evaluate clustering al-
gorithms by measuring the error rate in the assignments of data points to clusters; we
define error rate as the fraction of the total number of points in the dataset assigned to
the incorrect cluster. We evaluate clustering error rates on a wide range of subspace di-
mensions Q ∈ {1, · · · , 30}. For each Q, we repeat the following process 50 times: we
randomly select 70% points from each cluster, run the clustering algorithm, and com-
pute the error rate. We use the Gaussian kernel k(xi, xj) = exp(−0.5‖xi − xj‖22/σ2)
and set σ2, as per convention, to the average squared distance between all pairs (xi, xj).

Figures 5 compares the performance of spectral clustering [49], standard kPCA, and
the proposed kPGA. In Figures 5(a)–(f), kPGA gives the lowest error rates (over all
Q) and outperforms spectral clustering. In Figures 5(a)–(d), kPGA performs better or
as well for almost all choices of Q. In Figure 5(g), kPGA performs as well as spectral
clustering (over all Q). In Figure 5(h), kPGA performs slightly worse than kPCA (over
all Q), but kPGA performs the best whenever Q > 2.

7 Conclusion

This paper addresses the hyperspherical geometry of points in kernel feature space, which
naturally arises from many popular kernels and kernel normalization. This paper
proposes kPGA to perform PGA on the Hilbert sphere manifold in RKHS, through al-
gorithms for computing the sample weighted Karcher mean and the eigenvalues and
eigenfunctions of the sample weighted Karcher covariance. It leverages kPGA to pro-
pose methods for (i) nonlinear dimensionality reduction and (ii) clustering using mixture-
model fitting on the Hilbert sphere in RKHS. The results, on simulated and real-world
data, show that kPGA-based methods perform favorably with their kPCA-based analogs.
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16. Bühlmann, P., Van De Geer, S.: Statistics for high-dimensional data: methods, theory and

applications. Springer (2011)
17. Buss, S., Fillmore, J.: Spherical averages and applications to spherical splines and interpola-

tion. ACM Trans. Graph. 20(2), 95–126 (2001)
18. Carter, K., Raich, R., Hero, A.: On local intrinsic dimension estimation and its applications.

IEEE Trans. Signal Proc. 58(2), 650–663 (2010)
19. Charlier, B.: Necessary and sufficient condition for the existence of a Frechet mean on the

circle. ESAIM: Probability and Statistics 17, 635–649 (2013)
20. Cherian, A., Sra, S., Banerjee, A., Papanikolopoulos, N.: Jensen-Bregman logDet divergence

with application to efficient similarity search for covariance matrices. IEEE Trans. Pattern
Anal. Mach. Intell. 35(9), 2161–2174 (2012)

21. Courty, N., Burger, T., Marteau, P.-F.: Geodesic analysis on the Gaussian RKHS hypersphere.
In: Flach, P.A., De Bie, T., Cristianini, N. (eds.) ECML PKDD 2012, Part I. LNCS, vol. 7523,
pp. 299–313. Springer, Heidelberg (2012)

22. Dempster, A., Laird, N., Rubin, D.: Maximum likelihood from incomplete data via the EM
algorithm. J. Royal Statistical Society B(39), 1–38 (1977)

23. Eigensatz, M.: Insights into the geometry of the Gaussian kernel and an application in geo-
metric modeling. Master thesis. Swiss Federal Institute of Technology (2006)

24. Felsberg, M., Kalkan, S., Krueger, N.: Continuous dimensionality characterization of image
structures. Image and Vision Computing 27(6), 628–636 (2009)

http://archive.ics.uci.edu/ml


Kernel Principal Geodesic Analysis 97

25. Fletcher, T., Lu, C., Pizer, S., Joshi, S.: Principal geodesic analysis for the study of nonlinear
statistics of shape. IEEE Trans. Med. Imag. 23(8), 995–1005 (2004)

26. Gonzalez, T.: Clustering to minimize the maximum intercluster distance. Theor. Comp.
Sci. 38, 293–306 (1985)

27. Graf, A., Smola, A., Borer, S.: Classification in a normalized feature space using support
vector machines. IEEE Trans. Neural Networks 14(3), 597–605 (2003)

28. Grauman, K., Darrell, T.: The pyramid match kernel: Efficient learning with sets of features.
Journal of Machine Learning Research 8, 725–760 (2007)

29. Hein, M., Audibert, J.Y.: Intrinsic dimensionality estimation of submanifolds in Rd. In: Int.
Conf. Mach. Learn., pp. 289–296 (2005)

30. Hoyle, D.C., Rattray, M.: Limiting form of the sample covariance eigenspectrum in PCA and
kernel PCA. In: Int. Conf. Neural Info. Proc. Sys. (2003)

31. Kakutani, S., et al.: Topological properties of the unit sphere of a Hilbert space. Proceedings
of the Imperial Academy 19(6), 269–271 (1943)

32. Karcher, H.: Riemannian center of mass and mollifier smoothing. Comn. Pure Appl.
Math. 30(5), 509–541 (1977)

33. Kendall, W.S.: Probability, convexity and harmonic maps with small image I: uniqueness and
fine existence. Proc. Lond. Math. Soc. 61, 371–406 (1990)

34. Krakowski, K., Huper, K., Manton, J.: On the computation of the Karcher mean on spheres
and special orthogonal groups. In: Proc. Workshop Robotics Mathematics, pp. 1–6 (2007)

35. Lawrence, N.: Probabilistic non-linear principal component analysis with Gaussian process
latent variable models. J. Mach. Learn. Res. 6, 1783–1816 (2005)

36. Lee, J.A., Verleysen, M.: Quality assessment of dimensionality reduction: Rank-based crite-
ria. Neurocomputing 72, 1432–1433 (2009)

37. Mardia, K., Jupp, P.: Directional Statistics. Wiley (2000)
38. Mas, A.: Weak convergence in the function autoregressive model. J. Multiv. Anal. 98,

1231–1261 (2007)
39. Nielsen, F., Bhatia, R.: Matrix Information Geometry. Springer (2013)
40. Peel, D., Whiten, W., McLachlan, G.: Fitting mixtures of Kent distributions to aid in joint set

identification. J. Amer. Stat. Assoc. 96, 56–63 (2001)
41. Pennec, X.: Intrinsic statistics on Riemannian manifolds: Basic tools for geometric measure-

ments. J. Mathematical Imaging and Vision 25(1), 127–154 (2006)
42. Raginsky, M., Lazebnik, S.: Estimation of intrinsic dimensionality using high-rate vector

quantization. In: Proc. Adv. Neural Information Processing Systems, pp. 1–8 (2005)
43. de Ridder, D., Kuoropteva, O., Okun, O., Pietikainen, M., Duin, R.: Supervised locally lin-

ear embedding. In: Kaynak, O., Alpaydın, E., Oja, E., Xu, L. (eds.) ICANN/ICONIP 2003.
LNCS, vol. 2714, pp. 333–341. Springer, Heidelberg (2003)

44. Samaria, F., Harter, A.: Parameterisation of a stochastic model for human face identification.
In: Proc. IEEE Workshop on Applications of Computer Vision, pp. 138–142 (1994)

45. Sammon, J.W.: A nonlinear mapping for data structure analysis. IEEE Trans. Comput-
ers 18(5), 401–409 (1969)

46. Scholkopf, B., Smola, A.: Learning with Kernels. MIT Press (2002)
47. Scholkopf, B., Smola, A., Muller, K.R.: Nonlinear component analysis as a kernel eigenvalue

problem. Neural Computation 10, 1299–1319 (1998)
48. Shawe-Taylor, J., Williams, C., Cristianini, N., Kandola, J.: On the eigenspectrum of the

Gram matrix and the generalisation error of kernel PCA. IEEE Trans. Info. Th. 51(7),
2510–2522 (2005)



98 S.P. Awate, Y.-Y. Yu, and R.T. Whitaker

49. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach.
Intell. 22(8), 888–905 (2000)

50. Sommer, S., Lauze, F., Hauberg, S., Nielsen, M.: Manifold valued statistics, exact principal
geodesic analysis and the effect of linear approximations. In: Daniilidis, K., Maragos, P.,
Paragios, N. (eds.) ECCV 2010, Part VI. LNCS, vol. 6316, pp. 43–56. Springer, Heidelberg
(2010)

51. Tenenbaum, J.B., De Silva, V., Langford, J.C.: A global geometric framework for nonlinear
dimensionality reduction. Science 290(5500), 2319–2323 (2000)

52. Walder, C., Schölkopf, B.: Diffeomorphic dimensionality reduction. In: Int. Conf. Neural
Info. Prof. Sys., pp. 1713–1720 (2008)

53. Wang, J., Lee, J., Zhang, C.: Kernel trick embedded Gaussian mixture model. In: Gavaldá,
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Abstract. We propose a family of attributed graph kernels based on mutual in-
formation measures, i.e., the Jensen-Tsallis (JT) q-differences (for q ∈ [1, 2])
between probability distributions over the graphs. To this end, we first assign a
probability to each vertex of the graph through a continuous-time quantum walk
(CTQW). We then adopt the tree-index approach [1] to strengthen the original
vertex labels, and we show how the CTQW can induce a probability distribution
over these strengthened labels. We show that our JT kernel (for q = 1) over-
comes the shortcoming of discarding non-isomorphic substructures arising in the
R-convolution kernels. Moreover, we prove that the proposed JT kernels gener-
alize the Jensen-Shannon graph kernel [2] (for q = 1) and the classical subtree
kernel [3] (for q = 2), respectively. Experimental evaluations demonstrate the
effectiveness and efficiency of the JT kernels.

Keywords: Graph kernels, tree-index method, continuous-time quantum walk,
Jensen-Tsallis q-differences.

1 Introduction

There has recently been an increasing interest in evolving graph kernels into kernel
machines (e.g., a Support Vector Machine) for graph classification [4, 5]. A graph ker-
nel is usually defined in terms of a similarity measure between graphs. Most of the
recently introduced graph kernels are in fact instances of the generic R-convolution
kernel proposed by Haussler [6]. For a pair of graphsG1(V1, E1) and G2(V2, E2), sup-
pose {S1;1, . . . ,S1;n1 , . . . ,S1;N1} and {S2;1, . . . ,S2;n2 , . . . ,Sq;N2} are the sets of the
substructures of G1 and G2 respectively. An R-convolution kernel kR between G1 and
G2 can be defined as

kR(G1, G2) =

N1∑
n1=1

N2∑
y=1

δ(S1;n1 ,S2;n2), (1)
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(a) Graph G1 (b) Graph G2 (c) Graph G3

Fig. 1. Example Graphs

where we have that

δ(S1;n1 ,S2;n2) =

{
1 if S1;n1 � S2;n2 ,
0 otherwise,

(2)

δ is the Dirac kernel, i.e., it is 1 if the arguments are equal and 0 otherwise, and S1;n1 �
S2;n2 indicates that S1;n1 is isomorphic to S2;n2 . kR is a positive definite kernel.

The existing R-convolution graph kernels can be categorized into three classes,
namely the graph kernels based on comparing all pairs of a) walks (e.g., the random
walk kernel [7]), b) paths (e.g., the shortest path kernel [8]), and c) restricted subgraph
or subtree structures (e.g., the subtree or subgraph kernel [9–11]). Unfortunately, there
are two main problems arising in the R-convolution kernels. First, Eq.(1) indicates that
the R-convolution kernels only enumerate the pairs of isomorphic substructures. As a
result, the substructures which are not isomorphic are discarded. For instance, for the
three graphs shown in Fig.1 (a), (b) and (c), the pair of graphs G1 and G3 and the pair
of graphsG2 and G3 both share three same pairs of isomorphic substructures (i.e., pair-
wise vertices connected by an edge). The R-convolution kernels only count the number
of pairs of isomorphic substructures. As a result, the kernel value for G1 and G3 is
the same as that for G2 and G3, though the graphs G1 and G2 are structurally differ-
ent. Second, Eq.(2) indicates that the R-convolution kernels simply record whether two
substructures are isomorphic. As a result, the kernels do not reflect any other potential
information between these substructures. These drawbacks clearly limit the accuracy of
the similarity measure (i.e., the kernel value) between a pair of graphs.

Recently, Bai and Hancock [2] have developed an alternative kernel, namely the
Jensen-Shannon (JS) graph kernel, by measuring the Jensen-Shannon divergence (JSD)
for a pair of graphs. The JSD is a dissimilarity measure between probability distribu-
tions in terms of the nonextensive entropy difference associated with them. The JSD
between a pair of graphs is defined in terms of the difference between the entropy of a
composite graph and the entropies of the individual graphs. Unlike the R-convolution
kernels, the entropy associated with a probability distribution of an individual graph
can be computed without decomposing the graph. As a result, the computation of the
JS graph kernel avoids the burdensome computation of comparing all the substructure
pairs. Unfortunately, the JS graph kernel only captures the global similarity between a
pair of graphs, and thus lacks information on the interior topology of the graphs. More-
over, the required composite entropy is computed from a composite structure which
does not reflect the correspondence information between the original graphs. Finally,
this kernel is restricted to non-attributed graphs. As a summary of the existing kernels
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(i.e., the R-convolution and JS graph kernels), it is fair to say that developing efficient
and effective graph kernels still remains an open challenge.

To overcome the shortcomings of existing graph kernels, we aim to propose novel
kernels for attributed graphs where we make use of the JT q-differences. In information
theory, the JT q-difference [12] is a nonextensive measure between probability distri-
butions over structure data. Moreover, the JT q-differences generalize the Hadamard-
Schur (element wise) product (for q = 0), the classical Jensen-Shannon divergence
(JSD) (for q = 1), and the inner product (for q = 2). To compute the JT q-differences
between attributed graphs, we commence by performing a CTQW on each graph to
assign each vertex a time-averaged probability. The reasons for using the CTQW are
twofold (see details in Sec. 2.2). First, the CTQW reduces the tottering effect arising
in classical random walks [13]. Second, the CTQW offers us a richer structure than the
classical random walk. We then apply the tree-index (TI) method [1] on each graph
to strengthen the vertex labels. At each iteration h, we compute the probability of a
strengthened label by summing the probabilities of the vertices having the same label,
and then obtain a probability distribution for each graph. With the probability distri-
butions for a pair of attributed graphs to hand, the JT kernels between the graphs are
computed in terms of the JT q-differences. As a result, our kernels reflect the similarity
between the probability distributions over the global graphs, while also capturing the
local correspondence information between the substructures.

Note that, in this paper, we only consider q = 1 or 2 for the JT q-differences. The
reasons for this are twofold. First, we show that our JT kernel (for q = 1) not only
generalizes the JS graph kernel [2], but it also overcomes the shortcomings of the JS
graph kernel. We also show that the JT kernel overcomes the shortcoming of discarding
non-isomorphic substructures that arises in R-convolution kernels. Finally, we show
that our JT kernel (for q = 2) generalizes the R-convolution kernels based on subtrees.
The remainder of this paper is organized as follows: Section 2 reviews the TI method
and the CTQW, Section 3 gives the definition of our new kernels, Section 4 provides
experimental evaluation and Section 5 concludes the work.

2 Preliminary Concepts

In this section, we review some preliminary concepts which will be used in this work.
We commence by introducing a TI method for strengthening the vertex label. Finally,
we show how to assign a probability to a vertex of a graph by performing the CTQW.

2.1 A TI Method for Strengthening Vertex Labels

In this subsection, we introduce the TI method of Dahm et al. [1] for strengthening the
vertex label of a graph. Given an attributed graph G(V,E), let the label of a vertex
v ∈ V be denoted as f(v). Using the TI method, the new strengthened label for v at the
iteration h is defined as

TIh(v) =

{
f(v) if h = 0,

∪u{TIh−1(u)} otherwise,
(3)



102 L. Bai et al.

where u ∈ V is adjacent to v. At each iteration h, the TI method takes the union
of neighbouring vertex label lists from the last iteration as a new label list for v (the
initial step is identical to listing). This creates an iteratively deeper list corresponding
to a subtree rooted at v of height h. An example of how the TI method defined in
Eq.(3) strengthens the vertex label is shown in Fig.2. In this example, the initialized
vertex labels for vertices A to E are their corresponding vertex degrees, i.e., 1, 2, 3,
2 and 2 respectively. Using the TI method, the second iteration indicates the strength-
ened labels for vertices A to E as {{1, 3}}, {{2}, {2, 2, 2}}, {{1, 3}, {2, 3}, {2, 3}}
,{{2, 2, 2}, {2, 3}}, and {{2, 2, 2}, {2, 3}} respectively.

Unfortunately, Fig.2 indicates that the above procedure clearly leads to a rapid ex-
plosion of the labels length. Moreover, strengthening a vertex label by only taking the
union of the neighbouring label lists also ignores the original label information of the
vertex. To overcome these problems, at each iteration h we propose to strengthen the
label of a vertex as a new label list by taking the union of both the original vertex label
and its neighbouring vertex labels. We use a Hash function to compress the strength-
ened label list into a new short label. The pseudocode of the re-defined TI algorithm
is shown in Algorithm 1, where the neighbourhood of a vertex v ∈ V is denoted as
N (v) = {u|(v, u) ∈ E}.

Algorithm 1. Vertex labels strengthening procedure

1: Initialization.

– Input an attributed graph G(V,E).
– Set h=0. For a vertex v ∈ V , assign the original label f(v) as the initial label Lh(v).

2: Update the label for each vertex.

– Set h=h+1. For each vertex v ∈ G, assign it a new strengthened label list as

Lh(v) = ∪u∈N (v){Lh−1(u),Lh−1(v)}. (4)

Note that, Lh−1(v) is at the end of the label list Lh(v), and Lh−1(u) is arranged as
ascending order.

3: For each vertex, compress its strengthened label list into a new short label.

– Using the Hash function H : L → Σ, compress the label list Lh(v) into a new short label
for each vertex v as

Lh(v) = H(Lh(v)). (5)

4: Check h.

– Check h. Repeat steps 2, 3 and 4 until the iteration h achieves an expected value.

Note that, in step 4 we use the same function H for any graph. This guarantees that
all the identical labels of different graphs are mapped into the same number.
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Fig. 2. Example of strengthened labels

2.2 Vertex Probabilities from The CTQW

In this subsection, we show how to assign a probability to a vertex of a graph by per-
forming a CTQW. The CTQW is the quantum analogue of the classical continuous-time
random walk (CTRW) [14]. Similarly to the CTRW, the state space of the CTQW is the
vertex set V of a graph G(V,E). However, unlike the CTRW, where the state vector
is real-valued and the evolution is governed by a doubly stochastic matrix, the state
vector of the CTQW is complex-valued and its evolution is governed by a time-varying
unitary matrix. Hence the evolution of the CTQW is reversible, which implies that the
CTQW is non-ergodic and does not possess a limiting distribution. As a result, the
CTQW possesses a number of interesting properties not exhibited in the CTRW. One
notable consequence of this is that the problem of tottering of the CTRW is naturally
reduced [13]. Furthermore, the quantum walk has been shown to successfully capture
the topological information in a graph structure [15–18]. Note also that, contrary to the
CTRW and its non-backtracking counterparts [19–21], the CTQW is not dominated by
the low frequency of the Laplacian spectrum, and thus is potentially able to discriminate
better among different graph structures.

Using the Dirac notation, we define the basis state corresponding to the CTQW being
at a vertex u ∈ V as |u〉, where |.〉 denotes an orthonormal vector in a n-dimensional
complex-valued Hilbert space H. A general state of the CTQW is a complex linear
combination of the basis states |u〉, i.e., an amplitude vector, such that the state of the
CTQW at time t is

|ψt〉 =
∑
u∈V

αu(t) |u〉 , (6)

where the amplitudes αu(t) ∈ C. The probability of the CTQW visiting a vertex u ∈ V
at time t is

Pr(Xt = u) = αu(t)α
∗
u(t), (7)

where α∗
u(t) is the complex conjugate of αu(t). For all u ∈ V , t ∈ R+, we have∑

u∈V αu(t)α
∗
u(t) = 1 and αu(t)α

∗
u(t) ∈ [0, 1]. Note that there is no restriction on the

sign or phase of the amplitudes and this allows destructive and constructive interference
to take place during the evolution of the walk. These interference patterns are responsi-
ble for the faster hitting times [13] and the ability of the CTQW to capture the presence
of particular structural patterns in the graph [16]. Note also that when the quantum
walk backtracks on an edge it does so with opposite phase, thus creating destructive
inter fence which reduces the problem of tottering of classical random walks [13].
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Let A be the adjacency matrix of G, then the degree matrix D is a diagonal ma-
trix whose elements are given by D(u, u) = du =

∑
v∈V A(u, v), where du is the

degree of u. We compute the Laplacian matrix as L = D − A. The spectral decom-
position L = Φ�ΛΦ of the Laplacian matrix L is given by the diagonal matrix Λ =
diag(λ1, λ2, ..., λ|V |) with the ordered eigenvalues as elements (λ1 < λ2 < ... < λ|V |)
and the matrixΦ = (φ1|φ2|...|φ|V |) with the corresponding ordered orthonormal eigen-
vectors as columns.

Given an initial state |ψ0〉, the Schrödinger equation gives us the state of the walk at
time t, i.e.,

|ψt〉 = Φ�e−iΛtΦ |ψ0〉 . (8)

In this work we propose to let the initial amplitude be proportional to D(u, u), i.e.,

αu(0) =
√
D(u, u)/

∑
D(u, u). (9)

Note that, on the other hand, choosing a uniform distribution over the vertices of G
would result in the system remaining stationary, as the initial state vector would be an
eigenvector of the Laplacian and thus a stationary state of the walk.

In quantum mechanics, a state |ψt〉 is called a pure state. In general, however, we deal
with mixed states, i.e., a statistical ensemble of pure states |ψt〉, each with probability
pt. The density matrix associated with such a system is defined as ρ =

∑
t pt |ψt〉 〈ψt|,

where |ψt〉 〈ψt| denotes the outer product between |ψt〉 and its conjugate transpose. Let
|ψt〉 be the state corresponding to the CTQW that has evolved from |ψ0〉 defined as in
Eq.(9) until a time t. Using Eq.(8), we can define the time-averaged density matrix (i.e.,
mixed density matrix) ρTG for G as

ρTG =
1

T

∫ T

0

Φ�e−iΛtΦ |ψ0〉 〈ψ0|Φ�eiΛtΦdt. (10)

Let φra and φcb denote the (ra)-th and (cb)-th elements of the matrix of eigenvectors
Φ of the Laplacian matrix L. When we let T → ∞, Rossi et al. [16] have shown that
the (r, c)-th element of ρ∞G can be computed as

ρ∞G (r, c) =
∑
λ∈Λ̃

∑
a∈Bλ

∑
b∈Bλ

φraφcbψ̄aψ̄b, (11)

where Λ̃ is the set of distinct eigenvalues of the Laplacian matrix L, and Bλ is a basis
of the eigenspace associated with λ. Eq.(11) indicates that the mixed density matrix
ρTG relies on computing the eigendecomposition of G, and thus has time complexity
O(|V |3).

The mixed density matrix ρ∞G is a |V | × |V | matrix. Note that, for a graph G, the
time-averaged probability of the CTQW to visit a vertex v ∈ V at time T →∞ is

pQ(v) = ρ∞G (v, v). (12)

Interestingly, despite the non-stationary behaviour of the CTQW, we have that as T →
∞ the time-averaged probability converges. Also, Eq.(8) indicates that the evolution of
the CTQW relies on the spectral decomposition of the graph Laplacian, which in turn
encapsulates rich interior graph information. Thus, the probability pQ(v) reflects the
interior topology information of the graph.
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3 Graph Kernels from JT q-differences

In this section, we define a family of novel graph kernels from JT q-differences (for
q = 1 and 2). The JT q-difference is a dissimilarity measure between probability dis-
tributions [12]. Consider the graphs Gy(Vy , Ey) where y ∈ Y = {1, 2} and x ∈ X =
{l1, . . . , l|X|} is the label of a vertex vy ∈ Vy . X is a label set which contains any pos-
sible vertex label. Let Py = {py1, . . . , py|X|}, where pyx = P (X = x|Y = y) is the
probability distribution over vertex labels of Gy . πy ∈ π = {π1, π2} is the weight as-
sociated with Py , such that πy ≥ 0 and

∑
y∈Y πy = 1. P (X |Y ) is the joint probability

distribution for the two variables X and Y . PX and PY are two probability distribu-
tions over x ∈ X and y ∈ Y respectively. We define the JT q-differences (for q={1,2})
between the probability distributions P1 and P2 (i.e., Py=1 and Py=2) as

JT π
q (P1,P2) = Sq(X)−

∫
y∈Y

πq
ySq(X |Y ) = Sq(X)− Sq(X |Y ), (13)

where Sq(.) is the Tsallis entropy [22] and

Sq(X) =
k

q − 1
(1−

∑
x∈X

2PX(x)q), (14)

and

Sq(X |Y ) = Sq(X) + Sq(Y )− (q − 1)Sq(X)Sq(Y ). (15)

By letting k = 1 [12], Eq.(14) can be simplified as

Sq(X) = −
∑
x∈X

PX(x)q lnq PX(x), (16)

where lnq(PX(x)) = (PX(x)(1−q)− 1)/(1− q) is the q-logarithm function introduced
by Tsallis [22]. Let π1 = π2 = 1/2. We define the JT q-difference for the pair of graphs
G1 and G2 by re-writing Eq.(13) as

JTq(G1, G2) = JT 1/2,1/2
q (P1,P2) = Sq(

P1 +P2

2
)− Sq(P1) + Sq(P2)

2q
. (17)

Note that Furuichi [23] has defined the Tsallis MI as Iq(X ;Y ) = Sq(X)−Sq(X |Y )
= Iq(Y ;X), which is a nonextensive measure. Thus, for the graphs G1 and G2, the JT
q-difference JTq(G1, G2) not only reflects the dissimilarity between their probabil-
ity distributions P1 and P2, but also measures the MI (i.e., the mutual dependence)
between the graphs and their probability distributions. In other words, JTq(G1, G2)
reflects the dissimilarity over the global graphs. By contrast, the R-convolution kernels
measure the (dis)similarity in terms of the substructures.

3.1 The JT Graph Kernel

In this subsection, we define a family of JT graph kernels using the JT q-difference (for
q = 1 and 2). For a graphG(V,E), we commence by performing a CTQW (for T =∞)
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on G, and we associate with each vertex v ∈ V the time-averaged probability pQ(v). At
each iteration h, we strengthen the vertex labels using Algorithm 1. The probability of
the label x ∈ X for G at iteration h is phx =

∑
v∈V pQ(v), where each vertex v satisfies

Lh(v) = x. We thus obtain a probability distribution over the vertex labels of G as
Ph = {ph1 , . . . , ph|X|}. For a pair of graphs G1(V1, E1) and G2(V2, E2), we compute

the probability distributions Ph
1 = {ph11, . . . , ph1|X|} and Ph

2 = {ph21, . . . , ph2|X|} over
the vertex labels through the CTQW. Based on Eq.(17), the JT q-difference for G1 and
G2 at iteration h is defined as

JT h
q (G1, G2) = JT 1/2,1/2

q (Ph
1 ,P

h
2). (18)

Definition (Jensen-Tsallis Graph Kernel). The kernel k(q,H)
JT : G1 ×G2 −→ R+ for

the graphs G1 and G2 is

k
(q,H)
JT (G1, G2) =

H∑
h=0

exp{−λJT h
q (G1, G2)} =

H∑
h=0

exp{−λJT 1/2,1/2
q (Ph

1 ,P
h
2)},

(19)

where H is the largest number of TI iterations, q = 1 or 2, and 0 < λ ≤ 1 is a decay
factor. Here, λ is used to ensure that the large value dose not tend to dominate the kernel
value. Based on our experimental evaluation, the different values of λ do not influence
the performance of our JT kernels. Thus, in this work we decide to set λ to 1. �

Lemma. The JT graph kernel is positive definite (pd).
Proof. This follows the definition in [24]. In fact, if a similarity or dissimilarity measure
sG(G1, G2) between a pair of graphsG1 and G2 is symmetrical, then a diffusion kernel
ks = exp(λsG(G1, G2)) or ks = exp(−λsG(G1, G2)) associated with the similarity

or dissimilarity measure sG(G1, G2) is pd. As a result, the JT kernel k(q,H)
JT is the sum

of several pd kernels in terms of the exponentiated JT q-difference, and is also pd. �

Reisen and Bunke [24] observed that in a diffusion kernel the exponentiation en-
hances the (dis)similarity between the graphs. Thus, the kernel k(q,H)

JT enhances the
similarity measure between the graphs.

3.2 Relation to State of the Art Graph Kernels

Proposition 1. When q = 2, the JT graph kernel generalizes the R-convolution kernels
based on subtrees. �

Proof. We verify this proposition by revealing the relationship between the JT kernel
and the classical subtree kernel [3]. For a graphG(V,E), the strengthened label Lh(v),
which is defined in Eq.(5), corresponds to a subtree of height h rooted at a vertex v ∈ V .
For a pair of graphs G1(V1, E1) and G2(V2, E2), let v1 ∈ V1 and v2 ∈ V2 denote a
pair of vertices. If Lh(v1) = Lh(v2), the subtrees of height h rooted at v1 and v2 are
isomorphic. Thus, a subtree kernel kHst for G1 and G2 can be defined as

kHst (G1, G2) =

H∑
h=0

khst(G1, G2) =

H∑
h=0

∑
v1∈V1

∑
v2∈V2

δ{Lh(v1),Lh(v2)}, (20)
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where H is the largest iteration h for Algorithm 1. δ is a Dirac kernel, that is, it is 1
when its arguments are equal and 0 otherwise. Clearly, the subtree kernel kHst counts
the number of all the pairwise isomorphic subtrees identified by the TI method. khst is a
base subtree kernel counting the number of pairwise isomorphic subtrees of height h.

As a result, the base subtree kernel khst can be defined by an inner product 〈·, ·〉,
i.e., a linear kernel. For the graph G, let nh(x) denote the number of vertices hav-
ing the same label x ∈ X at iteration h. Thus G can be represented by the feature
vector FV h = {nh(l1), . . . , n

h(l|X|)}�. Given FV h
1 = {nh

1(l1), . . . , n
h
1(l|X|)}� and

FV h
2 = {nh

2(l1), . . . , n
h
2(l|X|)}�, the kernel khst between G1 and G2 at iteration h can

be defined as

khst(G1, G2) = 〈FV h
1 , FV

h
2 〉. (21)

Martin et al. [12] have observed that the JT q-difference is related to the inner prod-
uct when q = 2, i.e., JT 1/2,1/2

2 (Ph
1 ,P

h
2) = 1/2 − 1/2〈Ph

1 ,P
h
2〉. Simply, we have

JT
1/2,1/2
2 (Ph

1 ,P
h
2) = −〈Ph

1 ,P
h
2〉. As a result, the JT kernel k(2,H)

JT (λ = 1) can be
re-written as

k
(2,H)
JT (G1, G2) =

H∑
h=0

exp{〈Ph
1 ,P

h
2〉}, (22)

For a graph G, the probability of a label x ∈ X at the iteration h is phx =
∑

v∈V pQ(v),
where each vertex v satisfies Lh(v) = x and pQ(v) is the time-averaged probability of a
CTQW visiting v. Given G and its associated feature vector FV h with elements nh(x),
if we compute the probability of a label x instead of computing the frequency nh(x) of
x (i.e., we compute the probability for a class of isomorphic subtrees which correspond
to the label x, instead of computing the number of these subtrees), we re-write FV h as
FV h

p = Ph. For the graphs G1 and G2, we thus have

k
(2,H)
JT (G1, G2) =

H∑
h=0

exp{〈FV h
p1, FV

h
p2〉} =

H∑
h=0

exp{khst(G1, G2)}. (23)

As a result, the kernel k(2;H)
JT can be seen as a generalization of the subtree kernel kHst

where we assign a probability to each class of isomorphic subtrees and then exponenti-
ate the base subtree kernel khst at each iteration h. �

Discussions. Prop. 1 and its proof make two interesting observations on the JT kernel
k
(2,H)
JT . First, for each pair of graphs the kernel k(2,H)

JT computes the probability of a
vertex label by summing the probabilities of the vertices having the same label. The
probabilities of these vertices are computed by means of a CTQW, whose propagation
depends on the interior connections of the graph and thus reflects its interior topology
information. For a pair of graphs, the kernel measures the similarity between their pair-
wise probabilities in terms of matching labels, where the labels correspond to classes
of isomorphic subtrees in the graphs. The kernel thus reflects more information among
these subtrees rather than only the isomorphism. Second, the k(2,H)

JT exponentiates the
base subtree kernel khst (i.e., the similarity measure between pairwise subtrees of height
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h). Thus, the kernel k(2,H)
JT enhances the similarity measure between the graphs by ex-

ponentiating the kernel khst.
Unfortunately, the JT kernel k(2,H)

JT also suffers from the drawback of discarding non-
isomorphic subtrees arising in the subtree kernel. This can be observed from Eq.(23).
For a pair of graphs, if a class of isomorphic subtrees are only contained in one graph,
the probability for a label corresponding to these subtrees in the other graph is 0. As a
result, Eq.(23) cannot reflect the similarity between pairwise probabilities of the labels
for the graphs. Below, we will show how the kernel k(1,H)

JT solves this problem.
Proposition 2. When q = 1, the JT graph kernel generalizes the JS graph kernel. �

Proof. We verify the proposition by revealing the relationship between the JT kernel and
the JS graph kernel [2]. For a graph G(V,E) and its degree matrix D, the probability
of a classical steady state random walk (CSSRW) visiting a vertex v ∈ V is

pv =
D(v, v)∑
v D(v, v)

=

∑
u∈V A(u, v)∑

u∈V

∑
v∈V A(u, v)

. (24)

Thus, we can associate to the vertices of G the distribution Pc = {pc1, . . . , pc|V |}. For
a pair of graphs G1(V1, E1) and G2(V2, E2), we compute the probability distributions
Pc

1 = {pc11, . . . , pc1|V |} and Pc = {pc21, . . . , pc2|V |} associated with the CSSRW. The
JS graph kernel for G1 and G2 is defined as

kJS(G1, G2) = log 2−DJS(P
c
1,P

c
2), (25)

where DJS(G1, G2) is the JSD and is defined as

DJS(P
c
1,P

c
2) = HS(P

c
U)− HS(P

c
1) +HS(P

c
2)

2
. (26)

Here,HS(P
c
1) is a Shannon entropy associated with the probability distribution Pc

1 and
is defined as

HS(P
c
1) = −

∑
v∈V

pc1v log p
c
1v. (27)

Moreover, HS(P
c
U) is the Shannon entropy of the probability distribution from an

union graph of G1 and G2 (i.e., the composite graph of G1 and G2). The union graph
can be either a product graph or a disjoint union graph of G1 and G2 [2, 25].

For the JT kernel k(1,H)
JT , Martin et al. [12] have observed that the JT q-difference is

related to the JSD when q = 1, i.e.,JT 1/2,1/2
1 (Ph

1 ,P
h
2) = DJS(P

h
1 ,P

h
2), where

DJS = HS(
Ph

1 +Ph
2

2
)− HS(P

h
1) +HS(P

h
2)

2
. (28)

Thus, the JT kernel k(1,H)
JT (λ = 1) can be re-written as

k
(1,H)
JT (G1, G2) =

H∑
h=0

exp{−DJS(P
h
1 ,P

h
2)}

=
H∑

h=0

exp{HS(P
h
1) +HS(P

h
2)−HS(

Ph
1 +Ph

2

2
)}. (29)
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Here, HS(
Ph

1+Ph
2

2 ) is the Shannon entropy of the composite probability distribution
Ph

1+Ph
2

2 , and is defined as

HS(
Ph

1 +Ph
2

2
) = −

|X|∑
x=1

ph1x + ph2x
2

log
ph1x + ph2x

2
. (30)

As a result, the JT kernel k(1,H)
JT and the JS graph kernel kJS are both related to

the JSD. Through Eq.(25), Eq.(26) and Eq.(29), we observe that the kernel k(1,H)
JT gen-

eralizes the kernel kJS by three computational steps, i.e., a) assigning each vertex a
probability using the CTQW instead of using the CSSRW, b) computing the proba-
bility distribution over the vertex labels at each iteration h instead of computing the
probability distribution associated with the CSSRW, and c) computing the composite

Shannon entropy using the composite probability distribution Ph
1+Ph

2

2 instead of using

the probability distribution Pc
U from the union graph. Moreover, the JT kernel k(1,H)

JT

also exponentiates the JSD measure for graphs at each iteration h. �

Discussions. Compared to the JS graph kernel kJS , Prop. 2 and its proof reveal four ad-
vantages for the JT kernel k(1,H)

JT . First, from Eq.(30) we observe that there is correspon-
dence between pairwise discrete probabilities ph1x and ph2x through the same label x. As
a result, the kernel k(1,H)

JT overcomes the shortcoming of lacking correspondence infor-
mation between pairwise discrete probabilities that arises in the JS graph kernel kJS .
Second, since a pair of identical strengthened labels for a pair of vertices correspond
to a pair of isomorphic subtrees rooted at the vertices. The kernel k(1,H)

JT encapsulates
correspondence information between pairwise isomorphic substructures. By contrast,
the JS graph kernel kJS does not reflect substructure correspondence. Third, the ker-
nel k(1,H)

JT overcomes the restriction on non-attributed graphs for the JS graph kernel

kJS . Fourth, similar to the kernel k(2,H)
JT , the kernel k(1,H)

JT also enhances the similarity
measure for graphs by exponentiating the JSD (i.e.,the dissimilarity measure between
graphs). Furthermore, the evolution of the CTQW relies on the topology information
of graphs. Thus, the kernel k(1,H)

JT also reflects rich interior topology information of
graphs, relying on the CTQW. By contrast, the probability distribution associated with
the CSSRW (i.e., the vertex degree distribution) only reflects limited topology infor-
mation, because the vertex degree of a graph is structurally simple and reflects limited
topology information.

Note finally that, through Eq.(29) and Eq.(30) we also observe that all the probabili-
ties of the different labels are used to compute the entropies. We have known that each
label corresponds to a subtree. All the strengthened labels of a graph will be used to
compute the Shannon entropy. As a result, unlike existing R-convolution kernels which
count the number of pairwise isomorphic substructures, the kernel k(1,H)

JT incorporates

all the identified subtrees into the computation. The kernel k(1,H)
JT thus overcomes the

shortcoming of discarding non-isomorphic substructures. In other words, the JT kernel
k
(1,H)
JT may distinguish different classes of graphs better than the R-convolution kernels.



110 L. Bai et al.

3.3 Computational Analysis

For N graphs (each graph has n vertices) and their label set X , computing the N ×N

kernel matrix using the JT kernels k(1,H)
JT and k(2,H)

JT requires time complexityO(HN2

n2 +HN3n+Nn3) and O(HN2n2 +Nn3), respectively. The reasons are explained

as follows. a) For both of the kernels k(1,H)
JT and k

(2,H)
JT , computing the compressed

strengthened labels for a graph at each iteration h (0 ≤ h ≤ H) needs to visit all the n2

entries of the adjacency matrix, and thus requires time complexity O(Hn2) for all the

H iterations. b) For both of the kernels k(1,H)
JT and k(2,H)

JT , computing the probabilities
for all the vertices of a graph using the CTQW requires time complexityO(n3), because
the CTQW relies on the eigen-decomposition of the graph Laplacian. Computing the
probability distribution for a graph requires time complexity O(HNn2) (for the worst
case, i.e., each vertex label for the N graphs at all the H iterations are all different
and there thus are NHn different labels in X), because it needs to visit all the HNn

entries in X for the n vertices. c) For the kernel k(1,H)
JT , computing the N × N kernel

matrix requires time complexity O(HN3n), because the Tsallis entropy Sq(.) for each
pair of graphs requires time complexity O(HNn). On the other hand, for the kernel

k
(2,H)
JT , computing the N × N kernel matrix only requires time complexity O(HN2),

because Eqs.(22) and (23) indicate that k(2,H)
JT can directly compute the kernel value

for a pair of graphs by computing the inner product of their probability distributions.
In other words, k(2,H)

JT does not need to compute the Tsallis entropy for each pair of

graphs. As a result, the complete time complexities for the JT kernels k(1,H)
JT and k(2,H)

JT

are O(HN2n2 +HN3n+Nn3) and O(HN2n2 +Nn3), respectively.

4 Experimental Results

In this section, we empirically evaluate the performance of our JT kernels on standard
attributed graphs from bioinformatics. Furthermore, we also compare our new kernels
with several state of the art graph kernels.

Table 1. Information of the Graph-based Datasets

Datasets MUTAG NCI1 NCI109 ENZYMES PPIs PTC(MR)

Max # vertices 28 111 111 126 238 109

Min # vertices 10 3 4 2 3 2

Mean # vertices 17.93 29.87 29.68 32.63 109.63 25.60

# graphs 188 4110 4127 600 219 344

# classes 2 2 2 6 5 2

4.1 Graph Datasets

We evaluate our kernels on standard graph datasets. These datasets include: MUTAG,
NCI1, NCI109, ENZYMES, PPIs and PTC(MR). More details are shown in Table.1.
MUTAG: The MUTAG dataset consists of graphs representing 188 chemical com-
pounds, and aims to predict whether each compound possesses mutagenicity.
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NCI1 and NCI109: The NCI1 and NCI109 datasets consist of graphs representing two
balanced subsets of datasets of chemical compounds screened for activity against non-
small cell lung cancer and ovarian cancer cell lines respectively. There are 4110 and
4127 graphs in NCI1 and NCI109 respectively.
ENZYMES: The ENZYMES dataset consists of graphs representing protein tertiary
structures consisting of 600 enzymes from the BRENDA enzyme. The task is to cor-
rectly assign each enzyme to one of the 6 EC top-level.
PPIs: The PPIs dataset consists of protein-protein interaction networks (PPIs). The
graphs describe the interaction relationships between histidine kinase in different
species of bacteria. Histidine kinase is a key protein in the development of signal trans-
duction. If two proteins have direct (physical) or indirect (functional) association, they
are connected by an edge. There are 219 PPIs in this dataset and they are collected
from 5 different kinds of bacteria (i.e., a) Aquifex4 and thermotoga4 PPIs from Aquifex
aelicus and Thermotoga maritima, b) Gram-Positive52 PPIs from Staphylococcus au-
reus, c) Cyanobacteria73 PPIs from Anabaena variabilis, d) Proteobacteria40 PPIs
from Acidovorax avenae, and e) Acidobacteria46 PPIs). Note that, unlike the experi-
ment in [26] that only uses the Proteobacteria40 and the Acidobacteria46 PPIs as the
testing graphs, we use all the PPIs as the testing graphs in this paper. As a result, the
experimental results for some kernels are different on the PPIs dataset.
PTC: The PTC (The Predictive Toxicology Challenge) dataset records the carcino-
genicity of several hundred chemical compounds for Male Rats (MR), Female Rats
(FR), Male Mice (MM) and Female Mice (FM). These graphs are very small (i.e.,20−
30 vertices, and 25− 40 edges) and sparse. We select the graphs of MR for evaluation.

4.2 Experiments on Graph Classification

We evaluate the performance of our JT kernels k(q,H)
JT for q = 1 (JT1) and q = 2 (JT2).

Moreover, we also compare our kernels with several alternative state of the art graph
kernels. These graph kernels for comparison include: 1) the Jensen-Shannon graph ker-
nel (JSGK) associated with the CSSRW [2], 2) the unaligned and aligned quantum
Jensen-Shannon kernels (QJSK and QJSKA) [26], 3) the Weisfeiler-Lehman subtree
kernel (WLSK) [9], 4) the shortest path graph kernel (SPGK) [8], 5) the graphlet count
graph kernel with graphlet of size 3 (GCGK3) [11], 6) the backtrackeless random walk
kernel using the Ihara zeta function based cycles (BRWK) [19], 7) the random walk
graph kernel (RWGK) [3].

For each kernel, we compute the kernel matrix on each graph dataset. We perform
10-fold cross-validation using the C-Support Vector Machine (C-SVM) Classification
to compute the classification accuracies, using LIBSVM. We use nine samples for train-
ing and one for testing. All the C-SVMs were performed along with their parameters
optimized on each dataset. We report the average classification accuracies (± standard
error) and the runtime for each kernel in Table 2. The runtime is measured under Mat-
lab R2011a running on a 2.5GHz Intel 2-Core processor (i.e. i5-3210m). Note that, both
our JT kernel and the WLSK kernel are related to a TI method. In this work, we set the
parameter H (i.e., the maximum number of TI iteration) to 10, i.e., we vary h from 1
to 10 for both our kernel and the WLSK kernel. The reasons of setting H = 10 are
twofold. First, for most of the datasets, the strengthened vertex labels of the graphs tend



112 L. Bai et al.

to be all different after h = 10. In other words, after h = 10, there are nearly no isomor-
phic subtrees, i.e., we achieve maximum discrimination. Second, in our experiments we
observe that the classification performance tends to be more stable after h = 10. As a
result, for each dataset we compute 10 different kernel matrices for both our kernel and
the WLSK kernel. The classification accuracy is then the average accuracy over the 10
kernel matrices. Note that, the experimental results (for the WLSK kernel) on some
datasets are different from those in [27], since the authors of [27] set H = 3. Finally,
recall that our JT kernel, and the WLSK and SPGK kernels are all able to handle at-
tributed graphs. However, the graphs in the PPIs dataset are unattributed graphs, thus
we decided to use the vertex degree as a vertex label.

Table 2. Classification Accuracy (In % ± Standard Error) and Runtime for Various Kernels

Datasets MUTAG NCI1 NCI109 ENZYMES PPIs PTC(MR)

JT1 85.10 ± 0.64 86.35 ± 0.12 87.00 ± 0.15 57.41 ± 0.53 87.28 ± 0.61 60.16 ± 0.50
JT2 85.50 ± 0.55 85.32 ± 0.14 85.79 ± 0.13 56.41 ± 0.42 88.47 ± 0.47 58.50 ± 0.39

JSGK 83.11 ± 0.80 62.50 ± 0.33 63.00 ± 0.35 20.81 ± 0.29 34.57 ± 0.54 57.29 ± 0.41
QJSK 82.72 ± 0.44 69.09 ± 0.20 70.17 ± 0.23 36.58 ± 0.46 65.61 ± 0.77 56.70 ± 0.49

QJSKA 82.83 ± 0.50 − − 24.31 ± 0.27 61.09 ± 0.98 57.39 ± 0.46
WLSK 82.88 ± 0.57 84.77 ± 0.13 84.49 ± 0.13 52.75 ± 0.44 88.09 ± 0.41 58.26 ± 0.47
SPGK 83.38 ± 0.81 74.21 ± 0.30 73.89 ± 0.28 41.30 ± 0.68 59.04 ± 0.44 55.52 ± 0.46

GCGK3 82.04 ± 0.39 63.72 ± 0.12 62.33 ± 0.13 24.87 ± 0.22 46.61 ± 0.47 55.41 ± 0.59
BRWK 77.50 ± 0.75 60.34 ± 0.17 59.89 ± 0.15 20.56 ± 0.35 − 53.97 ± 0.31
RWGK 80.77 ± 0.72 − − 22.37 ± 0.35 41.29 ± 0.89 55.91 ± 0.37

Datasets MUTAG NCI1 NCI109 ENZYMES PPIs PTC(MR)

JT1 14” 7h21′ 7h24′ 11′30” 3′20” 1′10”
JT2 3” 10′50” 10′55” 30” 1′43” 8”

JSGK 1” 1” 1” 1” 1” 1”
QJSK 20” 2h55′ 2h55′ 4′23” 3′24” 1′46”

QJSKA 1′30” > 1 day > 1 day 1h10′ 1h54′ 16′40”
WLSK 3” 2′31” 2′37” 20” 20” 9”
SPGK 1” 16” 16” 4” 22” 1”

GCGK3 1” 5” 5” 2” 4” 1”
BRWK 11” 6′49” 6′49” 3′5” > 1 day 29”
RWGK 14” > 1 day > 1 day 9′52” 4′26” 2′35”

Results and Discussions. In terms of classification accuracy, our JT kernels overcome
the alternative kernels on most of the datasets. Only the accuracy of the WLSK kernel
on the PPIs dataset is a little higher than our kernel k(2,H)

JT . The reasons of the effective-
ness of our kernels are explained as follows. a) Compared to the JSGK kernel, our JT
kernels overcome the restriction on non-attributed graphs. Moreover, our JT kernels also
overcome the shortcoming of lacking correspondence information. Finally, since each
strengthened label of the JT kernels correspondences to a subtree, the JT kernels reflect
richer interior topology information than the JSGK kernel. By contrast, the JSGK kernel
only reflects limited information in terms of the vertex degree distribution. b) Compared
to the QJSK and QJSKA kernels, our JT kernels also overcome the restriction on non-
attributed graphs arising in the two quantum kernels. Moreover, Bai et al. [26] show
that the QJSK kernel requires the computation of an additional mixed state where the
system has equal probability of being in each of the two original quantum states. Un-
less this quantum kernel takes into account the correspondences between the vertices
of the two graphs, it can be shown that this kernel is not permutation invariant. While



Attributed Graph Kernels Using the Jensen-Tsallis q-Differences 113

our JT kernels are not only permutation invariant but also reflect the correspondence
information between pairwise probabilities computed from the CTQW. c) Compared
to the BRWK, RWGK and GCGK3 kernels, our JT kernels reflect richer topology in-
formation in terms of the subtrees identified by the TI method (i.e.,the strengthened
labels). The reason for this is that the subtree based strategy can overcomes the short-
coming of structurally simple problem arising in the path and walk based strategies.
Moreover, the CTQW required for our kernels also possess more interesting properties
than the BRWK and RWGK based on the classical random walk. d) Compared to the
WLSK kernel, our JT kernel k(2,H)

JT generalizes the subtree based kernel and reflects

richer information. Moreover, our JT kernel k(1,H)
JT overcomes the shortcoming of dis-

carding non-isomorphic subtrees arising in the WLSK kernel. Finally, the performance
of the kernel k(1,H)

JT is a little better than that of the kernel k(2,H)
JT . The reason for this

is that the kernel k(2,H)
JT also suffers from the problem of discarding non-isomorphic

substructures, while the kernel k(1,H)
JT can overcome this shortcoming. e) In terms of

the runtime, our JT kernel k(2,H)
JT is fast and is competitive to the fast subtree kernel

WLSK. Furthermore, the computational efficiency of our JT kernel k(1,H)
JT is obviously

slower, but it can still finish the computation in a polynomial time on any dataset. By
contrast, some kernels cannot finish the computation on some datasets in one day.

5 Conclusions

In this paper, we develop a family of JT kernels for attributed graphs. For a graph, we
use a TI method to strengthen the vertex labels and then compute the probability dis-
tribution over the vertex labels through the CTQW. For a pair of graphs, the JT kernels
are computed by measuring the JT q-difference between their probability distributions.
We show that the JT kernels not only generalize some state of the art kernels but also
overcome the shortcomings arising in these kernels. The experiments demonstrate the
effectiveness and efficiency of the JT kernels. Our future work is to investigate the re-
lationship between state of the art kernels and our JT kernel with other q values (e.g.,
q = 0). Furthermore, we are also interested in extending this work on financial analysis.

Acknowledgments. We thank Dr. Chaoyan Wang for the insights of future extension
in financial analysis.
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Abstract. The stochastic multi-armed bandit problem is a popular model of
the exploration/exploitation trade-off in sequential decision problems. We intro-
duce a novel algorithm that is based on sub-sampling. Despite its simplicity, we
show that the algorithm demonstrates excellent empirical performances against
state-of-the-art algorithms, including Thompson sampling and KL-UCB. The al-
gorithm is very flexible, it does need to know a set of reward distributions in
advance nor the range of the rewards. It is not restricted to Bernoulli distributions
and is also invariant under rescaling of the rewards. We provide a detailed exper-
imental study comparing the algorithm to the state of the art, the main intuition
that explains the striking results, and conclude with a finite-time regret analysis
for this algorithm in the simplified two-arm bandit setting.

Keywords: Multi-armed Bandits, Sub-sampling, Reinforcement Learning.

1 Introduction

In sequential decision making under uncertainty, the main dilemma that a decision
maker faces is to explore, or not to explore. One of these problems is the popular
stochastic multi-armed bandit problem, termed in reference to the 19th century gam-
bling game and introduced by [23, 20]. It illustrates the fundamental trade-off between
exploration, that is, making decisions that improve the knowledge of the environment,
and exploitation, that is, choosing the decision that has maximized the previous payoff.
Classically, each decision is referred to as an “arm”. There is a finite set of arms and
each arm, when pulled, returns a real value, called the reward, which is independently
and identically drawn from an unknown distribution. At each time step the decision
maker chooses an arm based on the sequence of rewards that has been observed so far,
pulls this arm and observes a new sample from the corresponding unknown underlying
distribution. The objective is to find a policy for choosing the next arm to be pulled,
that maximizes the sum of the expected rewards, or equivalently minimize the expected
regret, that is the loss caused by not pulling the best arm at each time step. IfA denotes
the set of arms and {μa}a∈A the mean reward of the distribution of each arm, we denote
� ∈ argmaxa∈A μa an optimal arm and the (expected) regret of an algorithm that pulls
arms a1, . . . , aT up to time T is classically defined as

Rt = E

[ T∑
t=1

(μ� − μat)

]
. (1)

T. Calders et al. (Eds.): ECML PKDD 2014, Part I, LNCS 8724, pp. 115–131, 2014.
c© Springer-Verlag Berlin Heidelberg 2014
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Previous Work. Since the formulation of the problem by Robbins (1952), the regret,
that measures the cumulative loss resulting from pulling sub-optimal arms, has been
a popular criterion for assessing the quality of a strategy. Gittins index based poli-
cies ([13, 14, 12]), which were initially introduced by Gittins in 1979, is a family of
Bayesian-optimal policies that based on indices that fully characterize each arm given
the current history of the game, and at each time step the arm with the highest index
will be pulled. However, the high computational cost of Gittins indices and the fact that
they are practically limited to a specific set of distributions, arose the need of modifying
the policies and make them more efficient. In [8], extending the seminal work of [18],
the authors characterized the achievable performance. They showed that under suitable
conditions on the possible distributions associated to each arm, any policy that is “ad-
missible” (that is, not grossly under-performing, see [18] for details) must satisfy the
following asymptotic lower-performance bound

lim inf
T→∞

RT

log(T )
�
∑

a:μa<μ	

μ� − μa

Kinf

(
νa;μ�

) , (2)

where Kinf

(
νa;μ�

)
is an information-theoretic quantity which measures the minimal

Kullback-Leibler divergence between νa and distributions in the model that have expec-
tations larger than μ�. In the same papers, [18], [10], [8] suggested that Gittins indices
can be approximated by quantities that can be interpreted as upper bounds of confidence
intervals.

In [1], the generic class of index policies termed UCB (Upper Confidence Bounds)
was introduced, together with an asymptotic analysis of their performance. [5] provided
the first finite time analysis for a particular variant of UCB based on Hoeffding’s in-
equality, showing that the regret grows logarithmically with the time horizon T . A few
algorithms from the UCB family have been recently introduced such as UCB-V ([4]),
MOSS ([3]), Improved-UCB ([6]), as well as the recent Kullback-Leibler-based algo-
rithms DMED ([15]), Kinf ([19]), kl-UCB ([11]) and KL-UCB ([9]), that were shown
to be first-order optimal.

Besides Gittins index and the UCB-type algorithms, another important class of algo-
rithms is that introduced by Thompson ([23, 24]), and called Thompson sampling.
The algorithm assumes that the arms’ distributions belong to a parametric family of
distributions P = {p(.|θ), θ ∈ Θ} where Θ ⊆ R, it starts by putting a prior distribu-
tions on each one of the arms’ parameters, and at each time step a posterior distribution
is maintained according to the rewards observed so far. In practice each different P
leads to a different implementation of the algorithm. At each time step, this Bayesian
algorithm draws one sample for each arm from its posterior, then pulls the arm that
maximizes the expected reward given that parameter. Recently, the analysis developed
in [9] enabled to tackle the first frequentist optimal bound for the Thompson-sampling
algorithm ([16]) in case of a family of Bernoulli distributions, thus proving that this
algorithm also achieves optimality with a the regret that grows logarithmically with T .
See also [2], as well as the recent extension to another class of distributions in [17].

Contribution. In this paper we introduce a novel algorithm called BESA (Best Empirical
Sampled Average) for the stochastic multi-armed bandit problem (see Section 2). The
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Algorithm 1. BESA(a,b) for a two-arm bandit
Require: Two arms a, b, current time t.
1. Sample Iat ∼ Wr(Nt(a);Nt(b)) and Ibt ∼ Wr(Nt(b);Nt(a)).
2. Define μ̃t,a = μ̂(Xa

1:Nt(a)
(Iat )) and μ̃t,b = μ̂(Xb

1:Nt(b)
(Ibt )).

3. Choose (break ties by choosing the arm with the smaller Nt)
at = argmax

a′∈{a,b}
μ̃t,a′ .

algorithm has a different flavor than previously introduced algorithms. It is not based
on the computation of an empirical confidence bounds but rather on the sampling of
some specific quantity. It is for that reason related in spirit to the Thompson sampling
algorithm. However, unlike Thompson sampling, BESA does not rely on a paramet-
ric set of distribution (or a prior) and is instead fully non-parametric. In Section 3,
we compare the performance of the algorithm against state-of-the-art algorithms, in-
cluding Thompson sampling and KL-UCB, in several scenarios with different types of
reward distributions and show that the algorithm demonstrates excellent empirical per-
formances against them. In Section 4, we provide a possible explanation for the strong
performance of BESA, and then discuss its properties; Perhaps the most important prop-
erty of BESA is its flexibility, since the same implementation can be used for any type
of reward distributions, contrary to Thompson sampling or KL-UCB whose implemen-
tations differ according to the considered set of distribution. Finally in Section 5, we
provide a finite-time regret bound for this algorithm in the two-arm bandit problem.
We show with a rough analysis that the expected regret of the algorithm in this case
is O(log(T )) where T is the time horizon. The focus of the paper is to introduce and
report the striking empirical performance of this simple and flexible algorithm.

Setup and Notations. We consider a multi-armed bandit setting with finitely many arms
A and respective reward distributions {νa}a∈A, where νa ∈ P([0, 1]) and P([0, 1]) de-
notes the set of probability measures with support in [0, 1]. We denote μa ∈ [0, 1] the
mean of the distribution νa, and Xa

1:n = (Xa
1 , . . . , X

a
n) a sample of size n, i.i.d. from

νa. In the sequel, we use the short-hand notation [n] for the set of integer {1, . . . , n}.
For a set of indices I ⊂ [n] of size m, say I = (i1, . . . , im), we write Xa

1:n(I) =
(Xa

i1
, . . . , Xa

im
) for the corresponding sub-sampled set. A sample of size m drawn

without replacement from the set [n] is written I(n;m) ∼ Wr(n;m). Here Wr(n;m)
denotes a distribution over sets of integers (with the convention that Wr(n;m) = δ[n] if
m > n, where δ refers to a Dirac distribution). Finally, for a sample S of real val-
ues, we denote μ̂(S) the average of the sample components. For instance we have
μ̂(Xa

1:n) = 1
n

∑n
i=1X

a
i . Let � ∈ A denote an arm with maximal mean μ�. The re-

gret of an algorithm that pulls arms {at}t∈[T ] up to time T is defined by (1), where
the expectation is taken with respect to all sources of randomness. We also denote the
number of pulls of an arm a ∈ A up to time t by Nt(a) =

∑t−1
t′=1 I{at′ = a}.

2 The BESA Algorithm

The main contribution of this paper is to introduce a novel algorithm, called BESA (Best
Empirical Sampled Average) that uses a sub-sampling procedure in order to compare
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Algorithm 2. BESA(A) for a multi-armed bandit
Require: Set of arms A of size A, current time t.
1. if A = {a} then
2. Choose at = a .
3. else
4. Choose at = BESAt(BESAt({ai}1�i<�A/2�),BESAt({ai}�A/2�<i�A))
5. end if

between the empirical values of two arms. The pseudo-code of the algorithm, for two
arms is provided in Algorithm 1. The version for the more general multi-armed bandit
uses a tournament strategy described in Algorithm 2.

The main idea of the algorithm is to make a fair comparison between the arms: Given
two arms a and b that has been pulled na = Nt(a) and nb = Nt(b) > na times respec-
tively at time t, comparing the empirical averages of the arms is not a fair comparison
since a has not gotten the same number of opportunities as b to show its abilities. BESA
compensates for this situation by sub-sampling uniformly na rewards out of the nb

rewards of arm b. BESA then compares the empirical average of the rewards from a,
to the empirical average of the rewards sub-sampled from b. It finally chooses b if its
computed value is larger than the one of a. We provide in Algorithm 1 a more for-
mal and unified presentation of this strategy. If nb > na, the sampled set (line 2) is
Ibt ∼ Wr(Nt(b);Nt(a)) (indeed Iat ∼ Wr(Nt(a);Nt(b)) is the full set [Nt(a)] in this
case). Then (line 3,4) the compared values become μ̂(Xa

1:Nt(a)
) and μ̂(Xb

1:Nt(b)
(Ibt )).

BESA, FTL and Thompson Sampling. At first sight, BESA seems close to a version
of the standard Follow The Leader (FTL) algorithm. This algorithm selects
argmaxa∈A μ̂(Xa

1:Nt(a)
), that is the best empirical arm (with no sub-sampling). FTL

is known to be a bad strategy in the bandit setting as it can lead to a linear regret
in a number of situations. It is thus a priori striking that BESA can be any reason-
able. On the other hand, BESA uses a sampling strategy in order to select the sub-
set used to compute the sub-sampled mean. This is in this respect related in spirit to
the Thompson sampling strategy, that is known to be both Bayesian optimal, and
frequentist optimal, achieving the state-of-the-art for the bandit setting with Bernoulli
distribution of rewards ([16]), or more recently distributions in the one-dimension expo-
nential family ([17]). Note that Thompson sampling actually refers to a collection
of algorithms whose implementation depend on the prior we have on reward distribu-
tions. Thus Thompson sampling for Bernoulli distributions is for instance different
than Thompson sampling for exponential distributions. In contrast, BESA keeps
the same form regardless of the distribution on rewards.

A Tournament for Many Arms. We extend Algorithm 1 written for two arms to the
more general case of a finite set A of arms by using a divide-and-conquer style algo-
rithm (see Algorithm 2). This intuitively corresponds to organizing a tournament be-
tween arms. To avoid relying too much on a specific ordering of the arms that may bias
the final result (and look arbitrary), we randomly shuffle the set of arms before each
decision. That is, at time t, we create a copy Ãt of A that is obtained by shuffling A
uniformly at random, and then output the arm BESA(Ãt).
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3 Numerical Experiments

Our findings show that, surprisingly, BESA is a strong competitor of the state-of-the-art
strategies from the bandit literature. Before providing one possible explanation for this
striking performance, we now report these intriguing results more precisely.

In this section, the BESA algorithm is compared against well-known optimal algo-
rithms such as KL-UCB, KL-UCB+ ([11, 19, 9]), Thompson sampling ([23, 24])
with prior Beta(1,1), KL-UCB-exp ([9]) and UCB-tuned ([5]), on different scenarios
with different set of arms. To avoid implementation bias, we use the open-source code
available on-line at http://mloss.org/software/view/415 for the imple-
mentation of these algorithms. Note that these algorithms do not need parameter tuning.
In each one of the scenarios detailed below, the time horizon is set to T = 20, 000, and
the scenario is run on 50,000 independent experiments. In each run, so as to have a fair
comparison, the rewards of the arms are all drawn in advance, and all the algorithms
are run on the same set of drawn rewards. In other words, on each of the 50, 000 runs,
∀n ∈ {1, . . . , 20000}, a ∈ A all the algorithms will observe the same reward on the nth

pull of arm a. This enables us to measure the percentage of runs on which one algorithm
is better than a reference one, thus providing another measure of performance, besides
the empirical average cumulative. We systematically report below in Table 1, . . . , 7 this
percentage using BESA as a reference. In Figures 1, . . . , 7, the dark gray represents the
plot quartiles, while the light gray represents the upper 5 percents quantile. Finally, in
section 5, we introduce the so-called balance function α1/2 (see definition 1) that acts
as a complexity parameter. For clarity, we report the scaling of this function in most of
the following scenarios as well.
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Fig. 1. Regret against time for the two-arm scenario, with μ� = 0.9 and μa = 0.8

Table 1. Performance measures for T = 20, 000 in the two-arm scenario, with μ� = 0.9 and
μa = 0.8. Complexity α1/2(M, 1) = O(0.9M ).

BESA KL-UCB KL-UCB+ Thompson sampling
Average regret at T 11.83 17.48 11.54 11.3
Beat BESA −− 1.82% 41.6% 58.28%
Average running time 2.86X 2.7X 3.12X X
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3.1 Scenario 1: Two Bernoulli Arms

In this scenario we consider the case of two Bernoulli arms A = {�, a}, with expecta-
tions μ� = 0.9 and μa = 0.8, respectively. The empirical average cumulative regret of
each algorithm is shown in the first raw of Table 1, while the second raw shows the per-
centage of the runs on which the algorithm gave a lower regret than BESA, and the third
shows the average run time where X denotes the average run time of the fastest algo-
rithm. In Figure 1 the average regret is shown as a function of time. The same scenario
has been considered in [11]. On one hand, from figure 1 in [11] one can conclude that
the average cumulative regret of UCB-V is larger than 50, while all the other algorithms
but KL-UCB have average cumulative regret between 21 and 36. On the other hand, as
reported in Table 1, the average cumulative regret of BESA is 11.38. Thus BESA out-
performs all the algorithms considered in [11] such as e.g. UCB-tuned, DMED, MOSS
on this scenario, including KL-UCB. Note that KL-UCB+ does get a slightly lower ex-
pected regret, but does not beat BESA more than 50 per cent of the time. Thompson
sampling here slightly outperforms BESA.

3.2 Scenario 2: Bernoulli with a Small Δ

This scenario is similar to scenario 1 but with a smaller gap Δ: We consider the case of
two Bernoulli arms, with expectations μ1 = 0.81 and μ2 = 0.8 respectively. Similarly
to scenario 1 the average regret, the percentage of experiments on which BESA was
beaten and the average run time are shown in Table 2, and the cumulative regret as a
function of time is shown in Figure 2. Note that the average regret of BESA is close
to that of KL-UCB+ and smaller than that of KL-UCB and Thompson sampling.
Interestingly enough, in addition the percentage of runs on which BESA is beaten by
any of the state-of-the-art algorithms is smaller than 37%.
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Fig. 2. Regret against time for the two-arm scenario, with μ� = 0.81 and μa = 0.8.

Table 2. Performance measures for T = 20, 000 for the two-arm scenario, with μ� = 0.81 and
μa = 0.8. Complexity α1/2(M, 1) = O(0.9M ).

BESA KL-UCB KL-UCB+ Thompson sampling
Average regret at T 42.6 52.34 41.71 46.14
Beat BESA −− 25.61% 36.86% 35.2%
Average running time 4.56X 2.78X 3.47X X
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3.3 Scenario 3: Bernoulli with Low Means

In this scenario we consider the scenario used in [11], and inspired by a situation, fre-
quent in applications like marketing or Internet advertising, where the mean reward of
each arm is very low. More precisely we consider a harder case which has ten Bernoulli
arms, the best arm has expectation 0.1, three arms have expectation 0.05, three arms
expectation 0.02, and the rest with expectation 0.01. Table 3 summarizes the results
of this experiment, and the regret as a function of time is shown in Figure 3. As can
be seen from Table 3 the average regret of BESA is much smaller than KL-UCB and
Thompson sampling regrets, and it is beaten by KL-UCB only in 1.57% of the
runs and by Thompson sampling only in 3.09% of the runs. It is also beaten by
KL-UCB+ less than 36% of the time. As can be seen in figure 2 of [11] the regrets of
all the algorithms but DMED+ and KL-UCB+, which include e.g. CP-UCB, DMED, UCB-
Tuned, are between 100 and 400. Thus we can conclude that BESA’s average is smaller
than the average of those algorithms.

3.4 Scenario 4: All Half but One

In this scenario we consider a case with ten Bernoulli arms, considered as being hard:
The optimal arm has expectation 0.51 while all the others have expectation 0.5. The
results of this experiment are shown in Table 4 and Figure 4. We note that BESA gets a
smaller average regret than its competitors, and is not beaten by them more than 42%
of the time. Thus BESA performs best in this hard setting.

3.5 Scenario 5: Truncated Exponential

In order to further demonstrate the flexibility of the BESA algorithm, we consider in
this scenario the case of rewards coming from an exponential distribution. Five arms
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Fig. 3. Regret against time for scenario 3

Table 3. Performance measures for T = 20, 000 for scenario 3. α1/2(M, 1) = O(0.5025M ).

BESA KL-UCB KL-UCB+ Thompson sampling
Average regret at T 74.41 121.21 72.84 83.36
Beat BESA −− 1.57% 35.41% 3.09%
Average running time 13.85X 2.83X 3.08X X
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Fig. 4. Regret against time for scenario 4

Table 4. Performance measures for T = 20, 000 for scenario 4. α1/2(M, 1) = O(0.75M ).

BESA KL-UCB KL-UCB+ Thompson sampling
Average regret at T 156.7 170.82 165.28 165.08
Beat BESA −− 41.36% 41.57% 40.78%
Average running time 19.64X 2.78X 2.96X X

were considered with parameters
{
1
5 ,

1
4 ,

1
3 ,

1
2 , 1
}

, truncated at 10 then divided by 10
(thus they are bounded in [0, 1]). The results of this experiment are shown in Table 5
and Figure 5. Note that the regret of KL-UCB-exp, which is the version of KL-UCB
specifically tuned for exponential families and achieving the state-of-the-art for this
case, is lower than that of BESA only on 5.72% of the runs. Note that BESA need not
know that the distributions are exponential, that is, we use exactly the same algorithm.
Now, as can be seen in the figure of BESA the graph is not smooth: the reason is that
BESA misses the optimal arm if the first reward that it gives is too low. In order to get
a smoother behavior, we ran a slightly modified version of BESA to skip these corner
cases: The modified algorithm is called BESAT, and simply pulls each arm ten times
before starting running the regular BESA. As can be seen in the results this improved
the regret dramatically. Now KL-UCB-exp beats BESAT only on 1.38% of the runs, and
similar numbers is achieved for UCB-tuned. In [11] a similar scenario is considered,
with the difference that they didn’t divided the reward by 10. It is actually easy to prove
that both BESA and BESAT are actually invariant by rescaling, that is they pull the
same arms in the same order wither we divide the reward by 10 or not. Thus, running
the algorithms with the same runs without dividing the rewards by 10, the regret of
BESA is 532.6 and the one of BESAT is 314.1, which is still better than the regrets
reported in [11] at Figure 3 (they are above 600).

3.6 Scenario 6: Truncated Poisson

In this scenario we consider the case of Poisson rewards, six Poisson arms are consid-
ered with parameters 0.5 + i

3 , where 1 � i � 6, truncated at 10 then divided by 10.
A similar scenario was considered in [9] where KL-UCB-Poisson is the leading algo-
rithm. From Table 6, BESA and BESAT outperform KL-UCB and KL-UCB-Poisson on
95.95% of the runs for BESA and 97.99% for BESAT, with a much smaller average
regret.
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Fig. 5. Regret against time for scenario 5

Table 5. Performance measures for T = 20, 000 for scenario 5

BESA BESAT KL-UCB-exp UCB-tuned
Average regret at T 53.26 31.41 65.67 97.6
Beat BESA −− 40.59% 5.72% 4.33%
Beat BESAT 59.41% −− 1.38% 0.85%
Average running time 6.01X 7.09X 2.76X X

3.7 Scenario 7: Uniform Distributions

In this experiment, we consider a challenging setting where arms are uniformly dis-
tributed with Xa ∼ U([0.2, 0.4]) and X� ∼ U([0, 1]). Note that there is no natural
KL-UCB nor Thompson sampling algorithm to deal with such family of distri-
bution. In such a scenario, we note that α1/2(M, 1) does not decay exponentially to
0 with M , indicating that this is a difficult scenario for BESA. However, it holds that
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Table 6. Performance measures for T = 20, 000 for scenario 6

BESA BESAT KL-UCB-Poisson KL-UCB
Average regret at T 19.37 16.72 25.05 150.56
Beat BESA −− 39.92% 4.05% 0.72%
Beat BESAT 59.51% −− 2.01% 0.17%
Average running time 3.53X 3.49X 1.15X X
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Table 7. Performance measures for T = 20, 000 for scenario 7

Alg. UCB KL-UCB Thompson sampling
Average regret 21.23 20.72 13.18

Beat BESA n0 = 0 24.26% 24.28% 24.7%
Beat BESA n0 = 3 7.27% 7.3% 7.83%
Beat BESA n0 = 7 1.56% 1.58% 1.76%
Beat BESA n0 = 10 0.62% 0.63% 0.74%

BESA n0 = 0 n0 = 3 n0 = 6 n0 = 7 n0 = 8 n0 = 9 n0 = 10

Average regret 920.12 213.44 50.6 35.38 25.88 17.85 15.42

α1/2(1, n) = O(βn) with β = 0.2. According to Theorem 1, we should initialize BESA
by pulling n0 times each arm before applying BESA (that is, run BESAT), where for
T = 20, 000, n0 � 6.15. We ran BESAT with different number of initialization pulls
n0 ∈ {0, 3, 6, 7, 8, 9, 10}, and we also ran UCB KL-UCB and Thompson sampling
(with Beta(1,1) prior) on the same set of arms. The average regrets of each of the al-
gorithms in addition to the percentage on which each non-BESA algorithm beats BESA
with different n0 are provided in Table 7. The average regret of BESA improves with
increasing n0 as expected, and as can be seen from the table, BESA with n0 = 10
gave a lower average regret than UCB and KL-UCB and a bit higher than Thompson
sampling and it was beaten by the other algorithms on less than 0.8% of the runs.

3.8 Summary of the Experimental Results

From the first four numerical experiments, we deduce that BESA is able to compete
with the state-of-the-art bandit algorithms in the Bernoulli case. It becomes especially
good when the gaps are small, or when the Bernoulli parameters are small, which are
two main cases of practical interest (especially in web-advertising). Scenario 5, 6 and 7
highlight the flexibility of the algorithm: the same algorithm competes favorably against
one of the best algorithm for exponential distributions as well as for Poisson distribu-
tions. Using a slight modification, we can beat them by an even larger margin.

4 Intuition and Properties

In this section, we provide an explanation for the striking performance of the BESA
algorithm, and discuss further its advantages and drawbacks. In the next section, we
use this intuition to derive a regret bound for the BESA algorithm.

4.1 Why Does It Work?

To give intuition why BESA works, let us focus on the two-arm bandit problem. The
heuristic idea behind the algorithm is that a comparison between two empirical mean
estimates built on a very different number of samples na and nb is not really “fair”,
and that it seems more natural to compare empirical means based on the same num-
ber of samples. Thus the algorithm we introduce is based on sub-sampling. In the rich
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sub-sampling literature, the works of [7] and [21], show that using sub-sampling with-
out replacement ensures convergence guarantees in a strictly broader setting than sub-
sampling with replacement (a.k.a bootstrap). This may provide some informal support
for the soundness of the method. However we now provide a more direct justification
for the striking performance of BESA.

On the theoretical side, one can justify the intuition by looking at the probability of
repeatedly choosing a wrong action. If μb > μa and the number of plays of each arm
satisfies na > nb, the probability that BESA chooses a wrong action is approximatively

P

[
μ̂
(
Xa

1:na

(
I(na;nb)

))
> μ̂
(
Xb

1:nb

)]
, (3)

where I(na;nb) ∼ Wr(na;nb), and the probability of making M consecutive mistakes
is essentially

P

[
∀m∈ [M ] μ̂

(
Xa

1:n
(m)
a

(
Im(n(m)

a ;nb)
))

>μ̂
(
Xb

1:nb

)]
, (4)

where for all m � M , Im(na;nb) ∼ Wr(na;nb), and where we introduced for conve-

nience the short-hand notation n(m)
a = na +m− 1.

Now, for deterministic1 na, nb, (3) typically scales with exp
(
−2nb(μb−μa)

2
)

, by

a standard Hoeffding inequality since nb samples are involved. On the other hand, (4)

can decrease at a much faster rate, intuitively of order exp
(
−2nbM̃(μb−μa)

2
)

where

M̃ is the number of non-overlapping sub-samples of size nb. Indeed if Im′(n
(m)
a ;nb)∩

Im(n
(m)
a ;nb) = ∅ for all m �= m′ ∈ M ⊂ [M ] where |M| = M̃ , then the corre-

sponding empirical means are independent from each other, which leads to the intuitive
improvement. Using sub-sampling, the later event is of high probability for a reasonable
M̃ provided that na/nb is large enough. Note that in the case when we do not resort to
sub-sampling, such a phenomenon will not happen, due to the strong dependency be-
tween the samples at two consecutive time steps. Thus M̃ is essentially 1 which means
that the probability of committing M successive mistakes, will stay big, of the order
of exp

(
− 2nb(μb − μa)

2
)
. Now in an ideal case, with only M = na/nb subsets, we

might get a mistake error scaling with exp
(
− 2na(μb −μa)

2
)
, even though b has only

been pulled nb times. As long as na/nb � na − nb, then we need less trials than the
procedure based only on confidence interval estimates before accurately discarding the
wrong arm with the same probability. This intuitive idea is formalized and captured by
Lemma 1, which we consider to be the key for the current analysis.

4.2 Properties of the Algorithm

We now highlight some of the main properties of BESA.

1 The exact argument needs to deal with the fact that na = Nt(a) and nb = Nt(b) are both
random stopping times.
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Simplicity. We first note the simplicity of the BESA compared to previous methods,
such as KL-UCB for instance that requires some fancy linear program in order to com-
pute the upper confidence bound, or Thompson sampling that requires to be able
to find an appropriate conjugate prior and implement the update of its parameters, or
even the UCB-type strategies that generally require some free parameter to be adjusted.
Here, BESA requires no parameter tuning, and no complicated prior/posterior relation
is needed either. Thus the algorithm is directly applicable in a broad range of situation.

Flexibility. A striking property of the algorithm is its flexibility to adapt to various
situations. For instance, note that BESA does not need to know the support of the dis-
tributions, and is also invariant under rescaling. This is not the case of most bandit
algorithms that explicit use the knowledge of the support [a, b] of distributions. We
believe this can be a serious advantage in some situation. Moreover, both Thompson
sampling and KL-UCB are dependent on a considered parametric set of distributions:
in practice a different set of distribution leads to a different implementation. BESA does
not need such parameters, keeps the same form in all situations, and more importantly
still achieves excellent performance in a number of situations, as detailed in Section 3.

Efficiency. Finally, one might wonder about the computationally efficiency of BESA
due to the use of a sub-sampling method, that is generally not memory less. We were a
bit worried about this fact, and thus we implemented the algorithm in a naive way and
reported the computational cost of the algorithm in each table for completeness. We
conclude from these results that the computational cost of the algorithm is essentially
not a problem. Moreover, note that, due to the i.i.d. nature of the data, one may use
fancier but more efficient sub-sampler techniques. A naive implementation needs to
save all the received rewards. In case the rewards take only finitely many values one
can use instead a counter for each possible value. To avoid distracting the reader from
the main message, we do not discuss possible tricks that could be used to improve
further the numerical efficiency of the method.

5 Regret Upper-Bound

In this section, we provide a simple regret analysis of the BESA algorithm2. Formalizing
further the heuristic intuition of Section 4, it is actually possible to derive a non-trivial
regret bound for the BESA algorithm, given in Theorem 1. In order to characterize the
difficulty of a bandit problem, we now define the following problem-dependent quantity

Definition 1. For integers M,n and λ ∈ [0, 1], we define the balance function of the
distributions (νa, ν�) as

αλ(M,n) = EZ∼ν	,n

[
(1− Fνa,n(Z) + λνa,n(Z))

M

]
,

where νa,n is the distribution of
∑n

i=1X
a
i with Xa

i
i.i.d∼ νa and Fν is the cdf of ν (that

is, Fν(x) = PX∼ν(X � x)).

2 We study a slightly modified version, that break ties uniformly at random.
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Let us provide some intuition on two examples. Note that αλ is not increasing both in
M and n. First, let us consider two Bernoulli arms with Xa ∼ B(μa) and X� ∼ B(μ�).

We can compute easily that αλ(M, 1) = (λμa)
Mμ� +

(
λ + μa(1 − λ)

)M
(1 − μ�).

Now, since μa < μ� � 1, we deduce that α1/2(M, 1)
M→∞→ 0, and more precisely that

α1/2(M, 1) = O

((μa ∨ (1 − μa)

2

)M)
.

Thus it converges exponentially fast to 0. Note, however that α1(M, 1)
M→∞→ 1 − μ�,

which is non zero unless μ� = 1. Second, let us consider the case of two Uniform arms

Xa ∼ U([0.2, 0.4]) and X� ∼ U([0, 1.]). For all λ it holds that αλ(M,n)
M→∞→ 0.2n.

Thus there is no exponential decay with M . However, it holds that αλ(1, n) = O(0.2n).
We now prove the following

Theorem 1. LetA = {�, a} be a two-armed bandit with bounded rewards in [0, 1], and
Δ = μ�−μa be the mean gap. Let us moreover assume that there exists α ∈ (0, 1) and
c > 0 such that α1/2(M, 1) � cαM . Then the regret of BESA at time T is controlled by

RT �
11 log(T )

Δ
+ Cνa,ν	 +O(1) ,

where Cνa,ν	 depends on the parameters of the problem α, c and Δ, but not on T .
Moreover if there exists some β ∈ (0, 1) and c > 0 such that α1/2(1, n) � cβn. Let us
define

n0,T =

⌈
ln(T )− ln

(
(1− β)C

)
ln(1/β)

⌉
.

Then if BESA is initialized with n0,T pulls of each arm, then its regret at time T is
controlled by

RT �
11 log(T )

Δ
+ n0,T + C̃νa,ν	 + O(1) .

where C̃νa,ν	 depends on C and on the parameters β, c and Δ, but not on T .

Remark 1. Up to Lemma 1 (see below) which is a purely probabilistic result, and is in-
dependent on the bandit setting, the proof is arguably simpler than the typical ones used
for Thompson sampling. In particular, we do not need to resort to a fancy “Bernoulli-
Beta” trick that is used in classical proofs of Thompson sampling and does not extend
easily to general distributions (see for instance [17] that is entirely devoted to the ex-
tension to exponential families of dimension one).

Remark 2. Since one needs not use empirical confidence intervals in the analysis, but
simply confidence intervals, one can hope to derive much tighter results in the future,
using Kullback-Leibler-based Chernoff bounds, or event the sharpest Sanov bounds.
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We provide the full proof of this result in the appendix. It mainly follows the proof
of [16] that provides a sharp analysis of the Thompson sampling algorithm, with
some simplifications: first, we consider only two arms, which enables us to skip a re-
currence argument (but the same technique could be used to extend our analysis to the
case of K-arms); then, we only use mean-based arguments essentially for clarity of ex-
posure. We believe it is more important at this point to provide a clear intuition about
why the algorithm works than to provide a tight analysis based on Kullback-Leibler
concentration results that are trickier to catch. Now for clarity, we summarize in the
next Lemma what we believe is the key result for the regret analysis of BESA. This
purely probabilistic result is specific to the properties of the sub-sampling procedure.

The sketch of proof is as follows: As usual, we express the regret in terms of the
expected number of pulls of sub-optimal arms, that are further decomposed according
to the event that the optimal arm has been pulled enough or not. Under the event that
the optimal arm is pulled enough, we control easily the probability of mistake resorting
to standard proof techniques based on concentration bounds. One difference with re-
spect to standard bounds is that we use here a Serfling-Hoeffding ([22]) concentration
inequality. This gives the first term of the regret. The next and difficult step is to show,
as usual, that the optimal arm is indeed pulled enough with high probability. To that
end, we borrow a proof technique considered in [16]: we introduce the random times τj
between the jth and (j+1)th pull of the optimal arm, and show that they cannot be too
large for too many j, that is to show that the number of consecutive mistakes made by
the algorithm must be small with high probability. This is one key of the regret analysis
of Thompson sampling that enables to derive an optimal performance bound. The
novelty that we introduce for the analysis of BESA is to relate this number of consec-
utive mistakes to the probability that many sub-samples of small size do not overlap,
as explained in Section 4. The precise lemma that covers this part, and that eventually
leads to our regret bound is the following:

Lemma 1 (Maximal non-overlapping sub-samples). Let M = {p, . . . , q} ⊂ N be
some interval. Let j,M ∈ N be such that p � 2j, and M � |M|. For all s ∈ M, we
introduce the random variable Is(s− j; j) ∼ WR(s− j; j). Then the function defined by

fM(M, j) = 1− P

[
∃s1 < · · · < sM ∈ M,

∀m �= m′ ∈ [M ] : Ism (sm−j; j) ∩ Ism′ (sm′−j; j) = ∅
]

is decreasing with p. Moreover, for a sequence of intervals Mt = {pt, . . . , qt}, such
that limt→∞

qt−pt

t = C > 0 and integers Mt,j such that Mt,jj = O(ln(qt)), we have

fMt(Mt,j , j) =o(t−1) . (5)

One way to show this lemma is by studying fM(M, j) formally, and trying to see
how it behaves with the different parameters. This however turns out to be tedious and
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Fig. 7. α as a function of x and M for j = 3 (left), j = 8 (middle) and j = 15 (right). (Note
that for Δ = 0.3 and T = 20, 000, then 1

2Δ
log(T ) � 16.5.) The black circles indicate when

αx > 1 and the white circles when αx < 1.

very technical. On the other hand, we can take advantage of the fact that this function is
problem-independent and thus can be computed off-line. It can actually be simulated,
and since it is decreasing with |M|, it is enough to study its behavior for small |M|. For
our purpose in the analysis, we only need to look at small values of M = O(log(T ))
(note that for a time horizon T = 20, 000, then log(T ) < 10). Similarly we use small
value for n0 � j � uT = O(log(T )) as well. It is not difficult to simulate fM(M, j)
for Mx = [2j + 1, x] with various values of M and x. We are interested in the ratio
α = − log(fMx(M, j))/ log(x), and observe numerically that this ratio is increasing
with x and quickly becomes larger than 1, that is fMx(M, j) < x−1 for large enough
x � CM = o(M) that is slowly increasing with M . In the analysis of Theorem 1, we
use x = O(t/ log(t)), and M = O(log(T )), and thus as soon as t � C′ log(t), which
happens for t � C for some numerical constant C, then fMt(M, j) starts decaying
faster than t−1, that is fMt(log(t)/j, j) = o(t−1). In figure 7, we plot the function α
in terms of x and M , and for different values of j. Each point is the result obtained
via 5, 000 replications. We report especially in blue the regions when α becomes larger
than 1, which is the critical value to ensure that the lemma holds.

6 Discussion and Conclusion

In this paper, we introduced a novel algorithm for the stochastic multi-armed bandit
that is based on sub-sampling. We provided a careful experimental analysis of the BESA
algorithm, by comparing it with the optimized versions of the state-of-the-art algorithms
known in each situation. We demonstrated the advantage of BESA specifically in the
case of Bernoulli distributions, including the case of small parameters and small gaps,
as well as exponential and Poisson distributions. For completeness, we reported three
measures of performance of the algorithm: plots of the cumulative reward, included
quantiles, the percentage it is beaten by other standard algorithms and the numerical
complexity with respect to the fastest method.

The algorithm has several striking properties: it is simple to implement, and is very
flexible. It does not need to know a set of distributions in advance, unlike Thompson
sampling or KL-UCB and does not even need to know the support, unlike UCB or
kl-UCB. It is also invariant under rescaling of the rewards. This is thus a fully non-
parametric algorithm, that competes favorably against standard algorithms.
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We finally provide a regret analysis for BESA, which shows that the regret of the
algorithm is logarithmic (we believe that the constants are not tight). More importantly,
we provided a novel proof technique that we believe conveys the core intuition why the
algorithm is working, and can lead to much tighter bounds in the future.

Now that we have introduced this algorithm and shown its flexibility, it seems natural
to try to extend the BESA to other settings. One first direction of research is to consider
the contextual-bandit problem, another one is to consider the adversarial multi-armed
bandit setting.

Acknowledgements. This work was supported by the European Community’s Seventh
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[11] Garivier, A., Cappé, O.: The KL-UCB algorithm for bounded stochastic bandits and beyond.
In: Proceedings of the 24th annual Conference on Learning Theory, COLT 2011 (2011)

[12] Gittins, J.C.: Bandit processes and dynamic allocation indices. Journal of the Royal Statis-
tical Society. Series B (Methodological) 41(2), 148–177 (1979)

[13] Gittins, J.C., Jones, D.M.: A dynamic allocation index for the discounted multiarmed bandit
problem. Biometrika 66(3), 561–565 (1979)

[14] Gittins, J.C., Weber, R., Glazebrook, K.: Multi-armed Bandit Allocation Indices. Wiley
(1989)

[15] Honda, J., Takemura, A.: An asymptotically optimal bandit algorithm for bounded support
models, pp. 67–79

[16] Kaufmann, E., Korda, N., Munos, R.: Thompson sampling: an asymptotically optimal finite-
time analysis. In: Bshouty, N.H., Stoltz, G., Vayatis, N., Zeugmann, T. (eds.) ALT 2012.
LNCS (LNAI), vol. 7568, pp. 199–213. Springer, Heidelberg (2012)



BESA 131

[17] Korda, N., Kaufmann, E., Munos, R.: Thompson sampling for 1-dimensional exponential
family bandits. In: Burges, C.J.C., Bottou, L., Ghahramani, Z., Weinberger, K.Q. (eds.)
NIPS, Lake Tahoe, Nevada, United States, vol. 26, pp. 1448–1456 (2013)

[18] Lai, T.L., Robbins, H.: Asymptotically efficient adaptive allocation rules. Advances in Ap-
plied Mathematics 6(1), 4–22 (1985)

[19] Maillard, O.-A., Munos, R., Stoltz, G.: Finite-time analysis of multi-armed bandits prob-
lems with kullback-leibler divergences. In: Proceedings of the 24th Annual Conference on
Learning Theory, COLT 2011 (2011)

[20] Robbins, H.: Some aspects of the sequential design of experiments. Bulletin of the Ameri-
can Mathematics Society 58, 527–535 (1952)

[21] Romano, J.P., Shaikh, A.M.: On the uniform asymptotic validity of subsampling and the
bootstrap. The Annals of Statistics 40(6), 2798–2822 (2012)

[22] Serfling, R.J.: Probability inequalities for the sum in sampling without replacement. The
Annals of Statistics 2(1), 39–48 (1974)

[23] Thompson, W.R.: On the likelihood that one unknown probability exceeds another in view
of the evidence of two samples. Biometrika 25, 285–294 (1933)

[24] Thompson, W.R.: On the theory of apportionment. American Journal of Mathematics 57,
450–456 (1935)



Knowledge-Powered Deep Learning
for Word Embedding

Jiang Bian, Bin Gao, and Tie-Yan Liu

Microsoft Research
{jibian,bingao,tyliu}@microsoft.com

Abstract. The basis of applying deep learning to solve natural language
processing tasks is to obtain high-quality distributed representations of words,
i.e., word embeddings, from large amounts of text data. However, text itself usu-
ally contains incomplete and ambiguous information, which makes necessity to
leverage extra knowledge to understand it. Fortunately, text itself already con-
tains well-defined morphological and syntactic knowledge; moreover, the large
amount of texts on the Web enable the extraction of plenty of semantic knowl-
edge. Therefore, it makes sense to design novel deep learning algorithms and
systems in order to leverage the above knowledge to compute more effective
word embeddings. In this paper, we conduct an empirical study on the capac-
ity of leveraging morphological, syntactic, and semantic knowledge to achieve
high-quality word embeddings. Our study explores these types of knowledge to
define new basis for word representation, provide additional input information,
and serve as auxiliary supervision in deep learning, respectively. Experiments on
an analogical reasoning task, a word similarity task, and a word completion task
have all demonstrated that knowledge-powered deep learning can enhance the
effectiveness of word embedding.

1 Introduction

With rapid development of deep learning techniques in recent years, it has drawn in-
creasing attention to train complex and deep models on large amounts of data, in or-
der to solve a wide range of text mining and natural language processing (NLP) tasks
[4, 1, 8, 13, 19, 20]. The fundamental concept of such deep learning techniques is to
compute distributed representations of words, also known as word embeddings, in the
form of continuous vectors. While traditional NLP techniques usually represent words
as indices in a vocabulary causing no notion of relationship between words, word em-
beddings learned by deep learning approaches aim at explicitly encoding many seman-
tic relationships as well as linguistic regularities and patterns into the new embedding
space.

Most of existing works employ generic deep learning algorithms, which have been
proven to be successful in the speech and image domains, to learn the word embeddings
for text related tasks. For example, a previous study [1] proposed a widely used model
architecture for estimating neural network language model; later some studies [5, 21]
employed the similar neural network architecture to learn word embeddings in order
to improve and simplify NLP applications. Most recently, two models [14, 15] were

T. Calders et al. (Eds.): ECML PKDD 2014, Part I, LNCS 8724, pp. 132–148, 2014.
c© Springer-Verlag Berlin Heidelberg 2014
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proposed to learn word embeddings in a similar but more efficient manner so as to
capture syntactic and semantic word similarities. All these attempts fall into a common
framework to leverage the power of deep learning; however, one may want to ask the
following questions: Are these works the right approaches for text-related tasks? And,
what are the principles of using deep learning for text-related tasks?

To answer these questions, it is necessary to note that text yields some unique proper-
ties compared with other domains like speech and image. Specifically, while the success
of deep learning on the speech and image domains lies in its capability of discovering
important signals from noisy input, the major challenge for text understanding is instead
the missing information and semantic ambiguity. In other words, image understanding
relies more on the information contained in the image itself than the background knowl-
edge, while text understanding often needs to seek help from various external knowl-
edge since text itself only reflects limited information and is sometimes ambiguous.
Nevertheless, most of existing works have not sufficiently considered the above unique-
ness of text. Therefore it is worthy to investigate how to incorporate more knowledge
into the deep learning process.

Fortunately, this requirement is fulfillable due to the availability of various text-
related knowledge. First, since text is constructed by human based on morphological
and grammatical rules, it already contains well defined morphological and syntactic
knowledge. Morphological knowledge implies how a word is constructed, where mor-
phological elements could be syllables, roots, or affix (prefix and suffix). Syntactic
knowledge may consist of part-of-speech (POS) tagging as well as the rules of word
transformation in different context, such as the comparative and superlative of an adjec-
tive, the past and participle of a verb, and the plural form of a noun. Second, there has
been a rich line of research works on mining semantic knowledge from large amounts
of text data on the Web, such as WordNet [25], Freebase [2], and Probase [26]. Such
semantic knowledge can indicate entity category of the word, and the relationship be-
tween words/entities, such as synonyms, antonyms, belonging-to and is-a. For example,
Portland belonging-to Oregon; Portland is-a city. Given the availability of the morpho-
logical, syntactic, and semantic knowledge, the critical challenge remains as how to
design new deep learning algorithms and systems to leverage it to generate high-quality
word embeddings.

In this paper, we take an empirical study on the capacity of leveraging morphological,
syntactic, and semantic knowledge into deep learning models. In particular, we inves-
tigate the effects of leveraging morphological knowledge to define new basis for word
representation and as well as the effects of taking advantage of syntactic and semantic
knowledge to provide additional input information and serve as auxiliary supervision in
deep learning. In our study, we employ an emerging popular continuous bag-of-words
model (CBOW) proposed in [14] as the base model. The evaluation results demonstrate
that, knowledge-powered deep learning framework, by adding appropriate knowledge
in a proper way, can greatly enhance the quality of word embedding in terms of serving
syntactic and semantic tasks.

The rest of the paper is organized as follows. We describe the proposed methods to
leverage knowledge in word embedding using neural networks in Section 2. The experi-
mental results are reported in Section 3. In Section 4, we briefly review the related work
on word embedding using deep neural networks. The paper is concluded in Section 5.



134 J. Bian, B. Gao, and T.-Y. Liu

2 Incorporating Knowledge into Deep Learning

In this paper, we propose to leverage morphological knowledge to define new basis
for word representation, and we explore syntactic and semantic knowledge to provide
additional input information and serve as auxiliary supervision in the deep learning
framework. Note that, our proposed methods may not be the optimal way to use those
types of knowledge, but our goal is to reveal the power of knowledge for computing
high-quality word embeddings through deep learning techniques.

2.1 Define New Basis for Word Representation

Currently, two major kinds of basis for word representations have been widely used
in the deep learning techniques for NLP applications. One of them is the 1-of-v word
vector, which follows the conventional bag-of-word models. While this kind of rep-
resentation preserves the original form of the word, it fails to effectively capture the
similarity between words (i.e., every two word vectors are orthogonal), suffers from too
expensive computation cost when the vocabulary size is large, and cannot generalize to
unseen words when it is computationally constrained.

Another kind of basis is the letter n-gram [11]. For example, in letter tri-gram (or
tri-letter), a vocabulary is built according to every combination of three letters, and a
word is projected to this vocabulary based on the tri-letters it contains. In contrast to
the first type of basis, this method can significantly reduce the training complexity and
address the problem of word orthogonality and unseen words. Nevertheless, letters do
not carry on semantics by themselves; thus, two words with similar set of letter n-grams
may yield quite different semantic meanings, and two semantically similar words might
share very few letter n-grams. Figure 1 illustrates one example for each of these two
word representation methods.

Fig. 1. An example of how to use 1-of-v word vector and letter n-gram vector as basis to represent
a word

To address the limitations of the above word representation methods, we propose to
leverage the morphological knowledge to define new forms of basis for word represen-
tation, in order to reduce training complexity, enhance capability to generalize to new
emerging words, as well as preserve semantics of the word itself. In the following, we
will introduce two types of widely-used morphological knowledge and discuss how to
use them to define new basis for word representation.
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Root/Affix. As an important type of morphological knowledge, root and affix (prefix
and suffix) can be used to define a new space where each word is represented as a vector
of root/affix. Since most English words are composed by roots and affixes and both roots
and affixes yield semantic meaning, it is quite beneficial to represent words using the
vocabulary of roots and affixes, which may not only reduce the vocabulary size, but
also reflect the semantics of words. Figure 2 shows an example of using root/affix to
represent a word.

Fig. 2. An example of how to use root/affix and syllable to represent a word

Syllable. Syllable is another important type of morphological knowledge that can be
used to define the word representation. Similar to root/affix, using syllable can signifi-
cantly reduce the dimension of the vocabulary. Furthermore, since syllables effectively
encodes the pronunciation signals, they can also reflect the semantics of words to some
extent (considering that human beings can understand English words and sentences
based on their pronunciations). Meanwhile, we are able to cover any unseen words by
using syllables as vocabulary. Figure 2 presents an example of using syllables to repre-
sent a word.

2.2 Provide Additional Input Information

Existing works on deep learning for word embeddings employ different types of data
for different NLP tasks. For example, Mikolov et al [14] used text documents col-
lected from Wikipedia to obtain word embeddings; Collobert and Weston [4] leveraged
text documents to learn word embeddings for various NLP applications such as lan-
guage model and chunking; and, Huang et al [11] applied deep learning approaches
on queries and documents from click-through logs in search engine to generate word
representations targeting the relevance tasks. However, those various types of text data,
without extra information, can merely reflect partial information and usually cause se-
mantic ambiguity. Therefore, to learn more effective word embeddings, it is necessary
to leverage additional knowledge to address the challenges.

In particular, both syntactic and semantic knowledge can serve as additional inputs.
An example is shown in Figure 3. Suppose the 1-of-v word vector is used as basis for
word representations. To introduce extra knowledge beyond a word itself, we can use
entity categories or POS tags as the extension to the original 1-of-v word vector. For
example, given an entity knowledge graph, we can define an entity space. Then, a word
will be projected into this space such that some certain elements yield non-zero values
if the word belongs to the corresponding entity categories. In addition, relationship be-
tween words/entities can serve as another type of input information. Particularly, given
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Fig. 3. An example of using syntactic or semantic knowledge, such as entity category, POS tags,
and relationship, as additional input information

various kinds of syntactic and semantic relations, such as synonym, antonym, belonging-
to, is-a, etc., we can construct a relation matrix Rw for one word w (as shown in Fig-
ure 3), where each column corresponds to a word in the vocabulary, each row encodes
one type of relationship, and one element Rw(i, j) has non-zero value if w yield the
i-th relation with the j-th word.

2.3 Serve as Auxiliary Supervision

According to previous studies on deep learning for NLP tasks, different training samples
and objective functions are suitable for different NLP applications. For example, some
works [4, 14] define likelihood based loss functions, while some other work [11] lever-
ages cosine similarity between queries and documents to compute objectives. However,
all these loss functions are commonly used in the machine learning literature without
considering the uniqueness of text.

Fig. 4. Using syntactic and semantic knowledge as auxiliary objectives

Text related knowledge can provide valuable complement to the objective of the deep
learning framework. Particularly, we can create auxiliary tasks based on the knowledge
to assist the learning of the main objective, which can effectively regularize the learning
of the hidden layers and improve the generalization ability of deep neural networks so
as to achieve high-quality word embedding. Both semantic and syntactic knowledge
can serve as auxiliary objectives, as shown in Figure 4.
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Note that this multi-task framework can be applied to any text related deep learning
technique. In this work, we take the continuous bag-of-words model (CBOW) [14] as a
specific example. The main objective of this model is to predict the center word given
the surrounding context. More formally, given a sequence of training wordsw1,w2, · · ·,
wX , the main objective of the CBOW model is to maximize the average log probability:

LM =
1

X

X∑
x=1

log p(wx|Wd
x) (1)

whereWd
x = {wx−d, · · · , wx−1, wx+1, · · · , wx+d} denotes a 2d-sized training context

of word wx.
To use semantic and syntactic knowledge to define auxiliary tasks to the CBOW

model, we can leverage the entity vector, POS tag vector, and relation matrix (as shown
in Figure 3) of the center word as the additional objectives. Below, we take entity and
relationship as two examples for illustration. Specifically, we define the objective for
entity knowledge as

LE =
1

X

X∑
x=1

K∑
k=1

1(wx ∈ ek) log p(ek|Wd
x) (2)

where K is the size of entity vector; and 1(·) is an indicator function, 1(wx ∈ ek)
equals 1 if wx belongs to entity ek, otherwise 0; note that the entity ek could be denoted
by either a single word or a phrase. Moreover, assuming there are totally R relations,
i.e., there are R rows in the relation matrix, we define the objective for relation as:

LR =
1

X

X∑
x=1

R∑
r=1

λr

N∑
n=1

r(wx, wn) log p(wn|Wd
x) (3)

whereN is vocabulary size; r(wx, wn) equals 1 ifwx andwn have relation r, otherwise
0; and λr is an empirical weight of relation r.

3 Experiments

To evaluate the effectiveness of the knowledge-powered deep learning for word embed-
ding, we compare the quality of word embeddings learned with incorporated knowledge
to those without knowledge. In this section, we first introduce the experimental settings,
and then we conduct empirical comparisons on three specific tasks: a public analogical
reasoning task, a word similarity task, and a word completion task.

3.1 Experimental Setup

Baseline Model. In our empirical study, we use the continuous bag-of-words model
(CBOW) [14] as the baseline method. The code of this model has been made publicly
available1. We use this model to learn the word embeddings on the above dataset. In

1 http://code.google.com/p/word2vec/

http://code.google.com/p/word2vec/
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the following, we will study the effects of different methods for adding various types
of knowledge into the CBOW model. To ensure the consistency among our empirical
studies, we set the same number of embedding size, i.e. 600, for both the baseline model
and those with incorporated knowledge.

Fig. 5. Longman Dictionaries provide several types of morphological, syntactic, and semantic
knowledge

Table 1. Knowledge corpus used for our experiments (Type: MOR-morphological; SYN-
syntactic; SEM-semantic)

Corpus Type Specific knowledge Size

Morfessor MOR root, affix 200K
Longman MOR/SYN /SEM syllable, POS tagging, synonym, antonym 30K
WordNet SYN/SEM POS tagging, synonym, antonym 20K
Freebase SEM entity, relation 1M

Applied Knowledge. For each word in the Wikipedia dataset as described above, we
collect corresponding morphological, syntactic, and semantic knowledge from four data
sources: Morfessor [23], Longman Dictionaries2, WordNet [25], and Freebase3.
Morfessor provides a tool that can automatically split a word into roots, prefixes, and
suffixes. Therefore, this source allows us to collect morphological knowledge for each
word existed in our training data.
Longman Dictionaries is a large corpus of words, phrases, and meaning, consisting of
rich morphological, syntactic, and semantic knowledge. As shown in Figure 5, Long-
man Dictionaries provide word’s syllables as morphological knowledge, word’s syn-
tactic transformations as syntactic knowledge, and word’s synonym and antonym as
semantic knowledge. We collect totally 30K words and their corresponding knowledge
from Longman Dictionaries.

2 http://www.longmandictionariesonline.com/
3 http://www.freebase.com/

http://www.longmandictionariesonline.com/
http://www.freebase.com/
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WordNet is a large lexical database of English. Nouns, verbs, adjectives, and adverbs
are grouped into sets of cognitive synonyms (synsets), each expressing a distinct con-
cept. Synsets are interlinked by means of conceptual-semantic and lexical relations.
Note that WordNet interlinks not just word forms (syntactic information) but also spe-
cific senses of words (semantic information). WordNet also labels the semantic relations
among words. Therefore, WordNet provides us with another corpus of rich semantic and
syntactic knowledge. In our experiments, we sample 15K words with 12K synsets, and
there are totally 20K word-senses pairs.
Freebase is an online collection of structured data harvested from many online sources.
It is comprised of important semantic knowledge, especially the entity and relation in-
formation (e.g., categories, belonging-to, is-a). We crawled 1M top frequent words and
corresponding information from Freebase as another semantic knowledge base.
We summarize these four sources in Table 14.

3.2 Evaluation Tasks

We evaluate the quality of word embeddings on three tasks.
1. Analogical Reasoning Task:

The analogical reasoning task was introduced by Mikolov et al [16, 14], which de-
fines a comprehensive test set that contains five types of semantic analogies and nine
types of syntactic analogies5. For example, to solve semantic analogies such as Ger-
many : Berlin = France : ?, we need to find a vector x such that the embedding of x,
denoted as vec(x) is closest to vec(Berlin) - vec(Germany) + vec(France) according to
the cosine distance. This specific example is considered to have been answered correctly
if x is Paris. Another example of syntactic analogies is quick : quickly = slow : ?, the
correct answer of which should be slowly. Overall, there are 8,869 semantic analogies
and 10,675 syntactic analogies.

In our experiments, we trained word embeddings on a publicly available text corpus6,
a dataset about the first billion characters from Wikipedia. This text corpus contains
totally 123.4 million words, where the number of unique words, i.e., the vocabulary
size, is about 220 thousand. We then evaluated the overall accuracy for all analogy
types, and for each analogy type separately (i.e., semantic and syntactic).
2. Word Similarity Task:

A standard dataset for evaluating vector-space models is the WordSim-353 dataset
[7], which consists of 353 pairs of nouns. Each pair is presented without context and
associated with 13 to 16 human judgments on similarity and relatedness on a scale
from 0 to 10. For example, (cup, drink) received an average score of 7.25, while (cup,
substance) received an average score of 1.92. Overall speaking, these 353 word pairs
reflect more semantic word relationship than syntactic relationship.

In our experiments, similar to the Analogical Reasoning Task, we also learned the
word embeddings on the same Wikipedia dataset. To evaluate the quality of learned

4 We plan to release all the knowledge corpora we used in this study after the paper is published.
5 http://code.google.com/p/word2vec/source/browse/trunk/
questions-words.txt

6 http://mattmahoney.net/dc/enwik9.zip

http://code.google.com/p/word2vec/source/browse/trunk/questions-words.txt
http://code.google.com/p/word2vec/source/browse/trunk/questions-words.txt
http://mattmahoney.net/dc/enwik9.zip
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word embedding, we compute Spearman’s ρ correlation between the similarity scores
computed based on learned word embeddings and human judgments.
3. Sentence Completion Task:

Another advanced language modeling task is Microsoft Sentence Completion Chal-
lenge [27]. This task consists of 1040 sentences, where one word is missing in each
sentence and the goal is to select word that is the most coherent with the rest of the sen-
tence, given a list of five reasonable choices. In general, accurate sentence completion
requires better understanding on both the syntactic and semantics of the context.

In our experiments, we learn the 600-dimensional embeddings on the 50M training
data provided by [27], with and without applied knowledge, respectively. Then, we
compute score of each sentence in the test set by using each of the sliding windows
(window size is consistent with the training process) including the unknown word at
the input, and predict the corresponding central word in a sentence. The final sentence
score is then the sum of these individual predictions. Using the sentence scores, we
choose the most likely sentence to answer the question.

3.3 Experimental Results

Effects of Defining Knowledge-Powered Basis for Word Representation. As intro-
duced in Section 2.1, we can leverage morphological knowledge to design new basis
for word representation, including root/affix-based and syllable-based bases. In this ex-
periment, we separately leverage these two types of morphological basis, instead of the
conventional 1-of-v word vector and letter n-gram vector, in the CBOW framework
(as shown in Figure 6). Then, we compare the quality of the newly obtained word em-
beddings with those computed by the baseline models. Note that, after using root/affix,
syllable, or letter n-gram as input basis, the deep learning framework will directly gen-
erate the embedding for each root/affix, syllable, or letter n-gram; the new embedding
of a word can be obtained by aggregating the embeddings of this word’s morphological
elements.

Fig. 6. Define morphological elements (root, affix, syllable) as new bases in CBOW

Table 2 shows the accuracy of analogical questions by using baseline word embed-
dings and by using those learned from morphological knowledge-powered bases, re-
spectively. As shown in Table 2, different bases yield various dimensionalities; and,
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Table 2. The accuracy of analogical questions by using word embeddings learned with different
bases for word representation

Representation Dimensionality Semantic Accuracy Syntactic Accuracy Overall Accuracy Overall Relative Gain

Original words 220K 16.62% 34.98% 26.65% -
Root/affix 24K 14.27% 44.15% 30.59% 14.78%
Syllable 10K 2.67% 18.72% 11.44% -57.07%

Letter 3-gram 13K 0.18% 9.12% 5.07% -80.98%
Letter 4-gram 97K 17.29% 32.99% 26.89% 0.90%
Letter 5-gram 289K 16.03% 34.27% 26.00% -2.44%

using root/affix to represent words can significantly improve the accuracy with about
14% relative gain, even with a much lower input dimensionality than the original 1-of-v
representation.

However, syllable and letter 3-gram lead to drastically decreasing accuracy, probably
due to their low dimensionalities and high noise levels. In addition, as the average word
length of the training data is 4.8, using letter 4-gram and 5-gram is very close to using
1-of-V as basis. Therefore, as shown in Table 2, letter 4-gram and 5-gram can perform
as good as baseline.

Table 3 illustrate the performance for the word similarity task by using word em-
beddings trained from different bases. From the table, we can find that, letter 4-gram
and 5-gram yields similar performances to the baseline; however, none of root/affix,
syllable, and letter tri-gram can benefit word similarity task.

Table 3. Spearman’s ρ correlation on WordSim-353 by using word embeddings learned with
different bases

Model ρ× 100 Relative Gain

Original words 60.1 -
Root/affix 60.6 0.83%
Syllable 17.9 -70%
3-gram 14.2 -76%
4-gram 60.3 0.33%
5-gram 60.0 -0.17%

For the sentence completion task, Table 4 compares the accuracy by using word
embeddings trained with different bases. Similar to the trend of the first task, except
Root/affix that can raise the accuracy by 3-4%, other bases for word representation
have little or negative influence on the performance.

Table 4. Accuracy of different models on the Microsoft Sentence Completion Challenge

Model Accuracy Relative gain

Original words 41.2% -
Root/affix 42.7% 3.64%
Syllable 40.0% -2.91%
3-gram 41.3% 0.24%
4-gram 40.8% -0.97%
5-gram 41.0% -0.49%
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Effects of Providing Additional Knowledge-Augmented Input Information. In this
experiment, by using the method described in Section 2.2, we add syntactic and seman-
tic knowledge of each input word as additional inputs into the CBOW model (as shown
in Figure 7). Then, we compare the quality of the newly obtained word embeddings
with the baseline.

Fig. 7. Add syntactic and semantic knowledge of input word as additional inputs in CBOW

For the analogical reasoning task, Table 5 reports the accuracy by using wording em-
beddings learned from the baseline model and that with knowledge-augmented inputs,
respectively. From the table, we can find that using syntactic knowledge as additional
input can benefit syntactic analogies significantly but drastically hurt the semantic ac-
curacy, while semantic knowledge gives rise to an opposite result. This table also illus-
trates that using both semantic and syntactic knowledge as additional inputs can lead to
about 24% performance gain.

Table 5. The accuracy of analogical questions by using word embeddings learned with different
additional inputs

Raw Data Semantic Accuracy Relative Gain Syntactic Accuracy Relative Gain Total Accuracy Relative Gain

Original words 16.62% 34.98% 26.65%
+ Syntactic knowledge 6.12% −63.18% 46.84% 33.90% 28.67% 7.58%
+ Semantic knowledge 49.16% 195.78% 17.96% −48.66% 31.38% 17.74%

+ both knowledge 27.37% 64.68% 36.33% 3.86% 33.22% 24.65%

Furthermore, Table 6 illustrates the performance of the word similarity task on differ-
ent models. From the table, it is clear to see that using semantic knowledge as additional
inputs can cause a more than 4% relative gain while syntactic knowledge brings little
influence on this task.

Table 6. Spearman’s ρ correlation on WordSim-353 by using word embeddings learned with
different additional input

Model ρ× 100 Relative Gain

Original words 60.1 -
+ Syntactic knowledge 60.6 0.83%
+ Semantic knowledge 62.6 4.16%

+ both knowledge 60.9 1.33%
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Table 7. Accuracy of different models on the Microsoft Sentence Completion Challenge

Model Accuracy Relative Gain

Original words 41.2% -
+ Syntactic knowledge 43.7% 6.07%
+ Semantic knowledge 44.1% 7.04%

+ Both knowledge 43.8% 6.31%

Moreover, Table 7 shows the accuracy of the sentence completion task by using mod-
els with different knowledge-augmented inputs. From the table, we can find that using
either semantic or syntactic knowledge as additional inputs can benefit the performance,
with more than 6% and 7% relative gains, respectively.

Effects of Serving Knowledge as Auxiliary Supervision. As introduced in Section
2.3, in this experiment, we use either separate or combined syntactic and semantic
knowledge as auxiliary tasks to regularize the training of the CBOW framework (as
shown in Figure 8). Then, we compare the quality of the newly obtained word embed-
dings with those computed by the baseline model.

Fig. 8. Use syntactic and semantic knowledge as auxiliary objectives in CBOW

Table 8 illustrates the accuracy of analogical questions by using word embeddings
learned from the baseline model and from those with knowledge-regularized objectives,
respectively. From the table, we can find that leveraging either semantic or syntactic
knowledge as auxiliary objectives results in quite little changes to the accuracy, and
using both of them simultaneously can yield 1.39% relative improvement.

Furthermore, Table 9 compares different models’ performance on the word similarity
task. From the table, we can find that using semantic knowledge as auxiliary objective
can result in a significant improvement, with about 5.7% relative gain, while using
syntactic knowledge as auxiliary objective cannot benefit this task. And, using both
knowledge can cause more than 3% improvement.

Moreover, for the sentence completion task, Table 10 shows the accuracy of using
different knowledge-regularized models. From the table, we can find that, while syntac-
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Table 8. The accuracy of analogical questions by using word embeddings learned from baseline
model and those with knowledge-regularized objectives

Objective Semantic Accuracy Relative Gain Syntactic Accuracy Relative Gain Total Accuracy Relative Gain

Original words 16.62% 34.98% 26.65%
+ Syntactic knowledge 17.09% 2.83% 34.74% −0.69% 26.73% 0.30%
+ Semantic knowledge 16.43% −1.14% 35.33% 1.00% 26.75% 0.38%

+ both knowledge 17.59% 5.84% 34.86% −0.34% 27.02% 1.39%

Table 9. Spearman’s ρ correlation on WordSim-353 by using baseline model and the model
trained by knowledge-regularized objectives

Model ρ× 100 Relative Gain

Original words 60.1 -
+ Syntactic knowledge 59.8 -0.50%
+ Semantic knowledge 63.5 5.66%

+ both knowledge 62.1 3.33%

tic knowledge does not cause much accuracy improvement, using semantic knowledge
as auxiliary objectives can significantly increase the performance, with more than 9%
relative gain. And, using both knowledge as auxiliary objectives can lead to more than
7% improvement.

Table 10. Accuracy of different models on the Microsoft Sentence Completion Challenge

Model Accuracy Relative Gain

Original words 41.2% -
+ Syntactic knowledge 41.9% 1.70%
+ Semantic knowledge 45.2% 9.71%

+ both knowledge 44.2% 7.28%

3.4 Discussions

In a summary, our empirical studies investigate three ways (i.e., new basis, additional
inputs, and auxiliary supervision) of incorporating knowledge into three different text
related tasks (i.e., analogical reasoning, word similarity, and sentence completion), and
we explore three specific types of knowledge (i.e., morphological, syntactic, and se-
mantic). Figure 9 summarizes whether and using which method each certain type of
knowledge can benefit different tasks, in which a tick indicates a relative gain of larger
than 3% and a cross indicates the remaining cases. In the following of this section, we
will take further discussions to generalize some guidelines for incorporating knowledge
into deep learning.

Different Tasks Seek Different Knowledge. According to the task descriptions in
Section 3.2, it is clear to see that the three text related tasks applied in our empirical
studies are inherently different to each other, and such differences further decide each
task’s sensitivity to different knowledge.
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Specifically, the analogical reasoning task consists of both semantic questions and
syntactic questions. As shown in Figure 9, it is beneficial to applying both syntactic and
semantic knowledge as additional input into the learning process. Morphological knowl-
edge, especially root/affix, can also improve the accuracy of this task, because root/affix
plays a key role in addressing some of the syntactic questions, such as adj : adv, compar-
ative : superlative, the evidence of which can be found in Table 2 that illustrates using
root/affix as basis can improve syntactic accuracy more than semantic accuracy.

Fig. 9. A summary of whether and using which method each certain type of knowledge can benefit
different tasks

As aforementioned, the goal of the word similarity task is to predict the semantic
similarity between two words without any context. Therefore only semantic knowledge
can enhance the learned word embeddings for this task. As shown in Table 6 and 9,
it is clear to see that using semantic knowledge as either additional input or auxiliary
supervision can improve the word similarity task.

As a sentence is built to represent certain semantics under human defined morpho-
logical and syntactic rules, sentence completion task requires accurate understanding on
the semantics of the context, the syntactic structure of the sentence, and the morpholog-
ical rules for key words in it. Thus, as shown in Figure 9, all three types of knowledge
can improve the accuracy of this task if used appropriately.

Effects of How to Incorporate Different Knowledge. According to our empirical
studies, syntactic knowledge is effective to improve analogical reasoning and sentence
completion only when it is employed as additional input into the deep learning frame-
work, which implies that syntactic knowledge can provide valuable input information
but may not be suitable to serve as regularized objectives. Our empirical studies also
demonstrate that, using semantic knowledge as either additional input or regularized
objectives can improve the performance of the word similarity task and sentence com-
pletion tasks. Furthermore, comparing Table 9 and 10 with Table 6 and 7, we can find
that applying semantic knowledge as auxiliary objectives can achieve slightly better
performance than using it as additional input. However, for the analogical reasoning
task, semantic knowledge is effective only when it is applied as additional input.
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4 Related Work

Obtaining continious word embedding has been studied for a long time [9]. With the
progress of deep learning, deep neural network models have been applied to obtain
word embeddings. One of popular model architectures for estimating neural network
language model (NNLM) was proposed in [1], where a feed-forward neural network
with a linear projection layer and a non-linear hidden layer was used to learn jointly the
word embedding and a statistical language model. Many studies follow this approach
to improve and simplify text mining and NLP tasks [4–6, 8, 11, 19, 22, 20, 17, 10]. In
these studies, estimation of the word embeddings was performed using different model
architectures and trained on various text corpora.

For example, Collobert et al [5] proposed a unified neural network architecture to
learn adequate internal representations on the basis of vast amounts of mostly unla-
beled training data, to deal with various natural language processing tasks. In order to
adapt the sequential property of language modeling, a recurrent architecture of NNLM
was present in [13], referred as RNNLM, where the hidden layer at current time will be
recurrently used as input to the hidden layer at the next time. Huang et al [11] devel-
oped a deep structure that project queries and documents into a common word embed-
ding space where the query-document similarity is computed as the cosine similarity.
The word embedding model is trained by maximizing the conditional likelihood of the
clicked documents for a given query using the click-through data. Mikolov et al [14, 15]
proposed the continuous bag-of-words model (CBOW) and the continuous skip-gram
model (Skip-gram) for learning distributed representations of words from large amount
of unlabeled text data. Both models can map the semantically or syntactically similar
words to close positions in the learned embedding space, based on the principal that the
context of the similar words are similar.

Recent studies have explored knowledge related word embedding, the purpose of
of which is though quite different. For example, [3] focused on learning structured
embeddings of knowledge bases; [18] paid attention to knowledge base completion;
and [24] investigated relation extraction from free text. They did not explicitly study
how to use knowledge to enhance word embedding. Besides, Luong et al [12] proposed
to apply morphological information to learn better word embedding. But, it did not
explore other ways to leverage various types of knowledge.

5 Conclusions and Future Work

In this paper, we take an empirical study on using morphological, syntactic, and seman-
tic knowledge to achieve high-quality word embeddings. Our study explores these types
of knowledge to define new basis for word representation, provide additional input in-
formation, and serve as auxiliary supervision in deep learning framework. Evaluations
on three text related tasks demonstrated the effectiveness of knowledge-powered deep
learning to produce high-quality word embeddings in general, and also reveal the best
way of using each type of knowledge for a given task.
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For the future work, we plan to explore more types of knowledge and apply them
into the deep learning process. We also plan to study the co-learning of high-quality
word embeddings and large-scale reliable knowledge.
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Abstract. Many real-world data sets, like data from social media or
bibliographic data, can be represented as heterogeneous networks with
several vertex types. Often additional attributes are available for the
vertices, such as keywords for a paper. Clustering vertices in such net-
works, and analyzing the complex interactions between clusters of differ-
ent types, can provide useful insights into the structure of the data. To
exploit the full information content of the data, clustering approaches
should consider the connections in the network as well as the vertex at-
tributes. We propose the density-based clustering model TCSC for the
detection of clusters in heterogeneous networks that are densely con-
nected in the network as well as in the attribute space. Unlike previous
approaches for clustering heterogeneous networks, TCSC enables the de-
tection of clusters that show similarity only in a subset of the attributes,
which is more effective in the presence of a large number of attributes.

1 Introduction

In many applications, data of various kinds are available, and there is a need for
analyzing such data. Clustering, the task of grouping objects based on their sim-
ilarity, is one of the most important data mining tasks, and clustering algorithms
for different kinds of data exist. Graph clustering aims at grouping the vertices
of a network into clusters such that many edges between vertices of the same
cluster exist, i.e. the vertices are densely connected. While most graph cluster-
ing methods are constrained to homogeneous networks (networks with a single
vertex type), real-world data can often better be represented by heterogeneous
networks with several vertex types. For example, bibliographic data can be rep-
resented as a network with the vertex types “paper” and “author”. When we
consider heterogeneous networks, a novel challenge for clustering arises: Besides
detecting clusters, clustering approaches should also analyze the interactions be-
tween clusters of different types, e.g. “which groups of authors are interested in
which groups of papers?” Furthermore, real-world data often contains additional
information (“attributes”) about the vertices of a graph. E.g., a “paper” vertex
can be further described by a vector of keywords. To exploit the full information
content of the data, the similarity of the vertex attributes should be considered
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Paper 
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Author 
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Fig. 1. Example author-paper clustering

for the clustering, as well as the connections in the network. An important as-
pect is that not all of the attributes may be relevant for a cluster. E.g., for a
cluster of papers on similar topics, we would expect the papers to have some,
but not all keywords in common. Thus, we aim at detecting clusters of vertices
in heterogeneous networks that are densely connected and also show similarity
in a subset of the attributes (called subspace), similar to the principle of sub-
space clustering for vector data [8]. To the best of our knowledge, there exists
no previous approach for subspace clustering in heterogeneous networks.

In principle, it would be possible to project the network to a homogeneous net-
work just containing vertices of one of the types (e.g. build a co-author network
by connecting authors with common papers). However, by doing this informa-
tion about the other types (e.g. the topics of the papers) is lost. Furthermore,
an important aspect in our work is analyzing the connections between clusters
of different types, which would not be possible at all in such a setting. In our
experimental section, we show the superiority of our approach over a baseline
using such a projection.

In our work, we consider heterogeneous networks that contain edges between
vertices of different types (e.g. a paper is connected to its authors), but can also
contain edges between vertices of the same type (e.g. citations between papers).
Furthermore, for each of the vertex types there can be additional attributes. In
such networks, we want to cluster the vertices of each type such that the clusters
of different types interact with each other. An important challenge is how to
model the interactions between the clusters. Intuitively, two clusters (of different
types) are connected if the vertices of each cluster are densely connected via the
vertices of the other cluster. Consider the example in Fig. 1. Here we observe
two author clusters and three paper clusters (two of which are overlapping). The
connections between the clusters indicate that the vertices of those clusters are
connected by many edges. Naturally, a group of authors can publish papers about
different topics, and also different groups of authors publish papers on the same
topic. Thus it makes sense that an author cluster can be connected to several
paper clusters and vice versa. Each cluster can interact with a different number
of clusters. Therefore, just connecting each cluster to a specified number of other
clusters would be problematic. Thus, in our approach the number of connections
of a cluster is not restricted.

We observe that there are different ways to represent a data set as a het-
erogeneous network. Information about entities (e.g. words contained in papers)
can be modeled in different ways: Either as an additional vertex type or as an
attribute of another vertex type. In our work, we model only those informa-
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tion types as vertex types that we want to cluster. Other types of information
are modeled as attributes. Furthermore, we want to highlight that there is no
unique definition of the clustering problem in heterogeneous networks. The ex-
isting approaches vary greatly in their clustering objectives. Some approaches
(e.g. [15]) cluster only the vertices of one type, while the vertices of other types
are considered as “attribute types” of the clustered type. Other approaches (e.g.
[13]) aim at clustering the vertices of all types such that each cluster contains
vertices of different types. In Fig. 1, those approaches would either partition the
authors into three clusters or merge two of the paper clusters in order to find a
clustering of both types. Other approaches ([16], [17]) partition the vertices of
each type separately, with the aim that the group membership of two vertices
determines the probability of an edge between them. In this paper1, we present
the cluster model TCSC (Typed Combined Subspace Cluster), which belongs to
the last, most general, category. In contrast to the previous approaches, TCSC
additionally considers the similarity of vertices in subspaces of their attributes
and allows the clusters to overlap, which makes sense in many applications.
However, redundancy in the clustering result due to too much overlap is avoided
by using a redundancy model. We introduce the algorithm HSC (Heterogeneous
Subspace Clustering) for detecting TCSC clusters and evaluate it in experiments
on real-world data sets.

2 Related Work

Combined Clustering of Graph and Attribute Data. Recently, several cluster-
ing approaches have been proposed that consider (homogeneous) graphs with
vertex attributes. These approaches can be seen as a combination of graph clus-
tering and vector clustering approaches. However, they mostly rely on fullspace-
clustering on the vertex attributes (e.g. [12,20,19]) or only consider binary at-
tributes [1]. The approaches [10,6,7] propose the combination of subspace clus-
tering and graph clustering, aiming at finding clusters of vertices that are densely
connected and as well show similar attribute values in a subset of their attributes.
However, none of them considers heterogeneous networks.

Clustering in Heterogeneous Networks. The existing approaches for cluster-
ing in heterogeneous networks vary greatly in the types of networks that they
consider, as well as in their clustering objectives. Several approaches [4,18] con-
sider graphs with a single vertex type and multiple edge types. In some cases,
such networks are called multi-dimensional [18] or multislice [11] networks. [4]
considers graphs with multiple edge types and edge attributes. In such graphs,
densely connected clusters are detected that also have similar attribute values.
Other approaches [2,16] consider bipartite graphs: [2] defines a null model for
modularity which considers bipartite networks and detects communities based
on this measure. [16] proposes a new modularity measure for bipartite graphs,
resulting in one partition of the vertices for each vertex type.

1 The contents of this paper are also included in the first author’s PhD thesis [3].
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There also exist approaches that can handle graphs with an arbitrary number
of vertex types: [5,15] cluster star-structured heterogeneous networks with one
central type, where only the clustering of the vertices of the central type is
optimized. In [14], networks with several vertex types are considered, which are
not restricted to star-structured networks. The user has to specify a target type,
i.e. a vertex type that should be clustered. The other types are called “feature
types” and are used like attributes of the target type vertices. [13] considers a
heterogeneous network with incomplete vertex attributes. The authors mention
that only a subset of the attributes may be relevant for the clustering (similar to
the idea of subspace clustering). However, in this approach the user has to specify
the relevant set of attributes. In the resulting clustering, each cluster can contain
vertices of every type. The clustering is mostly based on the attributes, while the
links are only used to ensure a “structural consistency” (i.e. connected vertices
are clustered together with higher probability). However, the resulting clusters
do not have to be dense or even connected in the network. [9] propose a random-
walk based approach for community detection in heterogeneous networks, which
aims at finding a single community based on a set of seed items.

The most similar approach to our work is [17]. This approach considers evolv-
ing multi-mode networks, i.e. networks with different types of vertices that evolve
over time. The vertices of each type are clustered simultaneously, with the aim
that the group membership of two vertices determines their interaction. However,
the approach does not provide information about connections between groups.
Furthermore, clusters should evolve smoothly over the time steps. The proposed
method only considers multi-partite networks, but extensions for considering
edges between vertices of the same type and vertex attributes are mentioned.
In our experimental section, we compare this approach (with the extension for
using attributes) with our approach.

3 The TCSC Clustering Model

In this section, we introduce our TCSC model for clustering in heterogeneous
networks. Basically, a cluster consists of a set of vertices of the same type that
are densely connected via the vertices of the other types and show similar at-
tribute values in a subset of their dimensions (this subset is called the subspace
of the cluster). The model is partly based on the DB-CSC model [7] for homoge-
neous networks with vertex attributes. A new important challenge for heteroge-
neous networks is the detection of interactions between the clusters of different
types.

For defining the clusters, we adopt the principle of density-based clustering,
which allows the detection of dense clusters without restricting them to certain
shapes or sizes. Basically, in density-based clustering clusters are defined as dense
regions in the data space that are separated by sparse regions. In our work, we
aim at detecting clusters that are not only dense considering their attribute
values, but also are densely connected in the network via the vertices of their
interacting clusters of other types. Thus, the clusters in our model correspond
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to dense regions in the graph as well as in a subspace of the attribute space.
Therefore, we define the local neighborhood of a vertex such that it represents
the graph neighborhood as well as the neighborhood in the attribute space.

Formally, the input for our model is a vertex-labeled graph with T different
vertex types. Formally, G = (V,E, t, l) with vertices V , edges E, a type indicator
function t : V → {1, . . . , T } and a vertex labeling function l. Let Vi denote the
set of vertices of type i: Vi = {v ∈ V : t(v) = i} and Dimi the set of dimensions
for type i, then l : Vi → R|Dimi|.

Neighborhood Definitions. For the clustering, we do not only consider vertices
as neighbors that are directly connected by an edge, but also vertices that are
connected via other vertices. For example, in a paper-author network we would
consider two authors as neighbors if they are co-authors of a common paper,
i.e. they are connected via two hops in the network. Therefore, we use the k-
neighborhood of a vertex to define its local neighborhood in the graph. Formally,
the graph k-neighborhood is defined as follows:

Definition 1 (Graph k-neighborhood). A vertex u is k-reachable from a
vertex v (over a set of vertices V ) if ∃v1, . . . , vk ∈ V : v1 = v ∧ vk = u ∧ ∀j ∈
{1, . . . , k−1} : (vj , vj+1) ∈ E. The graph k-neighborhood of vertex v ∈ V is given
by: NV

k (v) = {u ∈ V | u is j-reachable from v (over V ) ∧ j ≤ k} ∪ {v}.
Furthermore, we define the ε-neighborhood of a vertex in the attribute space.
Naturally, this neighborhood can only contain vertices of the same type:

Definition 2 (ε-neighborhood). The distance between two vertices x and y of
type i w.r.t. a subspace S ⊆ Dimi is defined as the maximum norm2 distS(x, y) =
maxd∈S |x[d] − y[d]| with the special case dist∅(x, y) = 0. The ε-neighborhood
of v ∈ V for a subspace S ⊆ Dimt(v) is defined as: NV

ε,S(v) = {u ∈ Vt(v) |
distS(l(u), l(v)) ≤ ε}
As we want to consider the connections in the graph and the similarity in the
attribute space simultaneously, we define a combined local neighborhood:3

Definition 3 (Combined local neighborhood). The combined neighborhood
of v ∈ V w.r.t. a subspace S ⊆ Dimt(v) is defined as: NV

S (v) = NV
k (v)∩NV

ε,S(v)

This neighborhood contains only vertices of the same type. This makes sense
for the clustering as each cluster should only contain vertices of a single type. In
Fig. 2, the combined neighborhood for k = 2, ε = 1 of vertex A considering only
dimension 1 would be NV

{1}(A) = {A,B,C,D,E}. For dimension 2, NV
{2}(A) =

{A,C,D,E, F}.
Modeling Clusters and their Interactions. In our cluster definition, we have to

ensure that all objects in a cluster are dense w.r.t. the combined neighborhood

2 We choose the maximum norm because we want to consider two vertices similar only
if they are similar in all of the dimensions in S.

3 Another idea would be to combine the graph and attribute distance into a unified
distance function. However, in that case a very small distance in the graph could
even out a larger distance in the attribute space and vice versa. Instead, we want
the vertices in the combined neighborhood to be similar in both regards.
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Fig. 3. Clustering for the example network

(ensured by property (1) in Def. 4) and the cluster is density-connected via the
neighborhoods (property (2)). Furthermore, we want to detect the interactions
between clusters of different types. Intuitively, two clusters of different types
should be “connected” to each other if many edges exist between the vertices of
these clusters. In other words, the connections to the vertices of the other cluster
should induce density in a cluster. Therefore, we define a cluster C of vertices of
type i w.r.t. a set of clusters of the other types. We call this set of clusters the
adjacent clusters of C, denoted by A(C). C has to be dense w.r.t. the union of
the adjacent clusters. Therefore, the combined neighborhood is computed using
only the vertices of the cluster itself and the union of the adjacent clusters:

Definition 4 (Typed Combined Subspace Cluster). A typed combined
subspace cluster C = (O,S) of type i in a graph G = (V,E, t, l) w.r.t. the pa-
rameters ki, εi and minPtsi and a set of adjacent clusters A(C) = {(Oj , Sj) |
Oj ⊆ (V \ Vi), j = 1, . . . , |A(C)|} consists of a set of vertices O ⊆ Vi and a set
of relevant dimensions S ⊆ Dimi

4 that fulfill the following properties:

(1) density: ∀v ∈ O : |NO∪(∪1≤j≤aC
Oj)

S (v)| ≥ minPtsi
(2) connectivity: ∀u, v ∈ O : ∃w1, . . . , wl ∈ O : w1 = u ∧ wl = v ∧ ∀i ∈

{1, . . . , l− 1} : wi ∈ N
O∪(∪1≤j≤aC

Oj)

S (wi+1)
(3) density w.r.t. all adjacent clusters: ∀(Oj , Sj) ∈ A : ∃W ⊆ O : (W,S) forms a

cluster w.r.t. the set A(W ) = {(Oj , Sj)} (for non-bipartite graphs: ignoring
the edges (u, v) ∈ E : u, v ∈ O)

(4) reciprocity: ∀Cj ∈ A(C) : C ∈ A(Cj)
(5) maximality: ¬∃O′ ⊃ O : O′ fulfills (1) and (2)

To avoid adding unrelated clusters, we require that each adjacent cluster has
to induce density in at least a subset of C (property (3)). If there exist edges
between vertices of the same type, we ignore them for testing this density (else,
the cluster could be dense considering those edges alone, and thus the cluster
definition would be fulfilled w.r.t. arbitrary other clusters). To avoid adding

4 Generally, we require the subspace S to be non-empty, such that the vertices of
the cluster show similarity in at least one dimension. However, in a heterogeneous
network it is possible that not all of the vertex types have attributes. In this case, it
makes sense to allow the detection of clusters with empty subspace. Thus, the user
can choose if clusters with empty subspace should be included in the result.
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clusters that just incidentally induce density in a small subset of C, we require
a reciprocity of the adjacency between clusters (property (4)). Please note that
we do not require a maximality property on A(C) and redundant clusters can
be removed from A(C) later. Thus, a cluster C can fulfill the cluster definition
for different sets A(C). How to finally select A(C) for the clustering result is
discussed below.

The example network in Fig. 2 contains the following clusters (shown in Fig.
3) for the parameters k1 = k2 = 2, ε1 = ε2 = 1,minPts1 = minPts2 = 3:

– C1 = ({A,B,C,D,E}, {1, 2}), connected to C3

– C2 = ({A,B,C,D,E, F}, {2}), connected to C3

– C3 = ({1, 2, 3}, {1}), connected to C1, C2

– C4 = ({H, J,K}, {1, 2}), connected to C5

– C5 = ({5, 6, 7}, {1, 2}), connected to C4

Interestingness of a TCSC Cluster. As we detect clusters in different subspaces,
we can possibly find quite similar clusters in similar subspaces, like C1 and C2. To
avoid redundancy in the result, we have to be able to decide which of the clusters
is more interesting for our clustering result. Generally, we consider clusters with
many vertices as interesting. However, a higher dimensionality also makes a
cluster more interesting. Therefore, we introduce an interestingness function for
clusters that considers both criteria. The interestingness function for a typed
cluster is normalized by the overall number of vertices and the dimensionality
of the corresponding type:

Definition 5 (Interestingness Measure). The interestingness of a TCSC

cluster C = (O,S) of type i is defined as Q(C) = |O|·|S|
|Vi|·|Dimi| if |Dimi| > 0, and

Q(C) = |O|
|Vi| else.

In our example, Q(C1) = 0.35 and Q(C2) = 0.3. Thus, the two-dim. cluster C1

is preferred as it is only slightly smaller than the similar one-dim. cluster C2.

Parameters. Our model requires several parameters: ε, minPts and k have to
be set for each type. Setting these parameters for each type separately leads to
a greater flexibility of the model: Especially if the number of vertices for the
different types strongly differs, we should not expect the clusters of each type
to fulfill e.g. the same minPts value. In Section 5, we present a method for
finding good parameter settings for ε and minPts. For k, a suitable setting can
be directly obtained from the structure of the graph. E.g. for a bipartite paper-
author network, kauthor = 2 is a good choice as we need two hops to reach one
author from another author. If there exist intra-type edges, we can consider them
additionally by setting kauthor = 3. For networks with more types, the distances
between vertices of the same type can be larger, if vertices of different types
have to be traversed. In this case, higher k values are required. Unlike other
approaches, our model does not require the number of clusters as a parameter.

Selecting the Final Clustering Result. In order to avoid redundant clusters in
the result, we first define a binary redundancy relation between two clusters of
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the same type, adopting the definition from the DB-CSC model [7]. A cluster is
considered redundant w.r.t. another cluster if its quality is lower and the clusters
show a high overlap in their vertex sets as well as their relevant subspaces:

Definition 6 (Redundancy between clusters). Given the redundancy pa-
rameters robj , rdim ∈ [0, 1], the binary redundancy relation ≺red is defined by:

For all clusters C = (O,S), C′ = (O′, S′): C ≺red C′ ⇔ Q(C) < Q(C′) ∧
|O∩O′|

|O| ≥ robj ∧ |S∩S′|
|S| ≥ rdim

In Fig. 3, C2 ≺red C1 (e.g. for robj = rdim = 0.5).
Now we can define the final result set, which should not contain clusters that

are redundant w.r.t. each other and has to be maximal w.r.t. this property.
Furthermore, we ensure a maximality property for the set of adjacent clusters
for a cluster C: If C,A(C) together form a cluster according to Def. 4, then in the
TCSC clustering the set of adjacent clusters of C must contain all the clusters
in A(C) except those that are redundant w.r.t. another cluster in A(C).

Definition 7 (TCSC clustering). Given the set Clusters of all TCSC clus-
ters, the resulting TCSC clustering Result ⊆ Clusters fulfills

– redundancy-freeness: ¬∃Ci, Cj ∈ Result : Ci ≺red Cj

– maximality: ∀Ci ∈ Clusters \Result : ∃Cj ∈ Result : Ci ≺red Cj

– maximality for adjacent clusters: ∀C : ∀Ci ∈ {Cx | C fulfills Def. 4 w.r.t.
A(C) ∪ {Cx}} \A(C) : ∃Cj ∈ A(C) : Ci ≺red Cj

Furthermore, we have to consider the connections between clusters of different
types. A cluster C ∈ Result may be adjacent to a cluster of another type that
is excluded from the result due to redundancy. In this case, by just deleting this
cluster we would lose the information about this connection. For solving this
problem, we use the following theorem:

Theorem 1. For the clustering defined in Def. 7 it holds: ∀C ∈ Result : ∀CA ∈
A(C) : (CA ∈ Result ∨ ∃CA′ ∈ Result : CA ≺red CA′).

Proof Assume ∃C ∈ Result, CA ∈ A(C), CA ∈ Clusters \ Result. Following
the maximality property in Def. 7 it holds ∃CA′ ∈ Result : CA ≺red CA′ .

I.e., if an adjacent cluster CA is excluded from the result, there exists a similar
cluster CA′ that is contained in the result. In our implementation, we “reconnect”
the cluster C to CA′ , if this connection does not yet exist. In Fig. 3, the result
is {C1, C3, C4, C5}. 
�

4 The HSC Algorithm

In this section we give a short overview of the HSC algorithm. While HSC is
partly based on DB-CSC [7], for heterogeneous networks novel challenges arise,
which we discuss in this section. First, we explain the overall processing of the
algorithm, followed by a detailed description of the refinement of a cluster.
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method: main()
1 Result = ∅ // current result set
2 queue = ∅ // priority queue, sorted by quality
3 for i = 1, · · · , T do A(Vi) = {Vj | 1 ≤ j ≤ T, j �= i}
4 Detect set netclus of network-only clusters
5 if network-only clusters are allowed then
6 add all network clusters to queue

7 for C ∈ netclus, d ∈ Dimt(O) do DFS trav(O, {d})
8 repeat
9 Sort queue ascendingly by dimensionality

10 for C = (O,S) ∈ queue : A(C) has changed do
11 refine cluster(C)

12 until adjacency between clusters converges
13 while queue �= ∅ do
14 remove first cluster Clus from queue
15 if ∃C = (O,S) ∈ Result : Clus ≺red C then
16 “reconnect” Clus’s connections to C
17 goto line 13 // discard redundant cluster

18 Result = Result ∪ {Clus}
19 return Result
method: DFS trav(vertex set O of type t, subspace S)
20 foundClusters = refine cluster(C = (O,S))
21 add foundClusters to queue
22 for Ci = (Oi, S) ∈ foundClusters do
23 for d ∈ {max{S} + 1, . . . , Dimt} do
24 DFS trav(Oi, S ∪ {d}) // check subsets of Oi

Algorithm 1. Pseudo-Code for the HSC algorithm

The pseudo-code for HSC is given in Algorithm 1. The final result set Result
is initialized as an empty set (line 1), which is then filled iteratively by the
algorithm until it contains the final, non-redundant clustering result defined in
Def. 7. However, when a TCSC cluster C is detected during the processing, it can
not directly be decided if C should be added to the clustering result, as a higher-
quality cluster C′ could be detected later such that C ≺red C

′ holds. Therefore,
all detected clusters are temporarily stored in a priority queue queue (initialized
in line 2) that is sorted according to the interestingness of the clusters.

From the definition of the combined neighborhood and the subspace distance,
it follows that our TCSC clusters fulfill an anti-monotonicity property w.r.t. the
subspaces, i.e. if there exists a cluster C = (O,S) in subspace S, then for each
subspace S′ ⊂ S there exists a vertex set O′ ⊃ O such that (O′, S′) also forms
a TCSC cluster. This property can be exploited algorithmically: In order to
detect clusters in higher-dimensional subspaces, the algorithm only has to check
subsets of the vertex sets of the detected lower-dimensional clusters. Therefore,
HSC starts by detecting clusters based only on the network information (i.e.
clusters with the empty subspace). However, for heterogeneous networks, already
the detection of these “network-only” clusters is a challenging problem. Because
a cluster is defined based on its adjacent clusters of the other types, we can
not simply determine the clusters for each type separately. Thus, the algorithm
has to iteratively update the clusters and connections. A small example for the
iterative processing on a paper-author network is illustrated in Fig. 4. If the
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user allows clusters with empty subspace in the result, the network clusters are
added to the queue (line 6). Based on the detected “network-only” clusters, HSC
can now detect clusters in higher-dimensional subspaces (line 7). Based on these
clusters, a depth-first search is performed in the subspaces5 (line 20 – 24). Here,
max{S} denotes the dimension with maximal ID in subspace S.

Also for the higher-dimensional clusters, we encounter the challenge that the
clusters of the different types depend on each other. During the DFS traversal,
each cluster was refined based on the adjacent clusters that were currently known
at the time of refinement. For many clusters in the queue, the set of adjacent
clusters may have changed. Therefore, these clusters are refined based on the
updated set of adjacent clusters (line 10 – 11). This process is repeated until the
sets of adjacent clusters do not change anymore (line 12). For this step, the clus-
ters are sorted ascendingly by dimensionality, as clusters of lower dimensionality
tend to be connected to more clusters of the other types. After the set of clusters
and adjacencies has converged, HSC detects the final clustering by processing
the priority queue (sorted by quality), discarding clusters that are redundant
w.r.t. a cluster already in the result set and adding non-redundant clusters to
the result (line 18).

Refinement Based on Adjacent Clusters. Given a cluster candidate (i.e. a set of
vertices O, a set of adjacent clusters and a subspace), the refinement method
for the detection of TCSC clusters returns the set of all valid TCSC clusters
with vertex sets O′ ⊆ O based on this subspace and adjacent clusters. The
refinement method is based on a structure named typed enriched subgraph, which
represents the similarity of the attributes in the considered subspace as well as
the connectedness of the vertices via the adjacent clusters. In the typed enriched
subgraph for a vertex set O, each vertex is connected to all vertices from its
combined neighborhood (Def. 3), which is determined based on a given subspace
S and using the connections via the vertices of O itself and of a vertex set OA,
which represents the vertices of all adjacent clusters:

5 In practice, we can save computations and avoid the detection of some redundant
clusters by using a technique from [7] that avoids the traversal of subspaces where
probably only redundant clusters will be detected. Its details can be found in [7].
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method: refine cluster(cand. C = (O,S) of type t)
1 foundClusters = ∅, prelimClusters = {C}
2 for CA ∈ A(C) do remove C from A(CA)
3 while prelimClusters �= ∅ do
4 remove first Cx = (Ox, S) from prelimClusters
5 compute adj. vertex set OA = ∪(Oi,Si)∈A(Cx)Oi

6 generate typed enriched subgraph GOx
S,OA

7 find (minPtst − 1)-cores Cores = {O′1, . . . , O
′
m}

8 for each core O′i determine adjacent clusters A(O′i)
9 if |Cores| = 1 ∧ O′1 = Ox then

10 foundClusters = foundClusters ∪ {(O′1, S)}
11 else prelimClusters = prelimClusters ∪ Cores

12 return foundClusters

Algorithm 2. Method for refining a single cluster

Definition 8 (Typed Enriched Subgraph). 6 Given a set of vertices O ⊆ Vi,
a subspace S, the original graph G = (V,E, l) and a vertex set OA ⊆ V \ Vi,
the enriched subgraph GO

S,OA
= (V ′, E′) w.r.t. OA is defined by V ′ = O and

E′ = {(u, v) | v ∈ NO∪OA

S (u) ∧ v �= u} using the distance function distS.

To fulfill the density property, each vertex in a TCSC cluster of type t has to
have at leastminPtst vertices in its combined neighborhood (which also contains
the vertex itself). In the enriched subgraph, a TCSC cluster thus corresponds to
a (minPtst − 1)-core. In [7], it has been shown that the combined clusters can
be detected by iteratively detecting (minPts− 1)-cores. Our method for finding
TCSC clusters works in a similar fashion. The pseudo-code for the refinement
method is given in Algorithm 2. If a candidate C = (O,S) is refined, first
the connection to C is removed from its adjacent clusters, which will later be
connected to the new clusters detected in subsets of O (line 2). Then, HSC
iteratively detects clusters in subsets of O (line 5 – 7). If O was not changed by
the core-detection (line 9), the refinement has converged and the found vertex set
is a cluster. However, if one or several smaller cores were detected, they cannot
directly be output as clusters, because their adjacent clusters may have changed.
Thus, the procedure is repeated (line 11) until convergence.

Fig. 5 shows an example for the graph from Fig. 2. Assume C2 (in subspace
{2}) and C3 and their connection have already been detected. Now, we want to
refine C2 for the subspace {1, 2}. Thus, we construct the typed enriched subgraph
for the vertices of C2 based on this subspace and the vertices of C3, and obtain
the new cluster {A,B,C,D,E} for the subspace {1, 2}.

5 Experiments

In this section we evaluate the performance of HSC (implemented in Java). We
compare HSC to the algorithm of Tang et al. [17], the only existing algorithm for

6 Please note that the typed enriched subgraph of a vertex set contains only vertices of
the same type. However, it is determined using the combined neighborhood, which
takes the connections to the adjacent clusters into account.
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clustering heterogeneous networks that also separates vertices of different types
into different clusters and (in its extension) considers vertex attributes.7

Data Sets. For our experiments, we use two heterogeneous real-world data sets
that each contain several vertex attributes. Yelp is a website where users can rate
and review businesses. Our yelp network was extracted from the yelp academic
data set (http://www.yelp.com) and has three vertex types: “User”, “Business”
and “Review”. The network contains all the businesses from the academic data
set that belong to the categories “Restaurant” and “Pizza”, all the users who
rated at least one of these businesses and all of the corresponding reviews. Over-
all, there are 6931 user vertices, 283 business vertices and 8584 review vertices.
A review vertex is connected to the user who submitted this review as well as
to the business it rates. Furthermore, the network also contains intra-type edges
and thus is not tripartite: Two businesses are connected by an edge if they are
located close to each other (up to 300m apart). For all vertex types, the data set
provides additional attribute information: For the businesses, we have the at-
tributes “review count” (number of ratings received) and “average rating” (from
1 to 5 stars). For the users, we also have “review count” (number of ratings
submitted) and “average rating” (of the ratings by this user). Furthermore, user
vertices have the attributes “funny”, “useful” and “cool”, which correspond to
attributes given to the reviews of a user by other users. Review vertices have the
single attribute “stars”. All values were normalized to [0, 1].

Our second network was extracted from the DBLP (http://dblp.uni-trier.de)
database and has the vertex types “Author” and “Paper”. It contains all papers
of selected conferences from the database and data mining area from the years
2000 to 2004. Each paper is connected to the vertices representing its authors.
Authors vertices do not contain attributes. The papers have binary attributes
indicating the occurrence of certain keywords in the title. To avoid irrelevant key-
words, only words that occurred in at least 100 papers are represented. Overall,
we have 5497 author vertices and 3354 paper vertices with 208 attributes.

Experiments on Yelp Data. As no ground truth for the clustering is available, we
can not evaluate the clustering quality directly. Therefore, we divide the edges of
the Yelp data set into a training set (95% of the edges) and a test set (5% of the
edges). Using these data sets, we obtain an accuracy measure that measures how
well the test edges are predicted by the result of HSC, i.e. which percentage of the
test edges connect vertices from adjacent clusters in our result. We also create a
test set of edges between vertices that are not connected in the network and use
this set to obtain a “false positive” rate. Please note that we can not expect to
reach perfect or nearly perfect accuracy values using this measure, as this would
only be possible for graphs where the clusters correspond to fully connected
cliques and no edges between clusters exist, which does not hold for real graphs.
However, we can use this measure to compare how well different clustering results
capture the structure of the graph. Using this method, we analyze the influence

7 We extended the implementation from the authors homepage for attribute values as
described in [17] and treat our networks as networks with a single time stamp.
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of parameters on the result. In each experiment, we measure the percentage
of correctly predicted edges and of correctly predicted non-existing edges. This
method can be used for finding good parameter setting. For each parameter, we
choose the value maximizing the minimum of both accuracy values. For HSC, we
vary the values for ε and minPts for each type. The parameter k is discrete and
is set as discussed in Section 3. For the method from [17], the number of clusters
for each type has to be given as a parameter, thus we vary these values. However,
for this method computing the accuracy is problematic, as it does not produce
binary connections between clusters. Instead, we consider the group interaction
matrix A that is used by [17] and interpret positive entries as “connection” and
negative entries as “no connection”.

To analyze the advantage of our heterogeneous clustering method over clus-
tering methods for homogeneous graphs, we test a baseline that projects the
heterogeneous network to one homogeneous network for each vertex type (e.g.
connecting two users if they are connected to the same business in the heteroge-
neous network) and then uses DB-CSC [7] on each network separately. To enable
a comparison with the results of HSC, this baseline detects connections between
the clusters from the different networks in a post-processing step. To analyze the
influence of subspace clustering on our results, we also test a fullspace version
of HSC that detects only clusters that show similarity in all dimensions.

The results for the “user” vertex type are shown in Fig. 6. The experiments
for the other vertex types show similar results (not printed here due to space
limitations). For the parameter minPtsuser, increasing values lead to a lower
accuracy for the test edges and a higher accuracy for the non-existing test edges
(Fig. 6(a)). This is due to the fact that for higherminPts values, less and smaller
TCSC clusters are detected due to the stricter density criterion. Therefore, less
correct edges, but also less non-existing edges are predicted by the clustering
result. According to this results, we set minPtsuser = 50. The baseline cluster-
ing the homogeneous projections of the network separately reaches very similar
values in the accuracy for test edges. However, the accuracy for non-existing
test edges is considerably worse than for HSC. This is due to the fact that
this method cannot use the information about the clustering structure of the
other vertex type, and thus also clusters vertices together that are connected via
noise vertices of the other type. Therefore, the resulting clusters are supersets
of the TCSC clusters and the predicted connections show worse accuracy for
non-existing test edges. We also evaluate the fullspace version of HSC in this
experiment. We observe that only few clusters can be found in the fullspace and
thus the accuracy value for existing edges is very low. For values greater than
25, the fullspace version detects no clusters at all. Therefore, the fullspace ver-
sion is not used in the following experiments. The runtimes for all versions (Fig.
6(b)) decrease for increasing minPts values, as less clusters are detected. The
runtimes of HSC are slightly higher than those of the fullspace version of HSC,
as the fullspace version does not have to look for clusters in different subspaces.
The method clustering homogeneous networks shows far higher runtimes, as it



162 B. Boden, M. Ester, and T. Seidl

0

20

40

60

80

100

15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90Co
rr
ec
tly

Pr
ed

ic
te
d
Ed

ge
s(
%
)

minPts_user

HSC HSC (Non Ex. Edges)
Homogeneous Homogeneous (Non Ex. Edges)
Fullspace Fullspace (Non Ex. Edges)

(a) Accuracy vs. minPtsuser for HSC

0

2,000

4,000

6,000

8,000

10,000

12,000

15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90

ru
nt
im

e
[s
ec
]

minPts_user

HSC Homogeneous Fullspace

(b) Runtime vs. minPtsuser for HSC

0

20

40

60

80

100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Co
rr
ec
tly

Pr
ed

ic
te
d
Ed

ge
s(
%
)

epsilon_user

HSC
HSC (Non Existing Edges)
Homogeneous
Homogeneous (Non Existing Edges)

(c) Accuracy vs. εuser for HSC

0

2,000

4,000

6,000

8,000

10,000

12,000

0 0.2 0.4 0.6 0.8

ru
nt
im

e
[s
ec
]

epsilon_user

HSC Homogeneous

(d) Runtime vs. εuser for HSC

0

20

40

60

80

100

0 20 40 60 80 100

Co
rr
ec
tly

Pr
ed

ic
te
d
Ed

ge
s(
%
)

number of user clusters

[TLZ12] [TLZ12] (Non Existing Edges)

(e) Accuracy vs. #user clusters for [17]

0

100

200

300

0 20 40 60 80 100

ru
nt
im

e
[s
ec
]

number of user clusters

(f) Runtime vs. #user clusters for [17]

Fig. 6. Experimental results on the Yelp data set with 3 vertex types

has to cluster all networks separately and cannot use the information about the
clustering structure of the respective other vertex types for pruning.

For an increasing εuser , both accuracy values for HSC remain relatively stable
(Fig. 6(c)). Like in the previous experiment, the homogeneous clustering variant
shows similar behavior in the accuracy for test edges and considerably worse
values for the accuracy for non-existing test edges. The runtime (Fig. 6(d))
increases quickly for increasing ε-values until it reaches a plateau, as for higher
ε-values larger vertex neighborhoods have to be considered. Again, the runtime
of the homogeneous variant is far higher than that of HSC.

For the method from [17], we do not observe a trend in the accuracy for
an increasing number of user clusters (Fig. 6(e)). In contrast to HSC, in this
partitioning method each vertex is grouped in exactly one cluster, thus the trend
described above does not occur here. The accuracy for test edges is considerably
lower than that of HSC, while a high accuracy for non-existing edges is obtained.



Density-Based Subspace Clustering in Heterogeneous Networks 163

ec
m

l

sd
m

kd
d

ic
dm

ci
km

ic
de

sig
m

od

vl
db

da
sf

aa

ss
db

m

(a) HSC

ec
m

l

sd
m

kd
d

ic
dm

ci
km

ic
de

sig
m

od

vl
db

da
sf

aa

ss
db

m

(b) Method from [17]

Fig. 7. Distribution of paper clusters over conferences for the DBLP data set (heat map
color gradient from Green=“0%” to Red=“100% of the papers in the cluster belong to
this conference”)

This shows that this approach predicts less connections between clusters for the
3-type network. Overall, the method shows far lower runtimes than HSC (Fig.
6(f)), as it does not consider subspaces of the attribute space and does not
exclude outliers. However, HSC reaches better accuracy values: We can find
parameter settings such that both accuracy values for HSC are about 60%.

Experiments on DBLP Data. On DBLP, HSC detects 14 author clusters with an
average size of 59 and 98 paper clusters with an average size of 10 and average
dimensionality of 1.05, i.e. most of the paper clusters have one or two keywords in
common. The method from [17] detects 20 paper clusters with an average size of
168 and 20 author clusters with an average size of 275. As this method does not
consider subspace clusters, there is no information about the relevant keywords
for the clusters; the papers in a cluster do not necessarily have common keywords
at all. However, considering subspaces and connections between clusters also
causes higher runtimes: The runtime was 5 sec. for the method from [17] and
278 sec. for HSC. To provide an impression of the detected clusters, we depict the
distribution of the detected paper clusters over the conferences in Fig. 7. Each
row in the diagrams corresponds to a paper cluster. For most of the clusters
detected by HSC, the papers in the cluster belong to a small set of conferences.
Particularly, most clusters show a clear tendency either to the database area or
the data mining area. For the method from [17], the tendency is less clear.

6 Conclusion

We propose the clustering model TCSC for the clustering of vertices in hetero-
geneous networks, which takes into account the connections in the network as
well as the vertex attributes. Furthermore, TCSC detects interactions between
clusters of different types. TCSC is the first clustering model which considers
subspace clustering in heterogeneous networks. We introduce the algorithm HSC
for computing the TCSC clustering.
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Abstract. Building computers able to answer questions on any subject
is a long standing goal of artificial intelligence. Promising progress has
recently been achieved by methods that learn to map questions to logical
forms or database queries. Such approaches can be effective but at the
cost of either large amounts of human-labeled data or by defining lexicons
and grammars tailored by practitioners. In this paper, we instead take
the radical approach of learning to map questions to vectorial feature
representations. By mapping answers into the same space one can query
any knowledge base independent of its schema, without requiring any
grammar or lexicon. Our method is trained with a new optimization pro-
cedure combining stochastic gradient descent followed by a fine-tuning
step using the weak supervision provided by blending automatically and
collaboratively generated resources. We empirically demonstrate that our
model can capture meaningful signals from its noisy supervision leading
to major improvements over paralex, the only existing method able to
be trained on similar weakly labeled data.

Keywords: natural language processing, question answering, weak su-
pervision, embedding models.

1 Introduction

This paper addresses the challenging problem of open-domain question answer-
ing, which consists of building systems able to answer questions from any domain.
Any advance on this difficult topic would bring a huge leap forward in building
new ways of accessing knowledge. An important development in this area has
been the creation of large-scale Knowledge Bases (KBs), such as Freebase [4]
and DBpedia [16] which store huge amounts of general-purpose information.
They are organized as databases of triples connecting pairs of entities by various
relationships and of the form (left entity, relationship, right entity). Ques-
tion answering is then defined as the task of retrieving the correct entity or set
of entities from a KB given a query expressed as a question in natural language.

The use of KBs simplifies the problem by separating the issue of collecting and
organizing information (i.e. information extraction) from the one of searching
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through it (i.e. question answering or natural language interfacing). However,
open question answering remains challenging because of the scale of these KBs
(billions of triples, millions of entities and relationships) and of the difficulty
for machines to interpret natural language. Recent progress [6,3,13,10] has been
made by tackling this problem with semantic parsers. These methods convert
questions into logical forms or database queries (e.g. in SPARQL) which are then
subsequently used to query KBs for answers. Even if such systems have shown
the ability to handle large-scale KBs, they require practitioners to hand-craft
lexicons, grammars, and KB schema for the parsing to be effective. This non-
negligible human intervention might not be generic enough to conveniently scale
up to new databases with other schema, broader vocabularies or other languages
than English.

In this paper, we instead take the approach of converting questions to (un-
interpretable) vectorial representations which require no pre-defined grammars
or lexicons and can query any KB independent of its schema. Following [10], we
focus on answering simple factual questions on a broad range of topics, more
specifically, those for which single KB triples stand for both the question and an
answer (of which there may be many). For example, (parrotfish.e, live-in.r,
southern-water.e) stands for What is parrotfish’s habitat? and southern-water.e

and (cantonese.e, be-major-language-in.r, hong-kong.e) for What is the main
language of Hong-Kong? and cantonese.e. In this task, the main difficulties come
from i) lexical variability (rather than from complex syntax), ii) having multiple
answers per question, and iii) the absence of a supervised training signal.

Our approach is based on learning low-dimensional vector embeddings of
words and of KB triples so that representations of questions and correspond-
ing answers end up being similar in the embedding space. Unfortunately, we
do not have access to any human labeled (query, answer) supervision for this
task. In order to avoid transferring the cost of manual intervention to the one
of labeling large amounts of data, we make use of weak supervision. We show
empirically that our model is able to take advantage of noisy and indirect su-
pervision by (i) automatically generating questions from KB triples and treating
this as training data; and (ii) supplementing this with a data set of questions
collaboratively marked as paraphrases but with no associated answers. We end
up learning meaningful vectorial representations for questions involving up to
800k words and for triples of an mostly automatically created KB with 2.4M
entities and 600k relationships. Our method strongly outperforms previous re-
sults on the WikiAnswers+ReVerb evaluation data set introduced by [10].
Even if the embeddings obtained after training are of good quality, the scale of
the optimization problem makes it hard to control and to lead to convergence.
Thus, we propose a method to fine-tune embedding-based models by carefully
optimizing a matrix parameterizing the similarity used in the embedding space,
leading to a consistent improvement in performance.

The rest of the paper is organized as follows. Section 2 discusses some previous
work and Section 3 introduces the problem of open question answering. Then,
Section 4 presents our model and Section 5 our experimental results.
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2 Related Work

Large-scale question answering has a long history, mostly initiated via the TREC
tracks [23]. The first successful systems transformed the questions into queries
which were fed to web search engines, the answer being subsequently extracted
from top returned pages or snippets [14,1]. Such approaches require significant
engineering to hand-craft queries and then parse and search over results.

The emergence of large-scale KBs, such as Freebase [4] or DBpedia [16],
changed the setting by transforming open question answering into a problem
of querying a KB using natural language. This is a challenging problem, which
would require huge amount of labeled data to be tackled properly by purely
supervised machine learning methods because of the great variability of language
and of the large scale of KBs. The earliest methods for open question-answering
with KBs, based on hand-written templates [26,22], were not robust enough
to such variability over possibly evolving KBs (addition/deletion of triples and
entities). The solution to gain more expressiveness via machine learning comes
from distant or indirect supervision to circumvent the issue of labeled data.
Initial works attempting to learn to connect KBs and natural language with
less supervision have actually been tackling the information extraction problem
[17,12,15,20].

Recently, new systems for learning question answering systems with few la-
beled data have been introduced based on semantic parsers [6,3,13,11]. Such
works tend to require realistic amounts of manual intervention via labeled ex-
amples, but still need vast efforts to carefully design lexicons, grammars and
the KB. In contrast, [10] proposed a framework for open question answering
requiring little human annotation. Their system, Paralex, answers questions
with more limited semantics than those introduced in [3,13], but does so at a
very large scale in an open-domain manner. It is trained using automatically and
collaboratively generated data and using the KB ReVerb [9]. In this work, we
follow this trend by proposing an embedding-based model for question answering
that is also trained under weak and cheap supervision.

Embedding-based models are getting more and more popular in natural lan-
guage processing. Starting from the neural network language model of [2], these
methods have now reached near state-of-the-art performance on many standard
tasks while usually requiring less hand-crafted features [7,21]. Recently, some
embedding models have been proposed to perform a connection between nat-
ural language and KBs for word-sense disambiguation [5] and for information
extraction [25]. Our work builds on these approaches to instead learn to perform
open question answering under weak supervision, which to our knowledge has
not been attempted before.

3 Open-Domain Question Answering

In this paper, we follow the question answering framework of [10] and use the
same data. Hence, relatively little labeling or feature engineering has been used.



168 A. Bordes, J. Weston, and N. Usunier

3.1 Task Definition

Our work considers the task of question answering as in [10]: given a question q,
the corresponding answer is given by a triple t from a KB. This means that we
consider questions for which a set of triples t provides an interpretation of the
question and its answer, such as:

• q: What environment does a dodo live in ?
t: (dodo.e, live-in.r, makassar.e)

• q: What are the symbols for Hannukah ?
t: (menorah.e, be-for.r, hannukah.e)

• q: What is a laser used for?
t: (hologram.e,be-produce-with.r,laser.e)

Here, we only give a single t per question, but many can exist. In the re-
mainder, the KB is denoted K and its set of entities and relationships is E . The
word vocabulary for questions is termed V . nv and ne are the sizes of V and E
respectively.

Our model consists in learning a function S(·), which can score question-
answer triple pairs (q, t). Hence, finding the top-ranked answer t̂(q) to a question
q is directly carried out by:

t̂(q) = argmax
t′∈K

S(q, t′) .

To handle multiple answer, we instead present the results as a ranked list, rather
than taking the top prediction, and evaluate that instead.

Using the scoring function S(·) allows the model to directly query the KB
without needing to define an intermediate structured logical representation for
questions as in semantic parsing systems. We aim at learning S(·), with no
human-labeled supervised data in the form (question, answer) pairs, but only by
indirect supervision, generated either automatically or collaboratively. We detail
in the rest of this section our process for creating training data.

3.2 Training Data

Our training data consists of two sources: an automatically created KB, Re-

Verb, from which we generate questions and a set of pairs of questions collab-
oratively labeled as paraphrases from the website WikiAnswers.

Knowledge Base. The set of potential answers K is given by the KB ReVerb [9].
ReVerb is an open-source database composed of more than 14M triples, made
of more than 2M entities and 600k relationships, which have been automatically
extracted from the ClueWeb09 corpus [18]. In the following, entities are denoted
with a .e suffix and relationships with a .r suffix.
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Table 1. Examples of triples from the KB ReVerb

left entity, relationship, right entity

churchill.e, be-man-of.r, great-accomplishment.e

churchill-and-roosevelt.e, meet-in.r, cairo.e

churchill.e, reply-on.r, may-19.e

crick.e, protest-to.r, churchill.e

churchill.e, leave-room-for.r, moment.e

winston-churchill.e, suffer-from.r, depression.e

churchill.e, be-prime-minister-of.r, great-britain.e

churchill.e, die-in.r, winter-park.e

winston-churchill.e, quote-on.r, mug.e

churchill.e, have-only.r, compliment.e

ReVerb contains broad and general knowledge harvested with very little
human intervention, which suits the realistically supervised setting. But, as a
result, ReVerb is ambiguous and noisy with many useless triples and entities
as well as numerous duplicates. For instance, winston-churchill.e, churchill.e
and even roosevelt-and-churchill.e are all distinct entities. Table 3.2 presents
some examples of triples: some make sense, some others are completely unclear
or useless.

In contrast to highly curated databases such Freebase, ReVerb has more
noise but also many more relation types (Freebase has around 20k). So for some
types of triple it has much better coverage, despite the larger size of Freebase;
for example Freebase does not cover verbs like afraid-of or suffer-from.

Questions Generation. We have no available data of questions q labeled with
their answers, i.e. with the corresponding triples t ∈ K. Following [10], we hence
decided to create such question-triple pairs automatically. These pairs are gen-
erated using the 16 seed questions displayed in Table 2. At each round, we pick
a triple at random and then generate randomly one of the seed questions. Note
only triples with a *-in.r relation (denoted r-in in Table 2) can generate from
the pattern where did e r ?, for example, and similar for few other constraints.
Otherwise, the pattern is chosen randomly. Except for these exceptions, we used
all 16 seed questions for all triples hence generating approximately 16 × 14M
questions stored in a training set we denote D.

The generated questions are imperfect and noisy and create a weak training
signal. Firstly, their syntactic structure is rather simplistic, and real questions
as posed by humans (such as in our actual test) can look quite different to
them. Secondly, many generated questions do not correspond to semantically
valid English sentences. For instance, since the type of entities in ReVerb is
unknown, a pattern like who does e r ? can be chosen for a triple where the
type of ? in (?, r, e) is not a person, and similar for other types (e.g. when).
Besides, for the strings representing entities and relationships in the questions,
we simply used their names in ReVerb, replacing - by spaces and stripping off
their suffixes, i.e. the string representing winston-churchill.e is simply winston
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Table 2. Patterns for generating questions from ReVerb triples following [10]

KB Triple Question Pattern

(?, r, e) who r e ?
(?, r, e) what r e ?
(e, r, ?) who does e r ?
(e, r, ?) what does e r ?
(?, r, e) what is the r of e ?
(?, r, e) who is the r of e ?
(e, r, ?) what is r by e ?
(?, r, e) who is e’s r ?

KB Triple Question Pattern

(?, r, e) what is e’s r ?
(e, r, ?) who is r by e ?
(e, r-in, ?) when did e r ?
(e, r-on, ?) when did e r ?
(e, r-in, ?) when was e r ?
(e, r-on, ?) when was e r ?
(e, r-in, ?) where was e r ?
(e, r-in, ?) where did e r ?

churchill. While this is often fine, this is also very limited and caused many
incoherences in the data. Generating questions with a richer KB than ReVerb,
such as Freebase or DBpedia, would lead to better quality because typing
and better lexicons could be used. However, this would contradict one of our
motivations which is to train a system with as little human intervention as
possible (and hence choosing ReVerb over hand-curated KBs).

Paraphrases. The automatically generated examples are useful to connect KB
triples and natural language. However, they do not allow for a satisfactory model-
ing of English language because of their poor wording. To overcome this issue, we
again follow [10] and supplement our training data with an indirect supervision
signal made of pairs of question paraphrases collected from the WikiAnswers

website.
On WikiAnswers, users can tag pairs of questions as rephrasing of each

other. [10] harvested a set of 18M of these question-paraphrase pairs, with 2.4M
distinct questions in the corpus. These pairs have been labeled collaboratively.
This is cheap but also causes the data to be noisy. Hence, [10] estimated that
only 55% of the pairs were actual paraphrases. The set of paraphrases is denoted
P in the following. By considering all words and tokens appearing in P and D,
we end up with a size for the vocabulary V of more than 800k.

4 Embedding-Based Model

Our model ends up learning vector embeddings of symbols, either for entities or
relationships from ReVerb, or for each word of the vocabulary.

4.1 Question-KB Triple Scoring

Architecture. Our framework concerns the learning of a function S(q, t), based
on embeddings, that is designed to score the similarity of a question q and a
triple t from K.

Our scoring approach is inspired by previous work for labeling images with
words [24], which we adapted, replacing images and labels by questions and



Open Question Answering with Weakly Supervised Embedding Models 171

triples. Intuitively, it consists of projecting questions, treated as a bag of words
(and possibly n-grams as well), on the one hand, and triples on the other hand,
into a shared embedding space and then computing a similarity measure (the
dot product in this paper) between both projections. The scoring function is
then:

S(q, t) = f(q)�g(t)

with f(·) a function mapping words from questions into Rk, f(q) = V �Φ(q). V
is the matrix of Rnv×k containing all word embeddings v that will be learned,
where k is a hyperparameter specifying the embedding dimension. Φ(q) is the
(sparse) binary representation of q (∈ {0, 1}nv) indicating absence or presence of
words. Similarly, g(·) is a function mapping entities and relationships from KB
triples into Rk, g(t) = W�Ψ(t). W is the matrix of Rne×k containing all entity
and relationship embeddings w, that will also be learned. Ψ(t) is the (sparse)
binary representation of t (∈ {0, 1}ne) indicating absence or presence of entities
and relationships.

Representing questions as a bag of words might seem too limited, however, in
our particular setup, syntax is generally simple, and hence quite uninformative.
A question is typically formed by an interrogative pronoun, a reference to a
relationship and another one to an entity. Besides, since lexicons of relationships
and entities are rather disjoint, even a bag of words representation should lead to
decent performance, up to lexical variability. There are counter-examples such
as What are cats afraid of ? vs. What are afraid of cats ? which require different
answers, but such cases are rather rare. Future work could consider adding parse
tree features or semantic role labels as input to the embedding model.

Contrary to previous work modeling KBs with embeddings (e.g. [25]), in our
model, an entity does not have the same embedding when appearing in the left-
hand or in the right-hand side of a triple. Since, g(·) sums embeddings of all
constituents of a triple, we need to use 2 embeddings per entity to encode for
the fact that relationships in the KB are not symmetric and so that appearing
as a left-hand or right-hand entity is different.

This approach can be easily applied at test time to score any (question, triple)
pairs. Given a question q, one can predict the corresponding answer (a triple)
t̂(q) with:

t̂(q) = argmax
t′∈K

S(q, t′) = argmax
t′∈K

(
f(q)�g(t′)

)
.

Training by Ranking. Previous work [24,25] has shown that this kind of model
can be conveniently trained using a ranking loss. Hence, given our data set
D = {(qi, ti), i = 1, . . . , |D|} consisting of (question, answer triple) training pairs,
one could learn the embeddings using constraints of the form:

∀i, ∀t′ �= ti, f(qi)
�g(ti) > 0.1 + f(qi)

�g(t′) ,

where 0.1 is the margin. That is, we want the triple that labels a given question
to be scored higher than other triples in K by a margin of 0.1. We also enforce
a constraint on the norms of the columns of V and W , i.e. ∀i, ||vi||2 ≤ 1 and
∀j , ||wj ||2 ≤ 1.
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To train our model, we need positive and negative examples of (q, t) pairs.
However, D only contains positive samples, for which the triple actually corre-
sponds to the question. Hence, during training, we use a procedure to corrupt
triples. Given (q, t) ∈ D, we create a negative triple t′ with the following method:
pick another random triple ttmp from K, and then, replace with 66% chance each
member of t (left entity, relationship and right entity) by the corresponding ele-
ment in ttmp. This heuristic creates negative triples t

′ somewhat similar to their
positive counterpart t, and is similar to schemes of previous work (e.g. in [7,5]).

Training the embedding model is carried out by stochastic gradient descent
(SGD), updating W and V at each step, including projection to the norm
constraints. At the start of training, the parameters of f(·) and g(·) (the nv × k
word embeddings in V and the ne × k entities and rel. embeddings in W ) are
initialized to random weights (mean 0, standard deviation 1

k ). Then, we iterate
the following steps to train them:

1. Sample a positive training pair (qi, ti) from D.
2. Create a negative triple t′i ensuring that t′i �= ti.
3. Make a stochastic gradient step to minimize

[
0.1−f(qi)�g(ti)+f(qi)

�g(t′i)
]
+
.

4. Enforce the constraint that each embedding vector is normalized.

The learning rate of SGD is updated during the course of learning using ada-

grad [8].
[
x
]
+
is the positive part of x.

Multitask Training with Paraphrases Pairs. We multitask the training of our
model by training on pairs of paraphrases of questions (q1, q2) from P as well as
training on the pseudolabeled data constructed in D. We use the same architec-
ture simply replacing g(·) by a copy of f (·). This leads to the following function
that scores the similarity between two questions:

Sprp(q1, q2) = f(q1)
�f(q2) .

The matrix W containing embeddings of words is shared between S and Sprp,
allowing it to encode information from examples from both D and P . Training
of Sprp is also conducted with SGD (and adagrad) as for S, but, in this case,
negative examples are created by replacing one of the questions from the pair
by another question chosen at random in P .

During our experiments, W and V were learned by alternating training steps
using S and Sprp, switching from one to another at each step. The initial learning
rate was set to 0.1 and the dimension k of the embedding space to 64. Training
ran for 1 day on a 16 core machine using hogwild [19].

4.2 Fine-Tuning the Similarity between Embeddings

The scale of the problem forced us to keep our architecture simple: with ne ≈
3.5M (with 2 embeddings for each entity) and nv ≈ 800k, we have to learn
around 4.3M embeddings. With an embedding space of dimension k = 64, this
leads to around 275M parameters to learn. The training algorithm must also
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Table 3. Performance of variants of our embedding models and Paralex [10] for rerank-
ing question-answer pairs from the WikiAnswers+ReVerb test set

Method F1 Prec Recall MAP

Paralex (No. 2-arg) 0.40 0.86 0.26 0.12
Paralex 0.54 0. 77 0.42 0.22

Embeddings 0.68 0.68 0.68 0.37
Embeddings (no paraphrase) 0.60 0.60 0.60 0.34
Embeddings (incl. n-grams) 0.68 0.68 0.68 0.39
Embeddings+fine-tuning 0.73 0.73 0.73 0.42

stay simple to scale on a training set of around 250M of examples (D and P
combined); SGD appears as the only viable option.

SGD, combined with adagrad for adapting the learning rate on the course of
training, is a powerful algorithm. However, the scale of the optimization problem
makes it very hard to control and conduct properly until convergence. When
SGD stops after a pre-defined number of epochs, we are almost certain that the
problem is not fully solved and that some room for improvement remains: we
observed that embeddings were able to often rank correct answers near the top
of the candidates list, but not always in the first place.

In this paper, we introduce a way to fine-tune our embedding-based model so
that correct answers might end up more often at the top of the list. Updating
the embeddings involves working on too many parameters, but ultimately, these
embeddings are meant to be used in a dot-product that computes the similarity
between q and t. We propose to learn a matrix M ∈ Rk×k parameterizing the
similarity between words and triples embeddings. The scoring function becomes:

Sft(q, t) = f (q)�Mg(t) .

M has only k2 parameters and can be efficiently determined by solving the
following convex problem (fixing the embedding matrices W and V ):

minM
λ

2
‖M ‖2F +

1

m

m∑
i=1

[
1− Sft(qi, ti) + Sft(qi, t

′
i)
]2
+
,

where ‖ X ‖F is the Frobenius norm of X. We solve this problem in a few
minutes using L-BFGS on a subset of m = 10M examples from D. We first
use 4M examples to train and 6M as validation set to determine the value of
the regularization parameter λ. We then retrain the model on the whole 10M
examples using the selected value, which happened to be λ = 1.7× 10−5.

This fine-tuning is related to learning a new metric in the embedding space,
but since the resulting M is not symmetric, it does not define a dot-product.
Still, M is close to a constant factor times identity (as in the original score S(·)).
The fine-tuning does not deeply alter the ranking, but, as expected, allows for
a slight change in the triples ranking, which ends in consistent improvement in
performance, as we show in the experiments.
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Fig. 1. Precision-recall curves of our embedding model and Paralex [10] for reranking
question-answer pairs from the WikiAnswers+ReVerb test set

5 Experiments

5.1 Evaluation Protocols

We first detail the data and metrics which were chosen to assess the quality of
our embedding model.

Test Set. The data set WikiAnswers+ReVerb contains no labeled examples
but some are needed for evaluating models. We used the test set which has been
created by [10] in the following way: (1) they identified 37 questions from a held-
out portion of WikiAnswers which were likely to have at least one answer in
ReVerb, (2) they added all valid paraphrases of these questions to obtain a set
of 691 questions, (3) they ran various versions of their paralex system on them
to gather candidate triples (for a total of 48k), which they finally hand-labeled.

Reranking. We first evaluated different versions of our model against the par-

alex system in a reranking setting. For each question q from the WikiAn-

swers+ReVerb test set, we take the provided candidate triples t and rerank
them by sorting by the score S(q, t) or Sft(q, t) of our model, depending whether
we use fine-tuning or not. As in [10], we then compute the precision, recall and F1-
score of the highest ranked answer as well as the mean average precision (MAP)
of the whole output, which measures the average precision over all levels of recall.

Full Ranking. The reranking setting might be detrimental for paralex because
our system simply never has to perform a full search for the good answer among
the whole ReVerb KB. Hence, we also conducted an experiment where, for
each of the 691 questions of the WikiAnswers+ReVerb test set, we ranked
all 14M triples from ReVerb. We labeled the top-ranked answers ourselves and
computed precision, recall and F1-score.
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Table 4. Performance of our embedding model for retrieving answers for questions from
the WikiAnswers+ReVerb test set, among the whole ReVerb KB (14M candidates)

Method F1

Embeddings 0.16
Embeddings+fine-tuning 0.22

Embeddings +string-matching 0.48
Embeddings+fine-tuning+string-matching 0.57
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Fig. 2. Precision-recall curves for retrieving answers for questions from the WikiAn-

swers+ReVerb test set, among the whole ReVerb KB (14M candidates)

5.2 Results

This section now discusses our empirical performance.

Reranking. Table 3 and Figure 1 present the results of the reranking experiments.
We compare various versions of our model against two versions of paralex,
whose results were given in [10].

First, we can see that multitasking with paraphrase data is essential since it
improves F1 from 0.60 to 0.68. Paraphrases allow for the embeddings to encode
a richer connection between KB constituents and words, as well as between
words themselves. Note that the WikiAnswers data provides word alignment
between paraphrases, which we did not use, unlike paralex. We also tried to use
n-grams (2.5M most frequent) as well as the words to represent the question, but
this did not bring any improvement, which might at first seem counter-intuitive.
We believe this is due to two factors: (1) it is hard to learn good embeddings
for n-grams since their frequency is usually very low and (2) our automatically
generated questions have a poor syntax and hence, many n-grams in this data
set do not make sense. We actually conducted experiments with several variants
of our model, which tried to take the word ordering into account (e.g. with
convolutions), and they all failed to outperform our best performance without
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Table 5. Examples of nearest neighboring entities and relationships from REVERB
for some words from our vocabulary. The prefix L:, resp. R:, indicates the embedding
of an entity when appearing in left-hand side, resp. right-hand side, of triples.

Word Closest entities or relationships from ReVerb in the embedding space

get rid of get-rid-of.r be-get-rid-of.r rid-of.r can-get-rid-of.r will-get-rid-of.r should-get-rid-of.r

have-to-get-rid-of.r want-to-get-rid-of.r will-not-get-rid-of.r help-get-rid-of.r

useful be-useful-for.r be-useful-in.r R:wide-range-of-application.e can-be-useful-for.r

be-use-extensively-for.r be-not-very-useful-for.r R:plex-or-technical-algorithm.e

R:internal-and-external-use.e R:authoring.e R:good-or-bad-purpose.e

radiation R:radiation.e L:radiation.e R:gamma-radiation.e L:gamma-radiation.e L:x-ray.e L:gamma-ray.e

L:cesium-137.e R:electromagnetic-radiation.e L:external-beam-radiation.e L:visible-light.e

barack-obama L:president-elect-barack-obama.e L:barack-obama.e R:barack-obama.e L:president-barack-obama.e

L:obama-family.e L:sen.-barack-obama.eL:president-elect-obama.e R:president-barack-obama.e

L:democratic-presidential-candidate-barack-obama.e L:today-barack-obama.e

iphone R:iphone.e L:iphone.e R:t-mobile.e R:apple-iphone.e L:lot-of-software.e L:hotmail.e

R:windows-mobile-phone.e L:skype.e R:smartphone.e R:hd-dvd-player.e

word order, once again perhaps because the supervision is not clean enough to
allow for such elaborated language modeling. Fine-tuning the embedding model
is very beneficial to optimize the top of the list and grants a bump of 5 points
of F1: carefully tuning the similarity makes a clear difference.

All versions of our system greatly outperform paralex: the fine-tuned model
improves the F1-score by almost 20 points and, according to Figure 1, is better in
precision for all levels of recall. paralex works by starting with an initial lexicon
mapping from the KB to language and then gradually increasing its coverage
by iterating on the WikiAnswers+ReVerb data. Most of its predictions come
from automatically acquired templates and rules: this allows for a good precision
but it is not flexible enough across language variations to grant a satisfying recall.
Most of our improvement comes from a much better recall.

However, as we said earlier, this reranking setting is detrimental for paralex
because paralex was evaluated on the task of reranking some of its own pre-
dictions. The results provided for paralex, while not corresponding to those
of a full ranking among all triples from ReVerb (it is still reranking among a
subset of candidates), concerns an evaluation setting more complicated than for
our model. Hence, we also display the results of a full ranking by our system in
the following.

Full Ranking. Table 4 and Figure 2 display the results of our model to rank
all 14M triples from ReVerb. The performance of the plain models is not good
(F1 = 0.22 only for Sft) because the ranking is degraded by too many candidates.
But most of these can be discarded beforehand.

We hence decided to filter out some candidates before ranking by using a
simple string matching strategy: after pos-tagging the question, we construct
a set of candidate strings containing (i) all noun phrases in the question that
appear less than 1,000 times in ReVerb, (ii) all proper nouns in the question, if
any, otherwise the least frequent noun phrase in ReVerb. This set of strings is
then augmented with the singular form of plural nouns, removing the final ”s”,
if any. Then, only the triples containing at least one of the candidate strings are



Open Question Answering with Weakly Supervised Embedding Models 177

Table 6. Performance of our embedding model for retrieving answers for questions
from the WebQuestions test set, among the whole ReVerb KB (14M candidates)

Method Top-1 Top-10 F1

Emb. 0.025 0.094 0.025
Emb.+fine-tuning 0.032 0.106 0.032

Emb. +string-match. 0.085 0.246 0.068
Emb.+fine-tuning+string-match. 0.094 0.270 0.076

scored by the model. On average, about 10k triples (instead of 14M) are finally
ranked for each question, making our approach much more tractable.

As expected, string matching greatly improves results, both in precision and
recall, and also significantly reduces evaluation time. The final F1 score obtained
by our fine-tuned model is even better than the result of paralex in reranking,
which is pretty remarkable, because this time, this setting advantages paralex
quite a lot.

Embeddings. Table 5 displays some examples of nearest neighboring entities from
ReVerb for some words from our vocabulary. As expected, we can see that verbs
or adverbs tend to correspond to relationships while nouns refer to entities. In-
terestingly, the model learns some synonymy and hyper/hyponymy. For instance,
radiation is close to x-ray.e and iphone to smartphone.e. This happens thanks
to the multitasking with paraphrase data, since in our automatically generated
(q, t) pairs, the words radiation and iphone are only used for entities with the
strings radiation and iphone respectively in their names.

5.3 Evaluation on WebQuestions

Our initial objective was to be able to perform open-domain question answering.
In this last experimental section, we tend to evaluate how generic our learned
system is. To this end, we propose to ask our model to answer questions coming
from another dataset from the literature, but without retraining it with labeled
data, just by directly using the parameters learned onWikiAnswers+ReVerb.

We chose the data set WebQuestions [3], which consists of natural language
questions matched with answers corresponding to entities of Freebase: in this
case, no triple has to be returned, only a single entity. We used exact string
matching to find the ReVerb entities corresponding to the Freebase answers
from the test set of WebQuestions and obtained 1,538 questions labeled with
ReVerb out of the original 2,034.

Results of different versions of our model are displayed in Table 6. For each
test question, we record the rank of the first ReVerb triple containing the
answer entity. Top-1 and Top-10 are computed on questions for which the system
returned at least one answer (around 1,000 questions using string matching),
while F1 is computed for all questions. Of course, performance is not great
and can not be directly compared with that of the best system reported in
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[3] (more than 0.30 of F1). One of the main reasons is that most questions of
WebQuestions, such as Who was vice-president after Kennedy died?, should
be represented by multiple triples, a setting for which our system has not been
designed. Still, for a system trained with almost no manual annotation nor prior
information on another dataset, with an other –very noisy– KB, the results can
be seen as particularly promising. Besides, evaluation is broad since, in ReVerb,
most entities actually appear many times under different names as explained in
Section 3. Hence, there might be higher ranked answers but they are missed by
our evaluation script.

6 Conclusion

This paper introduces a new framework for learning to perform open question an-
swering with very little supervision. Using embeddings as its core, our approach
can be successfully trained on imperfect labeled data and indirect supervision
and significantly outperforms previous work for answering simple factual ques-
tions. Besides, we introduce a new way to fine-tune embedding models for cases
where their optimization problem can not be completely solved.

In spite of these promising results, some exciting challenges remain, especially
in order to scale up this model to questions with more complex semantics. Due
to the very low supervision signal, our work can only answer satisfactorily simple
factual questions, and does not even take into account the word ordering when
modeling them. Further, much more work has to be carried out to encode the
semantics of more complex questions into the embedding space.
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Abstract. We suggest an approach to automate variable construction
for supervised learning, especially in the multi-relational setting. Domain
knowledge is specified by describing the structure of data by the means of
variables, tables and links across tables, and choosing construction rules.
The space of variables that can be constructed is virtually infinite, which
raises both combinatorial and over-fitting problems. We introduce a prior
distribution over all the constructed variables, as well as an effective al-
gorithm to draw samples of constructed variables from this distribution.
Experiments show that the approach is robust and efficient.
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1 Introduction

In a data mining project, the data preparation phase aims at constructing a
data table for the modeling phase [19,6]. The data preparation is both time
consuming and critical for the quality of the mining results. It mainly consists in
a search of an effective data representation, based on variable construction and
selection. Variable selection has been extensively studied in the literature [12].
Two main approaches, filter and wrapper, have been proposed. Filter methods
consider the correlation between the input variables and the output variable as
a pre-processing step, independently of the chosen classifier. Wrapper methods
search the best subset of variables for a given classification technique, used as
a black box. Wrapper methods, which are time consuming, are restricted to
the modeling phase of data mining, as a post-optimization of a classifier. Filter
methods are better suited to the data preparation phase, since they can be
combined with any data modeling approach and can deal with large numbers of
input variables. In this paper, we focus on the filter approach, in the context of
supervised classification.

Variable construction [18] has been less studied than variable selection in the
literature. It implies a large amount of work for the data analyst and heavily
relies on domain knowledge to construct new potentially informative variables. In
practice, the initial raw data usually originate from relational databases. As most
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classification techniques need a flat input data table with instances × variables
tabular format, such relational data cannot be directly analyzed.

Learning from relational data has recently received an increasing attention in
the literature. The term Multi-Relational Data Mining (MRDM) was initially
introduced in [13] to address novel knowledge discovery techniques from multi-
ple relational tables. The common point between these techniques is that they
need to transform the relational representation. In Inductive Logic Programming
(ILP) [9], data is recoded as logic formulas. In 1BC method [16] and its successor
1BC2 [17], simple predicates are used together with a naive Bayes classifier. More
expressive approaches cause scalability problems especially with large-scale data.
Other methods named by propositionalisation [14] try to flatten the relational
data by constructing new variables. These variables aggregate the information
contained in non target tables in order to obtain a classical tabular format.
For example, the RELAGGS method [15] uses functions such as mean, median,
min, max to summarize numerical variables from secondary tables in zero to
many relationship, or counts per value for the categorical variables. The TILDE
method [2,24] aims at constructing complex variables based on conjunctions of
selection conditions of records in secondary tables. However, the expressiveness
of such methods faces the following problems: complex parameter setting, com-
binatorial explosion of the number of potentially constructed variables and risk
of over-fitting that increases with the number of constructed variables.

In this paper, we suggest an approach aiming at the automation of variable
construction, with the three-fold following objective: simplicity of parameters,
efficient control of the combinatorial search in the space of variable construction
and robustness w.r.t. over-fitting. Section 2 presents a formal description of a
variable construction domain. Section 3 introduces an evaluation criterion of
the constructed variables exploiting a Bayesian approach, by suggesting a prior
distribution over the space of variables that can be constructed. Section 4 studies
the problem of drawing a sample from this space and describes an efficient and
computable algorithm for drawing samples of constructed variables of given size.
Section 5 evaluate the approach on several datasets. Finally, Section 6 gives a
summary and discusses future work.

2 Specification of Variable Construction Domain

We suggest a formal specification of a variable construction domain in order to
efficiently drive the construction of variables for supervised classification. The
objective is not to propose a new expressive and general formalism for describing
domain knowledge, but simply to clarify the framework exploited by the variable
construction algorithms presented in Section 4. This framework consists in two
parts: description of the data structure and choice of the construction rules.

2.1 Data Structure

The simplest data structure is the tabular one. Data instances are represented
by a list of variables, each defined by its name and type. The standard types,
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numerical or categorical, can be extended to other specialized types, such as
date, time or text. As real data usually comes from relational databases, extend-
ing tabular format to multi-table looks natural. We suggest to describe these
structures similarly to structured or object-oriented programming languages.
The statistical unit (root instance) belongs to a root table. A root instance is
then defined by a list of variables, whose type can be simple (numerical, categor-
ical...) as in the tabular case, or structured: one record of a secondary table in
zero to one relationship or several records of a secondary table in zero to many
relationship. In the case of supervised classification, the output variable is a cat-
egorical variable in the root table. Figure 1 presents an example of the use of
this formalism. The root instance is a Customer, with secondary records Usages
in zero to many relationship. The variables are either of simple type (Cat, Num
or Date) or structured type (Table(Usage)). The identifier variables (prefixed by
#) are mainly used for practical purposes, in order to establish a matching with
a relational database; they are not considered as input variables.

Fig. 1. Data structure for a problem of customer relationship management

2.2 Variable Construction Rules

A variable construction rule is similar to a function (or method) in a program-
ming language. It is defined by its name, the list of its operands and its return
value. The operands and the return value are typed, with the types defined in
Section 2.1. For example, the YearDay(Date)→Num rule builds a numerical vari-
able from a date variable. The operands can originate from an original variable
(in the initial data representation), from the return value of another rule, or
from values coming from a train dataset. In this paper, the construction rules
used in the experiments of Section 5 are the following ones:

– Selection(Table, Num)→Table: selection of records from the table according
to a conjunction of selection terms (membership in a numerical interval or
in group of categorical values),

– Count(Table)→Num: count of records in a table,
– Mode(Table, Cat)→Cat : most frequent value of a variable in a table,
– CountDistinct(Table, Cat)→Num: number of distinct values,
– Mean(Table, Num)→Num: mean value,
– Median(Table, Num)→Num: median value,
– Min(Table, Num)→Num: min value,
– Max(Table, Num)→Num: max value,
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– StdDev(Table, Num)→Num: standard deviation,
– Sum(Table, Num)→Num: sum of values.

Using the data structure presented in Figure 1 and the previous construction
rules (plus the YearDay rule for date variables), one can construct the following
variables to enrich the description of a customer:

– MainProduct = Mode(Usages, Product),
– LastUsageYearDay = Max(Usages, YearDay(useDate)),
– NbUsageProd1FirstQuarter = Count(Selection(Usages, YearDay(useDate) ∈

[1;90] and Product = “Prod1”)).

3 Evaluation of Constructed Variables

The issue is to exploit the variable construction domain in order to efficiently
drive the construction of variables which are potentially informative for the pre-
diction of the output variable. In the framework introduced in Section 2, the data
structure can have several level of depth or even have a graph structure. For ex-
ample, a molecule is a graph where the vertices are the atoms and the edges are
the bounds between atoms. The constructed rules can be used as operands of
other rules, leading to computation formulas of any length. The space of con-
structed variables is then of potentially infinite size. This raises the two major
following problems:

1. combinatorial explosion for the exploration of this construction space,
2. risk of over-fitting.

We suggest to solve these problems by introducing an evaluation criterion of
the constructed variables according to a Bayesian approach in order to penalize
complex variables. For this purpose, we propose a prior distribution on the space
of all variables and an efficient sampling algorithm of the space of variables
according to their prior distribution.

3.1 Evaluation of a Variable

Variable construction aims to enrich the root table with new variables that will
be taken as input of a classifier. As usual classifiers take as input only numerical
or categorical variables, only these variables need to be evaluated.

Supervised Preprocessing. The MODL supervised preprocessing methods
[3,4] consist in partitioning a numerical variable into intervals or a categorical
variable into groups of values, with a piecewise constant class conditional density
estimation. The parameters of a specific preprocessing model are the number of
parts, the partition and the multinomial distribution of the classes within each
part. In the MODL approach, supervised preprocessing is turned into a model
selection problem and solved in a Bayesian way. A prior distribution is proposed
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on this model space. This prior exploits the hierarchy of the parameters, with a
uniform distribution at each stage of the hierarchy. The methods exploit a max-
imum a posteriori (MAP) technique to select the most probable preprocessing
model given the input data. Taking the negative log of probabilities that are
no other than coding lengths [22] in the minimum description length (MDL)
approach [20], this amounts to the description length of a preprocessing model
MP (X) (using a supervised partition) of a variable X plus the description length
of the output data DY given the model and the input data DX .

costP (X) = L(MP (X)) + L(DY |MP (X), DX). (1)

We asymptotically have costP (X) ≈ Nent(Y |X) where N is the number of
train instances and ent(Y |X) the conditional entropy [7] of the output given
the input variable. Formula (1) and the related optimisation algorithms are fully
detailed in [4] for supervised discretization and [3] for supervised value grouping.

Null Model and Variable Filtering. The null model MP (∅) corresponds to
the case of a preprocessing model with one single part (interval or group of val-
ues) and thus to the direct modeling of the output values using a multinomial
distribution, without using the input variable. The value of criterion costP (∅)
amounts to a direct coding of the output values: the null cost is costP (∅) ≈
Nent(Y ), where ent(Y ) is the entropy of Y . The evaluation criterion of a vari-
able is then exploited according to a filter approach [12]: only variables whose
evaluation is better than the null cost are considered informative and retained
at the end of the data preparation phase.

Accounting for the Variable Construction Process. When the number
of original or constructed variables increases, the chance for a variable to be
wrongly considered as informative becomes critical. In order to prevent this risk
of over-fitting, we suggest in this paper to exploit the space of constructed vari-
ables described in Section 2 by proposing a prior distribution over the set of all
variable construction models MC(X). We then get a Bayesian regularization of
the constructed variables, which allows to penalize the most “complex” variables.
This translates into an additional construction cost L(MC(X)) in the evaluation
criterion of the variables, which becomes that of Formula (2).

costCP (X) = L(MC(X)) + L(MP (X)) + L(DY |MP (X), DX). (2)

L(MC(X)) is the negative log of the prior probability (coding length) of an
original or constructed variable X , defined below.

3.2 Prior Distribution of the Original and Constructed Variables

A variable to evaluate is a numerical or categorical variable in the root table,
either original or built using construction rules recursively. The space of such
variables being of virtually infinite size, defining a prior probability on this space
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raises many problems and involves many choices. To guide these choices, we will
stick to the following general principles:

1. taking into account the constructed variables has a minimal impact on the
original variables,

2. in order to have a minimum bias, the prior is as uniform as possible,
3. the prior exploits at best the variable construction domain.

Case of Original Variables. In the case where no variable can be constructed,
the problem reduces to the choice of an original variable to evaluate among the
K numerical or categorical variables of the root table. Using a uniform prior for
this choice, we obtain p(MC(X)) = 1/K, thus L(MC(X)) = logK.

Case of Constructed Variables. In the case where variables can be con-
structed, one must first choose whether to use an original variable or to con-
struct a new variable. Using a uniform prior (p = 1/2) for this choice implies an
additional cost of log 2, which violates the principle of minimal impact on the
original variables. We then suggest to consider the choice of constructing a new
variable as an additional possibility beyond the K original variables. The cost of
an original variable becomes L(MC(X)) = log(K + 1), with an additional cost
of log(1 + 1/K) ≈ 1/K w.r.t. the case of original variables only.

Constructing a new variable then relies on the following hierarchy of choices:

– choice of constructing a new variable,
– choice of the construction rule among the R applicable rules (with the re-

quired return value type and available operands of the required types),
– for each operand of the rule, choice of using an original variable or to con-

struct a new variable with a rule whose return value is compatible with the
expected operand type.

Using a hierarchical prior, uniform at each level of the hierarchy, the cost of
a constructed variable is decomposed on the operands of the used construction
rule according to the recursive Formula (3), where the variables Xop are the
original or constructed variables used as operands op of the rule R.

L(MC(X)) = log(K + 1) + logR+
∑
op∈R

L(MC(Xop)). (3)

Case of the Selection Rule. The case of the Selection rule that extracts
records from a secondary table according to a conjunction of selection terms
is treated similarly. The hierarchy of choices is extended in the following way:
number of selection operands, list of selection variables (original or constructed)
and for each selection variable, choice of the selection part (numerical interval
or group of categorical values). The selection part is itself chosen hierarchically
with first a choice of granularity of the partitioned variable into a set of quantiles
and second the index of the quantile in the partition. In definitions 1 and 2, we
precisely define quantile partitions both for numerical and categorical variables.
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Definition 1 (Numerical quantile partition). Let D be a dataset of N in-
stances and X a numerical variable. Let x1, x2, . . . , xN be the N sorted val-
ues of X in dataset D. For a given number of parts P , the dataset is di-
vided into P equal frequency intervals ] − ∞, x�1+N

P �[, [x�1+N
P �, x�1+2N

P �[, . . .,

[x�1+iN
P �, x�1+(i+1)N

P �[, . . ., [x�1+(P−1)N
P �,+∞[.

Definition 2 (Categorical quantile partition). Let D be a dataset of N
instances and X a categorical variable with V values. For a given number of parts
P , let NP = �NP � be the expected minimum frequency per part. The categorical
quantile partition into (at most) P parts is defined by singleton parts for each
value of X with frequency above the threshold frequency NP and a “garbage”
part consisting of all values of X below the threshold frequency.

The number of selection terms is chosen according to the universal prior for in-
teger numbers of Rissanen [21]. This prior distribution is as flat as possible, with
larger probabilities for small integer numbers. Each selection variable (original
or constructed) is distributed using the prior defined previously in this section.
As for the granularities, we consider only powers of two 20, 21, 22, . . . 2p, . . . for
the sizes of the partitions, with the exponent p distributed according to the uni-
versal prior for integer numbers. Finally, the index of each quantile is distributed
uniformly among the 2p parts.

Whereas all the other rules exploit only the data structure and the set of
construction rules, the Selection rule exploits the values of the train dataset to
build the actual definition of the selection parts. This requires one reading step of
each secondary table to instantiate the formal definition of each part (granularity
and part index) into an actual definition, with numerical boundaries for intervals
and categorical values for groups of values.

Synthesis. Figure 2 presents an example of such a prior distribution over the
set of variables that can be built using the construction rules Mode, Min, Max
and YearDay, in the case of the customer relationship management dataset
of Figure 1. For example, the cost of selecting the original variable Age is

Fig. 2. Prior distribution of variable construction in the case of the customer relation-
ship management dataset
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L(MC(Age)) = log 3. That of constructing the variable with formula Min(
Usages, Y earDay(Date)) exploits of a hierarchy of choices leading to

L(MC(Min(Usages, Y earDay(Date)))) = log 3 + log 3 + log 1 + log 1 + log 1.

This prior distribution on the space of variable construction corresponds to
a Hierarchy of Multinomial Distributions with potentially Infinite Depth (HM-
DID). The original variables are obtained from the first level of hierarchy of the
prior, whereas the constructed variables get all the more lower prior probabilities
as they exploit deeper parts of the HMDID prior with complex formulas.

4 Building a Random Sample of Variables

The objective is to build a given number of variables, potentially informative
for supervised classification, in order to create an input tabular representation,.
We suggest to build a sample of variables by drawing them according to their
prior distribution. We present a first “natural” algorithm for building samples of
variables, and demonstrate that it is neither efficient nor even computable. We
then propose a second algorithm that solves the problem.

4.1 Successive Random Draws

Algorithm 1. Successive random draws

Require: K {Number of draws}
Ensure: V = {V }, |V| ≤ K {Sample of constructed variables}
1: V = ∅
2: for k = 1 to K do
3: Draw V according to HMDID prior
4: Add V in V
5: end for

Algorithm 1 consists in successively drawingK according to the HMDID prior.
Each draw starts from the root of the prior and goes down in the hierarchy until
obtaining an original or constructed variable, which corresponds to a leaf in
the prior hierarchy. This natural algorithm cannot be used in the general case,
because it is neither efficient nor computable, as we demonstrate below.

Algorithm 1 Is not Efficient. Let us consider a construction domain with
V original variables that can be evaluated in the root table and no construction
rule. The HMDID prior reduces to a standard multinomial distribution with V
equidistributed values. If K draws are performed according to this multinomial
distribution, the expectation of the number of distinct obtained variables is V (1−
e−K/V ) [11]. In the case whereK = V , this corresponds to the size of a bootstrap
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sample, that is (1 − 1/e) ≈ 63% variables obtained using V draws. To obtain
99% of the original variables, one needs K ≈ 5V draws, which is not efficient.
Furthermore, in the case with construction rules, the multinomial at the root of
the HMDID consists now into K + 1 equidistributed values. The draws result
in the construction of a new variable in only 1

K+1 of the cases. It is noteworthy
that this problem of inefficiency occurs at all levels of depth of the HMDID prior
for the draw of the operands of the rules under construction.

Algorithm 1 Is not Computable. Let us consider a construction do-
main with one single numerical variable x and one single construction rule
f(Num,Num) → Num. The variables that can be constructed are x, f(x, x),
f(x, f(x, x)), f(f(x, x), f(x, x)), f(f(x, x), f(f(x, x), x))... In combinatorial

mathematics, the Catalan number Cn = (2n)!
(n+1)!n! ≈

4n

πn3/2 counts the number

of such expressions. Cn is the number of different ways n+1 factors can be com-
pletely parenthesized or the number of full binary trees with n+ 1 leaves. Each
variable represented by a binary construction tree with n leaves (repetitions of
x in the formula) comes into Cn−1 formally distinct copies, each with a prior
probability of 2−(2n−1) according to the HMDID prior. The expectation of the
size s(V ) of a constructed variable V (size defined by the number of leaves in the
binary construction tree) can then be computed. Using the above approximation
of the Catalan number, Formula (4) states that the expectation of the size of
the variable is infinite.

E(s(V )) =

∞∑
n=1

n2−(2n−1)Cn−1 =∞. (4)

This means that if one draws a random variable according to the HMDID
prior among all expressions involving f and x, the drawing process will never
stop on average. Algorithm 1 is thus not computable in the general case.

4.2 Simultaneous Random Draws

As variables cannot be drawn individually as in Algorithm 1, we suggest to
draw a complete sample using several draws simultaneously. For a multinomial
distribution (n; p1, p2, . . . , pK) with n draws and K values, the probability that
a sample results in counts n1, n2, . . . , nK per value is:

n!

n1!n2! . . . nK !
pn1
1 pn2

2 . . . pnK

K . (5)

The most probable sample is obtained by maximizing Formula (5), which results
into counts nk = pkn per value according to maximum likelihood. For example,
in the case of an equidistributed multionomial distribution with pk = 1/K and
n = K draws, Formula (5) is maximized for nk = 1. As a consequence, all the
values are drawn, which solves the inefficiency problem described in Section 4.1.
Algorithm 2 exploits this drawing process using maximum likelihood recursively.
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Algorithm 2. Simultaneous random draws

Require: K {Number of draws}
Ensure: V = {V }, |V| ≤ K {Sample of constructed variables}
1: V = ∅
2: Start from the root of the hierarchy of the HMDID prior
3: Compute the number of draws Ki per branch of the prior tree (original variable,

rule, operand...)
4: for all branch of the prior tree do
5: if terminal leaf of the prior tree (original variable or variable constructed with

a complete formula) then
6: Add V in V
7: else
8: Propagate the construction process recursively by assigning the Ki draws of

each branch on the multinomial distribution at the sub-level of the prior tree
9: end if
10: end for

The draws are assigned on the original or constructed variables at each level of
depth of the HMDID prior, which results in a number of draws that decreases
with the depth of the prior hierarchy. In case of even choices (for example, one
single draw among K variables), the draw is chosen randomly uniformly, with a
priority for original variables when both original and constructed variables are
possible. By assigning recursively the draws according to multinomial distribu-
tions at each branch of the hierarchy of the HMDID prior, with numbers of draws
that decrease with the depth of the hierarchy, Algorithm 2 is both efficient and
computable.

In Algorithm 2, the number of draws may be greater than 1 in some leaves
of the prior hierarchy. This implies that the number of obtained variables can
be inferior to the number of initial draws. To reach a given number of variables
K, Algorithm 2 is first called with K draws, then called again successively with
twice the number of draws at each call, until the number of required variables is
reached or until no additional variable is built in the last call.

5 Experiments

The proposed method is evaluated by focusing on the following points: ability to
construct large numbers of variables without problem of combinatorial explosion,
robustness w.r.t. over-fitting and contribution to the classification performance.

5.1 Experimental Setup

The experiment performs comparisons with alternative relational data mining
methods based on propositionalisation and with inductive logic programming
Bayesian classifiers. The compared methods are:
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– MODL is the method described in this paper. It exploits the following con-
struction rules (cf. Section 2.2): Selection, Count, Mode, CountDistinct, Mean,

Median, Min, Max, StdDev, Sum. The only parameter (see Section 4.2) is the
number of variables to construct: 1, 3, 10, 30, 100, 300, 1000, 3000 and 10000
in the experiments. The variables are constructed using Algorithm 2 then
filtered using Formula (2), which accounts both for construction and prepro-
cessing cost. The filtered variables are used as input of a selective naive Bayes
classifier with variable selection and model averaging (SNB) 1 [5], which is
both robust and accurate in the case of very large numbers of variables.

– RELAGGS is a method similar to the Relaggs propositionalisation method
[15]. It exploits the same construction rules as MODL and exhaustively con-
structs all the possible variables, except for the Selection rule that raises
combinatorial problems. Instead, RELAGGS constructs all the rules based
on counts per categorical value in the secondary tables. The data preprocess-
ing and the SNB classifier are the same as for MODL, without accounting
the construction of the variables (Formula (1) is used for filtering).

– 1BC is the first-order Bayesian classifier described in [16]. It can be consid-
ered as a propositionalisation method, with one variable per value in a sec-
ondary table. To preprocess the numerical values of each table, all numerical
variables are discretized into equal frequency intervals. In the experiments,
we use discretisation into 1, 2, 5, 10, 20, 50, 100 and 200 bins.

– 1BC2 is the successor of 1BC described in [17]. While 1BC applies proposi-
tionalisation, 1BC2 is a true first-order classifier. 2

Fourteen relational datasets are considered in the experiments. The Auslan,
CharacterTrajectories, JapaneseVowels, OptDigit and SpliceJunction datasets
come from the UCI repository [1] and are related to the recognition of Aus-
tralian sign language, characters from pen tip trajectories, Japanese speakers
from cepstrum coefficients of two uttered vowels, handwritten digits from a ma-
trix of 32*32 black and white pixels, and boundaries between intron and exon in
gene sequences (DNA). These sequential or time series datasets are represented
with one root table and a secondary table in zero to many relationship. The
Diterpenes [10], Musk1, Musk2 [8] and Mutagenesis [23] datasets are related to
molecular chemistry. The Mutagenesis dataset is a graph with molecules (lumo,
logp plus the class variable) in a root table, atoms (element, type, charge) as
vertices and bonds (bondtype) as edges. The Miml dataset [25] is related to im-
age recognition, with five different target variables. Table 1 gives a summary of
these datasets.

All the experiments are performed using a stratified 10-fold cross validation.
In each train fold, the variables are constructed and selected and the classifier
is trained, while the test accuracy is evaluated in the test fold.

1 The SNB classsifier is available as a shareware at http://www.khiops.com.
2 1BC et 1BC2 are available at
http://www.cs.bris.ac.uk/Research/MachineLearning/1BC/. I am grateful to
Nicolas Lachiche for providing support and advices regarding their use.

http://www.khiops.com
http://www.cs.bris.ac.uk/Research/MachineLearning/1BC/
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Table 1. Relational datasets: number of instances, records in the secondary tables,
categorical and numerical variables, classes, and accuracy of the majority class

Dataset Instances Records Cat.vars Num.vars Classes Maj.

Auslan 2,565 146,949 1 23 96 0.011
CharacterTrajectories 2,858 487,277 1 4 20 0.065
Diterpenes 1,503 30,060 2 1 23 0.298
JapaneseVowels 640 9961 1 13 9 0.184
MimlDesert 2,000 18,000 1 15 2 0.796
MimlMountains 2,000 18,000 1 15 2 0.771
MimlSea 2,000 18,000 1 15 2 0.710
MimlSunset 2,000 18,000 1 15 2 0.768
MimlTrees 2,000 18,000 1 15 2 0.720
Musk1 92 476 1 166 2 0.511
Musk2 102 6,598 1 166 2 0.618
Mutagenesis 188 10,136 3 4 2 0.665
OptDigits 5,620 5,754,880 1 3 10 0.102
SpliceJunction 3,178 191,400 2 1 3 0.521

As for computational efficiency, the overhead of the construction algorithm is
negligible w.r.t. the overall training time. Actually, Algorithm 2 consists in draw-
ing a sample of constructed variables with their construction formulas. This algo-
rithm mainly relies on the exploration of the construction domain (data structure
and set of construction rules). The Selection rule requires one reading step of
each secondary table to build the actual selection operands. This reading step
dominates the time of the variable construction process, and is itself dominated
by the data preparation and modeling steps of the classifier.

5.2 Results

The mean test accuracy versus the number of constructed variables per dataset is
reported in Figure 3, with the standard deviation represented by error bars. The
baseline (horizontal gray dashed line) is the accuracy of the majority classifier.
The MODL performance is reported for each number of actually constructed
variables. The RELAGGS performance is reported only once, with the number
of constructed variables resulting from an exhaustive application of the construc-
tion rules. The 1BC and 1BC2 performance are reported for each bin number of
the discretization preprocessing, with a number of constructed variables based
on the total number of actually different values per variable.

Control of Variable Construction. The RELAGGS, 1BC and 1BC2 meth-
ods have little control on the size of the constructed representation space, which
strongly varies with the complexity of the data structure and the number of val-
ues in the dataset. For example, the size of the representation space goes from a
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Fig. 3. Test accuracy versus number of constructed variables per dataset.
MODL: ◦ red RELAGGS: � green 1BC: � cyan 1BC2: ) blue.
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few tens of variables (SpliceJunction dataset) to around 20,000 variables (Musk2
dataset) for the 1BC method. The MODL method is much more expressive than
the alternative methods, with the Selection rule which can build conjunctions of
selection terms at any granularity. Still, Algorithm 2 allows to control the com-
binatorial exploration of this huge space and to construct the requested number
of variables, as shown in Figure 3.

Examples of Constructed Variables. For the Mutagenesis dataset, in one train
fold, the null cost (≈ NEnt(Y )) is 115.08 for the encoding of the classes of
the 177 train instances. Among the 10,000 generated variables, only 618 are
identified as informative. The original variable lumo in the root table has a
low construction cost of 2.08. The simplest informative constructed variable in-
volves one construction rule having one operand: Count(Atoms) with a construc-
tion cost of 5.08. The most complex informative constructed variable involves
three construction rules, including the Selection rule with two selection terms.
This rule Sum(Selection(Atoms, (type ≤ 23.5 and charge ≤ -0.0685)), Count-
Distinct(AdjacentBonds, bondtype)) has a construction cost of 17.66, which is
not negligible compared to the null cost for this small dataset. This illustrates
the ability of Algorithm 2 to build rather complex variables and of Formula (2)
to filter the constructed variables.

Test Accuracy. The 1BC and 1BC2 often obtain similar performance, ex-
cept for Auslan where 1BC is better and CharacterTrajectories and Diterpenes
where 1BC2 dominates 1BC. Both methods get generally better performance
as the number of bins increases, but they suffer from over-fitting, especially in
the Miml image datasets where their performance is under the baseline. The
RELAGGS propositionalisation method is used together with the SNB classifier
(same as for MODL) and inherits from its accuracy and robustness. It always
dominates the 1BC and 1BC2 methods. In the Musk1 and Musk2 datasets, the
MODL method is not better than the baseline. Actually, these datasets are very
small (around 100 instances), have a complex data structure (166 variables in
the secondary table) and the classes are not well separable. Altogether, the con-
struction penalization in Formula (2) results in rejecting almost all constructed
variables. More instances would be necessary to learn the concept. In all other
datasets, the MODL method benefits from its expressive construction language
and obtains better test accuracy than the alternative methods. Remarkably,
it often achieves good test accuracy with fewer variables than the alternative
methods, and its performance never decreases with the number of constructed
variables, which is the only user parameter in the approach.

Robustness. In order to evaluate the robustness of our approach, the classes
have been randomly shuffled in each dataset before performing the experiment
again. Two experiments are performed, one using criterion costCP of Formula (2)
(accounting for the construction cost of the variables), the other using costP of
Formula (1) (not accounting for the construction cost). The number of selected
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variables is collected in both cases. The used preprocessing methods [3,4] are
very robust. However, when 10,000 variables are constructed, on average 5 vari-
ables per dataset are wrongly selected, with more than 20 variables for the
JapaneseVowels dataset. When the construction regularization is used (criterion
costCP ), the method is extremely robust: the overall 1.4 millions of constructed
variables over all the datasets and folds of the cross-validation are all identified
as information-less, without any exception.

6 Conclusion

In this paper, we have suggested a framework aiming at automating variable
construction for supervised classification. On the basis of a description of a
multi-table schema and a set of construction rules, we have suggested a prior
distribution over the space of all variables that can be constructed. We have
demonstrated that drawing variables according to this prior distribution raises
critical problems of inefficiency and non-computability, then proposed an effi-
cient algorithm that is able to perform many simultaneous draws in order to
build a tabular representation with the required number of variables. The ex-
periments indicate that the proposed method solves the problem of combinato-
rial explosion that usually limits the approaches which construct variables by
a systematic application of construction rules, and the problem of over-fitting
that occurs in case of representations with very large numbers of variables. The
obtained classification performance are promising. In future work, we plan to
extend the description of the variable construction domain by providing addi-
tional construction rules with potential specialization per application domain.
Another research direction consists in drawing constructed variables according
to their posterior distribution rather than their prior distribution. Finally, ac-
counting for correlations between the constructed variables so as to avoid the
risk of constructing many variants of the same variables raises another challenge.
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Abstract. In this paper we analyze the consistency of loss functions for learn-
ing from weakly labelled data, and its relation to properness. We show that the
consistency of a given loss depends on the mixing matrix, which is the transition
matrix relating the weak labels and the true class. A linear transformation can be
used to convert a conventional classification-calibrated (CC) loss into a weak CC
loss. By comparing the maximal dimension of the set of mixing matrices that are
admissible for a given CC loss with that for proper losses, we show that classifi-
cation calibration is a much less restrictive condition than properness. Moreover,
we show that while the transformation of conventional proper losses into a weak
proper losses does not preserve convexity in general, conventional convex CC
losses can be easily transformed into weak and convex CC losses. Our analysis
provides a general procedure to construct convex CC losses, and to identify the
set of mixing matrices admissible for a given transformation. Several examples
are provided to illustrate our approach.

1 Introduction

The analysis of the conditions required to any loss function in order to estimate posterior
class probabilities, and those required to optimize classification performance, has been
an important area of research for many years, both in binary and multiclass settings
[7, 19, 21], providing insights on the influence of loss functions for learning. Most of
this work has focused on the standard fully or semi-supervised cases. However, many
interesting real-world problems do not fit into those categories. This has spanned a
broad literature on non-standard learning paradigms, being weak supervision one of the
most widespread of them. In a weakly supervised learning problem, each instance is
assumed to be labelled as belonging to one of several candidate categories, at most one
of them being true. This paper studies the asymptotic properties of loss functions in this
more general learning setting.

Weakly supervised learning has attracted recent interest due to its suitability to model
several scenarios in bioinformatics or computer vision. We trace this formulation back
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to [3, 12, 13] for the noisy label case, and also [8] and [11] for more general scenarios
were samples may have multiple labels (including the true class). In the last decade
several authors addressed this and related problems under different names, including
partial labels [6, 8, 17], ambiguous labels [10], multiple labels [11], or crowd learning
[18]. It is also a particular case of the more general problems of learning from soft labels
[5], learning from measurements [14] or learning from candidate labelling sets [16].

There are fundamental limitations to learning from weak labels. If the statistical
mixing model relating the true class to the weak labels is unknown, there is no way to
infer it from a sample set with weak labels only, at least without making additional as-
sumptions. This is a well-known problem in semi-supervised learning. However, it can
be shown that the full knowledge of the mixing process is actually not necessary for
learning purposes. In [4] a general procedure was proposed to transform a standard (i.e.
fully-supervised) proper loss into a weak loss that is also proper, in the sense that poste-
rior class probabilities can be estimated provided that the mixing processes is restricted
to lie in certain linear subspace. Unfortunately, the proposed method scales exponen-
tially with the number of classes. Moreover, in general, the resulting weak losses are
non convex.

Since posterior probability estimation in weakly labelled scenarios requires very
strong conditions on losses and mixing matrices, in this paper we focus on the anal-
ysis of losses for classification. Up to our knowledge, there is no general approach to
the consistency problem for learning from weak labels in the literature.

Specifically our contributions in this paper are the following:

1. We provide a general theoretical analysis of consistency. We present if-and-only-if
conditions for classification calibration, and we show that, in general, the under-
lying assumptions about the mixing process are relaxed (with respect to those of
probability estimation) if only classification consistency is required. We show that
consistent losses can be obtained by a linear transformation of any conventional
consistent loss. This means that a machine learning practitioner can keep working
with the same type of losses she/he is familiar with (Section 3.1).

2. Properness is significantly more restrictive than consistency. If one is worried about
classification errors, and not about posterior probability estimation, the dimension
of the maximal set of mixing matrices that is covered by a consistent loss is higher
than that covered by a proper loss (Section 3.2).

3. If one has no information at all about the mixing matrix, one can assume indepen-
dent labels. For that case, a straightforward approach is provided (Section 4).

4. Making a difference with the case of weak proper losses, convexity can still
be preserved when transforming a conventional loss into a weak consistent loss
(Section 5).

2 Formulation

2.1 Notation

Vectors are written in boldface, matrices in boldface capital and sets in calligraphic
letters. For any integer n, eni is a n-dimensional unit vector with all zero components
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apart from the i-th component which is equal to one, and �n is a n-dimensional all-
ones vector. Superindex ᵀ denotes transposition. We will use Ψ() to denote a loss based
on weak labels (for brevity, “weak loss”), and Ψ̃ to losses based on the true class. The
number of classes is c, and the number of possible weak label vectors is d ≤ 2c. |z|
is the number of nonzero elements in z. The set of all d × c matrices with stochastic
columns isM = {M ∈ [0, 1]d×c : Mᵀ

�d = �c}.

2.2 Learning from Weak Labels

Let X be a sample space, Y = {ecj, j = 0, 1, . . . , c − 1} a set of labels, and Z =
{b1, . . . ,bd} ⊂ {0, 1}c a set of weak or partial label vectors. Sample (x, z) ∈ X × Z
is drawn from an unknown distribution P .

Weak label vector z ∈ Z is a noisy version of the true class y ∈ Y . A common
assumption [1, 6, 9, 11] is that the true class is always present in z, i.e., zj = 1 when
yj = 1, but this assumption is not required in our setting, which admits noisy label sce-
narios (as, for instance, in [18]). Without loss of generality, we assume that Z contains
only weak labels with nonzero probability (i.e. P{z = b} > 0 for any b ∈ Z).

The dependency between z and y is modelled through an arbitrary d× c conditional
mixing probability matrix M(x) ∈ M with components

mij(x) = P{z = bi|yj = 1,x} (1)

where bi ∈ Z is the i-th element of Z . Defining posterior probability vectors p(x)
and η(x) with components pi = P{z = bi|x} and ηj = P{y = ecj |x}, we can write
p(x) = M(x)η(x). In general, the dependency with x will be omitted and we will
write, for instance,

p = Mη. (2)

In general, the mixing matrix could depend on x, though a constant mixing matrix
is a common assumption [1, 9, 11, 18], as well as the statistical independence of the
incorrect labels [1, 9, 11]. Assuming a constant matrix is not required in our analysis.
Any property derived for M can be by extended to a property that must be satisfied by
M(x) for all x.

The goal is to infer y given x without knowing model P . To do so, a set of i.i.d.
weakly labelled samples, S = {(xk, zk), k = 1, . . . ,K} ∼ P is available. True classes
yk are not observed.

2.3 Classification Calibration, Ranking Calibration and Properness

The goal of the learning algorithm is to find an accurate class predictor using a weakly
labelled training set. Our focus is to determine consistent predictors that would eventu-
ally find the Bayesian predictor if the size of the training set becomes infinity.

Let F be a function class and Ψ(z, f) with f ∈ F be a loss function based on weak
label z, Ψ = (Ψ(b1, f), . . . , Ψ(bd, f))

ᵀ, where bi is the i-th element in Z (according
to some arbitrary ordering). The Ψ -risk of a function f from the function class F is

RΨ (f) = �XZ{Ψ(z, f(x))} (3)
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and the minimum Ψ -risk is

R∗
Ψ = inf

f∈F
RΨ (f) (4)

Note that our definition of the risk functions differs from the conventional setting in that
it is a function of the weak labels. We are interested in the risk of f as a predictor of the
true class through some function pred(x) ∈ argmax

j
{fj(x)}. This risk is defined as

R(f) = �XY{1[pred(f(x)) �= y]} (5)

where 1[.] is the indicator function. It is well known that the minimum possible
risk is R∗ = �{1 − maxy{P (y|x)}}, and it is achieved by the Bayesian predictor
argmax

y
P (y|x). If f̂K minimizes the empirical Ψ -risk for a training set of size K , one

would expect RΨ (f̂K) to converge to R∗
Ψ in probability as K goes to infinity. When

that makes R(f̂K) converge to R∗ in probability, we say that Ψ is consistent. It turns
out that consistency is strongly related to the notion of classification calibration [2] [19]
(also related to Fisher consistency [15] or infinite-sample consistency [21]). To sim-
plify the discussion, our definitions assume that inff �z{Ψ(z, f)} is reachable by some
minimizer f∗.

Definition 1 (Classification calibration). Weak loss Ψ(z, f) is classification cali-
brated (CC) to predict y from f if f∗ ∈ argminf �z{Ψ(z, f)} satisfies (ηi >
maxj �=i ηj ⇒ f∗

i > maxj �=i f
∗
j ).

Zhang [21] and Tewari [19] have shown that classification calibration is essentially
equivalent to consistency in the multiclass fully supervised setting (i.e., when Z = Y
and z = y). For our analysis, two stronger conditions will be helpful. The first one
imposes that the predictor preserves the order of all classes, and not only the predicted
one.

Definition 2 (Ranking calibration). Weak loss Ψ(z, f) is ranking calibrated (RC) to
predict y from f if f∗ ∈ argminf �z{Ψ(z, f)} satisfies (ηi > ηj ⇒ f∗

i > f∗
j ).

The second one imposes that the predictor is a good estimator of the posterior class
probabilities.

Definition 3 (Properness). Weak loss Ψ(z, f) is proper to predict y from f if η ∈
argminf �z{Ψ(z, f)}. The loss is strictly proper if η is the unique minimizer.

Proper losses in the weakly labelled scenario were examined in [4]. Our main focus in
the following sections is to study classification consistency and comparatively discuss
the potential benefits of avoiding the estimation of posterior class probabilities.

3 Weak Loss Characterization

3.1 Virtual Label Representation

Classification calibration, ranking calibration or properness of a given loss depend on
the mixing matrix M. To make this dependency explicit, we will say that Ψ is M-CC,
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M-RC or M-proper if it is CC, RC or proper for a mixing matrix M, respectively.
Additionally, given a setQ ⊂M of mixing matrices (remember thatM is the set of all
left-stochastic matrices), we will say that Ψ is Q-CC, Q-RC or Q-proper if it has the
corresponding property for any M ∈ Q.

According to definitions 1, 2 and 3, a loss Ψ will be CC, RC or proper depending
solely on the characteristics of the expected value, �z{Ψ(z, f)}. Therefore, the proper-
ties of any loss Ψ will be the same than that of any other loss with the same expected
value. In particular, let us define the equivalent loss

Ψ̃(y, f) = yᵀMᵀΨ (6)

or, equivalently, in vector form,

Ψ̃(f) = MᵀΨ (f) (7)

Note that Ψ̃ depends on the true classes, and is only useful for fully supervised scenar-
ios. Using (2) and (7) it is straightforward to show that �z{Ψ(z, f)} = �z{zᵀΨ} =
�z{yᵀΨ̃}. Thus, Ψ and Ψ̃ have the same expected value. This connection between a
loss and its equivalent loss is used in [4] to derive the properness of losses in a weakly
labelled scenario, and can be used in a straightforward way to prove the following
extension:

Theorem 1. Consider a weak loss Ψ : Z × �
c → �

+ and a mixing matrix M ∈ M,
and let the equivalent loss Ψ̃ : Y × �

c → �
+ be given by (6).

– Ψ is (strictly) M-proper iff Ψ̃ is (strictly) proper.
– Ψ is M-RC iff Ψ̃ is RC.
– Ψ is M-CC iff Ψ̃ is CC.

Theorem 1 states an iff connection between the CC of a weak loss and the CC of its
equivalent loss. Additionally, since the consistency is also a function of the conditional
risk, the consistency of a weak loss is also equivalent to the consistency of the equivalent
loss. Thus, we can conclude that the equivalence between classification calibration and
consistency in supervised learning can be extended to weak losses.

Eq. (7) suggests a way to generate a suitable partial loss from a conventional loss: let
Ỹ be a left-inverse of M (i.e. ỸM = I). If Ψ̃ is a CC, RC or strictly proper loss, then
the partial loss

Ψ (f) = ỸᵀΨ̃ (f) (8)

is CC, RC or strictly proper, respectively (because MᵀΨ (f) = MᵀỸᵀΨ̃ (f) = Ψ̃ (f),
and the conditions of Th. 1 are satisfied). The analysis of losses based on (8) is the main
issue of the following sections.

Note that, if z = bi, Ψ(z, f) = (edi )
ᵀΨ (f) and, using (8), we get Ψ(z, f) =

(edi )
ᵀỸᵀΨ̃ (f) = (Ỹedi )

ᵀMᵀΨ (f). Comparing this expression with (6), we can in-
terpret the columns of Ỹ in (8) as virtual labels, to be used instead of y when the true
class is unknown. Thus, Ỹ is a matrix of virtual labels.
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3.2 Maximal Sets of Mixing Matrices

Eqs. (6) and (8) show that a weak loss may be CC, RC or proper for a wide set of
mixing matrices. In particular, ifW is the subset of all right-inverse matrices of Ỹ that
are in M, Ψ (f) is W-CC, W-RC or W-proper provided that Ψ̃ is CC, RC or proper,
respectively. This has a practical relevance because the mixing matrix may be partially
unknown, or may depend on x, and we could be interested in finding weak losses with
the desired property for a large set of mixing matrices.

Our main interest in this section is to find the largest set of mixing matrices having
the desired property. For a given matrix of virtual labels, Ỹ, we will define the maximal
sets Qcc(Ỹ), Qrc(Ỹ) and Qp(Ỹ) as the largest set of mixing matrices for which a
weak loss given by (8) is CC, RC or strictly proper, respectively, for any CC, RC or
strictly proper loss Ψ̃ , respectively. In this section we show that, in general,Qcc(Ỹ) =
Qrc(Ỹ) ⊃ Qp(Ỹ) = W and, thus, there is a penalty in the size of the maximal set if
accurate posterior class probability estimates are required.

We start showing that Qp(Ỹ) is equal to the set of all admissible right-inverses of
the virtual label matrix.

Theorem 2. Given a strictly proper loss Ψ̃(f ,y) and a virtual (full rank) label matrix
Ỹ, the weak loss Ψ (f) = ỸᵀΨ̃ (f) is strictlyW-proper, forW = {M|ỸM = αI, α >
0} ∩M, andW is maximal.

Moreover, the dimension of the maximal set is Dp ≤ dc− c2 − c+ 1.

Proof. See the Appendix.

Now, we characterizeQrc(Ỹ).

Theorem 3. Given a RC loss Ψ̃(f ,y) and a full rank matrix Ỹ, the weak loss Ψ (f) =
ỸᵀΨ̃ (f) isW-RC, forW = {M|ỸM ∈ V}∩M, where V is the set of matrices in the
form λI + �cv

ᵀ (for arbitrary λ ∈ �
+ and v ∈ �c).

Moreover,W is maximal, and its dimension is Drc ≤ dc− c2 + 1.

Proof. See the Appendix.

The above theorem shows that the matrices of the maximal set can be written in the
form

M = M0(λI + �cv
ᵀ) (9)

where M0 is an arbitrary right inverse of the virtual label matrix and λ > 0 and v are
arbitrary parameters. As we will see later, these extra parameters may have a significant
value: for some virtual label matrices, the resulting loss is not proper for any mixing
matrix, while classification calibration is preserved for a large set of mixing matrices.

The proof of Theorem 3 can be used step by step to prove an identical result for
classification calibrated losses.

Theorem 4. Given a CC loss Ψ̃(f ,y) and a full rank matrix Ỹ, the weak loss Ψ (f) =
ỸᵀΨ̃ (f) isW-CC, forW = {M|ỸM ∈ V}∩M, where V is the set of matrices in the
form λI + �cv

ᵀ (for arbitrary λ ∈ �
+ and v ∈ �c).

Moreover,W is maximal, and its dimension is Dcc ≤ dc− c2 + 1.
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Proof. See Appendix.

Note that, although classification calibration is a less restrictive condition than rank-
ing calibration, Qcc(Ỹ) = Qrc(Ỹ). This, however, does not imply that any CC loss is
also RC: if Ψ̃ is CC but not RC, weak loss ỸΨ̃ will be CC but not RC. But Theorem
4 shows that by relaxing the ranking calibration to classification calibration, the set of
admissible mixing matrices does not change.

4 Losses for Independent Labels

The main drawback for the application of conventional CC, RC or proper losses to
construct weak losses is that, in general, the mixing matrix is unknown, and we may
have no a priori information about a (small enough) set Q containing the true mixing
matrix.

As an alternative, we can construct consistent labels starting from some simplifying
assumptions on the mixing matrix. An appealing choice consists in assuming that the
noisy labels are statistically independent, that is,

P (z|y = ecm) = αzm
m (1− αm)1−zmβ|z|−1

m (1− βm)c−|z| (10)

for some parameters αm ⊂ [0, 1] and βm ⊂ [0, 1]. Recall that |z| is the number
of nonzero elements in z. Unfortunately, as noted in [4] there is no proper loss for
general independent labels: If Mαβ is the mixing matrix resulting from (10), and
Q = {Mαβ,α ∈ [0, 1]c,β ∈ [0, 1]c}, no Q-proper loss exists.

However, there does exist a proper weak loss for quasi-independent label models. In
particular consider the conditional probability model given by

P (z|y = ecm) =

[
zmβm,|z| |z| < c
0 |z| = c or |z| = 0

(11)

where coefficients βm,n satisfy the linear constraint

c∑
n=1

(
c− 1

n− 1

)
βm,n = 1 (12)

for any m (so that probabilities sum up to one). Let Mβ be the corresponding mix-

ing matrix, and Q′ = {Mβ}. Taking βm,|z| ∝ β
|z|−1
m (1 − βm)c−|z| (which satisfies

the given constraints), the model (11) is equivalent to (10) with αm = 1, unless for
the fact that a zero probability is given to z = �c. The set Q′ = {Mβ} additionally
includes many other non-independent label models. The probability of a given partial
label vector depends on the true class, m, and the number of noisy labels (|z| − 1) but
it is independent of the specific choice of the noisy labels.

The advantage of (11) is that there do exist consistent losses for this model, that do
not depend on the particular value of coefficients βm,|z|.
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Theorem 5. Consider the virtual labels given by

ỹj =

[
1 zj = 1

− |z|−1
c−|z| zj = 0

(13)

(the case |z| = c is ignored). If Ψ̃ is a CC, RC or (strictly) proper loss, then Ψ(z, f) =
ỹᵀΨ̃ (f) is Q′-CC, RC or (strictly) proper, respectively.

Proof. Let Ỹ be the virtual label matrix such that its i-th column contains the virtual
label corresponding to weak label vector bi. Then, using (11) and (13),

(ỸMβ)ij =

d∑
k=1

ỹikP{z = bk|y = ecj}

=

d∑
k=1

ỹikbkjβj,|bk|

=

d∑
k=1

(
bki − (1− bki)

|bk| − 1

c− |bk|

)
bkj

=

d∑
k=1

(
bki

(
1 +

|bk| − 1

c− |bk|

)
− |bk| − 1

c− |bk|

)
bkjβj,|bk|

=
d∑

k=1

bkibkjβj,|bk|

(
1 +

|bk| − 1

c− |bk|

)
−

d∑
k=1

bkjβj,|bk|
|bk| − 1

c− |bk|
(14)

Consider first the case i �= j. Noting that there are
(
c−2
n−2

)
weak label vectors bk with n

nonzero elements and bki = bkj = 1, and there are
(
c−1
n−1

)
weak label vectors bk with

n nonzero elements and bki = 1 we can write

(ỸMβ)ij =

c∑
n=2

(
c− 2

n− 2

)
βj,n

(
1 +

n− 1

c− n

)
−

c∑
n=1

(
c− 1

n− 1

)
βj,n

n− 1

c− n

=

c∑
n=2

((
c− 2

n− 2

)(
1 +

n− 1

c− n

)
−
(
c− 1

n− 1

)
n− 1

c− n

)
βj,n = 0 (15)

Finally, for i = j,

(ỸMβ)jj =

c∑
k=1

bkjβj,|bk|

(
1 +

|bk| − 1

c− |bk|

)
−

c∑
k=1

bkjβj,|bk|
|bk| − 1

c− |bk|

=

c∑
n=1

(
c− 1

n− 1

)
βj,n

(
1 +

n− 1

c− n

)
−

c∑
k=1

(
c− 1

n− 1

)
βj,n

n− 1

c− n

=

c∑
n=1

(
c− 1

n− 1

)
βj,n = 1 (16)

where we have used (12) in the last step. Therefore ỸMβ = I, which completes the
proof.
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The following are some possible choices for a loss based on different choices of Ψ̃ .

Example 1 (Pairwise comparison).
Let

Ψ̃(y, f) =

c−1∑
j=0

φ(yᵀf − fj) (17)

This is a general form of the multiclass support vector machine proposed by Weston
and Watkins [20], whose consistency was proven by Zhang in [21] for a differentiable
non-negative non-increasing φ(). The weak loss based on (13) and (17) is

Ψ(z, f) =
∑

k:zk=1

c−1∑
j=0

φ(fk − fj)

− |z| − 1

c− |z|
∑

k:zk=0

c−1∑
j=0

φ(fk − fj) (18)

Example 2 (One versus all).
Let

Ψ̃(y, f) = φ(yᵀf) +
c−1∑
j=0

(1− yj)φ(−fj) (19)

where φ is convex, bounded below and differentiable with φ(f) < φ(−f) when f > 0.
The partial loss based on (13) and (19) is

Ψ(z, f) =
∑

k:zk=1

(φ(fk)− φ(−fk))

+
|z| − 1

c− |z|
∑

k:zk=0

(φ(fk)− φ(−fk))

+ (2|z| − 1)
c−1∑
j=0

φ(−fj) (20)

Example 3 (Unconstrained Background Discriminative Method).
Let

Ψ̃(y, f) = φ(yᵀf) + s

⎛⎝c−1∑
j=0

t(fj)

⎞⎠ (21)

where φ, s and t convex differentiable functions [21]. The weak loss based on (13) and
(21) is

Ψ(z, f) =
∑

k:zk=1

φ(fk) +
|z| − 1

c− |z|
∑

k:zk=0

φ(fk)

+ (2|z| − 1)s

⎛⎝c−1∑
j=0

t(fj)

⎞⎠ (22)
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4.1 Classification Calibrated Losses for Independent Labels

Despite there is no weak proper loss for independent labels, there may exist CC losses.
Consider, for example, the virtual label vector given by ỹi = zi (i.e., the columns of
the virtual label matrix Ỹ = Z are all possible label vectors (i.e. the i-th column of Z
is bi).

Note that, for d > c, since the virtual label matrix is non-negative, its right-inverse
has negative components and, therefore, there is no stochastic matrix satisfying ZM =
I. Therefore, unless for trivial cases with d = c, the loss Ψ (f) = ZΨ̃ is not M-proper
for any mixing matrix.

However, there exist CC losses for this case.

Theorem 6. Given a CC loss Ψ̃ , weak loss Ψ (f) = ZΨ̃ (f) is CC for any mixing matrix
satisfying the general model

P (z|y = ecm) = αzm(1 − α)1−zmβ|z|−1(1− β)c−|z| (23)

for any α > β.

Proof. If V = ZM, we have

vij =

d∑
k=1

bkimkj

=

d∑
k=1

bkiα
bkj (1− α)1−bkjβ|bk|−1(1− β)c−|bk| (24)

For i = j, we get

vij = α

d∑
k=1

bkiβ
|bk|−1(1− β)c−|bk|

= α
c∑

n=1

(
c− 1

n− 1

)
βn−1(1− β)c−n = α (25)

and, for i �= j,

vij =

d∑
k=1

bkiα
bkj (1− α)1−bkjβ|bk|−1(1− β)c−|bk|

= α

c∑
n=2

(
c− 2

n− 2

)
βn−1(1− β)c−n

+ (1− α)

c−1∑
n=1

(
c− 2

n− 1

)
βn(1− β)c−n−1 = β (26)

Therefore
V = (α− β)I + β�c�

ᵀ
c (27)

which has the form (41) with λ = α− β > 0 and v = β�c.
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5 Convexity

For optimization purposes, we may be interested in using virtual label matrices in such
a way that the transformation (8) preserves convexity. This way, convexity of the weak
losses can be guaranteed provided that the conventional loss Ψ̃ has convex components.

It is not difficult to show that a necessary and sufficient condition for the components
of Ψ(f) = ỸΨ̃ (f) to be convex for any convex Ψ̃(z, f) is that [Ỹ]ji ≥ 0 for any
1 ≤ j ≤ c, 1 ≤ i ≤ d.

Unfortunately, restricting the virtual matrix to have non-negative components con-
stitutes a strong limitation for the design of weak convex proper losses: for instance, if
all components of virtual matrix Ỹ are strictly positive, its right inverse has at least one
negative component and, thus, it is not stochastic. Therefore,Qp(Ỹ) = ∅.

Moreover, though the right inverse of a matrix with all non-negative elements may
be non-negative, each zero element in Ỹ imposes strong constraints on the number of
non-zero elements in its right inverse. In particular, it is easy to see that, if Ỹ does not
have negative components and Ψ (f) = ỸΨ̃ (f) is M-proper, then [Ỹ]ji > 0 implies
[M]ik = 0 for any k �= j. In summary, properness is a limiting factor to preserve
convexity in a practical design of weak losses: even for a convex Ψ̃ , Ψ is in general
non-convex.

However, as we have seen in the previous example, non-negative virtual label matri-
ces can be used to construct CC or RC losses. The following are examples of convex
classification calibrated weak loss functions constructed from conventional losses used
for multiclass classification.

Example 4 (Pairwise comparison.).
If

Ψ̃(y, f) =

c−1∑
j=0

φ(yᵀf − fj) (28)

The weak loss Ψ (f) = BΨ̃ (f) is

Ψ(z, f) = ỹᵀΨ̃ (f) =

c−1∑
k=0

zkΨ̃k(f)

=

c−1∑
k=0

zk

c−1∑
j=0

φ(fk − fj) (29)

Example 5 (One versus all.).
Let

Ψ̃(y, f) = φ(yᵀf) +
∑

j �=ind(y)

φ(−fj) (30)

The weak loss Ψ (f) = BΨ̃ (f) is

Ψ(z, f) =

c−1∑
k=0

zk

⎛⎝φ(fk) +∑
j �=k

φ(−fj)

⎞⎠ (31)
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6 Conclusions

In this paper we have analyzed conditions on the conditional probability model relating
weak labels and true classes to guarantee that a loss is classification-calibrated. As
expected, we have found that classification calibration imposes less constraints on the
mixing matrix. Moreover, we show a straighforward way to construct a weak loss from
a conventional loss that preserves convexity and also classification calibration for a wide
set of mixing matrices including independent label models.

Appendix

Proof of Theorem 2

Assume that Ψ(z, f) is strictly M-proper, but M /∈ W . Then we have

�z{Ψ(z, f)} = pᵀΨ (f) = ηᵀMᵀỸᵀΨ̃ (f) = ηᵀVᵀΨ̃ (f) (32)

where V = ỸM is a c × c matrix. We consider two cases: (i) Vη has non-negative
components, an (ii) at least one component of Vη is negative.

In case (i), since Ψ̃ is strictly proper, (32) is minimum at

f∗ =
Vη

�
ᵀ
cVη

(33)

Since M /∈ W , we have V �= αI for any α and, thus, f∗ �= η (at least for some η),
which is in contradiction with the fact that Ψ is strictly proper.

The basic idea of the proof of case (ii) is to show that, if Vη has some negative
components, then the unique minimizer of Ψ (f) (the weak loss) for f in the probability
simplex P , must lie in the boundary of P . In such case, for any η in the interior of P ,
η /∈ argminf η

ᵀΨ (f) and, thus, Ψ is not proper. A proof that the minimizer of Ψ (f)
must be in the boundary of P follows.

First, note that, if Ψ̃ is strictly proper, it is invertible. Otherwise, if Ψ̃ (η1) = Ψ̃ (η2),
ηᵀ
1Ψ̃ (η1) = ηᵀ

1 Ψ̃ (η2), which is in contradiction with η1 being the unique minimizer
of ηᵀ

1 Ψ̃(f). Also, the image set S = {Ψ̃ (f), f ∈ P} is a convex manifold in �c (i.e., it
is in the boundary of its convex hull). To see this, since Ψ̃ is strictly proper, ηΨ̃ (η) ≤
ηΨ̃ (f), thus, η is the normal vector of a supporting hyperplane of S in Ψ̃(η) and, thus,
Ψ̃ (η) is a boundary point in the convex hull of S.

Additionally, for a = Vη, if η = argminf aΨ̃ (f), then a is also a normal vector
of a supporting hyperplane of S in Ψ̃ (η). But, if S is strictly convex, it has a single
supporting hyperplane at almost every point and, thus, for almost every η ∈ P , Vη =
αη, for some α �= 0. SinceVη has some negative components, we must have α < 0
and, thus η = argminf αη

ᵀΨ̃ (f) = argmaxf η
ᵀΨ̃ (f), which is in contradiction with

η being a minimizer of ηᵀΨ̃ (f)
Note that equation ỸM = αI states a set of c2 − 1 linear constraints. This, along

with M�d = �c shows that the dimension of the maximal set is at most dc− c2− c+1.
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Proof of Theorem 3

Let f∗ be the minimum of �z{Ψ(z, f)} = ηᵀVᵀΨ̃ (f) with V = ỸM. Also, let η such
that ηi = μ+ ε and ηj = μ− ε, for some small ε > 0. Since Ψ(z, f) is RC and ηi > ηj ,
we have f∗

i > f∗
j . Also, since Ψ̃ is ranking-consistent, we have

eciVη ≤ ecjVη (34)

therefore

vii(μ+ ε) + vij(μ− ε) +
∑

k/∈{i,j}
vikηk

≤ vji(μ+ ε) + vjj(μ− ε) +
∑

k/∈{i,j}
vjkηk (35)

Since this must be true for arbitrary small ε, we have

(vii + vij)μ+
∑

k/∈{i,j}
vikηk ≤ (vji + vjj)μ+

∑
k/∈{i,j}

vjkηk (36)

Alternatively, taking ηi = μ − ε and ηj = μ + ε, we can conclude that the opposite
inequality is also true. Therefore, the above inequality can be replaced by an equality.
Since this must be true for any μ and {ηk}, we get

vii + vij = vjj + vji (37)

vik = vjk, , k �= i, k �= j (38)

Since this must be true for any pair i, j of classes, Eq. (38) implies that the non-diagonal
values of each column must be equal, while (37) imposes a restriction on the diagonal
element. Both conditions and the inequality relations are equivalent to claiming that
matrix V must have the general form V = λI + �cv

ᵀ for some constant λ > 0 and
vector v. Also, we can write the above constraints as

(eci − ecj)
ᵀỸM(eci + ecj) = 0 (39)

(eci − ecj)
ᵀỸMeck = 0, , k �= i, k �= j (40)

This states a set of at most c2 − c − 1 linear constraints over M. This along with
M�d = �c shows that the dimension of the maximal set is at most dc− c2 + 1. To see
thatQ is maximal, note that, for any M ∈ Q, we have that �z{Ψ(z, f)} = ηᵀVᵀΨ̃ (f).
Noting that

Vη = λη + (vᵀη)�c (41)

we can see that η∗ = Vη is an order-preserving transformation. Thus Ψ(z, f) is RC.

Proof. of Theorem 4

The proof follows the same steps than Th. 3. The only difference is that we must take μ
and ηk such that μ > ηk, for all k �= i, k �= j.
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Abstract. Margin-based strategies and model change based strategies
represent two important types of strategies for active learning. While
margin-based strategies have been dominant for Support Vector Ma-
chines (SVMs), most methods are based on heuristics and lack a solid
theoretical support. In this paper, we propose an active learning strat-
egy for SVMs based on Maximum Model Change (MMC). The model
change is defined as the difference between the current model parame-
ters and the updated parameters obtained with the enlarged training set.
Inspired by Stochastic Gradient Descent (SGD) update rule, we measure
the change as the gradient of the loss at a candidate point. We analyze
the convergence property of the proposed method, and show that the
upper bound of label requests made by MMC is smaller than passive
learning. Moreover, we connect the proposed MMC algorithm with the
widely used simple margin method in order to provide a theoretical jus-
tification for margin-based strategies. Extensive experimental results on
various benchmark data sets from UCI machine learning repository have
demonstrated the effectiveness and efficiency of the proposed method.

Keywords: Active Learning, Maximum Model Change, SVMs.

1 Introduction

In supervised learning, a large amount of labeled data is usually required to
obtain a high quality model. A widely used method for data collection is pas-
sive learning, where the training examples are randomly selected according to
a certain underlying distribution and annotated by human editors. However, in
many practical applications, there might not be sufficient labeled data examples
due to the high cost associated with data annotation. To solve this problem, ac-
tive learning aims at selectively labeling the most informative instances with the
goal of maximizing the accuracy of the model trained. In a typical active learn-
ing framework, the learner iteratively chooses informative data examples from
a large unlabeled set (denoted as pool U) with a predefined sampling function,
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and then labels them. This data sampling process is repeated until a certain per-
formance expectation is achieved or a certain labeling budget is used up. Active
learning is well-motivated in many supervised learning tasks where unlabeled
data may be abundant but labeled data examples are expensive to obtain [8,9].

Support vector machines (SVMs), which have arisen from statistical learn-
ing theory, play a significant role in the machine learning community with solid
mathematical and statistical foundation [11,12]. Due to many desired properties
including excellent generalization performance, robustness to the noise, and ca-
pability to deal with high dimensional data, SVMs have been successfully applied
to many learning applications. As a result, active learning for SVMs has recently
drawn a great deal of attention. In previous studies, several active learning al-
gorithms have been specifically proposed for SVMs [5,10,13,14,17,18]. Most of
them are derived with the notion of margin, i.e. preferring the points located
in the margin. For example, simple margin [18], the most widely adopted strat-
egy for SVMs, selects the examples that are closest to the decision boundary as
the most informative ones. Although the margin-based active learning heuristics
are fairly straightforward and natural for SVMs, these popular approaches lack
a solid theoretical justification, i.e. how can we guarantee that margin-based
active sampling performs better than passive learning.

In this paper, we introduce a new interpretation for the margin-based active
learning by bridging it with the idea of model change. In particular, we attempt
to provide theoretical justifications for the margin-based methods. We consider
the capability of examples to change the model, and accordingly propose a novel
margin-based active learning strategy for SVMs called Maximum Model Change
(MMC), which is to choose the examples leading to the maximal change to the
current model. The change is quantified as the difference between the current
model parameters and the new parameters obtained with the expanded training
set. Inspired by the well-studied work on the Stochastic Gradient Descent (SGD)
update rule [15,16,19], where the parameters are updated repeatedly according
to the negative gradient of the objective function at each single training example,
we use the gradient of the loss at a candidate example to approximate the model
change. Under the model change principle, the instances lying in the margin are
proven to be the ones having the capability to change the model. We further an-
alyze the convergence property of the proposed MMC method, and show that 1)
MMC is guaranteed to converge, and 2) the upper bound of label requests made
by MMC is smaller than that of passive learning. We further connect MMC with
simple margin to provide a uniform view to these two methods. The property
holds for other well-known SVMs active learning methods as well. We validate
our algorithm with various benchmark data sets from UCI machine learning
repository. Extensive experimental results have demonstrated the effectiveness
and efficiency of the proposed active learning approach.

The main contributions of this paper are summarized as follows.

– Focusing on SVMs as the base learner, we introduce a novel interpretation
for margin-based active learning with model change, and propose a new
sampling algorithm called Maximum Model Change (MMC).
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– We theoretically analyze the convergence property of the proposed approach,
and compare the sampling bound against passive learning.

– We connect MMC with the widely adopted simple margin heuristic in order
to provide a uniform view to these two active learning methods.

The rest of this paper is structured as follows: Section 2 briefly reviews the
related work. Our active learning approach for SVMs, Maximum Model Change
(MMC), is presented in Section 3. Section 4 provides the theoretical justification
of the convergence property for the proposed approach, and compare the sam-
pling bound with that of passive learning. Section 5 explores the relationship
between MMC and simple margin. Section 6 presents the experimental results.
Finally, we conclude the paper in Section 7.

2 Related Work

The goal of active learning is to train a high quality model using as few labeled
training set as possible, therefore minimizing the labeling cost. In this section, we
first briefly review several general active learning strategies, and then summarize
existing margin-based active learning methods for SVMs.

2.1 Active Learning

Various active learning strategies have been proposed in the literature. Here we
briefly review the typical active learning strategies:

1. Uncertainty Sampling (US): The US approach aims to choose the exam-
ples whose labels the current classifier is most uncertain about. This strat-
egy is usually straightforward to implement for probabilistic models. Take
binary classification as an instance, US aims to query the data point whose
posterior probability is most close to 0.5 [22]. For multi-class classification
problems, examples with the smallest margin between the first and second
most probable class labels are selected [1].

2. Query By Committee (QBC): The QBC strategy generates a committee
of model members and select unlabeled instances about which the models
disagree the most [4]. A popular function to quantify the disagreement is vote
entropy. To efficiently generate the committee, popular ensemble learning
methods, such as Bagging and Boosting, have been employed [2].

3. Expected Error Reduction (EER): The EER strategy aims to minimize
the generalization error of the model. Roy et al. [20] proposed an optimal
active sampling method to choose the example that leads to the lowest gen-
eralization error on the future test set once labeled and added to the training
set. The weakness is that the computational cost of this method is extremely
high. Instead of choosing the example yielding the smallest generalization er-
ror, Nguyen et al. [7] suggested to query the instance that has the largest
contribution to the current error. Cohn et al. [21] proposed a statistically
optimal active learning approach, which aims to choose the examples mini-
mizing the output variance to reduce the generalization error.
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4. Expected Model Change (EMC): This strategy is to select data points
that are expected to incur a large model change once added to the training
set. Settles et al. [23] proposed an algorithm for logistic regression, and the
change is quantified as the gradient length of the objective function obtained
by the enlarged training set. Donmez et al. [3] presented a sampling approach
for ranking tasks, which measures the change as the difference between the
current model and the additional model trained with the selected examples.
Recently, Cai et al. [24] applied this strategy to regression tasks.

There are several other active learning strategies proposed. A comprehensive
active learning survey can be found in [6].

2.2 Active Learning for SVMs

Support vector machines (SVMs), built on solid mathematical and statistical
foundation, play an important role in supervised learning. Many active learning
algorithms, especially margin-based algorithms, have been specifically proposed
for SVMs. We summarize existing margin-based active learning for SVMs as
follows:

1. Simple Margin [18]: The simple margin algorithm is one of the most widely
adopted active learning strategy when employing SVMs as the base learner,
which chooses the examples that are closest to the separating hyperplane.

2. MaxMin Margin [18]: This active learning method aims to select the data
instances that equally split the version space once labeled and added to the
training set.

3. Ratio Margin [18]: This sampling approach is an extension of MaxMin
Margin by taking particular consideration of the shape of version space.

4. Representative Sampling [5]: This sampling algorithm selects the most
representative points within the margin using the clustering techniques.

5. Multi-criteria-based Sampling [14]: This approach simultaneously con-
siders multiple criteria for sampling, and queries the data examples that are
both informative and representative.

6. Diversity-based Sampling [13]: This strategy extends the simple margin
to batch mode active learning by incorporating a diversity measure, which
is calculated by their angles, to enforce the selected points to be diverse.

7. Confidence-based Sampling [10]: This active sampling algorithm can be
regarded as a variant of the simple margin, which measures the uncertainty
value of each sample as its conditional error.

As listed above, a common feature among the margin-based active learning
methods is that they tend to pick the data examples located in the margin. Al-
though existing margin-based active learning strategies are quite straightforward
for SVMs, one limitation is that they lack solid theoretical support. In the next
sections, we propose a new active learning algorithm for SVMs, together with
theoretical justification.
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3 Maximum Model Change for SVMs

In this section, we first provide a brief introduction to SVMs, focusing on the
model fitting with the Stochastic Gradient Descent (SGD) rule. Then, the details
of the proposed active learning algorithm, Maximum Model Change (MMC), for
SVMs are provided. Finally, we analyze the computational complexity of the
proposed algorithm.

3.1 Training SVMs with Stochastic Gradient Descent

For simplicity, we concentrate on the binary classification problem in this paper.
It is straightforward to generalize the proposed method to multi-class problems.
Given a training set L = {xi, yi}ni=1, where xi ∈ Rd is a d-dimensional feature
vector and yi ∈ {1,−1} is a class label, the separation hyperplane of linear SVM
model is represented as:

f(x) = wTx+ b = 0, (1)

where w denotes the weight vector parameterizing the model. For simplicity, we
omit the bias term b throughout this study, which is commonly used in practice.
In fact, it is easy to employ the bias by padding extra dimension of all 1’s.

Building a SVM classifier is to solve the following Quadratic Programming
(QP) problem:

min
w

1

2
||w||2 + C

n∑
i=1

ξi

s.t. yiw
Txi ≥ 1− ξi,

ξi ≥ 0, i = 1, ..., n, (2)

where ξi is a slack variable. The above QP problem can be equivalently rewritten
as an unconstrained problem by re-arranging the constraints and substituting
the parameter C with C = 1

λ as follows:

min
w

λ

2
‖w‖2 +

n∑
i=1

[1− yiw
Txi]+, (3)

where the subscript indicates the positive part. The first term is the regularizer,
and the second term represents the standard Hinge loss. More generally, the soft
margin loss is adopted with a margin parameter γ ≥ 0, which treats the margin
as a variable [19]. Thus, the SVM optimization problem can be reformulated as:

min
w

λ

2
‖w‖2 +

n∑
i=1

[γ − yiw
Txi]+, (4)

where the second term [...]+ is the so-called soft margin loss. When γ = 1, the
second term is the Hinge loss.
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To find w minimizing the objective function, a widely used search approach is
Stochastic Gradient Descent (SGD), which updates the parameter w repeatedly
according to the negative gradient of the objective function with respect to each
training example:

w← w − α
∂Ow(xi)

∂w
, i = 1, 2, ..., n, (5)

whereOw(xi) and α are the objective function and the learning rate, respectively.
With the particular of objective function (4), the update rule can be written as:

w ←
{

(1− αλ)w + αyixi, if yiw
Txi < γ,

(1− αλ)w, otherwise.
(6)

In the literatures, several SGD-based learning algorithms have been well studied
for solving the SVMs optimization problems [15,19]. They share the same update
rule (6) with different scheduling of the learning rate.

3.2 Model Change Computation

Here, we consider the SGD rule in the active learning cases. Suppose a candidate
example x+ is added to the training set with a given class label y+, the objective
function on the expanded training set L+ = L ∪ (x+, y+) then becomes:

min
w

λ

2
‖w‖2 +

n∑
i=1

[γ − yiw
Txi]+ + [γ − y+wTx+]+︸ ︷︷ ︸

:=�w(x+)

. (7)

As a result, the parameter w is changed due to the inclusion of the new example
(x+, y+). We estimate the effect of adding the new point on the training loss to
approximate the change, and hence the model change can be approximated with
the gradient of the loss function at the example (x+, y+):

Cw(x+) = +w ≈ α
∂�w(x

+)

∂w
. (8)

The derivative of the loss at the candidate point (x+, y+) is calculated as:

∂�w(x
+)

∂w
=

{
−y+x+, if y+wTx+ < γ,

0, otherwise.
(9)

Clearly, the model updates its weight based on solely those examples that satisfy
the inequality y+wTx+ < γ, which is straightforward for SVMs.

The goal of MMC is to query the example that maximally changes the current
model. According to (8) and (9), only the set Ψ = {x : y+wTx+ < γ} ⊆ U has
the ability to change the model, and hence only this set needs to be considered
in active learning. The sampling criteria can be expressed as:

x∗MMC = arg max
x+∈Ψ

||Cw(x+)||. (10)
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Algorithm 1. MMC active learning for SVMs

Input: The labeled data set L={(xi, yi)}ni=1, the unlabeled pool set U , the parameter
γ, the SVM classifier f(x) trained with L.
1: for each x+ in U do
2: if |wTx+| < γ then
3: Ey+{||Cw(x

+)||} ← ||x+||.
4: end if
5: end for

Output: x∗ ← argmaxx+ Ey+{||Cw(x
+)||}

In practice, the true label y+ of the example x+ is unknown in advance. With
y ∈ {1,−1}, we have

Ω = {x : |wTx+| < γ} ⊆ {x : y+wTx+ < γ, y ∈ {1,−1}}.

We hence rewrite the inequality constraint y+wTx+ < γ as |wTx+| < γ. Mean-
while, we take the expected model change over each possible class labels y+ ∈
Y = {1,−1} to approximate the true change. Suppose that the learning rate α
for each candidate point is identical, the final sampling criteria can be reformu-
lated as:

x∗MMC =arg max
x+∈Ω

Ey+{||Cw(x+)||}

=arg max
x+∈Ω

∑
y+∈Y

P̂ (y+|x+)|| − y+x+||

=arg max
x+∈Ω

∑
y+∈Y

P̂ (y+|x+)||x+||

=arg max
x+∈Ω

||x+||, (11)

where P̂ (y+|x+) represents the conditional probability of label y+ given example
x+ estimated by the current classifier. The last step above follows from the fact
that P̂ (y+ = +1|x+) + P̂ (y+ = −1|x+) = 1. An intuitive explanation for MMC
is that the data examples maximally changing the current classifier are expected
to result in faster convergence to the optimal model. The corresponding pseudo-
code is given in Algorithm 1.. Based on the above derivation, MMC can be
deemed as a margin-based active learning strategy as well because it shares the
common feature of preferring examples within the margin, i.e. {x : |wTx+| < γ}.

3.3 Computational Complexity

Assume that there are n labeled examples in the training set, and m unlabeled
instances in the pool set. There are three main operations in the MMC method:
SVM training, sample filtering, and sample selection.

SVM training typically needs O(n2) calculation. For the sample filtering, the
main operation is to calculate the inner product, which has a time complexity of
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O(d). Therefore, the total time complexity is O(md) at this step. For the sample
selection, most time is spent on computing the norm with a complexity of O(d),
and hence the total time complexity is O(kd)) if there are k eligible examples.
Summing up, the total time complexity for MMC is O(n2 + (m+ k)d), which is
promising for real-world tasks.

4 Theoretical Analysis

The goal of a learning model is to minimize the generalization error on future
data. Clearly, the generalization error is changed if and only if the model is
changed. Thus, active learning only needs to select the samples that change the
current model, which is support vectors for SVMs. A nice feature of SVMs is
that support vectors usually represent a tiny portion of the training data.

We have shown that points within the margin are the ones having the ability
to change the current model. In this section, we attempt to provide a theoretical
backup behind our strategy by analyzing the convergence property. Assume that
{∃ε, x : y+wTx+ ≤ γ − ε} = {x : y+wTx+ < γ}. Since the scaling factors is
to scale the derived bound by some fixed constant, which does not affect the
convergence property, for clarity, we drop the scaling factors in the update rule:

w←
{
w + yixi, if yiw

Txi < γ,

w, otherwise.
(12)

Theorem. (Convergence property) Suppose that ||xj || ≤ R for all xj ∈ L ∪ U .
Let the current solution be wc, and further suppose that there exists an optimal
solution w∗ such that yj(w

∗)Txj ≥ γ for all examples xj. Let ||wc|| = M and
||w∗|| = N . Then, the total number of label requests A made by MMC is at most

O

(
N

γ

(
M +N +

N(R2 − ε)

γ

))
.

Proof. The proposed MMC algorithm chooses the data points only that change
the current model, which implies that

y+wTx+ < γ ⇔ y+wTx+ ≤ γ − ε. (13)

According to the SGD update rule in Eq. (12), we have

w(t+1) ← w(t) + y+x+, t = 1, 2, ...,A. (14)

where w(t=1) stands for the current solution, i.e. w(t=1) = wc. According to the
above update rule in Eq. (14), we get:

||w(t+1)||2 =||w(t) + y+x+||2

=||w(t)||2 + ||x+||2 + 2y+(w(t))Tx+

≤||w(t)||2 + ||x+||2 + 2(γ − ε)

≤||w(t)||2 +R2 + 2(γ − ε). (15)
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and

(w(t+1))Tw∗ =(wt)Tw∗ + y+(x+)Tw∗

≥(wt)Tw∗ + γ. (16)

Through iterative deduction of the above two equations, we have

||w(A+1)||2 ≤||wc||2 +AR2 + 2A(γ − ε)

=M2 +AR2 + 2A(γ − ε). (17)

and
(w(A+1))Tw∗ ≥ (wc)Tw∗ +Aγ. (18)

Because (wc)Tw∗ = ||wc|| · ||w∗|| cosφ, where φ is the angle between wc and w∗,
we have:

(w(A+1))Tw∗ ≥Aγ − ||wc|| · ||w∗||
=Aγ −MN. (19)

According to the Cauchy-Schwartz inequality, we see that

(w(A+1))Tw∗ ≤ ||(w(A+1))|| · ||w∗||. (20)

Putting together Eq. (17) and Eq. (19) we get

Aγ −MN ≤
√
M2 +AR2 + 2A(γ − ε)N. (21)

Hence, we get

A ≤N
γ

(
2(M +N) +

N(R2 − 2ε)

γ

)

= O

(
N

γ

(
M +N +

N(R2 − ε)

γ

))
. (22)

�

Corollary. Suppose that ||xj || ≤ R for all xj ∈ L ∪ U . Let the current solu-
tion be wc, and further suppose that there exists an optimal solution w∗ such
that yj(w

∗)Txj ≥ γ for all examples xj . Let ||wc|| = M and ||w∗|| = N . Suppose
the probability of selecting the points satisfying the inequality y+wTx+ < γ is
Pa. Then the total number of label requests made by passive learning is at most

O

(
N

γPa

(
M +N +

N(R2 − ε)

γ

))
.

Proof. This corollary can be directly derived from the above theorem, and hence
we skip the proof and only present the result. �



220 W. Cai et al.

According to the theoretical justifications provided by the above convergence
theorem and corollary, we get the following conclusions: (1) because 0 < Pa < 1,
the upper bound of label requests made by MMC is proven to be smaller than
random selection, demonstrating that the margin-based strategy is expected to
outperform passive learning, and (2) the convergence property guarantees that
MMC converges with the maximal label requests derived above.

5 Linkage between MMC and Simple Margin

As discussed before, one of the most widely used SVM active learning solution is
simple margin, which chooses the points that are closet to the decision boundary.
The distance between a point x and the boundary wTx = 0 is computed as:

Dist(w, x) =
|wTx|
||w|| , (23)

and the sampling function can be written as:

x∗SM = arg min
x+∈U

Dist(w, x+) = arg min
x+∈U

|wTx+|. (24)

Although it achieves good practical performance, it still lacks of reasonable the-
oretical justifications.

Here, we attempt to explore the connection between MMC and simple margin
to provide a potentially theoretical justification. Let x+(j) be the j-th close-to-

boundary example in the pool, e.g. x+(1) = x∗SM. Assume there are m unlabeled

examples in the pool. According to Eq. (24), we have

|wTx∗SM| = |wTx+(1)| < |w
Tx+(2)| < · · · < |w

Tx+(m)|. (25)

Now, let us consider the inequality |wTx+| < γ used for sample filtering. If we
restrict the margin parameter γ as:

|wTx∗SM| < γ ≤ |wTx+(2)|, (26)

it is clear to see that there will be only one point, i.e. the one most close to
boundary, satisfying this inequality. Hence we have

x∗SM = Ω = {x : |wTx+| < γ} ⇒ x∗SM = x∗MMC. (27)

Thus, simple margin can be viewed as a special case of MMC, and the theoretical
results derived above is applicable to this popular method as well.

6 Experiments

6.1 Data Sets and Experimental Settings

To validate the performance of the proposed algorithm, we use eight benchmark
data sets of various sizes from the UCI machine learning repository1: Biodeg,

1 http://archive.ics.uci.edu/ml/

http://archive.ics.uci.edu/ml/
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Table 1. The information of the eight binary-class data sets from UCI repository

Data set # Examples # Features Class distribution

Biodeg 1055 41 356/699

Ionosphere 351 34 225/126

Parkinsons 195 22 147/48

WDBC 569 30 357/212

Letter

D-vs-P 1608 16 805/803
E-vs-F 1543 16 768/775
M-vs-N 1575 16 792/783
U-vs-V 1577 16 813/764

Ionosphere, Parkinsons, WDBC, Letter. For Letter, a multi-class data set,
we select four pairs of letters (i.e. D-vs-P, E-vs-F, M-vs-N, U-vs-V) that are
relatively difficult to distinguish, and construct a binary-class data set for each
pair. Table 1 shows the information of the eight binary-class data sets.

Each data set is randomly divided into three disjoint subsets: the base labeled
training set (denoted as L), the unlabeled pool set (denoted as U), and the test
set (denoted as T ). We use the base labeled set L as the small labeled data set
to train the initial SVM models. The pool set U is used as a large size unlabeled
data set to select the most informative examples, and the separate test set T is
used to evaluate different active learning algorithms. More specifically, the active
learning scenario for each data set is constructed as: L(5%)+U(75%)+T (20%).
We normalize the features with the function below:

fN
(i,j) =

f(i,j) −mini∈n{f(i,j)}
maxi∈n{f(i,j)} −mini∈n{f(i,j)}

, (28)

where n denotes the number of examples in each of data set, and f(i,j) represents
the j-th feature from the i-th example.

The optimal margin parameter γ is determined by the standard 5-fold cross
validation. In this study, the active learning process iterates 10 rounds. In each
round of data selection, 3% of the whole examples are selected from U . These
examples are then added to the training set, and SVM classifiers are re-trained
and tested on the separate test set T .

6.2 Comparison Methods and Evaluation Metric

To test the effectiveness of the proposed active learning algorithm, we compare it
against the following four competitors including three state-of-art active learning
for SVMs methods, and one baseline random selection: (1) S-MARGIN [18]: the
simple margin algorithm, (2) CLUSTER [5]: the clustering-based representative
sampling approach, (3) QUIRE [14]: the multi-criteria-based sampling, and (4)
RAND: the random sampling. A detailed description of each of these algorithms
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(c) Parkinsons
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(d) WDBC

Fig. 1. Comparison results of different active learning algorithms on theBiodeg, Iono-
sphere, Parkinsons, and WDBC data sets

is provided in Section 2. For evaluation, the classification accuracy is adopted to
measure the performance on the test set:

Accuracy =
1

|T|

|T|∑
i=1

1{f(xi) = yi}, (29)

where |T| stands for the size of the test set, and yi and f(xi) are the ground truth
and prediction of xi, respectively. 1{.} is the indicator function. To avoid random
fluctuation, each experiment is repeated 10 times by varying the base-pool-test
sets, and the averaged classification accuracy is reported.

6.3 Comparison Results and Discussions

The comparison results of the five data selection algorithms on these eight UCI
benchmark data sets are presented in Figure 1 and Figure 2. The X-axis denotes
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(b) E-vs-F
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(c) M-vs-N
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(d) U-vs-V

Fig. 2. Comparison results of different active learning algorithms on the D-vs-P, E-
vs-F, M-vs-N, and U-vs-V data sets

the number of iterations for the active learning process, and the Y-axis represents
the classification accuracy. Several general observations as shown in these figures
are explained as follows.

(1) For all five algorithms, the classification accuracy generally increases with
the iterations of active learning, which matches the intuition that model’s per-
formance is positively correlated with the amount of training set available.

(2) The proposed MMC algorithm is observed to perform the best among the
five approaches in most cases during the entire data selection process, demon-
strating that the proposed active learning method is more effective in choosing
the most informative examples to improve the model quality. This is likely due
to the reason that MMC quantifies the model change as the gradient of the loss,
which is highly correlated with the objective function used to evaluate the SVM
models. Therefore, the examples selected by MMC are more likely to contribute
positively to improve the model. In addition, we observe that MMC converges
much faster than the competitors on several data sets (e.g. D-vs-P, E-vs-F, M-
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Table 2. The p-value of Wilcoxon signed rank test of MMC versus S-MARGIN,
QUIRE, CLUSTER and RAND on the UCI data sets

Data sets vs. S-MARGIN vs. QUIRE vs. CLUSTER vs. RAND

Biodeg p<0.1 p<0.1 p<0.05 p<0.05

Ionosphere p<0.05 p<0.05 p<0.05 p<0.05
Parkinsons p<0.05 p<0.05 p<0.05 p<0.05
WDBC p<0.05 p<0.05 p<0.05 p<0.05
D-vs-P p<0.05 p<0.05 p<0.05 p<0.05
E-vs-F p<0.1 p<0.05 p<0.05 p<0.05

M-vs-N p<0.05 p<0.05 p<0.05 p<0.05
U-vs-V p<0.05 p<0.05 p<0.05 p<0.05

vs-N, U-vs-V), i.e. the highest classification accuracy is achieved with much
less examples added to the training set. This agrees with the intuitive explana-
tion that the data examples greatly changing the current classifier are expected
to produce faster convergence to the optimal model.

(3) We see that the performance of CLUSTER is inconsistent. It works well
on some data sets, but performs poorly on the others. This phenomena may be
explained as follows. The CLUSTER method utilizes a clustering technique to
choose the representative data points, which may fail if there is no clear cluster
structure in the data. On the contrary, QUIRE is observed to yield relatively
good performance on most data sets. The success of QUIRE may be attributed to
the principle of choosing examples that are both informative and representative.

(4) To better validate the effectiveness of the proposed approach, we conduct
the significance test on the comparisons. Table 2 presents the results of Wilcoxon
signed rank test of MMC versus S-MARGIN, QUIRE, CLUSTER and RAND
strategies on the benchmark UCI data sets. The comparison results with p>0.05
are underlined. It shows that the proposed method performs statistically better
(p<0.05) than S-MARGIN, QUIRE, CLUSTER and RAND on most data sets.
We also perform the 2-tailed paired T-test to further examine the effectiveness of
MMC. Due to the space limitation, the p-values according to the 2-tailed T-test
are not reported here, and the results show that MMC significantly outperforms
(p<0.05) the competitors in most cases during the sample selection process.

6.4 Efficiency Comparison

In this subsection, we compare the CPU running time taken by MMC versus the
competitors. All algorithms were implemented using MATLAB on a standard
desktop computer with 2.53 GHz CPU and 8 GB of memory.

Table 3 shows the comparison results, together with the information of the
pool set. As shown in the table, the time complexity of MMC is slightly higher
than that of S-MARGIN, but much more efficient than the other two strate-
gies, i.e. QUIRE and CLUSTER. This is due to the reason that QUIRE involves
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Table 3. The CPU running time (seconds), together with the information of pool set

Data sets # Ex. × Features (U) MMC S-MARGIN QUIRE CLUSTER

Biodeg 791 × 41 0.04 0.01 100.85 1.12
Ionosphere 263 × 34 0.02 0.01 3.79 0.21
Parkinsons 146 × 22 0.00 0.00 0.84 0.15
WDBC 427 × 30 0.01 0.00 16.38 0.44
D-vs-P 1206 × 16 0.07 0.02 341.94 1.03
E-vs-F 1157 × 16 0.02 0.01 301.87 0.78
M-vs-N 1181 × 16 0.02 0.02 324.70 1.02
U-vs-V 1183 × 16 0.05 0.01 219.10 1.00

calculating the inverse of a large scale matrix, and CLUSTER requires consid-
erable efforts on clustering. In summary, the proposed MMC method is quite
efficient in computational complexity, and is promising for real-world applica-
tions.

7 Conclusions

In this paper, focusing on SVMs, we introduce a new interpretation for margin-
based active learning with the idea of expected model change, and accordingly
propose a novel margin-based active learning algorithm named Maximum Model
Change (MMC), which is to choose the examples leading to the maximal change
in the current classifier. The change is measured as the difference between the cur-
rent model parameters and the updated parameters trained with the accumulated
training set. Inspired by the SGD rule for solving the SVMs optimization prob-
lems, the change is approximated as the gradient of the loss at a candidate point. In
addition, we provide a theoretical analysis of the convergence property for the pro-
posed algorithm, and compare the derived sampling bound against passive learn-
ing.The comparison shows that the upper boundof sample requestsmadebyMMC
is smaller than passive learning. We further connect the proposed approach with
the widely adopted simple margin approach to provide a theoretical justification
for this popular algorithm. Substantial experimental results on various benchmark
UCI data sets have demonstrated that the proposed strategy is highly effective in
selecting informative examples, and efficient in computation time.
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Abstract. We propose a novel non-parametric statistical test that al-
lows the detection of anomalies given a set of (possibly high dimensional)
sample points drawn from a nominal probability distribution. Our test
statistic is the distance of a query point mapped in a feature space to
its projection on the eigen-structure of the kernel matrix computed on
the sample points. Indeed, the eigenfunction expansion of a Gram ma-
trix is dependent on the input data density f0. The resulting statistical
test is shown to be uniformly most powerful for a given false alarm level
α when the alternative density is uniform over the support of the null
distribution. The algorithm can be computed in O(n3+n2) and testing a
query point only involves matrix vector products. Our method is tested
on both artificial and benchmarked real data sets and demonstrates good
performances w.r.t. competing methods.

1 Introduction

Anomaly detection [1], also called novelty detection or one-class classification,
aims at declaring a query point η as “normal” or not with respect to a nomi-
nal model. The underlying d-dimensional nominal probability distribution f0(x)
over the input space X ⊂ �

d is unknown but is described by a set of n indepen-
dently and identically distributed (i.i.d.) nominal data points, gathered in the
training set S = {x1, · · · ,xn} where xk are d-dimensional vectors. The anomaly
detection problem can be formulated as a statistical test of the hypothesis that
the query point η comes from the nominal distribution f0:{

H0 : η ∼ f0 i.e. η is consistent with nominal data

H1 : η � f0 i.e. η deviates from nominal data
(1)

while controlling the type-I error (i.e. the probability to declare a nominal point
as anomaly) under a fixed level α:

p(η) = �(reject H0|H0 is true) ≤ α (2)

Conversely, the type-II error is the probability to declare a true anomaly as
nominal. If the p-value p(η) ≤ α, the null hypothesis is rejected, and η is declared
anomaly w.r.t. f0.

T. Calders et al. (Eds.): ECML PKDD 2014, Part I, LNCS 8724, pp. 227–241, 2014.
c© Springer-Verlag Berlin Heidelberg 2014
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The standard approach in anomaly detection consists in declaring as anomaly
a point lying in a low density region, considering a threshold t for the nominal
density f0 such that η is declared as anomaly if f0(η) < t. The probabilistic in-
terpretation can be obtained by considering the cumulative distribution function
F0 associated to the contour f0(η) = t to get the p-value. Indeed, if η is drawn
from the nominal density f0, it is expected to lie outside the anomaly thresh-
old with probability p(η) = 1− F0(t). Thus, the standard approach in anomaly
detection is related to density level set estimation. In practice, a ranking of η
among all nominal points in S can be used to estimate the p-value function p(η):

p̂(η) =
1

n

n∑
k=1

(
�{F (η) ≤ F (xk)}

)
(3)

where �{.} denotes the indicator function. F would be chosen to be an estimate
of the nominal cumulative distribution function F0 so that p̂(η) approximates
accurately p(η).

The estimation of the nominal density f0 is a challenging task and classi-
cal approaches are parametric in nature, i.e. the key assumption is that the
family of the nominal distribution f0 is known. Such methods include Hidden
MarkovModels or Gaussian Mixture Modeling (see [2] for a review). On the other
hand, performances of non-parametric methods do not depend of an assumed
distribution.

Instead of directly estimate the nominal density, we propose in this paper
to consider a surrogate of f0. Our proposal is based on the properties of the
eigen-decomposition of the Gram matrix of a given kernel K, such as extracted
by kernel-PCA. An accurate surrogate of the density function can then be de-
rived, even in the high-dimensional setting, which is a challenge in anomaly
detection [3].

The key principle of our approach is to consider that nominal points are
projected with low reconstruction errors on a KPCA space, and that anomalies
lie far from the projected space. The proposed test statistic is then derived from
the reconstruction error of a new point projected on a KPCA space, namely the
square distance between the original point mapped in the feature space and its
projection on the KPCA space, computed from a set of nominal points S.

The score function maps the data from the feature space to the [0, 1] inter-
val, and the associated p-values have a uniform distribution when test points
are drawn according to H0. When the score function has a value lower than a
given threshold t, the point is labeled as anomaly. The algorithm has the fol-
lowing properties: (i) it performs well in high dimensional spaces as it is based
on manifold assumptions (ii) it is non-parametric and there is no complicated
parameters to tune (iii) it provides p-value estimates, allowing for type-I error
control and (iv) it converges to the uniformly most powerful test when anomalies
are drawn from a mixture of a nominal density f0 and a uniform density.

The rest of this paper is organized as follows. Section 2 describes the KPCA
framework for density estimation and introduces the reconstruction error. The
anomaly detection test procedure, based on the reconstruction error, is presented
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in Sect. 3. Our proposal is related to some other works in anomaly detection,
covariate shift and selective sampling which are evoked in Sect. 4. Section 5
reports experiments to illustrate our approach on both artificial and real datasets
in high-dimensional spaces. Finally, we draw some conclusions and give some
perspectives.

2 Kernel Eigen-Decomposition and Density Estimation

Kernel-PCA and Notations The aim of methods related to Singular Value De-
composition (SVD), such as linear Principal Component Analysis (PCA), is to
identify and extract structures from the data by computing linear functions.
In PCA, the subspace spanned by the first eigenvectors is used both to give a
low-dimensional model with minimal residual and to provide a low-dimensional
representation of the data. However, as nonlinear structures often occur, a ker-
nelized version of the PCA (Kernel-PCA or KPCA for short) has been developed
to deal with nonlinear structures in the input space by reducing them to linear
ones in a feature space: data are mapped into a higher-dimensional space in
which the information about their mutual positions is used for further analyzes.

We suppose an unknown distribution f0(x) on the input space X . Kernel
methods map x into a feature space F through the non-linear embedding map ψ :
x ∈ X ,→ ψ(x) ∈ F . Pairwise inner products can be computed efficiently directly
from the original data points using a kernel function κ(x;x′) = 〈ψ(x), ψ(x′)〉.

The kernel or Gram matrix K is defined as the matrix whose entries are
Kkj = κ(xk,xj), ∀xk,xj ∈ X .

Eigen-Decomposition of the Gram Matrix The Gram matrix K can be decom-
posed as

K = V ΛV T (4)

where Λ denotes the diagonal matrix of eigenvalues λi, sorted in decreasing
order for convenience, and the eigen-vectors are stored column-wise in matrix

V =
[
φi

]
1≤i≤∞

. Performing a KPCA comes down to the previous decomposition

of K as the optimal space is the one spanned by V .
The input data density f0 is related to the kernel function κ(x,y); indeed,

the eigenfunction expansion is dependent on f0 [4]:∫
X
κ(x,y)f0(x)φi(x)dx = λiφi(y). (5)

This continuous problem can be approximated on a finite sample S when the xk

are sampled from f0 by the following empirical average:∫
X
κ(x,y)f0(x)φi(x)dx �

1

n

n∑
k=1

κ(xk;y)φi(xk). (6)
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According to [4], the continuous eigenfunctions and eigen-spectrum are there-
fore reliably asymptotically estimated from the eigenvalue decomposition of the
kernel matrix K(S) computed on the random sample of data.
Going through each sample xj in S gives a set of n linear equations:

1

n

n∑
k=1

κ(xk,xj)φi(xk) = λiφi(xj) ; j ∈ [1;n] (7)

which can be rewritten as eigen-decomposition:

K(S)V̂ = nV̂ Λ̂ (8)

where V̂ has columns with the empirical eigen-vectors φ̂i and Λ̂ is a diagonal

matrix containing the empirical eigenvalues λ̂i, 1 ≤ i ≤ n. It gives an estimate
of the system of eigenfunction associated with (5) and converges towards their
asymptotical counterparts with n → ∞ [5]. According to (7), the Nyström ap-
proximation [6] of the ith eigenfunction can be calculated for a new point η by

φi(η) =
1

nλi

n∑
k=1

κ(xk;η)φi(xk). (9)

This can then be related to KPCA. In order to be the eigen-vector of the
correlation matrix

C(S) = 1

n
ψ(S) · ψ(S)T (10)

where ψ(S) =
[
ψ(x1); . . . ;ψ(xn)

]T
, the previous eigen-vectors have to be nor-

malized

φ∗
i (η) =

1

n
√
λi

n∑
k=1

κ(xk;η)φi(xk). (11)

Reconstruction Error of the KPCA. If a new sample η is drawn according to
the same probability distribution as S, it is reasonable to compute the KPCA
projection of η onto the subspace spanned by ψ(S) [5] as

r(η → ψ(S)) = κ(S;η) · V · Λ−1/2 (12)

where κ(S;η) =
[
κ(x1;η); . . . ;κ(xn;η)

]
. The quality of the projection is as-

sessed by computing the square norm of the residual, i.e. the error resulting
from using the projection r(η → ψ(S)) rather than the actual vector ψ(η). The
reconstruction error τS(η) of the sample in the feature space is then given by

τS(η) = ‖ψ(η)− r(η → ψ(S))‖2 (13)

= ‖ψ(η)‖2 − ‖r(η → ψ(S))‖2

= κ(η;η)− κ(S;η) ·K(S)−1 · κ(S;η)T .
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Note that if η ⊂ S, nothing is lost in the projection and hence τS(η) = 0.
Besides, if a RBF Gaussian kernel is considered, note also that κ(η;η) = 1 and
τS(η) ∈ [0; 1].

The extent to which the projection value captures new data according to
the same distribution f0 as the training data is a critical question and has been
discussed in order to assess the KPCA performances [4, 7, 5]. Proposition 1 states
that good capture of the new data can be expected, as the expectation of the
empirical value τS(η) computed from K(S) converges to the true expectation
of τ(η) computed from K. We first suppose that the support of the distribution
under H0 is bounded in a ball of radius R in F .

Proposition 1. Under H0, τS(η) → 0 with high probability, provided that the
empirical eigen-spectrum decays sufficiently fast.

In other words, as long as the percentage of variance captured by low-dimensional
eigen-spaces is concentrated, τ(η) can be reliably estimated from τS(η) and
τS(η)→ 0 as n grows. The proof is given in [5] or [8].

Impact of the Choice of the Kernel. The decay rate of the eigenvalues depends
on the connection between the kernel and the distribution. The choice of the
kernel is hence crucial; discussion about the decay of the spectrum in the case of
a Gaussian or translation-invariant kernels is provided in [9]. Even if expressing
the connection in closed form is in general impossible, the decay rate can be
checked a posteriori in order to assess the validity of the results.

3 Anomaly Detection Test Based on the Reconstruction
Error of the KPCA

3.1 General Principle of the Proposed Testing Procedure

Anomaly detection is related to density level set estimation: once the nominal
density level set is learnt from the nominal data distribution, a point that falls
outside the level set, in the low density region, is declared as an anomaly. In the
KPCA framework, as stated in [7], the eigen-decomposition of the Gram matrix
extracted with KPCA provides an accurate estimate of the nominal density
function so that we propose to use the eigen-decomposition to derive a testing
strategy for anomaly detection. Hereafter, instead of directly estimating the
(unknown) f0, we propose to consider the reconstruction error defined in (13)
as a surrogate of F0 in (3).

Indeed, τ(η) can be viewed as a measure that gives an insight of how far the
query point is from the true kernel matrix K. If the query point η is drawn from
the nominal density f0, its empirical eigenvalues and eigenvectors should coincide
with those of the underlying process. Therefore, ψ(η) and ψ(X ) lie roughly in
the same space and the reconstruction error τ(η) is “small”, or more precisely,
it tends to 0 with high probability. On the contrary, if η is not drawn from
the nominal density f0, the reconstruction error τ(η) is “high”. This behaviour
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makes τ(.) a suitable surrogate to rank the querry point, ordering it with respect
to the target nominal density contour on which it lies and hence the level set of
τ is close to the target level set of f0 everywhere.

The statistical test then comes down to thresholding the τ values. Interestingly
enough, it is the Uniformly Most Powerful (UMP) test: indeed, in density level
set, it is deduced from the Neymann-Pearson test theory that the optimal test
with type-I error control of level α is obtained by thresholding f0 when the
density under the alternative hypothesis is the uniform density over the support
of the null distribution.

3.2 Calibrating the Test

To compute the critical region for a given level α, the test procedure relies
on the definition of the null cumulative distribution function (cdf) G0 of the
test statistic. Unfortunately, the limiting cdf of τS under the null hypothesis is
unknown but can be determined in various ways (see for instance [10]). We here
consider a resampling technique to calibrate the test, which usually leads to a
fast and accurate estimation of the cdf.

We take advantage of the fact that the training set S is drawn according to
H0 to construct an empirical cdf G. As ∀xk ∈ S, τS(xk) = 0, an alternative
strategy has to be defined. Proposition 2 describes the procedure that can be
used to obtain an empirical null cdf G and states that, with high probability, it
converges to the null cdf G0.

Proposition 2. Given a set S drawn according to the nominal distribution f0,
the estimate of the empirical null cumulative distribution function G0 of τS is
given by:

G(t) =
1

n

n∑
k=1

�(τ−k
S (xk) ≤ t) (14)

where
τ−k
S (xk) = κ(xk;xk)− κ(xk;S) ·K(S\{xk})−1 · κ(xk;S)T (15)

is the reconstruction error of sample xk computed on S\ {xk}, the training set
deprived of xk. By the strong law of large number, G converges almost surely to
G0 for every value of t:

supt∈� |G(t)−G0(t)| ,→ 0 (16)

We can now define our anomaly detection test in the following proposition.

Proposition 3. The anomaly detection test is based on the computation of es-
timated p-values defined by:

p̂(η) =
1

n

∑
xk∈S

�
{
τS(η) ≤ τ−k

S (xk)
}
. (17)
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Algorithm 1. Anomaly detection with score function based on the error recon-
struction of the kernel-PCA
Input: S = {x1; · · · ;xn}, the n-set of nominal points, drawn i.i.d from the underlying

density f0
Input: η, the query point
Input: α, the significance level

Training phase
for xk in S do

compute τ−k
S (xk) according to (15), where K(S\{xk})−1 is computed from

K(S)−1 (18)
end for
Test phase
compute τS(η) according to (13)
if p̂(η) defined in (17) ≤ α then

declare η as anomaly
else

declare η as nominal
end if

The main steps of the proposed procedure are described in Algorithm 1. It
computes the estimated nominal values of τS(xk) from S and query point η
is then detected as anomaly if its projection on the feature space is too high,
that is to say p̂(η) ≤ α. Complexity of computing all the different τ−k

S (xk) is
O(n3 + n2). Testing a query point only involves matrix vector products.

3.3 Implementation Issues and Practical Solutions

Computing the empirical cdf under the null hypothesis involves the inversion of
n Gram matrices K(S\ {xk})−1, xk ∈ S of size (n − 1) × (n − 1). This com-
putational burden can be alleviated by computing K(S)−1 once and deducing
all K(S\ {xk})−1 matrices by considering the following algebra decomposition
that uses the Schur complement of matrix K(S)−1:

K(S\{xk})−1 = K(S)−1
−k,−k −

K(S)−1
−k,k ·K(S)−1

k,−k

K(S)−1
k,k

(18)

where K(S)−1
k,k corresponds to the kth column and kth row of matrix K(S)−1,

the minus sign meaning that the matrix is deprived from its kth column and/or
its kth row.

For some numerical analysis issues, the matrix K(S) may not be invertible
(in theory, it should not be the case as it is a Gram matrix). Yet, it is always
possible to compute its pseudo-inverse or to consider regularization techniques
that find a close invertible matrix.
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In addition, the regularization can also be used in order to avoid over-fitting
and high sensitivity to features noise. We can consider the case of Tikhonov
regularization where a regularized version of K(S) is used:

K̃(S) = K(S) + λI (19)

where the small positive constant λ > 0 is the Tikhonov factor.
An alternative strategy to reduce the impact of feature noise would be to keep

only the q < n first eigen-vectors. Indeed, an improvement of the nominal density
estimation can be made by considering a truncation of the eigen-decomposition,
considering an estimate of f0 based on the most important components extracted
with KPCA. [4] show that, in the particular case of the RBF Gaussian kernel,
the dominant eigen-values are accurately estimated, the smaller ones being more
poorly estimated. Considering a density estimate based on the first components
of the Gram matrix decomposition do not suffer from the estimation step.

4 Related Work

Our work is related to some other works in anomaly detection, covariate shift
and selective sampling.

[11] states that the reconstruction error defined in (13), but computed only
on the first q dimensions, gives a good insight on its own to the belonging
of a point to a probability distribution. The threshold above which a point is
declared as anomaly has to be set empirically using the ROC curve. Experiments
demonstrate higher performance on several datasets than one-class SVM and
Parzen window density estimator. In the present work, the same statistic is
considered but the threshold allows controlling the type-I error while minimizing
the type-II error. Discussion in [11] about complexity of the algorithm, as well
as sensibility to outliers hence holds here and are not recalled.

The τS statistic is also equal to one minus the surrogate kernel of K(S) on
sample η [12]: it corresponds to the projection of a kernel matrix K from η
(or possibly a new set of sample) to S, while preserving the nominal eigen-
structures. They use it as a bridge to compare different kernel matrices. One key
assumption of this work is that there was a covariate shift, which is the main
difference with our work. They then use the surrogate kernel in order to match
data distributions and then compensate for the covariate shift in the Hilbert
space.

[13] use the τ statistic in the computer graphics domain. Instead of viewing
it as a measure for anomaly, they instead used it as a measure of importance of
a sample in characterizing a distribution: points η with high τS(η) values are
considered important to be added to the shape as they are different from the
other points. They hence provide a sampling scheme in order to use �� n points
to compute K(S). In the same line, [14] state that τ provides a quality measure
for Nyström method and derive a selective sampling scheme based on its value.
Such schemes can be used in complement of our approach, in order to reduce
the computational cost of extracting the eigen-functions of K(S) and of testing,
but it is beyond the scope of this paper.
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5 Experiments

Non-parametric methods for outlier detection usually rely on the assessment of
neighborhoods, where the kth-nearest neighbor distances are used to derive an
outlier score (e.g. see [15], [16] or [17]). For a sake of simplicity, the following
experiments are limited to the comparison of the proposed algorithm with the
k-lpe algorithm [15], which has been shown to be asymptotically optimal and
allows the control of the type-I error, and one-class SVM [18] which is probably
the most classical anomaly detection algorithm, albeit not being able to control
the type-I error.

Outlier detection can be evaluated using Receiver Operating Characteristics
(ROC) curves, that are numerically compared with the area under these curves
(AUC). For each method, we perform a grid search in order to select the best
set of parameters (see Tab. 1 for a summary) and report the best averaged AUC
values over 100 repetitions. We only consider the Tikhonov regularization of the
Gram matrix as it leads to similar or better results than the truncated spectrum.
With a Gaussian kernel, the one-class SVM is a non-parametric estimator of
a level set of density governing the training set S, with parameter ν defining
the corresponding level. Varying the ν value hence allows the definition of all
the density level sets, and then the construction of the ROC curve. Note that
one-class SVM does not always provide an entire ROC curve: in that case, we
artificially add the (0, 0) and (1, 1) points in the curve in order to compute the
AUC. For k-lpe and our method, we vary the threshold α in order to obtain the
empirical ROC curves. However, as the AUC does not allow the assessment of the
score information [19], we also report the type-I and type-II errors associated to
different thresholds. We are unaware of a method for controlling the type-I error
for SVM, and we then report errors for the proposed method and k-lpe only. For
both our algorithm and one-class SVM, a Gaussian kernel is considered.

Table 1. Parameters and values taken for the experiments for the three tested methods

Method Param. Values

oc-SVM γ 1/ {0.01, 0.05, 0.1, 0.2, · · · , 0.9, 0.95, 0.99}-quantiles of ‖x− y‖2 [20]
ν {0.01, · · · , 1} by 0.01

k-lpe k {2, 4, 6, 8, 10, 12}
our γ 1/ {0.01, 0.05, 0.1, 0.2, · · · , 0.9, 0.95, 0.99}-quantiles of ‖x− y‖2

λ
{
10−2, · · · , 10−8

}
by 10−1, 0

The data used for the experiments are common benchmarks of various dimen-
sions for classification, from IDA [21] or libSVM [22] datasets, picking a nominal
class and considering the other ones as anomalies. Table 2 summarises the main
characteristics of the datasets.
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Table 2. Description of the datasets used for the evaluation of the anomaly detection
methods

Dataset
Classes

# instances # features
Nominal (#) Anomaly(#)

Banana -1 (2 924) +1 (2 376) 5 300 2
Diabetes -1 (500) +1 (268) 768 8
Thyroid -1 (150) +1 (65) 215 5

Mushroom -1 (3 916) +1 (4 208) 8 124 112
Sonar -1 (111) +1 (97) 60 208
USPS digit 2 (1 553) other digits (7 745) 9 298 256

5.1 Evaluation of the Proposed Method with a Toy Example

Distribution of the p-values. We first test our algorithm on the benchmark
dataset banana, randomly picking n = 500 training points in the −1 class as
nominal data (see Fig. 1(a)). We then consider a test set of nN = 1000 nom-
inal points (i.e. of label −1) and nA = 1000 anomalies, drawn according to a
bivariate uniform density on the interval [0; 1]2. We choose the median values of
the indices of considered ranges of parameters γ and λ. Figure 1(b) represents
the empirical density of the p-values computed as described in Algo. 1. The p-
values associated to the nN nominal query points appear to be approximately
uniformly distributed while scores for the other points are highly concentrated
around 0. This illustrates the fact that the type-I error is controlled while the
type-II error is minimized.

Sensitivity to the Training Set Size. Figure 2 and Tab. 3 shows the variation of
the type-I, type-II and AUC values in fonction of increasing training set sizes
and for different thresholds α. We notice that type-I errors are close to the
expected α-values and that both type-II errors and AUC values slowly decrease
along with the training set size, accurate results being already obtained for small
training set sizes of 50 or 100 nominal training points.

Table 3. Sensitivity to the training set size: AUC values for different input sample
sizes n

n 50 100 200 300 500 700 900

AUC (%) 88.49 89.72 90.51 90.75 91.23 91.37 91.51

5.2 Simulations on Several Datasets

Supervised Setting. When some anomalies are identified as well as nominal data,
a grid search over the parameter space can be performed. In this framework, AUC
values, type-I and type-II errors are respectively given in Tab 4, 5 and 6. We first
note that one-class SVM always has the lowest AUC values. For low dimensional
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datasets, k-lpe and the proposed procedure has similar performances in terms of
the AUC values or the type-II errors. For higher dimensional dataset, we notice
that k-lpe may exhibit inconsistent type-I errors (mushroom dataset), high type-
II errors (mushroom and USPS datasets) or lower AUC values (sonar dataset):
indeed, it is well-known that nearest-neighbors based approaches may suffer the
dimensionality curse [23]. In comparison, the anomaly detector based on the
reconstruction error of the KPCA exhibits the highest AUC values more often,
as well as consistent type-I errors and low type-II errors.

Table 4. Averaged AUC (%) over 100 repetitions - Best results are reported boldfaced

Dataset
n = 50 n = 100 n = 500

our k-lpe oc-svm our k-lpe oc-svm our k-lpe oc-svm

Banana 88.04 87.90 83.50 90.47 89.77 86.82 92.53 92.48 91.54
Diabetes 73.21 73.44 67.66 74.11 74.75 67.36 - - -
Thyroid 98.15 97.94 96.12 99.04 98.52 97.10 - - -

Mushroom 97.80 97.23 75.35 99.04 98.68 84.48 99.83 99.58 94.52
Sonar 70.34 64.86 60.77 73.12 70.34 61.79 - - -
USPS 97.71 96.07 90.50 97.95 97.05 93.49 98.73 97.80 95.96

Table 5. Averaged type-I (%) over 100 repetitions - Inconsistent values are reported
boldfaced

Dataset α
n = 50 n = 100 n = 500
our k-lpe our k-lpe our k-lpe

Banana
2% 1.91 1.35 1.75 1.86 1.91 1.87
5% 6.09 5.17 4.72 5.11 4.77 4.91

20% 22.02 20.77 20.30 21.01 20.01 20.10

Diabetes
2% 1.51 1.52 2.04 1.92 - -
5% 5.28 5.77 5.02 4.70 - -

20% 20.06 20.53 20.74 20.38 - -

Thyroid
2% 2.00 2.09 1.80 2.06 - -
5% 5.64 6.06 4.80 5.10 - -

20% 21.41 21.41 20.28 21.64 - -

Mushroom
2% 2.00 2.27 1.63 1.24 1.76 40.49
5% 5.47 5.97 4.20 7.59 4.88 57.18

20% 21.54 28.22 20.60 50.51 20.02 57.18

Sonar
2% 1.85 1.87 1.91 1.91 - -
5% 6.10 6.00 4.54 5.64 - -

20% 21.49 21.98 18.82 22.18 - -

USPS
2% 1.86 1.66 1.90 1.66 1.87 1.95
5% 5.24 5.30 4.75 4.71 4.90 5.10

20% 20.20 21.06 19.95 20.33 19.88 20.11
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Table 6. Averaged type-II (%) over 100 repetitions - Best results are reported bold-
faced

Dataset α
n = 50 n = 100 n = 500
our k-lpe our k-lpe our k-lpe

Banana
2% 74.53 81.38 64.51 71.63 45.18 50.77
5% 44.21 47.92 38.82 42.52 28.49 30.00

20% 17.48 18.27 15.15 14.57 11.77 11.47

Diabetes
2% 95.18 95.12 93.79 94.49 - -
5% 85.52 83.96 85.20 87.49 - -

20% 50.76 49.94 47.00 50.26 - -

Thyroid
2% 16.91 14.72 15.80 14.32 - -
5% 6.31 5.65 6.63 6.07 - -

20% 0.88 1.37 0.40 0.68 - -

Mushroom
2% 53.47 35.40 20.32 49.73 0.03 0.01
5% 6.47 12.22 0.19 7.86 0.00 0.01

20% 0.01 0.29 0.01 0.00 0.00 0.01

Sonar
2% 98.75 99.14 99.18 99.23 - -
5% 90.39 93.68 89.05 90.80 - -

20% 63.03 69.90 61.60 61.36 - -

USPS
2% 45.43 62.79 34.18 54.38 19.00 39.29
5% 13.02 25.51 11.94 18.99 3.60 8.30

20% 0.32 2.33 0.10 1.15 0.02 0.40

Fig. 3. AUC values along with parameter γ indices
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Sensitivity to Parameter γ. In Proposition 1, there is no condition on the pa-
rameters values but on the decay speed of the empirical eigen-spectrum. Figure 3
shows the AUC values obtained for the proposed range of γ values (from the low-
est to the highest) for the tested datasets, given a fixed value of λ = 10−4. We
note that, at least for the considered datasets, all the tested values within the
proposed range give similar results for the AUC.

6 Conclusion

We have defined a new statistical test for detecting anomalies from a sample
of possibly high-dimensional nominal data. The distribution of the data is de-
scribed by an embedded feature space thanks to KPCA and the test statistic is
the reconstruction error of a query point on this feature space. The reconstruc-
tion error cumulative distribution function is estimated from the nominal data
points, which is then used for deriving a threshold that minimizes the type-I er-
ror, while minimizing the type-II error. This work can be viewed as an extension
of [11], providing a scheme to compute the threshold above which points are de-
clared anomaly. Future works aim at deriving the true asymptotic distribution
of our test statistic. In addition, some computational schemes can be used in
order to reduce the computational cost of calculating the test statistic and of
testing. Improvement of KPCA for large-scale data is indeed an active research
area and different approaches can be considered, such as selective sampling (see
Section 4) or factorization of K(S) (for example incomplete Cholesky factorisa-
tion as in [9]).We now aim at putting in place such schemes in order to have a
computational competing method.
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Abstract. We consider the problem of spectral clustering with partial
supervision in the form of must-link and cannot-link constraints. Such
pairwise constraints are common in problems like coreference resolution
in natural language processing. The approach developed in this paper
is to learn a new representation space for the data together with a dis-
tance in this new space. The representation space is obtained through
a constraint-driven linear transformation of a spectral embedding of the
data. Constraints are expressed with a Gaussian function that locally
reweights the similarities in the projected space. A global, non-convex
optimization objective is then derived and the model is learned via gradi-
ent descent techniques. Our algorithm is evaluated on standard datasets
and compared with state of the art algorithms, like [14,18,31]. Results on
these datasets, as well on the CoNLL-2012 coreference resolution shared
task dataset, show that our algorithm significantly outperforms related
approaches and is also much more scalable.

1 Introduction

Clustering is the task of mapping a set of points into groups (or “clusters”) in
such a way that points which are assigned to the same group are more similar
to each others than they are to points assigned to other groups. Clustering
algorithms have a large range of applications in data mining and related fields,
from exploratory data analysis to well-known partitioning problems like noun
phrase coreference resolution to more recent problems like community detection
in social networks.

Over the recent years, various approaches to clustering have relied on spectral
decomposition of the graph representing the data, whether the data inherently
come in the form of a graph (e.g., a social network) or the graph is derived from
the data (e.g., a similarity graph between data vectors). One way to understand
spectral clustering is to view it as a continuous relaxation of the NP-complete
normalized- or ratio-cut problems [28,22,21]. Spectral clustering has important
advantages over previous approaches like k-means, one being that it does not
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make strong assumptions on the shape (e.g., convexity) of the underlying clus-
ters. Spectral clustering first consists in computing the first k eigenvectors asso-
ciated with the smallest eigenvalues of the graph Laplacian. Discrete partitions
are then obtained by running k-means on the space spanned by these eigenvec-
tors. This leads to approximations of different optimal cuts of the graphs, which
are known to be potentially quite loose [10,11]. Spectral clustering can also be
understood in terms of the spectral embedding of the graph, the change of rep-
resentation of the data represented by nodes. Indeed, the spectral decomposition
of the graph Laplacian gives a projection of the data in a new feature space in
which Euclidean distance corresponds to a similarity given by the graph (e.g.,
the resistance distance [15,27]).

In practice, it is often the case that the space spanned by the first k eigenvec-
tors is not rich enough to single out the correct partition. Running k-means in
a transformation of this space may yield a better partition than the one found
in the original space. We propose to exploit pairwise constraints to guide the
process of finding such a transformation. From this perspective, our work builds
upon and extends previous attempts at incorporating constraints in spectral
clustering [30,16,34,14,5,19,32,18,32,26]. While clustering is often performed in
a unsupervised way, there are many situations in which some form of super-
vision is available or can easily be acquired. For instance, part of the domain
knowledge in natural language processing problems, like noun phrase corefer-
ence resolution, naturally translates into constraints. For instance, gender and
number mismatches between noun phrases (e.g., Bill Clinton vs. she/they) give
strong indication that these noun phrases should not appear in the same cluster.

In this paper, we consider the setting wherein supervision is only partial,
which is arguably more realistic setting when annotation is costly. Partial super-
vision takes the form of pairwise constraints, whereby two points are assigned to
identical (must-link) or different clusters (cannot-link), irrespective of the clus-
ters labels. All must-link constraints can be satisfied in polynomial time using
a simple transitive closure. In some problems, constraints may be inconsistent,
due to noisy preprocessing of the data for instance, and satisfying all cannot-link
constraints is NP-complete for k > 2, see [7]. These constraints can contradict
the unconstrained cuts of the graph. For example, two nodes close in graph could
be constrained as cannot-link and conversely two nodes far away in the graph
could be constrained as must-link. One open research question is how does one
best integrate this type of partial supervision into the clustering algorithm.

In this paper, we propose to learn a linear transformation X of the spectral
embedding of the graph with the partial supervision given by the constraints.
Our algorithm also learns a similarity in order to find a partition such that
similar nodes are in the same cluster, dissimilar nodes are in different clusters,
and the maximum number of pairwise constraints are satisfied. When two nodes
must link (respectively cannot link), their similarity is constrained to be close to
1 (respectively close to 0). In the learning step, the similarity is locally distorted
around constrained nodes using a Gaussian function applied on the Euclidean
distance in the feature space obtained by X. In order to increase the gap between
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Fig. 1. This figure shows intuitively the process behind fgpwc. From a spectral em-
bedding of a graph, Gaussian functions distort the distance between constrained pairs
of nodes such that it become smaller or larger depending depending on the quality
(must-link or cannot-link) attributed to the constraint. Gaussian functions act as a
new similarity for the pair of nodes and it should be close to 1 if the pair must link
and close to 0 if the pair cannot link.

must-link and cannot-link constraints, we use two Gaussian functions of different
variances. As illustrated in Figure 1, this technique ensures that the distance in
the new feature space between nodes in cannot-link constraints is significantly
larger than the distance between nodes that must link. From this modeling, we
derive a non-convex optimization problem to learn the transformation X. We
solve this problem using a gradient descent approach with an initialization for
X that coincides with the unconstrained solution of the problem.

Our algorithm, fgpwc (for Fast Gaussian PairWise Clustering), is evaluated
empirically on a large variety of datasets, corresponding either to genuine net-
work data or to vectorial data converted into graphs. Two sets of experiments
are conducted: the first one involves classification task, using commonly used
data sets in the field. Empirical results place our algorithm above competing
systems on most of the data sets. The second one involves a real task in the field
of natural language processing: namely, the noun phrase coreference resolution
task as described in the CoNLL-2012 shared task [25]. Our results show our al-
gorithm compares favorably with the unconstrained spectral clustering approach
of [6], outperforming it on medium-size and large clusters.

2 Background and Notation

Let G = (V , E ,W) be an undirected connected graph with node set V =
{v1, . . . , vn}, edge set E ⊆ V × V and non-negative similarity matrix W, such
that Wij is the weight on the edge (vi, vj). Let (λ1,u1), . . . , (λn,un) be eigen-
value/eigenvectors pairs of the graph Laplacian Lsym = I − D−1/2WD−1/2,
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such that λ1 ≤ λ2 ≤ · · · ≤ λn. The matrix U =
(√

1
λ1
u1

√
1
λ2
u2 . . .

√
1
λn

un

)
is a spectral embedding of the graph. It can be thought as an Euclidean feature
space where each node vi is represented by a data point whose coordinates in
this space are the components of the vector vi equal to the ith row of the matrix
U. The first eigenvector u1 is the constant vector � biased by the degrees of
the nodes, u1 = D1/2

� and can be dropped from the feature space, as it does
not provide any information for characterizing nodes. Eigenvectors u2, . . . ,un

are functions that map the manifold of the graph to real lines. If f is such a
function, then f�Lsymf = 1

2

∑n
i,j=1 Wij(f i−fj)

2 provides an estimate of how
far nearby points will be mapped by f [3]. As m increases, the space spanned by
u2, . . . ,um with mn will describe smaller and smaller details in the data. In the

following, we consider a spectral embedding Vm =
(
u2 . . . um

)
=
(
v1 . . .vn

)�
.

To each each node of the graph vi correspond a vector vi that lives in this space.
Pairwise constraints are defined as follows. Let M, C ⊂ V × V be two sets of

pairs of nodes, describing must-link and cannot-link constraints. Let K be the
total number of constraints. If (vi, vj) ∈ M, then vi and vj should be in the
same cluster, and if (vi, vj) ∈ C then vi and vj should be in different clusters.
We introduce the K ×m matrices A, B and the K-dimensional vector q:

A =

⎛⎜⎝vi1
...

viK

⎞⎟⎠ B =

⎛⎜⎝vj1
...

vjK

⎞⎟⎠ qk =

{
1 if (vik , vjk) ∈M
0 if (vik , vjk) ∈ C

where (vik ,vjk) are vectors describing the kth pair of nodes (vik , vjk) inM∪C.

3 Problem Formulation

We propose to learn a linear transformation φ of the feature space Vm that
best satisfies the constraints. Let φ(vi) = viX where X is a m × m matrix
describing the transformation of the space. We want to find a projection of the
feature space φ(vi) such that the clusters are dense and far away from each
other. Ideally, if nodes (vi, vj) ∈ M then the distance between φ(vi) and φ(vj)
should equal zero and if nodes (vi, vj) ∈ C then the distance between φ(vi)
and φ(vj) should be very large. We introduce two Gaussian functions to locally
distort the similarities for constrained pairs. Gaussian parameters σm and σc
are chosen such that σm ≤ σc. The similarity between two nodes vi and vj
is exp−‖vi−vj‖2/σm if (vi, vj) ∈ M and exp−‖vi−vj‖2/σc if (vi, vj) ∈ C where
‖·‖ is the Frobenius norm. Therefore, we want to ensure that X is such that

exp−‖vi−vj‖2/σm is close to 1 if (vi, vj) ∈ M and exp−‖vi−vj‖2/σc is close to 0 if
(vi, vj) ∈ C. We now encode the set of all constraints in a matrix form. Let us
first consider the K-dimensional vector σ ∈ {1/σm, 1/σc}K

Let � be the m-dimensional vector of all ones. Notice that [(A − B)X]2�,
is the vector whose components are equal to the distance between pairs of con-
strained nodes in the transformed space. Let ◦ be the Hadamard product. Then
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(a) No regularization (b) Regularized

Fig. 2. Normalization effect on a simple example. 900 data points in R2 were drawn us-
ing a normal distribution N (0, 1). Only 1� must and cannot-links have been uniformly
drawn to separate data in two groups of positive and negative points. These figures
plot F (X) in the neighborhood of X�. The two dimensions of X� in this example are
referred by X1 and X2.

exp−[(A−B)X]2�◦σ is the vector whose components equal the corresponding must-
link or cannot-link similarity depending on whether the associated pairs of nodes
are in M or C. The values in X are not bounded in this expression. So, we pro-
pose to add a regularization term on X. This gives the optimization problem:

min
X

F (X) =
∥∥∥exp−[(A−B)X]2�◦σ −q

∥∥∥2 + γ ‖X‖2 (1)

The effect of this regularization step is depicted in Figures 2a and 2b. In this
toy example, data points where drawn using a normal distribution with mean
0. Constraints are added in order to separate positive and negative points in
two clusters. Only 1� must and cannot-links have been uniformly drawn. We
can see that in both non regularized and regularized cases, global optimums are
identical. However, Figure 2a shows that far away from the global optimum, the
non regularized objective function is not smooth. The regularization handles this
issue, see figure 2b.

3.1 Algorithm

Our algorithm for learning the transformation X is presented in Algorithm 1.
It takes as input a weighted adjacency matrix of a graph, and two matrices for
must-link and cannot-link constraints. Parameters are the number k of clusters
as usual in k-means, but also the widths of the Gaussian functions σm and σc
and the dimension m of X.

The target dimension m is related to the amount of contradiction between the
graph and the constraints. Remember that eigenvectors of Lsym are functions
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which maps nodes from the manifold of the graph to real lines and the associ-
ated eigenvalues provides us with an estimate of how far apart these functions
maps nearby points [3]. When the pairwise constraints do not contradict the
manifold of the graph, i.e. must-link pairs are already close on the manifold and
cannot-link pairs are already far apart, m does not need to be large, because the
eigenvectors associated with smallest eigenvalues will provide eigenmaps which
do not contradict the constraints. Hence, a solution can be found in the very first
eigenvectors. However, when the pairwise constraints contradict the manifold of
the graph: must-links that are initially far apart on the manifold or cannot-links
that are close, we need to consider a larger number of eigenvectors m, because
the eigenvectors providing the eigenmaps that will not contradict the constraints
will be later dimensions of the embedded space, describing smaller details.

Our algorithm is a typical gradient descent and its initialization can be at
random. However, we propose to initialize it close to unconstrained spectral
clustering X0 = (V�

mLsymVm)−1/2. We stop the descent after imax iterations

or when the Frobenius norm of the partial derivative ∂F (X)
∂X is less than ε.

Algorithm 1. fgpwc

Input: W ∈ Rn×n,M ∈ Rn×n,C ∈ Rn×n,m, k, σm, σc

Output: X� ∈ Rm×d,P partition of V
1 begin

2 Lsym ← I−D−1/2WD−1/2

3 Vm ← first m smallest eigenvectors of Lsym

4 X0 ← (V�
mLsymVm)−1/2

5 i ← 0, α ← 1
6 repeat
7 i ← i+ 1, Xi ← Xi−1 − α∂F (Xi−1)/∂X
8 if F (Xi) >= F (Xi−1) then
9 α ← α/2

10 else
11 X� ← Xi

12 until ‖∂F (Xi)/∂X‖2 < ε or i > imax
13 P ← k-means(VmX, k)
14 return P

4 Related Work

The use of supervision in clustering tasks has been addressed in many ways.
A first related approach is that of [33], which is inspired by distance learning.
Constraints are given through a set of data point pairs that should be close. The
authors then consider the problem of learning a weighted matrix of similarities.
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They derive an optimization problem of high complexity, which they solve by
doing alternate gradient ascent on two objectives, one bringing closer points that
are similar and the other putting off the other points. Similarly, in [13] learning
spectral clustering is the problem of finding weighted matrix or the spectrum
of the Gram matrix given a known partition. A related field is supervised clus-
tering [9], the problem of training a clustering algorithm to produce desirable
clusterings: given sets of items and complete clusterings over these sets, we learn
how to cluster future sets of items.

Another set of related approaches are constrained versions of the k-means
clustering algorithm. In [30], it is proposed that, at each step of the algorithm,
each point is assigned to the closest centroid provided that must-link and cannot-
link constraints are not violated. It is not clear how the choice of the ordering
on points affects the clustering. Moreover, constraints are considered as hard
constraints which makes the approach prone to noise effects. Kulis et al improve
on the work of [30] in [16]. Their algorithm relies on weighted kernel k-means
([8]). The authors build a kernel matrix K = σI +W + S, where W is a sim-
ilarity matrix, S is a supervision matrix such that Sij is positive (respectively
negative) when nodes i and j must link (respectively cannot link) or zero when
unconstrained. The addition of σI ensures the positive semi-definiteness of K
(otherwise, K would not be a kernel, would not have any latent Euclidean space,
a requirement for k-means to converge and for theoretical justification).

Introducing constraints in spectral clustering has received a lot of attention
in the last decade ([34,14,5,19,32]). In many cases, the proposed approaches rely
on a modification of the similarity matrix and then the resolution of the associ-
ated approximated normalized cut. For instance, in [14], weights in the similarity
matrix are forced to 0 or 1 following must-link and cannot-link constraints. But
this kind of weights may have a limited impact on the result of the clustering, in
particular when the considered two nodes have many paths that link them to-
gether. [34] consider three kinds of constraint and cast them into an optimization
problem including membership constraints in a 2-partitioning graph problem. To
guarantee a smooth solution, they reformulate the optimization problem so that
it involves computing the eigen decomposition of the graph Laplacian associated
with the data. The approach relies on an optimization procedure that includes
nullity of the flow from labeled nodes in cluster 1, to labeled nodes in cluster
2. The algorithm closely resembles the semi-supervised harmonic Laplacian ap-
proach developed for instance in [35]. But this approach is also limited to the
binary case. In [19], pairwise constraints are used to propagate affinity informa-
tion to the other edges in the graph. A closed form of the optimal similarity
matrix can be computed but its computation requires one matrix inversion per
cannot-link constraint.

In [18], constrained clustering is done by learning a transformation of the spec-
tral embedding into another space defined by a kernel. The algorithm attempts
to project data points representing nodes onto the bound of a unit-hypersphere.
The inner product between vectors describing nodes that must link is close to 0,
and the inner product between vectors describing nodes that cannot-link is close
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to 1. That way, if a node vi belongs to the cluster j, then the vector vi describing
vi will be projected to �j where ej is a vector of length k full of zeros except
on the jth component where it is equal to 1. The number of dimensions of the
hypersphere is directly related to the ability to separate clusters. One drawback
is that the algorithm uses semidefinite programs whose size is quadratic in that
number of dimensions.

Recently, [31,32] propose to include constraints by modifying directly the opti-
mization problem rather than modifying the Laplacian. In their algorithm called
csp, they introduce a matrix Q where Qij is 1 if i and j must-link, −1 if i and j
cannot-link and 0 otherwise. Then, a constraint f�Qf > α is added to the nor-
malized cut objective considered in unconstrained spectral clustering. Parame-
ter α is considered as a way to soften constraints. Their approach outperforms
previous approaches such as the one based on kernel k-means defined in [16].
An original approach based on tight relaxation of graph cut ([11]) is presented
in [26]. The approach deals with must and cannot-links but in the two clusters
case. It guarantees that no constraints are violated as long as they are consistent.
For problems with more than two clusters, hierarchical clustering is proposed.
Unfortunately in this case, the algorithm loses most of its theoretical guarantees.

5 Experiments

We conducted two sets of experiments. In the first experiments, we evaluate our
algorithm on a variety of well-known clustering and classification datasets, and
compare it to four related constrained clustering approaches: ccsr [18], sl [14],
csp [32] and cosc [26]. ccsr also seeks a projection of space in which constraints
are satisfied. sl modifies the adjacency matrix and puts 0 for cannot-link pairs
and 1 for must-link pairs. csp modifies the minimum cut objective function
introducing a term for solving a part of the constraints. cosc is based on a
tight relaxation of the constrained normalized cut into a continuous optimization
problem.

In a second set of experiments, we apply our algorithm to the problem of
noun phrase coreference resolution, a very important problem in Natural Lan-
guage Processing. The task consists in determining for a given text which noun
phrases (e.g., proper names, pronouns) refer to the same real-world entity (e.g.,
Bill Clinton). This problem can be easily recast as a (hyper-)graph partitioning
problem [24,6]. We evaluate our algorithm on the CoNLL-2012 English dataset
and compare it to the unconstrained spectral clustering approach of [6], a sys-
tem that ranked among the top 3 systems taking part in the CoNLL-2012 shared
task.

5.1 Clustering on UCI and Network Data Sets

Dataset and Preprocessing.We first consider graphs built from UCI datasets
and networks. Table 1 summarizes their properties and the characteristics of
the associated clustering problem. Graph construction uses a distance that is
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computed based on features. First, continuous features are normalized between
0 and 1 and nominal features are converted into binary features. Second, given
feature vectors x and x′ associated with two datapoints, we consider two kinds
of similarities: either RBF kernels of the form exp(−‖x− x′‖2 /2σ2) or cosine
similarity x ·x′/(‖x‖×‖x′‖). In the case of cosine similarity we also apply k-NN
and weight edges with similarity. For instance, from the imdb movie dataset we
extract records in which Brad Pitt, Harrison Ford, Robert De Niro and Sylvester
Stallone have played. The task is to determine which of the four actors played
in which movie. The movies in which more than one of these actors have played
are not part of the dataset so that classes do not overlap. We have collected all
the actors (except for the four actors that serve as classes) who played in 1606
movies. Each movie is described by binary features representing the presence or
absence of an actor in its cast. The similarity measure between movies is the
cosine similarity.

Evaluation Metric. We use Adjusted Rand Index (ARI) [12] as our main eval-
uation measure. The standard Rand Index compares two clusterings by counting

correctly classified pairs of elements. It is defined as: R(C, C′) = 2(TP+TN)
n(n−1) where

n is the number of nodes in the graph and TP, TN are true positive and true
negative pairs. By contrast, the Adjusted Rand Index which is the normalized
difference of the Rand Index and its expected value under the null hypothesis.
This index has an expected value of zero for independant clusterings and maxi-
mum value 1 for identical clusterings. We report the mean over the 10 runs corre-
sponding to 10 sets of constraints of the ARI computed against the ground truth.
As an additional measure, we also report the number of violated constraints in
the computed partition and the computation time for each algorithm.

System Settings. For each dataset, 10 different sets of constraints were selected
at random. The number of constraints is chosen to avoid trivial solutions. Indeed,
if the number of must-link constraints is high, a transitive closure quickly gives
a perfect solution. So, the interesting cases are when only a few number of
constraints is considered. Given a graph with n nodes, a set of pairs is added to
the set of constraints with probability 1/n. A pair forms a must-link constraint
if the two nodes have the same class and a cannot-link constraint otherwise.

All algorithms (except cosc) rely on a k-means step which is non determinis-
tic. So, we repeat 30 times each execution and select the partitions that violates
a minimal number of constraints. The results evaluated on unconstrained pairs
are averaged considering the 10 different sets of constraints.

All experiments were conducted using octave with openblas. For ccsr and
cosc, we use the code provided by the authors on their webpages. We are using
k-means with smart initialization [1]. Finally, note that we found that initializing
gradient descent so that it is close to unconstrained spectral clustering performs
better than random initialization.

Results and Discussion. Results for the first set of experiments for 22 datasets
are presented in Table 1. Empty cells corresponds to the case where the algorithm
did not terminate after 15 minutes.



Fast Gaussian Pairwise Constrained Spectral Clustering 251

T
a
b
le

1
.
S
u
m
m
a
ry

o
f
d
a
ta

se
ts
.
F
ir
st

5
co
lu
m
n
s
sh
ow

th
e
d
a
ta

se
t
p
ro
p
er
ti
es
:
n
u
m
b
er

o
f
n
o
d
es

in
th
e
g
ra
p
h
,
n
u
m
b
er

o
f
cl
a
ss
es
,
h
ow

th
ey

h
av

e
b
ee
n
co
n
st
ru
ct
ed

a
n
d
n
u
m
b
er

o
f
d
im

en
si
o
n
s
in

th
e
sp

ec
tr
a
l
em

b
ed

d
in
g
u
se
d
fo
r
th
e
ex

p
er
im

en
ts
.
T
h
e
fo
ll
ow

in
g
co
lu
m
n
s
re
p
o
rt

p
er
fo
rm

a
n
ce
s
fo
r
th
e
va

ri
o
u
s
a
lg
o
ri
th
m
s.

C
o
lu
m
n
s
c
s
p
a
n
d
s
l
re
p
o
rt

p
o
o
r
re
su
lt
s.

T
h
is

is
m
a
in
ly

d
u
e
to

th
e
fa
ct

th
a
t
th
e
su
p
er
v
is
io
n
b
y

m
u
st
-l
in
k
co
n
st
ra
in
ts

is
v
er
y
w
ea
k
.
T
h
ey

d
o
n
o
t
fu
ll
y
ex

p
lo
it

th
e
ca
n
n
o
t-
li
n
k
co
n
st
ra
in
ts
.
In

o
u
r
ex

p
er
im

en
ts
,
g
ra
p
h
s
a
re

n
o
t
sp
a
rs
e
b
u
t

co
n
st
ra
in
ts

a
re

sp
a
rs
e.

c
o
s
c
is

ex
p
ec
ti
n
g
a
sp
a
rs
e
g
ra
p
h
a
s
a
n
in
p
u
t
a
n
d
sa
ti
sf
y
a
ll
th
e
co
n
st
ra
in
ts

w
h
en

th
e
n
u
m
b
er

o
f
cl
u
st
er
s
is

eq
u
a
l

to
2
.
W

h
en

th
e
n
u
m
b
er

o
f
cl
u
st
er
s
is

g
re
a
te
r
th
a
n
tw

o
,
c
o
s
c
lo
o
se
s
it
s
g
u
a
ra
n
te
es
.
M
o
re
ov

er
,
w
h
en

co
n
st
ra
in
ts

a
re

v
er
y
sp
a
rs
e,

th
er
e
is

m
a
n
y
d
iff
er
en

t
w
ay

s
to

sa
ti
sf
y
th
em

,
a
n
d
th
e
h
ie
ra
rc
h
ic
a
l
2
-w

ay
cl
u
st
er
in
g
c
o
s
c

is
p
er
fo
rm

in
g
fo
r
m
o
re

th
a
n
tw

o
cl
u
st
er
s
ca
n
a
ch

ie
v
e

v
er
y
p
o
o
r
re
su
lt
s
w
h
en

th
e
ea
rl
ie
st

cu
ts

a
re

w
ro
n
g
.

D
a
ta
se
t

si
ze

k
S
im

il
a
ri
ty

m
f
g
p
w
c

s
l
v
io
l.

c
s
p
v
io
l.

c
o
s
c
v
io
l.

c
c
s
r
v
io
l.

tu
n
in
g
v
io
ls
.
n
o
tu
n
in
g
v
io
ls
.

b
re
a
st
ti
ss
u
e

1
0
6

6
R
B
F

2
0

0
.3
0
8
8

3
0
.3
2
7
1

2
−
0
.0
0
5
0

3
5

0
.1
3
3
9

5
2
0
.0
6
9
5

9
0
.2
1
0
4

5

g
la
ss

2
1
4

6
R
B
F

2
0

0
.2
5
5
2

1
6

0
.1
4
6
1

2
3

0
.0
1
1
5

7
3

0
.0
1
8
2

1
2
4
0
.0
3
4
7

2
0

0
.1
8
7
2

2
6

h
ay

es
-r
o
th

1
3
2

3
C
o
si
n
e

2
0

0
.2
7
8
3

3
0
.1
7
3
6

1
3

−
0
.0
1
4
6

3
5

0
.0
1
7
0

7
8
0
.0
0
7
9

1
2

0
.0
8
4
2

2
1

h
ep

a
ti
ti
s

8
0

2
R
B
F

1
0

0
.1
9
1
0

1
0

0
.1
2
2
0

1
1

0
.0
8
2
2

1
7

0
.0
1
0
6

4
2
0
.0
1
8
4

0
−
0
.0
1
2
7

1
7

im
d
b

1
6
0
6
4

C
o
si
n
e

4
0
0

0
.1
3
8
5

9
3

0
.1
5
5
8

7
4

−
0
.0
0
0
1

6
4
8

-
-
0
.0
1
8
1

2
9
8

-
-

in
te
rl
a
ce
d
ci
rc
le
s
9
0
0

3
R
B
F

6
0

0
.6
4
5
8

5
3

0
.3
0
2
3

1
3
1

0
.1
2
6
0

2
0
8

0
.0
0
0
2

5
7
4
0
.0
1
1
0

1
7
2

-
-

io
n
o
sp
h
er
e

3
5
1

2
R
B
F

5
0

0
.5
0
4
1

3
7

0
.4
0
3
7

1
1

0
.0
0
4
5

6
8

0
.0
0
4
5

1
7
2
0
.0
8
8
9

1
9

-
-

ir
is

1
5
0

3
R
B
F

1
0

0
.9
4
1
0

1
0
.8
8
4
1

2
0
.5
6
5
7

1
6

0
.0
1
4
2

6
8
0
.0
7
9
7

0
0
.8
4
8
5

4

m
o
o
n
s

9
0
0

2
R
B
F

1
0

0
.9
2
1
5

1
9

0
.9
0
4
5

2
2

0
.0
6
4
3

2
3
1

0
.0
0
0
0

4
6
8

-
-

0
.6
6
8
4

7
2

p
h
o
n
em

e
4
5
0
9
5

R
B
F

2
0
0

0
.7
0
7
3

1
2
6

0
.0
4
6
1

7
4
6

−
0
.0
0
0
2
1
8
4
2

-
-

-
-

-
-

p
ro
m
o
te
rs

1
0
6

2
C
o
si
n
e

1
0

0
.7
1
8
2

3
0
.4
3
0
7

3
0
.0
0
0
7

2
1

0
.0
0
4
3

7
0
0
.0
3
4
1

0
0
.5
9
4
6

8

sp
a
m

4
6
0
1
2

R
B
F

2
0

0
.9
7
8
3

2
1

0
.0
0
0
2

1
1
2
7

0
.0
0
0
2
1
0
6
7

-
-

-
-

0
.9
7
8
3

2
6

ti
c-
ta
c-
to
e

9
5
8

2
R
B
F

2
0
0

1
.0
0
0
0

0
0
.9
5
4
1

5
0
.0
0
3
7

2
4
2

0
.0
0
5
6

4
0
4

-
-

-
-

v
eh

ic
le
s

8
4
6

4
R
B
F

1
0
0

0
.3
1
7
5

5
5

0
.3
4
5
6

9
2

0
.0
0
0
1

3
1
6

0
.0
0
0
0

7
2
8
0
.0
0
3
8

1
1
6

-
-

w
d
b
c

5
6
9

2
R
B
F

1
0

0
.8
5
6
8

1
4

0
.8
6
9
9

1
9

0
.0
0
2
4

1
2
6

0
.0
0
2
4

2
6
4

-
-

0
.7
2
5
5

3
5

w
eb

k
b
-c
o
rn
el
l

1
9
5

5
C
o
si
n
e

1
0

0
.4
8
6
8

1
3

0
.1
1
6
6

2
−
0
.0
0
2
1

7
7
−
0
.0
0
7
9

1
3
4
0
.0
5
7
7

1
3

0
.3
3
1
7

1
3

w
eb

k
b
-t
ex

a
s

1
8
7

5
C
o
si
n
e

1
0

0
.4
7
0
5

1
1

0
.2
5
2
5

4
−
0
.0
0
8
7

6
8

0
.0
0
4
5

1
2
2
0
.0
7
0
7

9
0
.2
8
4
8

2
5

w
eb

k
b
-w

is
co
n
si
n

2
6
5

5
C
o
si
n
e

1
0

0
.6
7
1
9

2
1

0
.1
0
1
8

1
0

0
.0
1
3
1

7
7

0
.0
0
7
2

1
6
4
0
.0
2
2
6

2
3

0
.3
3
4
6

3
2

w
ik
ip
ed

ia
8
3
5

3
N
et
w
o
rk

1
0

0
.6
2
9
8

4
9

0
.0
1
0
5

2
3

0
.4
6
2
1

1
1
1

0
.0
0
0
1

4
7
4
0
.6
9
6
0

3
3

0
.5
4
0
9

7
6

w
in
e

1
7
8

3
R
B
F

1
0

0
.9
6
4
9

0
0
.9
0
4
0

1
0
.0
0
0
4

7
0

0
.0
0
3
1

8
4
0
.0
0
9
1

4
1

0
.8
5
6
6

1
0

x
o
r

9
0
0

2
R
B
F

1
0

1
.0
0
0
0

0
1
.0
0
0
0

0
−
0
.0
0
1
1

2
2
3

0
.0
0
0
0

4
7
0

-
-

1
.0
0
0
0

0

zo
o

1
0
1

7
C
o
si
n
e

1
0

0
.9
2
1
8

0
0
.6
5
3
6

0
0
.1
3
2
6

2
5

0
.0
0
9
2

5
0
0
.1
4
4
7

1
0
.7
0
2
5

2



252 D. Chatel, P. Denis, and M. Tommasi

The column fgpwc “no tuning” is the case where hyperparameters have
been set to the following values: σm = .15, σc = 1.5 and m equals the number of
eigenvalues lower than .9. The complete spectral embedding of the graph is row
normalized, thus the original space is bounded by the unit-hypersphere. Con-
sequently, in the spectral embedding before transformation, distances between
data points are less than one. In the column fgpwc “tuning”, we tune the σm
and σc parameters using an exhaustive search in the interval [0.01, 1] for σm and
in the interval [0.01, 2] for σc both uniformly splited in 10 equal-size parts.

Without tuning hyperparameters any further, we obtain better results than
other approaches in 12 cases. We can also see that our approach is capable of
returning a result within a few minutes, whereas some other methods will not
within 15 minutes on large data sets. When we tune hyperparameters, we observe
that fgpwc outperforms all methods on all datasets while keeping a reasonnable
computational time.

We can see that cosc is able to return partitions with 0 violated constraints
when the number of clusters k = 2, however, the partitions are not necessarily
close to the ground-truth partition. An explanation of this phenomenon is that
we are providing very few constraints to the different algorithms. Hence, there
are many different ways to fullfill the constraints. Columns csp and sl give
poor results. This is mainly due to the fact that the supervision by must-link
constraints is very weak. They do not fully exploit the cannot-link constraints.
In our experiments, graphs are not sparse but constraints. cosc is expecting
a sparse graph as an input and satisfy all the constraints when the number of
clusters is equal to 2. When the number of clusters is greater than two, cosc
looses its guarantees. Moreover, when constraints are very sparse, there are many
different ways to satisfy them, and the hierarchical 2-way clustering cosc is
performing for more than two clusters can achieve very poor results when the
earliest cuts are wrong. It is particularly interesting to compare fgpwc to ccsr,
since the the approaches developped in the two algorithms are both based on
a change of representation of the spectral embedding. ccsr is competitive with
fgpwc w.r.t. the ARI measure in many cases. However, we can see that ccsr

becomes intractable as the size of the embedding m increases, while this is not
a problem for fgpwc. This is also confirmed by the computational time.

Small graphs can be harder if constraints contradict the similarityW, because
in this case m needs to be larger, but for a large enough m, our algorithm will
over-fit. It is related to the degree of freedom in solving a system of K equations,
where K is the fixed number of constraints, with more and more variables (as
m increases).

5.2 Noun Phrase Coreference Resolution

Dataset and Preprocessing. For the coreference resolution task, we use the
English dataset used for the CoNLL-2012 shared task [25]. Recall that the task
consists, for each document, in partitioning a set of noun phrases (aka mentions)
into classes of equivalence that denote real-wold entities. This task is illustrated
on the following small excerpt from CoNLL-2012:
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Was Sixty Minutes unfair to [Bill Clinton]1 in airing Louis Freeh’s charges
against [him]1 ?

In this case, noun phrases “Bill Clinton” and “him” both refer to the same entity
(i.e. William Jefferson Clinton), encoded here by the fact that they share the
same index1. The English CoNLL-2012 corpus contains over over 2K documents
(1.3M words) that fall into 7 categories, corresponding to different domains (e.g.,
newsiwre, weblogs, telephone conversation). We used the official train/dev/test
splits that come with the data. Since we were specifically interested in comparing
approaches rather than developing the best end-to-end system, we used the gold
mentions ; that is, we clustered only the noun phrases that we know were part
of ground-truth entities.

The mention graphs are built from a model of pairwise similarity, which is
trained on the training section of CoNLL-2012. The similarity function is learned
using logistic regression, each pair of mentions being described by a set of fea-
tures. We re-use features that are commonly used for mention pair classifica-
tion (see e.g., [23],[4]), including grammatical type and subtypes, string and
substring matches, apposition and copula, distance (number of separating men-
tions/sentences/words), gender and number match, synonymy/hypernym and
animacy (based on WordNet), family name (based on closed lists), named entity
types, syntactic features and anaphoricity detection.

Evaluation Metrics. The systems’ outputs are evaluated using the three stan-
dard coreference resolution metrics: MUC [29], B3 [2], and Entity-based CEAF
(or CEAFe) [20]. Following the convention used in CoNLL-2012, we report a
global F1-score (henceforth, CoNLL score), which corresponds to an unweighted
average of the MUC, B3 and CEAFe F1 scores. Micro-averaging is used through-
out when reporting scores for the entire CoNLL-2012 test. Additionally, we are
reporting the adjusted rand index.

In order to analyze performance for different cluster sizes, we also computed
per-cluster precision and recall scores. Precision pi and recall ri are computed
for each reference entity class Ci for all documents. Then, the micro-averaged
F1-score score is computed as follows:

p̄ =
∑
i

|Ci| pi∑
j |Cj |

r̄ =
∑
i

|Ci| ri∑
j |Cj |

F1 =
2p̄r̄

p̄+ r̄

System Settings. Following the approach in [6], we first create for each doc-
ument a fully connected similarity2 graph between mentions and then run our
clustering algorithm on this graph. Compared to the tasks on the UCI dataset,
the main difficulties are the determination of the number of clusters and the fact

1 Note that noun phrases like “Sixty Minutes” and “Louis Freeh” also denote entities,
but such singleton entities are not part of the CoNLL annotations.

2 Pamameter estimation for this pairwise mention model was performed us-
ing Limited-memory BFGS implemented as part of the Megam pack-
age http://www.umiacs.umd.edu/~hal/megam/version0_3/. Default settings were
used.

http://www.umiacs.umd.edu/~hal/megam/version0_3/
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that we have to deal with many small graphs (documents contain between 1 and
300 mentions).

The same defaut values were used for the σm and σc parameters, as in the
previous experiments (that is, 0.15 and 1.5, respectively). In our aglorithm we
need to fix parameter m. We fix a value that is a tradeoff between the dimension
of Lsym and the number of constraints. Indeed, we want to keep structural infor-
mation comming from the graph through the eigendecomposition of Lsym. Also,
we reject the situations where m is much larger than the number of constraints
because they can lead to solutions that are non satisfactory. In that latter case,
the optimization problem can be solved without any impact on non-constrained
pairs and therefore without any generalization based on the given constraints.
Because the multiplicity of eigenvalue 1 is large in this dataset, m is estimated
by m = |{λi : λi ≤ 0.99}| where λi are the eigenvalues of Lsym. The number of
clusters k is estimated by k =

∣∣{λi : λi ≥ 10−5}
∣∣ where λi are the eigenvalues of

X�X.
As for the inclusion of constraints, we experimented with two distinct settings.

In the first setting, we automatically extracted based on domain knowledge (set-
ting (c) in the results below). Must-link constraints were generated for pairs of
mention that have the same character string. For cannot-link constraints, we
used number, gender, animacy, and named entity type dismatches (e.g., noun
phrases with different values for gender cannot corefer). These constraints are
similar to some of the deterministic rules used in [17] and overlap with the infor-
mation already in the features. This first constraint extraction generates a lot of
constraints (usually, more than 50% of all available constraints for a document),
but it is also noisy. Some of the constraints extracted this way are incorrect as
they are based on information that is not necessarily in the dataset (e.g., gender
and number are predicted automatically). The precision of these constraints is
usually higher than 95%. In a second simulate interactive setting, we extracted
a smaller set of must-link and cannot-link constraints directly from the ground-
truth partitions, by drawing coreferential and non-coreferential mention pairs
at random according to a uniform law (setting (b) below). In turn, all of these
constraints are correct. Each mention pair has a probability 1/n to be drawn,
with n the mention count.

Results and Discussion. We want to show that fgpwc works better on large
graphs and larger clusters. We perform per-cluster evaluation, this is summarized
in Figure 3. All plots represent the F1-score, averaged on runs all documents per
cluster size. Plot (a) reports results for the unconstrained spectral clustering ap-
proach of [6]. Their method uses a recursive 2-way spectral clustering algorithm.
The parameter used to stop the recursion has been tuned on a development
set. The other plots are obtained using (b) fgpwc with constraints generated
uniformly at random from an oracle and (c) fgpwc with constraints derived
automatically from text based on domain knowledge.

In the latter case (c) fgpwc has not been able to improve the results ob-
tained by (a). We think that constraints extracted from text does not add new
information but change the already optimized measure in the similarity graph.
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However, even adding less constraints at random from an oracle using a uniform
distribution is more informative. When we are using constraints that do not
comes from the features used for the similarity construction step, we see that
fgpwc outperform other methods for clusters larger than 5. However, we can
see that fgpwc can degrade smallest clusters. There are two explanations for
this: we obtain better performance on larger clusters because the way we select
random constraints. Using a uniform distribution, there is more chance to add
constraints for larger clusters. And moreover, clusters with few or no constraints,
in our case: small clusters, are usually scattered around the space, because fg-

pwc globally transforms the space to fit the constraints. We can also see that (b)
outperforms (c) on small clusters. Probably because more constraints are being
added for small clusters in (b). All of this supports the idea that constraints in
this kind of task should be generated from another set of features applicable to
all mentions, regardless of the size of the clusters they belong to.

Overall, we obtain a CoNLL score of 0.71 (0.80 MUC, 0.75 B3, 0.57 CEAFe,
0.48 ARI), for [6], 0.56 (0.76 MUC, 0.57 B3, 0.36 CEAFe, 0.31 ARI) using our
method along with extracted constraints and 0.58 (0.67 MUC, 0.58 B3, 0.49
CEAFe, 0.40 ARI) with ground-truth random constraints. That is, we see a
clear drop of performance when using the constraints, be they noisy or not.
Closer examination reveals that this decrease stems from poor performance on
small clusters, while these clusters are the most representative in this task.

The F1-score is lower than for the state of the art. But interestingly, in pres-
ence of uniformly distributed pairwise constraints, our algorithm can significantly
improve clustering results on clusters larger than 5, compared to the state of the
art [6]. This suggests that active methods can lead to dramatic improvements
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Fig. 3. Averaged F1-score vs minimum cluster size for fgpwc with CoNLL 2012 data
set: (a) method in [6], (b) fgpwc uniformly distributed from reference; (c) fgpwc All
extracted must/cannot-links
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and our algorithm easily supports that through the introduction of pairwise con-
straints. Moreover, our method can be used to detect larger clusters, and leave
the smaller cluster to another method.

6 Conclusion

We proposed a novel constrained spectral clustering framework to handle must-
link and cannot-link constraints. This framework can handle both 2 clusters
and more than 2 clusters cases using the exact same algorithm. Unlike previous
methods, we can cluster data which require more eigenvectors in the analysis.
We can also handle cannot-link constraints without giving up on computational
complexity. We carried out experiments on UCI and network data sets. We
also provide an experiment on the real task of noun-phrase coreference and
discuss the results. We discuss the relationship between Laplacian eigenmaps and
the constraints, that can explain why adding constraints can degrade clustering
results. We empirically show that our method, that involves a simple and fast
gradient descent, outperforms several state of the art algorithms on various data
sets. For noun-phrase coreference, the challenge ahead will be to find rules to
generate constraints from the text which are more uniformly distributed. We
also want to find a way to better handle small clusters. A step in that direction
is to investigate better adapted cut criteria and active learning methods.
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Abstract. A Bayesian generative model is presented for recommending
interesting items and trustworthy users to the targeted users in social
rating networks with asymmetric and directed trust relationships. The
proposed model is the first unified approach to the combination of the
two recommendation tasks. Within the devised model, each user is asso-
ciated with two latent-factor vectors, i.e., her susceptibility and expertise.
Items are also associated with corresponding latent-factor vector repre-
sentations. The probabilistic factorization of the rating data and trust
relationships is exploited to infer user susceptibility and expertise. Sta-
tistical social-network modeling is instead used to constrain the trust
relationships from a user to another to be governed by their respec-
tive susceptibility and expertise. The inherently ambiguous meaning of
unobserved trust relationships between users is suitably disambiguated.
An intensive comparative experimentation on real-world social rating
networks with trust relationships demonstrates the superior predictive
performance of the presented model in terms of RMSE and AUC.

1 Introduction

The growing popularity gained by various online services for social networking
has led to the increasing availability of online social rating networks [14], i.e.,
environments in which users rate items and establish connections to real-world
acquaintances within their social networks. In particular, the presence of explicit
trust relationships between users makes such environments an appealing setting
for the development of realistic recommendation processes, in which the targeted
users turn to their social networks for decision making and are more strongly
influenced by (directly or indirectly) trusted real-world acquaintances.

Two fundamental tasks in social rating networks with trust relationships are
item recommendation and user recommendation The former consists in taking
advantage of the trust relationships to suggest unrated items, that are expected
to be of interest to the targeted users. The latter instead consists in taking
advantage of the trust relationships to suggest users having no relationships
with the targeted users and still expected to be trusted by them.
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c© Springer-Verlag Berlin Heidelberg 2014



A Generative Bayesian Model for Item and User Recommendation 259

Each individual task has been extensively studied in the literature in isolation.
Previous research on rating prediction for item recommendation in social rating
networks can be divided into two major areas of focus reflecting the nature of re-
lationships in the underlying social networks, i.e., unilateral relationships (such
as, e.g., trust) or cooperative and mutual relationships (such as, e.g., in the case
of friends, classmates, colleagues, relatives and so forth) [19]. Rating prediction
in trust networks has been the subject of several studies such as, e.g., [14, 17, 18].
A variety of other research efforts including [10, 19, 23, 27, 31] has instead fo-
cused on social rating networks with mutual relationships. Instead, the existing
approaches to link prediction can be classified into two distinct classes, i.e.,
temporal and structural approaches. The temporal approaches predict links be-
tween the nodes of a graph, whose evolution involves new links and new nodes
with respective ties. The structural approaches assume graphs with fixed sets
of nodes and, thus, they are concerned only with the prediction of new links
between already observed nodes. Temporal and structural approaches can be
further divided into unsupervised or supervised. Unsupervised approaches [15]
do not involve a learning phase. Rather, they compute predefined scores based
on graph topology alone. On the contrary, link prediction is treated as a binary
classification task in supervised approaches [1, 2, 6–8, 20, 21, 30, 32], which
essentially learn some suitable model with which to predict scores for pairs of
nodes [20]. Certain supervised approaches also allow the optional exploitation of
side information on the nodes, e.g., [21, 20]. Rating and link prediction are both
instances of dyadic prediction, which is the more general problem of predicting a
label for unobserved interactions between pairs of entities [13, 20]. Nonetheless,
modeling and studying them jointly has been so far unexplored.

In this paper, to the best of our knowledge, we propose the first unified ap-
proach to trust-aware recommendation of both items and users in social rating
networks. The devised approach consists in a Bayesian nonparametric hierar-
chical model, in which the interactions from users to users as well as between
users and items are assumed to be explained by some suitable number of latent
factors. More precisely, each user is associated with two real-valued latent-factor
vectors, namely, her susceptibility and expertise, similarly to [3]. The entries of
the susceptibility vector are the degree to which the user is sensible to the cor-
responding latent factors. The entries of the expertise vector are the extent to
which the user can meet the susceptibility requirements of other users on the
corresponding latent factors. Additionally, each item is associated with a real-
valued latent-factor vector, whose entries indicate the degree to which the item
is characterized by the corresponding latent factors.

The proposed model combines ideas from Bayesian probabilistic matrix fac-
torization [25] and statistical social-network modeling to infer and exploit the
foresaid latent-factor vector representations of users and items. Specifically, the
seminal Bayesian approach in [25] is extended to infer the susceptibility and ex-
pertise of each user as well as the latent-factor vector representation of every item
through the probabilistic factorization of the user-rating and trust-relationship
matrices. Statistical social-network modeling is instead employed for a twofold
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purpose. On one hand, it is used to model trust relationships governed by the
susceptibility and expertise of the trusting and trusted users, respectively. On
the other hand, it is leveraged to properly deal with the inherent ambiguity of
the unobserved trust relationships. Therein, a missing trust relationship between
two users may mean either actual lack of trust or lack of awareness. Such possi-
bilities are mixed together across the unobserved trust relationships of the social
rating network at hand and, in general, cannot be distinguished beforehand. An
especially interesting and novel aspect of the devised model is that each unob-
served trust relationship is associated with a respective binary latent variable,
whose inferred value allows to suitably account for its actual meaning.

Unlike previous approaches to item recommendation, the devised model infers
the susceptibility and expertise of the individual users by accounting for both
the available ratings as well as the trust relationships. Such representations are
shared across rating and link prediction, which enables performing both tasks
jointly. Moreover, differently from existing approaches to link prediction, the
establishment of a link from a user to another is ruled only by their respective
susceptibility and expertise. Yet, unobserved trust relationships are treated by
drawing from research in one-class collaborative filtering (e.g., [22, 28]).

The presented model is comparatively investigated over real-world social rat-
ing networks. The empirical evidence demonstrates the superiority of its predic-
tive performance in terms of both RMSE and AUC.

The contents of this paper are organized as follows. Section 2 introduces no-
tation and some preliminary concepts. Section 3 covers the proposed model.
Section 4 develops approximate posterior inference within the proposed model.
Section 5 presents the empirical results of an intensive comparative evaluation
of the proposed model against state-of-the-art competitors on real-world social
rating networks. Finally, Section 6 concludes and highlights future research.

2 Preliminaries and Problem Statement

A social rating network [14] can be formalized as a tuple N = 〈N,A, I, R〉 where
N is a set of n users and A ⊆ N ×N × {0, 1} is a set of directed links between
users. The underlying graph G = 〈N,A〉 represents trust relationships between

users. In particular, a positive link u
1→ v means that u trusts v and, dually,

a negative link u
0→ v denotes lack of u’s trust in v. We will generically use

matrix notation Au,v to succinctly denote u→ v. Clearly, Au,v is either 0 or 1,
according to whether the link u→ v is negative or positive. In the following, we
assume to be aware only of positive links and, thus, a missing link from u to v
can denote either lack of trust, or lack of awareness (i.e., u is not aware of v).
G can be viewed as a graph with attributes by also accounting for additional

node information. We focus on the degrees of preference (or ratings) assigned by
the individual users from N to the elements of a set I ofm items. Such preference
degrees are summarized into the ratings R ⊆ N × I × V , whose generic entry
〈u, i, r〉 denotes the rating r ∈ V = {1, . . . , V } assigned by user u ∈ N to item
i ∈ I. Hereafter, we denote the rating r relative to the entry 〈u, i, r〉 as Ru,i.
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We assume that trust relationships between users as well as their ratings to
items can be explained in terms of a number of latent (i.e., unobserved and un-
known) factors, that also contribute to characterize the individual items. More
precisely, each user is associated with an extent of susceptibility and expertise
with respect to the individual latent factors. A rating is governed by the combi-
nation of the susceptibility and expertise of a user with the extent to which the
targeted item is characterized by each latent factor. A trust relationship from
a user to another is determined by their respective susceptibility and expertise.
Given a generic social rating network N , we aim to infer a probabilistic model
from the trust relationships observed in G, that allows to recommend both in-
teresting items and further trustworthy users to the targeted users within the
network. The recommendation of interesting items is essentially a rating predic-
tion task. Given a user u ∈ N and an item i ∈ I such that Ru,i is unknown,
the degree of u’s preference for i is predicted using G and R. In particular, if the
trusted neighbors of u in G enjoyed i, then Ru,i should be predicted accordingly.
Analogously, the recommendation of trustworthy users is a trust prediction task.
Given a pair of users u, v ∈ N such that u→ v /∈ A, the trust of u in v is again
predicted using G and R. Specifically, if the trusted neighbors of u in G trust v
because of her ratings, then u should trust v as well and, hence, a trust relation-

ship should be established in G from u to v, i.e., the positive link u
1→ v should

be added to A. Instead, if trusted neighbors of u do not trust v, or if v’s ratings

significantly differ from u’s known ratings, then a negative link u
0→ v should be

established. Trust relationships A and ratings R are the only observed data in
N . All other aforementioned aspects of interest cannot be measured directly.

3 The Devised Bayesian Generative Model

We propose a Bayesian hierarchical model, that combines probabilistic matrix
factorization and network modeling for the recommendation of items and users
in a social rating network N . Specifically, matrix factorization is exploited to
explicitly capture the latent factors governing both trust relationships and item
ratings. Network modeling contributes to determine user susceptibility and ex-
pertise. Probabilistic matrix factorization and statistical network modeling are
seamlessly integrated for performing collaborative filtering, in order to suggest
interesting items and establish missing relationships with trustable users.

In the following K is the overall number of latent factors behind the observed
trust relationships in G. Each user u ∈ N is associated with two column vectors
Pu,Fu ∈ RK . The generic k-th entry of Pu indicates the susceptibility of u to the
latent topic k. Analogously, the k-th entry of Fu denotes the degree of expertise
exhibited by u with regard to k. The susceptibility and expertise of all users in
G are collectively denoted by means of matrices P and F, respectively, where
P,F ∈ RK×M . A representation based on the latent factors is also adopted for
the items in the set I. The generic item i ∈ I is associated with one column
vector Qi ∈ RK , whose k-th entry is the extent at which the latent factor
k characterizes the item i. The latent factor representations of all items are
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collectively represented by the matrix Q, where Q ∈ RK×N . Ratings Ru,i for
all u ∈ N and i ∈ I are considered as random variables ranging in the set V
of admissible values. Thus, in the proposed model the data likelihood, i.e., the
conditional distribution over the observed data in R and A is given by

Pr(R|P,Q,F, α) =
∏
u∈N

∏
i∈I
N (Ru,i; θu,i, α

−1)δu,i (3.1)

Pr (A|P,Q,F,Z, β) =
∏

u→v∈A

N (Au,v;ϑu,v, β
−1) (3.2)

where

θu,i = (Pu + Fu)
′ Qj and ϑu,v = P′

uFv

and N (x|μ, α−1) is the Gaussian distribution with mean μ and precision α.
In particular, the observed links are centered around the dot product between
the susceptibility of the start user and the expertise of the end user, which can
be interpreted as the capability of the latter of satisfying the requirements of
the former. Ratings involve the dot product of the sum of user susceptibility
and expertise with the latent-factor representation of items, which entirely cap-
tures the interaction between users and items. Function δu,i is instead a binary
indicator, which equals 1 if Ru,i > 0 (i.e., if u actually rated i) and 0 otherwise.

The representations in terms of latent-factors associated with users (i.e., their
susceptibility and expertise) as well as items are drawn from prior distributions,
which are assumed to be Gaussian with parameters ΘP = {μP, ΛP}, ΘQ =
{μQ, ΛQ} and ΘF = {μF, ΛF}, respectively. In addition, Gaussian-Wishart prior
distributions (denoted NW in the following) are placed on such parameters. For
a generic parameter set Θ = {μ,Λ}, we have

Pr(Θ|Θ0) = N
(
μ;μ0, [β0Λ]

−1
)
· W (Λ; ν0,W0)

where Θ0 = {μ0, β0, ν0,W0} is the set of hyperparameters for the prior distri-
bution placed on Θ = {μ,Λ} and W (Λ; ν0,W0) is the Wishart distribution.

The overall generative process is graphically represented in Fig. 1, and can
be devised as in Fig. 2. Notice that Au,v is a binary random variable and that
its value is sampled from a continuous distribution. This is essentially accom-
plished by choosing the value of Au,v that is nearest to the mean P′

uFv of the
distribution. More precisely, the discretization procedure looks at the densities
Pr(Au,v = 1|P′

uFv, β
−1) and Pr(Au,v = 0|P′

uFv, β
−1) (whose sum differs from

1). Then, Au,v is set to 1 if Pr(Au,v = 1|P′
uFv, β

−1) > Pr(Au,v = 0|P′
uFv, β

−1)
or 0 if Pr(Au,v = 0|P′

uFv, β
−1) > Pr(Au,v = 1|P′

uFv, β
−1). To elucidate,

Au,v = 1 in the case of Fig. 3(a) being closest to P′
uFv. Instead, Au,v = 0

in the case of Fig. 3(b), since this value is closest to P′
uFv.

Predicting u’s interest R∗
u,i in an unrated item i or a missing trust relationship

A∗
u,v from u to v in the context of the Bayesian hierarchical model described

so far requires, respectively, the predictive distributions Pr(R∗
uj |R,A,Ξ) and
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ra αβ

PF Q

ΛP μPΛF μF ΛQμQ

μ0, β0W0, ν0

N ×MN ×N

N M

Fig. 1. Graphical representation of the proposed Bayesian hierarchical model

1. Sample

ΘP ∼NW(Θ0)

ΘQ ∼NW(Θ0)

ΘF ∼NW(Θ0)

2. For each item i ∈ I sample
Qi ∼ N (μQ, Λ−1

Q )

3. For each user u ∈ N sample

Pu ∼N (μP, Λ
−1
P )

Fu ∼N (μF, Λ
−1
F )

4. For each pair 〈u, v〉 ∈ N ×N sample

Au,v ∼ N (
(
P′

uFv

)
, β−1)

5. For each pair 〈u, i〉 ∈ N × I sample

Ru,i ∼ N ((Pu + Fu)Q
′
j , α

−1)

Fig. 2. Generative process for the proposed Bayesian hierarchical model

Pr(A∗
uv|R,A,Ξ) relative to the prior Ξ = {Θ0, β, α}. Exact inference consists

in computing these predictive distributions as reported at Eq. 3.3 and Eq. 3.4,
where we set Θ = {P, ΘP,F, ΘF,Q, ΘQ} for readability sake.
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(a) Au,v = 1
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(b) Au,v = 0

Fig. 3. The procedure to sample a binary Au,v value from a Gaussian with mean P′
uFv

Pr(R∗
u,i|R,A,Ξ) =

∫
Pr(R∗

u,i|Pu,Fu,Qi, α) Pr(Θ|A,R,Ξ) dΘ (3.3)

Pr(A∗
u,v|A,R,Ξ) =

∫
Pr(A∗

u,v|Pu,Fv, β) Pr(Θ|A,R,Ξ) dΘ (3.4)

However, the initial assumption that A only contains positive links introduces
a severe bias in the model, as clearly no negative trust can be directly inferred
through the posterior Pr(Θ|A,R,Ξ). If we consider A as an adjacency matrix,
the latter generally tends to be extremely sparse. Therefore, only a very small
percentage of its entries are labeled as positive, and ambiguity arises in the
interpretation of all other entries, since in such cases actual lack of trust and
lack of awareness cannot be distinguished. To handle this, we explicitly model
awareness through a binary latent variable Yu,v relative to a pair (u, v) such that
u → v �∈ A. The value Yu,v = 1 denotes confidence in the lack of u’s trust in v,
whereas Yu,v = 0 indicates confidence in the fact that u is not aware of v. The
matrix of all variables is denoted by Y in the following.

The latent variables Yu,v for all the pairs u → v /∈ A are drawn from a
Bernoulli distribution with parameter εu,v.

Pr(Yu,v) = εYu,v
u,v (1− εu,v)

1−Yu,v (3.5)

Again, we can provide a full Bayesian treatment by placing a Beta prior distri-
bution with hyperparameter γ = {γ1, γ2} on the individual parameters εu,v:

Pr(εu,v|γ) =
1

B(γ1, γ2)
εγ1−1
u,v (1− εu,v)

γ2−1
(3.6)

The adoption of the latent variables Y allows us to provide an unbiased estimate
of the posterior Pr(Θ|A,R,Ξ) as

Pr(Θ|A,R,Ξ) =

∫ ∑
Y

Pr(Θ,Y, ε|A,R,Ξ, γ) dε, (3.7)
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which can be plugged directly into equations 3.3 and 3.4. Also, we can further
decompose the posterior as follows:

Pr(Θ,Y, ε|A,R,Ξ, γ) ∝Pr(R|Θ, α) Pr(A|Θ,Y, β)

· Pr(Θ|Θ0) Pr(Y|ε) Pr(ε|γ)

where finally the term Pr(A|Θ,Y, β) can be devised as

Pr (A|P,F,Y, β) =
∏

u→v∈A

N (1;ϑu,v, β
−1) ·

∏
u→v/∈A

N (0;ϑu,v, β
−1)Yu,v

(3.8)

4 Inference

The exact computation of both Eq. 3.3 and Eq. 3.4 is analytically intractable,
because of the complexity of the posterior Pr(Θ,Y, ε|A,R,Ξ, γ). Therefore,
we resort to Monte-Carlo approximation that allows to estimate the predictive
distributions by averaging over samples of the model parameters:

Pr(R∗
u,i|R,A,Ξ,γ) ≈ 1

H

H∑
h=1

Pr(R∗
u,i|P(h)

u ,F(h)
u ,Q

(h)
i , α) (4.1)

Pr(A∗
u,v|A,R,Ξ,γ) ≈ 1

H

H∑
h=1

Pr(A∗
u,v|P(h)

u ,F(h)
v , β). (4.2)

Here, the matrices P(h), F(h) and Q(h) are sampled by running a Markov chain,
whose stationary distribution approaches the posterior Pr(Θ,Y, ε|A,R,Ξ, γ).
In particular, we exploit the Gibbs sampling technique, that provides simple
inference algorithms even when the underlying model has a very large num-
ber of hidden variables. The Markov chain is built by sequentially consider-
ing a variable ϕ ∈ {Pu,Fu,Qi, Yu,v, εu,v}u,v∈N,i∈I and sampling according to
the probability Pr(ϕ|Rest), where Rest represents all remaining variables in
{Pu,Fu,Qi, Yu,v, εu,v}u,v∈N,i∈I. Thus, inference in the context of our proba-
bilistic model involves computing the full conditional distributions of the latent
variables, which are discussed in the following.

Sampling P, F and Q. By exploiting conjugacy, the full conditional of each
factor can be expressed as a multivariate gaussian. For example, for P, we can
observe that

Pr(Pu|Rest) ∝Pr(Pu|ΘP)
∏
i∈I

Pr(Ru,i|Pu,Fu,Qi, α)
δu,i

·
∏

v:u→v∈A

Pr(1|Pu,Fu, β)
∏

v:u→v �∈A

Pr(0|Pu,Fu, β)
Yu,v ,

which results in

Pu ∼ N
(
μ
∗(u)
P ,

[
Λ
∗(u)
P

]−1
)
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with
Λ
∗(u)
P = ΛP + α

∑
i∈I

δu,iQiQ
′
i + β

∑
v∈N

Ỹu,vFvF
′
v

and

μ
∗(u)
P =

[
Λ
∗(u)
P

]−1

⎡
⎣α

∑
i∈I

δu,iQjRu,i − α

⎛
⎝∑

i∈I
δu,iQiQ

′
i

⎞
⎠Fu + β

∑
v:u→v∈A

Fv + ΛPμP

⎤
⎦

Here, Ỹu,v = 1 if either u → v ∈ A or Yuv = 1 (that is to say, Ỹu,v models
awareness of u for v). Similarly, we have

Fu ∼N
(
μ
∗(u)
F ,
[
Λ
∗(u)
F

]−1
)

Qi ∼N
(
μ
∗(i)
Q ,
[
Λ
∗(i)
Q

]−1
)

where

Λ
∗(u)
F =ΛF + α

∑
i∈I

δu,iQiQ
′
i + β

∑
v∈N

Ỹu,vPvP
′
v

Λ
∗(i)
Q =ΛQ + α

∑
u∈N

δu,i (Pu + Fu) (Pu + Fu)
′

and

μ
∗(u)
F =

[
Λ
∗(u)
F

]−1

⎡
⎣α

∑
i∈I

δu,iQiRu,i − α

⎛
⎝∑

i∈I
δu,iQiQ

′
i

⎞
⎠Pu + β

∑
v:u→v∈A

Pv + ΛFμF

⎤
⎦

μ
∗(i)
Q =

[
ΛQ]∗(i)

]−1

⎡
⎣α

∑
u∈N

(Pu +Fu) δu,iRu,i + ΛQμQ

⎤
⎦

Sampling Y and ε. For each pair (u, v) such that u → v �∈ A, we can express
the full conditional likelihood as

Pr(Yu,v|εu,v, A,Pu,Fv, β) ∝ Pr(0|Pu,Fv, β)
Yu,v · Pr(Yu,v|εu,v).

which yields the equation

Pr(Yu,v|εu,v, A,Pu,Fv, β) =
exp
{
−β/2 (P′

uFv)
2
+ ηuv

}
exp
{
−β/2 (P′

uFv)
2
+ ηu

}
+ 1

(4.3)

with ηuv = log εu,v/(1− εu,v).
The distribution over the individual εu,v (for each (u, v) such that u → v �∈

A) can be obtained by conditioning on their respective Markov blanket. By
exploiting conjugacy, we obtain

Pr (εu,v|Yu,v, γ) =
γ1 + Yu,v
γ1 + γ2 + 1

(4.4)
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Sampling ΘP, ΘQ and ΘF. Again, the conjugacy of the Gaussian-Wishart to the
multivariate normal distribution provides a simplification of the full conditional
into a Gaussian-Wishart [9, pp. 178]. In general, for a multivariate normal sample
X ≡ x1, . . . ,xn, the posterior Pr(Θ|X, Θ0) results into a NW(Θ;Θn) where
Θn = {μn, βn, νn,Wn} and

μn =
β0μ0 + n

β0 + n
, βn = β0 + n, νn = ν0 + n

[Wn]
−1 = W−1

0 + SX +
β0n

β0 + n
(μ0 − x)(μ0 − x)′

with x = 1/n
∑

i xi and SX =
∑

i(xi − x)(xi − x)′.
Thus, the posteriors for ΘP, ΘF and ΘQ are obtained by updating the re-

spective statistics from which the corresponding hyperparameters depend.

The Gibbs sampling algorithm for approximate inference. Fig. 4 illustrates the
Gibbs sampler used to perform approximate inference within the devised model.
An execution of the sampler essentially consists in the repetition of a certain
number of iterations (lines 3-20). The generic iteration h divides into two stages.

The first stage is devoted to sampling hyperparameters Θ
(h)
P , Θ

(h)
F and Θ

(h)
Q and

εu,v (lines 4-9). Model parameters Y, Pu, Fu and Qj are then sampled at the
second stage (lines 10-19).

Notice that running the Markov chain to its equilibrium through a maximum
number of iteration is a widely-adopted convergence-criterion [16]. The overall
number of iterations must be carefully set, so that to the probability of transi-
tions of the sampler between latent states converges to a stationary distribution
after a preliminary burn-in period. This permits to gather samples drawn af-
ter convergence for prediction (as discussed in Sec.4), while discarding burn-in
samples which are sensible to the initialization of the sampler.

Also, concerning Y, we do not sample the whole set of pairs (u, v) such that
u→ v �∈ A. This is a crucial efficiency issue. In practice, we are assuming Y con-
tains several unknown values, and hence only a limited amount of unconnected
pairs in a corresponding set U has to be considered. The underlying assumption
is that the number |U | of pairs to sample is the result of a prior Poisson process,
fixed in the beginning and not reported here for lack of space.

5 Experimental Evaluation

The joint modeling of users’ trust networks and ratings provides a powerful
framework to detect and understand different patterns within the input social
rating network. In this section we analyze the application of the proposed model
to real-world social rating networks. More specifically, we are interested in eval-
uating the effectiveness of our approach in three respects.

– Firstly, we measure its accuracy in rating prediction.
– Secondly, we evaluate the accuracy in predicting trust between pairs of users

by measuring the AUC of the proposed model.
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Gibbs sampling(N , Θ0 = {μ0, β0, ν0,W0}, γ, α, β)
1: Sample a subset U ⊆ N × N such that u → v �∈ A;

2: Initialize P(0), F(0), Q(0), Y(0);
3: for h = 1 to H do
4: Sample Θ

(h)
P ∼ NW(Θn) where Θn is computed by updating Θ0 with P, SP;

5: Sample Θ
(h)
F ∼ NW(Θn) where Θn is computed by updating Θ0 with F, SF;

6: Sample Θ
(h)
F ∼ NW(Θn) where Θn is computed by updating Θ0 with Q, SQ

7: for each (u, v) ∈ U do

8: Sample ε(h)
u,v according to Eq. 4.4;

9: end for
10: for each (u, v) ∈ U do

11: Sample Y (h)
uv according to Eq. 4.3;

12: end for
13: for each u ∈ N do

14: Sample Pu ∼ N
(
μ
∗(u)
P ,

[
Λ
∗(u)
P

]−1
)

;

15: Sample Fu ∼ N
(
μ
∗(u)
F ,

[
Λ
∗(u)
F

]−1
)
;

16: end for
17: for each i ∈ I do

18: Sample Qi ∼ N
(
μ
∗(i)
Q ,

[
Λ
∗(i)
Q

]−1
)
;

19: end for
20: end for

Fig. 4. The scheme of Gibbs sampling algorithm in pseudo code

Table 1. Summary of the chosen social rating networks

Ciao Epinions
Users 7,375 49,289

Trust Relationships 111,781 487,181
Items 106,797 139,738

Ratings 282,618 664,823
InDegree (Avg/Median/Min/Max) 15.16/6/1/100 9.8/2/1/2589

OutDegree (Avg/Median/Min/Max) 16.46/4/1/804 14.35/3/1/1760
Ratings on items (Avg/Median/Min/Max) 2.68/1/1/915 4.75/1/1/2026
Ratings by Users (Avg/Median/Min/Max) 38.32/18/4/1543 16.55/6/1/1023

– Thirdly, we analyze the structure of the model and investigate the properties
that can be derived, such as relationships among factors and propensities of
users within given factors.

Datasets. We conducted experiments on two datasets representing social rating
networks from the popular product review sites Epinions and Ciao, described
in [29]. Users in these sites can share their reviews about products. Also they can
establish their trust networks from which they may seek advice to make decisions.
Both sites employ a 5-star rating system. Some statistics of the datasets are
shown in Table 1 and in Fig. 5. We can notice that both the trust relationships
and the rating distributions are heavy-tailed. Epinions exhibits a larger number
of users, as well as a larger sparsity coefficient on A.

Evaluation Setting. We chose some state-of-the-art baselines from the current lit-
erature. For rating prediction, we compared our approach against SocialMF [14].
The metric used here is the standard RMSE. We exploited the implementation
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Fig. 5. Distributions of trust relationships and ratings in Epinions and Ciao

of SocialMF made available at http://mymedialite.net. For trust prediction,
we adapted the framework described in [20]. For each user, we considered the
ratings as user features and we trained the factorization model which minimizes
the AUC loss. We exploited the implementation made available by the authors
at http://cseweb.ucsd.edu/~akmenon/code. We refer to this method as AUC-
MF in the following. In addition, we considered a further comparison in terms
of both RMSE and AUC against a basic matrix factorization approach based on
SVD named Joint SVD (JSVD) [11]. We computed a low-rank factorization of
the joint adjacency/feature matrix X = [A R] as X ≈ U · diag(σ1, . . . , σK) ·VT ,
where K is the rank of the decomposition and σ1, . . . , σK are the square roots of
the K greatest eigenvalues of XTX. The matrices U and V resemble the roles
of P, F and Q: The term Uu,k can be interpreted as the tendency of u to trust
users, relative to factor k. Analogously, Vu,k represents the tendency of u to be
trusted, and Vi,k represents the rating tendency of item i in k. The score can be

hence computed as [26] score(u, x) =
∑K

k=1 Uu,kσkVx,k, where x denotes either
a user v or an item i.

In all the experiments, we performed a Monte-Carlo Cross Validation, by
performing 5 training/test splits. Within the partitions, 70% of the data were
retained as training, and the remaining 30% as test. The splitting was accom-
plished for the sole data upon which to measure the performance (i.e., ratings
for the RMSE and links for the AUC).

Concerning the AUC, it is worth noticing that Epinions and Ciao only contain
positive trust relationships, and the computation of the AUC relies on the pres-
ence of negative values. Negative values are indeed crucial in the approach [20],
since the latter relies on a loss function which penalizes situations where the
score of negative links is higher than the score of positive links. In principle, we
can consider all links in the test-set as positive examples, and all non-existing
links as negative example. However, the sparsity of the networks poses a major
tractability issue, as it would make the computation of the AUC infeasible. A
better estimation strategy in [2, 26] consists in narrowing the negative examples

http://mymedialite.net
http://cseweb.ucsd.edu/~akmenon/code
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Fig. 6. Prediction results

to all the 2-hops non-existing links, i.e., all triplets (u, v, w) where both (u, v)
and (v, w) exhibit a trust relationship in A, but (u,w) does not.

Results. Fig. 6 reports the averaged results of the evaluation. We ran the exper-
iments on a variable number of latent factors, ranging from 4 to 128. We can
notice that the proposed hierarchical model, denoted as HBPMF, achieves the
minimum RMSE on both datasets. There is a tendency of the RMSE to pro-
gressively decrease. However, this tendency is more evident on SocialMF, while
the other two methods exhibit negligible differences.

The opposite trend is observed in trust prediction. Here, all methods tend to
prefer a low number of factors, as the best results are achieved with K = 4. The
devised HBPMF model achieves the maximum AUC on the Epinions dataset,
and results comparable to JSVD on Ciao. The detailed results are shown in
Fig. 7, where the ROC curves are reported. In general, the predictive accuracy
of the Bayesian hierarchical model is stable with regards to the number of factors.
This is a direct result of the Bayesian modeling, which makes the model robust
to the growth of the model complexity. Fig. 8 also shows how the accuracy
varies according to the distributions which characterize the data. We can notice
a correlation between accuracy and node degrees, as well as the number of ratings
provided by a user or received by an item.

To evaluate the effects of the joint modeling of both the trust relationships and
the ratings, we conducted some further experiments with K = 4. In a first exper-
iment, we performed the sampling without considering the trust relationships.
More precisely, we performed a simple BPMF (as described in [25]). Dually, we
discarded the rating matrix and performed the sampling by only considering the
trust relationships. The first graph of Fig. 9 shows the comparison between the
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Fig. 9. (a) Effects of the joint modeling. (1 denotes Epinions, and 2 denotes Ciao). (b)
Average running time for iteration (JSVD reports the total time).

results of these partial models against those achieved through the full HBPMF
model. The effects of the joint modeling can be appreciated on the RMSE: in
practice, the additional information provided by the trust relationships refines
the modeling of the data, thus lowering the RMSE. By contrast, the effects of
the joint modeling on the AUC do not highlight substantial improvements.

Finally, the last two graphs of Fig. 9 report the running times relative to the
methods. For the HBPMF, we achieved stable results for the RMSE after 100
iterations, whereas the AUC result was stable after 20 iterations. Both SocialMF
and AUC-MF exhibited stable results with 20 iterations. The computational
overhead of the Gibbs Sampling procedure plays a crucial role here. Therein,
it would be interesting to investigate alternative inference strategies based on
variational approximation, which are known to guarantee fast convergence.



272 G. Costa, G. Manco, and R. Ortale

6 Conclusions and Future Research

We presented the first unified approach to the recommendation of interesting
items and trustworthy users in social rating networks with trust relationships.
The key intuition is that the interactions from users to users as well as between
users and items are explained by the same latent factors, which ultimately allows
to combine user and item recommendation into a simple and intuitive Bayesian
generative model. A comparative experimentation over real-world social rating
networks confirmed such an intuition: the devised model was shown to deliver a
superior predictive performance in terms of both RMSE and AUC.

Future research will focus on two major directions. We planned to study an
extension of our model in which the Indian Buffet Process [12] is exploited to
automatically infer the most appropriate number of latent factors from the input
social rating network. In addition, variational approximate inference and related
learning algorithms will be studied to improve the computational efficiency. Fi-
nally, a further line of research is relative to how the proposed models can be
adapted to support recommendation tasks behind rating prediction [24, 5, 4].
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Abstract. We present a new and original method to solve the domain
adaptation problem using optimal transport. By searching for the best
transportation plan between the probability distribution functions of a
source and a target domain, a non-linear and invertible transformation
of the learning samples can be estimated. Any standard machine learn-
ing method can then be applied on the transformed set, which makes
our method very generic. We propose a new optimal transport algorithm
that incorporates label information in the optimization: this is achieved
by combining an efficient matrix scaling technique together with a majo-
ration of a non-convex regularization term. By using the proposed opti-
mal transport with label regularization, we obtain significant increase in
performance compared to the original transport solution. The proposed
algorithm is computationally efficient and effective, as illustrated by its
evaluation on a toy example and a challenging real life vision dataset,
against which it achieves competitive results with respect to state-of-the-
art methods.

1 Introduction

While most learning methods assume that the test data Xt = (xt
i)i=1,...,Nt ,

xi ∈ Rd and the training data Xs = (xs
i )i=1,...,Ns are generated from the same

distributions μt = P(Xt) and μs = P(Xs), real life data often exhibit different
behaviors. Many works study the generalization capabilities of a classifier allow-
ing to transfer knowledge from a labeled source domain to an unlabeled target
domain: this situation is referred to as transductive transfer learning [1]. In our
work, we assume that the source and target domains are by nature different,
which is usually referred to as domain adaptation. In the classification problem,
the training data are usually associated with labels corresponding to C different
classes. We consider the case where only the training data are associated with
a label Ys = (yi)i=1,...,Ns , yi ∈ {1, . . . , C}, yielding an unsupervised domain
adaptation problem, since no labelled data is available in the target domain.
In this acceptation, the training (resp. testing) domain is usually referred to as
source (resp. target) distribution.

Domain adaptation methods seek to compensate for inter domain differences
by exploiting the similarities between the two distributions. This compensation is

T. Calders et al. (Eds.): ECML PKDD 2014, Part I, LNCS 8724, pp. 274–289, 2014.
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usually performed by reweighing the contribution of each samples in the learning
process (e.g. [2]) or by means of a global data transformation that aligns the two
distributions in some common feature space (e.g. [3]). Our work departs from
these previous works by assuming that there exists a non-rigid transformation
of the distribution that can account for the non-linear transformations occurring
between the source and target domains. This transformation is conveniently ex-
pressed as a transportation of the underlying probability distribution functions
thanks to optimal transport (OT). The OT problem has first been introduced by
the French mathematician Gaspard Monge in the middle of the 19th century as
the way to find a minimal effort solution to the transport of a given mass of dirt
into a given hole. The problem reappeared later in the work of Kantorovitch [4],
and found recently surprising new developments as a polyvalent tool for several
fundamental problems [5]. In the domain of machine learning, OT has been re-
cently used for computing distances between histograms [6] or label propagation
in graphs [7].

Contributions. Our contributions are twofold: i) First, we show how to trans-
pose the optimal transport problem to the domain adaptation problem, and we
propose experimental validations of this idea. To the best of our knowledge, this
is the first time that optimal transport is considered in the domain adaptation
setting. ii) Second, we propose an elegant group-based regularization for inte-
grating label information, which has the effect of regularizing the transport by
adding inter-class penalties. The resulting algorithm exploits a proven efficient
optimization approaches and will benefit from any advances in this domain.
The proposed optimal transport with label regularization (OT-reglab) allows
to achieve competitive state-of-the-art results on challenging datasets.

2 Related Work

Two main strategies have been considered to tackle the domain adaptation prob-
lem: on the one hand, there are approaches considering the transfer of instances,
mostly via sample re-weighting schemes based on density ratios between the
source and target domains [2,8]. By doing so, authors compare the data distri-
butions in the input space and try to make them more similar by weighting the
samples in the source domain.

On the other hand, many works have considered finding a common feature
representation for the two (or more) domains, or a latent space, where a classifier
using only the labeled samples from the source domain generalize well on the
target domains [9,10]. The representation transfer can be performed by matching
the means of the domains in the feature space [10], aligning the domains by their
correlations [11] or by using pairwise constraints [12]. In most of these works,
the common latent space is found via feature extraction, where the dimensions
retained summarize the information common to the domains. In computer vi-
sion, methods exploiting a gradual alignment of sets of eigenvectors have been
proposed: in [13], authors start from the hypothesis that domain adaptation can
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be better approached if comparing gradual distortions and therefore use interme-
diary projections of both domains along the Grassmannian geodesic connecting
the source and target observed eigenvectors. In [14,15], authors propose to obtain
all sets of transformed intermediary domains by using a geodesic-flow kernel in-
stead of sampling a fixed number of projections along the geodesic. While these
methods have the advantage of providing easily computable out-of-sample ex-
tensions (by projecting unseen samples onto the latent space eigenvectors), the
transformation defined is global and applied the same way to the whole target
domain.

An approach combining the two logics is found in [3], where authors extend
the sample re-weighing reasoning to similarity of the distributions in the feature
space by the use of surrogate kernels. By doing so, a linear transformation of the
domains is found, but, as for the feature representation approaches above, it is
the same for all samples transferred.

Our proposition strongly differs from those reviewed above, as it defines a
local transportation plan for each sample in the source domain. In this sense,
the domain adaptation problem can be seen as a graph matching problem for all
samples to be transported, where their final coordinates are found by mapping
the source samples to coordinates matching the marginal distribution of the
target domain. In the authors knowledge, this is the first attempt to use optimal
transportation theory in domain adaptation problem

3 Optimal Transportation

In this Section, we introduce the original formulation of optimal transport
through the Monge-Kantorovitch problem and its discrete formulation. Then,
regularized versions of the optimal transport are exposed.

3.1 The Monge-Kantorovitch Problem and Wasserstein Space

Let us first consider two domains Ω1 and Ω2 (in the following, we will assume
without further indication that Ω1 = Ω2 = Rd). Let P(Ωi) be the set of all the
probability measures over Ωi. Let μ ∈ P(Ω1), and T be an application from
Ω1 → Ω2. The image measure of μ by T, noted T#μ, is a probability measure
over Ω2 which verifies:

T#μ(y) = μ(T−1(y)), ∀y ∈ Ω2. (1)

Let μs = P(Ω1) and μt = P(Ω2) be two probability measures from the two
domains. T is said to be a transport if T#μs = μt. The cost associated to this
transport is

C(T) =

∫
Ω1

c(x,T(x))dμ(x), (2)

where the cost function c : Ω1 × Ω2 → R+ can be understood as a regular
distance function, but also as the energy required to move a mass μ(x) from x
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to y. It is now possible to define the optimal transport T0 as the solution of
the following minimization problem:

T0 = argmin
T

∫
Ω1

c(x,T(x))dμ(x), s.t. T#μs = μt (3)

which is the original Monge transportation problem. The equivalent Kantorovitch
formulation of the optimal transport [4] seeks for a probabilistic coupling γ ∈
P(Ω1 ×Ω2) between Ω1 and Ω2:

γ0 = argmin
γ

∫
Ω1×Ω2

c(x,y)dγ(x,y), s.t. PΩ1#γ = μs,PΩ2#γ = μt, (4)

where PΩi is the projection over Ωi. In this formulation, γ can be understood as
a joint probability measure with marginals μs and μt. γ0 is the unique solution
to the optimal transport problem. It allows to define the Wasserstein distance
between μs and μt as:

W2(μs, μt) = inf
γ

∫
Ω1×Ω2

c(x,y)dγ(x,y), s.t. PΩ1#γ = μs,PΩ2#γ = μt, (5)

This distance, also known as the Earth Mover Distance in computer vision com-
munity [16], defines a metric over the space of integrable squared probability
measure.

3.2 Optimal Transport of Discrete Distributions

Usually one does not have a direct access to μs or μt but rather to collections of
samples from those distributions. It is then straightforward to adapt the optimal
transport problem to the discrete case. The two distributions can be written as

μs =

ns∑
i=1

psi δxs
i
, μt =

nt∑
i=1

ptiδxt
i

(6)

where δxi is the Dirac at location xi ∈ Rd. psi and pti are probability masses asso-
ciated to the i-th sample, and belong to the probability simplex, i.e.

∑ns

i=1 p
s
i =∑nt

i=1 p
t
i = 1. The set of probabilistic coupling between those two distributions

is then the set of doubly stochastic matrices P defined as

P =
{
γ ∈ (R+)ns×nt | γ1nt = μs,γ

T1ns = μt

}
(7)

where 1d is a d-dimensional vector of ones. The Kantorovitch formulation of the
optimal transport [4] reads:

γ0 = argmin
γ∈P

〈γ,C〉F (8)

where 〈., .〉F is the Frobenius dot product and C ≥ 0 is the cost function matrix
of term C(i, j) related to the energy needed to move a probability mass from xs

i

to xt
j . This cost can be chosen for instance as the Euclidian distance between

the two locations, i.e. C(i, j) = ||xs
i − xt

j ||2, but other types of metric could be
considered, such as Riemannian distances over a manifold [5].
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Remark 1. When ns = nt = n and when ∀i, j psi = ptj = 1/n, the γ0 is simply
a permutation matrix

Remark 2. In the general case, it can be shown that γ0 is a sparse matrix with
at most ns + nt − 1 non zero entries (rank of constraints matrix).

This problem can be solved by linear programming, with combinatorial al-
gorithms such as the simplex methods and its network variants (transport sim-
plex, network simplex, etc.). Yet, the computational complexity was shown to be
O(n2) in practical situations [17] for the network simplex (while being O(n3) in
theory) which leverages the utility of the method to handle big data. However,
the recent regularization of Cuturi [6] allows a very fast transport computation
as discussed in the next Section.

3.3 Regularized Optimal Transport

When the target and source distributions are high-dimensional, or even in pres-
ence of numerous outliers, the optimal transportation plan may exhibit some
irregularities, and lead to incorrect transport of points. While it is always pos-
sible to enforce a posteriori a given regularity in the transport result, a more
theoretically convincing solution is to regularize the transport by relaxing some
of the constraints in the problem formulation of Eq.(8). This possibility has been
explored in recent papers [18,6].

In [18], Ferradans and colleagues have explored the possibility of relaxing
the mass conservation constraints of the transport, i.e. slightly distorting the
marginals of the coupling γ0. Technically, this boils down to solving the same
minimization problem but with inequality constraints on the marginals in Eq.(7).
As a result, elements of the source and target distributions can remain still. Yet,
one major problem of this approach is that it converts the original linear program
into more computationally demanding optimizations impractical for large sets.

In a recent paper [6], Cuturi proposes to regularize the expression of the
transport by the entropy of the probabilistic coupling. The regularized version
of the transport γλ

0 is then the solution of the following minimization problem:

γλ
0 = argmin

γ∈P
〈γ,C〉F −

1

λ
h(γ), (9)

where h(γ) = −
∑

i,j γ(i, j) logγ(i, j) computes the entropy of γ. The intuition
behind this form of regularization is the following: since most of the elements
of γ0 should be zero with high probability, one can look for a smoother version
of the transport by relaxing this sparsity through an entropy term. As a result,
and contrary to the previous approach, more couplings with non-nul weights are
allowed, leading to a denser coupling between the distributions. An appealing
result of this formulation is the possibility to derive a computationally very effi-
cient algorithm, which uses the scaling matrix approach of Sinkhorn-Knopp [19].
The optimal regularized transportation plan is found by iteratively computing
two scaling vectors u and v such that:

γλ
0 = diag(u) exp(−λC)diag(v), (10)
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where the exponential exp(.) operator should be understood element-wise.
Note that while these regularizations allow the inclusion of additional priors

in the optimization problem, they do not take into account the fact that the
elements of the source distribution belong to different classes. This idea is the
core of our regularization strategy.

4 Domain Adaptation with Label Regularized Optimal
Transport

From the definitions above, the use of optimal transport for domain adaptation
is rather straightforward: by computing the optimal transport from the source
distribution μs to the target distribution μt, one defines a transformation of the
source domain to the target domain. This transformation can be used to adapt
the training distribution by means of a simple interpolation. Once the source
labeled samples have been transported, any classifier can be used to predict in
the target domain. In this section, we present our optimal transport with label
regularization algorithm (OT-labreg) and derive a new efficient algorithm to
solve the problem. We finally discuss how to interpolate the training set from
this regularized transport.

4.1 Regularizing the Transport with Class Labels

Optimal transport aims at minimizing a transport cost linked to a metric be-
tween distributions. It does not include any information about the particular
nature of the elements of the source domain (i.e. the fact that those samples
belong to different classes). However, this information is generally available, as
labeled samples are used in the classification step following adaptation. Our
proposition to take advantage of label information is to penalize couplings that
match together samples with different labels. This is illustrated in Figure 1.c,
where one can see that samples belonging to the same classes are only associated
to points associated to the same class, contrarily to the standard and regularized
versions of the transport (Figures 1.a and 1.b ).

Principles of the Label Regularization. Over each column of γ, we want
to concentrate the transport information on elements of the same class c. This
is usually done by using �p − �q mixed-norm regularization, among which the
�1 − �2 known as as group-lasso is a favorite. The main idea is that, even if we
do not know the class of the target distribution, we can promote group sparsity
in the columns of γ such that a given target point will be associated with only
one of the classes.

Promoting group sparsity leads to a new term in the cost function (9), which
now reads:

γ0 = argmin
γ∈P

〈γ,C〉F −
1

λ
h(γ) + η

∑
j

∑
c

||γ(Ic, j)||pq , (11)
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a b c

Fig. 1. Illustration of the transport for two simple distributions depicted in the image.
The colored disks represent 3 different classes. The transport solution is depicted as
blue lines whose thickness relate to the strength of the coupling. (a) Solution of the
original optimal transport solution (OT-ori); (b) using the Sinkhorn transport (OT-
reg [6]); (c) using our class-wise regularization term (OT-reglab).

where Ic contains the index of the lines such that the class of the element is c,
γ(Ic, j) is a vector containing coefficients of the jth column of γ associated to
class c and || · ||pq denotes the �q norm to the power of p. η is a regularization
parameter that weights the impact of the supervised regularization.

The choice of the p, q parameters is particularly sensitive. For p ≥ 1 and
q ≥ 1 the regularization term is convex. The parameters p = 1, q = 2 lead to
the classical group-lasso that is used, for instance, for joint features selection
in multitask learning. The main problem of using the group-lasso in this case
is that it makes the optimization problem much more difficult. Indeed, when
using an �2 norm in the objective function, the efficient optimization procedure
proposed in [6] cannot be used anymore. Moreover there is no particular reason
to choose the �2 norm for regularizing coefficients of a transport matrix. Those
coefficients being all positive and associated to probabilities, we propose to use
q = 1 that will basically sum the probabilities in the groups. When q = 1, one
needs to carefully chose the p coefficient in order to promote group sparsity. In
this work we propose to use p = 1/2 < 1. This parameter is a common choice for
promoting sparsity, as the square root is non-differentiable in zero and has been
used recently for promoting non-grouped sparsity in compressed sensing [20].An
additional advantage of our proposal is that, despite the fact that the proposed
regularization is non-convex, a simple approach known as reweighted �1 can be
performed for its optimization, as detailed below.

4.2 Majoration Minimization Strategy

The optimization problem with a �p− �1 regularization boils down to optimizing

γ0 = argmin
γ∈P

J(γ) + ηΩ(γ), (12)

with J(γ) = 〈γ, C〉F − 1
λh(γ) and Ω(γ) =

∑
j

∑
c ||γ(Ic, j)||

p
1. We want to be

able to use the optimization in [6] to solve the left term, as it is very efficient.
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Fig. 2. Illustration of the regularization term loss for a 2D group (left). Illustration of
the convexity of g(·) and its linear majoration (right).

First, note that the regularization term can be reformulated as

Ω(γ) =
∑
j

∑
c

g(||γ(Ic, j)||1) (13)

where g(·) = (·)p is a concave function of a positive variable (∀γ ≥ 0). A classical
approach to address this problem is to perform what is called Majorization-
minimization [21]. This can be done because the �p − �1 regularization term is
concave in the positive orthant as illustrated in the left part of figure 2. It is
clear from this Figure that the surface can be majored by an hyperplane. For a
given group of variable, one can use the concavity of g to majorize it around a
given vector ŵ > 0

g(w) ≤ g(‖ŵ‖1) +∇g(‖ŵ‖1)�(w − ŵ) (14)

with ∇g(‖ŵ‖1) = p(‖ŵ‖1)p−1 for ŵ > 0. An illustration of the majoration of
g(·) can be seen in the right part of Figure 2. For each group, the regularization
term can be majorized by a linear approximation. In other words, for a fixed γ̂

Ω(γ) ≤ Ω̃(γ) = 〈γ,G〉F + cst (15)

where the matrix G has components

G(Ic, j) = p(‖γ̂(Ic, j)‖+ ε)p−1, ∀c, j (16)

Note that we added a small ε > 0 that helps avoiding numerical instabilities,
as discussed in [20]. Finally, solving problem (11) can be performed by iterating
the two steps illustrated in Algorithm 1. This iterative algorithm is of particular
interest in our case as it consists in iteratively using an efficient Sinkhorn-Knopp
matrix scaling approach. Moreover this kind of MM algorithm is known to con-
verge in a small number of iterations.
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Algorithm 1. Majoration Minimization for �p − �1 regularized Optimal Trans-
port

Initialize G = 0
Initialize C0 as in Equation (8)
repeat

C ← C0 +G
γ ← Solve problem (9) with C
G ← Update G with Equation (16)

until Convergence

4.3 Interpolation of the Source Domain

Once the transport γ0 has been defined using either Equations (8), (9) or (11),
the source samples must be transported in the target domain using their trans-
portation plan. One can seek the interpolation of the two distributions by fol-
lowing the geodesics of the Wasserstein metric [5] (parameterized by t). This
allows to define a new distribution μt such that:

μt = argmin
μ

(1 − t)W2(μs, μ)
2 + tW2(μt, μ)

2. (17)

One can show that this distribution is:

μt =
∑
i,j

γ0(i, j)δ(1−t)xs
i+txt

j
. (18)

In our approach, we suggest to compute directly the image of the source samples
as the result of this transport, i.e. for t = 1. Those images can be expressed
through γ0 as barycenters of the target samples. Let Tγ0

: Rd → Rd be the
mapping induced by the optimal transport coupling. This map transforms the
source elements Xs in a target domain dependent version X̂s. The mapping Tγ0

can be conveniently expressed as:

X̂s = Tγ0
(Xs) = diag((γ01nt)

−1)γ0Xs. (19)

We note that Tγ0
is fully invertible and can be also used to compute an adapta-

tion from the target domain to the source domain by observing that T−1
γ0

= TγT
0
.

Let us finally remark that similar interpolation methods were used in the domain
of color transfer [18].

5 Experimental Validation

In this Section, we validate the proposed algorithm in two domain adaptation ex-
amples. On the first one, we study the behavior of our approach on a simple toy
dataset. The second one considers a challenging computer vision dataset, used
for a comparison with state-of-the-art methods. In every experiment, the original
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optimal transport (OT-ori) is computed with a network simplex approach [17].
The Sinkhorn transport, which corresponds to the regularized version of the opti-
mal transport (OT-reg) described in Section 3.3, was implemented following the
algorithm proposed in [6]. Our approach, OT-reglab, follows the Algorithm 1.
As expected, these last two methods are generally one order of magnitude faster
than the network simplex approach.

As for the choice of the weights of Eq. (6), the problem can be cast as an
estimation of a probability mass function of a discrete variable on the sample
space of the source and target distributions. A direct and reasonable choice is
to take an uniform distribution, i.e. psi = 1

ns
and pst = 1

nt
. This choice gives

the same value for every samples in the two discrete distributions. Alternatively,
one can seek to strengthen the weights of samples that are in a high density
region, and lower weights for samples in low density regions. This way, outliers
should be associated with lower masses. A possible solution relies on a discrete
variant of the Nadaraya-Watson estimator [22] where one enforces the sum-to-1
property:

psi =

∑ns

j=1 kσ(x
s
i ,x

s
j)∑ns

j=1

∑ns

i=1 kσ(x
s
i ,x

s
j)

(20)

where kσ(·, ·) is a gaussian kernel of bandwidth σ. The drawback of such an
estimator is that it adds an hyper parameter to the method. Yet, while standard
approaches [22] can be used to estimate this parameter, we observed in our
experiments, and for large number of samples, that this parameter exerts little
influence over the final result (less than a standard deviation) for a large range
of values.

5.1 Toy Dataset

In this first experiment, the behavior of the optimal transport is examined on
a simple two-dimensional dataset. We consider a two-class distribution by sam-
pling independently for each class c1 and c2 following the normal distributions
N s

1 and N s
2 . The set of all those samples constitute the source domain. The tar-

get domain samples are then obtained by sampling the mixture N t
1 + N t

2 . The
target distributions N t

i , (i = 1, 2) are deduced from N s
i , (i = 1, 2) by chang-

ing both the scale and translating the distribution mean. The produced domain
transformation is thus non-linear and cannot be expressed by a simple 2D trans-
formation of the input space. This makes the problem particularly interesting
with respect to our initial assumptions on the nature of the domain change. We
then sample randomly from these distributions ns

1,ns
2,nt

1 and nt
2 samples from

N s
1 , N s

2 , N t
1 and N t

2 to form the corresponding learning and test sets. An il-
lustration of this toy dataset is given in Figure 3.a for ns

1 + ns
2 = 100 samples

in the source distribution (red and white circles) and nt
1 + nt

2 = 200 samples in
the target one (blue crosses). Note that the size of the points in the Figure is
proportional to its weight pi and reflects the density of the distribution.

Figure 3.b presents the result of the optimal transport OT-ori coupling as
a set of non-nul connections (red and black arcs) between the source and the
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a b

Fig. 3. Illustration of the transport OT-ori on a simple toy dataset. The initial distri-
butions are depicted in the right image (a) The source distribution is depicted in white
and red for respectively class 1 and 2, the target distributions are in blue. In image
(b), we show the optimal transport couplings, depicted as links colored with respect to
the source class label.

target distributions. The color of those connections is related to the magnitude
of the coupling (up to a global scaling factor). As expected, the coupling matrix
γ0 contains less than 100 + 200 − 1 = 299 non-nul entries. One can see that
some white and red elements are clearly misled by the transport, but the overall
adaptation remains coherent with the test distribution.

Figure 4 illustrates the results obtained on this dataset with the regularized
versions of the transport OT-reg and OT-reglab for a regularization parameter
value of λ = 1. The γ0 matrix of OT-reg, on the left of the first row of Figure 4,
is indeed sparse, but much less than the corresponding one in OT-ori. This
can be assessed by comparing the denser connections issued from OT-reg (left
panel of the second row of Figure 4) with respect to those observed for OT-
ori (right panel of Figure 3). In the proposed OT-reglab (right column of
Figure 4), the sparsity is clearly enforced per class (the rows of the coupling
matrix are sorted by class), which yields a sparser coupling matrix with block
structure. In the last row of Figure 4 we show the result of the adaptation of
the source distribution following the procedure described in Section 4.3. Two
additional interesting behaviors are observed in the regions highlighted by red
squares, where some of the incoherencies observed in OT-ori and OT-reg of the
transport are resolved by the label regularization proposed with OT-reglab.

Classification Measures. We now consider performances of a classifier trained
on the source samples adapted to the target distribution. In those experiments,
we use a SVM classifier with a Gaussian kernel. The hyperparameters of the
classifier are computed for each trial by a 2-fold cross validation over a grid
of potential values. For every setting considered, the data generation / adapta-
tion / classification was conducted 20 times to leverage the importance of the
sampling. When informative, we provide the standard deviation of the result.
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Fig. 4. Comparisons of two versions of the regularized transport: Sinkhorn transport
(OT-reg, left column) and Sinkhorn transport with the label regularization (OT-
reglab, right column). The first row shows the transport coupling matrices γ0, the
second row their equivalent graphical representations, with connections colored by the
source node label. The third row is the adaptation of the source samples induced by
γ0 using Equation (19).
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a b c

Fig. 5. Classification results for the toy dataset example: (a) influence of the regular-
ization parameter λ; (b) influence of the proportions of samples between the source
and the target distributions; (c) influence of the balance of classes on the overall per-
formance of the adaptation.

In the first experiment, we examine the importance of the regularization pa-
rameter λ over the overall classification accuracy (Figure 5.a). In this case, we
set ns

1 = ns
2 = nt

1 = nt
2 = 100. We confirm that the use of the transport

for domain adaptation increases the performances significantly (by 8%) over
a classification conducted directly with the source distribution as learning set.
When varying the λ regularization parameter and using OT-reglab, another
very significant increase is achieved (up to 25% for λ = 0.04), which demon-
strates the relevance of our transport regularization. In the second experiment,
we set ns

1 = ns
2 = 100 and we increase the number of elements in the source

target nt
1 and nt

2 equivalently. For this experiment and for the next one, λ is
set by a standard cross-validation method. In this case, the standard deviation
is omitted as it is constant over the experiments and no informative. One can
observe that the performances of the classification are i) consistent with the first
experiment and ii) constant over the volume of samples in the target domain as
long as the proportions are conserved. In the third experiment, we set nt

1 and
nt
2 to the value of 100 samples each and we vary the proportion of the classes

through a parameter p ∈ [0, 1] with ns
1 = p ∗ 100 and ns

2 = (1 − p) ∗ 100. This
parameter allows to control the proportion of elements in class 1 and in class
2 in the source distribution. As shown in Figure 5.c, the best result is achieved
when the proportion of each class samples is similar in the source and target
distributions (at 50%). This somehow highlights one limit of the method: the
mass equivalent to each class should match in proportions for both distributions
to get the best adaption result. Nevertheless, we can see from Figure 5.c that
a variation of ±15% between the source and target distribution still leads to
significant performance improvements.

5.2 Visual Adaptation Dataset

We now evaluate our method on a challenging real world dataset coming from
the computer vision community. The objective is now a visual recognition task of
several categories of objects, studied in the following papers [23,13,14,15]. The
dataset contains images coming from four different domains: Amazon (online
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Table 1. Overall recognition accuracies in % and standard deviation on the domain
adaptation of visual features

Methods
without labels with

no adapt. SuK [3] SGF [13] GFK [14] OT-ori OT-reg GFK-lab [14] OT-reglab
C→A 20.8 ± 0.4 32.1 ± 1.7 36.8 ± 0.5 36.9 ± 0.4 30.6 ± 1.6 41.2 ± 2.9 40.4 ± 0.7 43.5± 2.1
C→D 22.0 ± 0.6 31.8 ± 2.7 32.6 ± 0.7 35.2 ± 1.0 27.7 ± 3.7 36.0 ± 4.1 41.1± 1.3 41.8± 2.8
A→C 22.6 ± 0.3 29.5 ± 1.9 35.3 ± 0.5 35.6 ± 0.4 30.1 ± 1.2 32.6 ± 1.3 37.9± 0.4 35.2 ± 0.8
A→W 23.5 ± 0.6 26.7 ± 1.9 31.0 ± 0.7 34.4 ± 0.9 28.0 ± 2.0 34.7 ± 6.3 35.7 ± 0.9 38.4± 5.4
W→C 16.1 ± 0.4 24.2 ± 0.9 21.7 ± 0.4 27.2 ± 0.5 26.7 ± 2.3 32.8 ± 1.2 29.3 ± 0.4 35.5± 0.9
W→A 20.7 ± 0.6 26.7 ± 1.1 27.5 ± 0.5 31.1 ± 0.7 29.0 ± 1.2 38.7 ± 0.7 35.5 ± 0.7 40.0± 1.0
D→A 27.7 ± 0.4 28.8 ± 1.5 32.0 ± 0.4 32.5 ± 0.5 29.2 ± 0.8 32.5 ± 0.9 36.1± 0.4 34.9 ± 1.3
D→W 53.1 ± 0.6 71.5 ± 2.1 66.0 ± 0.5 74.9 ± 0.6 69.8 ± 2.0 81.5 ± 1.0 79.1 ± 0.7 84.2± 1.0

mean 25.8 33.9 35.4 38.5 33.9 41.3 41.9 44.2

merchant), the Caltech-256 image collection [24], Webcam (images taken from a
webcam) and DSLR (images taken from a high resolution digital SLR camera).
Those domains are respectively noted in the remainder as A, C, W and D. A
feature extraction method is used to preprocess those images; it namely con-
sists in computing SURF descriptors [23], which allows to transform each image
into a 800 bins histogram, which are then subsequently normalized and reduced
to standard scores. We followed the experimental protocol exposed in [14]: each
dataset is considered in turn as the source domain and used to predict the others.
Within those datasets, 10 classes of interest are extracted. The source domain
are formed by picking 20 elements per class for domains A,C and W, and 8
for D. The training set is then formed by adapting these samples to the tar-
get domain. The latter is composed of all the elements in the test domain. The
classification is conducted using a 1-Nearest Neighbor classifier, which avoids
cross-validation of hyper-parameters. As for the toy example above, we repeat
each experiment 20 times and report the overall classification accuracy and the
associated standard deviation. We compare the results of the three transport
models (OT-ori, OT-reg and OT-reglab) against both a classification con-
ducted without adaptation (no adapt.) and 3 state-of-the-art methods: 1) the
surrogate kernel approach (SuK), which in [3] was shown to outperform both
the Transfer Component Analysis method [10] and the reweighing scheme of [2];
2) the (SGF) method proposed in [13] and 3) the Geodesic Flow Kernel (GFK)
approach proposed in [14]. Note that this last method can also efficiently incorpo-
rate label information: therefore we make a distinctions between methods, which
do not incorporate label information (no adapt, SuK, SGF, GFK, OT-ori
and OT-reg) and those that do (GFK-lab and OT-reglab). For each setting
we used the recommended parameters to tune the competing methods. Results
are reported in Table. 1.

When no label information is used, (OT-reg) usually performs best. In some
cases (notably when considering the adaptation from (W→A or D→W), it can
even surpass the (GFK-lab) method, which uses labels information.OT-ori
usually enhances the result obtained without adaptation, but remains less effi-
cient than the competing methods (except in the case of W→A where it sur-
passes SGF and SuK. Among all the methods, OT-reglab usually performs
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best, and with a significant increase in the classification performances for some
cases (W→C or D→W). Yet, our method does not reach state-of-the-art perfor-
mance in two cases: A→C and D→A. Finally, the overall mean value (last line
of the table) shows a consistent increase of the performances with the proposed
OT-reglab, which outperforms in average GFK-lab by 2%. Also note that the
regularized unsupervised version OT-reg outperforms all the competing meth-
ods by at least 3%.

6 Conclusion and Discussion

We have presented in this paper a new method for unsupervised domain adap-
tation based on the optimal transport of discrete distributions from a source
to a target domain. While the classical optimal transport provide satisfying re-
sults, it fails in some cases to provide state-of-the-art performances in the tested
classification approaches. We proposed to regularize the transport by relaxing
some sparsity constraints in the probabilistic coupling of the source and target
distributions, and to incorporate the label information by penalizing couplings
that mix samples issued from different classes. This was made possible by a
Majoration Minimization strategy that exploits a �p− �1 norm, which promotes
sparsity among the different classes. The corresponding algorithm is fast, and
allows to work efficiently with sets of several thousand samples. With this regu-
larization, competitive results were achieved on challenging domain adaptation
datasets thanks to the ability of our approach to express both class relationship
and non-linear transformations of the domains.

Possible improvements of our work are numerous, and include: i) extension
to a multi-domain setting, by finding simultaneously the best minimal transport
among several domains, ii) extension to semi-supervised problems, where several
unlabeled samples in the source domain, or labelled samples in the target domain
are also available. In this last case, the group sparsity constraint should not only
operate over the columns but also the lines of the coupling matrix, which makes
the underlying optimization problem challenging. iii) Definition of the transport
in a RKHS, in order to exploit the manifold structure of the data.
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Abstract. Data mining practitioners are facing challenges from data
with network structure. In this paper, we address a specific class of
global-state networks which comprises of a set of network instances shar-
ing a similar structure yet having different values at local nodes. Each
instance is associated with a global state which indicates the occurrence
of an event. The objective is to uncover a small set of discriminative sub-
networks that can optimally classify global network values. Unlike most
existing studies which explore an exponential subnetwork space, we ad-
dress this difficult problem by adopting a space transformation approach.
Specifically, we present an algorithm that optimizes a constrained dual-
objective function to learn a low-dimensional subspace that is capable
of discriminating networks labelled by different global states, while rec-
onciling with common network topology sharing across instances. Our
algorithm takes an appealing approach from spectral graph learning and
we show that the globally optimum solution can be achieved via matrix
eigen-decomposition.

1 Introduction

With the increasing advances in hardware and software technologies for data
collection and management, practitioners in data mining are now confronted
with more challenges from the collected datasets: the data are no longer as simple
as objects with flattened representation but now embedded with relationships
among variables describing the objects. This sort of data is often referred to as
network or graph data. In the literature, there are a large number of techniques
developed to mine useful patterns from network databases, ranging from frequent
(sub)networks mining [15], network classification/clustering [1,18] to anomaly
detection [2]. Often, even for the same data mining task, we may need different
algorithms to be developed depending on whether the networks are directed or
indirected, or whether the data resides at nodes, edges or both of them [15].

In this work, the focus is on a specific class of interesting networks in which we
have a series of network instances that share a common structure but may have
different dynamic values at local nodes and/or edges. In addition, each network
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instance is associated with a global state indicating the occurrence of an event.
Such a class of global-state network data can be used to model a number of real-
world applications ranging from opinion evolution in social networks [21], regula-
tory networks in biology [22] to brain networks in neuroscience [10]. For example,
we possess the same set of genes (nodes) embedded in regulatory networks. Yet,
research in systems biology shows that the gene expression levels (node values)
may vary across individuals and for some specific genes, their over-expressions
may impact those in the neighbors through the regulatory network. These local
effects may jointly encode a logical function that determines the occurrence of a
disease [22,26]. In analyzing these types of network data, a natural question to be
asked is how one can learn a function that can determine the global-state values
of the networks based on the dynamic values captured at their local nodes along
with the network topology? More specifically, is it possible to identify a small
succinct set of influential discriminative subnetworks whose local-node values
have the maximum impact on the global states and thus uncover the complex
relationships between local entities and the global-state network properties? In
searching for an answer, obviously, a naive approach would be to enumerate all
possible subnetworks and seek those who have the most discriminative potential.
Nonetheless, as the number of subnetworks is exponentially proportional to the
numbers of nodes and edges, this approach generally is analytically intractable
and might not be feasible for large scale networks. A more practical approach
is to perform heuristic sampling from the space of subnetworks. Though greatly
reducing the number of subnetworks to be visited, the sampling approaches
might still suffer from suboptimal solutions and might further lose explanation
capability due to the large number of generating subnetworks.

In this paper, we propose a novel algorithm for mining a set of concise sub-
networks whose local-state node values discriminate networks of different global-
state values. Unlike the existing techniques that directly search through the expo-
nential space of subnetworks, our proposed method is fundamentally different by
investigating the discriminative subnetworks in a low dimensional transformed
subspace. Toward this goal, we construct on top of the network database three
meta-graphs to learn the network neighboring relationships. The first meta-graph
is built to capture the network topology sharing across network instances which
serves as the network constraint in our subspace learning function, whereas the
two subsequent ones are build to essentially capture the relationships between
neighboring networks, especially those located close to the potential discrimi-
native boundary. By this setting, our algorithm aims to discover a unique low
dimensional subspace to which: i) networks sharing similar global state values are
mapped close to each other while those having different global values are mapped
far apart; ii) the common network topology is smoothly preserved through con-
straints on the learning process. In this way, our algorithm helps to attack two
challenging issues at the same time. It first avoids searching through the original
space of exponential number of subnetworks by learning a single subspace via
the optimization of a single dual-objective function. Second, our network topol-
ogy constraint not only matches properly with our subspace learning function,
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its quadratic form naturally imposes the L2-norm shrinkage over the connecting
nodes, resulting in an effective selection of relevant and dominated nodes for
the subnetworks embedded in the induced subspace. Additionally, the principal
technical contributions of our work is the formulation of our learning objective
function that is mathematically founded on spectral learning and its advantages
therefore not only ensure the stability but also the global optimum of the un-
covered solutions.

In summary, we claim the following contributions: (i) Novelty: We formu-
late the problem of mining discriminative subnetworks by transformed subspace
learning—an approach that is fundamentally different from most existing tech-
niques that address the problem in the original high-dimensional network space.
(ii) Flexibility: We propose a novel dual-objective function along with constraints
to ensure learning of a single subspace in which different global state networks
are well discriminated while smoothly retaining their common topology. (iii) Op-
timality: We develop a mathematically sound solution to solve the constrained
optimization problem and show that the optimal solution can be achieved via
matrix eigen-decomposition. (iv) Practical relevance: We evaluate the perfor-
mance of the proposed technique on both synthetic and real world datasets
and demonstrate its appealing performance against related techniques in the
literature.

2 Preliminaries and Problem Setting

In this section, we first introduce some preliminaries related to network data
with global state values and then give the definition of our problem on mining
discriminative subgraphs to distinguish global state networks.

Definition 1. (Network data instance) Given Vi = {v1, v2, . . . , vni} as a set of
nodes and Ei ⊆ Vi × Vi as a set of edges, each connecting two nodes (vp, vq) if
they are known to relate or influence each other, we define a network instance
(or snapshot) Ni as a quadruple Ni = (Vi, Ei, Li, Si) in which Li is a function
operating on the local states of nodes Li : Vi → R and Si encodes the global
network state of Ni.

We consider Ni as an indirected network and values at its local nodes are
numerical (both continuous and binary) while its global state is a discrete value.
Since each Ni is associated with Si as its state property,Ni is often referred to as
a global-state network. For example, in the gene expression data, each Ni corre-
sponds to a subject and a local state indicates the gene expression level at node
vp ∈ Vi whereas the global state encodes the presence or absence of the disease,
i.e., Si ∈ {presence, absence}. Likewise in a dynamic social network, a value at
each node vp may encode the political standpoint of an individual whereas the
global state indicates the overall political viewpoint of the entire community at
some specific time (snapshot). Both local and global states may change across
different network snapshots. Note that, for network instances/snapshots with
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different structures, we may use the null value to denote the state of a missing
node and consequently, an edge in a network instance is valid only if it connects
two non-null nodes.

Now, let us consider a database consisting m network instances N =
{N1, N2, . . . , Nm}, we further define the following network over these network
instances:

Definition 2. (Generalized network - first meta-graph)
We define the generalized network N as a triple N = (V,E,K) where V =
V1 ∪ V2 . . . ∪ Vm and if ∃(vp, vq) ∈ Ei, such an edge also exists in E. For a
valid edge E(p, q) ∈ E, we associate a weight K(p, q) as the fraction of network
instances having edge E(p, q) in their topology structure,i.e., K(p, q) = m−1 ×∑

iEi(p, q) with Ei(p, q) = 1 if there exists an edge between vp, vq in network
Ni. As such, K(p, q) is naturally normalized between (0, 1]. The value of 1 means
the corresponding edge exists in all Ni’s while a value close to 0 shows that the
edge only exists in a small fraction of network data.

It should be noted here that while we have no edge values at
individual networks Ni’s, we have non-zero value associated with each existing
edge E(p, q) in the generalized network N . Indeed, the corresponding K(p, q)
reflects how frequently there is an edge between vp and vq or equivalently, how
strongly is the mutual influence between two entities vp and vq across all net-
works. As N is defined based on all network instances, we also view N as our
first meta-graph with V being its vertices and K capturing its graph topology
generalized from the network topology of all network instances. We are now
ready to define our problem as follows.

Definition 3. (Mining Discriminative Subnetworks Problem)
Given a database of network data instances/snapshots N = {N1, N2, . . . , Nm},
we aim to learn an optimal and succinct set of subnetworks with respect to the
topology structure generalized in the first meta-graph that well discriminate net-
work instances with different global state values.

3 Our approach

3.1 Meta-Graphs over Network Instances

As mentioned in the above sections, searching for optimal subnetworks in the
fully high dimensional original network space is always challenging and poten-
tially intractable.We adopt an indirect yet more viable approach by transforming
the original space into a low dimensional space of which networks with different
global-states are well distinguished while concurrently retaining the generalized
network topology captured by our first meta-graph. Toward this goal, we de-
velop two neighboring meta-graphs based on both the local state values and
global state values.

We denote these two meta-graphs respectively by G+ and G−. Their vertices
correspond to the network instances while a link connecting two vertices repre-
sents the neighboring relationship between two corresponding network instances.
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For the meta-graph G+, we denote A+ as its affinity matrix that captures the
similarity of neighboring networks having the same global state values. Like-
wise, we denote A− as the affinity matrix for meta-graph G− that captures the
similarity of neighboring networks yet having different global network states. As
such, A+ and A− respectively encode the weights on the vertex-links of two cor-
responding graphs G+ and G−. In computing values for these affinity matrices,
with each given network instance Ni, we find its k nearest neighboring networks
based on the local state values and divide them into two sets, those sharing simi-
lar global state values and those having different global states. More specifically,
let kNN(Ni) be the neighboring set of Ni, then elements of A+ and A− are
computed as: A+

ij =
vi·vj

‖vi‖‖vj‖ if Si = Sj and Nj ∈ kNN(Ni) or Ni ∈ kNN(Nj),

otherwise we set A+
ij = 0. And A−

ij =
vi·vj

‖vi‖‖vj‖ if Si �= Sj and Nj ∈ kNN(Ni)

or Ni ∈ kNN(Nj), otherwise A−
ij = 0. In these equations, we have denoted the

boldface letters vi and vj as the vectors encoding the dynamic local states of
Ni’s and Nj ’s nodes, and have used the cosine distance to define the similarity
between two network instances. It is worth mentioning that, though existing
other measures for network data [28], our using of cosine distance is motivated
by the observation that we can view each node as a single feature and thus
the network data can be essentially considered as a special case of very high
dimensional data. As such, the symmetric cosine measure can be effectively used
though obviously the other ones [28] can also be directly applied here.

It is also important to give the intuition behind our above computation. First,
notice that both A+ and A− are the affinity matrices having the same size of
m×m since we calculate for every network instance. Second, while A+ captures
the similarity of network instances sharing the same global states and neighbor-
ing to each other, A− encodes the similarity of different global state networks
yet also neighboring to each other. Such networks are likely to locate close to
the discriminative boundary function and thus they play essential roles in our
subsequent learning function. Third, both A+ and A− are sparse and symmet-
ric matrices since only k neighbors are involved in computing for each network
and if Nj is neighboring to Ni, we also consider the inverse relation, i.e., Ni is
neighboring to Nj. Moreover, A− is generally sparser compared to A+ as the
immediate observation from the second remark.

3.2 Constrained Dual-Objective Function

Let us recall that vi is the vector encoding the node states of the corresponding
network Ni and let us denote the transformation function that maps vi into our
novel target subspace by f(vi). We first formulate the two objective functions
as follows:

argmin
f

m∑
i=1

m∑
j=1

(f(vi)− f(vj))
2A+

ij (1)

argmax
f

m∑
i=1

m∑
j=1

(f(vi)− f(vj))
2A−

ij (2)



Discriminative Subnetworks with Regularized Spectral Learning 295

To gain more insights into these setting objectives, let us take a closer look at
the first Eq.(1). If two network instances Ni and Nj have similar local states in
the original space (i.e., A+

ij is large), this first objective function will be penalized
if the respective points f(vi) and f(vj) are mapped far part in the transformed
space. As such, minimizing this cost function is equivalent to maximizing the
similarity amongst instances having the same global network states in the re-
duced dimensional subspace. On the other hand, looking at Eq.(2) can tell us
that the function will incur a high penalty (proportional to A−

ij) if two networks
having different global states are mapped close in the induced subspace. Thus,
maximizing this function is equivalent to minimizing the similarity among neigh-
boring networks having different global states in the novel reduced subspace.
As mentioned earlier, such networks tend to locate close to the discriminative
boundary function and hence, maximizing the second objective function leads
to the maximal margin among clusters of different global-state networks.

Having the mapping function f(.) to be optimized above, it is crucial to
ask which is an appropriate form for it. Either a linear or non-linear function
can be selected as long as it effectively optimizes two objectives concurrently.
Nonetheless, keeping in mind that our ultimate goal is to derive a set of succinct
discriminative subnetworks along with their explicit nodes. Optimizing a non-
linear function is generally not only more complex but importantly may lose the
capability in explaining how the new features have been derived (since they will
be the non-linear combinations of the original nodes). We therefore would prefer
f(.) as in the form of a linear combination function and following this, f(.) can be
represented explicitly as a transformation matrix Un×d that linearly combines
n nodes into d novel features (d � n) of the induced subspace. For the sake
of discussion, we elaborate here for the projection onto 1-dimensional subspace
(i.e., d = 1). The solution for the general case d > 1 will be straightforward once
we obtain the solution for this base case. Given this simplification and with little
algebra, we recast our first objective function as follows:

argmin
u

m∑
i=1

m∑
j=1

‖uTvi − uTvj‖2A+
ij =

m∑
i=1

m∑
j=1

tr
(
uT (vi − vj)(vi − vj)

Tu
)
A+

ij

= tr

⎛⎝ m∑
i=1

m∑
j=1

(
uT (vi − vj)A

+
ij(vi − vj)

T
)
u

⎞⎠
= 2tr

(
uTVD+VTu

)
− 2tr

(
uTVA+VTu

)
= 2tr

(
uTVL+VTu

)
(3)

in which we have used tr(.) to denote the trace of a matrix and V as the matrix
whose column ith accommodates the dynamic local states of network instance
Ni (i.e., vi), forming its size of n × m. Also, D is the diagonal matrix whose
D+

ii =
∑

j A
+
ij and we have defined L+ = D+ −A+, which can be shown to be

the Laplacian matrix [12]. For the second objective function in Eq.(2), we can
repeat the same computation which yields to the following form:
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argmax
u

m∑
i=1

m∑
j=1

‖uTvi − uTvj‖2A−
ij

= 2tr
(
uTVD−VTu

)
− 2tr

(
uTVA−VTu

)
= 2tr

(
uTVL−VTu

)
(4)

where again D− is the diagonal matrix with D−
ii =

∑
j A

−
ij and we have defined

L− = D− −A−.
Notice that while the above formulations aim at discriminating different global

state networks in the low dimensional subspace, it has not yet taken into consid-
eration the generalized network structure captured by our first meta-graph. As
described previously, the mutual interactions among nodes are also important
in determining the global network states. Also according to Definition 2, the
larger the value placing on the link between nodes vp and vq, the more likely
they are being involved in the same process. Therefore, we would expect our
mapping vector u not only separating well different global state networks but
also ensuring its smoothness property w.r.t. the generalized network topology
characterized by the first meta-graph N .

Toward the above objective, we formulate the network topology as a con-
straint in our learning objective function, and in order to be consistent with the
approach based on spectral graph analysis, we encode the topology captured in
N by an n× n constraint matrix C whose elements are defined by:

Cpq = Cqp =

⎧⎪⎨⎪⎩
∑

q K(p, q) if vp ≡ vq

−K(p, q) if vp and vq are connected

0 otherwise

(5)

It is easy to show that, by this definition, C is also the Laplacian matrix and
its quadratic form, taking u as the vector, is always non-negative:

uTCu =
n∑

p=1

u2p

n∑
q=1

K(p, q)−
n∑

p=1

n∑
q=1

upuqK(p, q)

=
1

2

n∑
p=1

n∑
q=1

K(p, q)(up − uq)
2 ≥ 0 (6)

in which up, uq are components of vector u. It is possible to observe that if
K(p, q) is large, indicating nodes vp and vq are strongly interacted in large por-
tion of the network instances, the coefficients of up and uq should be similar
(i.e., smooth) in order to minimize this equation. From the network-structure
perspective, we would say that if vp is known as a node affecting the global net-
work state, its selection in the transformed space will increase the possibility of
being selected of its nearby connected node vq if K(p, q) is large, leading to the
formation of discriminative subnetworks in the induced subspace. Therefore, in
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combination with the dual-objective function formulated above, we finally claim
our constrained optimization problem as follows (the constants can be omitted
due to optimization):

u∗ =argmax
u

{
tr
(
uTV(L− − L+)V

T
u
)}

subject to uTCu ≤ t

and uTVD+VTu = 1 (7)

The first network topology constraint aims to retain the smoothness property
of u whereas the second constraint aims to remove its freedom, meaning that we
need u’s direction rather than its magnitude. The network topology constraint
is beneficial in two ways. First as presented above, it offers a convenient and
natural way to incorporate the network topology into our space transformation
learning process. Second, as being formulated in the vector quadratic form, it
essentially imposes the features/nodes selection through the coefficients of u by
shrinking those of irrelevant nodes toward zero while crediting large values to
those of relevant nodes. Indeed, this quadratic L2-norm is a kind of regularization
which is often referred to as the ridge shrinkage in statistics for regression [13,7].
The parameter t is used to control the amount of shrinkage. The smaller the
value of t, the larger the amount of shrinkage.

3.3 Solving the Function

In order to solve our dual objective function associated with constraints, we re-
sort the Lagrange multipliers method and following this, Eq. (7) can be rephrased
as follows:

L(u, λ) =uT
(
VL̃V

T
− αC

)
u− λ

(
uTVDVTu− 1

)
(8)

of which, to simplify notations, we have denoted L̃ = L− − L+, D = D+ and
α is used in replacement for t as there is a one-to-one correspondence between
them [13]. Taking the derivative of L(u, λ) with respect to vector u yields:

∂L(u, λ)
∂u

= 2
(
VL̃V

T
− αC

)
u− 2λVDVTu (9)

And equating it to zero leads to the generalized eigenvalue problem:

(
VL̃V

T
− αC

)
u = λVDVTu (10)

It is noticed that V is a singular matrix and its rank is at most min(n,m),
making the combined matrix on the right hand side not directly invertible. We
therefore decompose VD1/2 into PΣQT , where columns in P and Q are respec-
tively called the left and right (orthonormal) singular vector of VD1/2 while Σ
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stores its singular values. Note that this decomposition is always possible since
D is a non-negative diagonal matrix of node degrees. Additionally, both P and
Q can be represented in the square matrices while Σ a rectangular one of n×m
size according to the most general decomposition form in [6]. Following this, the
combined matrix on the right hand size can be rewritten as:

VDVT = PΣ2PT (11)

And in order to get a stable solution, we keep the top ranked singular values in
Σ such as their summation explains for no less than 95% of the total singular
values1. Let us denote B∗ = PΣ−2PT as the inversion of the right hand side
and before showing our optimal solution, we need the following proposition:

Proposition 1. Let P be the matrix of left singular vectors of VD1/2 defined
above, then its row vectors are also orthogonal, i.e., PPT = I

Proof. Let a be an arbitrary vector, we need to show PPTa = a. Due to the or-
thogonal property of left singular vectors, it is true that PTP = I. The inversion
of P therefore is equal to PT and given arbitrary vector a, there is a uniquely
determined vector b such that Pb = a. Consequently,

PPTa = PPTPb = Pb = a

It follows that PPT = I since a is an arbitrary vector.

Theorem 1. Given B = PΣ2PT , we have BB∗ = I

Proof. The proof of this theorem is straightforward given Proposition 1.

Now, for simplicity, let us denote A for the combined matrix (VL̃V
T
−αC),

then it is straightforward to see that u turns out to be the eigenvector of the
equation:

B∗A = λu (12)

with the maximum value is given by the following theorem.

Theorem 2. Given matrix A = VL̃V
T
− αC and B = VDVT defined above,

the maximum value of uTAu subjected to uTBu = 1 is the largest eigenvalue of
B∗A.

Proof. Due to Theorem 1, it is straightforward to see that:

uTAu = uTBB∗Au

On the other hand, uTBB∗Au = uTBλu by equation Eq. (12) and further
taking into account our second constraint, it follows that:

max
u:uTBu=1

{uTAu} = max{λ}

1 Note that since (VD1/2)(VD1/2)T is Hermitian and positive semidefinite, the diag-
onal entries in Σ are always real and nonnegative.
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From this theorem, it is safe to say that u∗ = u1 as the first eigenvector of
B∗A corresponding to its largest eigenvalue λ1 is our optimal solution. Since
eigenvectors and eigenvalues go in pair, the second optimal solution is the sec-
ond eigenvector u2 corresponding to the second largest eigenvalue λ2 and so on.
Consequently, in the general case, if d is the number of unique global network
states, our optimal transformed space is the one spanned by the top d eigenvec-
tors. In the next section, we present a method to select optimal features/nodes
along with the subnetworks formed by these nodes.

3.4 Subnetwork Selection

In essence, our top d eigenvectors play the role of space transformation which
projects network data from the original high dimensional space into the induced
subspace of d dimensions. Their coefficients essentially reflect how the original
nodes (features) have been combined or more specifically, the degree of node’s
importance in contributing to the subspace that optimally discriminates network
instances. Following the approach adopted in [8] with c as the user parameter,
we select top c entries in each {ui}di=1 corresponding to the selective nodes.
Nonetheless, it is possible that there will be more than c nodes selected by
combining from d eigenvectors. Therefore, in practice, we may use a simple
approach by first selecting the largest absolute entries across d eigenvectors:

v = {v1, . . . , vn} where vp = max
i
|ui,p| (13)

where ui,p is the p-th entry of eigenvector ui, and then selecting nodes according
to the top c ranking entries in v. The subnetworks forming from these nodes
can be straightforwardly obtained by matching to the nodes in our generalized
network N defined in Definition 2, along with their connecting edges stored in
E. These subnetworks can be visualized which offers the user an intuitive way
to examine the results.

3.5 Computational Complexity

We name our algorithm SNL, an acronym stands for SubNetwork spectral Learn-
ing. Its computation complexity is analyzed as follows. We first need to compute
edges’ weights according to Definition 2 to build our first meta-graph which
takes O(n2m) since there are at most n(n − 1)/2 edges in the generalized net-
workN . Second, in building the two subsequent meta-graphs, the cosine distance
between any two network instances is computed which amounts to O(n2m) or
O(mn logn) in case the multidimensional binary search tree is used [3]. Also,

since the size of matrix VD1/2 is m× n, its singular value decomposition takes
O(mn logn) with the Lanczos technique [12]. Likewise, the eigen-decomposition
of the matrix B∗A takes O(n2 logn) since its size is n× n. Therefore, in combi-
nation, the overall complexity is at most O(n2m + n2 logn) assuming that the
number of nodes is larger than the number of network instances.
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4 Empirical Studies

4.1 Datasets and Experimental Setup

We compare the performance of SNL against MINDS [26] which is among the first
approaches formally addressing the global-state network classification problem
by a subnetwork sampling. Another algorithm for comparison is the Network
Guided Forests (NGF) [11] designed specifically for protein protein interaction
(PPI) networks. We use both synthetic and real world datasets for experimen-
tation. Since global states are available in all datasets, we compare average ac-
curacy in 10-fold cross validation for synthetic data, and 5-fold cross validation
for real data (due to smaller numbers of network instances). For SNL, the cross
validation is further used to select its optimal α parameter (shortly discussed
below). Unless otherwise indicated, we set k = 10 and use the linear-SVM to
perform training and testing in the transformed space (keeping top 50 nodes)
in SNL. We set MINDS’ parameters as follows: 10000 sampling iterations, 0.8 dis-
criminative potential threshold and K = 200 as recommended in the original
paper [26]. The Gini index is used for the tree building in NGF and we set its
improvement threshold ε = 0.02 [11].

4.2 Results on Synthetic Datasets

We use synthetic data to evaluate the performance of our technique in training
robust classifiers and selecting relevant subnetworks.We generate scale-free back-
bone networks by preferential attachment of a predefined size adding 20 edges for
each new node. The probabilities of backbone edges are sampled from a trun-
cated Gaussian distributions: N(0.9, 0.1) for edges among ground truth nodes
(pre-selected nodes of high-correlation with the network state) and N(0.7, 0.1)
for the rest of the edges. The weighted backbone serves as our generalized tem-
plate to generate network instances by independently sampling the existence of
every edge based on its probability. The global states are binary Si ∈ {0, 1} with
balanced distribution. We further add noise to both global and local states of
ground truth nodes, respectively with levels of 10% and 30%.

Varying |Vgt|: In the first set of experiments, we aim to test whether the per-
formance of all algorithms is affected by the number of ground truth nodes. To
this end, we generate 5 datasets by fixing m = 1000 instances, n = 3000 nodes
and vary the ground truth nodes |Vgt| from 10 to 50. In Figure 1, we report
the average accuracy (and standard deviation) of all algorithms in 10-fold cross
validation. As one may observe, SNL performs stably regardless of the change in
the ground truth sizes. Compared to the other techniques, its classification is
always consistently higher across all cases. The MINDS technique also performs
well on this experimental setting yet the NGF seems to be sensitive to the small
ground truth sizes. For small |Vgt|, the sampling strategy based on density ar-
eas employed in NGF has little chance to select the ground truth nodes, making
its accuracy close to a random technique. When more ground truth nodes are
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introduced, NGF has higher possibility to sample high-utility nodes and in the
last two datasets, its performance is on par with that of MINDS. Nonetheless, its
accuracy only peaks at 73% in the best case which is lower than 77% in SNL (last
column).

Varying Network Size: In the second set of experiments, we evaluate the per-
formance of all algorithms by varying the network sizes. Specifically, we fix
m = 3000 network instances, |Vgt| = 50 ground truth nodes and generate 5
datasets having the network size varied from 2000 to 5000 nodes. The classifi-
cation performance along with the standard deviation is reported in Figure 2.
It is possible to see that the performance traits are similar to those in our first
set of experiments. SNL’s classification accuracy remains high while that of NGF
decreases with the increase of network size. This again can be explained by the
extension of the searching subnetwork space, leading to the lower likelihood of
both NGF and MINDS in identifying relevant subnetworks with potentially dis-
criminative nodes. The slightly better performance of MINDS (compared to NGF)
is due to its accuracy thresholding in selecting candidate substructures. The set
of MINDS’ selected trees are thus qualitatively better. Nonetheless, as compared
to SNL, our subspace learning approach show more competitive results. More-
over, since the low-dimensional subspace learnt in SNL is unique and linearly
combined from the most discriminative nodes, its performance also shows more
stable, indicated by the small standard deviation across all cases.

Effect of Network Topology: In order to provide more insights into the perfor-
mance of SNL, we further test the network effect. As presented in Section 3,
α is the parameter controlling the influence of the network information on the
subspace learning process. The higher the α, the more preference putting on the
heavily connected nodes. We report in Figures 3(a),4(a) the accuracy of SNL by
varying α from 0.1 to 6.5 and in Figures 3(b),4(b) its ability in discovering the
ground truth nodes. For the latter case, we validate the performance through
the usage of area under the ROC curve (AUC) [13].

As expected, incorporating the network structure in the subspace learning
process improves both classification rate and the AUC in uncovering the ground
truth nodes. The plots in Figures 3(a),4(a) show that the accuracy initially
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improves for increasing influence of the network (α ≤ 5) and then decreases as
the network component becomes prevalently dominant (α > 5). This is because
for large α, SNL tends to incorporate irrelevant nodes solely based on their strong
connections to the neighbors (yet their local values might not help classifying
global state values). Another notable observation is that, in larger instances or
ground truth feature sets, the optimal α tends to increase as well. Moreover, the
values of α that maximize classification accuracy also result in optimal AUC in
identifying the ground truth nodes (Fig. 3(b),4(b)). These experiments clearly
show the helpful information provided by the network topology in uncovering the
groundtruth features. Also, we exclude NGF and MINDS from these experiments
(to save space) and leave the discussion over their AUC performance with the
real-world datasets.

4.3 Real-World Datasets

We use 4 real-world datasets to evaluate the performance of SNL and its compet-
ing methods. The features in all datasets correspond to micro-array expression
measurements of genes; the topology structures relating features correspond to
gene interaction networks; and the global network states correspond to pheno-
typic traits of the subjects/instances. The statistics of our datasets are listed
in Table 1. Two of our real-world datasets, breast cancer and embryonic devel-
opment, were also used for experimentation in the original NGF method [11].
Our other datasets come from a study on maize properties [14] and a human
liver metastasis study [19] combined with a functional network [9]. The network
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Table 1. Real-world dataset statistics and sources

Datasets Genes Edges Instances Global State

Breast cancer 11203 57235 295 cancer/non-cancer

Embryonic development 1321 5227 35 developmental tissue layer

Maize 8574 298510 344 high/low oil production

Liver metastasis 7383 251916 123 disease/non-disease

samples are used as provided in the original studies, except for maize where we
down-sample one of the classes to balance the global state distribution.

Classification Performance: The comparison of classification accuracy for all
techniques and datasets is presented in Figure 5(a). We report the average accu-
racy and standard deviation from the 5-fold stratified cross validation. All tech-
niques perform competitively on the breast cancer data, achieving more than
70% of classification accuracy on average. The accuracy of SNL dominates signif-
icantly that of the sampling techniques on the embryonic and maize datasets (at
least 15% and 10% improvement respectively) and less so in the liver dataset. The
separation is highest in the datasets of small number of instances and big num-
ber of feature nodes – the settings in which SNL is particularly effective. Beyond
average performance improvement, SNL’s accuracy is also more stable across all
folds as it considers the global network structure when learning a subspace for
classification, while the alternatives perform sampling in the exponential space
of substructures.

Subnetwork Discovery: Unlike the synthetic datasets where we can control the
ground truth network features, it is generally much harder to obtain ground truth
subnetworks for real world datasets. However, as an attempt to look deeper into
the results, we choose the Liver metastasis and further investigate the mean-
ingful subnetworks generated by the SNL. For this dataset, out of top 50 nodes
of highest coefficient values (ref. Section 3.4), about one third of the nodes are
connected into four subnetworks. We depict in Figure 5(b) the two largest ones
which respectively contain 7 and 4 connected gene nodes. Among these selected
subnetworks, the genes REG1A and REG3A are particularly interesting since they
are in agreement with the ones found in [20] which was shown to be involved
in the liver metastasis cancer. As a comparison against MINDS and NGF, we no-
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tice that both methods generate multiple binary-trees where each node has only
a single parent. Moreover, while SNL can provide a natural rank of important
genes based on their coefficients (from the learnt subspace), it is less trivial to
define important genes from NGF and MINDS as they both generate thousands of
trees. For the purpose of measuring biological relevance of obtained genes, we
define a ranking for these competing techniques based on the frequency of genes
appeared in the generated trees. For comparison, we select 46 metastasis-specific
genes identified in [20] to serve as a ground truth set (39 intersect with our net-
work and expression data) and plot the ROC performance of all algorithms in
Figure 5(c). Note that, this is only a partial ground truth set, since identifying
all genes associated with this disease is a subject of ongoing research [20]. It is
observed that the ranking produced by SNL includes more ground truth genes
than those of NGF and MINDS at increasing false-positive rates. The higher true
positive rates of SNL makes it a better method for identifying new genes associ-
ated with the phenotype of interest. In practice, this is an important feature of
the algorithm since validating even a single gene related to cancer is both time-
wise and financially costly. As shown in Figure 5(c), while the ROC performance
of NGF and MINDS are only at 0.59 and 0.57 AUC, that value of SNL is 0.69 which
clearly demonstrates large gap of better performance.

5 Related Work

Mining discriminative subspaces from global-state networks is a novel and chal-
lenging problem. Two lines of work close to this problem are network classifica-
tion and mining evolving subgraphs from dynamic network data. In the network
classification case, most representative algorithms are LEAP [29], graphSig [27],
GAIA [17] and COM [16] which generally assume a database consisting of posi-
tive and negative networks that need to be classified. These approaches, though
diverse in terms of their underlying algorithms, all aim at extracting a set sig-
nificant subnetworks that are more frequent in one class of positive networks
and less frequent in the negative class. Different from the above problems, we
aim to mine subnetworks which are represented in all network instances; yet the
node values along with the network structures can discriminate the global states
of the networks. Another line of related research focuses on mining dynamic
evolving subnetworks [24,4,5]. The problem in this case is to obtain subnetworks
over time that evolve significantly (outliers) from other network locations. This
setting therefore do not model the problem developed in this paper since the
dynamic network snapshots neither contain global-state values nor can remove
their temporal property.

Several studies in systems biology have indicated the critical role of the net-
work structure in identifying protein modules related to clinical outcomes, for
both regression [23,25,22] and classification [11,26]. In the classification setting
which is related to our study, the NGF [11] is an ensemble approach that builds
a forest of trees jointly voting for the class of a network instance. Resided at
the NGF’s core is the CART (classification and Regression tree) technique and in
order to build a decision tree within the PPI network, NGF starts with a root
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node and progressively includes connected nodes as long as the improvement in
class separation (measured by Gini index) is no smaller than a given threshold.
The study in [26] is the first one to formally introduce the problem of subnet-
work mining in global-state networks and further propose the MINDS algorithm
to solve it. Similar to NGF, MINDS adopts network-constraint decision trees and is
also an ensemble classifier. Nonetheless, it increases the quality of decision trees
by developing a novel concept of editing map over the space of potential sub-
networks and exploits Monte Carlo Markov Chain sampling over this novel data
structure to seek decision trees with maximum classification potential. Unlike
the frequency-based and sampling classification discussed above, our approach
is fundamentally different as it searches for the most discriminative subnetworks
in a single low dimensional subspace through the spectral learning technique,
which generally leads to more stable and high-accuracy performance.

6 Conclusion

We proposed a novel algorithm named SNL to address the challenging problem
of uncovering the relationship between local state values residing on nodes and
the global network events. While most existing studies address this problem by
sampling the exponential subnetworks space, we adopt an efficient and effective
subspace transformation approach. Specifically, we define three meta-graphs to
capture the essential neighboring relationships among network instances and de-
vise a spectral graph theory algorithm to learn an optimal subspace in which net-
works with different global-states are well separated while the common structure
across samples is smoothly respected to enable subnetwork discovery. Through
experimental analysis on synthetic data and real-world datasets, we demon-
strated its appealing performance in both classification accuracy and the real-
world relevance of the discovered discriminative subnetwork features.
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Abstract. We consider a version of the classical stochastic Multi-Armed
bandit problem in which the number of arms is large compared to the
time horizon, with the goal of minimizing the cumulative regret. Here,
the mean-reward (or value) of newly chosen arms is assumed to be i.i.d.
We further make the simplifying assumption that the value of an arm
is revealed once this arm is chosen. We present a general lower bound
on the regret, and learning algorithms that achieve this bound up to a
logarithmic factor. Contrary to previous work, we do not assume that
the functional form of the tail of the value distribution is known. Fur-
thermore, we also consider a variant of our model where sampled arms
are non-retainable, namely are lost if not used continuously, with similar
near-optimality results.

1 Introduction

We consider a statistical learning problem where a learning agent is facing a large
pool of possible choices, or arms, each associated with a distinct numeric value
which equals the one-stage reward that is obtained by choosing that arm. The
goal is to minimize the cumulative n-step regret (relative to the best available
arm). The agent has no prior knowledge on the value of unobserved arms, and
assumes that the value of each newly observed arm is sampled independently
from a common probability distribution. Once an arm is chosen its value is
revealed, and the agent may continue to pick a new arm, or return to a previously
chosen one. Clearly, this choice represents the essence of the exploration vs.
exploitation dilemma for this model.

It is assumed that the pool of arms is large enough compared to the time
horizon n, so that the agent cannot (or does not find it efficient) to sample them
all, hence this pool can be effectively viewed as infinite. A similar model has
been considered in [4,5,7,14,15]. In these papers, the observed reward of a given
arm is assumed to be stochastic. In contrast, we consider here the simpler case
where the reward of each arm is deterministic, so that a single observation is
enough to evaluate it precisely1. This focuses the problem strictly on the issue of

1 More generally, we may assume that the obtained reward is stochastic, but its mean
is revealed once an arm is chosen. This does not affect our results as we consider the
expected regret.

T. Calders et al. (Eds.): ECML PKDD 2014, Part I, LNCS 8724, pp. 307–322, 2014.
c© Springer-Verlag Berlin Heidelberg 2014
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obtaining new samples, rather than learning the expected value of ones already
sampled. On the other hand, the present paper generalizes the models studied
in these papers in the following two respects.

– Prior knowledge: No prior knowledge is assumed regarding the functional
form of the value distribution. Thus, the required sample size need to be
estimated from the observed samples.

– Non-retainable arms: In addition to the basic model that allows retain-
ing previously observed arms for further use, we consider the case where
previously sampled arms are lost if not used again immediately. Discarded
arms cannot be used again, but their observed values are useful for learning
purposes.

Relaxing the prior knowledge assumption is natural when facing an unknown
population for the first time. The non-retainable arms model is motivated by
applications where arms are associated with volatile resources such as job of-
fers and positions, apartment rental, business contracts, established routs in an
ad-hoc network, and so on. To elaborate on a particular example, consider the
problem of video streaming of a movie file to a media client over a wireless
channel. After the transmission of each segment of the movie, the provider ob-
tains feedback on the quality of the used channel, and decides whether to use
this channel again or try a new one. If a channel is dropped it may be used
by another user and hence lost. This scenario may be captured in our model
by associating channels with arms, and the perceived channel quality with the
obtained rewards.

As mentioned, the infinitely-many arms model has been considered before
in [4], [5], [7] [14] and [15]. In [4], the rewards of each arm are assumed to be
Bernoulli distributed, while the mean rewards (or values) of the different arms
are taken to be uniformly distributed. This paper presents algorithms for a fixed
horizon n which achieve a cumulative regret of an order of

√
n for a fixed horizon

n, and establishes a lower bound of the same order. Later, in [14] and [5], anytime
algorithms were presented for similar reward and value distributions, where [5]
also provides a fixed horizon time algorithm which achieves the optimal regret.
A more general model was considered in [15], where arm value distribution (or at
least its upper tail) is assumed known and to belong to a certain one parameter
family. This paper provides a lower bound on the regret, that depends on this
parameter, and proposes fixed horizon and anytime algorithms that approaches
this bound up to logarithmic factors in n. Motivated by e-commerce applica-
tions, a deterministic reward model, similar to ours, is considered in [7]. That
paper presents an algorithm which attains the optimal regret bound, under the
assumption of known value distribution.

In a broader context, our model may be compared to the continuous multi-
armed bandit problem discussed in [11], [2] and [6]. In this model the arm is
chosen from a continuous set, and continuity conditions are assumed on the arm
values. In contrast, in the model of the present paper no regularity or dependence
assumptions are made on the arms; for further discussion and comparison of the
two models see [15]. Another similar model is the contextual Multi-armed Bandit
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with an infinite number of arms or context sets, which is discussed in [12], [13],
[10] and [1]. Again, in this model a continuity or another similarity condition is
assumed on the arm values.

The non-retainable arm assumption (along with the deterministic reward
property) are reminiscent of the celebrated Secretary problem of optimal stop-
ping theory. In its basic form, a known number of candidates arrive sequentially
for an interview, which reveals their relative merit. The interviewer should de-
cide after each interview whether to stop and hire the last interviewed candidate,
with the goal of maximizing the probability of hiring the best one. This prob-
lem has been extensively studied and extended, for example see [9] and [3]. An
essential difference in our problem is the use of the regret as the performance
criterion.

In this paper we present several classes of adaptive sampling algorithms for
the infinitely many armed bandit problem. The algorithms are developed gradu-
ally, starting with the simpler case of a known tail distribution and generalizing
to the unknown distribution case. The presentation proceeds as follows. After
presenting the model in Sect. 2, we formulating in Sect. 3 a lower bound that
applies to all the cases considered. All our proposed algorithms will be shown to
achieve this lower bound up to a logarithmic factor. In Sect. 4 we consider the
model with known tail distribution, and in Sect. 5 we address the problem with
unknown distribution. Both the retainable arms and non-retainable arms cases
are treated in these sections. Section 6 concludes the paper with some directions
for further study.

2 Model Formulation

We consider an unlimited pool of possible objects or arms. The reward obtained
by choosing a particular arm is deterministic, and considered as the value of that
arm. The value of a newly chosen arm is determined as an independent sample
from a fixed probability distribution, with a cumulative distribution function
F (μ), μ ∈ R, that represents the empirical value distribution in the population.
The obtained value is observed by the learning agent, and remains the same in
future choices of that arm.

Let IF denote the support of the probability measure that corresponds to F .
We denote μ∗ as the supremal reward, i.e., the maximal value in the support
IF . Our performance measure will be the cumulative regret, which is defined as
follows.

Definition 1. The n-step regret is defined as:

regret(n) = E

[
n∑

t=1

(μ∗ − r(t))

]
, (1)

where r(t) is the reward obtained at time t, namely, the value of the arm chosen
at time t.
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We assume that all arms values are in the interval [0, 1]. We further use the
following notations.

– μ stands for a generic random variable with distribution F .
– μi is the i-th sampled value from F , i.e., the revealed value of the i-th newly

sampled arm.
– For 0 ≤ ε ≤ 1, let μ∗

ε = sup {x ∈ R : P (μ ≥ x) ≥ ε}. Note that μ∗ = μ∗
0.

Furthermore, let
D(ε) = μ∗ − μ∗

ε ,

Note that P (μ ≥ μ∗ −D(ε)) ≥ ε, with equality if μ∗
D(ε) is a continuity point

of F . We refer to D(ε) as the tail function of F .
– Let ε∗(n) be defined as2

ε∗(n) = sup

{
ε ∈ [0, 1] : nD(ε) ≤ 1

ε

}
. (2)

Note that nD(ε1) ≤ 1
ε∗(n) for ε1 < ε∗(n), and nD(ε2) ≥ 1

ε∗(n) for ε2 > ε∗(n).

The following property of the distribution F will be needed in Sect. 5.

Assumption 1
D (2ε) ≥ (C + 1)D (ε) (3)

for some constant C > 0 and every 0 ≤ ε ≤ 1
2 .

Remark 1. We observed that property (3) is satisfied in the following cases,
among others:
(a) Suppose that the probability density function (p.d.f.) of μ is strictly positive
and bounded, i.e., 0 < c1 ≤ fμ(x) ≤ c2 for some positive constants c1 and c2
and for every x ∈ IF . Then (3) is satisfied for C = c1

c2
.

(b) If P (μ ≥ μ∗ − ε) = cεβ for β > 0 and for every 0 ≤ ε ≤ 1, then D (ε) =

c−
1
β ε

1
β , so that (3) is satisfied for C = 2

1
β and every 0 ≤ ε ≤ 1

2 .
(c) Suppose that the p.d.f. of μ is non decreasing. Then (3) is satisfied for C = 1.

3 Lower Bound and Some Examples

We next present a lower bound on the regret that holds for all our model varia-
tions (and, in particular, for the “easiest” case of known distribution, retainable
arms, and given time horizon).

Theorem 1. The n-step regret is lower bounded by

regret(n) ≥ (1− δn)
μ∗ − E[μ]

16

1

ε∗(n)
, (4)

2 If the support of μ is a single interval, thenD(ε) is continuous. In that case, definition
(2) reduced to the equation nD(ε) = 1

ε
which, by monotonicity, has a unique solution

for n large enough. See Sect. 3 for examples.
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where ε∗(n) satisfies (2), and

δn = 1− 2 exp

(
− (μ∗ − E[μ])

2

8ε∗(n)

)
.

Note that when ε∗(n) → 0 as n → ∞, δn → 0 as n → ∞, so that its effect
becomes negligible.

Proof. Let {μ1, ...μn} denote the values of the first n arms to be drawn from
the pool, and assume that these values are revealed beforehand to the learning
agent (even if it does not actually draw n new arms in n steps).

For any such sequence {μ1, ...μn}, the smallest possible regret that can be
obtained (by any algorithm) is

R∗
n = min

k∈{1,...,n}
{Γ (n, k)} ,

where

Γ (n, k) = nμ∗ −
[

k∑
i=1

μi + (n− k)μk

]
.

This is due to the easily varified fact that the optimal policy for given (μi) is to
continue sampling new arms up to some index k∗ and continue pulling the k∗-th
arm thereafter.

Define the events

A(m, δ1) =

{
1

m

m∑
i=1

μi < μ∗ − δ1

}

and

B(m, δ2) =

{
max

i∈{1,...,m}
μi < μ∗ − δ2

}
for m ∈ {1, ..., n}, 0 ≤ δ1 ≤ μ∗ and 0 ≤ δ2 ≤ μ∗. If these two events are satisfied
for some m, δ1, and δ2, we obtain that R∗

n > mδ1, for m ≤ k∗, and R∗
n > nδ2,

for m ≥ k∗, where
arg min

k∈{1,...,n}
{Γ (n, k)} � k∗ .

Therefore,
R∗

n > min (mδ1, nδ2) .

Also,

P (A(m, δ1) ∩B(m, δ2)) ≥ 1− P (A(m, δ1)
c)− P (B(m, δ2)

c) ,

whereAc denotes the complement ofA. So, for δ1 = 1
2 (μ

∗ − E[μ]), by Hoeffding’s
inequality,

P (A(m, δ1)
c) ≤ exp

(
−m

2
(μ∗ − E[μ])

2
)
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and for δ2 = 1
2D(2ε∗(n)),

P (B(m, δ2)
c) = 1−

m∏
i

P (μi < μ∗ − δ2) ≤ 1− (1− 2ε∗(n))m ≤ 2ε∗(n)m.

Therefore, for m = 1
4ε∗(n) , and δ1, δ2 as above

regret(n) ≥ (1− P (A(m, δ1)
c)− P (B(m, δ2)

c))min (mδ1, nδ2)

≥
(
1− exp

(
− (μ∗ − E[μ])

2

8ε∗(n)

)
− 1

2

)
min

(
μ∗ − E[μ]

8ε∗(n)
,
n

2
D(2ε∗(n))

)

=

(
1

2
− exp

(
− (μ∗ − E[μ])2

8ε∗(n)

))
μ∗ − E[μ]

8ε∗(n)
,

where the last equality follows by (2), since n
2D(2ε∗(n)) ≥ 1

2ε∗(n) ≥
μ∗−E[μ]
8ε∗(n) . 
�

The main consequence of this bound is that the order of the regret is at
least 1

ε∗(n) . As illustrate in the following examples, the order of 1
ε∗(n) is typically

polynomial in n. We will show below that all the algorithms presented in this
paper attain the lower bound up to a logarithmic factors.

The papers [4] and [15] provide similar lower bounds for specific cases. In
[4], a lower bound of

√
2n is provided for the case where the arms values are

uniformly distributed in [0, 1] and with Bernoulli rewards. In [15], a lower bound

of order Ω
(
n

β
β+1

)
is provided for the case where D(ε) = O(εβ) with β ≥ 0.

Noting Example 1, our bound below is of the same order. Our proof approach
is different than that of [15] and applies to more general distribution. Also, we
provide a specific coefficient rather than just an order of magnitude.

The following examples serve to illustrate the dependence of ε∗(n) on n. Ex-
ample 1 is the standard form studied in [15], while the others examples illustrate
general cases that are covered by our model.

1. Suppose that for ε > 0 (small enough), we have P (μ ≥ μ∗ − ε) = Θ
(
εβ
)
,

where β > 0. Then D(ε) = Θ
(
ε

1
β

)
, so that ε∗(n) = Θ

(
n− β

β+1

)
.

This is the case considered in [15]. Note that β = 1 corresponds to a uniform
probability distribution.

2. Suppose μ has the CDF

F (μ) =

{
(1− a) μ

μ∗ 0 ≤ μ < μ∗

1 μ = μ∗ ,

where 0 ≤ a < 1. This describes a uniform distribution with an added atom
of probability a at μ∗. Then D(ε) = 0 for ε ≤ a, and D(ε) = μ∗(ε−a)

1−a for

ε > a. Therefore, it follows that 2ε∗(n) = a+
(
a2 + 4c(1−a)

n

) 1
2

.

Note that in this case ε∗(n) > a for all n. Hence, contrary to Example 1,
ε∗(n) does not converge to 0 as n→∞. So, the regret is finite.
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3. Suppose we have P (μ ≥ μ∗ − ε) = − c
ln(ε) . We obtain that D(ε) = e−

c
ε .

Therefore, it follows that c
ln(n) ≤ ε∗(n) ≤ c+1

ln(n) .

Note that in this case, ε∗(n) decays slower than any polynomial function of
n, and the regret grows as O(ln(n)).

4 Known Tail Function

This section discusses the model in which the tail function D(ε) is known (al-
though, of course, the upper value μ∗ is unknown). This model specializes the
stochastic-arm model presented by Wang et al. [15] to deterministic arms. On
the other hand, our model is more general in the sense that it is not restricted
to tail functions of the form D (ε) = εβ . Furthermore, we consider here both
the retainable arms and the non-retainable arms problems, as described in the
Introduction.

4.1 Retainable Arms

We propose the following algorithm.

Algorithm 1 (KT&RA – Known Tail and Retainable Arms).

1. Parameters: Time horizon n > 1 and a constant A > 0.
2. Compute ε∗(n) as defined in (2).
3. Pull N = �A ln(n) 1

ε∗(n)�+ 1 arms and keep the best one so far.

4. Continue by pulling the saved best arm up to the last stage n.

The right tradeoff between exploring new arms and pulling the best one so far
is obtained by (2). The parameter A allows a further tuning of the algorithm
performance. Our regret bound for this algorithm is presented in the following
Theorem.

Theorem 2. For each n > 1, the regret of the KT&RA Algorithm with a con-
stant A is upper bounded by

regret(n) ≤ (1 +A ln(n))
1

ε∗(n)
+ n1−A + 1 , (5)

where ε∗(n) is defined in (2).

By properly choosing A, for example A = 1, we obtain an O
(

ln(n)
ε∗(n)

)
bound on

the regret. This bound is of the same order as the lower bound in (4), up to a
logarithmic factor. We note that a slightly better choice of A may be obtained
by balancing the two terms in the bound (5).

Proof. For N ≥ 1, let VN (1) denote the value of the best arm found by sampling
N different arms. Clearly,

regret(n) ≤ N + (n−N)Δ(N) ,
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where Δ(N) = E[μ∗ − VN (1)]. But for any 0 ≤ ε ≤ 1

P (μ∗ − VN (1) > D(ε)) ≤ (1− ε)N (6)

(note that equality holds if the distribution function of μ is continuous) so that,
since μ∗ − VN (1) ≤ 1,

Δ(N) ≤ (1− ε)N +D(ε) . (7)

Since in step 3 of the algorithm we chose N = A ln(n) 1
ε(n) , where ε(n) < ε∗(n),

and noting that (1− ε)
1
ε ≤ e−1 for ε ∈ (0, 1], we obtain that

(1− ε(n))N ≤ n−A . (8)

Since, ε(n) < ε∗(n), it follows that nD (ε(n)) ≤ 1
ε∗(n) . Therefore,

regret(n) ≤ �A ln(n)
1

ε∗(n)
�+1+n1−A+nD(ε(n)) ≤ A ln(n)

1

ε∗(n)
+1+n1−A+

1

ε∗(n)
.

Hence (5) is obtained. 
�

4.2 Non-retainable Arms

Here we are not allowed to keep any previously chosen arm except the last one.
Therefore, the previous algorithm that keeps the best arm so far while trying
out new arms cannot be applied in this case. However, the observed values of
discarded arms provide usefull information for the learning agent. We introduce
the notation VN (m) for the m-th largest value obtained after observing N arms.

Algorithm 2 (KT&NA – Known Tail and Non-retainable Arms).

1. Parameters: Time horizon n > 1 and a constant A ≥ 2.
2. Compute ε∗(n) as defined in (2).
3. Pull N = �5A ln(n) 1

ε∗(n)�+ 1 arms and store their values.

4. a. Continue pulling new arms until observing a value not smaller than VN (m),
where m = �2A ln(n)�.
b. Once such a value is observed, continue pulling this arm up to the last
stage n.

After observing N arms, a threshold which is large on one hand, and on the
other hand it is likely enough to find a new arm with a larger value than it is
obtained. Then, the algorithm searches for an arm with a larger value than this
threshold and keeps pulling this arm. Our regret bound for this algorithm is
presented in the following Theorem.

Theorem 3. For each n > 1, the regret of the KT&NA Algorithm with a con-
stant A is upper bounded by

regret(n) ≤ (5A ln(n) + 8)
1

ε∗(n)
+ cA(n) , (9)
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where ε∗(n) is defined in (2) and for n ≥ 10 it is obtained that

cA(n) ≤ 4 (10)

The exact expression of cA(n) for n ≥ 10 is found in (15).

The algorithm starts with a learning period of length N , which allows to assess
the values distribution near μ∗. A threshold VN (m) is then set, and sampling
new arms continues until an arm with that value is observed. The threshold
VN (m) is chosen as the m-th largest value in the obtained samples, where m is
chosen so that the chances of quickly drawing a new arm with that value or over
are high.

By a proper choice of A, for example A = 2 we obtain an O
(

ln(n)
ε∗(n)

)
bound

on the regret. This bound is of the same order as the lower bound in (4), up to
a logarithmic factor. We note that by considering the exact expression of cA(n),
a slightly better choice of A may be obtained.

The proof of Theorem 3 relies on the following Lemma.

Lemma 1. Let m and N be positive integers such that m < N .

(a) If m
N > ε, then

P (VN (m) > μ∗
ε ) ≤ f0(m,N, ε) .

(b) If m
N < ε, then

P (VN (m) < μ∗
ε ) ≤ f0(m,N, ε) ,

where f0(m,N, ε) = exp
(
− |m−Nε|2

2(Nε+|m−Nε|/3)

)
.

For space considerations, the proof of that Lemma is presented in the technical
report [8].

Proof of Theorem 3. The regret is bounded by

regret(n) ≤ N + E[Y (VN (m))] + nE[μ∗ − VN (m)] , (11)

where N is the number of arms which are sampled in step 3 of the algorithm.
The random variable Y (V ) is the number of arms which are sampled until an
arm with a greater value than V is sampled (or until the end of the time horizon,
if such a value is never sampled again). We can find that for any ε1 > 0, the
second term of (11) is bounded by

E[Y (VN (m))] ≤ P
(
VN (m) ≤ μ∗

ε1

)
E
[
Y (VN (m))|VN (m) ≤ μ∗

ε1

]
+ P
(
VN (m) > μ∗

ε1

)
E
[
Y (VN (m))|VN (m) > μ∗

ε1

]
≤ 1

ε1
+ nP

(
VN (m) > μ∗

ε1

)
� E1(ε1) .

(12)

By using the fact that Y (V ) ≤ n, the non decreasing of Y (V ) in V , and the
expected value of a geometric variable. Also, for any ε2 > 0, the third term of
(11) is bounded by
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nE[μ∗ − VN (m)] ≤ nP
(
VN (m) ≥ μ∗

ε2

)
E
[
μ∗ − VN (m)|VN (m) ≥ μ∗

ε2

]
+ nP

(
VN (m) < μ∗

ε2

)
E
[
μ∗ − VN (m)|VN (m) < μ∗

ε2

]
≤ nD(ε2) + nP

(
VN (m) < μ∗

ε2

)
� E2(ε2) .

(13)

Since it is known that μ∗ − VN (m) ≤ 1.

Therefore, by (11), (12), (13) and Lemma 1, for ε1 = ε(n)
7 and ε2 = ε(n),

where N = 5A ln(n) 1
ε(n) for some 5A ln(n)ε∗(n)

5A ln(n)+ε∗(n) ≤ ε(n) < ε∗(n), it is obtained

that

regret(n) ≤ �5A ln(n)

ε∗(n)
�+1+E1(ε1)+E2(ε2) ≤

5A ln(n)

ε∗(n)
+

8

ε∗(n)
+cA(n) , (14)

where ε∗(n) is defined in (2), and

cA(n) ≤ 2n1−0.6A + 2 (15)

for n ≥ 10. Note that (14) holds since nD(ε(n)) ≤ 1
ε∗(n) and 1

ε(n) ≤
1

ε∗(n) +
1

5A ln(n) . Hence, (9) is obtained. 
�

5 Unknown Tail Function

We now proceed to the harder problem where the tail function D(ε) is unknown.
Here, it is impossible to calculate beforehand the optimal number of arms to
sample, as done in the algorithms of Sect. 4. To overcome this issue, the algo-
rithms proposed in this section gradually increase the number of sampled arms
until a certain condition is satisfied.

The analysis in this section will be carried out under Assumption 1. Note that,
the values of the constant C in the assumption is not used in the algorithm, but
only in its analysis. Again, we consider here both the retainable arms and the
non-retainable arms problems.

5.1 Retainable Arms

Recall that VN (m) stands for the m-th largest value obtained after observing N
arms.

Algorithm 3 (UT&RA – Unknown Tail and Retainable Arms).

1. Parameters: Time horizon n > 1, constants N ≥ 2, A ≥ 2.
Set N0 = �NAn�, where An = A ln(n).

2. Pull K = N0 arms.
3. If Ψ(K,n) < K

nAn
, where Ψ(K,n) = VK(1)− VK(�5An�):

a. Pull another K arms.
b. Continue pulling the best arm so far up to time n.
Else, if Ψ(K,n) ≥ K

nAn
:

a. Pull one more arm, and set K = K + 1.
b. Return to 3.
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In this algorithm, the number of sampled arms K is increased until the condition
in stage 3 is satisfied. Thereafter, the number of sampled arms is doubled, and
then the best arm found is pulled up to time n.

The rational of this algorithm is as follows. Our goal is to ensure that, essen-
tially, the number of samples K is large enough, namely comparable to ε∗(n)−1

from (2). This translates to K > nD( 1
K ). The condition in stage 3 indicates that

the gap VK(1)−VK(5An), which is the difference between the largest value and
the 5An-th largest value in the firstK samples, is small in comparison toK. This
gap is related, with high probability, to the difference D( 2

K )−D( 1
K ), which, un-

der Assumption 1, upper bounds the size of D( 1
K ). A second sample of K arms

is required due to the dependencies between the above stopping condition and
values of the the first K samples.

Our regret bound for this algorithm is presented in the following Theorem.

Theorem 4. Let Assumption 1 hold for some C > 0, For each n > 1, the regret
of the UT&RA Algorithm with a constant A is upper bounded by

regret(n) ≤
(
20A ln(n) +

1

min(1, C)

)
1

ε∗(n)
+ cA(n) , (16)

where ε∗(n) solves (2) and
cA(n) ≤ 2N0 + 9 (17)

for n ≥ 10. The exact expression of cA(n) for n ≥ 10 is given in (30).

Again, by a proper choice of A, for example A = 2 we obtain an O
(

ln(n)
ε∗(n)

)
bound

on the regret.

Proof. The regret is bounded by

regret(n) ≤ E[2N̂ ] + nE[μ∗ − V2N̂ (1)] , (18)

where N̂ is the number of arms sampled by the algorithm until the condition in
stage 3 is satisfied.

The first term of (18) is bounded by

E[2N̂ ] ≤ 2
(
N1 + nP (N̂ > N1)

)
(19)

for every N1 ≥ �NAn�. To bound the probability P (N̂ > N1), we note that{
N̂ > N1

}
⊆
{
Ψ(N1, n) ≥

N1

nAn

}
⊆
{
Ψ(N1, n) >

N1

γnAn

}
⊆
{
Ψ(N1, n) > D

(
γAn

N1

)}⋃
E4(γ,N1)

⊆ E3(γ,N1)
⋃

E4(γ,N1) ,

where γ > 1,

E3(γ,N1) �
{
VN1(�5An�) < μ∗

γAn
N1

}
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and

E4(γ,N1) �
{
D

(
γAn

N1

)
>

N1

γnAn

}
.

Note that D(ε) < 1
nε for ε < ε∗(n). So, it follows that E4(γ,N1) is false, when

γAn

N1
< ε∗(n), or N1 >

γAn

ε∗(n) . So, for N1 = max
(
� γAn

ε∗(n) + 1�, N0

)
, it is obtained

that
{N̂ > N1} ⊆ E3(γ,N1)

and by Lemma 1, it follows that

P
(
N̂ > N1

)
≤ n−0.9A (20)

for γ = 10 and n ≥ 10. Therefore, by (19),

E[2N̂ ] ≤ 2

(
�10An

ε∗(n)
+ 1�+N0 + n1−0.9A

)
. (21)

For bounding the second term of (18) we note that, for any N2 ≥ 1,

nE[μ∗ − V2N̂ (1)] ≤ nE[μ∗ − VN̂ (1)]

≤ n
(
E
[
μ∗ − VN̂ (1)|N̂ ≤ N2

]
P (N̂ ≤ N2)

+ E
[
μ∗ − VN̂ (1)|N̂ > N2

]
P (N̂ > N2)

)
≤ n
(
P (N̂ ≤ N2) + E [μ∗ − VN2+1(1)]

)
,

(22)

where, starting from the first inequality, we consider only the N̂ arms that were
sampled after the condition in stage 3 of the algorithm has been satisfied, so
that, N̂ and the obtained values are independent. In the third inequality we use
the fact that E [Vm(1)] is non decreasing in m.

For bounding P (N̂ ≤ N2), we note that for every i ≥ N0,{
N̂ ≤ N2

}
= ∪N0≤i≤N2 {A(i)} , (23)

where

A(i) �
{
Ψ (i, n) <

i

nAn

}

⊆
{
Ψ (i, n) < D

(
2An

i

)
−D

(
An

i

)}⋃{
D

(
2An

i

)
−D

(
An

i

)
<

i

nAn

}
.

Since
Ψ (i, n) = Vi(1)− Vi(�5An�)

and

D

(
2An

i

)
−D

(
An

i

)
= μ∗

An
i

− μ∗
2An

i

,
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it follows that
A(i) ⊆ B(i)

⋃
C(i) , (24)

where
B(i) �

{
Vi(�5An�) > μ∗

2An
i

}
∪
{
Vi(1) < μ∗

An
i

}
C(i) �

{
min(1, C)D

(
An

i

)
<

i

nAn

}
and the constant C satisfies that CD(ε) ≤ D(2ε) − D(ε) for every 0 ≤ ε ≤ 1

2 .
So, by (23) and (24), and since

∪N0≤i≤N2 {C(i)} ⊆ C(N2) ,

it is obtained that for any N2 ≥ N0 such that C(N2) is false,{
N̂ ≤ N2

}
= ∪N0≤i≤N2 {A(i)} ⊆ ∪N0≤i≤N2 {B(i)} .

Therefore, by Lemma 1, and similarly to (6) and (8) with ε = An

i and N = i, it
follows that

P
(
N̂ ≤ N2

)
≤ n(n−1.4A + n−A) (25)

for n ≥ 10. Note that for N2 < N0 it is obtained that P
(
N̂ ≤ N2

)
= 0.

The remaining issue is to bound the term E [μ∗ − VN2+1(1)] from (22) under
the same condition that C(N2) is false. Since Δ � μ∗ − VN2+1(1) ≤ 1

E [Δ] ≤ D(
An

N2 + 1
) + P

(
Δ > D(

An

N2 + 1
)

)
≤ D(

An

N2 + 1
) + n−A .

(26)

The last inequality follows similarly to (6) and (8) with ε = An

N2+1 andN = N2+1.
Let ε(n) be defined as

ε(n) = sup

{
ε ∈ [0, 1] : nmin(1, C)D(ε) ≤ 1

ε

}
.

If it is satisfied that

E(C) �
{
min(1, C)D(ε(n)) ≥ 1

nε(n)

}
then, let us choose N2 as the largest integer for which N2

An
≤ 1

ε(n) . Then, C(N2)

is false, and furthermore An

N2+1 < ε(n). So,

D(
An

N2 + 1
) ≤ 1

nmin(1, C)ε(n)
.
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On the other hand, if E(C) is not satisfied, then, let us choose N2 as the largest
integer for which N2

An
< 1

ε(n) . Then, again, C(N2) is false, and furthermore
An

N2+1 ≤ ε(n). So,

D(
An

N2 + 1
) ≤ D(ε(n)) <

1

nmin(1, C)ε(n)
.

Therefore, since min(1, C) ≤ 1, it is obtained that 1
ε(n) ≤

1
ε∗(n) . So,

D(
An

N2 + 1
) ≤ 1

nmin(1, C)ε∗(n)
. (27)

Therefore, by (22), (25), (26) and (27), it follows that

nE[μ∗ − V2N̂ (1)] ≤ n

(
n
(
n−1.4A + n−A

)
+

1

nmin(1, C)ε∗(n)
+ n−A

)
. (28)

Finally, by (18), (21) and (28), it is obtained that

regret(n) ≤
(
20An +

1

min(1, C)

)
1

ε∗(n)
+ cA(n) , (29)

where
cA(n) = 2n1−0.9A + n2−1.4A + n2−A + n1−A + 2NAn + 4 (30)

for n ≥ 10. Hence, since A ≥ 2, it follows that cA(n) ≤ 2N0 + 9 for n ≥ 10, so
Theorem 4 is obtained. 
�

5.2 Non-retainable Arms

Here, as in Sect. 4.2, it is impossible to pull a group of arms and keep the best
one of them. So, we combine the UT&RA algorithm from the previous section
with the KT&NA algorithm from Sect. 4.2. Recall that (3) is satisfied for a
positive constant C and ε ≤ ε0, where ε0 is known for the learning agent.

Algorithm 4 (UT&NA – Unknown Tail and Non-retainable Arms).

1. Parameters: Time horizon n > 1, constants N ≥ 10, A ≥ 4.
Set N0 = �NAn�, where An = A ln(n).

2. Pull K = N0 arms.
3. If Ψ(K,n) < K

nAn
, where Ψ(K,n) = VK(1)− VK(�5An�):

a. Pull another K arms.
b. Continue pulling new arms until observing a value equal or larger than
VK(m), where m = � 3An

10 �.
c. Continue pulling this arm up to time n.
Else, if Ψ(K,n) ≥ K

nAn
:

a. Pull one more arm, and set K = K + 1.
b. Return to 3.
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This algorithm begins, similarly to the UT&RA Algorithm 3, to find a large
enough sample size K. Then, since observed arms cannot be retained, it pro-
ceeds similarly to KT&NA Algorithm 2, to compute a desired value threshold
and sample new arms until such an arm is obtained. Our regret bound for this
algorithm is as follows.

Theorem 5. Let Assumption 1 hold for some C > 0. For each n > 1, the regret
of the UT&NA Algorithm with a constant A is upper bounded by

regret(n) ≤
(
20A ln(n) + 140 +

1

min(1, C)

)
1

ε∗(n)
+ cA(n) , (31)

where ε∗(n) solves (2) and

cA(n) ≤ 2N0 + 14N + 13 (32)

for A ≥ 7 and n ≥ 100. The full expression of cA(n) can be found in [8].

Similarly to the UT-LB and the KT-LB Algorithms, by a proper choice of A,

for example A = 7, we obtain an O
(

ln(n)
ε∗(n)

)
bound on the regret.

For space considerations, the proof of Theorem 5 is presented in the technical
report [8].

6 Conclusion

For the problem of infinitely many armed-bandits with unknown value distri-
bution, we have proposed algorithms that obtain the optimal regret up to a
logarithmic factors. Our treatment was focused on the case of deterministic re-
wards. Further work should naturally consider the extension of our results to the
stochastic rewards model, which requires repeated trials of sampled arms (pos-
sibly using a UCB-like bandit algorithm similarly to [15]). Another extension of
our results, which were presented here for a given time horizon, is to the case of
anytime algorithms. This can of course be accomplished using a simple doubling
trick, however the development of specific and more effective algorithms for this
case should be of interest. Note that in the stochastic rewards problem, it should
be of interest to consider the intermediate case, where only a limited number
of arms (rather than all or none) can be retained. As mentioned, in the present
deterministic rewards model, it is enough to retain only the one arm with the
best value so far.
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2. Auer, P., Ortner, R., Szepesvári, C.: Improved rates for the stochastic continuum-
armed bandit problem. In: Bshouty, N.H., Gentile, C. (eds.) COLT. LNCS (LNAI),
vol. 4539, pp. 454–468. Springer, Heidelberg (2007)

3. Babaioff, M., Immorlica, N., Kempe, D., Kleinberg, R.: Online auctions and gen-
eralized secretary problems. ACM SIGecom Exchanges 7(2), 1–11 (2008)

4. Berry, D.A., Chen, R.W., Zame, A., Heath, D.C., Shepp, L.A.: Bandit problems
with infinitely many arms. The Annals of Statistics, 2103–2116 (1997)

5. Bonald, T., Proutiere, A.: Two-target algorithms for infinite-armed bandits with
Bernoulli rewards. In: Advances in Neural Information Processing Systems 26, pp.
2184–2192. Curran Associates, Inc. (2013)

6. Bubeck, S., Munos, R., Stoltz, G., Szepesvári, C.: X-armed bandits. Journal of
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Abstract. We study the problem of performing cautious inferences for an ordi-
nal classification (a.k.a. ordinal regression) task, that is when the possible classes
are totally ordered. By cautious inference, we mean that we may produce partial
predictions when available information is insufficient to provide reliable precise
ones. We do so by estimating probabilistic bounds instead of precise ones. These
bounds induce a (convex) set of possible probabilistic models, from which we
perform inferences. As the estimates or predictions for such models are usually
computationally harder to obtain than for precise ones, we study the extension of
two binary decomposition strategies that remain easy to obtain and computation-
ally efficient to manipulate when shifting from precise to bounded estimates. We
demonstrate the possible usefulness of such a cautious attitude on tests performed
on benchmark data sets.

Keywords: Ordinal regression, imprecise probabilities, Binary decomposition,
Nested dichotomies.

1 Introduction

We are interested in the supervised learning problem known as ordinal classification [18]
or regression [9]. In this problem, the finite set of possible labels are naturally ordered.
For instance, the rating of movies can be one of the following labels: Very-Bad, Bad,
Average, Good, Very-Good that are ordered from the worst situation to the best. Such
problems are different from multi-class classification and regression problems, since in
the former there is no ordering between classes and in the latter there exists a metric on
the outputs (while in ordinal classification, a 5-star movie should not be considered five
times better than a 1-star movie).

A common approach to solve this problem is to associate the labels to their rank,
e.g., {1,2,3,4,5} in our previous film example, and then to learn a ranking function. In
the past years, several algorithms and methods [27] have been proposed to learn such
a function, such as SVM techniques [26,22,23,25], monotone functions [28], binary
decomposition [20], rule based models [14]. This is not the approach followed in this
paper, in which our goal is to estimate the probability of the label conditionally on the
observed instance. In this sense, our approach is much closer to the one proposed by
Frank et Hall [18].

A common feature of all the previously cited approaches is that, no matter how re-
liable is the model and the amount of data it is learned from, it will always produce a

T. Calders et al. (Eds.): ECML PKDD 2014, Part I, LNCS 8724, pp. 323–337, 2014.
c© Springer-Verlag Berlin Heidelberg 2014
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unique label as prediction. In this paper, we are interested in making partial predictions
when information is insufficient to provide a reliable precise one. That is, if we are un-
sure of the right label, we may abstain to make a precise prediction and instead predict
a subset of potentially optimal labels. The goal is similar to the one pursued by the
use of a reject option [2,8], and in particular to methods returning subsets of possible
classes [1,21]. Yet we will see in the experiments that the two approaches can provide
very different results.

Besides the fact that such cautious predictions can prevent bad decisions based on
wrong predictions, making such imprecise predictions in an ordinal classification set-
ting can also be instrumental in more complex problems that can be decomposed into
sets of ordinal classification problem, such as graded multi-label [7] or label ranking [6].
Indeed, in such problems with structured outputs, obtaining fully reliable precise pre-
dictions is much more difficult, hence producing partial but more reliable predictions is
even more interesting [5].

To obtain these cautious predictions, we propose to estimate sets of probabilities [10]
from the data in the form of probabilistic bounds over specific events, and to then derive
the (possibly) partial predictions from it. As computations with generic methods using
sets of probabilities (e.g., using imprecise graphical models [10]) can be quite complex,
we propose in Section 2 to consider two well-known binary decompositions whose
extension to probability sets keep computations tractable, namely Frank & Hall decom-
position [18] and nested dichotomies decompositions [17]. In Section 3, we discuss
how to perform inferences from such probability sets both with general loss functions
and with the classical 0/1 loss function. We end (Section 4) by providing several exper-
iments showing that our cautious approach can help identify hard to predict cases and
provides more reliable predictions for those cases.

2 Probability Set Estimation through Binary Decomposition

The goal of ordinal classification is to associate an instance x = x1× . . .× xp com-
ing from an instance space X = X 1× . . .×X p to a single label of the space Y =
{y1, . . . ,ym} of possible classes. Ordinal classification differs from multi-class classifi-
cation in that labels yi are ordered, that is yi ≺ yi+1 for i = 1, . . . ,m−1. An usual task is
then to estimate the theoretical conditional probability measure Px : 2Y → [0,1] associ-
ated to an instance x from a set of n training samples (xi, �xi) ∈X ×Y , i = 1, . . . ,n.

In order to derive cautious inferences, we shall explore in this paper the possibility to
provide a convex set Px of probabilities as an estimate rather than a precise probability
P̂x, with the idea that the size of Px should decrease as more data (i.e., information)
become available, converging to Px.

Manipulating generic sets Px to compute expectations or make inferences can be
tedious, hence it is interesting to focus on collections of assessments that are easy to
obtain and induce sets Px that allow for easy computations. Here we focus on the ex-
tensions of two particularly attractive binary decomposition techniques already used to
estimate a precise P̂x, namely Frank et Hall [18] technique and nested dichotomies [19].
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2.1 Imprecise Cumulative Distributions

In their original paper, Frank et Hall suggest [18] to estimate, for an instance x, the
probabilities that its output �x will be less or equal than yk, k = 1, . . . ,m− 1. That is,
one should estimate the m− 1 probabilities Px(Ak) := Fx(yk) where Ak = {y1, . . . ,yk},
the mapping Fx : Y → [0,1] being equivalent to a discrete cumulative distribution. The
probabilities Px(�x = yk) can then be deduced through the formula Px({yk}) = Fx(yk)−
Fx(yk−1).

The same idea can be applied to sets of probabilities, in which case we estimate the
bounds

Px(Ak) := Fx(yk) and Px(Ak) := Fx(yk),

where Fx,Fx : Y → [0,1] correspond to lower and upper cumulative distributions.
These bounds induce a well-studied [15] probability set Px([F ,F ]). For Px([F ,F ]) to
be properly defined, we need the two mappings Fx,Fx to be increasing with Fx(ym) =
Fx(ym) = 1 and to satisfy the inequality Fx ≤ Fx. In practice, estimates Fx,Fx ob-
tained from data will always satisfy the latest inequality, however when using binary
classifiers on each event Ak, nothing guarantees that they will be increasing, hence
the potential need to correct the model. Algorithm 1 provides an easy way to obtain
a well-defined probability set. In spirit, it is quite similar to the Frank et Hall estimates
Px(yk)=max{0,Fx(yk)−Fx(yk−1)}, where an implicit correction is performed to obtain
well-defined probabilities in case Fx is not increasing.

Algorithm 1. Correction of estimates Fx,Fx into proper estimates

Input: estimates Fx,Fx obtained from data
Output: corrected estimates Fx,Fx

1 for k=1,. . . ,m-1 do
2 if Fx(yk)> Fx(yk+1) then Fx(yk+1)← Fx(yk);
3 if Fx(ym−k+1)< Fx(ym−k) then Fx(ym−k)← Fx(ym−k+1);

2.2 Nested Dichotomies

The principle of nested dichotomies is to form a tree structure using the class values
yi ∈ Y . A nested dichotomy consists in recursively partitioning a tree node C ⊆ Y
into two subsets A and B such that A∩B = /0 and A∪ B = C, until every leaf-node
corresponds to a single class value (card(C) = 1). The root node is the whole set of
classes Y . To each branch A and B of a node C are associated conditional probabilities
Px(A|C) = 1−Px(B|C). In the case of ordinal classifications, events C are of the kind
{yi,yi+1, . . . ,y j} and their splits of the kind A= {yi,yi+1, . . . ,yk} and B= {yk+1, . . . ,y j}.

Generalizing the concept of nested dichotomies is pretty straightforward: it consists
in allowing every local conditional probability to be imprecise, that is to each node C
can be associated an interval [Px(A | C),Px(A | C)], precise nested dichotomies being
retrieved when Px(A | C) = Px(A | C) for every node C. By duality of the imprecise
probabilities [30, Sec.2.7.4.], we have Px(A | C) = 1−Px(B | C) and Px(A | C) = 1−
Px(B |C). Such an imprecise nested dichotomy is then associated to a set Px of joint
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probabilities, obtained by considering all precise selection Px(A |C)∈ [Px(A |C),Px(A |
C)] for each node C. Figure 1 shows examples of a precise and an imprecise nested
dichotomy tree when Y = {y1,y2,y3}.

Y = {y1,y2,y3}

C = {y1,y2}

{y1}

Px(y1 |C) = 0.6

{y2}

Px(y2 |C) = 0.4

Px({y1,y2}) = 0.7

{y3}

P(y3) = 0.3

Y = {y1,y2,y3}

C = {y1,y2}

{y1}

[Px(y1 |C),Px(y1 |C)] = [0.6,0.8]

{y2}

[Px(y2 |C),Px(y2 |C)] = [0.2,0.4]

[Px({y1,y2}),Px({y1,y2})] = [0.6,0.8]

{y3}

[Px(y3),Px(y3)] = [0.2,0.4]

Fig. 1. Precise (above) and imprecise (below) nested dichotomies

3 Inferences

In this section, we expose how inferences (decision making) can be done with our two
decompositions, both with general costs and 0/1 costs. While other costs such as the
absolute error cost are also natural in an ordinal classification setting [14], we chose
to focus on the 0/1 cost, as it is the only one for which a theoretically sound way to
compare determinate and indeterminate classifiers, i.e., classifiers returning respectively
precise and (potentially) imprecise classification, has been provided [33].

We will first recall the basic of decision making with probabilities and will then
present their extensions when considering sets of probabilities. Let us denote by ck :
Y → R the cost (loss) function associated to yk, that is ck(y j) is the cost of predicting
yk when y j is true. In the case where precise estimates Px(yk) are obtained from the
learning algorithm, obtaining the optimal prediction is

ŷ = arg min
yk∈Y

Ex(ck)
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with Ex the expectation of ck under Px, i.e. we predict the value having the minimal
expected cost.

In practice, this also comes down to build a preference relation/P on elements of Y ,
where yl /Px yk iff Ex(ck)> Ex(cl) or equivalently Ex(ck−cl)> 0, that is the expected
cost of predicting yl is lower than the expected cost of predicting yk. When working
with a set Px of probabilities, this can be extended by building a partial order /Ex on
elements of Y such that yl /Ex

yk iff Ex(ck− cl)> 0 with

Ex(ck− cl) = inf
Px∈Px

Ex(ck− cl).

That is, we are sure that the cost of exchanging yk with yl will have a positive expec-
tation (hence yl is preferred to yk). The final cautious prediction Ŷ is then obtained by
taking the maximal elements of the partial order/Ex , that is

Ŷ = {y ∈ Y :� ∃y′ �= y s.t. y′ /Ex
y}

and is known under the name maximality criterion [30,29]. In practice, getting Ŷ re-
quires at worst a number m(m−1)/2 of computations that is quadratic in the number
of classes. A conservative approximation (in the sense that the obtained set of non-
dominated classes includes Ŷ ) can be obtained by using the notion of interval domi-
nance [29], in which yl /Ex yk if Ex(ck)>−Ex(−cl), thus requiring only 2m computa-
tions at worst to compare all classes, yet as m is typically low in ordinal classification,
we will only consider maximality here.

In particular, 0/1 costs are defined as ck(y j) = 1 if j �= k and 0 else. If we note 1(A)
the indicator function of A (1(A) (x) = 1 if x ∈ A, 0 else), then (ck− cl) = 1(yl)

− 1(yk)

as ck(y j)− cl(y j) =−1 if j = k, 1 if j = l and 0 if j �= k, l. Hence we have yl /Ex yk iff
Ex(1(yl) − 1(yk) ) > 0. Table 1 provides an example of the functions over which lower
expectations must be computed for 0/1 losses in the case Y = {y1, . . . ,y5}.

Table 1. 0/1 cost functions comparing y2 and y4

y1 y2 y3 y4 y5

c2 1 0 1 1 1
c4 1 1 1 0 1

c2−c4 0 −1 0 1 0

3.1 Inference with Imprecise Cumulative Distributions

If the probability set Px([F ,F ]) is induced by the bounding cumulative distributions
[Fx,Fx], then it can be shown1 that the lower expectation of any function f over Y can
be computed through the Choquet Integral: if we denote by () a reordering of elements
of Y such that f (y(1))≤ . . .≤ f (y(m)), this integral reads

Ex( f ) =
m

∑
i=1

( f (y(i))− f (y(i−1))Px(A(i)) (1)

1 For details, interested readers are referred to [15]. Shortly speaking, this is due to the super-
modularity of the induced lower probability.
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with f (y(0))= 0, A(i) = {y(i), . . . ,y(m)} and Px(A(i))= infPx∈Px([F,F ]) P(A(i)) is the lower
probability of A(i). In the case of imprecise cumulative distributions, the lower proba-
bility of an event A can be easily obtained: let C = [y j,y j] denote a discrete interval of

Y such that [y j,y j] = {yi ∈ Y : j ≤ i≤ j}, then Px(C) = max{0,Fx(y j)−Fx(y j−1)}
with Fx(y0) = Fx(y0) = 0. Any event A can then be expressed as a union of disjoint
intervals2 A =C1∪ . . .∪CM , and we have [15] Px(A) = ∑M

i=1 Px(Ci).

Table 2. Imprecise cumulative distribution

y1 y2 y3 y4 y5

Fx 0.15 0.5 0.55 0.95 1
Fx 0.1 0.4 0.5 0.8 1

Example 1. Consider the imprecise cumulative distributions defined by Table 2 to-
gether with a 0/1 loss and the function c2− c4 of Table 1. The elements used in the
computation of the Choquet integral (1) for this case are summarized in Table 3.

Table 3. Choquet integral components of Example 1

i y(i) f(i) A(i) Px(A(i))

1 y2 −1 Y 1
2 y1 0 {y1,y3,y4,y5} 0.6
3 y3 0 {y3,y4,y5} 0.5
4 y5 0 {y4,y5} 0.45
5 y4 1 {y4} 0.25

The lower probability of A(2) = {y1,y3,y4,y5}= {y1}∪{y3,y4,y5} is

Px(A(2)) = Px({y1})+Px({y3,y4,y5})
= max{0,Fx(y1)−Fx(y0)}+max{0,Fx(y5)−Fx(y2)}
= 0.1+ 0.5,

and the final value of the lower expectation Ex(c2− c4) = −0.15, meaning that y4 is
not preferred to y2 in this case. As we also have Ex(c4− c2) = −0.2, y2 and y4 are
incomparable under a 0/1 loss and given the bounding distributions Fx,Fx. Actually,
our cautious prediction would be Ŷ = {y2,y4}, as we have yi /E y j for any i ∈ 2,4 and
j ∈ 1,3,5.

2 Two intervals [y j,y j], [yk,yk] are said disjoint if j+1 < k.
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3.2 Inference with Nested Dichotomies

In the precise case, computations of expectations with nested dichotomies can be done
by backward recursion and local computations (simply applying the law of iterated
expectation). That is the global expectation Ex( f ) of a function f : Y →R can be done
by computing local expectations for each node, starting from the tree leaves taking
values f (y). This provides nested dichotomies with a computationally efficient method
to estimate expectations.

It has been shown [13] that the same recursive method can be applied to imprecise
nested dichotomies. Assume we have a split {A, B} of a node C, and a real-valued
(cost) function f : {A,B} → R defined on {A,B}. We can compute the (local) lower
expectation associated with the node C by :

Ex,C( f ) = min

{
Px(A |C) f (A)+Px(B |C) f (B),
Px(A |C) f (A)+Px(B |C) f (B)

}
(2)

Starting from a function such as the one given in Table 1, we can then go from the leaves
to the root of the imprecise nested dichotomy to obtain the associated lower expectation.

Example 2. Consider a problem where we have Y = {y1,y2,y3} and the same impre-
cise dichotomy as in Figure 1. Figure 2 shows the local computations performed to ob-
tain the lower expectation of c1− c3. For instance, using Eq. (2) on node C = {y1,y2},
we get

Ex,{y1,y2}(c1− c3) = min{−1 ·0.8+ 0 ·0.2,−1 ·0.6+0 ·0.4}
We finally obtain Ex,Y (c1− c3) = −0.44, concluding that y3 is not preferred to y1. As
the value Ex,Y (c3− c1) = −0.04 is also negative, we can conclude that y1 and y3 are
not comparable. Yet we do have Ex,Y (c2− c1)> 0, meaning that y1 is preferred to y2,
hence Ŷ = {y1,y3}.

Y = {y1,y2,y3}

C = {y1,y2}

{y1}

[0.6,0.8]

{y2}

[0.2,0.4]

[0.6,0.8]

{y3}

[0.2,0.4]Ex,Y
=−0.8 ·0.8+1 ·0.2

−1 0

1
Ex,{y1,y2}

=−1 ·0.8+0 ·0.2
=−0.8

Fig. 2. Expectation computation for c1−c3
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4 Experimentations

This section presents the experiments we achieved to compare decomposition methods
providing determinate predictions and their imprecise counterpart delivering possibly
indeterminate predictions.

4.1 Learning Method

In our experiments, we consider a base classifier which can be extended easily to output
interval-valued probabilities, so that we can evaluate the impact of allowing for cau-
tiousness in ordinal classification. For this reason, we use the Naive Bayesian Classifier
(NBC) which has an extension in imprecise probabilities : the Naive Credal Classifier
(NCC) [32].

The NCC preserves the main properties of NBC, such as the assumption of attribute
independence conditional on the class. In binary problems where we have to differenti-
ate between two complementary events A and B, NBC reads

P(A|x1, . . . ,xp) =
P(A)∏p

i=1 P(xi | A)
∏p

i=1 P(xi | A)P(A)+∏p
i=1 P(xi | B)P(B) , (3)

where (x1, . . . ,xp) are the feature variables and A,B are the two events whose probability
we have to estimate. The NCC consists in using probability bounds in Eq. 3, getting

P(A|x1, . . . ,xp) = min

⎧⎪⎪⎨⎪⎪⎩
P(A)∏p

i=1 P(xi |A)
∏p

i=1 P(xi|A)P(A)+∏p
i=1 P(xi |B)P(B) ,

P(A)∏p
i=1 P(xi|A)

∏p
i=1 P(xi |A)P(A)+∏p

i=1 P(xi|B)P(B)

⎫⎪⎪⎬⎪⎪⎭= 1−P(B|x1, . . . ,xp). (4)

and P(B|x1, . . . ,xp) = 1−P(A|x1, . . . ,xp) can be obtained in the same way. Using the
Imprecise Dirichlet Model (IDM) [4], we can compute these probability estimates from
the training data by simply counting occurrences :

P(xi | A) = occi,A

occA + s
, P(xi | A) = occi,A + s

occA + s
(5)

and

P(A) =
occi,A

nA,B + s
, P(A) =

occi,A + s
nA,B + s

(6)

where occi,A is the number of instances in the training set where the attribute X i is
equal to xi and the class value is in A, occA the number of instances in the training set
where the class value is in A, nA,B is the number of training sample whose class is either
in A or B. The hyper-parameter s that sets the imprecision level of the IDM is usually
equal to 1 or 2 [31].
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4.2 Evaluation

Comparing classifiers that return cautious (partial) predictions in the form of multiple
classes is an hard problem. Indeed, compared to the usual setting, measures of perfor-
mance have to include the informativeness of the predictions in addition to the accuracy.
Zaffalon et al. [33] discuss in details the case of comparing a cautious prediction with
a classical one under a 0/1 loss assumption, using a betting interpretation. They show
that the discounted accuracy, which rewards a cautious prediction Y class with 1/|Y | if
the true class is in Y , and zero otherwise, is a measure satisfying a number of appeal-
ing properties. However, they also show that discounted accuracy makes no difference
between a cautious classifier providing indeterminate predictions and a random classi-
fier: for instance, in a binary setting, a cautious classifier always returning both classes
would have the same value as a classifier picking the class at random, yet the deter-
minate classifier displays a lower variance (it always receives 1/2 as reward, while the
random one would receive a reward of 1 half of the time, and 0 the other half).

This is why a decision maker that wants to value cautiousness should consider mod-
ifying discounted accuracy by a risk-adverse utility function [33]. Here, we consider
the u65 function: Let (xi, �i), i = 1, . . . ,n be the set of test data and Yi our (possibly
imprecise) predictions, then u65 is

u65 =
1
n

n

∑
i=1

−0.6d2
i + 1.6di,

where di = 1(Yi)
(�i)/|Yi| is the discounted accuracy. It has been shown in [33] that this

approach is consistent with the use of F1 measures [12,1] as a way to measure the

Table 4. Data set details

Name #instances #features #classes

autoPrice 159 16 5
bank8FM 8192 9 5

bank32NH 8192 33 5
boston housing 506 14 5

california housing 20640 9 5
cpu small 8192 13 5

delta ailerons 7129 6 5
elevators 16599 19 5

delta elevators 9517 7 5
friedman 40768 11 5
house 8L 22784 9 5

house 16H 22784 17 5
kinematics 8192 9 5
puma8NH 8192 9 5
puma32H 8192 33 5

stock 950 10 5
ERA 1000 5 9
ESL 488 5 9
LEV 1000 5 5
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quality of indeterminate classifications. In fact, it is shown in [33] that u65 is less in
favor of indeterminate classifiers than the use of F1 measure.

4.3 Results

In this section, our method is tested on 19 datasets of the UCI machine learning repos-
itory [16], whose details are given in Table 4. As there is a general lack of benchmark
data sets for ordinal classification data, we used regression problems that we turned
into ordinal classification by discretizing the output variable, except for the data sets
LEV that has 5 ordered classes and ESL, ERA that have 9 ordered classes. The re-
sults reported in this section are obtained with a discretization into five classes of equal
frequencies. We also performed experiments on the other data sets, using 7 and 9 dis-
cretized classes, obtaining the same conclusions.

The results in this section are obtained from a 10-fold cross validation. To build
the dichotomy trees, we selected at each node the split A = {yi,yi+1, . . . ,yk} and B =
{yk+1, . . . ,y j} of C = {yi,yi+1, . . . ,y j} that maximised the u65 measure on the bina-
rized data set. We use ordinal logistic regression (logreg) as a base line classifier to
compare our results. For each decomposition method, Frank & Hall (F) and nested
dichotomies (N), we compared the naive Bayes classifier (B) with its indeterminate
counterpart (NCC), picking an hyper-parameter s = 2 for the IDM in Eqs. (5)- (6). The
naive Bayes classifier was used in a classical way to provide determinate predictions

Table 5. u65 Results (and method rank) obtained on the different methods. Log= logistic regres-
sion, B = Naive Bayes classifier, C = Naive credal classifier, A= Alonso et al. prediction method,
F = Frank & Hall, N = Nested Dichotomies.

Log B/F B/F/A C/F B/N B/N/A C/N
autoPrice 52.2 (5) 58.5 (3) 39.7 (7) 53.8 (4) 59.1 (1) 51.3 (6) 58.6 (2)
bank8FM 68.2 (2) 67.4 (3) 37.3 (7) 68.3 (1) 63.9 (5) 54.9 (6) 64.8 (4)
bank32NH 43.3 (4) 43.6 (3) 30.2 (7) 47.8 (1) 42.9 (5) 40.2 (6) 46.7 (2)

boston hous. 55.6 (4) 55.1 (5) 34.1 (7) 55.8 (3) 56.1 (2) 43.9 (6) 57.4 (1)
california hous. 47.6 (5) 48.2 (4) 32.9 (7) 48.6 (2) 48.3 (3) 43.5 (6) 48.7 (1)

cpu small 58.8 (3) 57 (5) 40.9 (7) 57.1 (4) 60.8 (2) 54.1 (6) 61.1 (1)
delta ail. 50.2 (6) 53.5 (4) 31.8 (7) 53.8 (3) 54.2 (2) 52.1 (5) 54.9 (1)
elevators 42.7 (2) 39.0 (5) 30.5 (7) 39.2 (4) 42.6 (3) 37.9 (6) 42.9 (1)
delta elev. 46.5 (6) 49.9 (5) 34.3 (7) 50.4 (4) 50.8 (3) 53.2 (1) 51.2 (2)
friedman 53.2 (5) 63.8 (2) 32 (7) 64.5 (1) 62.2 (4) 47.3 (6) 63 (3)
house 8L 39.9 (6) 49.6 (2) 34.9 (7) 49.8 (1) 49.4 (4) 43.9 (5) 49.6 (3)

house 16H 41.4 (6) 47.5 (4) 35.3 (7) 47.6 (3) 50.0 (2) 43.9 (5) 50.2 (1)
kinematics 37.7 (5) 44.9 (3) 28.8 (7) 46.2 (1) 44.4 (4) 37.5 (6) 45.4 (2)
puma8NH 30.3 (6) 46.5 (4) 29.7 (7) 47.6 (3) 47.7 (2) 42.9 (5) 48.3 (1)
puma32H 30.5 (6) 48.6 (3) 29.7 (7) 50.9 (1) 47.7 (4) 40.6 (5) 49.9 (2)

stock 61.2 (6) 72.4 (3) 41.7 (7) 71.5 (4) 75.1 (1) 61.2 (5) 74.2 (2)
ERA 23.2 (5) 23.2 (4) 14.1 (7) 28.5 (1) 22.5 (6) 26.8 (2) 26.6 (3)
ESL 12.7 (7) 55.7 (4) 28.1 (6) 53.4 (5) 57 (2) 63 (1) 56.5 (3)
LEV 46.3 (6) 60.5 (2) 44.9 (7) 60.4 (3) 59.8 (4) 61.6 (1) 59.6 (5)

Avg. rank 5 3.6 6.9 2.6 3.1 4.7 2.1
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and (B/A) with the F1 measure of Alonso et al. [1] to produce indeterminate predictions
(details about this latter method can be found in [1]).

Table 5 show the obtained results in terms of u65 (that reduces to classical accuracy
for the three determinate methods) as well as the rank of each classifier. Using Demsar’s
approach by applying the Friedman statistic on the ranks of algorithm performance for
each dataset, we obtain a value of 68.16 for the Chi Square, and a 26.8 statistic for
the F-distribution. Since the statistic is 1.7 for a p-value of 0.05, we can safely reject
the null hypothesis, meaning that the performances of the classifiers are significatively
different. This shows that in average the introduced indeterminacy (or cautiousness) in
the predictions is not too important and is compensated by more reliable predictions.
We use Nemenyi test as a post-hoc test, and obtain that two classifiers are significantly
different (with p-value 0.05) if the difference between their mean rank is higher than
2.06.

1 2 3 4 5 6 7

B/F/A
Log
B/N/A

B/F
B/N
C/F
C/N

Fig. 3. Post-hoc test results on algorithms. Thick lines links non-significantly different algorithms.

Figure 3 summarises the average ranks of the different methods and shows which one
are significatively different from the others. We can see that, although techniques using
probability sets (C/N and C/F) have the best average rank, they are not significantly dif-
ferent from their determinate Bayesian counterpart (B/N and B/F) under u65 measure.
This is not surprising, since the goal of such classifiers is not to outperform Bayesian
methods, but to provide more reliable predictions when not enough information is avail-
able. It should also be recalled that the u65 measure is only slightly favourable to inde-
terminate classifiers, and that other measures such as F1 and u80 would have given better
scores to indeterminate classifiers.

An interesting result is that Alonso et al. [1] method, that use a precise probabilistic
models and produce indeterminate predictions through the use of specific cost functions
(the F1 measure in our case), performs quite poorly, in particular when applied with the
Frank and Hall decomposition (B/F/A). This can be explained by the fact that Alonso et
al. [1] method will mainly produce indeterminate classifications when the labels having
the highest probabilities will have close probability values, i.e., when there will be some
ambiguity as to the modal label. However, it is well known that the naive Bayes classi-
fier tends to overestimate model probabilities, therefore acting as a good classifier for
0/1 loss functions, but as a not so good probability density estimator. This latter feature
can clearly be counter-productive when using Alonso et al. [1] method, that relies on
having good probability estimates. On the other hand, indeterminate classification using
probability sets can identify situations where information is lacking, even if the under-
lying estimator is poor. Our results indicate that, while the two methods both produce
indeterminate classifications, they do so in very different ways (and therefore present
different interests).
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Table 6 shows the mean imprecision of indeterminate predictions for all the methods
producing such predictions. This sheds additional light on the bad performances of the
B/F/A method, which tends to produce rather imprecise predictions without necessarily
counterbalancing them with an higher reliability or accuracy. For the other methods, the
mean imprecision is comparable.

Table 6. Mean imprecision of predictions (rank)

B/F/A C/F B/N/A C/N
autoPrice 2.22 (3) 2.25 (4) 1.03 (1) 1.93 (2)
bank8FM 2.06 (4) 1.06 (1) 1.55 (3) 1.08 (2)

bank32NH 2.11 (4) 1.78 (2) 2.01 (3) 1.72 (1)
boston housing 2.23 (4) 1.36 (2) 1.11 (1) 1.51 (3)

california housing 2.17 (4) 1.04 (2) 1.6 (3) 1.04 (1)
cpu small 2.38 (4) 1.03 (1) 1.2 (3) 1.04 (2)

delta ailerons 2.54 (4) 1.03 (1) 1.62 (3) 1.06 (2)
elevators 2.47 (4) 1.03 (1) 1.39 (3) 1.04 (2)

delta elevators 2.47 (4) 1.05 (2) 1.63 (3) 1.04 (1)
friedman 2.06 (3) 1.06 (1) 2.17 (4) 1.06 (2)
house 8L 2.24 (4) 1.01 (1) 1.43 (3) 1.02 (2)

house 16H 2.28 (4) 1.02 (1) 1.25 (3) 1.03 (2)
kinematics 2.12 (3) 1.21 (2) 2.36 (4) 1.2 (1)
puma8NH 2.16 (4) 1.12 (2) 1.89 (3) 1.1 (1)
puma32H 2.47 (4) 1.43 (1) 1.91 (3) 1.5 (2)

stock 2.21 (4) 1.15 (3) 1.04 (1) 1.14 (2)
ERA 4.02 (4) 2.81 (3) 2.24 (1) 2.32 (2)
ESL 3.62 (4) 2.27 (3) 1.39 (1) 1.84 (2)
LEV 2.05 (4) 1.18 (2) 1.52 (3) 1.12 (1)

Figures 4 displays the non-discounted accuracy (that is, we count 1 each time the true
class is in the prediction, whether its determinate or not) on those instances where the
use of NCC returned an indeterminate classification. On those instances, the accuracy
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Fig. 4. Non-discounted accuracy of the NBC vs NCC methods for both decompositions on inde-
terminate instances
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of the determinate version (NBC) is on average 10 % lower than the accuracy displayed
in Table 5. In contrast, the non-discounted accuracy of the indeterminate version on
these instances is much higher, meaning that the indeterminacy actually concerns hard-
to-classify instances.

5 Conclusions

In this paper, we have proposed two methods to learn cautious ordinal classifiers, in
the sense that they provide indeterminate predictions when information is insufficient
to provide a reliable determinate one. More precisely, these methods extend two well-
known binary decomposition methods previously used for ordinal classification, namely
Frank & Hall decomposition and nested dichotomies. The extension consists in allow-
ing one to provide interval-valued probabilistic estimates rather than precise ones for
each binary problem, the width of the interval reflecting our lack of knowledge about
the instances.

Our experiments on different data sets show that allowing for cautiousness in ordinal
classification methods can increase the reliability of the prediction, while not providing
too indeterminate predictions. More specifically, indeterminacy tends to focus on those
instances that are hard to classify for determinate classifiers. We could probably improve
both the efficiency of inferences, e.g., by studying extensions of labelling trees to impre-
cise trees [3], or their accuracy by using more complex classifiers, e.g., credal averaging
techniques [11]. Yet, as the number m of labels in ordinal classification is usually small,
and as the advantages of using binary decompositions are usually lower when using com-
plex estimation methods, the benefits of such extensions would be limited.

In these experiments, we have focused on the 0/1 loss and its extensions to indeter-
minate classification u65, which is more favourable to determinate classifier than the F1

measure proposed by Alonso et al. [1].The reason for this is that 0/1 loss is the only
one to which the results of Zaffalon et al. [33] that allows to compare determinate and
indeterminate classifiers apply. Yet, our approaches can easily handle generic losses
(in contrast with the multi-class naive credal classifier [32]), as shows Section 3 and
Eqs (1)- (2). Also, there are loss functions such as the absolute error that are at least as
natural to use in an ordinal classification problem as the 0/1 loss function. Our future
efforts will therefore focus on determining meaningful ways to compare cost-sensitive
determinate and indeterminate classifiers. Another drawback of using 0/1 loss func-
tion [24], shown by Examples 1 and 2, is that we may obtain indeterminate predictions
containing non-consecutive labels. We expect that considering other losses such as L1

loss could solve this issue.
In addition to that, we plan to apply the methods developed in this paper to more

complex problems that can be reduced as a set of ordinal classification problems, such
as graded multi-label [7] or label ranking [6].

Acknowledgements. This work was carried out and funded by the French National Re-
search Agency, through the project ANR-13-JS03-0007 RECIF. It was also supported
by the French Government, through the LABEX MS2T and the program “Investments
for the future” managed by the National Agency for Research (Reference ANR-11-
IDEX-0004-02).



336 S. Destercke and G. Yang

References

1. Alonso, J., del Coz, J.J., Dı́ez, J., Luaces, O., Bahamonde, A.: Learning to predict one or more
ranks in ordinal regression tasks. In: Daelemans, W., Goethals, B., Morik, K. (eds.) ECML
PKDD 2008, Part I. LNCS (LNAI), vol. 5211, pp. 39–54. Springer, Heidelberg (2008)

2. Bartlett, P., Wegkamp, M.: Classification with a reject option using a hinge loss. The Journal
of Machine Learning Research 9, 1823–1840 (2008)

3. Bengio, S., Weston, J., Grangier, D.: Label embedding trees for large multi-class tasks. In:
NIPS, vol. 23, p. 3 (2010)

4. Bernard, J.: An introduction to the imprecise dirichlet model for multinomial data. Interna-
tional Journal of Approximate Reasoning 39(2), 123–150 (2005)
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Abstract. We address decentralized stochastic control problems represented as
decentralized partially observable Markov decision processes (Dec-POMDPs).
This formalism provides a general model for decision-making under uncertainty
in cooperative, decentralized settings, but the worst-case complexity makes it
difficult to solve optimally (NEXP-complete). Recent advances suggest recast-
ing Dec-POMDPs into continuous-state and deterministic MDPs. In this form,
however, states and actions are embedded into high-dimensional spaces, making
accurate estimate of states and greedy selection of actions intractable for all but
trivial-sized problems. The primary contribution of this paper is the first frame-
work for error-monitoring during approximate estimation of states and selection
of actions. Such a framework permits us to convert state-of-the-art exact methods
into error-bounded algorithms, which results in a scalability increase as demon-
strated by experiments over problems of unprecedented sizes.

Keywords: decentralized stochastic control, error-bounded approximations.

Learning and planning algorithms for decentralized stochastic control problems are of
importance in a number of practical domains such as network communications and
control; rescue, surveillance and exploration tasks; multi-robotics; collaborative games
[15]; to cite a few. Decentralized partially observable Markov decision processes (Dec-
POMDPs) have emerged as a standard framework for modeling and solving such prob-
lems [6]. This formalism involves a set of agents with different, but related, observations
about the world, which cooperate to achieve a common long-term goal, but cannot ex-
plicitly communicate with one another. While many decentralized stochastic control
problems can be formalized as Dec-POMDPs, only a few of them can be solved op-
timally due to their worst-case complexity: finite horizon problems are in NEXP, and
infinite horizon problems are undecidable [6]. This intractability is due to the doubly-
exponential growth in required computational resources, making it hard to find an opti-
mal solution for all but the smallest instances [12,5].

A recent scalability increase builds upon two fundamental results [7]. The first
result establishes that Dec-POMDPs can be transformed with no loss of optimality
into continuous-state and deterministic MDPs, called occupancy MDPs. In this form,
the states —called occupancy states— are distributions over the states and action-
observation joint histories of the original Dec-POMDPs, and the actions —called de-
centralized decision rules— are mappings from joint histories to joint actions of the

T. Calders et al. (Eds.): ECML PKDD 2014, Part I, LNCS 8724, pp. 338–353, 2014.
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original Dec-POMDPs. Secondly, the optimal value function of a finite-horizon occu-
pancy MDP is a piecewise linear and convex function of the occupancy state. These
results allow to combine advances in continuous-state MDP and POMDP algorithms,
which (among others) result in the feature-based heuristic search value iteration al-
gorithm (FB-HSVI). This algorithm can produce optimal solutions for medium-sized
problems and medium planning horizons, but quickly runs out of time and memory for
larger-scale problems and planning horizons. Such limited scalability is mainly because
states and actions of occupancy MDPs are embedded into high-dimensional spaces,
making accurate estimate of states and greedy selection of actions intractable for all but
trivial-sized problems.

A natural question to ask is whether approximate (error-bounded) solutions can
be found efficiently for decentralized stochastic control problems. On the one hand,
memory-bounded dynamic programming algorithms for solving infinite-horizon dis-
counted Dec-POMDPs are often quite effective at finding good heuristic solutions,
while requiring bounded computational resources [20,9,13,10]. However, these meth-
ods do not come with rigorous guarantees concerning the quality of the final heuristic
solution. On the other hand, error-bounded algorithms for solving infinite-horizon dis-
counted Dec-POMDPs exist. Examples include error-bounded methods for discounted
POMDPs that are (or can be) transferred back to discounted Dec-POMDPs: policy it-
eration (PI) [5]; incremental policy generation (IPG) [2]; point-based value iteration
(PBVI) [14,17]; and heuristic search value iteration (HSVI) [7,21]. These algorithms
rely either on ε-pruning methods1 (PI and IPG) or/and on exploration strategies that
focus on a small subset of the search space (PBVI and HSVI), but they all make use
of greedy action-selection and accurate state-estimation operators, which quickly ex-
hausts the available resources before convergence. Furthermore, theoretical analyses of
point-based approaches (e.g., PBVI) demonstrate that resulting error bounds are loose
and have only a theoretical significance [21,10].

In this paper, we focus on characterizing efficient error-bounded solutions for
infinite-horizon discounted decentralized stochastic control problems. The novel ap-
proach proceeds by converting infinite-horizon discounted Dec-POMDPs into finite-
horizon discounted occupancy MDPs, thereby computing a non-stationary policy over
a finite planning horizon. In such a setting, approximations are typically achieved by re-
placing greedy action-selection and accurate state-estimation operators by approximate
counterparts. In addition, we preserve the ability to bound the error with respect to the
optimal infinite-horizon value function. Our study differs from previous studies in that
it directly bounds the regret, avoiding the max-norm machinery of previous analyses
of value and policy iteration algorithms [18,4,17,21,10,19], which may result in tighter
bounds. We further extend the state-of-the-art feature-based heuristic search value it-
eration algorithm to incorporate the error we make in both greedy action-selection and
accurate state-estimation. The result is an algorithm that can solve problems of unprece-
dented sizes from the literature while providing strong theoretical guarantees.

In the remainder of this paper, we will introduce in Section 1 the Dec-POMDP
framework and the reformulation into occupancy MDPs. Section 2 extends, from finite-

1 An ε-pruning method circumvents regions of the search space that cannot significantly improve
the current solution, and the resulting solution is guaranteed to be at ε of the optimum.
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horizon settings to infinite-horizon ones, recent advances in optimally solving Dec-
POMDPs as occupancy MDPs. Then, we describe the novel approximation frame-
work, derive theoretical guarantees and algorithmic extensions in Section 3. Finally, we
present in Section 4 experimental results demonstrating the scalability of the resulting
error-bounded algorithm.

1 From Dec-POMDPs to OMDPs

This section presents formalisms for the infinite-horizon discounted decentralized par-
tially observable Markov decision process (Dec-POMDP) and its associated occupancy
Markov decision process (OMDP).

1.1 Decentralized Stochastic Control Problems as Dec-POMDPs

The Dec-POMDP framework formalizes a discrete stochastic system that evolves under
the influence of N agents. A key assumption in this framework is that agents cannot
directly observe the true state of the system. In fact, they have different but related
observations about the state of the system and cannot explicitly communicate with one
another. Nevertheless, they need to cooperate in order to achieve a common long-term
goal, i.e., to select actions that maximize the collection of rewards in the long run.

Definition 1 (Dec-POMDP). An N-agent decentralized partially observable Markov
decision process is given as a tuple M ≡ (S , {Ai}, {Zi}, p, r, b0, γ), where: S is a finite
set of hidden states; Ai is a finite set of private actions of agent i ∈ {1, 2, . . . ,N}; Zi is a
finite set of private observations of agent i ∈ {1, 2, . . . ,N}; pa,z(s, s′) = Pr(s′, z|s, a) is a
dynamics model of the team of agents as a whole; r(s, a) is a reward model of the team
of agents as a whole; b0 is an initial belief state; and γ ∈ (0, 1) is a discount factor.

The goal of solving M is to find an N-tuple of private policies π ≡ (πi)i∈{1,2,...,N} that
yields the highest discounted total reward starting at b0:

VπM,γ,0(b0) = E
{∑∞

t=0 γ
t · r(st, at) | π, b0

}
. (1)

Let decentralized policy π be a N-tuple of private policies (πi)i∈{1,2,...,N}. Each private
policy πi is a sequence of private decision rules (πi

t)t∈{0,1,...,∞}. The t-th private decision
rule πi

t : Θi
t �→ Ai of agent i prescribes private actions based on the whole informa-

tion available to the agent up to time step t, namely its complete history of past ac-
tions and observations θit = (ai

0, z
i
1, . . . , a

i
t−1, z

i
t) ∈ Θi

t. We define Θi
t to be the set of

all length-t private histories of actions and observations agent i may have experienced,
Θt ≡ ×i∈{1,2,...,N}Θ

i
t the set of joint histories and Θ = ∪t∈{0,1,...,T−1}Θt. In addition, we

define the t-th decentralized decision rule πt to be an N-tuple (πi
t)i∈{1,2,...,N} of private

decision rules.
Since the history length grows as time goes on, for infinite horizon cases, this would

require private decision rules to have infinite memory, which is not possible in practice.
Therefore, we shall specify the nature of the decentralized policies we target in more
detail. We first notice that the optimal value function over an infinite horizon can be
arbitrarily accurately approximated by the optimal value function over a finite horizon.
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To this end, we choose finite horizon T so that the regret of operating only over T =

logγ ((1 − γ)ε/‖r‖∞)� steps instead of an infinite number of steps is upper-bounded by
any arbitrarily small scalar ε > 0, where ‖r‖∞ = max{|r(s, a)| : ∀s ∈ S ,∀a ∈ A}. Indeed,
the regret is upper-bounded by the cumulated sum of discounted losses from time step
T onwards, so that:

∑∞
t=T γ

t‖r‖∞ ≤ ε.
In the remainder of this paper, we restrict the search space to decentralized poli-

cies described over planning horizon T . Unlike infinite-horizon decentralized policies,
finite-horizon decentralized policies require a finite memory. At the execution phase,
agents follow actions their private policies prescribe up to time step T ; thereafter they
behave randomly. Doing so, we are guaranteed to achieve performance with bounded
error as discussed later below. Before proceeding any further, we next consider a refor-
mulation of finite-horizon Dec-POMDPs into occupancy MDPs.

1.2 Occupancy Markov Decision Processes

The decentralized partially observable Markov decision process framework formalizes
a decentralized stochastic control problem from a perspective oriented towards agents.
In such a setting, agents are unaware of which actions the other agents take and which
observations they receive; each agent behavior is based only upon its private histories.
In this section, however, we formalize decentralized stochastic control problems from
a perspective oriented towards centralized solution methods. In such a perspective, the
system evolves under the control of agents based upon the total information about the
state of the system the centralized solution method makes available to all agents prior
to the execution phase, namely the information state.

The t-th information state ζt ≡ (b0, π0, . . . , πt−1) is a sequence of decentralized deci-
sion rules starting at initial belief state b0. It satisfies the following recursion: ζ0 ≡ (b0)
and ζt ≡ (ζt−1, πt−1), for all t ∈ {1, . . . , T − 1}. Next, it will prove useful to introduce
the concept of occupancy states, as a means of maintaining a concise representation of
the information state. A t-th occupancy state ξt is a distribution Pζt (st, θt) over histories
and hidden states of M conditional on an information state ζt. For the sake of simplic-
ity, we use notation Θ(ξt) to represent histories that are reachable in occupancy state
ξt. The occupancy state has many important properties. First, it is a sufficient statistic
of the information state when estimating the (current and future) reward to be gained
by executing a decentralized decision rule: R(ξt, πt) =

∑
st

∑
θt ξt(st, θt) · r(st, πt(θt)). In

addition, it describes a deterministic and Markov decision process, where next occu-
pancy state ξt+1 ≡ P(ξt, πt) depends only upon the current occupancy state ξt and the
next decentralized decision rule πt:

ξt+1(s′, (θt, at, zt+1)) = 1{at}(πt(θt))
∑

s∈S ξt(s, θt) · pat ,zt+1(s, s′), (2)

for s′ ∈ S , at ∈ A, zt+1 ∈ Z, θt ∈ Θ and where 1F is an indicator function. This process
is known as the occupancy Markov decision process.

Definition 2 (OMDP). Let M̂ ≡ (�, A, R, P, γ, ξ0, T ) be the T-steps OMDP with re-
spect to Dec-POMDP M, where γ is a discount factor; ξ0 corresponds to the initial be-
lief in M; � ≡ ∪t∈{0,1,...,T } �t is the set of occupancy states up to time T; A ≡ ∪t∈{0,1,...,T }At
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is the finite set of decentralized decision rules; R(ξt, πt) is the reward model; P(ξt, πt) is
the transition rule; and T is a planning horizon.

It is worth noticing that OMDP M̂ can be seen as a generative model for occupancy
states P(ξt, πt) and rewards R(ξt, πt), for all time step t ∈ {0, 1, . . . , T − 1}. A recent
result shows that an optimal solution for M̂, together with the correct estimation of the
occupancy states, will give rise to the optimal solution of the original Dec-POMDP M
over finite horizon T [8].

2 Optimally Solving Dec-POMDPs as OMDPs

This section reviews how to optimally solve Dec-POMDPs as OMDPs, a theory origi-
nally introduced under the total reward criterion [7,8]. Here, we extend it to deal with
the discounted total reward criterion.

2.1 Bellman’s Optimality Equations

In this subsection, we extend dynamic programming properties, including Bellman’s
optimality equations, to OMDPs (respectively Dec-POMDPs). Before proceeding any
further, we start with preliminary definitions.

The discounted total reward of a decentralized policy π ≡ (πt)t∈{0,1,...,T−1} over T time
steps and starting at occupancy state ξt is

Vπ
M̂,γ,t

(ξt) =
[∑T−1

k=t γ
k−t R(ξk, πk) | ξk+1 = P(ξk, πk)

]
, (3)

where the occupancy state sequence (ξk)k∈{t,t+1,...,T−1} is generated by the deterministic
transition rule P under decentralized policy π: ξk+1 = P(ξk, πk), ∀k ∈ {t, t+1, . . . , T −1}
and ∀t ∈ {0, 1, . . . , T − 1}. Therefore, the optimal value function starting at occu-
pancy state ξ0 is V∗

M̂,γ,0
(ξ0) = maxπ Vπ

M̂,γ,0
(ξ0). Hence, the optimal value function

(V∗
M̂,γ,t

)t∈{0,1,...,T } is a solution of Bellman’s optimality equation for M̂, given by:

V∗
M̂,γ,t

(ξt) = maxπt∈At

{
R(ξt, πt) + γV∗M̂,γ,t+1

(P(ξt, πt))
}
, ∀ξt ∈ � (4)

and for t = T , we add a boundary condition V∗
M̂,γ,T

(·) = 0. If it can be solved for

(V∗
M̂,γ,t

)t∈{0,1,...,T }, an optimal decentralized policy π∗ ≡ (π∗t )t∈{0,1,...,T−1} may typically be

obtained by maximization of the right-hand side for each ξt, i.e.,

π∗t ∈ arg maxπt∈At

{
R(ξt, πt) + γV∗M̂,γ,t+1

(P(ξt, πt))
}
, ∀ξt ∈ �. (5)

2.2 Dynamic Programming Update Operators

This subsection formally introduces the dynamic programming update operators in-
volved in solving OMDPs, including: Bayesian state estimation; Bellman’s evaluation
and backup operators; and greedy action selection. To better understand this, let V be
the set of real-valued functions f : �t �→ R for all t ∈ {0, 1, . . . , T }.
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Definition 3 (Bellman’s evaluation operator). For each decentralized decision rule
πt ∈ At, let Tπt : V �→ V be Bellman’s evaluation operator, given by:

(Tπt VM̂,γ,t+1)(ξt) = R(ξt, πt) + γVM̂,γ,t+1(P(ξt, πt)), ∀ξt ∈ �, πt ∈ At. (6)

Bellman’s evaluation operator transforms any arbitrary value function into a new value
function based on a specified decentralized decision rule. It is worth noticing that Bell-
man’s optimality equations (Equation 4) and greedy decision rule selections (Equation
5) can be stated in terms of the expression depending on occupancy state, decentralized
decision rule and Bellman’s evaluation operator. In the following, we formally define
greedy selection and Bellman’s update operators.

Definition 4 (Greedy action-selection operator). For each decentralized decision
rule πt ∈ At, let G : V �→ (� �→ A) be the greedy operator, given by:

(GVM̂,γ,t+1)(ξt) = arg maxπt∈At
(Tπt VM̂,γ,t+1)(ξt), ∀ξt ∈ �,VM̂,γ,t+1 ∈ V. (7)

Together the greedy action-selection and Bellman’s evaluation operators permit us to
define Bellman’s update operator as follows.

Definition 5 (Bellman’s update operator). Let T : V �→ V be Bellman’s update op-
erator, given by:

(TVM̂,γ,t+1)(ξt) = (T(GVM̂,γ,t+1)(ξt )VM̂,γ,t+1)(ξt), ∀ξt ∈ �,VM̂,γ,t+1 ∈ V. (8)

Bellman’s update operator maintains the value of a given occupancy state based on
the greedy decentralized decision rule for a specified value function. When optimized
exactly, the value function, solution of Bellman’s optimality equations (Equation 4), is
a piecewise-linear and convex function of the occupancy states [8]. That is, there exist
finite sets of hyperplanes (Λt)t∈{0,1,...,T−1}, such that: V∗

M̂,γ,t
(ξt) = maxλt∈Λt

∑
st ,θt λt(st, θt) ·

ξt(st, θt), where λt ∈ R|S ||Θt | for all t ∈ {0, 1, . . . , T − 1}.
Mappings G and T serve to define a dynamic programming methodology for the

solution of occupancy Markov decision process M̂. In particular, the piecewise-linearity
and convexity property of the value function, together with mappings G and T, allow to
combine advances in continuous-state MDP and POMDP algorithms, which have led
to the development of a novel family of exact algorithms, including the feature-based
heuristic search value iteration [7,8].

2.3 The Feature-Based Heuristic Search Value Iteration

This subsection provides a succinct description of feature-based heuristic search value
iteration (FB-HSVI) (Algorithm 1), which was originally introduced under the total
reward criterion. Here, we extend it to address the discounted total reward criterion and
discuss complexity issues.

The FB-HSVI Algorithm’s Description. FB-HSVI extends to decentralized stochas-
tic control problems the heuristic search value iteration (HSVI) algorithm, which was
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originally developed for partially observable Markov decision processes [21]. Similarly
to HSVI, it corresponds to a family of trial-based algorithms that searches an optimal
solution of an occupancy Markov decision process. FB-HSVI proceeds by generating
trajectories of occupancy states, starting at the initial occupancy state. It maintains both
upper and lower bounds over the optimal value function. It guides exploration towards
occupancy states that are more relevant to the upper bound by greedily selecting
decentralized decision rules with respect to the upper bound, and reducing the gap
between bounds at visited occupancy states. If the gap between upper and lower bounds
at the initial occupancy state is ε, then it terminates. In such a case, we are guaranteed
FB-HSVI has converged to an ε-optimal solution, as initially targeted. Though FB-
HSVI is already equipped with a mechanism for finding ε-optimal solutions —since
it uses greedy action-selection and accurate state-estimation operators— in practice it
quickly exhausts the available resources before convergence. To better understand this,
we provide a complexity analysis of each operator involved in FB-HSVI.

Algorithm 1. The feature-based heuristic search value iteration for M̂ (resp. M)

1 function FB-HSVI(M̂, ε, (V
¯ M̂,γ,t)t∈{0,1,··· ,T }, (V̄M̂,γ,t)t∈{0,1,··· ,T })

2 while Gap(ξ0) > ε do Explore (ξ0)

3 function Gap(ξt)
4 return V̄M̂,γ,t(ξt)−V

¯ M̂,γ,t(ξt)

5 function Explore (ξt)
6 if Gap(ξt) > ε/γt then
7 π∗t ← (GV̄M̂,γ,t+1)(ξt)
8 Explore(P(ξt, π∗t ))
9 (TV̄M̂,γ,t+1)(ξt) and (TV

¯ M̂,γ,t+1)(ξt)

Complexity of Dynamic Programming Operators. As FB-HSVI proceeds, there are
three operations that can significantly affect the overall performance: the greedy action-
selection operator G; the accurate state-estimation operator P; and finally, Bellman’s
update operator T. To better understand the complexity involved in these operations, let
|V | be the size of value function V (respectively the upper- or lower-bound value func-
tions). Let Θi(ξt) be the set of private histories of agent i involved in occupancy state ξt,
|Θ∗(ξt)| = maxi∈1,2,...,N |Θi(ξt)| and |A∗| = maxi∈1,2,...,N |Ai|. Algorithm 1 (lines 7 and 9)
performs a greedy action-selection operator G, which involves enumerating and eval-
uating exponentially many decentralized decision rules in the worst case, and requires
time complexity O(|V ||Θ∗(ξt )|N|A

∗ |
) that grows doubly exponentially with increasing num-

ber of private histories involved in the occupancy state ξt. In practice, branch-and-bound
methods explore only a small portion of this set, which saves considerable time [7,8].
Then, Algorithm 1 (line 8) computes the next occupancy state given the current one and
the next decentralized decision rule. Unlike the greedy action-selection operator, this
state-estimation rule has complexity O(|S |2|Θ(ξt)||Z|), that is polynomial in the number
of joint histories involved in the occupancy states and the number of joint observations.
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However, in the worst case, the number of joint histories increases by a factor of |Z|
as time goes on. This may limit ability to perform the greedy action-selection operator
later on. Finally, Algorithm 1 (line 9) performs Bellman’s update operator T to maintain
both upper and lower bounds at a given occupancy state, namely point-based Bellman’s
update. Unlike the full Bellman’s update operator, the point-based Bellman’s update
operator maintains the value function only at a single occupancy state at a time, which
makes it significantly more tractable. Nonetheless, the complexity of this operation re-
mains time demanding as it requires performing a greedy action selection.

Given that the complexity of operators G, P and T are prohibitive for a number of
realistic decentralized stochastic control problems, the importance of approximate vari-
ants is clear.

3 An Error-Bounded Heuristic Search Framework

The primary contribution of this section is an error-bounded heuristic search frame-
work which builds upon approximate variants of greedy action-selection and accurate
state-estimation operators. We also provide a provable bound on the error FB-HSVI
algorithms would make by using these approximate operators instead of their exact
counterparts. The result is a general algorithmic framework that allows for monitor-
ing the divergence between the exact and approximate solutions of infinite-horizon and
discounted decentralized stochastic control problems represented as Dec-POMDPs.

3.1 Error-Bounded Action-Selection Operators

This subsection characterizes error-bounded action-selection operators that select de-
centralized decision rules within α of maximizing the value.

Definition 6. Let α ∈ [0,∞)T be a real vector. An α-approximate action-selection op-
erator ˜G : V �→ (� �→ A) is such that, at each time step t ∈ {0, 1, . . . , T − 1}, the
decentralized decision rule found comes within α(t) of maximizing the value:

(T(GVM̂,γ,t+1)(ξt )VM̂,γ,t+1)(ξt) − (T(˜GVM̂,γ,t+1)(ξt )
VM̂,γ,t+1)(ξt) ≤ α(t), ∀ξt ∈ �,VM̂,γ,t+1 ∈ V.

For any positive T -dimensional vector α, a feature-based heuristic search value iter-
ation, together with an α-approximate action-selection operator, terminates with a final
estimate Vα

M̂,γ,0
(ξ0). The error between this approximate value and the optimal value is

bounded and the bound depends only upon parameter α and γ.

Theorem 1. The error introduced in FB-HSVI by using ˜G instead of G is bounded by∑T−1
t=0 γ

tα(t), assuming accurate estimation of the occupancy states during the planning
phase. In particular, if α(t) = α(t + 1) = . . . = α for all t ∈ {0, 1, . . . , T − 1}, then the
error is bounded by 1−γT

1−γ α.

Proof. Let π∗ and πα be decentralized policies that are optimal given that we use (P,G)
and (P, ˜G), respectively. Vectors ξ1, . . . , ξT−1 being the occupancy states generated from
ξ0 when applying π∗, it follows that:



346 J.S. Dibangoye, O. Buffet, and F. Charpillet

Vπ
∗

M̂,γ,0
(ξ0) − Vπ

α

M̂,γ,0
(ξ0)

=
(∑T−1

t=0 γ
t R(ξt, π∗t )

)
− Vπ

α

M̂,γ,0
(ξ0) (definition of Vπ

∗

M̂,γ,0
(ξ0)),

=
(∑T−1

t=0 γ
t R(ξt, π∗t )

)
+
∑T−1

t=1

(
γtV

παt:T−1

M̂,γ,t
(ξt) − γtV

παt:T−1

M̂,γ,t
(ξt)
)
− Vπ

α

M̂,γ,0
(ξ0) (adding zero).

Next, we use the fact that Vπ
α

M̂,γ,T
(ξT ) = 0 to re-arrange terms:

=
(∑T−1

t=0 γ
t R(ξt, π∗t )

)
+

(
γT Vπ

α

M̂,γ,T
(ξT ) +

∑T−1
t=1 γ

tV
παt:T−1

M̂,γ,t
(ξt)
)
−
(
γ0Vπ

α

M̂,γ,0
(ξ0) +

∑T−1
t=1 γ

tV
παt:T−1

M̂,γ,t
(ξt)
)
,

=
(∑T−1

t=0 γ
t R(ξt, π∗t )

)
+

(∑T−1
t=0 γ

t+1V
παt+1:T−1

M̂,γ,t+1
(P(ξt, π∗t ))

)
−
(∑T−1

t=0 γ
tV
παt:T−1

M̂,γ,t
(ξt)
)
,

=
∑T−1

t=0 γ
t
(
R(ξt, π∗t ) + γV

παt+1:T−1

M̂,γ,t+1
(P(ξt, π∗t )) − V

παt:T−1

M̂,γ,t
(ξt)
)
,

=
∑T−1

t=0 γ
t
(
V
π∗t ,π

α
t+1:T−1

M̂,γ,t
(ξt) − V

παt:T−1

M̂,γ,t
(ξt)
)
,

=
∑T−1

t=0 γ
t
(
(Tπ∗t V

παt+1:T−1

M̂,γ,t+1
)(ξt) − (Tπαt V

παt+1:T−1

M̂,γ,t+1
)(ξt)
)
,

≤
∑T−1

t=0 γ
t

⎛⎜⎜⎜⎜⎜⎝(T
(GV

παt+1:T−1
M̂,γ,t+1

)(ξt)
V
παt+1:T−1

M̂,γ,t+1
)(ξt) − (T

(˜GV
παt+1:T−1
M̂,γ,t+1

)(ξt)
V
παt+1:T−1

M̂,γ,t+1
)(ξt)

⎞⎟⎟⎟⎟⎟⎠ ,

=
∑T−1

t=0 γ
tα(t).

Thus, the error between Vπ
∗

M̂,γ,0
(ξ0) and Vπ

α

M̂,γ,0
(ξ0) is bounded by

∑T−1
t=0 γ

tα(t). ��

To the best of our knowledge, in decentralized stochastic control theory, this is the
first attempt to monitor and bound the error made by using approximate action-selection
instead of greedy action-selection. This bound comes with a natural interpretation: all
time steps are not equally relevant to the final error. Indeed, due to discounted errors,
approximate action-selection operators give more credit to errors they make at the ear-
lier stages of the process. In other words, one can tolerate more approximation error at
occupancy states that appear later in the process.

The problem of assigning errors to time steps goes beyond the scope of this paper,
and will be addressed in the future. However, given the error vector α, another problem
consists in finding a practical algorithm for selecting error-bounded actions over time
steps. To do so, one can make use of the same branch-and-bound algorithms used for
selecting greedy actions [7,8]. Except that, now, these algorithms need to be interrupted
whenever the gap between lower and upper bounds is α. In that case, we are guarantee
the returned action has value within α of the optimal value, as targeted.

3.2 Error-Bounded State-Estimation Operators: Definition and Example

This subsection discusses the long term behavior of successive applications of an ap-
proximate state-estimation operator. Next, we formally define the family of approximate
state-estimation operators we target. Then, we exhibit one such operator. And finally,
we derive theoretical guarantees.

Since we are interested in quantifying the error between occupancy states, we choose
the total variational distance as a metric for measuring their distance. The total vari-
ational distance between two probability distributions ξ and ξ′ on [0, 1]|S ||Θ| is defined
by ‖ξ − ξ′‖TV =

1
2

∑
s∈S ,θ∈Θ |ξ(s, θ) − ξ′(s, θ)|, ∀ξ, ξ′ ∈ �. Informally, the total varia-

tional distance ‖ξ − ξ′‖TV defines the minimal probability mass that would have to be
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re-assigned in order to transform occupancy state ξ into occupancy state ξ′. The fol-
lowing definition of approximate state-estimation operator ˜Pπt guarantees that, for any
occupancy state ξt ∈ �t, we have ‖ξt Pπt − ξt˜Pπt‖TV ≤ δ.

Definition 7. Let δ ∈ [0, 1] be a small scalar. Then, for each decentralized decision
rule πt ∈ At, transition matrix ˜Pπt is a δ-approximation of Pπt if, for any occupancy
state ξt ∈ �t, there exists δ′ ∈ [0, δ] and (ξ′t+1, ξ

′′
t+1, ξ̃

′′
t+1) ∈ �3

t+1 such that

ξt Pπt = (1 − δ′)ξ′t+1 + δ
′ξ′′t+1 and ξt˜Pπt = (1 − δ′)ξ′t+1 + δ

′ξ̃′′t+1.

Now, we introduce and describe Algorithm 2 for constructing an artificial occupancy
state that is within δ (in terms of variational distance) from the original occupancy
state. To ensure the total variational distance between artificial and original occupancy
states is upper bounded by δ, the algorithm clusters together private histories of the
original occupancy state that are close enough (see Definition 8). Then, it replaces each
such cluster with a unique private history in that cluster. Finally, this private history
represents the cluster in the artificial occupancy state.

Algorithm 2. The occupancy state approximation algorithm (OSA).

1 function OSA(ξt , πt , δ)
2 ξ̃t+1 ← [0, 1]|S ||Θ| and C ← Labels(ξt , πt, δ)

3 foreach s ∈ S and c ∈ C do ξ̃t+1(s, l)←
∑
θ∈[c](ξt Pπt ,δ)

ξt Pπt (s, θ) return ξ̃t+1

4 function Labels(ξt , πt , δ)
5 foreach i ∈ {1, 2, . . . ,N} do
6 Ci ← ∅ and Θi ← Θi(ξt Pπt )
7 while Θi � ∅ do
8 ci ← arg maxθi∈Θi |[θi](ξt Pπt ,δ) |
9 Ci ← Ci ∪ {ci} and Θi ← Θi\[ci](ξt Pπt ,δ)

10 return ⊗i∈{1,2,...,N} Ci

Before proceeding any further, we introduce the criterion we use, namely the ap-
proximate probabilistic measure.

Definition 8. Let ξt be an occupancy state, and θi and θ̄i be two private histories in set
Θi(ξt). We say that θi and θ̄i are δ-probabilistically close if and only if:

‖Pr(Xt, Yt |ξt, θi) − Pr(Xt, Yt |ξt, θ̄i)‖TV ≤ δ, (9)

where Xt and Yt denote random variables associated with states and other agent his-
tories, respectively. We also denote [θi](ξt ,δ) the entire set of private histories θ̄i ∈ Θ(ξt)
that are δ-probabilistically close to θi and with respect to ξt.

By clustering private histories that are δ-probabilistically close with a single private
history in that cluster, we produce (from Definition 8) an approximate occupancy state
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ξ̃t with respect to the original occupancy state ξt such that: ‖ξt − ξ̃t‖TV ≤ δ. Notice that
Algorithm 2 is not guarantee to produce an occupancy state with the minimum number
of private histories. A more promising goal, which we do not address here, would be
to find a clustering method that can identify the minimum number of clusters of private
histories so that the total variational distance between original and artificial occupancy
states is upper-bounded by δ.

3.3 Error-Bounded State-Estimation Operators: Theoretical Analysis

We are now ready to bound the regret of using an approximate occupancy state instead
of the accurate occupancy state. To do so, let Pπ0:t−1 = Pπ0 Pπ1 · · · Pπt−1 for all time
steps t ∈ {1, 2, . . . , T }. Our analysis monitors the error we make step by step using
approximate occupancy states.

Lemma 1. The total variational distance between ξ0˜Pπ0:t−1 and ξ0 Pπ0:t−1 is bounded:

‖ξ0˜Pπ0:t−1 − ξ0 Pπ0:t−1‖TV ≤ 1 − (1 − δ)t, ∀t ∈ {1, 2, . . . , T }. (10)

Proof. The proof holds directly by expanding ξ0˜Pπ0:t and ξ0 Pπ0:t using Definition 7.

‖ξ0˜Pπ0:t − ξ0 Pπ0:t‖TV,

≤ ‖(1 − δ)ξ′1 Pπ1:t + δξ̃
′′
1
˜Pπ1:t − (1 − δ)ξ′1 Pπ1:t − δξ′′1 Pπ1:t‖TV,

≤ ‖(1 − δ)2ξ′2 Pπ2:t + δ(1 − δ)ξ̃′′2 ˜Pπ2:t + δξ̃
′′
1
˜Pπ1:t − (1 − δ)2ξ′2 Pπ2:t − δ(1 − δ)ξ′′2 Pπ2:t − δξ′′1 Pπ1:t‖TV,

≤ ‖(1 − δ)tξ′t Pπt:t +
∑t

k=1 δ(1 − δ)k−1ξ̃′′k Pπk:t − (1 − δ)tξ′t Pπt:t −
∑t

k=1 δ(1 − δ)k−1ξ′′k Pπk:t ‖TV,
= ‖
∑t

k=1 δ(1 − δ)k−1ξ̃′′k Pπk:t −
∑t

k=1 δ(1 − δ)k−1ξ′′k Pπk:t‖TV,
≤
∑t

k=1 δ(1 − δ)k−1‖ξ̃′′k Pπk:t − ξ′′k Pπk:t‖TV,
≤
∑t

k=1 δ(1 − δ)k−1,

= 1 − (1 − δ)t. ��

It is worth noticing that approximation errors tend to increase exponentially as time
goes on. The following derives the regret induced by approximating state estimates.

Theorem 2. Let δ ∈ [0,∞)T be a scalar vector. The error introduced in FB-HSVI by
using a δ-approximate state-estimation operator instead of the exact state-estimation
operator is bounded by 2‖r‖∞

∑T−1
t=0 γ

t[1 −
∏t

k=1(1 − δ(k))], assuming we use G for
selecting decentralized decision rules. In particular, if δ(t) = δ for all time steps t ∈
{0, 1, . . . , T − 1}, then the error is bounded by 2

(
1−γT

1−γ −
1−[γ(1−δ)]T

1−γ(1−δ)

)
‖r‖∞.

Proof. Let π∗ and π̃ be decentralized policies that are optimal given that we use ac-
curate or approximate state-estimation operators, respectively. Define Ṽπ

∗

M̂,γ,0
(ξ0) as fol-

lows: Ṽπ
∗

M̂,γ,0
(ξ0) =

∑T−1
t=0 γ

t R(ξ0˜Pπ∗0:t
, π∗t ). Clearly, we have Ṽπ

∗

M̂,γ,0
(ξ0) ≤ V π̃

M̂,γ,0
(ξ0) by

definition of decentralized policy π̃. Using this property, we know that:

Vπ
∗

M̂,γ,0
(ξ0) − V π̃

M̂,γ,0
(ξ0) ≤ Vπ

∗

M̂,γ,0
(ξ0) − Ṽπ

∗

M̂,γ,0
(ξ0),

=
∑T−1

t=0 γ
t
(
R(ξ0 Pπ∗0:t−1

, π∗t ) − R(ξ0˜Pπ∗0:t−1
, π∗t )
)
.
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Since the value function is piecewise-linear and convex, Rπ
∗
t ≡ R(·, π∗t ) is a linear func-

tion of occupancy states. Thus, if we let 〈·, ·〉 be an inner product, then we have

Vπ
∗

M̂,γ,0
(ξ0) − Ṽπ

∗

M̂,γ,0
(ξ0) =

∑T−1
t=0 γ

t〈Rπ∗t , ξ0 Pπ∗0:t−1
− ξ0˜Pπ∗0:t−1

〉, (by linearity of Rπ
∗
t )

≤
∑T−1

t=0 γ
t‖Rπ∗t ‖∞‖ξ0 Pπ∗0:t−1

− ξ0˜Pπ∗0:t−1
‖1, (Hölder’s inequality)

≤ 2
∑T−1

t=0 γ
t‖Rπ∗t ‖∞‖ξ0 Pπ∗0:t−1

− ξ0˜Pπ∗0:t−1
‖TV, (where ‖x‖1 = 2‖x‖TV)

≤ 2‖r‖∞
∑T−1

t=0 γ
t‖ξ0 Pπ∗0:t−1

− ξ0˜Pπ∗0:t−1
‖TV, (where ‖Rπ∗t ‖∞ ≤ ‖r‖∞)

≤ 2‖r‖∞
∑T−1

t=0 γ
t
[
1 −
∏t

k=1(1 − δ(k))
]
.

This proves the result for any arbitrary δ ∈ [0,∞)T . If we let δ(t) = δ for all time step
t ∈ {0, 1, . . . , T − 1}, then geometric series produce the following bound:

Vπ
∗

M̂,γ,0
(ξ0) − V π̃

M̂,γ,0
(ξ0) ≤ 2

(
1−γT

1−γ −
1−[γ(1−δ)]T

1−γ(1−δ)

)
‖r‖∞,

which concludes the proof. ��

Once again, in decentralized stochastic control settings, this is the first attempt to
monitor and bound the error made by using approximate state-estimation operators.
We note that, as time goes on, these operators become more tolerant to approximation
errors. But there is no free lunch: approximation errors tend to increase as time goes on.
This new bound provides a way to analyze this trade-off.

3.4 Convergence and Error Bounds

Given any arbitrary state-estimation and action-selection operators ˜P and ˜G, which
come with provable guarantees, the feature-based heuristic search value iteration pro-
duces an estimate VM̂,γ,0(ξ0). The error between VM̂,γ,0(ξ0) and the true value function
V∗

M̂,γ,0
(ξ0) is bounded. The error depends on quantities ε, δ and α, each of which comes

from a relaxation of the original problem. First, ε results from transforming an infinite
horizon problem into a finite horizon one. Second, δ represents the vector of errors the
state-estimation operator allows at each time step. Finally,α denotes the vector of errors
the action-selection operator produces at each time step.

Theorem 3. Let δ ∈ [0,∞)T be the estimation operator parameter and α ∈ [0,∞)T be
the greedy operator parameter. The error of the feature-based heuristic search value
iteration introduced by using ˜P and ˜G instead of P and G is bounded by:

2‖r‖∞
T−1∑

t=0

γt

⎡⎢⎢⎢⎢⎢⎣1 −
t∏

k=1

(1 − δ(k))

⎤⎥⎥⎥⎥⎥⎦ +
⎛⎜⎜⎜⎜⎜⎜⎝

T−1∑

t=0

γtα(t)

⎞⎟⎟⎟⎟⎟⎟⎠ + ε, (11)

for any planning horizon T = 
logγ ((1 − γ)ε/‖r‖∞)�.

Proof. Let π∗, πα and πα,δ be decentralized policies that are optimal given that we use
(P,G), (P, ˜G) and (˜P, ˜G), respectively. Then,

Vπ
∗

M̂,γ,0
(ξ0) − Vπ

α,δ

M̂,γ,0
(ξ0) =

(
Vπ

∗

M̂,γ,0
(ξ0) − Vπ

α

M̂,γ,0
(ξ0)
)
+

(
Vπ

α

M̂,γ,0
(ξ0) − Vπ

α,δ

M̂,γ,0
(ξ0)
)
,

≤ 2‖r‖∞
∑T−1

t=0 γ
t
[
1 −
∏t

k=1(1 − δ(k))
]
+
(∑T−1

t=0 γ
tα(t)
)
.

(12)



350 J.S. Dibangoye, O. Buffet, and F. Charpillet

This bound together with the fact that we search only for T -step policies is sufficient to
demonstrate that the result holds. ��

This theorem provides the first result quantifying the influence of different approx-
imate operators in the overall performance of an algorithm for solving Dec-POMDPs.
To the best of our knowledge, no similar results exist in Dec-POMDPs.

4 Experiments

This section presents experiments on a selection of infinite-horizon γ-discounted Dec-
POMDPs including small-sized benchmarks (broadcast channel, multi-agent tiger, re-
cycling robots and meeting in a 3x3 grid) and large-sized benchmarks (box-pushing,
mars rover and wireless). For each benchmark, we ran the error-bounded feature-based
heuristic search value iteration (EB-FB-HSVI) algorithm using parameters ε (pruning
criterion), α (action-selection tolerance), and δ (state-estimation tolerance). Notice that,
over the selection of benchmarks, action-selection tolerance α has only minor influence
on performance results, so we set α = 0 for many domains. We selected greedy actions
using a constraint programming software, namely toulbar2 [11]. EB-FB-HSVI ran on a
Mac OSX machine with 2.4GHz Dual-Core Intel and 2GB of RAM available.

Table 1. Results for infinite-horizon decentralized POMDPs with γ = 0.9, and by default we
set ε = 0.001, α = 0 and δ = 0. Higher V

¯
(ξ0) is better. Results for Mealy NLP, EM, PeriEM,

PI, MPBVI and IPG were likely computed on different platforms, an therefore time comparisons
may be approximate at best.

Algorithm |Λ| Time V
¯

(ξ0)
Broadcast (|S | = 4, |Ai| = 2, |Zi| = 2)

FB-HSVI 102 19.8s 9.271
FB-HSVI(δ = 0.01) 435 7.8s 9.269
MPBVI 36 < 18000s 9.27
NLP 2 1s 9.1

Dec-tiger (|S | = 2, |Ai | = 3, |Zi | = 2)
FB-HSVI(δ = 0.01) 52 6s 13.448
FB-HSVI 25 157.3s 13.448
MPBVI 231 < 18000s 13.448
Peri 10×30 220s 13.45
PeriEM 7×10 6540s 9.42
Goal-directed 11 75s 5.04
Mealy NLP 4 29s −1.49
EM 6 142s −16.3

Recycling robots (|S | = 4, |Ai | = 3, |Zi | = 2)
FB-HSVI 109 2.6s 31.929
FB-HSVI(δ = 0.01) 108 0s 31.928
MPBVI 37 < 18000s 31.929
Mealy NLP 1 0s 31.928
Peri 6×30 77s 31.84
PeriEM 6×10 272s 31.80
EM 2 13s 31.50
IPG 4759 5918s 28.10
PI 15552 869s 27.20
Meeting in a 3x3 grid (|S | = 81, |Ai| = 5, |Zi| = 9)
FB-HSVI 108 67s 5.802
FB-HSVI(δ = 0.01) 88 45s 5.794
Peri 20×70 9714s 4.64

Algorithm |Λ| Time V
¯

(ξ0)
Box-pushing (|S | = 100, |Ai | = 4, |Zi | = 5)

FB-HSVI(δ = 0.01) 331 1715.1s 224.43
FB-HSVI(α = 1, δ = 0.05) 288 1405.7s 224.26
FB-HSVI(ε = 30) 264 15.24s 199.42
MPBVI 305 > 18000s 224.12
Goal-directed 5 199s 149.85
Peri 15 × 30 5675s 148.65
Mealy NLP 4 774s 143.14
PeriEM 4 × 10 7164s 106.68

Mars rover (|S | = 256, |Ai| = 6, |Zi| = 8)
FB-HSVI(δ = 0.01) 136 74.31s 26.94
FB-HSVI(α = 0.2) 149 85.72s 26.92
FB-HSVI(ε = 1) 155 32.5s 26.77
Peri 10 × 30 6088s 24.13
Goal-directed 6 956s 21.48
Mealy NLP 3 396s 19.67
PeriEM 3 × 10 7132s 18.13
EM 3 5096s 17.75

Wireless (|S | = 64, |Ai| = 2, |Zi | = 6)
FB-HSVI(δ = 0.01) 897 6309s −144.24
FB-HSVI(α = 0.1) 408 6740s −140.37
FB-HSVI(ε = 20) 866 6084s −176.59
MPBVI 374 > 18000s −167.10
EM 3 6886s −175.40
Peri 15 × 100 6492s −181.24
PeriEM 2 × 10 3557s −218.90
Mealy NLP 1 9s −294.50
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We compare EB-FB-HSVI for infinite-horizon Dec-POMDPs with state-of-the-art
approximate and exact algorithms, including: optimal policy iteration (PI) [5]; incre-
mental policy iteration (IPG) [2]; nonlinear programming (NLP and Mealy NLP) [1];
goal-directed algorithm [3]; periodic expectation maximisation algorithm (EM, Peri and
PeriEM) [16]; and modified point-based value iteration (MPBVI) [14]. Note that, while
PI and IPG are optimal in theory, in practice they do not produce optimal solutions due
to resources being exhausted before convergence. Table 1 reports performance results.
For each domain and each algorithm, we report the lower-bound value function at the
initial occupancy state V

¯
(ξ0), the computation time required to achieve that value, and

the memory requirement |Λ|, which represents either the number of hyperplanes or the
number of nodes in a policy graph.

In all tested benchmarks, EB-FB-HSVI achieves values higher or equal to the high-
est values that have been recorded so far, while being multiple orders of magnitude
faster than state-of-the-art algorithms over many domains. In particular, over small-
sized problems, EB-FB-HSVI demonstrates the best trade-off between the quality of
the solution and the computation time. In addition, it is the only algorithm to provide
provable bounds on the resulting solutions. In the broadcast channel, for example, both
EB-FB-HSVI and MPBVI provide the highest value known so far, but EB-FB-HSVI
comes with two advantages over MPBVI. First, it guarantees that value 9.271 is within
0.001 of the optimum. Second, it computed this value four orders of magnitude faster
than MPBVI. Over large-sized problems, EB-FB-HSVI terminated with the highest val-
ues over all benchmarks for parameters α = 0, δ = 0.01 and ε = 0.001. In the wireless
problem, for example, the distance between the previous best value and EB-FB-HSVI’s
value is about 27, and EB-FB-HSVI was one order of magnitude faster than the previous
best solver (MPBVI).

Table 2. Theoretical guarantees of EB-FB-HSVI(δ = 0.01, ε = 0.001). We denote εapriori the error
computed a priori based on parameters δ and ε, and εaposteriori the error computed a posteriori given
approximation errors observed during the planning phase, both using Equation (11). Gap(ξ0) =
V
¯

(ξ0) − V̄(ξ0), where V
¯

(ξ0) is provided by FB-HSVI(δ = 0.01, ε = 0.001) and V̄(ξ0) results from
EB-FB-HSVI(ε) for some ε.

εapriori εaposteriori Gap(ξ0)
Broadcast

1.651 0.018 0.003
Dec-tiger

166.7 0.727 0.001
Recycling robots

8.25 0.052 0.002

εapriori εaposteriori Gap(ξ0)
Mars rover

16.62 0.773 0.83
Box-pushing

16.74 1.8 4.99
Wireless

456.53 10.85 7.12

We continue the study of the performance of EB-FB-HSVI with respect to tight-
ness of error bounds. For each benchmark, we report in Table 2: a priori and a pos-
teriori errors based on Equation (11) for FB-HSVI(δ = 0.01, ε = 0.001); and gap
Gap(ξ0) =V

¯
(ξ0) − V̄(ξ0) based on FB-HSVI(ε). Notice that a posteriori errors were

computed based on approximation errors observed during the planning phase. Overall,
a posteriori errors are tighter than a priori errors and closer to gaps. The tightness of a
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posteriori error is mainly because the observed approximation errors were significantly
smaller than the targeted ones. In the tiger problem, for example, the a priori error is
about 166.7 whereas the a posteriori error and the gap are close: 0.727 and 0.001, re-
spectively. Surprisingly, in some domains such as mars rover and box-pushing, a poste-
riori errors are even smaller than gaps. This phenomenon occurs when EB-FB-HSVI(ε)
exhausts the total available resources before convergence, i.e., the gap is larger than tar-
geted error ε. The closeness between the gaps and the a posteriori errors demonstrate,
at least over all tested domains, the tightness of our error bounds.

5 Discussion, Conclusion and Future Work

This paper presented two relatively interdependent contributions towards error-bounded
solutions for infinite-horizon discounted Dec-POMDPs. First, we introduce the first
error-bounded algorithmic framework for monitoring and bounding the error we make
by using approximate action-selection and state-estimation operators instead of their
exact counterparts. Second, we extend the state-of-the-art algorithm for solving finite-
horizon Dec-POMDPs, namely the feature-based heuristic search value iteration algo-
rithm, to infinite-horizon discounted Dec-POMDPs. The major difference being that we
can now use approximate operators instead of exact operators while still being able to
provide theoretical guarantees on the quality of the resulting solution. Experimental re-
sults demonstrate that, when compared to state-of-the-art algorithms, the error-bounded
feature-based heuristic search value iteration algorithm improves both values and com-
putation times in many domains from the literature.

Though this paper provides the first attempts to monitor and bound the error made
by using approximate operators in decentralized stochastic control, similar results ex-
ist in simpler settings. Such results can be traced back to max-norm-based analyses of
value and policy iteration algorithms for γ-discounted MDPs [18], which prove that for
some error α at each iteration there exists a stationary policy within 2γ

(1−γ)2α of the op-
timum. This result led to the development of much research on convergence arguments
for γ-discounted MDPs and extensions including partially observable cases [17,21] and
decentralized stochastic control settings [10]. Closer to our performance guarantees,
[19,4] developed variations of value and policy iteration algorithms for computing non-
stationary policies in γ-discounted MDPs for which the performance bounds can be
significantly improved by a factor of 1

1−γ . Hence, Theorem 1 can be viewed as an ex-
tension of [19] to decentralized stochastic control settings. However, Theorem 2 differs
from previous performance bounds in many aspects. First, it is not derived from the
max-norm analysis; instead we measure state-estimation errors we made steps by steps,
which may result in tighter performance bounds. As a consequence, it does not fit within
the standard scheme of performance bounds. Nonetheless, it allows us to accurately es-
timate errors made in practice on all tested benchmarks.

In the future, we plan to extend the feature-based heuristic search value iteration
algorithm so as to learn how to dynamically assign approximation errors over time
steps in order to minimize the total computation time while providing the targeted er-
ror bound. Another avenue we plan to follow, relies on how to automatically find the
minimum number of clusters of private histories such that the artificial occupancy state
based on clusters is within δ of the original occupancy state.
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Abstract. Kernel selection is critical to kernel methods. Approximate kernel se-
lection is an emerging approach to alleviating the computational burdens of ker-
nel selection by introducing kernel matrix approximation. Theoretical problems
faced by approximate kernel selection are how kernel matrix approximation im-
pacts kernel selection and whether this impact can be ignored for large enough
examples. In this paper, we introduce the notion of approximate consistency for
kernel matrix approximation algorithm to tackle the theoretical problems and es-
tablish the preliminary foundations of approximate kernel selection. By analyzing
the approximate consistency of kernel matrix approximation algorithms, we can
answer the question that, under what conditions, and how, the approximate kernel
selection criterion converges to the accurate one. Taking two kernel selection cri-
teria as examples, we analyze the approximate consistency of Nyström approx-
imation and multilevel circulant matrix approximation. Finally, we empirically
verify our theoretical findings.

1 Introduction

Since learning is ill-posed and data by itself is not sufficient to find the solution [1],
some extra assumptions should be made to have a unique solution. The set of assump-
tions we make to have learning possible is called the inductive bias [21]. Model se-
lection is the process of choosing the inductive bias, which is fundamental to learning.
For kernel based learning, model selection involves the selection of the kernel function,
which determines the reproducing kernel Hilbert space (RKHS), and the regulariza-
tion parameter. The selection of regularization parameter has typically been solved by
means of cross validation, generalized cross validation [14], theoretical estimation [8]
or regularization path [15]. This paper focuses on the kernel selection problem, which
is a challenging and central problem in kernel based learning [20].

Kernel selection is to select the optimal kernel in a prescribed kernel set by mini-
mizing some kernel selection criterion that is usually defined via the estimate of the
expected error [3]. The estimate can be empirical or theoretical. The k-fold cross valida-
tion (CV) is a commonly used empirical estimate of the expected error and the extreme
form of cross validation, leave-one-out (LOO), gives an almost unbiased estimate of
the expected error [6]. However, CV and LOO require training the learning algorithm
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for every candidate kernel for several times, unavoidably bringing high computational
burdens. For the sake of efficiency, some approximate CV approaches are proposed,
such as, generalized cross validation (GCV)[14], generalized approximate cross vali-
dation (GACV) [27] and Bouligand influence function cross validation (BIFCV) [18].
Minimizing theoretical estimate bounds of the expected error is an alternative to kernel
selection. The commonly used theoretical estimates usually introduce some measures
of complexity [3], such as VC dimension [26], Rademacher complexity [4], maximal
discrepancy [3], radius-margin bound [6] and compression coefficient [19].

Approximate kernel selection is an emerging approach to alleviating the computa-
tional burdens of kernel selection for the large scale application by introducing kernel
matrix approximation into the kernel selection domain [9,10]. As pointed out in [6,5],
a kernel selection criterion is not required to be an unbiased estimate of the expected
error, instead the primary requirement is merely for the minimum of the kernel selection
criterion to provide a reliable indication of the minimum of the expected error in kernel
parameter space. Therefore, we argue that it is sufficient to calculate an approximate
criterion that can discriminate the optimal kernel from the candidates. Although the
idea of approximate kernel selection has been successfully applied in model selection
of the least squares support vector machine (LSSVM) [9,10], two theoretical problems
are still open: how kernel matrix approximation impacts the kernel selection criterion
and whether this impact can be ignored for large enough examples.

In this paper, we define the notion of approximate consistency for kernel matrix ap-
proximation algorithm to tackle the theoretical problems and establish the preliminary
foundations of approximate kernel selection. By analyzing the approximate consistency
of different kernel matrix approximation algorithms, we can answer the question that,
under what conditions, and how, the approximate kernel selection criterion converges
to the accurate one. It is worth noting that the approximate consistency is defined for
kernel matrix approximation algorithms and different from the classical “consistency”,
which is defined for learning algorithms. For two kernel selection criteria, we analyze
the approximate consistency of two typical kernel matrix approximation algorithms.
The results demonstrate the appositeness of kernel matrix approximation for kernel se-
lection in a hierarchical structure. Empirical studies are also conducted to verify our
theoretical findings on benchmark and synthetic data.

The rest of this paper is organized as follows. In Section 2, we introduce related work
and contributions of this paper. In Section 3, we define two kernel selection criteria and
simply demonstrate the approximate kernel selection scheme. Section 4 gives the defi-
nition of approximate consistency and further analyzes the approximate consistency of
several kernel matrix approximation algorithms. We empirically study the approximate
consistency in Section 5. Finally, we conclude in Section 6.

2 Related Work and Contributions

Kernel matrix approximation is an effective tool for reducing the computational bur-
dens of kernel based learning. In order to achieve linear complexity in l, where l is the
number of examples, approximations from subsets of columns are considered: Nyström
method [29], modified Nyström method [28], sparse greedy approximations [22] or



356 L. Ding and S. Liao

incomplete Cholesky decomposition [12]. These methods are all low-rank approxima-
tions and have time complexity O(p2l) for an approximation of rank p. Constructing
multilevel circulant matrix (MCM) to approximate kernel matrix is another effective
strategy [24,23,9], which allows the multi-dimensional fast Fourier transform (FFT) to
be utilized in solving learning algorithms with complexity of O(l log(l)).

Column sampling and MCM approximation have been theoretically analyzed a lot
[17,28,13,24,9]. However, the analysis provides a bound on the matrix approximation
error for an appropriate norm (typically spectral, Frobenius and trace norm), but this is
independent of specific learning problem and can not reveal the influence of kernel ma-
trix approximation on learning. Recent literatures [7,30,16,2,9] measure the influence
of kernel matrix approximation on hypothesis, but none of them reveal the influence
of kernel matrix approximation on kernel selection criterion. Approximate consistency
defined in this paper, for the first time, is to measure the difference between the accurate
criterion calculated by original kernel matrix and the approximate criterion calculated
by approximate kernel matrix, and further show the convergence of the difference for
large enough examples.

The approach of approximate model selection was first proposed in [9], in which
MCM approximation is adopted. Later, an extension to Nyström approximation for
approximate model selection was proposed in [10]. Approximate model selection is
a promising topic, especially for large scale applications. However, two fundamental
questions require answering: how different kernel matrix approximation algorithms in-
fluence the kernel selection criterion and whether the approximate criterion converges
to the accurate one. This paper provides answers to these questions.

3 Approximate Kernel Selection

In this section, we first present two kernel selection criteria and then give a brief intro-
duction of approximate kernel selection.

We use X to denote the input space and Y the output domain. Usually we will have
X ⊆ Rd, Y = {−1, 1} for binary classification and Y = R for regression. We as-
sume |y| ≤ M for any y ∈ Y , where M is a constant. The training set is denoted
by S = {(x1, y1) , . . . , (xl, yl)} ∈ (X × Y)l. The kernel κ considered in this pa-
per is a function from X × X to the field R such that for any finite set of inputs
{x1, . . . ,xl} ⊆ X , the matrix K = [κ(xi,xj)]

l
i,j=1 is symmetric and positive defi-

nite (SPD). K is the kernel matrix. The reproducing kernel Hilbert space (RKHS) Hκ

associated with the kernel κ can be defined as Hκ = span{κ(x, ·) : x ∈ X}, and
the inner product 〈·, ·〉Hκ on Hκ is determined by 〈κ(x, ·), κ(x′, ·)〉Hκ = κ(x,x′)
for x,x′ ∈ X . We use ‖K‖2, ‖K‖F and ‖K‖∗ to denote the spectral, Frobenius and
trace norm of K. We use λt(K) for t = 1, . . . , l to denote the eigenvalues of K in the
descending order.

Now we present two kernel selection criteria, which are both derived from the error
estimation. The first one is from the regularized empirical error functional

R(f) =
1

l

l∑
i=1

(f(xi)− yi)
2 + μ‖f‖2Hκ

, (1)
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where μ is the regularization parameter. We denote the target function as fκ and fκ =
argminf∈Hκ

R(f). Using the representer theorem, fκ can be represented as fκ =∑l
i=1 αiκ(xi, ·) with α = (α1, . . . , αl)

T = (K + μlI)−1y, where y = (y1 . . . , yl)
T

and I is the identity matrix. Denoting K + μlI = Kμ, we have ‖fκ‖2Hκ
= αTKα =

yTK−1
μ KK−1

μ y. We use bold fκ to denote (fκ(x1), . . . , fκ(xl))
T and hence fκ =

Kα = KK−1
μ y, which implies fκ − y = −μlK−1

μ y. Therefore,

R(fκ) =
1

l
(fκ − y)T(fκ − y) + μ‖fκ‖2Hκ

= μ2lyTK−1
μ K−1

μ y + μyTK−1
μ KK−1

μ y

= μyTK−1
μ y.

(2)

There is a bijection between the set of kernels on X and that of reproducing kernel
Hilbert spaces (RKHSs) on X . For different RKHSs Hκ, we may obtain different tar-
get functions fκ. Then from all target functions, we select the one making R(fκ) the
smallest and the corresponding kernel will be the optimal one. We denote

C1(K) = R(fκ) = μyTK−1
μ y. (3)

Supposing we are given a prescribed set of kernels K = {κ1, . . . , κn}, we can find the
optimal kernel as κ∗ = argminκ∈K C1(K).

We further present another kernel selection criterion, which is derived by the bias-
variance decomposition of in-sample prediction error estimation [2]. In most practical
cases, the observed output y = (y1, . . . , yl)

T is corrupted by some noises. We assume
yi = ẏi+ξi, 1 ≤ i ≤ l, where ẏ = [ẏ1, . . . ẏl]

T is the unknown true output and the noise
vector ξ = [ξ1, . . . , ξi]

T is a random vector with mean 0 and finite covariance matrix
C. fκ is a linear function of y, which is an estimate of ẏ. The expected prediction error
of fκ can be represented as

1

l
Eξ‖fκ − ẏ‖2 =

1

l
‖Eξfκ − ẏ‖2 + 1

l
trace(varξ(fκ))

=
1

l
‖KK−1

μ ẏ − ẏ‖2 + 1

l
trace(CK2K−2

μ )

=μ2lẏTK−2
μ ẏ︸ ︷︷ ︸

bias(K)

+
1

l
trace(CK2K−2

μ )︸ ︷︷ ︸
variance(K)

.

(4)

For C = σ2I with σ2 as variance, we denote

C2(K) = bias(K) + variance(K) = μ2lẏTK−2
μ ẏ +

σ2

l
trace(K2K−2

μ ). (5)

Now we simply review approximate kernel selection [9,10]. Supposing we have the
training data S, a prescribed kernel set K, a kernel selection criterion C(K) and a ker-
nel matrix approximation algorithm A, which takes the kernel matrix K as input and
generate the approximate matrix K̃, we can describe the approximate kernel selection
scheme as in Algorithm 1. The optimal kernel is selected by minimizing C(K̃).
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Algorithm 1. Approximate Kernel Selection Scheme

Input: S = {(xi, yi)}li=1, K, C(K), A;
Output: κ∗;
Initialize: Copt = ∞;
for each κ ∈ K do

Generate the kernel matrix K with κ and S ;

Calculate the approximate kernel matrix K̃ by A(K);

Calculate the approximate kernel selection criterion C(K̃) with K̃;
if C(K̃) ≤ Copt then

Copt = C(K̃);
κ∗ = κ;

return κ∗;

The computational cost for the criteria C1(K) and C2(K) is O(l3), which is pro-
hibitive for large scale data. The computation of C(K̃) could be much more efficient
than that of C(K) due to the specific structure of K̃. For Nyström approximation [10]
Woodbury formula could be used for calculating C(K̃) and for MCM approximation
[9] multi-dimensional fast Fourier transform (FFT) could be used. The computational
cost can even be reduced from O(l3) to O(l log(l))[9].

However, to demonstrate the rationality of approximate kernel selection, we need
analyze what the difference between C(K) and C(K̃) is and whether this difference
converges for large enough examples. In the next section, we will discuss these prob-
lems by defining the approximate consistency. At the end of this section, we introduce
two typical kernel matrix approximation algorithms that will be discussed in this paper:
Nyström approximation and MCM approximation.

The Nyström approximation generates a low rank approximation of K using a subset
of the columns of K. Suppose we randomly sample c columns of K.1 Let C denote the
l×cmatrix formed by theses columns. Let D be the c×c matrix consisting of the inter-
section of these c columns with the corresponding c rows of K. The Nyström approxi-
mation matrix is K̃ = CD†

kC
T ≈ K, where Dk is the optimal rank k approximation

to D and D†
k is the Moore-Penrose generalized inverse of Dk. We further introduce

the modified Nyström approximation [28], which shows tighter error bound than the

standard Nyström method. The approximation matrix is K̃ = C
(
C†K

(
C†)T)CT.

We now present the MCM approximation. We first briefly review the definition of
MCM.2 Let N denote the set of positive integers. For m ∈ N, let [m] = {0, 1, . . . ,m−
1}. For a fixed positive integer p, let m = (m0,m1, . . . ,mp−1) ∈ Np. We set
Πm = m0m1 . . .mp−1 and [m] = [m0] × [m1] × · · · × [mp−1]. A multilevel cir-
culant matrix [25] is defined recursively. A 1-level circulant matrix is an ordinary cir-
culant matrix. For any positive integer s, an (s + 1)-level circulant matrix is a block
circulant matrix whose blocks are s-level circulant matrices. According to [25], for
m ∈ Np, Am = [ai,j : i, j ∈ [m]] is a p-level circulant matrix if, for any i, j ∈ [m],

1 Different sampling distributions have been considered [11,31,17,13].
2 Detailed definition can be seen in [25,9].
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ai,j = ai0−j0(mod m0),...,ip−1−jp−1(mod mp−1). Am is determined by its first column
ai,0 with 0 = (0, . . . , 0) ∈ Rp. We write Am = circm[ai : i ∈ [m]], where ai = ai,0,
for i ∈ [m]. For the kernel function κ, we can construct MCM approximation of the
kernel matrix K following the procedure given in Equation (12)-(14) of [9].

4 Approximate Consistency

In this section, we give the definition of approximate consistency and analyze the ap-
proximate consistency of Nyström approximation and MCM approximation.

Definition 1. Suppose we are given a kernel selection criterion C(K), which is a func-
tional of the kernel matrix K, and a kernel matrix approximation algorithm A, which
takes the kernel matrix K as input and generate the approximate matrix K̃. We say the
kernel matrix approximation algorithm A is of strong approximate consistency for the
kernel selection criterion C(K), if

|C(K)− C(K̃)| ≤ ε(l), (6)

where liml→∞ ε(l)→ 0. We say A is of p-order approximate consistency for C(K) if

|C(K)− C(K̃)| ≤ ε(l), (7)

where liml→∞ ε(l)/lp → 0. There are two scenarios: ifA is a deterministic algorithm,
the approximate consistency is defined deterministically; ifA is a stochastic algorithm,
(6) or (7) is established under expectation or with high probability.

The approximate consistency reveals the convergence of the difference between the
approximate kernel selection criterion and the accurate one. When kernel matrix ap-
proximation was applied in the kernel selection problem, the approximate consistency
can be considered as a fundamental property of kernel matrix approximation algorithm
to test its appositeness for kernel selection.

4.1 Approximate Consistency of Nyström Approximation

In this section we analyze the approximate consistency of Nyström approximation for
the kernel selection criterion C1(K).

Although there are many different versions of Nyström approximation, we concen-
trate on those with (1 + ε) relative-error bounds, where ε does not depend on l. Two
(1+ε) relative-error bounds have been reported for the standard Nyström [13] and mod-
ified Nyström method [28]. The bound for the standard Nyström method [13] states that
for a failure probability δ ∈ (0, 1] and an approximation factor ε ∈ (0, 1],

‖K− K̃‖∗ ≤ (1 + ε)‖K−Kk‖∗ (8)

holds with probability at least 0.6 − δ. The bound for the modified Nyström method
[28] states that,

E
(
‖K− K̃‖F

)
≤ (1 + ε)‖K−Kk‖F. (9)
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Before stating the main theorem of this section, we introduce two assumptions.

Assumption 1. For ρ ∈ (0, 1/2) and the rank parameter k ≤ c� l, λk(K) = Ω(l/cρ)
and λk+1(K) = O(l/c1−ρ), where ρ is to characterize the eigengap.

Assumption 2. We always assume that the rank parameter k is a constant and the sam-
pling size c is a small ratio r of l.

Assumption 1 states the large eigengap in the spectrum of kernel matrix K, i.e.,
the first few eigenvalues of the full kernel matrix are much larger than the remaining
eigenvalues. This assumption has been adopted in [30,16] and empirically tested in [30].
Assumption 2 is one of common settings for Nyström approximation.

The following theorem shows the approximate consistency of the standard Nyström
approximation using leverage score sampling [13]. The proof is given in Appendix A.

Theorem 1. For the kernel selection criterion C1(K) defined in (3), if Assumption 1
and 2 hold, we have for δ ∈ (0, 1] and ε ∈ (0, 1],

|C1(K)− C1(K̃)| ≤ ε(l) (10)

holds with probability at least 0.6−δ, where K̃ is produced by the standard Nyström ap-

proximation using leverage score sampling, ε(l) = τM2(1+ε)
μr1−ρl1−ρ (l− k) for some constant

τ and liml→∞ ε(l)/l
1
2 → 0.

Theorem 1 demonstrates the 1
2 -order approximate consistency of the standard Nyström

approximation for C1(K). The strong approximate consistency has not been estab-
lished. This is because the trace norm bound shown in (8), which is, to the best of
our knowledge, the tightest bound for the standard Nyström approximation, is still not
tight enough. If (1 + ε) relative-error bound for spectral norm can be proved, we can
derive the strong approximate consistency.

The following theorem shows the approximate consistency of the modified Nyström
approximation [28]. The proof can be seen in Appendix A.

Theorem 2. For the kernel selection criterion C1(K) defined in (3), if Assumption 1
and 2 hold, we have

E
(
|C1(K)− C1(K̃)|

)
≤ ε(l) (11)

where K̃ is produced by the modified Nyström approximation, ε(l) = τM2(1+ε)
μr1−ρl1−ρ

√
l − k

for some constant τ and liml→∞ ε(l)→ 0.

Theorem 2 demonstrates the strong approximate consistency of the modified Nyström
approximation for C1(K).

4.2 Approximate Consistency of MCM Approximation

In this section, we analyze the approximate consistency of MCM approximation for the
criteria C1(K) and C2(K).

We use Um to denote the MCM that approximates the kernel matrix K. To facilitate
the analysis, we will rewrite the kernel matrix K in multilevel notation. For a given
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m ∈ Np, we assume the number of elements in S is Πm, that is, |S| = l = Πm. We
relabel the elements in S using multi-index, S = {(xi, yi) : i ∈ [m]}. In this notation,
we rewrite K as Km = [K(‖xi − xj‖2) : i, j ∈ [m]].3

The following theorem demonstrates the strong approximate consistency of MCM
approximation for the criterion C1(K). The proof is provided in Appendix B.

Theorem 3. If the following assumptions:

(H1) there exist positive constants c0 and β such that |K(s)−K(t)| ≤ c0|s− t|β for
s, t ∈ R;

(H2) there exists a positive constant h such that hm,j ≥ h for m ∈ Np and j ∈ [p];
(H3) there exist positive constants λ1 and c1 such that |K(s)| ≤ c1e

−λ1|s| for s ∈ R;
(H4) there exist positive constants λ2 and c2 such that for any m ∈ Np,

i, j ∈ [m], |‖xi − xj‖2 − ‖[(is − js)hm,s : s ∈ [p]]‖2| ≤
c2
∑

s∈[p]

(
e−λ2δms (is) + e−λ2δms (js)

)
, where δm(j) = m

2 −|
m
2 −j| for m ∈ N

and j ∈ [m];

hold and in addition, there exist positive constants c3 and r1 such that for any m ∈ Np

and i ∈ [m], |yi| ≤ c3e
−r1νm(i), where νm(i) =

∥∥m
2 − i

∥∥
2
, then we have

lim
m→∞

|C1(Km)− C1(Um)| = 0, (12)

where m→∞ means all of its components go to infinity.

For the criterion C2(K), we first give the following theorem. The detailed proof can
be seen in Appendix B.

Theorem 4. If the assumptions (H1), (H2), (H3) and (H4) in Theorem 3 hold, then
there exists a positive constant c such that

|variance(Km)− variance(Um)| ≤ cσ2(mmin)
−1, (13)

where mmin = min{ms : s ∈ [p]}. If in addition, there exist positive constants c3
and r1 such that for any m ∈ Np and i ∈ [m], |ẏi| ≤ c3e

−r1νm(i), where νm(i) =∥∥m
2 − i

∥∥
2
, then there exist positive constants c and r such that for any m ∈ Np

|bias(Km)− bias(Um)| ≤ cμ2Π3/2
m e−rmmin. (14)

By Theorem 4, we can obtain the following theorem.

Theorem 5. If the assumptions (H1), (H2), (H3) and (H4) in Theorem 3 hold, we have

lim
m→∞

|C2(Km)− C2(Um)| = 0. (15)

Theorem 5 shows the strong approximate consistency of MCM approximation for
the criterion C2(K).

3 There exists a real-valued function K ∈ L1(R) on X such that K(‖x − x′‖2) = κ(x,x′)
for all x,x′ ∈ X .
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5 Empirical Studies

In this section, we empirically study the approximate consistency of different kernel
matrix approximation algorithms. We compare 6 approximation algorithms, including
optimal rank k approximation (OptApp), Nyström approximation with uniform sam-
pling (Uniform) [17], column norm based sampling (ColNorm) [11], and leverage score
based sampling (Leverage) [13], modified Nyström approximation (Modified)4 [28] and
MCM approximation (MCM) [9].

We set the rank parameter k = 20 and the sampling size c = 0.2l. To avoid
the randomness, we run all Nyström methods 20 times. We use Gaussian kernels
κ(x,x′) = exp

(
−γ‖x− x′‖22

)
with different width γ as our candidate kernel set

K. This paper does not focus on tuning the regularization parameter μ, so we just set
μ = 0.005. Since the regularized kernel matrix Kμ = K + μlI, μ = 0.005 is not too
small.

We conduct experiments on benchmark and synthetic data. The benchmark data sets
are 12 public available data sets from UCI repository5 and LIBSVM Data:6 7 data
sets for classification and 5 data sets for regression. To evaluate the evolution of the
approximate consistency as the number of examples increases, we also generate the
synthetic data. The target function is

f(x) =
1

10

(
‖x‖2 + 2e−8( 4

3π−‖x‖2)
2

− 2e−8( 1
2π−‖x‖2)

2

− e−8( 3
2π−‖x‖2)

2
)
. (16)

The points are {(xj, yj), j ∈ [m]} ∈ R2×R for m = (10, 10), (20, 20), (30, 30). The
sampled inputs xj is centered at 0 with fixed difference of any two successive numbers
0.1, and yj = f(xj) + ξ, where the noise ξ is normally distributed with mean 0 and
standard deviation 0.01.

For each γ, we generate the kernel matrix K and then use different approximation
algorithms to produce the approximate kernel matrices K̃. We compare the values of
C(K) and C(K̃). The results for benchmark data7 are shown in Fig. 1 and Fig. 2. We
can find that for most data sets the curves of the accurate and approximate criteria are
close, and for the rest of data sets, although the values of the criteria are different, the
lowest points of the curves are close, which means that the optimal kernels selected
by minimizing the accurate and approximate criteria are close. Modified Nyström ap-
proximation shows better approximate consistency than the standard Nyström approx-
imation, which is in accord with the theoretical results. The results for synthetic data
are given in Fig. 3 to demonstrate the evolution of the approximate consistency as the
number of examples increases. We can find that the more the number of examples is,
the closer the curves of accurate and approximate criteria are.

4 We only adopt uniform sampling for modified Nyström approximation.
5 http://www.ics.uci.edu/˜mlearn/MLRepository.html
6 http://www.csie.ntu.edu.tw/˜cjlin/libsvm
7 To satisfy the assumption (H4) in Theorem 3, we only conduct experiments on synthetic data

for MCM approximation.

http://www.ics.uci.edu/~mlearn/MLRepository.html
http://www.csie.ntu.edu.tw/~cjlin/libsvm
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Fig. 1. Approximate consistency of different kernel matrix approximation algorithms for C1(K)
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Fig. 2. Approximate consistency of different kernel matrix approximation algorithms for C2(K)
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Fig. 3. Evolution of approximate consistency as the number of examples increases. The top 3
subfigures are for C1(K) with m = (10, 10), (20, 20), (30, 30) and the bottom 3 are for C2(K).

6 Conclusion

In this paper, we defined the notion of approximate consistency for kernel matrix ap-
proximation algorithms, which tackles the theoretical problems faced by approximate
kernel selection and establishes the preliminary foundations of approximate kernel se-
lection. When kernel matrix approximation was applied in the kernel selection problem,
approximate consistency can be considered as a fundamental property of kernel matrix
approximation algorithm to test its appositeness for kernel selection. We have theoret-
ically and empirically studied the approximate consistency of different kernel matrix
approximation algorithms. To complete the foundations of approximate kernel selec-
tion, we will give the notion of hypothesis consistency, that is, the consistency of ap-
proximate optimal hypothesis and accurate optimal hypothesis, which are respectively
learned using approximate and accurate optimal selected kernels, for future work.

Acknowledgments. The work is supported in part by the National Natural Science
Foundation of China under grant No. 61170019.

Appendix A: Proof of Theorem 1 and Theorem 2

The proofs given in this section are partly based on the results in [7].
Let K̃ = A(K) be the produced approximate kernel matrix. We need to bound

C1(K)− C1(K̃) =μyT(K+ μlI)−1y − μyT(K̃+ μlI)−1y

=− μyT[(K+ μlI)−1(K− K̃)(K̃+ μlI)−1]y,
(17)
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where the second equality follows that, for any invertible matrices A, B, the equality
A−1 −B−1 = −A−1(A−B)B−1 holds. Then

|C1(K)− C1(K̃)| ≤μ‖yT‖‖(K+ μlI)−1‖2‖K− K̃‖2‖(K̃+ μlI)−1‖2‖y‖

≤ μ‖yT‖‖K− K̃‖2‖y‖
λmin(K+ μlI)λmin(K̃+ μlI)

≤ 1

μl2
‖yT‖‖K− K̃‖2‖y‖,

(18)

where λmin(M) denotes the smallest eigenvalue of M. Since ‖y‖ ≤
√
lM , we have

|C1(K)− C1(K̃)| ≤ M2

μl
‖K− K̃‖2. (19)

Now we give the proofs of Theorem 1 and Theorem 2.

Proof (Theorem 1). Since ‖K− K̃‖2 ≤ ‖K− K̃‖∗, substituting (8) into (19), we have
for δ ∈ (0, 1] and ε ∈ (0, 1],

|C1(K)− C1(K̃)| ≤ M2

μl
(1 + ε)‖K−Kk‖∗ (20)

holds with probability at least 0.6 − δ. We know that ‖K −Kk‖∗ =
∑l

t=k+1 λt(K).
Therefore ‖K − Kk‖∗ ≤ (l − k)λk+1(K). Combining Assumption 1 and 2, we can
obtain

|C1(K)− C1(K̃)| ≤ ε(l) (21)

with ε(l) = O
(

M2(1+ε)
μr1−ρl1−ρ (l − k)

)
and liml→∞ ε(l)/l

1
2 → 0, since ρ < 1

2 .

Proof (Theorem 2). Following the similar procedure as the proof of Theorem 1, we can
obtain

E
(
|C1(K)− C1(K̃)|

)
≤ ε(l) (22)

with ε(l) = O
(

M2(1+ε)
μr1−ρl1−ρ

√
l − k

)
and liml→∞ ε(l) = 0, since ρ < 1

2 .

Appendix B: Proof of Theorem 3 and Theorem 4

The proofs given in this section are mainly based on the results in [24,23].
We first introduce the “distances” of an entry in a multilevel matrix to its diagonal, to

its upper right corner and to its lower left corner at each level [24]. For t ∈ {0, 1},m ∈
N, i, j ∈ [m], we set dm(t, i, j) := t|i−j|+(1−t)(m−|i−j|−1) and for t ∈ {0, 1}p,
m ∈ Np, i, j ∈ [m], let dm(t, i, j) := [dms(ts, is, js) : s ∈ [p]]. For any s ∈ [p],
dms(1, is, js) is the distance of the entry at the position (is, js) to the diagonal at level
s and dms(0, is, js) is the distance to the upper right and lower left corners at level s.
For any m ∈ Np, i, j ∈ Nm and r > 0, let Er,p,m(i, j) :=

∑
t∈{0,1}p e−r‖dm(t,i,j)‖2 .

In what follows, we write A = {Am : m ∈ Np}, A−1 = {A−1
m : m ∈ Np},

B = {Bm : m ∈ Np} andAB = {AmBm : m ∈ Np}.
We introduce two definitions about a class of matrices whose entries have an expo-

nential decay property [24].
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Definition 2. A sequence of positive definite matrices A belongs to Er for a positive
constant r if it satisfies the following conditions: (i) there exists a positive constant κ
such that ‖A−1

m ‖2 ≤ κ for any m ∈ Np; (ii) there exists a positive constant c such that
for any m ∈ Np and i, j ∈ [m], |ai,j | ≤ cEr,p,m(i, j).

Definition 3. We say A and B are asymptotically equivalent in Er if A,B ∈ Er and
there exists a positive constant c such that for any m ∈ Np and i, j ∈ [m], |ai,j −
bi,j| ≤ c

∑
s∈[p](e

−rδms (is) + e−rδms (js)), where δm(j) = m
2 −
∣∣m
2 − j

∣∣, for m ∈ N,
j ∈ [m]. We use the notationA ∼Er B.

We further introduce two propositions and a lemma [23].

Proposition 1. If A,B ∈ Er, thenAB ∈ Er0 for any r0 < r.

Proposition 2. If A ∼Er B, then A−1 ∼Er′ B−1 for any r′ < r.

Lemma 1. If A ∼Er B and D ∈ Er, then DA ∼Er1
DB and AD ∼Er1

BD for some
r1 < r.

Using above results [23], we prove the following three propositions.

Proposition 3. If A ∼Er B, then A2 ∼Er′ B2, for some r′ < r.

Proof. From Proposition 1, we have A2 = AA, B2 = BB, and AB are in Er0 for any
r0 < r. From Lemma 1, we can obtainA2 ∼Er1

AB for some r1 < r andAB ∼Er2
B2

for some r2 < r. We take r′ = min{r1, r2}. According to Definition 3 and triangular
inequality, we haveA2 ∼Er′ B2.

Proposition 4. If A ∼Er1
B and C ∼Er2

D, then AC ∼Er0
BD, for some r0 <

min{r1, r2}.

Proposition 5. If A ∈ Er1 and B ∈ Er2 then AB ∈ Er0 for any r0 < min{r1, r2}.

The proof of Proposition 5 is similar to Proposition 1. Now we prove Proposition 4.

Proof (Proposition 4). Following Lemma 1 and Proposition 5, we have AC ∼Er3
BC

for some r3 < min{r1, r2} and BC ∼Er4
BD for some r4 < min{r1, r2}. Therefore,

AC ∼Er0
BD for some r0 = min{r3, r4} < min{r1, r2}.

Now we prove Theorem 3 and Theorem 4.

Proof (Theorem 3). We writeKμ = {Km+μlIm : m ∈ Np} andUμ = {Um+μlIm :
m ∈ Np}. Theorem 5.2.3 in [23] states that if the assumptions (H1), (H2), (H3) and
(H4) in Theorem 3 hold,Kμ ∼Er Uμ, where r = min{λ1h, λ2β}. Combining Theorem
5.2.3 in [23] with Theorem 4.2.2 in [23], we can obtain Theorem 3.

Proof (Theorem 4). We denote K−q
μ = {(Km + μlIm)−q : m ∈ Np} and U−q

μ =
{(Um + μlIm)−q : m ∈ Np} for q = 1, 2, . . . . According to Proposition 3 and
Theorem 5.2.3 in [23], we haveK−2

μ ∼Er′ U−2
μ , for some r′ < r. Based on Proposition

4.2.1 in [23], we have |bias(Km) − bias(Um)| ≤ cμ2Π
3/2
m e−r′mmin , which is the
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bound for bias term in Theorem 2. Since the kernel matrix considered in this paper
is assumed to be SPD, the corresponding multilevel circulant matrix is also positive
definite. We have the matrix sets K = {Km : m ∈ Np} and U = {Um : m ∈
Np} are asymptotically equivalent. Therefore, according to Proposition 3 and 4, we
have K2K−2

μ ∼Er0
U2U−2

μ for some r0 < r′. By Proposition 4.3.2 of [23], we can
obtain |trace(K2

m(Km+μlIm)−2)−trace(U2
m(Um+μlIm)−2)| ≤ cΠm(mmin)

−1.
Therefore, we have |variance(Km) − variance(Um)| ≤ cσ2(mmin)

−1, which is the
bound for variance term in Theorem 4.
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Abstract. The goal of nowcasting, or “predicting the present,” is to
estimate up-to-date values for a time series whose actual observations
are available only with a delay. Methods for this task leverage obser-
vations of correlated time series to estimate values of the target series.
This paper introduces a nowcasting technique called FDR (false discov-
ery reduction) that combines tractable variable selection with a time
series model trained using a Kalman filter. The FDR method guarantees
that all variables selected have statistically significant predictive power.
We apply the method to sales figures provided by the United States
census bureau, and to a consumer sentiment index. As side data, the
experiments use time series from Google Trends of the volumes of search
queries. In total, there are 39,059 potential correlated time series. We
compare results from the FDR method to those from several baseline
methods. The new method outperforms the baselines and achieves com-
parable performance to a state-of-the-art nowcasting technique on the
consumer sentiment time series, while allowing variable selection from
over 250 times as many side data series.

Keywords: Nowcasting, time series analysis, Kalman filter, feature se-
lection, economic data, supervised learning, forecasting.

1 Introduction

Many important measurements are published on a periodic basis. For example,
the United States government releases GDP figures every quarter, and unem-
ployment figures every month. These data are published with a lag; the employ-
ment rate for March of 2014 was released in April of 2014. Even once published,
many of these time series are still subject to later revisions as more information
becomes known.

Because of these issues, such data do not provide an up-to-date estimate
of the statistic they are tracking. The goal of nowcasting, which is also called
“predicting the present,” is to provide an up-to-date estimate of the current value
of a time series. Nowcasting methods employ correlated data that are real-time,
or more frequently updated than the desired statistic. The experiments in this
paper use Google Trends data, which track the daily volume of search queries
by geographic region. These data are described further in Section 2. We use a
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c© Springer-Verlag Berlin Heidelberg 2014



Nowcasting with Numerous Candidate Predictors 371

forward selection algorithm to select relevant Google Trends queries. We then
combine the selected auxiliary time series with a random walk model of the target
series. The Kalman filter is used both for training and for making predictions (or
more correctly, “nowcasts”) of the target series. We call the proposed method
FDR, because the variable selection process aims to reduce the false discovery
rate and, consequently, to reduce overfitting. The computational tractability
of the FDR method allows variable selection from a large number of potential
side variables, which reduces the need for choosing a small set of potentially
predictive auxiliary time series by hand, and thereby also allows for the discovery
of unexpected correlations.

2 Google Trends Data

Google Trends data have been shown to be effective when used as predictors for
other time series, such as financial time series [4] and disease outbreaks [3]. For
example, searches about flu remedies and immunization have been shown to be
predictive of the number of people who currently have the flu [6], and Google has
has a website called Flu Trends which gives nowcasts for flu activity in different
regions based on Google query volumes. In recent years, however, Google Flu
Trends has come under criticism for overestimating peak flu levels [2].

Google Trends tracks daily query volume, but only makes data from the past
90 days available for download by outsiders. Weekly data are available starting
in January 2004. Volume is calculated as a percentage of all queries from a given
region that match the given query description during the time period. The entire
time series is then normalized to fall between 0 and 100. Although Google Trends
allows comparing the relative volumes of individual searches, it does not provide
a way to download a collection of data series that preserves the relative volumes
of queries. We therefore use only individually normalized series in this paper.

In addition to providing volumes of individual queries, Google Trends orga-
nizes queries into a hierarchical structure of categories. For example, Arts &

Entertainment is a top-level category, which includes subcategories Movies,
Comics & Animation, and Music & Audio, each of which has its own subcate-
gories. There are 25 categories at the highest level and 278 second-level subcat-
egories, 120 of which are leaf nodes. The longest path in the hierarchical tree is
of length seven. Google Trends also supports filtering query volume by region.
For example, if we were interested in the number of people who have flu in the
US, we can request the number of flu searches that originated in the US.

3 Time Series Model

We model the target time series using a random walk model. Let yt be a value
in the time series we would like to nowcast, and let ŷt be the estimate of yt
according to the model. The estimate is based on a combination of a hidden
variable μt and multiple auxiliary data series, xt, which are chosen by variable
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selection as explained in Section 6. The regression coefficients at time t are the
vector βt. The model is

ŷt = μt + βT
t xt(

μt

βt

)
=

(
μt−1

βt−1

)
+

(
vt
wt

)
vt ∼ N (0, v)

wt ∼ N (0,W ).

(1)

The hidden variable μt is called the level; it is allowed to change over time
based on a random process. The changes vt in its value are called innovation
steps rather than error terms, because they are considered part of the model.
The initial regression coefficients β0 are learned as described in Section 5. These
coefficients change over time via innovation steps with covarianceW . They need
not be thought of as hidden time series variables, but could instead be fixed.
However, we find that updating βt yields slightly better results.

We choose this time series model because it incorporates auxiliary data obser-
vations and works well with the Kalman filter. Vector autoregression methods
such as that in [5] could also be used to model a nowcasting problem. This would
involve combining a time series and the side data as a single vector. However,
this would mean we would have to predict the side data as well, which is not the
goal of nowcasting. Online learning methods are another candidate for nowcast-
ing time series models. The algorithm described in [1] requires fewer constraints
on the innovation step behavior and loss functions used. However, our model
performs well even with the stricter constraints, and the online learning method
cited is a vector autoregressive model with the added complexity of modeling
the auxiliary data.

If the time series has a trend, our model can have a hidden trend variable in
addition to the level μt, as in [13]. Although the experiments in this paper use se-
ries with a noticeable trend component, we have found that the simpler random
walk model works just as well. Other time series models exist to deal with sea-
sonal data, but for our experiments we deseasonalize the data in preprocessing,
as described in Section 7.

4 The Kalman Filter for Nowcasting

The Kalman filter, originally described in [9], is used to find the maximum-
likelihood sequence of values of a set of hidden continuous time series. It assumes
that hidden variables νt are updated according to a recursive process governed
by a state transition matrix Ft and process noise ωt, as given by the equation
νt = Ftνt−1 + ωt. The hidden variables determine the observable variables yt

based on the linear model yt = Htνt + et, where Ht is the observation model
matrix and et is the observation noise. The Kalman filter assumes that the
process and observation noise are both normally distributed: ωt ∼ N (0, Ωt) and
et ∼ N (0, Et).
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Given the assumptions about the noise distributions, the Kalman filter finds
the maximum-likelihood estimate of the hidden variables νt based on the obser-
vations yt. The Kalman filter is an inference algorithm moving forward in time
that can be divided into two steps, a predict step and and update step:

Predict step:

ν̂t = Ftνt−1

ŷt = Htν̂t

P̂t = FtPt−1F
T
t +Ωt

Update step:

rt = yt − ŷt

St = HtP̂tH
T
t + Et

Kt = P̂tH
T
t S

−1
t

νt = ν̂t +Ktrt

Pt = (I −KtHt)P̂t.

The Pt matrices represent the error covariance and Kt is the optimal Kalman
gain matrix. Symbols with hats represent predictions before the actual observa-
tion yt is available. Symbols without hats represent updated values after yt is
available. This is a slight abuse of notation, since the true values of variables are
never really known, except for the observations y. The hyperparameters of the
Kalman filter are the noise covariance matrices Ωt and Et, and base recursion
values ν0 and P0. The matrices Ft and Ht are usually fixed based on knowledge
of the time series process.

Kalman filters have been applied before to economic time series, for example
in [11], where the authors apply a Kalman filter to determine the “true price”
of an asset given its price series. In their model, the true price of an asset
follows a random walk model while the reported or actual price is subject to
observational noise. In this case, the values ωt represent the innovation steps
taken by the random walk, and are thus not considered process noise but part
of the actual process update. This perspective is consistent with our time series
models discussed in Section 3.

In order to apply the Kalman filter model from above to the random walk
time series model of Equation (1), we make the following variable definitions:

νt = [μt βt]
T

yt = yt

Ft = I

Ht = [1 xT
t ]

Ωt =

(
v 0T

0 W

)
= diag([v, vβ, . . . , vβ]

T )

Et = σ2

et = εt.
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Note that yt, σ
2, εt, and vβ are scalars, and that the covariance matrix Ωt is

diagonal. The reason for using this Ωt is described in more detail in Section 5.
These substitutions result in the following predict and update steps:

Predict step:

[μ̂t β̂
T

t ] = [μt−1 βT
t−1]

ŷt = [1 xT
t ][μ̂t β̂

T

t ]
T = μ̂t + β̂

T

t xt

P̂t = Pt−1 + diag([v, vβ, ..., vβ]
T )

Update step:

rt = yt − ŷt

st = [1 xT
t ]P̂t[1 xT

t ]
T + σ2

kt =
1

st
P̂t[1 xT

t ]
T

[μt β
T
t ]

T = [μ̂t β̂
T

t ]
T + rtkt

Pt = (I − kt[1 xT
t ])P̂t.

(2)

In addition to learning the hidden time series level, the Kalman filter also gives
a natural means of performing a nowcast: the value ŷt in the predict step is the
estimated current value of the time series.

5 Training the Model

The method introduced here for training a time series model with auxiliary
data involves two uses of a Kalman filter: one to compute initial regression
coefficients β0, and then one to train the full time series model in Equation (2).
To perform training, we split the time series into three periods: a training period,
a validation period, and a testing period. More detail is in Section 7. The training
period is used to determine β0, and the validation period is used to determine
hyperparameters σ2, v and vβ. The training in this section occurs after side data
variables have been selected. Variable selection is described in detail in Section 6.

First, we train a random walk model without side data using the Kalman
filter. The model is

ỹt = μt

μt = μt−1 + vt

vt ∼ N (0, v).

(3)

In order to train this model, we simplify the predict and update steps of Equa-
tion (2) by removing the side data xt and regression coefficients βt. The ỹt no-
tation indicates an estimate from the model that does not include side data. We
apply the Kalman filter to obtain a series of estimates ỹt for all t in the training
period. Then we compute the corresponding residual r̃t = yt − ỹt. Equation (1)
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gives ŷt = μt +βT
t xt and the Kalman filter gives yt = ŷt + εt. If we constrain μt

to be the same as in Equation (1) we can solve for r̃t as

r̃t = βT
t xt + εt (4)

where εt = yt − ŷt is the error of the complete model. We assume constant
regression coefficients over the training period, βt = β for all t in the training
period, and estimate β by performing a linear regression of the residuals r̃t on
the side data after variable selection.1

After determining β0, we run the Kalman filter to produce a set of predic-
tions ŷt across the training and validation periods. We then compute the mean
absolute error of logarithms, described in Section 7, over the validation period to
obtain an estimate of the nowcasting performance. The process of training the
parameters β0 and computing the validation error can be repeated with different
assignments to hyperparameters σ2, v, and vβ. We choose the hyperparameters
and resulting initial coefficients β0 that yield the lowest error on the validation
period.

In order to simplify the search for hyperparameter values, we assume that the
error variance σ2 remains fixed whether performing a simple random walk or
training the full model with side data. That is, we assume r̃t ∼ N (0, σ2) and
εt ∼ N (0, σ2). We find that this does not greatly affect the final results. Again,
for simplicity, we choose P0 = I. It is important to note that the innovation
steps vt and wt are outputs of the Kalman filter, not parameters.

The form of the innovation step covariance matrix,

Ωt =

(
v 0T

0 W

)
= diag([v, vβ, ..., vβ]

T ), (5)

also simplifies the search for hyperparameters. The time series model in Equa-
tion (1) already assumes that the innovation steps for the level are independent
of the innovation steps for the regression coefficients. We additionally assume
that the innovation step for each regression coefficient is independent of the
others, and that each has the same variance.

The variable selection procedure reduces the chance that auxiliary variables
are highly correlated because it sweeps out each chosen predictor from the other
variables as they are chosen (Section 6). Therefore a diagonal covariance matrix
is a reasonable approximation. Each side data variable is measured on a similar
normalized scale, as described in Section 2, so assuming equal variance is also
reasonable. Experiments give good results even with these constraints.

6 FDR Variable Selection

Before we can train the time series model (Section 5), we use false discovery
reduction (FDR) variable selection to choose a subset of the possible side data

1 If one instead solved for linear regression coefficients of y on X, the coefficients
would constitute a standard linear model, and would not correspond to the βt in
Equation (1).
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variables to use in the model. FDR variable selection is a modified version of the
method of [7]. That paper performs variable selection over a variety of different
types of potential side data predictors, including binary and sparse variables, to
predict bankruptcy. Because we are nowcasting a time series using other time
series as side data, calculations for p-values and variances are different.

Detailed pseudocode of the FDR variable selection is Algorithm 1. The bar
notation X̄ and x̄t indicates the full set of potential side data variables, before
variable selection. First, the algorithm iterates through all variables, and creates
a set Vq of those variables that have a p-value ≤ α/p where α is a significance
parameter and p represents the number of potential predictors. Of the significant
variables, the algorithm adds the variable z that maximizes SS(z), where SS(z)
can be thought of as a guaranteed reduction in residual sum of squares based
on a confidence interval. This idea is similar to that used in upper confidence
bound search [10].

After a variable is added, we repeat the process to select additional variables.
Each time a new predictor is added to the side data X , we sweep all the cur-
rent predictors from y and from each remaining potential predictor z using the
projection matrix H . In addition, each time the model grows, we increase the
significance threshold to αq/p, where q is the cardinality of the current model.

For the experimental results reported in this paper, we choose α = 0.005,
which performs slightly better than α = 0.05 and α = 0.2 in experiments.
Although this threshold appears strict, we find that the number of variables
selected, and the specific variables selected do not change much for these different
values of α. The reason is that the cardinality of Vq decreases quickly as variables
are added to the model, so once selected variables are swept away, few correlated
variables remain. The similarity of selected variables for different values of α
suggests that the highly predictive variables tend to be the same ones that
minimize SS(z).

In Algorithm 1, the variables that are chosen are those that are predictive for
linear regression. Linear regression can be performed over different dependent-
independent variable combinations. The simple case is using raw side data X̄
as a predictor for time series y, but more complicated models can be used. In
particular, one can use the changes x̄t − x̄t−1 in predictors to predict changes ẏ
in the target time series. Or, one can use the side data X̄ to predict the residuals
r̃t after applying the Kalman filter without side data. This latter method has
the theoretical advantage of optimizing the same loss function as that used to
compute regression coefficients (Equation 4). However in experiments, we find
that the simplest approach gives similar results.

Instead of separating variable selection and training, a sparse prior on β̂ could
be used to perform variable selection and to train β̂ simultaneously. One such
method is given in [14]. These methods are more computationally expensive,
and it is more difficult to determine how the sparsity parameter corresponds to
statistical significance. The same comments apply to general-purpose feature se-
lection methods such as QPFS [12]. Another greedy variable selection algorithm
that may be promising for nowcasting is orthogonal matching pursuit [8].
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Algorithm 1. FDR variable selection

Input: Training period time steps Ttrain = {1, . . . , n}
Input: Complete side data, x̄t ∈ Rp, ∀t ∈ Ttrain

Input: Dependent variable time series y ∈ Rn

Input: Significance parameter α
Set X = (1, . . . , 1)T , the set of current predictors, initially a n× 1 matrix
Set M = {}
for q = 1, ..., p do

H = X(XTX)−1XT . H projects y to least-squares prediction ŷ for current X.
yH = (I −H)y, the residuals between y and current least-squares prediction Hy
df = n− q, the degrees of freedom
Set Vq = {}
p∗ = αq

p
, the maximum two-sided p-value considered significant

Set t∗ such that 1−F (df, t∗) = p∗/2, where F (df, t) is the CDF of the t distribution
for each side variable zi do

ziH = (I −H)zi, the variable with chosen predictors removed
β̂i = zTiHyH/zTiHziH , the least-squares regression slope between ziH and yH

ti = β̂i/se(β̂i), where se(β̂i) is the standard error of the slope
pi = 2(1− F (df, ti)), the corresponding two-sided p-value
if pi ≤ p∗ then Set Vq = Vq ∪ {i}

end for
if Vq = {} then break, search found no additional significant predictors
Choose i∗ = argmax

i∈Vq

SS(zi), where SS(zi) = (zTiHziH)(|β̂i| − t∗se(β̂i))
2

Set X =
(
X zi∗

)
Set M = M ∪ {i∗}

end for
return X =

(
x1 x2 . . . xn

)T
where the xt are the new side data vectors

Variable selection may also be repeated after a certain time interval in order
to deal with time series whose predictors change over time. Our experiments,
however, achieve good results with a single round of variable selection.

7 Design of Experiments

After using the Kalman filter to compute a series of predictions ŷt for all t in the
test period, we can compute any error measure between these predictions and
the corresponding observed yt. Although other measures such as mean squared
error are also reasonable, we focus on mean absolute error of logarithms (MAEL).
This measure is approximately equal to the mean absolute proportional error,
which gives more interpretable results than MSE, since an average error of 8%
is more meaningful than a MSE of 1000. MAEL is calculated as∑

t∈Ttest

| log ŷt − log yt|

where Ttest is the testing period. We multiply MAEL values by 100 and present
them as percentages.
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Google Trends provides weekly data starting in January 2004. We choose to
use a training period of three years and a validation period of three years. This
allows for a test period of almost four years, depending on the experiment. The
precise dates are given in the following table. The end of each test period is given
in the corresponding experiment in Section 8.

Period Time range
Training period February 2004 - January 2007
Validation period February 2007 - January 2010
Testing period February 2010 -

7.1 Preprocessing Auxiliary Time Series

The times series available from Google Trends are query volumes by week. The
experiments are to nowcast monthly time series, so first we create monthly aux-
iliary data series by taking the mean of each query category over the corre-
sponding month, ensuring that a week included in this monthly average never
overlaps with the following month. Next, we remove seasonality from each of
the 278 second-level Google Trends categories using a stable filter based on code
from MathWorks.2 This filter first subtracts the time series average over a one
year moving window, and then computes a seasonal component on the remain-
ing time series. The seasonal component is a zero-mean time series that repeats
every year, representing the effect of the month on the time series. For exam-
ple, searches for “Christmas card” are highest in December, while searches for
“sunblock” are highest in June. Overall, the original data can be thought of as
consisting of a seasonal component, a smoothed yearly average component, and a
residual component. We subtract only the seasonal component as preprocessing.

Next, we compute interactions and squares. We shift each time series so that
it consists of only nonnegative values. Then an element-wise multiplication is
performed between two time series to compute an interaction, or between a time
series and itself to compute a square. This results in a total of 39,059 potential
side variables: the 278 original series, 278 squares, and

(
278
2

)
interactions.

7.2 Baseline Methods

We compare the results of the FDR method to several baseline methods: a
lagged time series model, a pure regression model, an autoregressive nowcasting
model, and a simple random walk model. In addition, we compare our consumer
sentiment nowcasting results to the state-of-the-art nowcasting method from
[13]. This subsection describes the baseline methods. The symbol β represents a
vector of regression coefficients, while the variance symbols v and σ2 are reused.
Although these symbols are shared by different methods, we train each method
separately, so the values are not necessarily equal across methods. The vector xt

is the same side variables as those chosen by FDR.

2 http://www.mathworks.com/help/econ/seasonal-adjustment.html

http://www.mathworks.com/help/econ/seasonal-adjustment.html
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Lagged Time Series. The lagged time series is the simple model that as-
sumes that the current value will be equal to the previous value, i.e. ŷt = yt−1.
It is well-known that for many time series, this model works remarkably well.
Surprisingly, it is often not included as a baseline method in nowcasting research.

Simple Random Walk. This method assumes that there is a hidden variable
μt that changes according to a random innovation step v, as in the FDR model.
In this model, however, there is no contribution from the side data. This model
is shown as equation 3. Its hyperparameters are the innovation step variance v
and the error variance σ2. We determine hyperparameters using grid search, as
described in Section 5.

Simple Regression. This model assumes that the change in y can be es-
timated by looking at the change in x. That is, ˆ̇yt = βT ẋt, where, ˆ̇yt is an
estimate for yt − yt−1 and ẋt = xt − xt−1. We choose β by performing least
squares regression over the training and validation periods.

AR-1 Plus Side Data. An AR-n model is an autoregressive model that
looks at the previous n values yt−1 to yt−n. It is a linear model over yt−1 and
xt. In [4] this model is used for nowcasting, and in [13] it is a baseline method.
Specifically, ŷt = b1yt−1 + βTxt. We find b1 and β by performing least squares
regression over the training and validation periods.

7.3 How Results Are Reported

For each nowcasting experiment in Section 8, we provide a figure showing the
time series to be nowcast (y) along with the FDR predictions over the training,
validation, and test periods. In addition, we provide a table which compares
the FDR method to the baseline methods. Error statistics are mean absolute
logarithmic error, represented as percentages as mentioned above.

Each table also includes gtest, which is how often the prediction of sign(yt −
yt−1) is correct. That is, if we use a nowcasting method to estimate the direction
of the change in y over the test period, gtest is the percentage of correct estimates:

gtest =
100

|Ttest|
∑

t∈Ttest

1{sign(ŷt − yt−1) = sign(yt − yt−1)}. (6)

Each table also reports a p-value, which is the probability that flipping a fair
coin to guess sign(yt−yt−1) would perform better than the method. For methods
that require grid search to choose hyperparameters (as described in section 5),
we report the learned hyperparameter values.

8 Results of Experiments

In order to verify that FDR variable selection produces sensible outcomes, we
first confirm that the method chooses intuitive variables for simple variable selec-
tion tasks. For this experiment, we perform “trendcasting:” nowcasting a single
Google Trends query category using the other query categories. We find that
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Table 1. Variables selected for trendcasting

Time series Variables chosen

Engineering & Technology
Technical Reference,
Technology News x Software

Fantasy Sports Sport News

Medical Literature & Resources Mental Health x Health Conditions

Outdoors Water Activities x Campers & RVs

Ticket Sales Events & Listings x Events & Listings

Table 2. Trendcasting results. δlag and δrw are % improvements in MAEL of the FDR
method over lagged and random walk baseline methods. gtest is from Equation (6).

Time series δlag δrw gtest

Engineering & Technology 85.6 74.3 93.2
Fantasy Sports 63.1 34.8 86.4
Medical Literature & Resources 65.7 52.3 90.9
Outdoors 43.3 37.4 77.3
Ticket Sales 30.1 17.5 77.3

applying FDR significantly improves accuracy over baseline methods for most
query categories. In addition, we find variables that are intuitively correlated
to the categories being predicted. Table 1 shows several intuitive correlations
found by FDR. Under “variables chosen” we list all the queries chosen by FDR.
Separate variables are delimited using commas, and x denotes a variable interac-
tion. For each of the 278 original trend series, one to three variables are chosen,
except for two series without significant predictors. Table 2 gives the percentage
improvement over the lagged and random walk models (δlag and δrw). In all cases
these were the two most competitive baseline methods.

Because of the results of the trendcasting experiment, we can be confident
that the variables selected in the following experiments are new and unexpected
correlations. Many of the variables chosen may not have a clear intuitive inter-
pretation, but the FDR method guarantees that they are statistically significant.

8.1 Nowcasting Results

We examine the performance of the FDR method on four time series provided
by the US census bureau: Auto and Other Motor Vehicles, Electronics and

Appliance Stores, Paper and Paper Products, and Chemicals and Allied

Products. We also nowcast a consumer sentiment index published by the Uni-
versity of Michigan. We choose this last series in order to compare the results of
FDR with the nowcasting method from [13].
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Motor Vehicle Sales. This experiment nowcasts the advance monthly sales
figures for Auto and Other Motor Vehicles: U.S. Total (NAICS codes 4411
and 4412) as reported by the US census bureau. We use data from January 2004
to November 2013. The FDR method selects one side data variable, namely the
interaction Classifieds x Movies. Performance is shown in Figure 1, and a
comparison to baseline methods is given in Table 3. The FDR method yields a
test error improvement of 6.9% over the next-best method, the lagged model.

Electronics and Appliance Stores. This experiment looks at another time
series from the US census bureau: the advance monthly sales figures for Elec-
tronics and Appliance Stores: U.S. Total (NAICS code 443). The data
range from January 2004 to November 2013. FDR variable selection finds two
side data variables, the interactions Auctions x Energy & Utilities and Mass

Merchants & Department Stores x Bicycles & Accessories. Figure 1 shows
the performance of FDR, and Table 4 compares with baseline methods. The im-
provement of FDR over the lagged time series is 9.4%, and 5.8% over a simple
random walk.
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Fig. 1. Nowcasts from the FDR method (line) and original time series (dots). Green:
training period, blue: validation period, red: testing period. Top: motor vehicles, bot-
tom: electronics and appliances. Next page top: paper and paper products, middle:
chemicals, bottom: consumer sentiment.
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Fig. 1. (continued)

Paper and Paper Products. This experiment nowcasts the advance
monthly sales figures for Paper and Paper Products: U.S. Total (NAICS
code 4241) as reported by the US census bureau. We use data from January
2004 to October 2013. The FDR method selects one time series, Retirement
& Pension x Magazines. Figure 1 and Table 5 show performance. The FDR
method yields a test error improvement of 6.8% over the lagged model, and a
2.5% improvement over the simple random walk model.
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Table 3. Comparison of accuracy between methods for nowcasting motor vehicle sales.
Table entries are explained in Section 7.3. Lower is better for ε and higher is better for
gtest. The lagged model always predicts ŷt − yt−1 = 0, so gtest and its corresponding
p-value are not applicable.

Method εtrain εval εtest gtest p-value (σ2, v, vβ)

FDR method 2.83 3.04 1.53 65.22 3.90 (10−5, 104, 1.0)
Lagged time series2 2.83 3.08 1.64 - -
Random Walk 2.83 3.08 1.64 60.87 14.04 (10−5, 104, -)
AR-1 baseline 3.33 3.06 1.86 33.33 2.53
Pure regression 2.81 3.02 2.04 66.67 2.53

Table 4. Electronics and appliance stores method comparison

Method εtrain εval εtest gtest p-value (σ2, v, vβ)

FDR method 1.24 1.60 1.29 63.04 7.68 (10−4, 10−4, 10−5)
Lagged time series2 1.11 1.69 1.42 - -
Random Walk 1.10 1.69 1.37 65.22 3.90 (10−5, 10−4, -)
AR-1 baseline 1.48 1.75 1.38 55.56 45.61
Pure regression 1.09 1.59 1.42 60.00 17.97

Table 5. Paper and paper products method comparison

Method εtrain εval εtest gtest p-value (σ2, v, vβ)

FDR method 2.21 1.30 1.18 68.89 1.13 (10−5, 10−4, 10−4)
Lagged time series2 1.31 1.40 1.26 - -
Random Walk 1.33 1.38 1.21 82.22 0.00 (10−5, 10−4, -)
AR-1 baseline 1.81 1.38 1.28 55.56 45.61
Pure regression 1.29 1.30 1.36 42.22 29.67

Table 6. Chemicals and allied products method comparison

Method εtrain εval εtest gtest p-value (σ2, v, vβ)

FDR method 1.72 2.71 1.83 64.44 5.26 (10−5, 0.01, 10−5)
Lagged time series2 1.57 2.71 1.93 - -
Random Walk 1.57 2.71 1.93 53.33 65.47 (10−5, 104, -)
AR-1 baseline 3.09 2.67 2.03 51.11 88.15
Pure regression 1.67 2.67 1.88 60.00 17.97

Table 7. Consumer sentiment method comparison

Method εtrain εval εtest gtest p-value (σ2, v, vβ)

FDR method 4.27 5.43 4.33 56.41 42.33 (10−5, 104, 10.0)
Lagged time series2 4.30 5.57 4.36 - -
Random Walk 4.30 5.57 4.36 46.15 63.10 (10−5, 104, -)
AR-1 baseline 4.89 5.57 4.50 35.00 5.78
Pure regression 4.10 5.45 4.24 55.00 52.71
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Chemicals and Allied Products. In this experiment we nowcast advance
monthly sales figures for NAICS code 4246, Chemicals and Allied Products.
The data are from January 2004 to October 2013. FDR variable selection selects
the variables Shopping Portals & Search Engines x Energy & Utilities and
Bus & Rail x E-Books. Figure 1 and Table 6 show results. The improvement of
FDR over the next-best method, the lagged model, is 5.1%.

Consumer Sentiment. This experiment uses data from the University of
Michigan monthly survey of consumer sentiment from January 2004 to April
2013. FDR variable selection selects a single interaction variable, Classifieds
x Energy & Utilities. Figure 1 plots the FDR predictions along with the
original time series, and Table 7 compares FDR and baseline methods. The
FDR method achieves a mean absolute logarithmic error of 4.33% on the test
set. An experiment in [13] using this same dataset reports a mean absolute
logarithmic error of 4.5%, although the paper does not specify the training and
testing periods used. Its results were obtained using a hand-selected set of 151
potential side data variables. The results here suggest that FDR is competitive
with current state-of-the-art nowcasting methods, but can deal with a much
larger set of potential variables.

9 Discussion

This paper introduces a novel method for nowcasting, called FDR for false dis-
covery reduction. The method combines a time series model with tractable vari-
able selection, which allows for nowcasting with a large number of potential side
predictors. Variable selection is a particularly important issue in the context of
nowcasting because nowcasting relies on observations of correlated side data to
make an up-to-date estimate, and in many cases the number of potential aux-
iliary time series to choose among is large. We demonstrate the performance of
FDR variable selection from 39,059 potential predictors. Reducing the rate of
discovery of false predictors reduces overfitting, and leads to simple final pre-
dictive models, although the statistically significant predictors chosen can be
unintuitive. The FDR method outperforms baseline methods when nowcasting
sales data from the United States census bureau and consumer sentiment, and
has performance that is comparable with the state-of-the-art nowcasting method
in [13], while allowing selection from over 250 times as many auxiliary time series.
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Abstract. How many listens will an artist receive on a online radio? How about
plays on a YouTube video? How many of these visits are new or returning users?
Modeling and mining popularity dynamics of social activity has important im-
plications for researchers, content creators and providers. We here investigate
the effect of revisits (successive visits from a single user) on content popularity.
Using four datasets of social activity, with up to tens of millions media objects
(e.g., YouTube videos, Twitter hashtags or LastFM artists), we show the effect
of revisits in the popularity evolution of such objects. Secondly, we propose the
PHOENIX-R model which captures the popularity dynamics of individual ob-
jects. PHOENIX-R has the desired properties of being: (1) parsimonious, being
based on the minimum description length principle, and achieving lower root
mean squared error than state-of-the-art baselines; (2) applicable, the model is
effective for predicting future popularity values of objects.

1 Introduction

How do we quantify the popularity of a piece of content in social media applications?
Should we consider only the audience (unique visitors) or include revisits as well? Can
the revisit activity be explored to create more realistic popularity evolution models?
These are important questions in the study of social media popularity. In this paper, we
take the first step towards answering them based on four large traces of user activity
collected from different social media applications: Twitter, LastFM, and YouTube1.

Understanding the popularity dynamics of online content is both a challenging task,
due to the vast amount and variability of content available, as it can also provide in-
valuable insights into the behaviors of human consumption [6] and into more effective
engineering strategies for online services. A large body of previous work has investi-
gated the popularity dynamics of social media content, focusing mostly on modeling
and predicting the total number of accesses a piece of content receives [5, 6, 9, 17, 21].

However, a key aspect that has not been explored by most previous work is the ef-
fect of revisits on content. The distinction between audience (unique users), revisits
(returning users), and popularity (the sum of the previous two) can have large implica-
tions for different stakeholders of these applications - from content providers to content

1 http://twitter.com, http://lastfm.com, http://youtube.com

T. Calders et al. (Eds.): ECML PKDD 2014, Part I, LNCS 8724, pp. 386–401, 2014.
c© Springer-Verlag Berlin Heidelberg 2014
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(a) Rock Song (growth in popularity)
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(b) Flashdance (80’s movie) clip (revisits)
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(c) Korean Music Video (single cascade)
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(d) User Dancing Video (single cascade)

Fig. 1. Different YouTube videos as captured by the PHOENIX-R model

producers - as well as for internal and external services that rely on social activity
data. For example, marketing services should care most about the audience of a par-
ticular content, as opposed to its total popularity, as each access does not necessarily
represent a new exposed individual. Even system level services, such as geographical
sharding [8, 23], can be affected by such distinction, as a smaller audience served by
one data center does not necessarily imply that a smaller volume of activity (and thus
lower load) should be expected. As prior studies of content popularity in social media
do not clearly distinguish between unique and returning visits, the literature still lacks
fundamental knowledge about content popularity dynamics in this environment.

Goals: We here aim at investigating and modeling the effect of revisits on popularity,
thus complementing prior efforts on the field of social media popularity. Our goals are:
(1) Characterizing the revisits phenomenon and show how it affects the evolution of
popularity of different objects (videos, artists or hashtags) on social media applications;
(2) Introducing the PHOENIX-R model that captures the evolution of popularity of in-
dividual objects, while explicitly accounting for revisits. Also, we develop the model so
that it can capture multiple cascades, or outbreaks, of interest in a given object.

Discoveries: Among other findings, we show that when analyzing total popularity
values, revisits account from 40% to 96% of the popularity of an object (on median),
depending on the application. Moreover, when looking at small time windows (e.g.,
hourly) revisits can be up to 14x more common than new users accessing the object.
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PHOENIX-R Results: The PHOENIX-R model explicitly addresses revisits in so-
cial media behavior and is able to automatically identify multiple cascades [13] using
only popularity time series data. This is in contrast to previous methods such as the
SpikeM [18] approach, which models single cascades only, and the TemporalDynam-
ics [21] models, are linear in nature. Figure 1 shows the different behaviors which can
be captured by the Phoenix-R model. Notice how the model captures a growth in the
popularity of video (a), videos which have a plateau like popularity after the upload
(b), and two different single cascade dynamics (c-d). The PHOENIX-R model is also
scalable. Fitting is done in linear time and no parameters are required.

Outline: Section 2 presents an overview of definitions and background. This is fol-
lowed by Section 3 which presents our characterization. PHOENIX-R is described in
Section 4, whereas it’s applicability is presented in Section 5. Related work is discussed
on Section 6. Finally, we conclude the paper in Section 7.

2 Definitions and Background

In this section we present the definitions used throughout the paper (Section 2.1). Next,
we discuss existing models of popularity dynamics of individual objects (Section 2.2).

2.1 Definitions

We define an object as a piece of media content stored on an application. Specifically,
an object on YouTube is a video, whereas, on an online radio like LastFM, we consider
(the webpage of) an artist as an object. We also define an object on Twitter as a hashtag
or a musictag2. A social activity is the act of accessing - posting, re-posting, viewing or
listening to - an object on a social media application. The popularity of an object is the
aggregate behavior of social activities on that object. We here study popularity in terms
of the most general activities in each application: number of views for YouTube videos,
number of plays for LastFM artists, and number of tweets with a hashtag. The popularity
of an object is the sum of audience (user’s first visit) and, revisits, (or returning users),
and the evolution of the popularity of an object over time defines a time series.

2.2 Existing Models of Object Popularity Dynamics

Epidemic Models: Previous work on information propagation on online social net-
works (OSNs) has exploited epidemic models [12] to explain the dynamics of the prop-
agation process. An epidemic model describes the transmission of a “disease” through
individuals. The simplest epidemic model is the Susceptible-Infected (SI) model. The SI
model considers a fixed population divided into S susceptible individuals and I infected
individuals. Starting with S(0) susceptible individuals and I(0) infected individuals, at
each time step βS(t−1)I(t−1) individuals get infected, and transition from the S state
to the I state. The product S(t − 1)I(t − 1) accounts for all the possible connections
between individuals. The parameter β is the strength of the infectivity, or virus.

2 Users informing their followers which artists they are listening to.



Revisit Behavior in Social Media: The Phoenix-R Model and Discoveries 389

Table 1. Comparison of PHOENIX-R with other approaches

Revisits Non-Linear Forecasting Multi Cascade

SI [12] �
SpikeM [18] � �
TemporalDynamics [21] �
PHOENIX-R � � � �

Cha et. al used an SI model to study how information (i.e., the “disease”) dissemi-
nates through social links on Flickr [4], whereas Matsubara et. al [18] proposed an al-
ternative model called SpikeM. SpikeM builds on an SI model by adding, among other
things, a decaying power law infectivity per newly infected individual, which produces
a behavior that is similar to the model proposed in [6]. The SpikeM model was used to
captured the time series popularity for a single cascade. One of the reasons why the SI
model is useful to represent online cascades of information propagation is that individ-
uals usually do not delete their posts, tweets or favorite markings [4,18]. Thus, once an
individual is infected he/she remains infected forever (as captured by the SI model).

Temporal Dynamics Models: Other models that can be explored in the study of
content popularity dynamics are auto-regressive models and state space models, such
as the Holt-Winters model and its extensions [21]. However, these models are linear
in nature, and thus cannot account for more complex temporal dynamics observed in
online content [18]. Although, these models have been successful in predicting normal-
ized query behavior in search engines [21], the descriptive power of such models is less
attractive. For example, Holt-Winters based models are very general, that is, they are
used to predict time series behavior, but will not take into account cascades, revisits or
information dissemination. From a descriptive point of view, these models are of little
help to understand the actual process that drives popularity evolution.

Multiple Cascades: Very recently, the work of Hu et. al focused on the defining
longevity of social impulses, or multiple cascades [13]. However, unlike our approach,
the authors are not focused on modeling the long term popularity of objects.

Table 1 summarizes the key properties of the aforementioned models as well as of
our new PHOENIX-R model. In comparison these approaches, PHOENIX-R explicitly
captures both revisits and multiple cascades, allows for non-linear solutions, and can be
used for accurate forecasting. The next section presents the effect of revisits in both long
and short term content popularity evolution for real world datasets. This is followed by
the definition of the PHOENIX-R model.

3 Content Revisit Behavior in Social Media

We now analyze the revisit behavior in various social media applications. We first de-
scribe the datasets used in this analysis as well as in the evaluation of our model, and
then discuss our main characterization findings.

3.1 Datasets

Our study is performed on four large social activity datasets:
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Table 2. Relationships between revisits, audi-
ence and popularity

Dataset Median Median % objects with
#Revisits
Audience

#Revisits
Popularity

#Revisits
Audience > 1

Twitter 1.70 0.62 66%
MMTweet 0.68 0.40 33%
LastFM 25.39 0.96 100%

– The Million Musical Tweets Dataset (MMTweet): consists of 1,086,808 tweets of
users about artists they are listening to at the time [11]. We focus on the artist of
each tweet as an object. 25,060 artists were mentioned in tweets.

– The 2010 LastFM listening habits dataset (LastFM): consists of the whole listening
habits (until May 5th 2009) of nearly 1,000 users, with over 19 million activities on
107,428 objects (artists) [3].

– The 476 million Twitter tweets corpus (Twitter): accounts for roughly 20% to 30%
of the tweets from June 1 2009 to December 31 2009 [24], and includes over 50
million objects (hashtags) tweeted by 17 million users.

– The YouTube dataset: Recently, YouTube began to provide the full daily time series
(known as insight data) of visits for videos in the page of each video. We crawled
the time series of over 3 million YouTube videos similar to as done in [9].

3.2 Main Findings

Our goal is to analyze how the popularity acquired by different objects, in the long
and short runs, is divided into audience and revisits. In particular, we aim at assessing
to which extent the number of revisits may be larger than the size of the audience, in
which case popularity is largely a sum of repeated user activities. Since this property
may vary depending on the type of content, we perform our characterization on the
LastFM, MMTweet, and Twitter datasets. We leave the YouTube dataset out of this
analysis since, unlike the other datasets, it does not contain individual social activities,
but only popularity time series. We will make use of the YouTube dataset to fit and
evaluate our PHOENIX-R model, in the next section.

We first analyze the distribution of the final values3 of popularity, audience, and
revisits across objects in each dataset. For illustration purposes, Figure 2 shows the
complementary cumulative distribution function of the ratio of the number of revisits
to the audience size for all datasets, computed for objects with popularity greater than
500. We filtered out very unpopular objects, which attract very little attention during
the periods of our datasets (over 6 months each). Note that the probability of an object
having more revisits than audience (ratio greater than 1) is large. Indeed, though rare,
the ratio of revisits to audience size reaches 102 and even 103.

In order to better understand these findings across all datasets, Table 2 shows, for
each dataset: (1) the median of the ratio of number of revisits to audience size, (2) the
median of the ratio of number of revisits to total popularity; and (3) the percentage

3 Values computed at the time the data was collected.
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Table 3. Quartiles of the ratio #Revisits
Audience

for various time windows w

Dataset Time window (w) 25th percentile Median 75th percentile

Twitter

1 hour 1.08 3.93 12
1 day 1 2.5 6.28
1 week 0.66 1.69 4.28
1 month 0.56 1.44 3.75

MMTweet

1 hour 0.25 0.66 12.5
1 day 0.55 0.83 1.26
1 week 0.41 0.73 1.41
1 month 0.31 0.56 1.17

LastFM

1 hour 20 21 25
1 day 21 28 41
1 week 20 30.5 55.25
1 month 14 25 48

of objects where the revisits dominate the popularity (i.e., ratio of number of revisits
to the audience size greater than 1). Note that revisits dominate popularity in 66% of
the Twitter objects. Moreover, on median, 62% of the total popularity of these objects
is composed of revisits, which account for 1.7 times more activities than the visits by
new users (audience size). Again, for LastFM artists, revisits are over 25 times more
frequent than the visits by new users (on median), and the revisits dominate popularity
in all objects. In contrast, the ratios of number of revisits to audience size and to total
popularity are smaller for MMTweet objects, most likely because users do not tweet
about artists they are listening to all the time, but rather only when they wish to share this
activity with their followers. Yet, the revisits dominate popularity in 33% of the objects.
These results provide evidence that, at least in the long run, revisits are much more
common than new users for many objects in different applications. For microblogs,
though less intense, this behavior is still non-negligible.

We further analyze the effect of revisits on popularity, focusing now in the short term,
by zooming into smaller time windows w. Specifically, we analyze the distributions of
the ratios of number of revisits to audience size computed for window sizes w equal
to one hour, one day, one week, and one month. Table 3 shows the three distribution
quartiles for the various window sizes and datasets considered. These quartiles were
computed considering only window sizes during which the popularity acquired by the
object exceeds 20. We adopted this threshold to avoid biases in time windows with very
low popularity, focusing on the periods where the objects had a minimal attention (note
that 20 is still small considering that each trace has millions of activities).

Focusing first on the LastFM dataset, we note that, regardless of the time window
size, the number of revisits is at least one order of magnitude (14x) larger than the
audience size for at least 75% of the analyzed windows (25th percentile). In fact, the
ratio between the two measures exceeds 55 for 25% of the windows (75th percentile) on
the weekly case. In contrast, in the MMTweet dataset, once again, the ratios are much
smaller. Nevertheless, at least 25% of the of the windows we observe a burst of revisits
in very short time, with the ratio exceeding 12 for the hourly cases. Once again, we
suspect that these lower ratios may simply reflect that users do not tweet about every
artist they list to. Thus, in general, we have strong evidence that, for music-related
content, popularity is mostly governed by revisits, as opposed to new users (audience).
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The same is observed, though with less intensity, in the Twitter dataset. Revisits are
more common than new users in 50% of the time windows, for all sizes considered.
Indeed, considering hourly time windows, popularity is dominated by revisits for 75%
of the cases. While large ratios, such as those observed for LastFM, do not occur, the
number of revisits can still be 12 times larger than the audience size during a single
hour in 25% of the Twitter hourly windows.

Summary of Findings: Our main conclusions so far are: (1) for most objects in the
Twitter and LastFM datasets, popularity, measured both in the short (as short as 1 hour
periods) and long runs, is mostly due to revisits than to audience size; and (2) revisits
are less common on the MMTweet dataset, which we believe is due to data sparsity,
but are still a significant component of the popularity acquired by a large fraction of the
objects (in both long and short runs). These findings motivate the need for models that
explicitly account for revisits in the popularity dynamics, which we discuss next.

4 The PHOENIX-R Model

In this section we introduce the proposed PHOENIX-R model(Section 4.1), show how
we fit the model to a given popularity time series (Section 4.2). In the next section we
present results on the efficacy of the model on our datasets when compared to state-of-
the-art alternatives, and the applicability of the PHOENIX-R model.

Notation: We present vectors (x) in bold. Sets are shown in non-bold calligraphy
letters (X ), and variables are represented by lower case letters or Greek symbols (x, β).
Moreover, x(i) means data index i (from 1), and x(: i) means sub-vector up to i.

4.1 Deriving the Model

The PHOENIX-R model is built based on the ‘Susceptible-Infected-Recovery’ (SIR)
compartments, extending for revisits and multiple cascades. Specifically, it captures the
following behavior for each individual object:

– We assume a fixed population of individuals, where each individual can be in one
of three states: susceptible, infected and recovered.

– At any given time si, an external shock i causes initial interest in the object. The
shock can be any event that draws attention to the object, such as a video being
uploaded to YouTube, a news event about a certain subject, or even a search engine
indexing a certain subject for the same time (thus making an object easier to be
found). We assume that the initial shock s1 is always caused by one individual.

– New individuals discover the object by being infected by the first one. Moreover,
after discovery, these “newly infected” can also infect other individuals, thus con-
tributing to the propagation.

– Infected individuals may access (watch, play or tweet) the object. It is important
to note that being infected does not necessarily imply in an access. For example,
people may talk about a trending video before actually watching it. Each infected
individual accesses the object following a Poisson process with rate ω (ω > 0)4.

4 Both [1, 14] show the poissonian behavior of mutiple visits from the same user.
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Fig. 3. Individual shocks that when added up account for the PHOENIX-R model

– After some time, individuals lose interest in the object, which, in the model, is
captured by a recovery rate γ.

– Multiple external shocks may occur for a single object.

Figure 3 presents the PHOENIX-R model. In the figure, three compartments are
shown for each shock Si, Ii, and Ri, which represent the number of susceptible, in-
fected and recovered individuals for shock i, respectively. Variable pi, associated with
shock i, measures the popularity acquired by the object due this shock. The total popu-
larity of the object, i.e., the sum of the values of pi for all shocks, is denoted by p̂. We
first present the model for a single shock, and then generalize the solution for multiple
shocks. Also, we drop the subscripts while discussing a single shock. We present the
model assuming discrete time, referring to each time tick as a time window.

Each shock begins with a given susceptible population (S(0)) and one infected in-
dividual (I(0) = 1). The total population is fixed and given by (N = S(0) + 1). The
R compartment captures the individuals that lost interest in the object. Similarly the SI
model, βSI susceptible individuals become infected in each time window. Moreover,
γI individuals loose interest in (i.e., recover from) the object in each window. Revisits
to the object are captured by the rate ω. Thus ω is the expected number of accesses of
an individual up to time t, the probability of the individual accessing the object k times

during a time interval of τ windows is given by P (v(t+ τ) − v(t) = k) = (ωτ)ke−ωτ

k! .
We assume that the shock starts at time zero, thus focusing the dynamics after the

shock. Under this assumption, the equations that govern a single shock are:

S(t) = S(t− 1)− βS(t− 1)I(t− 1) (1)

I(t) = I(t− 1) + βS(t− 1)I(t− 1)− γI(t− 1) (2)

R(t) = R(t− 1) + γI(t− 1) (3)

p(t) = ωI(t). (4)

The equation p(t) = ωI(t) accounts for the expected number of times infected in-
dividuals access the object, thus capturing the popularity of the object at time t due
to the shock. We can also define the expected audience size of the object at time t
due to the shock, a(t), as: a(t) = (1 − e−

ω
γ )βS(t − 1)I(t − 1). Each newly in-

fected individual (βS(t − 1)I(t − 1)) will stay infected for γ−1 windows (see [12]).
The probability of generating at least one access while the individual is infected is:
1−P (v(t+γ−1)−v(t) = 0) = 1−e−ω

γ . Thus, we here capture the individuals which
where infected at some time and generated at least one access.
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The PHOENIX-R model is thus defined as the sum of the popularity values due to
multiple shocks. We discuss how to determine the number of shocks in the next section.
Given a set of shocks S, where shock i starts at given time si, the popularity p̂ is:

p̂(t) =
∑

i,si∈S
pi(t− si)�[t > si] (5)

where �[t > si] is an indicator function that takes value of 1 when t > si, and 0
otherwise. Audience, size â(t) can be similarly defined. Also, both in the single shock
and in the PHOENIX-R models, the number of revisits at time t, r̂(t), can be computed
as r̂(t) = p̂(t) − â(t). The overall population that can be infected is defined by N =∑

iNi =
∑

i S(0)i + 1.
Note that we assume that the population of different shocks do not interact, that is, an

infected individual from shock si does not interact with a susceptible one from shock
sj , where i �= j. While this may not hold for some objects (e.g., people may hear about
the same content from two different populations), it may be a good approximation for
objects that become popular in large scale (e.g., objects that are propagated world wide).
It also allows us to have different βi, γi, and ωi values for each population. Intuitively,
the use of different parameters for each shock captures the notion that some objects may
be more (or less) interesting for different populations. For example, samba songs may
attract more interest from people in Brazil.

Adding a Period: In some cases, the popularity of an object may be affected by
periodical factors. For example, songs may get more plays on weekends. We add a
period to the PHOENIX-R model by making ω fluctuate in a periodic manner. That is:

ωi(t) = ωi ∗ (1 −
m

2
∗ (sin(2π(t+ h)

e
) + 1)). (6)

e is the period, and sin is a sine function. For example, for daily series we may set e = 7
if more interest is expected on weekends. Since an object may have been uploaded on a
Wednesday, we use the shift h parameter to correct the sine wave to peak on weekends.
The amplitude m captures oscillation in visits. The same period parameters are applied
to every shock model. This approach is similar to the one adopted in [18].

The final PHOENIX-R model will have 5 parameters to be estimated from the data
for each shock, namely, S(0)i, βi, γi, ωi, si; plus the m and h period parameters. The
last two do not change for individual shocks. We decided to fix e in our experiments to
7 days, when using daily time windows, and e = 24 hours when using hourly series.

4.2 Fitting the Model

We now discuss how to fit the PHOENIX-R parameters to real world data. Our goal
is to produce a model that delivers a good trade-off between parsimony (i.e., small
number of parameters) and accuracy. To that end, three issues must be addressed: (1)
the identification of the start time of each individual shock; (2) an estimation of the cost
of the model associated with multiple shocks; and, (3) the fitting algorithm itself. Note
that one key component of the fitting algorithm is model selection: it is responsible for
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Algorithm 1. Fitting the PHOENIX-R model. Only the time series is required as input.

1: function FITPHOENIXR(t)
2: ε = 0.05
3: s ← {}
4: p, s′ ← FindPeaks(t)
5: s[1] = 0
6: s ← append(s′)
7: P ← {}
8: min cost ← ∞
9: for i ← 1 to |s| do
10: F ← LM(t, s(: i))
11: m ← PhoenixR(F)
12: mdl cost ← Cost(m, t,F)
13: if mdl cost < min cost then
14: min cost ← mdl cost
15: P ← F
16: end if
17: if mdl cost > min cost ∗ (1 + ε) then
18: break
19: end if
20: end for
21: return P
22: end function

determining the number of shocks that will compose the PHOENIX-R model, choosing
a value based on the cost estimate and model accuracy.

Finding the Start Times si of the Shocks: Intuitively, we expect each shock to cor-
respond to a peak in the time series. Indeed, previous work has looked at the dynamics
of single shock cascades, finding a single prominent peak in each cascade [2, 18]. With
this in mind, instead of searching for si directly, we initially attempt to find peaks. We
can achieve both tasks using a continuous wavelet transform based peak finding algo-
rithm [7]. We chose this algorithm since it has the following key desirable properties.
Firstly, it can find peaks regardless of the “volume” (or popularity in the present con-
text) in the time windows surrounding the peaks. It does so by only considering peaks
with a high signal to noise ratio in the series, that is, peaks that can be distinguished
the time series signal around the candidate peak. Secondly, the algorithm is fast, with
complexity in the order of the length, n, of the time series (O(n)). Lastly and more
importantly, using the algorithm we can estimate both the peaks and the start times of
the shocks that caused each peak. We shall refer to the algorithm as FindPeaks.

As stated FindPeaksmakes use of a continuous wavelet transform to find the peaks
of the time series. Specifically, we apply the Mexican Hat Wavelet5 for this task. The
Mexican Hat Wavelet is parametrized by a half-width l. We use half-widths (l) of values
{1, 2, 4, 8, 16, 32, 64, 128, 256} to find the peaks. Thus, for the peak identified at posi-
tion ki, with wavelet determined by the parameter li, we define the start point of the
shock si as: si = ki− li. We found that using the algorithm with the default parameters
presented in [7], combined with our MDL fitting approach (see below), proved accurate
in modeling the popularity of objects6.

Estimating the Cost of the Model with Multiple Shocks: we estimate the cost of a
model with |S| shocks based on the minimum description length (MDL) principle [10,

5 https://en.wikipedia.org/wiki/Mexican_hat_wavelet
6 We used the open source implementation available with SciPy (http://scipy.org).

https://en.wikipedia.org/wiki/Mexican_hat_wavelet
http://scipy.org
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19], which is largely used for problems of model selection. To apply the MDL principle,
we need a coding scheme that can be used to compress both the model parameters and
the likelihood of the data given the model. We here provide a new intuitive coding
scheme, based on the MDL principle, for describing the PHOENIX-R model with |S|
shocks, assuming a popularity time series of n elements (time windows). As a general
approach, we code natural numbers using the log∗ function (universal code length for
integers)7 [10], and fix the cost of floating point numbers at cf = 64 bits.

For each shock i, the complexity of the description of the set of parameters associated
with i consists of the following terms: log∗(n) for the si parameter (since the start
time of i can be at any point in the time series); log∗(Si(0)) for the initial susceptible
population; and 3∗cf for βi, γi, andωi. We note that an additional cost of log∗(7)+2∗cf
is incurred if a period is added to the model. However, we ignore this component here
since it is fixed for all models. Therefore, it does not affect model selection. The cost
associated with the set of parameters P of all |S| shocks is:

Cost(P) = |S| × (log∗(n) + log∗(Si(0)) + 3 ∗ cf ) + log∗ |S|. (7)

Given the full parameter set P , we can encode the data using Huffman coding, i.e.,
a number of bits is assigned to each value which is the logarithm of the inverse of the
probability of the values (here, we use a Gaussian distribution as suggested in [19] for
the cases when not using probabilistic models.).

Thus, the cost associated with coding of the time series given the parameters is:

Cost(t | P) = −
n∑

i=1

log(pgaussian(t(i)−m(i);μ, σ)). (8)

where t is the time series data and m is the time series produced by the model (i.e.,
t(i) −m(i) is the error of the model at time window i.) Here, pgaussian is the prob-
ability density function of a Gaussian distribution with mean μ and standard deviation
σ estimated from the model errors. We do not include the costs of encoding μ and σ
because, once again, they are constant for all models. The total cost is:

Cost(t;P) = log∗ n+ Cost(P) + Cost(t | P). (9)

This accounts for the parameters cost, the likelihood cost, and the cost of the data size.
Fitting Algorithm: The model fitting approach is summarized in Algorithm 1. The

algorithm receives as input a popularity time series t. It first identifies candidate shocks
using the FindPeaks method, which returns the peaks p and the start times s′ of the
corresponding shocks in decreasing order of peak volume (line 3). To account for the
upload of the object, we include one other shock starting at time s1 = 0, in case a
shock was not identified in this position. Each si is stored in vector s, ordered by the
volume of the each identified peak (with the exception of s1 = 0 which is always in the
first position) (lines 4 and 5). We then fit the PHOENIX-R model using the Levenberg-
Marquardt (LM) algorithm adding one shock at a time, in the order they appear in s
(loop in line 9), that is, in decreasing order of peak volume (after the initial shock).

7 log∗(x) = 1 + log∗(log x) if x > 1. log∗(x) = 1 otherwise. We use base-2 logarithms.
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Intuitively, shocks that lead to larger peaks account for more variance in the data. For
each new shock added, we evaluate the MDL cost (line 12). We keep adding new shocks
as long as the MDL cost decreases (line 13) or provided that an increase of at most ε
over the best model is observed8 (line 17). We set the Levenberg-Marquardt algorithm
to evaluate the mean squared errors of the model and adopt a threshold ε equal to 5%.
We also note that we initialize each parameter randomly (uniform from 0 to 1), except
for Si(0) values. For the first shock we do test multiple initial values: S1(0) = 103, 104,
105, and 106. The other Si(0) values are initialized to the corresponding peak volume.

5 Experiments

In this section we discuss the experimental evaluation of the PHOENIX-R model. Ini-
tially, we present results on the efficacy of the model on our datasets when compared to
state-of-the-art alternatives (Section 5.1) Next, we show results for the applicability of
the model for popularity prediction (Section 5.2)9.

5.1 Is PHOENIX-R Better than Alternatives?

We compare PHOENIX-R with two state-of-the-art alternatives: the TemporalDynam-
ics [21], used to model query popularity; and the SpikeM model [18], which captures
single cascades. We compare these models in terms of time complexity, accuracy, esti-
mated by the root mean squared errors (RMSE), and cost-benefit. For the latter, we use
the Bayesian Information Criterion (BIC) [21], which captures the tradeoff between
cost (number of parameters) and accuracy of the model.

In terms of time complexity, we note that the PHOENIX-R model scales linearly
with the length of the time series n. This is shown in Figure 4, which presents the
number of seconds (y-axis) required to fit a time series with a given number of time
windows (x-axis). TemporalDynamics also has linear time complexity [21]. In contrast,
the equations that govern the SpikeM model requires quadratic (O(n2)) runtime on the
time series length, making it much less scalable to large datasets.

In terms of accuracy, we make an effort to compare PHOENIX-R with the alternatives
in fair settings, with datasets with similar characteristics from those used in the original
papers. In particular, when comparing with TemporalDynamics, we run the models pro-
posed in [21] selecting the best one (i.e., the one with smallest root mean squared error)
for each time series. Moreover, we use long term daily time series (over 30 days), with
a total popularity of at least 1,00010. We compare PHOENIX-R and TemporalDynamics
under these settings in our four datasets, including YouTube.

When comparing with SpikeM, we use Twitter hourly time series trimmed to 128
time windows around the largest peak (most popular hour). We focus on the 500 most
popular of these times series for comparison. We chose this approach since this is the
same dataset explored by the authors. Moreover, we focus on a smaller time scale be-
cause the SpikeM was proposed for single cascades only.

8 MDL based costs will decrease with some variance and then increase again. The ε threshold is
a guard against local minima due to small fluctuations.

9 All of our source code is provided at: http://github.com/flaviovdf/phoenix
10 Similar results were achieved using other thresholds.

http://github.com/flaviovdf/phoenix
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Fig. 4. Scalability of PHOENIX-R

Table 4. Comparison of PHOENIX-R with TemporalDynamics [21] and SpikeM [18]: Average
RMSE values (with 95% confidence intervals in parentheses). Statistically significant results (in-
cluding ties) are shown in bold.

PHOENIX-R vs. TemporalDynamics (daily series) PHOENIX-R vs. SpikeM (hourly series)

RMSE RMSE RMSE RMSE
PHOENIX-R TemporalDynamics PHOENIX-R SpikeM

MMTweet 2.93 (± 0.23) 4.18 (± 0.49) - -
LastFM 7.09 (± 0.23) 8.31 (± 0.32) - -
Twitter 72.05 (± 6.08) 194.79 (± 20.49) 10.83 (± 1.61) 9.77 (± 2.24)
YouTube 280.58 (± 29.29) 3429.19 (± 577.76) - -

Table 4 shows the average RMSE (along with corresponding 95% confidence in-
tervals) computed over the considered time series for all models. Best results of each
comparison (including statistical ties) are shown in bold. Note that PHOENIX-R has
statistically lower RMSE than TemporalDynamics in all datasets. These improvements
come particularly from the non-linear nature of PHOENIX-R , which better fits the long
term popularity dynamics of most objects. The difference between the models is more
striking for the YouTube dataset, where most time series cover long periods (over 4
years in some cases). The linear nature of TemporalDynamics largely affects its perfor-
mance in those cases, as many objects do not experience a linear popularity evolution
over such longer periods of time. As result, PHOENIX-R produces reductions on aver-
age RMSE of over one order of magnitude. In contrast, the gap between both models is
smaller in the LastFM dataset, where the fraction of objects (artists) for which a linear
fit is reasonable is larger. Yet, PHOENIX-R produces results that are still statistically
better, with a reduction on average RMSE of 15%.

When comparing with SpikeM, the PHOENIX-R model produces results that are
statistically tied. We consider this result very positive, given that this comparison favors
SpikeM: the time series cover only 128 hours, and thus there is no much room for
improvements from capturing multiple cascades, one key feature of PHOENIX-R . Yet,
we note that our model is more general and suitable to modeling popularity dynamics
in the longer run, besides being much more scalable, as discussed above.

As a final comparison, we evaluate the cost-benefit of the models using BIC, as
suggested by [21]. We found that we beat TemporalDynamics in terms of BIC on at least
80% of the objects in all datasets but LastFM. For LastFM objects, the reasonable linear
evolution of popularity of many objects, makes the cost-benefit of TemporalDynamics
superior. Yet, PHOENIX-R is still the preferred option in 30% of the objects in this
dataset. Compared to SpikeM we also find that again, statistically equal BIC scores are
achieved for both models.
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Table 5. Comparing Phoenix-R with TemporalDynamics [21] for prediction. The values on the
table are RMSE. Statistically significant results are in bold.

5% 25% 50%

1 7 30 1 7 30 1 7 30

MMTweet
PhoenixR 11.61 12.78 15.15 8.67 6.74 8.82 4.08 6.87 13.58

TempDynamics 17.07 17.41 16.52 9.63 10.78 14.46 25.19 23.08 30.39

Twitter
PhoenixR 53.68 60.78 215.76 132.21 135.15 210.30 75.58 229.59 254.93

TempDynamics 104.45 129.36 255.69 643.39 643.83 786.50 420.74 587.86 598.75

LastFM
PhoenixR 2.37 3.97 5.71 8.60 12.06 14.66 11.34 15.03 15.43

TempDynamics 6.47 7.03 8.00 11.15 14.62 17.86 14.91 18.15 18.80

YouTube
PhoenixR 91.62 106.38 138.88 83.76 113.14 147.04 127.53 97.97 115.97

TempDynamics 3560.65 3631.09 3661.81 5091.82 5107.82 5143.70 4136.14 4139.73 4169.26

5.2 Predicting Popularity with PHOENIX-R

We here assess the efficacy of PHOENIX-R for predicting the popularity of objects a few
time windows into the future, comparing it against TemporalDynamics11. To that end,
we train the PHOENIX-R and TemporalDynamics models for each time series using
5%, 25%, and 50% of the initial daily time windows. We then use the δ time windows
following the training period as validation set to learn model parameters. In each setting,
we train 10 models for each time series, selecting the best one on the validation period.
We then use the selected model to estimate the popularity of the object δ windows after
the validation (test period). We experiment with δ equal to 1, 7 and 30 windows.

Table 5 shows the average RMSE of both models on the test period. Confidence
intervals are omitted for the sake of clarity, but the best results (and statistical ties) in
each setting are shown in bold. PHOENIX-R produces more accurate predictions than
TemporalDynamics in practically all scenarios and datasets. Again, the improvements
are quite striking for the YouTube dataset, mainly because the time series cover long
periods (over 4 years in some cases). While the linear TemporalDynamics model fits
reasonably well the popularity dynamics of some objects, it performs very poorly on
others, thus leading to high variability in the results. In contrast, PHOENIX-R is much
more robust, producing more accurate predictions for most objects, and thus being more
suitable for modeling and predicting long periods of social activity.

6 Related Work

Popularity prediction of social media has gained a lot of attention recently, with many
efforts focused on linear methods to achieve this task [20–22]. However, not all of these
methods are useful for modeling individual time series. For example, linear regression
based methods [20, 22] can be used for prediction but are not explanatory of individual
time series. Moreover, as we showed in our experiments, there is strong evidence that
linear methods are less suitable for modeling popularity dynamics than non-linear ones,

11 We do not use SpikeM for this task, as it is suitable for tail forecasting only (i.e., predicting
after the peak).



400 F. Figueiredo et al.

particularly for long term dynamics. This comes from the non-linear behavior of social
cascades [18]. Li et. al. [17] proposed a non-linear popularity prediction model. How-
ever they focused on modeling the video propagation through links on a single online
social network, and not on general time series data, as we do here.

Recent work has also focused on modeling the dynamics of news evolution [18], or
posts on news aggregators [2, 15, 16]. These prior efforts do not explicitly account for
revisits nor multiple cascades, as we do. For example, the authors either assume unique
visits only [18], or focus on applications that do not allow revisits (e.g., once a user
likes a news posted on a application, she/he cannot like it a second time) [15]. In other
cases, the models do not distinguish between a first visit by a user and a revisit [2].

Very recently, Anderson et. al. [1] analyzed revisits in social media applications.
However, unlike we do here, the authors were not focused on modeling the evolution of
popularity of individual objects, but rather the aggregate and user behavior.

7 Conclusions

In this paper we presented the PHOENIX-R model for social media popularity time
series. Before introducing the model, we showed the effect of revisits on the popularity
of objects on large social activity datasets. Our main findings are:

– Discoveries: We explicitly show the effect of revisits in social media popularity.
– Explanatory model: We define the PHOENIX-R , which explicitly accounts for

revisits and multiple cascades. Factors not captured by state-of-the art alternatives.
– Scalable and Parsimonious: Our fitting approach make’s use of the MDL princi-

ple to achieve a parsimonious description of the data. We also show that fitting the
model is scalable (linear time).

– Effectiveness of model: We showed the effectiveness of the model not only when
describing popularity time series, but also when predicting future popularity val-
ues for individual objects. Gains can be up to one order of magnitude larger than
baseline approaches, depending on the dataset.

As future work we intend on extending the PHOENIX-R model to deal with: (1) in-
teracting populations between shocks; (2) multiple cascades from a single population;
and, (3) fitting on multiple time series at once (e.g., audience and revisits).
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Abstract. This paper proposes a novel Fast Algorithm for Structured Ouput
LEarning (FASOLE). FASOLE implements the sequential dual ascent (SDA) al-
gorithm for solving the dual problem of the Structured Output Support Vector
Machines (SO-SVM). Unlike existing instances of SDA algorithm applied for
SO-SVM, the proposed FASOLE uses a different working set selection strategy
which provides nearly maximal improvement of the objective function in each
update. FASOLE processes examples in an on-line fashion and it provides certifi-
cate of optimality. FASOLE is guaranteed to find the ε-optimal solution in O( 1

ε2
)

time in the worst case. In the empirical comparison FASOLE consistently outper-
forms the existing state-of-the-art solvers, like the Cutting Plane Algorithm or the
Block-Coordinate Frank-Wolfe algorithm, achieving up to an order of magnitude
speedups while obtaining the same precise solution.

1 Introduction

The Structured Output Support Vector Machines SO-SVM [17,19] is a supervised al-
gorithm for learning parameters of a linear classifiers with possibly exponentially large
number of classes. SO-SVM translate learning into a convex optimization problem size
of which scales with the number of classes which rules out application of common
off-the-shelf solvers. The specialized solvers can be roughly split to batch methods
and on-line solvers. The batch methods, like variants of the Cutting Plane Algorithm
(CPA) [18,8] or the column generation algorithm [19], approximate the SO-SVM ob-
jective by an iteratively built global under-estimator called the cutting plane model (the
column generation algorithm instead approximates the feasible set). Optimizing the
cutting plane model is cheaper than the original problem and, in addition, it provides a
certificate of optimality. The bottle-neck of the CPA is the expensive per-iteration com-
putational complexity. Namely, computation of a single element (the cutting plane) of
the cutting plane model requires calling the classification oracle on all training exam-
ples. Note that in structured setting the classification is often time consuming. More-
over, many iterations are typically needed before the cutting plane model becomes tight
and the approximate solution sufficiently precise.

The on-line methods, like the Stochastic Gradient Descent (SGD) [13,15], process
the training examples one by one with a cheap update requiring a single call of the clas-
sification oracle. A disadvantage of the SGD is its sensitivity to setting of the step size

T. Calders et al. (Eds.): ECML PKDD 2014, Part I, LNCS 8724, pp. 402–417, 2014.
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and a missing clear stopping condition as the method does not provide a certificate of
optimality. Unlike the SGD which optimizes the primal objective, the recently proposed
Sequential Dual Method for Structural SVMs (SDM) [1] and the Block-Coordinate
Frank-Wolfe (BCFW) [9] are on-line solvers maximizing the Lagrange dual of the SO-
SVM problem. SDM and BCFW are instances of the same optimization framework in
the sequel denoted as the Sequential Dual Ascent (SDA) method. The SDA methods
iteratively update blocks of dual variables each of them being associated with a single
training example. Particular instances of SDA method, like SDM or BCFW, differ in the
strategy used to select the working set containing the dual variables to be updated. The
SDA methods if compared to the SGD algorithm have two main advantages. First, for
fixed working set the optimal step size can be computed analytically. Second, the opti-
mized dual objective provides a certificate of optimality useful for defining a rigorous
stopping condition.

The convergence speed of the SDA methods is largely dependent on the working
set selection strategy. In this paper, we propose a novel SDA algorithm for solving the
SO-SVM dual using a working set selection strategy which yields nearly maximal im-
provement of the dual objective in each iteration. We named the proposed solver as
the Fast Algorithm for Structured Ouput LEarning (FASOLE). The same idea has been
previously applied for optimization of simpler QP tasks emerging in learning of two-
class SVM classifiers with L2-hinge loss [4,5] and L1-hinge loss [3,6]. The SDA solver
using a similar working set selection strategy is implemented for example in popular
LibSVM [2]. Our paper extends these solvers to the structured output setting. The struc-
tured output setting imposes several difficulties, namely, the SO-SVM dual problem has
exponentially large number of variables and m linear equality constraints in contrast to
the two-class SVM dual having only m variables and single equality constraint. The
extreme size of the SO-SVM does not permit operations feasible in two-class case like
maintaining all dual variables and buffering the columns of the Hessian matrix. The
proposed method thus introduces a sparse representation of the SO-SVM dual and a
set of heuristics to reflect the mentioned difficulties. In addition, we provide a novel
convergence analysis which guarantees that the proposed SDA solver finds ε-optimal
solution in O( 1

ε2 ) time. We experimentally compare the proposed FASOLE against
BCFW, SDM and CPA showing that FASOLE consistently outperforms all competing
methods achieving up to an order of magnitude speedup. We remark that recently pro-
posed BCFW and SDM have not been compared so far hence their empirical study is
an additional contribution of this paper.

The paper is organized as follows. The problem to be solved is formulated in Sec-
tion 2. Section 3 describes the proposed solver. Relation to existing methods is dis-
cussed in Section 4. Section 5 presents experiments and Section 6 concludes the paper.

2 Formulation of the Problem

Let us consider a linear classifier h : X × Rn → Y defined as

h(x;w) ∈ Argmax
y∈Y

〈w,ψ(x, y)〉
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which assigns label y ∈ Y to observations x ∈ X according to a linear scoring function
given by a scalar product between a feature vector ψ : X × Y → Rn and a parameter
vector w ∈ Rn to be learned from data. In the structured output setting the label set
Y is finite but typically very large, e.g. Y contains all possible image segmentations.
Given a set of examples {(x1, y1), . . . , (xm, ym)} ∈ (X×Y)m, the SO-SVM algorithm
translates learning of the parameters w ∈ Rn into the following convex problem

w∗ = argmin
w∈Rn

P (w) :=
λ

2
‖w‖2 + 1

m

∑
i∈I

max
y∈Y

(
Δi(y) + 〈w,ψi(y)〉

)
(1)

where I = {1, . . . ,m}, ψi(y) = ψ(xi, y) − ψ(xi, yi), Δi(y) = Δ(yi, y) is a loss
function and λ > 0 is a regularization constant. For a convenience of notation we
assume that the loss function satisfies Δ(y, y) = 0, ∀y ∈ Y , which implies that
Δi(yi)+ 〈w,ψi(yi)〉 = 0. Note that all common loss functions like e.g. Hamming loss
satisfy this assumption. The problem (1) can be equivalently expressed as a quadratic
program whose Lagrange dual, denoted as SO-SVM dual, reads

α∗ = argmax
α∈A

D(α) := 〈b,α〉 − 1

2
‖Aα‖2 , (2)

where α = (αi(y) | i ∈ I, y ∈ Y) ∈ Rd is vector of d = m|Y| dual variables,
b = (Δi(y) | i ∈ I, y ∈ Y) ∈ Rd is a vector containing losses on training examples,
A = (ψi(y)/

√
λ | i ∈ I, y ∈ Y) ∈ Rn×d is a matrix of feature vectors, and A ={

α ∈ Rd | α ≥ 0 ∧
∑

y∈Y αi(y) = 1
m , i ∈ I

}
denotes a feasible set. Since the

primal problem (1) is convex and non-degenerate, the duality gap at the optimum is
zero, i.e. P (w∗) = D(α∗). The optimal primal variables can be computed from the
optimal dual variables by w∗ = − 1√

λ
Aα∗.

In this paper we propose a solver which iteratively maximizes the SO-SVM dual (2).
Although maintaining the dual problem in computer memory is not feasible, an approx-
imate solution can be found thanks to the problem sparsity. For any prescribed ε > 0,
our solver finds an ε-optimal solution ŵ satisfying P (ŵ) ≤ P (w∗) + ε in time not
bigger than O( 1

ε2 ). Our solver is modular: it accesses the problem only via a classi-
fication oracle solving so called loss-augmented inference task, i.e. for given i,w the
classification oracle returns an optimal solution and the optimal value of

max
y∈Y

(
Δi(y) + 〈w,ψi(y)〉

)
. (3)

3 Proposed Algorithm Solving SO-SVM Dual

In this section we describe the proposed solver. For the sake of space we put derivations
and proofs to a supplementary material available online1.

1 ftp://cmp.felk.cvut.cz/pub/cmp/articles/franc/
Franc-FasoleSupplementary-ECML2014.pdf

ftp://cmp.felk.cvut.cz/pub/cmp/articles/franc/Franc-FasoleSupplementary-ECML2014.pdf
ftp://cmp.felk.cvut.cz/pub/cmp/articles/franc/Franc-FasoleSupplementary-ECML2014.pdf
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3.1 Generic SDA

In this section we first outline the idea of a generic SDA algorithm for solving SO-SVM
dual (2). In the next section we then describe the proposed instance of the generic SDA.

A generic SDA algorithm converts optimization of the SO-SVM dual (2) into a series
of simpler auxiliary QP tasks solvable analytically. Starting from a feasible point α ∈
A, an SDA algorithm iteratively applies the update rule

αnew := argmax
α∈AL

D(α) , (4)

whereAL ⊂ A is a line between the current solution α and a point β selected fromA,

AL = {α′ | α′ = (1− τ)α + τβ , τ ∈ [0, 1]} . (5)

The update rule (4) is an auxiliary QP task having the same objective as the original
SO-SVM dual but the feasible set is reduced to a line inside A. This implies that the
new solution αnew is also feasible. Let us define a single-variable quadratic function

DL(τ) = D
(
(1 − τ)α+ τβ

)
corresponding to the dual objective D(α) restricted to the line AL. If the point β is
selected such that the derivative of D(α) along the line AL evaluated at α is posi-
tive, i.e. DL(0)

′ > 0, then the update (4) strictly increases the objective function, i.e.
D(αnew)−D(α) > 0 holds. Moreover, the update (4) has a simple analytical solution
(supplementary material, Sec 1.1)

αnew := (1− τ)α + τβ

where

τ := argmax
τ ′∈[0,1]

DL(τ
′) = min

(
1,

〈β −α, b−ATAα

〈α− β,ATA(α− β)〉

)
. (6)

Algorithm 1. Generic SDA for solving SO-SVM dual (2)
Initialization: select a feasible α ∈ A
repeat

Select β ∈ A such that DL(0)
′ > 0.

Compute τ by (6).
Compute the new solution α := (1− τ )α+ τβ.

until until convergence;

Algorithm (1) outlines the generic SDA algorithm. The recently proposed SDM [1]
and the BCFW Algorithm [9] are instances of the generic SDA which differ in the way
how they construct the point β. Note, that the point β determins which variables will be
modified (the working set) by the update rule. For example, the BCFW simultaneously
updates all |Y| dual variables associated with one training example, while, the method
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SDM updates just two variables at a time. In Section 4 we describe the related instances
of the generic SDA in more details.

Our algorithm is also instance of the generic SDA which adopts a different selection
strategy originally proposed for two-class SVM solvers independently proposed by [3]
and [4]. This method, in [3] coined the Working Set Selection strategy using second
order information (WSS2), selects two variables ensuring nearly maximal improvement
of the objective. In the next section we describe the adaptation of the WSS2 to solving
the SO-SVM dual.

3.2 Proposed SDA Solver with WSS2 Selection Strategy

The proposed solver constructs the point β as follows

βj(y) :=

⎧⎨⎩
αi(u) + αi(v) if j = i ∧ y = u
0 if j = i ∧ y = v
αj(y) otherwise

(7)

where (i, u, v) ∈ I×Y×Y is a triplet such that u �= v (the way how (i, u, v) is selected
will be described below). We denote the SDA update rule (4) using β constructed by
(7) as the Sequential Minimal Optimization (SMO) rule [7]. The SMO rule changes the
minimal number of dual variables, in our case two, without escaping the feasible set
A. There are m|Y|(|Y| − 1) SMO rules in total out of which we need to select one in
each iteration. A particular SMO rule determined by the choice of (i, u, v) changes the
variables αi(u) and αi(v) associated with labels u and v and the i-th example. We now
describe our strategy to select (i, u, v).

Selection of i. Recall that the ultimate goal is to find an ε-optimal solution of the SO-
SVM dual (2). Specifically, we aim to find a primal-dual pair (w,α) ∈ Rn × A such
that the duality gap is at most ε, i.e.G(w,α) = P (w)−D(α) ≤ ε holds. Let us define
shorthands

w = − 1√
λ
Aα and si(y,α) = Δi(y) + 〈w,ψi(y)〉

for the primal solution w constructed from the dual solution α and the score function
si(y,w) of the classification oracle (3) with parameters w, respectively. Using this
notation it is not difficult to show (supplementary material, Sec. 1.3) that the duality
gap can be computed by the following formula

G(w,α) =
1

m

∑
i∈I

Gi(w,α)

where
Gi(w,α) = max

y∈Y
si(y,w)−m

∑
y∈Y

αi(y)si(y,w) .

The proposed solver goes through the examples and it uses the value of Gi(w,α) to
decide whether the block of variables αi = (αi(y) | y ∈ Y), associated with the i-th
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example, should be updated. In particular, if Gi(w,α) > ε holds then αi is updated
otherwise they are skipped and the next block of variables is checked. It is clear that if
Gi(w,α) ≤ ε holds for all i ∈ I, i.e. no variables are selected for update, the target
duality gap G(w,α) ≤ ε has been already achieved and thus no update is needed.

Selection of u and v. Here we employ the WSS2 strategy of [3,4]. Given block of
variables αi, our goal is to select among them two, αi(u) and αi(v), which if used
in the SMO rule will cause a large increment, δ(i, u, v) = D(αnew) − D(α), of the
dual objective. First, we need to identify those pairs (u, v) which guarantee positive
change of dual objective, i.e. those for which D′

L(0) > 0 holds. Using (7) the condition
D′

L(0) > 0 can be written as (supplementary material, Sec. 1.2)

αi(v)
(
si(u,w)− si(v,w)

)
> 0 . (8)

Provided the condition (8) holds, application of the SMO rule given by a triplet (i, u, v)
increases the dual objective exactly by the quantity (supplementary material, Sec. 1.2)

δ(i, u, v) =

⎧⎪⎨⎪⎩
λ(si(u,w)− si(v,w))

‖ψi(u)−ψi(v)‖2
if τ < 1

αi(v)(si(u,w)− si(v,w))− αi(v)
2

2λ
‖ψi(u)−ψi(v)‖2 if τ = 1

(9)
The optimal strategy would be to find the pair (u, v) maximizing δ(i, u, v), however,
this is not feasible due to a large number of candidate pairs (u, v) ∈ Y ×Y . Instead we
use a cheaper WSS2 strategy which has been shown to yield nearly the same improve-
ment as trying all pairs [4]. We first find û by maximizing the dominant term si(u,w)
appearing in the improvement formulas. This corresponds to fining the most violated
primal constraint associated with i-th example by solving

û ∈ argmax
y∈Y

si(y,w) (10)

via using the classification oracle. When û is fixed, we find v̂ which brings the maximal
improvement by

v̂ ∈ argmax
y∈Yi

δ(i, û, y) (11)

where Yi = {y ∈ Y | αi(y) > 0} is a set of labels corresponding to non-zero dual vari-
ables associated with the i-th example. Note that the maximization tasks (10) and (11)
do not need to have a unique solution in which case we take any maximizer.

The SDA solver using WSS2 is summarized in Algorithm 2. Note that the SDA-
WSS2 algorithm is an on-line method passing thought the examples and updating those
blocks of variables found to be sub-optimal. The algorithm stops if Gi(w,α) ≤ ε,
∀i ∈ I, implying that the duality gap G(w,α) is not larger than ε. Besides primal
variables w ∈ Rn the algorithm maintains the non-zero dual variables, αi(y) > 0,
y ∈ Yi, their number is upper bounded by the number of updates. Although the primal
variables are at any time related to the dual variables by w = − 1√

λ
Aα it is beneficial

to maintain the vector w explicitly as it speeds up the computation of the score

si(y,w) = Δi(y) + 〈ψi(y),w〉 = Δi(y)−
1

λ

∑
j∈Y

∑
y′∈Yi

αj(y
′)〈ψi(y),ψj(y

′)〉 .
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Algorithm 2. SDA-WSS2 algorithm for solving SO-SVM dual (2)
Input: precision parameter ε > 0, regularization constant λ > 0
Output: ε-optimal primal-dual pair (w,α)
Initialization:

w = 0, Yi = {yi}, αi(y) =

{
1
m

if y = yi
0 otherwise

, i ∈ I

repeat
num updates := 0
forall the i ∈ I do

u1 := argmaxy∈Y si(y,w)
u2 := argmaxy∈Yi

si(y,w)

if si(u1,w) > si(u2,w) then
û := u1

else
û := u2

if si(û,w)−m
∑

y∈Yi
αi(y)si(y,w) > ε then

num updates := num updates + 1
v̂ := argmax

y∈{y′∈Yi|αi(y
′)>0}

δ(i, û, y)

τ := min
{
1, λ(si(û,w)−si(v̂,w))

αi(v̂)‖ψi(û)−ψi(v̂)‖2
}

w := w + (ψi(v̂)−ψi(û))
ταi(v̂)

λ

αi(û) := αi(û) + ταi(v̂)
αi(v̂) := αi(v̂)− ταi(v̂)
if û = u1 then

Yi := Yi ∪ {u1}

until num updates = 0;

Note, however, that all computations can be carried out in terms of the dual variables
α. This property allows to kernelize the algorithm by replacing 〈ψi(y),ψj(y

′)〉 with a
selected kernel function.

The computational bottle neck of the SDA-WSS2 is calling the classification oracle
to solve u1 := argmaxy∈Y si(y,w). The other maximization problems over Yi, which
are required to select u2 and v2, can be solved exhaustively since the set Yi contains
only those ψi(y) corresponding to at least once updated dual variable αi(y).

The convergence of the SDA-WSS2 is ensured by the following theorem:

Theorem 1. For any ε > 0 and λ > 0, Algorithm 2 terminates after

T =
8LD2

ε2λ

updates at most where L = max
y∈Y,y′∈Y

Δ(y, y′) and D = max
i∈I,y∈Y

‖ψ(xi, y)‖.

Proof is given in the supplementary material, Section 2.
We point out without giving a formal proof that the convergence Theorem 1 is valid

not only for the SDA-WSS2 algorithm but also for a broader class of SDA solvers using
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the SMO update rule. In particular, the idea behind the proof of Theorem 1 applies to
the DCM of [1] for which no such bound has been published so far.

The competing methods like the BCFW [9] and the CPA [18] are known to converge
to the ε-optimal solution in O(1ε ) time which is order of magnitude better compared to
our bound O( 1

ε2 ) for the SDA-WSS2 algorithm. However, all the bounds are obtained
by the worst case analysis and little is known about their tightness. The empirical sim-
ulations provided in Section 5 show that the actual number of updates required by the
proposed algorithm is consistently much smaller (up to order of magnitude) compared
to the competing methods.

3.3 FASOLE: Fast Algorithm for Structured Output LEarning

In this section we describe a set of heuristics significantly decreasing the absolute com-
putational time of SDA-WSS2 without affecting its convergence guarantees. We denote
SDA-WSS2 algorithm with the implemented heuristics as the Fast Algorithm for Struc-
tured Output LEarning (FASOLE). A pseudo-code of the FASOLE is summarized by
Algorithm 3. The implemented heuristics aim at i) further reducing the number of ora-
cle calls and ii) using a tighter estimate of the duality gap which is used as a certificate
of the ε-optimality. In particular, FASOLE uses the following set of heuristics:

Reduced problem. FASOLE maintains vector b̂ and matrix Â containing a subset of
coefficients (b,A) of the SO-SVM dual (2). The coefficients (b̂, Â) correspond to the
dual variables α̂ = (αi(y) | y ∈ Yi, i ∈ I) which has been updated in the course of
algorithm. The remaining variables are zero hence the corresponding coefficients need
not be maintained. At the end of each pass through the examples we use b̂ and Â to find
the optimal setting of α̂ by solving a reduced dual problem

α̂ := argmax
α′∈A

〈b̂,α′〉 − 1

2
‖Âα′‖2 (12)

We use the SDA-WSS2 Algorithm 2, “worm”-started from the current solution α̂, to
find ε-optimal solution of (12), i.e. FASOLE uses one loop optimizing over all variables
and second loop for optimizing those variables which have been selected by the first
loop. This strategy reduces the number oracle calls and is cheap due to the warm start.

Variable shrinking. SDA-WSS2 Algorithm 2 checks optimality of dual variables αi in
each iteration irrespectively if they have been found optimal in the previous pass. FA-
SOLE instead introduces binary flag, satisfied(i), which is set true if the corresponding
variables αi already satisfied the partial duality gap constraint Gi(w,α) ≤ ε. Once all
variables have been found optimal, i.e. satisfied(i) = true, ∀i ∈ I, the flags are reset
to false and the process starts again. This strategy allows to concentrate on non-optimal
variables without wasting oracle calls on already optimal ones.

On-line and batch regime. The SDA-WSS2 Algorithm 2 stops if Gi(w,α) ≤ ε,
∀i ∈ I, holds which implies G(w,α) ≤ ε. This stopping conditions is cheap and
can be evaluated in an on-line manner, however, it is overly stringent because the ac-
tual duality gap G(w,α) is usually a way below ε. In fact G(w,α) = ε holds only
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Algorithm 3. FASOLE: Fast Algorithm for Structured Output LEarning
Input: precision parameter ε > 0, regularization constant λ > 0
Output: ε-optimal primal-dual pair (w,α)
Initialization:

w = 0,
(
Yi = {yi}, i ∈ I

)
,

(
αi(y) =

{
1
m

if y = yi
0 otherwise

, i ∈ I
)

Â := (ψi(yi) | i ∈ I), b̂ := (Δi(yi) | i ∈ I)
converged := false, regime := online,

(
satisfied(i) := false, i ∈ I

)
repeat

G := 0, num satisfied := 0, num checked := 0
forall the i ∈ I do

if satisfied(i) = false then
num checked := num checked + 1
u1 := argmaxy∈Y si(y,w)
u2 := argmaxy∈Yi

si(y,w)

if si(u1,w) > si(u2,w) then
û := u1

else
û := u2

Gi := si(û,w)−m
∑

y∈Yi
αi(y)si(y,w)

G := G+Gi

if Gi ≤ ε then
satisfied(i) := true
num satisfied := num satisfied + 1

else
if û = u1 then

Yi := Yi ∪ u1

Â := Â ∪ψi(u1)
b̂ = b̂ ∪Δi(u1)

if regime = online then
v̂ := argmax

y∈{y′∈Yi|αi(y
′)>0}

δ(i, û, y)

τ := min

{
1, λ(si(û,w)−si(v̂,w))

αi(v̂)‖ψi(û)−ψi(v̂)‖2
}

w := w + (ψi(v̂)−ψi(û))
ταi(v̂)

λ

αi(û) := αi(û) + ταi(v̂)
αi(v̂) := αi(v̂)− ταi(v̂)

if num checked = m then
if regime = batch ∧ G ≤ ε then

converged := true

if m ·K ≤ num satisfied then
regime := batch

if ∀i ∈ I, satisfied(i) = true then
satisfied(i) := false, i ∈ I

if converged = false then
Update α̂ = (αi(y) | y ∈ Yi, i ∈ I) by solving the reduced problem (12)

until converged = true;
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in a rare case when G(w,α) = ε, ∀i ∈ I. We resolve the problem by introducing
two optimization regimes: on-line and batch. FASOLE is started in the on-line regime,
regime = online, during which the “for” loop instantly updates the dual variables iden-
tified as non-optimal. As soon as it gets close to the optimum it switches from online to
the batch regime. In the batch regime, FASOLE uses the “for” loop only to select new
non-optimal variables and to simultaneously evaluate the actual duality gap G(w,α).
The variable update in the batch regime is done solely by solving the reduced prob-
lem (12). FASOLE switches from on-line to batch when a large portion of dual vari-
ables are found optimal, in particular, if Gi(w,α) ≤ ε holds for m · K variables at
least. We used the value K = 0.9 in all our experiments.

4 Relation to Existing Methods

In this section we describe relation between the proposed SDA-WSS2 algorithm (and
FASOLE, respectively) and other two instances of the generic SDA algorithm 1 that
have been recently proposed for solving the SO-SVM dual. We also mention a relation
to two-class SVM solvers which use a similar optimization strategy.

Sequential Dual Method for Structural SVMs (SDM) [1] SDM is among the existing
solvers the most similar to our approach. SDM is an instance of the generic SDA using
the SMO updated rule (7) similarly to the proposed SDA-WSS2. The main difference
lies in the strategy for selecting the variables for update. SDM uses so called maximal
violating pair (MVP) strategy which returns the variables most violating Karush-Kuhn-
Tucker (KKT) conditions of the SO-SVM dual (2). Specifically, it finds û by (10),
similarly to our approach, however v̂ is set to

v̂ = argmin
y∈{y′∈Y|αi(y′)>0}

si(v,w) .

The MVP strategy can be seen as a cruel approximation of WSS2 strategy. Indeed,
MVP maximizes the improvement δ(i, u, v) if we neglect the terms containing λ and
‖ψi(u) − ψi(v)‖ in the formula (9). Note that WSS2 strategy introduces only a neg-
ligible computational overhead if compared to the MVP. We show experimentally that
the proposed the SDA with WSS2 strategy consistently outperforms the SDM using the
MVP strategy as it requires consistently less number of oracle calls. Similar behavior
showing that the WSS2 strategy outperforms the MVP strategy has been observed for
the two-class SVM solvers in [3,4].

Block-Coordinate Frank-Wolfe (BCFW) [9] BCFW is an instance of the generic SDA
constructing the point β as

βj(y) =

⎧⎨⎩
1
m if y = u ∧ i = j
0 if y �= u ∧ i = j

α
(t)
j (y) if j �= i

(13)

where û is selected by (10); we call this variable selection strategy as the BCFW up-
date rule. Unlike the SMO update rule used by SDA-WSS2 and SDM, the BCFW rule
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changes the whole block of |Y| variables αi at once. It can be shown that the BCFW
rule selects among the admissible points the one in which direction the derivative of
the SO-SVM dual objective is maximal. Hence, the resulting SDA algorithm using the
BCFW rule can be seen as the steepest feasible ascent method. Empirically it also be-
haves similarly to the steepest ascent methods, i.e. it exhibits fast convergence at the
first iterations but stalls as it approaches optimum. The slow convergence is compen-
sated by simplicity of the method. Specifically, it can be shown that the BCFW rule
admits to express the update rule, and consequently the whole algorithm, without ex-
plicitly maintaining the dual variables α. That is, the BCFW algorithm operates only
with the primal variables though it maximizes the dual SO-SVM objective. The empir-
ical evaluation shows that the BCFW converges significantly slower compared to the
SDA-WSS2, as well as SDM, both using the SMO update rule. Similar behavior have
been observed when the BCFW update rule is applied to two-class SVM problem [4].

Two-class SVM solvers using the SDA with WSS2 [3][4][5] The SDA methods with
WSS2 have been first applied for solving the two-class SVM with L2-hinge loss [4][5]
and with L1-hinge loss in [3]. A similar method was also proposed in [6]. The SDA
with WSS2 is the core solver of LibSVM [2] being currently the most popular SVM
implementation. The main difference to the proposed SDA-WSS2 lies in the form and
the size of the quadratic programs these methods optimize. In particular, the two-class
SVM dual has only a single linear constraint and m variables. In contrast, the SO-SVM
dual hasm linear constraints andm|Y| variables. The extreme size of the SO-SVM does
not admit operations used in two-class SVM solvers like maintaining all dual variables
and buffering the columns of the Hessian matrix. In addition, selection of the most
violated constraint via the classification oracle is expensive in the case of SO-SVM and
must be reduced. The proposed method thus introduces a sparse representation of the
SO-SVM dual and a set of heuristics to reflect the mentioned difficulties.

In addition, our convergence Theorem 1 provides an upper bound on the number of
updates to achieve the ε-optimal solution. To our best knowledge no similar result is
known for the two-class SVM solvers. In particular, only asymptotical convergence of
the SMO type algorithms have been proved so far [16].

5 Experiments

Compared methods. We compared the proposed solver FASOLE (Algorithm 3) against
the SDM [1] and BCFW [9] which are all instances of the generic SDA algorithm 1. In
addition, we compare against the the Cutting Plane Algorithm (CPA) [8,18] being the
current gold-standard for SO-SVM learning (e.g. implemented in popular StructSVM
library). We also refer to [9] which provides a thorough comparison showing that the
BCFW consistently outperforms approximate on-line methods including the exponen-
tiated gradient [11] and the stochastic sub-gradient method [14] hence these methods
are excluded from our comparison.

Datasets. We used three public benchmarks which fit to the SO-SVM setting. First,
we learn a linear multi-class classifier of isolated handwritten digits from the USPS
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dataset [10]. Second, we learn OCR for a sequence of segmented handwritten letters
modeled by the Markov Chain classifier [17]. Third, we learn a detector of landmarks
in facial images based on a deformable part models [12]. For USPS and OCR classifiers
we use normalized image intensities as dense features. For the LANDMARK detector
we use high-dimensional sparse feature descriptors based on the Local Binary Patterns
as suggested in [12]. The classification oracle can be solved by enumeration in the case
of USPS and by Viterbi algorithm in the case of OCR and LANDMARK. The three
applications require different loss function Δ(y, y′) to measure the performance of the
structured classifier. Specifically, we used the 0/1-loss (classification loss) for USPS
data, Hamming loss normalized to the number of characters the OCR problem, and the
loss for LANDMARK data was the absolute average deviation between the estimated
and the ground-truth landmark positions measured in percents of the face size. The
datasets are summarized in Table 1.

Implementation. The competing methods are implemented in Matlab. CPA, SDM and
FASOLE use the same inner loop quadratic programming solver written in C. SDM
and FASOLE implement the same framework described by Algorithm 3 but SDM uses
the SMO update with MVP selection strategy of [1]. We do not implement different
heuristics proposed in [1] in order to measure the effect of different variable selection
strategy being the main contribution of our paper. All methods use the same classifi-
cation oracles. The oracles for OCR and USPS are implemented in Matlab. The oracle
for LANDMARK is implemented in C. All methods use the same stopping condition
based on monitoring the duality gap. In contrast to FASOLE and SDM, the authors of
BCFW do not provide an efficient way to compute the duality gap. Hence we simply
evaluate the gap every iteration and stop BCFW when the goal precision is achieved but
we DO NOT count the duality gap computation to the convergence speed and thus the
wall clock times for BCFW are biased to lower values. The experiments were run on
the AMD Opteron CPU 2600 MHz/256GB RAM.

Evaluation. We measure convergence speed in terms of the effective iterations. One
effective iteration equals to m oracle calls where m is the number of examples. Note
that CPA algorithm requires one effective iteration to compute a single cutting plane.
In contrast, one effective iteration of SDM, BCFW and FASOLE corresponds to m
updates. The effective iteration is an implementation independent measure of the con-
vergence time which is correlated with the the real CPU time when the oracle calls
dominate the other computations. This is the case e.g. for the OCR and LANDMARK
where the oracle calls are expensive. We also record the wall clock time because the
competing methods have different overheads, e.g. CPA, SDM and FASOLE call an in-
ner QP solver. We run all methods for a range of regularization constants, specifically,
λ ∈ {10, 1, 0.1, 0.01}. We stopped each method when the ε-optimal solution has been
achieved. We set the precision parameter to ε = 0.001 for USPS and OCR, and ε = 0.1
for the LANDMARK problem. Note that the target precision ε is given in terms of the
risk function which has different units for different application. Specifically, for USPS
and OCR the units is the probability (hence ε = 0.001 seems sufficient) while for
LANDMARK the units is the percentage (hence ε = 0.1).
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Table 1. Parameters of the benchmark datasets used in comparison

dataset #training examples #testing examples #parameters structure
USPS 7,291 2,007 2,570 flat
OCR 5,512 1,365 4,004 chain
LANDMARK 5,062 3,512 232,476 tree

Table 2. The number of effective iterations and the wall clock time needed to converge to ε-
optimal solution for different setting of the regularization constant λ. The time is measured
in seconds for USPS and in hours for OCR and LANDMARK. The last two rows corre-
spond to accumulated time/iterations and the speedup achieved by the proposed solver FASOLE
(speedup={CPA,BCFW,SDM}/FASOLE). The BCFW method had problems to converge for low
values of λ hence we stopped BCFW when it used the same number of effective iterations as CPA
(the slowest method which converged). These cases are marked with brackets. The best results,
i.e. minimal number of iterations and the shortest time are printed in bold.

USPS
CPA BCFW SDM FASOLE

λ iter time iter time iter time iter time [s]
1.000 62 3.6 18 61.6 5 9.5 5 9.8
0.100 101 6.0 70 214.2 6 11.6 5 9.9
0.010 197 10.9 (197) (538.0) 13 39.12 5 14.0
0.001 380 26.7 (380) (1,018.8) 24 399.9 7 30.5

total 740 47.3 665 1,832.6 48 460.2 22 64.2
speedup 33.6 0.73 30.2 28.6 2.2 7.1 1 1

OCR
CPA BCFW SDM FASOLE

λ iter time iter time iter time iter time [h]
1.000 63 0.23 26 0.41 8 0.09 9 0.04
0.100 111 0.39 89 1.28 10 0.16 13 0.07
0.010 257 0.91 (257) (3.55) 20 0.60 16 0.15
0.001 655 2.31 (655) (9.47) 49 6.04 20 0.43

total 1086 3.83 1027 14.70 87 6.89 58 0.70
speedup 18.7 5.5 17.7 21.0 1.5 9.8 1 1

LANDMARK
CPA BCFW SDM FASOLE

λ iter time iter time iter time iter time [h]
10.00 93 2.43 4 0.18 8 0.32 6 0.21
1.00 165 4.71 20 0.78 11 0.40 8 0.28
0.10 261 7.82 (261) (8.52) 30 1.42 15 0.55
0.01 446 12.20 (446) (12.14) 131 12.30 39 1.79

total 965 27.25 731 21.62 180 14.42 68 2.83
speedup 14.2 9.6 10.8 7.6 2.6 5.1 1 1
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Fig. 1. Convergence curves for the regularization parameter λ which produces the minimal test
risk, in particular, λ = 0.01 for USPS and LANDMARK and λ = 0.001 for OCR. The left col-
umn shows convergence in terms of the primal sub-optimality and the right column convergence
of the test risk.

Discussion of the results. Table 2 summarizes the numbers of effective iteration and
the wall clock time required by competing methods to achieve the target ε-precision. In
sake of space we do not included the final objective because they are almost the same
(must not differ more than ε).
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The results show that if compared to CPA and BCFW, the proposed FASOLE re-
quires order of magnitude less number of effective iterations on all three datasets. This
leads to the speedup in terms of the wall clock time ranging from 5.5 to 21.0 on struc-
tured problems OCR and LANDMARKS. The CPA algorithm requires less time on the
non-structured USPS benchmark because the risk function of multi-class SVM required
by CPA can be evaluated by a single matrix multiplication (very effective in Matlab)
unlike the SDA solvers (BCFW, SDM, FASOLE) which compute the loss for individual
examples separately (calling function in a loop not effective in Matlab).

Comparison to SDM, the closest method to FASOLE, shows that SDM requires ap-
proximately only two times more effective iterations than FASOLE. However, SDM
requires much more time in the inner loop, optimizing over buffered features, espe-
cially for low values of λ. This results to significantly slower convergence in terms of
the wall clock time, specifically, the speedup achieved by FASOLE relatively to SDM
ranges from 5.1 to 9.8.

These results show that FASOLE converges to the ε-optimal solution consistently
faster on all problems which translate to significant speedup in terms of wall-clock
time for the cases where the oracle calls are expensive. The advantage of the FASOLE
is especially significant for small values of λ when the speed up is often an order of
magnitude. Figure 1 (column 1) shows convergence of the competing methods in terms
of the primal sub-optimality (P (w) − P (w∗))/P (w∗), i.e. relative deviation of the
primal objective from the optimal value, where P (w∗) was replaced by the maximal
achieved dual value. The figures show that FASOLE converges consistently faster from
the beginning to the end. This implies that it beats the competing methods for the whole
range of the precision parameter ε and not only the particular setting the results of which
are reported in Table 2.

Some authors advocate that the optimality in terms of the objective function is not
the primal goal and instead they propose to stop the algorithm based on monitoring
the test risk. Therefore we also record convergence of the test risk which is presented
in the second column of Figure 1. We see that the convergence of the test risk closely
resembles the convergence of the objective function (compare the first and the second
column).

6 Conclusions

In this paper we have proposed a variant of the sequential dual ascent algorithm for opti-
mization of the SO-SVM dual. The proposed algorithm, called FASOLE, uses working
set selection strategy which has been previously used for optimization of simpler QP
tasks emerging in learning the two-class SVM. We provide a novel convergence analysis
which guarantees that FASOLE finds the ε-optimal solution in O( 1

ε2 ) time. The empir-
ical comparison indicates that FASOLE consistently outperforms the existing state-of-
the-art solvers for the SO-SVM achieving up to an order of magnitude speedups while
obtaining the same precise solution.

Acknowledgment. The author was supported by the project ERC-CZ LL1303.
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Abstract. Currently, machine learning plays an important role in the
lives and individual activities of numerous people. Accordingly, it has
become necessary to design machine learning algorithms to ensure that
discrimination, biased views, or unfair treatment do not result from de-
cision making or predictions made via machine learning. In this work,
we introduce a novel empirical risk minimization (ERM) framework for
supervised learning, neutralized ERM (NERM) that ensures that any
classifiers obtained can be guaranteed to be neutral with respect to a
viewpoint hypothesis. More specifically, given a viewpoint hypothesis,
NERM works to find a target hypothesis that minimizes the empirical
risk while simultaneously identifying a target hypothesis that is neutral
to the viewpoint hypothesis. Within the NERM framework, we derive a
theoretical bound on empirical and generalization neutrality risks. Fur-
thermore, as a realization of NERM with linear classification, we derive a
max-margin algorithm, neutral support vector machine (SVM). Experi-
mental results show that our neutral SVM shows improved classification
performance in real datasets without sacrificing the neutrality guarantee.

Keywords: neutrality, discrimination, fairness, classification, empirical
risk minimization, support vector machine.

1 Introduction

Within the framework of empirical risk minimization (ERM), a supervised learn-
ing algorithm seeks to identify a hypothesis f that minimizes empirical risk with
respect to given pairs of input x and target y. Given an input x without the
target value, hypothesis f provides a prediction for the target of x as y = f(x).
In this study, we add a new element, viewpoint hypothesis g, to the ERM frame-
work. Similar to hypothesis f , which is given an input x without the viewpoint
value, viewpoint hypothesis g provides a prediction for the viewpoint of the x
as v = g(x). In order to distinguish between the two different hypotheses, f
and g, f will be referred to as the target hypothesis. Examples of the viewpoint
hypothesis are given with the following specific applications.

With this setup in mind, we introduce our novel framework for supervised
learning, neutralized ERM (NERM). Intuitively, we say that a target hypothesis
is neutral to a given viewpoint hypothesis if there is low correlation between
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the target f(x) and viewpoint g(x). The objective of NERM is to find a tar-
get hypothesis f that minimizes empirical risks while simultaneously remaining
neutral to the viewpoint hypothesis g. The following two application scenarios
motivate NERM.

Application 1 (Filter bubble). Suppose an article recommendation ser-
vice provides personalized article distribution. In this situation, by taking a
user’s access logs and profile as input x, the service then predicts that user’s
preference with respect to articles using supervised learning as y = f(x) (target
hypothesis). Now, suppose a user strongly supports a policy that polarizes public
opinion (such as nuclear power generation or public medical insurance). Further-
more, suppose the user’s opinion either for or against the particular policy can
be precisely predicted by v = g(x) (viewpoint hypothesis). Such a viewpoint
hypothesis can be readily learned by means of supervised learning, given users’
access logs and profiles labeled with the parties that the users support. In such
situations, if predictions by the target hypothesis f and viewpoint hypothesis g
are closely correlated, recommended articles are mostly dominated by articles
supportive of the policy, which may motivate the user to adopt a biased view of
the policy [12]. This problem is referred to as the filter bubble [10]. Bias of this
nature can be avoided by training the target hypothesis so that the predicted
target is independent of the predicted viewpoint.

Application 2 (Anti-discrimination). Now, suppose a company wants to
make hiring decisions using information collected from job applicants, such as
age, place of residence, and work experience. While taking such information as
input x toward the hiring decision, the company also wishes to predict the po-
tential work performance of job applicants via supervised learning, as y = f(x)
(target hypothesis). Now, although the company does not collect applicant in-
formation on sensitive attributes such as race, ethnicity, or gender, suppose such
sensitive attributes can be sufficiently precisely predicted from an analysis of the
non-sensitive applicant attributes, such as place of residence or work experience,
as v = g(x) (viewpoint hypothesis). Again, such a viewpoint hypothesis can be
readily learned by means of supervised learning by collecting moderate number
of labeled examples. In such situations, if hiring decisions are made by the tar-
get hypothesis f and if there is a high correlation with the sensitive attribute
predictions v = g(x), those decisions might be deemed discriminatory [11]. In
order to avoid this, the target hypothesis should be trained so that the decisions
made by f are not highly dependent on the sensitive attributes predicted by g.
Thus, this problem can also be interpreted as an instance of NERM.

The neutrality of a target hypothesis should not only be guaranteed for given
samples, but also for unseen samples. In the article recommendation example,
the recommendation system is trained using the user’s past article preferences,
whereas recommendation neutralization is needed for unread articles. In the hir-
ing decision example, the target hypothesis is trained with information collected
from the past histories of job applicants, but the removal of discrimination from
hiring decisions is the desired objective.
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Given a viewpoint hypothesis, we evaluate the degree of neutrality of a target
hypothesis with respect to given and unseen samples as empirical neutrality risk
and generalization neutrality risk, respectively. The goal of NERM is to show
that the generalization risk is theoretically bounded in the same manner as
the standard ERM [2,1,6], and, simultaneously, to show that the generalization
neutrality risk is also bounded with respect to given viewpoint hypothesis.

Our Contribution. The contribution of this study is three-fold. First, we
introduce our novel NERM framework in which, assuming the target hypothe-
sis and viewpoint hypothesis output binary predictions, it is possible to learn a
target hypothesis that minimizes empirical and empirically neutral risks. Given
samples and a viewpoint hypothesis, NERM is formulated as a convex optimiza-
tion problem where the objective function is the linear combination of two terms,
the empirical risk term penalizing the target hypothesis prediction error and the
neutralization term penalizing correlation between the target and the viewpoint.
The predictive performance and neutralization can be balanced by adjusting a
parameter, referred to as the neutralization parameter. Because of its convexity,
the optimality of the resultant target hypothesis is guaranteed (in Section 4).

Second, we derive a bound on empirical and generalization neutrality risks for
NERM. We also show that the bound on the generalization neutrality risk can
be controlled by the neutralization parameter (in Section 5). As discussed in Sec-
tion 2, a number of diverse algorithms targeting the neutralization of supervised
classifications have been presented. However, none of these have given theoret-
ical guarantees on generalization neutrality risk. To the best of our knowledge,
this is the first study that gives a bound on generalization neutrality risk.

Third, we present a specific NERM learning algorithm for neutralized linear
classification. The derived learning algorithm is interpreted as a support vector
machine (SVM) [14] variant with a neutralization guarantee. The kernelized
version of the neutralization SVM is also derived from the dual problem (in
Section 6).

2 Related Works

Within the context of removing discrimination from classifiers, the need for a
neutralization guarantee has already been extensively studied. Calders & Ver-
wer [4] pointed out that elimination of sensitive attributes from training samples
does not help to remove discrimination from the resultant classifiers. In the hir-
ing decision example, even if we assume that a target hypothesis is trained with
samples that have no race or ethnicity attributes, hiring decisions may indirectly
correlate with race or ethnicity through addresses if there is a high correlation
between an individual’s address and his or her race or ethnicity. This indirect
effect is referred to as a red-lining effect [3].

Calders & Verwer [4] proposed the Calders–Verwer 2 Näıve Bayes method
(CV2NB) to remove the red-lining effect from the Näıve Bayes classifier. The
CV2NB method is used to evaluate the Calders–Verwer (CV) score, which is
a measure that evaluates discrimination of näıve Bayes classifiers. The CV2NB
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method learns the näıve Bayes classifier in a way that ensures the CV score is
made as small as possible. Based on this idea, various situations where discrimi-
nation can occur have been discussed in other studies [16,7]. Since a CV score is
empirically measured with the given samples, näıve Bayes classifiers with low CV
scores result in less discrimination for those samples. However, less discrimina-
tion is not necessarily guaranteed for unseen samples. Furthermore, the CV2NB
method is designed specifically for the näıve Bayes model and does not provide
a general framework for anti-discrimination learning.

Zemel et al. [15] introduced the learning fair representations (LFR) model for
preserving classification fairness. LFR is designed to provide a map, from inputs
to prototypes, that guarantees the classifiers that are learned with the proto-
types will be fair from the standpoint of statistical parity. Kamishima et al. [8]
presented a prejudice remover regularizer (PR) for fairness-aware classification
that is formulated as an optimization problem in which the objective function
contains the loss term and the regularization term that penalizes mutual infor-
mation between the classification output and the given sensitive attributes. The
classifiers learned with LFR or PR are empirically neutral (i.e., fair or less dis-
criminatory) in the sense of statistical parity or mutual information, respectively.
However, no theoretical guarantees related to neutrality for unseen samples have
been established for these methods.

Fukuchi et al. [5] introduced η-neutrality, a framework for neutralization of
probability models with respect to a given viewpoint random variable. Their
framework is based on maximum likelihood estimation and neutralization is
achieved by maximizing likelihood estimation while setting constraints to enforce
η-neutrality. Since η-neutrality is measured using the probability model of the
viewpoint random variable, the classifier satisfying η-neutrality is expected to
preserve neutrality for unseen samples. However, this method also fails to provide
a theoretical guarantee for generalization neutrality.

LFR, PR, and η-neutrality incorporate a hypothesis neutrality measure into
the objective function in the form of a regularization term or constraint; however,
these are all non-convex. One of the reasons why generalization neutrality is not
theoretically guaranteed for these methods is the non-convexity of the objective
functions. In this study, we introduce a convex surrogate for a neutrality measure
in order to provide a theoretical analysis of generalization neutrality.

3 Empirical Risk Minimization

Let X and Y be an input space and a target space, respectively. We assume
Dn = {(xi, yi)}ni=1 ∈ Zn (Z = X × Y ) to be a set of i.i.d. samples drawn from
an unknown probability measure ρ over (Z,Z). We restrict our attention to
binary classification, Y = {−1, 1}, but our method can be expanded to handle
multi-valued classification via a straightforward modification. Given the i.i.d.
samples, the supervised learning objective is to construct a target hypothesis
f : X → R where the hypothesis is chosen from a class of measurable functions
f ∈ F . We assume that classification results are given by sgn ◦ f(x), that is,
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y = 1 if f(x) > 0; otherwise y = −1. Given a loss function � : Y × R→ R+, the
generalization risk is defined by

R(f) =

∫
�(y, f(x))dρ.

Our goal is to find f∗ ∈ F that minimizes the generalization risk R(f). In
general, ρ is unknown and the generalization risk cannot be directly evaluated.
Instead, we minimize the empirical loss with respect to sample set Dn

Rn(f) =
1

n

n∑
i=1

�(yi, f(xi)).

This is referred to as empirical risk minimization (ERM).
In order to avoid overfitting, a regularization term Ω : F → R+ is added to the

empirical loss by penalizing complex hypotheses. Minimization of the empirical
loss with a regularization term is referred to as regularized ERM (RERM).

3.1 Generalization Risk Bound

Rademacher Complexity measures the complexity of a hypothesis class with re-
spect to a probability measure that generates samples. The Rademacher Com-
plexity of class F is defined as

Rn(F) = EDn,σ

[
sup
f∈F

1

n

n∑
i=1

σif(xi)

]

where σ = (σ1, ..., σn)
T are independent random variables such that Pr(σi =

1) = Pr(σi = −1) = 1/2. Bartlett & Mendelson [2] derived a generalization loss
bound using the Rademacher complexity as follows:

Theorem 1 (Bartlett & Mendelson [2]). Let ρ be a probability measure on
(Z,Z) and let F be a set of real-value functions defined on X, with sup{|f(x)| :
f ∈ F} finite for all x ∈ X. Suppose that φ : R→ [0, c] satisfies and is Lipschitz
continuous with constant Lφ. Then, with probability at least 1−δ, every function
in F satisfies

R(f) ≤ Rn(f) + 2LφRn(F) + c

√
ln(2/δ)

2n
.

4 Generalization Neutrality Risk and Empirical
Neutrality Risk

In this section, we introduce the viewpoint hypothesis into the ERM framework
and define a new principle of supervised learning, neutralized ERM (NERM),
with the notion of generalization neutrality risk. Convex relaxation of the neu-
tralization measure is also discussed in this section.
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4.1 +1/−1 Generalization Neutrality Risk

Suppose a measurable function g : X → R is given. The prediction of g is re-
ferred to as the viewpoint and g is referred to as the viewpoint hypothesis. We
say the target hypothesis f is neutral to the viewpoint hypothesis g if the target
predicted by the learned target hypothesis f and the viewpoint predicted by the
viewpoint hypothesis g are not mutually correlating. In our setting, we assume
the target hypothesis f and viewpoint hypothesis g to give binary predictions
by sgn ◦ f and sgn ◦ g, respectively. Given a probability measure ρ and a view-
point hypothesis g, the neutrality of the target hypothesis f is defined by the
correlation between sgn ◦ f and sgn ◦ g over ρ. If f(x)g(x) > 0 holds for mul-
tiple samples, then the classification sgn ◦ f closely correlates to the viewpoint
sgn ◦ g. On the other hand, if f(x)g(x) ≤ 0 holds for multiple samples, then the
classification sgn◦f and the viewpoint sgn◦g are inversely correlating. Since we
want to suppress both correlations, our neutrality measure is defined as follows:

Definition 1 (+1/-1 Generalization Neutrality Risk). Let f ∈ F and
g ∈ G be a target hypothesis and viewpoint hypothesis, respectively. Let ρ be a
probability measure over (Z,Z). Then, the +1/-1 generalization neutrality risk
of target hypothesis f with respect to viewpoint hypothesis g over ρ is defined by

Csgn(f, g) =

∣∣∣∣∫ sgn(f(x)g(x))dρ

∣∣∣∣.
When the probability measure ρ cannot be obtained, a +1/−1 generalization

neutrality risk Csgn(f, g) can be empirically evaluated with respect to the given
samples Dn.

Definition 2 (+1/−1 Empirical Neutrality Risk). Suppose that Dn =
{(xi, yi)}ni=1 ∈ Zn is a given sample set. Let f ∈ F and g ∈ G be the target
hypothesis and the viewpoint hypothesis, respectively. Then, the +1/−1 empiri-
cal neutrality risk of target hypothesis f with respect to viewpoint hypothesis g
is defined by

Cn,sgn(f, g) =
1

n

∣∣∣∣∣
n∑

i=1

sgn(f(xi)g(xi))

∣∣∣∣∣. (1)

4.2 Neutralized Empirical Risk Minimization (NERM)

With the definition of neutrality risk, a novel framework, the Neutralized Em-
pirical Risk Minimization (NERM) is introduced. NERM is formulated as min-
imization of the empirical risk and empirical +1/−1 neutrality risk:

min
f∈F

Rn(f) +Ω(f) + ηCn,sgn(f, g). (2)

where η > 0 is the neutralization parameter which determines the trade-off ratio
between the empirical risk and the empirical neutrality risk.
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4.3 Convex Relaxation of +1/−1 Neutrality Risk

Unfortunately, the optimization problem defined by Eq (2) cannot be efficiently
solved due to the nonconvexity of Eq (1). Therefore, we must first relax the
absolute value function of Csgn(f, g) into the max function. Then, we introduce
a convex surrogate of the sign function, yielding a convex relaxation of the +1/−1
neutrality risk.

By letting I be the indicator function, the +1/−1 generalization neutrality
risk can be decomposed into two terms:

Csgn(f, g) =
∣∣∣∫ I(sgn(g(x)) = sgn(f(x)))dρ︸ ︷︷ ︸

prob. that f agrees with g

−
∫
I(sgn(g(x)) �= sgn(f(x)))dρ︸ ︷︷ ︸

prob. that f disagrees with g

∣∣∣
:= |C+

sgn(f, g)− C−
sgn(f, g)| (3)

The upper bound of the +1/−1 generalization neutrality risk Csgn(f, g) is tight
if C+

sgn(f, g) and C−
sgn(f, g) are close. Thus, the following property is derived.

Proposition 1. Let C+
sgn(f, g) and C−

sgn(f, g) be functions defined in Eq (3).
For any η ∈ [0.5, 1], if

Cmax
sgn (f, g) := max(C+

sgn(f, g), C
−
sgn(f, g)) ≤ η,

then

Csgn(f, g) = |C+
sgn(f, g)− C−

sgn(f, g)| ≤ 2η − 1.

Proposition 1 shows that Cmax
sgn (f, g) can be used as the generalization neutrality

risk instead of Csgn(f, g). Next, we relax the indicator function contained in
C±

sgn(f, g).

Definition 3 (Relaxed Convex Generalization Neutrality Risk). Let f ∈
F and g ∈ G be a classification hypothesis and viewpoint hypothesis, respectively.
Let ρ be a probability measure over (Z,Z). Let ψ : R→ R+ be a convex function
and

C±
ψ (f, g) =

∫
ψ(±g(x)f(x))dρ.

Then, the relaxed convex generalization neutrality risk of f with respect to g is
defined by

Cψ(f, g) = max(C+
ψ (f, g), C−

ψ (f, g)).

The empirical evaluation of relaxed convex generalization neutrality risk is de-
fined in a straightforward manner.

Definition 4 (Convex Relaxed Empirical Neutrality Risk). Suppose Dn =
{(xi, yi)}ni=1 ∈ Zn to be a given sample set. Let f ∈ F and g ∈ G be the tar-
get hypothesis and the viewpoint hypothesis, respectively. Let ψ : R → R+ be a
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convex function and

C±
n,ψ(f, g) =

1

n

n∑
i=1

ψ(±g(xi)f(xi)).

Then, relaxed convex empirical neutrality risk of f with respect to g is defined
by

Cn,ψ(f, g) = max(C+
n,ψ(f, g), C

−
n,ψ(f, g)).

C±
n,ψ(f, g) is convex because it is a summation of the convex function ψ. Noting

that max(f1(x), f2(x)) is convex if f1 and f2 are convex, Cn,ψ(f, g) is convex as
well.

4.4 NERM with Relaxed Convex Empirical Neutrality Risk

Finally, we derive the convex formulation of NERM with the relaxed convex
empirical neutrality risk as follows:

min
f∈F

Rn(f) +Ω(f) + ηCn,ψ(f, g). (4)

If the regularized empirical risk is convex, then this is a convex optimization
problem.

The neutralization term resembles the regularizer term in the formulation
sense. Indeed, the neutralization term is different from the regularizer in that it
is dependent on samples. We can interpret the regularizer as a prior structural
information of the model parameters, but we cannot interpret the neutraliza-
tion term in the same way due to its dependency on samples. PR and LFR
have similar neutralization terms in the sense of adding the neutrality risk to
objective function, and neither can be interpreted as a prior structural informa-
tion. Instead, the neutralization term can be interpreted as a prior information
of data. The notion of a prior data information is relevant to transfer learn-
ing [9], which aims to achieve learning dataset information from other datasets.
However, further research on the relationships between the neutralization and
transfer learning will be left as an area of future work.

5 Generalization Neutrality Risk Bound

In this section, we show theoretical analyses of NERM generalization neutrality
risk and generalization risk. First, we derive a probabilistic uniform bound of
the generalization neutrality risk for any f ∈ F with respect to the empirical
neutrality risk Cn,ψ(f, g) and the Rademacher complexity of F . Then, we derive
a bound on the generalization neutrality risk of the optimal hypothesis.

For convenience, we introduce the following notation. For a hypothesis class
F and constant c ∈ R, we denote −F = {−f : f ∈ F} and cF = {cf : f ∈ F}.
For any function φ : R → R, let φ ◦ F = {φ ◦ f : f ∈ F}. Similarly, for any
function g : X → R, let gF = {h : f ∈ F , h(x) = g(x)f(x) ∀x ∈ X}.
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5.1 Uniform Bound of Generalization Neutrality Risk

A probabilistic uniform bound on Cψ(f, g) for any hypothesis f ∈ F is derived
as follows.

Theorem 2. Let Cψ(f, g) and Cn,ψ(f, g) be the relaxed convex generalization
neutrality risk and the relaxed convex empirical neutrality risk of f ∈ F w.r.t.
g ∈ G. Suppose that ψ : R → [0, c] satisfies and is Lipschitz continuous with
constant Lψ. Then, with probability at least 1− δ, every function in F satisfies

Cψ(f, g) ≤ Cn,ψ(f, g) + 2LψRn(gF) + c

√
ln(2/δ)

2n
.

As proved by Theorem 2, Cψ(f, g)− Cn,ψ(f, g), the approximation error of the
generalization neutrality risk is uniformly upper-bounded by the Rademacher
complexity of hypothesis classes gF and O(

√
ln(1/δ)/n), where δ is the confi-

dence probability and n is the sample size.

5.2 Generalization Neutrality Risk Bound for NERM Optimal
Hypothesis

Let f̂ ∈ F be the optimal hypothesis of NERM. We derive the bounds on the
empirical and generalization neutrality risks achieved by f̂ under the following
conditions:

1. Hypothesis class F includes a hypothesis f0 s.t. f0(x) = 0 for ∀x, and
2. the regularization term of f0 is Ω(f0) = 0.

(A)

The conditions are relatively moderate. For example, consider the linear hy-
pothesis f(x) = wTx and Ω(f) = ‖w‖22 (�22 norm) and let W ⊆ RD be a class of
the linear hypothesis. If 0 ∈ W , the two conditions above are satisfied. Assuming
that F satisfies these conditions, the following theorem provides the bound on
the generalization neutrality risk.

Theorem 3. Let f̂ be the optimal target hypothesis of NERM, where the view-
point hypothesis is g ∈ G and the neutralization parameter is η. Suppose that
ψ : R → [0, c] satisfies and is Lipschitz continuous with constant Lψ. If condi-
tions (A) are satisfied, then with probability at least 1− δ,

Cψ(f̂ , g) ≤ ψ(0) + φ(0)
1

η
+ 2LψRn(gF) + c

√
ln(2/δ)

2n
.

For the proof of Theorem 3, we first derive the upper bound of the empirical
neutrality risk of f̂ .

Corollary 1. If the conditions (A) are satisfied, then the empirical relaxed con-

vex neutrality risk of f̂ is bounded by

Cn,ψ(f̂ , g) ≤ ψ(0) + φ(0)
1

η
.

Theorem 3 is immediately obtained from Theorem 2 and Corollary 1.
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5.3 Generalization Risk Bound for NERM

In this section, we compare the generalization risk bound of NERM with that of
a regular ERM. Theorem 1 denotes a uniform bound of the generalization risk.
This theorem holds with the hypotheses which are optimal in terms of NERM
and ERM. However, the hypotheses which are optimal in terms of NERM and
ERM have different empirical risk values. The empirical risk of NERM is greater
than that of ERM since NERM has a term that penalizes less neutrality. More
precisely, if we let f̄ be the optimal hypothesis in term of ERM, we have

Rn(f̂)−Rn(f̄) ≥ 0. (5)

The reason for this is that empirical risk of any other hypothesis is greater than
one of f̄ since f̄ minimizes empirical risk. Furthermore, due to f̂ is a minimizer
of Rn(f) + ηCn,φ(f, g), we have

Rn(f̂) + ηCn,φ(f̂ , g)−Rn(f̄)− ηCn,φ(f̄ , g) ≤ 0

Rn(f̂)−Rn(f̄) ≤ η(Cn,φ(f̄ , g)− Cn,φ(f̂ , g)). (6)

Since the left term of this inequality is greater than zero due to Eq (5), the
empirical risk becomes greater if the empirical neutrality risk becomes lower.

6 Neutral SVM

6.1 Primal Problem

SVMs [14] are a margin-based supervised learning method for binary classifica-
tion. The algorithm of SVMs can be interpreted as minimization of the empirical
risk with regularization term, which follows the RERM principle. In this section,
we introduce a SVM variant that follows the NERM principle.

The soft-margin SVM employs the linear classifier f(x) = wTx + b as the
target hypothesis. In the objective function, the hinge loss is used for the loss
function, as φ(yf(x)) = max(0, 1 − yf(x)), and the �2 norm is used for the

regularization term, Ω(f) = λ‖f‖22/2n, where λ > 0 denotes the regularization
parameter. In our SVM in NERM, referred to as the neutral SVM, the loss
function and regularization term are the same as in the soft-margin SVM. For
a surrogate function of the neutralization term, the hinge loss ψ(±g(x)f(x)) =
max(0, 1∓g(x)f(x)) was employed. Any hypothesis can be used for the viewpoint
hypothesis. Accordingly, following the NERM principle defined in Eq (4), the
neutral SVM is formulated by

min
w,b

n∑
i=1

max(0, 1− yi(w
Txi + b)) +

λ

2
‖w‖22 + ηCn,ψ(w, b, g), (7)

where

Cn,ψ(w, b, g) = max(C+
n,ψ(w, b, g), C

−
n,ψ(w, b, g)),

C±
n,ψ(w, b, g) =

n∑
i=1

max(0, 1∓ g(xi)(w
Txi + b)).
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Since the risk, regularization, and neutralization terms are all convex, the objec-
tive function of the neutral SVM is convex. The primal form can be solved by
applying the subgradient method [13] to Eq (7).

6.2 Dual Problem and Kernelization

Next, we derive the dual problems of the problem of Eq (7), from which the neu-
tral SVM kernelization is naturally derived. First, we introduce slack variables
ξ, ξ±, and ζ into Eq (7) to represent the primal problem:

min
w,b,

ξ,ξ±,ζ

n∑
i=1

ξi +
λ

2
‖w‖22 + ηζ (8)

sub to

n∑
i=1

ξ+i ≤ ζ,

n∑
i=1

ξ−i ≤ ζ, 1 − yi(w
Txi + b) ≤ ξi,

1− vi(w
Txi + b) ≤ ξ+i , 1 + vi(w

Txi + b) ≤ ξ−i ,

ξi ≥ 0, ξ+i ≥ 0, ξ−i ≥ 0, ζ ≥ 0

where slack variables ξi, ξ
+
i , and ξ−i denote measures of the degree of misclas-

sification, correlation, and inverse correlation, respectively. The slack variable
ζ, derived from max function in Cn,ψ(w, b, g), measures the imbalance of the
degree of correlation and inverse correlation. From the Lagrange relaxation of
the primal problem Eq (8), the dual problem is derived as

max
α,β±

λ
n∑

i=1

bi −
1

2

n∑
i

n∑
j

aiaik(xi, xj) (9)

sub to
n∑
i

ai = 0, 0 ≤ αi ≤ 1, 0 ≤ β±
i , β

+
i + β−

i ≤ η

where bi = αi + β+
i + β−

i , ai = αiyi + β+
i vi− β−

i vi. As seen in the dual problem,
the neutral SVM is naturally kernelized with kernel function xT

i xj = k(xi, xj).
The derivation of the dual problem and kernelization thereof is described in the
supplemental document in detail. The optimization of Eq (9) is an instance of
quadratic programming (QP) that can be solved by general QP solvers, although
it does not scale well with large samples due to its large memory consumption.
In the supplemental documentation, we also show the applicability of the well-
known sequential minimal optimization technique to our neutral SVM.

7 Experiments

In this section, we present experimental evaluation of our neutral SVM for syn-
thetic and real datasets. In the experiments with synthetic data, we experimen-
tally evaluate the change of generalization risk and generalization neutrality risk
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according to the number of samples, in which their relations are described in
Theorem 2. In the experiments for real datasets, we compare our method with
CV2NB [4], PR [8] and η-neutral logistic regression (ηLR for short) [5] in terms
of risk and neutrality risk. The CV2NB method learns a náıve Bayes model, and
then modifies the model parameters so that the resultant CV score approaches
zero. The PR and ηLR are based on maximum likelihood estimation of a logistic
regression (LR) model. These methods have two parameters, the regularizer pa-
rameter λ, and the neutralization parameter η. The PR penalizes the objective
function of the LR model with mutual information. The ηLR performs maximum
likelihood estimation of the LR model while enforcing η-neutrality as constraints.
The neutralization parameter of neutral SVM and PR balances risk minimization
and neutrality maximization. Thus, it can be tuned in the same manner used
to determine the regularizer parameter. The neutralization parameter of ηLR
determines the region of the hypothesis in which the hypotheses are regarded
as neutral. The tuning strategy of the regularizer parameter and neutralization
parameter are different in all these methods. We determined the neutralization
parameter tuning range of these methods via preliminary experiments.

7.1 Synthetic Dataset

In order to investigate the change of generalization neutrality risk with sample
size n, we performed our neutral SVM experiments for a synthetic dataset. First,
we constructed the input xi ∈ R10 with the vector being sampled from the uni-
form distribution over [−1, 1]10. The target yi corresponding to the input xi is
generated as yi = sgn(wT

y xi) where wy ∈ R10 is a random vector drawn from
the uniform distribution over [−1, 1]10. Noises are added to labels by inverting
the label with probability 1/(1 + exp(−100|wT

y xi|)). The inverting label proba-

bility is small if the input xi is distant from a plane wT
y x = 0. The viewpoint

vi corresponding to the input xi is generated as vi = sgn(wT
v xi), where the first

element of wv is set as wv,1 = wy,1 and the rest of elements are drawn from the
uniform distribution over [−1, 1]9. Noises are added in the same manner as the
target. The equality of the first element of wy and wv leads to correlation be-
tween yi and vi. Set the regularizer parameter as λ = 0.05n. The neutralization
parameter was varied as η ∈ {0.1, 1.0, 10.0}. In this situation, we evaluate the
approximation error of the generalization risk and the generalization neutrality
risk by varying sample size n. The approximation error of generalization risk is
the difference of the empirical risk between training and test samples, while that
of the generalization neutrality risk is the difference of the empirical neutral-
ity risk between training and test samples. Five fold cross-validation was used
for evaluation of the approximation error of the empirical risk and empirical
neutrality; the average of ten different folds are shown as the results.

Results. Fig 1 shows the change of the approximation error of generaliza-
tion risk (the difference of the empirical risks w.r.t. test samples and training
samples), and the approximation error of generalization neutrality risk (the dif-
ference of the empirical neutrality risks w.r.t. test samples and training samples)
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(a) risk (b) neutrality risk

Fig. 1. Change of approximation error of generalization risk (left) and approximation
error of generalization neutrality risk (right) by neutral SVM (our proposal) according
to varying the number of samples n. The horizontal axis shows the number of samples
n, and the error bar shows the standard deviation across the change of five-fold division.
The line “sqrt(c/n)” denotes the convergence rate of the approximation error of the
generalization risk (in Theorem 1) or the generalization neutrality risk (in Theorem 2).
Each line indicates the results with the neutralization parameter η ∈ {0.1, 1.0, 10.0}.
The regularizer parameter was set as λ = 0.05n.

Table 1. Specification of Datasets

dataset #Inst. #Attr. Viewpoint Target

Adult 16281 13 gender income
Dutch 60420 10 gender income
Bank 45211 17 loan term deposit
German 1000 20 foreign worker credit risk

with changing sample size n. The plots in Fig 1 left and right show the approxi-
mation error of generalization risk and the approximation error of generalization
neutrality risk, respectively.

Recall that the discussions in Section 5.3 showed that the approximation
error of generalization risk decreases with O(

√
ln(1/δ)/n) rate. As indicated by

the Theorem 1, Fig 1 (left) clearly shows that the approximation error of the
generalization risk decreases as sample size n increases. Similarly, discussions in
Section 5.1 revealed that the approximation error of generalization neutrality risk
also decreases with O(

√
ln(1/δ)/n) rate, which can be experimentally confirmed

in Fig 1 (right). The plot clearly shows that the approximation error of the
generalization neutrality risk decreases as the sample size n increases.

7.2 Real Datasets

We compare the classification performance and neutralization performance of
neutral SVM with CV2NB, PR, and ηLR for a number of real datasets specified
in Table 1. In Table 1, #Inst. and #Attr. denote the sample size and the num-
ber of attributes, respectively; “Viewpoint” and “Target” denote the attributes
used as the target and the viewpoint, respectively. All dataset attributes were
discretized by the same procedure described in [4] and coded by 1-of-K represen-
tation for PR, ηLR, and neutral SVM. We used the primal problem of neutral
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Table 2. Range of neutralization parameter

method range of neutralization parameter

PR 0, 0.01, 0.05, 0.1, ..., 100
ηLR 0, 5× 10−5, 1× 10−4, 5× 10−4, ..., 0.5
neutral SVM 0, 0.01, 0.05, 0.1, ..., 100

(a) Adult (b) Dutch Census

(c) Bank (d) German

Fig. 2. Performance of CV2NB, PR, ηLR, and neutral SVM (our proposal). The ver-
tical axis shows the AUC, and horizontal axis shows Cn,sgn(f, g). The points in these
plots are omitted if they are dominated by others. The bottommost line shows lim-
itations of neutralization performance, and the rightmost line shows limitations of
classification performance, which are shown only as guidelines.

SVM (non-kernelized version) to compare our method with the other methods
in the same representation. For PR, ηLR, and neutral SVM, the regularizer pa-
rameter was tuned in advance for each dataset in the non-neutralized setting
by means of five-fold cross validation, and the tuned parameter was used for
the neutralization setting. CV2NB has no regularization parameter to be tuned.
Table 2 shows the range of the neutralization parameter used for each method.

The classification performance and neutralization performance was evaluated
with Area Under the receiver operating characteristic Curve (AUC) and +1/−1
empirical neutrality risk Cn,sgn(f, g), respectively. Both measures were evaluated
with five-fold cross-validation and the average of ten different folds are shown in
the plots.

Results. Fig 2 shows the classification performance (AUC) and neutralization
performance (Cn,sgn(f, g)) at different setting of neutralization parameter η. In
the graph, the best result is shown at the right bottom. Since the classification
performance and neutralization performance are in a trade-off relationship, as
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indicated by Theorem Eq (6), the results dominated by the other parameter
settings are omitted in the plot for each method.

CV2NB achieves the best neutrality in Dutch Census, but is less neutral
compared to the other methods in the rest of the datasets. In general, the clas-
sification performance of CV2NB is lower than those of the other methods due
to the poor classification performance of náıve Bayes. PR and ηLR achieve com-
petitive performance to neutral SVM in Adult and Dutch Census in term of
the neutrality risk, but the results are dominated in term of AUC. Furthermore,
the results of PR and ηLR in Bank and German are dominated. The results of
neutral SVM are dominant compared to the other methods in Bank and Ger-
man dataset, and it is noteworthy that the neutral SVM achieves the best AUC
in almost all datasets. This presumably reflects the superiority of SVM in the
classification performance, compared to the náıve Bayes and logistic regression.

8 Conclusion

We proposed a novel framework, NERM. NERM provides a framework that
learns a target hypothesis that minimizes the empirical risk and that is empiri-
cally neutral in terms of risk to a given viewpoint hypothesis. Our contributions
are as follows: (1) We define NERM as a framework for guaranteeing the neutral-
ity of classification problems. In contrast to existing methods, the NERM can be
formulated as a convex optimization problem by using convex relaxation. (2) We
provide theoretical analysis of the generalization neutrality risk of NERM. The
theoretical results show the approximation error of the generalization neutral-
ity risk of NERM is uniformly upper-bounded by the Rademacher complexity
of hypothesis class gF and O(

√
ln(1/δ)/n). Moreover, we derive a bound on

the generalization neutrality risk for the optimal hypothesis corresponding to
the neutralization parameter η. (3) We present a specific learning algorithms for
NERM, neutral SVM. We also extend the neutral SVM to the kernelized version.

Suppose the viewpoint is set to some private information. Then, noting that
neutralization reduces correlation between the target and viewpoint values, out-
puts obtained from the neutralized target hypothesis do not help to predict the
viewpoint values. Thus, neutralization realizes a certain type of privacy preser-
vation. In addition, as already mentioned, NERM can be interpreted as a variant
of transfer learning by regarding the neutralization term as data-dependent prior
knowledge. Clarifying connection to privacy-preservation and transfer learning
is remained as an area of future work.
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Abstract. Much work has been recently proposed to model relational
data, especially in the multi-relational case, where different kinds of rela-
tionships are used to connect the various data entities. Previous attempts
either consist of powerful systems with high capacity to model complex
connectivity patterns, which unfortunately usually end up overfitting on
rare relationships, or in approaches that trade capacity for simplicity in
order to fairly model all relationships, frequent or not. In this paper, we
propose a happy medium obtained by complementing a high-capacity
model with a simpler one, both pre-trained separately and jointly fine-
tuned. We show that our approach outperforms existing models on dif-
ferent types of relationships, and achieves state-of-the-art results on two
benchmarks of the literature.

Keywords: Representation learning, Multi-relational data.

1 Introduction

Predicting new links in multi-relational data plays a key role in many areas and
hence triggers a growing body of work. Multi-relational data are defined as di-
rected graphs whose nodes correspond to entities and edges are in the form of
triples (head, label, tail) (denoted (h, �, t)), each of which indicates that there
exists a relationship of name label between the entities head and tail. Figure 1
displays an example of such data with six entities (Jane, Patti, John, Mom, Mi-
ami and Austin) and two relationships (born in and child of). Link prediction
in this context consists in attempting to create new connections between enti-
ties and to determine their type; this is crucial in social networks, knowledge
management or recommender systems to name a few.

Performing predictions in multi-relational data is complex because of their
heterogeneous nature. Any such data can equivalently be seen as a set of directed
graphs that share the same nodes but that usually present drastically different
properties in terms of sparsity or connectivity. As illustration, we can look at
some statistics of a subset of the knowledge base Freebase, named FB15k in
the following, which we use for our experiments. This data set contains ∼15k

T. Calders et al. (Eds.): ECML PKDD 2014, Part I, LNCS 8724, pp. 434–449, 2014.
© Springer-Verlag Berlin Heidelberg 2014



Blending Two and Three-way Models for Multi-relational Data 435

Fig. 1. Example of multi-relational data with 6 entities and 2 relationships

entities connected by ∼1.5k relationships to form a graph of ∼500k triples. Even
if FB15k is just a small sample, it is likely that its characteristics are shared with
most real-world multi-relational data, but at a different scale. The relationships
of FB15k have a mean number of triples of ∼400 and a median of 21: a vast
number of relationships appear in very few triples, while others provide a large
majority of the connections. Besides, roughly 25% of the relationships are of type
1-to-1, that is a head is connected to at most one tail (think of a spouse of link
for instance), but on the opposite 25% of the relationships are of type Many-to-
Many, that is, multiple head can be linked to a tail and vice-versa (for instance,
a like product link). Creating new connections for Many-to-Many relationships
can be possible by relying on several existing links of the same kind, whereas in
the 1-to-1 case, the only way to be able to generalize is to count on the other
relationships, especially if the relationship of interest happens to be rare.

In contrast to (pseudo-) symbolic approaches for link prediction based on
Markov-logic networks [11] or random walks [13], most recent effort towards
solving this problem concern latent factor models (e.g. [19,10,22,16,1,17,9]) be-
cause they tend to scale better and to be more robust w.r.t. the heterogeneity of
multi-relational data. These models represent entities with latent factors (usually
low-dimensional vectors or embeddings) and relationships as operators destined
to combine those factors. Operators and latent factors are trained to fit the data
using reconstruction [17], clustering [22] or ranking costs [1]. The multi-relational
quality of the data is modeled through the sharing of the latent factors across
relationships which grants a transfer of information from one relationship to an-
other; operators are normally specific to each relationships, except in [9] where
some parameters are shared among relationships.

Learning these latent factor models can be seen as a kind of multitask train-
ing, with one task per relationship: one model is fitted for each task and some
parameters are shared across tasks. All existing latent factor approaches define
the same formulation for each task. This is natural since hand-crafting a par-
ticular model for each relationship seems daunting since there can be several
thousands of them. However, as all relationships have very different properties,
this also induces important drawbacks.
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The standard modeling assumption is to consider 3-way interactions between
head, label and tail, i.e. to consider that they are all interdependent: the valid-
ity of a triple (h, �, t) depends jointly on h, � and t. This generally results in
models where entities are represented by vectors and relationships by matrices.
An exception is Parafac [8,5] that models multi-relational data as a binary ten-
sor and factorizes it as a sum of rank one tensors. Other tensor factorization
methods derived from Tucker decompositions [23] or Dedicom [7] like RESCAL
[17,18] end up with vectorial latent factors for entities and low rank matrices for
relationships. This formulation is also shared by many non-parametric Bayesian
approaches such as extensions of the Stochastic Block Models [10,16,24], or joint
entities and relationships clustering approaches [22], which end up modeling the
data with similar architectures but with drastically different training and infer-
ence procedures. Linear Relational Embeddings [19] were proposed as a 3-way
model trained using a regression loss: the vector representing t is learned so
that it can be reconstructed using the embedding of h and the matrix encoding
�, if (h, �, t) is valid. This work was later followed by the Structured Embed-
dings model (SE) [1] where the regression loss was replaced by a ranking loss for
learning embeddings of entities.

Three-way models are appropriate for multi-relational data since they can
potentially represent any kind of interaction. However, this comes at a price since
they have to allocate the same large capacity to model each relationship. While
this is beneficial for frequent ones, this can be problematic for rare relationships
and cause major overfitting. Hence, one must control the capacity either by
regularizing, which is not straightforward since different penalties might need
to be used for each relationship, or by reducing the expressivity of the model.
The second option is implemented in two recent embedding models, SME [2] and
TransE [3], that choose to represent multi-relational data as combination of 2-way
interactions. The idea is to assume that the validity of a triple (h, �, t) is governed
by binary interaction terms (h, t), (t, �) and (h, �), which allows to represent a
relationship as a vector as with the other entities. Such a model, TransE [3],
outperforms most 3-way approaches on various data sets, which indicates that
less expressivity can be beneficial overall for a whole database, especially for
relationships where the number of training triples is reduced. However, by design,
methods based on 2-way interactions are limited and can not hope to represent
all kinds of relations between entities.

In this paper, we introduce Tatec (for Two And Three-way Embeddings Combi-
nation), a latent factor model which successfully combines well-controlled 2-way
interactions with high-capacity 3-way ones. We demonstrate in the following that
our proposal is a generalization of many previous methods. Unlike recent work
like the Latent Factor Model (LFM) of [9] or the Neural Tensor Model (NTN) of
[21] that proposed similar joint formulations mixing several interaction terms,
we deliberately choose not to share parameters between the 2- and 3-way inter-
action components of our model. Previous work use the same embeddings for
entities in all terms of their models, which seems to be a sound and natural
idea to obtain the possible latent representations. However, we discovered that
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2- and 3-way models do not respond to the same data patterns, and that they do
not necessarily encode the same kind of information in the embeddings: sharing
them among interaction terms can hence be detrimental because it can make
some features to be missed by the embeddings or to be destroyed. On the con-
trary, we explain in the following that using different embeddings for both terms
allows to detect distinct kinds of patterns in the data. To ensure that Tatec sat-
isfactorily collects both kinds of patterns, we pre-train separately a 2-way and a
3-way model, which are then combined and jointly fine-tuned in a second stage.
We show in various experiments that this combination process is powerful since
it allows to jointly enjoy both nice properties of 2 and of 3-way interactions. As
a result, Tatec is more robust than previous work w.r.t. the number of training
samples and the type of relationships. It consistently outperforms most models
in all conditions and achieves state-of-the-art results on two benchmarks from
the literature, FB15k [3] and SVO [9].

This paper is organized as follows. Section 2 introduces our formulation and
our training procedure, divided in a pre-training phase followed by a fine-tuning
step both conducted via stochastic gradient descent. We justify our particular
modeling choices in Section 3. Finally, we display and discuss our experimental
results on FB15k, SVO and a synthetic dataset in Section 4.

2 Model

We now describe our model, and the training algorithm associated to it. The
motivation underlying our parameterization is given in the next section.

2.1 Scoring Function

The data S is a set of relations between entities in a fixed set of entities in
E = {e1, ..., eE}. Relations are represented as triples (h, �, t) where the head h
and the tail t are indexes of entities (i.e. h, t ∈ [[E]] = {1, ..., E}), and the label
� is the index of a relationship in L = {l1, ..., lL}, which defines the type of
the relation between the entities eh and et. Our goal is to learn a discriminant
scoring function on the set of all possible triples E × L × E so that the triples
which represent likely relations receive higher scores than triples that represent
unlikely relations. Our proposed model, Tatec, learns embeddings of entities in
low dimensional vector spaces, and parameters of operators on Rd×Rd, most of
them being associated to single relationships. More precisely, the score given by
Tatec to a triple (h, �, t), denoted by s(h, �, t), is defined as:

s(h, �, t) = s1(h, �, t) + s2(h, �, t) (1)

where s1 and s2 have the following form:

(B) Bigrams or the 2-way interactions terms:

s1(h, �, t) =
〈
r�1
∣∣eh1〉+ 〈r�2∣∣et1〉+ 〈eh1 ∣∣D∣∣et1〉 ,
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where eh1 , e
t
1 are embeddings in Rd1 of the head and tail entities of (h, �, t)

respectively, r�1 and r�2 are vectors in Rd1 that depend on the relationship l�,
and D is a diagonal matrix that does not depend on the input triple.
As a general notation throughout this section,

〈
.
∣∣.〉 is the canonical dot

product, and
〈
x
∣∣A∣∣y〉 = 〈x∣∣Ay

〉
where x and y are two vectors in the same

space and A is a square matrix of appropriate dimensions.
(T) Trigram or the 3-way interactions term:

s2(h, �, t) =
〈
eh2
∣∣R�
∣∣et2〉 ,

whereR� is a matrix of dimensions (d2, d2), and eh2 and et2 are embeddings in
Rd2 of the head and tail entities respectively. The embeddings of the entities
for this term are not the same as for the 2-way term; they can have different
dimensions for instance.

The embedding dimensions d1 and d2 are hyperparameters of our model. All
other vectors and matrices are learned without any additional parameter sharing.

The 2-way interactions term of the model is similar to that of [2], but slightly
more general because it does not contain any constraint between the relation-
dependent vectors r�1 and r�2. It can also be seen as a relaxation of the translation
model of [3], which is the special case where r�1 = −r�2, D is the identity matrix,
and the 2-norm of the entities embeddings are constrained to equal 1.

The 3-way term corresponds exactly to the model used by the collective factor-
ization method RESCAL [17], and we chose it for its high expressivity on complex
relationships. Indeed, as we said earlier in the introduction, 3-way models can
basically represent any kind of interaction among entities. The usage of combi-
nations of 2-way and 3-way terms has already been used in [9,21], but, besides
a different parameterization, Tatec contrasts with them by the choice of not
sharing the embeddings between the two models. In LFM [9], constraints were
imposed on the relation-dependent matrix of the 3-way terms (low rank in a lim-
ited basis of rank-one matrices), the relation vectors r�1 and r�2 were constrained
to be a constant linear function of the matrix (D = 0 in their work). These
global constraints severely limited the expressivity of the 3-way model, and act
as powerful regularization in that respect. However, their global constraints also
reduces the expressivity of the 2-way model, which, as we explain in Section
3, should be left with maximum degrees of freedom. The fact that we do not
share any parameter between relations is similar to NTN [21]. Our overall scor-
ing function is similar to this model with a single layer, with the fundamental
difference that we use different embedding spaces and do not use any non-linear
transfer function, which results in a facilitated training (the gradients have a
larger magnitude, for instance).

2.2 Training

Training is carried out using gradient descent, with a ranking criterion as training
objective. The optimization approach is similar to the one used for TransE [3], but



Blending Two and Three-way Models for Multi-relational Data 439

the models are very different. Our loss function takes training triples, and tries to
give them higher scores than to corrupted versions, where the corruption consists
in either replacing the head or the tail of each triple by a random entity. Since we
are learning with positive examples only, this kind of criterion implements the
prior knowledge that unobserved triples are likely to be invalid. Such corruption
approaches are widely used when learning embeddings of knowledge bases [1,3]
or words in the context of language models [4,14].

Given a training triple (h, �, t), the set of possible corrupted triples, denoted
by C(h, �, t), is defined as:

C(h, �, t) = {(h′, �, t′) ∈ [[E]]× {�} × [[E]]|h′ = h or t′ = t} .

The loss function we optimize is then:∑
(h,�,t)∈S

∑
(h′,�,t′)∈C(h,�,t)

max(0, 1− s(h, �, t) + s(h′, �, t′)) (2)

Stochastic gradient is performed in a minibatch setting. The dataset S is shuffled
at each epoch, minibatches of m << |S| training triples are selected, and, for
each one of them, a corresponding mini-batch of corrupted triples is sampled
at random to create ranking pairs. We only create a single corrupted triple per
training sample. The learning rate of the stochastic gradient is kept constant,
and optimization is stopped using early stopping on a validation set.

Several regularization schemes were tried during training: either by forcing the
entity embeddings to have, at most, a 2-norm of r (for radius), or by adding 2-

norm regularization inside the sum of (2) of the form λ‖ x ‖22 for each parameter
x (relation vectors and diagonal matrix in the 2-way term or relation matrix in
the 3-way term) that appears in max(0, 1− s(h, �, t)+ s(h′, �, t′)). The first kind
of regularization is carried out after each minibatch by projecting the entities
into the 2-norm ball of radius r.

A random initialization of the scoring function (1) can lead to a poor local
minimum, but can also prevent the different embeddings used in the 2- and 3-
way terms to capture different patterns as we expect (see next section). Hence,
following many previous work on deep architecture, we decided to first pre-train
separately the bigrams and trigram terms on the training set. When their pre-
training is over (i.e. stopped using early stopping on a validation set), we initialize
the parameter of the full score (1) using these learned weights and fine-tuned it
by running stochastic gradient descent on the training set with the full model.

3 Interpretation and Motivation of the Model

This section discusses the motivations underlying the parameterization of Tatec,
and in particular our choice of 2-way model to complement the 3-way term.

3.1 2-Way Interactions as One Fiber Biases

It is common in regression, classification or collaborative filtering to add biases
(also called offsets or intercepts) to the model. For instance, a critical step of the
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best-performing techniques of the Netflix prize was to add user and item biases,
i.e. to approximate a user-rating Rui according to (see e.g. [12]):

Rui ≈
〈
Pu

∣∣Qi

〉
+ αu + βi + μ (3)

where P ∈ RU×k, with each row Pu containing the k-dimensional embedding of
the user (U is the number of users), Q ∈ RI×k containing the embeddings of
the I items, αu ∈ R a bias only depending on a user and βi ∈ R a bias only
depending on an item (μ is a constant that we do not consider further on).

The 2-way + 3-way interactions model we propose can be seen as the 3-
mode tensor version of this “biased” version of matrix factorization: the trigram
term (T) is the collective matrix factorization parametrization of the RESCAL
algorithm [17] and plays a role analogous to the term

〈
Pu

∣∣Qi

〉
of the matrix

factorization model for collaborative filtering (3). The bigram term (B) then
plays the role of biases for each fiber of the tensor,1 i.e.

s1(h, �, t) ≈ B1
l,h +B2

l,t +B3
h,t (4)

and thus is the analogous for tensors to the term αu + βi in the matrix fac-
torization model (3). The exact form of s1(h, �, t) given in (B) corresponds to
a specific form of collective factorization of the fiber-wise bias matrices B1 =[
B1

l,h

]
l∈[[L]],h∈[[E]]

, B2 and B3 of Equation 4. We do not exactly learn one bias by

fiber because many such fibers have very little data, while, as we argue in the
following, the specific form of collective factorization we propose in (B) should
allow to share relevant information between different biases.

3.2 The Need for Multiple Embeddings

A key feature of Tatec is to use different embedding spaces for the 2-way and
3-way terms, while existing approaches that have both types of interactions use
the same embedding space [9,21]. We motivate this choice in this section.

It is important to notice that biases in the matrix factorization model (3),
or the bigram term in the overall scoring function (1) do not affect the model
expressiveness, and in particular do not affect the main modeling assumptions
that embeddings should have low rank. The user/item-biases in (3) only boil
down to adding two rank-1 matrices α1T and 1βT to the factorization model.
Since the rank of the matrix is a hyperparameter, one may simply add 2 to this
hyperparameter and get a slightly larger expressiveness than before, with reason-
ably little impact since the increase in rank would remain small w.r.t. its original
value (which is usually 50 or 100 for large collaborative filtering data sets). The
critical feature of these biases in collaborative filtering is how they interfere with
capacity control terms other than the rank, namely the 2-norm regularization: in
[12] for instance, all terms of (3) are trained using a squared error as a measure

1 Fibers are the higher order analogue of matrix rows and columns for tensors and are
defnied by fixing every index but one.
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of approximation and regularized by λ
(
‖ Pu ‖22 + ‖ Qi ‖22 + α2

u + β2
i

)
, where

λ > 0 is the regularization factor. This kind of regularization is a weighted trace
norm regularization [20] on PQT . Leaving aside the ”weighted” part, the idea

is that at convergence, the quantity λ
(∑

u ‖ Pu ‖22 +
∑

i ‖ Qi ‖22
)

is equal to

2λ times the sum of the singular values of the matrix PQT . However, λ‖ α ‖22,
which is the regularization applied to user biases, is not 2λ times the singular
value of the rank-one matrix α1T , which is equal to

√
I‖ α ‖2, and can be much

larger than ‖ α ‖22. Thus, if the pattern user+item biases exists in the data, but
very weakly because it is hidden by stronger factors, it will be less regularized
than others and the model should be able to capture it. Biases, which are al-
lowed to fit the data more than other factors, offer the opportunity of relaxing
the control of capacity on some parts of the model but this translates into gains
if the patterns that they capture are indeed useful patterns for generalization.
Otherwise, this ends up relaxing the capacity to lead to more overfitting.

Our bigram terms are closely related to the trigram term: the terms
〈
r�1
∣∣eh1〉

and
〈
r�2
∣∣et1〉 can be added to the trigram term by adding constant features in

the entities’ embeddings, and
〈
eh1
∣∣D∣∣et1〉 is directly in an appropriate quadratic

form. Thus, the only way to gain from the addition of bigram terms is to ensure
that they can capture useful patterns, but also that capacity control on these
terms is less strict than on the trigram terms. In tensor factorization models,
and especially 3-way interaction models with parameterizations such as (T),
capacity control through the regularization of individual parameters is still not
well understood, and as it turns out in experiments is more detrimental than
effective. The only effective parameter is the admissible rank of the embeddings,
which leads to the conclusion that the bigram term can be really useful in addi-
tion to the trigram term if higher-dimensional embeddings are used. Hence, in
absence of clear and concrete way of effectively controlling the capacity of the
trigram term, we believe that different embedding spaces should be used.

3.3 2-Way Interactions as Entity Types+Similarity

Having a part of the model that is less expressive, but less regularized than
the other part is only useful if the patterns it can learn are meaningful for the
prediction task at hand. In this section, we give the motivation for our 2-way
interactions term for the task of modeling multi-relational data.

Most relationships in multi-relational data, and in knowledge bases like FB15k

in particular, are strongly typed, in the sense that only well-defined and specific
subsets of entities can be either heads or tails of selected relationships. For in-
stance, a relationship like capital of expects a (big) city as head and a country
as tail for any valid relation. Large knowledge bases have huge amounts of enti-
ties, but those belong to many different types. Identifying the expected types of
head and tail entities of relationships, with an appropriate granularity of types
(e.g. person or artist or writer), is likely to filter out 95% of the entity set
during prediction. The exact form of the first two terms

〈
r�1
∣∣eh1〉+ 〈r�2∣∣et1〉 of the
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Table 1. Statistics of the data sets used in this paper and extracted from an
artificial database, Family, and from two knowledge bases: FB15k and SVO

Data set Family FB15k [3] SVO [9]

Entities 721 14,951 30,605

Relationships 5 1,345 4,547

Training examples 5,748 483,142 1,000,000

Validation examples 1,935 50,000 50,000

Test examples 1,955 59,071 250,000

2-way interaction model (B), which corresponds to a low-rank factorization of
the per bias matrices (head, label) and (tail, label) in which head and tail entities
have the same embeddings, is based on the assumption that the types of entities
can be predicted based on few (learned) features, and these features are the same
for predicting head-types as for predicting tail-types. As such, it is natural to
share the entities embeddings in the first two terms of (B).

The last term,
〈
eh1
∣∣D∣∣et1〉, is intended to account for a global similarity be-

tween entities. For instance, predicting the capital of France can easily be per-
formed correctly by saying that we search for the city with strongest overall
connections with France in the knowledge base. A country and a city may be
strongly linked through their geographical positions, independent of their respec-
tive types. The diagonal matrix D allows to re-weight features of the embedding
space to account for the fact that the features used to describe types may not be
the same as those that can describe the similarity between objects of different
types. The use of a diagonal matrix is strictly equivalent to using a general sym-
metric matrix in place of D.2 The reason for using a symmetric matrix comes
from the intuition that the direction of many relationships is arbitrary (i.e. the
choice between having triples ”Paris is capital of France” rather than ”France
has capital Paris”), and the model should be invariant under arbitrary inversions
of the directions of the relationships (in the case of an inversion of direction, the
relations vectors r�1 and r�2 are swapped, but all other parameters are unaffected).
For tasks in which such invariance is not desirable, the diagonal matrix could be
replaced by an arbitrary matrix.

4 Experiments

This section presents a series of experiments that we conducted to compare Tatec
to previous models from the literature on two benchmarks, FB15k, a subset of
Freebase [3], and SVO, a database of nouns connected by verbs and introduced

2 We can see the equivalence by taking the eigenvalue decomposition of a symmetric
D: apply the change of basis to the embeddings to keep only the diagonal part ofD
in the term

〈
eh
1

∣∣D∣∣et
1

〉
, and apply the reverse transformation to the vectors r�1 and

r�2. Note that since rotations preserve euclidian distances, the equivalence still holds
under 2-norm regularization of the embeddings.
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Table 2. Baselines. Rules used by our symbolic baselines, an upper and a lower one,
to predict a tail given a head and a label on the Family data set. Similar symmetric
rules have been used to predict a head given a tail and a label for these relations.

Relationship Baseline Rules for predicting a tail given a head

cousin of
Lower Any entity of the same layer as the head of the families where the head has a cousin.
Upper Any entity whose parent is a sibling(-in-law) of the parents of the head.

sibling of
Lower Any entitiy of the same layer as the head of the families where the head has a sibling.
Upper Any entity whose parent is the same as the parents of head.

married to
Lower Any entity of the same layer as the head whose marriage would not be forbidden with.
Upper Entity who has children in common with the head.

parent of
Lower Any entity of the lower layer of head of the families where head has a child.
Upper Any entity being children of the spouse of head.

uncle of
Lower Any entity of the lower layer of head of the families where head has a niece/nephew.
Upper Any entity being child of a sibling/sibling a law of head or the spouse of head.

in [9], as well an artificial data set that we created (Family). The statistics of
these data sets are given in Table 1.

For evaluation, we use a ranking procedure as in [1,3]. For each test triplet,
the head is removed and replaced by each of the entities of the dictionary in
turn. Scores of those corrupted triplets are computed by the models and sorted
by descending order and the rank of the correct entity is stored. This whole
procedure is repeated when removing the tail instead or the head. We report
the mean of those predicted ranks and the hits@10, i.e. the proportion of correct
entities ranked in the top 10.

4.1 Synthetic Data

“Family” Data Set. This database contains triples expressing family relation-
ships among the members of 5 families along 6 generations, each family being
organized in a layered tree structure where each layer refers to a generation.
These 5 families are first created independent of each other by recursively sam-
pling the number of children of each node of a layer using the normal distribution
N (3, 1.5) to create a new generation. Then, families are connected by marriage
links between two members. We use pre-defined rules to avoid non-typical situa-
tions, like marriages between cousins and brothers, as well as marriages between
two members of different generations. To control the number of connections be-
tween families, only i− 1 marriages are allowed in the generation i.

After all families are created, we build a multi-relational data set by collect-
ing the pairs of entities connected using the following relationships: cousin of,
married to, parent of, sibling of and uncle of. We end up with a data set with 721
entities, 5 relationships and ∼9k triples which is later split into training, valida-
tion and test sets. There is a large variation in the numbers of triples: there are
only 30 examples with married to but 5, 060 with cousin of. Family is a realistic
and challenging study case, but for which we know the underlying semantics.

Baselines. We created two symbolic baselines since we know the underlying
rules used to generate the data. These baselines can be used to assess what kind
of pattern is caught by our model. Our first baseline, Lower, uses simplistic rules
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Table 3. Synthetic data set. We compare our Bigrams, Trigram and Tatec models
in terms of mean rank, with both baselines on the Family dataset.

Relation cousin of married to parents of sibling of uncle of
Lower 76 4 25 35 34

Upper 4 3 7 4 3

Bigrams 10 102 9 8 13

Trigram 7 162 7 5 8

Tatec 6 69 5 4 6

in order to find a set of potential candidates among all entities given a label and
either a head or a tail as input. Our second baseline, Upper, returns candidate
answers using a much more refined knowledge about the underlying semantics
of the relationships, such as, if John and Mary have children together then they
are likely to be married. We made sure than, for any triple from the data set,
the correct missing element given a label and either a head or a tail as input,
is always contained in the sets returned by Lower and Upper (the second being
included in the first one). Then, for each test triple, we computed the mean rank
of the answers given by the baselines, by sorting the elements of the returned
candidate sets by the number of occurrences of each entity in the training set. It
is worth noting that the entities of the Upper set always form triples expressing
true knowledge. The rules used to defined both baselines are given in Table 2.

Implementation. To pre-train our Bigrams and Trigram models we selected the
learning rate for the stochastic gradient descent among {0.1, 0.01, 0.001, 0.0001},
and the embedding dimension among {5, 10, 20}. The margin was fixed to 1,
and the radius determining the maximim 2-norm of the entity embeddings was
validated among {1, 10, 100}. For fine-tuning Tatec, the learning rate was selected
among the same values as above, independent of the values chosen for pre-
training. For all three models, training was limited to a maximum of 500 epochs,
and we used the mean rank on the validation set (computed every 50 epochs) as
stopping criterion.

Results. Table 3 presents our results. Tatec outperforms the best performance
of Bigrams and Trigram counterparts for each relationship, indicating that the
biases brought to the 3-way model by the bigram terms are indeed beneficial to
detect complementary patterns in the data. As a result, Tatec gets a really close
performance to that of the upper baseline, indicating that it can perform rela-
tively sophisticated inference, as long as the amount of data is sufficient. Indeed,
all embedding-based models fail completely on the married to relationship: with
very few training samples, those models cannot learn any meaningful information
that would grant non-trivial predictions for this complex relationship.

4.2 Encoding Freebase

Freebase Data Set (FB15k). Freebase is a huge and growing database of
general facts; there are currently around 1.2 billion triples and more than 80
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Table 4. Link prediction results. We compare Bigrams, Trigram and several version
of Tatec with various methods from the literature on the FB15k dataset. Results are
displayed in the filtered setting, see the text for more details.

Interaction Model Mean Rank Hits@10

2-way
SME(linear) [2] 154 40.8

TransE [3] 125 47.1

3-way
SE [1] 162 39.8

SME(bilinear) [2] 158 41.3

RESCAL [17] 683 44.1

2 + 3-way
NTN [21] 332 27.0

LFM [9] 164 33.1

2-way Bigram 133 44.7

3-way Trigram 156 42.7

2 + 3-way

Tatec-no-pretrain 133 44.7

Tatec-shared-embs 137 45.0

Tatec-linear-comb 115 51.7

Tatec 111 52.6

million entities. We used FB15k, a data set based on Freebase introduced in
[3], This small data set is based on a subset of entities that are also present in
the Wikilinks database3 and that also have at least 100 mentions in Freebase

(for both entities and relationships). This results in 592, 213 triples with 14, 951
entities and 1, 345 relationship which were randomized and split.

Baselines. We compare Tatec with various models from previous work: RESCAL
[17], LFM [9] , SE [1] , SME [2] and TransE [3]. Results were extracted from [3]
since we follow the same experimental protocol here. We also include compar-
isons with NTN [21]. For this method, we ran experiments with the code provided
by the authors. The embedding dimension was selected between {25, 50} and the
number of slices of the tensor layer was fixed to 2 for computational consider-
ations. We chose the regularization hyperparameter among {0, 0.1, 0.01, 0.001}
and tanh as nonlinear element-wise function. The negative triplets were gener-
ated as before in a proportion of 10 negative to 1 positive triple. The model ran
for 700 iterations and was validated every 50 iterations.

Besides Bigrams, Trigram and Tatec, we also propose the performance of 3
other versions of Tatec:

– Tatec-no-pretrain: Tatec without pre-training s1(h, �, t) and s2(h, �, t).
– Tatec-shared: Tatec but sharing the embeddings between s1(h, �, t) and
s2(h, �, t) and without pre-training.

– Tatec-linear-comb: this version simply combines the bigram and trigram
terms using a linear combination, without jointly fine-tuning their parame-
ters. The score is hence defined as follows:

s(h, �, t) = δ�1
〈
r�1
∣∣eh1〉+ δ�2

〈
r�2
∣∣et1〉+ δ�3

〈
eh1
∣∣D∣∣et1〉+ δ�4

〈
eh2
∣∣R�
∣∣et2〉

3 code.google.com/p/wiki-links

code.google.com/p/wiki-links
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Table 5. Detailed results by category of relationship. We compare our Bigrams,
Trigram and Tatec models in terms of Hits@10 (in %) on FB15k in the filtered setting
against other models of the literature. (M. stands for Many).

Task Predicting head Predicting tail

Rel. category 1-to-1 1-to-M. M.-to-1 M.-to-M. 1-to-1 1-to-M. M.-to-1 M.-to-M.

SE [1] 35.6 62.6 17.2 37.5 34.9 14.6 68.3 41.3

SME(linear) [2] 35.1 53.7 19.0 40.3 32.7 14.9 61.6 43.3

SME(bilinear) [2] 30.9 69.6 19.9 38.6 28.2 13.1 76.0 41.8

TransE [3] 43.7 65.7 18.2 47.2 43.7 19.7 66.7 50.0

Bigrams 55.4 73.2 25.5 49.3 51.3 11.4 78.5 37.4

Trigram 44.3 69.6 29.0 48.0 41.2 8.3 72.6 35.1

Tatec 65.8 84.8 40.0 58.9 62.3 15.1 87.0 42.3

The combination weights δ�i depend on the relationship and are learned by
optimizing the ranking loss defined in (2) using L-BFGS, with an additional

quadratic penalization term,
∑

k
||δk||22
σk+ε , subject to

∑
k σk = λ. Training is

carried out in an iterative way, by alternating optimization of δ parame-

ters via L-BFGS, and update of σ parameters using σ∗
i = λ||δi||2∑

i ||δi||2
, until

some stopping criterion is reached. The δ parameters are initialized to 1 and
the λ value is validated among {0.1, 1, 10, 100, 250, 500, 1000}. The intuition
behind this particular penalization for the δs is that it is equivalent to a
LASSO penalization [6] and our initial idea was to enforce sparsity among
δ parameters. However we found experimentally that the best performance
was obtained with a λ of 250, which does not yield a sparse solution.

Implementation. Tatec, and its 3 alternative versions have been trained and
validated in the same setting that was used for the Family experiments, except
that we chose the embedding dimensions among {25, 50}.

Results. Table 4 displays the mean rank and hits@10 for all the aforementioned
methods. These results have been computed in a filtered setting as defined in [3]:
to reduce the error introduced by true triples that might be ranked above the
target triple in test, all the entities forming existing triples in the train, validation
and test sets but the target one are removed from the candidate set of entities
to be ranked. This grants a clearer view on ranking performance.

First of all, we can notice that our plain 2- and 3− way models (Bigrams and
Trigram respectively) areperforming comparably asother similarly expressivemod-
els: Bigrams is better than SME(linear) but worse than TransE, and Trigram per-
forms roughly like SME(bilinear). RESCAL is interesting since it achieves a very
poor mean rank but almost the best hits@10 value: we believe that this is due to
overfitting. To make it scale on large data sets, RESCAL has to be ran without reg-
ularization, this causes a major overfitting on rare relationships and hence a poor
mean rank. But, it seems that one can reach a very decent hits@10 nonetheless. In-
terestingly, Tatec is able to significantly outperform both its constituents Bigrams
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Table 6. Verb prediction results. We compare our Bigrams, Trigram and Tatec
models with baselines from the literature on the SVO dataset.

Median/Mean Rank Hits@5% Hits@20%

Counts [9] 48/517 72 83

LFM [9] 50/195 78 95

SME [2] 56/199 77 95

Bigrams 52/210 78 98

Trigram 44/188 79 95

Tatec 44/183 80 99

and Trigram, which indicates that they can encode complementary information.
This is confirmed by the comparison with the baseline 2+ 3-waymodels, LFM and
NTN.4 By sharing their embeddings between their 2- and 3-way terms, they con-
strain theirmodel toomuch.We can see a similar behavior ifwe look at the results of
Tatec-shared-embs, which aremuchworse than those ofTatec. Thepre-training is
very useful: without pre-training,Tatec only achieves the same performance as the
2-way term alone. Tatec-linear-comb performs only slightly worse than Tatec,
which indicates that, with proper regularization, a simpler combination of 2- and
3-way terms can be efficient. Overall, Tatec outperforms all previous models by a
wide margin, especially in hits@10.

We also broke down the results by type of relation, classifying each relationship
according to the cardinality of their head and tail arguments. A relationship is
considered as 1-to-1, 1-to-M, M-to-1 or M-M regarding the variety of arguments
head given a tail and vice versa. If the average number of different heads for
the whole set of unique pairs (label, tail) given a relationship is below 1.5 we
have considered it as 1, and the same in the other way around. The number of
relations classified as 1-to-1, 1-to-M, M-to-1 and M-M is 353, 305, 380 and 307,
respectively. The results are displayed in the Table 5. Most results point out that
Tatec consistently outperforms all models we compared it with, except for the
relations 1-to-M and M-to-M when predicting the tail.

4.3 Predicting Verbs

In this last experimental section, we present results of ranking label given head
and tail. We do so by working on a verb prediction task, where one has to assign
the correct verb given two noun phrases acting subject and direct object.

Subject-Verb-Object Data Set (SVO). This data set was generated by ex-
tracting sentences from Wikipedia articles whose syntactic structure is (subject,
verb, direct object) and where the verb appears in the WordNet lexicon [15] and
where the subject and direct object are noun phrases from WordNet as well. Due
to the high number of relations in this data set, this is an interesting benchmark
for label prediction.
4 Results of NTN are worse than expected. As we said earlier, we tried a large number
of hyperparameter values but NTN might require to cover an even wider range.
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Baselines. We compare Tatec with 3 different approaches: LFM, Counts and
SME(linear). Counts is based on the direct estimation of probabilities of triples
(head, label, tail) by using the number of occurrences of pairs (head, label) and
(label, tail) in the training set. The results for these models have been extracted
from [9], and we followed the same experimental setting.

Implementation. Due to the different nature of the application, the negative
triples have been generated here by replacing the verb of a given positive triple by
a random verb. The rest of the experimental setting is identical to the one used
for Family and FB15k, but running only 100 epochs and validating every 10
epochs in the pre-training phase, since we found that the models were converging
much faster. For Tatec, we even validated every epoch.

Results. Table 6 shows the results for this database. The measure hits@z%
indicates the proportion of predictions for which the correct verb is ranked in
the top z% of the verb list. The performance of Tatec is also excellent in this
case since it outperforms all previous methods on all metrics, including LFM,
another model combining 2- and 3-way interactions.

5 Conclusion

This paper introduced Tatec, a new method for performing link prediction in
multi-relational data, which is made of the combination a 2- and 3-way interac-
tions terms. Both terms do not share their embeddings and this, along with a
two-phase training (pre-training and fine-tuning), allows for the model to encode
complementary information into its parameters. As a result, Tatec outperforms
by a wide margin many methods from the literature, some based on 2-way, on
3-way interactions or on both.
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Abstract. This paper proposes a new paradigm to discover biomarkers
capable of characterizing obsessive-compulsive disorder (OCD). These
biomarkers, named neuromarkers, will be obtained through the analysis
of sets of magnetic resonance images (MRI) of OCD patients and control
subjects.

The design of the neuromarkers stems from a method for the auto-
matic discovery of clusters of voxels relevant to OCD recently published
by the authors. With these clusters as starting point, we will define the
neuromarkers as a set of measurements describing features of these in-
dividual regions. The principal goal of the project is to come up with a
set of about 50 neuromarkers for OCD characterization that are easy to
interpret and handle by the psychiatric community.

1 Introduction

In some areas of medicine it is quite common to find punctuation systems that
allow for state evaluation and patient diagnosis. For instance APACHE II (Acute
Physiology and Chronic Health Evaluation) [17] is one of the most widely used
score systems to quantify the seriousness of critical patient’s state by means of
12 factors or routine physiological measures (blood pressure, body temperature,
heart rate, etc.). Among these punctuation systems we can also find the Ranson
criterion, which predicts the severity of acute pancreatitis [26], the Glasgow scale
[15], used to measure a person’s conscience level, or the SAPS II index (Simplified
Acute Physiology Score) [19] which, as the APACHE II index, estimates the
severity of a patient’s state. It has been shown that the adequate use of these
scores provides a better characterization of the illness and helps researchers
analyse the success of new therapies and compare their effectiveness in different
hospitals.

However, psychiatry lacks direct and objective indicators of a subject’s phys-
iological state for the diagnosis of a certain pathology or its evolution analysis
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[23]. To this end, psychiatrists usually use the Diagnostic and Statistical Manual
of Mental Disorders, which provides a classification of mental illnesses along with
descriptions of the diagnostic categories based on the patient’s medical history
and the disorders they may show. Over the past few years, neuroanatomical
and neurofunctional analysis have become common practise in the evaluation
of certain mental conditions by means of Magnetic Resonance Imaging (MRI),
either structural (sMRI) or functional (fMRI), aimed at the study of pathologies
and the detection of the structural brain anomalies that cause them [4] [31]. For
this purpose, different techniques have been proposed in the literature, such as
voxel based morphometry” (VBM) [2], enabling the analysis of structural ab-
normalities in the brain; or the “General Linear Model” [1], which establishes
a mathematical model to either analyse sMRI data or obtain the functional re-
sponse of the brain in fMRI studies. These research lines have laid the basis for
the re-evaluation of previous neuroanatomical hypotheses that were considered
to be associated with certain disorders, and the proposal of new models with
a sound biological foundation, although in some occasions these results have
not been correctly translated to the clinical practise [23]. As a result, there has
been a growing interest in the application of other analysis strategies, such as
machine learning (ML) methods, since they are able to describe differences be-
tween patient and control groups and to obtain mathematical models that allow
discerning between them [20].

ML techniques have positioned themselves as some of the most promising
options to extract relevant information from the neuroimaging data through
statistical learning methods. These approaches have the main characteristic of
being able to automatically learn a model of data from a collection of examples,
which in many occasions can enable the detection of information that would
otherwise be hidden from the eyes of an expert. For this reason, ML methods
are being successfully used in data based diagnosis in many fields of medicine. For
instance, they are being used in the classification of tissue-cells, the segmentation
of retinopathy, the detection breast-cancer or auricular arrhythmia, just to name
a few.

Furthermore, the multivariate nature of these techniques, as well as their
ability to extract the greatest amount of available information possible when
the number of data is limited (a very common situation with MRI data) has
favoured the widespread use of ML tools in neuroimaging analysis [25] and the
diagnosis from this type of data [16]. So far, scientific production in relation
to neuroimaging and ML methods has followed a path in which the psychiatric
community provides MRI data from an experiment designed to study the brain,
and the ML community directly applies standard techniques. Because of this,
we can find many examples of the application of ML approaches to magnetic
resonance experiments, such as brain mapping from fMRI data sequences [37],
temporal fMRI series analysis [18] or brain state decoding [14] [21]. Clinical
applications can also be found, in which the goal is to detect a particular mental
illness, such as Alzheimer’s disease [34], schizophrenia [5] or obsessive compulsive
disorder (OCD) [29] [24].
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Due to the small sample problem presented by MRI data bases (the number
of dimensions is several orders of magnitude greater than the number of training
examples), it is common to find ML approximations that apply an intermediate
feature selection or extraction step, thus reducing the problem’s dimensionality
and making the outcome of the processing step easier to interpret. By this pro-
cess, the final machine or classifier that detects the illness will only use a subset
of the original voxels (three dimensional pixels) or some transformation thereof.
Among these approximations, ideas such as those proposed in [33] or [36] stand
out. Their approach is to directly define voxel groups and represent each one
by the mean value of the voxels they comprise. The methods presented in [6]
apply a t-Test as a step prior to the classification process to eliminate irrelevant
voxels. The approximations introduced in [8] and [9] employ a Recursive Feature
Elimination method (RFE) [11] to select the voxel subset that is most relevant
to the classification phase. Other distinguishable lines of work include those pro-
posed in [32], [27] and [7] in which sparsity inducing regularizations are directly
included in the classifier to obtain the relevant voxel subset during the design of
the classifier.

The vast majority of methods proposed in the literature using ML with MRI
data focus on analysing differences between patient and control groups. These
methods provide a decision on the class to which each MRI belongs in the form
of a probability value or a binary value (patient/control), further proving that
the images contain relevant information for the diagnosis. In the best cases these
studies also provide a subset of voxels or regions that characterize the pathology,
which can indicate the psychiatrist or neurologist that a particular region of the
brain presents structural or functional differences between healthy and ill sub-
jects. However, given the isolated analysis of these regions in an MRI scan from a
single patient, the psychiatrist or neurologist is unable to determine whether the
subject is ill or not: the discrimination pattern provided by the classifier com-
prises, together with these regions and groups, a series of mathematical relations
between them that are not directly manageable and are practically impossible
to interpret in most cases.

The goal of this paper is to propose a new paradigm to discover biomarkers
capable of characterizing OCD. These biomarkers, which we will call neuro-
markers, will be obtained through the automatic analysis of sets of MRIs of
OCD patients and control subject differences. In order for these neuromarkers
to have penetration in clinical psychiatry, they will have to be interpretable and
manageable.

The design of these neuromarkers stems from a method for the automatic dis-
covery of clusters of voxels relevant to OCD recently proposed in [24]. With these
regions as a starting point, we will define several candidates to become neuromark-
ers, that is, a set of measurements describing features of these individual regions.
In order to obtain a reduced subset of neuromarkers for OCD characterization,
we will apply different selection strategies to remove irrelevant features. This will
result in a small set of neuromarkers that is easy to interpret and handle by the
psychiatric community. Experiments will analyse the suitability of each subset of
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neuromarker candidates, as well as the different selection strategies, showing that
we can handle a subset of no more than 50 neuromarkers maintaining the original
performance in terms of classification error.

The rest of paper is organized as follows: Section 2 reviews the method pre-
sented in [24], that will be used as starting point to define the relevant regions for
OCD characterization; Section 3 introduces the different kinds of neuromarker
candidates as well as the different strategies considered for their selection; ex-
perimental results will be presented in Section 4; finally, Section 5 summarizes
the main conclusions and proposes some future research lines.

2 Related Work: A Review on Discovering Brain Regions

2.1 Bagged Support Vector Machines

An MRI brain scan provides a vector in which each element is a voxel associated
with the probability of it being gray matter. Therefore, linear classifiers in such
an input space admit a pretty straightforward interpretation of the role of each
voxel in the discriminant function. A linear classifier assigns each brain scan of
D voxels, x = [x1, . . . , xD]T , to a possible output class, ŷ(x), using

ŷ(x) = sign
(
wTx+ b

)
= sign

(∑D

d=1
wdxd + b

)
(1)

where w = [w1, . . . , wD]T and b are the weight vector and the bias term of the
classifier, respectively.

Borrowing some ideas from the starplots method of [3], the bagging procedure
applied here trains a linear SVM with a subset of M instances of the training
data and repeats this procedure a significant number of times, R. It then counts
the number of times that each weight wd takes positive and negative values,
classifying wd in one of these two groups:

– Those wd that take positive (or negative) values in at least r iterations.
– Those wd that are not sign consistent in at least r iterations.

The contribution to the final classification of those voxels belonging to the
second group depends on the particular selection of the training set, thus they
can be considered as non critical for the discriminative task and can be discarded.
Therefore, the selection method consists in picking the features from the first
group, since they are consistently relevant for the classification.

2.2 Refined Voxel Selection with Conformal Analysis

The above voxel selection method still suffers from the small sample problem.
This can be further alleviated with some ideas from Conformal Analysis (CA)
[35]. In a nutshell, CA is based on assessing the likelihood of every test sample
being assigned to each possible output class, and choosing the class that is most
likely.
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Training data {x(i), yi}li=1

Test data xtest

{x(1), · · · , x(l), xtest}
{y(1), · · · , y(l), 1}

y = 1
test

y = −1
test

{x(1), · · · , x(l), xtest}
{y(1), · · · , y(l),−1}

V+ V−

V = V+ ∩ V−

SVM Bagging

Fig. 1. Workflow of the CBS algorithm

The CA philosophy completes the voxel selection in the following manner. For
every test sample xt, we carry out the voxel selection twice. We first obtain a
subset of voxels, V+, considering yt = +1. Then we obtain a second subset, V−,
considering yt = −1. The final set of voxels used in the training of the classifier,
that we will label V , is the intersection of V+ and V−. The intuition behind this
is that the voxels present in one of the subsets but not in the intersection de-
pend strongly on the specific labelling of xt, therefore they are depicting specific
subject traits, instead of characterizing the pathology.

Figure 1 shows the workflow employed to apply the bagging SVM approach
in combination with the CA refinement.

2.3 Discovering Brain Regions Relevant to OCD

The application of the above process to the OCD problem (details of this dataset
are given in Section 4) has allowed us to discard 92% of the voxels, finding a sub-
set of approximately 40.000 voxels which are clustered in regions. We have then
applied a post-processing algorithm targeted at discovering regions by simply
including connected voxels in the same cluster. On average, across the differ-
ent LOO (Leave One Out) iterations, the clustering finds 718 ± 40 groups of
connected voxels.

The relevance of these groups of voxels towards the characterization of the
OCD patology is made clear when they are used to classify patients and con-
trols, since the use of this subset of voxels provides a classification error of around
26.2%, whereas state-of-art approaches get performances around 35%-40%. Fur-
ther details of this procedure, as well as the results obtained over the OCD
dataset, can be found in [24].
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3 Discovering Neuromarkers

3.1 Defining and Selecting Neuromarkers

Despite the usefulness of the aforementioned process, the obtained subset of
voxels presents an unfriendly characterization of the OCD pathology, since its
huge size (40.000 voxels) makes it unmanageable and difficult to understand for
the clinical community. It is almost impossible to relate the value of each voxel
with the brain deformity or dystrophy which may characterize the disorder.

However, we can exploit the grouped distribution of these voxels to define a
set of measurements, each of them associated to a single brain region, which are
able to represent the relevant information of these brain regions in a friendlier
way. Due to the fact that these measurements must be useful for disease char-
acterization, we will denote them as neural biomarkers or simply neuromarkers.

Taking into account that each voxel of an MRI scan is characterized by its
grey matter probability with the variable xd, d = 1, . . . , D, and that we have
grouped the relevant voxels in a subset of brain regions, each of them indexed by
Sg, g = 1, . . . , G, we can now characterize the gray matter probability of these
regions with some measurements that we will exploit as neuromarkers:

1. Averaged (AV) grey matter probability
This first measurement directly obtains a single parameter over each brain
region by averaging the gray matter probability values of the voxels that
belong to it. That is,

AVg =
1

| Sg |
∑
i∈Sg

xi

where | Sg | is the number of voxels in a brain region g.
2. Variance (VAR) of the grey matter probability

We consider the variance of the voxel gray matter probability to represent
each brain region. Thus, each VAR marker is computed as:

VARg =
1

| Sg |
∑
i∈Sg

(xi −AVg)
2

3. Accumulated (AC) grey matter probability
Another interesting parameter can be obtained by summing all the xi proba-
bilities belonging to the same region. In this way, the AC parameter is given
by:

ACg =
∑
i∈Sg

xi

Note that, unlike AV markers, this marker is not dividing by the brain region
size. Therefore, it is indirectly including the brain region volume.

4. SVM weighted (WE) grey matter probability
Finally, we can use the information provided by the linear SVM classifier to
extract the relevant information of each brain region. A linear SVM classifier



456 O.G. Hinde et al.

applied over the overall set of selected voxels S computes the output for a
sample x as:

f(x) =
∑
i∈S

wixi + b (2)

If we split the index set S into the different brain regions (S = S1 ∪ S2 . . .∪
SG), (2) can be rewritten as:

f(x) =

G∑
g=1

∑
i∈Sg

wixi + b (3)

and each term of the inner summation would be summarizing the information
of each region. So, we can define the WE neuromarker as:

WE =
∑
i∈Sg

wixi

This gives us four kinds of neromarkers for OCD characterisation, providing
a single parameter for each brain region. However, with the intention of char-
acterizing the pathology with even fewer markers, we will also introduce some
feature selection strategies to be applied over these sets of neuromarkers.

In particular, we will consider the following feature selection approaches:

1. Ranking based on variance
A quick glance over the neuromarker values reveals that some of them are
constant over all subjects, regardless of whether they are patients or con-
trols. Therefore, a simple criterion to remove this redundancy is to rank the
neuromarkers according to their variance.

2. T-test
The second criterion applies a standard t-test [12] to analyze the statistical
differences of the neuromarkers belonging to patient and control popula-
tions. The resulting p-values of the test allows us to rank the neuromarkers
according to its significance.

3. Recursive Feature Elimination (RFE)
This method [11] aims at finding the subset on N features that are able to
provide the largest classification margin in a SVM classifier. For this purpose,
the RFE approach carries out a backward feature elimination by removing at
each iteration the data feature that least decreases the SVM margin. When
a linear SVM classifier is applied, this process is simplified by iteratively
training a linear SVM and removing the feature with the smallest value
|wi|. As in previous criteria, this recursive elimination process will provide a
sorted list of neuromarkers in order of relevance.

4. Ranking based on correlation
This criterion supposes that good neuromarkers should be highly correlated
with the classification task. Thus, another straightforward selection proce-
dure is to rank the neuromarkers according to their correlation with the
patient/control labels.
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5. Ranking based on HSIC
The previous criterion analyses the linear relationships. This strategy ex-
tends this idea by measuring non linear relationships by means of the Hilbert-
Schmidt independence criterion [10], [28].

4 Experimental Work

4.1 Dataset Description

Eighty-six subjects with OCD (44 males; mean±SD age, 34.23±9.25 years) were
recruited from the outpatient service of the Department of Psychiatry of the
Bellvitge University Hospital, Barcelona (Spain), paired with a group of 86
healthy control subjects, with the same age and gender distribution (43 males;
33.47±9.94 years old).

Images were acquired with a 1.5-T Signa Excite system (General Electric,
Milwaukee, Wisconsin) equipped with an 8-channel phased-array head coil. A
high-resolution T1-weighted anatomical image was obtained for each subject us-
ing a 3-dimensional fast spoiled gradient inversion-recovery prepared sequence
with 130 contiguous slices (TR, 11.8 milliseconds; TE, 4.2 milliseconds; flip an-
gle, 15o; field of view, 30 cm; 256×256 pixel matrix; slice thickness, 1.2 mm).
Imaging data were transferred and processed on a MS Windows platform using
MATLAB 7.8 and Statistical Parametric Mapping (SPM8). Following the in-
spection of image artifacts, image preprocessing was performed. Briefly, native-
space MRIs were segmented into the three tissue types (gray and white matter,
and cerebrospinal fluid, although only gray matter segment were used in the
present study) and normalized to the SPM-T1 template by means of a DAR-
TEL approach. Additionally, the Jacobian determinants derived from the spatial
normalization were used to modulate image voxel values to restore volumetric
information. Finally, images were smoothed with a 4 mm full-width at half max-
imum (FWHM) Gaussian kernel.

4.2 Analysis of Neuromarker Performance

In this section we analyse the usefulness of each neuromarker and the extent
to which we can reduce their number by means of the aforementioned feature
selection strategies. To this end we shall consider a neuromarker to be useful if
we can maintain a classification error that is similar to the 26.2% obtained before
its construction. Furthermore, to select the optimum number of neuromarkers
to be used, a nested LOO process, which provides a validation error for each
number of selected neuromarkers, has been applied.

Table 1 illustrates the effectiveness of our neuromarker types, paired with each
selection strategy, at characterising OCD by means of the classification error and
the number of neuromarkers that yield said error. For comparison, the first row
shows the error rate obtained with the full set of neuromarkers.

Overall, the most capable neuromaker is by far the WE type. Most selection
criteria converge at errors of around 30% when applied with it. Moreover, the
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Table 1. Analysis of the LOO classification errors (CE) and number of neuromarkers
(# NM) obtained by selection criteria and neuromarker type

AV VAR ACC WE

All neuromarkers
CE (%) 35.47 49.42 33.14 28.49
# NM 718 718 718 718

Variance ranking
CE (%) 37.21 50.58 36.63 28.49
# NM 80.30 144.81 40.02 38.84

t-Test selection
CE (%) 34.88 52.91 38.37 32.56
# NM 258.25 198.75 286.65 525.83

RFE
CE (%) 36.05 51.16 32.56 30.23
# NM 132.88 245.03 224.45 60.26

HSIC-Test ranking
CE (%) 38.37 47.09 40.12 31.98
# NM 96.81 148.20 54.76 48.41

Correlation ranking
CE (%) 40.12 50.00 40.70 32.56
# NM 575.40 435.61 513.93 527.51

number of relevant features needed to characterise the pathology using this neu-
romarker is well under 100 with the variance ranking, HSIC ranking and RFE
methods.

Specifically, the most effective criterion is the WE neuromarker type paired
with a variance ranking selection strategy. This combination produces an error
of 28.49%, which is only slightly greater than the error obtained with no feature
selection, while the number of voxels it employs is one order of magnitude smaller
(around 718 versus an average of 38.84).

4.3 Neuromarker Interpretation

Given the results of the previous section, we will now analyse the relevance and
neuroanatomical position of each WE neuromarker. In particular we shall focus
on the subset of neuromarkers selected by the variance ranking criterion.

Due to the fact that we are managing 172 iterations of a LOO procedure,
we have obtained 172 different subsets of neuromarkers with an average size of
38.84. In order to obtain a subset that is easy to interpret, we have merged
all these subsets into a single one comprising 59 neuromarkers. Note that these
neuromarkers present varying consistencies in the voxels they contain over the
172 iterations, meaning that some of these voxels appear in every iteration while
others in just a few.

To analyse the relevance of each neuromarker, we have studied the classifica-
tion error variations provided by the classification system when one neuromarker
is removed from the training set. Table 2 shows these CE rate deviations for the
most important neuromarkers, that is, those which cause a significant CE incre-
ment when they are not used during training. To complete this analysis, Table 2
also includes the most significant MNI neuroanatomical [30] regions (those whose
consistency is greater than 50%) and Figures 2-6 show the localization of the five
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Table 2. Neuroanatomical analysis for the most important neuromarkers

NM ranking Δ CE (%) MNI ROIs

1 6.39 Temporal Sup-Mid L

2 5.81 Frontal Inf Tri-Orb R; Insula R

3 4.65 Insula L; Putamen L; Pallidum L

4 4.65 Parietal Inf L; SupraMarginal L

5 3.49 Frontal Sup-Mid R

6 2.9
Calcarine L-R; Lingual L; Precuneus L-R;
Cerebelum 6 L; Vermis 4-5-6

7 2.9

Olfactory L-R ; Frontal Med Orb L; Rectus L; Cingulum Ant R;
Lingual L-R; Occipital Inf R; Fusiform L-R; Precuneus L
Caudate L; Pallidum L; Thalamus L-R; Temporal Inf R
Cerebelum Crus-1-3-4-5-6-7b-9-10 L-R; Vermis 1-2-3-4-5-7-10

8 2.9 Temporal Sup-Mid R

9 2.9
Frontal Inf Oper-Tri R; Insula R; Putamen R;
Pallidum R; Heschl R; Temporal Sup-Pole Sup R

10 2.9
Precentral R; Frontal Mid R; Postcentral R;
Parietal Inf R; SupraMarginal R

11 2.9 Parietal Inf R; SupraMarginal R; Angular R; Temporal Sup R

12 2.9 Frontal Mid L

13 2.9 Cerebelum Crus2-7b-8 R

14 2.32 Lingual R

15 2.32 Fusiform L; Temporal Inf L

16 2.32 Frontal Sup-Mid L

17 2.32 Frontal Med Orb L-R; Rectus L-R

18 2.32 Frontal Sup Orb L; Rectus L

19 1.74 Cuneus L; Parietal Sup L; Precuneus L

20 1.16
Occipital Inf L; Parietal Sup-Inf L; SupraMarginal L;
Angular L; Temporal Sup-Mid L

21 1.16 Temporal Sup-Mid-Inf R

22 1.16 Temporal Mid L

23 0.58 Precentral; Frontal Sup-Mid L

24 0.58 Frontal Sup Medial L-R; Cingulum Ant L-R

25 0.58 Precentral L; Frontal Mid L

26 0.58 Hippocampus L-R

27 0.58 Occipital Sup-Mid R

most important neuromarkers, with color intensity indicating the consistency of
each voxel (white means a voxel was selected in all the iterations).

The five most relevant neuromarkers to OCD are located in the frontal, tem-
poral and parietal lobes. Three of them appear in regions traditionally associated
with the disorder, such as the orbitofrontal cortex (right inferior frontal and mid-
dle frontal gyri) and the striatum (putamen and globus pallidum, extending to
the adjacent insular cortex). Such regions are part of the distributed cortico-
striatal circuits know to be involved in OCD pathophysiology [13]. Specifically,
while striatal regions seem to be hyperactive (and volume increased), prefrontal
areas seem to be hypoactive (and volume decreased) and inefficient in regulating
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Fig. 2. Position of the first ranked neuromarker, which is mainly located in the ROIs:
Temporal Sup-Mid L. Each voxel’s color intensity indicates its consistency.

Fig. 3. Position of the second ranked neuromarker, which is mainly located in the
ROIs: Frontal Inf Tri-Orb R and Insula R. Each voxel’s color intensity indicates its
consistency.
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Fig. 4. Position of the third ranked neuromarker, which is mainly located in the ROIs:
Insula L, Putamen L and Pallidum L. Each voxel’s color intensity indicates its consis-
tency.

Fig. 5. Position of the fourth ranked neuromarker, which is mainly located in the ROIs:
Parietal Inf L; SupraMarginal L. Each voxel’s color intensity indicates its consistency.
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Fig. 6. Position of the fiveth ranked neuromarker, which is mainly located in the ROIs:
Frontal Sup-Mid R. Each voxel’s color intensity indicates its consistency.

enhanced striatal activity, which leads to the development of the repetitive and
ritualized behaviors characteristic of the disorder.

The other two regions (superior temporal and supramarginal gyri) have less
frequently been associated with the disorder, although they are also connected
to subcortical striatal regions and thus may also be considered as part of the
extended cortico-striatal circuitry. Indeed, the role of the parietal cortex (i.e.,
supramariginal gyrus) in striatal regulation and the importance of such parieto-
striatal connectivity for OCD has already been incorporated in more recent
neurobiological models of the disease [22].

5 Conclusions

This paper establishes a framework to automatically obtain a set of neuromarkers
capable of characterizing obsessive-compulsive disorder (OCD). The presented
work analyses different kinds of candidates for neuromarkers, as well as different
feature selection criteria to reduce their number as much as possible.

Experimental results reveal that the definition of neuromakers from the weights
of a linear SVM classifier in combination with a selection process based on their
variance is able to provide a subset of no more than 50 values that are easy to
interpret and handle by the psychiatric community.

Further work will be focused on studying whether these neuromarkers can
also be used to analyse the patient’s evolution, detect a pathology’s subtype or
even to aid in the prescription process. Furthermore, we also intend to extend
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this framework to other pathologies that could benefit from being characterized
by neuromarkers.
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Abstract. We consider inductive transfer learning for dataset shift, a situation in
which the distributions of two sampled, but closely related, datasets differ. When
the target data to be predicted is scarce, one would like to improve its prediction
by employing data from the other, secondary, dataset. Transfer learning tries to
address this task by suitably compensating such a dataset shift. In this work we
assume that the distributions of the covariates and the dependent variables can
differ arbitrarily between the datasets. We propose two methods for regression
based on importance weighting. Here to each instance of the secondary data a
weight is assigned such that the data contributes positively to the prediction of the
target data. Experiments show that our method yields good results on benchmark
and real world datasets.

Keywords: inductive transfer learning, importance weighting, dataset shift.

1 Introduction

In a standard machine learning setting one has given data X ⊂ RN×D and correspond-
ing labels Y ⊂ RN . It is assumed that the data is distributed according to p(x, y) and
that this distribution never changes; in particular it remains the same for new data.
According to this assumption, a good model learned with the training data will also
perform well when predicting for such new data. However, this assumption might not
always be true, and there are quite often situations in which the underlying distribution
changes. In general these situations are called dataset shift. Mathematically speaking, a
dataset shift is given if two datasets are samples from two different distributions [5,12].
For instance, suppose one had given the dataset (XP ,YP ), which is distributed accord-
ing to pP (x, y), and additionally (XS ,YS), which was sampled according to pS(x, y),
called primal data and secondary (or supplementary) data, respectively. A dataset shift
is given if pP (x, y) �= pS(x, y). An example for such a dataset shift is the so-called co-
variate shift where the functional relationship between the dependent variable y remains
the same, i.e. p(y|xP ) = p(y|xS) if xP = xS , but the distribution of the covariates are
not the same, i.e. p(xP ) �= p(xS) [5,12,16]. Another example is a situation where the
distribution of the dependent variable y changes but the distribution of the covariates
remains the same. This is referred to as prior probability shift [5].

In this work we will investigate situations where the distribution of the primal (or P)
data differs from the distribution of the secondary (or S) data in both dependent variable
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y and covariate x, i.e. pP (x, y) �= pS(x, y). For example, consider earthquake data that
has been measured in California. A model learned with this data is suitable for mak-
ing predictions for California, but might not be appropriate for making predictions for
earthquakes in Japan due to a shift in the data caused by a change of location. How-
ever, if the data provided for Japan is very small a separate model learned solely on
the Japan data might not provide a good prediction quality. Although the distributions
for the California data and Japan data differ in general, it is reasonable to assume that
in some aspects the distributions are very similar or almost equal. Therefore, it might
be helpful to augment the Japan data with the California data to improve the predic-
tion quality. This augmentation, also called knowledge borrowing, is commonly known
as inductive transfer learning (ITL). Here, the data for California is the supplementary
data and the Japan data the primal data. Other such data shift situations occur when the
distribution drifts in time. A situation like this occurs, for example, in data that describe
the causes of delays of aircrafts. This shift might be due to new airports that have been
opened recently or a new aircraft model that is more reliable. Therefore, the data can
shift from year to year. Other examples arise in the case of classification of text data
where one would like to transfer knowledge obtained on texts about one topic to texts
about a different topic.

Formally speaking, inductive transfer learning (ITL) refers to a situation of at least
two datasets, which are sampled from the distributions pP (x, y) and pS(x, y) with, in
general, pP (x, y) �= pS(x, y). Furthermore, the number of the P data is typically much
smaller then that of the S data. Additionally, due to the small number of data, a model
learned solely on the P data will usually not provide a good prediction quality. However,
it is assumed that the distribution pP and pS are similar to some degree, which even
could result in some connected sets of (x, y) with pP (x, y) ≈ pS(x, y). In ITL one tries
to achieve a good prediction quality of a model for the P data by employing the S data.

In this work we will, motivated by the concept of importance sampling, investigate
two new approaches for improving regression in the ITL setting by assigning each in-
stance in the S data a weight. The first one is a supervised and the second an unsuper-
vised method. Although both methods employ labels from the S and P data, we consider
the one approach unsupervised since it does not directly employ a cost function for es-
timating an error between actual and predicted labels. The resulting weights are then
used in a modified ridge regression in combination with the S and P data in order to
improve the prediction quality on the P data. Experiments show that both approaches
yield good results.

This work is structured in the following way: section 2 presents an overview of re-
lated work on the topic of ITL while section 3 gives a brief description of ITL in gen-
eral. Section 4, 5 and 6 explain our idea and state practical instructions. Finally section
7 demonstrates the performance of our algorithm on several datasets.

2 Related Work

The task of inductive transfer learning has been tackled in the past by various ap-
proaches. One is the so-called instance based transfer, where each instance in the S
domain gets some weight for indicating how much influence it will get for predicting
the target data. TrAdaBoost [8] and an extension [1] are methods that assign a weight
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to each datapoint such that some S data have an influence on the prediction quality for
the P data. [13] states a similar boosting approach for regression. Other recent work
based on instance transfer has been put forward by [18], [20] and [22] in which they
use multiple input sources to improve the prediction quality of classifiers.

Other existing work that implement instance based reweighting methods focus pri-
marily on the covariate shift setting. Important work on this topic has been put forward
by [7,10,17], see also [5,16]. It is possible to apply these methods to inductive transfer
learning setting. However, the major drawback of these methods in the ITL setting is
that they do not take the information about the target labels from the P data into account.
This can lead to situations where a S datapoint still gets a high weight assigned due to
the similarity to the covariates of the P data although the label, which eventually is what
one wants, is fundamentally different from the ones in the P data. To compensate this
shortcoming our second approach (explained in section 6.3) is inspired by [17] such
that it takes also the labels of the P data into account.

Kernel based ideas have been presented by [15,6], where a special kernel matrix
is learned that reflects the similarities between the S and P data. A further method is
given in [14], in which an informative prior is constructed from the S data in order to
improve a model on the P data. An additional advance is feature representation transfer
[3]. This method learns a projection of the S and P data onto a lower dimensional
subspace such that the common or shared information of both data can be used for the
model on the P data. Learning feature representation is in particular common in the
domain of natural language processing (NLP). Since due to differences in vocabulary
and writing style learning approaches tend to perform worse in different domains. In
this area, [9] proposed a simple, but often well performing, kernel-mapping function
for NLP problems, which maps the data from both source and target domains to a high-
dimensional feature space, where standard discriminative learning methods are used.

Model transfer or hypothesis transfer learning comprise another class of approaches
for treating ITL. In the model transfer setting a model parameter θS is learned on the
S data. Assuming that the models should be similar, the idea is to regularize the model
parameter for the P data θP with the help of the parameter θS . Recent work on this topic
is given by [11] and [19].

Note that, in contrast to multi-task learning [3], inductive transfer learning is not
concerned with the prediction quality on both the S and P data, but concentrates only
on the prediction of the P data; the S data is exclusively used as data that helps to
improve the prediction quality for the P data.

3 Problem Formulation

For inductive transfer learning we now assume a situation where the two datasets
(XS ,YS), the S data, and (XP ,YP ), the P data, are given by:

(XS ,YS) ∼ pS(x, y) and (XP ,YP ) ∼ pP (x, y).

Further, the number M of P data is assumed to be much smaller than the number N of
S data, i.e. |XP | � |XS |, and the two distributions from which the data was sampled
are not equal, i.e. pP (x, y) �= pS(x, y). Nevertheless, it is assumed that the two datasets
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are somehow related to each other, so that in some parts of the domain the distributions
are similar (or even equal), i.e.:

pS(x̃, ỹ) ≈ pP (x̃, ỹ) for some (x̃, ỹ).

Therefore, one can employ the S data to improve the prediction on the P data. By as-
sumption, we have pP (x, y) �= pS(x, y), and consequently we cannot simply combine
the S and P data. The crucial part is to determine points from the S data that contribute
positively to the P data prediction and neglect points that have a negative influence. A
solution to this problem is based on a measure of similarity between the two distribu-
tions. A common way to achieve this is importance sampling, a technique that reweights
a given distribution p such that the reweighted p equals another distribution q. Defining

the importance weight function as w(x, y) := pP (x,y)
pS(x,y) one could reweight the S data

distribution by:

pP (x, y) = w(x, y)pS(x, y) =
pP (x, y)

pS(x, y)
pS(x, y). (1)

With the help of the function w(x, y) it becomes possible to assign each S datapoint
(xS , yS) an individual and appropriate weight. A weight close to one indicates a prefer-
able point, while a weight far from one indicates the opposite. Hence this approach
seems suitable for tackling the induction transfer learning setting. However, this defini-
tion of the importance function requires knowledge of both distributions, which is not
available. Therefore, an approximation of the importance function w(x, y) is needed
instead. By employing an appropriate approximation, the idea of importance sampling
offers a guideline for solving the task of ITL.

4 New Instance Based Approach

4.1 Reweighting of the Prediction Function

We start by assuming that the given data (X ,Y) is distributed according to an (unknown)
distribution p(x, y). This distribution can be expressed by:

p(x, y) = p(y|x)p(x) or p(x, y) = p(x|y)p(y).

Although our suggested method can be applied to both cases, the discriminative and
the generative one, we will concentrate in the following on the first equation for the
discriminative approach. Predictions are obtained by:

ŷ∗ = argmaxy (p(y|x∗)p(x∗)) . (2)

By assumption, the new data x∗ and its corresponding (unknown) label y∗ is distributed
according to p(x, y), and therefore one can make a prediction by applying (2).

However, in the setting of inductive transfer learning we have two different distribu-
tions, which gives the following two expressions for the prediction of yP :

yPP = argmaxy
(
pP (y|xP )pP (xP )

)
yPS = argmaxy

(
pS(y|xP )pS(xP )

)
.
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In general the prediction of yP based on pS for the S data, namely yPS , can differ arbitrar-
ily from the prediction yPP based on the P distribution. Therefore, in order to make better
predictions for the P data using the distribution of the S data, we will now reweight the
S distribution as suggested in (1):

yP = argmaxy
(
pP (y|xP )pP (xP )

)
= argmaxy

(
pP (y|xP )pP (xP )

pS(xP , y)
pS(y|xP )pS(xP )

)
= argmaxy

(
w(xP , y)pS(y|xP )pS(xP )

)
. (3)

From this derivation one can see that this also is an unbiased estimator for the P data.
Due to the lack of knowledge about the true distributions pP and pS one cannot obtain

the correct importance function. Instead we will aim for an approximation ŵ(x, y). To
determine suitable weights ŵ we will now introduce two approaches for their
estimation.

4.2 Model Based Estimation of the Weight Function

The first approach will be referred to as the direct method or DITL (Direct ITL) because
it will directly rely on the prediction performance of a model learned on the S data. The
goal of our model is to minimize the prediction error, i.e.

min ||Y P − Ŷ P ||2

where Y P is the vector of the real labels {yi}i=1,...,M and Ŷ P the vector of the model
predictions. Therefore, by following this approach, and with the help of expression (3),
an optimization problem for the estimation of a weight function can be stated as:

min
ŵ

M∑
i=1

(
yPi − argmaxy

(
ŵ(xPi , y)p

S(y|xPi )pS(xPi )
))2

.

The idea behind this approach is that the computation of the weights ŵ is performed
with respect to the known labels Y P . Therefore this approach provides a supervised
method for adjusting the weights ŵ. Since for a given point xP the argmax does not
depend on pS(xP ) that term can be omitted, which leads to:

min
ŵ

M∑
i=1

(
yPi − argmaxy

(
ŵ(xPi , y)p

S(y|xPi )
))2

. (4)

4.3 Distribution Based Estimation of the Weight Function

Additionally, we propose a method which does not depend directly on prediction mod-
els and can be regarded as an unsupervised approach. Following the idea of [17] we
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will minimize the Kullback-Leibler divergence between two distributions and straight-
forwardly extend the approach [17] for covariate shift by also taking the labels into
account:

argminŵKL(pP (x, y)||ŵ(x, y)pS(x, y))

= argminŵ

(∫
pP (x, y) log

(
pP (x, y)

ŵ(x, y)pS(x, y)

)
dxdy

)
= argminŵ

(
−
∫
pP (x, y) log (ŵ(x, y)) dxdy

)
.

The last expression can be approximated by the empirical mean:

⇒ min
ŵ

M∑
i=1

− log
(
ŵ(xPi , y

P
i )
)
. (5)

Additionally, one obtains the following constraint for normalization [17]:

pP (x, y) = w(x, y)pS(x, y)

⇒ 1 =

∫
pP (x, y)dxdy =

∫
w(x, y)pS(x, y)dxdy

⇒ N =
N∑
j=1

ŵ(xSj , y
S
j ), (6)

it enforces that the reweighted distribution w · pS still has measure one. We will refer to
this approach as the indirect method or KLITL (Kullback-Leibler ITL).

5 Weighted Kernel Ridge Regression for ITL

Assuming one has obtained suitable weights, their application in regression requires
adjusted models for prediction. We will propose a weighted kernel ridge regression
model, which we will call ITL-KRR. The modified ridge regression model is given by:

JW (θ) =
1

2

⎛⎝ M∑
i=1

(θtφ(xPi )− yPi )
2 +

N∑
j=1

wj(θ
tφ(xSj )− ySj )

2

⎞⎠+
λ

2

D∑
d=1

θ2d (7)

where θ ∈ RD denotes the model parameter, λ the regularization parameter, φ the
feature map that maps the input x into the feature space (see e.g. [4]), and wj :=
ŵ(xSj , y

S
j ) denotes the weight for each supplementary datapoint from

(
XS ,YS

)
. Some-

what surprisingly, such a natural extension of a regression approach for applying impor-
tance weights has, to our knowledge, not been stated and used in the context of ITL
so far. Dualization is given straightforwardly by defining the diagonal matrix W ∈
R(M+N)×(M+N):

W :=

[
IM 0
0 diag

(
w(xS1 , y

S
1 ), . . . , w(x

S
N , y

S
N )
)]
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with IM the identity matrix for M dimensions and appending the S data to the P data
(’|’ denotes vertical concatenation):

XPS =
(
XP |XS

)
and Y PS =

(
Y P |Y S

)
K = φ(XPS)tφ(XPS) the kernel matrix,

with the data matricesXP ∈ RM×D, XS ∈ RN×D and label vectors Y P ∈ RM , Y S ∈
RN . As the dual optimization problem one obtains:

1

2
atKWKa− atKWY PS +

1

2
Y PSWY PS +

λ

2
atKa.

We apply Gaussian kernels, with the bandwidth denoted by σ, in our experiments.

6 Determination of Individual Weights

We will now specify how the weights can be obtained computationally for both
approaches.

6.1 Weight Function

Until now we have not been specific in the concrete representation of the weight func-
tion ŵ(x, y). We employ in this work the common approach of linear combination of
Gaussian kernels for an approximation of the importance function, i.e.:

ŵα(x, y) =

N∑
l=1

αl exp

(
−||(x, y)− (x′l, y

′
l)||2

2η2

)
.

The centerpoints (x′l, y
′
l)
N
l=1 will be set to the S datapoints. We use the S data instead

of the P data since in (14) we optimize over the P data; using the P data as centerpoints
would exhibit a higher risk of overfitting. Hence each ŵl in (13) becomes

ŵα
j (x

∗, y) = αj exp

(
−
||(x∗, y)− (xSj , y

S
j )||2

2η2

)
. (8)

Other function representations are possible as well, but out of the scope of this work.

6.2 Direct Approach (DITL)

To derive the direct approach, let us remind the abstract modeling of a prediction func-
tion in a standard machine learning setting for the discriminative case:

ŷ∗ = argmaxyp(y|x∗). (9)

Here, x∗ denotes a data point to be predicted on, and ŷ∗ the prediction. As a concrete
model f(x) for the S data following (9) we again employ kernel ridge regression, which
can be stated as:

argmaxyp(y|x∗) ≈ f(x∗) = atk(x∗), (10)
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where k(x∗) := (k(x1, x
∗), . . . , k(xN , x

∗))t is the kernel map of the new datapoint
x∗ and the data X ⊂ RN×D on which the model has been learned, with k(xl, x∗) :=
φ(xl)

tφ(x∗), and a is the vector of coefficients for the linear combination in the feature
space. Hence for (4) one needs a different mathematical approximation:

argmaxy (ŵ(x
∗, y)p(y|x∗)) ≈ fŵ(x∗,y)(x

∗) (11)

where the model f now also depends on the weight function ŵ.
We now suggest a weighted prediction model derived from the kernel ridge regres-

sion approximation and consider a weighted formulation:

JW (θ) =
1

2

N∑
l=1

ŵl

(
yl − θtφ(xl)

)2
+
λ

2
||θ||2 (12)

where θ again denotes the model parameter, φ is the feature map and ŵl is a weight
coefficient for each datapoint xl. By the process of dualization of the ridge regression
[4], one gets the weighted prediction function as:

0 = ∇JW (θ)⇔ θ =

N∑
l=1

ŵl

(
− 1

λ
(yl − θtφ(xl))

)
︸ ︷︷ ︸

=:âl

φ(xl).

Here, âl = alŵl are the coefficients for the linear combination in the feature space.
Analogously to (10), this prediction function can be taken as an approximation for the
weighted prediction, i.e.:

argmaxy (ŵ(x
∗, y)p(y|x∗)) ≈ fŵ(x∗,y)(x

∗) = atŴ (x∗, y)k(x∗) (13)

where Ŵ denotes a N × N diagonal matrix where each entry is a weight ŵl that cor-
responds to the kernel function kl(·) := k(xl, ·) and coefficient al of the lth-data point
of S. Obviously this prediction function contains the label that is to be predicted. There-
fore, label prediction for new data points is not possible with (13). However, we are
not actually interested in making predictions using this model; rather we would like to
estimate appropriate weights ŵ for the subsequent step, in which we apply the weights
to learn a model on the P data combined with the weighted S data. (4) provides a frame-
work for getting the best possible weights by conditioning the expression to the labels
of the P data. Inserting (13) into (4) we get:

min
ŵ

M∑
i=1

(
yPi − atŴ (xPi , y

P
i )k(x

P
i )
)2

. (14)

By making the approximation (8) we get a weight function that is defined by a given
set of αs, which can now be estimated by (14).

Note that in early experiments we saw that a direct application of (14) sometimes
returns αs where only one or very few elements dominate. In order to avoid such
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an overfitting we additionally add a regularization term to (14) which penalizes large
coefficients:

min
α≥0

M∑
i=1

(
yPi − atŴα(xPi , y

P
i )k(x

P
i )
)2

+ γ||α||2. (15)

The estimated αs define the weight function ŵ which will then be subsequently used
during the actual ITL-KRR.

Learning the weights and a better model jointly from the P data and weighted S
data requires a three step procedure for the direct approach. Problem (15) depends on a
model of the S data for adjusting the αs. Therefore the first step requires the inference
of a kernel ridge regression model solely on the S data, which returns the coefficients a
for the prediction function (13). With these a a solution to (15) has to be found which
yields proper αs. These αs are then used in (7) for calculating the weight for each S
datapoint. The procedure can be stated as:

1. Learn a model a for the normal kernel ridge regression using solely the S data and
ignore any P data.

2. Use the coefficients vector a from step 1 to determine appropriateαs for the weight
function (8) by using the weighted prediction model (13) and solve (15).

3. After having determined the αs in step 2, use these to calculate the weight for the
application of the ITL-KRR (7). Use the resulting model to make predictions for
new P data.

The optimization in step 2 is convex and therefore guarantees a single optimal solu-
tion. Good parameters in each step are estimated by performing standard cross-validation
on the P data. We employ Gaussian kernels in the kernel ridge regression, therefore we
need to estimate σ and λ in step 1 and 3 similarly to the two parameters γ and η in
step 2.

6.3 Indirect Approach (KLITL)

In addition to the direct approach we state a procedure for the indirect approach. Follow-
ing the derivation in section 4.3, using expression (5) as the objective and expression
(6) as the constraint, we proceed as follows:
1. Optimize the following with a standard solver for constrained problems:

max
α

1

M

M∑
i=1

log
(
ŵα(xPi , y

P
i )
)

s.t. N =
N∑
j=1

ŵα(xSj , y
S
j ) and α ≥ 0. (16)

2. Use the αs from step 1 to compute the weights ŵ of each S datapoint for the opti-
mization of the ITL-KRR (7). Use the resulting model to make predictions for new
P data.

We employ here the same representation of the weight function (8) as for the direct
approach. For the estimation of a good η in (16) we will apply a modified version of
cross-validation that is explained in the experimental section 7.1 of this work.
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6.4 Comparison of the Direct and Indirect Approach

Comparing the two approaches, an advantage for the indirect approach is that it does
not require the estimation of a model on the S data. This might be advantageous in case
when a lot of S data is available. Additionally, the method requires the estimation of
just one parameter η for the kernel width used in the weight function. However, on the
downside is the fact that this is an unsupervised method. By this we mean a method
that does not consider an objective cost function for the parameter inference. Therefore
it is less likely to obtain robust or reliable estimations for α. On the other hand DITL
applies a supervised optimization problem that takes a subset of the target labels in
order to assess the quality of parameter inference. As mentioned further in section 6.2
the additional regularization term allows a higher control of the fitting process. As a
consequence the DITL method is much more robust in compensating the dataset shift.
The experimental section shows the conditions under which this becomes advantageous.
The disadvantage is a higher calculation cost since it requires the calculation of an
additional model on the S data and the parameters η and γ.

7 Experiments

In the experimental section we will compare the performance of the direct (DITL) and
indirect (KLITL) approaches versus the boosting for transfer learning (TLB) method,
another instance-weighted approach, described in [13]. Further we applied the ”Frus-
tratingly Easy Domain Adaptation” by [9], a simple, but often well performing feature
learning approach, in combination with kernel ridge regression (in the following re-
ferred to as FS-KRR). As the final approach for dataset shift, we compare with ATL [6],
which is based on Gaussian process (GP) regression and calculates a special correlation
matrix for the GP. As a natural baseline, we provide the performance of a normal kernel
ridge regression for regression problems learned from the three dataset combinations:
P data, S data, and P & S data. As a weighted baseline we also take KLIEP [17] in
a normal covariate shift setting for determining instance weights into account, i.e. this
approach does not see the labels of the data during weight estimation, only their distri-
bution in x. As an alternative we also employ Kernel Mean Matching (KMM) [10].

7.1 Parameter Selection

DITL applies a kernel ridge regression (KRR), a weight estimation procedure and the
ITL-KRR. In each of the three steps we will perform 5-fold standard cross-validation for
the parameter estimation. For the KRR and the ITL-KRR we used RBF kernel functions
for the calculation of the kernel matrix K. Denoting the bandwidth parameter of the RBF
kernels with σ we have to estimate two parameters σ and the regularization parameter λ
in step 1 (KRR) on the S data, and step 3 (ITL-KRR) on the S and P data. In the second
step DITL requires the estimation of the parameters η (the bandwidth for the importance
function approximation) and γ (the regularization parameter for the α vector). Since all
problems are quadratic, one can use standard algorithms for quadratic programming.

KLITL is different in the parameter estimation from the DITL method. KLITL re-
quires just two steps. In the first step we solve problem (16); i.e. we simply maximize the
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Fig. 1. Illustrative toy example for DITL. From left to right the number of P data is: 5, 10 and 20
datapoints. The location of an S datapoint is marked by a red cross ’×’. The round purple points
indicate how much weight an S datapoint gets assigned. The thicker the point the more weight it
has. As can be seen from the example, in one dimension 20 datapoints are already dense enough
to learn a reliable kernel ridge regression.

sum under the normalization constraint. In order to get a good estimate for η we propose
a selection criteria that will choose the η from all the proposed η values that maximizes
(16). Since KLITL in the first step is unsupervised, we use a similar method to cross-
validation to get a more stable selection result. Given the original S dataset,

(
XS ,YS

)
,

we split the dataset into five disjoint parts,
(
XS ,YS

)5
k=1

. Each split
(
XS ,YS

)
k

should
contain enough samples of the S data but due to our assumption this is not a prob-
lem. Now for a fixed parameter η we will maximize expressions (16) for each dataset
combination {

(
XS ,YS

)
k
,
(
XP ,YP

)
}. We pick the parameter with the highest mean

of these five maximas. Therefore we obtain a more robust method for estimating an
adequate parameter.

7.2 Datasets

First, for illustration purposes, we show by using a toy example how the proposed DITL
algorithm learns weights, and how these weights influence the model prediction. The
performance of our methods is then verified on some standard benchmark datasets that
have been slightly modified. Finally, we apply our methods to three real world datasets,
a dataset describing earthquakes, a second describing delays of aircrafts and a third
describing radio signal strengths from WiFi access points for indoor location estimation.

Toy Examples. The toy example mainly serves as an illustrative demonstration of
how and where the DITL algorithm learns weights for the S data, and shows the con-
sequences for the prediction of the P data when taking additional S data into account.
Similar results can be obtained by applying KLITL, which we omit for space reasons.

The dataset is generated by sampling datapoints from two functions that are - as we
assume for our methods - partially almost identical. The S data is sampled as:

fs(x) = sin(2πx) + σSN (0, 1), (17)

where σS is a factor for controlling the influence of the variance (in our experiments we
used σS = 0.1). The P data is sampled according to:

fp(x) =

{
0 + σPN (0, 1) 0 ≤ x ≤ 1/2
sin(2πx) + σPN (0, 1) 1/2 < x ≤ 1

(18)
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where σP , as in the case for the S data, is the sample variance (in our experiments
σP = 0.4). Parameter selection is performed as described in the previous section 7.1.
The experiments in Fig. 1 only apply a very small number of P datapoints (just 5,10
and 20). The reason for this is that, for our example, the performance of a standard
KRR is already very good at 20 datapoints. This is due to the fact that in one dimension
we get a non-sparse dataset very quickly. Since we want to illustrate that the lack of
datapoints (as by our assumption), and hence sparseness of data, leads to models that
perform poorly on predicting new data, this setting for our toy example is reasonable.
However, in high dimensions the situation is different and the number of P datapoints
can be much larger, in parts due to the empty space phenomenon.

Benchmark Datasets. We now apply DITL, KLITL, ATL, FS-KRR, KMM, KLIEP
and TLB to standard benchmark datasets. The experimental setup is as follows: We
took the following standard benchmark datasets for evaluation: abalone, elevators1, and
the kin family datasets2. From the kin dataset we took the n datasets (n for nonlinear)
with 8 dimensions. We used the nm (non linear medium variance) as the S data and
nh (non linear high variance) data as the P data. Since abalone and elevators do not
necessarily comprise a dataset shift we will determine the S and P data according to a
special selection criteria. The selection process is performed up front and independently
of the ITL method. In the first step we normalized the covariates X to [0, 1] for each
dimension. Then the following three values are calculated randomly; First, a dimension
d ∈ {1, . . . , D} is selected randomly. In the same way we choose a threshold value
ϑ ∈ [0, 1] randomly and finally we sample a selection probability pselect ∈ [0, 1]. All
values are selected according to a uniform distribution on the corresponding domain.
After that we fix these three values for the actual data generation process. For the dataset
generation we select a datapoint (x, y) from the set (X ,Y), take the x ∈ X and then
consider the value for dimension d, i.e. xd. If xd is larger than the threshold ϑ we will
add this (x, y) combination with probability pselect to the S data (XS ,YS), and to the P
dataset (XP ,YP ) otherwise. That way we randomly generate 50 instances of the data
sets for each individual experiment with a drift, i.e. a covariate shift, in the distribution.
In order to get also a shift in the labels we apply the function

f(y) = y + ν sin (2πy) , ν ∈ [0, 1] (19)

to the labels of the P data only. For instance ν = 0 means no shift in the labels. This
way we generate datasets that account for the ITL setting and, due to the ν parameter,
gives control about the strength of the shift such that S and P data still have something
in common.

Table 1 shows the results for each method for a different number of P data. For
illustration we give one result with ν = 0, i.e. with only a covariate shift. As one would
expect, a standard KRR using both S and P data performs best, since for ν = 0 the
datasets only contain a covariate shift. Nevertheless, this experiment verifies that the
introduced ITL methods learn proper weights in order to employ the right S datapoints
for improving prediction of the P data. Their prediction performance is best over all

1 Abalone and elevators can be found on mldata.org.
2 Kin datasets are part of the delve dataset repository.
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Table 1. Results on different benchmark datasets for mean square error. Sampling of the S and
P data is explained in the text. Each experiment has been performed 50 times and the results
have been normalized by the error on the P data. Therefore, each number in the other columns
denotes the proportion in percent. Further comments on the results can be found in the text. Error
calculation has been performed on a randomly sampled Peval for each trial. (KRR∗ = KRR on
S ∪ P ). Best results are marked as bold text.

KRR (on P) KRR (S) KRR∗ FS-KRR KMM ATL TLB KLIEP KLITL DITL

Abalone ν = 0 (no additional label shift), error on |Peval| = 1000 and |S| = 1000
#P 50 0.0017 / 1.00 0.88 0.72 0.87 0.91 0.85 0.83 0.90 0.84 0.78
#P 100 0.0016 / 1.00 0.94 0.77 0.94 0.95 0.92 0.90 0.94 0.89 0.85
#P 200 0.0014 / 1.00 0.98 0.85 0.97 0.96 0.96 0.98 0.98 0.96 0.89
#P 300 0.0012 / 1.00 1.03 0.99 1.02 1.00 1.00 1.00 1.00 1.01 0.99

Abalone (ν = 1/2), error on |Peval| = 1000 and |S| = 1000
#P 50 0.0024 / 1.00 1.53 1.46 0.92 0.93 0.89 0.81 1.48 0.80 0.76
#P 100 0.0019 / 1.00 1.41 1.38 0.93 0.96 0.91 0.85 1.38 0.87 0.80
#P 200 0.0016 / 1.00 1.42 1.27 0.96 1.01 0.94 0.93 1.25 0.92 0.89
#P 300 0.0013 / 1.00 1.45 1.20 1.01 1.00 0.99 0.99 1.21 1.00 0.97

Elevators (ν = 1.0), error on |Peval| = 1000 and |S| = 2000
#P 50 6.5e-6 / 1.00 1.61 1.51 0.91 0.89 0.88 0.74 1.53 0.76 0.68
#P 100 5.7e-6 / 1.00 1.51 1.40 0.97 0.95 0.91 0.78 1.45 0.79 0.71
#P 200 4.1e-6 / 1.00 1.42 1.38 0.99 0.98 0.97 0.94 1.35 0.90 0.89
#P 300 3.6e-6 / 1.00 1.49 1.29 1.01 1.02 1.01 1.00 1.30 1.01 0.99

kin dataset (ν = 1/4), error on |Peval| = 1000 and |S| = 2000
#P 50 0.065 / 1.00 1.30 1.28 0.88 0.90 0.87 0.83 1.27 0.84 0.79
#P 100 0.056 / 1.00 1.34 1.23 0.91 0.93 0.89 0.88 1.24 0.88 0.84
#P 150 0.050 / 1.00 1.32 1.19 0.95 0.95 0.94 0.92 1.18 0.91 0.91
#P 200 0.044 / 1.00 1.30 1.15 1.03 1.00 1.00 1.00 1.12 1.00 1.00

approaches which aim to take a shift into account, both the covariate shift procedures
and the full dataset shift procedures. Experimental results are qualitatively the same for
the other datasets, therefore we omit them.

When adding a shift to the labels with ν > 0 to have a full dataset shift setting the
situation is as expected differently. The KRR learned exclusively on the S data does not
show any performance gain by adding P data. This is to be expected since the P data
has no influence on the learning procedure but only serves as an evaluation dataset. On
the other hand, if learned on P ∪ S the results improve slightly but they are still biased
by the S data. Over all approaches, as the proportion of the P data grows the error gets
reduced. FS-KRR and ATL show comparable errors, this can be explained by the simi-
larity in these approaches, by construction both do not use weights for each instance but
one weight for the correlation of P and S data. Consequently, each S datapoint has an

equal influence. For KMM we considered the pP (x,y)
pS(x,y) for the ratio calculation since that

better fits the ITL setting. Note that KMM does not provide a method for parameter se-
lection, and it is unsupervised since it does not use a subset of the target labels to adjust
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Table 2. Results for the mean square error on the real world datasets. Since these datasets ex-
hibit real dataset shifts the advantage of applying weighted S data becomes obvious. Further the
robustness of the methods become apparent when the shift is artificially intensified (i.e. (19) with
ν > 0). Best results are marked as bold text.

KRR (on P) KRR (S) KRR∗ FS-KRR KMM ATL TLB KLIEP KLITL DITL

Earthquake ν = 0, error on |Peval| = 1000 and |S| = 841
#P 20 0.0138 / 1.00 1.13 1.12 1.13 0.91 1.04 0.64 0.97 0.60 0.51
#P 30 0.0106 / 1.00 1.15 1.07 1.14 0.95 1.09 0.88 0.99 0.83 0.78
#P 50 0.0076 / 1.00 1.20 1.04 1.19 0.98 1.13 0.96 1.00 0.95 0.93
#P 70 0.0064 / 1.00 1.23 1.04 1.24 1.02 1.16 0.99 1.01 1.02 1.00

Flight Data ν = 0, error on |Peval| = 1000 and |S| = 2000
#P 50 898.01 / 1.00 0.96 0.95 1.01 0.88 0.92 0.53 0.92 0.55 0.51
#P 200 611.39 / 1.00 1.02 0.99 1.04 0.92 0.99 0.78 0.96 0.76 0.71
#P 400 265.97 / 1.00 1.36 1.23 1.35 0.99 1.10 0.89 0.97 0.90 0.86
#P 800 211.12 / 1.00 1.41 1.36 1.42 1.01 1.14 1.01 1.02 1.00 0.99

Wireless ν = 0, error on |Peval| = 1000 and |S| = 2000
#P 50 256.83 / 1.00 1.02 0.96 0.99 0.91 0.93 0.74 0.95 0.71 0.69
#P 100 230.74 / 1.00 0.98 1.00 1.01 0.95 0.97 0.82 0.97 0.78 0.79
#P 200 197.23 / 1.00 1.10 1.12 1.05 0.97 1.02 0.93 0.99 0.89 0.87
#P 400 153.21 / 1.00 1.13 1.15 1.10 1.03 1.08 0.99 1.01 0.98 0.96

Wireless ν = 1 (with additional label shift), error on |Peval| = 1000 and |S| = 2000
#P 50 431.23 / 1.00 1.78 1.17 1.20 1.10 1.18 0.86 1.34 0.84 0.74
#P 100 398.19 / 1.00 1.65 1.13 1.14 1.05 1.12 0.90 1.38 0.88 0.83
#P 200 354.21 / 1.00 1.77 1.10 1.09 1.07 1.10 0.97 1.40 0.94 0.92
#P 400 299.85 / 1.00 1.59 1.07 1.04 1.02 1.05 1.01 1.45 0.99 1.00

the parameters, which overall makes it less robust and shows moderate performance.
KLIEP used as a baseline covariate shift approach shows a poor performance, which
is reasonable since it is not adapted to the ITL setting. The performance differences to
the other methods show that it makes sense to treat ITL and covariate shift as two sepa-
rate problem classes. Note that we also considered other (related) methods for covariate
shift [16] in our experiments, their performance was similar to KLIEP and we there-
fore do not report their detailed results. TLB and KLITL show a similar performance.
DITL performs best, we assume that this is due to the supervised way for estimating the
weights. Nearly all methods eventually converge to a value of 1.00 because, as demon-
strated by the toy example in section 7.2, with some data set size the P data provides
enough information about its structure to allow a good prediction performance.

Real World Datasets. We now investigate the more interesting situation of real data
that very likely contains a distribution shift. The first dataset [2] decribes measurements
taken during earthquakes in Japan and California. The features describe values such as
magnitude or distance to the center. A categorical feature describes the type of the earth-
quake. We augmented the dataset and assigned a separate dimension for each category,
which turns one dimension into three. It seems natural to assume that the shift within
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this data is due to the different locations. The label to predict is the so-called PGA (Peak
Ground Acceleration) value.

The second real world dataset describes the flight arrival and departure details for
all commercial flights within the USA3. The complete dataset contains records from
October 1987 to April 2008. We took the data from 2007 as the S data and the 2008
data as the P data. Also here one can argue that the measurement taken in 2008 are
different to 2007 due to a shift in time. The predicted value is the delay of a particular
flight.

The third dataset [21] comprises data for indoor location estimation from radio signal
strengths received by a user device (like a PDA) from various WiFi Access Points. The
measurements are taken at different locations and therefore contain a dataset shift.

The results are shown in table 2. Besides FS-KRR and ATL all approaches which
take a shift into account consistently improve the result in comparison to the baseline ap-
proach of KRR on P (and/or S). Adjusting for a covariate shift with KLIEP only slightly
improves the result, whereas approaches which also adjust with weights stemming from
a dataset shift view achieve much better performance. The supervised approach DITL
consistently performs best, with KLITL and TLB as second.

In a final experiment we added additional distortion to the labels with (19) and
thereby increased the shift in the labels artificially. The purpose of this additional shift
is to investigate the robustness of the methods, assuming that with a stronger shift the
methods become more sensitive in the weight calculation, which might lead to a higher
error rate. The results confirm this expectation, but also show that it is reasonable to as-
sume that DITL provides a better robustness to stronger shifts than other methods. We
only give results for one dataset, the results for other datasets are qualitatively similar.

8 Conclusions

In this paper we suggest two new approaches for tackling the problem of inductive trans-
fer learning. The first one DITL, a supervised method, is motivated by a reweighted and
unbiased prediction function of the S data. The second method uses an approximation
of the Kullback-Leibler divergence to measure the difference in the distributions of the
S and P data. The results indicate that both methods are suitable to account for dataset
shifts while the supervised method performs better.

Due to its unsupervised nature, future work on the robustness of KLITL will be an
interesting topic. Furthermore, we will investigate the application of the methods in a
classification setting. Here, the direct method will need a different optimization than the
current formulation (4), which is not suited for classification. Of interest would also be
the case of a small number of labeledP data, but large number of unlabeledP data, here
one might want to combine covariate shift adaptation with inductive transfer learning.
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Abstract. Path integral (PI) control defines a general class of control problems
for which the optimal control computation is equivalent to an inference problem
that can be solved by evaluation of a path integral over state trajectories. How-
ever, this potential is mostly unused in real-world problems because of two main
limitations: first, current approaches can typically only be applied to learn open-
loop controllers and second, current sampling procedures are inefficient and not
scalable to high dimensional systems. We introduce the efficient Path Integral
Relative-Entropy Policy Search (PI-REPS) algorithm for learning feedback poli-
cies with PI control. Our algorithm is inspired by information theoretic policy
updates that are often used in policy search. We use these updates to approximate
the state trajectory distribution that is known to be optimal from the PI control
theory. Our approach allows for a principled treatment of different sampling dis-
tributions and can be used to estimate many types of parametric or non-parametric
feedback controllers. We show that PI-REPS significantly outperforms current
methods and is able to solve tasks that are out of reach for current methods.

Keywords: Path Integrals, Stochastic Optimal Control, Policy Search.

1 Introduction

Stochastic Optimal Control is a powerful framework for computing optimal controllers
in noisy systems with continuous states and actions. Optimal control computation usu-
ally involves estimation of the value function (or optimal cost-to-go) which, except for
the simplest case of a linear system with quadratic rewards and Gaussian noise, is hard
to perform exactly. In all other cases, we either have to rely on approximations of the
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system dynamics, e.g. by linearizations [22] or the value function [12]1. However, such
approximations can significantly degenerate the quality of the estimated controls and
hinder the application for complex, non-linear tasks.

Path integral (PI) control theory [7,20] defines a general class of stochastic optimal
control problems for which the optimal cost-to-go (and the optimal control) is given
explicitly in terms of a path integral. Its computation only involves the path costs of
sample roll-outs or (state) trajectories, which are given by the reward along the state
trajectory plus the log-probability of the trajectory under the uncontrolled dynamics.
The optimal trajectory distribution of the system corresponds to a soft-max probability
distribution that uses the path costs in its exponent. This fact allows for using proba-
bilistic inference methods for the computation of the optimal controls, which is one of
the main reasons why PI control theory has recently gained a lot of popularity.

However, PI control theory suffers from limitations that reduce its direct application
in real-world problems. First, to compute the optimal control, one has to sample many
trajectories starting from a certain (initial) state x0. Such procedure is clearly infeasi-
ble for real stochastic environments, as the re-generation of a large number of sample
trajectories would be required for each time-step. Hence, current algorithms based on
PI control theory are so far limited to optimize state-independent controllers, such as
open-loop torque control [19] or parametrized movement primitives such as Dynamic
Movement Primitives [18,5].

Second, PI control theory requires sampling from the uncontrolled process. Such
procedure requires a huge amount of samples in order to reach areas with low path
costs. While open-loop iterative approaches [19] address this problem by importance
sampling using a mean control trajectory, they do not provide a principled treatment for
adjusting also the variance of the sampling policy. As the uncontrolled process might
have small variance, such procedure still takes a large amount of samples to converge to
the optimal policy. While some approaches that are used in practice relax these theoret-
ical conditions and also change the sampling variance heuristically [16], they disregard
the theoretical basis of PI control and are also restricted to open-loop controllers.

In this paper we introduce Path Integral Relative-Entropy Policy Search (PI-REPS),
a new policy search approach that learns to sample from the optimal state trajectory
distribution. We reuse insights from the policy search community and require that the
information loss of the trajectory distribution update is bounded [11]. Such strategy en-
sures a stable and smooth learning process. However, instead of explicitly maximizing
the expected reward as it is typically done in policy search, our aim is now to approxi-
mate the optimal state trajectory distribution obtained by PI control. This computation
involves minimizing the Kullback-Leibler (KL) divergence between the trajectory dis-
tribution obtained after the policy update and the desired distribution under additional
constraints. PI-REPS includes the probability distribution of the initial state x0 in the
KL optimization. This allows direct applicability of the method for learning state feed-
back controllers and leads to an improvement in terms of sampling efficiency.

In the next section we review current control methods based on path integral theory.
In section 3, we describe in detail PI-REPS. In section 4, we show empirically that

1 In [12], the function that is approximated is called desirability function which corresponds to
the exp-transformed value function.
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PI-REPS outperforms current PI-based and policy search methods on a double-link
swing-up as well as on a quad-link swing-up problem.

2 Path Integral Control

We now briefly review the concepts of PI control that are relevant for the present pa-
per. We consider the following stochastic dynamics of the state vector xt ∈ Rn under
controls ut ∈ Rm

dxt = f(xt)dt+G(xt)(utdt+ dξt), (1)

where ξt is m−dimensional Wiener noise with covariance Σu ∈ Rm×m and f and G
are arbitrary functions. For zero control, the system is driven uniquely by the determin-
istic drift f(xt)dt = ftdt and the local diffusion G(xt)dξt = Gtdξt. The cost-to-go is
defined as an expectation over all trajectories starting at x0 with control path u0:T−dt

J(x0,u0:T−dt) =

〈
rT (xT ) +

T−dt∑
t=0

Ct(xt,ut)dt

〉
. (2)

The terms rT (xT ) andCt(xt,ut) denote the cost at end-timeT and the immediate (run-
ning) cost respectively.Ct(xt,ut) is expressed as a sum of an arbitrary state-dependent
term rt(xt) and a quadratic control term uᵀ

tRut, i.e.,

Ct(xt,ut) = rt(xt) +
1

2
uᵀ
tRut.

Minimization of (2) leads to the Hamilton-Jacobi-Bellman (HJB) equations, which
in the general case are non-linear, second order partial differential equations. How-
ever, if the cost matrix and noise covariance are such that R = λΣu

−1 the resulting
equation is linear in the exponentially transformed cost-to-go function Ψ(x0), where
J(x0) = −λ logΨ(x0). The function Ψ(x0) is called desirability function. The solu-
tion for Ψ(x0) using the optimal controls is given by the Feynman-Kac formula as a
path integral [7]

Ψ(x0) =

∫
puc(τ |x0) exp

(
−
∑T

t=0 rt(xt)

λ

)
dτ , (3)

where puc(τ |x0) is the conditional probability of a state trajectory τ = xdt:T starting
at x0 and following the uncontrolled process.

The relation R = λΣu
−1 forces control and noise to act in the same dimensions,

but in an inverse relation. Thus, for fixed λ, the larger the noise, the cheaper the control
and vice-versa. Parameter λ can be seen as a temperature: higher values of λ result in
optimal solutions that are closer to the uncontrolled process.

Define the path value of a trajectory τ as

S(τ |x0) =

T∑
t=0

rt(xt)− λ log puc(τ |x0). (4)
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The optimal path distribution can be obtained from (3) and is given by

p∗(τ |x0) =
exp(−S(τ |x0)/λ)∫
exp(−S(τ |x0)/λ)dτ

. (5)

The optimal control is given as an expectation of the first direction of the noise dξ0
over the optimal trajectory distribution (5). This is an inference problem that can be
solved using Monte Carlo methods, e.g, by forward sampling from the uncontrolled
process, as proposed in [7]. However, as the optimal trajectory distribution depends on
the initial state x0, the sampling process has to be repeated at each state which limits
the application of PI control in practice. This restriction can be ignored as in [3], at the
cost of losing theoretical guarantees of optimality.

2.1 Iterative Path Integral Control

Sampling from uncontrolled process will often result in a poor estimate of the optimal
trajectory distribution as the uncontrolled process typically leads to areas of high state
costs, i.e., most generated trajectories will have very small probability under the optimal
trajectory distribution. Formally, the main problem is the evaluation of the integral in
the normalization of equation (5), as this integral is performed over the whole trajectory
space. To alleviate this problem, importance sampling schemes that use a (baseline)
controlled process to improve the sampling efficiency has been proposed [7]. In this
case, the path cost (4) has to be corrected for the extra drift term introduced by the
baseline control. An iterative version of this approach was formally derived in [19] and
has resulted in several applications [14,2].

There are two main problems with this approach: first, it only considers the mean
control trajectory. Since it neglects the state-dependence of the control beyond the initial
state, the result is an open-loop controller that may perform poorly when applied to a
stochastic system. Second, this approach does not provide a principled treatment for
adapting the sampling variance, and hence, might need a large amount of samples if the
variance of the uncontrolled process is low.

2.2 Policy Improvement with Path Integrals (PI2)

Inspired by the PI theory, [18] introduced the PI2 algorithm in the reinforcement learn-
ing community, which has been successfully applied to a variety of robotic systems for
tasks such as planning, gain scheduling and variable stiffness control [3,15,17].

PI2 uses parametrized policies to represent trajectories in the state space. Typically,
PI2 uses open-loop controllers such as Dynamic Movement Primitives (DMPs) [6]. PI2

identifies the parameters θt of the DMP with the control commands ut in eq. (1). Such
strategy, however, renders the constraint R = λΣu

−1 meaningless. This constraint is
also often neglected which might even lead to better performance [16]. The method is
model-free in the sense that no model needs to be learned. However, it is implicitly
assumed that all the noise of the system is generated by the exploration in the DMP
parameters, which is an unrealistic assumption. The noise ξt in PI2 is interpreted as
user controlled exploration noise that acts on θt.



486 V. Gómez et al.

2.3 Kullback Leibler Divergence Minimization

The PI class of control problems is included in a larger class of (discrete) problems, also
known as linearly solvable Markov Decision Processes (MDP) or KL-control [20,21,8]
for which the control cost can be expressed as a KL divergence between a controlled
process p(τ |x0) and puc(τ |x0).

Unlike the continuous case where the controls act as a drift on the uncontrolled pro-
cess (1), the controls in the discrete case can fully reshape the state-transition proba-
bilities p(xt+1|xt), with the only restriction of being compatible with the uncontrolled
process, i.e. p(xt+1|xt) = 0, ∀xt+1 such that puc(xt+1|xt) = 0. Policy iteration al-
gorithms for that broader class of problems also consider KL minimization have been
proposed recently in [1,12]. However, in continuous state spaces, these approaches typ-
ically rely on an iterative approximation of the desirability function. Similar to value
function approximation, the errors of such approximation can accumulate and damage
the policy update. Moreover, these methods do not provide a principled treatment for
setting the variance of the sampling policy. Another extension of the PI control theory
can be found in [13], where the path integrals are embedded in a reproducing Kernel
Hilbert Space (RKHS). While this is also a promising approach, it again relies on ap-
proximation of the desirability function Ψ(x) which we typically want to avoid.

In the area of policy search, a common approach is to bound the KL-divergence be-
tween the old and the new policy. A bound on the KL-divergence can be more efficient
as penalizing the KL for determining the policy update as we obtain a pre-specified
step-size of the policy update in the space of probability distributions. This step-size
enables to control the exploration that is performed by the policy update in a more prin-
cipled way. This insight has led to the development of several successful policy search
algorithms, such as the relative entropy policy search (REPS) algorithm [11], contex-
tual REPS [10] or a hierarchical extension of REPS [4]. Bounding the KL-divergence
between the old and the new policy is almost equivalent to penalizing it, however, it
qualifies us to let the temperature of the soft-max distribution be set by the KL-bound
instead of hand-tuning the temperature or using heuristics.

REPS divides the policy updates into two steps. It first computes a probability for
each observed state action pair by solving an optimization problem with the objective
of maximizing the expected rewards while bounding the KL-divergence between the
new and the old distributions. This probability corresponds to the desired probability
that this sample is used by the new policy. Subsequently, these probabilities are used
as weights to estimate a new parametric policy by performing a weighted maximum
likelihood update. While our approach is inspired by REPS-based algorithms, there are
significant differences: REPS is used to either directly learn in the parameter space
of low-level controllers [4,10], which is restricted to controllers with a small number
of parameters, such as DMPs [5] or it used to estimate the probability of state action
samples [11].

3 Path Integral - Relative Entropy Policy Search (PI-REPS)

PI-REPS considers problems of the PI class but uses an explicit representation of a time-
dependent stochastic policy πt(ut|xt), ∀t < T , that maps a state xt into a probability
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distribution over control actions ut. The objective of PI-REPS is to find the optimal
policy π∗ that generates the optimal distribution of state trajectories p∗(τ |x0) given by
the PI theory, Eq. (5), under some additional constraints.

For that, it alternates two steps. In the first step, the target distribution (5) is ap-
proximated from samples generated by the current policy. We can evaluate the target
distribution up to a normalization constant from the samples. At the same time, the
information loss to the old policy is bounded to avoid overly greedy policy updates
[11,4]. The result of this optimization problem is specified by a weight for each of the
seen sample trajectories.

This weight is used in the second step, where the current policy π̃t(ut|xt) is up-
dated in a way that can reproduce the desired weighted trajectory distribution. This
policy update is computed in a (weighted) maximum likelihood sense. These two steps
are iterated until convergence. We describe the details of PI-REPS in the following
subsections.

3.1 Learning the Optimal Trajectory Distribution

In the first step of PI-REPS, the current control policy is used to generate data in the
form of sample trajectories D = {x[i]

0:T }i=1...N . Based on these data, we obtain a
new trajectory distribution that minimizes the expected KL-divergence to the optimal
distribution p∗(τ |x0), i.e.,

argminp

∫
μ(x0)KL (p(τ |x0) ‖ p∗(τ |x0)) dx0. (6)

As we want to learn a trajectory distribution, we can not directly use the average reward
as optimization criterion as this is done in REPS. REPS would choose a trajectory distri-
bution that might be infeasible, while for PI-REPS we know that the target distribution
p∗(τ |x0) is optimal and, hence, feasible.

In addition to this objective, we also want to stay close to the old trajectory distribu-
tion q(τ |x0), i.e., we bound∫

μ(x0)KL (p(τ |x0) ‖ q(τ |x0)) dx0 ≤ ε. (7)

As in REPS, the parameter ε can be used as trade-off between exploration and exploita-
tion. As additional constraint, we require that p(τ |x0) defines a proper probability dis-
tribution, i.e.,

∀x0 :

∫
p(τ |x0)dτ = 1.

However, this optimization problem requires that we obtain many trajectory samples
for each initial state, which is infeasible in many situations. We want to be able to deal
with situations where only one trajectory per initial state x0 can be obtained. For this
reason, we extend our objective to optimize also over the initial state distribution, i.e.,
we optimize over the joint distribution p(τ ,x0). The resulting objective is given by
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argminp

∫
p(τ ,x0) log

p(τ ,x0)

p∗(τ ,x0)
dτdx0

=argmaxp

∫
p(τ ,x0)

(
1

λ
S(τ |x0) + logμ(x0)− log p(τ ,x0)

)
dτdx0, (8)

where p∗(τ ,x0) = p∗(τ |x0)μ(x0). However, the initial state distributionμ(x0) can not
be freely chosen as it is given by the task. Hence, we need to ensure that the marginal
distribution p(x0) =

∫
p(τ ,x0)dτ matches the given state distribution μ(x0) for all

states x0. Note that by introducing these constraints we would end up in the origi-
nal optimization problem (6), but with an infinite number of constraints. However, a
common approach to relax this condition is to only match state-feature averages of the
marginals [10,4], i.e.,∫

p(x0)φ(x0)dx0 =

∫
μ(x0)φ(x0)dx0 = φ̂0,

where φ̂0 is the mean feature vector of the samples corresponding to the initial state.
The feature vector φ(·) can be, for example, all linear and quadratic terms of the initial
state. In this case, we would match mean and covariance of both distributions. The
complete optimization problem reads2

argmaxp

∫
p(τ ,x0)

(S(τ |x0)

λ
− log p(τ ,x0)

)
dτdx0,

s.t.:
∫
p(x0)φ(x0)dx0 = φ̂0,∫
p(τ ,x0) log

p(τ ,x0)

q(τ ,x0)
dτdx0 ≤ ε,∫

p(τ ,x0)dτdx0 = 1. (9)

We solve the above optimization problem using the method of Lagrange multipli-
ers. The solution for p(τ ,x0) can be obtained in closed form (see supplement for the
derivation)

p(τ ,x0) ∝ q(τ ,x0)
η

η+1 exp

(
S(τ |x0)− φ(x0)

ᵀ
θ

η + 1

)
, (10)

where η and θ are the Lagrange multipliers corresponding to the KL-divergence and
the feature constraints respectively. Their optimal values can be found by optimizing
the corresponding dual function g(θ, η)

[θ∗, η∗] = argminθ,ηg(θ, η), s.t: η > 0, (11)

which is also given in the supplement. Note that the solution p(τ ,x0) represents a ge-
ometric average between the old distribution and the optimal distribution. The parame-
ter η, which specifies how much we want to interpolate, is chosen by the optimization.

2 Note that the log μ(x0) term can be neglected. Due to the initial state constraints, the path-cost
component which is only dependent on the initial state has no influence.
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3.2 Weighted Maximum Likelihood Policy Updates

From estimates of the probability p(τ ,x0) of the sample trajectories, we can fit a
parametrized policy π̂t(ut|xt;ωt) for each time-step t < T that can reproduce the tra-
jectory distribution p(τ ,x0). For each time-step, we want to find the policy π̂t such that
the resulting transition probabilities pπ̂(xt+1|xt) =

∫
P (xt+1|xt,ut)π̂t(ut|xt;ωt)dut

match the estimated transition distribution from p(τ ,x0), where P (xt+1|xt,ut) corre-
sponds to the model dynamics, assumed to be known. This is an inference problem with
latent variables ut. To solve it, we first compute, for each transition, the action u∗

t that is
most likely to have generated the transition. This controls u∗

t can be computed from the
given control affine system dynamics with u∗

t = (GT
t Gt)

−1GT
t (dxt − f(xt)dt)/dt

3.
Subsequently we extract a parametric policy out of the trajectory distribution p(τ ,x0)
computed from PI-REPS by minimizing

ω∗
t = argminωt

KL
(
p(τ ,x0) ‖ pπ̂(τ ,x0)

)
= argminωt

∫
p(τ ,x0) log

(
p(xt+1|xt)

pπ̂(xt+1|xt)

)
dτdx0 + const

≈ argmaxωt

∫
p(τ ,x0) log π̂t(u

∗
t |xt;ωt)dτdx0 + const

= argmaxωt

∑
i

p(τ [i],x
[i]
0 )

q(τ [i],x
[i]
0 )

log π̂t(u
∗[i]
t |x[i]

t ;ωt).

The division by q(τ [i],x
[i]
0 ) in the fourth row of the equation results from using samples

from q(τ [i],x
[i]
0 ) to approximate the integral. This minimization problem can be seen

as a weighted maximum likelihood problem with weights di, i = 1 . . .N given by

di = q(τ [i],x
[i]
0 )

−1
η+1 exp

(
S(τ [i]|x[i]

0 )− θᵀφ[i]
x0

η + 1

)
.

In the presented approach we use time-dependent Gaussian policies that are linear in
the states, i.e. π̂t(ut|xt) ∼ N (ut|kt +Ktxt,Σt). The resulting update equations for
kt, Kt and Σt are given by a weighted linear regression and the weighted sample-
covariance matrix, respectively [10]. The estimate of Σt will also contain the variance
of the control noise. As this noise is automatically added by the system dynamics, we
do not need to add this noise as exploration noise of the policy. Hence, we subtract the
control noise from the estimated variance of the policy while ensuring that Σt stays
positive (semi-)definite.

3.3 Step-Based versus Episode-Based Weight Computation

So far, we computed a single weight per trajectory and used this weight to update the
policy for all time-steps. However, we can use the simple observation that, if a tra-
jectory distribution is optimal for the time-steps t = 1 . . . T , it also has to be optimal

3 If the controls ut and the noise εt can be observed, u∗
t can be computed by u∗

t = ut + εt.
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for all time segments that also end in T but start at t′ > 1. Hence we can perform the
optimization for each time-step separately and use the obtained weights to fit the policy
for the corresponding time step. We path value to come St(τ

′|xt) =
∑T

h=t rh(xh) +
λ log puc(τ

′|xt), where τ ′ = τ t+dt:T in the exponent of the optimal trajectory distribu-
tion. For the initial feature constraints, we use the observed average state features from
the old policy at this time step. Such an approach has the advantage that it can consider-
ably reduce the variance of the weights computed for later time steps, and, hence, render
PI-REPS more sample efficient. However, as the optimization has now to be done for
each time step, the step-based variant is also computationally more demanding.

3.4 Relation to Existing Approaches

To point out the contributions of this paper, we summarize the novel aspects of PI-
REPS with respect to the previously mentioned approaches. In comparison to the REPS
algorithm, we use our algorithm to generate a weighting of trajectories, not state-action
pairs. As we learn trajectory distributions, we can not freely choose the desired tra-
jectory distribution as certain distributions might not be feasible. In PI-REPS we cir-
cumvent this problem by minimizing the Kullback-Leibler divergence to the optimal
trajectory distribution instead of maximizing the reward. Due to the optimization over
trajectory distributions, the weighted maximum likelihood update is different as we
need to obtain u∗

t from the system dynamics instead of using the executed action ut.
The constrained optimization problem also leads to a very different solution: while

PI-REPS interpolates between the old (initial) and the optimal trajectory distribution
(eq. 13), REPS is always affected by the influence of the initial distribution. PI-REPS
also considers the initial state in the optimization. Although a similar constraint has
been used in REPS for contextual policy search [10], our use is novel since it allows a
time step version of the algorithm that, as we show in section 3.3, improves significantly
the sample efficiency.

4 Experiments

We evaluated PI-REPS on two simulated benchmark tasks, a double-link swing-up and
a quad-link swing-up task. We compared it against variants of previous approaches
such as iterative PI control (open loop) [14] and a closed loop extension by fitting a
policy with weighted maximum likelihood as performed by our approach. Moreover, we
compare the episode-based and the step-based version of PI-REPS and also present the
first experiments for model-based reinforcement learning, where in addition to learning
a controller, we also learn the forward model of the robot. Finally, we evaluated the
influence of the control noise, the KL-bound ε as well as the influence of the initial
policy and the number of samples used for the policy update. Our experiments show
that PI-REPS is a promising approach for stochastic optimal control and model-based
reinforcement learning that can find high-quality policies for tasks that are beyond the
reach of current methods.
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Fig. 1. (a) Comparison of iterative PI with open loop control with our extension of learning
closed-loop controller by weighted maximum likelihood, PI-REPS without the feature constraints
and the step-based PI-REPS algorithm. PI-REPS outperforms all other methods. (b) Comparison
of the step-based variant of PI-REPS with the episode-based variant.

4.1 Double Link Swing-Up

In this task, we used a two link pendulum that needs to swing-up from the bottom
position and balance at the top position. Each link had a length of 1m and a weight
of 1kg. The torque of each motor was limited to |ui| < 10Nm. We used a viscous
friction model to damp the joint velocities. One episode was composed of 70 time steps
with dt = 66ms. The state rewards were rt(q, q̇) = −104qTq, which punishes the
squared distance of the joint angles to the upright position. The reward was given for
the last 20 time steps only. The default standard deviation of the control noise was set
to Σu = 0.5/dtI. We used the double link swing-up task for exhaustive parameter
evaluation and comparison for being a challenging task but still feasible for running a
large number of experiments.

Comparison of different path integral algorithms. We compared our method to different
versions of current PI algorithms. We used the step-based variants of all algorithms in
this comparison. The episode variants basically show the same results with a slower
convergence rate. In the first approach, we applied the iterative path integral method
with open loop control to our problem with control noise, as described in section 2.1.
Here we simply used a constant action for each time step. In order to estimate this
action from samples we used the weighting di = exp(S(τ [i]|x[i]

0 )/λ) for each sample.
As in the original PI2 approach [18], we scaled the λ parameter by the range of the path
integral values S(τ [i]|x[i]

0 ), i.e. λ = λPI2/(maxi S(τ
[i]|x[i]

0 ) − mini S(τ
[i]|x[i]

0 )). The
value for λPI2 was empirically optimized. Subsequently, we extended this approach to
use the time-dependent linear feedback policy and maximum likelihood updates for the
policy as introduced by our approach. Note that this approach is also equivalent to the
state of the art policy search approach PoWER [9]. However, in contrast to our method,
PoWER as well as PI2 do not use a principled approach to set the temperature of the
soft-max distribution. Moreover, they do not account for the state-dependent part of the
path integral as it is done by the use of our baseline. We also evaluated the effect of the
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Fig. 2. Illustration of the estimated swing-up movement with the double link. (a) time steps
1 to 25. (b) time steps 36 to 70. Lighter colors indicate an earlier time step.

baseline by using PI-REPS without state features. In each iteration of the algorithm, we
sampled 800 new trajectories. Although this number of trajectories is too large for a real
robot application, PI-REPS is model-based and therefore we can first learn a model of
the robot using the real robot interactions and, subsequently, use the model to generate
an arbitrary number of trajectories. The results of such a model-based reinforcement
learning approach are presented at the end of this subsection.

Fig. 1(a) shows a global comparison of the methods. As expected, it can be seen
that the open-loop control policy, as used in our version of PI2, can not deal with the
stochastic setup. If we extend PI2 to learn a linear feedback controller, we can learn
successfully the task, but convergence is very slow. As a next step, we introduce the
information theoretic policy update to obtain a more principled treatment of the temper-
ature parameter, but we still disable the features used for the baseline in our approach.
This method is denoted as No Features in Fig. 1(a). While the convergence rate is now
significantly improved, ignoring the initial state-distribution constraint results in a bias
of the resulting solution and the resulting policy can not reach the quality of the pro-
posed approach with a state-dependent base line. We also compared our approach to
state of the art optimal control methods that are based on linearization of the system
dynamics, such as the AICO approach [22], but we were not able to find good policies
due to the high non-linearities in the task. Clearly, we can see that PI-REPS with a
state-dependent base line produces policies of the highest quality. An illustration of the
learned movement can be seen in Fig. 2.

Step-based versus Episode-based Weighting Computation. We now compare the step-
based and the episode-based versions of PI-REPS. From Fig. 1(b), we observe that the
step-based version is clearly more sample-efficient, as it reduces the variance of the
estimates of the weights for later time steps. However, it is also computationally more
demanding, since we need to compute the weights for every time step. The episode-
based version with 2000 samples reaches the performance of the step-based version
with 400 samples. Hence, if generating samples from the model is cheap, the episode-
based version can also be used efficiently.
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Fig. 3. Exploration in PI-REPS. (a) The value of ε determines the convergence and the quality of
the obtained policy. For large ε, changes in the policy are large, resulting in faster convergence, but
too little exploration. For too small ε, convergence is slow. (b) Evaluation of the initial exploration
rate. If we just use the variance of the uncontrolled process for exploration from the beginning,
we get very slow convergence. However, PI-REPS allows for using different sampling policies
which are updated by policy search.

Exploration in PI-REPS. Exploration is determined by two parameters: the exploration
rate Σ0 of the initial policy and the KL-bound ε. For large values of ε, PI-REPS con-
verges quickly to the target distribution and stops exploring too soon. In contrast, too
small values of ε result in too conservative policy updates. This behavior can be seen in
Fig. 3(a). We identified an optimal value of ε = 0.9 and used it in all other experiments.

A second factor that determines exploration isΣ0. If we would fully rely on the noise
of the uncontrolled process for exploration, the policy search procedure would take a
long time. Therefore, we start with a highly stochastic policy and slowly move to the
target distribution by the information theoretic policy updates. From Fig. 3(b), we can
clearly see that only using the noise of the system is very inefficient, but higher values
of the initial variance lead to a compelling performance.

Influence of the Control Noise. In this experiment we evaluated our approach with
respect to the control noise Σu of the system. Note that, by changing the control noise,
we also inherently change the reward function in the path integral framework. Fig. 4 (a)
shows the performance for different control noise values. As we can see, good policies
can be found for all noise levels, while the costs are decreased with higher noise levels
due to the smaller control costs.

Model-Based Reinforcement Learning. While the focus on this paper is to derive an
efficient stochastic optimal control method that is based on path integral, we can also
directly apply our method to model-based reinforcement learning if we combine the
PI-REPS policy updates with a probabilistic model learning technique. In this case, the
trajectories generated by the real robot are only used to update the model. From the
model, a large number of virtual samples are generated to perform the policy updates.
As a proof of concept, we used a simple time-dependent linear model with Gaussian
noise, i.e., Pt(xt+1|xt,ut) = N (xt+1|Atxt +Btut + at,Σt).
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Fig. 4. (a) Evaluation for different values of the control noise. PI-REPS could learn high-quality
policies even in the existence of a large amount of noise. The difference in the obtained reward is
because the reward depends on the noise variance. (b) Experiment with model-based reinforce-
ment learning. We learned time-varying linear models at each time step. A good swing-up policy
could be learned already after 300 episodes.

We estimated such a model for each time step by performing maximum likelihood
on the transition samples at each time step. As the model is time-varying, it can also
capture non-linear dynamics. We started the algorithm with 25 initial trajectories and
subsequently collected 5 trajectories in each iteration. From the learned models, we
generated 1000 trajectories for the policy updates. Fig. 4(b) shows these results. We ob-
serve that a high-quality policy can be learned after 300 episodes, which is remarkable
if compared to state of the art policy search approaches [4,18]. Yet, the performance of
the final policy is affected by the simplicity of the learned model in comparison to the
policy found on the real model of the robot.

4.2 Quad-Link Swing-Up
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Fig. 5. Learning curve for the quad-link. An in-
creasing number of samples always increases the
performance.

To conclude this experiment section, we
used a quad-link pendulum swing-up
task. We used the same physical proper-
ties, i.e., link length of 1m and a mass
of 1kg, the same reward function as
well as the same number of time steps
as in the double link experiment. Given
the increased complexity and weight of
the whole robot, we increased the maxi-
mum torques to 20Nm. We evaluated the
episode-based version of our algorithm
with a different number of samples.

The results can be seen in Figure 5. We observe that, due to the increased dimension-
ality of the problem, more samples are needed to solve the task. However, in contrast to
competing methods, PI-REPS is still able to learn high quality policies for this complex
task. An illustration of the swing-up movement can be seen in Fig. 6.
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Fig. 6. Illustration of the estimated swing-up movement with the quad link. (a) time steps 1 to 35.
(b) time steps 36 to 70. Lighter colors indicate an earlier time step.

5 Conclusions

In this paper we presented PI-REPS, the first approach for PI control that can be used
to learn state-feedback policies in an efficient manner. PI-REPS has several benefits to
previous PI methods. It allows for a principled treatment of the adaptation of the sam-
pling policy by the information theoretic policy updates. This type of update specifies
the temperature of the soft-max distribution. In previous approaches, this temperature
had to be chosen heuristically, resulting, as our experiments show, in a poor quality of
the estimated policy.

The PI-REPS policy update is based on a weighted maximum likelihood estimate.
This is a general approach, not limited to the time varying linear policies that we con-
sidered in this paper. Using more complex models such as mixture models, Gaussian
processes or neural networks seems to be a promising research direction. We will also
investigate the use of more sophisticated model-learning techniques to improve the
sample-efficiency in terms of real robot interactions.
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11. Peters, J., Mülling, K., Altün, Y.: Relative entropy policy search. In: Proceedings of the 24th
AAAI Conference on Artificial Intelligence, pp. 1607–1612 (2010)

12. Rawlik, K., Toussaint, M., Vijayakumar, S.: On stochastic optimal control and reinforcement
learning by approximate inference. In: International Conference on Robotics Science and
Systems (2012)

13. Rawlik, K., Toussaint, M., Vijayakumar, S.: Path integral control by reproducing kernel
Hilbert space embedding. In: Proceedings of the Twenty-Third International Joint Confer-
ence on Artificial Intelligence, pp. 1628–1634. AAAI Press (2013)

14. Rombokas, E., Theodorou, E., Malhotra, M., Todorov, E., Matsuoka, Y.: Tendon-driven con-
trol of biomechanical and robotic systems: A path integral reinforcement learning approach.
In: International Conference on Robotics and Automation, pp. 208–214 (2012)

15. Stulp, F., Schaal, S.: Hierarchical reinforcement learning with movement primitives. In: 11th
IEEE-RAS International Conference on Humanoid Robots, pp. 231–238 (2011)

16. Stulp, F., Sigaud, O.: Path Integral Policy Improvement with Covariance Matrix Adaptation.
In: International Conference Machine Learning (2012)

17. Stulp, F., Theodorou, E., Buchli, J., Schaal, S.: Learning to grasp under uncertainty. In: In-
ternational Conference on Robotics and Automation, pp. 5703–5708. IEEE (2011)

18. Theodorou, E., Buchli, J., Schaal, S.: A generalized path integral control approach to rein-
forcement learning. Journal of Machine Learning Research 11, 3137–3181 (2010)

19. Theodorou, E., Todorov, E.: Relative entropy and free energy dualities: connections to path
integral and KL control. In: IEEE 51st Annual Conference on Decision and Control, pp.
1466–1473 (2012)

20. Todorov, E.: Linearly-solvable Markov decision problems. In: Advances in Neural Informa-
tion Processing Systems 19, pp. 1369–1376. MIT Press, Cambridge (2006)

21. Todorov, E.: Policy gradients in linearly-solvable MDPs. In: Advances in Neural Information
Processing Systems, pp. 2298–2306 (2010)

22. Toussaint, M.: Robot Trajectory Optimization using Approximate Inference. In: Proceedings
of the 26th International Conference on Machine Learning (2009)



Policy Search for Path Integral Control 497

Appendix: Dual Function for PI-REPS

We derive the dual function. For notation simplicity, we use pτx0 for p(τ ,x0), φx0 for
φ(x0), qτx0 for q(τ ,x0) and Sτ for S(τ ,x0). The Lagrangian is

L =

∫
τ ,x0

pτx0

(
Sτ − log pτx0 − λ− φᵀ

x0
θ − η log

pτx0

qτx0

)
dτdx0 + λ+ φ̂ᵀ

0θ + ηε

=

∫
τ ,x0

pτx0

(
Sτ − (η + 1) log pτx0 + η log qτx0 − λ− φᵀ

x0
θ
)
dτdx0

+ λ+ φ̂ᵀ
0θ + ηε , (12)

where θ, η and λ appear due to the constraints of the features, the KL-bound and the
normalization, respectively. Taking derivative and solving for pτx0 gives

∂L
∂pτx0

= Sτ − (η + 1) (log pτx0 + 1)− λ− φᵀ
x0
θ + η log qτx0 = 0

log pτx0 =
η log qτx0

η + 1
+
Sτ − φᵀ

x0
θ

η + 1
+
−λ− (η + 1)

η + 1

pτx0 = Z−1qτx0

η
η+1 exp

(
Sτ − φᵀ

x0
θ

η + 1

)
, Z = exp

(
λ+ (η + 1)

η + 1

)
. (13)

From the normalization constraint

exp

(
λ+ (η + 1)

η + 1

)
=

∫
τ ,x0

qτx0

η
η+1 exp

(
Sτ − φᵀ

x0
θ

η + 1

)
dτdx0. (14)

Plugging (13) into (12) and simplifying we arrive to the following dual function

g(θ, η) = (η + 1) + λ+ φ̂ᵀ
0θ + ηε. (15)

Reinserting (14) in (15)

g(θ, η) = (η + 1) + λ+ φ̂ᵀ
0θ + ηε = (η + 1)

[
(η + 1) + λ

η + 1

]
+ φ̂ᵀ

0θ + ηε

= (η + 1) log

(∫
τ ,x0

qτx0

η
η+1 exp

(
Sτ − φᵀ

x0
θ

η + 1

)
dτdx0

)
+ φ̂ᵀ

0θ + ηε.

Replacing the integral by a sum over sample trajectories generated by q yields

g(θ, η) = (η + 1) log

(
1

N

∑
i

q[i]τx0

−1
η+1 exp

(
S
[i]
τ − θᵀφ[i]

x0

η + 1

))
+ φ̂ᵀ

0θ + ηε.

The dual function can be evaluated from the state trajectory samples. The distribution
q
[i]
τx0 can be computed using the current policy and the model, i.e. 4,

q[i]τx0
= μ(x0)

T−1∏
t=0

∫
ut

Pt(xt+1|xt,ut)πt(ut|xt)dut. (16)

4 In the case of Gaussian policies such as we consider here, the integral in (16) can be computed
analytically.
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Abstract. Topic modeling refers to the task of discovering the under-
lying thematic structure in a text corpus, where the output is commonly
presented as a report of the top terms appearing in each topic. Despite
the diversity of topic modeling algorithms that have been proposed, a
common challenge in successfully applying these techniques is the selec-
tion of an appropriate number of topics for a given corpus. Choosing
too few topics will produce results that are overly broad, while choosing
too many will result in the“over-clustering” of a corpus into many small,
highly-similar topics. In this paper, we propose a term-centric stability
analysis strategy to address this issue, the idea being that a model with
an appropriate number of topics will be more robust to perturbations in
the data. Using a topic modeling approach based on matrix factorization,
evaluations performed on a range of corpora show that this strategy can
successfully guide the model selection process.

1 Introduction

From a general text mining perspective, a topic in a text corpus can be viewed
as either a probability distribution over the terms present in the corpus or a
cluster that defines weights for those terms [26]. Considerable research on topic
modeling has focused on the use of probabilistic methods such as variants of La-
tent Dirichlet Allocation (LDA) [5] and Probabilistic Latent Semantic Analysis
(PLSA) [11]. Non-probabilistic algorithms, such as Non-negative Matrix Factor-
ization (NMF) [20], have also been applied to this task [26,1]. Regardless of the
choice of algorithm, a key consideration in successfully applying topic modeling
is the selection of an appropriate number of topics k for the corpus under consid-
eration. Choosing a value of k that is too low will generate topics that are overly
broad, while choosing a value that is too high will result in “over-clustering” of
the data. For some corpora, coherent topics will exist at several different resolu-
tions, from coarse to fine-grained, reflected by multiple appropriate k values.

When a clustering result is generated using an algorithm that contains a
stochastic element or requires the selection of one or more key parameter values,
it is important to consider whether the solution represents a “definitive” solution
that may easily be replicated. Cluster validation techniques based on this con-
cept have been shown to be effective in helping to choose a suitable number of
clusters in data [17,21]. The stability of a clustering model refers to its ability to
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consistently replicate similar solutions on data originating from the same source.
In practice, this involves repeatedly clustering using different initial conditions
and/or applying the algorithm to different samples of the complete data set. A
high level of agreement between the resulting clusterings indicates high stabil-
ity, in turn suggesting that the current model is appropriate for the data. In
contrast, a low level of agreement indicates that the model is a poor fit for the
data. Stability analysis has most frequently been applied in bioinformatics [7,4],
where the focus has been on model selection for classical clustering approaches,
such as k-means [17,3] and agglomerative hierarchical clustering [21,4].

In the literature, the output of topic modeling procedures is often presented in
the form of lists of top-ranked terms suitable for human interpretation. Motivated
by this, we propose a term-centric stability approach for selecting the number
of topics in a corpus, based on the agreement between term rankings generated
over multiple runs of the same algorithm. We employ a “top-weighted” ranking
measure, where higher-ranked terms have a greater degree of influence when
calculating agreement scores. To ensure that a given model is robust against
perturbations, we use both sampling of documents from a corpora and random
matrix initialization to produce diverse collections of topics on which stability
is calculated. Unlike previous applications of the concept of stability in NMF
[7] or LDA [25,8], our approach is generic in the sense that it does not rely on
directly comparing probability distributions or topic-term matrices. So although
we highlight the use of this method in conjunction with NMF, it could be applied
in conjunction with other topic modeling and document clustering techniques.

This paper is organized as follows. Section 2 provides a brief overview of
existing work in the areas of matrix factorization, stability analysis, and rank
agreement. In Section 3 we discuss the problem of measuring the similarity be-
tween sets of term rankings, and describe a solution that can be used to quantify
topic stability. Using a topic modeling approach based on matrix factorization,
in Section 4 we present an empirical evaluation of the proposed solution on a
range of text corpora. The paper finishes with some conclusions and suggestions
for future work in Section 5.

2 Related Work

2.1 Matrix Factorization

While work on topic models has largely focused on the use of LDA [5,25], Non-
negative Matrix Factorization (NMF) can also be applied to textual data to
reveal topical structures [26]. NMF seeks to decompose a data matrix into fac-
tors that are constrained so that they will not contain negative values. Given
a document-term matrix A ∈ IRm×n representing m unique terms present in a
corpus of n documents, NMF generates a reduced rank-k approximation in the
form of the product of two non-negative factors A ≈WH, where the objective
is to minimize the reconstruction error between A and the low-dimensional ap-
proximation. The columns or basis vectors of W ∈ IRm×k can be interpreted as
topics, defined with non-negative weights relative to the m terms. The entries
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in the matrix H ∈ IRk×n provide document memberships with respect to the k
topics. Note that, unlike LDA which operates on raw frequency counts, NMF
can be applied to a non-negative matrix A that has been previously normalized
using common pre-processing procedures such as TF-IDF term weighting and
document length normalization. As with LDA, document-topic assignments are
not discrete, allowing a single document to be associated with multiple topics.

For NMF, the key model selection challenge is the selection of the user-defined
parameter k. Although no definitive approach for choosing k has been identified,
a number of heuristics exist in the literature. A simple technique is to calculate
the Residual Sum of Squares (RSS) between the approximation given by a pair
of NMF factors and the original matrix [12], which indicates the degree of vari-
ation in the dependent variables the NMF model did not explain. The authors
suggest that, by examining the RSS curve for a range of candidate values of k, an
inflection point might be identified to provide a robust estimate of the optimal
reduced rank.

2.2 Stability Analysis

A range of methods based on the concept of stability analysis have been proposed
for the task of model selection. The stability of a clustering algorithm refers to
its ability to consistently produce similar solutions on data originating from the
same source [17,3]. Since only a single set of data items will be generally available
in unsupervised learning tasks, clusterings are generated on perturbations of
the original data. The primary application of stability analysis has been as a
robust approach for selecting key algorithm parameters [18], specifically when
estimating the optimal number of clusters for a given data set. These methods
are motivated by the observation that, if the number of clusters in a model is too
large, repeated clusterings will lead to arbitrary partitions of the data, resulting
in unstable solutions. On the other hand, if the number of clusters is too small,
the clustering algorithm will be constrained to merge subsets of objects which
should remain separated, also leading to unstable solutions. In contrast, repeated
clusterings generated using some optimal number of clusters will generally be
consistent, even when the data is perturbed or distorted.

The most common approach to stability analysis involves perturbing the data
by randomly sampling the original objects to produce a collection of subsamples
for clustering using values of k from a pre-defined range [21]. The stability of the
clustering model for each candidate value of k is evaluated using an agreement
measure evaluated on all pairs of clusterings generated on different subsamples.
One or more values of k are then recommended, selected based on the highest
mean agreement scores.

Brunet et al. proposed an initial stability-based approach for NMF model
selection based on discretized cluster assignments of items (rather than features)
across multiple runs of the same algorithm using different random initializations
[7]. Specifically, for each NMF run applied to the same data set of n items, a n×n
connectivity matrix is constructed, where an entry (i, j) = 1 if items i and j are
assigned to the same discrete cluster, and (i, j) = 0 otherwise. By repeating this
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process over τ runs, a consensus matrix can be calculated as the average of all τ
connectivity matrices. Each entry in this matrix indicates the fraction of times
two items were clustered together. To measure the stability of a particular value
of k, a cophenetic correlation coefficient is calculated on a hierarchical clustering
of the connectivity matrix. The authors suggest a heuristic for selecting one or
more values of k, based on a sudden drop in the correlation score as k increases.

In their work on LDA, Steyvers and Griffiths noted the importance of identi-
fying those topics that will appear repeatedly across multiple samples of related
data [25], which closely resembles the more general concept of stability analysis
[21]. The authors suggested comparing two runs of LDA by examining a topic-
topic matrix constructed from the symmetric Kullback Liebler (KL) distance
between topic distributions from the two runs. Alternative work on measuring
the stability of LDA topic models was described in [8]. The authors proposed
a document-centric approach, where topics from two different LDA runs are
matched together based on correlations between rows of the two corresponding
document-topic matrices. The output was represented as a document-document
correlation matrix, where block diagonal structured induced by the correlation
values are indicative of higher stability. In this respect, the approach is similar
to the Brunet et al. approach for NMF.

Other evaluation measures used for LDA have included those based on the se-
mantic coherence of the top terms derived from a single set of topics, with respect
to term co-occurrence within the same corpus or an external background corpus.
For example, Newman et al. calculated correlations between human judgements
and a set of proposed measures, and found that a Pointwise Mutual Information
(PMI) measure achieved best or near-best out of all those considered [23]. How-
ever, such measures have not focused on model selection and do not consider the
robustness of topics over multiple runs of an algorithm.

2.3 Ranking Comparison

A variety of well-known simple metrics exist for measuring the distance or simi-
larity between pairs of ranked lists of the same set of items, notably Spearman’s
footrule distance and Kendall’s tau function [14]. However, Webber et al. [27]
note that many problems will involve comparing indefinite rankings, where items
appear in one list but not in another list, but standard metrics do not consider
such cases. For other applications, it will be desirable to employ a top-weighted
ranking agreement measure, such that changing the rank of a highly-relevant
item at the top of a list results in a higher penalty than changing the rank of
an irrelevant item appearing at the tail of a list. This consideration is important
in the case of comparing query results from different search engines, though, as
we demonstrate later, it is also a key consideration when comparing rankings of
terms arising in topic modeling.

Motivated by basic set overlap, Fagin et al. [9] proposed a top-weighted dis-
tance metric between indefinite rankings, also referred to as Average Overlap
(AO) [27], which calculates the mean intersection size between every pair of
subsets of d top-ranked items in two lists, for d = [1, t]. This naturally accords



502 D. Greene, D. O’Callaghan, and P. Cunningham

a higher positional weight to items at the top of the lists. More recently, Ku-
mar and Vassilvitskii proposed a generic framework for measuring the distance
between a pair of rankings [16], supporting both positional weights and item
relevance weights. Based on this framework, generalized versions of Kendall’s
tau and Spearman’s footrule metric were derived. However, the authors did not
focus on the case of indefinite rankings.

3 Methods

In this section we describe a general stability-based method for selecting the num-
ber of topics for topic modeling. Unlike previous unsupervised stability analysis
methods, we focus on the use of features or terms to evaluate the suitability of a
model. This is motivated by the term-centric approach generally taken in topic
modeling, where precedence is generally given to the term-topic output and top-
ics are summarized using a truncated set of top terms. Also, unlike the approach
proposed in [7] for genetic data, our method does not assume that topic clusters
are entirely disjoint and does not require the calculation of a dense connectivity
matrix or the application of a subsequent clustering algorithm.

Firstly, in Section 3.1 we describe a similarity metric for comparing two ranked
lists of terms. Using this measure, in Section 3.2 we propose a measure of the
agreement between two topic models when represented as ranked term lists.
Subsequently, in Section 3.3 we propose a stability analysis method for selecting
the number of topics in a text corpus.

3.1 Term Ranking Similarity

A general way to represent the output of a topic modeling algorithm is in the
form of a ranking set containing k ranked lists, denoted S = {R1, . . . , Rk}. The
i-th topic produced by the algorithm is represented by the list Ri, containing
the top t terms which are most characteristic of that topic according to some
criterion. In the case of NMF, this will correspond to the highest ranked values
in each column of the k basis vectors, while for LDA this will consist of the
terms with the highest probabilities in the term distribution for each topic. For
partitional or hierarchical document clustering algorithms, this might consist of
the highest ranked terms in each cluster centroid.

A variety of symmetric measures could be used to assess the similarity between
a pair of ranked lists (Ri, Rj). A näıve approach would be to employ a simple set
overlap method, such as the Jaccard index [13]. However, such measures do not
take into account positional information. Terms occurring at the top of a ranked
list generated by an algorithm such as NMF will naturally be more relevant to a
topic than those occurring at the tail of the list, which correspond to zero or near-
zero values in the original basis vectors. Also, in practice, rather than considering
all m terms in a corpus, the results of topic modeling are presented using the top
t << m terms. Similarly, when measuring the similarity between ranked lists,
it may be preferable to consider truncated lists with only t terms, for economy
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Table 1. Example of Average Jaccard (AJ) term ranking similarity, for two ranked
lists of terms up to depth d = 5. The value Jacd indicates the Jaccard score at depth
d only, while AJ indicates the current AJ similarity at that depth.

d R1,d R2,d Jacd AJ

1 album sport 0.000 0.000
2 album, music sport, best 0.000 0.000
3 album, music, best sport, best, win 0.200 0.067
4 album, music, best, award sport, best, win, medal 0.143 0.086
5 album, music, best, award, win sport, best, win, medal, award 0.429 0.154

of representation and to reduce the computational cost of applying multiple
similarity operations. However, this will often lead to indefinite rankings, where
different subsets of terms are being compared.

Therefore, following the ranking distance measure proposed by Fagin et al. [9],
we propose the use of a top-weighted version of the Jaccard index, suitable for
calculating the similarity between pairs of indefinite rankings. Specifically, we
define the Average Jaccard (AJ) measure as follows. We calculate the average of
the Jaccard scores between every pair of subsets of d top-ranked terms in two
lists, for depth d ∈ [1, t]. That is:

AJ(Ri, Rj) =
1

t

t∑
d=1

γd(Ri, Rj) (1)

where

γd(Ri, Rj) =
|Ri,d ∩Rj,d|
|Ri,d ∪Rj,d|

(2)

such that Ri,d is the head of list Ri up to depth d. This is a symmetric measure
producing values in the range [0, 1], where the terms through a ranked list are
weighted according to a decreasing linear scale. To demonstrate this, a simple
illustrative example is shown in Table 1. Note that, although the Jaccard score
at depth d = 5 is comparatively high (0.429), the mean score is much lower
(0.154), as the similarity between terms occurs towards the tails of the lists –
these terms carry less weight than those at the head of the lists, such as “album”
and “sport”.

3.2 Topic Model Agreement

We now consider the problem of measuring the agreement between two different
k-way topic models, represented as two ranking sets Sx = {Rx1, . . . , Rxk} and
Sy = {Ry1, . . . , Ryk}, both containing k ranked lists. We construct a k × k
similarity matrix M, such that the entry Mij indicates the agreement between
Rxi and Ryj (i.e. the i-th topic in the first model and the j-th topic in the second
model), as calculated using the Average Jaccard score (Eqn. 1). We then find
the best match between the rows and columns of M (i.e. the ranked lists in Sx
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0.00 0.07 0.50

0.50 0.00 0.07

0.00 0.61 0.00

R11

R12

R13

R21 R22 R23Ranking set S1:
R11 = {sport, win, award}
R12 = {bank, finance, money}
R13 = {music, album, band}

Ranking set S2:
R21 = {finance, bank, economy}
R22 = {music, band, award}
R23 = {win, sport, money} agree(S1,S2) =

0.50 + 0.50 + 0.61

3
= 0.54

π = (R11, R23), (R12, R21), (R13, R22)

Fig. 1. A simple example of measuring the agreement between two different topic
models, each containing k = 3 topics, represented by a pair of ranking sets. Term
ranking similarity values are calculated using Average Jaccard, up to depth d = 3.

and Sy). The optimal permutation π may be found in O(k3) time by solving the
minimal weight bipartite matching problem using the Hungarian method [15].
From this, we can produce an agreement score:

agree(Sx,Sy) =
1

k

k∑
i=1

AJ(Rxi, π(Rxi)) (3)

where π(Rxi) denotes the ranked list in Sy matched to Rxi by the permuta-
tion π. Values for the above take the range [0, 1], where a comparison between
two identical k-way topic models will result in a score of 1. A simple example
illustrating the agreement process is shown in Fig. 1.

3.3 Selecting the Number of Topics

Building on the agreement measure defined in Section 3.2, we now propose a
model selection approach for topic modeling. For each value of k in a broad pre-
defined range [kmin, kmax], we proceed as follows. We firstly generate an initial
topic model on the complete data set using an appropriate algorithm (ideally this
should be deterministic in nature), which provides a reference point for analyzing
the stability afforded by using k topics. We represent this as a reference ranking
set S0, where each topic is represented by the ranked list of its top t terms.
Subsequently, τ samples of the data set are constructed by randomly selecting
a subset of β × n documents without replacement, where 0 ≤ β ≤ 1 denotes the
sampling ratio controlling the number of documents in each sample. We then
generate τ k-way topic models by applying the topic modeling algorithm to each
of the samples, resulting in alternative ranking sets {S1, . . . ,Sτ}, where all topics
are also represented using t top terms. To measure the overall stability at k, we
calculate the mean agreement between the reference ranking set and all other
ranking sets using Eqn. 3:

stability(k) =
1

τ

τ∑
i=1

agree(S0,Si) (4)
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1. Randomly generate τ samples of the data set, each containing β×n documents.
2. For each value of k ∈ [kmin, kmax] :

1. Apply the topic modeling algorithm to the complete data set of n documents
to generate k topics, and represent the output as the reference ranking set
S0.

2. For each sample Xi:
(a) Apply the topic modeling algorithm to Xi to generate k topics, and

represent the output as the ranking set Si.
(b) Calculate the agreement score agree(S0,Si).

3. Compute the mean agreement score for k over all τ samples (Eqn. 4).
3. Select one or more values for k based upon the highest mean agreement scores.

Fig. 2. Summary of the proposed stability analysis method for topic models

This process is repeated for each candidate k ∈ [kmin, kmax]. A summary of the
entire process is given in Fig. 2. Note that the proposed approach is similar to
the strategy for item stability analysis proposed in [21], in that a single reference
point is used for each value of k, involving τ comparisons between solutions. This
contrasts with the approach used by other authors in the literature (e.g. [18])

which involves comparing all unique pairs of results, requiring τ×(τ−1)
2 agreement

comparisons.
By examining a plot of the stability scores produced with Eqn. 4, a final

value k may be identified based on peaks in the plot. The presence of more than
one peak indicates that multiple appropriate topic schemes exist for the corpus
under consideration, which is analogous to the existence of multiple alternative
solutions in many general cluster analysis problems [2]. An example of this case is
shown in Fig. 3(a) for the guardian-2013 corpus. This data set has six annotated
category labels, but we also see a peak at k = 3 in the stability plots, suggesting
that thematic structure exists at a more coarse level too. On the other hand, a
flat curve with no peaks, combined with low stability values, strongly suggests
that no coherent topics exist in the data set. This is analogous to the general
problem of identifying “clustering tendency” [21]. The example in Fig. 3(b) shows
plots generated for a synthetic data set of 500 randomly generated documents.
As one might expect, no strong peak appears in the stability plots.

4 Evaluation

4.1 Data

We now evaluate the stability analysis method proposed in Section 3 to assess
its usefulness in guiding the selection of the number of topics for NMF. The
evaluation is performed on a number of text corpora, each of which has anno-
tated “ground truth” document labels, such that each document is assigned a
single label. When pre-processing the data, terms occurring in < 20 documents
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Fig. 3. Stability analysis plots generated using t = 10/20/50/100 top terms for (a)
the guardian-2013 corpus of news articles, (b) a synthetic dataset of 500 documents
generated randomly from 1,500 terms

were removed, along with English language stop words, but no stemming was
performed. Standard log TF-IDF and L2 document length normalization pro-
cedures were then applied to the term-document matrix. Descriptions of the
corpora are provided in Table 2, and pre-processed versions are made available
online for further research1.

4.2 Experimental Setup

In our experiments we compare the proposed stability analysis method with
a popular existing approach for selecting the reduced rank for NMF based on
the cophenetic correlation of a consensus matrix [7]. The experimental process
involved applying both schemes to each corpus across a reasonable range of
values for k, and comparing plots of their output. Here we use k ∈ [2, 12], based
on the fact that the numbers of ground truth labels in the corpora listed in
Table 2 are within this range.

To provide a fair comparison, both schemes use information coming from
the same collection of matrix factorizations. These were generated using the
fast alternating least squares variant of NMF introduced by [22], with random
initialization to samples of the data. In all cases we allowed the factorization
process to run for a maximum of 50 iterations. We use a sampling ratio of β = 0.8
(i.e. 80% of documents are randomly chosen for each run), with a total of τ = 100
runs to minimize any variance introduced by sampling. For our stability analysis
method, we also generate reference ranking sets for each candidate value of k by
applying NMF to the complete data set with Nonnegative Double Singular Value
Decomposition (NNDSVD) initialization to ensure a deterministic solution [6].

1 http://mlg.ucd.ie/howmanytopics/

http://mlg.ucd.ie/howmanytopics/
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Table 2. Details of the corpora used in our experiments, including the total number
of documents n, terms m, and number of labels k̂ in the associated “ground truth”

Corpus n m k̂ Description

bbc 2,225 3,121 5 General news articles from the BBC [10].
bbc-sport 737 969 5 Sports news articles from the BBC [10].
guardian-2013 6,520 10,801 6 New corpus of news articles published by The

Guardian during 2013.
irishtimes-2013 3,246 4,832 7 New corpus of news articles published by The

Irish Times during 2013.
nytimes-1999 9,551 12,987 4 A subset of the New York Times Annotated Cor-

pus from 1999 [24].
nytimes-2003 11,527 15,001 7 As above, with articles from 2003.
wikipedia-high 5,738 17,311 6 Subset of a Wikipedia dump from January 2014,

where articles are assigned labels based on their
high level WikiProject.

wikipedia-low 4,986 15,441 10 Another Wikipedia subset. Articles are labeled
with fine-grained WikiProject sub-groups.

4.3 Model Selection

Initially, for stability analysis we examined a range of values t = 10/20/50/100
for the number of top terms used to represent each topic when measuring agree-
ment between ranked lists. However, the resulting stability scores generated for
each value of t were highly correlated across all corpora considered in our evalu-
ation (see Table 3 for average correlations). A typical example of this behavior is
shown in Fig. 3(a) for the guardian-2013 corpus, where the plots almost perfectly
overlap. This behavior is perhaps unsurprising as, given the definition of the Av-
erage Jaccard measure in Eqn. 1, terms occurring further down ranked lists will
naturally carry less weight. Therefore, the difference between scores generated
with, say t = 50 and t = 100 will be minimal. For the remainder of this section
we report stability scores for t = 20, which provided the highest pairwise mean
correlation (0.977) with the results from other values of t examined, while also
providing economy of representation for topics.

Figures 4 and 5 showplots generated on the eight corpora for k ∈ [2, 12], compar-
ing the proposed stability method with the consensus method from [7]. Although
both measures can produce values in the range [0, 1], in all experiments the

Table 3. Pearson correlation coefficient scores between stability scores for different
numbers of top terms t, as averaged across all corpora in our evaluations

# Terms t = 10 t = 20 t = 50 t = 100 Mean

t = 10 - 0.964 0.929 0.926 0.940

t = 20 0.964 - 0.985 0.982 0.977

t = 50 0.929 0.985 - 0.997 0.970

t = 100 0.926 0.982 0.997 - 0.968
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Fig. 4. Comparison of plots generated for stability analysis (t = 20) and consensus
matrix analysis for values of k ∈ [2, 12]. In both cases we attempt to identify one or
more suitable values for k based on peaks in the plots.

observed consensus scores were > 0.8 and often close to 1. Therefore, for the pur-
pose of plotting the results, we apply min-max normalization to the consensus
scores (withminimumvalue 0.8) to rescale the values to amore interpretable range.

We now summarize the results for each of the corpora in detail. The bbc
corpus contains five well-separated annotated categories for news articles, such
as “business” and “entertainment”. Therefore it is unsurprising that in Fig. 4(a)
we find a strong peak for both methods at k = 5, with a sharp fall-off for the
stability method after this point. This reflects the fact that the five categories
are accurately recovered by NMF. For the bbcsport corpus, which also has five
ground truth news categories, we see a peak at k = 4, followed by a lower peak
at k = 5 – see Fig. 4(b). The consensus method also exhibits a peak at this
point. Examining the top terms for the reference ranking set indicates that the
two smallest categories, “athletics” and “tennis” have been assigned to a single
larger topic, while the other three categories are clearly represented as topics.
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Fig. 5. Comparison of plots generated for stability analysis (t = 20) and consensus
matrix analysis for values of k ∈ [2, 12]

In the ground truth for the guardian-2013 corpus, each article is labeled based
upon the section in which it appeared on the guardian.co.uk website. From
Fig. 4(c) we see that the stability method correctly identifies a peak at k =
6 corresponding to the six sections in the corpus, which is not found by the
consensus method. However, both methods also suggest a more coarse clustering
at k = 3. Inspecting the reference ranking set (see Table 4(a)) suggests an
intuitive explanation – “books”, “fashion” and “music” sections were merged in
a single culture-related topic, documents labeled as “politics” and “business”
were clustered together, while “football” remains as a distinct topic.

Articles in the irishtimes-2013 corpus also have annotated labels based on
their publication section on irishtimes.com. In Fig. 4(d) we see high scores
at k = 2 for both methods, and a subsequent peak identified by the stability
method at k = 7, corresponding to the seven publication sections. In the former
case, the top ranked reference set terms indicate a topic related to sports and a
catch-all news topic – see Table 4(b).
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Next we consider the two corpora of news articles coming from the New
York Times Annotated Corpus. Interestingly, for nytimes-1999, in Fig. 5(a) both
methods exhibit a trough for k = 4 topics, even though the ground truth for
this corpus contains four news article categories. Inspecting the term rankings
shown inTable 4(c) provide a potential explanation of this instability: across the
100 factorization results, the ground truth “sports” category is often but not
always split into two topics relating to baseball and basketball. For the nytimes-
2003 corpus, which contains seven article categories, both methods produce high
scores at k = 2, with subsequent peaks at k = 4 and k = 7 – see Fig. 5(b). As
with the irishtimes-2013 corpus, the highest-level structures indicate a simple
separation between sports articles and other news. The reference topics at k = 4
indicates that smaller categories among the New York Times articles, such as
“automobiles” and “dining & wine” do not appear as strong themes in the data.

Finally, we consider the two collections of Wikipedia pages, where pages are
given labels based on their assignment to WikiProjects2 at varying levels of
granularity. For wikipedia-high, from Fig. 5(c) we see that both methods achieve
high scores for k = 2 and k = 4 topics. In the case of the former, the top terms
in the reference ranking set indicate a split between Wikipedia pages related
to music and all other pages (Table 4(d)). While at k = 4 (Table 4(e)), we see
coherent topics covering “music”, “sports”, “space”, and a combination of the
“military” & “transportation” WikiProject labels. The “medicine” WikiProject
is not clearly represented as a topic at this level. In the case of wikipedia-low,
which contains ten low-level page categories, both methods show spikes at k = 5,
and k = 10. At k = 5, NMF recovers topics related to “ice hockey”, “cricket”,
“World War I”, a topic covering a mixture of musical genres, and a seemingly
incoherent group that includes all other pages. The relatively high stability score
achieved at this level (0.87) suggests that this configuration regularly appeared
across the 100 NMF runs.

4.4 Discussion

Overall, it is interesting to observe that, for a number of data sets, both meth-
ods evaluated here exhibited peaks at k = 2, where one might expect far more
fine-grained topics in these types of data sets. This results from high agreement
between the term ranking sets generated at this level of granularity. A closer
inspection of document membership weights for these cases shows that this phe-
nomenon generally arises from the repeated appearance of one small “outlier”
topic and one large “merged” topic encompassing the rest of the documents in
the corpus (e.g. the examples shown in Table 4(b,d)). In a few cases we also see
that the ground truth does not always correspond well to the actual data (e.g. for
the sports-related articles in nytimes-1999 ). This problem arises from time to
time when meta-data is used to provide a ground truth in machine learning
benchmarking experiments [19].

2 See http://en.wikipedia.org/wiki/Wikipedia:WikiProject

http://en.wikipedia.org/wiki/Wikipedia:WikiProject
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Table 4. Examples of top 10 terms for reference ranking sets generated by NMF on a
number of text corpora for different values of k

(a) guardian-2013 (k = 3)

Rank Topic 1 Topic 2 Topic 3
1 book league bank
2 music club government
3 fashion season labour
4 people team growth
5 life players uk
6 album united economy
7 time manager tax
8 novel game company
9 love football party
10 world goal market

(b) irishtimes-2013 (k = 2)

Rank Topic 1 Topic 2
1 game cent
2 against government
3 team court
4 ireland health
5 players ireland
6 time minister
7 cup people
8 back tax
9 violates dublin
10 win irish

(c) nytimes-1999 (k = 4)

Rank Topic 1 Topic 2 Topic 3 Topic 4
1 game company yr mets
2 knicks stock bills yankees
3 team market bond game
4 season business rate inning
5 coach companies infl valentine
6 points shares bds season
7 play stocks bd torre
8 league york month baseball
9 players investors municipal run
10 sprewell bank buyer clemens

(d) wikipedia-high (k = 2)

Rank Topic 1 Topic 2
1 album team
2 band war
3 song star
4 music air
5 released season
6 songs aircraft
7 chart ship
8 video army
9 rock line
10 albums world

(e) wikipedia-high (k = 4)

Rank Topic 1 Topic 2 Topic 3 Topic 4
1 album war team star
2 band air season planet
3 song ship race sun
4 music aircraft league earth
5 released army game stars
6 songs ships championships orbit
7 chart squadron games mass
8 video battle cup planets
9 rock station world system
10 albums british championship solar

(f) wikipedia-low (k = 5)

Rank Topic 1 Topic 2 Topic 3 Topic 4 Topic 5
1 season album cricket division opera
2 league band test infantry stakes
3 team released match battalion race
4 nhl metal innings war car
5 hockey music runs battle racing
6 games song wickets brigade engine
7 cup tour against army old
8 game jazz australia regiment horse
9 goals songs england german stud
10 club albums wicket squadron derby

In relation to computational time, the requirement to run a complete hierar-
chical clustering on the document-document consensus matrix before calculating
cophenetic correlations leads to substantially longer running times on all corpora,
when compared to the stability analysis method using a reference ranking set.
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In addition, the latter can be readily parallelized, as agreement scores can be
calculated independently for each of the factorization results.

5 Conclusion

A key challenge when applying topic modeling is the selection of an appropriate
number of topics k. We have proposed a new method for choosing this parameter
using a term-centric stability analysis strategy, where a higher level of agreement
between the top-ranked terms for topics generated across different samples of
the same corpus indicates a more suitable choice. Evaluations on a range of text
corpora have suggested that this method can provide a useful guide for selecting
one or more values for k.

While our experiments have focused on the application of the proposed method
in conjunction with NMF, the use of term rankings rather than raw factor values
or probabilities means that it can potentially generalize to any topic modeling
approach that can represent topics as ranked lists of terms. This includes prob-
abilistic techniques such as LDA, together with more conventional partitional
algorithms for document clustering such as k-means and its variants. In further
work, we plan to examine the usefulness of stability analysis in conjunction with
alternative algorithms.

Acknowledgements. This publication has emanated from research conducted
with the financial support of Science Foundation Ireland (SFI) under Grant
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Abstract. We study the problem of jointly predicting topics for all web
pages within URL hierarchies. We employ a graphical model in which
latent variables represent the predominant topic within a subtree of the
URL hierarchy. The model is built around a generative process that infers
how web site administrators hierarchically structure web site according
to topic, and how web page content is generated depending on the page
topic. The resulting predictive model is linear in a joint feature map of
content, topic labels, and the latent variables. Inference reduces to mes-
sage passing in a tree-structured graph; parameter estimation is carried
out using concave-convex optimization. We present a case study on web
page classification for a targeted advertising application.

1 Introduction

Web page classification of entire web domains has numerous applications. For
instance, topic labels can be used to match individual web pages to related
advertisements; topic labels can be aggregated over pages that a user has visited
in order to create a profile of the user’s interests. Classifying the child suitability
of web pages is another typical use case.

There is a rich body of research on topic classification of web pages based on
page content [8]. Classification does not have to rely on page content alone. For
instance, collective classification schemes that exploit the hyperlink structure
within the world wide web have also been widely studied [6,11]. Collective clas-
sification approaches define probabilistic models over web page content and the
observed hyperlink structure; inference in the models yields the most likely joint
configuration of topic labels. Typically, discriminative models over topics given
page content and link structure are studied, in order to avoid having to esti-
mate high-dimensional distributions over page content. For example, maximum
margin Markov networks have been shown to give excellent results in hypertext
classification domains [11,2].

In this paper, we study models that exploit the information inherent in the
URL hierarchy of a web domain, rather than the information contained in the
hyperlink structure. Many web domains organize their individual pages in a
meaningful hierarchy in which subtrees tend to contain web pages of similar

T. Calders et al. (Eds.): ECML PKDD 2014, Part I, LNCS 8724, pp. 514–529, 2014.
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topics. The predominant topic within a particular subtree constitutes a latent
variable from the learner’s perspective; correctly inferring these latent variables
and propagating the topic information to pages within the subtree has the po-
tential to boost predictive accuracy if topic correlation within subtrees is strong.

The presence of latent variables constitutes a key difference of our problem
setting in comparison to collective classification based on hyperlinks; models de-
veloped for collective hypertext classification are typically not applicable as they
cannot deal with latent variables during learning. The problem could instead be
modeled using latent variable structured output models, such as latent variable
SVMstruct [14]. The challenge when using this approach is to correctly model the
interaction of latent and observed variables using a joint feature map and speci-
fying appropriate loss functions while ensuring that decoding remains tractable.

We instead follow an approach in which we formulate a generative model of
how URL trees are populated with topic labels and content is generated for web
pages within that URL tree. The model can be formulated conveniently using
topic-correlation models and standard exponential-family distributions for page
content given a topic. The model is then trained discriminatively by maximizing
the conditional distribution of topic labels given page content and the URL tree.
This conditional distribution has the form of a linear model with a joint feature
map of the URL hierarchy, page content, and the (observable and latent) topic
labels. Efficient decoding is possible by message passing in a tree-structured
graph. In this formulation, the feature map, decoding algorithm, and optimiza-
tion criterion directly result from the probabilistic modeling assumptions.

The rest of this paper is organized as follows. Section 2 states the problem
setting and introduces notation. Section 3 presents the probabilistic model, and
Section 4 discusses parameter learning and inference. Section 5 reports on an
empirical study on web classification for a targeted advertising application. Sec-
tion 6 discusses related work, Section 7 concludes.

2 Notation and Problem Setting

A URL tree T = (V , E) consists of vertices and edges. The vertices V in-
clude n leaves that we will write as v1, . . . , vn, and k inner nodes, written as
vn+1, . . . , vn+k. The leaves correspond to URLs of individual web pages (such as
washingtonpost.com/local/crime/murder.htm); inner nodes corresponds to pre-
fixes of these URLs that end in a separator—typically, the slash symbol. An
inner node, such as washingtonpost.com/local/, thus represents a subtree in the
URL hierarchy. Figure 1 (left) shows an imaginary URL tree for a web domain.

The content of each of the leaf nodes is encoded as a vector xi ∈ Rm; we
denote the content of the entire web portal as matrix X = (x1 . . .xn) ∈ Rm×n.
The topic space is denoted by Y; the vector y = (y1, ..., yn)

T ∈ Yn denotes topic
labels for the n leaf nodes that correspond to web pages.

Web domains are generated by an unknown distribution p(y,X, T ); we will
make specific modeling assumptions about this distribution in the next section.
Distinct web domains are drawn independently and from an identical distribu-
tion. Note, however, that the random variables (x1, y1), ..., (xn, yn) that represent
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Fig. 1. URL tree (left) and graphical model (right) of an exemplary news domain

content and topic information for any single domain are not assumed to be in-
dependent. Typically, the variables will correlate as a function of their position
in the URL hierarchy T . A training sample of several labeled web domains is
drawn according to this distribution.

Finally, the URL tree T ∗ and the content matrix X∗ of a target web domain
are drawn. In addition, topic labels y∗i for a limited number (possibly zero) of
leaf nodes are disclosed. The goal is to infer the most likely complete vector of
topic labels y∗ for this target domain.

3 Graphical Model

In order to define an appropriate probabilistic model for the problem stated in
Section 2, we first define a model of a generative process that we assume to
have generated the observable data in Section 3.1. In Section 3.2, we express
this model as a member of the exponential family. Deriving the conditional
distribution p(y|X; T ) in this model results in a linear structured-output model.
In our application, inference can be carried out efficiently using message passing
inference in the tree-structured model (Section 4.1). Parameters can be estimated
according to maximal conditional likelihood using CCCP (Section 4.2).

3.1 A Generative Process for Web Domains

In this section, we define a generative process for populating a given URL tree
T with topic labels and word count information (we will make no modeling
assumptions about the distribution p(T ) over URL trees).

The general assumption that underlies our model is that web site adminis-
trators hierarchically structure web site content according to topic, such that
topics of pages within one subtree of the URL hierarchy correlate. To represent
the predominant topic within specific subtrees, we associate a vector of latent
topic variables ȳ = (yn+1, ..., yn+k) ∈ Yk to the k inner nodes vn+1, . . . , vn+k

of the URL tree T . These latent topic variables will couple the observable topic
variables y = (y1, ..., yn) through the URL hierarchy. Throughout the paper,
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we denote by v→i ∈ V the unique parent of the node vi ∈ V specified by the
edge set E of URL tree T . We extend this definition to topic labels as follows:
for a topic variable yi ∈ {y1, ..., yn+k}, we write y→i to denote the latent topic
variable associated with the node v→i.

We assume a top-down generative process for topic variables by modeling
the dependency between a topic yi and the topic y→i of the parent node as a
distribution p(yi|y→i;λ). The distribution is modeled as a normalized exponential

p(yi|y→i;λ) =
exp (−λΔ(yi, y→i))∑

y′∈Y
exp (−λΔ(y′, y→i))

(1)

where the function Δ(yi, y→i) measures topic distance in Y. A simple choice for
topic distance would be Δ(y, y′) = 0 if y = y′ and Δ(y, y′) = 1 if y �= y′; other
distance functions may be employed to reflect a specific structure on the topic
space. The parameter λ controls the degree of correlation expected between the
topic variables yi and y→i. This generative process corresponds to the assumption
that when administrators add novel material that covers topic y ∈ Y to a web
domain, they insert a corresponding URL subtree under a parent node that is
associated with a topic y→i close to y. We assume this process is carried out
recursively up to and including the leaf nodes, that is, novel URL subtrees are
again populated with subtrees and eventually web pages with topics that are
close within the topic space Y. The prior distribution p(yn+k|τ ) over the topics
of the root is a categorical distribution over topics, parametrized by τ .

In order to complete the specification of the data-generating process we have
to assume a distribution p(x|y) over word-count information x given the web
page topic y. At this point, we only assume that this distribution is a member
of the exponential family and follows the general form

p (x|y;η) = h(x) exp
(
ηTφ(x, y) − gη(η, y)

)
. (2)

In Equation 2, h(x) is called the base measure, gη(η, y) is the log-partition
function that ensures correct normalization of the distribution, φ(x, y) is a joint
feature map of the web page x and topic y, and η is a parameter vector.

By defining a joint feature map of x and y, we subsume the case of modeling
topic-specific parameter vectors for φ(x, y) = Λ(y) ⊗ φ(x), where operator ⊗
denotes the Kronecker product and Λ(y) = ([[y = ȳ]])ȳ∈Y denotes the one-of-k
encoding of y, but can also encode structural prior knowledge, for instance about
a structured topic space.

By combining the generative process for topic variables based on Equation 1
and the categorical distribution p(yn+k|τ ) with the conditional distribution de-
fined by Equation 2, we obtain a generative model p(y, ȳ,X|T ;λ,η, τ ) of all
topic variables given web page texts and the URL tree:

p(y, ȳ,X|T ;λ,η, τ ) = p(yn+k|τ )
(

n+k−1∏
i=1

p (yi|y→i;λ)

)
n∏

i=1

p (xi|yi;η) . (3)
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Figures 1 (right) shows the graphical model representation of this model for
the example URL tree shown in Figure 1 (left).

3.2 A Discriminative Joint Topic Model

Starting from the generative process defined in Section 3.1, we now derive a dis-
criminative model for page topics based on URL hierarchy T and page texts X.

We begin the derivation by casting the generative process p(y, ȳ,X|T ;λ,η, τ )
defined in Section 3.1 into an exponential-family model using a joint feature
map Φ(X,y, ȳ). Note that p(yi|y→i;λ) can be written in the canonical form
of an exponential family by p(yi|y→i;λ) = exp (−λΔ(yi, y→i)− gλ(λ, y→i))
where gλ(λ, y→i) = log

∑
y′∈Y exp (−λΔ(y′, y→i)), and p(yn+k|τ ) can be writ-

ten in exponential family form by p(yn+k|τ ) = exp
(
τTΛ(y)− gτ (τ )

)
where

gτ (τ ) = log(1T exp(τ )). Then, Equation 3 can be written as

p(y, ȳ,X|T ; θ)

= exp
(
τTΛ(y)− gτ (τ )

)(n+k−1∏
i=1

exp (−λΔ(yi, y→i)− gλ(λ, y→i))

)
n∏

i=1

h(xi) exp
(
ηTφ(xi, yi)− gη(η, yi)

)
= exp

(
τTΛ(y)− gτ (τ )

)
exp

(
−λ

n+k−1∑
i=1

Δ(yi, y→i)−
n+k−1∑
i=1

gλ(λ, y→i)

)
(

n∏
i=1

h(xi)

)
exp

(
ηT

n∑
i=1

φ(xi, yi)−
n∑

i=1

gη(η, yi)

)
= h(X) exp

(
θTΦ(X,y, ȳ)− gτ (τ )

)
, (4)

where we define a joint parameter vector θ = (ηT, τT, λ,γT)T, a feature map

Φ(X,y, ȳ) =

⎛⎜⎜⎝
∑n

i=1 φ(xi, yi)
Λ(yn+k)∑n+k−1

i=1 Δ(yi, y→i)∑n+k−1
i=1 Λ(y→i)

⎞⎟⎟⎠ , (5)

and base measure h(X) =
∏n

i=1 h(xi). Note that in Equation 4 we subsumed
the sum of log-partition functions

∑n
i=1 gη(η, yi) into the model parameter η by

adding a constant feature to the feature map φ(x, y) for each y ∈ Y. Addition-
ally we subsumed the sum of log-partition functions

∑n+k−1
i=1 gλ(λ, y→i) into an

additional model parameter γ.
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The conditional distribution p(y, ȳ|X, T ; θ) over observable and latent topic
variables given web page content and the URL tree is now given by

p(y, ȳ|X, T ; θ) = p(y, ȳ,X|T ; θ)∑
y′,ȳ′ p(y

′, ȳ′,X|T ; θ)

=
h(X) exp(gτ (τ )) exp

(
θTΦ(X,y, ȳ)

)
h(X) exp(gτ (τ ))

∑
y′,ȳ′ exp (θ

TΦ(X,y′, ȳ′))

=
exp
(
θTΦ(X,y, ȳ)

)∑
y′,ȳ′ exp (θ

TΦ(X,y′, ȳ′))
. (6)

Note that Equation 6 defines a linear structured-output model in the joint feature
map Φ(X,y, ȳ) because argmaxy,ȳ p(y, ȳ|X, T ; θ) = argmaxy,ȳ θTΦ(X,y, ȳ).

4 Inference and Parameter Estimation

We now turn toward the problem of inferring topic variables and obtaining
maximum-a-posteriori estimates of model parameters from data.

4.1 Inferring Topics for New Web Portals

For a given new web domain, inference might target the most likely joint assign-
ment of topics to web pages by summing out the latent variables ȳ,

y∗ = argmax
y

∑
ȳ

p(y, ȳ|X, T ; θ). (7)

Unfortunately, this problem is NP-hard even for tree-structured graphs [4].
Instead, we are able to infer the most likely topic assignment yi of the i-th page
by summing out latent variables ȳ and topic variables of all other web pages yī,

y∗i = argmax
y

∑
yī,ȳ

p(y, ȳ|X, T ; θ). (8)

Alternatively, we can infer the most likely joint state of all topic variables,

(y∗, ȳ∗) = argmax
y,ȳ

p(y, ȳ|X, T ; θ), (9)

thereby also inferring topics for inner nodes in the URL hierarchy T . For the
application motivating this paper, the latter approach is advantageous if web
sites are very dynamic: if novel pages are added to the URL tree and there is
insufficient time to carry out a full inference, the topic assigned to the parent
node of the added page can be used to label the novel page quickly. This is often
the only feasible approach for real-time systems, and is in fact implemented in
the targeted-advertisement company that we collaborate with.
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Moreover, if topics yS̄ of a subset of web pages S̄ ⊆ {1, . . . , n} are already
observed, the most likely conditional joint assignment for the unobserved labels
yS where S = {1, . . . , n}\S̄ and the latent variables ȳ given the observed labels is

(y∗
S , ȳ

∗) = argmax
yS,ȳ

p(yS , ȳ|X,yS̄ , TU ; θ). (10)

Due to the tree-structured form of the model given by Equation 3, the opti-
mization problems given by Equation 8, 9, and 10 can be solved efficiently using
standard message passing algorithms [7].

4.2 Parameter Estimation

To estimate model parameters, we minimize the regularized discriminative neg-
ative log-likelihood over all URL trees:

θ∗ = argmin
θ

Ω(θ)− log

u∏
j=1

p(yj |Xj , Tj ; θ)

= argmin
θ

Ω(θ) +

u∑
j=1

�log(θ,X
j,yj), (11)

where the loss function is given by

�log(θ,X,y) = log
∑
y′,ȳ′

exp
(
θTΦ(X,y′, ȳ′)

)
− log

∑
ȳ

exp
(
θTΦ(X,y, ȳ)

)
.

In order to specify the regularizer Ω(θ) = Ωη,γ(η,γ) +Ωτ (τ ) +Ωλ(λj), we as-
sume a zero-mean Gaussian prior (η,γ) ∼ N (0, σ2

η,γI) with variance σ2
η,γ over η

and γ, a Dirichlet prior over the topic distribution p(yn+k|τ ) at the root node,
and an inverse gamma prior λ ∼ InvGam(1, σ2

λ) over the coupling parameter λ,
where the inverse gamma distribution is parameterized using mean and variance.
Given these prior distributions the regularizing terms are defined by:

Ωη,γ(η,γ) =
1

2σ2
η,,γ

(
‖η‖22 + ‖γ‖22

)
, Ωλ(λ) =

σ−2 + 1

λ
+ (σ−2

λ + 3) log(λ),

Ωτ (τ ) = log(1T exp(τ ))1T(α− 1)− (α− 1)Tτ .

In Equation 11 we determine the minimizing argument of a sum of a convex and
a concave function θ∗ = argminθ f∪(θ) + f∩(θ) where

f∪(θ) = Ω∪(θ) +

u∑
j=1

log
∑
y′,ȳ′

exp
(
θTΦ(Xj ,y′, ȳ′)

)
f∩(θ) = Ω∩(θ)−

u∑
j=1

log
∑
ȳ

exp
(
θTΦ(Xj ,yj , ȳ)

)
,
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Algorithm 1. Concave-Convex Procedure
1: Initialize θ∗

2: repeat
3: Construct upper bound on f∩(θ) for some c: f/(θ) ← θT [∇f∩(θ)]θ=θ∗+c
4: θ∗ ← argmin

θ
f∪(θ) + h(θ)

5: until θ∗ converges
6: return θ∗

and where

Ω∪(θ) = Ωη,γ(η,γ) +Ωτ (τ ) +
σ−2 + 1

λ
, Ω∩(θ) = (σ−2

λ + 3) log(λ)

subsume the convex and the concave part of the regularization term. Thus, the
optimization problem given by Equation 11 is in general not convex—although
it is convex in η, since f∩(θ) is a linear function in η. In order to solve the opti-
mization problem, we use the Concave-Convex Procedure, which is guaranteed
to converge to a local optimum [15]. Algorithm 1 iteratively upper-bounds the
concave part f∩(θ) by the linear function f/(θ) (see Line 4) and solves the re-
sulting convex optimization problem in Line 5 using standard gradient descend
methods. The gradients with respect to θ are given by:

∇f∪(θ) = ∇Ω∪(θ) +
u∑

j=1

Ej
y′,ȳ

[
Φ(Xj ,y′, ȳ)

]
,

∇f∩(θ) = ∇Ω∩(θ) +
u∑

j=1

Ej
ȳ

[
Φ(Xj ,yj , ȳ)

]
,

where expectation Ej
y′,ȳ bases on distribution p(y′, ȳ|Xj , Tj ; θ) and expecta-

tion Ej
ȳ bases on p(ȳ|yj ,Xj , Tj ; θ) = p(yj , ȳ|Xj , Tj ; θ)/

∑
ȳ′ p(y

j , ȳ′|Xj , Tj ; θ).
The gradients of the regularization parts are given by

∇Ω∪(θ) = σ−2
η,γη + σ−2

η,γγ +
1T(α− 1)
1T exp(τ )

exp(τ ) − (α− 1)− σ−2
λ + 1

λ2

∇Ω∩(θ) =
σ−2
λ + 3

λ
.

The following proposition states that the gradients can be evaluated efficiently
using message passing.

Proposition 1. Let φ(x, y) = Λ(y)⊗x. Then the expectations Ey,ȳ [Φ(X,y, ȳ)]
and Eȳ [Φ(X,y, ȳ)] can be computed in time

O(|Y|3(n+ k)2 + |Y|nm),

where m denotes the number of features, n the number of leaf nodes, and k the
number of inner nodes of the URL tree.
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A proof of Proposition 1 can be found in the appendix. Computations are
based on variations of standard message passing; additional computational sav-
ings are realized by reusing specific messages within the overall computation
of the gradient. These savings depend on the URL structure under study and
thus do not influence asymptotic complexity but significantly influence empirical
execution time for the web domains that we have studied.

5 Empirical Study

We empirically investigate the predictive performance of the proposed joint topic
model using data from a large targeted advertisement company. The data set
contains 36,579 web pages within nine web domains that have been manually
annotated with topic labels by human labelers employed by the targeted adver-
tising company. We use a total of |Y| = 30 labels. Out of the nine web domains,
five are general news portals run by large newspaper publishers, two are more
topic-specific web portals run by family magazines, and two are web portals run
by TV stations. Web page content is represented using a binary bag-of-words en-
coding. Words that occur fewer than ten times in the training data are removed
from the dictionary, this results in 94,624 distinct bag-of-words features.

We study the model proposed in Sections 3 and 4 (denoted JointInfText),
where we choose a linear feature map φ(x, y) = Λ(y) ⊗ x. The topic distance
Λ(y, y′) in Equation 1 is one if y = y′ and zero otherwise. As a baseline, we obtain
predictions from a logistic regression model that independently predicts topics
for individual web pages (denoted LogRegText). As a further baseline, we study
a logistic-regression model based on an augmented feature representation that
concatenates the text features with a binary bag-of-words representation of the
page’s URL where numbers or special characters are used as separator between
words (denoted LogRegText+URL). We also study our model using this augmented
feature representation (denoted JointInfText+URL). Such URL features have been
shown to be predictive for web page classification; for example, Baykan et al.
have studied web page classification based on URL features only [1].

5.1 Topic Classification Performance

We study topic prediction in each of the nine web domains (the target domain).
Training data includes instances from the remaining eight web domains (the
training domains) as well as a varying number of instances from the target do-
main. Specifically, a training set is obtained by sampling 100 labeled web pages
from each of the training domains and between n = 0 and n = 100 labeled
web pages from the target domain. At n = 0 this corresponds to a setting in
which predictions for novel web domains have to be obtained given a training
set of existing web domains. At n > 0 this corresponds to a setting in which a
small set of manually labeled seed pages is available from the target domain, and
topic labels for the remaining pages need to be predicted. For JointInfText and
JointInfText+URL, the labeled pages from the target domain constitute observed
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(b) Web Domain 2 (News)
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(c) Web Domain 3 (News)
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(d) Web Domain 4 (News)
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(e) Web Domain 5 (News)
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(f) Web Domain 6 (Family)
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(h) Web Domain 8 (TV)

0 6 12 25 50 100

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

number of target instances n

e
rr

o
r 

ra
te

 /
 e

rr
o

r 
ra

te
 o

f 
L

o
g

R
e

g
T

e
x
t

(i) Web Domain 9 (TV)

Fig. 2. Average error ratio for different target portals and different number of labeled
web sites from target portal

variables, inference is carried out conditioned on these observations (see Equa-
tion 10). Predictive performance is evaluated on a sample of 500 pages from the
remaining web pages of the target domain.

Hyperparameters of all models are tuned using grid search and a leave-one-
domain-out cross-validation on the training data. News domains generally ex-
hibit more diverse topic labels than the topic-specific web portals run by TV sta-
tions and family magazines; for tuning we therefore evaluate the models only on
domains from the same of these two groups as the target domain. For JointInfText
and JointInfText+URL hyperparameters are the coupling parameter σ2

λ and the
regularization parameter σ2

η,γ ; for LogRegText and LogRegText+URL, the stan-
dard regularization parameter. The hyperparameter of the Dirichlet prior is set
to α = (2, ..., 2)T (Laplace smoothing).

Figure 2 shows predictive performance for all web domains as a function of n,
averaged over five resampling iterations of web pages from the training and target
domains. Specifically, we report the ratio of the mean zero-one error rate of each
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Fig. 3. Classification error and empirical entropy for different choices of parameter λ
on News Portal 1 (left). Labeled URL structure (right) for sample of News Portal 1
for λ = 1 and zero labeled web sites from target domain

method to the mean zero-one error of the baseline LogRegText. If both methods
incur an error rate of zero, the quotient is defined to be one. In one experiment
(Web Domain 6, LogRegText+URL) the quotient was undefined because the error
of LogRegText was zero while the error of LogRegText+URL was nonzero. Thus
the curve for LogRegText+URL is missing from Figure 2(f).

From Figure 2 we observe that, on average, the methods JointInfText and
JointInfText+URL predict topic labels more accurately than their corresponding
baseline LogRegText or LogRegText+URL. Additionally we observe that the inclu-
sion of URL features in the feature representation on average improves predictive
accuracy. Performance varies for different web domains and values of n, with the
best case being a reduction in error rate of approximately 80% and the worst
case an increase in error rate by approximately 20% compared to the baseline
model.

5.2 Effect of the Model Parameter λ

We also study the influence of λ—which controls the structural homogeneity of
the classifier prediction (Equation 1)—for News Portal 1 and n = 0. Figure 3
(left) shows the error rate of JointInfText (blue solid line) and the LogRegText
(blue dashed line) as a function of λ. In these experiments, the regularization
parameter σ2

η,γ = 1 is fixed and only model parameters η, γ and τ are optimized;
results are averaged over 20 resampling iterations. Figure 3 (left) also shows
the corresponding empirical entropy of the predicted labels (red curves). If λ
converges to zero, the model assumes no correlation between topics of nodes and
their parents in the URL tree; in this case, JointInfText reduces to LogRegText.
High values of λ couple topic labels strongly within the URL tree, therefore more
uniform topic labels are assigned and the empirical entropy of the predicted
labels is reduced. Predictive accuracy is maximal for intermediate values of λ.

Figure 3 (right) shows the label tree inferred by the joint topic model, predic-
tions of the logistic regression baseline, and the ground truth for News Portal
1, λ = 1, and n = 0 labeled web pages of the target domain. We used a color
scheme that maps related topics to related colors. It shows that topic labels are
more uniform when using JointInfText instead of LogRegText.
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Fig. 4. Execution time for computation of expectation Ey,ȳ [Φ(X,y, ȳ)] (JointInfText)
and Ey [Φ(X,y)] (LogRegText) for different number of instances (left) and different
number of labels (right). Error bars show standard errors.

5.3 Execution Time

In our experiments, both the logistic regression model and the structured model
are optimized using a gradient descent approach. Thus, the main computational
difference is caused by the gradients of their loss functions: The computational
time for the gradient of the structured loss �log is dominated by evaluating the
quantities Ey,ȳ [Φ(X,y, ȳ)] and Eȳ [Φ(X,y, ȳ)] (see Proposition 1). The gradient
of the logistic loss function can be written as Ey [Φ(X,y)] − Φ(X,y), where

Ey [Φ(X,y)] =

n∑
i=1

exp(ηTφ(xi, yi))φ(xi, yi)∑
y′ exp(η

Tφ(xi, y′i))
. (12)

We compare the execution time for computation of expectation Ey,ȳ [Φ(X,y, ȳ)]
for the joint topic model and the corresponding quantity given by Equation 12 for
the logistic regression model. Figure 4 (left) shows the execution time for differ-
ent number of training instances and a fixed number of labels |Y| = 30. Figure 4
(right) shows the execution time for different number of labels—randomlyassigned
to instances—and a fixed number of instances n = 500. We found that the notice-
able difference in time complexities—O(|Y|3(n+k)2+|Y|nm) for joint topic model
andO(|Y|nm) for logistic regression—reduces approximately to a constant factor,
when we reuse messages over different variations of the message passing scheme.

6 Related Work

There is a rich body of work on general web page classification [8]. In addition
to textual information on pages, hyperlink structure is often used to improve
classification accuracy [9,6].

Some earlier work has studied using URL tree information for web page classi-
fication. Kan and Thi [3] and Baykan et al. [1] use models over features of URLs
to classify web pages based on URL information only. Shih and Karger [10] use
URL trees and page layout information encoded in an HTML tree for ad block-
ing and predicting links that are of interest to a particular user. They employ
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a generative probabilistic model similar to the coupling model defined by Equa-
tion 1 to represent correlations within URL trees. In contrast to our approach,
their model does not include web page text or other page content.

Tian et al. [12] study models based on URL tree information with the goal of
assigning topics to entire web sites rather than individual web pages. Kumar et
al. [5] study the problem of segmenting a web site into topically uniform regions
based on the URL tree structure and predictions of a node-level topic classi-
fication algorithm. Their central result is that segmentations that are optimal
according to certain cost measures can be computed efficiently using dynamic
programming.

The prediction problem we study can be phrased as a structured output prob-
lem involving latent variables; such problems have been studied, for example, by
Wang et al. [13] and Yu and Joachims [14]. The latter model, latent variable
structured SVM, is also trained using CCCP. Its margin-based objective leads
to a learning algorithm alternating between performing point estimates of latent
variables and model parameters, while in our maximum conditional likelihood
formulation latent variables are summed out during learning. In the application-
specific model that we present, these summations as well as decoding for struc-
tured prediction can be carried out efficiently because both problems reduce to
message passing in a tree-structured factor graph.

7 Conclusions

We have studied the problem of jointly predicting topic labels for all web pages
within a URL hierarchy. Section 3.1 defines a generative process for web page
content that captures our intuition about how web site administrators hierar-
chically structure web sites according to content; latent variables in this process
reflect the predominant topic within a URL subtree. Section 3.2 shows that de-
riving the conditional distribution over topic labels given page content in this
model results in a structured output model that is linear in a joint feature map of
page content, topic labels, and latent topic variables. Parameter estimation can
be carried out using a concave-convex procedure. Proposition 1 shows that pa-
rameter estimation and decoding in the model are efficient. An empirical study in
a targeted advertisement domain shows that joint inference of topic labels with
the proposed model is more accurate than inferring topic labels independently
based on features derived from page content and the URL.
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Appendix

Proof of Proposition 1

We first turn toward the quantity

Ey,ȳ [Φ(X,y, ȳ)] =

∑
y,ȳ exp

(
θTΦ(X,y, ȳ)

)
Φ(X,y, ȳ)∑

y,ȳ exp (θ
TΦ(X,y, ȳ))

. (13)

Let the unnormalized probabilities—the normalizing quantities h(X) and gτ (τ )
can be canceled out in nominator and denominator—be denoted by

ψτ (y) = exp(τy) ∝ p(y|τ ) ψη(y,x) = exp(ηTφ(x, y)) ∝ p(x|y;η)
ψλ,γ(y, y

′) = exp(−λΔ(y, y′)− γy′) = p(y|y′;λ).

Since Δ(y, y′) is a given problem-specific loss function, ψλ,γ(y, y
′) can be com-

puted in time O(|Y|2) for all y, y′ ∈ Y. Furthermore, under the assumption
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that φ(x, y) = Λ(y) ⊗ x, we can compute ψη(y,xi) for all i = 1, . . . , n and
all y ∈ Y in time O(|Y|nm). Given these quantities, the denominator in Equa-
tion 13 can be computed efficiently using standard message passing [7]. We
therefore evaluate∑

y,ȳ

exp
(
θTΦ(X,y, ȳ)

)
=
∑
yn+k

ψτ (yn+k)
∏

v→i=vn+k

μi(yn+k) (14)

recursively, where the messages μi(y→i) have the form

∑
yi

ψλ,γ(yi, y→i)

⎧⎨⎩ψη(yi,xi) , if i ≤ n∏
v→j=vi

μj(yi) , otherwise. (15)

In order to evaluate Equation 15 for a
given i ∈ {1, . . . , n + k} and a given y→i ∈ Y, we have to compute all |Y|
summands. Each summand contains at most max{ci + 1, 2} factors, where ci
is the number of children of node vi. Hence one message can be computed in
time O(|Y|ci). Due to the tree structure T , each node has a unique parent node
and therefore

∑n+k
i=1 ci = n + k − 1 holds. Hence the computation for all i ∈

{1, . . . , n + k} and all y→i ∈ Y can be done in time
∑n+k

i=1

∑
y→i∈Y O(|Y|ci) =

O(|Y|2(n+ k)) using dynamic programming.
We now consider the numerator in Equation 13 and show that the parts of the

joint feature map (see Equation 5) that refer to the parameters η, γ, τ and λ
can be computed in time O(|Y|3n(n + k) + |Y|nm), in time O(|Y|3(n + k)2),
in time O(|Y|2(n + k)), and in time O(|Y|2(n + k)2), respectively. For η, the
numerator can be expressed as∑

y,ȳ

exp
(
θTΦ(X,y, ȳ)

) n∑
l=1

φ(xl, yl)

=
n∑

l=1

(∑
y,ȳ

exp
(
θTΦ(X,y, ȳ)

)
Λ(yl)

)
⊗ xl. (16)

In Equation 16, we reorder the sums and make use of φ(x, y) = Λ(y) ⊗ x.
Additionally, we exploit the associativity of the Kronecker product. Note that∑

y,ȳ exp
(
θTΦ(X,y, ȳ)

)
Λ(yl) is a vector of length |Y|; each component is as-

sociated with the case that the l-th web site has a certain label y′. This quan-
tity can be computed by applying the message passing for each label y′ ∈ Y,
where the message μl(y→l) is substituted by ψλ,γ(yl, y→l)ψη(yl,xl) if yl = y′

and zero otherwise. In order to evaluate Equation 16, we need to apply standard
message passing for all y′ ∈ Y and for all l = 1, . . . , n, which can be done in
time O(|Y|3n(n+k)). The computation of the Kronecker product can be done in
time O(|Y|nm). Thus, the overall computational time isO(|Y|3n(n+k)+|Y|nm).

By reordering the sums, the numerator for γ can be expressed as∑
y,ȳ

exp
(
θTΦ(X,y, ȳ)

)n+k−1∑
l=1

Λ(y→l) =
n+k−1∑
l=1

∑
y,ȳ

exp
(
θTΦ(X,y, ȳ)

)
Λ(y→l). (17)
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The term
∑

y,ȳ exp
(
θTΦ(X,y, ȳ)

)
Λ(y→l) is a vector of length |Y|, where each

component is associated with the case that the parent of the l-th node has certain
label y′. For each label y′ ∈ Y, this quantity can be computed by standard
message passing, where the message μl(y→l) is substituted by

ψλ,γ(yl, y→l)

⎧⎪⎨⎪⎩
ψη(yl,xl) , if l ≤ n and y→l = y′∏

v→j=vl
μj(yl) , if l > n and y→l = y′

0 , otherwise.

In order to evaluate Equation 17, we need to apply message passing for all l =
1, . . . , n+ k − 1 and y′ ∈ Y , which can be done in time O(|Y|3(n+ k)2).

For τ , the numerator can be evaluated by using message passing∑
y,ȳ

exp
(
θTΦ(X,y, ȳ)

)
Λ(yn+k) =

∑
yn+k

ψτ (yn+k)Λ(yn+k)
∏

v→i=vn+k

μi(yn+k), (18)

where μi(y→i) is defined by Equation 15. Standard message passing as described
in Equation 14 requires a summation over |Y| summands. Instead, in Equa-
tion 18 we save each of the |Y| summands. Hence, the computational time for
Equation 18 is the same as for Equation 14, which is O(|Y|2(n+ k)).

For λ, the numerator can be expressed as

∑
y,ȳ

exp
(
θTΦ(X,y, ȳ)

) n+k−1∑
l=1

Δ(yl, y→l)

=

n+k−1∑
l=1

(∑
y,ȳ

exp
(
θTΦ(X,y, ȳ)

)
Δ(yl, y→l)

)
(19)

by reordering the sums. Again, we use the message passing algorithm in order to
evaluate the quantity

∑
y,ȳ exp

(
θTΦ(X,y, ȳ)

)
Δ(yl, y→l) for l = 1, . . . , n+k−1.

Therefore, we substitute the message μl(y→l) by

∑
yl

Δ(yl, y→l)ψλ,γ(yl, y→l)

⎧⎨⎩ψη(yl,xl) , if l ≤ n∏
v→j=vl

μj(yl) , otherwise.

Hence, Equation 19 can be evaluated by applying standard message passing n+k
times which can be done in time O(|Y|2(n+ k)2). This completes the proof for
the computational time of the expectation Ey,ȳ [Φ(X,y, ȳ)].

The proof for the expectation Eȳ [Φ(X,y, ȳ)] can be done analogously by
replacing the sum over y with the true labels. 
�
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Abstract. In this paper we propose and investigate a novel nonlinear
unit, called Lp unit, for deep neural networks. The proposed Lp unit
receives signals from several projections of a subset of units in the layer
below and computes a normalized Lp norm. We notice two interesting
interpretations of the Lp unit. First, the proposed unit can be understood
as a generalization of a number of conventional pooling operators such as
average, root-mean-square and max pooling widely used in, for instance,
convolutional neural networks (CNN), HMAXmodels and neocognitrons.
Furthermore, the Lp unit is, to a certain degree, similar to the recently
proposed maxout unit [13] which achieved the state-of-the-art object
recognition results on a number of benchmark datasets. Secondly, we
provide a geometrical interpretation of the activation function based on
which we argue that the Lp unit is more efficient at representing complex,
nonlinear separating boundaries. Each Lp unit defines a superelliptic
boundary, with its exact shape defined by the order p. We claim that
this makes it possible to model arbitrarily shaped, curved boundaries
more efficiently by combining a few Lp units of different orders. This
insight justifies the need for learning different orders for each unit in the
model. We empirically evaluate the proposed Lp units on a number of
datasets and show that multilayer perceptrons (MLP) consisting of the
Lp units achieve the state-of-the-art results on a number of benchmark
datasets. Furthermore, we evaluate the proposed Lp unit on the recently
proposed deep recurrent neural networks (RNN).

Keywords: deep learning, Lp unit, multilayer perceptron.

1 Introduction

The importance of well-designed nonlinear activation functions when building a
deep neural network has become more apparent recently. Novel nonlinear activa-
tion functions that are unbounded and often piecewise linear but not continuous
such as rectified linear units (ReLU) [22,11], or rectifier, and maxout units [13]
have been found to be particularly well suited for deep neural networks on many
object recognition tasks.

A pooling operator, an idea which dates back to the work in [17], has been
adopted in many object recognizers. Convolutional neural networks which often
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employ max pooling have achieved state-of-the-art recognition performances on
various benchmark datasets [20,9]. Also, biologically inspired models such as
HMAX have employed max pooling [27]. A pooling operator, in this context,
is understood as a way to summarize a high-dimensional collection of neural
responses and produce features that are invariant to some variations in the input
(across the filter outputs that are being pooled).

Recently, the authors of [13] proposed to understand a pooling operator itself
as a nonlinear activation function. The proposed maxout unit pools a group of
linear responses, or outputs, of neurons, which overall acts as a piecewise linear
activation function. This approach has achieved many state-of-the-art results on
various benchmark datasets.

In this paper, we attempt to generalize this approach by noticing that most
pooling operators including max pooling as well as maxout units can be under-
stood as special cases of computing a normalized Lp norm over the outputs of
a set of filter outputs. Unlike those conventional pooling operators, however, we
claim here that it is beneficial to estimate the order p of the Lp norm instead of
fixing it to a certain predefined value such as ∞, as in max pooling.

The benefit of learning the order p, and thereby a neural network with Lp

units of different orders, can be understood from geometrical perspective. As
each Lp unit defines a spherical shape in a non-Euclidean space whose metric
is defined by the Lp norm, the combination of multiple such units leads to a
non-trivial separating boundary in the input space. In particular, an MLP may
learn a highly curved boundary efficiently by taking advantage of different values
of p. In contrast, using a more conventional nonlinear activation function, such
as the rectifier, results in boundaries that are piece-wise linear. Approximating
a curved separation of classes would be more expensive in this case, in terms of
the number of hidden units or piece-wise linear segments.

In Sec. 2 a basic description of a multi-layer perceptron (MLP) is given fol-
lowed by an explanation of how a pooling operator may be considered a nonlinear
activation function in an MLP. We propose a novel Lp unit for an MLP by gen-
eralizing pooling operators as Lp norms in Sec. 3. In Sec. 4 the proposed Lp

unit is further analyzed from the geometrical perspective. We describe how the
proposed Lp unit may be used by recurrent neural networks in Sec. 5. Sec. 6
provides empirical evaluation of the Lp unit on a number of object recognition
tasks.

2 Background

2.1 Multi-layer Perceptron

A multi-layer perceptron (MLP) is a feedforward neural network consisting of
multiple layers of nonlinear neurons [29]. Each neuron uj of an MLP typically
receives a weighted sum of the incoming signals {a1, . . . , aN} and applies a non-
linear activation function φ to generate a scalar output such that
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uj ({a1, . . . , aN}) = φ

(
N∑
i=1

wijai

)
. (1)

With this definition of each neuron1, we define the output of an MLP having L
hidden layers and q output neurons given an input x by

u(x | θ) = φ
(
U�φ[L]

(
W�

[L] · · ·φ[1]

(
W�

[1]x
)
· · ·
))

, (2)

where W[l] and φ[l] are the weights and the nonlinear activation function of the
l-th hidden layer, and W[1] and U are the weights associated with the input and
output, respectively.

2.2 Pooling as a Nonlinear Unit in MLP

Pooling operators have been widely used in convolutional neural networks (CNN)
[21,10,27] to reduce the dimensionality of a high-dimensional output of a convo-
lutional layer. When used to group spatially neighboring neurons, this operator
which summarizes a group of neurons in a lower layer is able to achieve the prop-
erty of (local) translation invariance. Various types of pooling operator have been
proposed and used successfully, such as average pooling, root-of-mean-squared
(RMS) pooling and max pooling [19,33].

A pooling operator may be viewed instead as a nonlinear activation func-
tion. It receives input signal from the layer below, and it returns a scalar value.
The output is the result of applying some nonlinear function such as max (max
pooling). The difference from traditional nonlinearities is that the pooling op-
erator is not applied element-wise on the lower layer, but rather on groups of
hidden units. A maxout nonlinear activation function proposed recently in [13]
is a representative example of max pooling in this respect.

3 Lp Unit

The recent success of maxout has motivated us to consider a more general non-
linear activation function that is rooted in a pooling operator. In this section,
we propose and discuss a new nonlinear activation function called an Lp unit
which replaces the max operator in a maxout unit by an Lp norm.

3.1 Normalized Lp-Norm

Given a finite vector/set of input signals [a1, . . . , aN ] a normalized Lp norm is
defined as

uj ([a1, . . . , aN ]) =

(
1

N

N∑
i=1

|ai − ci|pj

) 1
pj

, (3)

1 We omit a bias to make equations less cluttered.
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Fig. 1. (a) An illustration of a single Lp unit with two sets of incoming signals. For
clarity, biases and the division by the number of filters are omitted. The symbol x in
each block (square) represents an input signal to that specific block (square) only. (b)
An illustration of the effect of p on the shape of an ellipsoid. Only the first quadrant
is shown.

where pj indicates that the order of the norm may differ for each neuron. It
should be noticed that when 0 < pj < 1 this definition is not a norm anymore
due to the violation of triangle inequality. In practice, we re-parameterize pj by
1 + log (1 + eρj ) to satisfy this constraint.

The input signals (also called filter outputs) ai are defined by

ai = w�
i x,

where x is a vector of activations from the lower layer. ci is a center, or bias, of
the i-th input signal ai. Both pj and ci are model parameters that are learned.

We call a neuron with this nonlinear activation function an Lp unit. An illus-
tration of a single Lp unit is presented in Fig. 1 (a).

EachLp unit in a single layer receives input signal from a subset of linear projec-
tions of the activations of the layer immediately below. In other words, we project
the activations of the layer immediately below linearly to A = {a1, . . . , aN}. We
then divide A into equal-sized, non-overlapping groups of which each is fed into a
single Lp unit. Equivalently, each Lp unit has its private set of filters.

The parameters of an MLP having one or more layers of Lp units can be
estimated by using backpropagation [30], and in particular we adapt the order
p of the norm.2 In our experiments, we use Theano [5] to compute these partial
derivatives and update the orders pj (through the parametrization of pj in terms
of ρj), as usual with any other parameters.

2 The activation function is continuous everywhere except a finite set of points, namely
when ai − ci is 0 and the absolute value function becomes discontinuous. We ignore
these discontinuities, as it is done, for instance, in maxouts and rectifiers.
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3.2 Related Approaches

Thanks to the definition of the proposed Lp unit based on the Lp norm, it
is straightforward to see that many previously described nonlinear activation
functions or pooling operators are closely related to or special cases of the Lp

unit. Here we discuss some of them.
When pj = 1, Eq. (3) becomes

uj ([a1, . . . , aN ]) =
1

N

N∑
i=1

|ai| .

If we further assume ai ≥ 0, for instance, by using a logistic sigmoid activation
function on the projection of the lower layer, the activation is reduced to com-
puting the average of these projections. This is a form of average pooling, where
the non-linear projections represent the pooled layer. With a single filter, this is
equivalent to the absolute value rectification proposed in [19]. If pj is 2 instead
of 1, the root-of-mean-squared pooling from [33] is recovered.

As pj grows and ultimately approaches ∞, the Lp norm becomes

lim
pj→∞

uj ([a1, . . . , aN ]) = max {|a1| , . . . , |aN |} .

When N = 2, this is a generalization of a rectified linear unit (ReLU) as well
as the absolute value unit [19]. If each ai is constrained to be non-negative, this
corresponds exactly to the maxout unit.

In short, the proposed Lp unit interpolates among different pooling operators
by the choice of its order pj . This was noticed earlier in [8] as well as [33].
However, both of them stopped at analyzing the Lp norm as a pooling operator
with a fixed order and comparing those conventional pooling operators against
each other. The authors of [4] investigated a similar nonlinear activation function
that was inspired by the cells in the primary visual cortex. In [18], the possibility
of learning p has been investigated in a probabilistic setting in computer vision.

On the other hand, in this paper, we claim that the order pj needs to, and can
be learned, just like all other parameters of a deep neural network. Furthermore,
we conjecture that (1) an optimal distribution of the orders of Lp units differs
from one dataset to another, and (2) each Lp unit in a MLP requires a different
order from the other Lp. These properties also distinguish the proposed Lp unit
from the conventional radial-basis function network (see, e.g., [15])

4 Geometrical Interpretation

We analyze the proposed Lp unit from a geometrical perspective in order to
motivate our conjecture regarding the order of the Lp units. Let the value of an
Lp unit u be given by:

u(x) =

(
1

N

N∑
i=1

∣∣w�
i x− ci

∣∣p) 1
p

, (4)
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where wi represents the i-th column of the matrix W. The equation above
effectively says that the Lp unit computes the p-th norm of the projection of the
input x on the subspace spanned by N vectors {w1, . . . ,wN}. Let us further
assume that x ∈ Rd is a vector in an Euclidean space.

The space onto which x is projected may be spanned by linearly dependent
vectors wi’s. Due to the possible lack of the linear independence among these
vectors, they span a subspace S of dimensionality k ≤ N . The subspace S has
its origin at c = [c1, . . . , cN ].

We impose a non-Euclidean geometry on this subspace by defining a norm in
the space to be Lp with p potentially not 2, as in Eq. (4). The geometrical object
to which a particular value of the Lp unit corresponds forms a superellipse when
projected back into the original input space. 3 The superellipse is centered at the
inverse projection of c in the Euclidean input space. Its shape varies according
to the order p of the Lp unit and due to the potentially linearly-dependent
bases. As long as p ≥ 1 the shape remains convex. Fig. 1 (b) draws some of the
superellipses one can get with different orders of p, as a function of a1 (with a
single filter).

In this way each Lp unit partitions the input space into two regions – inside
and outside the superellipse. Each Lp unit uses a curved boundary of learned
curvature to divide the space. This is in contrast to, for instance, a maxout unit
which uses piecewise linear hyperplanes and might require more linear pieces to
approximate the same curved segment.

4.1 Qualitative Analysis in Low Dimension

When the dimensionality of the input space is 2 and each Lp receives 2 input
signals, we can visualize the partitions of the input space obtained using Lp units
as well as conventional nonlinear activation functions. Here, we examine some
artificially generated cases in a 2-D space.

Two Classes, Single Lp Unit. Fig. 2 shows a case of having two classes (•
and •) of which each corresponds to a Gaussian distribution. We trained MLPs
having a single hidden neuron. When the MLPs had an Lp unit, we fixed p to
either 2 or ∞. We can see in Fig. 2 (a) that the MLP with the L2 unit divides
the input space into two regions – inside and outside a rotated superellipse.4

The superellipse correctly identified one of the classes (red).
In the case of p = ∞, what we see is a degenerate rectangle which is an

extreme form of a superellipse. The superellipse again spotted one of the classes
and appropriately draws a separating curve between the two classes.

3 Since k ≤ N , the superellipse may be degenerate in the sense that in some of theN−k
axes the width may become infinitely large. However, as this does not invalidate our
further argument, we continue to refer this kind of (degenerate) superellipse simply
by an superellipse.

4 Even though we use p = 2, which means an Euclidean space, we get a superellipse
instead of a circle because of the linearly-dependent bases {w1, . . . ,wN} .
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(a) Lp with p = 2 (b) Lp with p = ∞ (c) Rectifier

Fig. 2. Visualization of separating curves obtained using different activation functions.
The underlying data distribution is a mixture of two Gaussian distributions. The red
and green dots are the samples from the two classes, respectively, and the black curves
are separating curves found by the MLPs. The purple lines indicate the axes of the
subspace learned by each Lp unit. Best viewed in color.

(a) p1 = p2 = 2 (b) p1 = 2 and p2 = ∞

Fig. 3. Visualization of separating curves obtained using different orders of Lp units.
The underlying data distribution is a mixture of three Gaussian distributions. The blue
curves show the shape of the superellipse learned by each Lp unit. The red, green and
blue dots are the samples. Otherwise, the same color convention as in Fig. 2 has been
used.

In the case of rectifier units it could find a correct separating curve, but it
is clear that a single rectifier unit can only partition the input space linearly
unlike Lp units. A combination of several rectifier units can result in a nonlinear
boundary, specifically a piecewise-linear one, though our claim is that you need
more such rectifier units to get an arbitrarily shaped curve whose curvature
changes in a highly nonlinear way.

Three Classes, Two Lp Units. Similarly to the previous experiment, we
trained two MLPs having two Lp units on data generated from a mixture of
three Gaussian distribution. Again, each mixture component corresponds to each
class.

For one MLP we fixed the orders of the two Lp units to 2. In this case, see
Fig. 3 (a), the separating curves are constructed by combining two translated
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superellipses represented by the Lp units. These units were able to locate the
two classes, which is sufficient for classifying the three classes (•, • and •).

The other MLP had two Lp units with p fixed to 2 and∞, respectively. The L2

unit defines, as usual, a superellipse, while the L∞ unit defines a rectangle. The
separating curves are constructed as a combination of the translated superellipse
and rectangle and may have more non-trivial curvature as in Fig. 3 (b).

Furthermore, it is clear from the two plots in Fig. 3 that the curvature of the
separating curves may change over the input space. It will be easier to model
this non-stationary curvature using multiple Lp units with different p’s.

Decision Boundary with Non-stationary Curvature: Representational
Efficiency. In order to test the potential efficiency of the proposed Lp unit from
its ability to learn the order p, we have designed a binary classification task that
has a decision boundary with a non-stationary curvature. We use 5000 data
points of which a subset is shown in Fig. 4 (a), where two classes are marked
with blue dots (•) and red crosses (+), respectively.

On this dataset, we have trained MLPs with either Lp units, L2 units (Lp units
with fixed p = 2), maxout units, rectifiers or logistic sigmoid units. We varied
the number of parameters, which correspond to the number of units in the case
of rectifiers and logistic sigmoid units and to the number of inputs signals to the
hidden layer in the case of Lp units, L2 units and maxout units, from 2 to 16.
For each setting, we trained ten randomly initialized MLPs. In order to reduce
effects due to optimization difficulties, we used in all cases natural conjugate
gradient [23].

From Fig. 4 (c), it is clear that the MLPs with Lp units outperform all others
in terms of representing this specific curve. They were able to achieve the zero
training error with only three units (i.e., 6 filters) on all ten random runs and
achieved the lowest average training error even with less units. Importantly,
the comparison to the performance of the MLPs with L2 units shows that it is
beneficial to learn the orders p of Lp units. For example, with only two L2 units
none of the ten random runs succeed while at least one succeeds with two Lp

units. All the other MLPs, especially ones with rectifiers and maxout units which
can only model the decision boundary with piecewise linear functions, were not
able to achieve the similar efficiency of the MLPs with Lp units (see Fig 4 (b)).

Fig. 4 (a) also shows the decision boundary found by the MLP with two
Lp units after training. As can be observed from the shapes of the Lp units
(purple and cyan dashed curves), each Lp unit learned an appropriate order p
that enables them to model the non-stationary decision boundary. Fig. 4 (b)
shows the boundary obtained by a rectifier model with four units. We can see
that it has to use linear segments to compose the boundary, resulting in not
perfectly solving the task. The rectifier model represented here has 64 mistakes,
versus 0 obtained by the Lp model.
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Fig. 4. (a) Visualization of data (two classes, + and •), a decision boundary learned by
an MLP with two Lp units (green curve) and the shapes corresponding to the orders p’s
learned by the Lp units (purple and cyan dashed curves). (b) The same visualization
done using four rectifiers. (c) The failure rates computed with MLPs using different
numbers of different nonlinear activation functions (Lp: red solid curve with red •,
L2: blue solid curve with blue 	, maxout: green dashed curve with green �, rectifier:
cyan dash-dot curve with cyan 
 and sigmoid: purple dashed curve with purple �).
The curves show the proportion of the failed attempts over ten random trials (y-axis)
against either the number of units for sigmoid and rectifier model or the total number
of linear projection going into the maxout units or Lp units (x-axis).
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(a) MNIST (b) TFD (c) Pentomino

Fig. 5. Distributions of the initial (black bars �) and learned (shaded bars �) orders
on MNIST, TFD and Pentomino. x-axis and y-axis show the order and the number of
Lp units with the corresponding order. Note the difference in the scales of the x-axes
and that the y-axes are in logarithmic scale.

Although this is a low-dimensional, artificially generated example, it demon-
strates that the proposed Lp units are efficient at representing decision bound-
aries which have non-stationary curvatures.

5 Application to Recurrent Neural Networks

A conventional recurrent neural network (RNN) mostly uses saturating nonlinear
activation functions such as tanh to compute the hidden state at each time step.
This prevents the possible explosion of the activations of hidden states over
time and in general results in more stable learning dynamics. However, at the
same time, this does not allow us to build an RNN with recently proposed
non-saturating activation functions such as rectifiers and maxout as well as the
proposed Lp units.

The authors of [24] recently proposed three ways to extend the conventional,
shallow RNN into a deep RNN. Among those three proposals, we notice that it
is possible to use non-saturating activations functions for a deep RNN with deep
transition without causing the instability of the model, because a saturating
non-linearity (tanh) is applied in sandwich between the Lp MLP associated with
each step.

The deep transition RNN (DT-RNN) has one or more intermediate layers
between a pair of consecutive hidden states. The transition from a hidden state
ht−1 at time t− 1 to the next hidden state ht is

ht = g
(
W�f

(
U�ht−1 +V�xt

))
,

not showing biases, as previously.
When a usual saturating nonlinear activation function is used for g, the acti-

vations of the hidden state ht are bounded. This allows us to use any, potentially
non-saturating nonlinear function for f . We can simply use a layer of the pro-
posed Lp unit in the place of f .

As argued in [24], if the procedure of constructing a new summary which
corresponds to the new hidden state ht from the combination of the current
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input xt and the previous summary ht−1 is highly nonlinear, any benefit of the
proposed Lp unit over the existing, conventional activation functions in feedfor-
ward neural networks should naturally translate to these deep RNNs as well.
We show this effect empirically later by training a deep output, deep transition
RNN (DOT-RNN) with the proposed Lp units.

6 Experiments

In this section, we provide empirical evidences showing the advantages of uti-
lizing the Lp units. In order to clearly distinguish the effect of employing Lp

units from introducing data-specific model architectures, all the experiments in
this section are performed by neural networks having densely connected hidden
layers.

6.1 Claims to Verify

Let us first list our claims about the proposed Lp units that need to be verified
through a set of experiments. We expect the following from adopting Lp units
in an MLP:

1. The optimal orders of Lp units vary across datasets
2. An optimal distribution of the orders of Lp units is not close to a (shifted)

Dirac delta distribution

The first claim states that there is no universally optimal order pj . We train
MLPs on a number of benchmark datasets to see the resulting distribution of pj ’s.
If the distributions had been similar between tasks, claim 1 would be rejected.

This naturally connects to the second claim. As the orders are estimated
via learning, it is unlikely that the orders of all Lp units will convergence to a
single value such as∞ (maxout or max pooling), 1 (average pooling) or 2 (RMS
pooling). We expect that the response of each Lp unit will specialize by using
a distinct order. The inspection of the trained MLPs to confirm the first claim
will validate this claim as well.

On top of these claims, we expect that an MLP having Lp units, when the
parameters including the orders of the Lp units are well estimated, will achieve
highly competitive classification performance. In addition to classification tasks
using feedforward neural networks, we anticipate that a recurrent neural network
benefits from having Lp units in the intermediate layer between the consecutive
hidden states, as well.

6.2 Datasets

For feedforward neural networks or MLPs, we have used four datasets; MNIST
[21], Pentomino [14], the Toronto Face Database (TFD) [31] and Forest Cover-
type5 (data split DS2-581) [32]. MNIST, TFD and Forest Covertype are three

5 We use the first 16 principal components only.
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representative benchmark datasets, and Pentomino is a relatively recently pro-
posed dataset that is known to induce a difficult optimization challenge for a
deep neural network. We have used three music datasets from [7] for evaluating
the effect of Lp units on deep recurrent neural networks.

6.3 Distributions of the Orders of Lp Units

Table 1. The means and standard
deviations of the estimated orders
of Lp units

Dataset Mean Std. Dev.
MNIST 3.44 0.38
TFD 2.04 0.22

Pentomino 5.81 1.56

To understand how the estimated orders p
of the proposed Lp unit are distributed we
trained MLPs with a single Lp layer on
MNIST, TFD and Pentomino. We measured
validation error to search for good hyperpa-
rameters, including the number of Lp units
and number of filters (input signals) per Lp

unit. However, for Pentomino, we simply fixed
the size of the Lp layer to 400, and each Lp

unit received signals from six hidden units
below.

In Table 1, the averages and standard deviations of the estimated orders of the
Lp units in the single-layer MLPs are listed for MNIST, TFD and Pentomino. It
is clear that the distribution of the orders depend heavily on the dataset, which
confirms our first claim described earlier. From Fig. 5 we can clearly see that
even in a single model the estimated orders vary quite a lot, which confirms
our second claim. Interestingly, in the case of Pentomino, the distribution of the
orders consists of two distinct modes.

The plots in Fig. 5 clearly show that the orders of the Lp units change signif-
icantly from their initial values over training. Although we initialized the orders
of the Lp units around 3 for all the datasets, the resulting distributions of the
orders are significantly different among those three datasets. This further con-
firms both of our claims. As a simple empirical confirmation we tried the same
experiment with the fixed p = 2 on TFD and achieved a worse test error of 0.21.

6.4 Generalization Performance

The ultimate goal of any novel nonlinear activation function for an MLP is
to achieve better generalization performance. We conjectured that by learning
the orders of Lp units an MLP with Lp layers will achieve highly competitive
classification performance.

For MNIST we trained an MLP having two Lp layers followed by a soft-
max output layer. We used a recently introduced regularization technique called
dropout [16]. With this MLP we were able to achieve 99.03% accuracy on the
test set, which is comparable to the state-of-the-art accuracy of 99.06% obtained
by the MLP with maxout units [13].

On TFD we used the same MLP from the previous experiment to evaluate
generalization performance. We achieved a recognition rate of 79.25%. Although
we use neither pretraining nor unlabeled samples, our result is close to the current
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Table 2. The generalization errors on three datasets obtained by MLPs using the
proposed Lp units. The previous state-of-the-art results obtained by others are also
presented for comparison.

Data MNIST TFD Pentomino Forest Covertype

Lp 0.97 % 20.75 % 31.85 % 2.83 %

Previous 0.94 %1 21.29 %2 44.6 %3 2.78 %4

state-of-the-art rate of 82.4% on the permutation-invariant version of the task
reported by [26] who pretrained their models with a large amount of unlabeled
samples.

As we have used the five-fold cross validation to find the optimal hyperpa-
rameters, we were able to use this to investigate the variance of the estimations
of the p values. Table 3 shows the averages and standard deviations of the esti-
mated orders for MLPs trained on the five folds using the best hyperparameters.
It is clear that in all the cases the orders ended up in a similar region near two
without too much difference in the variance.

Similarly, we have trained five randomly initialized MLPs on MNIST and
observed the similar phenomenon of all the resulting MLPs having similar dis-
tributions of the orders. The standard deviation of the averages of the learned
orders was only 0.028, while its mean is 2.16.

The MLP having a single Lp layer was able to classify the test samples of
Pentomino with 31.38% error rate. This is the best result reported so far on
Pentomino dataset [14] without using any kind of prior information about the
task (the best previous result was 44.6% error).

On Forest Covertype an MLP having three Lp layers was trained. The MLP
was able to classify the test samples with only 2.83% error. The improvement
is large compared to the previous state-of-the-art rate of 3.13% achieved by the
manifold tangent classifier having four hidden layers of logistic sigmoid units
[28]. The result obtained with the Lp is comparable to that obtained with the
MLP having maxout units.

These results as well as previous best results for all datasets are summarized
in Table 2.

In all experiments, we optimized hyperparameters such as an initial learning
rate and its scheduling to minimize validation error, using random search [3],
which is generally more efficient than grid search when the number of hyperpa-
rameters is not tiny. Each MLP was trained by stochastic gradient descent. All
the experiments in this paper were done using the Pylearn2 library [12].

1 Reported in [13].
2 This result was obtained by training an MLP with rectified linear units which out-
performed an MLP with maxout units.

3 Reported in [14].
4 This result was obtained by training an MLP with maxout units which outperformed
an MLP with rectified linear units.



Learned-Norm Pooling for Deep Feedforward and RNN 543

6.5 Deep Recurrent Neural Networks

Table 3. The means and standard
deviations of the estimated orders
of Lp units obtained during the hy-
perparameter search using the 5-
fold cross-validation.

Fold Mean Std. Dev.
1 2.00 0.24 ×10−4

2 2.00 0.24 ×10−4

3 2.01 0.77 ×10−4

4 2.02 1.50 ×10−4

5 2.00 0.24 ×10−4

We tried the polyphonic music prediction
tasks with three music datasets; Nottingam,
JSB and MuseData [7]. The DOT-RNNs we
trained had deep transition with Lp units and
tanh units and deep output function with
maxout in the intermediate layer (see Fig. 6
for the illustration). We coarsely optimized
the size of the models and the initial lean-
ing rate as well as its schedule to maximize
the performance on validation sets. Also, we
chose whether to threshold the norm of the
gradient based on the validation performance
[25]. All the models were trained with dropout
[16].

Fig. 6. The illustration of the
DOT-RNN using Lp units

As shown in Table 4, we were able to
achieve the state-of-the-art results (RNN-only
case) on all the three datasets. These re-
sults are much better than those achieved by
the same DOT-RNNs using logistic sigmoid
units in both deep transition and deep output,
which suggests the superiority of the proposed
Lp units over the conventional saturating ac-
tivation functions. This suggests that the pro-
posed Lp units are well suited not only to feed-
forward neural networks, but also to recur-
rent neural networks. However, we acknowl-
edge that more investigation into applying Lp

units is needed in the future to draw more
concrete conclusion on the benefits of the Lp

units in recurrent neural networks.

DOT-RNN RNN
Dataset Lp sigmoid� *

Nottingam 2.95 3.22 3.09
JSB 7.92 8.44 8.01
Muse 6.59 6.97 6.75

Table 4. The negative log-probability of
the test sets computed by the trained
DOT-RNNs. (�) These are the results
achieved using DOT-RNNs having logis-
tic sigmoid units, which we reported in
[24]. (*) These are the previous best re-
sults achieved using conventional RNNs
obtained in [2].

7 Conclusion

In this paper, we have proposed a novel nonlinear activation function based
on the generalization of widely used pooling operators. The proposed nonlinear
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activation function computes the Lp norm of several projections of the lower
layer. Max-, average- and root-of-mean-squared pooling operators are special
cases of the proposed activation function, and naturally the recently proposed
maxout unit is closely related under an assumption of non-negative input signals.

An important difference of the Lp unit from conventional pooling operators
is that the order of the unit is learned rather than pre-defined. We claimed that
this estimation of the orders is important and that the optimal model should
have Lp units with various orders.

Our analysis has shown that an Lp unit defines a non-Euclidean subspace
whose metric is defined by the Lp norm. When projected back into the input
space, the Lp unit defines an ellipsoidal boundary. We conjectured and showed in
a small scale experiment that the combination of these curved boundaries may
more efficiently model separating curves of data with non-stationary curvature.

These claims were empirically verified via training both deep feedforward
neural networks and deep recurrent neural networks. We tested the feedforward
neural network on on four benchmark datasets; MNIST, Toronto Face Database,
Pentomino and Forest Covertype, and tested the recurrent neural networks on
the task of polyphonic music prediction. The experiments revealed that the dis-
tribution of the estimated orders of Lp units indeed depends highly on dataset
and is far away from a Dirac delta distribution. Additionally, our conjecture
that deep neural networks with Lp units will be able to achieve competitive
generalization performance was empirically confirmed.
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Abstract. This paper focuses on binary classification with reject op-
tion, enabling the classifier to detect and abstain hazardous decisions.
While reject classification produces in more reliable decisions, there is a
tradeoff between accuracy and rejection rate. Two type of rejection are
considered: ambiguity and outlier rejection. The state of the art mostly
handles ambiguity rejection and ignored outlier rejection. The proposed
approach, referred as CONSUM, handles both ambiguity and outliers
detection. Our method is based on a quadratic constrained optimization
formulation, combining one-class support vector machines. An adapta-
tion of the sequential minimal optimization algorithm is proposed to
solve the minimization problem. The experimental study on both artifi-
cial and real world datasets exams the sensitivity of the CONSUM with
respect to the hyper-parameters and demonstrates the superiority of our
approach.

Keywords: Supervised classification, Rejection option, Abstaining clas-
sifier, Support vector machines.

1 Introduction

One of the most interesting exploitation of the data is the construction of predic-
tive classifiers [9]. For example, in genetic and molecular medicine, gene expres-
sion profiles can be used to differentiate different types of tumors with different
outcomes and thus assist MD in the selection of an adapted therapeutic treat-
ment if appropriate [20]. A huge number of methods from pattern recognition
and machine learning have been developed and deployed on various domains.
However, even though these methods produce classifiers with a good accuracy,
these are often still insufficiently accurate to be used routinely. For example,
a diagnostic or a choice of therapeutic strategy must be based on a very high
confidence classifier; an error of the predictive model may lead to tragic conse-
quences. A way of improving the reliability of such classifier is to use abstaining
classifiers [12] also called reject classifier [19] or selective classifier [4]. Unlike
standard classifiers that associate a predicted label to each example, only a sub-
set of the examples are assigned to a class. Reject classifiers define a rejection
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region including the examples of which confidence is low [1,18,13,7,11]. While
reject classifiers have a higher accuracy than the standard classifiers, there is
a trade-off between accuracy and rejection rate [8]. The higher the classifier
accuracy, the higher the rejection rate.

A contribution of this paper is to investigate and handle two types of rejec-
tion: the ambiguity rejection and the outlier rejection. The ambiguity rejection
corresponds to the cases where an example is close to several classes, we cannot
decide between these classes with a high confidence. The ambiguity rejection
region is generally a small region containing the class boundaries. The outlier
rejection corresponds to the cases where an example is far from all classes. The
outlier rejection region is a large region surrounding all classes. Let us to illus-
trate the difference between these two types of rejection. Assumes that a hospital
use a classifier to identify the lymphoblastic from the myelogenous leukemia of
patients suffering from acute leukemia. A classifier gives a probability of 0.49
for lymphoblastic and 0.51 for myelogenous for a given patient. Although, the
probability of myelogenous is the highest, this class cannot be assigned to the
patient, the difference of probability is too low. This patient must be rejected by
the classifier because no reliable diagnosis can be done. It is an ambiguity rejec-
tion. Let another patient file be far from the distribution of both lymphoblastic
and myelogenous. The patient is considered as an outlier and must be also re-
jected. It is likely that this patient has not an acute leukemia and should pass
tests for other types of leukemia. It is a outlier rejection.

In this paper we propose a new approach of classification with reject option
that defines both the outlier and ambiguity rejection regions. Section 2 intro-
duces the formal background and the state of the art. Section 3 is an overview of
CONSUM, together with the appropriate optimization algorithm for scalability
on large datasets. Experiments are reported and discussed in section 4 shows.
Conclusion and perspectives for future researches are given in section 5.

2 Classification with Reject Option

Let a binary classification problem with a training set T = {(x1, y1), ..., (xN , yN)}
where xi ∈ Rd and yi ∈ {−1,+1}. A reject classifier is a function that returns
a class for each example Ψ : Rd → {−1,+1, R}, R represents the reject class
including two subclasses Ra and Rd for ambiguity and outlier rejection. An ex-
ample can be positive, negative or an outlier (belongs to none of the two classes).
When we use a reject classifier on test examples, 12 different classification results
are possible (three actual classes × four predicted classes). To each of these cases
a cost is associated (table 1). The cost of a good classification is zero. λFP and
λFN stand for the cost for false positive and false negative. λON and λOP are
the costs for assigning respectively the positive or negative class to an outlier,
usually we set λON = λFN and λOP = λFP . Finally λRa is the cost of ambiguity
rejection. λRd is the cost for rejecting a positive or negative example as an out-
lier. Usually the costs of ambiguity and outlier rejection are equal λRa = λRd.
Note that, in principle, classifying the ambiguity rejection class to an outlier is
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Table 1. Cost matrix of a two classes classification problem with ambiguity and outlier
reject option

actual class

+1 -1 O

+1 0 λFP λOP

-1 λFN 0 λON

Ra λRa λRa 0

Rd λRd λRd 0

an error, but it has no impact on the classifier performance, this cost is therefore
set to zero. Most of reject classification methods only consider the ambiguity
rejection. In this case the cost matrix in table 1 is reduced to its first three rows
and first two columns.

Classifiers with rejection involve two main approaches: plug-in and embed-
ded methods. The most popular approach consists to add a rejection rule to a
classifier without rejection. These methods are called plug-in methods [1]. Two
thresholds tN and tP are defined on the output of the classifier f(x):

Ψ(x) =

⎧⎨⎩−1 if f(x) ≤ tN
+1 if f(x) ≥ tP
R if tN < f(x) < tP

(1)

Chow has introduced the notion of abstaining classifier and his definition of the
rejection region is based on the exact posterior probabilities [1]. The thresholds
defining the optimal abstaining region are computed directly from the cost ma-
trix. In practice, the exact posterior probabilities are not available since the class
distribution is unknown. The Chow’s rule must thus be used with an estima-
tion of the posterior probabilities. To overcome the need for the exact posterior
probabilities, Tortorella has proposed a method where the abstaining region is
computed in selecting two points on the Receiver operating characteristic (ROC)
curve describing the performance of the classifier[18]. The two points are identi-
fied by their tangent on the ROC curve computed from the cost of rejection and
type of error. Note that, Santos-Pereira proved that both the Chow’s rule and
ROC rule are actually equivalent [15].

Unlike the plug-in methods, the embedded methods compute the rejection re-
gion during the learning process. It has been proved that in theory the embed-
ded methods give better classifiers than plug’in rule [3]. Fumera and Roli replace
the Hinge loss function of the SVM by a kind of step function where the steps
represent the cost of good classification, rejection and miss-classification [5]. The
main drawback of this approach is the difficulty of the optimization problem be-
cause of the non-convexity of the loss function. Since the natural loss function of
reject classification is non-convex, Yuan and Wegkamp proposed to use a surro-
gate convex loss [22]. They show that these functions are infinite sample consistent
(they share the sameminimizer) with the original loss function in some conditions.
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Grandvalet et al. have proposed to use a double Hinge loss function in a SVM that
has the advantage to be convex and linear piece-wise [6].

Dubuisson and Masson introduced the notion of outlier rejection [2]. They
defined in a parametric case a threshold on the likelihood in order to reject
examples far from the centers of all classes. Landgrebe et al. studied the inter-
action between error rate, ambiguity and outlier rejection. They optimize the
thresholds of the classifiers in plotting the 3D ROC surface and computing the
volume under the surface [10].

3 Combination of Two One-Class Support Vector
Machines

3.1 Formal Description

Our method involve two interdependent one-class support vector machines, one
for each class. The aim of the one-class SVM is to construct the smallest region
capturing most of the training examples [16] and is defined by the following
optimization problem:

minw,ρ,ξi

1

2
||w||2 − ρ+

1

V N

N∑
i=1

ξi

subject to 〈w, xi〉 ≥ ρ− ξi

The hyperplan, defined by w and ρ, separates the training examples from the
origin with maximum margin into the feature space. All examples x such that
f(x) = 〈w, φ(x)〉−ρ ≥ 0 are in the one-class SVM, if f(x) < 0 then x is out from
the one-class SVM. The slack variables ξi’s represent the empirical loss associated
with xi. V ∈ [0, 1] represents the rate of outliers and controls the trade-off
between the size of the one-class SVM and the number of training example
outside from the one-class SVM. Without any loss of generality, we consider
that the training set is labeled as follow: yi = +1 for i ∈ [1, p] and yi = −1
for i ∈ [p + 1, N ]. Moreover we assume that the cost of false positive and false
negative are equal λFP = λFN = λE , λON = λOP = λE and λRa = λRd = λR.

Our method, called CONSUM, is based on the combination of two inter-
dependent one-class SVM. The coupling of the one-class SVM allows a robust
estimation of the rejection regions. The intuition behind this model is illustrated
by the figure 1. It minimizes the following function:

L =
1

2
||w+||2 − ρ+ +

1

V+N+

p∑
i=0

ξi +
1

2
||w−||2 − ρ− +

1

V−N−

N∑
i=p+1

ηi

+
C

N

(
Cr

N∑
i=1

θi + Ce

N∑
i=1

εi

)
(2)



Combination of One-Class SVM for Reject Classification 551

subject to

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
〈w+, φ(xi)〉 ≥ ρ+ − ξi ∀i ∈ [1, p]
〈w−, φ(xi)〉 ≥ ρ− − ηi ∀i ∈ [p+ 1, N ]
yi〈w+ − w−, φ(xi)〉 ≥ ρ− θi ∀i ∈ [1, N ]
yi〈w+ − w−, φ(xi)〉 ≥ −ρ− εi ∀i ∈ [1, N ]
ξi ≥ 0, ηi ≥ 0, θi ≥ 0, εi ≥ 0

(3)

Fig. 1. The two one-class support vector machines classifier CONSUM

Terms w+, and ρ+ define the one-class SVM of the positive class, the ξi are
the slack variables for the violation of the first constraint related to positive
examples that are not in the positive one-class SVM. Terms w−, and ρ− define
the one-class SVM of the negative class, the ηi are the slack variables for the
violation of the second constraint related to negative examples that are not in
the negative one-class SVM. The θi are the slack variables of the third constraint
related to the examples in the ambiguity rejection region. The εiare the slack
variables of the third constraint related to miss-classifications. The interaction
between the two one-class SVM is gouverned by the third and fourth constraints,
they define a region around the separator 〈w+ −w−, xi〉 = 0. It is similar to the
margin region in a standard SVM, excepted that the size of margin (equal to

2ρ
||w+−w−|| ) is not maximized in our model. The margin size is independently

optimized by the parameter ρ. This region is an approximation of the ambiguity
rejection region, i.e. the intersection of the two one-class SVM.

The optimization problem is solved in dual form in introducing the Lagrangian
multipliers αi, γi, μi, α

′
i, γ

′
i, μ

′
i for i = 1..N . The Lagrangian function can be

write as:
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L =
1

2
||w+||2 − ρ1 +

1

V+N+

p∑
i=1

ξi +
1

2
||w−||2 − ρ0 +

1

V−N−

N∑
i=p+1

ηi

+
C

N

(
Cr

N∑
i=1

θi + Ce

N∑
i=1

εi

)

−
p∑

i=1

αi(〈w+, φ(xi)〉 − ρ+ + ξi)−
N∑

i=p+1

αi(〈w−, φ(xi)〉 − ρ− + ηi)

−
N∑
i=1

γi(〈w+ − w−, φ(xi)〉yi − ρ+ θi)−
N∑
i=1

μi(〈w+ − w−, φ(xi)〉yi − ρ+ εi)

−
p∑

i=1

α′
iξi −

N∑
i=p+1

α′
iηi −

N∑
i=1

γ′
iθi −

N∑
i=1

μ′
iεi

This function is maximized with respect to the Lagrange multiplier and mini-
mized with the respect to primal variables: maxαi,γi,μiminw+,w−,ρ+,ρ−,ρ,ξ,η,θ,εL.
Setting the derivatives of L with the respect to the primal variables equal to
zero, one yields:

w+ =

p∑
i=1

αixi +
N∑
i=1

γixiyi +
N∑
i=1

μixiyi (4)

w− =

N∑
i=p+1

αixi −
N∑
i=1

γixiyi −
N∑
i=1

μixiyi (5)

p∑
i=1

αi = 1;

N∑
i=p+1

αi = 1;

N∑
i=1

γi −
N∑
i=1

μi = 0 (6)

0 ≤ αi ≤
1

V+N+
∀i ∈ [1, p] ; 0 ≤ αi ≤

1

V−N−
∀i ∈ [p+ 1, N ] (7)

0 ≤ γi ≤
CCr

N
; 0 ≤ μi ≤

CCe

N
(8)

Substituting (4)-(8) into L and denoting K ′
ij = yiyjKij leads to the dual

problem that is a quadratic programming problem:

minαi,γi,μi

1

2

p∑
i,j=1

αiαjK
′
ij +

1

2

N∑
i,j=p+1

αiαjK
′
ij +

N∑
i,j=0

γiγjK
′
ij +

N∑
i,j=0

μiμjK
′
ij

+
N∑

i,j=0

αiγjK
′
ij +

N∑
i,j=0

αiμjK
′
ij + 2

N∑
i,j=0

γiμjK
′
ij (9)

subject to the constraints (6) (7) and (8)
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The classifier is defined by the following decision functions:

f+(xj) = 〈w+, xj〉 − ρ+ =

p∑
i=1

αiKij +
N∑
i=0

γiKijyi +
N∑
i=0

μiKijyi − ρ+ (10)

f−(xj) = 〈w−, xj〉 − ρ− =

N∑
i=p+1

αiKij −
N∑
i=0

γiKijyi −
N∑
i=0

μiKijyi − ρ− (11)

f+(xj) returns a positive value if the example xj is contained in the positive
one-class SVM and negative value otherwise. If f+(xj) = 0, then xj is on the
one-class SVM boundary and we have 0 < αj <

1
V+N+

. This kind of example is

exploited in order to recover ρ+, since xj satisfies ρ+ = 〈w+, xj〉. ρ− is computed
in the same way. The final decision of CONSUM is based on the two decision
functions.

Ψ(x) =

⎧⎪⎪⎨⎪⎪⎩
+1 if f+(x) > 0 ∧ f−(x) ≤ 0
−1 if f+(x) ≤ 0 ∧ f−(x) > 0
Ra if f+(x) > 0 ∧ f−(x) > 0
Rd if f+(x) ≤ 0 ∧ f−(x) ≤ 0

(12)

Our model critically depends on the choice of the hyper-parameters V+, V−,
C, Cr and Ce. V+ and V− control the rate of outliers in the training set. By
default we consider that the training set contains no outliers. We want these
parameters low, we set them to V+ = V− = 0.05. V+ and V− are not set to zero
because it would overconstraints the general formulation (2-3). Cr and Ce control
the trade-off between the ambiguity rejection and the error rate. The optimal
trade-off is given by λE and λR. In our model the loss of an ambiguity rejected
example is CCrθi and the loss of an error is C(Crθi + Ceεi). We want that Ce,
Cr respect the ratio between the error and rejection costs Cr+Ce

Cr
= λE

λR
and be

normalized such that Cr+Ce = 1. That leads to Cr = λR

λE
and Ce =

λE−λR

λE
. The

parameters C controls the importance of the error and ambiguity rejection loss,
it plays the same role as the C in the usual SVM model. This parameter will be
optimized during the model fitting in an inner cross-validation procedure.

3.2 Optimization Algorithm

Our model is formulated as a quadratic programming problem with linear con-
straints (9). Several approaches are available to solve this type of problems. We
propose a modified version of the sequential minimal optimization (SMO) algo-
rithm that was originally developed for SVM training [14], a version for one-class
SVM has also been proposed [16]. It has the advantage to have a lower complex-
ity than the other methods and does not need to keep the whole Gram matrix
in memory. It is therefore adapted to large datasets. The principle of SMO is to
divide the original optimization problem into several optimization tasks of the
smallest size. In our case the smallest size is two, we have to optimize over pairs of
multipliers. According to the contraints (6), (7) and (8), there are three different
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types of multiplier pairs {(αu, αv)/u, v ∈ [1, p]])}, {(αu, αv)/u, v ∈ [p + 1, N ]}
and all pairs form from the γ and μ. Note that this last types of pairs can
divided into three subtypes {(γu, γv)}, {(μu, μv)} and {(γu, μv)}. The optimiza-
tion algorithm consists to select a pair of multipliers and optimize only these
two multipliers; this process is iterated until a stopping criterion.

Initialization. The multipliers can be initialized with any values, the only
conditions is that they respect the constraints (7-8). At the beginning of our
algorithm, the αi’s for i ∈ [1, p] are initialized to 1

N+
, the αi’s for i ∈ [p+ 1, N ]

are initialized to 1
N− and the γi’s and μi’s are initialized to 1

N .

Stopping Criterion. The optimization algorithm is stopped when the gain
of loss is null. However, in our algorithm we have to use a nonzero accuracy
tolerance such that two values are considered equal if they differ by less than e.
In practice the procedure is stopped at the iteration t when Lt − Lt−1 < e. In
our experiments e = 0.0001

Multipliers Pair Optimization Step. Our algorithm is a succession of mul-
tiplier pair optimization tasks. Suppose that at a given iteration, the pair of
multipliers γu and γv is selected to be optimized. All others multipliers are con-
sidered as constants during this task. From the constraint (6) we have γu+γv =∑N

i�=u,v γi −
∑N

i=0 μi = D. The quadratic problem (9) is written in function on
γu and γv :

L = γ2
i K

′
uu + γ2

jK
′
vv + 2γiγjK

′
uv + 2γuGu + 2γvGv +G+ γuA

+
u + γvA

+
v +A+

+ γuA
−
u + γvA

−
v +A− + 2γuMu + 2γvMv + 2M − γu − γv +X

A+
x =

p∑
i=1

αiK
′
ix A+ =

p∑
i=1

j �=u,v

αiγjK
′
ij A−

x =

N∑
i=p+1

αiK
′
ix A+ =

N∑
i=p+1
j �=u,v

αiγjK
′
ij

Gx =
∑
i�=x

γiK
′
ix G =

∑
i,j �=u,v

γuγvK
′
i,j Mx =

∑
i�=x

μiK
′
ix M =

∑
i,j �=u,v

μuμvK
′
i,j

X =
1

2

p∑
i,j=1

αiαjK
′
ij +

1

2

N∑
i,j=p+1

αiαjK
′
ij +

N∑
i,j=1

αiμjK
′
ij +

N∑
i,j=1

μiμjK
′
ij +

N∑
i=1

μi

Note that A+
x , A

+, A−
x , A−, Gx, G, Mx, M , X are constants in this step.

In using γu = D − γv, L in expressed only in function on γv and compute its
derivative:

∂L

∂γv
= 2(γv −D)K ′

uu + 2(D − 2γv)K
′
uv + 2γvK

′
vv +A+

v yv −A+
u yu

+ A−
u yu −A−

v yv + 2Gvyv − 2Guyu + 2Mvyv − 2Muyu
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Setting the derivative to zero leads the optimal value of γv:

γnew
v =

2D(Kuu −Kuv) +A+
u −A+

v +A−
u −A−

v + 2Gu − 2Gv + 2Mu − 2Mv

2(Kuu +Kvv − 2KuvYuv)

It is simpler to rewrite this equation in introducing the decision functions f+
and f− :

γnew
u = γu −Δ , γnew

v = γv +Δ

Δ =
yv(f−(xv)− f+(xv)) + yu(f+(xu)− f+(xu))

2(Kuu +Kvv − 2KuvYuv)

Let recall that the multipliers γi are still subject to the constraint (8). If γnew
u

or γnew
v is outside from the interval [0, CCr

N ], the constraint optimum is found by
projecting it into the bound of the allowed interval, then Δ, γnew

u and γnew
v are

recomputed. One the multiplier pair has been optimized, the decision functions
should be recomputed. However it is not necessary to use the formulas (10-11),
for saving computing resources we can updated them by:

fnew
+ (xi) = f+(xi) + δ+ with δ+ = Δ(Kuiyu −Kviyv)

fnew
− (xi) = f+(xi) + δ− with δ− = Δ(Kviyv −Kuiyu)

This procedure is repeated at each iteration, however the formulas differs
slightly in function on the type of multiplier pairs. The table 2 gives the formulas
of Δ,δ+ and δ− for each type of pair.

Table 2. Δ, δ+ and δ− used in the different cases of pair optimization tasks

pairs Δ δ+ δ−
αu,αv u,v∈[1,p]

f+(xu)−f+(xv)

Ku+Kvv−2KuvYuv
Δ(Kvi −Kui) 0

αu,αv u,v∈[p+1,N]
f−(xu)−f−(xv)

Kuu+Kvv−2KuvYuv
0 Δ(Kvi −Kui)

γu,γv
yv(f−(xv)−f+(xv))+yu(f+(xu)−f−(xu))

2(Kuu+Kvv−2KuvYuv)
Δ(Kviyv −Kuiyu) Δ(Kuiyu −Kviyv)

μu,μv
yv(f−(xv)−f+(xv))+yu(f+(xu)−f−(xu))

2(Kuu+Kvv−2KuvYuv)
Δ(Kviyv −Kuiyu) Δ(Kuiyu −Kviyv)

γu,μv
yu(f−(xu)−f+(xu))+yv(f−(xv)−f+(xv))

2(Kuu+Kvv+2KuvYuv)
Δ(Kuiyu +Kviyv) -Δ(Kuiyu +Kviyv)

Selection of the Multiplier Pairs. At each iteration a multiplier pair is
selected to be optimized. The pair selection could be random but an intelligent
selection procedure allows to speed up the optimization process. There are three
different types of pair, each of these pair types will be handled successively. Let’s
focus on the optimization of the first type of pair, i.e. {(αu, αv)/u, v ∈ [1, p])}.
We randomly select a positive example xu that does not respect the following
condition : ⎧⎨⎩

if αu = 0 then f+(xu) > ρ+
if 0 < αu < 1

V+N+
then f+(xu) = ρ+

if αu = 1
V+N+

then f+(xu) < ρ+
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If all positive examples respect this condition, xu is randomly selected among
the positive examples. This condition is checked in using the nonzero accuracy
tolerance introduced in the section 4.2. The second multipliers αv is the one
maximizing the numerator of Δ i.e. v = argmaxi∈⊕|f+(xu) − f+(xi)|. Then
the values of αu, αv, ρ+ and f+(xi) are updated. The idea is to select a pair
that will produce a large change (large Δ) in the values of αu and αv. Only the
numerator of Δ is computed for the pair selection because it is very fast since
we already have the value f+(xu) and f+(xv). If we use the real value of Δ,
the denominator have to be computed which would be much more slower. Other
pairs of the same type {(αu, αv)/u, v ∈ ⊕)} are selected and optimized until the
gain of loss becomes small i.e. Lt − Lt−1 < 10e. Then the same optimization
procedure is run on the two other types of pair. The whole procedure is iterated
until the stopping criterion is reached.

4 Experimental Validation

4.1 Experiment Settings

The goal of the experiments is to investigate the sensitivity of CONSUM with
respect to the hyper-pameters and to compare its performance to the state of the
art. There exist very few methods that construct classifiers with both ambiguity
and outlier rejection. Since our method is based on the combination of one-class
SVM, we tested the association of two one-class SVM (2OSVM), this approach
has been proposed in [17]. A one-class SVM is independently constructed for
each class and the decision rule is the same than in Eq.(12). The second method
tested is the support vector machine with the ambiguity rejection computed by
the Chow rule. The construction of the outlier rejection is more problematic
since it has been very few studied in the literature. The best way to have a
fair comparison with CONSUM is to base the outlier rejection on a one-class
SVM. A one-class SVM is computed on all training examples (both positive and
negative class), each example outside from the one-class SVM will considered
as an outlier1. In our experiments the different methods use a Gaussian kernel
whose variance σ is determined in an inner cross-validation loop. The costs of
miss-classification and rejection are set to λE = 4 and λR = 1

We did experiments on artificial datasets in order to show the behavior of
the different methods and analyze the impact of parameters of our approach.
The artificial data are generated from Gaussian distributions with independent

1 Note that since the Chow rule computes two thresholds on the classifier output to
define the ambiguity rejection (Eq.(1)), some researchers have proposed to add two
other thresholds to define the outlier rejection. These thresholds TN , TP are at the
extremes of the classifier output, all examples that are not in the interval [TN , TP ]
are considered as outliers. We think that this approach is not good and specially with
Gaussian kernel. Indeed, the higher values will be obtained by examples that are in
the center of the distribution of positive class and have the highest probabilities to
belong to the positive class. It is therefore not correct to consider these examples as
outlier rejections.
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SVM 2OSVM CONSUM

Fig. 2. Classifiers constructed on the artificial dataset with the different methods.
The green, blue, black and gray region represents respectively the positive, negative,
ambiguity rejection and outlier rejection region. The triangles and crosses represent
respectively the positive and negatives examples of the training set.

variables. To simulate the presence of outliers, we add to the test set examples
of a third class whose the distribution is uniform on the input space. Some
experiments are based on 2-dimension data in order to support visualization of
the classifiers.

4.2 Sensitivity Analysis

The figure 2 shows the classifiers obtained with the different methods on the arti-
ficial problem. The green, blue, black and gray region represents respectively the
positive, negative, ambiguity and outlier rejection region. We see that CONSUM
fits the ambiguity and outlier rejection regions better than the other methods.
The difference between the methods can be mainly seen in the shape of the am-
biguity rejection. The ambiguity rejection region of SVM is spread around the
boundary of the non-reject SVM. The ambiguity region of 2OSVM and CON-
SUM contains only region where positive and negative examples are mixed. The
difference between 2OSVM and CONSUM is the size of the ambiguity rejection.
The ambiguity region of CONSUM is larger and less regular. In 2OSVM, the two
one-class SVM are independent, there is no way to control the trade-off between
error and ambiguity rejection. In CONSUM, this trade-off is controlled by the
parameters CE , CR and the constraints (3), it has more degree of fredoom than
2OSVM. The fact that the size of ambiguity region is large in CONSUM comes
from the missclassification cost that is much higher than the rejection cost in
our simulation.

One of the crucial points of classification with reject option is the control of the
trade-off between the error rate and the rejection rate. In our model, this is done
by ρ+ and ρ−. We investigate the behavior of the error rate, ambiguity rejection
rate and outlier rejection rate in function on these thresholds. A CONSUM
classifier has been constructed on artificial data, we vary the value of ρ+ and
ρ− from 0 to max{f+(xi), f−(xi)|i = 1..N} and observe the impact of the error
rate, ambiguity and outlier rejection in the figure 3. The ambiguity rejection is
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Fig. 3. Evolution of the rate of error, ambiguity rejection and outlier rejection in
function of the thresholds ρ+ and ρ− of the CONSUM classifier

A B

Fig. 4. A: Trade-off between error and rejection rate of the different methods. B: Clas-
sification cost in function on the parameter C of SVM and CONSUM (There is no
parameter C in 2OSVM).

decreasing with ρ+ and ρ−, on the opposite the outlier rejection is increasing
with ρ+ and ρ−. The error rate is null when ρ+ = ρ− = 0, this corresponds
to the trivial case where all points are outlier rejected, there is therefore no
missclassification. On the opposite when both ρ+ and ρ− reach their maximum,
the two classes greatly overlap, there are few missclassifications. When ρ+ is
maximum and ρ− is null, the positive class dominates the negative class. All non-
rejected negative examples are false positive, the error rate is therefore very high.
We have the same thing when ρ− is maximum and ρ+ is null. This simulation
illustrates the relation between the error rate and the different types of rejection
of our model.

When the cost matrix of the classification problem is not known, the most
convenient method to compare several classifiers with reject option is to plot
their error-rejection curve (ERC). The ERC gives the error of a classifier in
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function the rejection rate (both ambiguity and outlier). When we consider both
ambiguity and outlier rejection, several different classifiers and rejection regions
may give the same rejection rate. For a given rejection rate, there are generally
several error rates. If we test all values of ρ+ and ρ−, the performances of the
classifier are illustrated by a scatter plot in the error-rejection space. If we keep
only the lowest error for each rejection rate value, the performance of the clas-
sifier is represented by a curve. It is the Pareto front of the scatter plot. These
curves(ERC) can be used to compare the performance of different classifiers.
The figure 4A gives the ERC of the SVM, 2OSVM and CONSUM classifiers on
artificial data. For reject.rate≥0.1 CONSUM is the best classifier and reaches
error.rate=0 for reject.rate=0.6. 2OSVM is never competitive, it reaches the
performance for SVM for reject.rate≥0.45 and the performance of CONSUM for
reject.rate≥0.75. Notes that CONSUM has no points for reject.rate=0 because
the model does not return empty rejection regions whatever the values of ρ+
and ρ−. In theory it is possible to reach reject.rate=0 if both all test points are
in one of the one-class SVM and there is no overlap between the two one-class
SVM. In practice this case is very rare.

In the next experiments we compare the performances of the classifiers in
computing their classification cost on a test set of size Nts. Let’s I(x) = 1 if x
is true, 0 otherwise; the classifier cost is defined by:

cost(Ψ) =
1

Nts

Nts∑
i=1

λEI (Ψ(xi) �= Ra ∨Rd) I (Ψ(xi) �= yi)+λRI (Ψ(xi)=Ra ∨Rd)

The figure 4B gives the classification cost of SVM and CONSUM in function
on their hyper-parameter C. The role of C is similar in the SVM and CONSUM
classifier. In SVM this parameter controls the trade-off between the maximiza-
tion of the margin and the good classification of the examples. In CONSUM, it
controls the trade-off between the optimization of the two one-class SVM and the
constraints on the miss-classifications and rejections of the training examples.
We see that the curves of SVM and CONSUM has a similar shape, they reach
their minimum around 0.5 < C < 1. At their optimal parameter, CONSUM
gives better results than SVM. In our next experiments, the parameters C is
determined by an inner cross-validation procedure.

4.3 Comparative Study

We made some experiments on real data with three different rejection scenarios.
We used six datasets from the UCI repository. The table 3 shows the classifica-
tion cost of the different methods on the six datasets. The first scenario is the
classification with no rejection. We use the usual SVM, for 2OSVM and CON-
SUM a class is assigned to an example according to 〈w+ − w−;xi〉. Results are
in the first three columns of the table 3. The best results are obtains mainly by
the SVM. However CONSUM obtains good results, its performances are close
to the SVM. In the second scenario, only ambiguity rejection is considered. The
Chow rule is added to the SVM, for 2OSVM and CONSUM the outlier rejection
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Table 3. Classification cost on artificial and real data experiments. The best results
are in bold.

no reject ambiguity reject amb.& outlier reject
datasets dimension SVM 2OSVM CONSUM SVM 2OSVM CONSUM SVM 2OSVM CONSUM

Artif. 2000×50 1.209 1.454 1.411 0.997 1.169 1.093 0.939 0.933 0.884
Artif. 2000×100 0.930 1.092 0.919 0.744 0.826 0.756 0.778 0.843 0.750
wdbc 569×30 0.325 0.410 0.312 0.307 0.279 0.194 0.325 0.508 0.194
spam 4601×57 0.262 0.268 0.309 0.115 0.212 0.061 0.248 0.294 0.152

madelon 2000×500 1.302 0.1430 1.332 1.100 1.283 1.017 0.967 0.953 0.919
pop 540×18 0.261 0.284 0.272 0.250 0.250 0.238 0.355 0.403 0.351

transfusion 748×4 0.946 1.002 0.926 0.801 0.964 0.902 0.839 0.959 0.851
bank 1374×4 0.066 0.080 0.092 0.051 0.074 0.061 0.208 0.179 0.182

region is not used. Results are given in the three middle columns. CONSUM has
the best performance for four datasets and SVM for two datasets. In the last
scenario, we consider both ambiguity and outlier rejection, outliers are added to
the test set as in the artificial dataset. A one-class SVM is added to the SVM,
2OSVM and CONSUM are used normally. Results are in the three last columns.
These last results are the most important since the scenario represents the prac-
tical cases. We see that CONSUM obtains the best performances. The results
show that our method gives both a reliable representation of the two classes by
one-class SVM and a good trade-off between the rejection and the error rate. It
is interesting to note that when there is no rejection, SVM is much better than
the other classifiers. When the rejection rate is significant CONSUM becomes
better than SVM. These results confirms the conclusion of [3] the best classifier
with rejection option is not the best classifier without rejection on which a re-
jection rule is added. Note also when we compare the ”no reject” scenario to the
two others, we conclude that the use of a rejection option improve greatly the
performance of the classifier whatever the method used.

5 Conclusion

We have introduced a new approach for classification with rejection option CON-
SUM that constructs simultaneously both the outlier and ambiguity rejection
regions. The outlier rejection is generally ignored in the state of the art, but it
is essential when the test set contains outliers, that is common in real applica-
tions. We showed that CONSUM can be viewed as a quadratic programming
problem and we proposed an optimization algorithm adapted for large datasets.
The results showed that our method improves the performance of classification.

In this paper we assumed that the cost of false positive and false negative are
equal (λFN = λFP ) and the cost of positive rejection and negative rejection are
equal. If the classification problem is cost sensitive or unbalanced, we may want
to assigned different costs to the two classes. In this case we introduce different
costs for the ambiguity rejection (λRNa �= λRPa) and for the outlier rejection
(λRNd �= λRPd). The rejection constraints of the minimization problem (3) are
split into constraints for positive examples and constraints for negative examples.
Different penalties are assigned to the loss of each classes. The minimization
problem can still be solved by the optimization algorithm presented in section
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4. The only difference is that the multipliers γ and μ of positive and negative
examples have to be optimized separately as with the α.

Our future works should focus on the multi-class problem. We can easily define
a one-class SVM for each class but the constraints for the miss-classifications and
ambiguity rejection are defined only for binary problems. The number of hyper-
parameters is the main challenges since it increase quadratically with the number
of classes. Several methods has been proposed to solve the problem of multi-class
SVM [21]. They could be a source of inspiration in order to propose a multi-class
version of CONSUM.
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Abstract. In this work we consider the problem of learning a positive
semidefinite kernel matrix from relative comparisons of the form: “object
A is more similar to object B than it is to C”, where comparisons are
given by humans. Existing solutions to this problem assume many com-
parisons are provided to learn a meaningful kernel. However, this can be
considered unrealistic for many real-world tasks since a large amount of
human input is often costly or difficult to obtain. Because of this, only a
limited number of these comparisons may be provided. We propose a new
kernel learning approach that supplements the few relative comparisons
with “auxiliary” kernels built from more easily extractable features in or-
der to learn a kernel that more completely models the notion of similarity
gained from human feedback. Our proposed formulation is a convex op-
timization problem that adds only minor overhead to methods that use
no auxiliary information. Empirical results show that in the presence
of few training relative comparisons, our method can learn kernels that
generalize to more out-of-sample comparisons than methods that do not
utilize auxiliary information, as well as similar metric learning methods.

Keywords: similarity learning, relative comparisons.

1 Introduction

The effectiveness of many kernel methods in unsupervised [24], [5], semi-
supervised [29], [28], [26], and supervised [18] learning is highly dependent on how
meaningful the input kernel is for modeling similarity among objects for a given
task. In practice, kernels are often built by using a standard kernel function on
features extracted from data. For example, when building a kernel over clothing
items, features can be extracted for each item regarding attributes like size, style,
and color. Then, a predefined kernel function (e.g. the Gaussian kernel function)
can be applied to these features to build a kernel over clothing. However, for
certain tasks, objects may not be represented well by extracted features alone.
Consider a product recommendation system for suggesting replacements for out
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of stock clothing items. Such a system requires a model of similarity based on
how humans perceive clothing, which may not be captured entirely by features.
For this, it is likely that human input is necessary to construct a meaningful
kernel.

In general, obtaining reliable information from humans can be challenging,
but retrieving relative comparisons of the form “object A is more similar to
object B than it is to object C” has several attractive characteristics. First, rel-
ative comparison questions are less mentally fatiguing to humans compared to
other forms (e.g. questions of the form: “From 1 to 10, how similar are objects
A and B?”) [10]. Second, there is no need to reconcile individual humans’ per-
sonal scales of similarity. Finally, relative comparison feedback can be drawn
implicitly through certain human-computer interactions, such as mouse clicks.
In this work, we consider the specific problem of learning a kernel from relative
comparisons; a problem we will refer to as relative comparison kernel learning
(RCKL).

Current RCKL methods [1], [22], [14] assume that all necessary human feed-
back to build a useful kernel is provided. This is often not the case in real-world
scenarios. A large amount of feedback is needed to build a kernel that represents
a meaningful notion of how a human views the relationships among objects, and
obtaining feedback from humans is often difficult or costly. Hence, it is a realistic
assumption that only a limited amount of feedback can be obtained.

We propose a novel RCKL method that learns a meaningful kernel from a
limited number of relative comparisons. Our method learns a kernel similar to
traditional RCKL methods, but combines this with a combination of auxiliary
kernels built from extracted features, similar to Multiple Kernel Learning (MKL)
methods. The intuition behind this approach is that while human feedback is
necessary to construct an appropriate kernel, some aspects of how humans view
similarity among objects are likely captured in easily extractable features. If
“auxiliary” kernels are built from these features, then they can be used to reduce
the need of many relative comparisons. To learn the aforementioned combination,
we formulate a convex optimization that adds a only small amount of computa-
tional overhead to traditional RCKL methods. Experimentally, we show that our
method can learn a kernel that accurately models the relationships among ob-
jects, including relationships not explicitly given. More specifically, when given
few relative comparisons, our method is shown to generalize to more held out
relative comparisons than traditional RCKL methods, as well as similar state-
of-the-art methods in metric learning.

The remainder of the paper is organized as follows. Section 2 provides our
formal definition of RCKL. Section 3 motivates our problem. Section 4 introduces
a general framework for extending RCKL methods to use auxiliary information.
Section 5 overviews related work. Section 6 presents an evaluation of our method.
Section 7 concludes with future work.
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2 Preliminaries

The RCKL problem considered in this work is defined by a set of n objects,
X = {x1, ..., xn} ⊆ X, where X is the set of all possible objects. Similarity
information among objects is given in the form of a set T of triplets:

T = {(a, b, c)|xa is more similar to xb than xc} (1)

The goal is to find a positive semidefinite (PSD) kernel matrix K ∈ Rn×n

that satisfies the following constraints:

∀(a,b,c)∈T : dK(xa, xb) < dK(xa, xc)

Where dK(xa, xb) = Kaa +Kbb − 2Kab

(2)

Here, Kab is the element in the ath row and bth column of K, representing
the similarity between the ath and bth objects. The elements of K can be inter-
preted as the inner products of the objects embedded in a Reproducing Kernel
Hilbert Space (RKHS), HK, endowed with a mapping ΦK : X → HK. With
this interpretation Kaa +Kbb − 2Kab = ‖ΦK(xa)−ΦK(xb)‖22. Thus, learning a
kernel matrix K that satisfies the constraints in (2) is equivalent to embedding
the objects in a space, such that for all triplets (a, b, c) ∈ T , xa is closer to xb
than it is to xc without explicitly learning the mapping ΦK. We say that a triplet
(a, b, c) is satisfied if the corresponding constraint in (2) is satisfied.

One interpretation of (2) is that triplets define a “less than” binary relation
(RT ) over the set of all pairwise distances of the objects in X (SX ). For exam-
ple, if X = {x1, x2, x3} and T = {(1, 2, 3), (2, 1, 3)}, then SX = {(dK(x1, x2),
dK(x1, x3), dK(x2, x3))}, and RT = {(dK(x1, x2), dK(x1, x3)), (dK(x1, x2),
dK(x2, x3))}. With this in mind, we continue onto the next section where we
discuss the RCKL problem in more depth.

3 The Impact of Few Triplets

To help motivate this work, we provide some insight into why it can be assumed,
in practice, that only a limited number of triplets can be obtained from humans,
and the potential impact it has on learning an accurate kernel. First, we begin
by defining some properties of sets of triplets:

Definition 1. Given a set of triplets T , let T ∞ be the transitive closure of T

Definition 2. Given a set of triplets T , let T trans = T ∞ \ T

Definition 2 simply defines T trans as the set of triplets that can be inferred
by transitivity of triplets in T . For example, if T = {(a, b, c), (c, a, b)} then
T trans = {(b, a, c)}.

Definition 3. A set T of triplets is conflicting if ∃a, b, c : (a, b, c) ∈ T ∞ ∧
(a, c, b) ∈ T ∞
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A set of conflicting triplets given by a source can be seen as inconsistent or
contradictory in terms of how the source is comparing objects. In practice, this
can be handled by prompting the source of triplets to resolve this conflict or by
using simplifying methods such as in [16]. We defer to these methods in terms
of how conflicts can be dealt with and consider the non-conflicting case. Let
T total be the set of all non-conflicting triplets that would be given by a source,
if prompted with every relative comparison question over n objects. We begin
by stating the following:

Theorem 1. For n objects, |T total| = 1
2 (n

3 − 3n2 + 2n)

Theorem 1 is proven in the extended version of this work [7]. For even a
small number of objects, obtaining most of T total from humans would be too
difficult or costly in many practical scenarios, especially if feedback is gained
through natural use of a system, such as an online store, or if feedback requires
an expert’s opinion, such as in the medical domain. Let T ⊆ T total be the set
of triplets actually obtained from a source. We say that a triplet t is unobtained
if t ∈ T total \ T . To build a model that accurately reflects the true notion of
similarity given by a source of triplets, an RCKL method should learn a kernel
K that not only satisfies the obtained triplets, but also many of the triplets
in T total, including those that were unobtained. This means that given a small
number of obtained triplets, an RCKL method should somehow infer a portion
of the unobtained triplets in order to build an accurate model of similarity. In the
remainder of this section we consider two possible scenarios where unobtained
triplets could potentially be inferred.

For the following analysis, we assume that triplets are obtained one at a
time. Also, we assume that the order in which triplets are obtained is random.
This could be a reasonable assumption in applications, such as search engines,
where the goal of asking relative comparison questions that are most useful
in the learning process comes secondary to providing the best search results,
and as such, no assumptions can be made regarding which relative comparison
questions are posed to a source. Thus, the worst-case in the following analysis
is with adversarial choice of both T total and the order in which triplets are
obtained. Let Ti be the set of triplets given by an adversary after i triplets are
given. Under these assumptions, we state the following theorem:

Theorem 2. In the worst-case, ∀i=1,...,|T total| : T trans
i \ Ti = ∅

Theorem 2 is proven in [7]. This states that in the worst case, no unobtained
triplet can be inferred by transitive relationship among obtained triplets. As
a result, it may fall on the RCKL methods themselves to infer triplets. Many
RCKL methods attempt to do this by assuming the learned kernel K has low
rank. By limiting the rank of K to r < n, an RCKL method may effectively
infer unobtained triplets by eliminating those that cannot be satisfied by a rank
r kernel. For instance, assume an RCKL method attempts to learn a rank r
kernel from T , and assume the triplets (a, b, c) and (a, c, b) are not in T . If the
set T ∪ (a, c, b) cannot be satisfied by a rank r kernel, but T ∪ (a, b, c) can,
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then the RCKL method can only learn a kernel in which (a, b, c) is satisfied. Let
T rank−r be the set of all unobtained, not otherwise inferred, triplets that are
inferred when an RCKL method enforces rank(K) ≤ r. For adversarial choice of
T total we can state the following theorem:

Theorem 3. In the worst case, ∀t∈T rank−r : t /∈ T total

Theorem 3 is proven in [7]. This theorem states that in the worst case, any
triplet inferred by limiting the rank of K is not a triplet a source would give. If
a large portion of T total cannot be obtained or correctly inferred, then much of
the information needed for an RCKL method to learn a kernel that reflects how
a source views the relationship among objects is simply not available. The goal
of this work is to use auxiliary information describing the objects to supplement
obtained triplets in order to learn a kernel that can satisfy more unobtained
triplets than traditional methods. In the following section we propose a novel
RCKL method that extends traditional RCKL methods to use auxiliary infor-
mation.

4 Learning a Kernel with Auxiliary Information

In this section we introduce a generalized framework for traditional RCKL meth-
ods. Then, we expand upon this to create two new frameworks: One that com-
bines auxiliary kernels to satisfy triplets, and another that is a hybrid of the
previous two.

4.1 Traditional RCKL

Many RCKL methods can be generalized by the following optimization problem:

min
K

E(K, T ) + λtrace(K)

s.t. K 3 0,
(3)

The first term, E(K, T ), is a function of the error that the objective incurs for
K not satisfying triplets in T . The second term regularizes K by its trace. Here,
the trace is used as a convex approximation of the non-convex rank function. The
rank of K directly reflects the dimensionality of the embedding of the objects in
HK. A low setting of the hyperparameter λ favors a more accurate embedding,
while a high value prefers a lower rank kernel. The PSD constraint ensures that
K is a valid kernel matrix, and makes (3) a semidefinite program (SDP) over
n2 variables. For the remainder of this paper we will refer to (3) as Traditional
Relative Comparison Kernel Learning (RCKL-T).

4.2 RCKL via Conic Combination

In general, if there are few triplets in T relative to n, there are many different
RCKL solutions. Without using information regarding how the objects relate
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other than T , RCKL-T methods may not generalize well to the many unob-
tained triplets. However, objects can often be described by features drawn from
data. From these features, A ∈ Z+ auxiliary kernels K1, ...,KA ∈ Rn×n can be
constructed using standard kernel functions to model the relationship among
objects. If one or more auxiliary kernels satisfy many triplets in T , they may
represent factors that influence how some of the unobtained triplets would have
been answered. For instance, if a user considers characteristics such as color and
size to be important when comparing clothing items, then kernels built from
color and size may model a trend in how the user answers triplets over clothing
items. If these kernels do represent a trend, then they could not only satisfy a
portion of triplets in T , but also a portion of the unobtained triplets. We wish
to identify which of the given auxiliary kernels model trends in given triplets
and combine them to satisfy triplets in T . An approach popularized by multiple
kernel learning methods is to combine kernels by a weighted sum:

K′ =
A∑

a=1

μaKa μ ∈ RA
≥0 (4)

K′ is a conic combination of PSD kernels, so itself is a PSD kernel [18]. K′

induces the mapping ΦK′ : X→ RD [6]:

ΦK′(xi) = [
√
μ1Φ1(xi), ...,

√
μAΦA(xi)] (5)

Here Φj : X → Rdj is a mapping from an object into the RKHS defined by

Kj ∈ Rn×n, and D =
∑A

a=1 da. In short, (4) induces a mapping of the objects
into a feature space defined as the weighted concatenation of the individual
kernels’ feature spaces. Consider, then, the following optimization:

min
μ

E(K′, T ) + λ‖μ‖1
s.t. μ ≥ 0

(6)

By learning the weight vector μ, (6) scales the individual concatenated feature
spaces to emphasize those that reflect T well, and reduce the influence of those
that do not. Because of its relationship to multiple kernel learning, we call this
formulation RCKL-MKL.

Since the auxiliary kernels are fixed, regularizing them by their traces has no
effect on their rank nor the rank of K′. Instead, we choose to regularize μ by
its �1-norm, a technique first made popular for its use in the Least Absolute
Shrinkage and Selection Operator (LASSO) [23]. For a proper setting of λ, this
has the effect of eliminating the contribution of kernels that do not help in
reducing the error by forcing their corresponding weights to be exactly zero.
Note that RCKL-MKL does not learn the elements of a kernel directly, and as
a result is a linear program over A variables.

By limiting the optimization to only a conic combination of the predefined
auxiliary kernels, RCKL-MKL does not necessarily produce a kernel that satisfies
any triplets in T . To capture the potential generalization power of using auxiliary
information while retaining the ability to satisfy triplets in T , we propose to
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learn a combination of the auxiliary kernels and K0, a kernel similar to the
one in RCKL-T whose elements are learned directly. By doing this, we force
RCKL-T to prefer solutions similar to the auxiliary kernels, which could satisfy
unobtained triplets. We call this hybrid approach Relative Comparison Kernel
Learning with Auxiliary Kernels (RCKL-AK).

4.3 RCKL-AK

RCKL-AK learns the following kernel combination:

K′′ = K0 +

A∑
a=1

μaKa μ ∈ RA
≥0, K0 3 0 (7)

(7) is a conic combination of kernel matrices that induces the mapping:

ΦK′′ (xi) = [Φ0(xi),
√
μ1Φ1(xi), ...,

√
μAΦA(xi)] (8)

The intuition behind this combination is that auxiliary kernels that satisfy
many triplets are emphasized by weighing them more, and K0, which is learned
directly, can satisfy the triplets that cannot be satisfied by the conic combination
of the auxiliary kernels. Consider, again, the example of a person comparing
clothing items from an online store. She may compare clothes by characteristics
such as color, size, and material, which are features that can be extracted and
used to build the auxiliary kernels. However, other factors may influence how
she compares clothes, such as designer or pattern, which may be omitted from
the auxiliary kernels. In addition, she may have a personal sense of style that is
impossible to be gained from features alone. K0, and thus features induced by
the mapping Φ0, is learned to model factors she uses to compare clothes that are
omitted from the auxiliary kernels or cannot be modeled by extracted features.
Using (7), we propose the following optimization:

min
K0,μ

E(K′′, T ) + λ1trace(K0) + λ2‖μ‖1
s.t. K0 3 0, μ ≥ 0

(9)

This objective has two regularization terms: trace regulation on K0, and �1-
norm regularization on μ. Increasing λ1 limits the expressiveness of K0 by re-
ducing its rank, while increasing λ2 reduces the influence of the auxiliary kernels
by forcing the elements of μ towards zero. Thus, λ1 and λ2 represent a trade-off
between finding a kernel that is more influenced by K0 and one more influenced
by the auxiliary kernels. Like RCKL-T, RCKL-AK is an SDP, but with n2 +A
optimization variables. For practical A, RCKL-AK can be solved with minimal
additional computational overhead to RCKL-T.

One desirable property of (9) is that under certain conditions, it is a convex
optimization problem:

Proposition 1. If E is a convex function in both K0 and μ, then (9) is a convex
optimization problem.
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Proposition 1 is proven in [7]. While Prop. 1 may seem simple, it allows us to
leverage traditional RCKL methods that contain error functions that are convex
in K0 and μ in order to solve (9) using convex optimization techniques. Two
such error functions are discussed in the following subsections.

Algorithm 1. STE-AK Projected Gradient Descent

Input:
X = {x1, ..., xn},
T = {(a, b, c)|xa is more similar to xb than xc},
K1, ...,KA ∈ Rn×n, λ1 ∈ R+, λ2 ∈ R+, η ∈ R+

Output:
K′′ ∈ Rn×n

1: t ← 0
2: K0

0 ← In×n

3: μ0
1, ..., μ

0
A ← 1

A

4: K′′ ← K0
0 +

∑A
a=1 μ

0
aKa

5: repeat
6: Kt+1

0 ← Kt − η ∗ (∇KtESTE(K
′′, T ) + λ1 ∗ In×n)

7: μt+1 ← μt − η ∗ (∇μtESTE(K
′′, T ) + λ2)

8: Kt+1
0 ← ΠPSD(Kt+1

0 )
9: μt+1 ← Π+(μ

t+1)
10: K′′ ← Kt+1

0 +
∑A

a=1 μ
t+1
a Ka

11: t ← t+ 1
12: until convergence

STE-AK. Stochastic Triplet Embedding (STE) [14] proposes the following
probability that a triplet is satisfied:

pKabc =
exp(−dK(xa, xb))

exp(−dK(xa, xb)) + exp(−dK(xa, xc))

If this probability is high, then xa is closer to xb than it is to xc. As such, we
minimize the negative sum of the log-probabilities over all triplets.

ESTE (K′′, T ) = −
∑

(a,b,c)∈T
log(pK

′′
abc) (10)

With this error function we call our method STE-AK and can state the following
proposition:

Proposition 2. (10) is convex in both K0 and μ

Proposition 2 is proven in [7]. By Props. 1 and 2, STE-AK is a convex opti-
mization problem.
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GNMDS-AK. Another potential error function is one motivated by General-
ized Non-Metric Multidimensional Scaling (GNMDS) [1] which uses hinge loss:

EGNMDS (K
′′, T ) =

∑
(a,b,c)∈T

max(0, dK′′ (xa, xb)− dK′′(xa, xc) + 1) (11)

We call our method with this error function GNMDS-AK. The hinge loss
ensures that only triplets that are unsatisfied by a margin of one increase the
objective. GNMDS-AK is also a convex optimization problem, due to Prop. 1
and the following:

Proposition 3. (11) is convex in both K0 and μ.

Proposition 3 is proven in [7]. For a more rigorous comparison of RCKL meth-
ods see [14]. We propose to solve both STE-AK and GNMDS-AK via projected
gradient descent algorithms, one of which (STE-AK) is outlined in the following
section. The algorithm to solve GNMDS-AK is very similar to the one below,
and can be found in [7].

Projected Gradient Descent for STE-AK Our method for solving STE-
AK is outlined in Alg. 1. After initialization, the algorithm repeats the following
steps until convergence:

1. Line 6: Take a gradient step for K0 (trace regularization included)
2. Line 7: Take a gradient step for μ (�1-norm regularization included)
3. Line 8: Project K0 onto the positive semidefinite cone
4. Line 9: Project the elements of μ to be non-negative
5. Line 10: Update K′′

Projection onto the positive semi-definite cone is done by performing eigen-
decomposition of the matrix K0, assigning all negative eigenvalues to zero, and
then reassemblingK0 from the original eigenvectors and the new eigenvalues [20].
Projection of the elements of μ to be non-negative is simply done by assigning all
negative elements to be zero. The �1-norm regularization in Alg. 1 is performed
by adding λ2 = λ2 ∗ 1A to the gradient (Line 7). Since μ is constrained to the
non-negative orthant, the subgradient of the �1-norm function needs only to be
over the non-negative orthant, thus λ2 is an acceptable subgradient. Moreover,
since we then project the elements of μ to be non-negative, we get the desired
effect of the �1-norm regularization: the reduction of some elements to be exactly
zero.

5 Related Work

RCKL-AK can be viewed as a combination of multiple kernel learning (MKL)
and non-metric multidimensional scaling (NMDS). Learning a non-negative sum
of kernels, as in (4), appears often in MKL literature, which is focused on finding
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efficient methods for learning a combination of predefined kernels for a learning
task. The most widely studied problem in MKL has been Support Vector Clas-
sification [13], [17], [25], [9]. To our knowledge there has been no application of
MKL techniques to the task of learning a kernel from relative comparisons.

The RCKL problem posed in Sec. 2 is a special case of the NMDS problem
first formalized in [1], which in turn is a generalization of the Shepard-Kruskal
NMDS problem [21]. GNMDS, STE, and Crowd Kernel Learning (CKL) [22] are
all methods that can be applied to the RCKL problem. However, none of these
methods consider inputs beyond relative comparisons. Our work creates a novel
RCKL method that uses ideas popularized in MKL research to incorporate side
information into the learning problem.

Relative comparisons have also been considered in metric learning [19], [3],
[8]. In metric learning, the focus is on learning a distance metric over objects
that can be applied to out-of-sample objects. This work focuses specifically on
finding a kernel over given objects that generalizes well to out-of-sample (unob-
tained) triplets. In this way, the goal of metric learning methods is somewhat
different than the one in this work. Two recent works propose methods to learn
a Mahalanobis distance metric with multiple kernels: Metric Learning with Mul-
tiple Kernels (ML-MKL) [27] and Multiple Kernel Partial Order Embedding
(MKPOE) [16]; the latter focusing exclusively on relative distance constraints
similar to those in this work. The kernel learned by RCKL-AK induces a map-
ping that is fundamentally different than those learned by these metric learning
techniques. Consider the mapping induced by one of the metric learning methods
proposed in both [16] (Section 4.2) and [27] (Equation 6):

Φμ,Ω(x) = Ω [
√
μ1Φ1(x), ...,

√
μAΦA(x)] (12)

The derivation of this mapping can be found in [7]. Here Ω ∈ RmxD produces
a new feature space by transforming the feature spaces induced by the auxiliary
kernels. Without Ω, (12) learns a mapping similar to (5). The matrix Ω plays
a role similar to the one K0 plays in RCKL-AK: it is learned to satisfy triplets
that the auxiliary kernels alone cannot. Instead of linearly transforming the
auxiliary kernel feature spaces, RCKL-AK implicitly learns new features that
are concatenated onto the concatenated auxiliary kernel feature spaces (see (8)).

In both works, the authors propose non-convex optimizations to solve for
their metrics, and, in addition, different convex relaxations. A critical issue with
the convex solutions is that they employ SDPs over n2 ∗A (MKPOE-Full) and
n2∗A2 (NR-ML-MKL) optimization variables, respectively. For moderately sized
problems these methods are impractical. To resolve this issue, [16] proposes a
method that imposes further diagonal structure on the learned metric, reducing
the number of optimization variables to n∗A (MKPOE-Diag), but in the process,
greatly limits the structure of the metric. RCKL-AK is a convex SDP with n2+A
optimization variables that does not impose strict structure on the learned kernel.
Unfortunately, by learning the unique kernelK0 directly and not the mappingΦ0

or a generating function of K′′, our method cannot be applied to out-of-sample
objects. Data analysis that does not require the addition of out-of-sample objects
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can be used over that kernel. There are many unsupervised and semi-supervised
techniques that fit this use case.

6 Experiments

In order to show that RCKL-AK can learn kernels from few triplets that gen-
eralize to unobtained triplets, we perform two experiments: one using synthetic
data, and one using real-world data. More specifically, in both experiments, we
train Stochastic Triplet Embedding (STE) and Generalized Non-metric Multi-
dimensional Scaling (GNMDS) variants of Traditional RCKL (RCKL-T), Mul-
tiple Kernel Learning RCKL (RCKL-MKL), and RCKL with Auxiliary Kernels
(RCKL-AK) as well as non-convex and convex variants of Multiple Kernel Partial
Order Embedding (MKPOE), on an increasing number of training triplets, and
evaluate all models on their ability to satisfy held-out triplets. For the MKPOE
methods, we consider a triplet (a, b, c) to be satisfied if dM (xa, xb) < dM (xa, xc),
where dM is the distance function defined by the metric. The STE and GNMDS
implementations used are from [14], which are made publicly available on the au-
thors’ websites. The MKL and AK versions were extended from these. MKPOE
implementations were provided to us by their original authors. All auxiliary ker-
nels are normalized to unit trace, and all hyperparameters were validated via
line or grid search using validation sets.

6.1 Synthetic Data

To generate synthetic data we began by randomly generating 100 points in seven,
independent, two-dimensional feature spaces where both dimensions were over
the interval [0, 1]. Then, we created seven linear kernels, K0, ...,K6 from these
seven spaces. We combined four of the seven kernels:

K∗ =
1

2
K0 +

1

4
K1 +

1

6
K2 +

1

12
K3 (13)

We then used K∗ as the ground truth to answer all possible, non-redundant
triplets. Following the experimental setup in [22], we divided these triplets into
100 triplet “rounds”. A round is a set of triplets where each object appears once
as the head a being compared to randomly chosen objects b and c. From the
pool of rounds, 20 were chosen to be the training set, 10 were chosen to be the
validation set, and the remaining rounds were the test set. This was repeated
ten times to create ten different trials.

Next, each point in all seven feature spaces was perturbed with randomly
generated Gaussian noise. From these new spaces, we created seven new linear
kernels K̂0, ..., K̂6, of which K̂1, ..., K̂6 were used as the auxiliary kernels in the
experiment. Here, K̂1, ..., K̂3 are kernels that represent attributes that influence
how the ground truth makes relative comparisons. K̂4, ..., K̂6 contain information
that is not considered when making comparisons, and K0 represents intuition
about the objects that was not or cannot be input as an auxiliary kernel.
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Fig. 1. Mean test error over ten trials of the synthetic data set
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(a) STE-AK
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(b) GNMDS-AK

Fig. 2. Mean values of μ on synthetic data

We wish to evaluate the performance of each method as the number of train-
ing triplets increases. As more training triplets are added, each method should
generalize better to held-out triplets. To show this we performed the following
experiment. For each trial, the 20 training rounds and 10 validation rounds are
divided into ten subsets, each containing two training rounds and one validation
round. Starting with one of the subsets, each model is trained, setting the hyper-
parameters through cross-validation on the validation set, and evaluated on the
test set. Then, another subset is added to the training and validation sets. We
repeat this process until all ten subsets are included. We evaluate the methods
by the total number of unsatisfied triplets in the test set divided by the total
number of triplets in the test set (test error). For all of the following figures,
error bars represent a 95% confidence interval.

Discussion: Figure 1 shows the mean test error over the ten trials as a
function of the number of triplets in the training set. Both RCKL-MKL methods
improve performance initially, but achieve their approximate peak performance
at around 600 training triplets and fail to improve as triplets are added. This
supports the claim that RCKL-MKL is overly limited by only being able to
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combine auxiliary kernels. Both RCKL-T methods perform worse than all other
methods. Without the side information provided by the auxiliary kernels, RCKL-
T cannot generalize to test triplets with few training triplets.

We believe this experiment demonstrates the utility of both K0 and the auxil-
iary kernels in RCKL-AK. With very few training triplets, the RCKL-AK meth-
ods relied on the auxiliary kernels, thus the performance is similar to the RCKL-
MKL methods. As triplets are added, the RCKL-AK methods used K0 to satisfy
the triplets that a conic combination of the auxiliary kernels could not. Further
evidence for this is shown by the fact that the rank of K0 increased as the num-
ber of training triplets increased. For example, for STE-AK, the mean rank of
K0 was 85.6, 94.2, and 96.2 for 200, 400, and 600 triplets in the training set,
respectively. In other words, the optimal settings of λ1 and λ2 made K0 more
expressive as the number of triplets increased.

Ideally, the RCKL-AK methods should eliminate K̂4, K̂5, and K̂6 from the
model by reducing their corresponding weights μ4, μ5, and μ6 to exactly zero.
Figure 2 shows the values of the μ parameter for STE-AK and GNMDS-AK
as the number of triplets increase. Both RCKL-AK methods correctly identify
the three auxiliary kernels from which the ground truth kernel was created by
setting their corresponding weight parameters to be non-zero. In addition, they
assigned weights to the kernels roughly proportional to the ground truth. The
three noise kernels were assigned very low, and often zero weights. The RCKL-
MKL methods learned similar values for the elements of μ than those in Fig. 2.
Since RCKL-MKL learned the relative importance of the auxiliary kernels with
only few triplets, it had achieved approximately its peak performance and could
not improve further with the addition of more triplets.

Figure 3a shows the same STE-AK, GNMDS-AK, and GNMDS-MKL error
plots as Fig. 1, but also includes three variations of MKPOE: A non-convex
formulation (MKPOE-NC), and two convex formulations (MKPOE-Full and
MKPOE-Diag). All metric learning methods perform very similarly, yet worse
than RCKL-MKL and RCKL-AK. We believe that the MKPOE methods must
transform the auxiliary kernel space drastically to satisfy the few triplets. By
doing this they lose much of the information in the auxiliary kernels that allows
RCKL-MKL and RCKL-AK methods to form more general solutions.

6.2 Music Artist Data

We also performed an experiment using comparisons among popular music
artists. The aset400 dataset [4] contains 16,385 relative comparisons of 412 mu-
sic artists gathered from a web survey, and [15] provides five kernels built from
various features describing each artist and their music. Two of the kernels were
built from text descriptions of the artists, and three were built by extracting
acoustic features from songs by each artist.

The aset400 dataset provides a challenge absent in the synthetic data: not all
artists appear in the same number of triplets. In fact, some artists never appear
as the head of a triplet at all. As a result, this dataset represents a setting where
feedback was gathered non-uniformly amongst the objects. In light of this, instead
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(b) aset400 data set

Fig. 3. Mean test error over ten trials
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Fig. 4. Mean test error over ten trials of the aset400 data set

of training the models in rounds of triplets, we randomly chose 2000 triplets as the
development set; the rest were used as the test set. As before, we broke the devel-
opment set into ten subsets. Each subset was progressively added to the working
set for training, validation, and testing. Ten percent of the working set was used
for validation and 90 percent was used for training. The experiment was performed
ten times on different randomly chosen train/validation/test splits.

Discussion: The results, shown in Fig. 4, are similar to those for the synthetic
data with a few key differences. First, the RCKL-MKL methods did not perform
as well, relative to the RCKL-T methods. This could be attributed to the fact
that the auxiliary kernels here did not reflect the triplets as well as those in
the synthetic data. Only one kernel was consistently used in every iteration
(the kernel built from artist tags). The rest were either given little weight or
completely removed from the model. As with the synthetic data, with 200 and
400 training triplets the RCKL-AK methods performed as well as their respective
RCKL-MKL counterparts, but as more triplets were added to the training set,
the RCKL-AK methods began to perform much better. In this experiment, the
RCKL-Tmethods became more competitive, but were outperformed significantly
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by RCKL-AK much of the time. This, again, could be because the auxiliary
kernels were less useful than with the synthetic data.

Figure 3b compares the performance of MKPOE-NC and MKPOE-Diag
on the aset400 dataset to the RCKL-AK methods as well as GNMDS-MKL.
MKPOE-Full could not be included in this experiment due to its impractically
long run-time for an experiment of this size. Both MKPOE methods perform
similarly; they seem to suffer greatly from the lack of meaningful auxiliary ker-
nels, and over all experiments, have statistically significantly higher test error
than both RCKL-AK methods.

7 Conclusions and Future Work

In this work we propose a method for learning a kernel from relative comparisons
called Relative Comparison Kernel Learning with Auxiliary Kernels (RCKL-AK)
that supplements given relative comparisons with auxiliary information. RCKL-
AK is a convex SDP that can be solved by adding slight computational overhead
to traditional methods and more efficiently than many metric learning alterna-
tives. Experimentally, we show that RCKL-AK learns kernels that generalize to
more out of sample relative comparisons than the aforementioned traditional
and metric learning methods.

We believe the results of this work open many avenues for future research. First,
while common in solving SDPs, the most time-consuming step in RCKL-AK is pro-
jecting the kernel onto the PSD cone after each gradient step. However, Low-rank
Kernel Learning (LRKL) [12] is a kernel learning method that can find a solution
without this costly projection. We will investigate finding a more efficient method
of solving for RCKL-AKusing ideas from LRKL, as well as potentially other meth-
ods. Second,wewill exploremethods to extendRCKL-AKto out-of-sample objects
much like the work in [2] studied extensions for various popular kernel methods
(LLE, Isomap, etc.). Third, the analysis done in Section 3considered the casewhere
an adversary was providing triplets. We will study the average, or “random” case,
whichmaybemore likely in practice. Fourth, therehasbeen recentwork thatmakes
the case for non-sparse regularization inMKLproblems [11].While our formulation
uses �1-norm, it would seem possible to generalize RCKL-AK to use �p-norms for
p > 1, as well. We will explore the use of these norms in the RCKL-AK framework.
Finally, we will explore practical applications of our method, specifically, the use
of RCKL-AK for product recommendation.

Acknowledgments. We would like to thank Matthew Berger and Lee Seversky
for their guidance and insightful conversations at the onset of this work.
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Abstract. The Minimax Probability Machine (MPM) is an elegant ma-
chine learning algorithm for inductive learning. It learns a classifier that
minimizes an upper bound on its own generalization error. In this pa-
per, we extend its celebrated inductive formulation to an equally elegant
transductive learning algorithm. In the transductive setting, the label
assignment of a test set is already optimized during training. This opti-
mization problem is an intractable mixed-integer programming. Thus, we
provide an efficient label-switching approach to solve it approximately.
The resulting method scales naturally to large data sets and is very effi-
cient to run. In comparison with nine competitive algorithms on eleven
data sets, we show that the proposed Transductive MPM (TMPM) al-
most outperforms all the other algorithms in both accuracy and speed.

Keywords: minimax probability machine, transductive learning, semi-
supervised learning.

1 Introduction

The Minimax Probability Machine (MPM) was originally introduced by Lanck-
riet et al. and provides an elegant approach to inductive supervised learning. It
trains a discriminant classifier that directly minimizes an upper bound on its
own generalization error. In particular, it first estimates the first and second
moments of the conditional class distributions empirically. Building upon the
celebrated work in [8] and [2], it then trains a classifier to minimize the worst
case (maximal) probability of a test point falling on ”the wrong side” of the
decision hyperplane.

In this paper we revisit the MPM and extend it to an equally elegant trans-
ductive formulation. In transductive learning (TL) [20], the unlabeled test data
is available during training and the label assignment is optimized directly while
the classifier is learned. In classification settings, this results in an integer assign-
ment problem, which is inherently NP-hard [11]. Nevertheless, many approaches
have been proposed, typically based on clever heuristics including spectral graph
partitioning [9], support vector machines [10], and others [23].
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The MPM framework can incorporate the transductive label assignment prob-
lem much more naturally and efficiently than other learning paradigms, e.g.,
Support Vector Machines (SVM) [16]. First, MPM has the attractive property
that its learning complexity is independent of the size of training set provided
the first and second moments of the conditional class distributions are given,
enabling it handle large amount of training samples effortlessly. Second, the two
steps of MPM, first estimating the conditional data distribution and then opti-
mizing the hyperplane, give rise to an EM-like transductive algorithm [4] that
is both highly efficient and accurate. As a first step, the test-label assignments
are optimized (by label switching) to give rise to conditional probability dis-
tributions that maximize the worst-case separation probability with the current
hyperplane. As a second step, the hyperplane is retrained based on the updated
label assignments.

We first formulate the Transductive Minimax Probability Machine (TMPM)
as an exact mixed-integer prgramming and then formalize our approximate so-
lution. We show that the proposed algorithm provably increases the problem
objective with every update and converges in a finite number of iterations. As
both steps of TMPM are highly efficient, the algorithm scales to large data
sets effortlessly. Similar to Transductive SVM (TSVM) [9], TMPM is particu-
larly well suited for data sets with inherent cluster structure. In the presence
of underlying manifold structure, Laplacian regularization [1] is often used for
semi-supervised learning. We show that TMPM can be further extended to also
incorporate such manifold smoothing if it is supported by the data set.

Finally, we evaluate the efficacy of TMPM on an extensive set of real world
classification tasks. We compare against nine state-of-the-art learning algorithms
and show that TMPM clearly outperforms most of them in speed and accuracy
with an impressive consistency across learning tasks.

2 Related Works

Several extensions to the MPM [13] have been explored before, in particular for
handling uncertain or missing data [3,17]. These works can be seen as dealing
with missing information in the input space, while our work is dealing with miss-
ing information in the label space. The recent work [12] adopted the minimax
probability approach for multiple instance learning. Huang et al. [7] proposes a
semi-supervised learning method by combining k-nearest neighbors with a robust
extension of MPM. Prior work by Nigam el al. [14] utilizes similar structure with
the EM algorithm. The low density separation (LDS) semi-supervised algorithm
proposed in [6] builds a fully connected graph kernel and trains a transduc-
tive SVM [9] to learn a hyperplane that traverses a low density region between
clusters.

Perhaps most similar to our work is the Transductive SVM (TSVM) [9], which
also iterates between label switching and classifier re-training. In contrast to
TSVM, our algorithm is based on MPM, which greatly reduces the computa-
tional cost of re-training. Moreover, we further improve the efficiency drasti-
cally by adopting the idea of switching multiple class assignments at a time
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as the large-scale extension of TSVM [18]. Therefore, the proposed algorithm
only re-trains MPM very few times. Additionally, TMPM provably optimizes
a well-defined global objective function with each iteration, without heuristi-
cally adjusting it (gradually up-weight unlabeled data) during training as in
TSVM [9].

3 Minimax Probability Machine

Consider the binary classification case, where we are given labeled training inputs
{x1, . . . ,xm} ∈Rd and their corresponding labels {y1, . . . , ym} ∈ {−1,+1}. We
are also provided with unlabeled test inputs {xm+1, . . . ,xn}∈Rd.

Let us denote the two class-conditional data distributions as P(x+|y = +1)
and P(x−|y = −1), respectively. MPM aims to learn a hyperplane {w, b} that
separates positive and negative classes with maximum probability. Since the true
class-conditional distributions P are usually unknown, Lanckriet et al. [13] pro-
pose to maximize the worst case probability p that the two classes are separated:

max
p,w �=0,b

p

s.t. inf
P∈S+

P(w�x+ + b ≥ 0|+ 1) ≥ p,

inf
P∈S−

P(w�x− + b ≤ 0| − 1) ≥ p.

(1)

To make this optimization tracktable, the infimums are constrained to sets of
distributions S+,S− that match the empirical first and second order moments of
the training data. Let us denote these estimated moments as mean μ̂+ and co-
variance Σ̂+ for the positive class and μ̂−, Σ̂− for the negative class respectively.
Then S+ is defined as:

S+=
{
P : E[x] = μ̂+ ∧ E[(x− μ+)(x − μ+)

�] = Σ̂+

}
.

Based on the prior work in [8] and [2], Lanckriet et al. [13] show that with
this restriction, the separating probability constraints in (1) can be converted
into tractable inequality constraints:

w�μ̂+ + b ≥ κ

√
wΣ̂+w, (2)

where κ =
√
p/(1− p) and the inequality for the negative class is similarly

defined. The above inequality can be proven with the multivariate Chebyshev
inequality, and we refer readers to [13] for details.

With inequality (2), the optimization in (1) can be converted into the following
unconstrained optimization problem [13], which accesses the data only through
the empirical estimates of the first and second order moments,

max
w

κ :=
w�(μ̂+ − μ̂−)√

w�(Σ̂++Σδ+)w+
√
w�(Σ̂−+Σδ−)w

. (3)
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Here, Σδ+ , Σδ− are regularization terms, often set to σ2I for some small σ, or
proportional to the diagonal elements of the covariance matrix of all training
inputs.

Let w∗ denote the optimal solution to (3), then the optimal bias term can be

computed as b∗ = −w∗�μ̂+ + κ∗
√
w∗�(Σ̂++Σδ+)w

∗. The optimal separation

probability corresponds to p∗ = κ∗2/(1 + κ∗2). The optimization (3) can be
solved by an iterative least-squares method [13] with a worst-case computational
complexity of O(d3). If the cost of estimating μ+, μ−, Σ+ and Σ− is taken into
account, then the total complexity of this approach is O(d3 +md2).

4 Transductive Minimax Probability Machine

In this section, we introduce our transductive extension to MPM, which we refer
to as TMPM. In transductive learning [20], the unlabeled test data is avail-
able during training and it is allowed to assign the labels directly as part of
the learning procedure. We first formalize the TMPM optimization problem,
which is NP-hard. We then introduce an efficient algorithm to find an approxi-
mate solution. Finally, we prove that our algorithm monotonically increases the
objective function value and converges in a finite number of steps.

4.1 Setup

Let ŷ = [ŷl; ŷu] ∈ {−1,+1}n denote the class assignment vector for both labeled
(ŷl) and unlabeled (ŷu) inputs (the class assignments for labeled inputs are fixed,
and thus ŷl = y). We also let D+,D− denote the sets of positive and negative
labeled test inputs respectively, given the current class assignment vector ŷ.

Transductive estimation of μ and Σ. A key aspect of TMPM is to
incorporate test inputs into the empirical estimation of the mean (μ̂+, μ̂−) and
covariance Σ̂+, Σ̂− of the two class distributions. Since they depend on the class
assignment, we write them as functions of ŷ:

μ̂+(ŷ) =
1

|D+|
∑
i

xi, ∀xi ∈ D+

Σ̂+(ŷ) =
1

|D+|
∑
i

(xi − μ̂+)(xi − μ̂+)
�, ∀xi ∈ D+

The corresponding μ̂−(ŷ) and Σ̂−(ŷ) can be computed in a similar fashion.

Mixed-Integer Optimization. Our goal is to find the best class assignment ŷu

for the test inputs and the corresponding MPM classifier w simultaneously. The
joint search over w ∈ Rd and ŷu ∈ {−1,+1}m−n leads to the following mixed-
integer optimization problem:
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max
w,ŷu

κ :=
w�
(
μ̂+(ŷ)− μ̂−(ŷ)

)
√
w�
(
Σ̂+(ŷ)+Σδ+

)
w+
√
w�
(
Σ̂−(ŷ)+Σδ−

)
w
,

s.t.
1

n

n∑
i=1

ŷi = 2r − 1 (4)

where ŷi denotes the class assignment for input xi. The equally constraint en-
forces the fraction of positive test inputs to match r(0 < r < 1), which can be
set according to prior knowledge or estimated from training labels.

Note that in the above formulation, the class conditioned means and con-
variances are estimated from both labeled and unlabeled data. Therefore, the
empirical moments are functions of ŷu, which are also optimization variables.

4.2 The TMPM Algorithm

The optimization problem (4) is computationally intractable to solve globally
when the number of input n data is large.

Inspired by Transductive SVM [9], we adopt the strategy of label-switching,
and approximate (4) with a iterative greedy procedure. Specifically, we alter-
nately optimize the class assignment ŷu and MPM classifier w. First, we keep
the MPM classifier w fixed and optimize the class assignment ŷ through la-
bel switching, and then we fix the class assignment, and re-optimize the MPM
classifier w.

Initialization. In order to initialize the labels ŷu, we first train a regular MPM
(3) on the labeled training data and then use the resulting classifier to obtain
predictions on the test data. To ensure the label assignment is within the feasible
set of (4), i.e., its class ratio matches r, we assign the r(n−m) test inputs with
highest prediction values to class +1, and the rest to class −1.
Classifier Re-optimization. Once the test labels are assigned, we re-train
the MPM parameters w, b on the full (train and test) data set with the actual
training labels ŷ� and the (temporarily) assigned labels ŷu. Note that the re-
optimization of {w, b} is actually optimizing κ with fixed ŷ. We use the resulting
classifier to generate new predictions ti = w�xi + b for all test inputs xi. These
predictions are not immediately used to update the tentative labels of inputs xi.
Instead, it will be used to guide the label switching procedure in the subsequent
paragraph.

Label Switching. After the MPM is retrained and the predictions ti are
computed, we re-optimize the assignments of ŷu through label switching as in
TSVM [9]. However, unlike TSVM in which identifying a candidate pair of labels
for switching is straightforward by checking the values of slack variables, TMPM
has a more complicated objective function with respect to the label assignments.
A naive implementation is to tentatively switch each pair of labels to see if
it increases the objective value. But this leads to a worst case complexity of
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Algorithm 1. The TMPM algorithm

1: Input: Labeled training inputs and their corresponding labels {xi, yi}mi=1; Unla-
beled testing inputs {xi}ni=m+1.

2: Parameters: λ (for regularization)
3: Compute class ratio r on y or using prior knowledge.
4: Initialize class assignment vector ŷ = [y, ŷu] by training a MPM using labeled

inputs, and assign �r(n−m)� unlabeled test inputs with highest predicting value
to class +1, and the rest to class −1.

5: Compute μ̂+, μ̂−, Σ̂+, Σ̂−.
6: Set Σδ+ = Σδ− = λdiag(v), where v are the diagonal elements of the covariance

matrix of all training inputs.
7: while true do
8: (w, b) = Train MPM (μ̂+, μ̂−, Σ̂+, Σ̂−, Σδ+ , Σδ−)
9: (t, t̄+, t̄−) = Predict MPM (w, b,x)
10: if �(xi,xj) satisfying conditions in (5) break
11: while ∃(xi,xj) satisfying conditions in (5) do
12: Switch the labels of xi and xj (ŷi ⇔ ŷj).
13: Update μ̂+, μ̂−, Σ̂+, Σ̂−.
14: Update t̄+ = w�μ̂+ + b; t̄− = w�μ̂− + b;
15: end while
16: end while
17: Output: Class assignment vector on test inputs ŷu, MPM classifier (w, b).

O(n4d2)1, which is computationally inefficient when test data set is large. Here
we introduce a method to quickly identify candidate label pairs and update
the means and covariances at minimum cost, reducing the complexity of label
switching at each iteration to O(n log(n) + nd2).

Let us define the average prediction of class +1 as t̄+ = w�μ̂++b and similarly
t̄−. We search for pairs of test inputs (xi ∈ D+,xj ∈ D−) who, if their labels
were switched, would improve the objective κ. As we derive in the subsequent
section, we can identify such pairs as inputs xi,xj whose prediction values (ti, tj)
satisfy the following two conditions:

1. ti < tj

2. t̄− ≤
ti + tj

2
≤ t̄+

(5)

Intuitively these two conditions require to check for: 1. the input xi, which is
currently considered positive, has a lower prediction value than input xj , which
is assumed to be negative; 2. The average of the two predictions ti and tj lies
between the two class averages. We will prove in Theorem 1 that by switching
label pairs that meet these conditions, the objective strictly increases.

It is efficient to search for label pairs for switching based on the above condi-
tions. At each iteration, we first find the n+ positively labeled test data whose

1 First, explicitly computing the objective value requires O(nd2), and there are O(n2)
candidate pairs for each label switching; Second, the number of label-pairs to be
switched at each iteration is proportional to n.
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prediction values are smaller than the maximal prediction of D−, and similarly
we find the n− negatively labeled test inputs whose predictions are above the
minimal prediction of D+. These inputs are the candidates that meet Condition
1. This step requires O(n) time of computation. Second, we sort the prediction
values of these candidates, which can be done in O(n log(n)) time in a worst case.
Finally, we iteratively match the candidate from D+ with the lowest prediction
with the candidate from D− with the highest prediction. If they meet Condition
2, we switch their labels, update the means and covariances, and eliminate both
of them from the candidate set; otherwise, we remove the positively (negatively)
candidate if the right (left) inequality of Condition 2 is violated. It can be verified
that these eliminated instance will never meet the switching conditions in this
iteration. This procedure has a worst case complexity of O(nd2), if we update
the empirical moments using the rules in the following lemma.

Lemma 1. Let {μ̂′
+, Σ̂

′
+} denote the estimated mean and covariance of positive

class after switching two instances xi ∈ D+ and xj ∈ D−. Then we have

μ̂′
+ = μ̂+ +

1

|D+|
(xj − xi), (6)

Σ̂′
+ =Σ̂+ +

|D+| − 1

|D+|2
(xj − xi)(xj − xi)

�+ (7)

1

|D+|
(xi−μ+)(xj−xi)

�+
1

|D+|
(xj−xi)(xi−μ+)

�,

where {μ̂+, Σ̂+} are the estimated mean and covariance before label switching.

Remark 1. Naturally, we can update the mean and covariance of the negative
class in a similar fashion. The above expressions enable us to re-estimate the
means and covariances after each label switching at a minimum cost, with a
complexity of O(d2).

Termination. We keep iterating between label switching and MPM re-training
until no more pairs can be found that satisfy (5). The TMPM algorithm is
summarized in pseudo-code in Algorithm 1.

Remark 2. The overall time complexity of Algorithm 1 is O(L(d3 + n log(n) +
nd2)), where L is the number of outer loop executions. Typically, we have L ≈
10. The term O(d3) results from re-training the MPM, following the method
proposed in [13]. The terms O(n log(n)+nd2) capture the complexity of finding
eligible pairs for switching and updating empirical moments.

4.3 Algorithm Analysis

In this subsection, we show that Algorithm 1 terminates in a finite number of
iterations.

Firstly, we prove that each MPM label switching strictly increases κ in (4).
We formalize this guarantee as Theorem 1.
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Theorem 1. If two test inputs xi∈D+, xj∈D− and their corresponding predic-
tions ti, tj satisfy the switching conditions in (5), then by switching the assigned
labels of xi and xj (ŷi ⇔ ŷj), the objective function value κ in (4) strictly in-
creases.

Proof: We first show that the numerator of (4) increases after the label switch-
ing. This follows from plugging in the mean and covariance updates stated above
in Eqs. (6) and (7).

w�(μ̂′
+ − μ̂′

−)

= w�(μ̂+ − μ̂−) + (
1

|D+|
+

1

|D−|
)(tj − ti)

> w�(μ̂+ − μ̂−).

The last inequality holds because of the condition ti < tj .
As a second step, we show that the denominator of (4) decreases after switch-

ing the labels. Again, by using the update rules in (6) and (7), we have

w�Σ̂′
+w =w�Σ̂+w +

|D+| − 1

|D+|2
(w�(xj − xi))

2

+
2

|D+|
w�(xi − μ+)(xj − xi)

�w

=w�Σ̂+w +
1

|D+|
w�(xj−xi)w

�(xj+xi − 2μ̂+)

− 1

|D+|2
(w�(xj − xi))

2

=w�Σ̂+w+
(tj−ti)(ti+tj−2t̄+)

|D+|
− (tj−ti)

2

|D+|2

<w�Σ̂+w,

where the last inequality holds because of the switching conditions(ti+tj)/2≤ t̄+
and ti < tj given in Theorem 1.

Following a similar line of reasoning, we can show that

w�Σ̂′
−w < w�Σ̂−w. (8)

Further, notice that Σδ+ and Σδ− are independent of class assignment vector
ŷ, we have the denominator of (4) decreases after label switching.

As the enumerator of κ increases and its denominator decreases, and as the
label switching preserves the class ratio of of ŷu, it follows that the objective κ
in (4) strictly increases with each label switching.

Theorem 2. Algorithm 1 terminates after a finite number of iterations.

Proof: Since the label switching strictly increases the objective according to The-
orem 1, and the re-training of MPM never decrease the objective, the alternat-
ing optimization method in Algorithm 1 strictly improves the value of κ at each
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iteration. Therefore, the outer loop cannot repeat label assignments (Otherwise,
we will solve a same MPM model in two differently iterations, which will yield a
same value of κ. This means the objective is not strictly increasing over these two
iterations, leading to a contradictory). Since the number of label assignments is
finite, the algorithm must terminate after a finite number of iterations.

Note that Theorem 2 is based on a worst case scenario analysis. In prac-
tice, each iteration switches many labels and TMPM terminates after a small
number(≈ 10) of iterations.

4.4 TMPM with Manifold Regularization

Transductive learning or semi-supervised learning algorithms can often assist
classifiers by revealing underlying structure in the data distribution. A success-
ful approach is manifold regularization, introduced by Belkin et al. [1]. Here,
a proximity graph is created and the classifier is regularized to make similar
predictions on similar inputs. This approach is typically successful if the data
distribution obeys some intrinsically low dimensional manifold structure. TMPM
can also incorporate manifold regularization naturally. We replace the regular-
ization covariance matrices Σδ+ , Σδ− in the TMPM objective function (4) with a
Laplacian regularization term [21]. More formally, we set Σδ+ =Σδ−=λX�LX,
where X�=[x1, . . .xn] is a matrix containing both training and test inputs and
L ∈Rn×n denotes the graph Laplacian constructed from x1, . . . ,xn. Finally, λ
denotes a regularization tradeoff parameter. We refer to this manifold regular-
ization extension as TMPMmr.

5 Results

We evaluate TMPM on a wide variety of synthetic and real world data sets. Our
implementation is implemented in MATLABTM , and is executed on an Intel i7
Quad Core CPU 3.20GHz machine with 32GB RAM.

5.1 Toy Example

We use a toy data set to visualize the transductive learning process of TMPM.
The toy data set is a binary classification problem, where each class contains
200 inputs generated from a 2-dimensional Gaussian distribution. We randomly
reveal one label from each class to create a training set with two instances. The
remaining inputs are unlabeled and constitute the test data, see Figure 1 (upper
left panel). On this data, a linear SVM achieves 0.78 test accuracy.

Figure 1 visualizes the decision boundary and label assignments of each iter-
ation of TMPM until termination. Inputs that will be switched in this iteration
are highlighted with circles. The inner ellipsoids represent the covariances of the
data in D+,D−, and the outer ellipsoids are κ times larger, so that the decision
plane is tangent to both of the outer ellipsoids. Since p=κ2/(1 + κ2), the larger
κ, the higher the minimax probability p of separating the two subsets. The value
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Data Iter: 1
Acc=82.09%
p=65.46%

=1.38

Iter: 2
Acc=89.05%
p=67.7%

=1.45

Iter: 3
Acc=97.01%
p=73.48%

=1.66

Iter: 4
Acc=100%
p=85.89%

=2.47

Iter: 5
Acc=100%
p=91.95%

=3.38

Fig. 1. The TMPM algorithm visualized on a toy data set. Only two inputs are initially
labeled (big square and cross, top left). Small dots and crosses indicate the labels
assigned by TMPM to the test data. Inputs highlighted with circles are those to be
switched in a particular current iteration. The inner ellipsoids visualize the covariances
of two classes, and the outer ellipsoids represent κ times of the covariances.

of p and the classification accuracy are indicated in the top left of each frame,
both of which increase monotonically until the algorithm terminates after the
5th iteration, when no more pairs of inputs satisfy the conditions for switching.
As a byproduct, we obtain a lower bound p = 91.95% probability of separating
these two classes for additional unseen data. We also obtain the estimated means
and covariances for the two classes:

μ̂+ = (1.01,−1.00), μ̂− = (−1.00, 0.94),

Σ̂+ =

[
0.94 0.81
0.81 1.04

]
, Σ̂− =

[
0.89 0.72
0.72 0.87

]
,

which are very close to the true means and covariances of the two Gaussian
distributions that generate the data:

μ+ = (1,−1), μ− = (−1, 1), Σ+ = Σ− =

[
1.0 0.8
0.8 1.0

]
.

5.2 Transductive Learning Results

We evaluate TMPM on several real-world data sets, and compare against state-
of-the-art transductive/semi-supervised learning algorithms. The characteristics
of these data sets are summarized in the second and third rows of Table 1.
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Experiment Setup. For each data set, we randomly select 10 samples as la-
beled set, another 10 samples as validation set, and the rest as unlabeled test
set. The prediction error rate on the unlabeled test set is used as the evaluation
criteria, and we report the average results over 20 runs with randomly selected
labeled/validation/unlabeled data. The linear TMPM is used for all the experi-
ments (for high dimensional data where d > n, we use linear kernel TMPM given
in the Appendix). The only hyper-parameter in linear TMPM is the regulariza-
tion coefficient λ, which is selected from the candidate set [10−4, 10−3, . . . , 104]
based on the performance on the validation set.

Datasets. The g50c, g241c, digit1, text data sets are obtained form Olivier
Chapelle’s Semi-Supervised Learning benchmark data set collection2 [5]. The
data set breast, australian (Australian Credit Approval), pcmac (corresponding
to two classes of the 20 newsgroups data set), adults, kddcup, are taken from the
UCI Machine Learning Repository3.

Baselines. First, the SVM and MPM are trained using only the labeled data,
and we report the better results of a linear version and an RBF kernel version
of these algorithms. Other baselines include the Transductive SVM (TSVMlight)
[9], the TSVM with multiple switching strategy (TSVMms) [18], the semi-
supervised EM with Gaussian distribution assumption (for all data sets except
pcmac and text) and with multinomial distribution assumption (for pcmac and
text), the low density separation algorithm (LDS) [6], and the squared-loss mu-
tual information regularization (SMIR) [15]. For TSVMlight and TSVMms, we
report both linear and RBF kernel version results. The tradeoff parameter C
in these algorithms are selected from the set [10−4, 10−3, . . . , 104], and the ker-
nel width is selected from the set [2−5, 2−4, . . . , 21] times the average pairwise
distance of the training data. The kernel type is indicated in sub-scripts (e.g.

TSVMlight
linear and TSVMlight

rbf ). For EMgauss, a ridge λIII is added to the covariance
matrix when computing posterior probability, where λ is selected from the set
[10−6, 10−5, . . . , 102]. For LDS and SMIR, we follow the suggestions in [6] and
[15] to create a candidate hyperparameter set and select the best value based on
the validation set.

Prediction Accuracy. The experimental results are summarized in Table 1. For
each data set, the best performance up to statistical significance is highlighted
in bold. Standard deviations are provided inside parenthesis. If an algorithm is
not able to scale to a particular data set (or fails to converge), it is indicated
with N/A.

A few trends can be observed: 1. TMPM obtains the best result (up to sta-
tistical significance) on almost all data sets; 2. TMPM’s standard deviation of
error is always the lowest among all TL/SSL algorithms over all data sets except
pcmac and text, demonstrating that TMPM is insensitive to the initial predic-
tions on unlabeled test data; 3. Generally, non-linear classifiers do not outperform

2 http://olivier.chapelle.cc/ssl-book/benchmarks.html
3 http://archive.ics.uci.edu/ml/datasets.html

http://olivier.chapelle.cc/ssl-book/benchmarks.html
http://archive.ics.uci.edu/ml/datasets.html
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Table 1. Data set statistics and test error rates (in %) on nine benchmark data sets,
comparing TMPM against various state-of-the-art algorithms. N/A indicates that an
algorithm fails to scale to that specific data set. Best results up to statistical significance
are highlighted in bold.

Statistics g50c g241c breast australian digit1 pcmac text adults kddcup

# features 50 241 10 14 241 3289 11960 123 122

# inputs 550 1500 683 690 1500 1943 1500 32541 500000

Algorithm Test-error (%)

SVM 16.7 ± 4.2 36.9 ± 2.4 3.2 ± 0.3 19.3 ± 5.9 20.0 ± 5.0 38.4 ± 4.9 35.5 ± 4.4 26.8 ± 5.6 5.1 ± 1.7

MPM 18.1 ± 3.9 37.4 ± 2.5 3.3 ± 0.2 19.6 ± 3.2 25.1 ± 3.7 39.7 ± 5.6 38.9 ± 4.0 24.2 ± 4.8 1.6 ± 1.0

TSVMlight
linear 4.8 ± 0.7 17.5 ± 3.3 2.8 ± 0.5 16.5 ± 6.7 16.7 ± 2.4 40.9 ± 9.8 27.0 ± 4.4 N / A N / A

TSVMlight
rbf 5.0 ± 0.5 14.3 ± 1.2 3.5 ± 0.7 16.7 ± 4.9 15.6 ± 2.0 41.6 ± 10.4 29.5 ± 6.2 N / A N / A

TSVMms
linear 6.0 ± 1.3 17.1 ± 4.4 3.2 ± 0.1 16.3 ± 4.1 15.7 ± 4.0 38.8 ± 8.9 26.3 ± 3.7 22.3 ± 4.0 N / A

TSVMms
rbf 4.9 ± 0.6 15.1 ± 5.5 3.3 ± 0.2 17.0 ± 5.5 15.6 ± 3.3 37.8 ± 4.5 27.4 ± 3.8 N / A N / A

EM 9.3 ± 4.8 37.7 ± 10.0 8.6 ± 4.3 19.9 ± 5.9 11.3 ± 9.1 33.1 ± 9.8 33.7 ± 0.3 24.2 ± 8.5 1.0 ± 0.4

LDS 9.2 ± 4.9 15.7 ± 6.7 4.3 ± 0.7 16.8 ± 2.8 13.5 ± 6.9 38.4 ± 7.5 27.4 ± 3.8 N / A N / A

SMIR 17.1 ± 4.4 36.8 ± 3.3 4.0 ± 1.2 19.9 ± 4.0 12.5 ± 5.0 44.7 ± 5.0 35.2 ± 4.6 N / A N / A

TMPM 4.8 ± 0.4 13.1 ± 0.4 2.8 ± 0.1 15.2 ± 0.8 9.0 ± 1.8 30.5 ± 8.0 35.2 ± 5.2 20.5 ± 2.8 0.6 ± 0.1
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Fig. 2. Classification accuracy (in %) and computational time (in seconds) of different
TL algorithms on data sets described in Table 1. Error bar indicates the standard
deviation.

linear classifiers, which is not unusual in the TL/SSL setting due to the typically
small training set sizes.

Analysis.We explain the strong performance of TMPM in parts on the underly-
ing MPM framework. Compared to TSVMlight and TSVMms, TMPM only yields
significantly worse performance on the text data, but outperforms or matches
both on all other problems.
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Fig. 3. Transductive learning curve on g50c and digit1. Each dotted vertical line rep-
resents a (w, b) re-optimization step.

Table 2. Test error rates on data sets with manifold structure. Best results (up to
statistical significance) are highlighted in bold.

d n SVM LapSVM LapMPM TMPMmr

coil20 1024 576 13.3 ± 4.2 10.5 ± 3.9 12.9 ± 3.4 11.7 ± 3.9

uspst 256 803 16.5 ± 2.3 14.2 ± 2.4 16.6 ± 2.4 13.6 ± 3.4

Figure 3 shows the transduction accuracy and the value of p with respect to
the number of switched label pairs on two representative data sets. Each interval
between two vertical lines corresponds to an execution of one inner loop of Al-
gorithm 1. As predicted, p strictly increases after each pair of labels is switched
or w, b are re-optimized. Not surprisingly, the transduction accuracy increases
steadily as p increases. We can also observe that the number of switched la-
bels per iteration decrease (roughly) exponentially, indicating TMPM converges
quickly in practice.

Speed. In Figure 2 we compare the training time (plotted on a logarithmic scale)

and classification accuracy of the above TL/SSL algorithms (we omit TSVMlight
rbf

and TSVMms
rbf here since they are significantly slower than their linear version).

The TMPM is the fastest among all the six algorithms on 6/9 of the data sets.
It is only slower than the EMmulti algorithm on two high dimensional text data
(pcmac, text) sets and adult (although the differences are sometimes no more
than a few seconds). The TMPM is 1 to 4 orders of magnitude faster than
the TSVMlight, and is also significantly faster than the TSVMms. The speed
advantage of TMPM over other algorithms is even larger as the unlabeled data
increases.
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5.3 Performances on Manifold Data Sets

We also evaluate TMPM with manifold regularization (TMPMmr) on two well
known data sets considered to have manifold structures (from the UCI data set
repository). For each data set, we select 50 inputs as labeled set, 50 as hold-out,
and leave the rest as unlabeled test set.

The kernel TMPM with RBF kernel is adopted here, and the kernel width
is selected from the set [2−5, 2−4, . . . , 21] times the average pairwise distance
of the training data. For comparison, we evaluate two representative manifold-
based SSL algorithms, LapSVM [1] and LapMPM [22]. For all algorithms, the
same graph Laplacian is used, whose parameter setting can be found in [19]. The
prediction error rates (in %) on unlabeled test set are summarized in Table 2.
The results show that TMPMmr is also competitive with LapSVM and LapMPM
on these manifold data sets.

6 Conclusion

In this paper, we propose a novel transductive learning algorithm (TMPM) based
on the minimax probability machine. Although TL learning is not new, the
TMPM framework provides a fresh and exciting approach to transductive learn-
ing. The underlying assumption is that the optimal decision hyperplane should
lead to a maximum worst-case separation probability between different data
classes. We convert this search problem into a mixed-integer programming, and
propose an efficient algorithm to approximate it greedily.

We show that TMPM converges in a finite number of iterations and has a
low computational complexity in the number of unlabeled inputs. Experimental
results demonstrate that TMPM is promising in generalization performance and
scales naturally to large data sets.
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Appendix: Kernel TMPM
Suppose that the labeled training data are re-arranged so that the firstm+ inputs
belong to class +1, and the rest m− inputs belong to class −1. Let K ∈ Rm×m

(m = m+ + m−) denotes the kernel matrix, whose first m+ rows and last m−
rows are denoted by K+ and K−, respectively.

The kernel MPM is formulated as

max
θθθ∈Rm

θθθ�(ηηη+ − ηηη−)√
θθθ�(ΦΦΦ�

+ΦΦΦ+ + λ+K)θθθ +
√
θθθ�(ΦΦΦ�

−ΦΦΦ− + λ−K)θθθ

where

ΦΦΦ+ = (K+ − 111m+ηηη
�
+)/

√
m+

ΦΦΦy = (K− − 111m−ηηη
�
−)/

√
m−

[ηηη+]i =

m+∑
j=1

Kj,i,

[ηηη−]i =
m∑

j=m++1

Kj,i,

and 111n denotes an all one vector of dimension n.
Based on the kernel MPM, we give the kernel TMPM in Algorithm 2.

Algorithm 2. The Kernel TMPM algorithm

1: Input: Labeled data {xi, yi}mi=1; Unlabeled test inputs {xi}ni=m+1;
2: Parameters: λ (for regularization)
3: Compute class ratio r on y or using prior knowledge.
4: Initialize class assignment vector ŷ = [y, ŷu] by training a kernel MPM using

labeled inputs, and assign �r(n−m)� unlabeled test inputs with highest predicting
value to class +1, and the rest to class −1.

5: Compute ηηη+, ηηη−, K+ and K−.
6: while true do
7: (θθθ, b) = Train kernel MPM (ηηη+, ηηη−,K+,K−, λ)
8: t̄+ = θθθ�ηηη+ + b, t̄− = θθθ�ηηη− + b
9: t = Predict kernel MPM (θθθ, b,x)
10: if �(ti, tj) satisfying the conditions in (5) break
11: while ∃(ti, tj) satisfying conditions in (5) do
12: Switch the labels of xi and xj (ŷi ⇔ ŷj).
13: Update ηηη+, ηηη−, K+ and K−.
14: s̄ = θθθ�ηηη+ − b; t̄ = θθθ�ηηη− − b;
15: end while
16: end while
17: Output: Class assignment vector on test inputs ŷu, MPM classifier (θθθ, b).
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Abstract. Lasso-type variable selection has been increasingly adopted in many
applications. In this paper, we propose a covariate-correlated Lasso that selects
the covariates correlated more strongly with the response variable. We propose
an efficient algorithm to solve this Lasso-type optimization and prove its con-
vergence. Experiments on DNA gene expression data sets show that the selected
covariates correlate more strongly with the response variable, and the residual
values are decreased, indicating better covariate selection. The selected covari-
ates lead to better classification performance.

1 Introduction

In many regression applications, there are too many unrelated predictors which may
hide the relationship between the response and the most related predictors. A com-
mon way to resolve this problem is variable selection, that is to select a subset of the
most representative or discriminative predictors from the input predictor set. In machine
learning and data mining tasks, the main challenge of variable selection is to select a
set of predictors, as small as possible, that help the classifier to accurately classify the
learning examples. Various kinds of variable selection methods have been proposed to
tackle the issue of high dimensionality. One major type of variable selection methods
is to use the filter methods, such as: t-test, F-statistic [5], ReliefF [10], mRMR [12] and
mutual information [13]. These methods are usually independent of classifiers. Another
wrapper-type of variable selection methods is to take classifiers to evaluate subsets of
predictors [9]. In addition, some stochastic search techniques have also been used for
variable selection [16].

Recently, sparsity regularization receives increasing in variable selection. The well
known Lasso (Least Absolute Shrinkage and Selection Operator) is a penalized least
square method with �1-regularization, which is used to shrink/suppress variables to
achieve variable selection [3,14,19,17,18]. However, �1-minimization algorithm is not
stable compared with �2-minimization. Elastic Net added �2-regularization in Lasso to
make the regression coefficients more stable [19]. Group Lasso was proposed where the
covariates are assumed to be clustered in groups, and the sum of Euclidean norms of
the loadings in each group is used [17]. Supervised Group Lasso performed K-means
clustering before Group Lasso [11]. From the covariate point of view, the aim of tradi-
tional Lasso-type models is to select a set of covariates from the input covariate set that
linearly represent the response approximately. However, they consider data approxima-
tion and representation only, without explicitly incorporating the correlation between
the response and covariates.

T. Calders et al. (Eds.): ECML PKDD 2014, Part I, LNCS 8724, pp. 595–606, 2014.
c© Springer-Verlag Berlin Heidelberg 2014
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In this paper, correlation information is considered into the Lasso-type variable se-
lection, where regression coefficients associated with larger correlations between the
response and covariates are penalized less. Therefore, the selected covariates are highly
correlated with the response, i.e., the response can be sparsely approximated (repre-
sented) by its closer covariates. In the following, we firstly briefly review the normal
Lasso and Elastic Net, then present our covariate-correlated Lasso (ccLasso) model. An
efficient iterative algorithm, with its proof of convergence, is presented to solve the pro-
posed ccLasso optimization problem. Promising experimental results show the benefits
of the proposed ccLasso model.

2 Brief Review of Lasso and Elastic Net

Let (x1, y1), · · · , (xn, yn) be the input data, where xi ∈ Rp is a vector of predic-
tors and yi ∈ R is a scalar response for xi. Formulate them in matrix form X =
(x1, x2, · · · , xn)

T ∈ Rn×p and y = (y1, y2, · · · , yn) ∈ Rn. Here we adopt the lan-
guage of LARS (covariate point of view) [6]. The j-th column of X (e.g., j-th dimen-
sion or feature throughout the n data points) is the j-th covariate, denoted as a column
vector aj ∈ Rn. Let A = (a1, a2, · · · , ap). The goal of Lasso is variable (covariate)
selection. It selects a subset of k < p covariates from the p covariates a1, · · · , ap (re-
member p is the dimension of xi) that best approximate the response vector y. Lasso
minimizes

min
β

‖y −
p∑

j=1

βjaj‖2 + λ

p∑
j=1

|βj | = ‖y − Aβ‖2 + λ‖β‖1, (1)

Here �q-norm of vector v is defined as ‖v‖q =
[∑n

i=1 |vi|q
]1/q

. For simplicity, we
ignore the subscript 2 for the Euclidean distance q = 2: ‖v‖ = ‖v‖2. λ ≥ 0 is a
penalty parameter. When λ is large, many components of β are zero. The nonzero com-
ponents give the selection of covariates. This covariate point of view is identical to the
compressed sensing of Donoho et al[4].

In general, �1-minimization is not stable compared with �2-minimization [15]. To
compensate for this, Elastic Net [19] further adds the ridge regression penalty term into
Lasso objective function, which can be formulated as

min
β∈Rp

‖y −Aβ‖2 + λ‖β‖1 + ζ‖β‖2, (2)

where λ, ζ ≥ 0 are model parameters. Apart the sparsity, Elastic Net usually encourages
a grouping effect, i.e., strongly correlated covariates tend to be in or out of the model
together.

3 Covariate-Correlated Lasso

In this section, we present our covariate-correlated Lasso (ccLasso).
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3.1 Covariate-Response Vector Correlation

First, we rescale the data. Note that in Lasso we can normalize y such that ‖y‖ = 1;
This change is absorbed by β through an overall proportional constant. Second, we can
also normalize each covariate aj to ‖aj‖ = 1. The difference is absorbed into βj . Our
covariate-correlated Lasso (ccLasso) is motivated by the following two observations.

First, since each covariate aj has the same dimension as y, we may consider the
correlation between y and covariate aj . This is useful information. Intuitively, if we
select a few covariates to form a linear combination that best approximates the response
vector y, then the covariates correlated more with y would be good choices. In fact, this
correlation information has been emphasized and successfully used in analysis of gene
expression microarray data of gene selection [8]. To the best of our knowledge, this
correlation information has not been explored or emphasized in Lasso-type covariate
selection.

Then, we can prove that if we restrict β to have only one nonzero component, the se-
lected covariate must be the covariate which correlates with y the most, i.e., the highest
correlation coefficient w.r.t. y.

Lemma 1. If we select one covariate among the p covariates, the selected one has the
highest correlation coefficient with y.

Proof. Selecting one covariate aj that minimizes the error most is the following mini-
mization problem,

min
j,βj

J = ‖y − βjaj‖2 = yT y + β2
j a

T
j aj − 2βjy

Taj . (3)

Since y and aj are normalized, i.e., yT y = 1, aTj aj = 1 and y and aj are already
centered as in standard regression, the correlation coefficient is

ρ(y, aj) =
yTaj
‖y‖‖aj‖

= yTaj .

Thus J = 1 + β2
j − 2βjρ(y, aj). Setting the derivative w.r.t. βj to zero, we obtain

βj = ρ(y, aj). Thus, J = 1− [ρ(y, aj)]
2 and the selection problem becomes

min
j

1− [ρ(y, aj)]
2. (4)

Therefore the selected one must has the highest (absoluate value) correlation coefficient
with y. 
–

The above result is intuitively appealing: if we select one covariate to represent y
approximately, the selected covariate must be the one closest (most correlated) to y. If
we select two covariates to represent y, the standard LASSO results are not necessarily
the two covariates most correlated to y. Our covariate-correlated Lasso (ccLasso) is
motivated by the desire to encourage the selected covariates to correlate more with y.
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3.2 Covariate-Correlated Lasso

By imposing the correlation information into the variable selection, our covariate-
correlated Lasso can be formulated as follows,

min
β
‖y −Aβ‖2 + λ

p∑
j=1

μj |βj |, (5)

where
μj = (1− |ρ(y, aj)|)2. (6)

The intuition is that when aj correlates strongly (either positively or negatively) with y,
μj is close to zero, thus a small penalty. As λ increases, βj with large penalty tend to
go to zero. Thus the final selected covariates tend to have larger correlation with y.

We now use α to replace β to denote/emphasize the regression coefficients obtained
from ccLasso. Let D = diag(μ1, · · · , μp), then ccLasso can be written compactly as

min
α
‖y −Aα‖2 + λ‖Dα‖1. (7)

4 Computational Algorithm

4.1 Update Algorithm

Problem Eq.(7) is a convex formulation and we seek the global optimal solution. In this
section, an efficient algorithm is derived to solve this problem. The detailed algorithm
is given in Algorithm 1. In Algorithm 1, the initialization is the solution of the ridge
regression problem

min
α
‖y −Aα‖2 + λαTDα. (8)

The solution of this ridge regression problem is given by

α(0) = (ATA+ λD/2)−1AT y. (9)

4.2 Convergence Analysis

In this section, we provide a convergence analysis for Algorithm 1. Since L(α) is a
convex function of α, thus, we only need to prove that the objective function value L(α)
is non-increasing in each iteration in Algorithm 1. This is summarized in Theorem 1.

Theorem 1. The objective function value L(α) of Eq.(7) for ccLasso minimization
problem is non-increasing,

L(αt+1) ≤ L(αt), (12)

upon the updating formulae Eq.(11) in Algorithm 1.

To prove Theorem 1, we need the help of the following two Lemmas, which are
needed to be proved firstly.
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Algorithm 1. Algorithm for covariate-correlated Lasso

1: Input: Training data A ∈ Rn×p and corresponding response y ∈ Rn, parameters λ, maxi-
mum number of iteration tmax, and convergence tolerance ε > 0;

2: Compute B = ATA, D, μj as in Eqs.(6,7)
3: Initialize t = 0, α(t) = (ATA+ λD/2)−1AT y.
4: Update diagonal matrix

M (t) = diag

(√
|α(t)

1 |, · · · ,
√

|α(t)
p |

)
; (10)

5: Update combination coefficients

α(t+1) = M (t)

[
M (t)BM (t) +

λ

2
D

]−1

M (t)AT y; (11)

6: If t > tmax or ‖α(t+1) − α(t)‖ < ε, go to step 7; otherwise, set t = t+ 1 and go to step 4;
7: Output: The converged regression coefficients α∗ = α(t+1).

Lemma 2. Define an auxiliary function

G(α) = ‖y −Aα‖2 + λ

p∑
i=1

α2
i

2|α(t)
i |

di. (13)

Along with the {α(t), t = 0, 1, 2, · · · } sequence obtained in Algorithm 1, the following
inequality holds,

G(α(t+1)) ≤ G(α(t)). (14)

Proof. Since both two terms in auxiliary function G(α) are semi-definite program-
ming (SDP) problems, we can obtain the global optimal solution of G(α) by taking the
derivatives and let them equal to zero.

Making use of M (t) denotation in Eq.(10), the auxiliary function G(α) can be rewrit-
ten as

G(α) = ‖y −Aα‖2 + λ

2
αT (M (t))−2Dα. (15)

Take the derivative of Eq.(15) with respect to α, and we get

∂G(α)

∂α
= 2ATAα− 2AT y + λ(M (t))−2Dα. (16)

The second order derivatives are

∂2G(α)

∂αi∂αj
= 2ATA+ λ(M (t))−2D. (17)
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This is clearly a positive semi-definite matrix. Thus function G(α) is a convex function
and its global optimal solution α∗ is unique. By setting ∂G(α)

∂α = 0, we obtain

α∗ =

[
ATA+

λ

2
(M (t))−2D

]−1

AT y (18)

= M (t)

[
M (t)BM (t) +

λ

2
D

]−1

M (t)AT y. (19)

The solution α∗ is the global optima of G(α). Thus G(α∗) ≤ G(α) for any α. In
particular, G(α∗) ≤ G(α(t)). Comparing Eq.(11) with Eq.(19), α(t+1) = α∗. This
completes the proof of Lemma 2.

Remark. It is important to note that we use Eq.(19) instead of the seemingly simpler
Eq.(18). This is because as iteration progresses, some elements of α(t) could become
zero due to the sparsity of l1-penalty. This causes the failure of the inverse of M (t) in
Eq.(18). Thus Eq.(18) is ill-defined. However, M (t) is well-defined. Thus Eq.(19) is
well-defined, which is chosen as the updating rule Eq.(11) in Algorithm 1.

Lemma 3. The {α(t), t = 0, 1, 2, · · · } sequence obtained by iteratively computing
Eqs.(10,11) in Algorithm 1 has the following property

L(α(t+1))− L(α(t)) ≤ G(α(t+1))−G(α(t)). (20)

Proof. Setting Δ = (L(α(t+1))−L(α(t)))− (G(α(t+1))−G(α(t))), substitute Eq.(7)
and Eq.(13) in it, we obtain

Δ = (λ‖Dα(t+1)‖1 − λ‖Dα(t)‖1)−
(
λ

p∑
i=1

di
(α

(t+1)
i )2

2|α(t)
i |

− λ

p∑
i=1

di
(α

(t)
i )2

2|α(t)
i |

)
= −λ

2

p∑
i=1

di

|α(t)
i |

(
− 2|α(t+1)

i ||α(t)
i |+ 2|α(t)

i |2 + (α
(t+1)
i )2 − (α

(t)
i )2
)

= −λ

2

p∑
i=1

di

|α(t)
i |

(
|α(t+1)

i | − |α(t)
i |
)2
≤ 0. (21)

This completes the proof of Lemma 3.

Proof of Theorem 1. From Lemma 2 and Lemma 3, we have,

L(α(t+1))− L(α(t)) ≤ G(α(t+1))−G(α(t)) ≤ 0, (22)

which is to say
L(α(t+1)) ≤ L(α(t)). (23)

This completes the proof of Theorem 1. Therefore, Algorithm 1 converges to the global
optimal solution of ccLasso model starting from any initial coefficient α(0), due to the
convexity of optimization problem. Setting di = 1, the same algorithm can solve the
standard Lasso problem.
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5 Experiments

We evaluate the effectiveness of the proposed covariate-correlated Lasso (ccLasso) on
the two well known data sets: Colon Cancer Data [1] and Leukemia Dataset [8]. The
performance in variable selection and classification accuracy of the ccLasso will be
compared with other methods. Once the variables are selected by our ccLasso method,
the standard regression has been used to achieve classification [3].

5.1 Colon Cancer Data

The data is Affymetrix Oligonucleotide Array measurements of gene expression levels
of 40 tumor and 22 normal colon tissues for 6500 human genes [1]. A subset of 2000
genes based on highest minimal intensity across the samples was selected1. These data
were first preprocessed by taking a base 10 logarithmic of each expression level, and
then each sample is centerized and normalized to zero mean and unit variance across
the genes [3].

Classification Comparison. Because this dataset does not contain test set, we use the
leave-one-out cross validation (LOOCV) method to evaluate the performance of the
classification methods on a selected subset of genes [3]. The external LOOCV proce-
dure is performed as follows: 1) remove one observation from the training set; 2) Select
top 150 genes as ranked in terms of the t statistic; 3) Re-selected the k most important
genes from the 150 genes by the proposed ccLasso algorithm; 4) Use these k genes to
classify the left out sample. This process was repeated for all observations in the train-
ing set, and the average classification performance has been computed. Figure 1 shows
the comparison results across different k genes selected out. Here, we can note that (1)
the performances of all three methods are better as more genes are picked out for clas-
sification. (2) Lasso performs better than Elastic Net in this dataset. (3) The proposed
ccLasso shows consistent superiority over the Lasso and Elastic Net. The best classifi-
cation accuracy and its corresponding genes are summarized in Table 1. The proposed
ccLasso is compared with the following classification methods: SVM [7], MAVE-LD
[2], gsg-SSVS [16], Lasso [14] and Elastic Net [19]. It is clear demonstrated that the
proposed ccLasso is better than the other popular classification methods using only
moderate number of genes.

Table 1. Classification results on Colon Cancer Data

Method No. of genes LOOCV accuracy
SVM 1000 or 2000 0.9032
MAVE-LD 50 0.8387
gsg-SSVS 10/14 0.8871
Lasso 18 0.8316
Elastic Net 18 0.9510
ccLasso 18 0.9755

1 http://microarray.princeton.edu/oncology/affydata/

http:// microarray.princeton.edu/oncology/affydata/
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Fig. 1. External LOOCV classification accuracy of Lasso, Elastic Net and ccLasso on Colon
Cancer Data

Average Correlation. As discussed in Lemma 1 in Section 3.1, we show that if we
select only one covariate using Lasso model, this covariate must be the one with the
highest correlation with y. From this, we expect that for small number of selected co-
variates, their average correlation with y will be high. But if we select larger number of
covariates using Lasso, their average correlation with y will be smaller. In contrast, our
ccLasso can select the large number of desired covariates that are highly correlated with
the response y. To further illustrate these, we compute the average correlation coeffi-
cients between the selected covariates (genes) and y across different number of genes.
Figure 2 (a) shows the comparison results. Here we can noted that for small number of
selected genes, both Lasso and ccLasso can select the genes that are highly correlated
with y. However, if we select large number of genes, the average correlation coefficients
for ccLasso are clearly larger than that for Lasso model.

Residual Comparison. Both Lasso and ccLasso are the approximation models for solv-
ing the following problem

min
β
‖y −Aβ‖, s.t. ‖β‖0 = k. (24)

In other words, we select a subset AS of the covariates A with k entries (training sam-
ples) such that we achieve the best representation using AS . This is a discrete selection
problem and is well known to be is NP hard.

When using Lasso and ccLasso, this is done as follows,
(A0) Tuning the model parameter λ such that the optimal solution α contains k nonzero
entries. (B0) Select the co-variates corresponding to the nonzero entries of α. This gives
the subset AS . (C0) Compute the optimal representation β by solving the linear regres-
sion problem,

Jresidual-error = min
β
‖y −ASβ‖. (25)

We compare the covariate subset AS selected by ccLasso and Lasso, and then compute
the residual errors. The results are shown in Figure 2 (b). It is clear that ccLasso selected
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(a) Average correlation coefficients
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(b) Residual errors

Fig. 2. Average correlation between selected covariates and y and residual errors for Lasso and
ccLasso on Colon dataset
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Fig. 3. LEFT: Objective function convergence with different initializations on Colon Dataset;
RIGHT: Coefficient vector α during iterations (different colors denote different elements of α)

variables lead to lower residual error than Lasso. Thus, ccLasso model provides better
approximate solutions for the discrete selection problem as compared to Lasso model.

Convergence of ccLasso. Figure 3 shows the variation of objective function across the
iterations with different initializations in Algorithm 1. We can see that Algorithm 1 con-
verges very quickly and the maximum iteration number is fewer than 30. Regardless of
the initializations, the final objective function values are the same and converge almost
at the same time, indicting the efficiency and effectiveness of the proposed ccLasso
algorithm.

5.2 Leukemia Dataset

The leukaemia data contains DNA gene expressions of 72 tissue samples [8]2. Follow-
ing previous work, these tissue samples are divided into the training set of 38 samples

2 http://www.broad.mit.edu/cgi-bin/cancer/datasets.cgi

http://www.broad.mit.edu/cgi-bin/cancer/datasets.cgi
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Fig. 4. Classification accuracy of Lasso, Elastic Net and ccLasso on Leukemia testing set (left)
and training set (right)

Table 2. Classification results on Leukemia Dataset

Method No. of genes Training Test
accuracy accuracy

SVM 25∼2000 0.9474 0.8824∼0.9412
MAVE-LD 50 0.9737 0.9706
gsg-SSVS 14 0.9737 0.9706
Lasso 20 1.0000 0.8824
Elastic Net 20 1.0000 0.9118
ccLasso 20 1.0000 0.9412
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2 4 6 8 10 12 14 16 18 20

0.35

0.4

0.45

0.5

0.55

Number of genes

R
es

id
ua

l

 

 

Lasso
ccLasso

(b) Residual errors

Fig. 5. Average correlation between selected covariates and y and residual errors for Lasso and
ccLasso on Leukemia dataset

and the test set of 34 samples. The data gives expression levels of 7129 genes and DNA
products. We use the preprocess method suggested by [3,5].Figure 4 shows the compar-
ison classification accuracy results on training and testing sets across different number
of genes, respectively. Here we can note that (1) all of the three methods perform well
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on training set (all classify correct). (2) On test set, Elastic Net generally performs better
than Lasso with the same number of genes selected out. (3) Our ccLasso consistently
outperforms the other two methods. Table 2 summarizes the comparison results. Noted
that the proposed ccLasso performs better than other methods with moderate number
of genes. Figure 5 shows the average correlation coefficients and residual error results,
respectively. Noted that as the number of selected genes increases, ccLasso model can
return the genes that are more correlated with y (Fig. 5 (a)). Also it returns lower resid-
ual errors and thus approximates the discrete variable selection problem more closely
than Lasso model (Fig. 5 (b)). Figure 6 shows the variation of objective function across
the iterations with different initializations on this dataset. We can see that Algorithm 1
converges very quickly regardless of the different initializations. The above results are
general consistent with that on Colon data, and further demonstrates the benefits of the
proposed ccLasso.
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Fig. 6. LEFT: Objective function convergence with different initializations on Leukemia Dataset;
RIGHT: Coefficient vector α during iterations (different colors denote different elements of α)

6 Conclusion

Covariate-correlated Lasso (ccLasso) naturally promotes correlation of the selected
variable (covariate) with response y; this leads to smaller residual values, indicating a
better solution to the discrete variable selection problem. The model achieves this with
no extra parameters and same level of computation as standard Lasso. An efficient algo-
rithm has been derived to solve ccLasso. Experiments on two well known gene datasets
show that the proposed ccLasso consistently outperforms several state-of-the-art feature
selection methods.
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Abstract. We adapt the idea of random projections applied to the out-
put space, so as to enhance tree-based ensemble methods in the context
of multi-label classification. We show how learning time complexity can
be reduced without affecting computational complexity and accuracy of
predictions. We also show that random output space projections may be
used in order to reach different bias-variance tradeoffs, over a broad panel
of benchmark problems, and that this may lead to improved accuracy
while reducing significantly the computational burden of the learning
stage.

1 Introduction

Within supervised learning, the goal of multi-label classification is to train mod-
els to annotate objects with a subset of labels taken from a set of candidate
labels. Typical applications include the determination of topics addressed in a
text document, the identification of object categories present within an image,
or the prediction of biological properties of a gene. In many applications, the
number of candidate labels may be very large, ranging from hundreds to hun-
dreds of thousands [2] and often even exceeding the sample size [9]. The very
large scale nature of the output space in such problems poses both statistical
and computational challenges that need to be specifically addressed.

A simple approach to solve multi-label classification problems, called binary
relevance, is to train independently a binary classifier for each label. Several
more complex schemes have however been proposed to take into account the
dependencies between the labels (see, e.g. [19,13,7,21,8,23]). In the context of
tree-based methods, one way is to train multi-output trees [3,12,15], ie. trees
that can predict multiple outputs at once. With respect to single-output trees
[5], the score measure used in multi-output trees to choose splits is taken as
the sum of the individual scores corresponding to the different labels (e.g., vari-
ance reduction) and each leaf is labeled with a vector of values, coding each
for the probability of presence of one label. With respect to binary relevance,
the multi-output tree approach has the advantage of building a single model
for all labels. It can thus potentially take into account label dependencies and
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reduce memory requirements for the storage of the models. An extensive experi-
mental comparison [17] shows that this approach compares favorably with other
approaches, including non tree-based methods, both in terms of accuracy and
computing times. In addition, multi-output trees inherit all intrinsic advantages
of tree-based methods, such as robustness to irrelevant features, interpretabil-
ity through feature importance scores, or fast computations of predictions, that
make them very attractive to address multi-label problems. The computational
complexity of learning multi-output trees is however similar to that of the bi-
nary relevance method. Both approaches are indeed O(pdn log n), where p is the
number of input features, d the number of candidate output labels, and n the
sample size; this is a limiting factor when dealing with large sets of candidate
labels.

One generic approach to reduce computational complexity is to apply some
compression technique prior to the training stage to reduce the number of out-
puts to a number m much smaller than the total number d of labels. A model can
then be trained to make predictions in the compressed output space and a pre-
diction in the original label space can be obtained by decoding the compressed
prediction. As multi-label vectors are typically very sparse, one can expect a
drastic dimensionality reduction by using appropriate compression techniques.
This idea has been explored for example in [13] using compressed sensing, and in
[8] using bloom filters, in both cases using regularized linear models as base learn-
ers. This approach obviously reduces computing times for training the model.
At the prediction stage however, the predicted compressed output needs to be
decoded, which adds computational cost and can also introduce further decoding
errors.

In this paper, we explore the use of random output space projections for large-
scale multi-label classification in the context of tree-based ensemble methods. We
first explore the idea proposed for linear models in [13] with random forests: a
(single) random projection of the multi-label vector to an m-dimensional random
subspace is computed and then a multi-output random forest is grown based on
score computations using the projected outputs. We exploit however the fact
that the approximation provided by a tree ensemble is a weighted average of
output vectors from the training sample to avoid the decoding stage: at training
time all leaf labels are directly computed in the original multi-label space. We
show theoretically and empirically that when m is large enough, ensembles grown
on such random output spaces are equivalent to ensembles grown on the original
output space. When d is large enough compared to n, this idea hence may
reduce computing times at the learning stage without affecting accuracy and
computational complexity of predictions.

Next, we propose to exploit the randomization inherent to the projection of
the output space as a way to obtain randomized trees in the context of ensem-
ble methods: each tree in the ensemble is thus grown from a different randomly
projected subspace of dimension m. As previously, labels at leaf nodes are di-
rectly computed in the original output space to avoid the decoding step. We
show, theoretically, that this idea can lead to better accuracy than the first idea
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and, empirically, that best results are obtained on many problems with very low
values of m, which leads to significant computing time reductions at the learn-
ing stage. In addition, we study the interaction between input randomization (à
la Random Forests) and output randomization (through random projections),
showing that there is an interest, both in terms of predictive performance and
in terms of computing times, to optimally combine these two ways of random-
ization. All in all, the proposed approach constitutes a very attractive way to
address large-scale multi-label problems with tree-based ensemble methods.

The rest of the paper is structured as follows: Section 2 reviews properties
of multi-output tree ensembles and of random projections; Section 3 presents
the proposed algorithms and their theoretical properties; Section 4 provides the
empirical validations, whereas Section 5 discusses our work and provides further
research directions.

2 Background

We denote by X an input space, and by Y an output space; without loss of
generality, we suppose that X = Rp (where p denotes the number of input
features), and that Y = Rd (where d is the dimension of the output space). We
denote by PX ,Y the joint (unknown) sampling density over X × Y.

Given a learning sample
(
(xi, yi) ∈ (X × Y)

)n
i=1

of n observations in the form
of input-output pairs, a supervised learning task is defined as searching for a
function f∗ : X → Y in a hypothesis space H ⊂ YX that minimizes the expec-
tation of some loss function � : Y ×Y → R over the joint distribution of input /
output pairs: f∗ ∈ argminf∈HEPX,Y {�(f(x), y)} .

NOTATIONS: Superscript indices (xi, yi) denote (input, output) vectors of
an observation i ∈ {1, . . . , n}. Subscript indices (e.g. xj , yk) denote components
of vectors.

2.1 Multi-output Tree Ensembles

A classification or a regression tree [5] is built using all the input-output pairs
as follows: for each node at which the subsample size is greater or equal to a
pre-pruning parameter nmin, the best split is chosen among the p input features
combined with the selection of an optimal cut point. The best sample split
(Sr, Sl) of the local subsample S minimizes the average reduction of impurity

ΔI((yi)i∈S , (y
i)i∈Sl

, (yi)i∈Sr )= I((yi)i∈S)−
|Sl|
|S| I((y

i)i∈Sl
)−|Sr|
|S| I((y

i)i∈Sr). (1)

Finally, leaf statistics are obtained by aggregating the outputs of the samples
reaching that leaf.
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In this paper, for multi-output trees, we use the sum of the variances of the
d dimensions of the output vector as an impurity measure. It can be computed
by (see Appendix A, in the supplementary material1)

Var((yi)i∈S) =
1

|S|
∑
i∈S

||yi − 1

|S|
∑
i∈S

yi||2, (2)

=
1

2|S|2
∑
i∈S

∑
j∈S

||yi − yj ||2. (3)

Furthermore, we compute the vectors of output statistics by component-wise
averaging. Notice that, when the outputs are vectors of binary class-labels (i.e.
y ∈ {0, 1}d), as in multi-label classification, the variance reduces to the so-
called Gini-index, and the leaf statistics then estimate a vector of conditional
probabilities P (yj = 1|x ∈ leaf), from which a prediction ŷ can be made by
thresholding.

Tree-based ensemble methods build an ensemble of t randomized trees. Unseen
samples are then predicted by aggregating the predictions of all t trees. Random
Forests [4] build each tree on a bootstrap copy of the learning sample [4] and
by optimising the split at each node over a locally generated random subset of
size k among the p input features. Extra Trees [11] use the complete learning
sample and optimize the split over a random subset of size k of the p features
combined with a random selection of cut points. Setting the parameter k to the
number of input features p allows to filter out irrelevant features; larger nmin

yields simpler trees possibly at the price of higher bias, and the higher t the
smaller the variance of the resulting predictor.

2.2 Random Projections

In this paper we apply the idea of random projections to samples of vectors
of the output space Y. With this in mind, we recall the Johnson-Lindenstrauss
lemma (reduced to linear maps), while using our notations.

Lemma 1. Johnson-Lindenstrauss lemma [14] Given ε > 0 and an integer n,
let m be a positive integer such that m ≥ 8ε−2 lnn. For any sample (yi)ni=1 of n
points in Rd there exists a matrix Φ ∈ Rm×d such that for all i, j ∈ {1, . . . , n}

(1− ε)||yi−yj||2 ≤ ||Φyi−Φyj ||2 ≤ (1+ ε)||yi−yj||2. (4)

Moreover, when d is sufficiently large, several random matrices satisfy (4)
with high probability. In particular, we can consider Gaussian matrices which
elements are drawn i.i.d. in N (0, 1/m), as well as (sparse) Rademacher matrices
which elements are drawn in

{
−
√

s
m , 0,

√
s
m

}
with probability

{
1
2s , 1−

1
s ,

1
2s

}
,

where 1/s ∈ (0, 1] controls the sparsity of Φ [1,16].
Notice that if some Φ satisfies (4) for the whole learning sample, it obviously

satisfies (4) for any subsample that could reach a node during regression tree
1 static.ajoly.org/files/ecml2014-supplementary.pdf

static.ajoly.org/files/ecml2014-supplementary.pdf
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growing. On the other hand, since we are not concerned in this paper with the
‘reconstruction’ problem, we do not need to make any sparsity assumption ‘à la
compressed sensing’.

3 Methods

We first present how we propose to exploit random projections to reduce the com-
putational burden of learning single multi-output trees in very high-dimensional
output spaces. Then we present and compare two ways to exploit this idea
with ensembles of trees. Subsection 3.3 analyses these two ways from the
bias/variance point of view.

3.1 Multi-output Regression Trees in Randomly Projected
Output Spaces

The multi-output single tree algorithm described in section 2 requires the com-
putation of the sum of variances in (2) at each tree node and for each candidate
split. When Y is very high-dimensional, this computation constitutes the main
computational bottleneck of the algorithm. We thus propose to approximate
variance computations by using random projections of the output space. The
multi-output regression tree algorithm is modified as follows (denoting by LS
the learning sample ((xi, yi))ni=1):

– First, a projection matrix Φ of dimension m× d is randomly generated.
– A new dataset LSm = ((xi, Φyi))ni=1 is constructed by projecting each learn-

ing sample output using the projection matrix Φ.
– A tree (structure) T is grown using the projected learning sample LSm.
– Predictions ŷ at each leaf of T are computed using the corresponding outputs

in the original output space.

The resulting tree is exploited in the standard way to make predictions: an
input vector x is propagated through the tree until it reaches a leaf from which
a prediction ŷ in the original output space is directly retrieved.

If Φ satisfies (4), the following theorem shows that variance computed in the
projected subspace is an ε-approximation of the variance computed over the
original space.

Theorem 1. Given ε > 0, a sample (yi)ni=1 of n points y ∈ Rd, and a projection
matrix Φ ∈ Rm×d such that for all i, j ∈ {1, . . . , n} condition (4) holds, we have
also:

(1− ε)Var((yi)ni=1) ≤ Var((Φyi)ni=1) ≤ (1 + ε)Var((yi)ni=1). (5)

Proof. See Appendix B, supplementary material.

As a consequence, any split score approximated from the randomly projected
output space will be ε-close to the unprojected scores in any subsample of the
complete learning sample. Thus, if condition (4) is satisfied for a sufficiently
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small ε then the tree grown from the projected data will be identical to the tree
grown from the original data2.

For a given size m of the projection subspace, the complexity is reduced
from O(dn) to O(mn) for the computation of one split score and thus from
O(dpn log n) to O(mpn logn) for the construction of one full (balanced) tree,
where one can expect m to be much smaller than d and at worst of O(ε−2 logn).
The whole procedure requires to generate the projection matrix and to project
the training data. These two steps are respectively O(dm) and O(ndm) but they
can often be significantly accelerated by exploiting the sparsity of the projection
matrix and/or of the original output data, and they are called only once before
growing the tree.

All in all, this means that when d is sufficiently large, the random projection
approach may allow us to significantly reduce tree building complexity from
O(dtpn logn) to O(mtpn logn+ tndm), without impact on predictive accuracy
(see section 4, for empirical results).

3.2 Exploitation in the Context of Tree Ensembles

The idea developed in the previous section can be directly exploited in the
context of ensembles of randomized multi-output regression trees. Instead of
building a single tree from the projected learning sample LSm, one can grow a
randomized ensemble of them. This “shared subspace” algorithm is described in
pseudo-code in Algorithm 1.

Algorithm 1. Tree ensemble on a single shared subspace Φ

Require: t, the ensemble size
Require: ((xi, yi) ∈ (Rp × Rd))ni=1, the input-output pairs
Require: A tree building algorithm.
Require: A sub-space generator

Generate a sub-space Φ ∈ Rm×d;
for j = 1 to t do

Build a tree structure Tj using ((xi, Φyi))ni=1;
Label the leaves of Tj using ((xi, yi))ni=1;
Add the labelled tree Tj to the ensemble;

end for

Another idea is to exploit the random projections used so as to introduce
a novel kind of diversity among the different trees of an ensemble. Instead of
building all the trees of the ensemble from a same shared output-space projection,
one could instead grow each tree in the ensemble from a different output-space
projection. Algorithm 2 implements this idea in pseudo-code. The randomization
2 Strictly speaking, this is only the case when the optimum scores of test splits as

computed over the original output space are isolated, i.e. when there is only one
single best split, no tie.
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introduced by the output space projection can of course be combined with any
existing randomization scheme to grow ensembles of trees. In this paper, we will
consider the combination of random projections with the randomizations already
introduced in Random Forests and Extra Trees. The interplay between these
different randomizations will be discussed theoretically in the next subsection
by a bias/variance analysis and empirically in Section 4. Note that while when
looking at single trees or shared ensembles, the size m of the projected subspace
should not be too small so that condition (4) is satisfied, the optimal value of m
when projections are randomized at each tree is likely to be smaller, as suggested
by the bias/variance analysis in the next subsection.

Algorithm 2. Tree ensemble with individual subspaces Φj

Require: t, the ensemble size
Require: ((xi, yi) ∈ (Rp × Rd))ni=1, the input-output pairs
Require: A tree building algorithm.
Require: A sub-space generator

for j = 1 to t do
Generate a sub-space Φj ∈ Rm×d;
Build a tree structure Tj using ((xi, Φjy

i))ni=1;
Label the leaves of Tj using ((xi, yi))ni=1;
Add the labelled tree Tj to the ensemble;

end for

From the computational point of view, the main difference between these two
ways of transposing random-output projections to ensembles of trees is that
in the case of Algorithm 2, the generation of the projection matrix Φ and the
computation of projected outputs is carried out t times, while it is done only
once for the case of Algorithm 1. These aspects will be empirically evaluated in
Section 4.

3.3 Bias/Variance Analysis

In this subsection, we adapt the bias/variance analysis carried out in [11] to
take into account random output projections. The details of the derivations are
reported in Appendix C (supplementary material).

Let us denote by f(.; ls, φ, ε) : X → Rd a single multi-output tree obtained
from a projection matrix φ (below we use Φ to denote the corresponding random
variable), where ε is the value of a random variable ε capturing the random
perturbation scheme used to build this tree (e.g., bootstrapping and/or random
input space selection). The square error of this model at some point x ∈ X is
defined by:

Err(f(x; ls, φ, ε))
def
= EY |x{||Y − f(x; ls, φ, ε})||2},
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and its average can decomposed in its residual error, (squared) bias, and variance
terms denoted:

ELS,Φ,ε{Err(f(x;LS,Φ, ε))} = σ2
R(x) +B2(x) + V (x)

where the variance term V (x) can be further decomposed as the sum of the
following three terms:

VLS(x) = VarLS{EΦ,ε|LS{f(x;LS,Φ, ε)}}
VAlgo(x) = ELS{EΦ|LS{Varε|LS,Φ{f(x;LS,Φ, ε)}}},
VProj(x) = ELS{VarΦ|LS{Eε|LS,Φ{f(x;LS,Φ, ε)}}},

that measure errors due to the randomness of, respectively, the learning sample,
the tree algorithm, and the output space projection (Appendix C, supplementary
material).

Approximations computed respectively by algorithms 1 and 2 take the follow-
ing forms:
– f1(x; ls, ε

t, φ) = 1
t

∑t
i=1 f(x; ls, φ, εi)

– f2(x; ls, ε
t, φt) = 1

t

∑t
i=1 f(x; ls, φi, εi),

where εt = (ε1, . . . , εt) and φt = (φ1, . . . , φt) are vectors of i.i.d. values of the
random variables ε and Φ respectively.

We are interested in comparing the average errors of these two algorithms,
where the average is taken over all random parameters (including the learning
sample). We show (Appendix C) that these can be decomposed as follows:

ELS,Φ,εt{Err(f1(x;LS,Φ, ε
t))}

= σ2
R(x) + B2(x) + VLS(x) +

VAlgo(x)

t
+ VProj(x),

ELS,Φt,εt{Err(f2(x;LS,Φ
t, εt))}

= σ2
R(x) + B2(x) + VLS(x) +

VAlgo(x) + VProj(x)

t
.

From this result, it is hence clear that Algorithm 2 can not be worse, on the
average, than Algorithm 1. If the additional computational burden needed to
generate a different random projection for each tree is not problematic, then
Algorithm 2 should always be preferred to Algorithm 1.

For a fixed level of tree randomization (ε), whether the additional random-
ization brought by random projections could be beneficial in terms of predictive
performance remains an open question that will be addressed empirically in the
next section. Nevertheless, with respect to an ensemble grown from the original
output space, one can expect that the output-projections will always increase the
bias term, since they disturb the algorithm in its objective of reducing the errors
on the learning sample. For small values of m, the average error will therefore
decrease (with a sufficiently large number t of trees) only if the increase in bias
is compensated by a decrease of variance.
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The value of m, the dimension of the projected subspace, that will lead to the
best tradeoff between bias and variance will hence depend both on the level of
tree randomization and on the learning problem. The more (resp. less) tree ran-
domization, the higher (resp. the lower) could be the optimal value of m, since
both randomizations affect bias and variance in the same direction.

4 Experiments

4.1 Accuracy Assessment Protocol

We assess the accuracy of the predictors for multi-label classification on a test
sample (TS) by the “Label Ranking Average Precision (LRAP)” [17], expressed
by

LRAP(f̂) =
1

|TS|
∑
i∈TS

1

|yi|
∑

j∈{k:yi
k=1}

|Li
j(y

i)|
|Li

j(1d)|
, (6)

where f̂(xi)j is the probability (or the score) associated to the label j by the
learnt model f̂ applied to xi, 1d is a d-dimensional row vector of ones, and

Li
j(q) =

{
k : qk = 1 and f̂(xi)k ≥ f̂(xi)j

}
.

Test samples without any relevant labels (i.e. with |yi| = 0) were discarded prior
to computing the average precision. The best possible average precision is thus
1. Notice that we use indifferently the notation | · | to express the cardinality of
a set or the 1-norm of a vector.

Fig. 1. Models built for the “Delicious” dataset (d = 983) for growing numbers m of
Gaussian projections. Left: single unpruned CART trees (nmin = 1); Right: Random
Forests (k =

√
p, t = 100, nmin = 1). The curves represent average values (and standard

deviations) obtained from 10 applications of the randomised algorithms over a same
single LS/TS split.
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4.2 Effect of the Size m of the Gaussian Output Space

To illustrate the behaviour of our algorithms, we first focus on the “Delicious”
dataset [20], which has a large number of labels (d = 983), of input features
(p = 500), and of training (nLS = 12920) and testing (nTS = 3185) samples.

The left part of figure 1 shows, when Gaussian output-space projections are
combined with the standard CART algorithm building a single tree, how the
precision converges (cf Theorem 1) when m increases towards d. We observe
that in this case, convergence is reached around m = 200 at the expense of a
slight decrease of accuracy, so that a compression factor of about 5 is possible
with respect to the original output dimension d = 983.

The right part of figure 1 shows, on the same dataset, how the method be-
haves when combined with Random Forests. Let us first notice that the Random
Forests grown on the original output space (green line) are significantly more
accurate than the single trees, their accuracy being almost twice as high. We
also observe that Algorithm 2 (orange curve) converges much more rapidly than
Algorithm 1 (blue curve) and slightly outperforms the Random Forest grown on
the original output space. It needs only about m = 25 components to converge,
while Algorithm 1 needs about m = 75 of them. These results are in accordance
with the analysis of Section 3.3, showing that Algorithm 2 can’t be inferior to
Algorithm 1. In the rest of this paper we will therefore focus on Algorithm 2.

4.3 Systematic Analysis over 24 Datasets

To assess our methods, we have collected 24 different multi-label classification
datasets from the literature (see Section D of the supplementary material, for
more information and bibliographic references to these datasets) covering a
broad spectrum of application domains and ranges of the output dimension
(d ∈ [6; 3993], see Table 1). For 21 of the datasets, we made experiments where
the dataset is split randomly into a learning set of size nLS , and a test set of
size nTS , and are repeated 10 times (to get average precisions and standard
deviations), and for 3 of them we used a ten-fold cross-validation scheme (see
Table 1).

Table 1 shows our results on the 24 multi-label datasets, by comparing Ran-
dom Forests learnt on the original output space with those learnt by Algorithm 2
combined with Gaussian subspaces of size m ∈ {1, d, ln d}3. In these experi-
ments, the three parameters of Random Forests are set respectively to k =

√
p,

nmin = 1 (default values, see [11]) and t = 100 (reasonable computing budget).
Each model is learnt ten times on a different shuffled train/testing split, except
for the 3 EUR-lex datasets where we kept the original 10 folds of cross-validation.

We observe that for all datasets (except maybe SCOP-GO), taking m = d
leads to a similar average precision to the standard Random Forests, i.e. no
difference superior to one standard deviation of the error. On 11 datasets, we
see that m = 1 already yields a similar average precision (values not underlined in
3 ln d is rounded to the nearest integer value; in Table 1 the values of ln d vary between

2 for d = 6 and 8 for d = 3993.
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column m = 1). For the 13 remaining datasets, increasing m to ln d significantly
decreases the gap with the Random Forest baseline and 3 more datasets reach
this baseline. We also observe that on several datasets such as “Drug-interaction”
and “SCOP-GO”, better performance on the Gaussian subspace is attained with
high output randomization (m = {1, ln d}) than with m = d. We thus conclude
that the optimal level of output randomization (i.e. the optimal value of the
ratio m/d) which maximizes accuracy performances, is dataset dependent.

While our method is intended for tasks with very high dimensional output
spaces, we however notice that even with relatively small numbers of labels, its
accuracy remains comparable to the baseline, with suitable m.

To complete the analysis, Appendix F considers the same experiments with a
different base-learner (Extra Trees of [11]), showing very similar trends.

4.4 Input vs Output Space Randomization

We study in this section the interaction of the additional randomization of the
output space with that concerning the input space already built in the Random
Forest method.

To this end, we consider the “Drug-interaction” dataset (p = 660 input fea-
tures and d = 1554 output labels [10]), and we study the effect of parameter k
controlling the input space randomization of the Random Forest method with
the randomization of the output space by Gaussian projections controlled by
the parameter m. To this end, Figure 2 shows the evolution of the accuracy for
growing values of k (i.e. decreasing strength of the input space randomization),
for three different quite low values of m (in this case m ∈ {1, ln d, 2 lnd}). We ob-
serve that Random Forests learned on a very low-dimensional Gaussian subspace
(red, blue and pink curves) yield essentially better performances than Random
Forests on the original output space, and also that their behaviour with respect
to the parameter k is quite different. On this dataset, the output-space randomi-
sation makes the method completely immune to the ‘over-fitting’ phenomenon
observed for high values of k with the baseline method (green curve).

We refer the reader to a similar study on the “Delicious” dataset given in the
Appendix E (supplementary material), which shows that the interaction between
m and k may be different from one dataset to another. It is thus advisable to
jointly optimize the value of m and k, so as to maximise the tradeoff between
accuracy and computing times in a problem and algorithm specific way.

4.5 Alternative Output Dimension Reduction Techniques

In this section, we study Algorithm 2 when it is combined with alternative
output-space dimensionality reduction techniques. We focus again on the “Deli-
cious” dataset, but similar trends could be observed on other datasets.

Figure 3(a) first compares Gaussian random projections with two other
dense projections: Rademacher matrices with s = 1 (cf. Section 2.2) and com-
pression matrices obtained by sub-sampling (without replacement) Hadamard
matrices [6]. We observe that Rademacher and subsample-Hadamard sub-spaces
behave very similarly to Gaussian random projections.
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Fig. 2. Output randomization with Gaussian projections yield better average precision
than the original output space on the “Drug-Interaction” dataset (nmin = 1 , t = 100)

In a second step, we compare Gaussian random projections with two (very)
sparse projections: first, sparse Rademacher sub-spaces obtained by setting the
sparsity parameter s to 3 and

√
d, selecting respectively about 33% and 2%

of the original outputs to compute each component, and second, sub-sampled
identity subspaces, similar to [22], where each of the m selected components
corresponds to a randomly chosen original label and also preserve sparsity. Sparse
projections are very interesting from a computational point of view as they
require much less operations to compute the projections but the number of
components required for condition (4) to be satisfied is typically higher than for
dense projections [16,6]. Figure 3(b) compares these three projection methods
with standard Random Forests on the “delicious” dataset. All three projection
methods converge to plain Random Forests as the number of components m
increases but their behaviour at low m values are very different. Rademacher
projections converge faster with s = 3 than with s = 1 and interestingly, the
sparsest variant (s =

√
d) has its optimum at m = 1 and improves in this case

over the Random Forests baseline. Random output subspaces converge slower but
they lead to a notable improvement of the score over baseline Random Forests.
This suggests that although their theoretical guarantees are less good, sparse
projections actually provide on this problem a better bias/variance tradeoff than
dense ones when used in the context of Algorithm 2.

Another popular dimension reduction technique is the principal component
analysis (PCA). In Figure 3(c), we repeat the same experiment to compare PCA
with Gaussian random projections. Concerning PCA, the curve is generated in
decreasing order of eigenvalues, according to their contribution to the explana-
tion of the output-space variance. We observe that this way of doing is far less
effective than the random projection techniques studied previously.

4.6 Learning Stage Computing Times

Our implementation of the learning algorithms is based on the scikit-learn
Python package version 0.14-dev [18]. To fix ideas about computing times, we
report these obtained on a Mac Pro 4.1 with a dual Quad-Core Intel Xeon pro-
cessor at 2.26 GHz, on the “Delicious” dataset. Matrix operation, such as random
projections, are performed with the BLAS and the LAPACK from the Mac OS
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(a) Computing the impurity criterion on
a dense Rademacher or on a subsample-
Hadamard output sub-space is another
efficient way to learn tree ensembles.

(b) Sparse random projections output
sub-space yield better average precision
than on the original output space.

(c) PCA compared with Gaussian sub-
spaces.

Fig. 3. “Delicious” dataset, t = 100, k =
√
p, nmin = 1

X Accelerate framework. Reported times are obtained by summing the user and
sys time of the time UNIX utility.

The reported timings correspond to the following operation: (i) load the
dataset in memory, (ii) execute the algorithm. All methods use the same code to
build trees. In these conditions, learning a random forest on the original output
space (t = 100, nmin = 1, k =

√
d) takes 3348 s; learning the same model

on a Gaussian output space of size m = 25 requires 311 s, while m = 1 and
m = 250 take respectively 236 s and 1088 s. Generating a Gaussian sub-space
of size m = 25 and projecting the output data of the training samples is done
in less than 0.25 s, while m = 1 and m = 250 takes around 0.07 s and 1 s
respectively. The time needed to compute the projections is thus negligible with
respect to the time needed for the tree construction.

We see that a speed-up of an order of magnitude could be obtained, while at
the same time preserving accuracy with respect to the baseline Random Forests
method. Equivalently, for a fixed computing time budget, randomly projecting
the output space allows to build more trees and thus to improve predictive
performances with respect to standard Random Forests.
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5 Conclusions

This paper explores the use of random output space projections combined with
tree-based ensemble methods to address large-scale multi-label classification
problems. We study two algorithmic variants that either build a tree-based en-
semble model on a single shared random subspace or build each tree in the
ensemble on a newly drawn random subspace. The second approach is shown
theoretically and empirically to always outperform the first in terms of accuracy.
Experiments on 24 datasets show that on most problems, using gaussian projec-
tions allows to reduce very drastically the size of the output space, and therefore
computing times, without affecting accuracy. Remarkably, we also show that
by adjusting jointly the level of input and output randomizations and choosing
appropriately the projection method, one could also improve predictive perfor-
mance over the standard Random Forests, while still improving very significantly
computing times. As future work, it would be very interesting to propose effi-
cient techniques to automatically adjust these parameters, so as to reach the
best tradeoff between accuracy and computing times on a given problem.

To best of our knowledge, our work is the first to study random output projec-
tions in the context of multi-output tree-based ensemble methods. The possibility
with these methods to relabel tree leaves with predictions in the original output
space makes this combination very attractive. Indeed, unlike similar works with
linear models [13,8], our approach only relies on Johnson-Lindenstrauss lemma,
and not on any output sparsity assumption, and also does not require to use
any output reconstruction method. Besides multi-label classification, we would
like to test our method on other, not necessarily sparse, multi-output prediction
problems.
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Abstract. We present the first protocol for distributed online prediction
that aims to minimize online prediction loss and network communication
at the same time. This protocol can be applied wherever a prediction-
based service must be provided timely for each data point of a mul-
titude of high frequency data streams, each of which is observed at a
local node of some distributed system. Exemplary applications include
social content recommendation and algorithmic trading. The challenge is
to balance the joint predictive performance of the nodes by exchanging
information between them, while not letting communication overhead
deteriorate the responsiveness of the service. Technically, the proposed
protocol is based on controlling the variance of the local models in a
decentralized way. This approach retains the asymptotic optimal regret
of previous algorithms. At the same time, it allows to substantially re-
duce network communication, and, in contrast to previous approaches,
it remains applicable when the data is non-stationary and shows rapid
concept drift. We demonstrate empirically that the protocol is able to
hold up a high predictive performance using only a fraction of the com-
munication required by benchmark methods.

1 Introduction

We consider distributed online prediction problems on multiple connected high-
frequency data streams where one is interested in minimizing predictive error
and communication at the same time. This situation abounds in a wide range
of machine learning applications, in which communication induces a severe cost.
Examples are parallel data mining [23, 10] and M2M communication [20] where
communication constitutes a performance bottleneck, learning with mobile sen-
sors [16, 18] where communication drains battery power, and, most centrally,
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prediction-based real-time services [8] carried out by several servers, e.g., for
social content promotion, ad placement, or algorithmic trading. Here, due to
network latency, the cost of communication can also be a loss of prediction qual-
ity itself, because, in order to avoid inconsistent system states some data points
have to be discarded for learning whenever a communication event is triggered.
In this paper, we abstract on all these various motivations and provide a protocol
that aims to minimize communication as such. In particular, we provide the first
protocol that dynamically adapts communication to exploit the communication
reduction potential of well-behaved input sequences but at the same time retains
the predictive performance of static communication schemes.

In contrast to work on the communication complexity of batch learning [3,
17, 2, 7], we consider the online in-place performance of a streaming distributed
prediction system. For this setting, earlier research focused on strategies that
communicate periodically after a fixed number of data points have been pro-
cessed [13, 8]. For these static communication schemes Dekel et al. [8] shows
that for smooth loss functions and stationary environments optimal asymp-
totic regret bounds can be retained by updating a global model only after ob-
serving a mini-batch of examples. While such a fixed periodic communication
schedule reduces the communication, further reduction is desirable: the above
mentioned costs of communication can have a severe impact on the practical
performance—even if they are not reflected in asymptotic performance bounds.
Moreover, distributed learning systems can experience periodical or singular tar-
get drifts. In these settings, a static schedule is bound to either provide only lit-
tle to none communication reduction or to insufficiently react to changing data
distributions.

In this work, we give the first data-dependent distributed prediction protocol
that dynamically adjusts the amount of communication performed depending on
the hardness of the prediction problem. It aims to provide a high online in-place
prediction performance and, at the same time, explicitly tries to minimize com-
munication. The underlying idea is to perform model synchronizations only in
system states that show a high variance among the local models, which indicates
that a synchronization would be most effective in terms of its correcting effect
on future predictions. While the model variance is a non-linear function in the
global system, we describe how it can be monitored locally in a communication-
efficient way. The resulting protocol allows communicative quiescence in stable
phases, while, in hard phases where variance reduction is crucial, the protocol
will trigger a lot of model synchronizations. Thus, it remains applicable when the
data is non-stationary and shows rapid concept drifts—cases in which a static
scheme is doomed to either require a high communication frequency or suffer
from low adaption. We show theoretically (Sec. 3.1), that, despite the communi-
cation reduction achieved by our dynamic protocol, it retains any shifting regret
bounds provided by its static counterpart. We also demonstrate its properties
empirically (Sec. 4) with controlled synthetic data and real-world datasets from
stock markets and the short-message service Twitter.
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2 Preliminaries

In this section we formally introduce the distributed online prediction task. We
recall simple sequential learning algorithms and discuss a basic communication
scheme to utilize them in the distributed scenario.

2.1 Distributed Online Prediction

Throughout this paper we consider a distributed online prediction system of k
local learners that maintain individual linear models wt,1, . . . , wt,k ∈ Rn of
some global environment through discrete time t ∈ [T ] where T ∈ N denotes the
total time horizon with respect to which we analyze the system’s performance.
This environment is represented by a target distribution Dt : X × Y → [0, 1]
that describes the relation between an input space X ⊆ Rn and an output space
Y ⊆ R. The nature of Y varies with the learning task at hand; Y = {−1, 1} is
used for binary classification, Y = R for regression. Generally, we assume that
all training examples x ∈ X are drawn from a ball of radius R and also that
xn = 1 for all x ∈ X , i.e., ‖x‖ ∈ [1/n,R]—two common assumptions in online
learning (the latter avoids to explicitly fit a bias term of the linear models). All
learners sample from Dt independently in parallel using a constant and uniform
sampling frequency, and we denote by (xt,l, yt,l) ∼ Dt the training example
received at node l at time t. Note that, while the underlying environment can
change over time, we assume that at any given moment t there is one fixed
distribution governing the points observed at all local nodes.

Conceptually, every learner first observes the input part xt,l and performs a
real time service based on the linear prediction score pt,l = 〈wt,l, xt,l〉, i.e.,
the inner product of xt,l and the learner’s current model vector. Only then it
receives as feedback the true label yt,l, which it can use to locally update its
model to wt+1,l = ϕ(wt,l, xt,l, yt,l) by some update rule ϕ : Rn×X × Y → Rn.
Let Wt ∈ Rk×n denote the complete model configuration of all local mod-
els at time t (denoting by wt,l the model at learner l at time t as above). The
learners are connected by a communication infrastructure that allows them to
jointly perform a synchronization operation σ : Rk×n → Rk×n that resets
the whole model configuration to a new state after local updates have been per-
formed. This operator may take into account the information of all local learners
simultaneously. The two components (ϕ, σ) define a distributed learning pro-
tocol that, given the inputs of the environment, produces a sequence of model
configurations W = W1, . . . ,WT . Its performance is measured by:

1. the in-place predictive performance
∑T

t=1

∑k
l=1 f(wt,l, xt,l, yt,l) measured by

a loss function f : Rn × Rn × Y → R+ that assigns positive penalties
to prediction scores based on how (in-)appropriately they describe the true
label; and

2. the amount of communication within the system that is measured by the
number of bits send in-between learners in order to compute the synchro-
nization operation σ.
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Regarding the predictive performance, one is typically interested in bounding
the average regret of the model configurations produced by the protocol with
respect to a reference sequence U = U1, . . . , UT . For technical reasons, in this
paper we focus on the squared regret, i.e.,

R(W,U) =
1

T

T∑
t=1

1

k

k∑
l=1

(f(wt,l, xt,l, yt,l)− f(ut,l, xt,l, yt,l))
2 .

This type of regret is often referred to as shifting regret (see, Herbster and
Warmuth [9]) and typically bounds are given in the total shift per node of the

reference sequence
∑T

t=1

∑k
l=1 ‖ut,l − ut−1,l‖2. Traditional results often restrict

regret analysis to the case of a static reference sequence, i.e., u1,1 = u1,2 = · · · =
ut,l. This is particularly useful if we consider the stationary scenario where
D1 = · · · = DT .

2.2 Loss-Proportional Convex Update Rules

Principally, the protocol developed in this paper can be applied to a wide range
of update rules for online learning (from, e.g., stochastic gradient descend [24]
to regularized dual averaging [21]). For the formal analysis, however, we focus
on update rules covered by the following definition.

Definition 1. We call an update rule ϕ an f-proportional convex update
for a loss function f if there are a constant γ > 0, a closed convex set Γx,y ⊆ Rn,
and τx,y ∈ (0, 1] such that for all w ∈ Rn, x ∈ X, and y ∈ Y it holds that

(i) ‖w − ϕ(w, x, y)‖ ≥ γf(w, x, y), i.e., the update magnitude is a true fraction
of the loss incurred, and

(ii) ϕ(w, x, y) = w+ τx,y (Px,y (w)− w) where Px,y (w) denotes the projection of
w onto Γx,y, i.e., the update direction is identical to the direction of a convex
projection that only depends on the training example.

As a first example for update rules satisfying these conditions, consider the
passive aggressive update rules [6]. These rules are defined for a variety of
learning tasks including classification, regression, and uni-class prediction and
can be uniformly described by

ϕ(w, x, y) = arg min
w′∈Rn

1

2
‖w − w′‖2 s.t. f(w′, x, y) = 0 (1)

where for classification f is the hinge loss, i.e., f(w, x, y) = max(1−y〈w, x〉, 0),
for regression the ε-insensitive loss, i.e., f(w, x, y) = max(|〈w, x〉 − y| − ε, 0),
and for uni-class prediction (where no x is observed and Y = Rn) the loss is
given by f(w, y) = max(|w − y| − ε, 0). It can be observed immediately that,
in all three cases, these update rules are an actual projection on the convex set
Γx,y = {w ∈ Rn : f(w, x, y) = 0}, which corresponds to a half-space, a 2ε-strip,
and an ε-ball, respectively. Hence, Cond. (ii) of the definition follows immediately
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with τx,y = 1. Cond. (i) can then be verified from the closed form solution of
Eq. 1, which in case of classification is given by

ϕ(w, x, y) = w +
f(w, x, y)

‖x‖2 yx .

Using the data radius R, we can easily bound the update magnitude from be-
low as ‖w − ϕ(w, x, y)‖ � R−1f(w, x, y), i.e., Cond. (i) holds with γ = R−1.
The other cases follow similarly. Crammer et al. [6] also gives other variants of
passive aggressive updates that have a reduced learning rate determined by an
aggressiveness parameter C > 0. These rules also satisfy the conditions of Def. 1.
For example the rule for classification then becomes

ϕ(w, x, y) = wt +
f(w, x, y)

‖x‖2 + 1
2C

yx .

Using ‖x‖ ∈ [1/n,R], one can show that this variant remains hinge-loss propor-
tional with γ = n−1(R2 + 1/(2C))−1, and the update direction is identical to
the same convex projection as in the standard case.

Another popular family of update rules for differentiable loss functions is given
by stochastic gradient descent, i.e., rules of the form

ϕ(w, x, y) = w − η∇wf(w, x, y)

with a positive learning rate η > 0. If one uses the squared hinge loss, f(w, x, y) =
1/2max(1 − y〈w, x〉, 0)2, we have ∇wf(w, x, y) = y(1 − y〈w, x〉)x. Hence, this
update rule is hinge loss proportional with γ = η/n, and the update direction is
identical to the passive aggressive update rule for classification—that is, in the
direction of a convex projection. The same can be checked for regression using
the squared ε-insensitive loss and many other variants of gradient descent.

In the following we will define a static averaging protocol that reduces the
communication cost in a distributed online learning scenario and serves as base-
line to our dynamic synchronization protocol.

2.3 Static Averaging

In terms of cost, every synchronization operator lies between two extreme
baselines—constant broadcast of all training examples and quiescence, i.e., no
communication at all. The predictive performance of these two extremes in terms
of static regret lies between O(

√
kT ) for serial learning (which is optimal for the

stationary setting, see Cesa-Bianchi and Lugosi [5] and [1]) and O(k
√
T ) for no

communication, which corresponds to solving k separate online learning prob-
lems in parallel.

An intermediate solution is to only reset all local models to their joint average
every b rounds where b ∈ N is referred to as batch size (see Mcdonald et al.
[13] and Dekel et al. [8]). Formally, this static averaging operator is given
by σ(Wt) =

(
W t, . . . ,W t

)
if t mod b = 0 and σ(Wt) = Wt, otherwise. Here,
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Algorithm 1. Static Averaging Protocol

Initialization:

local models w1,1, . . . , w1,k ← (0, . . . , 0)

Round t at node l:

observe xt,l and provide service based on pt,l
observe yt,l and update wt+1,l ← ϕ(wt,l, xt, yt)
if t mod b = 0 then

send wt,l to coordinator

At coordinator every b rounds:

receive local models {wt,l : l ∈ [k]}
For all l ∈ [k] set wt,l ← σ(wt,1, . . . , wt,k)l

W t = 1/k
∑k

l=1 wt,l denotes the mean model. This choice of a (uniform) model
mixture is often used for combining linear models that have been learned in
parallel on independent training data (see also McDonald et al. [14], Zinkevich
et al. [24]). The motivation is that the mean of k models provides a variance
reduction of

√
k over an individual random model (recall that all learners sample

from the same distribution, hence their models are identically distributed). For
certain learning problems in the stationary setting, it can even be shown that
this protocol retains the asymptotically optimal regret of O(

√
kT ) [8] for small

enough batch sizes1.
For assessing the communication cost of this operation, we use a simplified

cost model that only counts the number of model vectors sent between the
learners: independently of the exact communication infrastructure, the number
of model messages asymptotically determines the true bit-based communication
cost. Using a designated coordinator note as in Alg. 1, σ can be applied to a
configuration of the distributed prediction system simply by all nodes sending
their current model to the coordinator, who in turn computes the mean model
and sends it back to all the nodes. Hence, the communication cost of static
averaging over k nodes with batch size b is O(kT/b).

While this is less than the naive baseline by a factor of b, in many scenarios the
achieved reduction might still be insufficient. In particular, for non-stationary
settings the batch size has to be chosen small enough for the protocol to remain
adaptive to changes in the environment so that the communication reduction
effect can be marginal. A big weakness of the scheme is that it is oblivious to
the actual model configuration observed, so that it also induces a lot of com-
munication in situations where all models are approximately identical. In the

1 Dekel et al. [8] consider a slightly modified algorithm, which accumulates updates
and then only applies them delayed at the end of a batch. However, the expected
loss of eager updates (as used in Alg. 1) is bounded by the expected loss of delayed
updates in the stationary setting (as used in Dekel et al. [8]) as long as the updates
reduce the distance to a loss minimizer on average (which is the case for sufficient
regularization; see again Zhang [22, Eq. 5]).
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following section, we present a data-dependent dynamic averaging operator that
can substantially reduce the communication cost while approximately retaining
the performance of static averaging.

3 Dynamic Synchronization

In this section, we develop a dynamic protocol for synchronizations based on
quantifying their effect. In order to assess the performance of this protocol from
a learning perspective, we compare it to the static protocol as described in
Alg. 1. After showing that this approach is sound from a learning perspective,
we discuss how it can be implemented in a distributed prediction system in a
communication-efficient way.

3.1 Partial Averaging

Intuitively, the communication for performing model averaging is not well in-
vested in situations where all models are already approximately equal. A simple
measure to quantify the effect of synchronizations is given by the variance of
the current local model configuration space, i.e., δ(W ) = 1

k

∑k
l=1 ‖W −Wl‖2 .

In the following definition we provide a relaxation of the static averaging opera-
tion that allows to omit synchronization in cases where the variance of a model
configuration is low.

Definition 2. A partial averaging operator with positive variance threshold
Δ ∈ R and batch size b ∈ N is a synchronization operator σΔ such that σΔ(Wt) =
Wt if t mod b �= 0 and otherwise: (i) Wt = σΔ(Wt), i.e., it leaves the mean
model invariant, and (ii) δ(σΔ(W )) ≤ Δ, i.e., after its application the model
variance is bounded by Δ.

An operator adhering to this definition does not generally put all nodes into sync
(albeit the fact that we still refer to it as synchronization operator). In particular
it allows to leave all models untouched as long as the variance remains below
the threshold Δ or to only average a subset of models in order to satisfy the
variance constraint. This is the basis for our dynamic averaging protocol. In the
following, we analyze the impact on the learning performance of using partial
averaging instead of static averaging. We start with showing that, given two
model configurations D and S, applying the partial averaging operator σΔ to D
and the static averaging operator σ to S increases their average squared pairwise
model distances by at most Δ.

Lemma 3. Let Dt, St ∈ Rk×n be model configurations at time t ∈ N. Then

1

k

k∑
l=1

‖σΔ(Dt)l − σ(St)l‖2 ≤
1

k

k∑
l=1

‖dt,l − st,l‖2 +Δ .
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Proof. We consider the case t mod b = 0 (otherwise the claim follows immedi-
ately). Expressing the pairwise squared distances via the difference to Dt and
using the definitions of σ and σΔ we can bound

1

k

k∑
l=1

‖σΔ(Dt)l − σ(St)l‖2 =
1

k

k∑
l=1

‖σΔ(Dt)l −Dt +Dt − St‖2

=
1

k

k∑
l=1

‖σΔ(Dt)l −Dt‖2︸ ︷︷ ︸
≤Δ, by (ii) of Def. 2

+2〈1
k

k∑
l=1

σΔ(Dt)l −Dt︸ ︷︷ ︸
=0, by (i) of Def. 2

, Dt − St〉+ ‖Dt − St‖2

≤Δ+ ‖ 1
k

k∑
l=1

(dt,l − st,l)‖2 = Δ+
1

k

k∑
l=1

‖dt,l − st,l‖2 .


�

In order to prove a regret bound of partial over static averaging it remains to
show that this increase in distance cannot separate model configurations too
far during the learning process. For this we show that f -propotional convex
updates on the same training example reduce the distance between a pair of
models proportional to their loss difference.

Lemma 4. Let ϕ be an f -proportional convex update rule with constant γ > 0.
Then for all models d, s ∈ Rn it holds that

‖ϕ(d, x, y)− ϕ(s, x, y)‖2 ≤ ‖d− s‖2 − γ2 (f(d, x, y)− f(s, x, y))
2
.

Proof. For w ∈ Rn we write Px,y (w) = P (w) for the projection of w on Γx,y

and w′ = ϕ(w, x, y). Since P (·) is a projection on a convex set, it holds for all
v, w ∈ Rn that

‖P (v)− P (w) ‖2 ≤ ‖v − w‖2 − ‖v − P (v)− w + P (w) ‖2 (2)

(e.g., by lemma 3.1.4 in Nesterov [15]). Also since w′ = τx,yP (w)+(1−τx,y)w by
(ii) of the definition of f -proportional convex updates, the idempotence of P (·)
implies that P (w) = P (w′). Applying (2) to the models d, s and to the updated
models d′, s′, respectively, and subtracting the two inequalities gives

0 ≤ ‖d− s‖2−‖d′− s′‖2−‖d−P (d)− s+P (s) ‖2 + ‖d′ −P (d)− s′ +P (s) ‖2 .

By inserting w′ = w + τx,y (P (w)− w) and using τx,y ∈ (0, 1] it follows that

‖d′ − s′‖2 ≤‖d− s‖2 − ‖(d− P (d))− s+ P (s) ‖2

+ (1 − τx,y)
2‖(d− P (d))− s+ P (s) ‖2

≤‖d− s‖2 − τx,y (‖d− P (d) ‖ − ‖s− P (s) ‖)2

≤‖d− s‖2 − γ2 (f(d, x, y)− f(s, x, y))
2

(3)
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as required, where the last inequality follows from τx,y ∈ (0, 1] and (i) of the
definition of f -proportionality by noting that

‖w − P (w) ‖ = 1

τx,y
‖w − (w + τx,y(P (w)− w))‖ = ‖w − w′‖

τx,y
≥ γ

τx,y
f(w, x, y) .


�

From the two lemmas above we see that, while each synchronization increases the
distance between the static and the dynamic model by at most Δ, with each up-
date step, the distance is decreased proportional to the loss difference. In the fol-
lowing theorem, we state that the average squared regret of using a partial aver-
aging operator σΔ over a static averaging operator σ with batch size b is bounded
byΔ/(bγ2). We use the notion ϕ(Wt) = (ϕ(wt,1, xt,1, yt,1), . . . , ϕ(wt,k, xt,k, yt,k)).

Theorem 5. Let D = D0, . . . , DT and S = S0, . . . , ST be two sequences of
model configurations such that D0 = S0 and for t = 1, . . . , T defined by Dt+1 =
σΔ(ϕ(Dt)) and St+1 = σ(ϕ(St)), respectively (with an identical batch size b ∈
N). Then it holds that R(D,S) ≤ Δ/(bγ2).

Proof. Let βt = 1 if t mod b = 0 and βt = 0 otherwise. By combining Lm. 3
and 4 we have for all t ∈ [T ] that

1

k

k∑
l=1

‖dt+1,l − st+1,l‖2 ≤
1

k

k∑
l=1

‖dt,l − st,l‖2 −
γ2

k

k∑
l=1

(f(dt,l)− f(st,l))
2 + βtΔ .

Applying this inequality recursively for t = 0, . . . , T , it follows that

1

k

k∑
l=1

‖dT+1,l − sT+1,l‖2 ≤
1

k

k∑
l=1

‖d0,l − s0,l‖2 +
⌊
T

b

⌋
Δ

−
T∑

t=1

γ2

k

k∑
l=1

(f(dt,l)− f(st,l))
2.

Using D0 = S0 we can conclude

T∑
t=1

1

k

k∑
l=1

(f(dt,l)− f(st,l))
2 ≤ 1

γ2

(⌊
T

b

⌋
Δ− 1

k

k∑
l=1

‖dT+1,l − sT+1,l‖2
)
≤ T

bγ2
Δ

which yields the result after dividing both sides by T . 
�

We remark that Thm. 5 implies that partial averaging retains the optimality
of the static mini-batch algorithm of Dekel et al. [8] for the case of stationary
targets: by using a time-dependent variance threshold based on Δt ∈ O(1/

√
t)

the bound of O(
√
T ) follows. From Thm. 5 it follows that if a shifting bound ex-

ists for the static protocol then this bound also applies to the dynamic protocol.
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Formally, suppose the shifting regret R(S,U) of using the static averaging op-

erator is bounded by c1
∑T

t=1

∑k
l=1 ‖ut,l−ut−1,l‖22+ c2, for a reference sequence

U and positive constants c1, c2 ∈ R+ (as, e.g., in [9]). Then the shifting regret
of using dynamic averaging is bounded by

R(D,U) ≤ c1

T∑
t=1

k∑
l=1

‖ut,l − ut−1,l‖22 + c2 +
1

γ2
Δ ,

where D denotes the sequence of model configurations produced by σΔ. For the
proof let furthermore S denote the sequence of model configurations produced by
σ. With this we can directly derive the bound by using the definition of shifting
regret, i.e.,

R(D,U) =
1

T

T∑
t=1

1

k

k∑
l=1

(f(dt,l)− f(ut,l))
2

=
1

T

T∑
t=1

1

k

k∑
l=1

((f(dt,l)− f(st,l)) + (f(st,l)− f(ut,l)))
2

Thm.5︷︸︸︷
≤ 1

γ2
Δ+

1

T

T∑
t=1

1

k

k∑
l=1

(f(st,l)− f(ut,l))
2

≤ 1

γ2
Δ+R(S,U) =

1

γ2
Δ+ c1

T∑
t=1

k∑
l=1

‖ut,l − ut−1,l‖22 + c2 .

Intuitively, this means that the dynamic protocol only adds a constant to any
shifting bound of static averaging.

3.2 Communication-Efficient Protocol

After seeing that partial averaging operators are sound from the learning per-
spective, we now turn to how they can be implemented in a communication-
efficient way. Every distributed learning algorithm that implements a partial
averaging operator has to implicitly control the variance of the model configura-
tion. However, we cannot simply compute the variance by centralizing all local
models, because this would incur just as much communication as static full syn-
chronization. Our strategy to overcome this problem is to first decompose the
global condition δ(W ) ≤ Δ into a set of local conditions that can be monitored
at their respective nodes without communication (see, e.g., Sharfman et al. [19]).
Secondly, we define a resolution protocol that transfers the system back into a
valid state whenever one or more of these local conditions are violated. This in-
cludes carrying out a sufficient amount of synchronization to reduce the variance
to be less or equal than Δ.

For deriving local conditions we consider the domain of the variance function
restricted to an individual model vector. Here, we identify a condition similar
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Algorithm 2. Dynamic Synchronization Protocol

Initialization:

local models w1,1, . . . , w1,k ← (0, . . . , 0)
reference vector r ← (0, ..., 0)
violation counter v ← 0

Round t at node l:

observe xt,l and provide service based on pt,l
observe yt,l and update wt+1,l ← ϕ(wt,l, xt, yt)
if t mod b = 0 and ‖wt,l − r‖2 > Δ then

send wt,l to coordinator (violation)

At coordinator on violation:

let B be the set of nodes with violation
v ← v + |B|
if v = k then B ← [k], v ← 0
while B 	= [k] and 1

B

∑
l∈B ‖wt,l − r‖2 > Δ do

augment B by augmentation strategy
receive models from nodes added to B

send model w = 1
B

∑
l∈B wt,l to nodes in B

if B = [k] also set new reference vector r ← w

to a safe-zone (see Keren et al. [12]) such that the global variance can not cross
the Δ-threshold as long as all local models satisfy that condition.2

Theorem 6. Let Dt = dt,1, ..., dt,k ∈ Rn be the model configuration at time t
and r ∈ Rn be some reference vector. If for all l ∈ [k] the local condition
‖dt,l − r‖2 ≤ Δ holds, then the global variance is bounded by Δ, i.e.,

1

k

k∑
l=1

‖dt,l −Dt‖2 ≤ Δ .

Proof. The theorem follows directly from the fact that the current average vector
Dt minimizes the squared distances to all dt,i, i.e.,

1

k

k∑
i=1

‖dt,l −Dt‖2 ≤
1

k

k∑
i=1

‖dt,l − r‖2 ≤ Δ


�

We now incorporate these local conditions into a distributed prediction al-
gorithm. As a first step, we have to guarantee that at any time all nodes use
the same reference vector r, for which a natural choice is the last average model
that has been set to all local nodes. If the reference vector is known to all local

2 Note that a direct distribution of the threshold across the local nodes (as in, e.g.,
Keralapura et al. [11]) is in-feasible, because the variance function is non-linear.
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Fig. 1. Performance of static and dynamic model synchronization that track (left) a
rapidly drifting disjunction over 100-dim. data with 512 nodes; and (right) a neural
network with one hidden layer and 150 output vars. with 1024 nodes.

learners a local learners l can then monitor its local condition ‖dt,l− r‖2 ≤ Δ in
a decentralized manner.

It remains to design a resolution protocol that specifies how to react when
one or several of the local conditions are violated. A direct solution is to trigger
a full synchronization in that case. This approach, however, does not scale well
with a high number of nodes in cases where model updates have a non-zero
probability even in the asymptotic regime of the learning process. When, e.g.,
PAC models for the current target distribution are present at all local nodes, the
probability of one local violation, albeit very low for an individual node, increases
exponentially with the number of nodes. An alternative approach that can keep
the amount of communication low relative to the number of nodes is to perform
a local balancing procedure: on a violation, the respective node sends his model
to a designated node we refer to as coordinator. The coordinator then tries to
balance this violation by incrementally querying other nodes for their models. If
the mean of all received models lies within the safe zone, it is transferred back as
new model to all participating nodes, and the resolution is finished. If all nodes
have been queried, the result is equal to a full synchronization and the reference
vector can be updated. In both cases, the variance of the model configuration is
bounded by Δ at the end of the balancing process, because all local conditions
hold. Also, it is easy to check that this protocol leaves the global mean model
unchanged. Hence, it is complying to Def. 2.

While balancing can achieve a high communication reduction over direct reso-
lution particularly for a large number of nodes, it potentially degenerates in cer-
tain special situations. We can end up in a stable regime in which local violations
are likely to be balanced by a subset of the nodes; however a full synchroniza-
tion would strongly reduce the expected number of violations in future rounds.
In other words: balancing can delay crucial reference point updates indefinitely.
A simple hedging mechanism for online optimization can be employed in order
to avoid this situation: we count the number of local violations using the current
reference point and trigger a full synchronization whenever this number exceeds
the total number of nodes. This concludes our dynamic protocol for distributed
prediction. All components are summarized in Alg. 2
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Fig. 2. Cumulative error (left) and communication (right) over time for tracking a
rapidly drifting disjunction for different synchronization protocols; vertical lines depict
drifts.

4 Empirical Evaluation

In this section we investigate the practical performance of the dynamic learning
protocol for settings ranging from clean linearly separable data, over unseparable
data with a reasonable linear approximation, up to real-world data without any
guarantee. Our main goal is to empirically confirm that the predictive gain of
static full synchronizations (using a batch size of 8) over no synchronization
can be approximately preserved for small enough thresholds, and to assess the
amount of communication reduction achieved by these thresholds.

4.1 Linearly Separable Data

We start with the problem of tracking a rapidly drifting random disjunction.
In this case the target distribution produces data that is episode-wise linearly
separable. Hence, we can set up the individual learning processes so that they
converge to a linear model with zero classification error within each episode.
Formally, we identify a target disjunction with a binary vector z ∈ {0, 1}n. A
data point x ∈ X = {0, 1}n is labeled positively y = 1 if 〈x, z〉 ≥ 1 and otherwise
receives a negative label y = −1. The target disjunction is drawn randomly at
the beginning of the learning process and is randomly re-set after each round
with a fixed drift probability of 0.0001. In order to have balanced classes, the
disjunctions as well as the data points are generated such that each coordinate
is set independently to 1 with probability

√
1− 2−1/n. We use the unregularized

passive aggressive update rule with hinge loss.
In Fig. 1 (left) we present the result for dimensionality n = 100, with k = 512

nodes, processingm = 12.8M data points through T = 100000 rounds. For diver-
gence thresholds up to 0.3, dynamic synchronization can retain the error number
of statically synchronizing every 8 rounds. At the same time the communication
is reduced to 9.8% of the original number of messages. An approximately similar
amount of communication reduction can also be achieved using static synchro-
nization by increasing the batch size to 96. This approach, however, only retains
61.0% of the accuracy of statically synchronizing every 8 rounds.
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Fig. 3. Performance of static and dynamic synchronization with 256 nodes that predict
(left) Twitter retweets over 1000 textual features and (right) stock prices based on 400
prices and sliding averages.

Fig. 2 provides some insight into how the two evaluation metrics develop over
time. Target drifts are marked with vertical lines that frame episodes of a stable
target disjunction. At the beginning of each episode there is a relatively short
phase in which additional errors are accumulated and the communicative pro-
tocols acquire an advantage over the baseline of never synchronizing. This is
followed by a phase during which no additional error is made. Here, the commu-
nication curve of the dynamic protocols remain constant acquiring a gain over
the static protocols in terms of communication.

4.2 Non-separable Data with Noise

We now turn to a harder experimental setting, in which the target distribution
is given by a rapidly drifting two-layer neural network. For this target even the
Bayes optimal classifier per episode has a non-zero error, and, in particular, the
generated data is not linearly separable. Intuitively, it is harder in this setting to
save communication, because a non-zero residual error can cause the linear mod-
els to periodically fluctuate around a local loss minimizer—resulting in crossings
of the variance threshold even when the learning processes have reached their
asymptotic regime. We choose the network structure and parameter ranges in a
way that allow for a relatively good approximation by linear models (see Bshouty
and Long [4]). The process for generating a single labeled data point is as follows:
First, the label y ∈ Y = {−1, 1} is drawn uniformly from Y . Then, values are
determined for hidden variablesHi with 1 ≤ i ≤ �logn� based on a Bernoulli dis-
tribution P [Hi = · |Y = y] = Ber(phi,y). Finally, x ∈ X = {−1, 1}n is determined
by drawing xi for 1 ≤ i ≤ n according to P [Xi = xi, |Hp(i) = h] = Ber(poi,h)
where p(i) denotes the unique hidden layer parent of xi. In order to ensure lin-
ear approximability, the parameters of the output layer are drawn such that
|poi,−1 − poi,1| ≥ 0.9, i.e., their values have a high relevance in determining the
hidden values. As in the disjunction case all parameters are re-set randomly af-
ter each round with a fixed drift probability (here, 0.01). For this non-separable
setting we choose again to optimize the hinge loss, this time with regularized
passive aggressive updates with C = 10.0 and a batch size of b = 8.
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Fig. 1 (right) contains the results for dimensionality 150, with k = 1024
nodes, processing m = 2.56M data points through T = 10000 rounds. For vari-
ance thresholds up to 0.08, dynamic synchronization can retain the error of the
baseline. At the same time, the communication is reduced to 45% of the origi-
nal number of messages. Moreover, even for thresholds up to 0.2, the dynamic
protocol retains more than 90% of the accuracy of static synchronization with
only 20% of its communication.

4.3 Real-World Data

We conclude our experimental section with tests on two real-world datasets
containing stock prices and Twitter short messages, respectively.

The data from Twitter has been gathered via its streaming API
(https://dev.twitter.com/docs/streaming-apis) during a period of 3 weeks
(Sep 26 through Oct 15 2012). Inspired by the content recommendation task,
we consider the problem of predicting whether a given tweet will be re-tweeted
within one hour after its posting—for a number of times that lies below or above
the median hourly re-tweet number of the specific Twitter user. The feature space
are the top-1000 textual features (stemmed 1-gram, 2-gram) ranked by informa-
tion gain, i.e., X = {0, 1}1000. Learning is performed with C = 0.25. The stock
price data is gathered from Google Finance (http://www.google.com/finance)
and contains the daily closing stock prices of the S&P100 stocks between 2004
and 2012. Inspired by algorithmic trading, we consider the problem of predicting
tomorrow’s closing price, i.e., Y = R, of a single target stock based on all stock
prices and their moving averages (11, 50, and 200 days) of today, i.e., X = R400.
The target stock is switched with probability 0.001. Here, we use the epsilon
insensitive loss, ε = 0.1, and a regression parameter of C = 1.0 for regularized
passive aggressive updates.

The results for 1.28M data points distributed to k = 256 nodes are presented
in Fig. 3. Again, the gap between no synchronization and the baseline is well
preserved by partial synchronizations. For Twitter (left), a threshold of 0.1 per-
forms even better then the static baseline with less communication (0.97%).
With a threshold of 0.2 the dynamic protocol still preserves 74% of predictive
gain using only 27% communication. For the stock prices (right), a threshold of
0.005 preserves 99% of the predictive gain using 54% of the communication. The
trade-off is even more beneficial for threshold 0.01 which preserves 92% of the
gain using only 36% communication.

5 Conclusion

We presented a protocol for distributed online prediction that can save communi-
cation by dynamically omitting synchronizations in sufficiently stable phases of a
modeling task, while at the same time being adaptive in phases of concept drifts.
The protocol has a controlled predictive regret over its static counterpart and
experiments show that it can indeed reduce the communication substantially—
up to 90% in settings where the linear learning processes are suitable to model

https://dev.twitter.com/docs/streaming-apis
http://www.google.com/finance
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the data well and converge reasonably fast. Generally, the effectiveness of the
approach appears to correspond to the effectivity of linear modeling with f -
proportional convex update rules in the given setting.

For future research a theoretical characterization of this behavior is desirable.
A practically even more important direction is to extend the approach to other
model classes that can tackle a wider range of learning problems. In principle,
the approach of controlling model variance remains applicable, as long as the
variance is measured with respect to a distance function that induces a useful
loss bound between two models. For probabilistic models this can for instance be
the KL-divergence. However, more complex distance functions constitute more
challenging distributed monitoring tasks, which currently are open problems.
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Abstract. We propose Hetero-Labeled LDA (hLLDA), a novel semi-supervised
topic model, which can learn from multiple types of labels such as document
labels and feature labels (i.e., heterogeneous labels), and also accommodate la-
bels for only a subset of classes (i.e., partial labels). This addresses two major
limitations in existing semi-supervised learning methods: they can incorporate
only one type of domain knowledge (e.g. document labels or feature labels), and
they assume that provided labels cover all the classes in the problem space. This
limits their applicability in real-life situations where domain knowledge for label-
ing comes in different forms from different groups of domain experts and some
classes may not have labels. hLLDA resolves both the label heterogeneity and
label partialness problems in a unified generative process.

hLLDA can leverage different forms of supervision and discover semantically
coherent topics by exploiting domain knowledge mutually reinforced by different
types of labels. Experiments with three document collections–Reuters, 20 News-
group and Delicious– validate that our model generates a better set of topics and
efficiently discover additional latent topics not covered by the labels resulting
in better classification and clustering accuracy than existing supervised or semi-
supervised topic models. The empirical results demonstrate that learning from
multiple forms of domain knowledge in a unified process creates an enhanced
combined effect that is greater than a sum of multiple models learned separately
with one type of supervision.

1 Introduction

Motivated by a diverse set of requirements such as information management and data
security, there is an increasing need for large scale topic classification in large dis-
tributed document repositories. In these environments, documents are generated and
managed independently by many different divisions and domain experts in the com-
pany. Often, it is prohibitively expensive to perform supervised topic classification at
an enterprise scale, because it is very challenging to catalog what topics exist in the
company let alone provide labeled samples for all the topics.

In recent years, probabilistic topic modeling, most notably Latent Dirichlet Alloca-
tion (LDA) has been widely used for many text mining applications as an alternative to
expensive supervised learning approaches. Probabilistic topic modeling approaches can

� This work was conducted while the author was an intern at IBM Research.

T. Calders et al. (Eds.): ECML PKDD 2014, Part I, LNCS 8724, pp. 640–655, 2014.
c© Springer-Verlag Berlin Heidelberg 2014
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discover underlying topics in a collection of data without training a model with labeled
samples. However, unsupervised topic modeling relies primarily on feature (word) oc-
currence statistics in the corpus, and the discovered topics are often determined by
dominant collocations and do not match with the true topics in the data.

A more realistic approach would be to use a semi-supervised learning in which the
topic discovery process is guided by some form of domain knowledge. In recent years,
many extensions to LDA, in both supervised and semi-supervised ways, have been pro-
posed to generate more meaningful topics incorporating various side information such
as correlation of words [16], word constraints [2, 12], document labels [20], and docu-
ment network structure [7,11]. Typically, these models extend LDA by constraining the
model variables with newly observed variables derived from side information.

These methods have shown some success but are constrained by two major limita-
tions: Firstly, they assume labels are present for all latent topics. This assumption can be
satisfied in situations where all topics are known in advance and obtaining side informa-
tion is relatively easy, such as a collection of user generated content and tags as in [20].
However, in a large distributed complex environment, this is not a realistic assumption.
Secondly, they support only one type of supervision, e.g., the domain knowledge should
be provided as either document labels or feature labels. In a large distributed environ-
ment, labeling is typically done by a diverse set of domain experts, and labels can be
provided in different forms. For instance, some experts may be willing to label a small
set of sample documents; while others can provide some topic-indicative features (i.e.
features which are known a priori to be good indicators of the topics).

In this paper, we propose a new semi-supervised topic model to address these lim-
itations in a unified generative process. It provides a unified framework that discovers
topics from data that is partially labeled with heterogenous labels:

Heterogeneous Supervision: We assume that multiple types of supervision can ex-
ist in the training data. For instance, some training data are provided with document
labels, and some others are associated with topic-indicative features. Further, we as-
sume that a topic can receive multiple types of labels, e.g., feature and document labels.
A simplistic approach to support multiple label types is to sequentially build topic mod-
els, i.e, build a model with one label type and use this model’s output to bootstrap the
next iteration with another label type. This naive approach is inefficient due to multiple
learning steps and fail to capture new information reinforced by different label types.
Instead, we develop a unified model to simultaneously learn from different types of
domain knowledge.

Partial Supervision: hLLDA also can handle the label partialness problem, where
the training data are partially labeled. We allow for two types of partial labels:

– Partially labeled document: The labels for a document cover only a subset of all
the topics the document belongs to. Our goal is to predict all the topics for the
document.

– Partially labeled corpus: Only a small number of documents in a corpus are pro-
vided with labels. Our goal is to find the labels for all the documents.

We validate our algorithm using Reuters, 20 Newsgroup and Delicious, which have
been widely used in previous topic models and are adequate for testing the label par-
tialness problem, since the documents contain multiple topics. The experiments for the
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label heterogeneity shows that hLLDA achieves about 3 percentage points higher clas-
sification and clustering accuracy than LLDA by adding feature labels comprising only
10 words for each topic. The experiments for the label partialness shows that hLLDA
produces 8.3 percentage points higher clustering accuracy and 34.4% improvement on
Variational Information compared with LLDA. The results confirm that hLLDA signif-
icantly enhances the applicability of topic modeling for situations where partial, het-
erogenous labels are provided. Further we show that learning from multiple forms of
domain knowledge in a unified process creates an enhanced combined effect that is
greater than a sum of multiple models learned separately with one type of supervision.

In summary, the main contributions of the paper include:

– We propose a novel unified generative model that can simultaneously learn from
different types of domain knowledge such as document labels and feature labels.

– hLLDA effectively solves the label partialness problem when the document label
set is a subset of the topic set and/or the training data contain unlabeled documents.

– hLLDA is simple and practical, and it can be easily reduced to LDA, zLDA and
LLDA depending on the availability of domain information.

The remainder of this paper is structured as follows. We first compare hLLDA with ex-
isting supervised and semi-supervised topic modeling algorithms in Section 2. Section 3
describes the generative process of hLLDA and the learning and inference algorithm in
details. Experimental data and evaluation results are shown in Section 4 and Section 5.
Section 6 provides final discussions and future work.

2 Related Work

hLLDA is broadly related to semi-supervised and supervised topic models. Existing
(semi-)supervised topic models can be categorized into two groups based on the type
of domain knowledge they utilize: document supervision and feature supervision.

Document Supervision

Existing approaches that utilize document labels fall in supervised learning assuming
that all the documents in the training data have document labels. Supervised methods
such as sLDA [5], discLDA [15], and medLDA [24] have shown a comparable per-
formance on classification and regression tasks as general discriminative classifiers,
but they support only one topic for a document. Labeled LDA (LLDA) [20] extends
previous supervised models to allow multiple topics of documents, and Partially la-
beled LDA (PLDA) [21] further extends LLDA to have latent topics not present in
the document labels. PLDA supports one-to-many mapping between labels and top-
ics, but the number of latent topics is fixed constant for all documents. Recently, [14]
propose a non-parametric topic model using Dirichlet Process with Mixed Random
Measures (DP-MRM) that allows one label to be mapped with multiple topics. [18]
propose a Dirichlet-multinomial regression (DMR) topic model that can incorporate ar-
bitrary types of observed document features, such as author and publication venue, by
providing a log-linear prior on document-topic distributions. DMR can be viewed as a
supervised topic model by treating document labels as document features.
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Table 1. Comparison of hLLDA with supervised and semi-supervised topic models using docu-
ment labels

No. of Topics per Document Label-Topic Mapping Label Partialness

sLDA single one-to-one no
LLDA multiple one-to-one no
PLDA multiple one-to-many yes

DP-MRM multiple one-to-many no
hLLDA multiple one-to-one yes

Table 2. Comparison of hLLDA with supervised and semi-supervised topic models using word
labels

Label Type Label-Topic Mapping Label Partialness

zLDA unlabeled groups of features one-to-one no
SeededLDA unlabeled groups of features one-to-one no

hLLDA labeled or unlabeled groups of features one-to-many yes

Feature Supervision

A feature label is typically provided as a set of words that are likely to belong to the
same topic. Feature labels are helpful for discovering non-dominant or secondary topics
by enforcing the words be assigned to the labeled topics, while standard LDA usually
ignore them in favor of more prominent topics. Andrzejewski et al. proposed three
different approaches for incorporating feature labels. In zLDA, they constrain latent
topic assignment of each word to a set of seed words [2]. [3] applies Dirichlet Forest
which allows must-links and cannot-links on topics, and [4] uses First-Order-Logic to
generate human friendly domain knowledge. [12] described Seeded LDA that restricts
latent topics to specific interests of a user by providing sets of seed words. To maximize
the usage of seed words in learning, they jointly constrain both document-topic and
topic-word distributions with the seed word information.

To our knowledge, hLLDA is the only semi-supervised topic model that combine
heterogeneous side information together in one generative process, and discover the
topics of documents using partially labeled documents and/or corpus. Table 1 and Ta-
ble 2 summarize the differences of hLLDA with other existing algorithms that support
document supervision and word supervision respectively.

3 Hetero-Labeled LDA

In this section, we describe hLLDA in detail and discuss how it handles heterogeneous
labels and partially labeled data. We propose a unified framework that can incorporate
multiple types of side information in one simple generative process.
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Preliminaries

We first introduce some notations that will be used in the paper as shown in Table 3.

Table 3. Notations

D a document collection, {d1, d2, . . . , dM}
M the number of documents inD
V the vocabulary ofD, {wi,w2, . . . ,wN }
N the size ofV, i.e., the number of unique words inD
T the set of topics in D, {T1, T2, . . . , TK}
K the number of topics in T
LW the set of topics provided by word labels
KW the number of unique topics in LW

LD the set of topics provided by document labels
KD the number of unique topics in LD

L the label space, i.e., L = LW ∪ LD

DL labeled documents
DU unlabeled documents, i.e.,D = DL ∪DU

We also define three different levels of side information for both document supervi-
sion and feature supervision.

Definition 1 (Side Information) Any domain knowledge that can constrain the topic
distributions of documents or words. hLLDA supports the following three different lev-
els of side information.

– Group Information: It only specifies that a group of documents or words that be-
long to a same set of topics (e.g., Ld = {d1, d2, . . . , dc}) and Lw = {w1,w2, . . . ,wg}).

– Label Information: This side information provides a group of labels with asso-
ciated topic labels. For instance, Ld = {d1, d2, . . . , dc; T1, T2, . . . , Tk} specifies that
the documents belong to topics T1, . . . , Tk, where 1 ≤ k ≤ K.

– Topic Distribution: This information further provides topic distributions of the
label information. For instance, Ld = {d1, . . . , dc; T1, . . . , Tk; p1, . . . , pk} indicates
that the documents belonging to the topic Ti with the likelihood of pi. We note that
pi is a perceived likelihood value by domain experts, and

∑
i pi < 1 in many cases.

hLLDA Model

The main goals of hLLDA are to build a topic model that can incorporate different types
of labels in a unified process and to discover all underlying topics when only a small
subset of the topics are known in advance. We solve the problems by modifying both the
document topic distribution (θ) and word topic assignment (z) with the side information.
Figure 1 depicts the graphical representation of hLLDA. In hLLDA, the global topic
distribution θ is generated by both a Dirichlet topic prior α and a label-specific topic
mixture ψ obtained from the document labels Λd with a Dirichlet prior γ. Then, the
word topic assignment z is generated from the global topic mixture θ constrained by
word labels Λw.
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Fig. 1. Graphical representation of hLLDA. |Λd | = KD and |Λw| = KW . Note that z is influenced
by both the word side information (Λw) and the document side information (Λd) in hLLDA,
producing synergistic effect of heterogeneous side information.

Table 4 describes the generative process of hLLDA in more detail. In hLLDA, the
total number of topics (K) is set to the sum of the numbers of unique topics present
in the document and word labels (i.e., |LD ∪ LW|) and the number of additional latent
topics (KB) the user wants to discover from the corpus. Here, the number of latent topics
(KB) is an input parameter.

We first draw multinomial topic distributions over the words for each topic k, φk,
from a Dirichlet prior β as in the LDA model [6] (line 1–2). However, unlike other
LDA models, hLLDA has an additional initialization step for word topic assignment z,
when word (feature) labels are provided as side information (line 3–5). For each topic
appearing in the word labels, kW , we draw multinomial topic distributions, ΛkW , over
the vocabulary using a smoothed Bernoulli distribution, i.e., Λ(w)

kW
= (l1, l2, ..., lV) where

lv ∈ {δ, 1 − δ}. The Bernoullismooth distribution generates smoothed values δ (0 < δ < 1)
with success probability p or 1 − δ with failure probability 1 − p, rather than value 1
with probability p and value 0 with probability 1 − p as in the Bernoulli distribution.
We propose the Bernoullismooth distribution to handle the label partialness. Note that
the Bernoulli distribution does not allow words or documents to be assigned to the
topics not provided in the document or feature labels. However, with Bernoullismooth,
documents and words can be assigned to topics from other latent topics with a low
probability 1 − γ and 1 − δ respectively.

The Bernoullismooth distribution drawn from word label information, ΛkW , contains a
vector of topics for each word and is later used to constrain the global topic mixture
θ as described in line 16. We multiply ΛkW with θ to generate the multinomial distri-
bution z (line 16). The topic assignment zi for each word i in a document d is chosen
from a multinomial distribution {λ(d)

1 , . . . , λ
(d)
K }, where λ(d)

i denotes the assigned topic
for word i in document d and is generated by multiplying the global topic mixture θ and
the word label constraint ΛkW . Applying soft constraints on word topic assignment z
using word labels is similar to zLDA [2], but, zLDA puts constraints on word instances,
while hLLDA puts constraints over the vocabulary elements. Further, by influencing z
with the mixture of the word side information and the document side information (see
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Table 4. Generative process for hLLDA. Bernoullismooth distribution generates smoothed values
(e.g., value v, 0 < v < 1 with success probability p or 1 − v with failure probability 1 − p) rather
than value 1 or value 0.

1 For each topic k ∈ {1, ...,K}
2 Generate φ = (φk,1, . . . , φk,V)T ∼ Dir(·|β)
3 For each topic kW ∈ {1, . . . ,Kw}
4 For each word w ∈ {1, . . . ,N}
5 Generate Λ(w)

kW
∼ Bernoullismooth(·|δ)

6 For each document d:
7 if d ∈ DU

8 Generate θ(d) = (θ1, . . . , θK)T ∼ Dir(·|α)
9 if d ∈ DL

10 For each topic kD ∈ {1, . . . ,KD}
11 Generate Λ(d)

kD
∼ Bernoullismooth(·|γ)

12 Generate Ψ (d) = (ψ1, . . . , ψKd )T ∼ Dir(·|α · Λ(d)
kD

)
13 Generate θ(d) = (θKd+1, . . . , θ(K))T ∼ Dir(·|αKd+1:K)
14 Generate θ(d) = (Ψ (d)T | θ(d)T

)T

15 For each i in {1, . . . ,Nd}
16 Generate zi ∈ {λ(d)

1 , . . . , λ
(d)
K } ∼ Mult(·|Λ(i)

kW
· θ(d))

17 Generate wi ∈ {1, . . . ,V} ∼ Mult(·|φzi)

Figure 1), hLLDA can benefit from the combined effect of multiple heterogeneous side
information.

hLLDA generates the document topic distribution θ differently for documents with
document side information and for documents without document labels (line 7–14). If
the document is unlabeled (i.e., d ∈ DU ), we generate topics using the Dirichlet prior α
in the same way as in LDA (line 8). If the document is labeled (i.e., d ∈ DL), we first
generate the document labels over topics Λ(d)

KD
= (l1, l2, ..., lKD), where lk ∈ {γ, 1 − γ} is

drawn from the smoothed Bernoulli distribution, Bernoullismooth(·|γ) (line 10-11). The
soft constraints on document labels enable hLLDA to discover other latent topics for
partially labeled documents or corpus, which do not exist in the document labels. We
note that this is different from both Labeled LDA (LLDA) [20] and Partially Labeld
LDA (PLDA) [21]. In LLDA, a document is strictly constrained to generate topics
only from the provided document labels. PLDA relaxes this restriction and allows a
document to be assigned a set of latent topics that are unseen in the document labels,
but the number of the latent topics is arbitrarily fixed constant for all documents.

Note that, in Bernoullismooth(·|δ) and Bernoullismooth(·|γ), the values for δ and γ are
larger than 1−δ and 1−γ respectively, ensuring that the topic distributions from the side
information have more weights than the topics not covered by the side information. Fur-
ther, when the document side information is provided in the form of Topic Distribution
as described in Definition 1, the perceived likelihoods, pi, are used as biased priors.
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We generate a document label-topic mixtureΨ (d) of size KD using the Dirichlet topic
prior α and the document label constraints Λ(d)

KD
(line 12) and then generate a latent topic

mixture θ(d) of size K-KD using the Dirichlet prior α (line 13). Finally, we concatenate
the document label-topic mixture Ψ and the latent topic mixture θ to generate θ with
size K (line 14). The concatenation together with the soft constraints on document top-
ics allow the document to generate new topics that are not included in the document
labels from partially labeled documents or corpus. Even though the concatenation of
Dirichlet random variables does not produce a value that is an element of the simplex,
our experiments show that it solves the label partialness very well.

The remaining steps (line 15–17) are similar to the processes in LDA. For each word
i in document d, we generate topic assignment zi from multinomial distribution θ(d) and
word label constraint Λ(i)

kW
and generate the word from multinomial distribution φzi .

Learning and Inference

We use the Gibbs sampling algorithm [9] to estimate the latent variables θ, ψ, and φ.
We note that the word and document label priors δ and γ are independent from the rest
of model parameters, and, since we simply concatenate ψ into θ (line 14), we can use
the same inference as in LDA. Thus, our inference process follows the Gibbs sampling
procedure that estimates only θ and φ.

At each iteration, the topic of ith document, zi, is estimated by the conditional
probability

P(zi = k|z−i,w,ΛW,ΛD, α, η, γ, δ) (1)

∝ P(zi = k|z−i,w,ΛW, α, η, γ)

∝ Λ(wi)
k ×

⎛⎜⎜⎜⎜⎜⎜⎜⎝
n(wi)
−i,k + η

∑W
w′

(
n(w′ )
−i,k + η

)

⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
n(d)
−i,k + α

∑T
k′

(
n(d)
−i,k′
+ α
)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

where Λ(wi)
k is a word label constraint that outputs γ, 0 < γ < 1 when wi ∈ ΛW , and

1-γ when wi � ΛW . The soft constraints on sampling procedure is similar to zLDA [2],
except that the topic k can be a new topic not in the word labels. Then, we obtain the
estimated probability φkw of word w in topic k and the estimated probability θdk of topic
k in document d using Equation 2 and 3 respectively.

φkw =
n(wi)
−i,k + η

∑W
w′

(
n(w′ )
−i,k + η

) (2)

θdk =
n(d)
−i,k + α

∑T
k′

(
n(d)
−i,k′
+ α
) (3)

When no side information is provided, hLLDA is reduced to LDA. Compared to
LLDA, θ in hLLDA is limited by soft constraints drawn from the documents labels,
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and, thus, becomes the same as LLDA, when only document side information is con-
sidered, and the document label prior γ is a binary vector representing the existence of
topic labels for each document. Compared to zLDA, z in hLLDA is softly constrained
by both the word labels and the document labels in assigning topics for each word in
each document. hLLDA can be reduced to zLDA, when the side information contains
only word labels, and KW is equal to K. Based on these observations, hLLDA can be
viewed as a generalized version of LDA, LLDA and zLDA. Further, we note that the
existence of latent topic mixture θ enables hLLDA to find latent topics not covered by
the document or word labels without harming the original distribution of topics from
the labels.

4 Experiments

We conduct experiments to answer the following questions:

Q1 How effective is learning from mixture of heterogeneous labels for topic cate-
gorization?
Q2 How well does hLLDA discover latent topics from partially labeled documents
and corpus?
Q3 How accurate are the generated topics?

Data

All experiments are conducted with three public data sets–Reuters-21578 [22], 20 News-
group [1], and Delicious [8]. The Reuters-21578 data set contains a collection of news
articles in 135 categories, and we chose the 20 most frequent topics for the experiments
(hereafter called Reuters). For the 20 Newsgroup dataset, we use all 20 categories in the
data set (hereafter called 20News). For the Delicious data set, we first selected the 50
most frequent tags in Delicious.com, and then manually chose 20 tags from the 50 tags
and 5, 000 documents for the selected 20 categories (hereafter called Delicious). Table 5
shows the topic categories in the the experiment data sets. We then conducted the fol-
lowing text processing on the documents: First, all stopwords were removed and words
were stemmed using Porter’s Stemmer [19]. Then, all words occurring in fewer than
5 documents were discarded. After the preprocessing, Reuters contains 11, 305 docu-
ments and 19, 271 unique words; 20News has 19, 997 documents with 57, 237 unique
words; and Delicious contains 5, 000 with 141, 787 unique words.

Domain Knowledge

We use the topic labels in the data sets as document side information. To evaluate the
label heterogeneity (Q1) and partialness problems (Q2), we conduct experiments with
varying amount of document side information comprising the first 5, 10, 15 and 20
labels from the topics in Table 5. We treat the documents belonging to the selected
categories as labeled and the remaining documents as unlabeled.

For word side information, we extracted top 20 words for each class based on TF-
IDF (term frequency-inverse document frequency), manually filtered irrelevant words
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Table 5. The 20 topics in Reuters, 20News, and Delicious data sets

Reuters earn, acq, money-fx, crude, grain, trade, interest, wheat, ship, corn, dlr,
oilseed, sugar, money-supply, gnp, coffee, veg-oil, gold, nat-gas, soybean

20News alt.atheism, sci.space, comp.os.ms-windows, rec.sport.baseball,
misc.forsale, soc.religion.christian, rec.autos, sci.crypt, talk.religion.misc,
sci.med, comp.sys.ibm.pc.hardware, rec.sport.hockey, talk.politics.guns,
sci.electronics, comp.graphics, rec.motorcycles, talk.politics.misc,
comp.sys.mac.hardware, talk.politics.mideast, comp.windows.x

Delicious design, web, software, reference, programming, art, education, resources,
photography, music, business, technology, research, science, internet, shop-
ping, games, marketing, typography, graphics

out and chose top 10 words as final word labels. When a word appears in multiple
classes, we remove the word from all the classes except the class for which the word
has the highest TF-IDF value. In real world, word labels are given by domain experts
so they have more meaningful information than our artificially generated word labels.
Even though we have conducted an experiment with real business data that contains
document and word labels with successful experimental results, they are not included
in this paper due to confidential information.

Evaluation Methods

We implement two variations of hLLDA and compare them with three existing topic
modeling algorithms–LDA [6], LLDA [20] and zLDA [2]. (For multi-label classifica-
tion task such as Reuters and Delicious, sLDA is not appropriate to compare with [20]
so we does not include sLDA in our experiment.) The first version, hLLDA (L=T), as-
sumes that all the topics are present in the labels to directly compare it with LLDA. The
second version. hLLDA (L<T), is for cases where the label set is a subset of the topic
set and validate the label partialness problem. For all the models, we use a Collapsed
Gibbs sampler [10] for inference with standard hyper-parameter values α = 1.0 and
β = 0.01 and run the sampler for 1,000 iterations.

All comparisons are done using 5-fold cross validation over 10 random runs. For
question Q1 and Q2, we measure the following three evaluation metrics. For Q3, we
compare the discovered topics qualitatively by visualizing the topics.

Prediction Accuracy: We predict a label of a new document by choosing the topic
with the highest probability from the posterior document-topic distribution θ and check
whether the label exists in the topic set of the document.

Clustering F-measure: We simulate clustering by assigning each document to the
topic (i.e., cluster) that has the highest probability in θ. If two documents belong to the
same topic by both the ground truth and by the simulated clustering, then it is regarded
as correct. The F-measure is then calculated for all the pairs of documents. Even though
clustering may not be a general metric to evaluate topic modeling algorithms, it can be
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a good indicator of how topics are coherently grouped together especially when label
information is incomplete (i.e., label partialness). Section explains the details.

Variational Information(VI): VI measures the amount of information lost and gained
in changing clustering C1 to clustering C2 [17]. The VI of two clusters X and Y is
calculated as VI(X, Y) = H(X) + H(Y) − 2 ∗ I(X, Y) where H(X) (or H(Y)) denotes the
entropy of the clustering X (or Y), and I(X, Y) is the mutual information between X and
Y. Lower VI values indicate better clustering results.

5 Experimental Results

We measure the performance of hLLDA and the baseline systems for the label hetero-
geneity the label partialness problems and also visually compare the discovered topics
by hLLDA and LLDA.

Label Heterogeneity

We first validate the effectiveness of hLLDA in dealing with heterogenous labels. In
this experiment, we used document labels and feature labels as heterogeneous domain
knowledge for hLLDA, but we can easily extend to other types of labels such as doc-
ument structure labels. Further, we assume that all topics appear in the labels, and all
training documents are labeled with document labels or feature labels.

Figure 2(a) shows the accuracy of multi-class prediction. As we can see, both ver-
sions of hLLDA perform well for all three data sets. The accuracy levels of hLLDA are
significantly better than LDA and zLDA and slightly higher than LLDA. This indicates
that mixture of two heterogeneous domain information improve the prediction accuracy.
Figure 2(b) shows the F-measure of the multi-class clustering task. The F-measure of
both hLLDA algorithms show similar performance as LLDA while significantly out-
performing LDA and zLDA. We notice that, however, for Delicious, hLLDA is better
than LLDA confirming that adding feature label information is beneficial. These re-
sults indicate that hLLDA can combine different types of supervision successfully, and
the combination of heterogeneous label types is beneficial for both classification and
clustering tasks.

Label Partialness

For the label partialness problem, we consider two types of label partialness: partially
labeled document and partially labeled corpus.

Partially Labeled Documents: The goal is to predict the full set of topics for a doc-
ument when only a subset of topics is provided as labels for the document. We conduct
experiments for different levels of partialness ranging from 10% to 100% with 10%
interval. For p% partialness, we include a topic in the document’s label set with proba-
bility p. In this experiment, 20News and Delicious were used because most documents
in the data sets have multiple topics. As we can see from the results shown in Figure 3,
hLLDA, especially hLLDA (L < T ), outperforms all other algorithms both in terms of
clustering F1-measure and VI.
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Fig. 2. Performance comparison for label heterogeneity
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Fig. 3. Clustering F-measure and VI (the lower the better) for partially labeled documents on
20News (left) and Delicious (right). PartialRatio indicates the probability of each topic being
included in the labels.
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Fig. 4. Performance comparison for partially labeled corpus on Delicious

Table 6. Number of topically irrelevant (Red) and relevant (Blue) words marked by users in
Table 7. The more red words are, the lower the topic quality is. Similarly, the more blue words
are, the higher the topic quality is.

LLDA hLLDA

#RedWords #BlueWords #RedWords #BlueWords

20News 15 11 2 35
Delicious 17 12 6 30

Partially Labeled Corpus: The goal is to find the labels for all the documents in the
corpus when only a subset of the documents are labeled (|DL| � |D|). We conduct the
same experiments as for label heterogeneity using Delicious, but introduced unlabeled
documents in the training data. Figure 4a and Figure 4b show the results when only the
documents belonging to the first 5 topics (48% of the documents) and the first 10 topics
(64% of the documents) are considered labeled respectively. As we can see, hLLDA
outperforms both LDA and zLDA significantly in all cases. Further, the results show
that hLLDA achieves a comparable performance to LLDA while using less than half of
the labels and even better performance only with about 60% of the labels!

Quality of Discovered Topics

We compare the quality of topics discovered by hLLDA with partial labels and by
LLDA with full labels. We ran hLLDA using only 10 topics as the documents labels
and discovered 20 topics. To keep the amount of domain information the same, we split
the data set into two subsets with 10 topics each and ran LLDA separately for each sub-
set. Table 7 shows the discovered topics for 20News (top) and Delicious (bottom): The
first column shows the the true topics, and the second and the third columns show the
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Table 7. Comparison of topics generated by LLDA with full labels and hLLDA with partial
labels. Each row depicts a topic label and top five words for the topic discovered by the two
algorithms. Words marked in red or blue show the differences between the two algorithms. The
words in red indicate topically irrelevant words, and the words in blue denote relevant words for
the topic.

Labels LLDA(L=10,T=10) & LLDA(L=10,T=10) hLLDA (L=10,T=20)

20
N

ew
s

atheism peopl, dont, god, moral, believ peopl, god, dont, moral, believ
space space, launch, orbit, time, system space, launch, orbit, system, time
ms-windows window, file, program, imag, run window, file, driver, run, program
baseball game, team, plai, player, win game, player, team, dont, hit
forsale drive, card, scsi, system, sale sale, email, price, plea, drive
christian god, christian, peopl, believ, church god, christian, peopl, believ, church
autos car, dont, bike, im, time car, bike, dont, engin, im
crypt govern, kei, peopl, gun, encrypt kei, encrypt, chip, govern, secur
religion.misc peopl, armenian, dont, jew, israel god, peopl, dont, christian, moral
med medic, dont, health, peopl, drug medic, effect, dont, disea, studi
pc.hardware drive, scsi, card, id, control drive, card, scsi, mac, monitor
hockey game, team, plai, hockei, player game, team, plai, hockei, win
politics.guns gun, peopl, dont, weapon, fire gun, law, weapon, peopl, crime
electronics wire, ground, dont, circuit, power power, wire, batteri, circuit, ground
graphics imag, file, graphic, program, format -
motorcycles bike, dod, ride, dont, motorcycl -
politics.misc peopl, dont, presid, govern, time � presid, dont, peopl, govern, job

� parti, polit, vote, convent, univ
mac.hardware mac, appl, drive, monitor, system -
politics.mideast armenian, peopl, israel, isra, turkish � armenian, turkish, muslim, armenia, turk

� israel, isra, jew, arab, jewish
windows.x window, file, program, server, run ile, imag, program, displai, window

+ fire, peopl, start, didnt, dont, children

D
el

ic
io

us

design design, comment, repli, post, thank design, comment, post, thank, repli
software file, softwar, download, support, web file, download, softwar, window, free
art post, art, begin, map, comment art, post, begin, artist, book
education learn, student, educ, talk, world learn, student, educ, talk, world
science scienc, peopl, time, page, link scienc, peopl, time, page, depress
photography photo, am, photographi, comment, jul photo, am, photographi, post, photograph
music music, record, rock, band, de music, record, rock, band, song
business xpng, twitter, busi, search, blog busi, search, blog, inform, servic
games game, element, function, code, html game, comment, articl, appl, app
marketing de, que, la, social, en twitter, social, post, media, market
shopping tshirt, shop, de, product, top ship, free, price, shop, offer
typography font, design, thank, type, comment -
graphics icon, file, free, graphic, brush -
programming code, function, post, file, page � element, function, code, exampl, content

� python, tornado, thread, framework, server
research research, start, post, search, comment -
web xpng, web, css, user, site xpng, scalablesvg, xsvg, flash, arduino
internet de, que, le, da, la -
technology comment, googl, technolog, inform, app -
reference element, pdf, html, content, map pdf, html, sheet, cheat, intel
resources repli, design, post, free, thank, web, site

+ stack, librari, sentenc, data, scholar
+ oct, plugin, jul, commentcont, jan
+ de, le, la, un, et
+ de, que, la, para, el
+ die, und, der, map, da
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top 5 words discovered by LLDA and hLLDA respectively. We marked the topics that
hLLDA did not find with ‘-’ , and the topics hLLDA generated but do not exist in the
data set with ‘+’. The topics with ‘�’ indicate that multiple topics were generated for
one true topic. As we can see, hLLDA discovers topics very accurately with the first 10
topics matching very well with the true topics for both 20News and Delicious. Further
note that, for both 20News and Delicious data sets, hLLDA discovered new latent topics
even though no labels were provided for these topics. For example,hLLDA discovered
6 out of 10 latent topics for 20News, such as pc.hardware, hockey, politics.guns, elec-
tronics, politics.misc and windows.x.

We also examine the top 5 words for each topic: The words discovered by both al-
gorithms are marked in black, and words discovered by only one algorithm are marked
in red or blue– blue denoting relevant words and red denoting irrelevant words respec-
tively. As we can see, hLLDA generates much more relevant (blue) words at the top
and also extract more general words than LLDA, even when both cases were judged
topically relevant. For instance, LLDA generates “drive”, “card”, “scsi” for topic for-
sale, while hLLDA produces “sale”, “price”, and “offer”. The same trend is seen for
Delicious data set, especially for topics business, games and marketing. Table 6 shows
the total number of blue and red words generated by LLDA and hLLDA. As we can
see, hLLDA produced much more relevant words and much fewer irrelevant words for
both data sets, yielding 87% and 65% reduction in red words and 218% and 150% in-
crease in blue words for 20News and Delicious respectively. The results clearly show
the effectiveness of hLLDA in handling partial labels.

6 Conclusion

We proposed hLLDA, a partially supervised topic model to deal with the heterogeneity
and partialness of labels. Our algorithm is simple and flexible and can deal with different
label types in a unified framework. Experimental results demonstrate the effectiveness
of hLLDA for both label heterogeneity and label partialness problems. Experiments also
validate that hLLDA can discover latent topics for which no label or side information
was provided. Further, hLLDA produces comparable classification performance and
much better clustering performance than existing semi-supervised models while using
much smaller amount of labels.

In the future, we plan to incorporate additional type of label information such as
partial or full taxonomy of topics [13]. Also, to further improve the performance of label
prediction for partially labeled documents, we consider generating topic hierarchies
such as Hierarchical Dirichlet Process (HDP) [23].
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Abstract. We introduce a Bayesian extension of the tensor factoriza-
tion problem to multiple coupled tensors. For a single tensor it reduces
to standard PARAFAC-type Bayesian factorization, and for two tensors
it is the first Bayesian Tensor Canonical Correlation Analysis method.
It can also be seen to solve a tensorial extension of the recent Group
Factor Analysis problem. The method decomposes the set of tensors to
factors shared by subsets of the tensors, and factors private to individ-
ual tensors, and does not assume orthogonality. For a single tensor, the
method empirically outperforms existing methods, and we demonstrate
its performance on multiple tensor factorization tasks in toxicogenomics
and functional neuroimaging.

1 Introduction

Tensor Factorization methods decompose data into underlying latent factors or
components, taking advantage of the natural tensor structure in the data. A wide
range of low-dimensional representations of tensors have been proposed earlier
[1]. The most well-known models include the CP CANDECOMP/PARAFAC
[2,3] and the Tucker 3-mode factor analysis [4]. Tucker is a more generic model
for complex interactions, whereas CP as an additive combination of rank-1 con-
tributions is easier interpretable analogously to matrix factorizations. Recently
well-regularized probabilistic tensor factorization methods have been introduced
for both CP [5] and Tucker [6], though they are limited to single tensors only.

Two-View Tensor Models. In order to discover shared patterns between two
co-occuring tensors, joint factorization approaches decompose them into corre-
lated factors [7]. Recently, several non-probabilistic methods for Tensor Canon-
ical Correlation Analysis have been introduced [8,9,10] extending the matrix
counterparts. The methods impose different constraints but all aim at finding a
common latent representation of two paired tensors.

Two-View Matrix Models. For paired matrices, integration approaches have
been thoroughly studied. For an overview on nonlinear Canonical Correlation
Analysis (CCA) see [11] and Bayesian CCA see [12].

Multi-viewModels.Multi-view modeling integrates information frommultiple
coupled datasets. For unsupervised multi-view modelling, a method has recently

T. Calders et al. (Eds.): ECML PKDD 2014, Part I, LNCS 8724, pp. 656–671, 2014.
© Springer-Verlag Berlin Heidelberg 2014
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Fig. 1. Multi-view tensor factorization. Datasets X (1),X (2),X (3) are simultaneously
decomposed into K components. The Z and U loadings are common to all tensors,
while the view-specific loadings W(m) show the intrinsic component-view structure in
the data. The structure is highlighted in W(m) with black representing a component
active in a view (non-zero loadings), while white is switched off (zero-loadings).

been proposed for decomposing several coupled matrices, into components shared
by subsets of the matrices, and components private to each matrix. The method
was called Group Factor Analysis [13]. As far as we know, methods for analysing
multiple coupled tensors have not been proposed earlier.

In this paper we formulate and address the novel multi-view tensor factoriza-
tion problem, where the task is to decompose multiple coupled or co-occuring
tensors into factors that are shared by subsets of the tensors: one, some or all
of them. We formulate a Bayesian model to solve the task, allowing automatic
model complexity selection and an intrinsic solution for degeneracies. For two
views, our model is the first Bayesian Tensor Canonical Correlation Analysis.

The rest of the paper is structured as follows: In section 2 we formulate
the novel multi-view tensor factorization problem. In section 3 we present our
Bayesian multi-view tensor factorization model and describe its relationship to
existing works. In section 4 we validate the model’s performance in various set-
tings and demonstrate its application in a novel toxicogenomics setting and a
neuroimaging case. We conclude with discussion in section 5.

Notations: We will denote a tensor as X , a matrix X, vector x and a scalar

x. The Frobenius norm of a tensor is defined as ‖X‖ =
√∑

n

∑
d

∑
l X 2

n,d,l. The

Mode-2 product ×2 between a tensor A ∈ RN×K×L and a matrix B ∈ RD×K

is the projected tensor (A ×2 B) ∈ RN×D×L. A reshaped Khatri Rao product
4 of two matrices A ∈ RN×K and C ∈ RL×K is the “column-wise matched”
outer product of K vector-pairs that results in the tensor (A4C) ∈ RN×K×L.
The outer product of two vectors is denoted ◦. The rank of a tensor X is the
smallest number of rank-1 tensors that generate X as their sum. The order of
a tensor is the number of axes in the tensors, also called ways or modes. For
notational simplicity the model is presented for third order tensors, while it is
trivially extendable to higher orders.

2 Multi-view Tensor Factorization

We formulate the novel Multi-view Tensor Factorization (MTF) problem for
a collection of m = 1, . . . ,M paired tensors (views), X (1),X (2), . . . ,X (M) ∈
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RN×Dm×L, as the combined factorization that decomposes the tensors into
factors shared between all, some, or a single tensor. In MTF, each tensor is
factorized into a view-specific matrix of loadings W(m) ∈ RDm×K and a low-
dimensional tensor Y ∈ RN×K×L common for all views:

X (m) = Y ×2 W
(m) + ε(m) .

Here ε(m) ∈ RN×Dm×L is the noise tensor.
The view-specific matrix of loadings W(m) then controls which of the factors

k from the common tensor are active in each view. For convenience we assume a
fixed number of K factors, with the understanding that for methods capable of
choosing the number of factors, K is set large enough, and the loadings of extra
components will automatically become set to zero.

The tensor Y forms the shared latent tensor and can be left unconstrained
(equivalent to Tucker1 factorization), or can be further constrained to represent
any decomposition including Tucker2, Tucker3 or CP. The CP decomposition
factorizes a tensor into a sum of rank-1 tensors, where each rank-1 tensor is
the outer product of vector loadings in all modes, whereas in Tucker variants
the factor interactions are modelled via a core tensor G. This rank-1 component
decomposition of CP and its intrinsic axis property from parallel proportional
profiles [14], along with uniqueness of solutions [15], gives it a very strong in-
terpretive power. The Tucker model is more flexible, though, the complex in-
teractions via G and non-uniqueness of solutions make its interpretation more
difficult. Therefore, we adapt an underlying CP decomposition for our model.

Figure 1 illustrates MTF for the joint CP-type factorization. More formally,

X (m) =

K∑
k=1

Zk ◦Uk ◦W(m)
k + ε(m) (1)

= (Z4U)×2 W
(m) + ε(m) .

Here Z ∈ RN×K and U ∈ RL×K are the common latent variables and the W(m)

are loadings for each view m.
Figure 1 shows the MTF formulation for three tensors, where components

(rows) of W(m) can be active in all, two, or a single view. The loadings W
(m)
k

are zero for the components k that are not active in view m. A component active

in two or more views has non-zero loadings in the corresponding W
(m)
k and is

hence shared between them. This specification comprehensively represents the
intrinsic structure of the tensor collection.

3 Bayesian Multi-view Tensor Factorization

We formulate a Bayesian treatment of the MTF problem of Equation 1, by
complementing it with priors for model parameters. Figure 2 summarizes the
dependencies between the variables in the decomposition of the M observed
tensors X (m) as a graphical model. The main idea is incorporated in plate M ,
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τ (m)X (m)

W(m)Z
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U α(m)

β

L
M

K

h(m)

Π

Fig. 2. Plate diagram for Bayesian multi-view tensor factorization

which represents the view-specific loadings W(m), having two layers of sparsity:
1) view-wise sparsity controlled by h(m) and 2) feature-wise sparsity (across the
DM features) controlled by α(m). The view-wise sparsity acts as an on/off switch
and allows the model to automatically learn which views share each factor, and
also the total number of factors in the data. The plate K represents probabilistic
CP decomposition for each view, where Z and U are the latent variables.

The distributional assumptions of our model (explained in detail below) are:

X (m)
n,l ∼ N ((Zn 4Ul)×2 W

(m), I(τ (m))−1)

Z ∼ N (0, I)

Ul,k ∼ N (0, (βl,k)
−1)

W
(m)
d,k ∼ h

(m)
k N (0, (α

(m)
d,k )−1) + (1− h

(m)
k )δ0

h
(m)
k ∼ Bernoulli(πk)

πk ∼ Beta(aπ, bπ)

βl,k ∼ Gamma(aβ , bβ)

α
(m)
d,k ∼ Gamma(aα, bα)

τ (m) ∼ Gamma(aτ , bτ )

where Gamma(a, b) is parameterized by shape a, rate b.
The coupled N×L samples in each tensor X (m) are modelled via the product

of loadings, with a view-specific observation precision τ (m). For the latent vari-
ables, we assume a priori independence, and induce an element-wise automatic
relevance determination ARD prior [16] on Ul,k to encourage sparsity.

To infer the interactions between views and components, we make the model
view-wise sparse via a Spike and Slab prior [17] on the projection weights W(m).
The spike and slab prior has two parts, one being a delta δ0 function centered at
zero and the other some continuous distribution (usually Gaussian). We replace
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the Gaussian with an element-wise ARD prior to additionally allow feature-level
sparsity in our model. The ARD is a Normal-Gamma prior that specifies the

precision α
(m)
d,k controling the scale of each variable. Our element-wise d, k,m

formulation of ARD encourages the loadings within a component-view pair to

be sparse. In the spike and slab construct, the binary value h
(m)
k drawn from

a Bernoulli distribution gives the component-view activation. If h
(m)
k = 1, the

component k is active in view m and the loadings W
(m)
k are sampled from a

corresponding element-wise ARD prior, whereas if h
(m)
k = 0, the component-

view pair is not active and the loadings W
(m)
k are set to zero via δ0, inducing

view-wise sparsity.
Learning the h(m) activities allows automatic determination of the number

and sharing of factors between the views. This is because if K is set to be large

enough, the model will switch off h
(m)
k , for all the extra k,m pairs. This yields

the underlying sharing pattern of the views, even producing empty components
that are not active in any view. The presense of empty components indicates that
K was set to a large enough value, and the amount of non-empty components
gives the rank of the view collection. In the construct, πk represents probability
of activation of each component.

The joint probability of data and parameters can be factorized as follows, and
inference is performed via Gibbs sampling:

p(X (1),X (2), ...,X (M), Θ) =

M∏
m=1

N∏
n=1

L∏
l=1

p(X (m)
n,l |Zn,Ul,W

(m), τ (m))

p(τ (m))p(Zn)

K∏
k=1

p(Ul,k|βl,k)p(βl,k)

D(m)∏
d=1

p(W
(m)
d,k |α

(m)
d,k ,h

(m)
k )p(α

(m)
k ).p(h

(m)
k |πk)p(πk)

Degeneracies can complicate the practical use of CP when analyzing real data
[18]. Most degeneracies occur due to non-trilinear structure in the data and are
identified by strong negative correlations between two components. To overcome
the problem, researchers have proposed adding orthogonality and non-negativity
constraints that address it by hindering correlations [18,19], but may also effect
the model’s ability to discover PARAFAC’s intrinsic axes.

In our Bayesian formulation, we impose an element-wise ARD prior on the
component loadingsW(m),U. The element-wise prior regularizes the solution al-
lowing determination of precise factor loadings, and is a construct less strict than
orthogonality. Our model should therefore be able to handle weak degeneracies,
via a flexible composition that still allows identifying PARAFAC’s intrinsic axes.

3.1 Special Cases and Related Problems

We next present special cases of our model and relate them to the existing works.
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Sparse Bayesian CP. For m = 1 (a single view) our model reduces to sparse
Bayesian CP factorization, which can automatically infer the number of compo-
nents. In this special case our formulation goes very close to the Bayesian CP
[20], the main differences being that they use MAP estimation and do not have
feature-level sparsity.

Other Bayesian versions of CP include a variant specialized for temporal
datasets [5], the fully conjugate model [21], and an exponential family framework
[22]. For Tucker factorizations, Chu and Ghahramani [6] formulated Tucker in
a probabilistic framework (pTucker) while [23] presented a non-linear variant
using Gaussian processes. All of these follow different assumptions; however,
unlike our method, none of them automatically learns the rank of the tensors.
Instead, repetitive methods of rank identification are used, though they pose
serious scalablity issues for large tensors [1].

Bayesian Tensor CCA. For m = 2, our model is the first Bayesian Tensor
CCA. The model is related to tensor-CCAs in the classical domain, specifically
to [8,10]. An additional technical difference, besides our Bayesian treatment, is
that the earlier works assume the two tensors to be paired in a single mode
(N), while we assume pairing in both N and L. Both settings are sensible and
applicability depends on the nature of the data.

There have also been fusion studies on coupled matrix-tensor factorization,
where values in a tensor were predicted with side information from a matrix, or
vice versa. A gradient-based least squares optimization approach was presented
in [24], while [25,26] used generalized linear models in a coupled matrix-tensor
factorization framework to solve link prediction and audio processing tasks.

In the matrix domain, a related multi-view problem was recently studied under
the name of Group Factor Analysis [13]. The goal there was to perform a joint
factor analysis of multiple matrices to find relationships between datasets. Their
method also finds components shared between subsets of views but, naturally,
works only for matrices.

4 Experiments

We have applied our model on both simulated and real datasets. We will first
demonstrate in a simulated example the model’s ability to correctly separate
shared and view-specific components, as well as precisely identify the factor mode
loadings. We next compare our model to the existing state-of-the-art methods
on benchmark single-view datasets, to validate that in the single-view special
case our algorithms are comparable. We then validate our model’s performance
on simulated multi-view tensors and compare to the single-view tensor methods
and the multi-view matrix methods as the existing baselines, ascertaining the
advantage gained by the multi-view tensor decomposition. Finally, we apply our
method on multi-view real data tensors on a new problem from toxicogenomics
and a functional neuroimaging dataset, demonstrating the interpretative power
and diverse applicability of the model.
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Fig. 3. Demonstration of BMTF decomposing two tensors A and B simultaneously,
finding the one shared and two view-specific components. Left: Loadings are drawn
for the three components (1 shared, 2 specific) embedded in the data. Right-Bottom:

component-view activation h
(m)
k for a K = 4 BMTF run. Right: Loadings of the four

BMTF components reveal the shared and specific components.

Our model detects the number and type of components automatically, as
long as it is run with a large enough K, resulting in the extra components get-
ting zero loadings. The practical procedure we followed is to increase K until
empty components are found. The experiments were run with the hyperparam-
eters aπ, bπ, aα, bα, aβ , bβ, aτ , bτ initialized to 1. To account for high noise in real
datasets, the noise hyperparameters aτ , bτ were initialized assuming a signal-
to-noise ratio of 1. All remaining model parameters were learned using Gibbs
sampling while discarding the first 10,000 samples as the burn-in and using the
next 10,000 samples for estimating the posterior. Our R implementation of the
model is available at http://research.ics.aalto.fi/mi/software/bmtf/.

4.1 Simulated Illustration

We first demonstrate the ability of our BMTF to decompose the data into factors
in a two-view setting. For this purpose two tensor datasets A and B were created
using three underlying components, one of which is shared between both tensors,
while one is specific to each. Figure 3-left shows the 3-mode loadings used to
create the two tensors, where Z and U are the common 1st and 2nd mode
loadings between both tensors while W(1) and W(2) are the 3rd mode loadings

http://research.ics.aalto.fi/mi/software/bmtf/
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for tensor A and tensor B, respectively. The shared component (blue) has non-
zero loadings in both W(1) and W(2) while the specific ones have non-zeroW(m)

loadings in only the corresponding view.
BMTF was run with K = 4, i.e., larger than the number of embedded compo-

nents (=3). Figure 3-bottom-right plots the learned h
(m)
k values for the M = 2

views and K = 4 components. The plot shows that one component is active
in both views (black) while one component active in each view, demonstrat-
ing that the model correctly separates the shared and view-specific effects. The
fourth component was rightly detected as not active in any of the views, as the
data come from only three components, indicating that the model identifies the
correct number of components by switching off the extra ones. The discovered
loadings for the 4 components are plotted in Figure 3-right. The plots show that
the loadings are identified correctly in this simulated example.

4.2 Single View

As discussed in Section 3.1, our method also solves the CP problem as a special
case when run on a single dataset. We compare our formulation to the existing
state-of-the-art single-view methods on benchmark datasets to validate that our
performance is at least comparable. These single-view methods have not been
generalized to multi-view tensors where our main contribution lies.

Comparison Methods. We compare to the following state-of-the-art
approaches.

ARDCP: Mørup et. al. [20] formulated CP in a Bayesian framework and au-
tomatically learn the number of components, using MAP estimation. In compar-
ison to them, our model is fully Bayesian and additionally element-wise sparse.

pTucker: Chu and Ghahramani [6] presented a probabilistic version of the
Tucker model. Tucker is more flexible than CP, though not easy to interpret.

CP: We also compare to the most widely used and updated classical CP im-
plementation from the N-way Toolbox (v3.31 of July 2013, http://www.models.
life.ku.dk/nwaytoolbox). The implementation solves the factorization using
the well established Alternating Least Squares ALS algorithm [27]. On the com-
putational side, per-iteration complexity of BMTF exceeds ARDCP and CP only
due to computing K ×K covariance matrices, which is small compared to the
rest of the computation. Tucker is costlier than CP as it needs to solve for the
core tensor as well, while pTucker reduces its costs with custom solutions.

Datasets. We use the three commonly used benchmark datasets in tensor mod-
eling from http://www.models.life.ku.dk/nwaydata, namely Amino Acids,
Flow Injection Analysis, and Kojima Girls datasets.

We test our model for both its ability to find the number of components and
to model the data correctly in a missing value setting. We randomly selected
half of the values in the datasets for training the models and predicted the
remaining half. The split was repeated independently 100 times. BMTF and
ARDCP learned the number of components for each split. CP and pTucker were

http://www.models.life.ku.dk/nwaytoolbox
http://www.models.life.ku.dk/nwaytoolbox
http://www.models.life.ku.dk/nwaydata
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Table 1. Detection of number of factors, and ability to find the intrinsic structure.
The table lists the number of factors of the three real datasets determined by pftest
(on full data) from N-way Toolbox and compares the ability of BMTF with other state
of the art methods in a) learning the number of factors and b) prediction error, when
data contains missing values.

Data set Amino Acid Flow Injection Kojima Girls

Size 5 x 201 x 61 12 x 50 x 45 4 x 153 x 20

Factors

pftest 3 4 2

BMTF 3.0 ± 0.0 4.5 ± 0.5 2.0 ± 0.1

ARDCP 3.1 ± 0.3 4.0 ± 0.0 1.2 ± 0.4

Prediction RMSE

BMTF 0.0257±0.0003 0.045±0.010 0.189±0.025
ARDCP 0.0278±0.0035 0.065±0.001 0.305±0.051

CP 0.0256±0.0003 0.053±0.001 1.643±4.098

pTucker 0.0250±0.0003 0.049±0.001 0.236±0.055

run with the number of components estimated from the full data using the de-
facto standard pftest from N-way toolbox [27].

Results are presented in Table 1. Both BMTF and ARDCP recovered the num-
ber of components well despite 50% missing values, with the mean being close
to the number obtained by pftest on full data. The result clearly shows that
automatic component selection works even in the presence of missing values.

Prediction RMSE results for the first two datasets Amino Acids and Flow
Injection show that all methods perform almost comparably and none goes ex-
ceedingly wrong, confirming that our method compares well with state-of-the-art
single-view methods. The third dataset Kojima Girls shows a major difference
in the performance of the methods. This dataset is known to have a degeneracy
problem, and hence the standard CP fails to model the data correctly. ARDCP
seems to perform better in comparison to CP, and close examination reveals that
this is because ARDCP tends to skip the degenerate component as can be seen
from the mean component number of 1.2. Using fewer components is one way of
avoiding the effect of degeneracies. Our method does both, finding the correct
number of components and being able to cope with degeneracies as is shown by
the best performance. With its flexible parametrization the Tucker is also able
to correctly model non-trilinear structure in the data, which is a characteristic
of degeneracies [28]; hence does not suffers from the degeneracy problem.

4.3 Multi-view

To validate the performance of our model in multi-view settings, we applied it to
simulated data sets that have all types of factors, i.e., factors specific to just one
view, factors shared between a small subset of views and factors shared between
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Fig. 4. Performance of Bayesian multi-view tensor factorization compared to single-
view tensor methods and multi-view matrix methods (baselines). The number of views
increases on the x-axis while the relative mean square error of recovering the underlying
data is plotted on the y-axis. The single-view methods were tested in two settings a) CC
marked with dashed-lines, where all the tensors are concatenated; b) SVL as dotted-
lines, where models are learned for each tensor seperately.

most of the views. We show that the model can correctly discover the structure
as the number of views is increased, while the baseline approaches are unable to
find the correct result.

We simulated a data set consisting of M = 16 views with dimensions N =
20, L = 5 and Dm randomly sampled between 10 and 100, using a manually
constructed set of K=31 factors of the various types. For each component, the

loadings Z:,k, U:,k and W
(m)
:,k were randomly sampled from the standard normal

distribution for all active m. For the non-active views m in the component k,

the W
(m)
:,k were set to zero. The views were then created as:

X (m)
=
∑
k

Z:,k ◦U:,k ◦W(m)
:,k

X (m) = X (m)
+ ε(m)

where X (m)
is the true underlying data while ε(m) is a noise tensor sampled from

a normal distribution with mean zero and variance equivalent to that of X (m)
.

We ran BMTF for M = 1, . . . , 16. The single-view tensor methods were run
in two settings, a) on a concatenation of all views [CC], b) single view learning
[SVL], where a model is learned for each view seperatly. BMTF found the correct
number of components in all cases while ARDCP[CC] failed to detect the correct
number for M ≥ 4. The other two methods, CP and pTucker, were run with the
true number of factors. In single view learning [SVL], the methods were unable



666 S.A. Khan and S. Kaski

    Tensor Views
Gene Expression Toxicity

5

15

25

C
o
m

p
o
n
e
n
ts

Fig. 5. Component activations in the toxicogenomics dataset indicate 3 shared compo-
nents between the disease-specific gene expression responses and toxicity measurements
of the drugs. The presence of several empty components indicates that K = 30 was
enough to model the data.

to identify the sharing between components, as they do not solve the multi-view
problem addressed by BMTF. For completeness, we also compare our method to
multi-view matrix FA (GFA) [13] by matricizing the tensors X (M) ∈ RN×Dm×L

into matrices X(M) ∈ R(N×L)×Dm .
We measured the models’ performance in terms of the recovery error of the

missing data. Defining X̂ (m) as the model’s estimate of the data, the recovery
error is computed as the relative mean square error ‖X̂ (m) − X (m)‖2/‖X (m) − X (m)‖2

averaged over all the views.
Figure 4 plots the recovery error of our method as a function of the number of

views. Our model’s performance is stable as the number of views increases and
outperforms all the baseline tensor and matrix alternatives. Single-view methods,
applied to a data set which contains all tensors concatenated, deteriorate rapidly;
while by learning each tensor seperately they are unable to discover the shared
pattern. The matricized method (GFA) performs comparably to the single-view
tensor methods. The experiment confirms that the specific multi-view tensor
problem cannot be optimally solved with methods not designed for the purpose,
and that our method fulfills its promise.

4.4 Application Scenarios and Interpretation

We next demonstrate the method at work on multi-view tensor datasets in po-
tential use cases of BMTF. The first application represents a new problem at
the juncture of toxicity and bioinformatics, while the second is a functional neu-
roimaging case.

Toxicogenomics. We analyzed a novel drug toxicity response problem, where
the tensors arise naturally when gene expression responses of multiple drugs are
measured for multiple diseases (different cancers) across the genes. The data
contain two views, the measurement of post-treatment gene expression, and sen-
sitivity of the cells to the drug. The key question that BMTF can answer is,
which parts of the responses are specific to individual types of cancer and which
occur across cancers, and which of them are related to drugs effectiveness. These
patterns, if uncovered, can help understand the mechanisms of toxicity [29].
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Fig. 6. Component 1 captures the well-known heatshock protein response. The top
genes (left) and toxicity indicators (right) from the two views are plotted as columns,
and the three different cancers as rows. The component links the strong upregulation
of the heatshock protein genes (red) to high toxicity (green) in the top three drugs, all
of which are heatshock protein inhibitors.

The dataset contained two views. The first, m = 1, contained the post-
treatment differential gene expression responses D1 = 1106 of several drugs
N = 78 as measured over multiple cancer types L = 3. The second, m = 2,
contained the corresponding drug sensitivity measurements D2 = 3. The gene
expression data were obtained from the connectivity map [30] that contained
response measurements of three different cancers: Blood Cancer, Breast Cancer
and Prostate Cancer. The data were processed so that gene expression values
represent up (positive) or down (negative) regulation from the untreated (base)
level. Strongly regulated genes were selected, resulting in D1 = 1106. The drug
screen data for the three cancer types were obtained from the NCI-60 database
[31], measuring toxic effects of drug treatments via three different criteria: GI50
(50% growth inhibition), LC50 (50% lethal concentration) and TGI (total growth
inhibition). The data were processed to represent the drug concentration used
in the connectivity map to be positive when toxic, and negative when non-toxic.

BMTF was run with K=30, resulting in 3 components shared between both
the gene expression and toxicity views, revealing that some patterns are indeed
shared (Figure 5). These shared components form hypotheses about underlying
biological processes that characterize toxic responses of the drugs.

The first component captures the well-known “Heatshock Protein” response.
The response is characterized by strong upregulation of heatshock genes in all
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Table 2. Prediction RMSE of BMTF in comparison to existing methods on toxicoge-
nomics and neuroimaging datasets. The mean prediction performance over 100 runs
of independent sets of missing values (50% missing) is given, along with one standard
error of the mean. BMTF outperformed all other methods significantly with t-test
p-values < 10−6 on toxicogenomics data, and p-values < 10−4 on neuroimaging data.

CC SVL
BMTF GFA ARDCP CP ARDCP CP

Toxicogenomics
Mean 0.4811 0.5223 0.8919 5.3713 0.6438 5.0699

StdError 0.0061 0.0041 0.0027 0.0310 0.0047 0.0282

Neuroimaging
Mean 0.5105 0.5144 0.6224 0.5740 0.5725 0.5611

StdError 0.0004 0.0004 0.0003 0.0004 0.0003 0.0010

cancers (Figure 6-left) and corresponding high toxicity indications (Figure 6-
right). The response is being activated by the heat shock protein (HSP90) in-
hibitor drugs, all of which have the highest loadings in the component (the top
three drugs). The HSP inhibition response has been well studied for treatment
of cancers [32] evaluating its therapeutic efficacy. Had the biological action not
already been discovered, our component could have been a key in revealing it.

Component 2 represents toxic mechanisms via inhibition of protein synthesis
(details not shown) and Component 3 via damaging of cell DNA. Both of these
components reveal interesting cancer type-specific findings, detailed interpreta-
tions of which are under way. The experiment validates that the model is able
to find useful factors from multiple-tensor data.

We also evaluated BMTF for predicting missing values on the toxicogenomics
data. BMTF outperformed the single-view methods1 and matrix methods signif-
icantly with t-test p-values < 10−6, on the prediction RMSE of 100 independent
runs (Table 2). Additionally, the tensors of BMTF are easier to interpret than
the corresponding (L×N)×Dm matrices of matricized GFA, and the reformed
tensors of single view CP.

Functional Neuroimaging. As the second demonstration we analysed a multi-
view functional neuroimaging dataset, which comes from subjects exposed to
multiple audiovisual stimuli. The data contained M = 7 views, representing
the different audio and audiovisual stimuli, each composed of three songs. The
different views are brain recordings made under different “presentations” of the
same songs: purely auditory ones including singing (A:Sing), piano (A:Piano)
etc, and audiovisual speaking with both voice and image of speaker (AV:Speech)
etc. The views have a natural tensor structure where brain activity was recorded
with fMRI from L = 10 subjects over the course of the experiment (N = 162
time points) in Dm = 32 regions of interest (data from [13]).

BMTF was run with K = 300 and the h(m) profile is shown in Figure 7. The
plot indicates that there exist several potentially interesting components shared
between different subsets of views. The large number of view-specific components
model “structured noise”, i.e., mostly brain activity not related to the stimuli.

1 pTucker failed to complete even on 50GB of RAM, hence was excluded.
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Fig. 7. Top: Component activations in the neuroimaging dataset. The components
shared between subsets of views capture potentially interesting variation, separated
from the view-specific “structured noise” or non-interesting variation. Bottom:
Zoomed inset of top components based on subject (U) loadings. The first component
is active in both speech views.

The goal of the fMRI study was to find responses that generalize across
the subjects and describe relationships of the different presentation conditions
(views). We selected components generalizing across subjects by sorting them
based on the subject (U) loadings, and explain the first one here to concretize
what the method can produce. The first component is active in the speech-
related views, pure audio (A:Speech), and combined audio-visual (AV:Speech)
views, indicating that it captures speech-related activity. A closer look at the
W(m) loadings for the views shows activation of the same auditory regions of
the brain, demonstrating the signal is neuroscientifically relevant.

Quantitatively, BMTF fits the data better than simpler alternatives as demon-
strated by the missing value prediction in Table 2, while in comparison to the
analysis of [13], it extracts more components having consistent behaviour over
the subjects, indicating that taking the tensorial nature of data into account
improves detection of structure.

5 Discussion

We introduced a novel multi-view tensor factorization problem, of collectively
decomposing multiple paired tensors into factors. We factorize the tensors into
PARAFAC-type (equivalently, CP-type) components, each shared by a subset
of the tensors, from one to all. We introduced a Bayesian multi-view tensor
factorization (BMTF) model that solves the problem via a joint CP-type de-
composition of tensors while learning the precise type and number of factors
automatically. In the special case of two tensors, our method is simultaneously
also the first Bayesian tensor canonical correlation analysis (CCA) method. The
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model can also be considered as an extension of the matrix-based Group Factor
Analysis method [13] to tensors.

We validated the model’s performance in identifying components on simu-
lated data. The model was then demonstrated on a new toxicogenomics problem
and a neuroimaging dataset, yielding interpretable findings with detailed inter-
pretations on-going. Initial evidence suggests that taking the tensor nature of
data into account makes the results more accurate and precise. In particular,
the model is able to handle degenerate solutions well, making the formulation
applicable to a wider set of datasets.

Acknowledgments. The work was supported by the Academy of Finland
(140057; Finnish Centre of Excellence COIN, 251170) and the FICS doctoral
programme. We also acknowledge Aalto Science-IT resources.
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Abstract. Over the last decade, mobile device usage has evolved rapidly
from basic calling and texting to primarily using applications. On aver-
age, smartphone users have tens of applications installed in their devices.
As the number of installed applications grows, finding a right applica-
tion at a particular moment is becoming more challenging. To alleviate
the problem, we study the task of predicting applications that a user
is most likely going to use at a given situation. We formulate the pre-
diction task with a conditional log-linear model and present an online
learning scheme suitable for resource-constrained mobile devices. Using
real-world mobile application usage data, we evaluate the performance
and the behavior of the proposed solution against other prediction meth-
ods. Based on our experimental evaluation, the proposed approach offers
competitive prediction performance with moderate resource needs.

1 Introduction

The number of applications installed to smartphones is increasing rapidly. In the
U.S., the average number of installed applications on a device increased from 32
in 2011 to almost 41 in 2012 [1]. While installing many applications is an easy
way to extend device functionalities, it makes finding a particular application
more difficult. In mainstream mobile user interfaces, users need to browse a grid
or a list of applications to locate a desired application. This is tedious with a
large number of applications. Many mobile user interfaces offer means to organize
applications into folders, but the fundamental problem of browsing and filtering
through folders remains.

A complementary approach to mitigate the problem is to learn from a user’s
behavior and predict the most relevant applications for a given situation. A
general idea is to model the relationship between a user’s application use and
context, such as time and location. In addition to building user interfaces that
offer applications the most likely to be used [9], such predictors could be used
to improve user experience by pre-launching applications [14].

Despite the popularity of smartphones, the development and understanding
of machine learning methods for application usage prediction have been limited.
Hand-crafted techniques have been designed to utilize temporal or spatial pat-
terns of application usage [12,14], but they have difficulties in combining various
types of context information. The näıve Bayes and the nearest neighbor methods

T. Calders et al. (Eds.): ECML PKDD 2014, Part I, LNCS 8724, pp. 672–687, 2014.
c© Springer-Verlag Berlin Heidelberg 2014
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have been employed in a number of work [7,9,13]. These methods take a vari-
ety of context information into account and have advantages in their simplicity.
However, they have limitations in prediction accuracy due to strict modeling
assumptions or in the use of computation resources.

We propose a prediction method based on a conditional log-linear model. The
model describes the conditional probability of application usage given observed
context variables. This model is one of discriminative models that include logistic
regression and conditional random fields. Unlike the näıve Bayes method where
independence between features is assumed, our method makes no assumptions
on the distribution of features and does not suffer from inaccurate predictions
with correlated features. Our method quickly generates predictions by evaluating
a parametric linear model, with no additional cost for an increased size of usage
data. We present an online training scheme that can be easily accommodated in
smartphones, where computation resources are limited.

We demonstrate the effectiveness of the proposed approach through detailed
experimental analysis using real-world mobile application usage data. We define
a few evaluation measures and evaluate them to compare our approach with
other prediction methods proposed for the task. Our evaluation shows that our
method consistently outperforms existing ones in each of evaluation measures.
We offer in-depth analysis on the behavior of prediction methods by showing
their effects on individual users and learning curves on usage sequences. Our
analysis illustrates the advantages of the proposed method.

The rest of this paper is organized as follows. We describe the problem setup
and related work in Section 2 and Section 3, respectively. In Section 4, we de-
scribe a conditional log-linear model and our prediction method. In Section 5, we
explain the setup of our experiments including compared methods, evaluation
measures, and a data set. The results of experiments and our interpretation are
in Section 6. We conclude this paper with discussion in Section 7.

2 Mobile Application Usage Prediction

Suppose a sequence of previously used applications and associated context in-
formation are given. Context information includes time stamps, location, and
other sensor readings available at the time of application use. When predicting,
we use context information available at that time to find applications to be likely
used. Table 1 shows an example case, in which context variables for prediction
are shown at the bottom row.

The output of a prediction method is a list of applications ordered from the
most likely to the least likely used ones. Our goal is to have the user’s selection
in the beginning of the list: The earlier the user’s selection is in the list, the
better. In some cases, one might want the output to be only one application or a
set of applications presented without an order. These outputs can be generated
by taking one or more items from the beginning of the ordered list.

Training and prediction occur in a consecutive manner. Table 1 shows only
one stage of prediction. The output of a prediction method is presented to a
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Table 1. An example case of application usage prediction. Our task is to make a
prediction for applications to be likely launched in the bottom row.

Application Time stamp (UTC) Time zone Latitude Longitude Wi-Fi network

Facebook 2014-02-13 20:13:46 -8 n/a n/a WORK
WhatsApp 2014-02-13 20:15:20 -8 37.37 -122.03 WORK
Twitter 2014-02-13 20:19:01 -8 37.37 -122.03 WORK
Email 2014-02-13 21:35:02 -8 n/a n/a n/a
Twitter 2014-02-13 21:39:38 -8 n/a n/a n/a
Facebook 2014-02-14 01:22:55 -8 37.35 -121.92 HOME

? 2014-02-14 01:23:01 -8 n/a n/a HOME

user or used to pre-launch applications. When the user makes a new selection,
it serves as an additional training case to be used for the following stages.

In our task, only the usage data of one user are used to make predictions for
the same user. In this scenario, all computation occurs within a user’s device
without having to transmit usage data among users or to cloud servers. See
Section 7 for comments on potential extensions.

It is worth distinguishing our prediction task from related ones. Our task is
different from recommending new applications. We deal with a situation that
users launch applications on a regular basis. They use the Email, Facebook, or
Twitter application typically multiple times a day. Our task is to estimate which
applications are to be the most likely used under given context. In contrast,
an application recommendation task is to discover new applications that have
not been used before. News or movie recommendation is similar to application
recommendation as users typically do not repeat reading the same article or
watching the same movie.

There is a similarity between our task and sequence labeling, but there is a
distinction, too. In both cases, unknown variables and observations are organized
in a sequence. Sequence labeling (e.g., part-of-speech tagging in natural language
processing) involves predicting all unknown labels at the same time. In contrast,
in application usage prediction, once a prediction is generated for one stage, the
user’s selection is observed and used for the prediction of the next stage. In other
words, application usage prediction focuses on predicting one stage at a time,
while sequence labeling concerns predicting the entire unknowns altogether.

A primary goal of our task is to design a method that offers accurate pre-
dictions. In addition, due to restrictions in the mobile environment, resource
consumption is an important issue. Users interact with smartphones very often,
but CPU and memory resources are limited there. Fast generation of predictions
is critical in providing responsive user interface or pre-launching applications
seamlessly.

3 Related Work

Methods for mobile application usage prediction have been discussed in a num-
ber of publications. Tan et al. interpreted the problem as time-series prediction
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and proposed methods that take advantage of periodic patterns [12]. Yan et al.
proposed spatial and temporal features that are in turn used to determine if an
application is relevant at a moment [14]. These work revealed insights on im-
portant sources of context information, but their approaches lack flexibility to
combine various types of context information. The näıve Bayes method [5,9] and
the nearest neighbor method [7,13] have been commonly used due to their sim-
plicity. We include them in our experiments to further understand them through
comparisons with our proposed approach.

Researchers have used prediction methods for designing predictive user in-
terface or improving system responsiveness. Shin et al. [9] have developed a
predictive home-screen application and conducted a user study to validate its
effectiveness. Yan et al. [14] and Xu et al. [13] have used prediction methods
to pre-launch applications and showed that the launch delay can be reduced.
Our discussion in this paper is focused on the design of algorithms as we aim
to understand algorithm choices. Understandings in our paper can of course be
used for implementing or improving those predictive systems.

Previous work also addressed the discovery of useful context information.
Time stamps have been found useful in multiple literature as application usage
tends to vary according to the time of day or the day of week [9,12]. Location
information, often measured through GPS readings or the name of Wi-Fi net-
work, has been shown useful [9,14]. Application transitions and temporal usage
patterns have been shown useful too [7,14,15]. These information can be incor-
porated into our method without making changes in its core model. Our focus
is understanding the effects of algorithm choices instead of analyzing the effects
of particular context information.

Learning methods based on conditional log-linear models include logistic re-
gression, maximum entropy prediction, and conditional random fields [2,11]. Our
method is similar to multi-class logistic regression since the target variable is a
discrete random variable with more than two possible values. We discuss the
use of conditional log-linear models specifically for predicting mobile application
usage, present a suitable training scheme, and provide performance analysis.

4 Prediction with Conditional Log-Linear Model

In this section, we describe variables, context features, a log-linear model, and
our prediction method based on the model. Our notations are as follows. We use
an uppercase letter, such as X , to denote a random variable. We use a lowercase
letter, such as x, to denote an instantiation of a random variable. We use bold
letters, such as X or x, to denote a vector of variables or instantiations. Sub-
scripts are used to denote elements within a vector, such as inX = (X1, · · · , Xq).
Superscripts are used to denote elements in a sequence, such as inX(1), · · · ,X(k).

4.1 Context Variables and Features

Let Y be a discrete random variable representing an application. Let X =
(X1, · · · , Xq) be a vector of random variables representing context. Instances
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Table 2. Variables representing target application and context information

Variable Description Value for the case in Table 1

Y Target application to be predicted
X1 UTC (Coordinated Universal Time) 2014-02-14 01:23:01
X2 Time zone offset -8
X3 Longitude from GPS n/a
X4 Latitude from GPS n/a
X5 Wi-Fi network HOME
X6 The most recently used application Facebook
X7 The second recently used application Twitter

Table 3. Examples of context features defined for variables in Table 2.

Feature Description Variables

f1 Y is the most recently used application. Y ,X6

f2 Y is the second recently used application. Y ,X7

f3 Y is Email, and the time of day is morning - within [6AM,12PM). Y ,X1,X2

f4 Y is Email, and the day of week is Monday. Y ,X1,X2

f5 Y is Email, and latitude and longitude are within [37.0, 38.0)
and [−122.0,−121.0), respectively.

Y ,X3,X4

f6 Y is Facebook, and Wi-Fi network is HOME. Y ,X5

f7 Y is Facebook, and the most recently used application is Email. Y ,X6

f8 Y is Facebook, and the second recently used application is Twit-
ter.

Y ,X7

of X and Y are observed as a sequence. A prediction task is, given an observed
instance of the context variable, x, to predict an application, ŷ. Example vari-
ables are shown in Table 2 along with values for the case shown in Table 1.

We use context features in order to easily incorporate variables into a proba-
bilistic model. Context features are simply functions defined on context variables
and the target variable. See Table 3 for examples of context features, defined with
variables in Table 2. Features in Table 3 are shown as statements which can be
evaluated to be true or false, which in turn produces a binary output. A feature
can also be a real-valued function. Observe that all feature examples in Table 3
involve the target variable, Y . Because our goal is to fit conditional probabilities,
features that do not involve the target variable are not used. Although all feature
examples in Table 3 have human-understandable meanings, that does not need
to be the case in general. As long as a feature can be constructed from data, it
can be used in the model.

4.2 Conditional Log-Linear Models

We parameterize conditional probability with a log-linear model:

P (Y | θ,X) =
exp
{
θT f(X, Y )

}∑
Y ′ exp {θT f(X, Y ′)} . (1)
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Here, f(X, Y ) = (f1(X, Y ), · · · , fp(X, Y )) ∈ {0, 1}p is a p-dimensional feature
vector, and θ = (θ1, · · · , θp) ∈ Rp is a p-dimensional parameter vector. Each of
θj ∈ {θ1, · · · , θp} indicates a weight assigned to a corresponding feature, fj . The
denominator is needed to ensure that the sum of probabilities is one.

Model (1) is a discriminative model, described for the conditional probability,
P (Y | θ,X). This is a key difference between our method and the näıve Bayes
method, which uses a generative model described for P (Y,X | θ). The main
advantage of discriminative modeling is that it is more reliable when features
are correlated. Discriminative models make no assumption on the distribution
of features and use full expressive power for making predictions. On the other
hand, generative models make additional independence assumptions to obtain a
tractable method. When some context features are highly correlated, the näıve
Bayes method, which assumes the independence between features, becomes less
accurate for application usage prediction. For more information on discriminative
and generative models, see, e.g., [11].

Given a training set, D =
{(

x(i), y(i)
)}k

i=1
, it is possible to fit θ by maximum

likelihood:

θ̂ ← argmax
θ

L (θ | D) , (2)

where L is a log-likelihood function. L is expressed as

L (θ | D) =
k∑

i=1

logP (y(i) | x(i), θ) =

k∑
i=1

(
θT f(x(i), y(i))− logZθ,x(i)

)
(3)

where

Zθ,X =
∑
Y

exp
{
θT f(X, Y )

}
. (4)

A common way to solve optimization problem (2) is using the gradient-descent
method. This approach works well for data sets of moderate size in a batch
learning setting, where training is completed before the parameters are used for
prediction. However, application usage prediction utilizes the model in the online
learning setting where the parameters get immediately updated each time a new
training example is obtained. For that, an online gradient-descent approach is
more suitable.

Online gradient-descent is performed after user’s each selection. Suppose θ(k)

represents coefficients before the kth selection. When a user makes a new selec-
tion,

(
x(k), y(k)

)
, coefficients are updated as follows. Likelihood for

(
x(k), y(k)

)
and corresponding gradient are written as

L
(
θ |
(
x(k), y(k)

))
= θT f(x(k), y(k))− logZθ,x(k) ,

∂

∂θ
L
(
θ |
(
x(k), y(k)

))
= f(x(k), y(k))− EY |X(k),θ

[
f(x(k), Y )

]
, (5)
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where ∂
∂θ logZθ,x(k) = EY |X(k),θ

[
f(x(k), Y )

]
can be easily verified using (4). An

update scheme for θ is

θ(k+1) ← θ(k) − α

(
− ∂

∂θ
L
(
θ(k) |

(
x(k), y(k)

)))
= θ(k) + α

(
f(x(k), y(k))− EY |X(k),θ(k)

[
f(x(k), Y )

])
. (6)

Parameter α, called the learning rate, represents how much update is taken.
Online learning is typically used with decreasing learning rates, such as 1

k . In
application usage prediction, however, algorithms need to adapt to user’s usage
pattern that might change over time. In this case, decreasing learning rates
could prevent an algorithm from adapting to user’s recent behavior. We use
a constant learning rate as in (6) and demonstrate prediction performance for
different values of α.

Update scheme (6) is effective in resource-limited environments, such as in
mobile devices. Unlike batch gradient-descent, which needs to use all previous
data each time, online gradient-descent in (6) utilizes only one case,

(
x(k), y(k)

)
.

This not only makes the update step faster but also reduces memory require-
ments since previous data do not need to be held. Online gradient-descent is
also effective with sparse features. The feature vector, f(x(k), y(k)), is typically
very sparse; only a small number of features are nonzero. The expectation in (6),
EY |X(k),θ(k)

[
f(x(k), Y )

]
, is also similarly sparse. As a result, only a small number

of coefficients need to be updated at each step, making an update cheaper.
A prediction for given context x is made as follows. Using trained θ, we

evaluate P (y | θ,x) for each mobile application y using (1). We then rank
applications in order of decreasing probabilities.

5 Experiment Setup

Using mobile phone applications usage data from Nokia Mobile Data Chal-
lenge [6], we have evaluated the proposed approach together with various other
methods previously known in the literature or folklore (see Section 5.1) using var-
ious accuracy measures (see Section 5.2). With a sequence of application usage,
we evaluated each prediction method as follows. For each application selection
in the sequence, we first used only the context of the selection to generate a
ranking of predicted applications. The ranking was evaluated using the ground-
truth selection based on accuracy measures. We then updated the model of the
prediction method using the ground-truth selection and moved on to the next
application selection.

5.1 Algorithms Compared

We denote our proposed method as the conditional log-linear (CLL) method.
We have compared it with the following methods.
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– Most Recently Used (MRU). MRU suggests recently selected applica-
tions from the most recent to the least recent ones. MRU has been used as
a baseline method in a few previous work [7,9,13]. In cache algorithms, it is
known as Least Recently Used [10], as the focus there is replacing the least
likely used items rather than identifying the most likely used ones.

– Most Frequently Used (MFU). MFU counts the selections of each ap-
plication and suggests applications in order of decreasing usage counts [7,9].

– Weight Decay (WD). Weight Decay assigns a weight to each item. The
weight is increased when a corresponding item is selected, and weights decay
otherwise. After the selection of y(k), weights are updated as

W (y)←
{
1 +W (y), if y = y(k),

W (y) exp(−λ), otherwise,

whereW (y) represents y’s weight, and λ is decay rate. The larger the λ is, the
faster weights disappear. Applications are predicted in order of decreasing
weights. Weight Decay is in between of MRU and MFU. It is similar to
MRU if λ is large, and it is similar to MFU if λ is small. This method is
known also as exponentially weighted average and has been explored in, e.g.,
high-frequency trading [8].

– Näıve Bayes (NB). Näıve Bayes is a method based on a generative model
with independence assumptions among features [5,9]. Prediction probabili-
ties are computed as

P (Y | X) =
P (Y )P (X | Y )

P (X)
=

P (Y )
∏p

j=1 P (fj(X, Y ) | Y )

P (X)
.

– K Nearest Neighbor (KNN). In KNN [7,13], k previous events in which
user’s context is the most similar to the current context are searched. Those
events, called neighbors, make weighted votes for applications, where the
weights are given by the degrees of context similarities. Applications are
predicted in order of decreasing votes.

Prediction methods have some parameters such as the decay rate for Weight
Decay (λ) , the number of neighbors for KNN (k), and the learning rate for
CLL (α). For each parameter, we assessed various values and selected the best
performing one. See Section 6.

We have used the same features for all algorithms, whenever applicable. MRU,
MFU, and WD only utilize usage counts and do not incorporate context features.
Whereas context features used for CLL involve both X and Y , features for NB
and KNN involve only X. For NB and KNN, we have used features that are
defined with only X but otherwise equivalent to features used for CLL. See
Section 5.3 for the description of features.

5.2 Evaluation Measures

Let ŷ = (ŷ1, · · · , ŷd) be a predicted ranking, and let yg denote the ground-truth
selection. Let Hit(ŷ, yg) be the hit position: Hit(ŷ, yg) = mini{i : ŷi = yg}. In



680 J. Kim and T. Mielikäinen

Table 4. Scores from evaluation measures

Measure Hit position
1st 2nd 3rd 4th 5th 6th 7th

Recall@6 1 1 1 1 1 1 0
DCG 1 1 0.63 0.5 0.43 0.38 0.35
MRR 1 1/2 1/3 1/4 1/5 1/6 1/7

general, the smaller Hit(ŷ, yg), the better ŷ. There are different ways to quantify
accuracy, and we consider a few choices as follows.

– Recall@N . Since there is only one relevant item taken by a user, Recall@N
is obtained by checking whether hit occurs within the top N items:

RecallN (ŷ, yg) =

{
1, if Hit(ŷ, yg) ≤ N,

0, otherwise.

– Discounted Cumulative Gain (DCG). DCG is commonly used in infor-
mation retrieval [4]. The relevance of an item is either 0 or 1 in our case,
and it is discounted by the hit position:

DCG(ŷ, yg) =

{
1, if Hit(ŷ, yg) = 1,

1/ log2 Hit(ŷ,yg), otherwise.

– Mean Reciprocal Rank (MRR). Reciprocal rank is another measure that
discounts relevance based on the hit position. Its average, called mean recip-
rocal rank (MRR), is often used to assess the quality of ordered items.

RR(ŷ, yg) = 1/Hit(ŷ, yg).

Table 4 shows scores from these evaluation measures for hit positions from 1
to 7. Recall@N only cares whether the true selection is included in the first N
items. DCG and MRR give discounted scores if the hit position is away from
the beginning, except that DCG does not differentiate the first two positions.
Precision@N was not considered because the reciprocal rank provides roughly
the same information.

Depending on how a prediction method is used, an appropriate evaluation
measure might vary. However, it is great to have an algorithm that performs
the best in each of these measures. We demonstrate that this is the case for our
proposed method.

5.3 Data Set and Features

Nokia Mobile Data Challenge data set1 is the result of Lausanne Data Collection
Campaign, conducted by Nokia Research Center Lausanne from 2009 to 2011

1 https://research.nokia.com/page/12000

https://research.nokia.com/page/12000
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(a) Recall@6 (b) DCG (c) MRR

Fig. 1. Average of user scores

in the Lake Geneva region. The data consist of smartphone usage of nearly 200
participants for one year or more. We selected data of 142 users for which at
least 2,500 usage events are available. For more information on this data, see [6].

The data contain time stamps, GPS coordinates, the name of the Wi-Fi net-
work, and the identifier of the GSM tower, when available. We have used the fol-
lowing features for prediction methods: discretized GPS coordinates, discretized
time of day, day of week, Wi-Fi network name, GSM tower identifier, and the
list of recently used applications. These features are used for the CLL, NB, and
KNN methods.

6 Experimental Results

We have assessed λ, α ∈
{
10−3, 10−2.5, 10−2, 10−1.5, · · · , 1

}
for WD and CLL

and k ∈
{
1, 3, 5, 10, 20, 40, · · · , 28 × 10

}
for KNN. The best performing values

for (λ, k) were (10−1, 80) for Recall@6, (10−0.5, 40) for DCG, and (10−1, 20) for
MRR. The best performing value for α was 10−1.5 in all cases. For each evaluation
measure, we present results from these best values in order to compare the best
cases of prediction methods. We used N = 6 for measuring recall. See more
information about α’s and N ’s in Section 6.5.

Experiments were executed on a Linux computer with 16 cores of Intel(R)
Xeon processor and 48GB memory. All algorithms and the experimentation soft-
ware were implemented in Python.

6.1 Average Prediction Accuracy

We first present average prediction accuracy in Fig. 1. We took the averages of
accuracy scores from the usage sequence of each user and then took an aver-
age from all users’ averages. For example, the average Recall@6 score can be
interpreted as follows: For users whose data were used for our test, six appli-
cations predicted by the CLL method include the correct selection with 0.9065
probability on average.

CLL showed the highest accuracy for each of Recall@6, DCG, and MRR
measures, followed by KNN, NB, WD, MRU, and MFU. WD, MRU, and MFU
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showed relatively low accuracy because they do not utilize context information.
Among CLL, KNN, and NB that utilize context information and features, NB
was less accurate than CLL and KNN. This is partly due to an assumption in the
näıve Bayes model that features are conditionally independent with each other.
Only KNN showed performance comparable to that of CLL, but its accuracy
scores were consistently smaller than those of CLL.

6.2 Individual User Analysis

While the average scores shown in Fig. 1 summarize the overall prediction per-
formance, further analysis is necessary. For example, the average scores do not
tell much whether a method worked perfectly for some users and rather poorly
for others, or equally well for all.

In this section we first analyze how each algorithm performed for different
users. The left column of Fig. 2 shows the percentiles of user scores. For example,
the 5th percentile of Recall@6 for CLL is interpreted as follows: For 95 percent of
users, with at least 0.838 probability, six applications predicted by CLL include
the true selection. A desirable algorithm should perform well for all users, and
it should consistently appear at the top of these graphs, as demonstrated by the
CLL method.

Another interesting aspect is a switch from a baseline method. We selected
MRU as a baseline as it is lightweight, simple, widely used, and relatively well
performing. Our question here is “If MRU is replaced with another algorithm,
would the replacement improve the accuracy scores for each user?” In the right
column of Fig. 2, we show the offsets of the scores of CLL, KNN, NB, and WD
from the scores of MRU. Offsets for MFU are not shown because its average
scores shown in Fig. 1 are worse than those of MRU. From Fig. 2, see, e.g.,
the median of Recall@6 offsets for CLL was 0.03. The interpretation of this
observation is that, when a prediction method is changed from MRU to CLL,
the Recall@6 scores improve by at least 0.03 for at least half of users.

CLL showed the most desirable behavior in that its score offsets were always
positive. In more detail, improvements in prediction scores for using CLL instead
of MRU were at least 0.005 for Recall@6, 0.014 for DCG, and 0.024 for MRR.
This is in strong contrast with the behavior of KNN, NB and WD, which all
performed worse than MRU for some users. As shown in Fig. 2, the score offsets
of these methods were substantially negative for some users, suggesting that
predictions would become less accurate for the users if MRU is replaced with
one of these methods.

6.3 Learning Curves

It might take a while before prediction methods adapt to a user’s usage patterns,
while the early user experience is often formative for the user’s opinion about
the usefulness of predictions. In this section, we investigate how quickly the
accuracy scores of prediction methods improve from the beginning of the usage.
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(a) Recall@6

(b) DCG

(c) MRR

Fig. 2. Left column: percentiles of user scores of each algorithm, right column: distri-
bution of the score offsets of each algorithm from MRU

Fig. 3 shows the learning curves of prediction algorithms, where the averages of
100 consecutive values at each point are shown.

With enough usage data, the accuracy scores of CLL dominated those of
other methods in each evaluation measure. In early stages, WD, MRU, and NB
performed well based on Recall@6, DCG, and MRR, respectively. It took about
100 to 200 application usage events for the CLL method to provide more accurate
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(a) Recall@6 (b) DCG (c) MRR

Fig. 3. Learning curves of prediction methods. The x-axis represent the number usage
events.

predictions than compared ones. It took around 200 usage events for the average
Recall@6 score of CLL to reach 0.8. To reach 0.85, it needed 500 to 600 usage
counts.

6.4 Efficiency Aspects

In Table 5, we summarize time and space complexity as well as observations on
CPU and memory usages from our experiments. In our executions, on average
d ≈ 60, p ≈ 160000, and k ≈ 10000, where d, p, and k represent the numbers of
applications, features, and usage data, respectively. Since probabilities or weights
need to be sorted to determine the order of applications, O(d log d) is involved in
prediction complexity except in MRU. The time and space complexity of WD,
MRU, and MFU only involves d and their average CPU and memory usages are
overall very small.

Note that p denotes the number of all features involved, such as those shown
in Table 3. The prediction complexity of CLL and NB involves O(p). This is
because roughly O(pd ) features are used for one application, and probabilities
need to be evaluated for all applications. For KNN, there are roughly O(pd)
features per one usage case, and features from all usage data need to be accessed
for making predictions.

The training complexity of CLL is O(p) as its training involves gradient-
descent. For KNN and NB, it is O(pd) because their training is no more than
generating and counting features. Experimental observations are consistent with
complexity: Average CPU time used by CLL for training appears larger than
those used by KNN or NB. Albeit more expensive than KNN and NB, the average
training time of CLL was kept at a moderate level of 4 milliseconds due to use of
online gradient-descent. Training would be more expensive if a standard batch
gradient-descent scheme is used.

In accuracy assessments, KNN is closest to CLL, so we make more comments
comparing the two. A drawback of KNN is that its prediction time and space
requirements increase with the number of training data (k) because KNN needs
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Table 5. Complexity and observations for the CPU and memory usage. p: # of features,
d: # of applications, k: # of training data.

Computational complexity Average resource consumption observed
Prediction Training Space Prediction (ms) Training (ms) Memory (KB)

CLL O(p+ d log d) O(p) O(p) 1.53 4.05 5 869
KNN O( p

d
k + d log d) O( p

d
) O( p

d
k) 16.95 0.114 16 973

NB O(p+ d log d) O( p
d
) O(p) 1.93 0.116 1 691

WD O(d log d) O(d) O(d) 0.0567 0.0444 12
MRU O(1) O(d) O(d) 0.0030 0.0037 6
MFU O(d log d) O(1) O(d) 0.0451 0.0023 11

to access all usage events in order to find neighbors. This is inevitable for KNN
to be comparable with CLL in terms of prediction accuracy. On the other hand,
CLL needs to store and process only the coefficients of a log-linear model, so
its time and space requirements do not depend on the size of usage history. In
Table 5, the observed prediction time and the memory usage of KNN were much
larger than those of CLL. The prediction complexity of KNN can be improved
toward O(pd log k + d log d) using a tree-like data structure [3], but it is difficult
to do for high-dimensional data, which commonly occur when various context
features are used.

When it comes to trade-offs between the prediction and the training time,
what is more directly related to a user’s experience is the prediction time. For
predictive home-screen system, the prediction time determines system respon-
siveness, and for predictive pre-launching system, it determines the cost of pre-
launch attempts. In this respect, CLL appears to be more suitable than KNN.

6.5 Learning Rates and Recall Window Size

We report additional information related to our analysis. Fig. 4(a) shows the
accuracy scores of CLL for various learning rates. The best results were found
from α = 10−1.5 for each of Recall@6, DCG, and MRR. Fig. 4(b) shows the
recall scores for various N cases. Overall, the relative performance of algorithms
did not vary much according to N , and CLL appears to perform the best overall.
We used N = 6 for our analysis in this paper.

7 Conclusions and Outlook

We presented a method for predicting mobile application usage based on a con-
ditional log-linear model and an online gradient-descent scheme. Experimental
results demonstrate that the proposed method outperforms previous ones con-
sistently for different evaluation measures. Our analysis on the behavior of pre-
diction methods for individual users and on the learning curves illustrates the
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(a) (b)

Fig. 4. (a) Accuracy scores of CLL for various learning rates (α in x-axis) (b) Recall@N
scores (N in x-axis)

advantages of the proposed method. Our method maintains moderate usage of
system resources and offer preferable efficiency for predictions.

In fact, the proposed method is not limited to mobile application usage predic-
tion. It can be applied to other situations where users make repeated selections
among a list of available items. As long as context information is available along
with users’ selections, our method can be considered and used.

While the results are promising, there are a few aspects to investigate further.
First, the learning curves in Fig. 3 show that the CLL method was not optimal
in the beginning of a usage sequence. A simple approach would be to use another
method in the early stages and switch to CLL after a sufficient number of usages.
However, it is unclear which one to use because the best choice varies for the
Recall@6, DCG, and MRR measures. There are a number of machine learning
problems related to combining multiple prediction methods. In addition, devising
a scheme that improves the prediction accuracy of CLL in the early stage would
be valuable.

Another direction is to investigate this problem in a cloud-assisted setting,
where (parts of) model training can be off-loaded to a cloud server [14]. Cloud as-
sistance allows the use of training schemes more expensive than online gradient-
descent. Furthermore, cloud-based learning would also allow building methods
that use the usage data of many users. For example, the distributed training
of models among a group of users could improve each user’s personal predictor
without completely compromising their privacy. Finally, cloud assistance would
make it easy to bring in information sources beyond users’ mobile devices, such
as the index of the web, movie archives, and so on.
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spaces. ACM Computing Surveys 33(3), 273–321 (2001)
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Abstract. From data collection to decision making, the life cycle of data of-
ten involves many steps of integration, manipulation, and analysis. To be able to
provide end-to-end support for the full data life cycle, today’s data management
and decision making systems increasingly combine operations for data manipu-
lation, integration as well as data analysis. Tensor-relational model (TRM) is a
framework proposed to support both relational algebraic operations (for data ma-
nipulation and integration) and tensor algebraic operations (for data analysis). In
this paper, we consider joint processing of relational algebraic and tensor analy-
sis operations. In particular, we focus on data processing workflows that involve
data integration from multiple sources (through unions) and tensor decomposition
tasks. While, in traditional relational algebra, the costliest operation is known to
be the join, in a framework that provides both relational and tensor operations,
tensor decomposition tends to be the computationally costliest operation. There-
fore, it is most critical to reduce the cost of the tensor decomposition task by
manipulating the data processing workflow in a way that reduces the cost of the
tensor decomposition step. Therefore, in this paper, we consider data processing
workflows involving tensor decomposition and union operations and we propose
a novel scheme for pushing down the tensor decompositions over the union oper-
ations to reduce the overall data processing times and to promote reuse of mate-
rialized tensor decomposition results. Experimental results confirm the efficiency
and effectiveness of the proposed scheme.

1 Introduction

As a higher-order generalization of matrices, tensors provide a suitable data represen-
tation for multidimensional data sets and tensor decomposition (which is a higher-
order generalization of SVD/PCA for multi-aspect data analysis) helps capture the
higher-order latent structure of such datasets. Consequently, the tensor data model is
increasingly being used by many application domains including scientific data man-
agement [6,9,18,25], sensor data management [24], and social network data analy-
sis [15,14,17]. On the other hand, from data collection to decision making, the life cycle
of data often involves many steps of integration, manipulation, and analysis. Therefore,
to be able to provide end-to-end support for the full data life cycle, today’s data man-
agement and decision making systems increasingly need to combine different types of
operations for data manipulation, integration, and analysis.
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Relational operation Tensor manipulation

P Q

U1..r
(1) U1..r

(2) U1..r
(N)

Rank-r CP 

λ1..r 
Select Slicing of a tensor (or taking a single or subset of

elements across a given mode)
Project Creating a sub-cube with a smaller set of modes
Cartesian-Product and Composition of multiple tensors through
Equi-Join outer-product
Union Cell-wise OR (and row/slice insertion)
Intersection Cell-wise AND (and row/slice elimination)

(a) (b)
Fig. 1. (a) Implementation of relational operations through tensor manipulation and (b) a query
plan with a join operation of two tensors, P and Q, preceding a tensor decomposition operation

We are currently building TensorDB, which extends a native array database,
SciDB [5], with operations needed to support the full life cycle of data. TensorDB is
based on a tensor-relational model (TRM) [11], which brings together relational alge-
braic operations (for data manipulation and integration) and tensor algebraic operations
(for data analysis) and supports complex data processing plans where multiple relational
algebraic and tensor algebraic operations are composed with each other (Figure 1(b)).

1.1 Tensor-Based Relational Model (TRM)

Let A1, . . . ,An be a set of attributes in the schema of a relation, R, and D1, . . . ,Dn be
the attribute domains. Let the relation instance R be a finite multi-set of tuples, where
each tuple t ∈ D1×. . .×Dn. [11] defines various types of tensors representing relations,
including occurrence tensors and value tensor. For example, an occurrence tensor Ro

corresponding to the relation instance R as an n-mode tensor, where each attribute
A1, . . . ,An is represented by a mode. For the ith mode, which corresponds to Ai, let
D′

i ⊆ Di be the (finite) subset of the elements such that ∀v ∈ D′
i ∃t ∈ R s.t. t.Ai = v

and let idx(v) denote the rank of v among the values in D′
i relative to an (arbitrary) total

order, <i, defined over the elements of the domain, Di. The cells of the occurrence
tensor Ro are such that Ro[u1, . . . , un] = 1 iff ∃t ∈ R s.t. ∀1≤j≤n idx(t.Aj) = uj

and 0 otherwise. Intuitively, each cell indicates whether the corresponding tuple exists
in the multi-set corresponding to the relation or not.

[11] also discusses the implementation of various relational algebraic operations to
manipulate relations represented as tensors in TRM (Figure 1(a)) as well as other tensor
manipulation operations, such as tensor decomposition.

1.2 Tensors Decomposition

The two most popular tensor decompositions are the CP [6,9] and Tucker [25] decom-
positions. CP decomposes the input tensor into a sum of component rank-one tensors;
i.e., the rank-r CP Decomposition, CP (PI1×I2×···×IN ), of the tensor PI1×I2×···×IN is
defined as P(1), . . . ,P(N) such that

PI1×I2×···×IN ≈
r∑

k=1

P
(1)
k ◦ P (2)

k ◦ · · · ◦ P (N)
k . (1)

We also use the formulation where the column vectors of each factor are normalized to
the unit length with the weights absorbed into a vector λ; i.e., CP (PI1×I2×···×IN ) =
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P Q

SELECT (σ)

PROJECT (π)

JOIN (     ) 

P Q

σ,π

(a) Logical query plan
(b) physical query plan

(selection, and projection are pushed-down)

Fig. 2. Query optimization in relational algebra: (a) A logical query plan involving selection,
projection, and join operations: (b) an equivalent physical plan where the selection and projection
operations are pushed-down to minimize the amount of data fed into the join operator

〈λ,P(1), . . . ,P(N)〉, such that

PI1×I2×···×IN ≈
r∑

k=1

λk ◦ P (1)
k ◦ P (2)

k ◦ · · · ◦ P (N)
k , (2)

where λi is the ith element of vector λ of size r and U
(n)
i is the ith unit-length column

vector of the matrix P(n) of size In × r, for n = 1, · · · , N .
While, as described above, CP decomposition can be represented in the form of a

diagonal core tensor and one factor matrix (also called a factor) per mode, the Tucker
decomposition results in a dense core tensor multiplied by a matrix along each mode.
Many of the algorithms for decomposing tensors are based on an iterative process, such
as alternating least squares (ALS), that approximates the solution though iterations until
a convergence condition is reached [6,9].

1.3 Decomposition Push-Down Strategy for Optimizating TRM Workflows

One key goal of TensorDB is to deploy optimization strategies for complex queries
involving both tensor decomposition and tensor manipulation operations, such as join
and union operations that integrate data from multiple sources.

In relational algebra, the costliest operation is the join operation. Consequently, given
a complex query plan, the relational optimizers push-down data reduction operations,
such as selections (which reduce the number of tuples) and projections (which reduce
the number of data attributes) over join-operations to reduce the amount of data fed into
the join operators (Figure 2). In TensorDB, based on TRM, however, tensor decomposi-
tion operation tends to be the computationally costliest operation: for dense tensors, the
cost is exponential in the number of modes of the data. While the operation is relatively
cheaper for sparse tensors, the cost and memory requirement still outweigh other more
traditional relational operators.

Therefore, a key criterion for optimizing query workplans in TensorDB is to reduce
the number of data modes and non-zero data entries in the tensors that need to be de-
composed. In [11], for example, we considered query plans that involve join operations
and tensor decompositions (Figures 1(b) and 3(a)) and proposed a decomposition push-
down strategy that reduces the number of modes of the data tensors being decomposed.
This join-by-decomposition (JBD) strategy pushes-down the tensor-decomposition op-
eration so that the input tensors (which have smaller number of modes than the join
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P Q

U1..r
(1) U1..r

(2) U1..r
(N)

Rank-r CP 

λ1..r 

(a) Join-then-Decompose (JTD)
P Q

Rank-r1 CP Rank-r2 CP 

U1..r
(1) U1..r

(2) U1..r
(N)λ1..r 

P1..r1
(1) P1..r1

(2) P1..r1
(N1)λ1..r1 Q1..r2

(1) Q1..r2
(2) Q1..r2

(N2)λ1..r2 

(b) Join-by-Decomposition (JBD)

Fig. 3. (a) The query plan in Figure 1(b) and (b) an alternative query plan where the tensor de-
composition operation is pushed-down [11]

P Q

Rank-r CP 

UTD

U(1) U(2) U(N)λ

(a) Union-then-Decompose (UTD)

P Q

Rank-r CP Rank-r CP 

UBD

U(1) U(2) U(N)λ

P(1) P(2) P(N)λp Q(1) Q(2) Q(N)λq

(b) Union-by-Decomposition (UBD)

Fig. 4. (a) A query plan with an union of two tensors, P and Q preceding tensor decomposition
and (b) an alternative query plan where the decomposition is pushed-down over union

tensor) are decomposed into their spectral components and then these decompositions
are combined to obtain the final decomposition as shown in Figure 3(b).

In this paper, we focus on query plans that involve tensor decomposition and union
operations (as in Figure 4(a)) and propose novel decomposition push-down strategies
(as in Figure 4(b)) that help reduce the overall cost of the query plan. We refer to the
query plan that first performs the union operation on the data and then applies the ten-
sor decomposition on the union of the data as union-then-decompose (UTD) plan. The
query plan with decomposition push-down, which first performs the tensor decompo-
sitions on each input data source and then combines these decomposed tensors as the
union-by-decomposition (UBD) plan.

1.4 Contributions of This Paper: Union-by-Decomposition (UBD)

A union-by-decomposition (UBD) plan, with decomposition push-down, has various
advantages over the conventional union-then-decompose (UTD) plan:

– Firstly, especially when the overlaps between the input data sources are small, the
union operation can combine relatively small and sparse tensors into a larger and
denser tensor. Consequently, the decomposition over the union data can be much
more expensive than the decompositions over the input data sources. Moreover
multiple tensor decompositions on input tensors can run in parallel, which will
further reduce the cost.
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– Secondly, a union-by-decomposition (UBD) based plan provides opportunities for
materializing decomposition of data tensors and re-using these materialized decom-
positions in more complex queries requiring integration of data.

Despite these advantages, however, implementing the UBD strategy requires us to ad-
dress a number of key challenges:

– Challenge 1: How can we combine the factor matrices of tensor decomposi-
tions with their own eigen basis into the eigen basis of the union tensor? If ten-
sor decomposition is thought of as a group of clusters, combining different groups
of clusters for different tensors into another group of clusters for the union of the
tensors is not straightforward.

– Challenge 2: For the common data elements at the intersection of multiple data
sources, which factors (clusters when the clustering analogy is used) among the
different tensor decompositions should we choose? This is critical as the choice
can impact the final accuracy of the UBD based plan.

In this paper, we present algorithms and techniques to address these questions. We first
review the related work in Section 2. In Section 3, we extend TRM with the proposed
union-by-decomposition operation: we discuss strategies for combining the tensor de-
compositions for the union of the tensors from different sources and consider alternative
selection measures to choose a group of factors for data entries common to input data
sources. We also consider query plans that include both join and union operations along
with tensor decomposition. We, then, experimentally evaluate the proposed scheme in
Section 5 and conclude the paper in Section 6.

2 Related Work

2.1 Tensors and Tensor Decomposition

The two most popular tensor decompositions are the CANDECOMP/PARAFAC
(CP [6,9]) and Tucker [25] decompositions. CANDECOMP [6] and PARAFAC [9]
decompositions (together known as the CP decomposition) decompose the input ten-
sor into a sum of component rank-one tensors. While CP decomposition can be repre-
sented in the form of a diagonal core tensor and one factor matrix (also called a factor)
per mode, the Tucker decomposition results in a dense core tensor. Many of the algo-
rithms for decomposing tensors are based on an iterative alternating least squares (ALS)
process that approximates the solution by iteratively improving the decomposition un-
til a convergence condition is reached [6,9]. In [21], the complexity of ALS schemes
has been discussed. Non-iterative approaches to tensor decomposition include closed
form solutions, such as generalized rank annihilation method (GRAM) [19] and di-
rect trilinear decomposition (DTLD) [20], which fit the model by solving a generalized
eigenvalue problem. [13] provides an overview of the tensor decomposition algorithms.

Tensor decomposition is a costly process. In dense tensor representation, the cost
increases exponentially with the number of modes of the tensor. While decomposition
cost increases more slowly (linearly with the number of nonzero entries in the tensor)
for sparse tensors, the operation can still be very expensive for large data sets. [24] uses
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CP 
decomposition 

Intersection 

U(3)

U(1) U(2)λ≈

Union

Source 1 Source 2 Source 1 Source 2 

P(3)

P(1) P(2)λp≈

Q(3)

Q(1) Q(2)λq

U(3)

U(1) U(2)λ≈

Union

≈
CP 
decomposition 

(a) Union-then-Decompose (UTD) (b) Union-by-Decomposition (UBD)

Fig. 5. (a) Tensor decomposition on the union of the two relations and (b) the union operation on
the two tensor decompositions of the input relations

randomized sampling to approximate the tensor decomposition where the tensor does
not fit in the available memory. A modified ALS algorithm proposed in [18] computes
Hadamard products instead of Khatri-Rao products for efficient PARAFAC for large-
scale tensors. [15] developed a greedy PARAFAC algorithm for large-scale, sparse ten-
sors in MATLAB. [14] proposed a memory-efficient Tucker (MET) decomposition to
address the intermediate blowup problem in Tucker decomposition. A parallelization
strategy of tensor decomposition on MapReduce has been proposed in [10]. ParCube
proposed in [17] is a parallelizable tensor decomposition algorithm, which produces
sparse approximation of tensor decompositions. In [11,12], we proposed parallelized
tensor decompositions within a tensor relational algebraic framework.

2.2 Array Databases

There are several in-database data models for modeling tensor data. Column-oriented
organizations [22] are efficient when many or all rows are accessed, such as during
an aggregate computation. Row-oriented organizations, on the other hand, are efficient
when many or all of the columns on a single row are accessed or written on a single
disk seek. Key-value organizations [1] are useful when working with less structured
data, such as documents, which tend not to be relational. The array model [4,5,8,26] is
a natural representation to store multidimensional data and facilitate multidimensional
data analysis. Approaches to represent array based data can be broadly categorized into
four types. (a) The first approach is to represent the array in the form of a table [7,26].
(b) A second approach is to use blob type in a relational database as a storage layer
for array data [4,8]. (c) Sparse matrices can also be represented using a graph-based
abstraction [16]. For example, in [16], ALS (alternating least squares) is solved using
a graph algorithm that represents a sparse matrix as a bipartite graph. (d) The last ap-
proach is to consider a native array model and an array-based storage scheme, such as
a chunk-store, as in [5].

3 Union-by-Decomposition (UBD) and Decomposition Push-Down

In this section, we describe our proposed union-by-decomposition (UBD) approach that
pushes down tensor decompositions over union operators: Unlike the more conventional
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Fig. 6. Naive grid-based UBD: (a) Input tensors are partitioned into an intersecting sub-tensor
and non-intersecting sub-tensors; (b) intermediary decompositions of grid-based UBD
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Fig. 7. UBD: (a) first the inputs tensors are decomposed and (b) these decompositions are recom-
bined by considering the common and non-intersection parts of the factor matrices.

union-then-decompose (UTD) scheme, which applies decomposition on the union of
the two relations (Figure 5(a)), UBD first performs the tensor decomposition on the
input tensors then these decompositions are combined into the final result (Figure 5(b)).

3.1 Challenge 1: Implementing UBD through Partition-Based ALS

Naive Grid-Based UBD. One way to implement the UBD operation is to divide the
input tensors into common (or intersection) and (2N − 1 many when the number of
modes is N ) uncommon sub-tensors as shown in Figure 6(a) and then considering each
partition as a cell of a larger tensor partitioned into a grid as shown in Figure 6(b)
and applying the grid-based tensor decomposition strategy proposed in [18] to combine
these into a single decomposition.
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Algorithm 1. Union-By-Decomposition (UBD) (input: two tensors
PI1×I2×···×IN and QJ1×J2×···×JN , optional input: CP decompositions of
P and Q, 〈P(1), . . . ,P(N)〉 and 〈Q(1), . . . ,Q(N)〉, respectively, output: factors
U(1), . . . ,U(N) for P ∪Q)

1: if no existing decompositions given then
2: Run any available CP algorithm on P and Q in parallel to get factors P(1), . . . ,P(N) and

Q(1), . . . ,Q(N)

3: end if
4: for each mode n do
5: create sub-factors P̂(n)

(1)
and P̂

(n)

(2)
, and Q̂

(n)

(2)
and Q̂

(n)

(3)
with non-intersecting and intersecting sub-factors of

P(n) and Q(n) , respectively (see Figure 7(a))
6: end for
7: select either P̂(n)

(2)
and Q̂

(n)

(2)
for factors T(n) for intersection P ∩ Q by a selection measure (see Section 3.2)

8: repeat the update process for sub-factors U(n)

(1)
, U(n)

(2)
, and U

(n)

(3)
using Equation 9 until a stopping condition is

satisfied, which are combined to U(n) by Equation 7 (see Figure 7(b))

Proposed Implementation of UBD. An obvious shortcoming of the naive grid-based
UBD discussed above is that it leads to a very large number of intermediary decomposi-
tions and this number increases quickly with the number of modes of the input tensors.
To tackle this challenge, we propose to decompose input tensors directly (through de-
composition push-down) and recombine the resulting factor matrices in a way that re-
flects the common and non-intersecting sub-factors of these decompositions as shown
in Figure 7. The high-level pseudocode of this partition-based UBD scheme is shown
in Algorithm 1. We next present the details of the proposed UBD process:

Let us assume that we are given two tensors PI1×I2×···×IN and QJ1×J2×···×JN and
let us assume we have already computed their CP decompositions

CP (P) = P̂ = 〈P(1), . . . ,P(N)〉 and CP (Q) = Q̂ = 〈Q(1), . . . ,Q(N)〉. (3)

Our goal is to estimate CP (P∪Q) = 〈U(1), . . . ,U(N)〉 efficiently using these decom-
positions. To achieve this, we solve the ALS problem

min ‖(P ∪Q)− 〈U(1), . . . ,U(N)〉‖ (4)

by appropriately combining sub-factors of the input tensors. More specifically, each
factor of P and Q are split into two: a non-intersecting (P(n)

(1) and Q
(n)
(3) ) and intersecting

(P(n)
(2) and Q

(n)
(2) ) partitions. Given these, the CP decompositions of [k1, k2, . . . , kN ]-th

sub-tensor of P and Q are

CP (P(k̄)) = 〈P(1)
(k1)

, . . . ,P
(N)
(kN )〉 and CP (Q(k̄)) = 〈Q(1)

(k1)
, . . . ,Q

(N)
(kN )〉, (5)

respectively, where k̄ = [k1, k2, . . . , kN ] for kn ∈ {1, 2} for P(k̄) and kn ∈ {2, 3} for
Q(k̄). Given these, we can approximate the decompositions of each sub-tensor of P and
Q with the CP decompositions of P and Q, respectively (see Figure 7(a)):

CP (P(k̄)) ≈ 〈P̂(1)
(k1)

, . . . , P̂
(N)
(kN )〉 and CP (Q(k̄)) ≈ 〈Q̂(1)

(k1)
, . . . , Q̂

(N)
(kN )〉. (6)
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Let us denote the CP decomposition of [k1, k2, . . . , kN ]-th sub-tensor of P ∪Q as

CP ((P ∪Q)(k̄)) = CP (Y(k̄)) = 〈U(1)
(k1)

, . . . ,U
(N)
(kN )〉,

where k̄ = [k1, k2, . . . , kN ] for kn ∈ {1, 2, 3}. Note that each factor of CP (P ∪ Q)
can be split into three partitions

U(n) = [U
(n)T
(1) U

(n)T
(2) U

(n)T
(3) ]T , (7)

one corresponding to a non-intersecting sub-factor from one input matrix, the other
corresponding to a common sub-factor, and the last corresponding to a non-intersecting
sub-factor from the second input matrix. Given these, we can re-formulate the mini-
mization problem in Equation (4) for each sub-tensor Y(k̄) of P ∪Q as minimizing D,
where

D =
1

2

3∑
k1=1

· · ·
3∑

kN=1

‖Y(k̄) − 〈U(1)
(k1)

, . . . ,U
(N)
(kN )〉‖,

or, considering the n-mode matricized tensor Y(k̄)
(n) of Y(k̄), as minimizing

D =
1

2

∑
k̄

‖Y(k̄)
(n)−U

(n)
(kn){U

(1)
(k1)

4U
(2)
(k2)

4· · ·4U
(n−1)
(kn−1)

4U
(n+1)
(kn+1)

4· · ·4U
(N)
(kN )}‖,

where4 is the Khatri-Rao product.
This minimization problem can be solved using an ALS problem by identifying gra-

dient components with respect to sub-factors as in [18]. More specifically, the gradient
component with respect to sub-factor U(n)

(kn)
is

Δ
U

(n)

(kn)

D =
∑

k̄n=kn

(
−Y(k̄)

(n)U
�−n

(k̄)
+U

(n)
(kn)U

�−nT

(k̄)
U

�−n

(k̄)

)
=
∑

k̄n=kn

(
−Y(k̄)

(n)U
�−n

(k̄)
+U

(n)
(kn){U

T
(k̄)U(k̄)}�−n

)
,

(8)

where � is the Hadamard (element-wise) product. Given this, each sub-factor U(n)
(kn)

can be updated using the update rule

U
(n)
(kn)

←

⎛⎝ ∑
k̄n=kn

Y
(k̄)
(n)U

�−n

(k̄)

⎞⎠⎛⎝ ∑
k̄n=kn

(UT
(k̄)U(k̄))

�−n

⎞⎠−1

. (9)

Note that, from Equation 6, for each sub-tensor Y(k̄) = P(k̄), considering to the first
input matrix we have

Y
(k̄)
(n)U

�−n

(k̄)
≈ P̂

(n)
(kn)

P̂
�−nT

(k̄)
U

�(−n)

(k̄)
. (10)

Similarly, for each sub-tensor Y(k̄) = Q(k̄), considering to the second input matrix, we
have

Y
(k̄)
(n)U

�−n

(k̄)
≈ Q̂

(n)
(kn)

Q̂
�−nT

(k̄)
U

�(−n)

(k̄)
. (11)
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Finally, for each sub-tensor Y(k̄) such that Y(k̄) = P ∩Q,

Y
(k̄)
(n)U

�−n

(k̄)
≈ T(n)T�−nTU

�(−n)

(k̄)
, (12)

where T(n) are the factors of CP (P∩Q). Note that T(n) can be estimated from either
the CP decomposition of P(2̄)

CP (P ∩Q) = CP (P(2̄)) ≈ 〈P̂(1)
(2), . . . , P̂

(N)
(2) 〉,

where 2̄ = [k1, k2, . . . , kN ] for all kn = 2, or the CP decomposition of Q(2̄)

CP (P ∩Q) = CP (Q(2̄)) ≈ 〈Q̂(1)
(2), . . . , Q̂

(N)
(2) 〉.

The choice is critical and can impact significantly on the accuracy of the overall process.
Therefore, we next discuss how to select whether to use P̂(n)

(2) or Q̂(n)
(2) to estimate T(n).

3.2 Challenge 2: Selection of Sub-factors for the Overlapping Sub-tensor

As described above, the factors T(n) of the overlapping sub-tensor, P ∩Q (used in the
computation of CP (P∪Q)) can be selected from either P̂(n)

(2) or Q̂(n)
(2) . As also explained

before, the choice is critical as it may impact the accuracy of the final decomposition,
CP (P∪Q). Therefore, in this subsection, we explore alternative ways for choosing the
sub-factors, T(n), of CP (P ∩Q).

Intersection-Based Selection Criteria. When we are choosing between P̂
(n)
(2) and

Q̂
(n)
(2) to use as T(n), one criteria would be to consider how well P̂

(2̄)
= 〈P̂(1)

(2) . . . P̂
(N)
(2) 〉

and Q̂
(2̄)

= 〈Q̂(1)
(2) . . . Q̂

(N)
(2) 〉 fit P ∩Q:

IC1(P̂
(2̄)

) = 1− ‖(P ∩Q)− P̂
(2̄)
‖

‖P ∩Q‖ and IC1(Q̂
(2̄)

) = 1− ‖(P ∩Q)− Q̂
(2̄)
‖

‖P ∩Q‖ .

One obvious difficulty with this fit-based intersection criterion, IC1, is that the fit com-
putations can be very costly. Alternatively, if we consider the two tensor decomposi-

tions, P̂
(2̄)

and Q̂
(2̄)

as two groups of clusters, then we need to choose the group of
clusters on which the membership of the shared elements (the overlapping part) is more
tight and we can use the norms of the sub-factors to quantify how strongly elements be-
longs to the corresponding clusters. Intuitively, norms of the sub-factors corresponding
to the overlapping region

IC2(P̂
(2̄)

) = ‖〈P̂(1)
(2), . . . , P̂

(N)
(2) 〉‖, IC2(Q̂

(2̄)
) = ‖〈Q̂(1)

(2), . . . , Q̂
(N)
(2) 〉‖,

explain the contribution of each element to these clusters and the one with the larger
intersection criterion measure, IC2, can be used to T(n).
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Note that the norm of the sub-factors of the overlapping region excludes any knowl-
edge about how the groups fit with the rest of the tensors. Alternatively, we can account
for the strengths of the groups in the whole tensor by also considering the core tensor

IC3(P̂
(2̄)

) = ‖〈λp, P̂
(1)
(2), . . . , P̂

(N)
(2) 〉‖, IC3(Q̂

(2̄)
) = ‖〈λq, Q̂

(1)
(2), . . . , Q̂

(N)
(2) 〉‖,

and select the tensor which leads to the larger intersection criterion, IC3, measure.

Here, λp and λq are core vectors of P̂
(2̄)

and Q̂
(2̄)

, respectively.

Note that for IC2 and IC3, the columns of P̂(n)
(2) and Q̂

(n)
(2) are normalized to length

one with the weights absorbed into the vector λp and λq , respectively.

Union-Based Selection Criteria. The aforementioned intersection-based selection cri-
teria have a potential weakness: as we see later in Section 5, the selection measures
based on intersection fit and norm work well when the two input tensors are balanced
in size. If the two tensors are unbalanced in size (i.e. one of the tensors is much larger
than the other) the non-overlapping region of the larger tensor is likely to have a large
impact on the final accuracy and the intersection-based selection criteria which primar-
ily focus on the overlapping region of the tensors may fail to capture this. To address
this limit of intersection-based selection criteria, we also consider union-based selec-
tion criteria that take into account both non-overlapping and overlapping parts of the
tensors.

Firstly, we consider the fit of the union of the decomposed tensors to the union of the
two original tensors

UC1(〈U(1), . . . ,U(N)〉) = 1− ‖(P ∪Q)− 〈U(1), . . . ,U(N)〉‖
‖P ∪Q‖ ,

and we choose between the two alternatives by setting the initial U(n) to
[P̂

(n)T
(1) P̂

(n)T
(2) Q̂

(n)T
(3) ]T and to [P̂

(n)T
(1) Q̂

(n)T
(2) Q̂

(n)T
(3) ]T and observing which one leads to

a better fit. UC1 is the initial fit of the union of the decomposed tensors to the union of
the two original tensors in the beginning of the update process of U(n)

(kn) for kn = 1, 2, 3
(see Equation 9). Intuitively, this initial fit can be thought of as a rough indicator of
whether the final fit of the union of the decomposed tensors solved by the learning
process will be close to the decomposition on the union of two tensors or not.

As a second criterion, we consider the density of the input tensors, PI1×I2×···×IN

and QJ1×J2×···×JN ,

UC2(P) =
|P|∏N
i=1 Ii

, UC2(Q) =
|Q|∏N
i=1 Ji

,

where |X| is the number of non-zeros of X. Given this, we set the initial U(n),

U(n) = [P̂
(n)T
(1) P̂

(n)T
(2) Q̂

(n)T
(3) ]T , if P has a larger density, or

U(n) = [P̂
(n)T
(1) Q̂

(n)T
(2) Q̂

(n)T
(3) ]T , if Q has a larger density.
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(a) Union, join, decompose (b) Join-then-decompose (JTD) (c) Join-by-decomposion (JBD)
and union-by-decomp. (UBD) and union-by-decomp. (UBD)

Fig. 8. Three alternative query plans for implementing a complex query plan with union, join,
and decompose operations

Intuitively, the overlapping part will be more tightly connected with the non-
overlapping part in the input tensor with the larger density – simply because there are
less chances that an entry will be seen only in the overlapping part. Thus, given the
choice between using the decompositions (for the overlapping part) of the input tensor
with the larger density and of the tensor with the smaller density, the former is likely to
lead to lesser errors.

4 Parallelization, Materialization, and Further Optimizations

The proposed union-by-decomposition (UBD) scheme leads to various optimization
opportunities. First of all, assuming the availability of multiple computation units, the
individual data sources can be decomposed in parallel. Moreover, each individual de-
composition of the sub-tensors can also be obtained in parallel, leading to highly paral-
lelizable execution plans. Secondly, as we see in Section 5, in situations where the same
data source is integrated (unioned) with different data sources over time, we can decom-
pose this data source once and materialize the decomposition for later reuse within a
UBD process, thereby avoiding significant amount of runtime work.

In addition, the proposed union-by-decomposition (UBD) operator is compatible
with other novel (decomposition push-down based) operators that are part of TensorDB,
including the join-by-decomposition (JBD) operator, discussed in Section 1.3, and can
be used as part of a general optimization framework. Figure 8 provides an example:
in Figure 8(b) first the join is pushed down over union and then the decomposition is
pushed down over union, whereas in Figure 8(c) the decomposition is pushed down also
over the join operator leading to (as we see in Section 5) a highly efficient query plan.

5 Experimental Evaluation

In this section, we present experimental results assessing the efficiency and effective-
ness of the proposed union-by-decomposition (UBD) scheme and the selection criteria.

5.1 Experimental Setup

For these experiments, we used real data tensors (Table 1): (a) MovieLens 1M data
set [2] with a 3-mode tensor (user, movie, rating) and (b) a 4-mode tensor
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Table 1. Tensor data sets

Data set Attributes Size Density (%)

3-mode MovieLens 1M (user, movie, rating) 6000 × 3400 × 5 0.8451
3-mode book rating (user, book, rating) 105283 × 340556 × 11 0.0003

4-mode Epinions (user, product, category, rating) 22111 × 296000 × 26 × 5 0.000007
4-mode MovieLens 1M (user, movie, genre, rating) 6000 × 3400 × 18 × 5 0.0994

(user movie, genre, rating), (c) a book rating data set [27] with a 3-mode
tensor (user, book, rating), and (d) Epinions data set [23] with a 4-mode ten-
sor (user, product, category, rating). From each data tensor, we cre-
ated pairs of sub-tensors (chosen randomly) with different degrees of intersection (10%,
20%, 40%, 60%). The target rank that we consider for the CP decomposition is 10. The
default selection measure is the density-based selection measure, UC2.

For evaluation, we consider both execution time and degree of fit defined as

fit(X, ˆP ∪Q) = 1− ‖X− ( ˆP ∪Q)‖
‖X‖ , (13)

where X is the union of P and Q and ˆP ∪Q is the tensor obtained by re-composing the
decomposition of P∪Q in the considered scheme. Comparing the fit with respect to X

enables us not only to measure how well P ∪Q approximates the entries in P ∪Q, but
also whether ˆP ∪Q includes any spurious entries that are not originally in P ∪Q.

We ran all the experiments on a machine with Intel Core i5-2400 CPU @ 3.10GHz
×4 with 7.7 GB RAM. We used MATLAB Version 7.13.0.564 (R2011b) 64-bit for
the general implementation and MATLAB Parallel Computing Toolbox for the parallel
implementations. We used the MATLAB Tensor Toolbox [3] to represent relational
tensors as sparse tensors.

5.2 Results #1: UBD vs. UTD (with and without Materialization)

We first compare the proposed UBD against the more conventional UTD scheme. As a
second competitor, we also consider the naive grid-based UBD discussed in Section 3.

Firstly, as we see in Figure 9(a), when there are opportunities for reusing existing
materialized decompositions of the input tensors, as expected, UBD is much faster than
the UTD as well as the naive grid-based UBD.

Secondly, in Figure 9(c), we consider the case where there are no opportunities for
reusing existing decompositions. As we see in this figure, as expected, when the input
tensors have to be decomposed as part of the UBD process, whether UBD outperfoms
UTD depends on the characteristics of the input tensors: in particular, as expected, UBD
is faster than UTD when (a) the degree of intersection is low (≤ 20%) and (b) the input
tensors are not extremely sparse: if these conditions are not satisfied, the size of the
union result is close to the sizes of input tensors and, if the result is also sparse, there is
no gain in pushing down the decompositions.

Note that, when materialized decompositions of the input tensors do not exist, grid-
based UBD can out-pace the proposed UBD and UTD in many configurations. How-
ever, as we see in Figure 9(b), this comes at the cost of a significant drop in accuracy:
the proposed UBD scheme achieves fits close to the fit of UTD, whereas the accuracy
of the grid-based UBD is much lower. Note also that the accuracy of UBD is especially
good in data sets that are not extremely sparse.
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5.3 Results #2: Evaluation of the Alternative Selection Measures

In Section 3.2, we considered various approaches (IC1, IC2, IC3, UC1, and UC2)
for choosing the sub-factors for the overlapping parts of the input tensors. Figure 10(a)
shows that fit-based measures (intersection fit, IC1 and union fit, UC1) are more ex-
pensive than norm-based measures (IC2, IC3). The density-based approach (UC2) has
an almost 0 execution cost. Note that, when we compare the computation times of these
selection measures to the execution times of the UBD operators (Figure 9), we see that
even the most expensive selection strategy is, in practice, affordable. Therefore, the
major criterion for selecting among these measures should be accuracy.

For measuring the accuracy of different selection measures, we considered the per-
centage of the cases where each selection measure returned the best alternative. As
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Table 2. Average fit of the different selection measures (The highest fits for each data set are
highlighted in bold)

Data set IC1 IC2 IC3 UC1 UC2

3-mode MovieLens 1M 0.0538 0.0539 0.0551 0.0551 0.0553
3-mode book rating 0.0127 0.0127 0.0134 0.0141 0.0138

4-mode Epinions 0.0133 0.0133 0.0144 0.0164 0.0164
4-mode MovieLens 1M 0.0380 0.0376 0.0378 0.0377 0.0380
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Fig. 11. Success rate in predicting the best fit of UBD using the 5 selection measures compared
among different (a) ratios of non-zeros of two tensors and (b) intersection sizes

shown in Figure 10(b), the union-based fit (UC1) measure works best overall. The
density measure (UC2) also works well. The figure also shows that the intersection-
based measures (IC1, IC2, IC3) are not good indicators, even behave negatively in
some cases: among them the IC3 works the best since it also accounts for the non-
overlapping regions through the cluster strength indicated by the core. Table 2 further
studies the average degree of fits returned by the different strategies. The table confirms
that the average fits obtained by the union-based selection measures are overall better
than the intersection-based selection measures. While the numbers vary, the degrees of
fit based on the union-based selection measures are up to 20% better than IC1 and IC2.

To further study the impacts of various parameters on the selection accuracy, we
also created random tensors with different configurations, varying the balance (ratio of
densities) of the input tensors and intersection sizes. For each experiment, we created
10 different random tensors of size 5000×5000×10 and measured the percentage cases
in which each measure selected the better fitting tensor. As the default configuration, we
set the ratio of non-zeros to 1 (most balanced), intersection size to 4%, and the density
of the union tensor to 0.01%.

In Figure 11(a), we first study the impact of balance. Here, the configuration with
ratio = 1 corresponds to the most balanced configuration. As we expected, when the
tensors are balanced, all measures work similarly (with a slight edge to the intersection-
based measures); however, as the imbalance among tensors increases, intersection-
based measures get worse, while the union based measures, especially UC1, improve.

Unlike balance, the size of the intersection has no significant impact on the selection
accuracy (Figure 11(b)), indicating that all measures are robust in this respect.

5.4 Results #3: Impact of Composition of UBD with Other Operators

As we discussed in Section 4, the proposed union-by-decomposition (UBD) operator
is compatible with other operators that are part of TensorDB and can be used as part
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Fig. 12. (a) Running times and (b) fits of three alternative query plans “JBD and UBD” vs. “JTD
and UBD” vs. “union, join, and decompose” (see Figure 8) on 4-mode MovieLens 1M

of a general optimization framework. In Figure 12 for a sample data, we study the
alternative query plans considered in Figure 8. As expected, the figure shows that push-
ing decompositions down the join and union operations (i.e., using UBD, proposed in
this paper, and/or JBD, proposed in [11]) provides a much faster execution times than
the union operation and join operation followed by a final CP decomposition step. As
shown in Figure 12(a), among these three alternative query plans, the query plan using
JBD and UBD is the fastest (faster than 5× of the union, join, and decompose strategy)
but comes with ∼ 20% drop in accuracy (Figure 12(b)). On the other hand, using UBD
proposed in this paper along with the conventional join-then-decompose (JTD) strategy
instead of JBD reduces the execution time relative to “union, join, and decompose” by
∼ 20% (Figure 12(a)), with a negligible impact on accuracy (Figure 12(b)).

6 Conclusion

TensorDB, which extends array databases with a tensor-relational model (TRM), sup-
ports both relational algebraic operations (for data manipulation and integration) and
tensor algebraic operations (for data analysis) for the complete life cycle of data that
involves consecutive steps of integration, manipulation, and analysis. In TensorDB, we
focused on data processing workflows involving both tensor decomposition and data in-
tegration (union) operations and proposed a novel scheme for pushing down the tensor
decompositions over the union operations to reduce the overall data processing times
and to promote reuse of materialized tensor decomposition results. Experimental results
confirmed the efficiency and effectiveness of the proposed decomposition push-down
strategy and the corresponding union-by-decomposition (UBD) operator.
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5. Brown, P.G.: Overview of scidb: large scale array storage, processing and analysis. In:
SIGMOD, pp. 963–968 (2010)

6. Carroll, J., Chang, J.-J.: Analysis of individual differences in multidimensional scaling via
an n-way generalization of “eckart-young” decomposition. Psychometrika (1970)

7. Cohen, J., et al.: Mad skills: new analysis practices for big data. In: VLDB (2009)
8. Dobos, L., et al.: Array requirements for scientific applications and an implementation for

microsoft sql server. In: AD, pp. 13–19 (2011)
9. Harshman, R.A.: Foundations of the PARAFAC procedure: Models and conditions for an

“explanatory” multi-modal factor analysis. In: UCLA Working Papers in Phonetics (1970)
10. Kang, U., et al.: Gigatensor: scaling tensor analysis up by 100 times - algorithms and discov-

eries. In: KDD, pp. 316–324 (2012)
11. Kim, M., Candan, K.S.: Approximate tensor decomposition within a tensor-relational alge-

braic framework. In: CIKM, pp. 1737–1742 (2011)
12. Kim, M., Candan, K.S.: Decomposition-by-normalization (dbn): Leveraging approximate

functional dependencies for efficient tensor decomposition. In: CIKM, pp. 355–364 (2012)
13. Kolda, T., Bader, B.: Tensor decompositions and applications. In SIAM Review 51(3),

455–500 (2009)
14. Kolda, T., Sun, J.: Scalable tensor decompositions for multi-aspect data mining. In: ICDM,

pp. 363–372 (December 2008)
15. Kolda, T.G., et al.: Higher-order web link analysis using multilinear algebra. In: ICDM

(2005)
16. Low, Y., et al.: Distributed graphlab: a framework for machine learning and data mining in

the cloud. VLDB 5(8), 716–727 (2012)
17. Papalexakis, E.E., Faloutsos, C., Sidiropoulos, N.D.: Parcube: Sparse parallelizable tensor

decompositions. In: Flach, P.A., De Bie, T., Cristianini, N. (eds.) ECML PKDD 2012, Part I.
LNCS, vol. 7523, pp. 521–536. Springer, Heidelberg (2012)

18. Phan, A.H., Cichocki, A.: Parafac algorithms for large-scale problems. Neurocomput-
ing 74(11), 1970–1984 (2011)

19. Sanchez, E., Kowalski, B.R.: Generalized rank annihilation factor analysis. Analytical Chem-
istry 58(2), 496–499 (1986)

20. Sanchez, E., Kowalski, B.R.: Tensorial resolution: A direct trilinear decomposition. Journal
of Chemometrics 4(1), 29–45 (1990)

21. Sorber, L., et al.: Optimization-based algorithms for tensor decompositions: canonical
polyadic decomposition, decomposition in rank-(L r,L r,1) terms, and a new generalization.
SIAM Journal on Optimization 23(2), 695–720 (2013)

22. Stonebraker, M., et al.: C-store: a column-oriented dbms. In: VLDB, pp. 553–564 (2005)
23. Tang, J., et al.: eTrust: Understanding trust evolution in an online world. In: KDD (2012)
24. Tsourakakis, C.E.: Mach: Fast randomized tensor decompositions. In: SDM, pp. 689–700

(2010)
25. Tucker, L.: Some mathematical notes on three-mode factor analysis. Psychometrika 31(3),

279–311 (1966)
26. van Ballegooij, A.R., Cornacchia, R., de Vries, A.P., Kersten, M.L.: Distribution rules for

array database queries. In: Andersen, K.V., Debenham, J., Wagner, R. (eds.) DEXA 2005.
LNCS, vol. 3588, pp. 55–64. Springer, Heidelberg (2005)

27. Ziegler, C.-N., et al.: Improving recommendation lists through topic diversification. In:
WWW (2005)



Author Index

Agapito, Lourdes II-565
Aggarwal, Charu C. III-130
Airola, Antti II-517
Aittokallio, Tero II-517
Akoglu, Leman I-17
Albayrak, Sahin III-477
Ali, Mohsen I-34
Almeida, Jussara M. I-386
Anagnostopoulos, Georgios C. II-193
Araujo, Miguel I-50
Artikis, Alexander III-520
Arvanitidis, Alexandros III-432
Atzmueller, Martin III-485
Avner, Orly I-66
Awate, Suyash P. I-82

Bachrach, Yoram III-82
Bai, Lu I-99
Bai, Xiao II-177
Bailey, James II-145
Baransi, Akram I-115
Bengio, Yoshua I-530, III-322
Bersia, Nicoletta III-440
Bian, Jiang I-132
Bishop, Christopher M. III-82
Bockermann, Christian III-520
Boden, Brigitte I-149
Boedihardjo, Arnold P. III-468
Bogdanov, Petko I-290
Boley, Mario I-623
Bontempi, Gianluca II-322
Bordes, Antoine I-165, I-434
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Letort, Véronique II-306
Le Van, Thanh II-98
Li, Cong II-193
Li, Xin II-209
Liao, Shizhong I-354, II-290
Liebig, Thomas III-520
Likas, Aristidis III-241
Lim, Keng Kiat III-499
Lin, Jessica III-468
Lipton, Zachary C. II-225
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Piatkowski, Nico III-520
Pietquin, Olivier II-549
Pio, Gianvito III-508
Piot, Bilal II-549
Pitelis, Nikolaos II-565
Plastino, Alexandre II-453
Poesia, Gabriel II-581
Ponti, Giovanni III-489
Prado, Adriana II-82
Prashanth, L.A. II-66

Qu, Qiang II-597

Rabiee, Hamid R. I-1
Radosavljevic, Vladan II-614
Rahman, Tahrima II-630
Raiko, Tapani II-338
Rajan, Deepak I-17
Ramsey, Joe II-34
Rangwala, Huzefa III-1, III-512
Rasheed, Zeehasham III-512
Ren, Yazhou II-646
Ribeiro, Bruno I-386
Ricatte, Thomas II-662
Riondato, Matteo III-516
Robaldo, Livio III-440
Rossi, Luca I-99
Rozenshtein, Polina II-678
Ruggieri, Salvatore II-694
Rushdi, Muhammad I-34
Russell, Chris II-565

Saha, Tanwistha III-1
Sakuma, Jun I-418
Santos, Silas Garrido Teixeira de

Carvalho III-179
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