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Abstract. The problem of understanding user activities and their patterns of
communication is extremely important in social and collaboration networks. This
can be achieved by tracking the dominant content flow trends and their interac-
tions between users in the network. Our approach tracks all possible paths of
information flow using its network structure, content propagated and the time
of propagation. We also show that the complexity class of this problem is #P-
complete. Because most social networks have many activities and interactions, it
is inevitable the proposed method will be computationally intensive. Therefore,
we propose an efficient method for mining information flow patterns, especially
in large networks, using distributed vertex-centric computational models. We use
the Gather-Apply-Scatter (GAS) paradigm to implement our approach. We ex-
perimentally show that our approach achieves over three orders of magnitude
advantage over the state-of-the-art, with an increasing advantage with a greater
number of cores. We also study the effectiveness of the discovered content flow
patterns by using it in the context of an influence analysis application.

Keywords: Information Flow Mining, Vertex-centric models, Influence Analy-
sis Network-centric approach, Scalable Influence Analysis.

1 Introduction

The problem of finding dominant content flow trends in networks is an important prob-
lem in the context of online social and collaboration networks. In social networks, such
as Twitter and Facebook, every user posts messages, photos and comments to exchange
information with their neighbors in the network. The daily volume of content propaga-
tion in these networks is in the order of hundreds of millions of posts per day'. These
posts typically propagate as short phrases [12], topics [1], hashtags [2], or URLs [7]
in specific patterns on the underlying friend or follower network. Some of these posts
may go viral and reach millions of users within a few hours. The massive reach of these
flows may result in significant influence in online user behavior [21]. Therefore, it is
desirable to understand such viral information flows for online marketing, advertise-
ment and a variety of other applications. There are several recent works that attempt to
understand these viral information flows in terms of memes [11,12], cascades [13], and
events [2].
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The existing literature on understanding information flows using cascades [11,12,13]
and memes [11,12] analyze a stream or a corpus of text documents where there is no
explicit network structure used for communication. For instance, the work in [13] de-
termines the cascade patterns from the temporal sequence of blog posts across multiple
blogs. Here, the term cascade, refers to a phenomenon in which a topic is adopted by
a blog and further propagated through the creation of hyperlinks. Note that there is
no underlying network structure between the bloggers. On the other hand, online social
networks use an explicit network structure, such as follower or friend network, to propa-
gate the information. Therefore, understanding the patterns of propagation in a network
structure is likely to yield superior insights than observing patterns from general pop-
ulation. In several other related works, the flow of information is typically analyzed in
the absence of the underlying network structure [18,19].

Another disadvantage of existing approaches [7] is that they ignore the life-span of
influence due to information flows, which is very relevant in the social context. For
example, a message posted on a Facebook wall may not even be available on the first
page after a day elapses. If a receiver of that message re-posts the same message after
a week, then it is less likely that the user was influenced by the original post sent to his
wall. As the life span is not considered, the existing methods produce a large number of
cascades as opposed to more active and meaningful ones.

Most of the existing approaches for mining information flows [18,19,11,12,13] can-
not handle large amounts of data, as their processing is centralized in a single server. We
propose a distributed approach using vertex-centric computational models [8]. In these
models, each vertex is a separate computational unit (available in a core or a machine),
and it result in a high level of parallelism. As we show in our experiments, our approach
is three orders of magnitude faster than existing state-of-the-art approaches. To the best
of our knowledge, our approach is the first work in this area and we are not aware of
any distributed or parallel information flow mining algorithms.

In this paper, we propose an efficient information FLOWExtractorR algorithm, called
FLOWER, to discover these information flow patterns. We establish the complexity
class of this problem, by showing the counting problem of all maximal information flow
patterns is #P-complete. In order to scale up to large networks, we propose a parallel
version called pFLOWER that runs on vertex-centric graph computational models [8].
In the experimental section, we show that our parallel method pFLOWER is faster than
the state-of-the art algorithms by up to three orders of magnitude. We also study the
effectiveness of the discovered information flows in the context of an influence analysis
application. Our approach consistently outperforms the popular baselines in terms of
precision, recall and F; measure.

The paper is organized as follows. The remainder of this section discusses related
work. In the next section, we introduce the preliminaries for the problem of flow mining
in networks. Then we describe the flow mining algorithm and propose a parallel version
using a vertex-centric computation model. Finally, we demonstrate the efficiency and
effectiveness of our approach using multiple real-life data sets.
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1.1 Related Work

The problem of analyzing information flow has been studied using content influence
cascades [12,13,1]. Most of these work analyze the blogosphere, and there is no explicit
network structure over which users exchange information in the blogosphere. However,
in general, for social [2] and biological networks [10], there is an explicit network over
which the flow of information occurs. Using this structure is important, because it en-
hances the discoverability of the relevant information flow patterns. In addition, informa-
tion cascades have a limited life span, and therefore the use of the information life-time
of the cascade helps in finding more active cascades caused by intrinsic social network
influence rather than external sources [16]. In some recent works [15,4] an instance of
the Independent-Cascade (IC) model is built using the log of past propagation in the
network. The aim of these techniques are to sparsify the network for scalability, while
our intent is to extract the dominant information flow patterns. There are several other
works that use only a network structure to compute social centrality of the users [22].

Content propagation in online media is usually tracked as short and distinct phrases,
referred to as memes [12,1]. Memes tend to have a broader stable vocabulary, that mimic
a slowly evolving genetic signature over time. The key idea of this work [12] is to un-
derstand how the short phrases evolve over time while the several words of the phrase
are intact during the entire period of propagation. However, there is no notion of track-
ing content flows in a network, while it does track how content evolves over time. There
are several other papers that tend to capture such bursty topic behavior over time, based
on different notions of topic identification [23]. A more detailed survey of evolution of
content in network structures can be found in [3].

In arecent experimental study [11], the diffusion of stories in social networks, such as
Twitter and Digg, are analyzed using the evolution of the number of fan votes in general
population and in a network structure. More specifically, this work confirms the impor-
tance of using network structure in such studies. There are other recent works that study
the distribution of URL cascades [7] in Twitter and propose a prediction model to predict
the number of mentions of an URL after its posting. However, none of these related work
track the dominant content flow information in a network structure over time.

2 Information Flow Mining Model

We define the information flow mining problem and related information flow properties
in this section.

Let G = (V, E) be the relationship network containing the node set V' and the
edge set F. Each actor a; € V performs a number of content-based actions such as
sending tweets or posting wall posts. We denote a content posted as U;, where j is
index of the message, and the time of its posting as tj. The time points are ordered
using their index £ = 1...7, such that ¢;, < t;41. A message U; can be propagated
by different nodes at the same time in different parts of the network, and not all nodes
may necessarily propagate all messages. Also, all nodes need not propagate a message
at every time point. Consider Figure 1, where an example network GG and a table of
different messages propagated are shown. The node C' does not propagate message Uy,
and none of the nodes propagate a message at time point ¢4.
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Fig. 1. An illustrative example showing different messages Ui, ..., Us propagated at different
times t1, . .., ts from different actors (A, B, C, and D) in a small example network

Definition 1 (Flow Path). A flow path s in the network G = (V, E) is a sequence of
distinct actors (aq, . . ., ay), where each actor a; € V propagated the same content U,
at least once.

Each information flow path s is a sequence of distinct actors ay, ..., a, who are
involved in multiple content interactions over a period of observation. Note that there
are no cycles in a single flow path as it contains a distinct set of actors. The purpose
of our approach is to determine such frequent information flow paths, where certain
content flows may occur frequently in specific paths of the network. In this paper, we
assume that flow patterns are sequential paths in the network, and a general cascade can
be constructed by overlaying multiple such sequential paths. In order to distinguish the
interesting flow patterns, we define several flow properties. These flow properties ensure
the interestingness in terms of network structure, causality, frequency and life-time.

Property 1 (Network Structure). A flow path s = (a1, ...,a;) satisfies the network
structure property in the network G = (V, E), if foreach r € {1...k — 1}, an edge
exists between a, and a,41 in .

By Property 1, we consider only the information flows that adhere to the network
structure, which also has the effect of focussing on relevant patterns. As in social net-
works, similar nodes are related to each other by a neighboring relationship, such as a
friend or a follower, and the content recommendation in a social network is often guided
by such relationships.

Property 2 (Causality). A flow path s = (aq, ..., ay) satisfies the causality property in
the network G = (V, E), if the actors in the flow path propagate a message U; at time
points t; . ..t; where t,,, < tpp41,Vm=1...k — 1.

The causality? property defines the interestingness of a flow pattern in terms of the
time of propagation. An actor a; broadcasts a message at time ¢, and the neighbor a;

2 The notion of “causality” in this paper is only based on temporal ordering, and no explicit
mechanisms of cause and effect are assumed. Clearly, such temporal orderings might also
occur by chance.
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broadcasts the same message at time ¢541, then a valid flow must only consider the path
from a; to a; and not the other way around, as a; may have caused a; to transmit the
message.

Property 3 (Frequency). A flow path s = (a1, ..., ay) satisfies the frequency property
in the network G = (V, E), if at least f distinct messages U; ... Uy are propagated
over the flow path s.

A sequence of actors who share a neighbor relationship in the network and post a
particular set of content-tokens in a temporal order is indicative of a signal of influ-
ence along the flow path. This influence signal is especially strong when actors behave
in a similar way multiple times over many (possibly different) pieces of content. The
frequency property captures the strength of such influences in a flow path through a
pre-specified frequency level. The frequency parameter f is the count of the number of
such repeated flows.

Property 4 (Life-time). A flow path s = (aq, ..., a) has a valid life-time period T, if
the message propagated U; at time points ¢y ... ¢x issuch thatt; —¢,_1 < 7,9 =2...k.

A post on a Facebook wall is not available forever for further propagation due to new
incoming posts [11], or due to limited user attention span [24]. The notion of life-time
is designed to model such real-life situations. All the aforementioned definitions can be
generalized to multiple messages.

The problem of information flow mining is to extract all valid flow paths s that
satisfy these flow properties. In the following problem definition, we denote the set of all
messages U; and the corresponding time stamps ¢; sent by each actor a; as T;. The size
of T is denoted as m,;. For example, in Figure 1, message table T of actor C' contains
four messages and time-stamp pairs: Tc = {(U1, t3), (Us, t2), (Us, t1), (Us, t1)}.

Problem 1 (Information Flow Mining). Given a graph G = (V, E), a set of m; mes-
sages propagated by each actor a;, and their corresponding time-stamps denoted by
T; = {(Uj,tj)j=1...m, }» the problem of information flow mining is to extract the set of
all valid flow paths F' = {s1, ..., s, } that satisfy the network, causality, frequency, and
life-time properties (Properties 1-4).

Our approach provides a generic framework to analyze information flows in a va-
riety of domains such as social networks, fMRI brain networks, or Internet networks.
The messages propagated in these networks correspond to user posts, molecular inter-
actions or data packets, respectively. With appropriate functions to compare and track
similar signals across multiple nodes, our approach can be easily generalized to other
domains [10]. However, in this paper, we restrict our attention to propagation of textual
content as information signals over discrete time points.

3 Information Flow Mining Algorithm

A major challenge in information flow mining is that of incorporating the impact of net-
work structure directly into the flow mining process. The key issue here is that a set of
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users who propagate the same message at approximately the same time period provide us
with very little knowledge about their actual path through the network. Typically, when
a message is popular, it might be independently propagated by users in many different
regions of the network. Therefore, how does one “connectup” the propagation of the dif-
ferent users over the entire network? It is here that the linkage information between the
users comes in handy. A message is assumed to have been propagated from one user to
the other, only if two neighboring users propagate the same message within the life-time
constraint. Therefore, an efficient algorithm for mining the information flow patterns
needs to integrate the sequences of user posts, the network structure, and the temporal
aspects in a holistic way, to extract the relevant flow patterns over the network structure.

One way of mining the patterns is to extract the flow paths in a content-centric fashion.
Consider a message U; sent by a set of actors aq, as, ..., a,. These actors might have sent
these messages at different time points. One can order the actors in increasing temporal
order and extract all subsequences of actors that appear in at least f such messages. We
can then eliminate all flow paths that do not have a valid edge in the network. In this ap-
proach, we first use the content to create the flow paths and finally we apply the network
validity property. The main disadvantage of this approach is that the number of possi-
ble subsequences of actors in general population is very large. Therefore, it is prudent
to use the network structure to eliminate such unnecessary candidates directly during
the mining process. This idea is the key ingredient of the network-centric approach. In
this approach, the message table T’; for the actor a; is sent to each of its neighbor a;
iteratively. Each neighbor checks for validity and lifetime constraints by comparing the
table T; and T};. If there are at least f messages that survive after the validation, the mes-
sage is sent to the neighbors of a; and so on. The advantage of this approach is that the
sparsity of the network reduces the number of candidate flow paths dramatically [20].
An added advantage of the network-centric approach is that it can be easily parallelized
using vertex-centric computational models. This aspect will be addressed in Section 4.

The pseudocode for our algorithm is shown in Algorithm 1. We refer to our approach
as FLOWER, which stands for FLOW ExtractOR. The algorithm first extract the actors
that have at least f distinct messages in their respective message tables (lines 2-4).
Then, the information flow paths originating at each actor a; are extracted by calling
a recursive procedure FLOWPROP. This procedure extracts the messages that support
causality and life-time property, compared to the incoming message table T.,. If the
number of messages in new supporting message table is at least f, then all its neighbors
are iteratively explored (lines 4-5). If there are no neighbors for the actor a;, the message
is added to set F'. This if condition ensures that the flow paths added to F' are maximal
in nature; in other words, a flow path is added only when none of its sub-sequence flow
paths are already in F'. One can ignore lines 6 and 7 in FLOWPROP to extract all paths
that are not only maximal.

3.1 Complexity Analysis

In this section, we show that the counting version of the information flow mining prob-
lem is #P-complete. For this purpose, we reduce the maximal frequent sequence mining
problem that is #P-complete [25], in polynomial time to the problem of mining infor-
mation flow patterns (Problem 1). The notion of maximal information flow patterns is
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Algorithm 1. FLOWER

Input: G = (V, E): Relationship network; T;: message table for actor a;; f: frequency;
and 7: life-time;
Output: F: Set of flows satisfying all the properties
1 Initialize V' and S to empty set
2 for each a; € V do
3 if number of distinct messages in T; > f then
4 Adda;toV'and F

5 for each a; € V' do
6 FLOWPROP({(b}, Ti,ai, Ty, T, f, V/, F)

7 return F';

Algorithm 2. FLOWPROP

Input: seq: current flow path; T’s.,: message table supporting the current flow path; a;:
current actor; T;: message table for actor a;; 7: life-time; f: frequency; V':
frequent actors set; F': frequent flows discovered;

1 Thew = Extract messages that satisfy causality and life-time property from 7% and T’scq
2 if number of messages in Tyne, > f then

3 I'; = Get neighbors of a; not in current flow path seq and in %
4 for each a; € I'; do

5 FLOWPROP((seq U {a;}) , Tnew, a;j, Tj, 7, f, V', F)

6 if I is empty then

7 Add (seq, {a;}) to F'

to retain only the longest frequent flow paths in the set F' of Algorithm 1, beyond which
the flow path does not satisfy one of the frequency, network, or lifetime constraints.

Theorem 1. [25] Let D be a database of sequences with m transactions. The problem
of counting the number of maximal f-frequent subsequences in D, where 1 < f < m
is #P-complete.

Let T; be the message table of the actor a; in network G = (V, E)). We define a
function @ that converts the database D to individual user message-tables 71, ..., Tjy|.

Definition 2 (Function Q). Let Q) : D — {T1,...,T,}, where T; is the message table
of actor a;. The ith transaction maps to a unique message id U;. For each item k in
the ith transaction of D, a corresponding set (U;,y(k, 1)) is added to T}, by Q, where
~(k, ) denotes the first occurrence of actor k in the ith transaction of D.

The running time of function () for a database D with m transactions and n items is
O(mn). Let Sp(f) be the set of maximal frequent sequences for support f for database
D. Let F(f,G, ) be the set of all maximal frequent flows discovered for the infor-
mation flow mining problem, as described in Problem 1, for support f, graph G and
lifetime 7.
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Lemma 1. All maximal frequent sequences of set Sp(f) are present in F(f,G,T),
when G is complete and T = 0.

Proof: Consider a path P that is a valid maximal frequent flow for 7 = 0 and the
underlying graph G is complete. When 7 = 0 all valid paths in the graph G satisfy
the lifetime constraint, because all lifetimes are non-negative. Also, given a complete
graph any permutation of n nodes in the graph is a valid path. As the path P is frequent,
there are at least f messages flowing along path P. Hence, the actors in that path must
be appearing in that order in at least f such transactions in database D, as per the
function @. Thus, the path P must be a frequent sequence in the database D. So every
f-frequent flow path P that is a valid for 7 = 0 and for a complete graph G is present
in Sp(f). Because the path P is maximal, there cannot exist a longer path in set F' that
contains some actor a, after P. If this is the case, per function Q, there cannot also exist
a minimum of f transactions where P followed a, is present. |

From Lemma 1, it is evident that set F'( f, G, T) can be extracted from set Sp(f) by
pruning the frequent sequences with lifetime lower than 7. For sparser graphs, several
paths are invalid and hence several sequences are removed. Because the pruning process
results in a much smaller set /' compared to the original set Sp, the complexity of
mining maximal frequent sequences acts as an upper bound on mining sets of maximal
frequent information flows.

Theorem 2. The problem of counting all maximal flow patterns in the information flow
mining problem is #P-complete.

Proof: The maximal sequence mining problem can be reduced to an equivalent maximal
information flow mining problem in two steps: (a) converting the database D using
function @ (see Definition 2) into actor level message tables and (b) create a complete
graph G. The computational complexity of function @ is O(mn) and the complete
graph creation is polynomial in n and the total time required is O(mn + n?). When
n >> m, the total complexity is polynomial in n and when m >> n it is polynomial
in m. In either case, the maximal frequent sequence mining problem can be reduced
to maximal information flow mining in polynomial time in the size of the sequence
database D and hence it is #P-complete. |

4 Accelerating FLOWER

There are several computational challenges associated with the flow mining problem,
which can affect the performance of the FLOWER algorithm presented in Section 3.
While FLOWER is designed to be inherently efficient because of careful network-
centric pruning, the problem itself can sometimes be fundamentally intractable for large
networks. For example, in a completely connected graph, traversing every possible ac-
tor sequence from every source vertex has O(|V|!) complexity. This is, of course, not
true in most real networks, where the linkage structure is sparse and not all actors send
the same set of messages at the same time. Nevertheless, it is still possible to envision
scenarios, where the FLOWER approach might be undesirably slow for certain param-
eter settings (such as low values of f and high values of 7). Because these challenges
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are inherent to the problem at hand, it is natural to explore whether parallelization can
be used to accelerate FLOWER.

There are several ways to parallelize the FLOWER algorithm. In Algorithm 1, line 6
executes the subroutine Flowprop for each vertex v. This can be executed in parallel, as
each call is independent of the other. Similarly, each of the flow paths in the recursion
tree from root to leaf is independent of one another and is therefore easy to parallelize.
In these approaches, the parallelism is performed at a path-level, where each path can
be treated as a independent computational unit. In path-wise parallelization, however,
care must be taken to reduce redundant computations at the parent nodes, as they form
common prefixes in different flow paths.

The highest level of parallelism, however, can be achieved if we can parallelize at the
vertex level, where each vertex can be treated as a separate computational unit that can
be executed in parallel. This is typical in vertex-centric computational models, such as
GraphLab [14] or Pregel. As seen earlier, our sequential approach propagates messages
between the neighboring vertices, and it naturally fits into this framework. We discuss
a brief overview of the vertex-centric computational models in the next couple of para-
graphs.

In vertex-centric computational models, any vertex needs to perform three main op-
erations: Gather, Apply, and Scatter. The Gather operation receives messages through
the incoming edges of a vertex, the Apply operation processes the incoming messages
and the Scatter operation distributes the processed messages to the neighbors via out-
going edges. Due to these three operations, vertex-centric computational abstractions
are popularly referred to as the GAS framework.

The main problem with the GAS framework is in scenarios, where they deal with
natural graphs having power-law degree distribution. Such graphs have very few nodes
with extremely high degree and the remaining nodes have very small degree [8]. Hence
balanced distribution of computational load, storage and communication is extremely
challenging in this framework and to address this issue new frameworks, such as Power-
Graph [8], have been developed. For a more detailed review of the PowerGraph, please
refer to [8].

Algorithm 3. Scatter

Input: icontext type: context, vertex type: current vertex, edge type: edge
1 if edge.destination node does not have f words in its message table then
2 return

3 for each sequence to send in current vertex do

4 if sequence to send in current vertex has the destination vertex Id then
5 continue

6 if edge.destination node satisfies all properties (1)-(4) then

7 add the destination id to sequences to send and copy it to edge data

In the distributed version of our algorithm, each vertex contains three pieces of meta-
data: its message table (Uj,t;);j=1...m, frequent flows ending at that vertex, and mes-
sages to forward to neighbors in the next iteration. Each edge acts as a channel that
carries the message from a source to a destination vertex. The message carried by each
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Algorithm 4. Apply
Input: icontext type: context, vertex type: current vertex, gather type:
incoming object
1 for each sequence in the incoming object.sequences do
2 Add sequence to the current vertex saved sequences list
3 Add sequence in to sequences to send array for scatter method to pick up

4 if (context.iteration <= max iterations) && (number of sequences to send in
current vertex > 0) then
5 schedule current vertex for next iteration

Algorithm 5. Gather

Input: icontext type: context, vertex type: current vertex, edge type: edge
Output: gather type: gathered obj
1 return received sequences from edge data

Algorithm 6. Gather Operator+=
Input: gather type: that
Output: gather type: ret obj
1 if this.incoming sequences has no sequence then
2 copy that.incoming sequences to this.incoming sequences
3 return this

4 else if that.incoming sequences has no sequence then

5 return that

¢ else

7 for each seq in that.incoming sequences do
8 this.incoming sequences.push back(seq)
9 return this

edge has a set of flow objects, where each flow object contains a flow sequence and
a set of word messages that support the sequence. Note that we do not need to carry
any temporal information along the edges, because it can be reconstructed at each ver-
tex based on the set of words that support the flow sequence. This approach provides
significant savings in time and space. We also optimize the computation by initializing
only the vertices that have message table of length at least f.

During the Scatter phase, each edge is invoked to scatter a message from source to
the destination vertex. Each source vertex does an advanced lookup of the destination
vertex message table, to verify the possibility of extending the flow by adding the des-
tination node. If any of the properties (1)-(4) fail, then the message is not scattered to
the destination. The pseudocode for the Scatter subroutine is listed in Algorithm 3.

In the Gather operation, each vertex is invoked to gather the messages from the
incoming edges. This step eventually appends all the incoming flows, one after the
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other, from different edges into a single incoming flow object containing several flow
sequences and corresponding word signals. In GraphLab the operator+= appends all
the sequences from each edge and the Gather function merely copies the reference
of data from each edge and passes it to the operator. The pseudocode for the Gather
subroutine and operator+= are provided in Algorithm 5 and Algorithm 6, respectively.

Each vertex during the apply phase saves the incoming sequences (from the Gather
operation) in its own frequent sequence table. As the Scatter phase does advance lookup
and scatters only valid sequences, the apply phase can save these sequences with no
additional validations. Each vertex then schedules itself for the next iteration, as there
could be potential extensions of recently added frequent flow sequences. Also, if one is
interested in sequences of length not more than L, then the vertex can stop scheduling,
if the current iteration number is greater than L. The pseudocode for the Apply routine
is listed in Algorithm 4.

The main advantage of the GraphLab framework is that it is a unified framework for
multi-core and distributed computation. Graphlab can use multiple cores on a single
multi-core server, and if that is not sufficient it can scale to multiple servers. There is
no additional coding or algorithmic changes required to switch from one infrastructure
to another. We refer to our parallel version of FLOWER as pFLOWER.

5 Experimental Results

We evaluate the efficiency of our algorithm in terms of runtime of the algorithm. The im-
plementation of the algorithm was done using C++ and the runtime was evaluated on a
Linux server with Ubuntu 10.04 OS, 24GB RAM, 24 cores with each running 2.67GHz
Intel Xeon processor. We used Graphlab version 2.1 [8] for our parallel pFLOWER
evaluation.

5.1 Data Sets

We used two data sets: the DataBase List of Publications (DBLP) and the US Patent
Office (USPTO) database. These data sets are described below in detail. We are inter-
ested in extracting the information flow patterns in the co-authorship network of both
these data sets. In DBLP, for instance, the “mining” keyword may propagate across
a sequence of authors forming an information flow path. We use all the words in the
abstract of the papers and patents to generate the messages. The time-stamp of the doc-
ument was used to generate the message time-stamp. The co-authorship network was
used as the underlying network of communication.

DBLP Data Set: We downloaded the publicly available DBLP data set?, and extracted
the year of publication, abstract and authors for each of the published documents. We
removed entities with multiple identities using the data available in the DBLP website
4 The cleaned data set had 444,406 authors and 1,572,277 papers. We stemmed the
words, removed stop words, and stripped off punctuations in the abstract. The resulting

3 http://arnetminer.org/citation
‘http://dblp.uni-trier.de/xml/
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dictionary was 600,718 words. All the publications were between the time-period of
1945 to 201 1. We used publication abstracts to generate the content tokens. The network
was constructed using the co-authorship relationship with 444,406 authors (nodes) and
1,280,168 edges.

US Patent Data Set: The United States (US) patent database is publicly available for
access from the US Patent Office (USPTO)>. We downloaded the following set of at-
tributes for all patents granted from June 21, 1977 to December 28, 1999: Patent Num-
ber, Granted Date, Abstract, Inventors, Assignee, Legal Representative, and Application
Number. After cleaning the data set of documents containing missing meta-information,
a total of 1,813,616 patents remained in the patent database. We used the patent abstract
to generate the content tokens. The co-authorship network for the US Patent database
contained 1,310,057 nodes and 2,444,474 edges.

5.2 Evaluation Approach

We measured the efficiency in terms of the running time of the algorithm. We evalu-
ate the scalability of the distributed approach by varying the number of cores used for
pFLOWER. We used the PrefixSpan® [17] sequence mining algorithm followed by post-
processing of the output sequences to apply the network and life-time properties. The
input to PrefixSpan is a set of transactions, where each transaction corresponds to a mes-
sage U; and the temporal order of the actors a; who propagated that message (as ordered
singleton itemsets). The output of PrefixSpan is a set of author sequences (correspond-
ing to information flow paths), except that they do not satisfy the network validity and
lifetime constraints. This is checked explicitly by using a constant time look-up table for
each author and message pair. The resulting output of PrefixSpan, after post-processing
yields the same output as our algorithm. Therefore, the running times of the methods
can be meaningfully compared. We also compared the running time of our sequential
version of the algorithm (FLOWER) against our parallel version (pFLOWER).

5.3 Results

We compared the running time of PrefixSpan, FLOWER and pFLOWER. However, in
Figure 2, we could not plot PrefixSpan running times as they were extremely large.
Therefore, we list the running times of PrefixSpan separately in Table 1. Furthermore,
we are unable to show the results for several values of f < 450, because PrefixSpan did
not complete within a day. On the other hand, as evident from Figure 2, both FLOWER
and pFLOWER completed in less than a couple of minutes over most parameter settings.

We compared the running times of FLOWER and pFLOWER algorithm, in Fig-
ures 2(a) and (b). As the number of words (f) required for the frequency property
(Property 3) decreases, the number of possible flow paths increases exponentially. The
FLOWER approach explores each of these paths sequentially, resulting in an exponen-
tial complexity with path length. On the other hand, the parallel algorithm pFLOWER

5 http://uspto.org/
6 http://www.cs.uiuc.edu/homes/hanj/software/prefixspan.htm
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Table 1. The running time (seconds) for the DBLP USPTO
PrefixSpan baseline for DBLP and USPTO f Runtime (secs.) f Runtime (secs.)

data sets. For an f value smaller than 450, 480 36185.52 470 20905.63
PrefixSpan ran for more than a day (>86400 540 16284.14 530 12311.91
seconds) and did not complete. ' '
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(a) DBLP runtime plot (b) USPTO runtime plot
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RUNTIME (SECS.)
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(c) DBLP scalability plot (d) USPTO scalability plot

Fig.2. The two plots in the fop row show the running time measurements for the DBLP and
USPTO dataset by varying f. The two plots in the bottom row show the scalability analysis for
the DBLP and USPTO data sets by varying the number of cores.

scales extremely well at very low f values and the running time remains extremely
small throughout the entire range of f values. The pFLOWER algorithm performs up to
three orders of magnitude faster than PrefixSpan, and two orders of magnitude faster
than FLOWER at low f values. These observations are consistent in both DBLP and
USPTO data sets as shown in Figures 2(a) and (b), respectively. These observations
also highlight the importance of a network-centric approach for computing information
flow paths.

We evaluated the scalability of the pFLOWER algorithm in terms of the number
of cores in Figures 2(c) and (d). The figure shows that the running time is roughly
inversely proportional to the number of cores used for computation. In other words,
linear speed-up is achieved in terms of the number of cores. It also demonstrates the
efficiency of vertex-centric computational models in scaling up scenarios where se-
quential approaches are computationally infeasible. In this case, 14 cores were suffi-
cient to complete the flow mining algorithm in less than a minute for low values of f,
whereas straightforward sequential approaches do not terminate in reasonable running
times (see Table 1). Thus, the proposed approach can be used to find information flows
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in networks with large number of activities and interactions, which may otherwise be
computationally intractable using a single core.

6 Influence Analysis: An Application

Information flow patterns are sequences of actors who propagate at least f messages
repeatedly preserving the temporal order in each propagation. These flow patterns de-
note the flow of influence along the network paths. The nature of influence depends
on the nature of underlying network relationship or interactions. In DBLP and USPTO
data set, we considered the co-authorship network and the nature of influence in these
data sets are through co-authorship interactions. For instance, a flow path (a, b, ¢) de-
notes a word w used by author a, followed by b, and then c. When a used the word
w because a and b have a co-authorship relationship, b may have been influenced by
the word w through a and propagated it further to its neighbors. Similarly, ¢ may have
been influenced from b and propagated the word w to its neighbors. In a sense, for the
example sequence, a is the leader and b and c are its followers. Similarly, b is the leader
of the sub-sequence (b, ¢) with c as its follower. For each actor, we can compute the
total number of followers (in this way) across all the flow patterns and we refer to this
as the (co-authorship) influence score of that actor in the (co-authorship) network. The
actor with the highest influence score in this DBLP or USPTO co-authorship network
denotes the most influential co-author.

One might argue that using centrality measures or popular influence mining algo-
rithms (such as PMIA [5], DegreeDiscountIC [6]) in a static co-authorship network
are sufficient to measure the influence. We evaluate this hypothesis by comparing the
influential co-authors found using the popular influence analysis algorithms such as
degree-centrality, PageRank, PMIA [5] and DegreeDiscountIC [6] against the influ-
encers found using the flow patterns. As the notion of influence has no absolute ground
truth (similar to intelligence or trust), we use the author citation counts as a proxy for
author influence. Here, we assume that an author has very high citation count if the
author has considerable influence in the area. We computed the precision-at-K (P@K),
precision-recall, and the Fj score for the top-500 influencers found by each method
(compared against the ground truth).

6.1 Evaluation Baselines

Let us now describe the baselines we used for evaluating our hypothesis. PMIA [5]
is the prefix excluded extension of Maximum Influence Arborescense model. We used
the weighted cascade model proposed in [9] to compute the edge probabilities for this
approach. The degree-centrality approach uses the maximum total out-degree and De-
greeDiscountIC [6] heuristic developed for the uniform IC [9] model with propagation
probability p = 0.01. For PageRank, the restart probability was set to 0.15 and the
stopping criterion, which is based on the L; norm difference between two successive
iterations, was set to 10~7. We use FLOWER to denote the influencers found using the
information flow-based approach.
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6.2 Evaluation Results

Our evaluation results are shown in Figure 3. The figure clearly shows that the order
of baselines are not consistent in both data sets. The first- or second-order centrality
measures might work in some data sets, while the information diffusion based method
might work in others. But the flow-based techniques (like FLOWER) capture the lead
authors whose ideas propagate dominantly and later gets picked up by other highly cited
authors, resulting in high precision and recall compared to baselines. Moreover, our ap-
proach works consistently well in both data sets. In Figures 3(a) and (d), the precision
gradually reduces as the top- K increases. This is because the number of authors in the
ground truth reduces significantly as K increases. However, our method does not sud-
denly drop unlike the baseline methods, such as PMIA. Our approach is very stable and
decreases gradually. As evident from Figures 3(b) and (e), the precision and recall of
our methods are considerably better than the baselines. In terms of the F} measure (see
Figures 3(c) and (f)), our approach performs better than baselines over all values of K.
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Fig. 3. The P@K, P-R and F; measure plots for DBLP and USPTO data sets

7 Conclusions

In this paper, we proposed an information flow mining problem with several desired
properties. We developed a sequential version of the algorithm and established that the
computational complexity of this problem is #P-complete. In order to scale for large
networks, we described a parallel algorithm using vertex-centric computational models.
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Our parallel algorithm provides three orders of magnitude scale up over the state-of-the-
art and with an increasing advantage with greater number of cores. Finally, we showed
the effectiveness of the discovered flow patterns using an influence analysis application.
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