Separating Rule Refinement and Rule Selection
Heuristics in Inductive Rule Learning

Julius Stecher, Frederik Janssen, and Johannes Fiirnkranz

Technische Universitit Darmstadt, Knowledge Engineering
jlstecher@gmail.com, {j anssen, juffi}@ke .tu-darmstadt.de

Abstract. Conventional rule learning algorithms use a single heuristic for eval-
uating both, rule refinements and rule selection. In this paper, we argue that these
two phases should be separated. Moreover, whereas rule selection proceeds in
a bottom-up specific-to-general direction, rule refinement typically operates top-
down. Hence, in this paper we propose that criteria for evaluating rule refinements
should reflect this by operating in an inverted coverage space. We motivate this
choice by examples, and show that a suitably adapted rule learning algorithm
outperforms its original counter-part on a large set of benchmark problems.

1 Introduction

Separate-and-conquer or covering rule learning algorithms [6,8] proceed by first learn-
ing a single rule (conquer) followed by the removal of all examples that are covered by
this rule (separate). The remaining examples are then used to learn the next rule (return
to the conquer step). For learning a rule, most algorithms use a top-down hill-climbing
search that starts with the universal rule covering all examples, and subsequently add
conditions that optimize a heuristic. Typical heuristics trade off consistency and cover-
age, i.e., they prefer rules that cover as few negative and as many positive examples as
possible [7,9].

Typically, such a heuristic is used in two different places in this process: (i) for judg-
ing rule refinements, i.e., to select which of the refinements of the current rule will be
further explored, and (ii) for rule selection, i.e., to finally decide which of the refine-
ments that have been explored is added to the rule set. In this paper, we argue that these
tasks should be treated separately, i.e., evaluated with separate heuristics. Moreover,
we argue that the rule refinement step in a top-down search requires inverted heuris-
tics, which evaluate rules from the point of view of the current base rule instead of the
empty rule. We will motivate this with an example, show the derivation of such inverted
heuristics in coverage space, and demonstrate empirically that they lead to improved
performance.

We start with a brief recapitulation of separate-and-conquer rule learning, heuristics
and coverage spaces (Section 2). In Section 3, we then motivate why rule refinement
and rule selection should be separated, and show how the commonly used heuristics
precision, Laplace, and m-estimate can be inverted to better reflect a top-down search
for refinements. We will also see that other heuristics, such as weighted relative ac-
curacy, are invariant to such inversions. Finally, in Section 4, we evaluate the use of
inverted heuristics for evaluating rule refinements experimentally on 20 UCI datasets.

T. Calders et al. (Eds.): ECML PKDD 2014, Part III, LNCS 8726, pp. 114-129, 2014.
(© Springer-Verlag Berlin Heidelberg 2014

Separating Rule Refinement and Rule Selection Heuristics in Inductive Rule Learning 115

Algorithm 1. Procedure Separate-And-Conquer

Data: TrainingData
Result: theory R

1 Start with empty theory R
2 while positive examples left in TrainingData do
3 Rule r = findBestRule(TrainingData)

4 if positiveCovered(r) < negativeCovered(r) then
5 break

6 R=RUr

7 remove all covered examples from TrainingData
8 return R

2 Separate-and-Conquer Rule Learning

In this section, we briefly recapitulate the necessary foundations for our contribution,
the separate-and-conquer rule learning algorithm (Section 2.1), coverage spaces (Sec-
tion 2.2), and rule learning heuristics (Section 2.3).

2.1 Algorithm

Most rule learning algorithms follow a so-called separate-and-conquer or covering strat-
egy to learn from P positive and N negative training examples. This algorithm proceeds
by learning one rule at a time, while removing all examples that are covered by each
rule from the dataset. This is repeated until no examples remain, i.e., until all examples
are covered, or until the best found rule covers more negative than positive examples.
Algorithm 8 shows the basic algorithm, as it has also been described in [6,8].

In contrast to algorithms producing an unordered rule set, we consider the learned
rule set as a decision list made up of an ordered list of rules. A decision list ends with a
default rule, which unconditionally applies the majority class label to any example that
is not covered by one of the previous rules in the list. At classification time, the ordered
rule list is checked from top to bottom, assigning to each example the class label of the
head of the first rule that matches the example.

For finding individual rules, we focus on the most commonly used top-down hill-
climbing strategy, which is shown in Algorithm 11. Whenever it needs to learn a new
rule the algorithm initializes it with the universal rule r', which covers all examples.
By adding conditions to this rule, the amount of covered examples will decrease with
each iteration, thereby increasing the consistency of the rule by focusing on removing
more negative examples than positive examples. How much consistency is gained de-
pends on the particular condition that is selected as a refinement of the rule in each
iteration. This choice depends on a heuristic function h, which is applied to all possible
rule refinements, choosing the refinement that scores best after applying the heuristic
to all refinements. It is easy to see that the importance of a good heuristic is vital for
learning a theory w.r.t. consistency and coverage as it is the only type of guidance the
rule learner can make use of during the training process.

116 J. Stecher, F. Janssen, and J. Fiirnkranz

Algorithm 2. Procedure findBestRule

Data: TrainingData
Result: best rule rpes:

Tpest = @
bestValue = heuristic(rpest)
repeat
get possible refinements
forall the refinements ref do
evaluation = heuristic(ref)

A N B W N

~

rr.f = best refined rule
8 if heuristic(r,.¢) > bestValue then
9 Tpest = Cref

10 until no refinements left;
11 return rp..;

2.2 Coverage Space

Coverage spaces have been introduced as a formal framework for analyzing and visu-
alizing the behavior of rule learning heuristics [7]. A coverage space plots the number
of covered positive examples (the frue positives p) over the number of covered neg-
ative examples (the false positives n), resulting in a rectangular plot with the values
{0,1,..., N} on the horizontal axis and {0, 1, ..., P} on the vertical axis. This princi-
ple can then be used to both plot entire theories consisting of an ordered rule list (the
decision list) as well as individual rules.

The following points of the coverage space are of special interest (cf. also Figure 1):

(0,0) is the empty theory. It does not cover any examples, neither positive nor nega-
tive ones. A bottom-up learning algorithm would start at this point and successively
add rules.

(0, P) is the perfect theory covering all positive, but no negative examples.

(N, 0) is the opposite theory covering all negative, but no positive examples.

(N, P) is the universal theory. It covers all examples regardless of their label.

P
3
Only positives covered ! A examples covered
1 { Coverage Space
No examples covered +, / Only negatives covered
", L/
0 et

1

Fig. 1. Coverage space visualization with P total positive examples and N total negative examples

Separating Rule Refinement and Rule Selection Heuristics in Inductive Rule Learning 117

o o

CSp (CSy [CS; CSs p - true

pi-a
R - ab.
R 3 P
p:—ab,.c.
Ry
p.:- false

o o

0 N 0 N

Fig. 2. Paths in coverage space for (left) the covering strategy of learning a rule set by adding one
rule at a time and (right) top-down specialization of a single rule

Fiirnkranz and Flach [7] have shown that learning a rule set one rule at a time may be
viewed as a path through coverage space, where each point on the path corresponds to
the addition of a rule to the theory. Figure 2 shows the coverage path for a theory with
three rules. Each point R; = U;Zl {r;} represents the rule set consisting of the first i
rules. Adding a rule moves the induced rule set to the next point R; 11 = R; U {r;11}.

Removing the covered (positive and negative) examples has the effect of switching
to a subspace of the original coverage space, using the last learned rule as the new
origin. Thus the path may also be viewed as a sequence of nested coverage spaces C'S;.
Each new rule is evaluated relative to the origin (0, 0) of this new coverage space. For
example, precision would pick the rule with the steepest ascent from the origin.

The commonly used top-down strategy for rule refinement, on the other hand, suc-
cessively specializes a rule by adding the most promising condition to the rule body. Just
as with adding rules to a rule set, successive rule refinements describe a path through
coverage space (Figure 2, right). However, in this case, the path starts at the upper right
corner with the universal rule r ", and successively proceeds towards the origin, which
corresponds to the empty ruler .

2.3 Rule Learning Heuristics

Any rule learning algorithm relies on some sort of measure to determine the quality of
a rule; this is done with the help of a heuristic function h. Most heuristics implement
a trade-off between consistency and coverage favoring rules that cover as many posi-
tive examples as possible (optimizing coverage) while keeping the amount of negative
examples covered small (optimizing consistency). Thus, the computed value depends
mostly on p (positive examples covered) and n (negative examples covered). Since for
some of the examined heuristics (e.g. the m-estimate as well as the modifications sug-
gested later) the values of P (total positive examples) and IV (total negative examples)
must be known, for most purposes a heuristic can be defined as a function

h:(p,n,P,N)—R

118 J. Stecher, F. Janssen, and J. Fiirnkranz

For the problem of selecting the best of multiple refinements of the same base rule,
the values P and N can be regarded as constant, so that the function may be written as
h(p,n) depending only on the true and false positives.! Such a formulation also allows
to visualize the behavior of these heuristics by plotting their isometrics in coverage
space [7]. Isometrics are lines in coverage space that connect points (n, p) that share
the same heuristic value h(p, n). Figure 3 shows examples of such isometric plots for
two heuristics discussed below.

For the experiments in this paper, we will focus on three common base heuristics
with slightly different but related properties:

Precision: hppec(p,n) = pfn
Precision prefers a rule ry to another rule rs if ry covers a larger percentage of positive
examples. Note that this does not take into account coverage — a rule covering one
positive and no negative examples will score the highest possible value, while a rule
covering all positive and one negative example will score slightly lower. Thus a theory
learned with the help of the precision heuristic is likely to overfit the training data with
a bad performance when generalizing to new or noisy data. This can also be seen from
its visualization in coverage space (Figure 3(a)), which shows that the isometrics of the
precision heuristic rotate around the origin (0, 0), and that therefore all points on the P
axis receive the same evaluation.
Laplace: hyqp(p,n) = priQ
The Laplace heuristic reduces some of the overfitting drawbacks (bad generalization) of
precision while following the same general intent of maximizing (mostly) consistency.
Starting the p and n counts at 1 instead of 0, the origin of the isometrics shifts to
(=1, —1). The effects of this change is that rules on the P-axis not sharing the same
value anymore. For example, if two rules r; and r, cover no negative examples, but ry
covers 2 positives while ro only covers 1, the resulting heuristic values are hlap(rl) =
0.75 and hyq,(re) = 0.66, whereas evaluating both rules with precision would have
yielded hypec(r1) = hprec(r2) = 1.0.
m-Estimate: hpest(p,n) = prmply

p+n+m
The m-estimate may be considered as a generalization of the Laplace heuristic. It fol-
lows the same idea, but features a parameter m that allows to shift the origin of the
rotation, which is fixed at (0, 0) for precision and at (—1, —1) for Laplace to any place
along the negative extension of the diagonal of the coverage space. Essentially, this has
the effect of initializing all coverage counts with m examples, which are distributed
according the overall distribution. For the special case m = 0, the m-estimate equals
precision, and for m — oo, it approximates weighted relative accuracy (WRA), which
means that its isometrics approach parallel lines with a slope of Pf n (the a priori

distribution).?> For the algorithm that we use in our experiments, an optimal value of

! Some heuristics also include additional parameters such as the length of the rule. However,
this is often implicitly captured (longer rules correlate with lower coverage), and adding them
does not necessarily yield increased performance [9].

2 WRA is defined as gj;;, (i — p f ~)» Which is equivalent to £, — . We will not further
consider it in this paper, for reasons that will be explained in Section 3.2.

Separating Rule Refinement and Rule Selection Heuristics in Inductive Rule Learning 119

P P: /.
&
1
7
i
7

-
-
e

,,,,,,

(a) precision (b) m-estimate

Fig. 3. Visualization of the isometrics of precision and the m-estimate

m = 22.466 has been determined experimentally [9], and we will be use this value in
our experiments as well. Figure 3(b) shows the isometrics for the m-estimate heuristic.
It can be clearly seen that the isometrics rotate around a point in the negative space,
which has the effect that points on the P-axis no longer receive the same evaluation.

3 Optimization via Modified Heuristics for Rule Refinement

In the standard separate-and-conquer implementation, we use the same heuristic func-
tion each time we want to evaluate an entire rule or a refinement of a rule to determine
the current best rule and the best refinement w.r.t. the goals of the heuristic (usually cov-
erage and consistency). The approach highlighted in this paper modifies this standard
algorithm to use different heuristics for rule selection and rule refinement. In particular,
we will propose to separate these two phases and show how to adapt the three heuristics
mentioned above for top-down rule refinement.

3.1 Motivation

As we have seen in Section 2.2, top-down hill-climbing takes a path through coverage
space, starting from the universal rule in its upper-right corner. Common rule learn-
ing algorithms evaluate each of the rules encountered on this path with a heuristic in
the same coverage space. For example, precision would evaluate two candidate rules
according to the steepest ascent from the origin, as it would do with rule selection.
However, we argue that this evaluation is, in a way, irrelevant because, while it selects
the best complete rule that can currently be added to the rule set, it does not select the
best candidate for further refinement.

This illustrated in an example dataset with four binary attributes and a binary class
attribute shown in Figure 4(a). The corresponding coverage statistics of all possible re-
finements are listed in Figure 4(b) and plotted in coverage space in Figure 4(c). Accord-
ing to precision h,,,¢., the refinement a = 0 is clearly the best choice, as is illustrated in
Figure 4(d), whereas the refinement ¢ = 1 would only be the third choice. However, we

J. Stecher, F. Janssen, and J. Fiirnkranz

120
abcdclass abcdclass condition p n condition p n
0111 + 0110 + a=0 41 a=1 14
0111 + 0011 + b=0 23 b=1 32
0010 — 1110 — c=0 02 c¢c=1 53
1110 — 1011 + d=0 13 d=1 42
1001 — 1001 —
(a) Example dataset (b) Possible refinements
P Ye=1 | o p— bard P
a—o": d ’/’ { 2)
- @ @ (‘i) @/"' - >
a_o ; /:) !
@ '," j'/@ ™ @
® A &
® o A e e ‘® @
- e —
0 N O N O N
(e) ¢ = 1is a better choice

(d) Precision selects a = 0

as best refinement from a top-down view

(c) Possible refinements

in coverage space
pn condition pn

condition pn condition pn condition
a=0Ab=011 a=0Ab=130 c=1Na=041 c=1Na=113
c=1Ab=032 c=1Ab=122

a=0ANc=000 a=0Ac=141
a=0ANd=011 a=0Ad=130 c=1Nd=014 c=1Ad=140
(f) refinements for a = 0 (g) refinements for c = 1

Fig. 4. Example dataset with refinements

argue that ¢ = 1 is a better choice for a refinement, because it covers more positive
and negative examples and can thus be still refined into a rule that may be better than
the first refinement. As the refinement ¢ = 0 already has lost one positive example,
further refinements will never cover 5 positive examples as is theoretically still possible
when ¢ = 1 is chosen. However, this choice can be obtained if we use a precision-
like heuristic, whose isometrics do not rotate around the origin, but rotate around the
base rule, as sown in the right part of Figure 4(e). Indeed, as can be seen from the
further possible refinements of these two rules shown in Figures 4(f) and 4(g), the best
refinement from the choice a = 0 is a rule that covers 3 positive and no negative
examples (both b = 1 and d = 1 can be selected in this case). On the other hand, the
precision-like heuristic whose isometrics rotate around the best rule, would end up in
the final rule ¢ = 1 A d = 1, which covers 4 positive and no negative examples. This
rule is preferable to the previous ones but could not be found with the conventional

application of precision.
In the next section, we will derive top-down versions of heuristics that correspond to

precision, Laplace, and the m-estimate.

Separating Rule Refinement and Rule Selection Heuristics in Inductive Rule Learning 121

Y i 3 i 4=
g i] -
1

]
At
7
i
4 1}

y
i
¥
[
!
4 /
I}
i
f

0 T N O

(a) inverted precision (b) inverted m-estimate

Fig. 5. Visualization of the isometrics of the top-down versions of precision and the m-estimate

3.2 Adaptation of Heuristics to Top-Down Rule Refinement

Note that the three base heuristics (hprec, hjqp and hy,eq) all share similar isometrics,
with the only difference being the origin (in the latter case, the location of the origin
can be configured via the parameter m). As motivated in the previous section, we want
to preserve this attribute, but shift the origin to the top right corner of the coverage
space. The intention of this is that in our case the rule refiner follows the top-down
strategy (starting off with the most general rule and successively adding conditions).
We have to take into account that the values of P and N are not constant this time
w.r.t. the heuristic function, but depend on the predecessor of the rule. This is because
for our approach to work, we will want the origin of the isometrics to be placed at the
point in coverage space corresponding to the base rule we want to refine, which will
produce nested coverage spaces, and subsequently evaluate the refinements within the
base rule’s nested coverage space.

Figure 5 illustrates the intended behavior for the cases of precision and m-estimate.
Instead of a rotation around the origin as in their original versions depicted in Figure 3,
we aim for a rotation around the base rule, which is located in (N, P). Moreover, we
also have to swap the positive and negative axes: While the best refinements starting
from the origin lie on the P-axis, the best refinements starting from (N, P) lie on the
N-axis of the coverage space. More precisely, we have to modify the heuristic in a way
so that it holds that

y(p,n) =h(N —n, P —p) (1)

where 7 is the inverted or top-down heuristic in the coverage space with dimensions
P and N, whereas h is the original heuristic, but in a coverage space with swapped
dimensions NV and P.

For the three heuristics discussed in Section 2.3, it is straight-forward to see that we
obtain the following expressions:

122 J. Stecher, F. Janssen, and J. Fiirnkranz

— Inverted Precision. qmec(p7 n) = (P+ 1{;\7):?“@
— Inverted Laplace: I{lap(p7 n) = (pH{;V):’(LLln,z)

. N—n+m- P-I:N
— Inverted m-Estimate: Uppest (Ps 1) = (P+N)—(ptn—m)

Note, however, that some heuristics are insensitive to the difference between top-
down refinement and bottom-up selection. For example, weighted relative accuracy
(WRA) is a heuristic that is frequently used in subgroup discovery [11,13] and has
isometrics that are parallel to the diagonal of the coverage space. It is thus equivalent to
the simple difference of true positive rate and false negative rate [7]

p N
hrdiﬁ(pa TL) = P - N
The corresponding top-down version would be
N—-n P-p
Urdift (p? ’ﬂ) = N - P

Obviously 1,4, is equivalent to h,q; because of

T o L (B I (R A R S e

This is also apparent from the isometric structure, which does not change if one switches
from a bottom-up version with base (0,0) to a top-down version with base (N, P).
However, while frequently used in subgroup discovery, WRA has been shown to over-
generalize in a predictive setting [16,9]. We will thus not consider it further in this

paper.

3.3 Integration into the Learning Algorithm

One could now think that the new heuristics could be directly plugged into the top-
down refinement algorithm of Algorithm 11. However, it is easy to see that this would
not yield the desired results. For example, continuing the example of Figure 4, the
algorithm would select ¢ = 1 as the final refinement for ..., since all rules covering
all positive examples share the same (maximal) heuristic value of 1.0, irrespective of the
amount of negative examples they cover. The rule ¢ = 1Ad = 1, which covers almost all
positive examples but not negative examples, would receive a worse evaluation than its
predecessor. Thus, y,,,... and to a lesser extent v, ,,,, are not well-suited for rule selection
because rules with high coverage are still preferred by these heuristics, whereas the
rule learning process is not steered towards learning a consistent theory. In fact, in
preliminary experiments which just replaced the heuristics h, with their counter-parts
Y, so that the latter was used for both rule selection and rule refinement, the resulting
classifiers were sometimes unable to label any new testing example correctly.

Thus, we would like to maintain the conventional heuristics for rule selection, and
need to adapt the learning algorithm so that it can use separate heuristics for rule selec-
tion and for rule refinement. To realize this, we need to adapt top-down hill-climbing so
that different heuristics can be used for rule refinement and rule selection, as marked in
the comments of the pseudo-code of Algorithm 11. Algorithm 11 shows the resulting
algorithm; lines 2, 6 and 8 have changed.

Separating Rule Refinement and Rule Selection Heuristics in Inductive Rule Learning 123

Algorithm 3. Procedure findBestRule

Data: TrainingData
Result: best rule rpes:

Tpest = @
bestValue = selection heuristic(rpest)
repeat
get possible refinements
forall the refinements ref do
evaluation = refinement heuristic(ref)

A N B W N

~

rr.f = best refinement
3 if selection heuristic(r,.s) > bestValue then
9 Tpest = Cref

10 until no refinements left;
11 return rp..;

4 Experiments

In our experimental evaluation, we intend to answer the question whether the proposed
separation of rule selection and rule refinement heuristics does indeed yield an improved
performance over the standard technique that uses the same heuristic for both tasks.

4.1 Experimental Setup

For our experiments, we use the top-down hill-climbing algorithm implemented in the
SECO-library [10] that has also been used in [9]. This is a simple and straight-forward
rule learner that solely relies on heuristic rule evaluation to learn a classifier that gen-
eralizes well to new data. In particular, no additional procedures, such as pruning or
rule optimization, are used to avoid overfitting on the training data. Multiple classes are
handled using an ordered one-against-all strategy, as originally proposed for the RIPPER
rule learning algorithm [3].

We modified the algorithm as described in Section 3.3, so that it allows for separate
criteria for rule selection and rule refinement. We can thus denote an algorithm by a pair
(hselections Nrefinement)- FoOr the experiments we use each of the three standard heuris-
tics for rule selection, and evaluate it with four different heuristics for rule refinement,
yielding a total of 3 + 3 x 3 = 12 different algorithms. The four heuristics for rule
refinement are to use the same heuristic as for rule selection (yielding a standard rule
learning algorithm), and to use each of the three inverted heuristics.

For all experiments with hy,cs¢ and ,,, ., we used a value of m = 22.446 which has
been experimentally determined in [9] for the same learning algorithm that forms the
basis of our experiments. Thus, this setting is optimized for the use of the m-estimate
for guiding both rule selection and refinement. It is most likely a suboptimal value for
U,,.s;- HOowever, our main purpose in this paper was not to achieve optimal perfor-
mance, but to investigate the general properties of different top-down rule refinement
heuristics. As we have discussed in Section 2.3 the m-estimate provides a trade-off

124 J. Stecher, F. Janssen, and J. Fiirnkranz

Table 1. Number of classes (C'), examples (F), and attributes(A) of the 20 datasets used in the
experiments

Dataset C E A Dataset C FE A
breast-cancer 2 286 10 car 41728 17
futebol 2 14 5 contact-lenses 3 24 5
hepatitis 2 155 20 glass 7 214 10
hypothyroid 2 3163 26 idh 3 295
horse-colic 2 368 23 iris 3 150 5
ionosphere 2 351 35 lymphography 4 148 19
labor 2 57 17 primary-tumor 22 339 18
mushroom 2 8124 23 monk3 2 122 7
soybean 19 683 36 tic-tac-toe 2 958 10
vote 2 43517 zoo 7 101 18

Critical Distance

9 8 7 [} 5 4

L 1 . | o 1 4 |
(hprec shprec) _(h/ap 3 l‘llap)
(hlap !hlap) - - (hprec s qlap)
(hmest:hmesf) (hmest, ulap)
(Nmest, Yprec) (hiap Mprec)
(hprec Mmest) (hprec suprec)
(hmest,"’mest) e —
(hlap ,"Imest)

Fig. 6. Nemenyi Test with a significance level of 0.1

between precision and weighted relative accuracy, where larger values of m approach
the behavior of WRA, which is insensitive to inversion. In this sense, the m-estimate
with m = 22.446 nicely complements precision and Laplace in that it is much closer to
WRA than the others.

We will evaluate the twelve combinations listed above on 20 datasets by the means
of estimated average accuracy. The evaluation method is ten-fold cross-validation to
reduce bias and increase the quality of the resulting performance estimate. As can be
seen from Table 1, the chosen datasets range from very small datasets (where we feel
that good selection heuristics are particularly important) to datasets with several thou-
sand examples. For checking for statistical differences we use Friedman rank tests with
a post-hoc Nemenyi test, as recommended by [4].

4.2 Comparison of Average Accuracies

Table 2 shows the detailed results with respect to accuracy. There are three main columns,
each corresponding to one of the three rule selection strategies hyyec, higp, and hp,eq;.
Each of them has four subcolumns, each corresponding to a rule refinement strategy.
The left-most is the standard strategy, and the three others are all three inverted strate-
gies Uy,,.cc Upgp»> and Uy, .o, The best results in each line and each group are underlined.

Separating Rule Refinement and Rule Selection Heuristics in Inductive Rule Learning 125

Table 2. Average accuracies obtained via ten-fold cross-validation on 20 datasets. The best result
for each rule selection heuristic is underlined. The bottom line shows the average rank of each

rule refinement strategy for each rule selection heuristic.

Dataset
breast-cancer
car
contact-lenses
futebol

(hpre(:7) (hlap7)
hp’”ec qprec L[lap qmest hlal’ qprec IIlap qmest
68.53 72.38 72.03 73.43 69.58 70.63 71.33 72.73
90.10 90.34 90.51 88.66 90.45 91.20 91.73 91.20
79.17 87.50 87.50 83.33 79.17 87.50 87.50 83.33
28.57 64.29 57.14 42.88 28.57 64.29 57.14 42.88

(hmesh)
hmest Uprec Uiap Umest
71.33 72.03 72.38 73.78
89.64 90.45 90.28 87.91
87.50 87.50 87.50 83.33
50.00 64.29 57.14 42.86

glass 56.54 65.89 68.69 62.15 61.22 65.89 68.69 62.15 69.16 67.29 71.50 63.55
hepatitis 78.07 79.36 80.00 76.77 78.71 79.36 80.00 76.74 78.07 79.36 80.00 76.77
hypothyroid ~ 98.23 98.61 98.74 98.83 98.39 98.61 98.74 98.83 98.80 98.61 98.74 98.83
horse-colic ~ 72.01 79.35 79.35 77.99 70.65 79.35 80.16 77.99 77.45 79.35 78.80 77.99
idh 62.07 82.76 75.86 75.86 62.07 82.76 75.86 75.86 68.97 82.76 75.86 75.86
iris 92.67 93.33 95.33 94.67 94.00 93.33 95.33 94.67 94.00 93.33 95.33 94.67
ionosphere 95.16 82.62 83.19 89.46 94.87 82.62 93.19 89.46 91.74 82.91 83.19 91.17
labor 91.23 80.70 82.46 89.47 91.23 80.70 82.46 89.47 85.97 80.70 82.46 89.47
lymphography 83.78 77.70 84.46 83.11 85.14 77.70 84.46 83.11 75.00 76.35 81.08 83.78
mushroom 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
monk3 87.71 82.79 82.79 84.43 88.53 85.25 84.43 86.89 81.15 79.51 81.15 82.79
primary-tumor 33.63 39.23 35.10 30.97 32.45 39.23 35.99 30.38 33.92 37.76 34.51 30.68
soybean 90.04 91.51 92.24 91.36 90.34 91.80 92.39 90.63 91.51 90.92 90.48 91.36
tic-tac-toe 97.39 98.02 97.60 97.81 97.60 98.02 97.60 97.91 98.12 98.02 97.60 97.81
vote 94.94 93.56 94.25 94.48 95.40 94.25 94.25 94.94 93.33 93.56 94.71 96.09
700 84.16 88.12 92.08 90.01 86.14 88.12 92.08 90.10 89.11 88.12 92.08 90.10

average rank

3.075 2.400 1.975 2.550 3.000 2.500 1.975 2.525

2.700 2.625 2.225 2.450

Not surprisingly, we can see that each of the combinations works best in some
cases, and that the differences can be quite large in some cases (mostly for rather small
datasets). In order to get a better overall impression, we show the average ranks within
each group in the last line of the table. This gives a fairly consistent picture in that the
standard strategy always performs worst, i.e., on average all three inverted rule refine-
ment heuristics perform better than the case where rule refinements are evaluated with
the same heuristic as rule refinements. Thus, our expectation that top-down refinement
heuristics work better than conventional heuristics has been confirmed.

The results are also consistent in that the inverted Laplace-heuristic always performs
best for all rule selection strategies, whereas the m-estimate and precision are about
equal on ranks 2 and 3. We can also see that the differences between the methods are
much smaller for the m-estimate than for the others. In fact, a Friedman test reveals
that the results within the hy,... rule selection group are statistically significant at a 5%
level, the results within the h;,;, group at the 10% level, whereas the results in the m-
estimate are only weakly different. However, this is not surprising, because as we noted
above, for larger values of m, the behavior of the m-estimate approaches the behavior of
WRA, which is insensitive to inversion. Thus, with increasing values of m, the results
must become more and more similar to each other.

126 J. Stecher, F. Janssen, and J. Fiirnkranz

Table 3. Comparison of the number of rules (R) and conditions (L) for regular and inverted
Laplace heuristics

(hiap; hiap) (hiap, hgap) (hiap; hiap) (hiap, h;ap)
Dataset R L R L Dataset R L R L
breast-cancer 25 67 38 173 ionosphere 17 25 8 42
car 107 495 107 506 labor 5 7 3 12
contact-lenses 5 14 5 15 lymphography 18 42 11 47
futebol 4 7 2 5 monk3 13 38 11 32
glass 50 103 14 83 mushroom 11 13 7 35
hepatitis 13 26 7 46 primary-tumor 80 319 72 518
horse-colic 44 114 19 111 soybean 62 134 45 195
hypothyroid 27 65 9 69 tic-tac-toe 22 84 16 69
iris 7 15 5 17 vote 13 48 12 58
idh 4 5 2 5 Z00 19 19 6 14
averages 27.3 82.020.0 102.6

4.3 Validation and Algorithm Comparison

Overall, the combination (h;ap, 1;,,) outperforms other combinations on seven datasets
(namely car, contact-lenses, hepatitis, horse-colic, iris, soybean and zoo). As such, this
combination in particular becomes interesting for further validation. We will now con-
duct statistical tests to try and prove the assumption that the combination (hyap, 1;,,,) is
superior w.r.t. accuracy.

Using N = 20 datasets with £k = 12 algorithms, we obtain a chi-square value of
19.792 and a corresponding Fr statistic of 1.878. The corresponding critical value
based on a significance level of 0.05 with 11 and 209 degrees of freedom is 1.834, result-
ing in a passed Friedman test (failure at level 0.01). The ranks of the algorithms as well
as the critical distance for the post-hoc Nemenyi test are shown in Figure 6. Although
the results only show that the combination (hyap, 1y,,) is significantly better than the
algorithm (hyyec, hprec), which is known to overfit the data, it is still remarkable that all
combinations that involve an inverted heuristic are higher-ranked than all three original
heuristics, including (hy,est, hinest), Which was one of the best-performing algorithms
in a previous study [9].

4.4 Number of Rules and Conditions

Using inverted heuristics also has an effect on the nature of conditions that are selected.
In short, whereas regular heuristics focus mostly on consistency, inverted heuristics
tend to add conditions that maintain completeness. For example, if at any point, both
heuristics are faced with the choice of adding an incomplete but consistent rule r; (a
point on the P-axis) and a complete but inconsistent rule ry (a point (P, n) for some
value 0 < n < N), regular precision would give a maximum evaluation of hy,e.(r1) =
1.0 to ry, whereas inverted precision gives a maximum score {,,...(r2) = 1.0 to ra.
This has the effect that inverted heuristics bias the learner towards conditions that do
not add additional discriminative power (but are nevertheless informative).

Separating Rule Refinement and Rule Selection Heuristics in Inductive Rule Learning 127

2160 p :- odor = f.
1152 p :- gill-color = b.
256 p :- odor = p.
192 p :- odor = c.
72 p :- spore-print-color = r.
36 p :- stalk-color-below-ring = c.
24 p :- stalk-color-below-ring = y.
4 p :- cap-surface = g.
1 p :- cap-shape = c.
16 p :- stalk-color-below-ring = n, stalk-surface-above-ring = k.
3 p :- habitat = 1, stalk-color-below-ring = w.
(a) using hy,), for refinement
2192 p :- veil-color = w, gill-spacing = ¢, bruises? = f, ring-number = o,
stalk-surface-above-ring = k.
864 p :- veil-color = w, gill-spacing = ¢, gill-size = n, population = v,
stalk-shape = t.
336 p :- stalk-color-below-ring = w, ring-type = p, stalk-color-above-ring = w,
ring-number = o, cap-surface = s, stalk-root = b, gill-spacing = c.
264 p :- stalk-surface-below-ring = s, stalk-surface-above-ring = s,
ring-type=p, stalk-shape=e, veil-color=w, gill-size=n, bruises?=t.
144 p :- stalk-shape = e, stalk-root = b, stalk-color-below-ring = w,
ring-number = o.
72 p :- stalk-shape = e, gill-spacing = ¢, veil-color = w, gill-size = b,
spore-print-color = r.
44 p :- stalk-surface-below-ring = y, stalk-root = c.

(b) using y,,, for refinement

Fig. 7. Decision lists learned for the class poisonous in the mushroom dataset, along with the
number of positive examples covered by each rule (no rule covers any negative examples)

In practical terms, inverted heuristics tend to learn longer rules, which will never-
theless, somewhat counter-intuitively, have a higher coverage than those learned with
regular heuristics. As an illustration, Table 3 compares the number of rules and condi-
tions induced with h;,,, to those induced with ylap, the latter being the the configuration
that achieved the best results in our experiments. On 17 out of 20 datasets the inverted
version learns a lower number of rules, on two an equal number of rules, and only on
one dataset a higher number of rules, which clearly confirms that the learned rules on
average tend to have a higher coverage. Moreover, on 13 datasets 1, has a higher
number of conditions, on one dataset it is equal and on 6 the number is smaller, which
confirms that the rules learned by inverted heuristics tend to be longer. Both findings
are also confirmed by the averages shown in the last line of Table 3.

Note, however, that this does not necessarily reduces the comprehensibility of the
learned rules. In a way, in the terminology of Michalski [14], inverted heuristics tend to
find characteristic descriptions, whereas standard heuristics tend to find discriminative
descriptions. As an illustration, Figure 7 shows the rule sets learned for the mushroom
dataset. Both rule sets cover all 3196 examples of poisonous mushrooms. However,
while the first rule set, learned with a traditional heuristic, focuses on single charac-
teristics such as the odor of the mushroom, the second rule set contains much more
descriptive rules. Interestingly, the used attributes are quite different (e.g., odor does
not appear at all in the latter rule set). Another interesting observation is that the former
rule set contains some rules with only very low coverage: the last six rules all cover
fewer examples than the last rule of the rule set learned with the inverted heuristic. One
reason for this is that because the previous rules are somewhat less general, they also

128 J. Stecher, F. Janssen, and J. Fiirnkranz

leave more examples to be classified for subsequent rules. For example, the last rule of
Figure 7 (b) still classifies 44 examples, whereas a similar rule that consisting only of
the first condition has only 24 examples left to classifier in Figure 7 (a).

We are not expert enough to judge the plausibility of the rules of Figure 7, but in
general, we think that more detailed rules can be more convincing and are certainly
no less comprehensible than the general discriminative rules. In fact, we think that this
property of inverted heuristics is also of particular interest to subgroup discovery [12],
although we leave this as subject for future work.

5 Conclusions and Open Questions

In this paper, we made two contributions to heuristic inductive rule learning. First, we
argued that it may be beneficial to separate the evaluation of candidates for rule re-
finement and the selection of rules for the final theory. Accordingly, we suggest to use
different criteria for both. Second, we showed that conventional precision-based heuris-
tics can be inverted in the sense that they do not evaluate candidate refinements from
the point of view of the origin of the coverage space, but from the point of view of their
predecessor rule in a top-down search. Our experiments showed that the use of such
inverted heuristics for evaluating rule refinements leads to better results than the use of
the original versions. Interestingly, inverted heuristics also have the tendency to learn
rule sets with longer but fewer rules.

Our results are so far confined to top-down covering rule learning algorithms. While
we do not expect that bottom-up algorithms would profit from inverted heuristics, which
reflect a top-down search strategy, it remains an open question whether other top-down
algorithms may benefit from their use. In particular, the fact that inverted heuristics tend
to learn longer, characteristic rules may be of interest for subgroup discovery.

We have also only considered precision-like heuristics in this work, mainly because
the m-estimate has delivered a state-of-the-art performance in a large comparative study
[9], so that it seemed a natural point of departure for our experiments. While we have
shown that other linear heuristics such as WRA, which is popular in subgroup discov-
ery, cannot be inverted, we still need to look at heuristics with non-linear isometrics.
In particular, the proposed separation of rule refinement and rule selection criteria is
also closely related to the use of pruning criteria, which filter out unpromising rules. It
remains to be seen whether conventional rule pruning criteria, such as the significance
test of CN2 [2,1] may also be used favorably as rule selection criteria. Furthermore, we
also deliberately refrained from optimizing the m-parameter of the inverted heuristics
in any way because we wanted to avoid to obtain good results for the inverted heuristics
that are only due to an extensive search for optimal parameter values. However, such an
evaluation is planned as the next step in our work.

Finally, we note that the use of precision for rule selection may be viewed as a sim-
ple, greedy maximization of the area under the ROC curve (AUC) [7]. The inverted
precision heuristic introduced in this paper may be viewed as a counter-part that maxi-
mizes the AUC for individual rules. Interestingly, in preliminary experiments we could

Separating Rule Refinement and Rule Selection Heuristics in Inductive Rule Learning 129

not demonstrate that improving the AUC maximization for individual rules also leads
to a better AUC for the entire theory. However, this needs a deeper investigation and
needs to be put into perspective with alternative approaches to maximize the AUC in
inductive rule learning [15,5].

Acknowledgements. The authors would like to thank the anonymous reviewers for
their comments, which helped to improve this paper.

References

1.

10.

11.

13.

14.

15.

16.

Clark, P., Boswell, R.: Rule induction with CN2: Some recent improvements. In: Proceed-
ings of the 5th European Working Session on Learning (EWSL 1991), Porto, Portugal,
pp- 151-163. Springer, Heidelberg (1991)

. Clark, P., Niblett, T.: The CN2 induction algorithm. Machine Learning 3(4), 261-283 (1989)
. Cohen, W.W.: Fast effective rule induction. In: Prieditis, A., Russell, S. (eds.) Proceedings of

the 12th International Conference on Machine Learning, Tahoe City, CA, July 9-12, vol. 123,
pp- 115-123. Morgan Kaufmann (1995)

. Demsar, J.: Statistical comparisons of classifiers over multiple data sets. Journal of Machine

Learning Research 7, 1-30 (2006)

. Fawcett, T.E.: PRIE: A system for generating rulelists to maximize ROC performance. Data

Mining and Knowledge Discovery 17(2), 207-224 (2008)

. Fiirnkranz, J.: Separate-and-conquer rule learning. Artificial Intelligence Review 13(1), 3-54

(1999)

. Fiirnkranz, J., Flach, P.A.: ROC ‘n’ rule learning — Towards a better understanding of cover-

ing algorithms. Machine Learning 58(1), 39-77 (2005)

. Fiirnkranz, J., Gamberger, D., Lavra¢, N.: Foundations of Rule Learning. Springer, Heidel-

berg (2012)

. Janssen, F., Fiirnkranz, J.: On the quest for optimal rule learning heuristics. Machine Learn-

ing 78(3), 343-379 (2010)

Janssen, F., Zopf, M.: The SeCo-framework for rule learning. In: Proceedings of the German
Workshop on Lernen, Wissen, Adaptivitit - LWA (2012)

Klosgen, W.: Explora: A multipattern and multistrategy discovery assistant. In: Fayyad,
U.M., Piatetsky-Shapiro, G., Smyth, P., Uthurusamy, R. (eds.) Advances in Knowledge Dis-
covery and Data Mining, pp. 249-271. AAAI Press (1996)

. Kralj Novak, P., Lavra¢, N., Webb, G.I.: Supervised descriptive rule discovery: A unifying

survey of contrast set, emerging pattern and subgroup mining. Journal of Machine Learning
Research 10, 377-403 (2009)

Lavrag, N., Kavsek, B., Flach, P., Todorovski, L.: Subgroup discovery with CN2-SD. Journal
of Machine Learning Research 5, 153-188 (2004)

Michalski, R.S.: A theory and methodology of inductive learning. Artificial Intelli-
gence 20(2), 111-162 (1983)

Prati, R.C., Flach, P.A.: Roccer: An algorithm for rule learning based on ROC analysis. In:
Kaelbling, L.P., Saffiotti, A. (eds.) Proceedings of the 19th International Joint Conference on
Artificial Intelligence (IJCAI 2005), Edinburgh, Scotland, pp. 823—828. Professional Book
Center (2005)

Todorovski, L., Flach, P.A., Lavra¢, N.: Predictive performance of weighted relative accu-
racy. In: Zighed, D.A., Komorowski, J., Zytkow, J.M. (eds.) PKDD 2000. LNCS (LNAI),
vol. 1910, pp. 255-264. Springer, Heidelberg (2000)

	Separating Rule Refinement and Rule Selection Heuristics in Inductive Rule Learning
	1 Introduction
	2 Separate-and-Conquer Rule Learning
	2.1 Algorithm
	2.2 Coverage Space
	2.3 Rule Learning Heuristics

	3 Optimization via Modified Heuristics for Rule Refinement
	3.1 Motivation
	3.2 Adaptation of Heuristics to Top-Down Rule Refinement
	3.3 Integration into the Learning Algorithm

	4 Experiments
	4.1 Experimental Setup
	4.2 Comparison of Average Accuracies
	4.3 Validation and Algorithm Comparison
	4.4 Number of Rules and Conditions

	5 Conclusions and Open Questions
	References

