Code You Are Happy to Paste: An Algorithmic
Dictionary of Exponential Families

Olivier Schwander

Département Signal et Systémes Electroniques (SSE),
Laboratoire des Signaux et Systémes (L2S),
CNRS-SUPELEC-PARIS SUD, France

olivier.schwander@supelec.fr

Abstract. We describe a library and a companion website designed to
ease the usage of exponential families in various programming languages.
Implementation of mathematical formulas in computer programs is often
error-prone, difficult to debug and difficult to read afterwards. Moreover,
this implementation is heavily dependent of the programming language
used and often needs an important knowledge of the idioms of the lan-
guage. In our system, formulas are described in a high-level language and
mechanically exported to the chosen target language and a I¥TEX export
allows to quickly review correctness of formulas. Although our system is
not limited by design to exponential families, we focus on this kind of
formulas since they are of great interest for machine learning and sta-
tistical modeling applications. Besides, exponential families are a good
usecase of our dictionary: among other usages, they may be used with
generic algorithms for mixture models such as Bregman Soft Clustering,
in which case lots of formulas from the canonical decomposition of the
family need to be implemented. We thus illustrate our library by gener-
ating code which can be plugged into generic Expectation-Maximization
schemes written in multiple languages.

1 Introduction

Except rare theoretical breakthroughs, machine learning research often needs
to be validated with experiments and implementations in some programming
language (common languages for this use are typically Matlab, Python, R, C,
C++ or even Fortran). This implementation step goes through the translation
of the mathematical formulas appearing in the new method into computer code.
Although one may expect this translation to be straightforward, it usually needs
some non trivial knowledge about the used language: the syntax for creating
matrices and vectors and the syntax to access elements; the mathematical op-
erators and common functions (like sqrt, exp, sin); the name of mathematical
constants; the availability of special mathematical functions (like I', erf, etc);
the various headers needed to enable access to the previous features (#include,
import, etc); and finally the options to give to the compiler or the interpreter
(to locate libraries and files).

T. Calders et al. (Eds.): ECML PKDD 2014, Part III, LNCS 8726, pp. 51-65, 2014.
(© Springer-Verlag Berlin Heidelberg 2014

52 O. Schwander

Although the general structure of any implementation seems to be similar,
a lot of small differences appear between languages. We can study these subtle
differences by looking at the implementation of the probability density function
of the Gaussian distribution in three different languages: Python (Fig. 1), Mat-
lab (Fig. 2) and C (Fig. 3). Since these three versions come from the reference
libraries for numerical computation, they are supposed to be idiomatic and re-
spectful of the usages of each language. We notice the square is made with three
different syntax: ** in Python, ~ in Matlab and u*u (where u is a temporary
variable holding the quantity to square) in C. We can also remark the various
needs regarding the headers: various import for sqrt, exp and pi in Python,
nothing in Matlab and one include in C for sqrt, exp, M_PI and fabs (the use
of an absolute value around the standard deviation is rather surprising here, but
this is beyond the scope of our study).

7 import math
24 from numpy import exp
28 from numpy import pi
2112 _norm_pdf_C = math.sqrt(2*pi)
2116 def _norm_pdf (x):
2117 return exp(-x**2/2.0) / _norm_pdf_C

Fig. 1. Gaussian in Python (extract from the file scipy/stats/distributions.py from
the library Scipy 0.13.3)

30 function pdf = stdnormal_pdf (x)
40 pdf = (2 * pi)~(- 1/2) * exp (- x .~ 2/ 2);
42 endfunction

Fig.2. Gaussian in Matlab (extract from the file scripts/statistics/
distributions/normpdf.m from Octave 3.8.1 since the Matlab sources are not
available; some lines which check parameters are removed)

This language-specific knowledge is often not problematic at first glance since
one tends to use a well-known language for the first experiments of a new method
but may become a problem if some parts need to be rewritten in another lan-
guage for performance reasons or to collaborate with other people using other
languages. It also renders more difficult the path between a first research pro-
totype and a real-scale application. Finally, and perhaps more importantly, the
source code implementing the formula is often difficult to read: for the original
programmer, bugs and mistakes are harder to find and for a newcomer want-
ing to study the implementation, the code is barely understandable and nearly
impossible to use in another application without a lot of work.

An Algorithmic Dictionary of Exponential Families 53

22 #include <math.h>

118 double

119 gsl_ran_gaussian_pdf (const double x, const double sigma)

120 {

121 double u = x / fabs (sigma);

122 double p = (1 / (sqrt (2 * M_PI) * fabs (sigma))) * exp (-u * u / 2);
123 return p;

124 }

Fig. 3. Gaussian in C (extract from the file randist/gauss.c from the Gnu Scientific
Library (GSL) 1.16)

The library introduced in this paper allows to describe mathematical formulas
in a programming language-agnostic way: the work of translating formulas into a
computer-understandable implementation only needs to be made once, facilitat-
ing the choice of the most well-suited programming language. A first prototype
may be exported to Python and then to C in order to work on a large real life
dataset. Another researcher may generate Matlab code and then plug the for-
mula into its own code base. And an engineer in a company may just take the C
export and use it for an industrial application or the company may also design
its own exporter backend to generate code suited to proprietary internal tools.
Since the description language is not really more readable than a programming
language, a IATEX export is provided, allowing to easily proofread the formula.
This library is aimed at any people who may want to use mathematical formulas
inside computer code and can be used at hand with copy-pasting or in a more
clean way by integrating it in a build process.

Beside the library itself, we also present Code-Formula, a web application
demonstrating our library, which is designed both for educational purpose and
to offer an encyclopedia of mathematical functions which can be picked-up when
one needs an out-of-the-box implementation of a mathematical formula. This
website is inspired by other online dictionaries of mathematical objects, like the
Online Encyclopedia of Integer Sequences [8], the Digital Library of Mathemat-
ical Functions [5] or the Dynamic Dictionary of Mathematical Functions [2], but
to the best of our knowledge, it is the first one focusing on the algorithmic side
instead of mathematical properties.

Although the previous remarks can apply to a wide variety of formulas from
mathematical science, computer science, physics or engineering fields, we chose
to limit ourselves to a dictionary of exponential families for some reasons: first,
it is better at first sight to limit the goals of the project to a reasonable set
of objects; second, exponential families are widely used in a large variety of
fields, including, but not limited to, machine learning; last, and perhaps most
importantly, in the recent years, a lot of work has been devoted to the design of
generic algorithms for mixtures of exponential families, where the precise family
is a parameter of the algorithm, and a few implementations have been worked-
on, in Java (jMEF [4]), in Python (pyMEF [7]), in C (libmef [6]) or even in R.

54 O. Schwander

Each of these implementations has been confronted to the same kind of work:
translating formulas into code. We hope that using our library and website, the
implementation of such libraries may be done in a semi-automatic way.

This article in organized as follows: after this introduction detailing motivation
and goals of the project, the architecture of the library is described. Then, a few
examples of exponential families described using our library are given along the
utilization of exported code to plug into a generic Expectation-Maximization
method for mixture of exponential families. Finally, the website containing the
encyclopedia itself is described.

2 Architecture

2.1 General view

The general architecture of the system is described in Fig. 4: mathematical
formulas are described in a high-level frontend, then processed by the code of
the library and finally passed to the backends which are in charge of generating
programming code. Currently, the language used in the fronted is the same as
for the library itself, that is OCaml (but very little knowledge of this language
is needed to effectively write formulas). This choice has been made for facility
reasons, avoiding the need of writing a parser for a domain specific language
and because OCaml, although not well-known in the machine learning field, is
well suited for this kind of task. Although a ITEX frontend may look appealing,
this is not feasible for two reasons: first a I#TEX parser is nearly impossible to
write, even for the subset of the language expressing the mathematical formulas;
second IATEX formulas carry very few semantic, since the language is designed
for display, not for computation.

The core part of the library provides a set of tools to manipulate the formulas,
like changing the names of variables inside a formula but in the future other
frontends may be added. So far, four backends are available: Python, Matlab,
C and KBTEX, the later allowing to easily proofread formulas and to use them
directly in publications or documentation.

The source code of this library, called Formula, can be browsed online
on http://hub.darcs.net/oschwand/formula and downloaded on the web-
page related to this article: http://www.lix.polytechnique.fr/~schwander/
ecml2014/.

2.2 Frontend

The frontend is responsible for the translation between a human-understandable
description of the formula into a data structure representing the formula which
can be passed to export backends. If we stick to the example given in the intro-
duction, that is, the probability density function of the Gaussian distribution

1 (¢ —p)*
f(o,,u,x) = \/27T02 exp (02’“’ > (1)

http://hub.darcs.net/oschwand/formula
http://www.lix.polytechnique.fr/~schwander/ecml2014/
http://www.lix.polytechnique.fr/~schwander/ecml2014/

An Algorithmic Dictionary of Exponential Families 55

Frontends Backends

Matlab
export

input
C export

|
|
|
|
|
|
|
|
:
OCaml l Core
|
|
|
|
|
|
|
|
|
|
|

Fig. 4. General architecture of Code you are Happy to Paste

the steps will be the following: first describe the formulain OCaml (Fig. 5) and then
compile the description which will be represented as an abstract syntax tree (Fig.
6; for brevity, it is simply a centered and normalized Gaussian). In addition to the
formula itself, each description embeds its own documentation, with a description
of the formula and with names and properties for the variables used inside.

In the description in Fig. 5, we build a function (line 2) called f, described as
Gaussian PDF (line 3), taking three arguments (o, i and x, line 4) and returning a
real number (line 5). After this header, we define three variables (lines 7, 8 and 9),
each of them bearing a name and if necessary a documentation and a mathematical
property (which is used only for documentation purposes). Finally, the formula
itself is described, using a straightforward syntax similar to the one used in many
languages (the Syntax keyword means the mathematical operators work on nodes
of the syntax tree instead of numbers and the ! are used to convert numbers into
nodes).

2.3 Backends

Four backends are available so far, trying to cover various use-cases of scientific
computing. In each case, the goal is to produce idiomatic code with as less
differences as possible as with handmade code.

Latex The INTEX output does not need more comments since most of the formulas
in this document have been generated using our library. A particular attention
has been paid to generate nice looking formula, especially by minimizing the
number of parentheses.

56

© 00N O U WN -

10
11
12
13

Fig. 6. Tree representing a centered and normalized Gaussian PDF (u

O. Schwander

let gaussian =
Func.def "f"

“doc:"Gaussian PDF"
"args:["\\sigma"; u\\mun; "X"]

“return:Real
Syntax. (
let x =
let sigma =

let mu =

real "x" in

real “doc:"standard deviation" “prop:'"positive"
"\\sigma" in

real ~“doc:"mean" "\\mu" in

11 / (sqrt (!2 * pi * sigma ** 12)) *
exp (- ((x - mu) **x !2 / sigma ** 12))

Fig. 5. Description of the Gaussian distribution

//X\exp
N |

/\ /\
N

=0,0=1)

An Algorithmic Dictionary of Exponential Families 57

Python The Python backend outputs code relying on the library numpy which
is the standard for scientific computing in Python. This library provides basic
mathematical functions along with powerful vectors and matrices operations.

Python.def “doc:true gaussian

def f(sigma, mu, x):
""" Gaussian PDF

x: (real)
\sigma: standard deviation (real, positive)
\mu: mean (real)

return 1 / numpy.sqrt(2 * numpy.pi * sigma*x2) * \
numpy.exp(- (x - mu)**2 / sigmax*x*2)

Matlab The Matlab backend generates code using only built-in functions of
Matlab.

Matlab.def “doc:true gaussian

% Gaussian PDF

h

% x: (real)

% \sigma: standard deviation (real, positive)
% \mu: mean (real)

function f(sigma, mu, x)
1 / sqrt(2 * pi * sigma~2) * exp(- (x - mu)~2 / sigma~2)
end

C The C backend is a little more subtle. First, the C language requires explicit
typing indications in the code: thus we need to do the translation between real
numbers (on the description side) into double (on the C side), and the same for
integers and int.

C.def "doc:true gaussian

/* Gaussian PDF

x: (real)
\sigma: standard deviation (real, positive)
\mu: mean (real)
*/
double f(double sigma, double mu, double x) {
return 1 / sqrt(2 * M_PI * pow(sigma, 2)) * \
exp(- pow(x - mu, 2) / pow(sigma, 2));

58 O. Schwander

The Gaussian PDF is too simple to highlight the others subtleties of this
backend, we thus add another example, estimating the mean of a set of values.
For a straightforward mean function

|X]

mean (X |X\ Z X; (2)

described by

let mean =
Func.def "mean"

“args: ["X"]

“return:Real

Syntax. (
let x = var "X" (Vector Real) in
11 / (length x) * sum x

)

we get the following C code:

double mean(gsl_vector* X) {
double tmpl =
for(unsigned int i=0; i<X->size; i++)
tmpl += gsl_vector_get(X, i);

return 1 / (X->size) * tmpl;

}

First, we made the choice to rely on the Gnu Scientific Library (GSL) for all
vectors and matrices operations: in addition to the data structures themselves we
get also common mathematical operations on vectors and matrices, simplifying
the generated code. Second, since GSL does not provide any function to sum
the elements, we need to rewrite the formula to replace the > operation by a
temporary variable which is populated using a for loop.

3 Exponential Families

In order to present the content of our encyclopedia, we give a quick recall on ex-
ponential families before showing examples of formula descriptions and exported
code.

3.1 Definition

Exponential families are an ubiquitous class of distributions and many widely
used distributions belong to this class.

An Algorithmic Dictionary of Exponential Families 59

An exponential family is a set of distributions whose probability mass or
probability density functions admit the following canonical decomposition:

p(x;0) = exp((t(z),0) — F(0) + k(x)) 3)
with

— t(x) the sufficient statistic,

— 0 the natural parameters,

— (-,-) the inner product,

— F the log-normalizer, which is strictly convex and differentiable,
— k(z) the carrier measure.

Since this log-normalizer F' is a strictly convex and differentiable function, it
admits a dual representation, the convex conjugate F'*, by the Legendre-Fenchel
transform:

Fr(n) = Sup {(6,m) — F(0)} (4)

We get the maximum for § = (VF) ™" (1)) and F* can be computed with:

F*(n) = (n,(VF)"" (n)) = F(VF) ™" (n)) (5)

Many generic information-geometric algorithms (like Bregman Hard Cluster-
ing or Bregman Soft Clustering [1]) rely on the knowledge of this decomposition
and thus the implementation of these algorithms require to translate these for-
mulas into computer code. Translating these formulas from a language-agnostic
description allows to factorize the effort and is less error-prone than ad-hoc man-
ual work.

3.2 Examples

We describe here the full canonical decomposition of two exponential fam-
ilies, the Gaussian distribution and the Laplace law. For brevity, we only
give the description of each formula and the KETEX export. The reader
can find all the source code related to this article on the webpage
http://www.lix.polytechnique.fr/~schwander/ecm12014/. The same con-
tent can also be retrieved in the website described in Section 4.

Gaussian distribution This is the opportunity to introduce new syntactic fea-
tures: functions can take real vectors as arguments and return them using the
type Vector Real. Inside the formula, elements of the vector can be accessed
using the @ operator (like theta@0).

http://www.lix.polytechnique.fr/~schwander/ecml2014/

60 O. Schwander

let £ =
Func.def "F"
“doc:"Log-normalizer"
“args: ["\\theta"]
“return:Real
Syntax. (
let theta = var “doc:"natural parameter"
“prop:"dimension 2" "\\theta" (Vector Real)
in
- (11 / 14 = ((theta@0) ** !2 / (theta@l))) +
11 / 12 % log(- (pi / (theta®@l1)))

162 1 7
F(O)=— 0 1 —
@) =49, 12 og(91) (6)
let gradF =

Func.def "\\nabla F"
“doc:"Gradient log normalizer"
“args: ["\\theta"]
“return: (Vector Real)
Syntax. (
let theta = var “doc:"natural parameter"
“prop:"dimension 2" "\\theta" (Vector Real)

in
vector [

- (theta@0) / (!'2 * (theta®@l));

- 11/ (12 * (theta@l)) +

(theta@0) ** 12 / (!4 * (theta@l) *x !12);
]
)
VE() = —o -1, % (7)
S\ 201720, 462
let g =

Func.def "F~\\star"

“doc:"Dual log-normalizer"

“args: ["\\eta"]

“return:Real

Syntax. (
let eta = var “doc:"expectation parameter"

“prop:"dimension 2" "\\eta" (Vector Real)

in

An Algorithmic Dictionary of Exponential Families 61

- (11 / 12) * log((eta@0) ** !2 - (eta@l))
)

P () =~ log (3 —m) (®)

let t =
Func.def "t"

“doc:"Sufficient statistic"

“args: ["x"]

“return: (Vector Real)

Syntax. (
let x = real “doc:"observation" "x" in
vector [x; x *x 12]

)

t(z) = (x,xz) 9)

Laplace distribution Since the Laplace distribution is of order 1 (with only one
scalar parameter), the descriptions are much simpler since we do not need to
deal with vectors.

let pdf =
Func.def "f"
“doc:"Centered Laplace PDF"
“args: ["\\sigma"; "x"]
“return:Mathset.Real
Syntax. (
let x = real "x" in
let sigma = real “doc:"standard deviation" “prop:'"positive"
"\\sigma" in
'1 / (12 * sigma) *
exp (- (abs x) / sigma)

)
1 — |z
= 1
o) =y e (717) (10)
let £ =
Func.def "F"

“doc:"Centered Laplace log-normalizer"
“args: ["\\theta"]
“return:Mathset.Real

62 O. Schwander

Syntax. (
let theta = real ~“doc:"natural parameter" "\\theta" in
log (- !2 / theta)

)

-2

F(0)=log (11)

let grad_f =
Func.def "\\nabla F"
“doc:"Centered Laplace gradient log-normalizer"
“args: ["\\theta"]
“return:Mathset.Real

Syntax. (
let theta = real ~“doc:"natural parameter" "\\theta" in
- 11 / theta
)
-1
VE0) =, (12)
let g =

Func.def "\\nabla F~\\star"
“doc:"Centered Laplace dual log-normalizer"
“args: ["\\eta"]
“return:Mathset.Real

Syntax. (
let eta = real ~doc:"expectation parameter" "\\eta" in
- log eta
)
VE*(n) = —logn (13)
let grad_g =

Func.def "\\nabla F~\\star"
“doc:"Centered Laplace dual log-normalizer"
“args: ["\\eta"]
“return:Mathset.Real
Syntax. (
let eta = real “doc:"expectation parameter" "\\eta" in
- 11/ eta

An Algorithmic Dictionary of Exponential Families 63

3.3 Mixture Models

In order to learn mixtures of exponential families, we use an Expectation-
Maximization (EM) instance [3] called Bregman Soft Clustering
[1], allowing to pass the family as an argument of the algorithm. As usual, this
is an iterative algorithm where two steps are repeated until convergence of the
log-likelihood of the mixture: expectation step and maximization step. See [4]
for more details about the exponential family version of these two steps.

FEzxpectation step

wi exp (F* () + (t(zt) — 03, VE* (1))

Sy wyexp (F*(ny) + (t(xe) =y, VF* (7))
Mazimization step
| X
Wi = ZP(ﬂ%ﬂ?) (16)
t=1

o a p(ilze, n)
i Z t(xt) (17)

N .
t=1 thl p(7’|xt7 77)

Currently, theses two steps need to be implemented by hand in each target
language since our description language is not expressive enough to manipulate
functions inside the formula (we would need to pass F*, VF*, t as arguments
to the function, or let them as free variable). Nonetheless, as soon as these steps
are implemented, with a while loop around to iterate, it can be plugged after
the automatically generated formulas, forming a full EM iterative scheme.

4 Website

The Code-Formula website (accessible through http://www.lix.
polytechnique.fr/"schwander/codeformula) is designed to spread knowl-
edge about the exponential families. Following the ideas introduced by precursor
online dictionaries of mathematical objects, we think the online format is way
more suitable for this kind of content than static documents.

Each page on the site (see the screenshot Fig. 7) shows a card about an
exponential family, with a list of formulas related to the family. Each formula
is presented first with a rendered version of the the latex output followed by
exports in the supported languages.

The goal is to become the reference about decomposition of exponential fam-
ilies, serving to diffuse knowledge, demonstrating our description library but
also as a direct source for picking-up pre-made implementations of formulas of
interest, for researchers and companies.

http://www.lix.polytechnique.fr/~schwander/codeformula
http://www.lix.polytechnique.fr/~schwander/codeformula

64 O. Schwander

Code-formula code you are happy to paste

Home Search List About
Beta

Exponential family / Gaussian distribution

Gausslan distribution as an expanential family.

Log-normalizer

@ natural parameter (real vector, dimension 2)

Python Matlab B Latex

double F(gsl_vector* theta) {
return - 1 / 4 * (pow(gsl_vector_get(theta, 8), 2) / gsl_vector_get(theta, 1)) + 1 / 2 * log(- N_PI / gsl_vector_get(theta, 1));
}

Gradient log normalizer
(-8 1 6
6 natural parameter (real vector, dimension 2)

Python | | C Latex

function nablaF(theta)
{- theta(l) / 2 * theta(2), - 1/ 2 * theta(2) + theta(1)A2 / 4 * theta(2)"2}
end

Fig. 7. Gaussian page on Code-Formula, the online encyclopedia of exponential families

5 Conclusion

We presented Formula, a library to describe mathematical formulas and to au-
tomatically generate code implementing these formulas, and Code-Formula, a
website showing an online dictionary of exponential families. Both are aimed
at reducing the time between chalk board work to real implementation of an
algorithm. This is obviously useful for research purposes, easing the first im-
plementation of a new method and also easing a re-implementation of a work
by other researchers, but this may also be useful for students or for companies
seeking to build a real-world implementation of a method.

There are a lot of perspectives which are under work: on the website side,
enlarge the content (contributions are obviously welcomed); on the library side,
it should be interesting to be able to generate the headers needed to execute
the generated code along with necessary compilation flags; it may also be inter-
esting to render the description language expressive enough to directly describe
formulas using other functions (to be able to write the update rule of the EM
algorithm for example). On the short term, new export backends are under work,
like R and Julia.

Acknowledgments. The author would like to thank Frank Nielsen for the in-
sightful discussions about dictionaries of information geometric objects, in par-

An Algorithmic Dictionary of Exponential Families 65

ticular for distances and distributions, and James Regis for providing hosting at
the LIX laboratory.

References

1. Banerjee, A., Merugu, S., Dhillon, I.S., Ghosh, J.: Clustering with Bregman diver-
gences. The Journal of Machine Learning Research 6, 1705-1749 (2005)

2. Benoit, A., Chyzak, F., Darrasse, A., Gerhold, S., Mezzarobba, M., Salvy, B.: The
Dynamic Dictionary of Mathematical Functions (DDMF). In: Fukuda, K., van der
Hoeven, J., Joswig, M., Takayama, N. (eds.) ICMS 2010. LNCS, vol. 6327, pp. 35-41.
Springer, Heidelberg (2010)

3. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete
data via the EM algorithm. Journal of the Royal Statistical Society. Series B
(Methodological), 1-38 (1977)

4. Nielsen, F., Garcia, V.: Statistical exponential families: A digest with flash cards.
CoRR 09114863 (2009)

5. Olver, F.W.J., Lozier, D.W., Boisvert, R.F., Clark, C.W. (eds.): NIST Digital Li-
brary of Mathematical Functions, http://dlmf .nist.gov/

6. Schwander, O., Nielsen, F.: Fast learning of gamma mixture models with A&MLE.
In: Hancock, E., Pelillo, M. (eds.) SIMBAD 2013. LNCS, vol. 7953, pp. 235-249.
Springer, Heidelberg (2013)

7. Schwander, O., Nielsen, F.: PyMEF — A framework for exponential families in
Python. In: 2011 IEEE Statistical Signal Processing Workshop (SSP), pp. 669-672
(2011)

8. Neil Sloane. The On-Line Encyclopedia of Integer Sequences, http://oeis.org/

http://dlmf.nist.gov/
http://oeis.org/

	Code You Are Happy to Paste: An Algorithmic Dictionary of Exponential Families
	1 Introduction
	2 Architecture
	2.1 General view
	2.2 Frontend
	2.3 Backends

	3 Exponential Families
	3.1 Definition
	3.2 Examples
	3.3 Mixture Models

	4 Website
	5 Conclusion
	References

