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Abstract. The L1-regularized support vector machine (SVM) is a pow-
erful predictive learning model that can generate sparse solutions. Com-
pared to a dense solution, a sparse solution is usually more interoperable
and more effective for removing noise and preserving signals. The L1-
regularized SVM has been successfully applied in numerous applications
to solve problems from text mining, bioinformatics, and image process-
ing. The regularization parameter has a significant impact on the perfor-
mance of an L1-regularized SVMmodel. Therefore, model selection needs
to be performed to choose a good regularization parameter. In model
selection, one needs to learn a solution path using a set of predefined
parameter values. Therefore, many L1-regularized SVM models need to
be fitted, which is usually very time consuming. This paper proposes a
novel safe screening technique to accelerate model selection for the L1-
regularized L2-SVM, which can lead to much better efficiency in many
scenarios. The technique can successfully identify most inactive features
in an optimal solution of the L1-regularized L2-SVM model and remove
them before training. To achieve safe screening, the technique solves a
minimization problem for each feature on a convex set that is formed by
the intersection of a tight n-dimensional hyperball and the upper half-
space. An efficient algorithm is designed to solve the problem based on
zero-finding. Every feature that is removed by the proposed technique
is guaranteed to have zero weight in the optimal solution. Therefore, an
L1-regularized L2-SVM solver achieves exactly the same result by using
only the selected features as when it uses the full feature set. Empiri-
cal study on high-dimensional benchmark data sets produced promising
results and demonstrated the effectiveness of the proposed technique.

Keywords: Screening, sparse support vector machine, model selection.

1 Introduction

Feature selection is an effective technique for dimensionality reduction and rele-
vance detection [1]. The L1-regularized support vector machine (SVM) is a pow-
erful feature selection algorithm [3, 4, 5, 6] that is in the embedded model [2]. It
can simultaneously fit a model by margin maximization and remove noisy fea-
tures by soft-thresholding. It has been successfully applied to solve many prob-
lems in text mining, bioinformatics, and image processing. The L1-regularized
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SVM enjoys two major advantages compared to other variances of sparse SVM
models [7, 8, 9]: first, it solves a convex problem; therefore, an optimal solution
can always be obtained without any relaxation of the original problem. Second,
it is efficient. A well-implemented L1-regularized SVM solver can readily handle
problems that have tens of millions samples and features [6].

The value of the regularization parameter λ has a significant impact on the
performance of an L1-regularized SVM model. Model selection can be used to
select a good parameter value. During model selection, a series of L1-regularized
SVM models need to be fit for a set of predefined regularization parameter
values. The best regularization parameter value can be chosen by using a pre-
specified criterion, such as the accuracy or the area under the curve (AUC) that
is achieved by the resulting models on holdout samples. When data are huge,
the computational cost of model selection can be prohibitive. Assume that k
regularization parameter values, λ1 > λ2 > . . . > λk, need to be tried in a model
selection process. It is easy to see that this process can be greatly accelerated
if the solution obtained for λi can be used to speed up the computation of the
solution for λi+1. Based on this idea, highly efficient screening techniques are
recently proposed for Lasso [10] to accelerate its model selection. The key idea
is that, given a solution w∗

1 for λ = λ1, many features that have zero coefficients
in w∗

2 when λ = λ2 can be identified. By removing these “inactive” features, the
cost for computing w∗

2 can be significantly reduced. Although effective screen-
ing algorithms have been designed for Lasso [11, 12, 13, 14, 15], research into
screening for the L1-regularized SVM is largely untouched.

In this paper, a novel screening technique is proposed to speed up model
selection for an L1-regularized L2-SVM.1 The technique makes use of the vari-
ational inequality [16] and the nonnegative constraint on the dual variables of
the L1-regularized L2-SVM model for constructing a tight convex set, which can
be used to compute bounds for screening features. A prescreening strategy and
a fast zero-finding algorithm are designed and implemented to ensure the effi-
ciency of the screening process. Features that are removed by the technique are
guaranteed to be inactive in the optimal solution. Therefore, the screening tech-
nique is “safe,” because an L1-regularized L2-SVM solver can achieve exactly
the same result when it uses the features selected by the technique as when it
uses the full feature set. To the best knowledge of the authors, this is the first
screening technique that is proposed for accelerating the speed of model selection
for the L1-regularized L2-SVM. Empirical study on five high-dimensional bench-
mark data sets produced promising results and demonstrated that the proposed
screening technique can greatly speed up model selection for an L1-regularized
L2-SVM by efficiently removing a large number of inactive features.

1 Our ongoing work will extend the technique proposed in this paper to screen features
for the L1-regularized L1-SVM.
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2 L1-Regularized L2-SVM

Assume that X ∈ IRm×n is a data set that contains n samples, X = (x1, . . . ,xn),

and m features, X =
(
f�1 , . . . , f�m

)�
. Assume also that y = (y1, . . . , yn) contains

n class labels, yi ∈ {−1,+1}, i = 1, . . . , n. Let w ∈ IRm be the m-dimensional
weight vector, let ξi ≥ 0, i = 1, . . . , n be the n slack variables, and let b ∈ IR and
λ ∈ IR+ be the bias and the regularization parameter, respectively. The primal
form of the L1-regularized L2-SVM is defined as:

min
ξ,w

1

2

n∑

i=1

ξ2i + λ||w||1, (1)

s.t. yi
(
w�xi + b

)
≥ 1− ξi, ξi ≥ 0.

Eq. (1) specifies a convex problem that has a non-smooth L1 regularizer, which
enforces that the solution is sparse. Let w�(λ) be the optimal solution of Eq. (1)
for a given λ. All the features that have nonzero values in w�(λ) are called
active features, and the other features are called inactive. Let α ∈ IRn be the n-
dimensional dual variable. By applying the Lagrangian multiplier [17], the dual
of the problem defined in Eq. (1) can be obtained as:

min
α

‖α− 1‖22 , (2)

s.t. ‖f̂�j α‖ ≤ λ, j = 1, . . . ,m,

n∑

i=1

αiyi = 0, α � 0.

Here, f̂ = Yf , and Y = diag(y) is a diagonal matrix. By defining α = λθ,
Eq. (2) can be reformulated as:

min
θ

||θ − 1

λ
||22 , (3)

s.t. ‖f̂�j θ‖ ≤ 1, j = 1, . . . ,m,

n∑

i=1

θiyi = 0, θ � 0.

In the primal formulation for the L1-regularized L2-SVM, the primal variables
are b,w, and ξ. And in the dual formulation, the dual variables are α or θ. When
b and w are known, ξ, α, and θ can be obtained as:

ξi = αi = λθi = max
(
0, 1− yi

(
w�xi + b

))
. (4)

The relation between θ and w can be expressed as:

θ�f̂j =
{
sign (wj), if wj �= 0
[−1,+1], if wj = 0

, j = 1, . . . ,m. (5)

λmax is defined as the smallest λ value that leads to w = 0 when it is used in
Eq. (1). Given a data set (X,y), λmax can be obtained in a closed form as:

λmax =

∥
∥
∥
∥
∥

n∑

i=1

(
yi −

n+ − n−
n

)
xi

∥
∥
∥
∥
∥
∞

, (6)
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where n+ and n− denote the number of positive and negative samples, respec-
tively. And when λ ≥ λmax, the optimal solution of the problem defined in
Eq. (1) can be written as:

w� = 0, b� =
(n+ − n−)

n
. (7)

Denote m =
∑n

i=1

(
yi − n+−n−

n

)
xi. The first feature to enter the model is the

one that corresponds to the element that has the largest magnitude in m.

3 Safe Screening for L1-Regularized L2-SVM

Eq. (5) shows that the necessary condition for a feature f to be active in an

optimal solution is |θ�f̂ | = 1. On the other hand, for any feature f , if |θ�f̂ | < 1,
it must be inactive in the optimal solution. Given a λ value, this condition can
be used to develop a rule for screening inactive features to speed up training for
the L1-regularized L2-SVM. The key is to compute the upper bound of |θ�f̂ | for
features. A feature can be safely removed if its upper bound value is less than 1.
The cost of computing the upper bounds can be much lower than training L1-
regularized L2-SVM. Therefore, screening can greatly lower the computational
cost by removing many inactive features before training.

To bound the value of |θ�f̂ |, it is necessary to construct a closed convex set K
that contains θ. The upper bound value can be then computed by maximizing
|θ�f̂ | over K, which defines a convex problem with a unique solution.

3.1 Constructing the Convex Set K

Given λ1, . . . , λk, k models need to be trained for model selection. Let θi be
the solution that corresponds to λi, this section shows that θi can be used to
construct a convex set that contains θi+1 for bounding the value of |θ�

i+1 f̂ |. When
λi is close to λi+1, this convex set can be very tight.

Assume that θ� is the optimal solution of Eq. (3) and t ≥ 0. It is easy to
verify that θ� is also the optimal solution of the following problem:

min
θ

∥
∥
∥
∥θ −

(
t
1

λ
+ (1− t)θ�

)∥∥
∥
∥

2

2

, (8)

s.t. ‖f̂�j θ‖ ≤ 1, j = 1, . . . ,m,

n∑

i=1

θiyi = 0, θ � 0.

In the following, Eq. (8) and the variational inequality [16] are used to con-

struct a closed convex set K to bound |θ�f̂ |. Proposition 1 introduces the vari-
ational inequality for a convex optimization problem.
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Proposition 1. Let θ� be an optimal solution of a convex problem:

min g(θ), s.t. θ ∈ K,

where g is continuously differentiable and K is closed and convex. Then the
following variational inequality holds:

∇g (θ�)� (θ − θ�) ≥ 0, ∀θ ∈ K.

Let θ1 and θ2 be the optimal solutions of the problem defined in Eq. (3) and
Eq. (8) for λ1 and λ2, respectively. Assume that λ1 > λ2 and that θ1 is known2.
The following results can be obtained by applying Proposition 1 to the problem
defined in Eq. (8) for θ1 and θ2, respectively:

(
θ1 −

(
t1

1

λ1
+ (1− t1) θ1

))�
(θ − θ1) ≥ 0, (9)

(
θ2 −

(
t2

1

λ2
+ (1− t2)θ2

))�
(θ − θ2) ≥ 0. (10)

Let t = t1
t2

≥ 0. By substituting θ = θ2 and θ = θ1 into Eq. (9) and Eq. (10),
respectively, and then combining the two inequalities, it leads to:

Bt =
{
θ2 : (θ2 − c)

�
(θ2 − c) ≤ l2

}
, (11)

c =
1

2

(
tθ1 − t

1

λ1
+

1

λ2
+ θ1

)
, l =

1

2

∥
∥
∥
∥tθ1 − t

1

λ1
+

1

λ2
− θ1

∥
∥
∥
∥
2

.

As the value of t changes from 0 to ∞, Eq. (11) generates a series of hyperballs
that contains θ2. The following theorem studies when the radius of the hyperball
generated by Eq. (11) reaches its minimum:

Theorem 1. Let a =
1
λ1

−θ1
∥
∥
∥

1
λ1

−θ1

∥
∥
∥
2

. The radius of the hyperball generated by

Eq. (11) reaches it minimum when

t = 1 +

(
1

λ2
− 1

λ1

)
a�1∥

∥
∥ 1
λ1

− θ1

∥
∥
∥
2

. (12)

Let c be the center of the ball and l be the radius. When the minimum is reached,
they can be computed as:

c =
1

2

(
1

λ2
− 1

λ1

)
Pa (1) + θ1, l =

1

2

(
1

λ2
− 1

λ1

)
‖Pa (1)‖ . (13)

Here, Pu (v) = v− v�u
‖u‖22

u is an operator that projects v to the null-space of u.

Since ‖a‖2 = 1, Pa (1) = 1−
(
a�1

)
a.

2 When λ1 = λmax, w = 0 and θ1 is given in Eq. (4).
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Proof. The theorem can be proved by minimizing the r defined in Eq. (11).

�

Theorem 1 suggests that when t = 1 +
(

1
λ2

− 1
λ1

)
a�1

∥∥
∥ 1
λ1

− θ1

∥∥
∥
2

−1

, the

volume of Bt is minimized, which forms a good basis for constructing K. The
nonnegative constraint on the dual variable confines θ in the upper half-space:
θ � 0, and can be used to further reduce the volume of K:

K =

{

θ : (θ − c)
�
(θ − c) ≤ l2, θ � 0

}

, (14)

c =
1

2

(
1

λ2
− 1

λ1

)
Pa (1) + θ1, l =

1

2

(
1

λ2
− 1

λ1

)
‖Pa (1)‖ .

3.2 Computing the Upper Bound

Given the convex set K defined in Eq. (14), the maximum value of
∣
∣
∣θ�

2 f̂
∣
∣
∣ can be

computed by solving the problem:

max
∣
∣
∣θ�f̂

∣
∣
∣, s.t. (θ − c)

�
(θ − c) ≤ l2, θ � 0. (15)

Since the following equation holds:

max |x| = max {−min(x),max(x)} = max {−min(x),−min(−x)} .

The computation of max
∣
∣
∣θ�f̂

∣
∣
∣ can be decomposed to the following two subprob-

lems: m1 = −minθ�f̂ , m2 = −minθ�(−f̂). And max
∣
∣
∣θ�f̂

∣
∣
∣ = max (m1,m2).

This suggests that the key to bound
∣
∣∣θ�f̂

∣
∣∣ is to compute:

minθ�f̂ , s.t. (θ − c)
�
(θ − c) ≤ l2, θ � 0. (16)

Its Lagrangian L (θ, α,ν) can be written as:

L (θ, α,ν) = θ�f̂ +
1

2
α
(
‖θ − c‖22 − l2

)
+ ν�θ, α ≥ 0, ν � 0. (17)

Since ‖θ− c‖22 ≤ l2, the problem specified in Eq. (16) is bounded from below
by − (‖c‖2 + l) ‖f‖2. Thus, minθ L (θ, α,ν) is also bounded from below. Since
the minimum achieves on the boundary, it must hold that α > 0. It is also easy

to verify that α = 0 ⇒
∣
∣
∣θ�f̂

∣
∣
∣ = 0.

Setting the derivative of L (θ, α,ν) to be zero leads to the equation:

f + α (θ − c)− ν = 0 ⇒ θ =
1

α
ν − 1

α
f + c.
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Therefore, θi =
1
ανi −

1
αfi + ci, i = 1, . . . , n. According to the complementary

slackness condition, ν�θ = 0. Also since ν � 0 and θ � 0. It must hold that
νiθi = 0, i = 1, . . . , n. These conditions lead to the following equations:

θi = max

(
ci −

1

α
fi, 0

)
. (18)

This suggests that when α is know, θ can be computed by using Eq. (18). In the
following, it shows that the value of α can be efficiently computed by solving a
zero finding problem through binary search.

Computing α via zero finding According to the complementary slackness
condition, α

(
‖θ − c‖22 − l2

)
= 0. Because α > 0, it must hold that:

‖θ − c‖22 − l2 = 0 ⇒ θ�θ − 2c�θ − l2 + c�c = 0. (19)

Let A = {i : θi > 0}. The following equation can be obtained.

θ�θ − 2c�θ − l2 + c�c =
∑

i∈A
θ2i − 2

∑

i∈A
ciθi − l2 + c�c. (20)

By plugging Eq. (18) into Eq. (20). A function of α can be obtained as:

g

(
1

α

)
=

1

α2

∑

i∈A
f2
i −

∑

i∈A
c2i − l2 + c�c. (21)

And the α value can be obtained by solving the zero finding problem:

g

(
1

α

)
= 0 (22)

The following theorem suggests that g
(
1
α

)
monotonically increases as 1

α in-
creases. Therefore this problem can be solved efficiently via binary search.

Theorem 2. The function g
(
1
α

)
monotonically increases as 1

α increases.

Proof. Assume that gi
(
1
α

)
is defined as:

gi

(
1

α

)
=

{
i ∈ A, 1

α2 f
2
i − c2i

i /∈ A, 0
. (23)

g
(
1
α

)
can be rewritten as:

g

(
1

α

)
=

∑n

i=1
gi

(
1

α

)
− l2 + c�c.

The theorem can be proved by showing that for ∀i ∈ {1, . . . , n}, gi
(
1
α

)
either

increases monotonically as 1
α increases, or is a constant. Let ε > 0, this can be

proved by comparing gi
(
1
α

)
to gi

(
1
α + ε

)
in the following four cases.
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1. ci > 0, fi ≤ 0: ci > 0, fi ≤ 0 ⇒ θi = ci − 1
αfi, i ∈ A, for ∀ 1

a ∈ IR+. In this
case gi

(
1
α

)
can be written as:

gi

(
1

α

)
=

1

α2
f2
i − c2i . (24)

And it can be verify that gi
(
1
α + ε

)
> gi

(
1
α

)
when ci > 0, fi ≤ 0.

2. ci ≤ 0, fi > 0: ci ≤ 0, fi > 0 ⇒ θi = 0, i /∈ A, for ∀ 1
a ∈ IR+. In this case

gi
(
1
α

)
can be written as:

gi

(
1

α

)
= 0. (25)

Therefore, gi
(
1
α

)
is a constant when ci ≤ 0, fi > 0.

3. ci > 0, fi > 0: In this case gi
(
1
α

)
can be written as:

gi

(
1

α

)
=

⎧
⎨

⎩

1
α ∈

(
0, ci

fi

)
⇒ θi = ci − 1

αfi, i ∈ A, 1
α2 f

2
i − c2i

1
α ∈

[
ci
fi
,+∞

)
⇒ θi = 0, i /∈ A , 0

(26)

And it can be verify that gi
(
1
α + ε

)
> gi

(
1
α

)
when ci > 0, fi > 0.

4. ci < 0, fi ≤ 0: In this case gi
(
1
α

)
can be written as:

gi

(
1

α

)
=

⎧
⎨

⎩

1
α ∈

(
0, ci

fi

]
⇒ θi = 0, i /∈ A , 0

1
α ∈

(
ci
fi
,+∞

)
⇒ θi = ci − 1

αfi, i ∈ A, 1
α2 f

2
i − c2i

(27)

It can also be verify that gi
(
1
α + ε

)
> gi

(
1
α

)
when ci < 0, fi ≤ 0.

This finishes the proof of the theorem.

�
When a value is given to α, A can be determined via computing θi by using

one of the four equations
(
Eq. (24) – Eq. (27)

)
provided in Theorem 2 according

to the value of ci and fi. And the obtained A can be used to compute the value
of g

(
1
α

)
. When A is determined, solving Eq. (22) leads to the following equation:

1

α′ =

√√√
√
√

l2 − c�c+
∑

i∈A
c2i

∑

i∈A
f2
i

(28)

Let an index set B is defined as B = {i : (ci > 0, fi > 0) or (ci < 0, fi ≤ 0)}.
Assume that B contains k members. A sorted index set Bsorted = {i1, . . . , ik} can
be obtained by sorting the value of ci

fi
, i ∈ B. The following theorem provides

the stopping condition for using binary search to solve the zero finding problem.

Theorem 3. Let T =
{
0,

ci1
fi1

, . . . ,
cik
fik

,+∞
}

= {t1, . . . , tk+2}, where i1, . . . , ik

are the k sorted indices in Bsorted. Given 1
α , assume that tj < 1

α ≤ tj+1. The
binary search stops when the 1

α′ computed by using Eq. (28) also satisfies that
tj <

1
α′ ≤ tj+1. In this case, set 1

α = 1
α′ and it can verified that g

(
1
α

)
= 0.
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Proof. The theorem can be proved by using the fact that when the value of 1
α

varies in (tj , tj+1], A keeps unchanged.

�

Theorem 3 suggests that tk+1 can be used as the starting point for binary
search. If g

(
1
α

)
> 0, decrease 1

α . If g
(
1
α

)
< 0, increase 1

α . The search stops when
the condition specified in Theorem 3 is satisfied. And the obtained 1

α and A can

be used to compute θ�f̂ by using the following equation:

θ�f̂ =
∑

i∈A
cifi −

1

α

∑

i∈A
f2
i . (29)

3.3 Computing the Upper Bound without Using θ � 0

When θ � 0 is not used to construct K, max
∣
∣
∣θ�f̂

∣
∣
∣ has a closed form solution

on the hyper-ball defined in Theorem 1.

Theorem 4. The optimization problem:

max
∣
∣
∣θ�f̂

∣
∣
∣, s.t. (θ − c)� (θ − c) ≤ l2, (30)

has a closed form solution:

max
∣
∣
∣θ�f̂

∣
∣
∣ =

∣
∣
∣c� f̂

∣
∣
∣+ l

∥
∥
∥f̂

∥
∥
∥
2
. (31)

Proof. The theorem can be proved by using the method of Lagrange multipliers.

�

Let m be the bound computed by solving Eq. (15), and m′ be the bound
computed by solving Eq. (30). It is easy to see that m < m′, since the K used
in Eq. (15) is tighter. However, since m′ can be computed in closed form, its
computational cost is low . Therefore, it can be used for pre-screening features.
More specifically, If m′ < 1, there is no need to compute m by solving Eq. (15),
since m < m′ < 1. Computing m requires to solve a zero finding problem using
binary search which is usually more expensive than computing Eq. (31).

3.4 The Screening Algorithm

Algorithm 1 shows the procedure of screening features for L1-regularized L2-
SVM. Given λ1, λ2, and θ1, the algorithm returns a list L, which contains the
indices of the features that are potentially active in the optimal solution that
corresponds to λ2. The algorithm first weights a feature using Y in Line 3. It
then computes a bound for |̂f�θ| using Eq. (31) in Line 4. If this bound is less
than 1, the algorithm goes to test the next feature. This is the pre-screening
step for improving algorithm’s efficiency by using a bound that is cheaper to
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compute. If a feature passes the pre-screening, the algorithm computes a tighter
bound for the feature in Line 8 and Line 9. If the bound is larger than 1, it
adds the index of the feature to L in Line 11. The function neg min(̂f) computes
−minθ�

2 f̂ . It first solves a zero finding problem for f̂ in Line 17, then uses the
obtained 1

α and A to compute minθ�
2 f̂ in Line 18. It returns −minθ�

2 f̂ in Line

19. The function zero finding(̂f) solves the zero finding problem. This function

first uses max
(

cj
fj
, j ∈ B

)
as the starting value for 1

α . If g
(
1
α

)
< 0, it must hold

that 1
α ≤ 1

α′ < ∞. Therefore the stopping condition specified in Theorem 3 is
satisfied. The algorithm returns 1

α and A in Line 28. Otherwise it setups the
low and high variables for binary search. The binary search is performed in Line
32 to Line 45. The stopping condition is tested in Line 36. If this condition is
satisfied, the function stops searching and returns 1

α and A.
The algorithm needs to be implemented carefully to ensure efficiency. First,

each step of the computation needs to be decomposed to many small substeps, so
that the intermediate results obtained in the preceding substeps can be used by
the following substeps to accelerate computation. Second, the substeps need to be
organized and ordered properly so that no redundant computation is performed.
It turns out the procedure listed in Algorithm 1 can be very efficient.

The pre-screening step requires to compute Yf , f�y, and f�f . Since these
computations are independent of θ1, λ1, and λ2. Therefore, they can been pre-
computed before training3, and the cost is O (mp) for m features. Here p is the
average feature length4. The pre-screening step also requires to compute θ�

1 1
and θ�

1 θ1. They are shared by all the features. So they can be computed at the
beginning of screening, and the cost is O (n). For each feature, the pre-screening
step requires to compute θ�

1 f , and its cost is O (mp) for m features. However,
when a solver fits a L1-regularized L2-SVM model, it might have already com-
puted f̂�θ1 as an intermediate result for all the features. In this case, f̂�θ1 can
be obtained from the solver for screening features at no cost. Given these inter-
mediate results, the bound in the pre-screening step can be obtained in O (m) for
m feature. Therefore, the total computational cost for pre-screening m features
is O (mp). And if f̂�θ1 can be obtained from the intermediate results generated
by the L1-regularized L2-SVM solver and Yf , f�y, and f�f are precomputed
before training, the total cost can decrease to just O (m+ n).

Assume that q features passed the pre-screening5. To compute the tighter
bounds for these features, the algorithm requires to compute c and l. The cost
is O (n). For each feature, it can be verified that the algorithm takes at most
O (log (p)) steps to solve the zero finding problem. In each step, it takes O (p) to
determine A and compute g

(
1
α

)
. Thus, cost for solving the zero-finding problem

is O (p log (p)). In the process of solving the zero-finding problem,
∑

i∈A cifi and∑
i∈A f2

i are computed as the intermediate results. Given them as well as the 1
α

3 They can also be used by the L1-regularized L2-SVM solver.
4 For dense data p = n, for sparse data usually p � n.
5 Usually, q � m.
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Input: X ∈ IRn×m, y ∈ IRn, λ1, λ2, θ1 ∈ IRn.
Output: L, the retained feature list.

1 L = ∅, i = 1, Y = diag (y);
2 for i ≤ m do

3 f̂ = Yfi;

4 m=
∣
∣
∣c� f̂

∣
∣
∣ + l

∥
∥
∥f̂

∥
∥
∥
2
;

5 if m < 1 then
6 continue;
7 end

8 m1=neg min(f̂), m2=neg min(−f̂);
9 m = max {m1,m2};

10 if m ≥ 1 then
11 L = L ∪ {i};
12 end
13 i = i+ 1;

14 end
15 return L;

16 Function neg min(f̂)

17
{

1
α ,A}

= zero finding(f̂);

18 m =
∑

i∈A
cifi − 1

α

∑

i∈A
f2
i ;

19 return −m;

20 end

21 Function zero finding(f̂)
22 B = {i : (ci > 0, fi > 0) or (ci < 0, fi ≤ 0)};
23 search = true, 1

α = max
(

cj
fj

, j ∈ B
)

;

24 compute A and g
(

1
α

)
;

25 if g
(

1
α

)
< 0 then

26 compute 1
α′ using Eq. (28);

27
1
α = 1

α′ ;
28 return

{
1
α ,A}

;

29 else
30 low = 0, high = 1

α ;

31 end
32 while search do
33

1
α = 1

2 (low + high);

34 compute A and g
(

1
α

)
, compute 1

α′ using Eq. (28);

35 if the condition specified in Theroem 3 is satisfied then
36

1
α = 1

α′ , search = false;

37 else
38 if g

(
1
α

)
< 0 then

39 low = tj+1, tj+1 is as defied in Theroem 3;
40 else
41 high = tj , tj is as defied in Theroem 3;
42 end

43 end

44 end

45 return
{

1
α ,A}

;

46 end

Algorithm 1. Screening for L1-regularized L2-SVM
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determined by zero finding, θ�f̂ can be computed in O (1). Therefore, the total
cost for computing the tighter bounds for q features is O

(
n+ qp log (p)

)
.

In summary, in the worst case of the proposed procedure, the total computa-
tional cost for screening a data set that has m features is O

(
mp + qp log (p)

)
.

And if f̂�θ1 can be obtained from the intermediate results generated by the
L1-regularized L2-SVM solver and Yf , f�y, and f�f are precomputed before
training, the total cost can decrease to just O

(
m+ n+ qp log (p)

)
.

4 Empirical Study

The screening approach presented in Algorithm 1 was implemented in the C
language. This section evaluates its power for accelerating model selection for
L1-regularized L2-SVM. Experiments are performed on a Windows Server 2008
R2 with two Intel Xeon� L5530 (2.40GHz) CPUs and 72GB memory.

4.1 Experiment Setup

Five benchmark data sets are used in the experiment. One is a microarraydata set:
gli 85. Three are text data sets: rcv1.binary(rcv1b), real-sim, and news20.binary
(news20b). And one is a educational data mining data set: kdd2010 bridge-to-
algebra (kddb). The gli 85 data set is downloaded from Gene Expression
Omnibus,6 and the other four data sets are downloaded from the LIBSVM data
repository.7 According to the feature-to-sample ratio (m/n), the five data sets fall
into three groups: (1) the m � n group, including the gli 85 and news20b data
sets; (2) the m ≈ n group, including the rcv1b and kddb data sets; and (3) the
m  n group, including the real-sim data set. Table 1 shows detailed information
about the five benchmark data sets.

Table 1. Summary of the benchmark data sets

Data Set sample (n) feature (m) m/n

gli 85 85 22,283 262.15

rcv1b 20,242 47,236 2.33

real-sim 72,309 20,958 0.29

news20b 19,996 1,355,191 67.77

kddb 19,264,097 29,890,095 1.55

A L1-regularized L2-SVM solver based on the coordinate gradient descent
(cgd) algorithm [18] is implemented in the C language for training the L1-
regularized L2-SVM model. A similar solver is also implemented in the liblinear

6 www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE4412
7 www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/



Fast Model Selection for Sparse SVM 397

package [6]. The difference is that in liblinear, the bias term b is also penalized
by the L1 regularizer and is inactive in most cases. In contrast, the solver that
is implemented for this paper solves the problem specified in Eq. (1) exactly.
Therefore, the bias term is not penalized and is alway active.

For each benchmark data set, the L1-regularized L2-SVM
solver is used to fit model along a sequence of 20 λ values:{
λk = 1

kλmax − ε, k = 1, . . . , 20, ε = 10−8
}
. When λ = λmax − ε, only one

feature is active. Denote n+ and n− as the number of positive and negative

samples, respectively. And let m =
∑n

i=1

(
yi − n+−n−

n

)
xi. This feature

corresponds to the largest element in m.
For each given benchmark data set, the L1-regularized L2-SVM solver runs in

four different configurations: (1) In org, the solver runs without any accelerating
technique. (2) In warm, the solver runs with warm-start. In the kth iteration,
the wk−1 obtained in the (k − 1)th iteration is used as the initial wk for fitting
model. When λk and λk−1 are close, warm-start can effectively speed up training
by reducing the number of iterations for the solver to converge. (3) In scr, the
solver runs with the screening technique. (4) In warm scr, the solver runs with
both warm-start and the screening technique. Both warm-start and screening
can be used to speed up model selection. The main purpose of running the L1-
regularized L2-SVM solver with different configurations is not only to compare
screening with warm-start, but also to provide a sensitivity study to explore that
whether better performance can be achieved by combining two techniques.

Table 2. Total run time (in sec.) of the L1-regularized L2-SVM solver when different
combinations of accelerating techniques are used to speed up model selection.

Alg. gli 85 rcv1b real-sim news20b kddb

org 284.08 19.04 20.73 1040.22 9071.73

warm 259.20 11.54 14.06 786.44 5770.12

scr 1.89 4.09 8.53 25.97 947.01

warm scr 1.83 2.70 5.90 18.22 643.34

Table 3. Total number of iterations for the L1-regularized L2-SVM solver to converge
when different combinations of accelerating techniques are used

Alg. gli 85 rcv1 trainb real-sim news20b kddb

org 16,176 1004 548 2,501 737

warm 14,772 578 361 1,908 483

scr 16,028 995 591 2,857 809

warm scr 15,227 606 369 2,035 499
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4.2 Results

Table 2 and Table 3 show the results of the total run time and the total number
of iterations for the L1-regularized L2-SVM solver to converge when different
combinations of accelerating techniques are used. The total run time and to-
tal number of iterations are obtained by aggregating the time and number of
iterations used by the L1-regularized L2-SVM solver when it fits models using
different regularization parameters. In terms of total running time, screening
with warm-start (warm scr) provides the best performance. Compared to org,
for the m � n group, the speed-up ratio is about 155.5 for the gli 85 data and
57.1 for the news20b data. For the m ≈ n group, the speed-up ratio is about
7.1 for the rcv1b data and 14.1 for the kddb data. And for the m  n group,
the speed-up ratio is about 3.5 for the real-sim data. The result shows that
warm scr is more effective when the number of features is larger than the num-
ber of samples. A similar trend is observed on scr. In terms of the total iteration
number, the best performance is achieved by warm and warm scr. This sug-
gests that warm-start can effectively speed up convergence by providing a good
start point for optimization. When org is compared to scr, the result suggests
that the proposed screening technique can significantly improve the efficiency of
the L1-regularized L2-SVM solver. This justifies that screening can effectively
reduce the computational cost of training by removing most inactive features.
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Fig. 1. Detailed information about the “over hits” on two benchmark data sets when
λ decreases from λmax to 1

20
λmax. “Over hits” is the number of inactive features that

are not removed by screening. The results show that the number of leftover inactive
features is stable, and is small when compared to the size of the original feature set.

Figure 1 shows detailed information about the number of leftover inactive
features on the real-sim and news20b data sets when λ decreases from λmax to
1
20λmax. The result shows that this number is very stable during model selection.
Let k be the number of active features. The proposed screening technique keeps
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to retain about k+ 400 features for training the L1-regularized L2-SVM model.
This number is much smaller than the dimensionality of the original data sets.
Similar trends are also observed on other data sets and are not presented in this
paper because of the space limit. Table 4 compares the time used by screening
to the time used by training. Compared to training time, the screening time is
marginal, especially when m � n. Notice that for training, the solver uses only
the features that are selected by screening. The training time can be much longer
if screening is not used to eliminate inactive features.

Table 4. Comparison of screening to training time. For training, the solver uses only
the features that are selected by the proposed screening technique. The training time
can be much longer if screening is not used to eliminate inactive features.

Tech. gli 85 rcv1b real-sim news20b kddb

scr

scr 0.01 0.73 1.79 1.29 35.29

tr 1.89 3.35 6.74 24.68 911.72

ratio 0.01 0.22 0.27 0.05 0.04

warm scr

scr 0.03 0.75 1.75 1.31 34.93

tr 1.79 1.95 4.15 16.91 608.41

ratio 0.02 0.38 0.42 0.08 0.06

The results indicate that the proposed screening technqiue is effective for re-
moving inactive features. And with warm-start they form a powerful combination
for accelerating model selection for the L1-regularized L2-SVM.

5 Conclusion

Screening is an effective technique for accelerating model selection for L1-regular-
ized sparse learning model by eliminating features that are guaranteed to be inac-
tive. This paper proposes a novel technique to screen features for L1-regularized
L2-SVM by bounding |̂f�θ| on a tight convex set formed by the interaction
of an n-dimensional hyper-ball and the upper half-space. An efficient binary
search algorithm is designed and implemented to compute this bound for fea-
tures. Empirical study shows that the proposed technique can greatly improve
model selection efficiency by stably eliminating a large portion of the inactive
features. Our ongoing work will extend the technique to screen features for the
L1-regularized L1-SVM model and provide support for distributed computing in
a massively parallel processing (MPP) environment.



400 Z. Zhao, J. Liu, and J. Cox

Acknowledgments. The authors would like to thank Anne Baxter, Russell
Albright, and the anonymous reviewers for their valuable suggestions to improve
this paper.

References

[1] Liu, H., Motoda, H.: Feature Selection for Knowledge Discovery and Data Mining.
Kluwer Academic Publishers, Boston (1998)

[2] Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. JMLR 3,
1157–1182 (2003)

[3] Bradley, P.S., Mangasarian, L.O.: Feature selection via concave minimization and
support vector machines. In: ICML (1998)

[4] Zhu, J., Rosset, S., Hastie, T., Tibshirani, R.: 1-norm support vector machines.
In: NIPS (2003)

[5] Bi, J., Embrechts, M., Breneman, C.M., Song, M.: Dimensionality reduction via
sparse support vector machines. JMLR 3, 1229–1243 (2003)

[6] Fan, R.E., Chang, K.W., Hsieh, C.J., Wang, X.R., Lin, C.J.: Liblinear: A library
for large linear classification. JMLR 9, 1871–1874 (2008)

[7] Weston, J., Elisseff, A., Schoelkopf, B., Tipping, M.: Use of the zero norm with
linear models and kernel methods. JMLR 3, 1439–1461 (2003)

[8] Guyon, I., Weston, J., Barnhill, S., Vapnik, V.: Gene selection for cancer classifi-
cation using support vector machines. Machine Learning 46, 389–422 (2002)

[9] Li Wang, M.T., Tsang, I.W.: Learning sparse svm for feature selection on very
high dimensional datasets. In: ICML (2010)

[10] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the
Royal Statistical Society, Series B 58, 267–288 (1996)

[11] Ghaoui, L., Viallon, V., Rabbani, T.: Safe feature elimination in sparse supervised
learning. Pacific Journal of Optimization 8, 667–698 (2012)

[12] Wang, J., Lin, B., Gong, P., Wonka, P., Ye, J.: Lasso screening rules via dual
polytope projection. In: NIPS (2013)

[13] Zhen, J.X., Hao, X., Peter, J.R.: Learning sparse representations of high dimen-
sional data on large scale dictionaries. In: NIPS (2011)

[14] Liu, J., Zhao, Z., Wang, J., Ye, J.: Safe screening with variational inequalities and
its applicaiton to lasso. arXiv:1307.7577 (2013)

[15] Tibshirani, R., Bien, J., Friedman, J.H., Hastie, T., Simon, N., Taylor, J., Tibshi-
rani, R.J.: Strong rules for discarding predictors in lasso-type problems. Journal
of the Royal Statistical Society: Series B 74, 245–266 (2012)

[16] Lions, J.L., Stampacchia, G.: Variational inequalities. Communications on Pure
and Applied Mathematics 20(3), 493–519 (1967)

[17] Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press
(2004)

[18] Tseng, P., Yun, S.: A coordinate gradient descent method for nonsmooth separable
minimization. Mathematical Programming 117, 387–423 (2009)


	Accelerating Model Selection with SafeScreening for L1-Regularized L2-SVM
	1 Introduction
	2 L1-Regularized L2-SVM
	3 Safe Screening for L1-Regularized L2-SVM
	3.1 Constructing the Convex Set K
	3.2 Computing the Upper Bound
	3.3 Computing the Upper Bound without Using θ � 0
	3.4 The Screening Algorithm

	4 Empirical Study
	4.1 Experiment Setup
	4.2 Results

	5 Conclusion
	References




