
Convergence of Min-Sum-Min Message-Passing

for Quadratic Optimization

Guoqiang Zhang� and Richard Heusdens

Department of Circuits and Systems,
Delft University of Technology,

Delft, The Netherlands
{g.zhang-1,r.heusdens}@tudelft.nl

Abstract. We propose a new message-passing algorithm for the
quadratic optimization problem. As opposed to the min-sum algorithm,
the new algorithm involves two minimizations and one summation at
each iteration. The new min-sum-min algorithm exploits feedback from
last iteration in generating new messages, resembling the Jacobi-
relaxation algorithm. We show that if the feedback signal is large enough,
the min-sum-min algorithm is guaranteed to converge to the optimal so-
lution. Experimental results show that the min-sum-min algorithm out-
performs two reference methods w.r.t. the convergence speed.

Keywords: quadratic optimization, Gaussian belief propagation, min-
sum, min-sum-min.

1 Introduction

In this paper we consider solving a quadratic optimization problem in a dis-
tributed fashion, namely

min
x∈Rn

f(x)
Δ
= min

x∈Rn

(
1

2
x�Jx− h�x

)
, (1)

where the quadratic matrix J ∈ R
n×n is real symmetric positive definite and

h ∈ R
n. It is known that the optimal solution is given by x∗ = J−1h. We suppose

that the quadratic matrix J is sparse and the dimensionality n is large. In this
situation, the direct computation (without using the sparse structure of J) of
the optimal solution may be expensive and unscalable. One natural question is
how to exploit the sparse geometry to efficiently obtain the optimal solution.

A common approach that exploits the sparsity of J is to associate the function
f(x) with an undirected graph G = (V,E). That is, the graph has a node for
each variable xi and an edge between node i and j only if the element Jij is
nonzero. By doing so, the sparsity of J is fully captured by the graph. As a
consequence, the function can be decomposed with respect to G = (V,E) as

f(x) =
∑
i∈V

fi(xi) +
∑

(i,j)∈E

fij(xi, xj), (2)

� This work was supported by the COMMIT program, The Netherlands.

T. Calders et al. (Eds.): ECML PKDD 2014, Part III, LNCS 8726, pp. 353–368, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

354 G. Zhang and R. Heusdens

where each edge-function fij(xi, xj) characterizes the interaction of xi and xj as
specified by Jij . With the graphic model (2), distributed quadratic optimization
(DQO) boils down to how to spread the global information of (J, h) in (1) over
the graph efficiently by exchanging local information between neighboring nodes.

In the literature, the Jacobi algorithm is a natural approach for solving the
problem over the associated graph [1]. At each iteration, the algorithm performs
node-oriented minimizations over all the nodes in the graph, of which the mes-
sages are in a form of linear functions (see Table 1). It is known that when
the matrix J is walk-summable1, the Jacobi algorithm converges to the optimal
solution [3,5]. To fix the convergence for a general matrix J , the Jacobi algo-
rithm was under-relaxed by incorporating an estimate of x∗ from last iteration
in computing a new estimate (see Table 1). The Jacobi-relaxation algorithm pos-
sesses a guaranteed convergence if the relaxation parameter is properly chosen
[1]. For the above two algorithms, once a node-estimate is updated, this estimate
is broadcast to all its neighbors. Because the information transmitted is general,
and not edge-specific, the two algorithms are known to converge slowly [1].

Table 1. Algorithm comparison. The min-sum-min algorithm is a new method that
we will present in the paper.

J is walk-summable J is general

Jacobi Alg.:
* node-oriented minimization
* linear message

Jacobi-relaxation Alg.:
* introduce feedback in Jacobi Alg.

LiCD Alg.:
* pairwise minimization
* linear message

GLiCD Alg.:
* introduce feedback in LiCD Alg.

min-sum Alg.:
* pairwise minimization
* quadratic message

min-sum-min Alg.:
* introduce feedback in min-sum Alg.

To accelerate the convergence of the Jacobi algorithm, the linear coordinate
descent (LiCD) algorithm was proposed in [9]. At each iteration, the LiCD algo-
rithm performs pairwise minimizations over all the edges in the graph, of which
the messages are in a form of linear functions (see Table 1). As shown in [9],
if the quadratic matrix J is walk-summable, the LiCD algorithm converges to
the optimal solution. To fix the convergence for a general matrix J , the LiCD
algorithm was further extended in [10] by incorporating feedback from last iter-
ation in computing new messages, which is referred to as the generalized LiCD
(GLiCD) algorithm.

An alternative scheme for solving the quadratic problem is by using the frame-
work of probability theory. The optimal solution x∗ is viewed as the mean value
of a random vector x ∈ R

n with Gaussian distribution

1 See subsection 2.3 for the definition.

Min-Sum-Min Message-Passing for Quadratic Optimization 355

p(x) ∝ exp

(
−1

2
x�Jx+ h�x

)
. (3)

The min-sum (also known as max-product) algorithm is one popular approach to
estimate both the mean value x∗ = J−1h and individual variances [8,2]. At each
iteration, the algorithm essentially performs pairwise minimizations over all the
edges in the graph, of which the messages are in a form of quadratic functions
(see Table 1). For a graph with a tree-structure, the min-sum algorithm converges
to the optimal solution in finite steps [8]. The question of convergence for loopy
graphic models has been proven difficult. In [3,5,6], it was shown when the matrix
J is walk-summable, the min-sum algorithm converges to the optimal solution
(see Table 1). In [4], a double-loop algorithm has been proposed to compute the
optimal solution for a general matrix J , where the min-sum algorithm is used as
a subroutine. We note that the double-loop algorithm is time-consuming. This
motivates us to develop a single-loop min-sum based algorithm.

In this paper, we complete Table 1 by proposing a (single-loop) min-sum-min
algorithm for a general quadratic optimization problem. Our primary motivation
is to fix the convergence failure of the min-sum algorithm when the matrix J
is general. Inspired by the GLiCD algorithm, the min-sum-min algorithm also
incorporates feedback from last iteration in computing new messages. Compared
to the min-sum algorithm, the min-sum-min algorithm involves one more mini-
mization at each iteration. The additional minimization is performed to compute
the estimate of x∗, which is used to construct the feedback signal in generating
new messages.

We also study the convergence of the min-sum-min algorithm. We show that
by setting the feedback signal large enough in computing new messages, the al-
gorithm possesses a guaranteed convergence. Experimental results show that the
min-sum-min algorithm converges faster than the Jacobi-relaxation and GLiCD
algorithms.

2 Min-Sum-Min Message-Passing

In this section, we present the min-sum-min algorithm for the quadratic opti-
mization problem. In particular, we describe how to construct feedback signal
in update the messages.

2.1 Message-Passing Framework

Consider the quadratic optimization problem (1). Without loss of generality, we
assume the quadratic matrix J is of unit diagonal (i.e., Jii = 1, i = 1, . . . , n).
By using the sparsity of the matrix J , the quadratic function f(x) can be de-
composed w.r.t. a graph G = (V,E)

f(x) =
∑
i∈V

fi(xi) +
∑

(i,j)∈E

fij(xi, xj),

356 G. Zhang and R. Heusdens

where the node and edge functions are given by

fi(xi) =
1

2
x2
i − hixi i ∈ V (4)

fij(xi, xj) = Jijxixj (i, j) ∈ E. (5)

An edge exists between node i and j in the graph only if Jij �= 0. For each node

i ∈ V , we denote the set of its neighbors as N(i)
Δ
= {j ∈ V : (i, j) ∈ E}. For

each edge (i, j) ∈ E, we use [j, i] to denote the directed edge from node i to j.

Correspondingly, we denote the set of all directed edges of the graph as
−→
E .

The min-sum-min algorithm intends to minimize the quadratic function in an
iterative, synchronous message-passing fashion. At time t, each node i keeps track
of a message and an estimate of x∗

i from each neighbor u ∈ N(i). We denote the

message and the estimate from node u to i as m
(t)
ui (xi) and x̂

u,(t)
i , respectively.

Correspondingly, we use x̂
(t)
edge to denote the vector of all the estimates at time

t. x̂
(t)
edge is of dimension |−→E |, of which each component x̂

j,(t+1)
i corresponds to a

directed edge [i, j] ∈ −→
E . Note that for each node i ∈ V , the estimates {x̂u,(t)

i , u ∈
N(i)} reveal information about the optimal solution x∗

i . Thus, the estimates
obtained at time t can be used as feedback in computing new messages and new
estimates at time t+ 1.

Formally, we use the estimates at time t to construct |E| penalty functions,
one for each edge in the graph. In particular, we define the penalty function

p
(t)
ij (xi, xj) for (i, j) ∈ E to be a quadratic function:

p
(t)
ij (xi, xj) =

s

2

(
xi − x̂

j,(t)
i

)2

+
s

2

(
xj − x̂

i,(t)
j

)2

, (6)

where the weighting factor 1 > s ≥ 0. Note that each penalty function only in-
volves the estimates that are computed along the associated edge. The particular
form of the penalty function enables the performance analysis of the algorithm
(see Section 3.2).

With the penalty functions (6), we define new node and edge functions at
time t as

g
(t)
i (xi) =(1− s)fi(xi) +

∑
u∈N(i)

m
(t)
ui (xi) i ∈ V (7)

g
(t)
ij (xi, xj) =(1− s)fij(xi, xj)−m

(t)
ji (xi)−m

(t)
ij (xj)

+ p
(t)
ij (xi, xj) (i, j) ∈ E. (8)

As opposed to (4)-(5), the new edge and node functions (7)-(8) include both the
current messages and the penalty functions.

In next subsection, we explain how to use (7)-(8) in computing new messages
and estimates. Note that as the weighting factor s approaches to one, the original
function f(x) has less and less impact on the new local functions (7)-(8). While
at the same time, the penalty function enlarges the impact of the estimates when
computing new estimates and messages in next iteration.

Min-Sum-Min Message-Passing for Quadratic Optimization 357

Remark 1. We point out that when s = 0, the local-function formation (7)-(8)
coincides with that of the min-sum algorithm [6]. It is the penalty functions that
make the node and edge functions special.

2.2 Message-Updating Expressions

We have thus far presented the message-passing framework. In particular, we
have defined the penalty functions (6). In this subsection, we derive the updating
expressions for the messages and estimates. We then point out the difference
between the min-sum-min and min-sum algorithms.

Suppose that the messages at time t take a quadratic form: (see [6] for a
similar definition)

m
(t)
ui (xi) = −1

2
γ
(t)
ui (1− s)2J2

uix
2
i + z

(t)
ui xi, ∀ [u, i] ∈ −→

E , (9)

where {γui} and {zui} are quadratic parameters and linear parameters, respec-
tively. The weighting factor s is involved in (9) because of the penalty functions.
We use γ(t) to denote the vector of all the quadratic parameters at time t. Simi-
larly, we use z(t) to denote the vector of all the linear parameters. Both γ(t) and

z(t) are of dimension |−→E |.
We now compute the new estimates and messages for time t + 1 given

the information at time t. Without loss of generality, we focus on comput-

ing {m(t+1)
ij ,m

(t+1)
ji } and {x̂j,(t+1)

i , x̂
i,(t+1)
j } that are associated with the edge

(i, j) ∈ E. Note that the old messages {m(t)
ij ,m

(t)
ji } and estimates {x̂j,(t)

i , x̂
i,(t)
j }

are only involved in three local functions {g(t)i (xi), g
(t)
j (xj), g

(t)
ij (xi, xj)}. Thus,

we use the three local functions in computing the corresponding new messages
and estimates.

Formally, we define a function L
(t)
ij (xi, xj) for (i, j) ∈ E to be

L
(t)
ij (xi, xj)

Δ
= g

(t)
i (xi) + g

(t)
j (xj) + g

(t)
ij (xi, xj). (10)

The function L
(t)
ij (xi, xj) is in a quadratic form. For the time being, we assume

that L
(t)
ij (xi, xj) is a strictly convex quadratic function. In other words, the 2×2

quadratic matrix in L
(t)
ij (xi, xj) is assumed to be symmetric positive definite.

In next subsection, we explain under what conditions the assumption holds.

We compute the new estimates {x̂j,(t+1)
i , x̂

i,(t+1)
j } by minimizing the function

L
(t)
ij (·, ·) over xi and xj :

(
x̂
j,(t+1)
i , x̂

i,(t+1)
j

)
= arg min

xi,xj

L
(t)
ij (xi, xj). (11)

Since L
(t)
ij (xi, xj) is a quadratic function, x̂

j,(t+1)
i and x̂

i,(t+1)
j have closed-form

expressions.

358 G. Zhang and R. Heusdens

Note that the information about x̂
j,(t+1)
i or x̂

i,(t+1)
j is embedded in both node

i and j. We design the message m
(t+1)
ji (xi) with the purpose to bring all the

information about x̂
j,(t+1)
i that is contained in node j to node i. In doing so, we

reconsider the minimization of L
(t)
ij (xi, xj):

min
xi,xj

L
(t)
ij (xi, xj) = min

xi

[
g
(t)
i (xi) + min

xj

(
g
(t)
j (xj) + g

(t)
ij (xi, xj)

)]

= min
xi

[
g
(t)
i (xi) +

s

2
(xi − x̂

j,(t)
i)2 −m

(t)
ji (xi)

+min
xj

(
(1 − s)fj(xj) + (1− s)fij(xi, xj)

+
∑

v∈N(j)\i
m

(t)
vj (xj) +

s

2

(
xj − x̂

i,(t)
j

)2)]
. (12)

By following (12), we define m
(t+1)
ji (xi) to be

m
(t+1)
ji (xi)

Δ
=min

xj

(
(1 − s)fj(xj) + (1− s)fij(xi, xj)

+
∑

v∈N(j)\i
m

(t)
vj (xj) +

s

2

(
xj − x̂

i,(t)
j

)2)
+ κ, (13)

where κ represents an arbitrary offset term. The derivation of m
(t+1)
ij (xj) follows

a similar procedure.
Based on the above computation guideline, we present the final expressions for

the new messages and estimates. By combining (4)-(5), (9) and (13), we obtain

the expressions for γ
(t+1)
ji and z

(t+1)
ji of m

(t+1)
ji (xi) as

γ
(t+1)
ji =

1

1−∑
v∈N(j)\i γ

(t)
vj (1− s)2J2

vj

, (14)

z
(t+1)
ji = (1 − s)Jijγ

(t+1)
ji

(
(1− s)hj + sx̂

i,(t)
j −

∑
v∈N(i)\i

z
(t)
vj

)
. (15)

The parameters γ
(t+1)
ij and z

(t+1)
ij of m

(t+1)
ij (xi) can be computed similarly. By

combining (11)-(15), we obtain the expressions for x̂
j,(t+1)
i and x̂

i,(t+1)
j as

(
x̂
j,(t+1)
i

x̂
i,(t+1)
j

)
=

1

(1− s)Jij

(
1 (1− s)Jijγ

(t+1)
ij

(1− s)Jijγ
(t+1)
ji 1

)−1(
z
(t+1)
ij

z
(t+1)
ji

)
. (16)

The above expression fully characterizes the relationship between the estimates
and the linear parameters. With (14)-(16) at hand, one can easily work out the
updating-expressions of the messages and estimates associated with other edges
in the graph.

Min-Sum-Min Message-Passing for Quadratic Optimization 359

Finally we reconsider the expression (12). Note that there are two minimiza-
tions and one summation involved in (12). As indicated in (13), the minimization

over xj and the summation of the incoming messages excluding m
(t)
ij originate

from the min-sum algorithm. The second minimization over xi in (12) computes
an estimate of x∗

i , which is used as feedback in generating new messages and
estimates in next iteration. This is how the name min-sum-min message-passing
comes up.

Remark 2. It is worth noting that when s = 0 in (14)-(15), we actually obtain
the message-updating expressions for the min-sum algorithm. In other words,
the min-sum-min algorithm includes the min-sum algorithm as a special case by
setting s = 0.

2.3 Algorithm Implementation

In this subsection, we consider the algorithm implementation. We mainly study
under what conditions the minimization problem (11) is well defined for t ≥ 0
and for any (i, j) ∈ E.

Before formally presenting the algorithm implementation, we first provide
the definition of the walk-summability of a positive definite matrix below. We
emphasize that the min-sum algorithm converges to the optimal solution if the
matrix J in (1) is walk-summable [3,5,6].

Definition 1. [3,5] A symmetric positive definite matrix J ∈ R
n×n, with all

ones on its diagonal, is walk-summable if the spectral radius of the matrix R̄,
where R = I − J and R̄ = [|Rij |]ni,j=1 , is less than one (i.e., ρ(R̄) < 1).

To facilitate the analysis, we set the initial estimates and messages to be

zero, i.e., x̂
(0)
edge = 0, γ(0) = 0 and z(0) = 0. We note that x̂

(0)
edge and z(0) have

to satisfy Equation (16). In order for the algorithm to evolve continuously by
following (14)-(16), the minimization problem (11) should be correctly posed for
any t ≥ 0. By working on (11), a sufficient condition can be derived:

1 > (1− s)2J2
ijγ

(t)
ij γ

(t)
ji ∀(i, j) ∈ E, (17)

γ(t) > 0, (18)

where t = 1, 2, Note that the above two equations only involve the quadratic
vector γ(t) and J .

Next we argue that if the parameter s is chosen such that the matrix

Js = sI + (1 − s)J (19)

is walk-summable, (17)-(18) hold for any t ≥ 1. Note that Js is again of unit-
diagonal. It is not difficult to show that when s ∈ (�1 − 1/ρ(R̄)	+, 1), Js is
walk-summable. The operation �w	+ = max(0, w) for w ∈ R. From [6], it is
known that if Js is walk-summable, then γ(t) converges to a fixed point γ∗

s by
following (14). Further,

γ∗
s ≥ γ(t+1) ≥ γ(t) ∀t ≥ 0. (20)

360 G. Zhang and R. Heusdens

Considering the fixed point γ∗
s in (17), we have

1 > (1− s)2J2
ijγ

∗
{s,ij}γ

∗
{s,ji} ∀(i, j) ∈ E

⇐⇒1
(a)
>

∑
u∈N(i)

(1− s)2J2
uiγ

∗
{s,ui} ∀(i, j) ∈ E, (21)

where step (a) follows from (14) and the fact that γ∗
s is stable. (21) holds when Js

is walk-summable [6,7]. By using (20)-(21) and the initialization γ(0) = 0, it can
be easily shown that (17)-(18) hold when Js is walk-summable. We summarize
the result in a lemma below:

Lemma 1. if s is chosen from (�1−1/ρ(R̄)	+, 1) such that Js is walk-summable
and γ(0) = 0, then the minimization problem (11) is well defined for any (i, j) ∈
E, t ≥ 0. The quadratic vector γ(t) monotonically converges to γ∗

s .

Besides the quadratic vector γ(0), we also have to initialize x̂
(0)
edge and z(0).

Due to the expression (16), we only need to initialize x̂
(0)
edge, the linear vector z

(0)

can be computed accordingly. If the algorithm converges to the optimal solution
as t → ∞, we have

x̂
u,(∞)
i = x∗

i ∀u ∈ N(i) and i ∈ V.

For the estimation vector x̂
(t)
edge, t ≥ 0, we denote its corresponding optimal

solution as x∗
edge. In practice, one can measure the difference of the estimates

{x̂u,(t)
i , u ∈ N(i)} for each variable xi to terminate the iteration procedure.
To briefly summarize,the min-sum-min algorithm generalizes the min-sum

algorithm by introducing the penalty functions. Our goal in this paper is to
study whether the min-sum-min algorithm converges for an arbitrary positive
definite matrix J by choosing the weighting factor s properly.

3 Convergence of Min-Sum-Min Algorithm

In this section, we study the convergence of the min-sum-min algorithm. We
first reformulate the message updating-expressions into vector forms. We then
present the convergence analysis for the min-sum-min algorithm.

3.1 Reformulation of the Message Updating-Expressions

In this subsection, we reformulate the two updating expressions (15)-(16) into
vector forms. The vector forms provide a big picture of the evolution of the
algorithm.

We first consider the evolution of the linear vector z(t). From (15), we have

z(t+1) = (1− s)2BD(t)y + s(1− s)BD(t)x̂
(t)
edge

−(1− s)BD(t)Cz(t) t ≥ 0 (22)

Min-Sum-Min Message-Passing for Quadratic Optimization 361

where the matrices D(t), B, C ∈ R
|−→E |×|−→E |, and the vector y ∈ R

|−→E |, are given by

D
(t)
ij,uk =

{
γ
(t)
ij u = i, k = j and [i, j] ∈ −→

E

0 otherwise

Bij,uk =

{
Jij u = i, k = j and [i, j] ∈ −→

E
0 otherwise

Cij,uk =

{
1 u �= j, k = i and [i, j], [u, k] ∈ −→

E
0 otherwise

yij = hi [i, j] ∈ −→
E .

D(t) and B are two diagonal matrices. In particular γ(t) = D(t) · 1, where 1 is
the all-one vector. As γ(t) → γ∗

s over time, D(t) converges to D∗
s .

Next we consider the evolution of x̂
(t)
edge. By combining (16) and (22), we have

x̂
(t+1)
edge = (1− s)A(t)D(t)y + sA(t)D(t)x̂

(t)
edge

−(1− s)A(t)D(t)CBA(t)−1x̂
(t)
edge t ≥ 0, (23)

where the matrix A(t) ∈ R
|−→E |×|−→E | is given by

A
(t)
ij,uk =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

1−(1−s)2J2
ijγ

(t)
ij γ

(t)
ji

u = i, k = j and [i, j] ∈ −→
E

−(1−s)Jijγ
(t)
ij

1−(1−s)2J2
ijγ

(t)
ij γ

(t)
ji

u = j, k = i and [i, j] ∈ −→
E

0 otherwise

.

The matrix A(t) converges to A∗
s as γ(t) → γ∗

s .
Upon obtaining (23), the remaining work is to study under what conditions

x̂
(t)
edge converges to the optimal solution x∗

edge. To achieve this goal, we analyze
(23) in two steps. In the first step, we consider the extreme case with D∗

s and

A∗
s in (23). In this situation, x̂

(t)
edge can be alternatively expressed as

x̂
(t)
edge = (1 − s)A∗

s

t∑
i=0

[D∗
s(sA

∗
s − (1 − s)CB)]

i
D∗

sy. (24)

It is immediate from (24) that if the spectral radius of the matrix D∗
s(sA

∗
s −

(1− s)CB) is less than 1 (i.e., ρ(D∗
s(sA

∗
s − (1− s)CB)) < 1), x̂

(t)
edge converges to

a fixed point as t → ∞. We note that at this moment it is unclear if the fixed

point x̂
(∞)
edge is identical to x∗

edge.
In the second step, we consider the overall convergence specified by (23). We

assume Js is walk-summable and the spectral radius of D∗
s(sA

∗
s − (1 − s)CB)

is less than 1. By using the result of Lemma 1, it is known that there exists an
integer K such that when t ≥ K, the spectral radius of D(t)(sA(t) − (1− s)CB)

is less than one. This implies that x̂
(t)
edge in (23) also converges to a fixed point

362 G. Zhang and R. Heusdens

provided with sufficient time. In fact, both (23) and (24) converge to the same
fixed point. Due to limited space, we will not provide the proof here. One can
refer to Section VI of [6] for a detailed argument on proving a similar result.

Based on the above analysis, we summarize the result in a lemma below.

Lemma 2. Under the initialization γ(0) = 0, if the matrix Js in (19) is walk-
summable and the spectral radius of D∗

s(sA
∗
s − (1 − s)CB) is less than 1, the

estimation vector x̂
(t)
edge converges to a fixed point. In particular, the fixed point

is given by

lim
t→∞ x̂

(t)
edge = (1 − s)A∗

s

(
I − sD∗

sA
∗
s + (1− s)D∗

sCB
)−1

D∗
sy. (25)

Lemma 2 provides a general sufficient convergence condition for the min-
sum-min algorithm. For the situation that the algorithm converges, one natural

question is if the fixed point x̂
(∞)
edge is identical to the optimal solution x∗

edge. To

clarify, x∗
edge is constructed from x∗, and is of dimension |−→E |. We show in the

following that x̂
(∞)
edge = x∗

edge when the algorithm converges. We let γ(0) = γ∗
s to

simplify the argument.

Lemma 3. Under the initialization γ(0) = γ∗
s , if the matrix Js in (19) is walk-

summable and the spectral radius of D∗
s(sA

∗
s − (1 − s)CB) is less than 1, the

fixed point x̂
(∞)
edge in (25) is the same as x∗

edge

x∗
edge = (1− s)A∗

s

(
I − sD∗

sA
∗
s + (1 − s)D∗

sCB
)−1

D∗
sy. (26)

Proof. From Lemma 2, it is clear that when the algorithm converges, the fixed

point x̂
(∞)
edge is independent of the initial vector x̂

(0)
edge. In other words, any initial-

ization would result in the same fixed point. In order to prove the lemma, we

consider a special initialization for the estimation vector. That is x̂
(0)
edge = x∗

edge.

It is immediate from (10)-(11) and (16) that x̂
(t)
edge = x̂∗

edge for any t ≥ 0. The
optimal solution x∗

edge is the fixed point. The proof is complete. �

Remark 3. In fact, one can generalize Lemma 2 by considering more general
initializations. See [6] for how to initialize γ(0) and z(0). In this paper, we consider
the special initialization for simplicity.

3.2 Convergence Analysis

We have known from (6) that the parameter s determines the amount of feedback
in computing new messages and estimates. We show in the following that when
s approaches to 1, the min-sum-min algorithm converges. We use the Taylor
expansions in the argument.

Min-Sum-Min Message-Passing for Quadratic Optimization 363

As indicated in Lemma 3, the key point in proving the algorithm convergence
is to study the spectral radius of the matrix D∗

s(sA
∗
s − (1−s)CB). Note that the

two matrices D∗
s and A∗

s take complicated forms while the matrix CB is much
simple. We now study the properties of A∗

s and D∗
s in detail. Due to the special

structure of A∗
s , its inverse can be easily computed:

A∗−1
s = I + (1− s)D∗

sH, (27)

where

H{ij,uk} =

{
Jij u = j, k = i and [i, j] ∈ −→

E
0 otherwise

.

By using (27), the matrix A∗
s can be represented by an infinite series in terms

of D∗
sH , which is given by A∗

s =
∑∞

i=0(−1)i(1− s)i(D∗
sH)i. By using algebra on

the infinite series, we obtain

A∗
s = I − (1 − s)A∗

sD
∗
sH. (28)

Similarly, by applying the Taylor expansion on D∗
s , we have

D∗
s = I + (1− s)2D∗

sPs, (29)

where the matrix Ps is given by

P{s,ij,uk} =

{∑
v∈N(i)\j J

2
viγ

∗
{s,vi} [i, j] = [u, k] and [i, j] ∈ −→

E

0 otherwise
.

Now we are ready to study the matrix D∗
s(sA

∗
s − (1 − s)CB). By applying

(28)-(29), the matrix can be rewritten as

D∗
s (sA

∗
s − (1− s)CB)

= D∗
s(sI − s(1− s)A∗

sD
∗
sH − (1 − s)CB)

= D∗
s

[
sI − (1 − s)CB − (1− s)D∗

sH

+(1− s)2D∗
sH + s(1− s)2A∗

s(D
∗
sH)2

]
= sI − (1− s)(CB +H)

+(1− s)2g(A∗
s , D

∗
s , Ps, H,CB), (30)

where g(·) is a matrix function in terms of the matrices {A∗
s, D

∗
s , Ps, H,CB}.

Note that the last term in (30) is of second order of (1 − s). Also, as s → 1, γ∗
s

converges to 1. This implies that the matrices A∗
s , D

∗
s and Ps are bounded when

s ∈ (�1 − 1/ρ(R̄)	+, 1). Thus, as s → 1, the last term in (30) can be ignored,
which results in

D∗
s(sA

∗
s − (1− s)CB) ≈ sI − (1− s)(CB +H), as s → 1.

To facilitate the analysis in the following, we denote Qs = sI− (1−s)(CB+H).

364 G. Zhang and R. Heusdens

Next we derive the eigenvalues of the matrix Qs. Denote the eigenvalues of J
as {λi > 0, i = 1, . . . , |V |}. We first note that the matrix CB+H takes the form

(CB +H)ij,uk =

{
Jui k = i and [i, j], [u, k] ∈ −→

E
0 otherwise

.

By relating the matrix CB +H with R = I − J , one can show that all the non-
zero eigenvalues of CB +H are {λi − 1, i = 1, . . . , |V |}. Finally, the eigenvalues
of Qs are give by

{s+ (1− s)(1 − λi), i = 1, . . . , |V |}
⋃

{s}.

Using the fact that λi > 0 for all i, it can be shown that when 1 > s >
⌊
ρ(R)−1
ρ(R)+1

⌋
+

(i.e., R = I − J), the spectral radius of Qs is less than 1. Further, as s → 1, all
the eigenvalues of Qs approach to 1. As ρ(R) ≤ ρ(R̄) (see Corollary 6.3 in [1]),
it is immediate that ⌊

ρ(R)− 1

ρ(R) + 1

⌋
+

≤ �1− 1/ρ(R̄)	+.

Thus, we can safely say that when 1 > s > �1 − 1/ρ(R̄)	+, the spectral radius
of Qs is less than 1.

The above analysis shows that if s is sufficiently close to 1, the min-sum-min
algorithm converges, which we summarize in a theorem below.

Theorem 1. If the parameter s is sufficiently close to 1 from below, the spectral
radius of the matrix D∗

s(sA
∗
s − (1− s)CB) is less than 1. Consequently, the min-

sum-min algorithm converges to the optimal solution.

Remark 4. We point out that the matrix Qs can be used to construct the
message-updating expression of the Jacobi-relaxation algorithm [1]. In partic-
ular, the expression takes the form

x̂
(t)
edge =

t−1∑
k=0

Qk
sy +Qt

sx̂
(0)
edge.

Compared with Jacobi-relaxation algorithm, the min-sum-min algorithm up-
dates the estimates nonlinearly in terms of the elements of J (see (23)), resulting
in the last term in (30).

4 Dynamic Adaption of the Weighting Factor s

We have known thus far that when the weighting factor s is sufficiently close
to 1, the min-sum-min algorithm converges to the optimal solution. Right now
we cannot provide a fixed support region for s with guaranteed convergence.
On the other hand, in practice, we have to choose some value for s. Intuitively

Min-Sum-Min Message-Passing for Quadratic Optimization 365

Table 2. The min-sum-min algorithm with dynamic parameter s

Initialization: γ(0) = 0, x̂
(0)
edge = 0, Flag = 0,

s = �1− 1/ρ(‖R‖1�+, sbest = s, rbest = 1
repeat{min-sum-min iteration: t=1,2,...}

if r(t) is stable AND Flag=0 then

if r(t) < rbest then

rbest = r(t), sbest = s, s = s+ 0.1
else

Flag=1, s = sbest
end if

end if
until it terminates

speaking, if the parameter s is chosen to be very close to 1, the min-sum-min
algorithm may take many iterations to reach the stoping criterion, making the
algorithm less valuable. This motivate us to dynamically adjust the weighting
factor s when running the min-sum-min algorithm.

We now explain how we adjust the weighting factor s in the algorithm. we first

compress the estimation vector x̂
(t)
edge from dimension

−→
E to |V |. In particular, we

compute an estimate x̂
(t)
i for each optimal component x∗

i by using {x̂u,(t)
i , u ∈

N(i)}:

x
(t)
i =

1

|N(i)|
∑

u∈N(i)

x̂
u,(t)
i . (31)

We denote the resulting estimation vector as x̂(t) = [x̂
(t)
i , . . . , x̂

(t)
|V |], which is of

dimension |V |.
With the vector x̂(t), we then define a new sequence {r(t), t ≥ 2}:

r(t) =
‖x̂(t) − x̂(t−1)‖2

‖x̂(t−1) − x̂(t−2)‖2 . (32)

For a fixed parameter s, the sequence {r(t), t ≥ 2} would become stable after
a number of iterations. We search for a value of s in [�1 − 1/‖R‖1	+, 1) such
that the corresponding stable value of the sequence {r(t), t ≥ 2} is as small as
possible, which we denote as sbest. We note that once the value sbest is found
after a number iterations, it will remain the same in the following iterations.

The pseudo-code of the min-sum-min algorithm with dynamic parameter s is
provided in Table 2. The stepsize Δs for searching for the value sbest is set to be
0.1. The parameter ”Flag” is used to indicate if the value sbest has been found
or not.

366 G. Zhang and R. Heusdens

Table 3. Numbers of iterations of the two algorithms for seven pairs of (J, h)

1 2 3 4 5 6 7

(|V |, |E|) (10,26) (10,16) (15,75) (15,39) (20,56) (20,70) (25, 182)

Jacobi-relaxation 1011 4635 4239 3498 6078 24130 15005

GLiCD 587 398 3050 2276 4568 18775 11516

min-sum-min 330 188 2474 1513 3691 16047 9801

4.1 Experiments with Synthetic Data

We tested the min-sum-min algorithm with the synthetic data. In the imple-
mentation of the min-sum-min algorithm in Table 2, we measured the error
|r(t) − r(t−1)| for checking the stability of the sequence {r(t), t ≥ 2}. The thresh-
old for |r(t) − r(t−1)| was set as 10−4.

We also implemented the Jacobi-relaxation and GLiCD algorithms for com-
parison (see Table 1). The GLiCD also has a free parameter s required to be
adjusted in order to guarantee its convergence (see [10]). We adapted a similar
procedure of Table 2 to adjust the parameter s for GLiCD. For the Jacobi-
relaxation algorithm, it is known that when s = �1− 1/‖R‖1	+, it converges to
the optimal solution [1]. Therefore, we fixed the parameter s = �1 − 1/‖R‖1	+
in implementing the Jacobi-relaxation algorithm. To terminate the iterations of
the three algorithms, the infinite norm between an estimate and the optimal
solution was measured. The convergence threshold was set as 10−5.

Seven pairs of (J, h) were randomly generated and tested by the three al-
gorithms. The experimental results are displayed in Table 3. It is seen that
the Jacobi-relaxation algorithm performs the worst in terms of number of it-
erations for all the seven optimization problems. Conversely, the min-sum-min
algorithm performs the best. This might be because the quadratic messages
carry more information than the linear messages (see Table 1 for the algorithmic
comparison).

4.2 Experiments with Real Data

We also tested the three algorithms for the J matrices downloaded from the Ma-
trix Market website repository [11], where the matrices originated from some real
applications. The vector h in (1) were randomly generated. The implementation
of the three algorithms were the same as for the synthetic data.

Fig. 1 displays the performance results of the three algorithms for two par-
ticular J matrices (one is of size 48× 48 and the other one is of size 468× 468).
The min-sum-min and GLiCD algorithms converges significantly faster than the
Jacobi-relaxation algorithm. This may be because the Jacobi-relaxation algo-
rithm only involves linear updates of the estimates while the other two algo-
rithms apply nonlinear updates of the estimate (See Remark 4 and [10]). Also
we have observed that for the J matrix of size 48× 48, the convergence speeds

Min-Sum-Min Message-Passing for Quadratic Optimization 367

0 2000 4000 6000 8000 10000 12000
10

−2

10
−1

10
0

10
1

10
2

10
3

0 2000 4000 6000 8000 10000 12000 14000 16000
10

−2

10
−1

10
0

10
1

10
2

10
3

iterations iterations

)

Jacobi−relaxation
GLiCD
min−sum−min

Jacobi−relaxation
GLiCD
min−sum−min

)

Fig. 1. Performance comparison for J matrices downloaded from [11]

of the min-sum-min and GLiCD algorithms are quite similar. For the above
particular case, the GLiCD algorithm is favorable because it only transmits linear
messages within the graph, thus saving half of transmission energy required for
the min-sum-min algorithm. Other matrices were also tested and similar results
were obtained.

5 Conclusion

In this paper, we have proposed the min-sum-min algorithm for the quadratic
optimization problem. The min-sum-min algorithm parallels with the Jacobi-
relaxation and GLiCD algorithms (See Table 1). Also we have studied the
convergence of the min-sum-min algorithm. We have shown that if the feed-
back signal is set to be large enough (i.e., the parameter s is close to 1), the
min-sum-min algorithm converges to the optimal solution. Experimental results
show that the min-sum-min algorithm is advantageous over the Jacobi-relaxation
and GLiCD algorithms in terms of the convergence speed.

References

1. Bertsekas, D.P., Tsitsikis, J.N.: Parallel and distributed Computation: Numerical
Methods. Athena Scientific, Belmont (1997)

2. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer (2007)
3. Johnson, J.K., Malioutov, D.M., Willsky, A.S.: Walk-sum Interpretation and Anal-

ysis of Gaussian Belief Propagation. In: Advances in Neural Information Processing
Systems, vol. 18. MIT Press, Cambridge (2006)

4. Johnson, J.K., Bickson, D., Dolev, D.: Fixing Convergence of Gaussian Belief Prop-
agation. In: The International Symposium on Information Theory (2009)

5. Malioutov, D.M., Johnson, J.K., Willsky, A.S.: Walk-Sums and Belief Propagation
in Gaussian Graphical Models. J. Mach. Learn. Res. 7, 2031–2064 (2006)

6. Moallemi, C.C., Van Roy, B.: Convergence of Min-Sum Message Passing for
Quadratic Optimization. IEEE Trans. Inf. Theory 55(5), 2413–2423 (2009)

368 G. Zhang and R. Heusdens

7. Moallemi, C.C., Van Roy, B.: Convergence of Min-SumMessage Passing for Convex
Optimization. IEEE Trans. Inf. Theory 56(4), 2041–2050 (2010)

8. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufman Publishers (1988)

9. Zhang, G., Heusdens, R.: Linear Coordinate-Descent Message-Passing for
Quadratic Optimization. Neural Computation 24(12), 3340–3370 (2012)

10. Zhang, G., Heusdens, R.: Convergence of Generalized Linear Coordinate-Descent
Message-Passing for Quadratic Optimization. In: IEEE International Symposium
on Information Theory Proceedings, pp. 1997–2001 (2012)

11. Matrix Market: Harwell Boeing Collection,
http://math.nist.gov/MatrixMarket/index.html

http://math.nist.gov/MatrixMarket/index.html

	Convergence of Min-Sum-Min Message-Passing
for Quadratic Optimization

	1 Introduction
	2 Min-Sum-Min Message-Passing
	2.1 Message-Passing Framework
	2.2 Message-Updating Expressions
	2.3 Algorithm Implementation

	3 Convergence of Min-Sum-Min Algorithm
	3.1 Reformulation of the Message Updating-Expressions
	3.2 Convergence Analysis

	4 Dynamic Adaption of the Weighting Factor 8

	4.1 Experiments with Synthetic Data
	4.2 Experiments with Real Data

	5 Conclusion
	References

