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Abstract. Feature selection plays a crucial role in scientific research and prac-
tical applications. In the real world applications, labeling data is time and la-
bor consuming. Thus, unsupervised feature selection methods are desired for
many practical applications. Linear discriminant analysis (LDA) with trace ratio
criterion is a supervised dimensionality reduction method that has shown good
performance to improve classifications. In this paper, we first propose a unified
objective to seamlessly accommodate trace ratio formulation and K -means clus-
tering procedure, such that the trace ratio criterion is extended to unsupervised
model. After that, we propose a novel unsupervised feature selection method by
integrating unsupervised trace ratio formulation and structured sparsity-inducing
norms regularization. The proposed method can harness the discriminant power
of trace ratio criterion, thus it tends to select discriminative features. Meanwhile,
we also provide two important theorems to guarantee the unsupervised feature
selection process. Empirical results on four benchmark data sets show that the
proposed method outperforms other sate-of-the-art unsupervised feature selec-
tion algorithms in all three clustering evaluation metrics.

1 Introduction

Feature selection is to select relevant and informative features from the high-dimensional
feature space. Because it can improve the mode generalization capability, prevent model
over-fitting, identify useful features, and hugely reduce the computational time, feature
selection has been playing a crucial role in many scientific and practical applications,
such as text mining [7], bioinformatics [5,23,3], medical image analysis [22,24], com-
puter vision [4,12], efc.

There are three types of feature selection methods: filter method [20,13,19,5], wrap-
per method [11], and embedded method [26]. The filter methods compute a score to
each feature, so the computational cost is relatively low, but the selected features often
cannot achieve good classification performance. Wrapper methods treat the classifier as
a black box, and use classification results to evaluate potential feature subset, thus the
features selected by wrapper methods usually have good performance. However, their
computational cost is very high since it need to use the classifier all the way through the
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process of feature selection. The embedded methods treat classifier as a white box, and
incorporate feature selection and classification model into a single optimization prob-
lem. Thus, the classification performance is good, and the computational cost is much
lower than wrapper method.

From another point of view, feature selection techniques can be categorized into
supervised method (using label information) and unsupervised method (without us-
ing label information). Supervised feature selection methods determine the importance
of a feature by evaluating the feature’s correlation with label. The higher correlation
indicates a more important feature. Unsupervised feature selection approaches select
features with maximum representative and discriminant power. In the real world data
mining applications, labeling data is time and labor consuming. Thus, the unsupervised
feature selection methods are crucial for practical applications.

Many unsupervised feature selection methods have been proposed. Among them,
maximum-variance is the simplest one, which just selects top ranked features with
maximum variance. Although selected features are representative for data variance,
they are not guaranteed to be discriminant for classification [9]. Laplacian Score [9]
selects features that can preserve the local manifold structure of data, and such features
are supposed to be discriminative. SPEC [27] selects features that are most consistent
with the graph structure of data. MCFES [2] first performs regression using the eigen-
vector of graph Laplacian, and then selects features with maximum spectral regression
coefficients.

In this work, we focus on the unsupervised feature selection model design. Most ex-
isting unsupervised feature selection methods are similar to filter methods in supervised
learning, and define different score systems to select features. Considering the advan-
tages of embedded feature selection methods in supervised learning, we hope to use the
embedded feature selection mechanism in an unsupervised way. In this paper, we ad-
dress this problem using the unsupervised trace ratio formulation, and rigorously prove
that our unsupervised trace ratio formulation is the unified and unique objective of both
trace ratio linear discriminant analysis (LDA) and K -means clustering. After that, we
propose an unsupervised feature selection method using unsupervised trace ratio formu-
lation and ¢; »-norm regularization. The proposed method can harness the discriminant
power of trace ratio formulation, thus it tends to select discriminative features. The
optimization algorithm is derived with rigorous convergence analysis. Moreover, we
provide important theoretical analysis to guarantee the unsupervised feature selection
process. Empirical results on four benchmark data sets show that the proposed method
outperforms other sate-of-the-art unsupervised feature selection methods on all three
standard evaluation metrics.

2 Notations and Definitions

In this paper, matrices are written as uppercase letters and vectors are written as bold
lowercase letters. Given a matrix W = {U)ij }, its i-th row, j-th column are denoted as
w', w;, respectively. The £1 o-norm of matrix W is defined as |[W||1 5 = S0, [|wi|2.

Tr(W) means the trace operation for matrix .
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Given data matrix X = [x1, - ,X,] € RAx"_d is the number of features and n
is the number of data samples. In the classic Linear Discriminant Analysis (LDA), the
total scatter matrix S;, within-class scatter matrix S,,, and between-class scatter matrix
Sy are defined as following:

S, = :zlm —R)x - %),

Sw=3 % (x—my)(xi—my),
kz‘l X; €l

Sy =3 np(my — %) (my —x)7,

B
Il
—

where x; € R is the i-th data sample, c is the number of clusters, ny, is the num-
ber of data points belong to class [, my is the center of the k-th cluster, i.e. my =
x;el, Xir X is the center of all data, i.e. X = ! ZZ 1 X;. It is well known that
St St + S
Suppose X € R¥*" is the data matrix after centralization, i.e. # = 0, the formula-
tions of total scatter matrix S; and between-class scatter matrix S, can be thus reduced
to:

n c
= k=1

Denote G' € R™*¢ as the class indicator matrix, where G;; = 1 if x; belongs to the
Jj-th class and G;; = 0 otherwise. We define a cluster centroid matrix M to include the
centroid vector of each cluster as M = [mj, ms,--- ,m.]. Using the class indicator
matrix G, we can represent the cluster centroid matrix M as:

M =XGGTa)™!. 2)

Using matrices G and M, we can re-write the scatter matrices into more compact
manner as:

Sp=MGTGM" 3)
Sw=(X-MG")(X - MG")" 4)

3 Trace Ratio Linear Discriminant Analysis Review

In recent research, Linear Discriminant Analysis (LDA) with trace ratio criterion has
shown better performance than the traditional LDA with ratio trace criterion [18,10].
Thus, the trace ratio LDA has attracted more and more attention and has been well
studied. The problem of trace ratio LDA is as follows:

TT(WTSbW)

5
W THWT S, W)’ )

where W € RI*™ is the projection matrix, which is constrained to be orthonormal,
and m is the reduced dimension.
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Using the optimal solution W of the problem (5), the data points are projected to a
lower dimensional subspace such that the Euclidean distances of data pairs within the
same class are minimized while the Euclidean distances of data pairs between different
classes are maximized. That is to say, the data points are easy to be classified after the
dimensionality reduction with W.

Because of S; = S, + .Sy, problem (5) is equivalent to the following problem:

Tr(WTS,W)

W1 Tr(WTS,W) " ©)

4 Discriminative Unsupervised Feature Selection

Because the LDA can enhance the classification tasks, several recent research works
have used this criterion for supervised feature selection and shown promising results
[15,21]. However, the LDA strategy cannot be applied to unsupervised feature selec-
tion, because the unsupervised learning models don’t provide the data labels which are
required to compute the within-class and between-class scatters. In previous work [6],
the authors utilized the clustering results to calculate Sy, and .S, and iteratively do LDA
and K -means clustering, such that the LDA criterion can be applied to improve cluster-
ing results. However, the authors only presented a heuristic algorithm and didn’t have
a unified objective for two different processes, i.e. the LDA and K-means clustering
minimize different objectives. Thus, the optimality and convergence of their algorithm
are NOT guaranteed.

In this work, we are interested in designing a powerful unsupervised feature selection
method. To address the above problems, we will derive a new formulation and rigor-
ously prove it unifies both trace ratio LDA and K -means clustering, such that the trace
ratio LDA criterion can be applied to unsupervised model seamlessly. Combining with
the structured sparsity-inducing norms, we will propose a novel unsupervised feature
selection method.

4.1 Unsupervised Dimensionality Reduction Using Trace Ratio Criterion

Trace ratio LDA is a supervised dimensionality reduction method. Plugging Eq. (3) into
Eq. (6), the trace ratio LDA objective can be written as:

- Tr(WTXG(GTG) 'GTXTW) -
WTW=I Tr(WTS,W) ’

where G € R™*¢ is the class indicator matrix defined in Section 2.
In unsupervised circumstance where there is no label information, we don’t know

both projection matrix W and class indicator matrix G. If we apply the trace ratio strat-
egy to unsupervised dimensionality reduction, we need solve the following problem:

Tr(WTXG(GTG) ' GTXTW)
max

8
WTW=I,GEInd Tr(WTS,W) ’ ®
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where Ind is the set of clustering indicator matrices and G € Ind means G is con-
strained to be a clustering indicator matrix. This is not LDA anymore. How does prob-
lem (8) reduce the data dimensionality to an unsupervised way? Our following theorem
will rigorously show that the problem (8) is a unified and unique objective of both trace
ratio LDA and K -means clustering.

Solving problem (8) is exactly equivalent to iteratively solving trace ratio LDA and
doing K -means clustering. When G is fixed, obviously solving problem (8) is to solve
the trace ratio LDA w.r.t. W, i.e. solving problem (7).

When W is fixed, T’ r(WTStW) is irrelevant to G. Thus, we need to solve the fol-
lowing problem:

max Tr(W'XGGTG) 'GP XTW). ©)
Gelnd
Although the problem (9) only has one variable, it is difficult to solve due to the in-
tractable constraint. Because Tr(W7T'S;W) is a constant now (W is fixed), maximizing
between-class distance in problem (9) is equivalent to minimizing within-class distance.
Problem (9) is equivalent to the following problem:

min  Tr(W%S,W), (10)
Gelnd,M

where S, = (X —MGT)(X—-MG™)T as shown in Eq. (4). Thus, we need to optimize:

min  Tr(WT(X - MGT)(X — MGT)TW)

Gelnd,M
—> min HWTX — WTMGTHi
Gelnd,M
. 2
:Gé?i%’FHWTXfFGTHF , (11)

where F = WT M.

Problem (11) can be easily solved by alternating optimization, i.e., iteratively opti-
mizing ' when G is fixed and optimizing G when F' is fixed. Interestingly, this iterative
procedure is exactly the procedure of traditional K -means clustering algorithm on the
projected data W7 X: that is, when G is fixed, the optimal solution of F is the centers
of the clusters in the projected subspace; when F' is fixed, the optimal solution of G can
be computed by assigning the data points to their closest centers. Thus, the objective
function in (9) is equivalent to K -means clustering objective.

Therefore, solving problem (8) is equivalent to iteratively solving trace ratio LDA
(fix G to solve W) and doing K -means clustering (fix W to solve G).

Therefore, the objective in (8) is a good trace ratio formulation to reduce the dimen-
sionality in an unsupervised way. The K-means clustering indicators can be used as
labels to calculate scatter matrices, such that the projection matrix is discriminative to
separate different data groups.

Please notice that our method is significantly different from the method in [6], where
the traditional ratio trace LDA and K-means clustering algorithms are heuristically
combined without any optimality and convergence guarantee. Our new Theorem 1 rig-
orously proves that the trace ratio formulation in (8) is the unified and unique objective
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when we iteratively solve trace ratio LDA and K -means clustering. Thus, this procedure
is guaranteed to converge.

Based on our above derivations, the unsupervised trace ratio formulation in (8) is
equivalent to the following problem:

2
WX — PG|,

12
WTwzr?,lGelnd,F Tr(WTS,W) 12

4.2 Unsupervised Feature Selection Using Structured Sparse Trace Ratio
Formulation

Both supervised and unsupervised trace ratio LDA are dimensionality reduction meth-
ods, where the projected feature is a linear combination of all original features. How-
ever, in many applications (e.g. bioinformatics and document mining), we are more
interested in the feature selection model, i.e., selecting a few relevant features. To ad-
dress this problem, we integrate the structured sparsity-inducing norms with the above
unsupervised trace ratio formulation, such that we can select informative features in an
unsupervised way.

We hope to learn a row sparse projection matrix W in which only a few rows of W
are non-zeros. With this row sparse projection matrix W, only a few important features
are involved in the projection. This goal can be achieved by minimizing |||, ,. There-
fore, problem (12) can be changed to the following objective for unsuperviséd feature
selection:

[wrx - Fr?
WTW=I?,1GeInd,F Tr(WTS,W)

where - is a regularization parameter which controls the row sparsity of the projection
matrix W. The greater the v is, the more sparse rows the projection matrix W has.

The optimal solution of the problem (13) can harness the discriminative power of
the unsupervised trace ratio model, thus it tends to select discriminative features. Only
those discriminative features would have non-zero weights in W, and thus each new
projected feature is a linear combination of only these discriminative features. In this
way, only discriminative information are retained.

‘|"YHW||1,2a (13)

5 Optimization Algorithm

We use the alternating optimization method to solve the problem (13). When W is fixed,
the problem becomes problem (11), which can be solved by alternating optimization.
Specifically, when G is fixed, the optimal F is:

F=wWT'XGG"e)™; (14)

when F is fixed, the optimal G is:

. . T, 2
Gy {1,J—argnllgn|\W zi — fi); 15

0, other
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As mentioned before, this update of F' and G is exactly the K -means procedure.
When G and F are fixed, we substitute Eq. (14) into the problem (13) and thus the
problem (13) becomes

. Tr(WTs,w)
WA Trwrswy T e (16
where
Sy =(X-XGGTe)'G") (X - XG(GTG)taT)T. (17)

Due to the trace ratio formulation, the above objective is difficult to optimize. The
standard proximal gradient, Augmented Lagrange Multiplier, fixed point, proximal meth-
ods cannot efficiently optimize it. We will use the iterative re-weighted optimization
strategy to solve this objective. Solving the above objective is equivalent to solve:

Tr(WTS,W)

Tr(WTDW 18
WrWe1 Tr(WTS,W) T ) (18)

where D is a diagonal matrix with the ¢-th diagonal element d; = 2”“;“2. When

|[w®||2 = 0, the original objective is not differentiable. Following [8], we can introduce

a small perturbation to regularize the i-th diagonal element of D as 2/l ! e Then
w3

it can be verified that the algorithm minimizes the following problem: ?:((VVI{,TT%XVV)) +

~ Zj:l V/||wi||3 + ¢ is apparently reduced to problem Eq. (16) when ¢ — 0.
In the following, we derive an iterative algorithm to solve the problem (18) with a
similar trick used in [17]. The Lagrangian function of the problem (18) is:

Tr(WTS,W
L(W, A) = T:((WT StW)) L ATHWTDW)
~Tr(AWTW —1)). (19)

By taking the derivative w.r.t. W to zero, we have

( g _ TrWTS.W)

- T T D =WA. 2
Tr(WTS,W) Sy +~ATr(WLS,W) )W W (20)

Thus, the optimal solution of W is the m smallest eigenvectors of the matrix:

Tr(WTS,W)

Sw = Tr(WTS,W)

Sy +~Tr(WTS,W)D. (1)
We can iteratively update the D and the W such that the Eq. (20), i.e. KKT condition,
is satisfied. Please notice that D is not a variable to optimize. In the iterative steps,
we optimize Eq. (21) to get W, and then re-calculate Eq. (21), where D is only an
intermediate value to help calculation.

In summary, the algorithm to solve the discriminative unsupervised feature selection
problem (13) is outlined in Algorithm 1. Since our formulation is based on TRACe ratio
and K -means formulations, we call this algorithm as TRACK for short.
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Algorithm 1. Algorithm to solve the objective of our TRACK method in (13).
Initialize D as an identity matrix.
repeat
1. TIteratively update F' by Eq. (14) and update G by Eq. (15) till to converge.

2. Tteratively update the diagonal matrix D with the i-th diagonal element as d; = _, !

2[ w2’
and update W by the m eigenvectors corresponding to the m smallest eigenvalues of

Tr(WTS, W)

S = P (wrs,w)

S; +~yTr(WTS,W)D,
till converge.
until Converges

5.1 Convergence Analysis

In Algorithm 1, the Step 1 is the K-means clustering procedure and converges to local
optimal solution. Step 2 is the iterative re-weighted algorithm to solve problem (16),
i.e. problem (18). In each iteration within Step 2, the objective value of problem (18)
is decreased until the algorithm converges. The proof is similar to [1,16], and thus we
omit it due to limited space. When the Step 2 converges, Eq. (20) is satisfied. Note
that Eq. (20) is the KKT condition of problem (18), therefore the converged solution
satisfies the KKT condition of problem (18), and thus is a local optimal solution to the
problem (18).

It deserves to be mentioned that, based on our unified and unique objective for both
steps, Step 1 and Step 2 in Algorithm 1 are guarantied to mutually benefit each other. On
the one hand, the better clustering results in Step 1 will result in better scatter matrices,
and thus results in more discriminative projection matrix in Step 2; On the other hand,
the more discriminative projection matrix in Step 2 will make the data more separable,
thus lead to better clustering results in Step 1.

5.2 Theoretical Analysis for Feature Selection

To guarantee the unsupervised feature selection process, we provide the following im-
portant theorems on the problem (13). First, we will show that our method guarantees
to have m features for selection, i.e. the sparsity shrinkage won’t over suppress the non-
zero rows in W. Second, we will prove that using the ¢; 2-norm regularization in our
TRACK objective is equivalent to using the £y »-norm regularization, which is the ideal
feature selection formulation.

Theorem 1. The number of non-zero rows of the optimal solution to the problem (13)
will not be less than m.

Proof: Because W € R*™ and WIW = I, the rank of W is m. Thus, the number
of non-zero rows of any feasible solution to the problem (13) will not smaller than m,
otherwise the rank of W is smaller than m. (]

Theorem 1 indicates the selected feature number is at least m by solving the problem
(13) with even a very large . This is important, because the sparse learning based
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feature selection methods could over suppress the non-zero rows such that there are no
enough features for selection.

Moreover, we have the following theorem, which indicates that minimizing the /5 o-
norm of W in our TRACK objective is equivalent to minimizing the ¢y 2-norm of W
under the constraint of W7 W = I.

Theorem 2. Let W € R*™. The optimal solutions to the problem mln ||VVH1 2
wT

and the optimal solutions to the problem min |W |, o are the same.
WTW=I ’

Proof: Obviously, the optimal solution W* to the problem min |W1|, o is any ma-
WTW=I ’

trix with only m non-zero rows, and the matrix with the m non-zero rows is an orthonor-

mal matrix. Without loss of generality, suppose W* = & ] , where W € R™*™ is

0
an orthonormal matrix, then we have ||[W*||, , = m. For any matrix W € R4*™ with

the constraint WTW = I, we can construct an orthonormal matrix W = (W, WJ-] S
R4*4, then the i-th row of W has ||W; ||, = 1, and then the i-th row of W has ||w;||, <

1. So we have ||w;]|, > ||w;] g and then:
2 *
Wl o 2 Wl =m=[W,, . (22)
Therefore, W* is the optimal solution to the problem mln ||I/V||1 o O
wT

Therefore, in our TRACK method, features selected by the {1 2-norm regularization
are the same as using the ideal £ >-norm regularization.

6 Experimental Results

In this section, we compare the proposed TRACK feature selection algorithm with other
state-of-the-art unsupervised feature selection algorithms: Maximum-Variance (Max-
Var), Laplacian Score (LS) [9], SPEC [27] and MCFS [2], and IdaKm [6].

6.1 Brief Descriptions of Comparison Methods

We briefly describe the comparison methods in this section. MaxVar is the simplest
unsupervised feature selection algorithm, which just select top ranked features with
maximum variance. Although selected features are representative for data variance, they
are not guaranteed to be discriminant for classification [9].

Laplacian Score selects features that can preserve the local manifold structure of
data, and such features are supposed to be discriminative. It computes the score for

each feature as S; = fJT £fi , where L is the graph Laplacian, and fZ fi— fl‘T DDll 1.
SPEC algorithm selects features that are most consistent with the graph structure of
AT A N 1
data. It computes the score for each feature as S; = f; Lf;, where f; = ﬁ;ﬁ .

MCEFS algorithm first performs regression using the eigenvector of graph Laplacian,
and then selects features with maximum spectral regression coefficients. The regression
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. . 2 . .
problem is formulated as min Hyk — XTyq, H o where yy, is the ky;, eigenvector of the
G

graph Laplacian matrix, ag, is the spectral regression coefficients. The score for the i,
feature is defined as S; = max |ak.q].

LdaKm is an adaptive dimensionality reduction method that integrates K -means
clustering and LDA. The ldaKm alternatively performs the following two steps: (1) per-
form K -means clustering on projected space; (2) perform traditional ratio trace LDA to
get the projection matrix. Following our approach, ¢; »-norm regularization is used to
select features for ldaKm method.

6.2 Data Sets and Evaluation Metrics

Four real world data sets are used to validate the effectiveness of our TRACK feature
selection algorithm: MSRC-V1, ORL, JAFFE, and XM2VTS.

MSRC-V1 database is from Microsoft Research in Cambridge. This data set contains
coarse pixel-wise labeled images, and it is commonly used for full scene segmentation.

ORL database contains a set of face images taken between April 1992 and April 1994
at the ATT lab. Ten different images are taken for each of the 40 distinct subjects. For
some subjects, the images were taken at different times, with different light condition,
facial expressions (i.e.: smiling or not smiling, open or closed eyes). All the images
were taken against a dark homogeneous background with the subjects in an upright,
frontal position.

JAFFE (Japanese Female Facial Expression) database contains 213 images of 7 fa-
cial expressions (6 basic facial expressions + 1 neutral) posed by 10 Japanese female
models, which were taken at the Psychology Department in Kyushu University. Each
image has been rated on 6 emotion adjectives by 60 Japanese subjects.

XM2VTS (Extended Multi Modal Verification for Teleservices and Security appli-
cations) database is a large multi-modal database which was captured onto high quality
digital video. It contains four recordings of 295 subjects taken over a period of four
months. Sets of data taken from this database are available including high quality color
images, 32 KHz 16-bit sound files, video sequences and a 3d Model.

Important statistics of the data sets are summarized in Table 1.

Table 1. Data set descriptions

sample # feature # class #
MSRC-V1 210 1302 7
ORL 400 644 40
JAFFE 213 1024 10
XM2VTS 1180 1024 295

Three measures are used to evaluate the clustering performance of all methods:
accuracy, normalized mutual information (NMI) and purity.
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Accuracy is the percentage of correct predicted label. Because the real label of each
cluster is unknown, the Hungarian algorithm [14] is used to get the best map to the
real label. Let C' denotes the ground truth label, C’ denotes the label obtained from a
clustering algorithm, the mutual information (MI) is defined as:

p(civ C;)

plep(c)) @9

MI(C, Cl) = ZciEC,CSGC’p(Ci? C;')log

where p(c;), p(c}) are the probability of a arbitrarily selected sample belongs to cluster
ci, ¢, respectively. p(c;, ¢}) is the probability of a arbitrarily selected sample belongs
to both cluster ¢; and c;-.

NMI is the normalized MI as following:

MI(C,C")

NMI(C,C") = max(H(C), H(C"))

(24)
where H(C)andH (C”) are the entropies of C' and C”, respectively.

Purity is computed by assigning the label of a cluster to the most frequent class.
More formally, it is defined as:

1
purity(C,C") = NZj miax(c;- Ne;) (25)

6.3 Demonstration of Discriminant Power of Selected Features

In this section, we show the discriminant power of selected features by various algo-
rithms. We use different unsupervised feature selection algorithms to select top 30 fea-
tures on the MSRC-V1 data set. Then selected features are used to perform principle
component analysis (PCA), and data samples are projected onto the first 2 principle
components (PC), as shown in Figure 1 (PCA performed using top 30 features). For the
baseline method, all features are used to perform PCA.

From Figure 1, we can see that: The TRACK algorithm separates data much bet-
ter than other feature selection algorithms. The MCFS and 1daKm algorithms perform
slightly better than the remaining algorithms. Data are much more entangled with each
other using the MaxVar and SPEC algorithm. This shows that: the TRACK algorithm
can harness the discriminant power of trace ratio formulation, therefore, features se-
lected by the TRACK algorithm are much more discriminant than those selected by
other algorithms, and using those discriminant features can separate data from different
classes well.

6.4 Clustering Performance Comparison

We select top 10 till to top 100 features using different methods, and perform K -means
using the selected features to evaluate the clustering performance. Since K-means
clustering is sensitive to initialization, we perform 20 trials and record the average
clustering metric. The result of using all features is also reported as a baseline. The
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Fig. 1. Projection on first two principle components (PC) using top 30 features selected by various
feature selection algorithms on the MSRC-V1 data set. The horizontal axis is the score of the
first principle component, and the vertical axis is the score of the second principle component.
Different shape or color mark samples from different classes.

regularization parameter is tuned from {107%,1073,1072,10~%,1,10, 102,103, 10*}
for both the TRACK algorithm and the ldaKm algorithm. The reduced dimension m in
our methodissetassm = c—1ifd <=n,andm =c—-—1+d—nifd > n, as
suggested in the paper [25]. Clustering accuracy, NMI, purity on the four data sets are
reported in Figures 2- 5.

From those figures, we can conclude that:

(1) On all the four data sets, our method can outperform other state-of-the-art unsu-
pervised feature selection algorithms on all evaluation metrics. The TRACK algorithm
can outperform the baseline (using all features) using just 20 to 50 features, which
justifies that the TRACK algorithm is able to select the most discriminant features.

(2) Generally, clustering performance becomes better when more features are
selected.
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(3) The MCEFS algorithm performs the second best among the rest feature selection
algorithms on all four data sets. Especially on ORL data set, the performance of MCFS
is quite close to our TRACK algorithm.

6.5 Parameter Sensitivity

To study the sensitivity of our algorithm, we plotted the classification performance with
different regularization parameters, as shown in Figure 6 to 9. From these figures, we
can see that: our algorithm is not very sensitive to the regularization parameter. There-
fore, the parameter is easy to be tuned.

7 Conclusion

In this paper, we first rigorously prove that the unsupervised trace ratio formulation is
the unified and unique objective of both trace ratio LDA and K -means clustering. Then
we propose an unsupervised feature selection method using unsupervised trace ratio for-
mulation regularized by ¢; 2-norm of the projection matrix. The proposed method can
harness the discriminant power of trace ratio LDA, thus it tends to select discrimina-
tive features. We derive an efficient algorithm to solve the proposed model with proved
convergence. Four real world data sets are used to evaluate the effectiveness of the
proposed method. Empirical results show that the proposed method outperforms other
sate-of-the-art unsupervised feature selection algorithms on all three valuation metrics.

References

1. Argyriou, A., Evgeniou, T., Pontil, M.: Multi-task feature learning. In: NIPS, pp. 41-48
(2007)

2. Cai, D., Zhang, C., He, X.: Unsupervised feature selection for multi-cluster data. In: Pro-
ceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pp. 333-342. ACM (2010)

3. Cai, X., Nie, F., Huang, H., Ding, C.: Feature selection via 12,1-norm support vector machine.
In: IEEE International Conference on Data Mining (2011)

4. Chen, C.H., Pau, L.F., Wang, P.S.P.: Handbook of pattern recognition and computer vision.
World Scientific (2010)

5. Ding, C., Peng, H.: Minimum redundancy feature selection from microarray gene expression
data. Journal of Bioinformatics and Computational Biology 3(02), 185-205 (2005)

6. Ding, C., Li, T.: Adaptive dimension reduction using discriminant analysis and k-means clus-
tering. In: International Conference on Machine Learning, pp. 521-528 (2007)

7. Forman, G.: An extensive empirical study of feature selection metrics for text classification.
The Journal of Machine Learning Research 3, 1289-1305 (2003)

8. Gorodnitsky, 1., Rao, B.: Sparse signal reconstruction from limited data using focuss: A re-
weighted minimum norm algorithm. IEEE Transactions on Signal Processing 45(3), 600-616
(1997)

9. He, X., Cai, D., Niyogi, P.: Laplacian score for feature selection. Advances in Neural Infor-
mation Processing Systems 18, 507 (2006)

10. Jia, Y., Nie, F., Zhang, C.: Trace ratio problem revisited. IEEE Transactions on Neural Net-
works 20(4), 729-735 (2009)



12.

13.

16.

17.

20.

21.

22.

23.

24.

25.

26.

27.

Unsupervised Feature Selection via Structured Sparse Trace Ratio Formulation 321

. Kohavi, R., John, G.H.: Wrappers for feature subset selection. Artificial Intelligence 97(1-2),

273-324 (1997)

Kong, D., Ding, C., Huang, H., Zhao, H.: Multi-label relieff and f-statistic feature selec-
tions for image annotation. In: The 25th IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 2352-2359 (2012)

Kononenko, I.: Estimating attributes: analysis and extensions of relief. In: Bergadano, F., De
Raedt, L. (eds.) ECML 1994. LNCS, vol. 784, pp. 171-182. Springer, Heidelberg (1994)

. Kuhn, H.W.: The hungarian method for the assignment problem. Naval Research Logistics

Quarterly 2(1-2), 83-97 (1955)

. Masaeli, M., Fung, G., Dy, J.G.: From transformation-based dimensionality reduction to fea-

ture selection. In: ICML, pp. 751-758 (2010)

Nie, F., Huang, H., Cai, X., Ding, C.: Efficient and robust feature selection via joint 12,1-
norms minimization. Advances in Neural Information Processing Systems 23, 1813—-1821
(2010)

Nie, F., Xiang, S., Jia, Y., Zhang, C.: Semi-supervised orthogonal discriminant analysis via
label propagation. Pattern Recognition 42(11), 2615-2627 (2009)

. Nie, F, Xiang, S., Jia, Y., Zhang, C., Yan, S.: Trace ratio criterion for feature selection. In:

AAAL pp. 671-676 (2008)

. Peng, H., Long, F., Ding, C.: Feature selection based on mutual information criteria of max-

dependency, max-relevance, and min-redundancy. IEEE Transactions on Pattern Analysis
and Machine Intelligence 27(8), 1226-1238 (2005)

Raileanu, L.E., Stoffel, K.: Theoretical comparison between the gini index and information
gain criteria. Ann. Math. Artif. Intell. 41(1), 77-93 (2004)

Wang, C., Caob, L., Miao, B.: Optimal feature selection for sparse linear discriminant anal-
ysis and its applications in gene expression data. Computational Statistics and Data Analy-
sis 66, 140-149 (2013)

Wang, D., Nie, F., Huang, H., Yan, J., Risacher, S.L., Saykin, A.J., Shen, L.: Structural
brain network constrained neuroimaging marker identification for predicting cognitive func-
tions. In: Gee, J.C., Joshi, S., Pohl, K.M., Wells, W.M., Zollei, L. (eds.) IPMI 2013. LNCS,
vol. 7917, pp. 536-547. Springer, Heidelberg (2013)

Wang, H., Nie, F., Huang, H., Kim, S., Nho, K., Risacher, S.L., Saykin, A.J., Shen, L.: Iden-
tifying quantitative trait loci via group-sparse multitask regression and feature selection: an
imaging genetics study of the adni cohort. Bioinformatics 28(2), 229-237 (2012)

Wang, H., Nie, F., Huang, H., Risacher, S., Ding, C., Saykin, A.J., Shen, L.: ADNI: Sparse
multi-task regression and feature selection to identify brain imaging predictors for memory
performance. In: IEEE Conference on Computer Vision (2011)

Xiang, S., Nie, F., Zhang, C.: Learning a mahalanobis distance metric for data clustering and
classification. Pattern Recognition 41(12), 3600-3612 (2008)

Yuan, M., Lin, Y.: Model selection and estimation in regression with grouped variables. Jour-
nal of The Royal Statistical Society Series B 68(1), 49-67 (2006)

Zhao, Z., Liu, H.: Spectral feature selection for supervised and unsupervised learning. In:
Proceedings of the 24th International Conference on Machine Learning, pp. 1151-1157.
ACM (2007)



	Unsupervised Feature Selection via Unified Trace Ratio
Formulation and K-means Clustering (TRACK)

	1 Introduction
	2 Notations and Definitions
	3 Trace Ratio Linear Discriminant Analysis Review
	4 Discriminative Unsupervised Feature Selection
	4.1 Unsupervised Dimensionality Reduction Using Trace Ratio Criterion
	4.2 Unsupervised Feature Selection Using Structured Sparse Trace Ratio Formulation

	5 Optimization Algorithm
	5.1 Convergence Analysis
	5.2 Theoretical Analysis for Feature Selection

	6 Experimental Results
	6.1 Brief Descriptions of Comparison Methods
	6.2 Data Sets and Evaluation Metrics
	6.3 Demonstration of Discriminant Power of Selected Features
	6.4 Clustering Performance Comparison
	6.5 Parameter Sensitivity

	7 Conclusion
	References




