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Preface

The European Conferences on Machine Learning (ECML) and on Principles and
Practice of Knowledge Discovery in Data Bases (PKDD) have been organized
jointly since 2001, after some years of mutual independence. Going one step
further, the two conferences were merged into a single one in 2008, and these are
the proceedings of the 2014 edition of ECML/PKDD. Today, this conference is
a world-wide leading scientific event. It aims at further exploiting the synergies
between the two scientific fields, focusing on the development and employment
of methods and tools capable of solving real-life problems.

ECML PKDD 2014 was held in Nancy, France, during September 15–19,
co-located with ILP 2014, the premier international forum on logic-based and
relational learning. The two conferences were organized by Inria Nancy Grand
Est with support from LORIA, a joint research unit of CNRS, Inria, and Uni-
versité de Lorraine.

Continuing the tradition, ECML/PKDD 2014 combined an extensive techni-
cal program with a demo track and an industrial track. Recently, the so-called
Nectar track was added, focusing on the latest high-quality interdisciplinary re-
search results in all areas related to machine learning and knowledge discovery
in databases. Moreover, the conference program included a discovery challenge,
a variety of workshops, and many tutorials.

The main technical program included five plenary talks by invited speakers,
namely, Charu Aggarwal, Francis Bach, Lise Getoor, Tie-Yan Liu, and Ray-
mond Ng, while four invited speakers contributed to the industrial track: George
Hébrail (EDF Lab), Alexandre Cotarmanac’h (Twenga), Arthur Von Eschen
(Activision Publishing Inc.) and Mike Bodkin (Evotec Ltd.).

The discovery challenge focused on “Neural Connectomics and on Predictive
Web Analytics” this year. Fifteen workshops were held, providing an opportunity
to discuss current topics in a small and interactive atmosphere: Dynamic Net-
works and Knowledge Discovery, Interactions Between Data Mining and Natural
Language Processing, Mining Ubiquitous and Social Environments, Statistically
Sound Data Mining, Machine Learning for Urban Sensor Data, Multi-Target
Prediction, Representation Learning, Neural Connectomics: From Imaging to
Connectivity, Data Analytics for Renewable Energy Integration, Linked Data for
Knowledge Discovery, New Frontiers in Mining Complex Patterns, Experimental
Economics and Machine Learning, Learning with Multiple Views: Applications
to Computer Vision and Multimedia Mining, Generalization and Reuse of Ma-
chine Learning Models over Multiple Contexts, and Predictive Web Analytics.

Nine tutorials were included in the conference program, providing a com-
prehensive introduction to core techniques and areas of interest for the scien-
tific community: Medical Mining for Clinical Knowledge Discovery, Patterns
in Noisy and Multidimensional Relations and Graphs, The Pervasiveness of
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Machine Learning in Omics Science, Conformal Predictions for Reliable Ma-
chine Learning, The Lunch Is Never Free: How Information Theory, MDL, and
Statistics are Connected, Information Theoretic Methods in Data Mining, Ma-
chine Learning with Analogical Proportions, Preference Learning Problems, and
Deep Learning.

The main track received 481 paper submissions, of which 115 were accepted.
Such a high volume of scientific work required a tremendous effort by the area
chairs, Program Committee members, and many additional reviewers. We man-
aged to collect three highly qualified independent reviews per paper and one
additional overall input from one of the area chairs. Papers were evaluated on
the basis of their relevance to the conference, their scientific contribution, rigor
and correctness, the quality of presentation and reproducibility of experiments.
As a separate organization, the demo track received 24 and the Nectar track 23
paper submissions.

For the second time, the conference used a double submission model: next to
the regular conference track, papers submitted to the Springer journals Machine
Learning (MACH) and Data Mining and Knowledge Discovery (DAMI) were
considered for presentation in the conference. These papers were submitted to
the ECML/PKDD 2014 special issue of the respective journals, and underwent
the normal editorial process of these journals. Those papers accepted for the
of these journals were assigned a presentation slot at the ECML/PKDD 2014
conference. A total of 107 original manuscripts were submitted to the journal
track, 15 were accepted in DAMI or MACH and were scheduled for presentation
at the conference. Overall, this resulted in a number of 588 submissions, of
which 130 were selected for presentation at the conference, making an overall
acceptance rate of about 22%.

These proceedings of the ECML/PKDD 2014 conference contain the full pa-
pers of the contributions presented in the main technical track, abstracts of the in-
vited talks and short papers describing the demonstrations, and theNectar papers.
First of all, wewould like to express our gratitude to the general chairs of the confer-
ence, AmedeoNapoli andChedyRäıssi, as well as to all members of theOrganizing
Committee, for managing this event in a very competent and professional way. In
particular, we thank the demo, workshop, industrial, and Nectar track chairs. Spe-
cial thanks go to the proceedings chairs, Élisa Fromont, Stefano Ferilli and Pascal
Poncelet, for the hard work of putting these proceedings together. We thank the
tutorial chairs, the Discovery Challenge organizers and all the people involved in
the conference, who worked hard for its success. Last but not least, we would like
to sincerely thank the authors for submitting their work to the conference and the
reviewers and area chairs for their tremendous effort in guaranteeing the quality
of the reviewing process, thereby improving the quality of these proceedings.

July 2014 Toon Calders
Floriana Esposito
Eyke Hüllermeier

Rosa Meo
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Toon Calders Université Libre de Bruxelles, Belgium
Floriana Esposito University of Bari, Italy
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Frederik Janssen
Nathalie Japkowicz
Szymon Jaroszewicz
Ulf Johansson
Alipio Jorge
Kshitij Judah
Tobias Jung
Hachem Kadri
Theodore Kalamboukis
Alexandros Kalousis
Pallika Kanani
U Kang
Panagiotis Karras
Andreas Karwath
Hisashi Kashima
Ioannis Katakis
John Keane
Latifur Khan
Levente Kocsis
Yun Sing Koh
Alek Kolcz
Igor Kononenko
Irena Koprinska
Nitish Korula
Petr Kosina
Walter Kosters
Georg Krempl
Konstantin Kutzkov
Sergei Kuznetsov

Nicolas Lachiche
Pedro Larranaga
Silvio Lattanzi
Niklas Lavesson
Nada Lavrač
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Scalable Collective Reasoning Using

Probabilistic Soft Logic

Lise Getoor

University of California, Santa Cruz
Santa Cruz, CA, USA

getoor@cs.umd.edu

Abstract. One of the challenges in big data analytics is to efficiently
learn and reason collectively about extremely large, heterogeneous, in-
complete, noisy interlinked data. Collective reasoning requires the ability
to exploit both the logical and relational structure in the data and the
probabilistic dependencies. In this talk I will overview our recent work
on probabilistic soft logic (PSL), a framework for collective, probabilistic
reasoning in relational domains. PSL is able to reason holistically about
both entity attributes and relationships among the entities. The under-
lying mathematical framework, which we refer to as a hinge-loss Markov
random field, supports extremely efficient, exact inference. This family of
graphical models captures logic-like dependencies with convex hinge-loss
potentials. I will survey applications of PSL to diverse problems ranging
from information extraction to computational social science. Our recent
results show that by building on state-of-the-art optimization methods
in a distributed implementation, we can solve large-scale problems with
millions of random variables orders of magnitude faster than existing
approaches.

Bio. In 1995, Lise Getoor decided to return to school to get her PhD in Com-
puter Science at Stanford University. She received a National Physical Sciences
Consortium fellowship, which in addition to supporting her for six years, sup-
ported a summer internship at Xerox PARC, where she worked with Markus
Fromherz and his group. Daphne Koller was her PhD advisor; in addition, she
worked closely with Nir Friedman, and many other members of the DAGS group,
including Avi Pfeffer, Mehran Sahami, Ben Taskar, Carlos Guestrin, Uri Lerner,
Ron Parr, Eran Segal, Simon Tong.

In 2001, Lise Getoor joined the Computer Science Department at the
University of Maryland, College Park.



Network Analysis in the Big Data Age: Mining

Graph and Social Streams

Charu Aggarwal

IBM T.J. Watson Research Center, New York
Yorktown, NY, USA

charu@us.ibm.com

Abstract. The advent of large interaction-based communication and
social networks has led to challenging streaming scenarios in graph and
social stream analysis. The graphs that result from such interactions
are large, transient, and very often cannot even be stored on disk. In
such cases, even simple frequency-based aggregation operations become
challenging, whereas traditional mining operations are far more com-
plex. When the graph cannot be explicitly stored on disk, mining algo-
rithms must work with a limited knowledge of the network structure.
Social streams add yet another layer of complexity, wherein the stream-
ing content associated with the nodes and edges needs to be incorporated
into the mining process. A significant gap exists between the problems
that need to be solved, and the techniques that are available for stream-
ing graph analysis. In spite of these challenges, recent years have seen
some advances in which carefully chosen synopses of the graph and social
streams are leveraged for approximate analysis. This talk will focus on
several recent advances in this direction.

Bio. Charu Aggarwal is a Research Scientist at the IBM T. J. Watson Research
Center in Yorktown Heights, New York. He completed his B.S. from IIT Kan-
pur in 1993 and his Ph.D. from Massachusetts Institute of Technology in 1996.
His research interest during his Ph.D. years was in combinatorial optimization
(network flow algorithms), and his thesis advisor was Professor James B. Orlin.
He has since worked in the field of data mining, with particular interests in data
streams, privacy, uncertain data and social network analysis. He has published
over 200 papers in refereed venues, and has applied for or been granted over 80
patents. Because of the commercial value of the above-mentioned patents, he has
received several invention achievement awards and has thrice been designated a
Master Inventor at IBM. He is a recipient of an IBM Corporate Award (2003) for
his work on bio-terrorist threat detection in data streams, a recipient of the IBM
Outstanding Innovation Award (2008) for his scientific contributions to privacy
technology, and a recipient of an IBM Research Division Award (2008) for his
scientific contributions to data stream research. He has served on the program
committees of most major database/data mining conferences, and served as pro-
gram vice-chairs of the SIAM Conference on Data Mining, 2007, the IEEE ICDM
Conference, 2007, the WWW Conference 2009, and the IEEE ICDM Conference,
2009. He served as an associate editor of the IEEE Transactions on Knowledge
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and Data Engineering Journal from 2004 to 2008. He is an associate editor of
the ACM TKDD Journal, an action editor of the Data Mining and Knowledge
Discovery Journal, an associate editor of the ACM SIGKDD Explorations, and
an associate editor of the Knowledge and Information Systems Journal. He is a
fellow of the ACM (2013) and the IEEE (2010) for contributions to knowledge
discovery and data mining techniques.



Big Data for Personalized Medicine: A Case

Study of Biomarker Discovery

Raymond Ng

University of British Columbia
Vancouver, B.C., Canada

mg@cs.ubc.ca

Abstract. Personalized medicine has been hailed as one of the main
frontiers for medical research in this century. In the first half of the
talk, we will give an overview on our projects that use gene expression,
proteomics, DNA and clinical features for biomarker discovery. In the
second half of the talk, we will describe some of the challenges involved
in biomarker discovery. One of the challenges is the lack of quality assess-
ment tools for data generated by ever-evolving genomics platforms. We
will conclude the talk by giving an overview of some of the techniques
we have developed on data cleansing and pre-processing.

Bio. Dr. Raymond Ng is a professor in Computer Science at the University of
British Columbia. His main research area for the past two decades is on data
mining, with a specific focus on health informatics and text mining. He has pub-
lished over 180 peer-reviewed publications on data clustering, outlier detection,
OLAP processing, health informatics and text mining. He is the recipient of two
best paper awards from 2001 ACM SIGKDD conference, which is the premier
data mining conference worldwide, and the 2005 ACM SIGMOD conference,
which is one of the top database conferences worldwide. He was one of the pro-
gram co-chairs of the 2009 International conference on Data Engineering, and
one of the program co-chairs of the 2002 ACM SIGKDD conference. He was
also one of the general co-chairs of the 2008 ACM SIGMOD conference. For the
past decade, Dr. Ng has co-led several large scale genomic projects, funded by
Genome Canada, Genome BC and industrial collaborators. The total amount of
funding of those projects well exceeded $40 million Canadian dollars. He now
holds the Chief Informatics Officer position of the PROOF Centre of Excellence,
which focuses on biomarker development for end-stage organ failures.



Machine Learning for Search Ranking

and Ad Auction

Tie-Yan Liu

Microsoft Research Asia
Beijing, P.R. China
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Abstract. In the era of information explosion, search has become an
important tool for people to retrieve useful information. Every day, bil-
lions of search queries are submitted to commercial search engines. In
response to a query, search engines return a list of relevant documents
according to a ranking model. In addition, they also return some ads
to users, and extract revenue by running an auction among advertisers
if users click on these ads. This “search + ads” paradigm has become a
key business model in today’s Internet industry, and has incubated a few
hundred-billion-dollar companies. Recently, machine learning has been
widely adopted in search and advertising, mainly due to the availabil-
ity of huge amount of interaction data between users, advertisers, and
search engines. In this talk, we discuss how to use machine learning to
build effective ranking models (which we call learning to rank) and to
optimize auction mechanisms. (i) The difficulty of learning to rank lies
in the interdependency between documents in the ranked list. To tackle
it, we propose the so-called listwise ranking algorithms, whose loss func-
tions are defined on the permutations of documents, instead of individ-
ual documents or document pairs. We prove the effectiveness of these
algorithms by analyzing their generalization ability and statistical con-
sistency, based on the assumption of a two-layer probabilistic sampling
procedure for queries and documents, and the characterization of the re-
lationship between their loss functions and the evaluation measures used
by search engines (e.g., NDCG and MAP). (ii) The difficulty of learning
the optimal auction mechanism lies in that advertisers’ behavior data
are strategically generated in response to the auction mechanism, but
not randomly sampled in an i.i.d. manner. To tackle this challenge, we
propose a game-theoretic learning method, which first models the strate-
gic behaviors of advertisers, and then optimizes the auction mechanism
by assuming the advertisers to respond to new auction mechanisms ac-
cording to the learned behavior model. We prove the effectiveness of the
proposed method by analyzing the generalization bounds for both behav-
ior learning and auction mechanism learning based on a novel Markov
framework.

Bio. Tie-Yan Liu is a senior researcher and research manager at Microsoft Re-
search. His research interests include machine learning (learning to rank, online
learning, statistical learning theory, and deep learning), algorithmic game theory,
and computational economics. He is well known for his work on learning to rank
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for information retrieval. He has authored the first book in this area, and pub-
lished tens of highly-cited papers on both algorithms and theorems of learning
to rank. He has also published extensively on other related topics. In particular,
his paper won the best student paper award of SIGIR (2008), and the most cited
paper award of the Journal of Visual Communication and Image Representation
(2004-2006); his group won the research break-through award of Microsoft Re-
search Asia (2012). Tie-Yan is very active in serving the research community. He
is a program committee co-chair of ACML (2015), WINE (2014), AIRS (2013),
and RIAO (2010), a local co-chair of ICML 2014, a tutorial co-chair of WWW
2014, a demo/exhibit co-chair of KDD (2012), and an area/track chair of many
conferences including ACML (2014), SIGIR (2008-2011), AIRS (2009-2011), and
WWW (2011). He is an associate editor of ACM Transactions on Information
System (TOIS), an editorial board member of Information Retrieval Journal and
Foundations and Trends in Information Retrieval. He has given keynote speeches
at CCML (2013), CCIR (2011), and PCM (2010), and tutorials at SIGIR (2008,
2010, 2012), WWW (2008, 2009, 2011), and KDD (2012). He is a senior member
of the IEEE and the ACM.
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Francis Bach
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Paris, France

francis.bach@inria.fr

Abstract. Many machine learning and signal processing problems are
traditionally cast as convex optimization problems. A common difficulty
in solving these problems is the size of the data, where there are many
observations (“large n”) and each of these is large (“large p”). In this
setting, online algorithms such as stochastic gradient descent which pass
over the data only once, are usually preferred over batch algorithms,
which require multiple passes over the data. In this talk, I will show how
the smoothness of loss functions may be used to design novel algorithms
with improved behavior, both in theory and practice: in the ideal infinite-
data setting, an efficient novel Newton-based stochastic approximation
algorithm leads to a convergence rate of O(1/n) without strong convex-
ity assumptions, while in the practical finite-data setting, an appropriate
combination of batch and online algorithms leads to unexpected behav-
iors, such as a linear convergence rate for strongly convex problems, with
an iteration cost similar to stochastic gradient descent.
(joint work with Nicolas Le Roux, Eric Moulines and Mark Schmidt)

Bio. Francis Bach is a researcher at INRIA, leading since 2011 the SIERRA
project-team, which is part of the Computer Science Laboratory at Ecole Nor-
male Superieure. He completed his Ph.D. in Computer Science at U.C. Berkeley,
working with Professor Michael Jordan, and spent two years in the Mathemati-
cal Morphology group at Ecole des Mines de Paris, then he joined the WILLOW
project-team at INRIA/Ecole Normale Superieure from 2007 to 2010. Francis
Bach is interested in statistical machine learning, and especially in graphical
models, sparse methods, kernel-based learning, convex optimization vision and
signal processing.
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Making Smart Metering Smarter

by Applying Data Analytics

Georges Hébrail

EDF Lab
CLAMART, France

georges.hebrail@edf.fr

Abstract. New data is being collected from electric smart meters which
are deployed in many countries. Electric power meters measure and trans-
mit to a central information system electric power consumption from ev-
ery individual household or enterprise. The sampling rate may vary from
10 minutes to 24 hours and the latency to reach the central informa-
tion system may vary from a few minutes to 24h. This generates a large
amount of - possibly streaming - data if we consider customers from an
entire country (ex. 35 millions in France). This data is collected firstly
for billing purposes but can be processed with data analytics tools with
several other goals. The first part of the talk will recall the structure of
electric power smart metering data and review the different applications
which are considered today for applying data analytics to such data. In
a second part of the talk, we will focus on a specific problem: spatio-
temporal estimation of aggregated electric power consumption from in-
complete metering data.

Bio. Georges Hébrail is a senior researcher at EDF Lab, the research centre
of Electricité de France, one of the world’s leading electric utility. His back-
ground is in Business Intelligence covering many aspects from data storage and
querying to data analytics. From 2002 to 2010, he was a professor of computer
science at Telecom ParisTech, teaching and doing research in the field of informa-
tion systems and business intelligence, with a focus on time series management,
stream processing and mining. His current research interest is on distributed and
privacy-preserving data mining on electric power related data.



Ads That Matter

Alexandre Cotarmanac’h

VP Platform & Distribution
Twenga

alexandre.cotarmanach@twenga.com

Abstract. The advent of realtime bidding and online ad-exchanges has
created a new and fast-growing competitive marketplace. In this new
setting, media-buyers can make fine-grained decisions for each of the
impressions being auctioned taking into account information from the
context, the user and his/her past behavior. This new landscape is par-
ticularly interesting for online e-commerce players where user actions can
also be measured online and thus allow for a complete measure of return
on ad-spend.
Despite those benefits, new challenges need to be addressed such as:

– the design of a real-time bidding architecture handling high volumes
of queries at low latencies,

– the exploration of a sparse and volatile high-dimensional space,
– as well as several statistical modeling problems (e.g. pricing, offer

and creative selection).

In this talk, I will present an approach to realtime media buying for
online e-commerce from our experience working in the field. I will review
the aforementioned challenges and discuss open problems for serving ads
that matter.

Bio. Alexandre Cotarmanac’h is Vice-President Distribution & Platform for
Twenga.

Twenga is a services and solutions provider generating high value-added
leads to online merchants that was founded in 2006.

Originally hired to help launch Twenga’s second generation search engine
and to manage the optimization of revenue, he launched in 2011 the affinitAD line
of business and Twenga’s publisher network. Thanks to the advanced contextual
analysis which allows for targeting the right audience according to their desire to
buy e-commerce goods whilst keeping in line with the content offered, affinitAD
brings Twenga’s e-commerce expertise to web publishers. Alexandre also oversees
Twenga’s merchant programme and strives to offer Twenga’s merchants new
services and solutions to improve their acquisition of customers.

With over 14 years of experience, Alexandre has held a succession of in-
creasingly responsible positions focusing on advertising and web development.
Prior to joining Twenga, he was responsible for the development of Search and
Advertising at Orange. Alexandre graduated from Ecole polytechnique.



Machine Learning and Data Mining

in Call of Duty

Arthur Von Eschen
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Abstract. Data science is relatively new to the video game industry, but
it has quickly emerged as one of the main resources for ensuring game
quality. At Activision, we leverage data science to analyze the behavior
of our games and our players to improve in-game algorithms and the
player experience. We use machine learning and data mining techniques
to influence creative decisions and help inform the game design process.
We also build analytic services that support the game in real-time; one
example is a cheating detection system which is very similar to fraud
detection systems used for credit cards and insurance. This talk will
focus on our data science work for Call of Duty, one of the bestselling
video games in the world.

Bio. Arthur Von Eschen is Senior Director of Game Analytics at Activision. He
and his team are responsible for analytics work that supports video game design
on franchises such as Call of Duty and Skylanders. In addition to holding a
PhD in Operations Research, Arthur has over 15 years of experience in analytics
consulting and R&D with the U.S. Fortune 500. His work has spanned across
industries such as banking, financial services, insurance, retail, CPG and now
interactive entertainment (video games). Prior to Activision he worked at Fair
Isaac Corporation (FICO). Before FICO he ran his own analytics consulting firm
for six years.



Algorithms, Evolution and Network-Based

Approaches in Molecular Discovery

Mike Bodkin

Evotec Ltd.
Oxfordshire, UK

Mike.Bodkin@evotec.com

Abstract. Drug research generates huge quantities of data around tar-
gets, compounds and their effects. Network modelling can be used to
describe such relationships with the aim to couple our understanding of
disease networks with the changes in small molecule properties. This talk
will build off of the data that is routinely captured in drug discovery and
describe the methods and tools that we have developed for compound
design using predictive modelling, evolutionary algorithms and network-
based mining.

Bio. Mike did his PhD in protein de-novo design for Nobel laureate sir James
Black before taking up a fellowship in computational drug design at Cambridge
University. He moved to AstraZeneca as a computational chemist before joining
Eli Lilly in 2000. As head of the computational drug discovery group at Lilly since
2003 he recently jumped ship to Evotec to work as the VP for computational
chemistry and cheminformatics. His research aims are to continue to develop new
algorithms and software in the fields of drug discovery and systems informatics
and to deliver and apply current and novel methods as tools for use in drug
research.
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FLIP: Active Learning for Relational Network

Classification

Tanwistha Saha, Huzefa Rangwala, and Carlotta Domeniconi

Department of Computer Science
George Mason University
Fairfax, Virginia, USA

tsaha@gmu.edu, {rangwala,carlotta}@cs.gmu.edu

Abstract. Active learning in relational networks has gained popularity
in recent years, especially for scenarios when the costs of obtaining train-
ing samples are very high. We investigate the problem of active learning
for both single- and multi-labeled relational network classification in the
absence of node features during training. The problem becomes harder
when the number of labeled nodes available for training a model is lim-
ited due to budget constraints. The inability to use a traditional learning
setup for classification of relational data, has motivated researchers to
propose Collective Classification algorithms that jointly classifies all the
test nodes in a network by exploiting the underlying correlation between
the labels of a node and its neighbors. In this paper, we propose active
learning algorithms based on different query strategies using a collective
classification model where each node in a network can belong to either
one class (single-labeled network) or multiple classes (multi-labeled net-
work). We have evaluated our method on both single-labeled and multi-
labeled networks, and our results are promising in both the cases for
several real world datasets.

1 Introduction

In recent years, relational learning has gained popularity because of the ability
to represent many real world datasets as a graph representing the interaction
pattern between the instances in that datasets. Social networks of individuals,
protein-protein interaction networks in biological domain and citation networks
of scientific articles are only a few examples of this representation. The objective
of relational learning is to efficiently and accurately classify nodes in a network
by using the latent relational information.

The first step towards building a classification model is to acquire a represen-
tative training set. However, acquiring training samples can be expensive due to
the cost of querying labels through interactions with a human or oracle. Active
learning aims to learn a model with minimal querying cost and can also prioritize
the acquisition of labeled samples under budget constraints. Previously, different
active learning strategies have been developed for selecting the most informa-
tive sample(s) to improve the generalization performance of a classifier. Even

T. Calders et al. (Eds.): ECML PKDD 2014, Part III, LNCS 8726, pp. 1–18, 2014.
c© Springer-Verlag Berlin Heidelberg 2014
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though active learning approaches for single-labeled datasets have been exten-
sively studied, algorithms for multi-labeled datasets has not yet been explored.
The task becomes even more challenging for multi-labeled networks because tra-
ditional active learning strategies do not take into account the explicit relational
information.

Collective Classification methods jointly classify all the test nodes in a net-
work by leveraging the complex and implicit correlations between multiple en-
tities and their labels. These methods are applicable towards networks which
have topological features [10,16], but may or may not have node features [10]. In
either case, optimizing the cost of acquiring training data involves the use of ac-
tive learning algorithms. Most of the work on active learning for relational data
using collective classification, assume that node features are available during the
learning process [2,17].

In this paper we have developed a pool-based active learning strategy for
single- and multi-labeled networks based on the intuition that, unlabeled in-
stances which are harder to classify undergo multiple changes in their predicted
labels during consecutive iterations of collective inference. We refer to this chang-
ing of labels of an instance as flipping, and our method as FLIP. We also inves-
tigate the situation when only a subset of the labels of a multi-labeled instance
can be queried during each round of active learning, thereby, creating a chal-
lenge regarding which subset of labels to choose. We propose a method called
FLIP-per-label for pool-based active learning to address this real-world situa-
tion. Our contributions in this paper are summarized as follows:

1. Active learning strategy for single labeled and multi-labeled networks (FLIP)
2. Active learning strategy for querying a subset of labels of an instance for

multi-labeled network (FLIP-per-label)

These methods were developed assuming no node features are available to us
during learning. We experimented with six real world single-labeled and three
multi-labeled networks, and our results show statistically significant improve-
ments over random sampling and other baselines for most of the datasets.

2 Related Work

Previous active learning algorithms [1,2,4,12] determine informative examples to
query based on one ormore of the following properties: (i)maximumentropybased
on classifier’s prediction of its label; (ii) least confidence of the classifier on its label;
(iii) maximum disagreement between multiple classifiers (e.g., ensemble) predict-
ing its label. Zhu et al. [21] have deviated from this approach by combining active
learning with semi-supervised learning using Gaussian field and harmonic func-
tions, and employing Empirical Risk Minimization (ERM) framework.Macskassy
proposed amethod [11] that uses graph-basedmetrics (e.g., clustering co-efficient,
betweenness centrality and degree of a node) to identify a set of informative exam-
ples and then apply ERM on that same set of examples to identify the single most
informative instance from the pool. Most of these methods [11,21] had the benefit
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of using the features of the instances during training phase. This is often a chal-
lenge for relational networks because the features may not be available for mining
due to privacy concerns. In this work, we focus on developing methods that learn
from the structural properties of networks.

Our method is inspired by Zhu et al. and Macskassy [11,21], but unlike their
approaches which focus on matrix based methods (that rely heavily on rich
instance features), our method explores the use of the collective inference proce-
dure within the active learning strategy. Bilgic et al. [2] were the first to propose
an active learning approach that uses the disagreement score between a content-
only classifier (i.e., trained using node features) and a collective classifier. Shi et
al. [17] proposed a batch algorithm that combines node features and link infor-
mation for active sample selection strategy. The algorithm by Ji et al. [6] selects
instances that minimize the total variance of the distribution of the unlabeled
samples and the total prediction error. Kuwadekar and Neville [8] use a proba-
bilistic relational model [14] to select informative instances. All these methods
rely on the use of both the node features and the structure of the network.

In case of multi-label learning when the labels are correlated and there is ex-
plicit link structure between the instances of the dataset, it becomes challenging
to leverage these multiple correlations during training [20]. Recently proposed
work of Ghamrawi and McCallum [5], Kong et al. [7], Saha et al. [15] and Wang
and Sukthankar [19], have developed multi-labeled collective classification al-
gorithms, most of which [5,7,15] require nodes features to be available during
learning. Wang and Sukthankar [19] proposed a collective classifier that derives
social context features from the network structure during learning, whereas, our
work is focused on building an intelligent active learning model using one-vs-rest
multi-label version of a state-of-the-art collective classifier [10].

3 Methods

3.1 Definition and Notations

Given a network G=(V , E) where V is the set of nodes and E is the set of edges,
each node vi ∈ V (|V| = n is the total number of nodes in the network) can
have either one label (for single-labeled network) or multiple labels (for multi-
labeled networks). The label(s) of any node vi in the graph is represented as yi =
(yi1, · · · , yiK) where yik = 1 if node vi belongs to the class k (k ∈ {1, · · · ,K};
K is the total number of classes). For single-labeled network, a node can belong
to only one class. Hence, only one element, say yik, of the label vector yi can
have value 1 (if vi belongs to the class k) and the rest of the values are 0. For
multi-labeled network, yik = 1 ∀k ∈ M , where M is the set of classes to which
this node belongs (|M | ≤ K). Given the set of labeled nodes L and the set
of unlabeled nodes U , the objective of collective classification is to predict the
labels of all the unlabeled nodes [16]. Y ={y1, · · · ,yn} represents the set of label
vectors of all the n nodes in network. l and u represent the indices of a labeled
node and an unlabeled node respectively, such that l ∈ L and u ∈ U . YL is the
label matrix for training data, where each row is the label vector yl, ∀l ∈ L.
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YU is the predicted output label matrix of the unlabeled data, where each row
is the predicted label vector yu, ∀u ∈ U . For active learning setup, we denote
PU as the class probability matrix of all the unlabeled nodes such that each row
of PU is a vector pu = (pu1, · · · , puK) and denote PL as the class probability
matrix of all the labeled nodes in training set L, such that PL = YL. puk is
equal to P (yik = 1|Ni), where i = u and Ni is the set of neighboring nodes of
node vi. PO represents the set of indices of all the nodes in unlabeled pool. The
class conditional probability P of all the labeled and unlabeled nodes is given
by, P = [PL;PU ], where PU is predicted by active learner.

3.1.1 Weighted Vote Relational Neighbor
Macskassy and Provost [10] proposed the weighted vote relational neighbor
(wvRN) algorithm to classify nodes in a relational network using only the net-
work structure. Given vi ∈ U , the wvRN classifier estimates the probability of
node vi having class label k (i.e., yik = 1) as a weighted average of the labels of
it’s neighboring nodes.

P (yik = 1|Ni) =
1

Z

∑
vj∈Ni

wij · P (yjk = 1|Nj). (1)

Ni is the set of neighbors of vi in G, Z is the normalization constant
(Z =

∑K
k=1 P (yik|Ni)) and wij is the weight on the edge, eij . In the collec-

tive classification algorithm, the bootstrap phase assigns a class probability to all
the test nodes vi ∈ U by estimating the class prior probability as:

P (yik = 1) =
1

|L|
∑
j∈L

I(yjk = 1), (2)

where I(·) is an indicator function with value 1 if the arguement is true.
Relaxation labeling is a collective inference method based on the approach by

Chakrabarti et al. [3]. During each iteration of collective inference, relaxation
labeling [10,3] is used to update the prediction probability estimates from previ-
ous iterations. At step t+1 the predicted labels of all the test nodes are updated
based on their estimation at step t. The update rule is given by [10,19]:

P
(t+1)
i = β(t+1) · MR(v

(t)
i ) + (1− β(t+1)) ·P(t)

i (3)

A simulated annealing based technique [10] is used to reduce the influence of
neighbors by giving more weight to a node’s current estimate. In Equation (3),
MR(·) is the relational model (here, wvRN), β1 = γ and β(t+1) = βt · α where
γ and α are constants in the range (0, 1], both γ and α values are chosen closer

to 1, P
(t)
i is a vector with class probability values for node vi at step t.

3.1.2 Multi-label Weighted Vote Relational Neighbor
The wvRN algorithm was designed for classifying single-labeled networks. We
used wvRN’s approach and developed a one-vs-rest algorithm to implement a
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multi-label weighted vote relational neighbor (ML-wvRN) classifier. We use re-
laxation labeling for the collective inference, and estimate the probability for a
test node to belong to K different classes. We select only those classes that have
higher probabilities (the number of selected classes is equal to the total number
of classes of the test node and is always ≤ K) and assign the corresponding labels
to the test node. A similar approach was taken by Tang et al. [18] in multi-label
classification. This classifier is referred to as ML-wvRN-RL.

Algorithm 1. FLIP
Input: G = (V, E): the network, CC: collective classifier, maxiter: number of iterations for the

approximate inference of CC, b: batchsize, B: budget, PO: pool, T : Initial training set with l%
of |V| as labeled samples

Output: L: updated training set
1: Initialize L← T
2: while |L| < B do
3: Run CC with L as labeled data and PO as unlabeled data to predict labels for instances in

the pool PO
4: S ← 0
5: for each node vi s.t. i ∈ PO do
6: S[i] =

∑maxiter
t=1

∑K
k=1 |yt

ik − yt−1
ik | where yt

ik is the predicted label of node vi in the t-th

iteration of inference through CC, such that yt
ik ∈ {0, 1} ∀k ∈ {1, 2, · · · ,K}

7: end for
8: Sort S in descending order of values
9: Pick b nodes from pool PO having top b values in S
10: Add the indices of these b nodes to set L, and remove these indices from pool PO
11: |L| ← |L|+ b
12: end while

3.2 Active Learning Using Iterative Classification Algorithm

For collective classification using iterative inference [9,13] in relational networks,
the label information is propagated from the training node to the test nodes
through multiple iterations. This causes the predicted label of a test instance to
undergo multiple changes before it finally converges to a particular label. In our
approach we monitor the frequency of label change for all the unlabeled instances
in the pool set to identify the most informative ones. During the inference steps,
certain nodes that are harder to classify, change their label(s) more frequently
than others. We run multiple iterations of inference on the pool set and aggregate
the total changes in labels for each node in the pool set. This aggregation or
frequency of label changes is defined as FLIP score and an instance with a high
FLIP score is considered to be a likely candidate for selection by our active
learning algorithm (due to it’s uncertainty in converging to a fixed label(s)).
We refer to this approach of picking a batch of instances based on their FLIP
scores, as FLIP and describe it in Algorithm 1. For single-labeled networks, wvRN
with relaxation labeling (wvRN-RL) is used as the collective classifier (CC) in
Algorithm 1. For multi-labeled networks, ML-wvRN-RL is used.

3.2.1 Case Study
We performed a case study on a derived co-authorship network from DBLP1.

1 http://www.informatik.uni-trier.de/~ley/db/

http://www.informatik.uni-trier.de/~ley/db/
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(c) Round 3
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(d) Round 4

Fig. 1. Distribution of number of Instances which changed labels across number of
Iterations in wvRN algorithm’s collective inference step during Active Learning

Details of this single-labeled 2-class network and the experimental setup is men-
tioned in Section 4.1. We randomly sampled 2% of the nodes as training and
30% as testing sets, and left the rest in the pool. We used wvRN-RL [10] as
collective classifer with training and pool sets; and performed collective infer-
ence on nodes in the pool. In Figure 3.2, we show the distribution of instances
in the pool that changed labels across four rounds of active learning. For each
round we chose 100 instances from pool with the highest FLIP scores across 50
iterations of collective inference and added them to the training set. For each
round, the total number of instances that flipped labels, gradually decreased
over consecutive iterations of the inference phase. These plots motivated us to
use the inference steps of collective classification in order to identify informative
instances from pool.

3.3 Active Learning for Multi-labeled Networks

We use the FLIP algorithm for multi-labeled networks with ML-wvRN-RL as
the collective classifier. We aggregate each label’s FLIP scores and select those
instances which have highest total FLIP score. Rest of the steps are same as
shown in Algorithm 1. This method is also referred by FLIP in our experiments
with multi-labeled networks.

3.3.1 Active Learning with Per-Label Cost
We proposed a method to optimize the cost associated with querying each label
within the multi-labeled relational networks. Specifically, in each iteration either
a single label or a subset of labels of selected samples are queried, while the labels
of the remaining instances are inferred in the subsequent rounds. Querying a sub-
set of labels of a multi-labeled instance makes more efficient utilization of budget
compared to querying all the labels. We refer to this method as FLIP-per-label
(Algorithm 2). Intuitively, this method iteratively chooses a (node,label) pair for
which the label has flipped maximum number of times.

The number of (node,label) pairs chosen in each round of active learn-
ing depends on a parameter batchsize, i.e., the total number of labels to be
queried. Unlike FLIP, in this case array S contains the FLIP scores for all pos-
sible (node,label) pairs. Additionally, a list called PAIR (of (node,label) pairs)
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is maintained. We initialize PU = 0.5×1|U|×K assuming all unobserved or miss-
ing labels are equally likely with probability score = 0.5. We set |U | = |PO|, i.e.,
number of unlabeled nodes in the pool. In line 3 of Algorithm 2, the learner pre-
dicts the probability scores of all the classes (and thereby, labels) for each of the
instances in the pool. It queries labels based on the probability values in PU (line
17), thereby, updating matrix PL (line 19) depending on which instances have
their specific label(s) queried. If the predicted class conditional probability of an
instance lies between lower and upper probability thresholds (ltr and utr respec-
tively), then the corresponding class label is assumed to be non-informative, and
hence, not queried. We set ltr = 0.3 and utr = 0.7, assuming that any label k of
node vi having probability score P (yik = 1|Ni) ≤ 0.3 can not be the true class of
vi. Similarly, any label k of node vi having probability score P (yik = 1|Ni) ≥ 0.7
can be considered as the true label of vi. In either of the two cases, the label k
is queried by the learner. The algorithm is referred as FLIP-PL in the plots of
Section 4.

Algorithm 2. FLIP-per-label
Input: G = (V, E): the network, K: number of classes, CC: collective classifier, maxiter: number

of iterations for the approximate inference of CC, b: batchsize, B: budget, PO: pool, T : Initial
training set with l% of |V| as labeled samples, YL: Label matrix of nodes in training set T , ltr :
lower threshold of probability score, utr : upper threshold of probability score

Output: L: updated training set
1: Initialize L← T ;PL = YL;PU = 0.5× 1|PO|×K ; total← ∅
2: while total < B do
3: Run CC with L as labeled data and U = PO as unlabeled data to predict labels for unlabeled

instances in the pool PO, update PU from Equations (1)-(3)
4: S ← 0, index← 1, PAIR← 0
5: for each node vi s.t. i ∈ PO do
6: for each label k ∈ {1, 2, · · · ,K} do

7: S[index] =
∑maxiter

t=1 |yt
ik − yt−1

ik | where yt
ik is the predicted label of node vi in the t-th

iteration of inference through CC, such that yt
ik ∈ {0, 1}

8: PAIR[index]← (i, k) /* store the (node,label) pair */
9: index← index + 1
10: end for
11: end for
12: SS ← Sort(S, descend)
13: pair ← (i, k) pairs selected from PAIR s.t. pair[1] = (i, k) has the FLIP score = SS[1] and

pair[index] = (i′, k′) has FLIP score = SS[index]
14: count← 0
15: for each (i, k) ∈ pair do
16: Get P (yik = 1|Ni) from updated PU computed in line 3 using Equations (1)-(3)
17: if P (yik = 1|Ni) ≥ utr or P (yik = 1|Ni) ≤ ltr then
18: Query label k of node vi in the pool PO
19: Add node vi to L with vi’s k-th label disclosed to CC, remove i from pool PO, Update

PL with the queried label information of vi
20: count← count + 1
21: if count == b then
22: break
23: end if
24: end if
25: end for
26: total← total + b
27: end while
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3.4 Variants of FLIP for Single- and Multi-labeled Networks

The active learning algorithm relies on computing the FLIP scores for each of
the instances in the pool during the inference phase. However, several instances
may end up having the same FLIP scores. As such, we developed different tie-
breaking strategies and variations of the FLIP algorithm.

3.4.1 Betweenness Centrality
Macskassy [11] proposed several graph-based metrics to select informative in-
stances for single labeled datasets, out of which betweenness centrality metric
was found to be most useful. For a node vi, the shortest path betweenness cB(vi),
is defined as follows [11]:

cB(vi) =
∑

va,vb∈V

σ(va, vb|vi)
σ(va, vb)

(4)

where σ(va, vb|vi) represents the number of shortest paths that pass through
node vi and σ(va, vb) represents number of shortest paths between any pair of
nodes va, vb in the graph. Nodes with high betweenness centrality scores can
be considered as information hubs in the network (making them important for
collective inference). Upon encountering a tie on FLIP scores, nodes with high
betweenness centrality are finally chosen. This is referred by FLIP-BC.

3.4.2 Hops from Training Nodes
For our active learning algorithm, the objective is to select instances that can
disperse the labeled information over the entire network. To this end, upon
encountering a tie in FLIP score we choose only those nodes that are at a
greater distance (hops) away from any of the training nodes. We refer to this as
FLIP-H.

3.4.3 Absolute difference in Probability Score
For each node in the pool, our active learner predicts the class conditional prob-
abilities with values in [0, 1] (see Equation (1)). However, when the learner is
most uncertain about the class of an instance, it is more likely to predict a score
≈ 0.5 for each of the K classes. Instead of computing FLIP score for vi as the
count/frequency of flips, we compute the deviation of class conditional probabil-
ities from 0.5 for each of the labels at the end of the maximum allowed iterations
(t = maxiter) and assign the score to S[i].

S[i] =
K∑

k=1

|Pmaxiter(yik = 1|Ni)− 0.5| (5)

where P t(yik = 1|Ni) at t = 0, is initialized according to Equation (2). We query
those instances, which have lowest scores in S. If Pmaxiter(yik = 1|Ni) ≈ 0.5 then
learner is uncertain about its true label and S[i] ≈ 0 and vi can be considered as
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an informative sample. Intuitively, this approach is very similar to FLIP, because
Pmaxiter(yik = 1|Ni) ≈ 0.5 will most likely cause node vi to flip its labels several
times. We refer to this method as FLIP-A.

3.4.4 Entropy
Entropy is a measure of uncertainty in any system. Since, we are predicting the
labels of the instances in the pool, we assume that instances which have the
highest entropy due to their predicted labels, are most difficult to classify and
are expected to be the most informative instances for learning a model. For a
node vi in the pool, the entropy cE(vi) due to collective inference is:

cE(vi) = −
K∑
k=1

Pmaxiter(yik = 1|Ni) · log(Pmaxiter(yik = 1|Ni)) (6)

This entropy is used as utility score in identifying informative nodes from the
pool. We refer this baseline as Entropy.

3.5 Variants of FLIP-per-label for Multi-labeled Networks

The subtle difference between FLIP and FLIP-per-label required us to use a
different set of variants compared to that defined in Section 3.4.

3.5.1 Cumulative FLIP score
This is a two-phase selection procedure. In first phase, node vi is selected based
on its overall FLIP score computed as S[i] =

∑maxiter
t=1

∑K
k=1 |ytik − yt−1ik | (line

6, Algorithm 1). In second phase, any label k of vi that has probability score
Pmaxiter(yik = 1|Ni) ≤ ltr or Pmaxiter(yik = 1|Ni) ≥ utr was selected for anno-
tation (Pmaxiter(yik = 1|Ni) is the probability of class k after maxiter iterations
during collective classification). This method is referred as FLIP-PL-ALL.

3.5.2 Betweenness Centrality
The nodes with high betweenness centrality scores (computed using Equation
(4)) in the pool are selected first. For each such node vi, the labels which have
probability scores Pmaxiter(yik = 1|Ni) ≤ ltr or Pmaxiter(yik = 1|Ni) ≥ utr

are selected for annotation. This is referred by BC-FLIP-PL. We also propose a
baseline method that uses betweenness centrality score to identify nodes from
pool, and then for each such node vi, randomly selects �0.5 ×K� labels which
have high FLIP scores. This method is referred as BC-RAND.

3.5.3 Entropy
For a node vi in the pool, the entropy cE(vi) is measured according to Equation
(6) (Section 3.4.4). This is used as a utility score in identifying informative nodes
from the pool. For each such multi-labeled node vi, �0.5×K� labels which have
high FLIP scores are queried. This method is referred by Ent-FLIP-PL.
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Table 1. Description of datasets (single-labeled and multi-labeled networks)

Single-label

Type Name |V| |E| K ADN† ACC† ALN † (+)/(-)†

Binary
DBLP(B)-binary 5329 21880 2 7.2117 0.8127 1 2935/2394
IMDB - prod 1176 37174 2 63.2211 0.3963 1 564/612

Multi-class

Cora 2708 5278 7 3.8981 0.2407 1 NA
DBLP(B)-multiclass 5329 21880 6 7.2117 0.8127 1 NA
Industry - pr 2189 11666 12 10.6587 0.5425 1 NA
Flickr 7971 478980 7 120.1807 0.2955 1 NA

Multi-label

NA
DBLP(A) 10314 47200 6 8.1526 0.9999 1.6191 NA
DBLP(B) 5329 21880 6 7.2117 0.8127 1.2211 NA
IMDB - actor 2411 12255 22 10.1697 0.4720 3.6838 NA

†
ADN = Average degree per node, ACC = Average clustering co-efficient, ALN = Average number

of labels per node, (+)/(-) = Numbers of instances in positive/negative class

4 Experimental Protocol

4.1 Datasets

We evaluate the performance of our algorithms on six single-labeled datasets and
three multi-labeled datasets. All datasets used in this paper can be downloaded
from the website2. Characteristics of these datasets are provided in Table 1.
We validate our algorithms using the framework described by Bilgic et al. [2].
First we select 30% of the nodes randomly from each network as test samples,
and keep these nodes as well as all the edges connected to these nodes separate
from the network during active learning. The remaining nodes are split into
pool and training set. We found that instead of choosing samples for training
randomly, if we choose samples that have high betweenness centrality score then
the performance of the classifier improves. The performance of the learner is
measured w.r.t. the test set after putting the test nodes and edges back in
the network. We choose only 2% of the total number of instances having high
betweenness centrality scores as the initial training set.

We have extracted four different co-authorship networks (two single-labeled
networks named as DBLP(B)-binary, DBLP(B)-multiclass and two multi-
labeled networks named as DBLP(B) and DBLP(A)) of computer science re-
searchers from the DBLP3 bibliographic database as done by Kong et al. [7].
DBLP(B) is a dataset consisting of authors publishing in different computer
science areas whereas DBLP(A) consists of authors from specific disciplines of
computer science (Data Mining/AI). DBLP(B)-binary dataset is derived from
DBLP(B) by considering “Networking” area as the positive class and rest of
the classes as negative class. DBLP(B)-multiclass is derived by labeling each
author (node) in DBLP(B) with the research area (label) in which the author
has published most of his/her papers. We created an undirected version of the
Cora citation network of papers (without any node features) belonging to one

2 http://www.cs.gmu.edu/~tsaha/Projects/
3 http://www.informatik.uni-trier.de/~ley/db/

http://www.cs.gmu.edu/~tsaha/Projects/
http://www.informatik.uni-trier.de/~ley/db/
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of the seven AI related research areas from the original dataset used by Lu and
Getoor [9]. Industry-pr network comprises of 2189 companies that co-occurred
with at least one other company in the PR Newswire release dataset4. The la-
bels of the companies are based on Yahoo!’s 12 industry sectors. IMDB-prod
network contains movies (a link exists if two movies shared a production com-
pany) released in the United States between 1996 and 2001, with class labels
identifying whether the opening weekend box-office receipts will exceed 2 mil-
lion dollars or not [10]. Another network of actors (referred as IMDB-actor) who
acted in movies released between 1990 − 2012, was created by us. There is an
edge between two actors if they have acted together in a movie. The labels of
an actor are the multiple genres of the movies in which that actor acted. Since
this network is multi-labeled, each actor has one or more genre(s) as his/her
label. Flickr network was created by sampling the seven most populated classes
from the original network by Tang et al. [18]. This is a single-labeled connected
network of 7971 individuals belonging to 7 specific interest groups (classes).

4.2 Comparative Methods

Both FLIP and FLIP-per-label algorithms and their variants are compared
w.r.t. several baseline methods listed in Table 2. BC is the baseline method that
chooses instances with high betweenness centrality score as informative samples.
A tie is resolved by random selection. For single-labeled networks, Random base-
line model randomly selects a batch of nodes as informative samples, and queries
any label for each of those nodes. For multi-labeled networks, �0.5 ×K� labels
were chosen for querying in Random. We also experimented our active learning
paradigm with a link based classifier [9] without using any node features, but
the results were considerably poor, because such classifiers use both node and
topological features to learn a model (results not reported here due to space).

Table 2. Comparing methods for FLIP (single-labeled and multi-labeled networks) and
FLIP-per-label (multi-labeled networks)

Type of Method Algorithm Type of Classification Publication

Variants of FLIP
FLIP Single and multi-label This paper (Algorithm 1)
FLIP-BC Single and multi-label This paper (Section 3.4.1)
FLIP-H Single and multi-label This paper (Section 3.4.2)
FLIP-A Single and multi-label This paper (Section 3.4.3)
BC Single and multi-label Baseline ([11])
Entropy Single and multi-label Baseline (Section 3.4.4)
Random Single and multi-label Baseline ([2,11])

Variants of FLIP-per-label

FLIP-PL Multi-label This paper (Algorithm 2)
FLIP-PL-ALL Multi-label This paper (Section 3.5.1)
BC-FLIP-PL Multi-label This paper (Section 3.5.2)
Ent-FLIP-PL Multi-label This paper (Section 3.5.3)
BC-RAND Multi-label Baseline (Section 3.5.2)
Random Multi-label Baseline (Section 4.2)

4 http://netkit-srl.sourceforge.net/data.html

http://netkit-srl.sourceforge.net/data.html
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4.3 Validation Protocol

For single-labeled networks, we report the 0/1 loss (error) on the test set for all
the comparing methods. The performances reported for all single-labeled and
multi-labeled networks are an average of 10 independent runs. For each round
of active learning in single-labeled networks, we choose batch size b = 5 for
IMDB-prod and Industry-pr networks, b = 10 for Cora network, and b = 20 for
DBLP(B) and Flickr networks. The value of batch size, b was determined de-
pending on the total number of nodes in the network. For multi-labeled networks
we use hamming loss (lower the better) and micro-F1 score (higher the better)
as evaluation metrics [7,15]. For each round of active learning using FLIP, we
choose the batchsize b = 5 for IMDB-actor, b = 20 for DBLP(B) and b = 30
for DBLP(A) networks, respectively. For FLIP-per-label, b = 110 for IMDB-
actor, b = 60 for DBLP(B) and b = 90 for DBLP(A) are used. We conducted 30
and 50 rounds of active learning for single-labeled and multi-labeled networks,
respectively, in order to observe the convergence of all the comparing methods.
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(c) Cora - multiclass
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(d) DBLP(B) - multiclass
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(e) Industry-pr - multiclass
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(f) Flickr - multiclass

Fig. 2. Performance of active learning methods on all single-labeled networks (best
viewed in color print)

5 Results and Discussion

5.1 Active Learning for Single-Labeled Networks

Figure 4.3 shows the performance of all the active learning methods on six single-
labeled networks. The X-axis represents the rounds of active learning that have
been carried out and Y axis reports the classification error (or 0/1 loss) on
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(a) DBLP(B) micro-F1
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(b) DBLP(A) micro-F1
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(c) IMDB-actor micro-F1
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(d) DBLP(B) hamming loss
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(e) DBLP(A) hamming loss
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(f) IMDB-actor hamming
loss

Fig. 3. Performance of FLIP on multi-labeled networks w.r.t. micro-F1 score (↑) and
Hamming Loss (↓) (best viewed in color print)

the test nodes. We can see that most of the active learning strategies perform
well compared to random sampling and other two baseline methods (BC and
Entropy). For the IMDB-prod, DBLP(B)-multiclass and Flickr networks, all the
active learning algorithms outperform random sampling. These three networks
consist of instances that belong to uncorrelated classes, but still have a fully con-
nected structure that can propagate label information over the entire network.
So, when FLIP score is the only criterion for identifying informative samples in
this network, then nodes in the pool undergo multiple changes in their labels
through consecutive iterations which causes FLIP-based active learning methods
to perform well. The high error values for Industry-pr network is because it has
12 classes and the number of samples in the dataset is only 2189, resulting on
an average ≈ 182 instances per class. Hence, the classification task is harder for
this dataset. For brevity, we do not include statistical significance tests for these
results in this paper. Details can be found in the submitted supplementary file.

5.2 Active Learning for Multi-labeled Networks

5.2.1 Performance of FLIP
Figures 5.1 shows the performance of different methods w.r.t. micro-F1 scores
and hamming loss for DBLP and IMDB-actor networks, respectively. For
DBLP(B) network, the performance of all the active learning methods are better
in comparison to the baselines. The good performance of all FLIP-based meth-
ods (except FLIP-A) on this dataset is due to the lack of correlation between
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Fig. 4. p-value plots and heatmaps of hamming loss for multi-labeled networks with
FLIP: p <= 0.1 denotes random sampling is significantly worse, p >= 0.9 denotes ran-
dom sampling is not significantly worse compared to other methods at 10% significance
level (best viewed in color print)

the classes to which nodes of this network belong. Hence, when we are using
only FLIP score to query all the labels of an instance, the learner is abruptly
fed with lots of information that help improve its performance. FLIP-A selects
instances which have class conditional probability values closer to 0.5 for all the
classes. For single-labeled network, this is a good metric to identify informative
instances, however, for multi-labeled networks this is misleading because it ends
up choosing those instances for which all the classes have conditional proba-
bility values ≈ 0.5. For DBLP(A) network, since all the labels of this network
are highly correlated, we see a less promising performance from the FLIP-based
active learning methods in the first few rounds. For the IMDB-actor network,
FLIP-H is the best performer. The sparsity of this network and fewer instances
per class, poses a hard task for the classifier. When the hops from a training node
are considered as tie-breaking criterion for the FLIP score, it enables nodes from
farther apart zones in the network to get added to the training set, thereby im-
proving the overall diversity of the training set.
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(b) DBLP(A) micro-F1
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(c) IMDB-actor micro-F1
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(d) DBLP(B) hamming loss
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(e) DBLP(A) hamming loss
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Fig. 5. Performance of FLIP-per-label on multi-labeled networks w.r.t. micro-F1 (↑)
and Hamming Loss (↓) (best viewed in color print)

To assess the statistical significance of the results and to compare between
the different methods, we performed paired t-tests following the work of Bilgic
et al. [2]. Figures 4(a)-(b) show the p-value plots for DBLP(B) and DBLP(A)
networks. The X axis corresponds to the rounds of active learning, and the
Y axis corresponds to the p-value for the paired t-test of the hamming loss
resulting from 10 independent runs of the corresponding pair of methods at
each round of active learning. If the p-value for a A vs B plot lies below 0.1
then model A wins over model B at 10% significance level.

In order to observe how each of the active learning approaches are performing
individually, we showa heatmapof p-values comparing the algorithms in a pairwise
fashion. For example, consider Figure 4(c) where each block represents a p-value
obtained from the corresponding pair of algorithms (along the rows and columns of
the figure). For each algorithm, we aggregate the performance measures obtained
across all the active learning rounds (50 rounds formulti-labeled networks) for each
of the 10 independent runs. Darker intensity colored boxes indicate that p-value
lies below 0.1 and the corresponding pair of methods show significantly different
results from one another. Lighter intensity colored boxes suggest otherwise.

We have performed pairwise t-tests on each pair of models for the hamming
loss (Figures 4(a)-(b) for comparison with Random model and Figures 4(c)-(d)
for comparison with every other method). For brevity, we include results for
IMDB-actor network in the submitted supplementary file. Figure 4(c)-(d) shows
that, for both the DBLP(B) and DBLP(A) networks, all the active learning
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Fig. 6. p-value plots and heatmaps of hamming loss for DBLP(B) and DBLP(A) net-
works with FLIP-per-label method: p <= 0.1 denotes random sampling is significantly
worse, p >= 0.9 denotes random sampling is not significantly worse compared to other
methods at 10% significance level (best viewed in color print)

methods are significantly better than random sampling (Random model) and also
statistically significant in comparison to one another.

5.2.2 Performance of FLIP-Per-Label
At each round of active learning, instead of querying all the labels of an instance,
we queried labels based on (node,label) pairs that were identified as top candi-
dates by the FLIP-per-label algorithms. Figure 5.2.1 shows the performance
of FLIP-PL and FLIP-PL-ALL algorithms for three multi-labeled networks w.r.t.
other methods. The poor performance of BC-FLIP-PL and Ent-FLIP-PL is due
to the fact that we initialized the class conditional probability of all pooled nodes
with 0.5 in the beginning of active learning. This accounts for high entropy val-
ues but low overall FLIP scores in the first few rounds, thereby choosing samples
that are not quite informative for both BC-FLIP-PL and Ent-FLIP-PL methods.
Figure 5.2.1 supports these through the corresponding p-value plots and respec-
tive heatmaps that compare the performance of different models against random
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sampling, and also against one another for DBLP datasets (we include results
for IMDB-actor dataset in the supplementary file).

6 Conclusion

Active learning for relational network classification is an emerging field of re-
search. In this paper, we developed several active learning algorithms based on
a state-of-the-art relational classifier. Our contribution can be summarized as
follows: (i) our methods rely on network structure for collective classification of
single-labeled and multi-labeled networks; (ii) we propose a different scenario in
active learning on networks for spending the budget (FLIP-per-label) when
only a subset of all possible labels can be queried for instances in multi-labeled
networks. To the best of our knowledge, we are the first to propose these two cat-
egories of active learning algorithms in multi-labeled relational network datasets.
FLIP shows good results on single-labeled as well as multi-labeled networks, in
comparison to multiple baselines. FLIP-per-label tackles more restricted bud-
get situations in active learning, and the results are promising for several real
world multi-labeled networks.

Acknowledgements. Huzefa Rangwala is supported by NSF Career Award
(IIS 1252318). These experiments were run on ARGO, a research computing
cluster provided by the Office of Research Computing at George Mason Univer-
sity, Virginia, USA. (URL: http://orc.gmu.edu)
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Abstract. Mean shift clustering finds the modes of the data probability
density by identifying the zero points of the density gradient. Since it
does not require to fix the number of clusters in advance, the mean shift
has been a popular clustering algorithm in various application fields. A
typical implementation of the mean shift is to first estimate the density
by kernel density estimation and then compute its gradient. However,
since a good density estimation does not necessarily imply an accurate
estimation of the density gradient, such an indirect two-step approach
is not reliable. In this paper, we propose a method to directly estimate
the gradient of the log-density without going through density estimation.
The proposed method gives the global solution analytically and thus is
computationally efficient. We then develop a mean-shift-like fixed-point
algorithm to find the modes of the density for clustering. As in the mean
shift, one does not need to set the number of clusters in advance. We
experimentally show that the proposed clustering method significantly
outperforms the mean shift especially for high-dimensional data.

Keywords: Log-Density Gradient Estimation, Mean Shift, Clustering,
High-Dimensional Data.

1 Introduction

Seeking the modes of a probability density has led to a powerful clustering
algorithm called the mean shift [6,8,11]. In the mean shift algorithm, all input
samples are initially regarded as candidates of the modes of the density and
they are iteratively updated and merged. Finally, clustering is performed by
associating the input samples with the obtained modes. An advantage of the
mean shift is that the number of clusters does not need to be specified in advance.
Thanks to this extremely useful property, the mean shift has been successfully
employed in various applications such as image segmentation [8,24,26] and object
tracking [7,9].
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In mode seeking, a central technical challenge is accurate estimation of the
gradient of a density. The mean shift takes a two-step approach: kernel density
estimation (KDE) is first used to approximate the density and then its gradient
is computed. However, such a two-step approach performs poorly because a good
estimator of the density does not necessarily mean a good estimator of the den-
sity gradient. In particular, KDE tends to produce a smooth density estimate and
therefore the modes in a multi-modal density could be collapsed. Furthermore,
KDE itself tends to perform poorly in high-dimensional problems [8].

To overcome this problem, we propose a method called the least-squares log-
density gradient (LSLDG), which directly estimates the gradient of a log-density
by least-squares without going through density estimation. The proposed method
can be regarded as a non-parametric extension of score matching [14,21], which
has originally been developed for least-squares parametric density estimation
with intractable partition functions. We then derive a fixed-point algorithm to
find the modes of the density, which is our proposed clustering algorithm called
LSLDG clustering.

All tuning parameters included in LSLDG such as the Gaussian kernel width
and the regularization parameter can be objectively optimized by cross-validation
in terms of the squared error. Furthermore, since LSLDG clustering inherits the
same algorithmic structure as the original mean shift, it does not require the num-
ber of clusters to be fixed in advance. Thus, LSLDG clustering does not involve any
tuning parameters to be manually determined, which is a significant advantage
over standard clustering algorithms such as spectral clustering [19], because clus-
tering is an unsupervised learning problem and appropriately controlling tuning
parameters is generally very hard. A recent study based on information-
maximization clustering [22] provided an information-theoretic mean to deter-
mine tuning parameters objectively, but it still requires the user to fix the number
of clusters in advance.

The remainder of this paper is structured as follows. We derive a method to
directly estimate the gradient of a log-density in Section 2, and then use it for
finding clusters in the data in Section 3. Various possibilities for extension are
discussed in Section 4. The usefulness of the proposed method is experimentally
investigated in Section 5. Finally this paper is concluded in Section 6.

2 Direct Estimation of the Gradient of a Log-Density

In this section, we propose a method to estimate the log-density gradient.

2.1 Problem Formulation

Let us consider a probability distribution on R
d with density p∗(x), which is

unknown but n i.i.d. samples X = {xi}ni=1 are available:

X = {xi}ni=1
i.i.d∼ p∗(x).
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Our goal is to estimate the gradient of the logarithm of the density p∗(x) with
respect to x from X :

g∗(x) = (g∗1(x), . . . , g
∗
d(x))


 = ∇ log p∗(x) =
∇p∗(x)
p∗(x)

.

A naive approach to estimate g∗(x) is to first obtain a density estimate p̂(x)
and then compute its log-gradient ∇ log p̂(x). However, this two-step approach
does not work well because a good density estimate p̂(x) does not necessarily
provide an accurate estimate of its log-density gradient ∇ log p̂(x). For example,
in Figures 1(a) and (b), density estimation is performed very well by KDE, but
its log-density gradient produces oscillated errors. These errors become more
prominent especially in higher-dimensional data (Figure 1(c)).

Below, we describe a method to directly estimate the log-density gradient
∇ log p∗(x) without going through density estimation. Our proposed method is
based on the mathematics of score matching [14]; the difference is that our goal
is to approximate the gradient of the log-density instead of model parameter
estimation.

2.2 Least-Squares Log-Density Gradient

Our basic idea is to directly fit a model g(x) = (g1(x), . . . , gd(x))

 to the true

log-density gradient g∗(x) under the squared loss:

Jj(gj) =

∫ (
gj(x)− g∗j (x)

)2

p∗(x)dx−
∫

g∗j (x)
2p∗(x)dx

=

∫
gj(x)

2p∗(x)dx− 2

∫
gj(x)g

∗
j (x)p

∗(x)dx

=

∫
gj(x)

2p∗(x)dx− 2

∫
gj(x)∂jp

∗(x)dx

=

∫
gj(x)

2p∗(x)dx+ 2

∫
∂jgj(x)p

∗(x)dx,

where ∂j denotes the partial derivative with respect to the j-th variable of x and
the last equality follows from integration by parts under some conditions [14].
Then the empirical approximation of Jj is given as

Ĵj(gj) =
1

n

n∑
i=1

gj(xi)
2 +

2

n

n∑
i=1

∂jgj(xi). (1)

As the model gj(x), we use the following linear-in-parameter model, which is
related to using an exponential family for density modeling:

gj(x) =

n∑
i=1

θi,jψi,j(x) = θ


j ψj(x),
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where θj denotes the parameter vector and ψi,j(x) is a basis function. The
derivative of this model is given by

∂jgj(x) =

n∑
i=1

θi,j∂jψi,j(x) = θ


j ϕj(x),

where ϕj(x) = (∂jψ1,j(x), . . . , ∂jψn,j(x)).
Adding an 
2-regularizer to (1), we can compactly express the optimization

problem as

θ̂j = argmin
θj

[
θ
j G

(j)θj + 2θ
j hj + λθ
j θj
]
, (2)

where λ ≥ 0 is the regularization parameter, and G(j) and hj are defined by

G(j) =
1

n

n∑
i=1

ψj(xi)ψj(xi)

, hj =

1

n

n∑
i=1

ϕj(xi).

As in score matching for an exponential family [15], the optimization problem
(2) can be solved analytically as

θ̂j = −(G(j) + λI)−1hj ,

where I denotes the identity matrix. Finally, we obtain the estimator ĝj as

ĝj(x) =
n∑

i=1

θ̂i,jψi,j(x) = θ̂


j ψj(x).

We call this method the least-squares log-density gradient (LSLDG).

2.3 Model Selection by Cross-Validation

The performance of LSLDG depends on the choice of the regularization parame-
ter λ and parameters included in the basis function ψj . They can be objectively
chosen via cross-validation as follows:

1. Divide the samples X = {xi}ni=1 into N disjoint subsets {Xi}Ni=1.
2. For i = 1, . . . , N

(a) Compute the LSLDG estimator ĝ
(i)
j from X\Xi (i.e., all samples except

Xi).
(b) Compute its hold-out error for Xi:

CV(i) =
1

|Xi|
∑
x∈Xi

d∑
j=1

[
ĝ
(i)
j (x)2 + 2∂j ĝ

(i)
j (x)

]
,

where |Xi| denotes the cardinality of Xi.
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3. Compute the average hold-out error as

CV =
1

N

N∑
i=1

CV(i). (3)

4. Choose the model that minimizes (3) with respect to λ and parameters in
ψj , and compute the final LSLDG estimator ĝj with the chosen model using
all samples X .

3 Clustering via Mode Seeking

In this section, we derive a clustering algorithm based on LSLDG. Our basic
idea follows the same line as the mean shift algorithm [6,8,11], i.e., to assign
each data sample to a nearby mode of the density.

3.1 Gradient-Based Approaches

A naive implementation of this idea is to use gradient ascent for each data sample
to let it converge to one of the modes of the density in the vicinity:

xi ←− xi + εĝ(xi),

where ε > 0 is the step size.
Since

g(x) = ∇ log p(x) =
∇p(x)

p(x)
∝ ∇p(x),

the gradient of the log-density log p(x) keeps the same direction as the gradient
of the original density p(x). However, due to p(x) in the denominator, the log-
gradient vector gets longer when p(x) < 1 and shorter when p(x) > 1. This is
practically suitable adjustment because p(x) < 1 (p(x) > 1) often means that
the current point x is far from (close to) a mode. Indeed, the faster convergence
of gradient ascent with the log-density was asserted in the same way [11].

To further increase the speed of convergence, using a quasi-Newton method
is also promising:

xi ←− xi + εQ̂ĝ(xi),

where Q̂ is an estimate of the inverse Hessian matrix.

3.2 Fixed-Point Approach

In the gradient-based approaches, choosing the step size parameter ε is a crucial
problem. To avoid this problem, we develop a fixed-point method, in analogy to
the original mean-shift method.
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To easily derive a fixed-point equation, we focus on the basis function of the
following form:

ψi,j(x) =
1

σ2
[ci − x]jφi(x),

where σ2 is a constant, ci is a d-dimensional constant vector, φi(x) is a “mother”
basis function, and [·]j denotes the j-th element of a vector. A typical choice of
the mother basis function φi(x) is the Gaussian function:

φi(x) = exp

(
−‖x− ci‖

2

2σ2

)
, (4)

where the Gaussian center ci may be fixed at sample xi. In experiments, we only
use 100 Gaussian centers chosen randomly from X . This reduction of Gaussian
centers significantly decreases the computational costs without sacrificing the
performance, as shown in Section 5.2.

For this model, the LSLDG solution can be expressed as

ĝj(x) =

n∑
i=1

θ̂i,jψi,j(x) =
1

σ2

n∑
i=1

θ̂i,j [ci − x]jφi(x)

=
1

σ2

n∑
i=1

θ̂i,jφi(x)[ci]j −
[x]j
σ2

n∑
i=1

θ̂i,jφi(x).

If
∑n

i=1 θ̂i,jφi(x) �= 0, setting ĝj(x) to zero yields

[x]j =

∑n
i=1 θ̂i,jφi(x)[ci]j∑n

i=1 θ̂i,jφi(x)
. (5)

We propose to use this equation as a fixed-point update formula by iteratively
substituting the right-hand side to the left-hand side. In the vector-matrix form,
the update formula is compactly expressed as

xi ←− Bφ(xi)./(Θ̂


φ(xi)),

where Bj,i = θ̂i,j [ci]j , Θ̂i,j = θ̂i,j , φ(x) = (φ1(x), . . . , φn(x))

, and “./” denotes

the element-wise division.
This update formula is similar to the one used in the original mean shift

algorithm [8, Eq.(20)], which corresponds to θ̂i,j = 1/n:

x←−
∑n

i=1 φi(x)ci∑n
i=1 φi(x)

,

where φi is typically chosen as the Gaussian function (4). Thus, the proposed
method can be regarded as a weighted variant of the mean shift algorithm, where
the weights θ̂i,j are learned by LSLDG. A similar weighted mean shift method
has already been studied in [6], but the weights were determined heuristically.
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The mean shift update was proven to be equivalent to gradient ascent with
an adaptive step size [6]. LSLDG-based clustering also inherits this property.

Indeed, if [x]j
∑n

i=1 θ̂i,jφi(x) is subtracted from and added to the numerator of
Eq.(5) (thus the equation remains the same), we obtain

[x]j = [x]j + εj(x)ĝj(x),

where

εj(x) =
σ2∑n

i=1 θ̂i,jφi(x)
.

This shows that our fixed-point update rule can be regarded as gradient ascent
with an adaptive step size εj(x).

If φi(x) is set to be the Gaussian function (4),
∑n

i=1 θ̂i,jφi(x) can actually be
regarded as an estimate of the original log-density log p∗(x). More specifically,
we can easily see that the partial derivative of φi(x) with respect to the j-th
variable of x is ψi,j(x):

∂jφi(x) = ψi,j(x).

Then we have

∂j log p
∗(x) = g∗j (x) ≈ ĝj(x) =

n∑
i=1

θ̂i,jψi,j(x)

=
n∑

i=1

θ̂i,j∂jφi(x) = ∂j

n∑
i=1

θ̂i,jφi(x).

This implies that
∑n

i=1 θ̂i,jφi(x) is an estimate of log p∗(x) up to a constant.
Therefore, when log p∗(x) is small (large), the proposed fixed-point algorithm
adaptively increases (decreases) the step size εj(x) to more aggressively (con-
servatively) ascend the gradient. This step-size adaptation would be reasonable
because small (large) log p∗(x) often means that the current solution is far from
(close to) a mode.

4 Extensions

In the previous section, we focused on the simplest setting to clearly convey
the essence of the proposed idea. However, we can easily extend the proposed
method to various directions. In this section, we discuss such possibilities.

4.1 Common Basis Functions

When the basis function is common to all dimensions, i.e., ψj(x) = ψ(x) for j =

1, . . . , d, the matrixG(j) becomes independent of j asG = 1
n

∑n
i=1 ψ(xi)ψ(xi)


.
Then, matrix inverse has to be computed only once for all dimensions:

(θ̂1, . . . , θ̂d) = −(G+ λI)−1(h1, . . . ,hd).

This significantly speeds up the computation particularly when the dimension-
ality d is high.
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4.2 Multi-task Learning

The above common-basis setup allows us to employ the regularized multi-task
method [10], by regarding the estimation problem of g∗j (x) as the j-th task.
The basic idea of regularized multi-task learning is that, if g∗j (x) and g∗j′(x)
are similar to each other, the corresponding parameters θj and θj′ are imposed
to be close to each other. This idea can be implemented in the regularization
framework as

min
θ1,...,θd

⎡⎣ d∑
j=1

(
θ
j G

(j)θj + 2θ
j hj + λjθ


j θj

)
+ γ

d∑
j,j′=1

γj,j′‖θj − θj′‖2
⎤⎦ ,

where λj > 0 is the ordinary regularization parameter for the j-th task, 0 ≤
γj,j′ ≤ 1 is the similarity between the j-th task and the j′-th task, and γ >
0 controls the strength of this multi-task regularizer. A notable advantage of
this regularization approach is that the solution can be obtained analytically.
When the task similarity γj,j′ is unknown, task similarity and solutions may
be iteratively learned. More specifically, starting from γj,j′ = 1 for all j, j′ =
1, . . . , d, the solutions θ1, . . . , θd are computed. Then, task similarity is updated,
e.g., by γj,j′ = exp(−‖θj−θj′‖2) for j, j′ = 1, . . . , d, and the solutions θ1, . . . , θd
are computed again.

4.3 Sparse Estimation

Instead of the 
2-regularizer λ‖θj‖2, the 
1-regularizer λ‖θj‖1 may be used to
obtain a sparse solution [25]. The entire regularization path (i.e., the solutions
for all λ ≥ 0) can also be computed efficiently, based on the piece-wise linearity
of the solution path with respect to λ [12].

4.4 Bregman Loss

The squared loss can be generalized to theBregman loss [3]. More specifically, for f

being a differentiable and strictly convex function andC
(f)
j =

∫
f(g∗j (x))p

∗(x)dx,

J
(f)
j (gj) =

∫ (
f(g∗j (x))− f(gj(x))− f ′(gj(x))(g∗j (x)− gj(x))

)
p∗(x)dx− C

(f)
j

=

∫
(−f(gj(x)) + f ′(gj(x))gj(x)) p∗(x)dx−

∫
f ′(gj(x))∂jp∗(x)dx

=

∫
(−f(gj(x)) + f ′(gj(x))gj(x) + ∂jf

′(gj(x))) p∗(x)dx,

where f ′(t) is the derivative of f(t) with respect to t and the last equality follows

again from integration by parts. The empirical approximation of J
(f)
j is given as

Ĵ
(f)
j (gj) =

1

n

n∑
i=1

(−f(gj(xi)) + f ′(gj(xi))gj(xi) + ∂jf
′(gj(xi))) .
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When f(t) = t2, the Bregman loss is reduced to the squared loss and we can
recover the LSLDG criterion (1). On the other hand, f(t) = − log t gives the
Kullback-Leibler loss [17], f(t) = t log t− (1 + t) log(1 + t) gives the logistic loss
[23], and f(t) = (t1+α − t)/α for α > 0 gives the power loss [2]. Although each
choice has its own specialty, e.g., the power loss possesses high robustness against
outliers, the squared loss was shown to be endowed with the highest numerical
stability in terms of the condition number [16].

4.5 Blurring Mean Shift

Fukunaga and Hostetler originally proposed a mean shift algorithm for updating
not only the data points but also the density estimation at each iteration [11].
Later, this algorithmwas named the blurring mean shift [4,6]. Combined with the
idea of the blurring mean shift, another possible algorithm for LSLDG clustering
is to re-estimate the log-density gradient at each iteration for new data points.
This algorithm hopefully works well as the blurring mean shift does [4].

5 Experiments

In this section, we demonstrate the usefulness of the proposed LSLDG method.
A MATLAB implementation of LSLDG and its clustering algorithm based on

the fixed-point approach is available from

http://sugiyama-www.cs.titech.ac.jp/~sugi/software/LSLDG/index.html

5.1 Illustration of Log-Density Gradient Estimation

We first illustrate how LSLDG estimates log-density gradients using n = 1, 000
samples drawn from p(x), where either

– p(x) is the standard normal density, or
– p(x) is a mixture of two Gaussians with means 2 and −2, variances 1 and 1,

and mixing coefficients 0.5 and 0.5.

As described in Section 2.3, the Gaussian width σ and the regularization pa-
rameter λ are chosen by 5-fold cross-validation from the following candidate
set:

{10−2, 10−1.5, 10−1, 10−0.5, 100, 100.5, 101}. (6)

We compare the performance of the proposed method with Gaussian KDE, where
the Gaussian width is chosen by likelihood cross-validation from the same can-
didate set in (6).

The results for the Gaussian data are presented in the upper row of Figure 1.
Figure 1(a) shows that LSLDG gives a nice smooth estimate, while the estimate
by KDE is rather oscillating. Note that KDE still works well as a density esti-
mator as illustrated in Figure 1(b). This clearly illustrates that a good density

http://sugiyama-www.cs.titech.ac.jp/~sugi/software/LSLDG/index.html
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Fig. 1. LSLDG vs. KDE for (upper row) Gaussian data and (lower row) data sampled
from a mixture of two Gaussians. (a) Profiles of the true log-density gradient and its
estimates obtained by LSLDG and KDE. (b) True and estimated densities by KDE.
(c) Averages and standard deviations of mean �2-norm errors to the true log-density
gradient as functions of input dimensionality over 100 runs.

estimate (obtained by KDE) does not necessarily yield a good estimate of the
log-density gradient. We repeated this experiment 100 times and the mean 
2-
norm error to the true log-density gradient, 1

n

∑n
i=1 ‖g(xi)− g∗(xi)‖, is plotted

in Figure 1(c) as a function of the input dimensionality. This shows that while the
error of KDE increases sharply as a function of dimensionality, that of LSLDG
increases only mildly. This implies that the advantage of directly estimating the
log-density gradient is more prominent in high-dimensional cases. Similar ten-
dencies can be observed also for the Gaussian mixture data in the lower row of
Figure 1, where the added dimensions in the lower plot of Figure 1(c) simply
follow the standard normal distribution.

5.2 Illustration of Clustering

Next, we illustrate the behavior of LSLDG clustering on 1, 000 samples gath-
ered from the mixture of three Gaussians whose means are (0, 2), (−2,−2), and
(2,−2), and covariance matrices are the identity matrix. The mixing coefficients
are 0.4, 0.3, and 0.3. Figure 2 illustrates the transition of data samples over
update iterations, showing that all points converge to the nearest modes within
47 iterations.
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Fig. 2. Transition of data points toward the modes. The blue, red, and green symbols
represent the three centers of the Gaussian mixture model.
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Fig. 3. Means and standard deviations of clustering performance over 100 runs mea-
sured by ARI as functions of (a) dimensionality of data and (b) the Gaussian width
(when dimensionality is 8). CPU time is also compared with respect to (c) dimension-
ality and (d) sample size. (e) ARI and (f) CPU time for LSLDG clustering are plotted
as functions of the number of basis functions.

We compare the performance of the proposed method with the Gaussian mean
shift [5,6]. To investigate the effect of high dimensionality, further dimensions
following the standard normal distribution are added to data points. We measure
the clustering performance by the adjusted Rand index (ARI) [13], which takes
the maximum value 1 when clustering is perfect.
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ARI values are plotted as a function of input dimensionality in Figure 3(a)
averaged over 100 runs. When the dimensionality of data is in the range of 2–4,
both methods work very well. However, when the dimensionality is beyond 4,
the performance of the Gaussian mean shift drops sharply. In contrast, for the
proposed method, reasonably high ARI values are still attained even when the
dimensionality is increased.

Figure 3(b) plots the ARI values for d = 8 when the Gaussian widths are
changed. This shows that the proposed LSLDG clustering performs well for a
wide range of Gaussian widths, while the ARI plot for the Gaussian mean shift
is peaky. This implies that selection of Gaussian widths is much harder for the
Gaussian mean shift than LSLDG clustering.

LSLDG clustering is also advantageous in terms of the computational costs.
Figure 3(c) shows that CPU time of LSLDG clustering is almost the same as or
shorter than that of the mean shift, when the ARI values for both methods are
high enough. The shorter CPU time of the mean shift when the dimensionality
is more than 8 comes from the fact that a smaller bandwidth is chosen; then
the number of clusters is close to the number of kernels and thus the mean shift
converges very quickly, although this choice is poor as a clustering method. With
the same sample size, LSLDG clustering is much faster than the mean shift, as
plotted in Figure 3(d). The speedup was brought by reducing the kernel cen-
ters, which was shown to significantly improve the computational costs without
worsening the clustering performance, as depicted in Figures 3(e) and (f).

5.3 Image Discontinuity Preserving Smoothing and Image
Segmentation

The mean shift has been successively applied to image discontinuity preserving
smoothing and segmentation tasks [8,24,26]. Here, we investigate the perfor-
mance of LSLDG clustering in those tasks.

As image data, we use the Berkeley segmentation dataset (BSD500) [1].1 From
one image, the information of color (three dimensions) and spatial positions (two
dimensions) are extracted per pixel. Thus, the dimensionality of data is five, and
the total number of samples is the same as the total number of pixels. As often
assumed in the mean shift [8], for image data, we use the following mother basis
function:

φi(x) = exp

(
−‖x

c − cci‖2
2σ2

c

)
exp

(
−‖x

s − csi ‖2
2σ2

s

)
, (7)

where xc and xs denote the elements for colors and spatial positions in a data
vector x, respectively. cci and c

s
i are the Gaussian centers. For the two Gaussian

widths σc and σs, cross-validation is performed as in Section 2.3. In this exper-
iment, we use a reduced image (11 by 16 or 16 by 11 pixels) as the Gaussian

1 http://www.eecs.berkeley.edu/Research/Projects/

CS/vision/grouping/resources.html

http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/resources.html
http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/resources.html
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Fig. 4. Examples of images after LSLDG clustering. The left-hand figure in each pair
is the input image, and the right-hand one is the image after LSLDG clustering.

Table 1.Mean ARI values for 200 images. The numbers in the parentheses are standard
deviations. The difference between the methods is statistically significant at level 1%
by the t-test.

Mean Shift LSLDGC

0.10(0.06) 0.13(0.06)

centers in (7). For the Gaussian mean shift, (7) is employed as a Gaussian kernel,
and the two Gaussian widths are cross-validated based on the likelihood.

Six examples of color images after LSLDG clustering are shown in Figure 4.
In the results, some of the segments, such as grass, are cleanly smoothed out,
while the edges outlining the objects are preserved. These properties are similar
to the results for the mean shift [8].

Next, to clarify the difference from the mean shift, we compare the perfor-
mance measured by ARI. In this experiment, the input images are reduced to
81 by 121 (or 121 by 81) pixels. Since this benchmark dataset contains several
ground truths per image, we simply computed the mean ARI value to all the
ground truths.

The ARI values are summarized in Table 1, showing that LSLDG clustering
outperforms the original mean shift on image segmentation.

5.4 Performance Comparison to Existing Clustering Methods

Finally, we compare LSLDG clustering to existing clustering methods using ac-
celerometric sensor and speech data.
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Table 2. Mean ARI for various methods over 100 runs. The standard deviations are
indicated in the parentheses. The best method in terms of the average ARI and methods
judged to be comparable to the best one by the t-test at the significance level 1% are
described in boldface.

Accelerometry (d = 5, n = 300, and c = 3)
KM SC Mean Shift LSLDGC

0.50(0.03) 0.20(0.26) 0.51(0.05) 0.61(0.13)

Speech (d = 50, n = 400, and c = 2)
KM SC Mean Shift LSLDGC

0.00(0.00) 0.00(0.00) 0.00(0.00) 0.13(0.02)

For comparison, we employK-means (KM) [18], spectral clustering (SC) [20,19]
with the Gaussian similarity, and Gaussian mean shift. Since the user has to set
the number of clusters in advance for KM and SC, we set it at the true number
of clusters in each dataset. For the Gaussian mean shift, the Gaussian width is
chosen by likelihood cross-validation. For LSLDG, in this experiment, we modify
the linear-in-parameter model as

gj(x) =

n∑
i=1

θiψi,j(x) = θ

ψj(x).

The main difference from the model introduced in Section 2.2 is that the coef-
ficients θi do not depend on j, namely, the dimensionality of data. This mod-
ification considerably decreases the computational costs to higher dimensional
data.

In this experiment, we used the following two datasets, where d denotes the
dimensionality of data, n denotes the number of samples, and c denotes the
number of true clusters:

1. Accelerometry (d = 5, n = 300, and c = 3). The ALKAN dataset2, which
contains 3-axis (i.e., x-, y-, and z-axes) accelerometric data.

2. Speech (d = 50, n = 400, and c = 2). An in-house speech dataset, which
contains short utterance samples recorded from 2 male subjects speaking in
French with sampling rate 44.1kHz.

The details of the two datasets can be seen in [22]. For each dataset, as prepro-
cessing, the variance was normalized after centering in the element-wise manner.

The experimental results are described in Table 2. For the accelerometry
dataset, LSLDG clustering shows the best performance among all the methods
in the table. In addition to the superior performance, another advantage is that
LSLDG clustering does not include any parameters which have to be manually
tuned. On the other hand, KM and SC require the users to fix the number of
clusters beforehand, which largely influences the clustering performance. Thus,

2 http://alkan.mns.kyutech.ac.jp/web/data.html

http://alkan.mns.kyutech.ac.jp/web/data.html


Clustering via Mode Seeking by Direct Estimation of a Log-Density Gradient 33

LSLDG clustering would be easier to use in practice. For the speech dataset,
LSLDG outperforms the existing clustering methods again (Table 2). Since the
dimensionality of the dataset, d = 50, is much higher than the accelerometry
dataset (d = 5), LSLDG seems to perform well on high-dimensional data, while
the mean shift does not work well on high-dimensional data, as already indicated
in Section 5.2.

6 Conclusions

In this paper, we developed amethod to directly estimate the log-density gradient,
and constructed a clustering algorithm on it. The proposed log-density gradient
estimator can be regarded as a non-parametric extension of scorematching [14,21],
and the proposed clustering algorithm can be regarded as an extension of the mean
shift algorithm [6,8,11]. The key advantage compared to the original mean shift
is that the proposed clustering method works well on high-dimensional data for
which the mean shift works poorly. Furthermore, we showed experimentally that
the proposed method outperforms existing clustering methods.
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Abstract. Local Policy Search is a popular reinforcement learning approach for
handling large state spaces. Formally, it searches locally in a parameterized policy
space in order to maximize the associated value function averaged over some pre-
defined distribution. The best one can hope in general from such an approach is
to get a local optimum of this criterion. The first contribution of this article is the
following surprising result: if the policy space is convex, any (approximate) local
optimum enjoys a global performance guarantee. Unfortunately, the convexity
assumption is strong: it is not satisfied by commonly used parameterizations and
designing a parameterization that induces this property seems hard. A natural so-
lution to alleviate this issue consists in deriving an algorithm that solves the local
policy search problem using a boosting approach (constrained to the convex hull
of the policy space). The resulting algorithm turns out to be a slight generaliza-
tion of conservative policy iteration; thus, our second contribution is to highlight
an original connection between local policy search and approximate dynamic
programming.

1 Introduction

We consider the reinforcement learning problem [24] formalized through Markov De-
cision Processes (MDP) [21], in the situation where the state space is large and ap-
proximation is required. On the one hand, Approximate Dynamic Programming (ADP)
is a standard approach for handling large state spaces. It consists in mimicking in an
approximate form the standard algorithms that were designed to optimize globally the
policy (maximizing the associated value function for each state). On the other hand,
Local Policy Search (LPS) consists in parameterizing the policy (often called an “ac-
tor”) and locally maximizing the associated expected value function. This can be done
for example using a (natural) gradient ascent [3,10]—possibly with a critic [25,20],
expectation-maximization (EM) [12], or even directly using some black-box optimiza-
tion algorithm [9]. LPS methods work particularly well in practice: the just cited papers
describe applications to standard benchmarks and applications such as robotics, that are
competitive with the ADP approach. Surprisingly, gradient-based and EM approaches,
that are usually prone to be stuck in local optima, do not seem to be penalized in ap-
plications to Reinforcement Learning. Even more surprisingly, it was shown [10] that a
natural gradient ascent in the policy space can outperform ADP on the Tetris game.

Following the seminal works by [4], it has been shown that ADP algorithms enjoy
global performance guarantees, bounding the loss of using the computed policy instead

T. Calders et al. (Eds.): ECML PKDD 2014, Part III, LNCS 8726, pp. 35–50, 2014.
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of using the optimal one as a function of the approximation errors involved along the
iterations: see [18] for approximate policy iteration (API), [19] for approximate value
iteration (AVI), or more generally [22] for approximate modified policy iteration. To
the best of our knowledge, similar general guarantees do not exist in the literature for
LPS algorithms. In general though, the best one can hope for LPS is to get a local opti-
mum of the optimized fitness (that is, a local maximum of the averaged value function),
and the important question of the loss with respect to the optimal policy remains open.
As for instance mentioned as the main “future work” in [6], where the convergence
of a family of natural actor-critic algorithms is proven, “[i]t is important to character-
ize the quality of converged solutions.” The motivation of this paper is to deepen the
understanding on the LPS approach.

Our main contribution (Theorem 3, Section 3) is to show that if the policy space on
which one performs LPS is a convex subset of the full space of stochastic policies—
equivalently this means that if two policies are taken in the space, then their stochas-
tic mixture also belongs to the space—, then any (approximate) local optimum of the
expected value function enjoys a global performance guarantee, similar to—actually
slightly better than (see Section 5)—the one provided for ADP algorithms. After ex-
plaining that designing parameterizations that imply the convexity assumption seems
particularly difficult, we will propose in Section 4 an algorithmic solution based on a
boosting approach (seen as a functional gradient ascent) that can do LPS in the convex
hull of a space of deterministic policies. The algorithm we will then obtain happens to
be a slight generalization of the Conservative Policy Iteration algorithm [11] that was
originally introduced from an ADP viewpoint. Thus, another contribution of our work
amounts to draw an original connexion between ADP and LPS. Section 5 will discuss
our analysis; notably, a comparison to similar bounds for ADP is proposed and the prac-
tical consequences of our result are discussed. Section 6 opens some perspectives. The
next section provides the necessary background and states formally what we mean by
local policy search.

2 Background and Notations

Write ΔX the set of probability distributions over a countable set X and Y X the ap-
plications from X to the set Y . By convention, all vectors are column vectors, except
distributions which are row vectors (for left multiplication). We consider a discounted
MDP M = {S,A, P, r, γ} [21,5], with S the countable state space1, A the countable
action space, P ∈ (ΔS)S×A the Markovian dynamics (P (s′|s, a) denotes the probabil-
ity of transiting to s′ from the (s, a) couple), r ∈ R

S×A the bounded reward function
and γ ∈ [0, 1) the discount factor.

A stochastic policy π ∈ (ΔA)S associates to each state s a probability distribution
π(.|s) over the action space A. We say that a policy space Π that is a subset of (ΔA)S

is convex (or equivalently stable by stochastic mixture) if it satisfies:

∀π, π′ ∈ Π, ∀α ∈ (0, 1), (1− α)π + απ′ ∈ Π.

1 These results can easily be extended to the case of non-countable state space and compact
action space. We chose the countable space setting for the ease and clarity of exposition.
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For a given policy π, we define rπ ∈ R
S as

rπ(s) =
∑
a∈A

π(a|s)r(s, a) = Ea∼π(.|s)[r(s, a)]

and Pπ ∈ (ΔS)S as

Pπ(s
′|s) =

∑
a∈A

π(a|s)P (s′|s, a) = Ea∼π(.|s)[P (s′|s, a)].

The value function vπ quantifies the quality of a policy π for each state s by measuring
the expected cumulative reward received for starting in this state and then following the
policy:

vπ(s) = E

⎡⎣∑
t≥0

γtrπ(st)|s0 = s, st+1 ∼ Pπ(.|st)

⎤⎦ .

The Bellman operator Tπ of policy π associates to each function v ∈ R
S the function

defined as
[Tπv](s) = E [rπ(s) + γv(s′)|s′ ∼ Pπ(.|s)] ,

or more compactly Tπv = rπ +γPπv. The value function vπ is known to be the unique
fixed point of Tπ.

It is also well-known that there exists a policy π∗ that is optimal in the sense that
it satisfies vπ∗(s) ≥ vπ(s) for all states s and policies π. The value function v∗ is the
unique fixed point of the following nonlinear Bellman equation:

v∗ = Tv∗ with Tv = max
π∈AS

Tπv

where the max is taken componentwise. Given any function v ∈ R
S , we say that a

policy π′ is greedy with respect to v if Tπ′v = Tv, and we write G(π) for the set of
policies that are greedy with respect to the value vπ of some policy π. The notions of
optimal value function and greedy policies are fundamental to optimal control because
of the following property: any policy π∗ that is greedy with respect to the optimal value
is an optimal policy and its value vπ∗ is equal to v∗. Therefore, an equivalent charac-
terization of the optimality of some policy π is that it is greedy with respect to its own
value:

π ∈ G(π). (1)

For any distribution μ, we define the γ-weighted occupancy measure2 induced by
the policy π when the initial state is sampled from μ as dμ,π = (1 − γ)μ(I − γPπ)

−1

(we recall μ to be a row vector by convention) with (I − γPπ)
−1 =

∑
t≥0(γPπ)

t.
It can easily be seen that μvπ = 1

1−γ dμ,πrπ . For any two distributions μ and ν, we

write
∥∥μ
ν

∥∥
∞ for the smallest constant C satisfying μ(s) ≤ Cν(s), for any s ∈ S (this

constant is actually the supremum norm of the componentwise ratio, thus the notation).

2 When it exists, this measure tends to the stationary distribution of Pπ when the discount factor
tends to 1.
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From an algorithmic point of view, Dynamic Programming methods compute the
optimal value policy pair (v∗, π∗) in an iterative way. When the problem is large and
cannot be solved exactly, Approximate Dynamic Programming (ADP) refers to noisy
implementations of these exact methods, where the noise is due to approximations at
each iteration. For instance, Approximate Value and Policy Iteration respectively corre-
spond to the following schemes:

vk+1 = Tvk + εk and

{
vk = vπk

+ εk

πk+1 ∈ G(vk)
.

In the Local Policy Search (LPS) context on which we focus in this paper, we write Π
the space where we perform the search. For a predefined distribution ν of interest, the
problem addressed by LPS can be cast as follows:

find π ∈ Π s.t. π is a local maximum of Jν(π) = Es∼ν [vπ(s)].

Assume that we are able to (approximately) find such a locally optimal policy π. A
natural question is: can we say something about the distance between the value of this
policy vπ and that of the optimal policy v∗ = vπ∗? Quite surprisingly, and in contrast
with most optimization problems, we are going to provide a condition on the policy
space Π that allows to give a nontrivial performance guarantee; this is the aim of the
next section.

3 Main Result

In order to state our main result, we need to define a relaxation of the set of policies that
are greedy with respect to some given policy.

Definition 1 (μ-weighted ε-greedy policies). We write GΠ(π, μ, ε) for the set of poli-
cies which are ε-greedy respectively to π (in μ-expectation), formally defined as

GΠ(π, μ, ε) = {π′ ∈ Π such that ∀π′′ ∈ Π, μTπ′vπ + ε ≥ μTπ′′vπ} .

This is indeed a relaxation of G, as it can be observed that for all policies π and π′,

π′ ∈ G(π) ⇔ ∀μ ∈ ΔS , π′ ∈ GΠ(π, μ, 0)

⇔ ∃μ ∈ ΔS , μ > 0, π′ ∈ GΠ(π, μ, 0).

We are now ready to state our first important result.

Theorem 1. Let π be some policy in Π . The following two properties are equivalent:

∀π′ ∈ Π, lim
α→0

νv(1−α)π+απ′ − νvπ

α
≤ ε. (2)

π ∈ GΠ(π, dν,π , (1− γ)ε). (3)
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Equation (3) says that the policy π is approximately greedy with respect to itself, and
can be thus seen as a relaxed version of the optimality Equation (1); as we will show
below, this will allow us to provide a global performance guarantee for the policy π.
Equation (2) says that π is an approximate local optimum of π �→ Jν(π) if π is allowed
to move in the convex hull of the policy space Π : indeed, whatever the direction we
look at in this space, the slope of the improvement—locally around π—is bounded by
ε. Theorem 1 thus has the following corollary.

Corollary 1. Assume that the space Π is convex. Then any policy π that is an ε-local
optimum of π �→ Jν(π) (in the sense of Equation (2)) satisfies the relaxed Bellman
Equation (3).

We now turn to the proof of Theorem 1. The following technical (but simple) lemma
will be useful for the proof.

Lemma 1. For any policies π and π′, we have

vπ′ − vπ = (I − γPπ′)−1(Tπ′vπ − vπ).

Proof. The proof uses the fact that the linear Bellman Equation vπ = rπ + γPπvπ
implies vπ = (I − γPπ)

−1rπ . Then,

vπ′ − vπ = (I − γPπ′)−1rπ′ − vπ

= (I − γPπ′)−1(rπ′ + γPπ′vπ − vπ)

= (I − γPπ′)−1(Tπ′vπ − vπ). ��

Proof (Proof of Theorem 1). For any α and any π′ ∈ Π , write πα = (1 − α)π + απ′.
Using Lemma 1, we have:

ν(vπα − vπ) = ν(I − γPπα)
−1(Tπαvπ − vπ).

By observing that rπα = (1 − α)rπ + αrπ′ and Pπα = (1 − α)Pπ + αPπ′ , it can be
seen that Tπαvπ = (1 − α)Tπvπ + αTπ′vπ. Thus, using the fact that vπ = Tπvπ, we
get:

Tπαvπ − vπ = (1− α)Tπvπ + αTπ′vπ − vπ

= α(Tπ′vπ − vπ).

In parallel, we have

(I − γPπα)
−1 = (I − γPπ + αγ(Pπ − Pπ′))−1

= (I − γPπ)
−1(I + αM),

where M is bounded (the exact form of the matrix M does not matter). Put together,
we obtain

ν(vπα − vπ) = αν(I − γPπ)
−1(Tπ′vπ − vπ) +O(α2).
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Taking the limit, we obtain

lim
α→0

ν(vπα − vπ)

α
= ν(I − γPπ)

−1(Tπ′vπ − vπ)

=
1

1− γ
dν,π(Tπ′vπ − vπ),

and the result follows.

A second important step in our analysis consists in showing that a relaxed optimality
characterization as the one of Equation (3) implies a global performance guarantee. To
state this result, we first need to define the “ν-greedy-complexity” of our policy space,
which measures how good Π was designed so as to approximate the greedy operator,
for a starting distribution ν.

Definition 2 (ν-greedy-complexity). We define Eν(Π) the ν-greedy-complexity of the
policy space Π as

Eν(Π) = max
π∈Π

min
π′∈Π

(dν,π (Tvπ − Tπ′vπ)) .

Since Tvπ − Tπvπ = Tvπ − vπ ≥ 0, we have Eν(Π) ≥ 0 for any policy space Π . In
the limit case where Π contains all (deterministic) policies, we have Eν(Π) = 0.

Given this definition, we are ready to state our second important result.

Theorem 2. If π ∈ GΠ(π, dν,π , ε), then for any policy π′ and for any distribution μ
over S, we have

μvπ′ ≤ μvπ +
1

(1− γ)2

∥∥∥∥dμ,π′

ν

∥∥∥∥
∞

(Eν(Π) + ε).

Notice that this theorem is actually a slight3 generalization of Theorem 6.2 of [11]. We
provide the proof for the sake of completeness.

Proof. Using again Lemma 1 and the fact that Tvπ ≥ Tπ′vπ, we have

μ(vπ′ − vπ) = μ(I − γPπ′)−1(Tπ′vπ − vπ)

=
1

1− γ
dμ,π′(Tπ′vπ − vπ) ≤

1

1− γ
dμ,π′(Tvπ − vπ).

Since Tvπ − vπ ≥ 0 and dν,π ≥ (1− γ)ν, we get

μ(vπ′ − vπ) ≤
1

1− γ

∥∥∥∥dμ,π′

ν

∥∥∥∥
∞

ν(Tvπ − vπ)

≤ 1

(1 − γ)2

∥∥∥∥dμ,π′

ν

∥∥∥∥
∞

dν,π(Tvπ − vπ).

3 Theorem 2 holds for any policy π′, not only for the optimal one, and the error term is split up
(which is necessary to provide a more general result).
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Using dν,π(Tvπ − vπ) = (dν,πTvπ − dν,πvπ), we get

μ(vπ′ − vπ) ≤
1

(1− γ)2

∥∥∥∥dμ,π′

ν

∥∥∥∥
∞
×(

dν,πTvπ − max
π′∈Π

dν,πTπ′vπ + max
π′∈Π

dν,πTπ′vπ − dν,πvπ

)
≤ 1

(1− γ)2

∥∥∥∥dμ,π′

ν

∥∥∥∥
∞

(Eν(Π) + ε). ��

The first main result of the paper is a straightforward combination of Corollary 1 and
Theorem 2.

Theorem 3. Assume that the space Π is convex. Then any policy π that is an ε-local
optimum of π �→ Jν(π) (in the sense of Equation (2)) enjoys the following global
performance guarantee:

Es∼μ[v∗(s)− vπ(s)] ≤
1

1− γ

∥∥∥∥dμ,π∗

ν

∥∥∥∥
∞

(
Eν(Π)

1− γ
+ ε

)
.

4 About the Convex Policy Space Assumption

The remarkable result of the previous section—a connection between local optimality
and global guarantee—relies on the assumption that the policy space Π is convex.
Though this assumption may look mild at first sight, we are going to argue that it is in
fact strong. We will then propose a natural algorithmic approach for performing Local
Policy Search on the convex hull of some (not necessarily convex) policy space Π .

4.1 A Strong Assumption

A common approach (for continuous actions mainly) is to parameterize a mapping from
state to actions and to put it as the mean of a Gaussian distribution, that is

πθ(a|s) ∝ exp

(
−1

2
‖a− uθ(s)‖2Σ−1

)
,

with here uθ the parameterized state to action mapping and Σ a predefined covariance
matrix. Obviously, the space of such policies is not convex, since a mixture of Gaussian
distributions is in general not a Gaussian distribution. Another common approach (for
discrete actions) is to adopt a parameterized Gibbs distribution, that is

πθ(a|s) ∝ exp
(
θ
ψ(s, a)

)
,

where θ
ψ(s, a) can be seen as a parameterized state-action or score function. Here
again, the resulting policy space is not convex in general.

In fact, we consider that it is an open problem to design a non-trivial parameterization
that defines a convex policy space (by non-trivial, we mean a space that is neither simply
a convex combination of a small number of policies nor the full convex hull of AS).
Even in a one-state situation, the answer does not seem obvious: this requires to find
distributions that are stable by mixture and we did not manage to find any satisfying
solution. An alternative approach, that we develop next, is to consider for Π the convex
hull of a set of parameterized policies.
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4.2 Boosting

Let P be a space of policies and Π = co(P) denote its convex hull. We propose to use
boosting for finding a local maximum of Jν(π) on Π . More precisely, we propose to
apply the AnyBoost.L1 algorithm [17]: it sees boosting as a gradient ascent in function
space and constrains the search in the convex hull of the base policy space. Let∇Jν(π)
be the functional gradient (according to π) of the LPS objective function. Applied to
our problem, AnyBoost.L1 works as follows. At iteration k, we have a policy πk−1,
and perform the following steps:

1. compute hk ∈ argmaxh∈P〈∇Jν(πk−1), h〉,
2. update the policy: πk = (1− αk)πk−1 + αkhk, with αk ∈ (0, 1) the learning rate.

The basic idea is to perform a functional gradient ascent on Jν(π). However, the gra-
dient ∇Jν(πk−1) does not generally belong to P , so we search for a policy h with
greatest inner product with ∇Jν(πk−1). This corresponds to the first step. The second
step updates the policy as a mixture of the old one and of the computed hk, the mix-
ture weight αk being the learning rate of the gradient ascent. In order to obtain a more
practical algorithm, one has to rephrase the optimization problem of the first step.

Proposition 1. We have that

argmax
h∈P

〈∇J(π), h〉 = argmin
h∈P

dν,π(Tvπ − Thvπ).

In particular, assume that P is a space of deterministic policies and define qπ = Tavπ
the state-action value function of a policy π (writing with a slight abuse of notation Ta

the Bellman operator for the policy associating action a to any state), then

argmax
h∈P

〈∇J(π), h〉 = argmin
h∈P

∑
s∈S

dν,π(s)

(
max
a∈A

qπ(s, a)− qπ(s, h(s))

)
.

This process can be seen as an approximate version of the greedy step of the Policy
Iteration algorithm and may be implemented through a weighted classification problem,
or through an 
p-regression of the qπ function.

Proof (Proof of Proposition 1). The functional gradient of Jν is

∇Jν(π) =
1

1− γ

∑
s∈S

dν,π(s)
∑
a∈A

∇π(a|s)qπ(s, a).

This is a rather direct extension of the classic policy gradient theorem [25]. Then, we
need to compute its inner product with a function h of P :

〈∇J(π), h〉 = 1

1− γ
〈
∑
s

dν,π(s)
∑
a

∇π(a|s)qπ(s, a), h〉

=
1

1− γ

∑
s

dν,π(s)
∑
a

〈∇π(a|s), h〉qπ(s, a)

=
1

1− γ

∑
s

dν,π(s)
∑
a

h(a|s)qπ(s, a)

=
1

1− γ
dν,π(Thvπ).
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Eventually, this allows concluding:

argmax
h∈H

〈∇J, h〉 = argmax
h∈H

dν,π(Thvπ)

= argmin
h∈H

dν,π(Tvπ − Thvπ). ��

4.3 Connection to CPI

Thus, the boosting approach to LPS consists in computing a mixture of policies, each
new component of the mixture being the solution of an approximation of the greedy
policy respectively to the preceding estimated mixture. It turns out that Conservative
Policy Iteration (CPI) [11] is a specific case of this general algorithm, the only differ-
ence being that CPI chooses specific values for the learning rate (such as guaranteeing
improvements).

If the algorithm resulting from this boosting approach is not really new, it provides
some clarifications about LPS, API and CPI. First, this shows that CPI can be derived
as an LPS approach, whereas it was originally derived from an API viewpoint, with
the desire to fix the potential policy degradation problem of API [11]. This draws a
connection between API and LPS that has not yet been documented in the literature,
and highlights the fact that CPI is at the frontier of these two approaches. Second, it
provides some leads of improvement for CPI (which has strong guarantees but is in
general slow). One could also choose the learning rates according to the boosting
optimization theory, or use related heuristics or even some line search. Last but not
least, AnyBoost.L1 is perhaps the more natural way to search for a local maximum
of Jν on a convex policy space. Looking for alternative algorithms performing LPS in
convex policy spaces is an interesting research direction.

5 Discussion

In this section, we discuss the relations of our analyses with previous works, we com-
pare this guarantee with the standard ones of approximate dynamic programming (fo-
cusing particularly on the API algorithm) and we discuss some practical and theoretical
consequences of our analysis.

5.1 Closely Related Analysis

A performance guarantee very similar to the one we provide in Theorem 2 was first
derived for CPI by [11]. This result of the literature was certainly considered specific
to the CPI algorithm, that has unfortunately not been used widely in practice probably
because of its somewhat complex implementation. In contrast, we show in this paper
that such a performance guarantee is valid for any method that finds a policy that satis-
fies a relaxed Bellman identity like that given Equation (3), among which CPI naturally
arises, as shown in section 4.

Though the main result of our paper is Theorem 3, and since Theorem 2 appears in a
very close form in [11], our main technical contribution is Theorem 1 that highlights a
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deep connection between local optimality and a relaxed Bellman optimality character-
ization. A result, that is similar in flavor, is derived by [10] for the Natural Policy Gra-
dient algorithm: Theorem 3 there shows that natural gradient updates are moving the
policy towards the solution of a (DP) update. The author writes: “The natural gradient
could be efficient far from the maximum, in that it is pushing the policy toward choos-
ing greedy optimal actions”. Though there is an obvious connection with our work, the
result there is limited since—similarly to the work we have just mentioned on CPI—
(i) it seems to be specific to the natural gradient approach (though our result is general),
and (ii) it is not exploited so as to connect with a global performance guarantee.

5.2 Relations to Bounds of Approximate Dynamic Programming

The performance guarantee of any approximate dynamic programming algorithm im-
plies (i) a (quadratic) dependency on the average horizon 1

1−γ , (ii) a concentration co-
efficient (which quantifies the divergence between the worst discounted average future
state distribution when starting from the measure of interest, and the distribution used
to control the estimation errors), and (iii) an error term linked to the estimation error
encountered at each iteration (which can be due to the approximation of value functions
and/or policies). Depending on what quantity is estimated, a comparison of these esti-
mation errors may be hard. To ease the comparison, the following discussion focuses
on the API algorithm. Note however that several aspects of our comparison holds for
other ADP algorithms.

API generates a sequence of policies: at each iteration, a new policy is one that
is approximately greedy with respect to the value of the previous policy. This can
be achieved through an 
p-regression of the state-action value function [5,18,13] or
through a weighted classification problem [14,7,16]. Whatever the approach, the se-
quence of policies belongs (implicitely for 
p-regression or explicitely for classifica-
tion) to some space P that is typically a set of deterministic policies. For an initial
policy π0 and a given distribution ν, the API algorithm iterates as follows:

pick πk+1 ∈ P
such as (approximately) minimizing ν(Tvπk

− Tπk+1
vπk

).

This is similar to CPI/boosted LPS, up to the fact that (i) it uses ν instead of dν,π
to approximate the greedy policy and (ii) it is optimistic (in the sense that αk = 1).
To provide the API bound, we need an alternative concentration coefficient as well as
some new error characterizing the quality of the space P . Let Cμ,ν be the concentration
coefficient defined as

Cμ,ν = (1− γ)2
∞∑
i=0

∞∑
j=0

γi+j sup
π∈AS

∥∥∥∥μ(Pπ∗)
i(Pπ)

j

ν

∥∥∥∥
∞

.

Consider the measure of the complexity of the policy space P , similar to Eν :

E ′ν(P) = max
π∈P

min
π′∈P

(ν(Tvπ − Tπ′vπ)).
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Let also e be an estimation error term that tends to zero as the number of samples tends
to infinity (at a rate depending on the chosen approximator). The performance guarantee
of API [18,1,15,16,8] can be expressed as follows:

lim sup
k→∞

μ(v∗ − vπk
) ≤ Cμ,ν

(1 − γ)2
(E ′ν(P) + e).

This bound is to be compared with the result of Theorem 3, regarding the three terms
involved: the average horizon, the concentration coefficient and the greedy error term.
Each term is discussed now, a brief summary being provided in Table 1. As said in
Section 5.1, the LPS bound is really similar to the CPI one, and the bounds of CPI and
a specific instance of API have been compared by [8]. Our discussion can be seen as
complementary: we consider API more generally, we provide some new elements of
comparison, and we illustrate the methods empirically.

Table 1. Comparison of the performance guarantees for LPS and API

bounded term horizon term concentration term error term

LPS μ(v∗ − vπ)
1

(1−γ)2

∥∥∥ dμ,π∗
ν

∥∥∥
∞

Eν(Π) + ε(1− γ)

API lim supk→∞ μ(v∗ − vπk )
1

(1−γ)2
Cμ,ν E ′

ν(P) + e

Horizon Term. Both bounds have a quadratic dependency on the average horizon 1
1−γ .

For approximate dynamic programming, this bound can be shown to be tight [23], the
only known solution to improve this being to introduce non-stationary policies [23].
The tightness of this bound for policy search is an open question. However, we suggest
later in Section 5.3 a possible way to improve on this.

Concentration Coefficients. Both bounds involve a concentration coefficient. They can
be compared as follows.

Theorem 4. We always have that:
∥∥∥dμ,π∗

ν

∥∥∥
∞
≤ 1

1−γCμ,ν . Also, if there always exists

a ν such that
∥∥∥dμ,π∗

ν

∥∥∥
∞

< ∞ (by choosing ν = dμ,π∗ ), there might not exist a ν such

that Cμ,ν <∞.

Proof. Consider the inequality of the first part. By using the definition of dμ,π∗ and
eventually the fact that dμ,π∗ ≥ (1− γ)ν, we have

Cμ,ν = (1 − γ)2
∞∑
i=0

∞∑
j=0

γi+j sup
π∈(ΔA)S

∥∥∥∥μ(Pπ∗)
i(Pπ)

j

ν

∥∥∥∥
∞

≥ (1 − γ)2

∥∥∥∥∥∥
∞∑

i,j=0

γi+j μ(Pπ∗)
i+j

ν

∥∥∥∥∥∥
∞

= (1− γ)

∥∥∥∥∥
∞∑
i=0

γi dμ,π∗(Pπ∗)
i

ν

∥∥∥∥∥
∞

≥ (1 − γ)2

∥∥∥∥∥
∞∑
i=0

γiμ(Pπ∗)
i

ν

∥∥∥∥∥
∞

= (1− γ)

∥∥∥∥dμ,π∗

ν

∥∥∥∥
∞

.
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Let us concentrate on the second part. Consider an MDP with N states and N actions,
with μ = δ1 being a dirac on the first state, and such that from here action a ∈ [1;N ]
leads in state a deterministically. Write c = supπ∈AS ‖μPπ

ν ‖∞ the first term defining
Cμ,ν . For any π, we have μPπ ≤ cν. Thus, for any action a we have δa ≤ cν ⇒
1 ≤ cν(a). Consequently, 1 =

∑N
i=1 ν(i) ≥ 1

c

∑N
i=1 1 ⇔ c ≥ N . This being true for

arbitrary N ∈ N, we get c =∞ and thus Cμ,ν =∞. ��

The second part of this result tells that we may have
∥∥∥dμ,π∗

ν

∥∥∥
∞
� Cμ,ν , which is

clearly in favor of LPS (and CPI, which involves the same concentration as LPS).

Error Terms. Both bounds involve an error term. The terms ε (LPS) and e (API) can
be made arbitrarily small by increasing the computational effort (the time devoted to
run the algorithm and the amount of samples used), though nothing more can be said in
general without studying a specific algorithmic instance (e.g., type of local search for
LPS or type of regressor/classifier for API). The terms defining the “greedy complexity”
of policy spaces can be partially compared. Because they use different distributions that
can be compared (dν,π ≥ (1− γ)ν), we have for all policy spaces Π [8],

E ′ν(Π) ≤ Eν(Π)

1− γ
.

However, this result does not take into account the fact that LPS (or CPI for the discus-
sion of [8]) works with stochastic policies while API works with deterministic policies.
This make these terms not comparable in general.

Experiments. To get a more precise picture of the relative practical performance of
API and LPS, we ran both algorithms on many randomly generated MDPs. In order to
assess their quality, we consider finite problems where the exact value function can be
computed. More precisely, we consider Garnet problems first introduced by [2], which
are a class of randomly constructed finite MDPs. They do not correspond to any specific
application, but are totally abstract while remaining representative of the kind of MDP
that might be encountered in practice. In our experiments, a Garnet is parameterized
by 4 parameters and is written G(nS , nA, b, p): nS is the number of states, nA is the
number of actions, b is a branching factor specifying how many possible next states
are possible for each state-action pair (b states are chosen uniformly at random and
transition probabilities are set by sampling uniform random b− 1 cut points between 0
and 1) and p is the number of features (for linear value function approximation). The
reward is state-dependent: for a given randomly generated Garnet problem, the reward
for each state is uniformly sampled between 0 and 1. Features are chosen randomly: Φ
is a nS×p feature matrix of which each component is randomly and uniformly sampled
between 0 and 1. The discount factor γ is set to 0.99 in all experiments.

The algorithms API and LPS need to repeatedly compute GΠ . In other words, they
must be able to make calls to an approximate greedy operator applied to the value vπ of
some policy π for some distribution ν or dν,π . To implement this operator, we compute
a noisy estimate of the value vπ with a uniform white noise u(ι) of amplitude ι, then
project this estimate onto H, the space spanned by the p chosen features, with respect
to the μ-quadratic norm (projection that we write ΠH,μ), and then applies the (exact)
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greedy operator on this projected estimate. In a nutshell, one call to the approximate
greedy operator GΠ(π, μ, ε) amounts to compute G(ΠH,μ(vπ + u(ι))), with μ = ν
(API) or μ = dν,π (LPS).

In our experiments, we consider Garnet problems with ns ∈ {50, 100, 200} states,
with na ∈ {2, 5} actions, and branching factors in b ∈ {1, 2, 10}. For each of the 2×32

resulting possible combinations, we generated 30 i.i.d. random MDPs (Mi)1≤i≤30. For
each such MDP Mi, we make 30 i.i.d. runs of (i) API and (ii) LPS with a gradient step-
size of 0.1. For each run and algorithm, we compute the distance between the value of
the output policy and that of the optimal policy (Δj)1≤j≤30. Figure 1 displays learning
curves with statistics on these random variables. On this large set of problems, LPS
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Fig. 1. Learning curves for API and LPS. MDPs are i.i.d. with the distribution of M1. Con-
ditioned on an MDP Mi, the error measures are i.i.d. with the distribution of Δ1. The central
line is an estimate of the overall average error E[Δ1]. The three grey regions (from dark to light)
are estimates of the variability (across MDPs) of the average error Std[E[Δ1|M1]], the average
(across MDPs) of the standard deviation of the error E[Std[Δ1|M1]], and the variability (across
MDPs) of the standard deviation of the error Std[Std[Δ1|M1]].

significantly outperforms API, both on average and in terms of variability (across runs
and problems). This confirms the importance of the better concentration coefficient of
LPS, since it is in theory the main advantage of LPS over API.

5.3 Practical and Theoretical Consequences of Our Analysis

Finally, this section provides a few important consequences of our analysis and of The-
orem 3 in particular.

Rich Policy and Equivalence between Local and Global Optimality. If the policy
space is very rich, one can easily show that any local optimum is actually global (this
result being a direct corollary of Theorem 3).

Theorem 5. Let ν > 0 be a distribution. Assume that the policy space is rich in the
sense that Eν(Π) = 0, and that π is an (exact) local optimum of Jν (ε = 0). Then, we
have vπ = v∗.



48 B. Scherrer and M. Geist

If this result is well-known in the case of tabular policies, it is to our knowledge new in
such a general case (acknowledging that Eν(Π) = 0 is a rather strong assumption).

Choice of the Sampling Distribution. Provided the result of Theorem 3, and as also
mentioned about CPI by [11] since it satisfies a similar bound, if one wants to optimize
the policy according to a distribution μ (that is, such that μ(v∗− vπ) is small), then one
should optimize the fitness Jν with the distribution ν � dμ,π∗ (so as to minimize the

coefficient
∥∥∥dμ,π∗

ν

∥∥∥
∞

). Ideally, one should sample states based on trajectories following

the optimal policy π∗ starting from states drawn according to μ. This is in general not
realistic since we do not know the optimal policy π∗, but practical solutions may be
envisioned.

First, this means that one should sample states in the “interesting” part of the state
space, that is where the optimal policy is believed to lead from the starting distribution
μ. This is a natural piece of information that a domain expert should be able to provide.
Also, though we leave the precise study of this idea for future research, a natural prac-
tical approach for setting the distribution ν would be to compute a sequence of policies
π1, π2, . . . such that for all i, πi is a local optimum of π �→ Jdν,πi−1

(π), that is of the
criterion weighted by the region visited by the previous policy πi−1. It may particularly
be interesting to study whether the convergence of such an iterative process leads to
interesting guarantees.

One may also notice that Theorem 3 may be straightforwardly written more generally
for any policy. If π is an ε-local optimum of Jν over Π , then for any stochastic policy
π′ we have

μvπ′ ≤ μvπ +
1

1− γ

∥∥∥∥dμ,π′

ν

∥∥∥∥
∞

(
Eν(Π)

1− γ
+ ε

)
.

Therefore, one can sample trajectories according to an acceptable (and known) con-
troller π′ so as to get state samples to optimize Jdν,π′ . More generally, if we know
where a good policy π′ leads the system to from some initial distribution μ, we can
learn a policy π that is guaranteed to be approximately as good (and potentially better).

A Better Learning Problem? With the result of Theorem 3, we have a squared de-
pendency of the bound on the effective average horizon 1

1−γ . For approximate dynamic
programming, it is known that this dependency is tight [5,23]. At the current time, this
is an open question for policy search. However, we can improve the bound. We have
shown that the ε-local optimality of a policy π implies that it satisfies a relaxed Bellman
global optimality characterization, π ∈ GΠ(π, dν,π , ε), which in turns implies Theo-
rem 3. The following result, involving a slightly simpler relaxed Bellman equation, can
be proved similarly to Theorem 2:

If π ∈ GΠ(π, ν, ε) then μvπ′ ≤ μvπ +
1

1− γ

∥∥∥∥dμ,π′

ν

∥∥∥∥
∞

(Eν(Π) + ε).

A policy satisfying this relaxed Bellman equation would have an improved dependency
on the horizon ( 1

1−γ instead of 1
(1−γ)2 ). At the current time, we do not know whether

there exists an efficient algorithm for computing a policy satisfying π ∈ GΠ(π, ν, ε).
The above guarantee suggests that solving such a problem may improve over traditional
policy search and approximate dynamic programming approaches.
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6 Conclusion

In the past years, local policy search algorithms have been shown to be practical vi-
able alternatives to the more traditional approximate dynamic programming field. The
derivation of global performance guarantees for such approaches, probably considered
as a desperate case, was to our knowledge never considered in the literature. In this
article, we have shown a surprising result: any Local Policy Search algorithm, as long
as it is able to provide an approximate local optimum of Jν(π), enjoys a global perfor-
mance guarantee similar to the ones of approximate dynamic programming algorithms.
However, this relies on a strong convex policy space assumption, not satisfied by most
standard local policy search algorithms. Weakening this hypothesis is an interesting
research direction (yet difficult, as convexity is at the core of our analysis).

In order to handle this issue, we proposed to apply AnyBoost.L1 to local policy
search. If it is a slight generalization of conservative policy iteration and is thus not a
new algorithm, our work provides an original connexion between local policy search,
boosting and approximate dynamic programming. Moreover, this suggests some open
problems. First, AnyBoost.L1 (and thus CPI) is a rather natural approach to handle
convex policy spaces. An interesting alternative would be to study the question of the
parameterization of a convex space. If we were able to come up with a non-trivial pa-
rameterization, we could use many of the LPS algorithms of the literature (for instance
actor-critic algorithms). Our analysis also suggests that it may be better to design algo-
rithms that looks for a policy π satisfying π ∈ GΠ(π, ν, ε) instead of searching for a
local maximum of Jν , as it leads to a better bound (linear dependency on the average
horizon). Working in that direction constitutes interesting future research. Last but not
least, our experiments on Garnet problems showed that LPS outperforms API. Deep-
ening the comparison of these approaches in larger problems constitutes natural future
work.
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Abstract. We describe a library and a companion website designed to
ease the usage of exponential families in various programming languages.
Implementation of mathematical formulas in computer programs is often
error-prone, difficult to debug and difficult to read afterwards. Moreover,
this implementation is heavily dependent of the programming language
used and often needs an important knowledge of the idioms of the lan-
guage. In our system, formulas are described in a high-level language and
mechanically exported to the chosen target language and a LATEX export
allows to quickly review correctness of formulas. Although our system is
not limited by design to exponential families, we focus on this kind of
formulas since they are of great interest for machine learning and sta-
tistical modeling applications. Besides, exponential families are a good
usecase of our dictionary: among other usages, they may be used with
generic algorithms for mixture models such as Bregman Soft Clustering,
in which case lots of formulas from the canonical decomposition of the
family need to be implemented. We thus illustrate our library by gener-
ating code which can be plugged into generic Expectation-Maximization
schemes written in multiple languages.

1 Introduction

Except rare theoretical breakthroughs, machine learning research often needs
to be validated with experiments and implementations in some programming
language (common languages for this use are typically Matlab, Python, R, C,
C++ or even Fortran). This implementation step goes through the translation
of the mathematical formulas appearing in the new method into computer code.
Although one may expect this translation to be straightforward, it usually needs
some non trivial knowledge about the used language: the syntax for creating
matrices and vectors and the syntax to access elements; the mathematical op-
erators and common functions (like sqrt, exp, sin); the name of mathematical
constants; the availability of special mathematical functions (like Γ , erf, etc);
the various headers needed to enable access to the previous features (#include,
import, etc); and finally the options to give to the compiler or the interpreter
(to locate libraries and files).
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© Springer-Verlag Berlin Heidelberg 2014
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Although the general structure of any implementation seems to be similar,
a lot of small differences appear between languages. We can study these subtle
differences by looking at the implementation of the probability density function
of the Gaussian distribution in three different languages: Python (Fig. 1), Mat-
lab (Fig. 2) and C (Fig. 3). Since these three versions come from the reference
libraries for numerical computation, they are supposed to be idiomatic and re-
spectful of the usages of each language. We notice the square is made with three
different syntax: ** in Python, ^ in Matlab and u*u (where u is a temporary
variable holding the quantity to square) in C. We can also remark the various
needs regarding the headers: various import for sqrt, exp and pi in Python,
nothing in Matlab and one include in C for sqrt, exp, M_PI and fabs (the use
of an absolute value around the standard deviation is rather surprising here, but
this is beyond the scope of our study).

7 import math
24 from numpy import exp
28 from numpy import pi

2112 _norm_pdf_C = math.sqrt(2*pi)
2116 def _norm_pdf(x):
2117 return exp(-x**2/2.0) / _norm_pdf_C

Fig. 1. Gaussian in Python (extract from the file scipy/stats/distributions.py from
the library Scipy 0.13.3)

30 function pdf = stdnormal_pdf (x)
40 pdf = (2 * pi)^(- 1/2) * exp (- x .^ 2 / 2);
42 endfunction

Fig. 2. Gaussian in Matlab (extract from the file scripts/statistics/
distributions/normpdf.m from Octave 3.8.1 since the Matlab sources are not
available; some lines which check parameters are removed)

This language-specific knowledge is often not problematic at first glance since
one tends to use a well-known language for the first experiments of a new method
but may become a problem if some parts need to be rewritten in another lan-
guage for performance reasons or to collaborate with other people using other
languages. It also renders more difficult the path between a first research pro-
totype and a real-scale application. Finally, and perhaps more importantly, the
source code implementing the formula is often difficult to read: for the original
programmer, bugs and mistakes are harder to find and for a newcomer want-
ing to study the implementation, the code is barely understandable and nearly
impossible to use in another application without a lot of work.
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22 #include <math.h>
118 double
119 gsl_ran_gaussian_pdf (const double x, const double sigma)
120 {
121 double u = x / fabs (sigma);
122 double p = (1 / (sqrt (2 * M_PI) * fabs (sigma))) * exp (-u * u / 2);
123 return p;
124 }

Fig. 3. Gaussian in C (extract from the file randist/gauss.c from the Gnu Scientific
Library (GSL) 1.16)

The library introduced in this paper allows to describe mathematical formulas
in a programming language-agnostic way: the work of translating formulas into a
computer-understandable implementation only needs to be made once, facilitat-
ing the choice of the most well-suited programming language. A first prototype
may be exported to Python and then to C in order to work on a large real life
dataset. Another researcher may generate Matlab code and then plug the for-
mula into its own code base. And an engineer in a company may just take the C
export and use it for an industrial application or the company may also design
its own exporter backend to generate code suited to proprietary internal tools.
Since the description language is not really more readable than a programming
language, a LATEX export is provided, allowing to easily proofread the formula.
This library is aimed at any people who may want to use mathematical formulas
inside computer code and can be used at hand with copy-pasting or in a more
clean way by integrating it in a build process.

Beside the library itself, we also present Code-Formula, a web application
demonstrating our library, which is designed both for educational purpose and
to offer an encyclopedia of mathematical functions which can be picked-up when
one needs an out-of-the-box implementation of a mathematical formula. This
website is inspired by other online dictionaries of mathematical objects, like the
Online Encyclopedia of Integer Sequences [8], the Digital Library of Mathemat-
ical Functions [5] or the Dynamic Dictionary of Mathematical Functions [2], but
to the best of our knowledge, it is the first one focusing on the algorithmic side
instead of mathematical properties.

Although the previous remarks can apply to a wide variety of formulas from
mathematical science, computer science, physics or engineering fields, we chose
to limit ourselves to a dictionary of exponential families for some reasons: first,
it is better at first sight to limit the goals of the project to a reasonable set
of objects; second, exponential families are widely used in a large variety of
fields, including, but not limited to, machine learning; last, and perhaps most
importantly, in the recent years, a lot of work has been devoted to the design of
generic algorithms for mixtures of exponential families, where the precise family
is a parameter of the algorithm, and a few implementations have been worked-
on, in Java (jMEF [4]), in Python (pyMEF [7]), in C (libmef [6]) or even in R.
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Each of these implementations has been confronted to the same kind of work:
translating formulas into code. We hope that using our library and website, the
implementation of such libraries may be done in a semi-automatic way.

This article in organized as follows: after this introduction detailing motivation
and goals of the project, the architecture of the library is described. Then, a few
examples of exponential families described using our library are given along the
utilization of exported code to plug into a generic Expectation-Maximization
method for mixture of exponential families. Finally, the website containing the
encyclopedia itself is described.

2 Architecture

2.1 General view

The general architecture of the system is described in Fig. 4: mathematical
formulas are described in a high-level frontend, then processed by the code of
the library and finally passed to the backends which are in charge of generating
programming code. Currently, the language used in the fronted is the same as
for the library itself, that is OCaml (but very little knowledge of this language
is needed to effectively write formulas). This choice has been made for facility
reasons, avoiding the need of writing a parser for a domain specific language
and because OCaml, although not well-known in the machine learning field, is
well suited for this kind of task. Although a LATEX frontend may look appealing,
this is not feasible for two reasons: first a LATEX parser is nearly impossible to
write, even for the subset of the language expressing the mathematical formulas;
second LATEX formulas carry very few semantic, since the language is designed
for display, not for computation.

The core part of the library provides a set of tools to manipulate the formulas,
like changing the names of variables inside a formula but in the future other
frontends may be added. So far, four backends are available: Python, Matlab,
C and LATEX, the later allowing to easily proofread formulas and to use them
directly in publications or documentation.

The source code of this library, called Formula, can be browsed online
on http://hub.darcs.net/oschwand/formula and downloaded on the web-
page related to this article: http://www.lix.polytechnique.fr/˜schwander/
ecml2014/.

2.2 Frontend

The frontend is responsible for the translation between a human-understandable
description of the formula into a data structure representing the formula which
can be passed to export backends. If we stick to the example given in the intro-
duction, that is, the probability density function of the Gaussian distribution

f(σ, μ, x) =
1√
2πσ2

exp

(
− (x− μ)

2

σ2

)
(1)

http://hub.darcs.net/oschwand/formula
http://www.lix.polytechnique.fr/~schwander/ecml2014/
http://www.lix.polytechnique.fr/~schwander/ecml2014/
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OCaml
input

Core

Python
export

Matlab
export

C export

LATEX
export

Frontends Backends

Fig. 4. General architecture of Code you are Happy to Paste

the steps will be the following: first describe the formula in OCaml (Fig. 5) and then
compile the description which will be represented as an abstract syntax tree (Fig.
6; for brevity, it is simply a centered and normalized Gaussian). In addition to the
formula itself, each description embeds its own documentation, with a description
of the formula and with names and properties for the variables used inside.

In the description in Fig. 5, we build a function (line 2) called f , described as
Gaussian PDF (line 3), taking three arguments (σ, μ and x, line 4) and returning a
real number (line 5). After this header, we define three variables (lines 7, 8 and 9),
each of them bearing a name and if necessary a documentation and a mathematical
property (which is used only for documentation purposes). Finally, the formula
itself is described, using a straightforward syntax similar to the one used in many
languages (the Syntax keyword means the mathematical operators work on nodes
of the syntax tree instead of numbers and the ! are used to convert numbers into
nodes).

2.3 Backends

Four backends are available so far, trying to cover various use-cases of scientific
computing. In each case, the goal is to produce idiomatic code with as less
differences as possible as with handmade code.

Latex The LATEX output does not need more comments since most of the formulas
in this document have been generated using our library. A particular attention
has been paid to generate nice looking formula, especially by minimizing the
number of parentheses.
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1 let gaussian =
2 Func.def "f"
3 ~doc:"Gaussian PDF"
4 ~args:["\\sigma"; "\\mu"; "x"]
5 ~return:Real
6 Syntax.(
7 let x = real "x" in
8 let sigma = real ~doc:"standard deviation" ~prop:"positive"
9 "\\sigma" in
10 let mu = real ~doc:"mean" "\\mu" in
11 !1 / (sqrt (!2 * pi * sigma ** !2)) *
12 exp (- ((x - mu) ** !2 / sigma ** !2))
13 )

Fig. 5. Description of the Gaussian distribution
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Fig. 6. Tree representing a centered and normalized Gaussian PDF (μ = 0, σ = 1)
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Python The Python backend outputs code relying on the library numpy which
is the standard for scientific computing in Python. This library provides basic
mathematical functions along with powerful vectors and matrices operations.

Python.def ~doc:true gaussian

def f(sigma, mu, x):
""" Gaussian PDF

x: (real)
\sigma: standard deviation (real, positive)
\mu: mean (real)
"""

return 1 / numpy.sqrt(2 * numpy.pi * sigma**2) * \
numpy.exp(- (x - mu)**2 / sigma**2)

Matlab The Matlab backend generates code using only built-in functions of
Matlab.

Matlab.def ~doc:true gaussian

% Gaussian PDF
%
% x: (real)
% \sigma: standard deviation (real, positive)
% \mu: mean (real)

function f(sigma, mu, x)
1 / sqrt(2 * pi * sigma^2) * exp(- (x - mu)^2 / sigma^2)

end

C The C backend is a little more subtle. First, the C language requires explicit
typing indications in the code: thus we need to do the translation between real
numbers (on the description side) into double (on the C side), and the same for
integers and int.

C.def ~doc:true gaussian

/* Gaussian PDF

x: (real)
\sigma: standard deviation (real, positive)
\mu: mean (real)

*/
double f(double sigma, double mu, double x) {
return 1 / sqrt(2 * M_PI * pow(sigma, 2)) * \
exp(- pow(x - mu, 2) / pow(sigma, 2));

}



58 O. Schwander

The Gaussian PDF is too simple to highlight the others subtleties of this
backend, we thus add another example, estimating the mean of a set of values.
For a straightforward mean function

mean(X) =
1

|X |

⎛⎝ |X|∑
i=1

Xi

⎞⎠ (2)

described by

let mean =
Func.def "mean"
~args:["X"]
~return:Real
Syntax.(
let x = var "X" (Vector Real) in
!1 / (length x) * sum x

)

we get the following C code:

double mean(gsl_vector* X) {
double tmp1 = 0;
for(unsigned int i=0; i<X->size; i++)
tmp1 += gsl_vector_get(X, i);

return 1 / (X->size) * tmp1;
}

First, we made the choice to rely on the Gnu Scientific Library (GSL) for all
vectors and matrices operations: in addition to the data structures themselves we
get also common mathematical operations on vectors and matrices, simplifying
the generated code. Second, since GSL does not provide any function to sum
the elements, we need to rewrite the formula to replace the

∑
operation by a

temporary variable which is populated using a for loop.

3 Exponential Families

In order to present the content of our encyclopedia, we give a quick recall on ex-
ponential families before showing examples of formula descriptions and exported
code.

3.1 Definition

Exponential families are an ubiquitous class of distributions and many widely
used distributions belong to this class.
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An exponential family is a set of distributions whose probability mass or
probability density functions admit the following canonical decomposition:

p(x; θ) = exp(〈t(x), θ〉 − F (θ) + k(x)) (3)

with

– t(x) the sufficient statistic,
– θ the natural parameters,
– 〈·, ·〉 the inner product,
– F the log-normalizer, which is strictly convex and differentiable,
– k(x) the carrier measure.

Since this log-normalizer F is a strictly convex and differentiable function, it
admits a dual representation, the convex conjugate F ∗, by the Legendre-Fenchel
transform:

F 
(η) = sup
θ
{〈θ, η〉 − F (θ)} (4)

We get the maximum for θ = (∇F )−1 (η) and F 
 can be computed with:

F 
(η) = 〈η, (∇F )
−1

(η)〉 − F ((∇F )
−1

(η)) (5)

Many generic information-geometric algorithms (like Bregman Hard Cluster-
ing or Bregman Soft Clustering [1]) rely on the knowledge of this decomposition
and thus the implementation of these algorithms require to translate these for-
mulas into computer code. Translating these formulas from a language-agnostic
description allows to factorize the effort and is less error-prone than ad-hoc man-
ual work.

3.2 Examples

We describe here the full canonical decomposition of two exponential fam-
ilies, the Gaussian distribution and the Laplace law. For brevity, we only
give the description of each formula and the LATEX export. The reader
can find all the source code related to this article on the webpage
http://www.lix.polytechnique.fr/~schwander/ecml2014/. The same con-
tent can also be retrieved in the website described in Section 4.

Gaussian distribution This is the opportunity to introduce new syntactic fea-
tures: functions can take real vectors as arguments and return them using the
type Vector Real. Inside the formula, elements of the vector can be accessed
using the @ operator (like theta@0).

http://www.lix.polytechnique.fr/~schwander/ecml2014/
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let f =
Func.def "F"
~doc:"Log-normalizer"
~args:["\\theta"]
~return:Real
Syntax.(
let theta = var ~doc:"natural parameter"
~prop:"dimension 2" "\\theta" (Vector Real)

in
- (!1 / !4 * ((theta@0) ** !2 / (theta@1))) +
!1 / !2 * log(- (pi / (theta@1)))

)

F (θ) = −1

4

θ20
θ1

+
1

2
log

(
− π

θ1

)
(6)

let gradF =
Func.def "\\nabla F"
~doc:"Gradient log normalizer"
~args:["\\theta"]
~return:(Vector Real)
Syntax.(
let theta = var ~doc:"natural parameter"
~prop:"dimension 2" "\\theta" (Vector Real)

in
vector [
- (theta@0) / (!2 * (theta@1));
- !1 / (!2 * (theta@1)) +

(theta@0) ** !2 / (!4 * (theta@1) ** !2);
]

)

∇F (θ) =

(
−θ0
2θ1

,
−1
2θ1

+
θ20
4θ21

)
(7)

let g =
Func.def "F^\\star"
~doc:"Dual log-normalizer"
~args:["\\eta"]
~return:Real
Syntax.(
let eta = var ~doc:"expectation parameter"
~prop:"dimension 2" "\\eta" (Vector Real)

in
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- (!1 / !2) * log((eta@0) ** !2 - (eta@1))
)

F 
(η) = −1

2
log

(
η20 − η1

)
(8)

let t =
Func.def "t"
~doc:"Sufficient statistic"
~args:["x"]
~return:(Vector Real)
Syntax.(
let x = real ~doc:"observation" "x" in
vector [x; x ** !2]

)

t(x) =
(
x, x2

)
(9)

Laplace distribution Since the Laplace distribution is of order 1 (with only one
scalar parameter), the descriptions are much simpler since we do not need to
deal with vectors.

let pdf =
Func.def "f"
~doc:"Centered Laplace PDF"
~args:["\\sigma"; "x"]
~return:Mathset.Real
Syntax.(
let x = real "x" in
let sigma = real ~doc:"standard deviation" ~prop:"positive"

"\\sigma" in
!1 / (!2 * sigma) *
exp (- (abs x) / sigma)

)

f(σ, x) =
1

2σ
exp

(
− |x|
σ

)
(10)

let f =
Func.def "F"
~doc:"Centered Laplace log-normalizer"
~args:["\\theta"]
~return:Mathset.Real
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Syntax.(
let theta = real ~doc:"natural parameter" "\\theta" in
log (- !2 / theta)

)

F (θ) = log
−2
θ

(11)

let grad_f =
Func.def "\\nabla F"
~doc:"Centered Laplace gradient log-normalizer"
~args:["\\theta"]
~return:Mathset.Real
Syntax.(
let theta = real ~doc:"natural parameter" "\\theta" in
- !1 / theta

)

∇F (θ) =
−1
θ

(12)

let g =
Func.def "\\nabla F^\\star"
~doc:"Centered Laplace dual log-normalizer"
~args:["\\eta"]
~return:Mathset.Real
Syntax.(
let eta = real ~doc:"expectation parameter" "\\eta" in
- log eta

)

∇F 
(η) = − log η (13)

let grad_g =
Func.def "\\nabla F^\\star"
~doc:"Centered Laplace dual log-normalizer"
~args:["\\eta"]
~return:Mathset.Real
Syntax.(
let eta = real ~doc:"expectation parameter" "\\eta" in
- !1 / eta

)

t(x) = |x| (14)
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3.3 Mixture Models

In order to learn mixtures of exponential families, we use an Expectation-
Maximization (EM) instance [3] called Bregman Soft Clustering
[1], allowing to pass the family as an argument of the algorithm. As usual, this
is an iterative algorithm where two steps are repeated until convergence of the
log-likelihood of the mixture: expectation step and maximization step. See [4]
for more details about the exponential family version of these two steps.

Expectation step

p(i|xt, η) =
ωi exp (F


(ηi) + 〈t(xt)− ηi,∇F 
(ηi)〉)∑k
j=1 ωj exp (F 
(ηj) + 〈t(xt)− ηj ,∇F 
(ηj)〉)

(15)

Maximization step

ωi =
1

N

N∑
t=1

p(i|xt, η) (16)

ηi =

N∑
t=1

p(i|xt, η)∑N
t=1 p(i|xt, η)

t(xt) (17)

Currently, theses two steps need to be implemented by hand in each target
language since our description language is not expressive enough to manipulate
functions inside the formula (we would need to pass F 
, ∇F 
, t as arguments
to the function, or let them as free variable). Nonetheless, as soon as these steps
are implemented, with a while loop around to iterate, it can be plugged after
the automatically generated formulas, forming a full EM iterative scheme.

4 Website

The Code-Formula website (accessible through http://www.lix.
polytechnique.fr/˜schwander/codeformula ) is designed to spread knowl-
edge about the exponential families. Following the ideas introduced by precursor
online dictionaries of mathematical objects, we think the online format is way
more suitable for this kind of content than static documents.

Each page on the site (see the screenshot Fig. 7) shows a card about an
exponential family, with a list of formulas related to the family. Each formula
is presented first with a rendered version of the the latex output followed by
exports in the supported languages.

The goal is to become the reference about decomposition of exponential fam-
ilies, serving to diffuse knowledge, demonstrating our description library but
also as a direct source for picking-up pre-made implementations of formulas of
interest, for researchers and companies.

http://www.lix.polytechnique.fr/~schwander/codeformula
http://www.lix.polytechnique.fr/~schwander/codeformula
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Fig. 7. Gaussian page on Code-Formula, the online encyclopedia of exponential families

5 Conclusion

We presented Formula, a library to describe mathematical formulas and to au-
tomatically generate code implementing these formulas, and Code-Formula, a
website showing an online dictionary of exponential families. Both are aimed
at reducing the time between chalk board work to real implementation of an
algorithm. This is obviously useful for research purposes, easing the first im-
plementation of a new method and also easing a re-implementation of a work
by other researchers, but this may also be useful for students or for companies
seeking to build a real-world implementation of a method.

There are a lot of perspectives which are under work: on the website side,
enlarge the content (contributions are obviously welcomed); on the library side,
it should be interesting to be able to generate the headers needed to execute
the generated code along with necessary compilation flags; it may also be inter-
esting to render the description language expressive enough to directly describe
formulas using other functions (to be able to write the update rule of the EM
algorithm for example). On the short term, new export backends are under work,
like R and Julia.

Acknowledgments. The author would like to thank Frank Nielsen for the in-
sightful discussions about dictionaries of information geometric objects, in par-
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Abstract. We propose a set of novel methodologies which enable valid
statistical hypothesis testing when we have only positive and unlabelled
(PU) examples. This type of problem, a special case of semi-supervised
data, is common in text mining, bioinformatics, and computer vision. Fo-
cusing on a generalised likelihood ratio test, we have 3 key contributions:
(1) a proof that assuming all unlabelled examples are negative cases is
sufficient for independence testing, but not for power analysis activities;
(2) a new methodology that compensates this and enables power anal-
ysis, allowing sample size determination for observing an effect with a
desired power; and finally, (3) a new capability, supervision determina-
tion, which can determine a-priori the number of labelled examples the
user must collect before being able to observe a desired statistical effect.
Beyond general hypothesis testing, we suggest the tools will addition-
ally be useful for information theoretic feature selection, and Bayesian
Network structure learning.

1 Introduction

Learning from Positive-Unlabelled (PU) data is a special case of semi-supervised
learning, where we have a small number of examples from the positive class, and
a large number of unlabelled examples which could be positive or negative. The
objective in this situation is to perform standard machine learning activities de-
spite this data restriction. The problem has been referred to in the literature
under several names, including partially supervised classification [15], positive
example based learning [19] and positive unlabelled learning [9]. A typical ap-
plication has been text classification — given a number of query documents
belonging to a particular class (e.g. academic articles about machine learning),
plus a corpus of unlabelled documents, the task is to classify new documents as
relevant to the query or not.

Most work in the PU area is concerned with classification, rather than theory.
Denis [8] is an interesting exception, which generalised Valiant’s PAC learning
framework to PU data, and concluded that learning from positive and unlabelled
examples is possible, but that we must have some additional prior knowledge

T. Calders et al. (Eds.): ECML PKDD 2014, Part III, LNCS 8726, pp. 66–81, 2014.
c© Springer-Verlag Berlin Heidelberg 2014
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about the underlying distribution of examples. We make use of this observation,
exploring how statistical hypothesis testing manifests in PU data, and how such
prior knowledge can be incorporated.

In this context, we focus on the G-test [18], a generalised likelihood ratio test
used for testing independence of categorical variables, which is closely related
to the mutual information (Sec. 3). The G-test and the mutual information
are used extensively, for example in life sciences to test whether two observed
natural processes are independent [16]. In machine learning and in data mining
they also have a large number of applications, for instance in structure learning
of a Bayesian Network [2] or in feature selection [4]. The main contributions1 of
our work are the following
– A proof that, the common assumption of all unlabelled examples being nega-

tive is sufficient for testing independence (Sec. 4.1), but insufficient for more
advanced activities such as power analysis (Sec. 4.2).

– A methodology for a-priori power analysis in the PU scenario, enabling sam-
ple size determination for observing an effect with a desired power (Sec. 5).

– A novel capability: supervision determination, which can determine the min-
imum number of labelled data to achieve a desired power (Sec. 5).

In a general hypothesis testing scenario, our results make clear the implica-
tions of using the G-test under the PU constraint, and leads to more cost-effective
experimental design. In wider machine learning activities, there are several appli-
cations. For example, constraint-based learning of Bayesian Network structures:
the decision on whether to include an arc between two nodes is often made with
a hypothesis test such as χ2, or the mutual information, both of which are core
to our work. Another example is information theoretic feature selection, Guyon
et al. [13, pg 68] discuss how the statistical viewpoint on feature selection al-
lows decision-making on the relevance/redundancy of a feature to be made in
a principled manner. Our methods permit these activities under the PU data
constraint.

2 Background on the Positive Unlabelled Problem

Positive-Unlabelled data refers to situations where we have a small number of
examples labelled as the positive class, and a large number of entirely unlabelled
examples, which could be either positive or negative. Whilst classification is well
explored in the PU scenario, an area in need of attention is statistical hypoth-
esis testing: including independence tests, and more complex activities such as
power analysis. We now introduce the formal framework of Elkan & Noto [10]
for reasoning over PU data, which we build upon in our work.

2.1 Positive Unlabelled Framework

Assume that a dataset D is drawn i.i.d. from the joint distribution p(X,Y, S),
where the features X are categorical, the class Y is binary, and S is a further

1 Matlab code for all methods and the supplementary material with all the proofs and
extra results are available in www.cs.man.ac.uk/~gbrown/posunlabelled/.

www.cs.man.ac.uk/~gbrown/posunlabelled/
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random variable with possible values ‘s+’ and ‘s−’, indicating if the example is
labelled (s+) or not (s−). Thus p(x|s+) is the probability of X takes the value
x from its alphabet X conditioned on the labelled set. The same shorthand
notation is used for Y , where the positive class is indicated by ‘y+’, and the
negative class by ‘y−’.

In this context, Elkan & Noto formalise the selected completely at random
assumption, saying that the examples for the labelled set are selected completely
at random from all the positive examples:

p(s+|x, y+) = p(s+|y+) ∀ x ∈ X .

Thus, the probability of a positive example being labelled is independent of the
input x. Perhaps most interestingly, Elkan & Noto proceed to show that this
assumption has been followed either explicitly or implicitly in most research on
PU data.

2.2 A Naive Approach–Assuming Unlabelled Examples are
Negative

One approach to learn from this data is to simply assume that any unlabelled
examples are negative. This approach, while seemingly naive, has proven to be
useful for classification. Elkan & Noto [10] show that a probabilistic classifier
trained on such data predicts posterior probabilities that differ from the true
values by a constant factor; they suggest a number of ways to estimate this factor
using a validation set. In a different context, Blanchard et al. [3] use the same
assumption and prove that semi-supervised novelty detection can be reduced to
Neyman-Pearson binary classification using the nominal and unlabelled samples
as the two classes, in their terminology.

2.3 Incorporating Prior Knowledge

Another general approach follows the theoretical work of Denis [8], incorporating
prior knowledge of the class distributions to augment the learning. For example,
Calvo et al. [5] build PU naive bayes classifiers, and propose a Bayesian solution
to deal with uncertainty in the distribution of the positive class.

At first glance, in the PU learning environment estimating p(x|y−) seems
impossible without negative data. However, with a neat rearrangement of the
marginal p(x) and some extra information, it turns out to be possible. The
marginal is p(x) = p(x, y−) + p(x, y+), which can be rearranged:

p(x|y−) = p(x)− p(x|y+)p(y+)
1− p(y+)

. (1)

Denis et al. [9] exploited this to construct a PU Naive Bayes classifier, esti-
mating p(x|y+) by maximum likelihood on just the labelled set, i.e. assuming
p̂(x|y+) ≈ p̂(x|s+), and estimating p(x|y−) using equation (1). The prior p(y+)
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was provided as a user-specified parameter, p̃. Thus, the missing conditional
probability p(x|y−) is estimated as,

p̂(x|y−) ≈ p̂(x) − p̂(x|s+)p̃
1− p̃

,

where p̂(x), p̂(x|s+) denote the maximum likelihood estimates of the respective
probabilities. Although this seems a heuristic approach, we will now show with
the following Lemma that under the selected completely at random assumption
it is indeed valid.

Lemma 1. Assuming data is selected completely at random, the conditional dis-
tribution of x given y = 1 is equal to the conditional distribution of x given that
it is labelled.

p(x|y+) = p(x|s+) ∀ x ∈ X .

The proof of this Lemma and all the proofs of this work are available in the
supplementary material.

2.4 Summary

In our work we will explore both approaches in the context of statistical hypoth-
esis testing. By using the naive but common assumption that all the unlabelled
examples are negative we can perform a test of independence between X against
either the true labels (Y ) or the assumed ones (S). In Section 4 we prove that
these two cases have precisely the same false positive rate but different true pos-
itive rates (i.e. statistical power). While in Section 5, by using prior-knowledge,
we derive a correction factor for the test that brings these into parity – identical
true positive and false positive rates. As a consequence we can also perform pos-
itive unlabelled sample size determination, and determine the number of labeled
examples needed to observe a desired statistical effect with a specified power.
Before that, in Section 3 we review the likelihood ratio test that this work builds
upon.

3 Hypothesis Testing

3.1 The G-test of Independence

In fully observed categorical data, the G-test can be used to determine statisti-
cal independence between categorical variables [18]. It is a generalised likelihood
ratio test, where the test statistic can be calculated from sample data counts
arranged in a contingency table. Denote by Ox,y the observed count of the num-
ber of times the random variable X takes on the value x from its alphabet X ,
while Y takes on y ∈ Y; and by Ox,. and O.,y the marginal counts. The esti-
mated expected frequency of (x, y), assuming X,Y are independent, is given by
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Ex,y = p̂(x)p̂(y)N =
Ox,.O.,y

N . The G-statistic can now be defined as

G = 2
∑
x∈X

∑
y∈Y

Ox,y ln
Ox,y

Ex,y
= 2N

∑
x∈X

∑
y∈Y

p̂(x, y) ln
p̂(x, y)

p̂(x)p̂(y)
= 2NÎ(X ;Y ) (2)

where Î(X ;Y ) is the maximum likelihood estimator of the mutual information
between X and Y [17]. Under the null hypothesis that X and Y are statistically
independent, G is known to be asymptotically χ2-distributed, with ν = (|X | −
1)(|Y| − 1) degrees of freedom [18]. For a given dataset, we calculate (2) and
check to see whether it exceeds the critical value defined by a significance level α
read from a standard statistical table giving the CDF of the χ2-distribution —
if the critical value is not exceeded, the variables are judged to be independent.

3.2 Power Analysis

With such a test, it is common to perform a power analysis [6]. The power of
a test is the probability that the test will reject the null hypothesis when the
alternative hypothesis is true. This is also known as the true positive rate, or the
probability of not committing a Type-II error. An a-priori power analysis would
take a given sample size N , a required significance level α, an effect size ω, and
would then compute the power of the statistical test. However, to do this we
need a test statistic with a known distribution under the alternative hypothesis.

It is known that the G-statistic (2) has a large-sample non-central χ2 distri-
bution under the alternative hypothesis (i.e. when X and Y are dependent) as
presented by Agresti [1, Section 16.3.5]. Agresti shows that the χ2 non-centrality
parameter (λ) has the same form as the G-statistic, but with sample values re-
placed by population values. In other words, the non-centrality parameter under
the alternative hypothesis is given by λ = 2NI(X ;Y ). Thus λ is a parameter,
and G is a random variable following a distribution defined by λ.

One important usage of a-priori power analysis is sample size determination.
In this prospective procedure we specify the significance level of the test (e.g. α =
0.05), the desired power (e.g. a false negative rate of 0.01) and the desired effect
size – from this we can determine the minimum number of examples required to
detect that effect.

It turns out that the effect size of the G-test can be naturally expressed as a
function of the mutual information. More specifically, the effect size (ω) is the
square root of the non-centrality parameter divided by the sample size [6], thus
we have ω =

√
2I(X ;Y ). Therefore, to understand hypothesis testing in PU

data, we must understand the properties of mutual information in such data.

4 Hypothesis Testing in Positive Unlabelled Data

In this section we will focus in PU data by adopting the very common assumption
that all unlabelled examples are negative, and exploring the consequences for
hypothesis testing.
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4.1 Testing for Independence in Positive Unlabelled Data

In positive unlabelled data, it is not immediately obvious how to apply the
G-test described in the previous section, since the variable Y is only partially
observed. The ‘naive’ approach would be to assume all unlabelled examples as
negatives, and test for independence in the usual manner. This is in effect testing
independence between X and S, the variable describing whether an example
is labelled. While this is arguably a rather significant assumption, it is in fact
sufficient to answer the question of whether X,Y are independent. This is proved
formally with the following simple theorem.

Theorem 1. In the positive unlabelled scenario, under the selected completely
at random assumption, a variable X is independent of the class label Y if and
only if X is independent of S, so it holds X ⊥⊥ Y ⇔ X ⊥⊥ S.

Intuitively, we can describe variable S as a noisy copy of Y , with no false positives
but potentially a large number of false negatives. So instead of checking the
independence with the actual variable Y we can check with the noise version S.
The proof of the Theorem 1 is available in the supplementary material, though
the theorem can be also experimentally verified with a simple ‘sanity check’
experiment. We generated data as so: X,Y are independent Bernoulli variables
each with p = 0.5 and take N = 1000 observations. For the PU case, all negative
examples have their labels removed, and we randomly remove a fraction (1− c)
of the positive labels, where c is the fraction of all positive examples that are
labelled, also written as c = p(s+)/p(y+). To test independence we apply the
G-test with a significance level of α = 0.01 to test the assertion that X ⊥⊥ Y
in the supervised case, and X ⊥⊥ S in the PU case. Since the null hypothesis
(X ⊥⊥ Y ) is true, we expect a false positive rate of 1% in both cases — this
is verified below in Figure 1a (over 100,000 repeats) holding for all supervision
levels p(s+) and in Figure 1b holding for different sample sizes when we fix the
supervision level to be p(s+) = 0.1. The slight fluctuation comes from the limited

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0.002

0.006

0.010

0.014

0.018

p(s+)

F
P

R

 = 0.01, df = 1, p(y+) = 0.50, N = 1000 

G(X;S)
G(X;Y)

(a)

500 700 900 1100 1300 1500 1700 1900 2100
0.002

0.006

0.01

0.014

0.018

N

F
P

R

 = 0.01, df = 1, p(y+) = 0.50, p(s+) = 0.10

G(X;S)
G(X;Y)

(b)

Fig. 1. Figure for Type-I error. (a) Type-I error changing as a function of the prob-
ability of an example being labeled p(s+), for fixed α = 0.01, N = 1000. (b) Type-I
error changing as a function of N , for fixed α = 0.01, p(s+) = 0.10.

sample size. While Theorem 1 tells us that the two possible tests, G(X ;Y ) and
G(X ;S), are equivalent for observing independencies, it says nothing about how
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well the naive G(X ;S) test will perform when the null hypothesis is false. In this
case we must compare the tests in terms of their power to detect a given effect.

4.2 Comparing the Power of the Tests

In order to compare the power of the two tests we must examine their non-
centrality parameters. Section 3.2 presents that the non-centrality parameter for
the G-test is λ = 2NI(X ;Y ). Therefore, the power of the tests depends on the
population values of the mutual informations I(X ;Y ) and I(X ;S). With the
following theorem we prove an inequality between these two quantities

Theorem 2. In the positive unlabelled scenario, under the selected completely
at random assumption, when X and Y are dependent random variables (X⊥⊥Y )
we have I(X ;Y ) > I(X ;S).

A direct consequence of the theorem is the following corollary.

Corollary 1. The derived test under the the naive assumption, G(X ;S), is less
powerful than G(X ;Y ). In other words using the noisy copy S of Y , will result
in a test G(X ;S) which will have a higher false negative rate than G(X ;Y ).

The proof of the Theorem 2 is available in the supplementary material, here we
will give an experimental verification. As a sanity check we should explore how
the two tests perform when we have an actual effect to observe. To create pairs
of X and Y with a specific effect we generate data as follows. Firstly, generate
a random sample x = {x1, .., xN}, where each xi ∈ {0, 1} and p(x = 1) = 0.2.
Then create an identical copy of this sample as yN

i=1. This creates a dataset where
x,y are by definition completely dependent. We then corrupt this dependency
by picking a random fraction of the examples, and setting a new value for each
selected xi by drawing a binary random variable with parameter p = 0.5. It
is clear that by varying the number of examples which are corrupted by noise,
we generate random variables with different mutual informations. For example
when we corrupt 60% of the examples with noise, we can calculate analytically
that the resulting variables have I(X ;Y ) = 0.053 (in this work the effect sizes
are written to 3 decimal places).

In order to observe the power of the two tests we will plot figures similar to
the figures in Gretton & Györfi [12]. In the x-axis we have different values for the
effect size, while in the y-axis is the acceptance rate of the null hypothesis H0

(over 10,000 independent generations of the data, each of size N = 200). The
y-intercept represents 1 − (Type I error), and should be close to 1 − α, while
elsewhere the plots indicate the Type II error. As we observe from the Figure 2
the test between X and S is less powerful than the test between X and Y , and
this result verifies the Corollary 1. Furthermore the intercepts are at the same
value (close to the design parameter 1 − α), which again verifies that the tests
have the same Type-I error, but as can be seen different Type-II error.

Given this corollary, it is interesting to ask how we might modify our practice
with G(X ;S) to achieve a desired power, in spite of the partially observed vari-
able. In the next section we will show how we can incorporate prior knowledge
to address this question.
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Fig. 2. Figure for comparing the Type-II error of the two tests using (a) α = 0.01 and
(b) α = 0.10

5 Incorporating Prior Knowledge for Power Analysis

In order to use G(X ;S) for a-priori power analysis activities, we should quantify
the amount of power that we lose by adopting the naive assumption that all the
unlabelled examples are negative. In this section we show how to incorporate
prior knowledge to calculate this quantity.

Cohen [6] proposed (with appropriate caution) several conventional effect sizes,
facilitating cross-experiment comparison. In the case ofχ2 tests, a “medium” effect
is ω = 0.3. Since ω =

√
2I(X ;Y ), this translates to I(X ;Y ) = 0.045. With PU

data, the key problem emerges here in that the standard effect size is naturally
expressed in terms of I(X ;Y ), whereas our test G(X ;S) in terms of I(X ;S). In
order to deal with this problem, we will incorporate a user’s prior knowledge of
p(y+), and correct the non-centrality parameter of the test in such a way that we
can use it for a-priori power analysis.

Theorem 3. The non-centrality parameter of the G-test between X and S takes
the form:

λG(X;S) = κλG(X;Y ) = κ2NI(X ;Y ),

where κ = 1−p(y+)
p(y+)

p(s+)
1−p(s+) =

1−p(y+)
p(y+)

NS+

N−NS+
.

Again the proof is in the supplementary material, and here we will give an
empirical verification following the same experimental setup as the one described
in Section 4.2. Thus as a sanity check in Figure 3 we observe that if we increase
the sample size of the test between X and S by a factor κ, the two tests have the
same power, and this result verifies Theorem 3. No matter what the sample size
is, the intercepts are always at the same value (close to the design parameter
1− α), which again verifies that the tests have the same Type-I error.

We see that the non-centrality parameter λG(X;S) is a function of: the sample
size, the desired effect size and additionally a correction factor, κ, which depends
on the number of labelled examples that we have (NS+). When we have full
supervision, in other words when p(s+) = p(y+), the κ takes the maximum
value 1. In any other PU case, where p(s+) < p(y+), the value is κ < 1.
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Fig. 3. Figure for comparing the Type-II error of the two tests and the G-test between
X and S with corrected sample size , using (a) α = 0.01. (b) α = 0.10.

In PU data, the prior probability p(y+) is in general unknown. Elkan & Noto
[10] suggest an estimator for this parameter, which could potentially be used
before an a-priori power analysis. A different way is to introduce a prior belief
over that parameter; we will represent our prior belief as p̃, and the correction
factor is re-written as

κ =
1− p̃

p̃

p(s+)

1− p(s+)
=

1− p̃

p̃

NS+

N −NS+

.

This correction factor enables us to use the G(X ;S) test in place of the G(X ;Y )
for power analysis activities, such as sample size determination. Taking advan-
tage of the extra degree of freedom in p(s+), we can also determine the required
level of supervision (i.e. number of labelled examples), following the same pro-
cedure as in sample size determination. These capabilities will be empirically
evaluated in the next section.

6 Experiments for a-priori Power Analysis

In this section we will show the capabilities of the G-test between X and S
when the non-centrality parameter is corrected with the κ presented in Theorem
3, including sample size determination under the PU constraint, and a novel
capability — determining the minimum number of labelled examples necessary
to achieve statistical significance. We separate these experiments in two parts,
the first one where we have perfect prior knowledge and the second where we
use uncertain prior knowledge.

6.1 Perfect Prior Knowledge

In this section firstly we will provide some theoretical predictions for sample size
and supervision determination, and then we will verify them empirically.

Theoretical Predictions for Sample Size Determination
Figure 4a shows how classical power analysis changes under the PU constraint.
The illustration is for significance level α = 0.01, a required power of 0.99,
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p(y+) = 0.2, and binary features (degrees of freedom ν = 1). For the reader’s in-
terest, all the figures and tables of this work are reproduced in the supplementary
material with ν = 9, meaning |X | = 10.

In Figure 4a we see the dashed line, which shows classical sample size deter-
mination – this is a standard result. The solid line shows the PU case, when we
can obtain labels only for 5% of the examples (i.e. p(s+) = 0.05).
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Fig. 4. Figures for sample size determination. (a) Contrasting classical power analysis
(p(s+) = p(y+)) with PU power analysis to determine the minimum sample size.
Arrows show that with 5% supervision (p(s+) = 0.05), we need N ≥ 1077 examples to
achieve the desired power in order to observe a supervised effect I(X;Y ) = 0.053. (b)
Sample size determination under the PU constraint. Given a required statistical power,
this illustrates the minimum total number of examples (N) needed, assuming we can
only label 5% of the instances. For example, if we wish to detect a mutual information
as low as 0.04, we need N ≥ 1430 to have a power of 99%.

The figure can be interpreted as follows: if we wish to detect a dependency
with mutual information as low as I(X ;Y ) = 0.053, with power 99%, in the
fully supervised case (dashed line) we require N ≥ 227. However in the PU
scenario (solid line) with p(s+) = 0.05, this a-priori power analysis indicates
we need N ≥ 1077. Note that the required increase is not a simple multiple of
the supervision level: with only 1/4 of the positive examples being labelled one
might assume we need a sample 4× larger, which would be 908, however this is
insufficient for the required power as shown by the figure. In this case, κ = 0.2105,
and the required increase is a multiple of that factor: 227× (1/κ) ≈ 1078. The
above results are expanded upon in Figure 4b, showing the required N to obtain
different power levels.

Theoretical Predictions for Supervision Determination
For power analysis in the PU constraint, we are able to use the same method-
ologies as in sample size determination to determine the necessary level of su-
pervision, i.e. the number of labelled examples. This may have implications in
active learning [7], where we can request the labels of particular examples —
this methodology allows us to predict when we have sufficient labels to have
statistically significant results.
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Figure 5 presents the a-priori PU power analysis, allowing us to determine
the minimum level of supervision to achieve a certain statistical power. The y-
axis is NS+ , the number positive examples that have labels. This shows just
one scenario, with α = 0.01, N = 1000, when the true prior is p(y+) = 0.2.
As an illustration, the solid line predicts that to detect a dependency as low as
I(X ;Y ) = 0.053, with power greater than 99%, we will need to label at least 54
examples or in other words the probability of an example being labeled should
be p(s+) ≥ 0.054.
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Fig. 5. Determining the required number of labelled examples. This illustrates the
required number of labelled examples (NS+), assuming N = 1000. For example, to
detect a mutual information dependency as low as 0.02, in order to have a power of
95%, we need labels for 101 examples, which means that we need to label at least half
of the positive examples.

Verifying the Theoretical Predictions
To verify the theoretical predictions of required sample size and supervision
level, we generate binary variables with a very small dependency (i.e. very small
effect size) and observe the ability of a test to reject the null hypothesis — or
in other words the False Negative Rate (Type-II error). Since the power is given
by 1 − FNR, any prediction of required N to achieve a particular power will
translate directly to a corresponding FNR.

As a sanity check, we first verify the classical sample size determination for
the G-test. Figure 4a (dashed line) predicts that we will need N ≥ 227 to detect
an underlying effect size of I(X ;Y ) = 0.053, with α = 0.01 and power 99%.
Figure 6a shows the FNR over 10,000 repeats. Note that the FNR crosses below
the 1% rate when N ≈ 225. The next experiment verifies the PU sample size
prediction. As before, the negative examples all have their labels removed, and
we randomly remove a fraction (1−c) of the positive labels. Figure 4a (solid line)
predicted that to detect an effect as small as I(X ;Y ) = 0.053, with α = 0.01
we would require N ≥ 1077 to achieve an FNR below 1%. The FNR again over
10,000 repeats is shown in Figure 6b, supporting the theory as the FNR crosses
1% when N ≈ 1080.

Finally we verify the predictions from Figure 5. We generate PU data as
before, introducing noise such that the true underlying variables have I(X ;Y ) =
0.053. Figure 7 shows the FNR, verifying that when we provide labels to the
example with probability less than 0.054, or in other words when we label less
than 54 examples the Type-II error is greater than 1%, and agrees with Figure 5.
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Fig. 6. Figures for FNR. (a) Full supervision, when the true mutual information is
I(X;Y ) = 0.053. This verifies the theoretical prediction from Fig. 4a. (b) Supervision
level p(s+) = 0.05, supporting the predictions of Fig. 4a.
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Fig. 7. FNR for varying levels of supervision in the PU constraint, with required power
99%, verifying Figure 5 (solid line), which predicted we would need p(s+) ≥ 0.054 ⇔
Ns+ ≥ 54 to get FNR < 0.01.

6.2 Uncertain Prior Knowledge

The previous section assumed we somehow knew the exact value of p(y+). In
a more realistic scenario prior knowledge may be provided as a distribution
over possible values. We model p̃ as a generalised Beta distribution, between a
minimum and a maximum value [14], and use Monte-Carlo simulation to explore
the resultant uncertainty in the required sample/supervision sizes.

Figure 8 presents sample size determination when we have uncertain prior
knowledge. The dashed vertical line indicates the perfect prior knowledge situ-
ation from the previous section. If we use a sample size less than this, we have
an increased false negative rate. On the other hand, choosing a larger size will
achieve at least the desired power, but at the cost of collecting more data.

Figure 9 presents how this uncertainty would translate to the required num-
ber of labeled examples. The same principle of choosing a value over/under the
dashed line applies: here if we select Ns+ > 54 we are unnecessarily increasing
our cost of label collection. In Figure 10 we observe the behavior when we under-
estimate (first row) or overestimate (second row) the p(y+). A general conclusion
is that the uncertainty in the prior translates quite directly to an uncertainty of
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I(X;Y) = 0.053, power =0.99, α = 0.01, df = 1, p(y+) = 0.20
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Fig. 8. Sample size determination under uncertain prior knowledge. LEFT: The user’s
prior belief over the value of p(y+). The dashed line shows the true (but unknown)
value in the data. RIGHT: The resultant uncertainty in the required sample size when
we have only 5% of the examples being labeled, we plot both the histogram and the
generalized beta distribution best fits to the data.
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Fig. 9. Supervision determination under uncertain prior knowledge. LEFT: The user’s
prior belief over the value of p(y+). The dashed line shows the true (but unknown) value
in the data. RIGHT: The resultant uncertainty in the minimum number of required
labeled examples when we have only N = 1000. The dashed line indicates the the true
value with no uncertainty in p(y+).

a similar form over the minimum number of samples and a minimum amount of
supervision.

7 Guidance for Practitioners

Guidance for practitioners depends on the conditions in a given application. To
ensure an effect would not be missed when indeed present, one should overes-
timate the value of p(y+), hence leading to a larger number of examples/labels
being collected. Conversely, if collection of examples/labels is a costly matter,
one can take a more risky, but informed decision, using less examples/labels.
Furthermore, to achieve a desired statistical power, choosing to fix the amount
of supervision or the sample size is application-dependent.

Under our framework we can generate tables for sample size and supervision
determination under the PU constraint similar with that used in the literature,
e.g. Table 1(a). For a given effect size (ω), degrees of freedom (df), significance
level (α), level of desired power, prevalence (p(y+)) and fixed supervision level
(p(s+)), in Table 1(b) we can observe the minimum sample size is needed in
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I(X;Y) = 0.053, power =0.99, α = 0.01, df = 1, p(y+) = 0.20
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Fig. 10. A-priori power analysis under uncertain prior knowledge, when we underesti-
mate (first row) and overestimate (second row) the prior

order to observe the effect with the given power. For the effect we followed
the three levels of Cohen [6] small (ω = 0.10 ⇔ I(X ;Y ) = 0.005), medium
(ω = 0.30⇔ I(X ;Y ) = 0.045) and large (ω = 0.50⇔ I(X ;Y ) = 0.125).

Table 1. Sample size required for df = 1 and α = 0.01

(a) Traditional

Effect sizes
Power Small Medium Large
0.70 962 107 39
0.80 1168 130 47
0.90 1488 166 60
0.95 1782 198 72
0.99 2404 268 97

(b) PU with p(y+) = 0.20, p(s+) = 0.05

Effect sizes
Power Small Medium Large

0.70 4566 508 183
0.80 5548 617 222
0.90 7068 786 283
0.95 8462 941 339
0.99 11415 1269 457

A new type of table can be generated when we fix the sample size and we want
to determine the minimum amount of supervision (or in other words, the mini-
mum number of labelled examples) that we need in order to observe a specific
effect with a desired statistical power. Table 2 presents the minimum number
of labelled positive examples that we need when we have similar conditions as
before but now we fix the sample size to be N = 3000.

Table 2. Labelled positive examples required for a PU test with p(y+) = 0.20, N =
3000, df = 1 and α = 0.01

Effect sizes
Power Small Medium Large

0.70 223 27 10
0.80 267 33 12
0.90 331 41 15
0.95 388 49 18
0.99 501 66 24
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So in practical terms: if we assume we had 3000 examples, and we know
that approximately 600 of them are positive – if we wish to detect a “medium”
sized effect (in Cohen’s terminology), then, in order to achieve a false negative
rate of 5% (i.e. power 0.95), we only need to identify correctly 49 from those
600 examples, according to Table 2. A different way to read the results is the
following: imagine that we want to design an experiment in order to observe a
medium effect with a statistical power of 80%, and the prevalence is p(y+) =
0.20. If we could label both positive and negative cases, we would need 130
examples according to Table 1(a). So we would need to label 26 positives and
104 negatives. Instead of this we can use the results of Table 1(b) and collect
617 examples out of which we will label only 5%; in other words, we will label
only 31 examples as positive and keep the rest as unlabelled. Thus, instead of
labelling 104 negative examples, we can label 5 more positive examples and keep
586 as unlabelled. This approach can be useful when it is expensive or difficult to
label examples, while it is cheaper to collect unlabelled. Since in the PU context
labelling samples is expensive this methodology can be used to save resources.

Our results can be used in any research involving hypothesis testing in PU
data. Our framework has been described in terms of the G-test, and the mutual
information as an effect size. We can use the same framework to derive similar
expressions for the χ2-test, and the φ-coefficient as an effect size. Since both G
and χ2 are used extensively in behavioral sciences and biology, our work may
have strong relevance in experimental design for partially supervised data [6,11].
The proposed methods can be used in several machine learning applications.
Structure learning of a Bayesian network or Markov Blanket discovery in PU
data, would use our correctedG-test to decide whether we add an arc or not, since
the same correction factor κ can be derived for the conditional independence
test. Furthermore our power analysis methodology would provide guidance in
controlling the FNR, preventing potential underfitting of the model; a recent
work for the fully supervised case is Bacciu et al. [2] – our framework generalises
this to PU data. Another potential application area is information theoretic
feature selection. We can apply a wide variety of feature selection criteria in PU
data; a recent work for fully supervised data is Brown et al. [4].

8 Conclusions and Future Work

In this work we developed a set of novel methodologies, enabling statistical
hypothesis testing activities in PU data. We proved that a very common as-
sumption, of all unlabelled examples being negative, is sufficient for detecting
independence. However, a G-test using this assumption is less powerful than the
fully supervised version, indicating the assumption is invalid for more complex
power analysis activities. We solve this problem by deriving a correction factor
for the test, incorporating prior knowledge from the user. Using this, we can
perform sample size determination, and have a novel capability: determining the
required number of labelled examples. Experimental evidence supports all theo-
retical predictions. As a future work we will investigate how our framework can
be extended to fully semi-supervised data and how the principles can apply to
other types of hypothesis test.
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Abstract. Wepropose a probabilistic graphical model for predicting stu-
dent attainment in web-based education. We empirically evaluate our
model on a crowdsourced datasetwith students and teachers;Teachers pre-
pared lessons on various topics. Students read lessons by various teachers
and then solved amultiple choice exam. Ourmodel gets input data regard-
ing past interactions between students and teachers and past student at-
tainment. It then estimates abilities of students, competence of teachers
and difficulty of questions, and predicts future student outcomes.We show
that our model’s predictions are more accurate than heuristic approaches.
We also show how demographic profiles and personality traits correlate
with student performance in this task.Finally, given a limited pool of teach-
ers, we propose an approach for using information from our model to max-
imize the number of students passing an exam of a given difficulty, by opti-
mally assigning teachers to students. We evaluate the potential impact of
our optimization approach using a simulation based on our dataset, show-
ing an improvement in the overall performance.

1 Introduction

Recent years have marked an enormous leap in the use of the Internet and
web-based technology. This technology had a huge impact on education, where
web-based and online training are emerging as a new paradigm in learning [26].
Distant learning technology makes it easier to access educational resources, re-
duces costs and allows extending participation in education [28,2,40]. Intelligent
online educational technologies enable a deep analysis of student solutions and
allows automatic tailoring of content or the difficulty of exercises to the specific
student [11]. One innovation that could affect higher education is massive open
online courses (MOOCs), online training geared to allow large-scale participa-
tion by providing open access to resources [36,16]. MOOC providers offer a wide
selection of courses, some already attracting many students. 1

1 See, for example the report on Peter Norvig and Sebastian Thrun’s online
artificial intelligence course, with its “100,000 student classroom”, in http://

www.ted.com/talks/peter norvig the 100 000 student classroom.html.

T. Calders et al. (Eds.): ECML PKDD 2014, Part III, LNCS 8726, pp. 82–97, 2014.
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However, web-based education also brings with it new challenges. Students
may become frustrated due to ambiguous instructions or lack of prompt feedback
[25]. This triggers the need to manage the quality of online teaching material,
and highlights the need for an objective system for measuring performance and
for efficient resource allocation [10,43,47,36].

However, measuring the quality of teaching materials or predicting the at-
tainment of students are challenging. Teachers who teach a similar subject are
likely to have completely disjoint student cohorts, of different ability levels, back-
grounds, and demographic traits. Further, students may solve different tasks or
get different exams (with potentially some overlap in tasks or questions).

Many questions arise in such settings. How can we aggregate observations on
outcomes in order to evaluate the abilities of students, the competence of teachers
and the difficulty of exams? Can we systematically predict the attainment of
students? Do demographic and personality traits correlate with performance?
How can we optimize resource allocation, such as the assignment of teachers to
students, so as to maximize performance?

Our Contribution: We propose a probabilistic graphical model for assessing
teaching material quality and student ability, and for predicting student attain-
ment in online education. Our model gets input data regarding past interactions
between students, teachers and exams and past outcomes (whether a student
succeeded in answering questions in the exam), and provides predictions regard-
ing future interactions. We evaluate our model based on a dataset crowdsourced
from Amazon’s Mechanical Turk (AMT). We divided the AMT workers into
“teachers” and “students”. Each teacher prepared “lessons” on various topics,
in the form of summaries of Wikipedia articles. For each topic we constructed a
multiple choice “exam”, and students were asked to solve it based on the lesson
prepared by one of the teachers. We show that our model can predict outcomes
in such settings and estimate the abilities of students, the competence of teachers
and the difficulty of questions. We show that our model outperforms heuristic
approaches for predicting outcomes. We also explore how demographic profiles
and personality traits correlate with student performance in this task. Finally,
given a limited pool of teachers, we propose an approach for using information
from our model to optimize performance in our domain, such as the number of
students passing a difficult exam. We do so by choosing the optimal assignment
between teachers and students, based on our model’s estimates, and evaluate
the potential impact of this approach using a simulation based on our dataset.

2 Probabilistic Graphical Model for Predicting
Attainment in Web-Based Education

We now describe our model for predicting performance in web-based education.
Our domain consists of online exams given to students who studied various topics
with the help of lessons prepared by teachers. We denote the student set as S,
the teacher set as T , the topic set as M , and the set of questions comprising
the exam on topic m as Qm. We denote the exam on topic m as Em. A student
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s ∈ S learns topic m ∈ M based on the lesson prepared by teacher t ∈ T , then
answers the exam Em on topic m ∈ M . We say the outcome for this attempt
was a success, denoted rs,q = 1, if student s answers question q correctly, and
otherwise we say it is a failure, denoted rs,q = 0. The raw score of student
s in the exam Em is the number of questions she answers correctly. This raw
score reflects not only the ability of the student, but also how well she was
taught the topic by her teacher, and the difficulty level of the questions in the
exam. Thus our dataset consists of observations of the form zi = (s, t,m, q, rs,q).
Every student is taught each topic by a single teacher (though she may receive
a different teacher for different topics).

Given our observations Z = {zi}wi=1, we wish to predict future outcomes: how
well is a student s likely to do in an exam Em on topic m when she is taught
by teacher t? We refer to our problem as the attainment problem. The full input
data to the attainment problem potentially includes an entry for the outcome
on every question for every student, so its size is |S| · |Q|. Typically, however, the
input data only includes a smaller set of observations: for example, a student may
only have been taught some of the topics, or was only tested using some of the
questions on a topic. Given the input data, our goal is to predict the outcomes
on the missing entries, so a query is a tuple uj = (s, t,m, q). A query is similar
to the input entries, except it is missing the outcome r, to be interpreted as
requesting the model to predict whether student s would answer the question q
regarding the topic m correctly when taught by teacher t.

Predicting Outcomes Using a Probabilistic Model: We propose a proba-
bilistic graphical model for the attainment problem, called the Student-Teacher-
Exam-Performance model — STEP. Given the input observations Z = {zi}wi=1

and queries U = {uj}lj=1, the model’s output consists of predictions regard-
ing the outcomes for the entries in the query set R = (r1, . . . , rl). STEP also
outputs information regarding latent variables, such as the ability level of each
student, the competence of each teacher and difficulty of each question. The out-
comes in the query set U , as well as the abilities, competences and difficulties,
are modeled as unobserved random variables. In contrast, the outcomes in the
observation set Z are observed variables. The structure of our STEP model is
governed by independence assumptions regarding the variables. Pearl discusses
Bayesian Networks [42] (now referred to as directed graphical models), which
represent conditional independence assumptions as a graph where each vertex
corresponds to a variable and the edges capture dependencies between adja-
cent variables. We base STEP on a prominent extension of Bayesian Networks,
called Factor Graphs (see [29]), which describes a factorial decomposition of an
assumed joint probability distribution between the variables.

We first define the crux of the model in the form of a Factor Graph rep-
resentation. We then set the observed variables in the graph to the values of
the observations Z, consisting of the identities of the students, teachers, topics
and questions, and most importantly the outcomes in our observation set. We
then use approximate message passing algorithms [29] to infer marginal prob-
ability distributions of the target unknown variables: student abilities, teacher
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competences, question difficulties, and of course the unobserved outcomes of the
query set. We thus get a posterior distribution over these unobserved variables.

The Graphical Model: Recall that the variable rs,q indicates whether student
s answered question q correctly (rs,q = 1 indicates the answer was correct and
rs,q = 0 indicates it was incorrect). This variable is an observed variable for
every entry zi = (s, t,m, q, r) ∈ Z (though it is unobserved in the query set U).
We model the process which causes a student s ∈ S to either answer a question
correctly or incorrectly. We assume every student s ∈ S has an inherent ability
as ∈ R reflecting how easy she finds it to learn new topics and answer questions
on them, and that every teacher t ∈ T has an inherent competence ct ∈ R

reflecting her ability to teach students and provide them information on a topic.
We assume every question q ∈ Q has an inherent difficulty dq ∈ R determining
how likely it is that a student could answer it correctly.

Our model is a joint probabilistic model with a factor graph representation
given in Figure 1. The model has two parts. The first part reflects the probability
that student s actually knows the correct answer to a question q, denoted by
the variable ks,q, as determined by the student ability parameter as, the teacher
competence parameter ct (where t is the teacher who taught s the topic of that
question), and the question difficulty parameter dq. In Figure 1, this is shown to
the left and above the vertex of ks,q. The second part determines the observed
outcome, depending on ks,q and is shown to the right of the vertex of ks,q.

ks,q is a Boolean variable. A value of 1 indicates that the student s knows
the correct answer to the question q, while a value of 0 indicates she does not
know the answer (but may still give the right answer to the question by making

Fig. 1. Factor graph for the STEP model
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a lucky guess). The probability of ks,q having the value 1 increases with the
student ability and teacher competence and decreases with the difficulty of the
question. By fs,t,q, we denote the difference between the “total joint ability” of
the student and the teacher (as + ct) and the difficulty of the question (dq), so
fs,t,q = (as + ct)− dq.

2 The variable fs,t,q reflects the “advantage” the student
has over the question after she is taught the relevant topic by the teacher.

We assume that ks,q depends on the advantage fs,t,q as follows:

P (ks,q = 1|fs,t,q, τq) :=
∫ x=∞

x=−∞
φ(
√
τq(x− fs,t,q))θ(x) dx

= Φ
(√

τqfs,t,q
)
. (1)

Where φ is the Gaussian density: φ(x) := 1√
2π

e−x
2

2 , Φ is the sigmoidal cumu-

lative Gaussian distribution: Φ(t) :=
∫ t

x=−∞ φ(x) dx, and θ(·) is the Heaviside
step function. The integral presentation allows for the following interpretation
of this probability: this is a binary process which results from evaluating the
step function θ over a variable f which is added a Gaussian noise of variance 1

τ .
Another way to view this is that the data is assumed to come from a probabilis-
tic generative process: the student’s ability, teacher’s competence and question’s
difficulty are sampled from random Gaussian distributions which reflect the dis-
tribution of those properties in the population. A random “performance noise”
for each entry in the observation set Z, which may be either positive or negative,
is added to the total joint ability (the sum of the student ability and teacher
competence); If this number is greater than the difficulty of the question, then
the student knows the correct answer so ks,q = 1, otherwise ks,q = 0.

The outcome variable rs,q is a mixture of two distributions. If student s knows
the answer to question q, i.e. ks,q = 1, she answers correctly with probability 1,
so rs,q is constrained to be a point-mass distribution. If she does not know the
correct answer, i.e. ks,q = 0, we assume s guesses an answer uniformly at random;
Question q is a multiple choice question with b possible answers, so the outcome
variable rs,q is assumed to have a Bernoulli distribution, with success probability
1
b . The mixture is expressed in Figure 1 using a gate, marked by a dashed pair
of boxes, that switch the factor connecting to rs,q , depending on the state of
the variable ks,q. Gates were introduced in [38] as a powerful representation for
mixture models in factor graphs. Such gates represent conditional independence
relations based on the context of a “switching variable”.

Probabilistic Inference: We now explain how to infer the outcomes in the
query set and the unobserved variables. Given the data in the observation set
Z = {zi = (si, ti,mi, qi, r

Z
i )}wi=1 and the query set U = {uj = (sj , tj ,mj , qj)}lj=1

2 Other operators can be used to aggregate the student ability and teacher competence
into the total joint ability. For example, a max operator max(as, ct) can indicate
that either a strong student or a competent teach allow the student to determine
the correct answer, while a min operator min(as, ct) can indicate that both a strong
student and a competent teacher are required. The complexity of performing the
inference in such alternative graphical models depends on the operator used.
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we are interested in predicting the missing outcomes for the query set {rj}lj=1.
We do so by simultaneously inferring several approximate posterior (marginal)
distributions: the Gaussian density of the ability of each student, competence of
each teacher and difficulty of each question, the Bernoulli distribution indicating
whether each student knew the answer to each question for all such entries in the
observation set and query set, and the Bernoulli distribution indicating whether
each student gave a correct response to the question asked for all entries in the
query set. The posterior distributions {p(rj |Z,U)}lj=1 can be interpreted as the
probability that the outcome in the j’th entry in the query set would be a success
(i.e. the probability that the student would answer the question correctly). This
posterior distribution is a Bernoulli distribution, so we can simply denote the
probability of a successful outcome as prj = p(rj = 1|Z,U). When requested
to make a binary prediction rather than estimate the probability of a successful
outcome, we use the mode of that distribution: if prj > 1

2 we predict a success,
and otherwise predict a failure.

To perform the inference and compute the posterior distribution in STEP, we
use Expectation-Propagation approximate message passing (see [39,29]), using
Infer.NET [37], a framework for probabilistic modeling. 3

3 Model Evaluation

We evaluated STEP using a dataset crowdsourced from Amazon’s Mechanical
Turk (AMT). AMT is a crowdsourcing marketplace bringing together workers
interested in performing jobs remotely, and requesters interested in obtaining
human labor for tasks. We constructed tasks for a remote learning experience,
both on the teacher’s side and the student’ side. We first selected 10 Wikipedia
articles covering various topics such as Chad, Saffron and DNA. We composed
an “exam” on each of those topics, consisting of 5 multiple choice questions
(50 questions total). We divided the worker set to two groups: “teachers” and
“students”. Each teacher was required to write a short (1500 character) “lesson”
on each of the topics. The teachers were notified which issues to focus on when
preparing the students for the exam (for example the history of Chad or the
chemical structure of DNA). However, they did not know which specific questions
were in the exam. Each student was asked to study the topic using the lesson
provided by a teacher we chose, then solve the exam on that topic. The time
given to solve the exam was limited to 3 minutes per topic, making it difficult
(though not impossible) for students to consult external resources other than
the teacher’s lesson.

Data Collection: Our dataset consists of observations regarding the questions
solved by students, in the form discussed in the previous section: student, teacher,

3 STEP’s factor graph is loopy, as we have multiple participants who respond to the
same question set and share the same teacher set. Thus EP computes the posteri-
ors by iterating until convergence. The number of iterations used in Infer.NET is
constant, so the procedure runs in time linear in the input, i.e. in O(|S| · |Q|).
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topic, question, and correctness. We sourced 237 workers for the task from AMT.
We used 10 of them as teachers, and 227 as students. Each teacher had prepared
a lesson on each of the 10 topics. Lessons were allocated to students as follows.
Each student got 10 lessons by 10 different teachers. For each student, the teacher
permutation was modified by cyclic shift, i.e. student s got the lesson by teacher
(s+m) mod |T | on topic m, where |T | is the number of teachers. Each student
answered all 5 questions on each topic resulting in a total of 11,350 entries in
our dataset.

The students were given a base payment of $2 for performing the task, and a
bonus of up to $3 depending on their performance, measured by the number of
questions they answered correctly. The teachers received a base payment of $10,
for writing the lessons, and engaged in a contest for an additional bonus of $10:
each teacher was randomly paired up with another teacher; The teacher with
better performing students was awarded a $10 bonus. 4 In addition to answering
the questions, each student completed a demographics survey regarding their
age, gender, income and education. They also completed a short personality
questionnaire called TIPI [22]. TIPI follows the Five Factor Personality Model,
[13,45], a generally accepted model representing the “basic structure” underlying
human personality, whose ability to predict human behavior has been thoroughly
investigated [15,9]. 5 The key five personality traits are Openness to experience,
Conscientiousness, Extroversion, Agreeableness and Neuroticism (OCEAN for
short).

Model Performance: We examined the performance of our STEP model, eval-
uated by randomly partitioning the data into a training set and a test set. We
compared our model to heuristic approaches using two error metrics. The first
error metric is the prediction error, which is the mean absolute difference be-
tween the actual answers (0 for an incorrect answer and 1 for a correct answer)
and the model estimated probability of a correct answer. The second metric is
based on a binary outcome prediction. We round the estimated probabilities of
answering a question correctly to get a binary classification. The classification
error is the proportion of entries where the model mis-classified the outcome.

We compared the performance of STEP with two heuristics. Given a target
student s, our student heuristic examines all the entries with that student in
the training set, and measures the proportion of those where the outcome was
a success (i.e. the proportion of the student’s entries where she gave a correct
answer). This proportion is then used as the estimated probability of a successful
outcome on each of that student’s entries in the test set. Similarly, given a teacher

4 While there is a high variance in the performance of participants in AMT [30,5],
such contests are known to have good properties in terms of incentivizing the par-
ticipants to exert significant effort on the task [27,3,20,52] (so long as participants
are anonymous and are not colluding [35])

5 Further, it is possible to automatically infer personality traits from peoples’ social
network profiles [7,32,6] or website choices [33,31], allowing such publicly available
information to be used to profile students and make predictions about their perfor-
mance in educational settingts.
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t our teacher heuristic examines all the entries with that teacher in the training
set and measures the proportion of those entries where the outcome was a success
(i.e. the proportion of the teacher’s entries where her student gave the correct
answer, no matter who that student was). This proportion is then used as the
estimated probability of a successful outcome on each of that teacher’s entries
in the test set. The student heuristic ignores information regrading who the
teacher was, and the teacher heuristic ignores information regarding who the
student was, while STEP uses all the available full information.

Figure 2 compares the quality of our model with the student and teacher
heuristics, in terms of the classification error and prediction error metrics. The
x-axis in both plots is the number of observations available in the training set.
For each point in the plot we randomly selected a subset of questions, whose
size was determined by the location on the x-axis, and used their entries as the
training set. The remaining entries were used as a test set, with an unobserved
outcome. We repeated the sampling 500 times and averaged the resulting error
metrics. Figure 2 shows that the STEP produces better predictions than the
heuristics, as it has a lower error for both error metrics discussed above. For
both the heuristics and STEP, the error decreases as more data is given as
input, but the improvement diminishes in the size of the data.

In addition to the outcome predictions regarding queries in the test set, the
STEP model also returns information regarding the abilities of students, compe-
tence of teachers and difficulty of questions, captured as posterior distribution for
the model parameters. These parameters allow us to rank students, teachers and
questions, by their abilities, competence levels and difficulties, correspondingly.
The values of these parameters are shown in Figure 3.

Figure 3 indicates high variances of the parameters. STEP sums together
student ability and teacher competence and compares the sum with the question
difficulty. The variability on the y axis between student abilities is larger than
the variability between teacher competences, indicating that the identity of the
student had stronger impact on performance than the identity of the teacher.

One simple way to “score” student abilities is by the proportion of questions
they answered correctly. Correspondingly, we can score teacher competence by
the proportion of questions that their students answered correctly. Similarly,
we can score question difficulty by the proportion of all students who managed
to correctly answer that question (here a high score means an easy question).
Unsurprisingly, there is strong positive correlation (r = 0.997) between a student
overall score in the full exam and her inferred ability, and between the average
score of a teacher’s students and her inferred competence (r = 0.999). Similarly,
there is a strong negative correlation (r = −0.946) between the proportion of
students who managed to solve a question and its inferred difficulty.

Demographics and Student Success: STEP predicts student success based
on observed outcomes in previous interactions. Other sources of information re-
garding a student, such as demographic traits or personality traits may also help
predict student performance. Previous work has already examined the correla-
tion between a student’s demographic or personality traits and success in online
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Fig. 2. Model quality - prediction and classification errors

tasks or in traditional educational settings [17,53,44,48,19]. We now examine
such correlations in our web-based educational task. We measured a student’s
performance using the proportion of questions they answered correctly. We cor-
related this student performance score with other traits of the student, such as
their age, level of education or personality. We found strong evidence for a posi-
tive correlation between a student’s educational level and performance. We also
found strong evidence of correlation between a student’s personality and perfor-
mance: both openness to experience and extroversion correlate positively with
performance in our task; There is also some weak evidence for a positive corre-
lation between a student’s conscientiousness or agreeableness and performance.
To test for the statistical significance we divided students into groups. For the
educational level we used the questionnaire categories. For age and personality
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Fig. 3. STEP parameters - student ability, teacher competence and question difficulty

traits, we divided the student population into 3 equal size groups (low, medium
and high) according to their responses in the questionnaire. We used a Mann-
Whitney U-test (see [49]) to test the statistical significance of the differences
between the low group and the high group. The statistically significant results
(at a p < 5% level) are given in Table 1.

Table 1. Demographic/personality and performance

Property Pearson Correlation p value

Education N/A 0.0001

Openness 0.2371 0.0001

Age -0.1709 0.0032

Extroversion 0.2902 0.0068

Conscientiousness 0.1526 0.0405

Agreeableness 0.1867 0.0455

Table 1 shows that young or educated students had better performance. Fur-
ther, those high in openess to experience or extroversion tended to do well in
our task. Figure 4 visualizes these relations, showing the average performance
for different groups (and showing the standard error).

Our results show a correlation between demographics or personality traits and
performance in our task. Despite these correlations, there is a huge variability
in performance even for workers with very similar demographic or personality
profiles, highlighting the need to base predictions regarding attainment on ob-
servations regarding past performance, as done in the STEP model.

Student Teacher Matching: Our experiment used teaching materials pre-
pared by various teachers. Online education can allow high volumes of students
to access training material though the Internet. However, direct student-teacher
interaction, by a phone call or a chat, allows teaching more difficult material and
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Fig. 4. Demographics and performance

achieves a higher rates of learning [41]. Such individual training requires hav-
ing many teachers, as each teacher can only directly interact with few students.
Nonetheless, one difference between traditional and online education systems is
the flexibility in assigning teachers to students. Traditional education is con-
strained by physical limitations: a teacher who lives in one city cannot teach in
another remote city. In online education a single student can be taught by many
different teachers from across the globe, without leaving the comfort of their
own home. We show that this allows us to optimize the assignment of teachers
to students in order to improve the overall student performance. We use the
model’s estimate of a teacher t’s competence in preparing teaching material as a
proxy of how well they teach by direct interaction: though in our experiment the
teaching materials prepared by a teacher can be used to train many students,
we consider the case where a teacher can only interact with a single student.

STEP infers Gaussian posterior distributions for the competence of teachers
and abilities of students. Given these parameters and a question (or exam) of
a given difficulty, it infers pc, the probability that student s would succeed in
answering the question q if she is taught by the teacher t. Let S ∼ N(μs, σ

2
s)

be the inferred student s’s ability, T ∼ N(μt, σ
2
t ) the inferred teacher t’s com-

petence, D ∼ N(μd, σ
2
d) the question difficulty and N ∼ N(0, σ2

n) the Gaussian
noise used in the model. Let pc(s, t) be the probability that student s taught by
teacher t knows the correct answer to a question of difficulty d (similar to the
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Bernoulli variable ks,q in the previous section.) Under the assumptions of the
STEP model, pc(s, t) = Pr(S + T + N > D), we can compute pc(s, t) for any
student s and teacher t.

Consider a domain with an equal number n of teachers and students. Suppose
every teacher has the capacity to teach a single student, and that we wish to max-
imize the number of students who pass an exam of difficulty d. How should we
choose an assignment A : S → T between students and teachers, which respects
the teacher capacity constraints (i.e. for any t ∈ T there is only one student s ∈ S
such that A(s) = t), so as to maximize the expected number of passing students:
argmaxA

∑
s∈S pc(s, A(S))? The simplest way is a random assignment, which

ignores the inferred abilities. However, when maximizing the number of pass-
ing students we only care if a student passes (rather than considering the exact
score). If we have one good student and one bad student, and one good teacher
and one bad teacher, we may be better off matching the good teacher to the
bad student and the bad teacher to the good student, as the “returns on com-
petence” can decrease with the ability of the student. 6 One heuristic is to sort
students by increasing ability, and the teachers by decreasing competence and
match them in that order. We call this the inverse heuristic assignment. Given
an exam of difficulty d, matching a student s with teacher t has the expected re-
turn of pc(s, t). We can formulate maximizing the expected number of “passing”
students as a Bipartite Maximum Weighted Matching (BMWM) problem [51];
We are given a bipartite graph of students on one side and the teachers on the
other, and the edge between student s and teacher t has weight w(s,t) = pc(s, t);
The goal is find an assignment A : S → T matching each teacher to exactly
one student so as to maximize the sum of weights of the matching. The BMWM
output is the assignment A maximizing

∑
s∈S w(s,A(s)). This optimal assignment

(equivalently BMWM) can be found in polynomial time [51].
We compared the three matching algorithms (random assignment, inverse

heuristic assignment and the optimal assignment) in terms of their performance,
measured by the expected number of passing students. As the input data for
the simulations we used the scaled output parameters of STEP on the real data
discussed in the previous section. We only had 10 teachers in this dataset, so we
randomly sampled a subset of 10 students many times, averaging the resulting
performance under the three assignment methods. We performed the analysis on
a range of question difficulty levels (matching the student abilities and teacher
competences). The results are shown in Figure 5.

Figure 5 shows that for easy questions, the inverse heuristic outperforms ran-
dom matching, and almost as good as the optimal assignment. However, as the
difficulty increases, the inverse heuristic’s performance degrades, until at some
point it is even worse than random matching. For such moderate to difficult
exams, there is a performance gain when switching to the optimal assignment.
One possible reason for this is low ability students. If the exam is easy, such
students are likely to pass when assigned a highly competent teacher, so the

6 Such diminishing returns are prevalent in many resource allocation settings
[12,18,8,2,40].
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Fig. 5. Performance under assignment methods

inverse heuristic does well. However, if the exam is difficult, even a competent
teacher cannot help such low ability students pass, so this heuristic “wastes” a
very good teacher on a student that is very likely to fail nonetheless.

4 Related Work

Various models were proposed for assessing teacher competence [34,14,23]. To the
best of our knowledge, we are the first to propose a probabilistic graphical models
that simultaneously estimates student abilities, teacher competence and exam
difficulties. The impact of demographics or personality on student attainment in
traditional educational settings was studied in [17,53,44,48,19].

Our teachers’ bonus was based on a competition. Such crowdsourcing con-
tests were shown to allow the contest designer to elicit significant participant
efforts [27,3].

Predicting attainment in cognitive tasks is a central topic in psychology. Psy-
chometricians developed a framework called “test theory” to analyze outcomes
in psychological testing, including intelligence and education [1]. One paradigm
for designing such tests is “item-response theory” [24] (IRT for short), used to de-
velophigh-stakes adaptive tests such as theGraduateManagementAdmissionTest
(GMAT). Our STEPmodel relies on a probabilistic graphical model [29], and uses
themes similar to the principles of IRT. A key difference is that we consider teacher
competence as well, and tie the variables in the form of a factor graph. Frameworks
using IRT principles and a probabilistic graphical model are [50,4,46]. However,
the goal of these models is to aggregate multiple responses of participants to best
determine the correct answers to questions, whereas our goal is to predict future
performance of teachers and students in online education.
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Our work ignored logical connections between questions. In many exams sev-
eral questions rely on the same piece of knowledge, so a mistake regarding this
information is likely to affect many responses. Frameworks such as Probabilis-
tic Relational Models [21] combine a logical representation with probabilistic
semantics, and can be used to express such structures.

5 Conclusion

We introduced the STEP model for estimating abilities and predicting outcomes
in web-based education based on student abilities, teacher competences and ques-
tion difficulties. We evaluated it on a crowdsourced dataset. We showed that
STEP outperforms alternative approaches, and explored possible applications of
this model. We have also analyzed the relation between attainment and demo-
graphics or personality traits. Finally, we have shown that the outputs of the
STEP model regarding student abilities and teacher competences can be used
to optimize the overall attainment of all the students by best matching teachers
to students. This achieves an overall performance that is much better than a
random or heuristic assignment.

Several directions remain open for future research. STEP was evaluated us-
ing data from a short experiment in AMT, which does not necessarily reflect
a realistic online learning environment. Can a similar model predict outcomes
in traditional education systems? Do our results generalize to real-world data
from MOOCs? Can we build a dynamic model, that tracks fluctuations in stu-
dent ability and teacher competence over time? How can we express dependency
relations between tasks and areas of expertise?
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Abstract. Multi-task learning involves solving multiple related learning
problems by sharing some common structure for improved generalization
performance. A promising idea to multi-task learning is joint feature
selection where a sparsity pattern is shared across task specific feature
representations. In this paper, we propose a novel Gaussian Process (GP)
approach to multi-task learning based on joint feature selection. The
novelty of the proposed approach is that it captures the task similarity by
sharing a sparsity pattern over the kernel hyper-parameters associated
with each task. This is achieved by considering a hierarchical model
which imposes a multi-Laplacian prior over the kernel hyper-parameters.
This leads to a flexible GP model which can handle a wide range of
multi-task learning problems and can identify features relevant across
all the tasks. The hyper-parameter estimation results in an optimization
problem which is solved using a block co-ordinate descent algorithm.
Experimental results on synthetic and real world multi-task learning data
sets demonstrate that the flexibility of the proposed model is useful in
getting better generalization performance.

Keywords: Gaussian process, multi-task learning, feature selection.

1 Introduction

Multi-task learning (MTL) is used in situations where one has to solve several
related learning problems. MTL considers each learning problem as a separate
task, but instead of learning the tasks independently, learns them together [1].
It is extremely effective when each learning problem is associated with a limited
data set. It enables a task to be learnt using the data from multiple related
tasks. This results in a better predictive performance of the individual tasks. It
has been shown that multi-task learning performs better than learning tasks in-
dependently [2,3,4]. Multi-task learning methods have been successfully applied
to applications like user preference modeling [5] and conjoint analysis [6].

Multi-task learning has recently created a lot of interest in the machine learn-
ing community. Many approaches have been proposed to effectively learn from
multiple related tasks by capturing the similarity among them. Task similarity
can be captured by restricting different task functions to be close to each other in
some sense [4]. Bayesian approaches [5,7] capture the task similarity by sharing
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a common prior among different tasks. Other approaches capture task similarity
by sharing a common internal representation across all the tasks [2,3].

Multi-task learning using joint feature selection has been shown to improve
performance in many scenarios [6,8,9,10]. These methods capture the similarity
across the tasks by selecting a common subset of features or by sharing a sparsity
pattern over feature representations. This is useful in situations like user pref-
erence modeling where a few product features are considered to be important
by most of the users. Bayesian joint feature selection approaches [9,11,10] learn
relevant features by imposing sparsity inducing priors over the feature coeffi-
cients. Regularized joint feature selection approaches [6,8] perform joint feature
selection using a regularization framework in which a mixed norm regularizer
is used over the feature coefficient matrix. This results in sharing the sparsity
pattern over task specific feature coefficients. We propose an approach to multi-
task learning based on joint feature selection using the non- parametric Bayesian
framework of Gaussian process.

Gaussian process (GP) is a non-parametric model which provides a prob-
abilistic approach to learning with kernels [12]. Being probabilistic, GP based
MTL approaches provide an estimate of uncertainty over predictions. Being non-
parametric, it allows the complexity of the decision function to grow with the
data size. Most of the GP based approaches to MTL model task similarity by
sharing a common prior across the tasks [7,13]. A task covariance matrix is
learnt in [14] to model the task similarity. The semi-parametric latent factor
approach [15] models each task as a linear combination of latent functions with
task specific weights. We propose a general and a flexible GP based MTL ap-
proach, Gaussian process multi-task feature selection (GPMTFS), based on the
idea of joint feature selection.

Gaussian process multi-task feature selection (GPMTFS) performs multi-
task regression by jointly selecting features relevant across all the tasks. This
is useful in many multi-task scenarios like speech recognition and handwriting
recognition where some features are relevant across all the tasks while the rest
are irrelevant. GPMTFS models task similarity by sharing a sparsity pattern
over the feature specific parameters associated with each task. The approach
considers a covariance function which implements automatic relevance determi-
nation (ARD) for each task and shares the sparsity pattern over the task spe-
cific ARD hyper-parameters. This is achieved by placing a multi-Laplacian prior
over feature specific hyper-parameters across the tasks. A maximum a posteriori
(MAP) estimate of the hyper-parameters is obtained using a block co-ordinate
descent algorithm. The approach facilitates the selection of features which are
relevant across all the tasks and leads to a better generalization performance.
The proposed approach is different from Gaussian Process multi-task learning
(GPMTL) [13] which can be used to perform joint feature selection by em-
ploying an ARD enabled covariance function. Fig. 1 provides a graphical model
representation of the two approaches. In GPMTL, all the tasks share the same
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Fig. 1. Graphical model for GPMTL and GPMTFS

ARD hyper- parameters. GPMTFS allows each task to have its own set of ARD
hyper-parameters and shares the sparsity pattern over the task specific hyper-
parameters. Hence, unlike GPMTL, GPMTFS does not restrict the functional
form of the task specific functions to be the same. Moreover, it can control
the degree of similarity through a regularization parameter. Such a flexible and
general model enables one to handle a wide range of multi-task learning problems
where the tasks are less similar. We show that the flexibility of GPMTFS leads to
a better generalization performance on multi-task regression problems through
experiments on synthetic and real world regression data sets.

This paper is organized as follows. We discuss the related work in section 2.
Gaussian process regression is discussed in section 3. We discuss the proposed
approach, Gaussian process multi-task feature selection, in section 4 and present
the experimental results on synthetic and real multi-task data sets in section 5.
Finally, we conclude in section 6.

Notations. We consider a multi-task regression problem with T tasks. Each
task t is associated with a training data set Dt with N t examples, i.e. Dt =
(Xt,yt) = {xt

i, y
t
i}N

t

i=1 and a test data set Dt∗ with N t∗ examples, i.e. Dt∗ =

(Xt
∗,y

t
∗) = {xt

∗i, y
t
∗i}

Nt
∗

i=1. We assume that all the data sets come from the same
input space RP and output space R, i.e. xt

i ∈ RP and yti ∈ R. Let D be the col-
lection of all task specific training data sets i.e. D = (X,y) = (∪T

t=1X
t,∪T

t=1y
t)

and D∗ be the collection of all task specific test data sets i.e. D∗ = (X∗,y∗) =
(∪T

t=1X
t∗,∪T

t=1y
t∗). Let N =

∑T
t=1 N

t and N∗ =
∑T

t=1 N
t∗ be the total number

of training and test examples respectively, from all the tasks. We assume that
task specific data sets are associated with a different but related sampling dis-
tributions St. In multi-task regression, we learn a function f t for the task t and
use it to make predictions on the test data set Dt

∗ associated with the task t.
The goal in multi-task regression is to learn these functions from the training
data set D such that they provide good generalization performance on the test
data set D∗. We denote ‖a‖2 to represent the l2 norm of a vector a and |A| to
denote the determinant of a matrix A.
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2 Related Work

Multi-task learning using joint feature selection improves generalization perfor-
mance by sharing a sparse feature pattern across the tasks. In [8], this is achieved
by using the l1/l2 (mixed norm) regularization term. They consider the l2 norm
of coefficients associated with a feature across all the tasks. The regularization
term is formed by taking the sum of this l2 norm over all the features. The l1/l2
regularization term is also used in [16], but [16] uses an efficient optimization
approach different from the one used in [8]. Convex multi-task feature learning
(CMTFL) [6] assumes that the tasks share a small set of features and learns the
feature matrix. Sparsity was induced by using the squared l1/l2 regularizer over
the feature coefficient matrix. The resulting non-convex problem is solved using
an equivalent convex formulation involving trace norm. An alternative efficient
way to perform feature learning is provided in [17]. The selection of an appro-
priate mixed norm regularizer for performing multi-task learning is discussed in
[18] and they provide a probabilistic interpretation to it. A maximum entropy
discrimination framework to perform joint feature selection for multi-task learn-
ing is discussed in [19]. However, these approaches are not probabilistic in nature
and cannot provide a measure of uncertainty over predictions.

A Bayesian approach in which an automatic relevance determination (ARD)
prior is imposed over the feature coefficients associated with the tasks is dis-
cussed in [9]. Here, the sparsity is achieved by constraining the variance of the
coefficients to a constant value. Sparse Bayesian multi-task learning [10] achieves
group sparsity over the feature coefficient matrix by imposing a matrix-variate
Gaussian scale mixture prior over it. In Bayesian multi-task feature selection [11],
a spike and slab prior is used to enforce the selection of a common subset of fea-
tures across the tasks. All these approaches are parametric and hence the model
complexity of each task is limited by the parametric functional form.

Gaussian processes (GPs) provide a Bayesian non-parametric approach to
multi-task learning. The GP approach to multi-task learning presented in [7]
models task similarity by placing a common prior over the parameters across all
the tasks. In [13], task similarity is modeled by sharing the kernel parameters
across the tasks. The semi-parametric latent factor approach [15] models each
task as a linear combination of latent functions with task specific weights. In [20],
this is extended by putting a spike and slab prior over the task specific weights.
The GP approach to multi-task regression in [14] considers the covariance matrix
as a Kronecker product of the covariance matrices over the tasks and data and
learns the task covariance matrix when the task specific features are not present.
In [21], a mixed effect model is proposed where the task functions are assumed to
be a combination of a common fixed effect and a task specific random effect. We
provide an approach to perform multi-task regression using Gaussian processes
which can perform joint selection of features relevant across all the tasks.
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3 Gaussian Process Regression

A Gaussian Process is a collection of random variables with the property that
the joint distribution of any finite subset of which is Gaussian [12]. It generalizes
Gaussian distribution to infinitely many random variables. The GP is completely
specified by a mean function and a covariance function. The covariance function
is defined over the function values of a pair of inputs and is evaluated using a
Mercer kernel function over the pair of inputs. It expresses some general prop-
erties of functions such as their smoothness, and length-scale. A commonly used
covariance function is the squared exponential (SE) kernel

K(xi,xj) = exp(−1

2

P∑
l=1

κl(xil − xjl)
2). (1)

Here κ1, κ2, . . . , κP (all non-negative) are the kernel hyper-parameters associ-
ated with the SE kernel K. The SE kernel (1) implements automatic relevance
determination (ARD) through the kernel parameters κ1, κ2, . . . , κP . A low value
of κi implies that the dimension i is less relevant. This helps to estimate the
dimensions (features) which are relevant for prediction. Let K = K(X,X),
K∗ = K(X,X∗) and K∗∗ = K(X∗,X∗). Here, K(X,X∗) is an N × N∗ ma-
trix of covariances evaluated for all the pairs of training and test input data.
The matrices K(X,X), K(X∗,X) and K(X∗,X∗) are also defined similarly.

We consider a noisy Gaussian process regression (GPR) model where the
output y lies around a latent function f(x) with an additive, independently and
identically distributed (i.i.d.) Gaussian noise ε with mean 0 and variance σ2

n, i.e.
y = f(x) + ε. In GPR, the likelihood is Gaussian

p(y|f(x)) = N (f(x), σ2
n). (2)

The GPR approach imposes a zero mean GP prior over the latent function val-
ues f associated with the training data and f∗ associated with the test data. The
predictive distribution on f∗ is obtained by integrating the conditional distribu-
tion p(f∗|f ,X∗,X) over the posterior distribution p(f |X,y), i.e. p(f∗|X∗,X,y) =∫
p(f∗|f ,X∗,X)p(f |X,y)df . The conditional distribution is Gaussian because of

the GP prior. Due to the Gaussian form of the likelihood the posterior distri-
bution is Gaussian. Hence, the predictive distribution over the latent function
values of the test data is also Gaussian. The predictive distribution over the test
outputs y∗ is obtained as p(y∗|X∗,X,y) =

∫
p(y∗|f∗)p(f∗|X∗,X,y)df∗, and it is

also Gaussian.
The hyper-parameters {κ1, κ2, . . . , κP , σ

2
n} are estimated using either Bayesi-

an techniques or cross-validation techniques [12]. Generally, the hyper-parameters
are estimated by maximizing marginal likelihood p(y|X) =

∫
p(y|f ,X)p(f |X)df

= N (0,K+ σ2
nIN ) or equivalently by minimizing the negative logarithm of the

marginal likelihood:

argmin
θ

1

2
y
(K+ σ2

nIN )−1y +
1

2
log|K+ σ2

nIN |+
N

2
log(2π), (3)
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4 Gaussian Process Multi-task Regression Using Feature
Selection

We propose a novel approach to multi-task regression using Gaussian Processes
based on the idea of joint feature selection. The proposed approach, Gaussian
process multi-task feature selection (GPMTFS), improves the generalization per-
formance by sharing the feature sparsity pattern across the tasks.

The GPMTFS approach uses a covariance function which implements auto-
matic relevance determination (ARD). The kernel parameters in these covariance
functions help in capturing the importance of each feature in the data set. In the
multi-task setting, we model each task t using a latent function f t. The latent
function f t comes from a zero mean Gaussian process with a covariance function
Kt. The covariance function Kt can be any Mercer kernel implementing ARD.
Thus, each task t is associated with kernel hyper-parameters {κt

1, κ
t
2, . . . , κ

t
P },

which help in automatic feature relevance. The task specific hyper-parameters
allow f t to take distinct functional form. In this work, we consider the SE kernel
(4) and the linear kernel (5).

Kt(xt
i,x

t
j) = exp(−1

2

P∑
l=1

κt
l(x

t
il − xt

jl)
2) (4)

Kt(xt
i,x

t
j) =

P∑
l=1

κt
lx

t
ilx

t
jl (5)

Multi-task Marginal Likelihood. In multi-task regression, the likelihood for
each task t is Gaussian as in GPR, i.e. p(yti |f t(xt

i)) = N (f t(xt
i), σ

2
t ), where σ2

t

is the noise variance associated with the task t. The marginal likelihood of the
examples belonging to the task t is also Gaussian, p(yt|Xt) = N (0,Kt+σ2

t INt),
where Kt = Kt(Xt,Xt). Then, the marginal likelihood over all the tasks is ob-

tained as p(y|X) =
∏T

t=1 p(y
t|Xt). The hyper-parameters {κt

1, κ
t
2, . . . , κ

t
P , σ

2
t }Tt=1

are estimated by maximizing the marginal likelihood p(y|X) or equivalently by
minimizing the negative log of the marginal likelihood,

− log p(y|X) =

T∑
t=1

− log p(yt|Xt) �

T∑
t=1

(1
2
yt
(Kt + σ2

t INt)−1yt +
1

2
log|Kt + σ2

t INt |
)
. (6)

The objective function (6) is a sum of the negative log of the marginal like-
lihood for each task. Learning hyper-parameters by minimizing (6) leads to an
independent learning of hyper-parameters associated with each task. This does
not lead to any kind of feature sharing across the tasks and fails to model the
multi-task learning situation. We model the task similarity by sharing the spar-
sity pattern over the kernel hyper-parameters associated with each task. This
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is achieved by using a hierarchical approach where we impose a sparse prior
over the kernel hyper-parameters {κt

1, κ
t
2, . . . , κ

t
P }Tt=1. This results in selecting a

subset of features which are relevant and common across all the tasks.

Prior Over the Hyper-parameters. We consider a Laplacian or double ex-
ponential prior as the sparsity inducing prior. It has been used as a sparsity
inducing prior in various contexts [22]. It leads to a l1 regularized function in
the log space which results in sparse solutions for properly chosen regularization
parameters. We collect the kernel hyper-parameters from all the tasks into a
matrix Q, where Q = [κ1,κ2, . . . ,κP ] and κi = [κ1

i , κ
2
i , . . . , κ

T
i ]

. Thus, the col-

umn i of the matrix Q denotes the kernel hyper-parameters corresponding to the
dimension i for all the tasks. We denote κt = [κt

1, κ
t
2, . . . , κ

t
P ]

 as the vector of

all the kernel hyper-parameters for the task t and σ2 = [σ2
1 , σ

2
2 , . . . , σ

2
T ]

 as the

vector of all task specific variance hyper-parameters. To achieve our objective of
sharing sparsity pattern on the kernel hyper-parameters across all the tasks, we
consider imposing a sparsity inducing prior over the matrix Q. Specifically, we
impose a zero mean multi-Laplacian (ML) prior [23] over each column κi of the
matrix Q. The ML prior over the vector κi is defined as

p(κi) = Multi-Laplace(κi|0, C−1)
= CT/2 exp(−C‖κi‖2), (7)

where C is the parameter associated with the ML prior. We impose independent
ML priors over each column of the matrix Q. The prior over the matrix Q is
defined as

p(Q) =

P∏
i=1

p(κi) = CTP/2 exp(−C
P∑
i=1

‖κi‖2). (8)

Imposing the ML prior over each column of Q will result in the columns be-
coming sparse together. Thus, the kernel hyper-parameters corresponding to an
irrelevant feature for all the tasks become zero together. This will lead to sharing
of sparsity pattern over features across the tasks. The variance hyper-parameter
vector σ2 is assigned independent exponential priors with the rate parameter B,

p(σ2) =

T∏
t=1

exp(σ2
t |B) = BT exp(−B

T∑
t=1

σ2
t ). (9)

The posterior over the hyper-parameters is given by

p(Q,σ2|y,X) ∝ p(y|X,Q,σ2)p(Q)p(σ2). (10)

Learning the Hyper-parameters. The posterior (10) cannot be obtained in
closed form. The hyper-parameters are estimated using a maximum a posteriori
(MAP) approach. We estimate the hyper-parameters by minimizing negative log
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of the posterior which results in the following optimization problem.

argmin
κ1,κ2,...,κP ,σ2

T∑
t=1

(1
2
yt
(Kt + σ2

t INt)−1yt +
1

2
log|Kt + σ2

t INt |+Bσ2
t

)
+C

P∑
i=1

‖κi‖2 s.t. κ1 ≥ 0,κ2 ≥ 0, . . . ,κP ≥ 0,σ2 ≥ 0 (11)

The objective function in the optimization problem (11) consists of two terms:
the first one is the loss term arising from the marginal likelihood over all the
tasks and the second one is a regularization term. The regularization term pe-
nalizes the sum of the l2 norm of kernel hyper-parameters across the tasks for
a particular feature, and it helps to perform joint feature selection. It couples
the kernel hyper-parameters across all the tasks and causes the task specific
kernel hyper-parameters to share the sparsity pattern. The non-sparse kernel
hyper-parameters correspond to the features which are relevant across all the
tasks and help in feature selection. The regularization constant C controls the
degree of similarity in the multi-task learning problem. When the tasks share
high similarity a proper value of C results in sharing the sparsity pattern across
the tasks. When the tasks are dissimilar a zero value of C results in learning the
hyper-parameters independently without any sharing.

The optimization problem (11) is similar to the one used in [8] which uses
the mixed norm l1/l2 regularizer over the task coefficients. When the number of
tasks reduces to one, the l1/l2 regularization reduces to the l1 regularization over
the kernel hyper-parameters. In this case, GPMTFS performs Gaussian process
regression with the l1 regularization over the kernel parameters. Learning tasks
independently using such l1 regularization is not effective since the number of
examples associated with a task is too small to learn the relevant features.

GPMTFS Algorithm. The optimization problem (11) is solved using the
block co-ordinate descent (BCD) approach [24]. It has been applied in many
multi-task learning settings with mixed norm regularizers [25]. The approach
updates the parameters associated with the co-ordinates in a cyclic manner
(Gauss-Seidel procedure). In the GPMTFS optimization problem (11), we con-
sider the kernel hyper-parameters κi corresponding to the dimension i across
all the tasks as the parameters of the co-ordinate i. We consider the variance
hyper-parameter σ2 across all the tasks as the parameters of the co-ordinate
P + 1. Gradient based optimization approaches are used to update the hyper-
parameters in each co-ordinate descent step. The hyper-parameters are updated
until the relative decrease in the objective function value is small. The BCD
approach for GPMTFS is summarized in Algorithm 1. Each co-ordinate descent
step takes O(

∑T
t=1 N

3
t ) time. The cubic complexity arises from the inversion of

a Nt × Nt matrix in the optimization problem. However, the number of exam-
ples associated with each task is often very small. Let Nmax denote the largest
among N1, . . . , NT . The computational complexity of the co-ordinate descent
step is O(TN3

max) and that of the GPMTFS algorithm is O(PTN3
max). The

non-smooth optimization problem in (11) is solved using a subgradient approach.
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Algorithm 1. Block co-ordinate descent for GPMTFS

1: Input Regularization constants B and C, Data sets {Dt}Tt=1

2: Output Matrix Q, σ2

3: Initialize matrix Q and σ2

4: repeat
5: for i = 1 to P do
6: Update κi by solving the optimization problem (11) w.r.t. κi and fixing all

other variables.
7: end for
8: Update σ2 by solving the optimization problem (11) w.r.t. σ2 and fixing other

variables.
9: until relative decrease in the objective function value in (11) is not small

For a proper choice of the regularization constant C, the approach results in a
sparse solution. In general, the sparsity increases as we increase the value of
the regularization parameter C. The regularization constants B and C can be
chosen using cross-validation. The estimated kernel hyper-parameters share a
common sparsity pattern across the tasks and can be used to select features
relevant across all the tasks.

Prediction. The estimated hyper-parameters are used to make predictions for
each task t. The output predictive probability distribution for the task t on the

test data xt
∗ is Gaussian with mean Kt

∗


(Kt + σ2

t INt)−1yt and variance Kt
∗∗ −

Kt
∗


(Kt + σ2

t INt)−1Kt
∗ + σ2

t , where Kt
∗ = Kt(Xt,xt

∗) and Kt
∗∗ = Kt(xt

∗,x
t
∗).

The mean is taken as the output predicted by the GPMTFS approach.

5 Experimental Results

We conduct experiments to study the behavior and the performance of the pro-
posed GPMTFS approach on a synthetic and two real multi-task regression data
sets, Personal Computer and School [6]. Table 1 summarizes the properties of
these data sets. We compare the performance of GPMTFS against convex multi-
task feature learning (CMTFL) [6] 1 and a closely related GP based multi-task
learning approach (GPMTL) [13]. CMTFL is based on the idea of joint feature
selection using mixed norm regularizers but is not a probabilistic approach. On
the other hand, both GPMTFS and GPMTL are probabilistic models based on
GP. We also compare our approach against independent task learning (ITL)
and aggregate task learning (ATL). In ITL, decision functions are learnt inde-
pendently for each task t from the data set Dt using Gaussian process regression
with a regularization over hyper-parameters. In ATL, a single decision function
is learnt for all the tasks from the collectionD of the data setsDt using Gaussian
process regression with a regularization over hyper-parameters.

1 Code is available at
http://ttic.uchicago.edu/~argyriou/code/mtl_feat/mtl_feat.tar

http://ttic.uchicago.edu/~argyriou/code/mtl_feat/mtl_feat.tar
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Table 1. Properties of the data sets

Data Number Dimension Examples
of tasks per task

Synthetic 10 10 25

Personal
Computer 190 14 20

School 139 27 20-150

5.1 Synthetic Data

A synthetic data set is used to study the behavior of the proposed approach [6].
We assume the number of tasks to be 10 (T = 10) and generate a 10 dimensional
synthetic data set for each task. Each task is associated with 5 training data
examples and 20 test data examples. The training and test data for each task
are generated randomly from a uniform distribution [0, 1]P , where P is 10. We
assume the first 5 features of the data set as relevant and the rest of the features
as irrelevant. This is modeled by generating the coefficients (wt) corresponding to
the first 5 dimensions from a 5 dimensional Gaussian distribution with zero mean
and a diagonal covariance matrix with diagonal entries (1, 0.5, 0.1, 0.15, 0.1). The
coefficients corresponding to the rest of the dimensions are zero. The output yti
for the task t is computed as yti = wt ·xt

i+ν, where ν is Gaussian noise with mean
zero and variance 0.1. The task coefficients wt are generated independently for
each task. All the experiments use a linear ARD kernel.

We run our approach GPMTFS over this synthetic data set and learn the
task coefficient matrix. Fig. 2 denotes a color map for the generated task coeffi-
cient matrix(left) and the learnt task coefficient matrix(right). We can see that
both the generated and the learnt task coefficient matrices are similar. Like the
generated task coefficient matrix, the learnt task coefficient matrix also assigns
zero values to the irrelevant dimensions.

We verify if the proposed approach is able to learn the dimensions relevant for
all the tasks correctly. Consider the bar plot in Fig. 3 obtained using the kernel
parameter values learned by our approach. For each dimension, we plot the l2
norm of the kernel parameter values obtained for all the tasks in that dimension,
i.e. ‖κi‖2. From the bar plot, we can observe that the first 6 dimensions are
found to be relevant by GPMTFS while the rest of the dimensions are found to
be irrelevant.

We study the dependence of the GPMTFS approach on the regularization
parameter C in the right plot of Fig. 3. We observe that the number of selected
features, root mean square error (RMSE) and the Frobenius norm difference
between the actual and learnt task coefficient matrix decrease as we increase
the value of the regularization parameter C from 10−7 to 10−2. An increase in
the value of C leads to sparser solutions and results in the selection of features
which are most relevant across all the tasks. This improves the performance of
the GPMTFS algorithm which is reflected in the RMSE values obtained. This
validates the idea of using joint feature selection for multi-task learning problems.
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Fig. 2. Task coefficient matrix for 10 tasks and 10 input dimensions. Left : generated
task coefficient matrix. Right: learnt task coefficient matrix.

Fig. 3. Left : bar plot indicating the relevance of features in the synthetic data set using
GPMTFS . Right : variation in number of features selected , RMSE and Frobenius norm
difference on increasing the value of C.

We note that after a particular point, a further increase in the values of C
degrades the performance as it forces the hyper-parameter values corresponding
to the relevant features also to zero. Therefore the regularization parameter C
needs to be chosen carefully. We use cross- validation to choose the value of C.

We compare the RMSE obtained using the proposed GPMTFS approach with
CMTFL, GPMTL, ITL and ATL for 2 types of synthetic data sets in Table 2.
The first one is same as the one used in the studies discussed above. It consists of
highly similar tasks. The second synthetic data set consists of less similar tasks.
This is obtained by considering the Gaussian generating the task coefficients wt

for the first 8 dimensions to have very high variance along its diagonal. The
last 2 dimensions of wt are considered irrelevant and are taken to be zero. We
generate 10 instances of these 2 synthetic data sets and report the mean RMSE
obtained for various approaches. For the highly similar synthetic data set, we
observe that the performance of all the multi-task learning methods are similar
and is better than ITL and ATL. In fact, the proposed approach GPMTFS
gives a slightly better performance than other MTL approaches. For the less
similar synthetic data set, we observe that the proposed GPMTFS approach
performs better than GPMTL. GPMTFS allows each task to have its own set of
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Table 2. Experimental results on the data sets for GPMTFS, CMTFL, GPMTL, ITL
and ATL. Performance measure used is explained variance for the School data set and
RMSE for all other data sets. The numbers in bold face style indicate the best result.

Data set GPMTFS CMTFL GPMTL ITL ATL

Synthetic 0.041± 0.042± 0.045± 0.071± 0.105±
(High) 0.005 0.005 0.006 0.008 0.008

Synthetic 3.201± 3.138± 3.532± 4.522± 6.589±
(Low) 0.050 0.048 0.062 0.090 0.099

PC 2.041 ± 2.045 ± 2.062 ± 2.475 ± 2.283 ±
0.030 0.030 0.036 0.060 0.032

School 35.45 ± 35.63 ± 34.96 32.67 ± 34.23 ±
1.36 1.25 1.54 2.17 1.15

hyper-parameters which helps it to capture the variability across the tasks better.
The performance of CMTFL is better than that of GP based approaches. This
is possibly due to the joint feature selection in the parameter space rather than
in the hyper-parameter space.

5.2 Personal Computer

Experiments are conducted on a real data set consisting of ratings of personal
computers by people [26] 2. The data set consists of ratings on 20 different
personal computers by 190 people. The properties of the personal computer are
represented using 14 binary features. The output consists of integer ratings on
a scale of 0-10. Here, each person corresponds to a task and the ratings by the
person correspond to the examples in the task. Thus, there are 190 tasks and 20
examples per task. We consider the first 8 examples in each task as the training
data and the last 4 examples as the test data. The performance is measured
using the root mean squared error (RMSE) averaged over each task. We report
the mean RMSE values over 10 independent partitions of the training and test
data sets. The experiments are conducted using the squared exponential ARD
kernel.

Table 2 compares the performance of GPMTFS with CMTFL, GPMTL, ITL,
and ATL on the personal computer (PC) data set. We observe that the proposed
approach GPMTFS performs better than all other MTL approaches on the PC
data set.

We plot the relevance of features in the PC data set using GPMTFS in Fig. 4.
We observe that price (dimension 14) is the most relevant feature. We find that
GPMTFS selects technical characteristics of the computer such as RAM, CPU
and CDROM (dimensions 2-6) also as relevant features. We observe that for the
personal computer dataset, most of the features are relevant.

2 We thank Peter Lenk for kindly providing the data set.
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Fig. 4. Bar plot indicating the relevance of features obtained using GPMTFS. Left :
Personal Computer. Right : School.

5.3 School Data

We conduct experiments on the real world school data set [4] to study the gener-
alization performance of the proposed GPMTFS approach. The data set consists
of examination records of 15362 students over 139 schools. Each student record
has 27 dimensions and the number of student records associated with each school
varies from 20-150. A student record consists of year of examination, student spe-
cific features and school specific features. The goal is to predict exam scores of
students from each school. In order to conduct multi-task learning experiments,
each school is considered as a task and the student records belonging to a school
as the data corresponding to the task. Experiments are conducted on 10 par-
titions of data into training and test data sets with 75% of the examples from
each school as the training set and the rest as the test set. All the experiments
use a linear ARD kernel. We use explained variance [4] as the performance mea-
sure, which is widely used for comparing the performance of multi-task learning
approaches on the School data set. Explained variance is defined as

Explained variance = 1− sum squared error

total variance
. (12)

A high value of explained variance is preferred over a low value.
Table 2 reports the mean explained variance obtained over 10 independent

training and test data instances of the school data set. We observe that the
proposed approach GPMTFS performed better than GPMTL, ITL and ATL.
GPMTFS captures the variability across the tasks that GPMTL fails to capture.

The features selected by GPMTFS and their relevance for the school data
set are shown in Fig. 4. Relevance for a feature is obtained by using the norm
of the kernel parameter values across all the tasks for that feature. It agrees
well with the results obtained using CMTFL on the school data set. GPMTFS
considered the dimensions 22-27 as irrelevant as these dimensions corresponding
to the school specific features do not contribute much to the examination score
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Table 3. Comparison of the optimal NLPD values obtained by GPMTFS, GPMTL,
ITL and ATL on different data sets. The numbers in the bold face style indicate the
best result.

Data set GPMTFS GPMTL ITL ATL

Synthetic (high) -1.6521 -1.6552 -0.9553 1.0622
Synthetic (low) 2.7468 3.2681 3.4862 3.4365

PC 2.2228 2.3798 3.4740 6.2068
School 3.6284 3.7821 6.2431 5.4468

Table 4. Computed t-test statistic for different datasets. Bold face style indicates the
cases for which the t-test statistic is greater than the critical value.

Synthetic (high) Synthetic (low) PC School

1.514 12.119 4.846 9.336

of students. VR band (dimensions 10, 13-15) and ethnic background (dimensions
16-21) are the features which strongly influence the exam score of students.

5.4 Probabilistic Analysis, Statistical Significance Test and Runtime
Experiments

We perform a probabilistic analysis of the proposed approach by providing the
negative log predictive density (NLPD) [12] values on the test data set. Ta-
ble 3 reports the optimal mean NLPD values obtained on 2 synthetic and 2
real world data sets using GPMTFS, GPMTL, ITL and ATL. CMTFL being
a non-probabilistic approach, cannot be used to obtain the NLPD values. Note
that low NLPD values are preferred over high NLPD values. The NLPD val-
ues clearly show the effectiveness of the proposed GPMTFS approach over the
GPMTL approach.

We use the paired t-test [27] to check if the proposed GPMTFS performs
significantly better than GPMTL. The null hypothesis is that both GPMTFS
and GPMTL have similar performance. Under the null hypothesis, the t-test
statistic follows the Students t-distribution with 9 degrees of freedom3. For the
confidence level of 95% and 9 degrees of freedom, the critical value for the one
sided t-test is 1.833. Table 4 reports the t-test statistic computed on 2 synthetic
and 2 real world data sets. We find that the computed t-test statistic is greater
than the critical value for all the datasets except the synthetic data set with
highly similar tasks. This emphasizes the significantly better performance of the
GPMTFS approach over the GPMTL approach.

The proposed GPMTFS approach and the GPMTL approach are implemented
in Matlab. Publicly available CMTFL code is also implemented in Matlab. These
Matlab programs are run on a 3.2 GHz Intel processor with 4GB of shared main
memory in a Linux environment. Table 5 provides the runtime for different
multi-task learning approaches on synthetic and real world data sets.

3 We consider the results over 10 partitions of a data set.
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Table 5. Runtime (in seconds) for GPMTFS, CMTFL, GPMTL, ITL and ATL on
different data sets

Data set GPMTFS CMTFL GPMTL ITL ATL

Synthetic 11.0825 11.6845 8.2543 13.1067 15.8405
PC 333.3381 243.7865 325.4205 356.0030 395.3381

School 7.5778e+03 8.5566e+03 7.1723e+03 9.8863e+03 1.5566e+04

6 Summary

We proposed a novel approach to multi-task regression using Gaussian processes
and joint selection of features. The joint feature selection was done by imposing
a sparse prior over the kernel hyper-parameters. This lead to a flexible model
which can handle variability across the tasks. The resulting optimization problem
was solved using a block co-ordinate descent algorithm. The proposed approach
facilitated the selection of features relevant across all the tasks and lead to
an improvement in performance. This is validated through the experiments on
synthetic and real world data sets. The proposed approach performed better
than other GP based approaches. Due to its Bayesian nature, it provides an
estimate of uncertainty over predictions and is an useful alternative for multi-
task learning. The ideas presented in this paper are general and can be easily
extended to multi-task classification problems.
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Abstract. Conventional rule learning algorithms use a single heuristic for eval-
uating both, rule refinements and rule selection. In this paper, we argue that these
two phases should be separated. Moreover, whereas rule selection proceeds in
a bottom-up specific-to-general direction, rule refinement typically operates top-
down. Hence, in this paper we propose that criteria for evaluating rule refinements
should reflect this by operating in an inverted coverage space. We motivate this
choice by examples, and show that a suitably adapted rule learning algorithm
outperforms its original counter-part on a large set of benchmark problems.

1 Introduction

Separate-and-conquer or covering rule learning algorithms [6,8] proceed by first learn-
ing a single rule (conquer) followed by the removal of all examples that are covered by
this rule (separate). The remaining examples are then used to learn the next rule (return
to the conquer step). For learning a rule, most algorithms use a top-down hill-climbing
search that starts with the universal rule covering all examples, and subsequently add
conditions that optimize a heuristic. Typical heuristics trade off consistency and cover-
age, i.e., they prefer rules that cover as few negative and as many positive examples as
possible [7,9].

Typically, such a heuristic is used in two different places in this process: (i) for judg-
ing rule refinements, i.e., to select which of the refinements of the current rule will be
further explored, and (ii) for rule selection, i.e., to finally decide which of the refine-
ments that have been explored is added to the rule set. In this paper, we argue that these
tasks should be treated separately, i.e., evaluated with separate heuristics. Moreover,
we argue that the rule refinement step in a top-down search requires inverted heuris-
tics, which evaluate rules from the point of view of the current base rule instead of the
empty rule. We will motivate this with an example, show the derivation of such inverted
heuristics in coverage space, and demonstrate empirically that they lead to improved
performance.

We start with a brief recapitulation of separate-and-conquer rule learning, heuristics
and coverage spaces (Section 2). In Section 3, we then motivate why rule refinement
and rule selection should be separated, and show how the commonly used heuristics
precision, Laplace, and m-estimate can be inverted to better reflect a top-down search
for refinements. We will also see that other heuristics, such as weighted relative ac-
curacy, are invariant to such inversions. Finally, in Section 4, we evaluate the use of
inverted heuristics for evaluating rule refinements experimentally on 20 UCI datasets.

T. Calders et al. (Eds.): ECML PKDD 2014, Part III, LNCS 8726, pp. 114–129, 2014.
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Algorithm 1. Procedure Separate-And-Conquer
Data: TrainingData
Result: theory R

1 Start with empty theory R
2 while positive examples left in TrainingData do
3 Rule r = findBestRule(TrainingData)
4 if positiveCovered(r) ≤ negativeCovered(r) then
5 break

6 R = R∪ r
7 remove all covered examples from TrainingData

8 return R

2 Separate-and-Conquer Rule Learning

In this section, we briefly recapitulate the necessary foundations for our contribution,
the separate-and-conquer rule learning algorithm (Section 2.1), coverage spaces (Sec-
tion 2.2), and rule learning heuristics (Section 2.3).

2.1 Algorithm

Most rule learning algorithms follow a so-called separate-and-conquer or covering strat-
egy to learn from P positive andN negative training examples. This algorithm proceeds
by learning one rule at a time, while removing all examples that are covered by each
rule from the dataset. This is repeated until no examples remain, i.e., until all examples
are covered, or until the best found rule covers more negative than positive examples.
Algorithm 8 shows the basic algorithm, as it has also been described in [6,8].

In contrast to algorithms producing an unordered rule set, we consider the learned
rule set as a decision list made up of an ordered list of rules. A decision list ends with a
default rule, which unconditionally applies the majority class label to any example that
is not covered by one of the previous rules in the list. At classification time, the ordered
rule list is checked from top to bottom, assigning to each example the class label of the
head of the first rule that matches the example.

For finding individual rules, we focus on the most commonly used top-down hill-
climbing strategy, which is shown in Algorithm 11. Whenever it needs to learn a new
rule the algorithm initializes it with the universal rule r
, which covers all examples.
By adding conditions to this rule, the amount of covered examples will decrease with
each iteration, thereby increasing the consistency of the rule by focusing on removing
more negative examples than positive examples. How much consistency is gained de-
pends on the particular condition that is selected as a refinement of the rule in each
iteration. This choice depends on a heuristic function h, which is applied to all possible
rule refinements, choosing the refinement that scores best after applying the heuristic
to all refinements. It is easy to see that the importance of a good heuristic is vital for
learning a theory w.r.t. consistency and coverage as it is the only type of guidance the
rule learner can make use of during the training process.



116 J. Stecher, F. Janssen, and J. Fürnkranz

Algorithm 2. Procedure findBestRule
Data: TrainingData
Result: best rule rbest

1 rbest = ∅
2 bestValue = heuristic(rbest)
3 repeat
4 get possible refinements
5 forall the refinements ref do
6 evaluation = heuristic(ref)

7 rref = best refined rule
8 if heuristic(rref ) ≥ bestValue then
9 rbest = rref

10 until no refinements left;
11 return rbest

2.2 Coverage Space

Coverage spaces have been introduced as a formal framework for analyzing and visu-
alizing the behavior of rule learning heuristics [7]. A coverage space plots the number
of covered positive examples (the true positives p) over the number of covered neg-
ative examples (the false positives n), resulting in a rectangular plot with the values
{0, 1, ..., N} on the horizontal axis and {0, 1, ..., P} on the vertical axis. This princi-
ple can then be used to both plot entire theories consisting of an ordered rule list (the
decision list) as well as individual rules.

The following points of the coverage space are of special interest (cf. also Figure 1):

– (0, 0) is the empty theory. It does not cover any examples, neither positive nor nega-
tive ones. A bottom-up learning algorithm would start at this point and successively
add rules.

– (0, P ) is the perfect theory covering all positive, but no negative examples.
– (N, 0) is the opposite theory covering all negative, but no positive examples.
– (N,P ) is the universal theory. It covers all examples regardless of their label.

Fig. 1. Coverage space visualization with P total positive examples and N total negative examples
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Fig. 2. Paths in coverage space for (left) the covering strategy of learning a rule set by adding one
rule at a time and (right) top-down specialization of a single rule

Fürnkranz and Flach [7] have shown that learning a rule set one rule at a time may be
viewed as a path through coverage space, where each point on the path corresponds to
the addition of a rule to the theory. Figure 2 shows the coverage path for a theory with
three rules. Each point Ri =

⋃i
j=1{rj} represents the rule set consisting of the first i

rules. Adding a rule moves the induced rule set to the next pointRi+1 = Ri ∪ {ri+1}.
Removing the covered (positive and negative) examples has the effect of switching

to a subspace of the original coverage space, using the last learned rule as the new
origin. Thus the path may also be viewed as a sequence of nested coverage spaces CSi.
Each new rule is evaluated relative to the origin (0, 0) of this new coverage space. For
example, precision would pick the rule with the steepest ascent from the origin.

The commonly used top-down strategy for rule refinement, on the other hand, suc-
cessively specializes a rule by adding the most promising condition to the rule body. Just
as with adding rules to a rule set, successive rule refinements describe a path through
coverage space (Figure 2, right). However, in this case, the path starts at the upper right
corner with the universal rule r
, and successively proceeds towards the origin, which
corresponds to the empty rule r⊥.

2.3 Rule Learning Heuristics

Any rule learning algorithm relies on some sort of measure to determine the quality of
a rule; this is done with the help of a heuristic function h. Most heuristics implement
a trade-off between consistency and coverage favoring rules that cover as many posi-
tive examples as possible (optimizing coverage) while keeping the amount of negative
examples covered small (optimizing consistency). Thus, the computed value depends
mostly on p (positive examples covered) and n (negative examples covered). Since for
some of the examined heuristics (e.g. the m-estimate as well as the modifications sug-
gested later) the values of P (total positive examples) and N (total negative examples)
must be known, for most purposes a heuristic can be defined as a function

h : (p, n, P,N)→ R
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For the problem of selecting the best of multiple refinements of the same base rule,
the values P and N can be regarded as constant, so that the function may be written as
h(p, n) depending only on the true and false positives.1 Such a formulation also allows
to visualize the behavior of these heuristics by plotting their isometrics in coverage
space [7]. Isometrics are lines in coverage space that connect points (n, p) that share
the same heuristic value h(p, n). Figure 3 shows examples of such isometric plots for
two heuristics discussed below.

For the experiments in this paper, we will focus on three common base heuristics
with slightly different but related properties:

Precision: hprec(p, n) =
p

p+n
Precision prefers a rule r1 to another rule r2 if r1 covers a larger percentage of positive
examples. Note that this does not take into account coverage – a rule covering one
positive and no negative examples will score the highest possible value, while a rule
covering all positive and one negative example will score slightly lower. Thus a theory
learned with the help of the precision heuristic is likely to overfit the training data with
a bad performance when generalizing to new or noisy data. This can also be seen from
its visualization in coverage space (Figure 3(a)), which shows that the isometrics of the
precision heuristic rotate around the origin (0, 0), and that therefore all points on the P
axis receive the same evaluation.

Laplace: hlap(p, n) =
p+1

p+n+2
The Laplace heuristic reduces some of the overfitting drawbacks (bad generalization) of
precision while following the same general intent of maximizing (mostly) consistency.
Starting the p and n counts at 1 instead of 0, the origin of the isometrics shifts to
(−1,−1). The effects of this change is that rules on the P -axis not sharing the same
value anymore. For example, if two rules r1 and r2 cover no negative examples, but r1
covers 2 positives while r2 only covers 1, the resulting heuristic values are hlap(r1) =
0.75 and hlap(r2) = 0.66, whereas evaluating both rules with precision would have
yielded hprec(r1) = hprec(r2) = 1.0.

m-Estimate: hmest(p, n) =
p+m· P

P+N

p+n+m
The m-estimate may be considered as a generalization of the Laplace heuristic. It fol-
lows the same idea, but features a parameter m that allows to shift the origin of the
rotation, which is fixed at (0, 0) for precision and at (−1,−1) for Laplace to any place
along the negative extension of the diagonal of the coverage space. Essentially, this has
the effect of initializing all coverage counts with m examples, which are distributed
according the overall distribution. For the special case m = 0, the m-estimate equals
precision, and for m→ ∞, it approximates weighted relative accuracy (WRA), which
means that its isometrics approach parallel lines with a slope of P

P+N (the a priori
distribution).2 For the algorithm that we use in our experiments, an optimal value of

1 Some heuristics also include additional parameters such as the length of the rule. However,
this is often implicitly captured (longer rules correlate with lower coverage), and adding them
does not necessarily yield increased performance [9].

2 WRA is defined as p+n
P+N

· ( p
p+n

− P
P+N

), which is equivalent to p
P
− n

N
. We will not further

consider it in this paper, for reasons that will be explained in Section 3.2.
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(a) precision (b) m-estimate

Fig. 3. Visualization of the isometrics of precision and the m-estimate

m = 22.466 has been determined experimentally [9], and we will be use this value in
our experiments as well. Figure 3(b) shows the isometrics for the m-estimate heuristic.
It can be clearly seen that the isometrics rotate around a point in the negative space,
which has the effect that points on the P -axis no longer receive the same evaluation.

3 Optimization via Modified Heuristics for Rule Refinement

In the standard separate-and-conquer implementation, we use the same heuristic func-
tion each time we want to evaluate an entire rule or a refinement of a rule to determine
the current best rule and the best refinement w.r.t. the goals of the heuristic (usually cov-
erage and consistency). The approach highlighted in this paper modifies this standard
algorithm to use different heuristics for rule selection and rule refinement. In particular,
we will propose to separate these two phases and show how to adapt the three heuristics
mentioned above for top-down rule refinement.

3.1 Motivation

As we have seen in Section 2.2, top-down hill-climbing takes a path through coverage
space, starting from the universal rule in its upper-right corner. Common rule learn-
ing algorithms evaluate each of the rules encountered on this path with a heuristic in
the same coverage space. For example, precision would evaluate two candidate rules
according to the steepest ascent from the origin, as it would do with rule selection.
However, we argue that this evaluation is, in a way, irrelevant because, while it selects
the best complete rule that can currently be added to the rule set, it does not select the
best candidate for further refinement.

This illustrated in an example dataset with four binary attributes and a binary class
attribute shown in Figure 4(a). The corresponding coverage statistics of all possible re-
finements are listed in Figure 4(b) and plotted in coverage space in Figure 4(c). Accord-
ing to precision hprec, the refinement a = 0 is clearly the best choice, as is illustrated in
Figure 4(d), whereas the refinement c = 1 would only be the third choice. However, we
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a b c d class a b c d class
0 1 1 1 + 0 1 1 0 +
0 1 1 1 + 0 0 1 1 +
0 0 1 0 − 1 1 1 0 −
1 1 1 0 − 1 0 1 1 +
1 0 0 1 − 1 0 0 1 −

(a) Example dataset

condition p n condition p n

a = 0 4 1 a = 1 1 4
b = 0 2 3 b = 1 3 2
c = 0 0 2 c = 1 5 3
d = 0 1 3 d = 1 4 2

(b) Possible refinements

(c) Possible refinements
in coverage space

(d) Precision selects a = 0
as best refinement

(e) c = 1 is a better choice
from a top-down view

condition p n condition p n

a = 0 ∧ b = 0 1 1 a = 0 ∧ b = 1 3 0
a = 0 ∧ c = 0 0 0 a = 0 ∧ c = 1 4 1
a = 0 ∧ d = 0 1 1 a = 0 ∧ d = 1 3 0

(f) refinements for a = 0

condition p n condition p n

c = 1 ∧ a = 0 4 1 c = 1 ∧ a = 1 1 3
c = 1 ∧ b = 0 3 2 c = 1 ∧ b = 1 2 2
c = 1 ∧ d = 0 1 4 c = 1 ∧ d = 1 4 0

(g) refinements for c = 1

Fig. 4. Example dataset with refinements

argue that c = 1 is a better choice for a refinement, because it covers more positive
and negative examples and can thus be still refined into a rule that may be better than
the first refinement. As the refinement a = 0 already has lost one positive example,
further refinements will never cover 5 positive examples as is theoretically still possible
when c = 1 is chosen. However, this choice can be obtained if we use a precision-
like heuristic, whose isometrics do not rotate around the origin, but rotate around the
base rule, as sown in the right part of Figure 4(e). Indeed, as can be seen from the
further possible refinements of these two rules shown in Figures 4(f) and 4(g), the best
refinement from the choice a = 0 is a rule that covers 3 positive and no negative
examples (both b = 1 and d = 1 can be selected in this case). On the other hand, the
precision-like heuristic whose isometrics rotate around the best rule, would end up in
the final rule c = 1 ∧ d = 1, which covers 4 positive and no negative examples. This
rule is preferable to the previous ones but could not be found with the conventional
application of precision.

In the next section, we will derive top-down versions of heuristics that correspond to
precision, Laplace, and the m-estimate.
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(a) inverted precision (b) inverted m-estimate

Fig. 5. Visualization of the isometrics of the top-down versions of precision and the m-estimate

3.2 Adaptation of Heuristics to Top-Down Rule Refinement

Note that the three base heuristics (hprec, hlap and hmest) all share similar isometrics,
with the only difference being the origin (in the latter case, the location of the origin
can be configured via the parameter m). As motivated in the previous section, we want
to preserve this attribute, but shift the origin to the top right corner of the coverage
space. The intention of this is that in our case the rule refiner follows the top-down
strategy (starting off with the most general rule and successively adding conditions).
We have to take into account that the values of P and N are not constant this time
w.r.t. the heuristic function, but depend on the predecessor of the rule. This is because
for our approach to work, we will want the origin of the isometrics to be placed at the
point in coverage space corresponding to the base rule we want to refine, which will
produce nested coverage spaces, and subsequently evaluate the refinements within the
base rule’s nested coverage space.

Figure 5 illustrates the intended behavior for the cases of precision and m-estimate.
Instead of a rotation around the origin as in their original versions depicted in Figure 3,
we aim for a rotation around the base rule, which is located in (N,P ). Moreover, we
also have to swap the positive and negative axes: While the best refinements starting
from the origin lie on the P -axis, the best refinements starting from (N,P ) lie on the
N -axis of the coverage space. More precisely, we have to modify the heuristic in a way
so that it holds that

4(p, n) = h(N − n, P − p) (1)

where 4 is the inverted or top-down heuristic in the coverage space with dimensions
P and N , whereas h is the original heuristic, but in a coverage space with swapped
dimensions N and P .

For the three heuristics discussed in Section 2.3, it is straight-forward to see that we
obtain the following expressions:
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– Inverted Precision: 4prec(p, n) =
N−n

(P+N)−(p+n)

– Inverted Laplace: 4lap(p, n) =
N−n+1

(P+N)−(p+n−2)
– Inverted m-Estimate: 4mest(p, n) =

N−n+m· P
P+N

(P+N)−(p+n−m)

Note, however, that some heuristics are insensitive to the difference between top-
down refinement and bottom-up selection. For example, weighted relative accuracy
(WRA) is a heuristic that is frequently used in subgroup discovery [11,13] and has
isometrics that are parallel to the diagonal of the coverage space. It is thus equivalent to
the simple difference of true positive rate and false negative rate [7]

hrdiff (p, n) =
p

P
− n

N
.

The corresponding top-down version would be

4rdiff (p, n) =
N − n

N
− P − p

P
.

Obviously 4rdiff is equivalent to hrdiff because of

4rdiff (p, n) =
N − n

N
− P − p

P
=
(
1− n

N

)
−
(
1− p

P

)
=

p

P
− n

N
= hrdiff (p, n).

This is also apparent from the isometric structure, which does not change if one switches
from a bottom-up version with base (0, 0) to a top-down version with base (N,P ).
However, while frequently used in subgroup discovery, WRA has been shown to over-
generalize in a predictive setting [16,9]. We will thus not consider it further in this
paper.

3.3 Integration into the Learning Algorithm

One could now think that the new heuristics could be directly plugged into the top-
down refinement algorithm of Algorithm 11. However, it is easy to see that this would
not yield the desired results. For example, continuing the example of Figure 4, the
algorithm would select c = 1 as the final refinement for 4prec, since all rules covering
all positive examples share the same (maximal) heuristic value of 1.0, irrespective of the
amount of negative examples they cover. The rule c = 1∧d = 1, which covers almost all
positive examples but not negative examples, would receive a worse evaluation than its
predecessor. Thus, 4prec and to a lesser extent 4lap, are not well-suited for rule selection
because rules with high coverage are still preferred by these heuristics, whereas the
rule learning process is not steered towards learning a consistent theory. In fact, in
preliminary experiments which just replaced the heuristics hx with their counter-parts
4x so that the latter was used for both rule selection and rule refinement, the resulting
classifiers were sometimes unable to label any new testing example correctly.

Thus, we would like to maintain the conventional heuristics for rule selection, and
need to adapt the learning algorithm so that it can use separate heuristics for rule selec-
tion and for rule refinement. To realize this, we need to adapt top-down hill-climbing so
that different heuristics can be used for rule refinement and rule selection, as marked in
the comments of the pseudo-code of Algorithm 11. Algorithm 11 shows the resulting
algorithm; lines 2, 6 and 8 have changed.
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Algorithm 3. Procedure findBestRule
Data: TrainingData
Result: best rule rbest

1 rbest = ∅
2 bestValue = selection heuristic(rbest)
3 repeat
4 get possible refinements
5 forall the refinements ref do
6 evaluation = refinement heuristic(ref)

7 rref = best refinement
8 if selection heuristic(rref ) ≥ bestValue then
9 rbest = rref

10 until no refinements left;
11 return rbest

4 Experiments

In our experimental evaluation, we intend to answer the question whether the proposed
separation of rule selection and rule refinement heuristics does indeed yield an improved
performance over the standard technique that uses the same heuristic for both tasks.

4.1 Experimental Setup

For our experiments, we use the top-down hill-climbing algorithm implemented in the
SECO-library [10] that has also been used in [9]. This is a simple and straight-forward
rule learner that solely relies on heuristic rule evaluation to learn a classifier that gen-
eralizes well to new data. In particular, no additional procedures, such as pruning or
rule optimization, are used to avoid overfitting on the training data. Multiple classes are
handled using an ordered one-against-all strategy, as originally proposed for the RIPPER

rule learning algorithm [3].
We modified the algorithm as described in Section 3.3, so that it allows for separate

criteria for rule selection and rule refinement. We can thus denote an algorithm by a pair
(hselection, hrefinement). For the experiments we use each of the three standard heuris-
tics for rule selection, and evaluate it with four different heuristics for rule refinement,
yielding a total of 3 + 3 × 3 = 12 different algorithms. The four heuristics for rule
refinement are to use the same heuristic as for rule selection (yielding a standard rule
learning algorithm), and to use each of the three inverted heuristics.

For all experiments with hmest and 4mest, we used a value of m = 22.446which has
been experimentally determined in [9] for the same learning algorithm that forms the
basis of our experiments. Thus, this setting is optimized for the use of the m-estimate
for guiding both rule selection and refinement. It is most likely a suboptimal value for
4mest. However, our main purpose in this paper was not to achieve optimal perfor-
mance, but to investigate the general properties of different top-down rule refinement
heuristics. As we have discussed in Section 2.3 the m-estimate provides a trade-off
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Table 1. Number of classes (C), examples (E), and attributes(A) of the 20 datasets used in the
experiments

Dataset C E A Dataset C E A

breast-cancer 2 286 10 car 4 1728 7
futebol 2 14 5 contact-lenses 3 24 5
hepatitis 2 155 20 glass 7 214 10
hypothyroid 2 3163 26 idh 3 29 5
horse-colic 2 368 23 iris 3 150 5
ionosphere 2 351 35 lymphography 4 148 19
labor 2 57 17 primary-tumor 22 339 18
mushroom 2 8124 23 monk3 2 122 7
soybean 19 683 36 tic-tac-toe 2 958 10
vote 2 435 17 zoo 7 101 18

Fig. 6. Nemenyi Test with a significance level of 0.1

between precision and weighted relative accuracy, where larger values of m approach
the behavior of WRA, which is insensitive to inversion. In this sense, the m-estimate
with m = 22.446 nicely complements precision and Laplace in that it is much closer to
WRA than the others.

We will evaluate the twelve combinations listed above on 20 datasets by the means
of estimated average accuracy. The evaluation method is ten-fold cross-validation to
reduce bias and increase the quality of the resulting performance estimate. As can be
seen from Table 1, the chosen datasets range from very small datasets (where we feel
that good selection heuristics are particularly important) to datasets with several thou-
sand examples. For checking for statistical differences we use Friedman rank tests with
a post-hoc Nemenyi test, as recommended by [4].

4.2 Comparison of Average Accuracies

Table 2 shows the detailed results with respect to accuracy. There are three main columns,
each corresponding to one of the three rule selection strategies hprec, hlap, and hmest.
Each of them has four subcolumns, each corresponding to a rule refinement strategy.
The left-most is the standard strategy, and the three others are all three inverted strate-
gies 4prec, 4lap, and 4mest. The best results in each line and each group are underlined.
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Table 2. Average accuracies obtained via ten-fold cross-validation on 20 datasets. The best result
for each rule selection heuristic is underlined. The bottom line shows the average rank of each
rule refinement strategy for each rule selection heuristic.

(hprec, .) (hlap, .) (hmest, .)
Dataset hprec 4prec 4lap 4mest hlap 4prec 4lap 4mest hmest 4prec 4lap 4mest

breast-cancer 68.53 72.38 72.03 73.43 69.58 70.63 71.33 72.73 71.33 72.03 72.38 73.78
car 90.10 90.34 90.51 88.66 90.45 91.20 91.73 91.20 89.64 90.45 90.28 87.91
contact-lenses 79.17 87.50 87.50 83.33 79.17 87.50 87.50 83.33 87.50 87.50 87.50 83.33
futebol 28.57 64.29 57.14 42.88 28.57 64.29 57.14 42.88 50.00 64.29 57.14 42.86
glass 56.54 65.89 68.69 62.15 61.22 65.89 68.69 62.15 69.16 67.29 71.50 63.55
hepatitis 78.07 79.36 80.00 76.77 78.71 79.36 80.00 76.74 78.07 79.36 80.00 76.77
hypothyroid 98.23 98.61 98.74 98.83 98.39 98.61 98.74 98.83 98.80 98.61 98.74 98.83
horse-colic 72.01 79.35 79.35 77.99 70.65 79.35 80.16 77.99 77.45 79.35 78.80 77.99
idh 62.07 82.76 75.86 75.86 62.07 82.76 75.86 75.86 68.97 82.76 75.86 75.86
iris 92.67 93.33 95.33 94.67 94.00 93.33 95.33 94.67 94.00 93.33 95.33 94.67
ionosphere 95.16 82.62 83.19 89.46 94.87 82.62 93.19 89.46 91.74 82.91 83.19 91.17
labor 91.23 80.70 82.46 89.47 91.23 80.70 82.46 89.47 85.97 80.70 82.46 89.47
lymphography 83.78 77.70 84.46 83.11 85.14 77.70 84.46 83.11 75.00 76.35 81.08 83.78
mushroom 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
monk3 87.71 82.79 82.79 84.43 88.53 85.25 84.43 86.89 81.15 79.51 81.15 82.79
primary-tumor 33.63 39.23 35.10 30.97 32.45 39.23 35.99 30.38 33.92 37.76 34.51 30.68
soybean 90.04 91.51 92.24 91.36 90.34 91.80 92.39 90.63 91.51 90.92 90.48 91.36
tic-tac-toe 97.39 98.02 97.60 97.81 97.60 98.02 97.60 97.91 98.12 98.02 97.60 97.81
vote 94.94 93.56 94.25 94.48 95.40 94.25 94.25 94.94 93.33 93.56 94.71 96.09
zoo 84.16 88.12 92.08 90.01 86.14 88.12 92.08 90.10 89.11 88.12 92.08 90.10
average rank 3.075 2.400 1.975 2.550 3.000 2.500 1.975 2.525 2.700 2.625 2.225 2.450

Not surprisingly, we can see that each of the combinations works best in some
cases, and that the differences can be quite large in some cases (mostly for rather small
datasets). In order to get a better overall impression, we show the average ranks within
each group in the last line of the table. This gives a fairly consistent picture in that the
standard strategy always performs worst, i.e., on average all three inverted rule refine-
ment heuristics perform better than the case where rule refinements are evaluated with
the same heuristic as rule refinements. Thus, our expectation that top-down refinement
heuristics work better than conventional heuristics has been confirmed.

The results are also consistent in that the inverted Laplace-heuristic always performs
best for all rule selection strategies, whereas the m-estimate and precision are about
equal on ranks 2 and 3. We can also see that the differences between the methods are
much smaller for the m-estimate than for the others. In fact, a Friedman test reveals
that the results within the hprec rule selection group are statistically significant at a 5%
level, the results within the hlap group at the 10% level, whereas the results in the m-
estimate are only weakly different. However, this is not surprising, because as we noted
above, for larger values of m, the behavior of the m-estimate approaches the behavior of
WRA, which is insensitive to inversion. Thus, with increasing values of m, the results
must become more and more similar to each other.
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Table 3. Comparison of the number of rules (R) and conditions (L) for regular and inverted
Laplace heuristics

(hlap, hlap) (hlap, h′
lap) (hlap, hlap) (hlap, h′

lap)
Dataset R L R L Dataset R L R L
breast-cancer 25 67 38 173 ionosphere 17 25 8 42
car 107 495 107 506 labor 5 7 3 12
contact-lenses 5 14 5 15 lymphography 18 42 11 47
futebol 4 7 2 5 monk3 13 38 11 32
glass 50 103 14 83 mushroom 11 13 7 35
hepatitis 13 26 7 46 primary-tumor 80 319 72 518
horse-colic 44 114 19 111 soybean 62 134 45 195
hypothyroid 27 65 9 69 tic-tac-toe 22 84 16 69
iris 7 15 5 17 vote 13 48 12 58
idh 4 5 2 5 zoo 19 19 6 14
averages 27.3 82.0 20.0 102.6

4.3 Validation and Algorithm Comparison

Overall, the combination (hlap, 4lap) outperforms other combinations on seven datasets
(namely car, contact-lenses, hepatitis, horse-colic, iris, soybean and zoo). As such, this
combination in particular becomes interesting for further validation. We will now con-
duct statistical tests to try and prove the assumption that the combination (hlap, 4lap) is
superior w.r.t. accuracy.

Using N = 20 datasets with k = 12 algorithms, we obtain a chi-square value of
19.792 and a corresponding FF statistic of 1.878. The corresponding critical value
based on a significance level of 0.05 with 11 and 209 degrees of freedom is 1.834, result-
ing in a passed Friedman test (failure at level 0.01). The ranks of the algorithms as well
as the critical distance for the post-hoc Nemenyi test are shown in Figure 6. Although
the results only show that the combination (hlap, 4lap) is significantly better than the
algorithm (hprec, hprec), which is known to overfit the data, it is still remarkable that all
combinations that involve an inverted heuristic are higher-ranked than all three original
heuristics, including (hmest, hmest), which was one of the best-performing algorithms
in a previous study [9].

4.4 Number of Rules and Conditions

Using inverted heuristics also has an effect on the nature of conditions that are selected.
In short, whereas regular heuristics focus mostly on consistency, inverted heuristics
tend to add conditions that maintain completeness. For example, if at any point, both
heuristics are faced with the choice of adding an incomplete but consistent rule r1 (a
point on the P -axis) and a complete but inconsistent rule r2 (a point (P, n) for some
value 0 < n < N ), regular precision would give a maximum evaluation of hprec(r1) =
1.0 to r1, whereas inverted precision gives a maximum score 4prec(r2) = 1.0 to r2.
This has the effect that inverted heuristics bias the learner towards conditions that do
not add additional discriminative power (but are nevertheless informative).
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2160 p :- odor = f.
1152 p :- gill-color = b.
256 p :- odor = p.
192 p :- odor = c.
72 p :- spore-print-color = r.
36 p :- stalk-color-below-ring = c.
24 p :- stalk-color-below-ring = y.
4 p :- cap-surface = g.
1 p :- cap-shape = c.
16 p :- stalk-color-below-ring = n, stalk-surface-above-ring = k.
3 p :- habitat = l, stalk-color-below-ring = w.

(a) using hlap for refinement

2192 p :- veil-color = w, gill-spacing = c, bruises? = f, ring-number = o,
stalk-surface-above-ring = k.

864 p :- veil-color = w, gill-spacing = c, gill-size = n, population = v,
stalk-shape = t.

336 p :- stalk-color-below-ring = w, ring-type = p, stalk-color-above-ring = w,
ring-number = o, cap-surface = s, stalk-root = b, gill-spacing = c.

264 p :- stalk-surface-below-ring = s, stalk-surface-above-ring = s,
ring-type=p, stalk-shape=e, veil-color=w, gill-size=n, bruises?=t.

144 p :- stalk-shape = e, stalk-root = b, stalk-color-below-ring = w,
ring-number = o.

72 p :- stalk-shape = e, gill-spacing = c, veil-color = w, gill-size = b,
spore-print-color = r.

44 p :- stalk-surface-below-ring = y, stalk-root = c.

(b) using 4lap for refinement

Fig. 7. Decision lists learned for the class poisonous in the mushroom dataset, along with the
number of positive examples covered by each rule (no rule covers any negative examples)

In practical terms, inverted heuristics tend to learn longer rules, which will never-
theless, somewhat counter-intuitively, have a higher coverage than those learned with
regular heuristics. As an illustration, Table 3 compares the number of rules and condi-
tions induced with hlap to those induced with 4lap, the latter being the the configuration
that achieved the best results in our experiments. On 17 out of 20 datasets the inverted
version learns a lower number of rules, on two an equal number of rules, and only on
one dataset a higher number of rules, which clearly confirms that the learned rules on
average tend to have a higher coverage. Moreover, on 13 datasets 4lap has a higher
number of conditions, on one dataset it is equal and on 6 the number is smaller, which
confirms that the rules learned by inverted heuristics tend to be longer. Both findings
are also confirmed by the averages shown in the last line of Table 3.

Note, however, that this does not necessarily reduces the comprehensibility of the
learned rules. In a way, in the terminology of Michalski [14], inverted heuristics tend to
find characteristic descriptions, whereas standard heuristics tend to find discriminative
descriptions. As an illustration, Figure 7 shows the rule sets learned for the mushroom
dataset. Both rule sets cover all 3196 examples of poisonous mushrooms. However,
while the first rule set, learned with a traditional heuristic, focuses on single charac-
teristics such as the odor of the mushroom, the second rule set contains much more
descriptive rules. Interestingly, the used attributes are quite different (e.g., odor does
not appear at all in the latter rule set). Another interesting observation is that the former
rule set contains some rules with only very low coverage: the last six rules all cover
fewer examples than the last rule of the rule set learned with the inverted heuristic. One
reason for this is that because the previous rules are somewhat less general, they also
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leave more examples to be classified for subsequent rules. For example, the last rule of
Figure 7 (b) still classifies 44 examples, whereas a similar rule that consisting only of
the first condition has only 24 examples left to classifier in Figure 7 (a).

We are not expert enough to judge the plausibility of the rules of Figure 7, but in
general, we think that more detailed rules can be more convincing and are certainly
no less comprehensible than the general discriminative rules. In fact, we think that this
property of inverted heuristics is also of particular interest to subgroup discovery [12],
although we leave this as subject for future work.

5 Conclusions and Open Questions

In this paper, we made two contributions to heuristic inductive rule learning. First, we
argued that it may be beneficial to separate the evaluation of candidates for rule re-
finement and the selection of rules for the final theory. Accordingly, we suggest to use
different criteria for both. Second, we showed that conventional precision-based heuris-
tics can be inverted in the sense that they do not evaluate candidate refinements from
the point of view of the origin of the coverage space, but from the point of view of their
predecessor rule in a top-down search. Our experiments showed that the use of such
inverted heuristics for evaluating rule refinements leads to better results than the use of
the original versions. Interestingly, inverted heuristics also have the tendency to learn
rule sets with longer but fewer rules.

Our results are so far confined to top-down covering rule learning algorithms. While
we do not expect that bottom-up algorithms would profit from inverted heuristics, which
reflect a top-down search strategy, it remains an open question whether other top-down
algorithms may benefit from their use. In particular, the fact that inverted heuristics tend
to learn longer, characteristic rules may be of interest for subgroup discovery.

We have also only considered precision-like heuristics in this work, mainly because
the m-estimate has delivered a state-of-the-art performance in a large comparative study
[9], so that it seemed a natural point of departure for our experiments. While we have
shown that other linear heuristics such as WRA, which is popular in subgroup discov-
ery, cannot be inverted, we still need to look at heuristics with non-linear isometrics.
In particular, the proposed separation of rule refinement and rule selection criteria is
also closely related to the use of pruning criteria, which filter out unpromising rules. It
remains to be seen whether conventional rule pruning criteria, such as the significance
test of CN2 [2,1] may also be used favorably as rule selection criteria. Furthermore, we
also deliberately refrained from optimizing the m-parameter of the inverted heuristics
in any way because we wanted to avoid to obtain good results for the inverted heuristics
that are only due to an extensive search for optimal parameter values. However, such an
evaluation is planned as the next step in our work.

Finally, we note that the use of precision for rule selection may be viewed as a sim-
ple, greedy maximization of the area under the ROC curve (AUC) [7]. The inverted
precision heuristic introduced in this paper may be viewed as a counter-part that maxi-
mizes the AUC for individual rules. Interestingly, in preliminary experiments we could
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not demonstrate that improving the AUC maximization for individual rules also leads
to a better AUC for the entire theory. However, this needs a deeper investigation and
needs to be put into perspective with alternative approaches to maximize the AUC in
inductive rule learning [15,5].

Acknowledgements. The authors would like to thank the anonymous reviewers for
their comments, which helped to improve this paper.

References

1. Clark, P., Boswell, R.: Rule induction with CN2: Some recent improvements. In: Proceed-
ings of the 5th European Working Session on Learning (EWSL 1991), Porto, Portugal,
pp. 151–163. Springer, Heidelberg (1991)

2. Clark, P., Niblett, T.: The CN2 induction algorithm. Machine Learning 3(4), 261–283 (1989)
3. Cohen, W.W.: Fast effective rule induction. In: Prieditis, A., Russell, S. (eds.) Proceedings of

the 12th International Conference on Machine Learning, Tahoe City, CA, July 9-12, vol. 123,
pp. 115–123. Morgan Kaufmann (1995)
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Abstract. The problem of understanding user activities and their patterns of
communication is extremely important in social and collaboration networks. This
can be achieved by tracking the dominant content flow trends and their interac-
tions between users in the network. Our approach tracks all possible paths of
information flow using its network structure, content propagated and the time
of propagation. We also show that the complexity class of this problem is #P-
complete. Because most social networks have many activities and interactions, it
is inevitable the proposed method will be computationally intensive. Therefore,
we propose an efficient method for mining information flow patterns, especially
in large networks, using distributed vertex-centric computational models. We use
the Gather-Apply-Scatter (GAS) paradigm to implement our approach. We ex-
perimentally show that our approach achieves over three orders of magnitude
advantage over the state-of-the-art, with an increasing advantage with a greater
number of cores. We also study the effectiveness of the discovered content flow
patterns by using it in the context of an influence analysis application.

Keywords: Information Flow Mining, Vertex-centric models, Influence Analy-
sis Network-centric approach, Scalable Influence Analysis.

1 Introduction

The problem of finding dominant content flow trends in networks is an important prob-
lem in the context of online social and collaboration networks. In social networks, such
as Twitter and Facebook, every user posts messages, photos and comments to exchange
information with their neighbors in the network. The daily volume of content propaga-
tion in these networks is in the order of hundreds of millions of posts per day1. These
posts typically propagate as short phrases [12], topics [1], hashtags [2], or URLs [7]
in specific patterns on the underlying friend or follower network. Some of these posts
may go viral and reach millions of users within a few hours. The massive reach of these
flows may result in significant influence in online user behavior [21]. Therefore, it is
desirable to understand such viral information flows for online marketing, advertise-
ment and a variety of other applications. There are several recent works that attempt to
understand these viral information flows in terms of memes [11,12], cascades [13], and
events [2].

1 http://www.digitalbuzzblog.com/
facebook-statistics-facts-figures-for-2010/
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The existing literature on understanding information flows using cascades [11,12,13]
and memes [11,12] analyze a stream or a corpus of text documents where there is no
explicit network structure used for communication. For instance, the work in [13] de-
termines the cascade patterns from the temporal sequence of blog posts across multiple
blogs. Here, the term cascade, refers to a phenomenon in which a topic is adopted by
a blog and further propagated through the creation of hyperlinks. Note that there is
no underlying network structure between the bloggers. On the other hand, online social
networks use an explicit network structure, such as follower or friend network, to propa-
gate the information. Therefore, understanding the patterns of propagation in a network
structure is likely to yield superior insights than observing patterns from general pop-
ulation. In several other related works, the flow of information is typically analyzed in
the absence of the underlying network structure [18,19].

Another disadvantage of existing approaches [7] is that they ignore the life-span of
influence due to information flows, which is very relevant in the social context. For
example, a message posted on a Facebook wall may not even be available on the first
page after a day elapses. If a receiver of that message re-posts the same message after
a week, then it is less likely that the user was influenced by the original post sent to his
wall. As the life span is not considered, the existing methods produce a large number of
cascades as opposed to more active and meaningful ones.

Most of the existing approaches for mining information flows [18,19,11,12,13] can-
not handle large amounts of data, as their processing is centralized in a single server. We
propose a distributed approach using vertex-centric computational models [8]. In these
models, each vertex is a separate computational unit (available in a core or a machine),
and it result in a high level of parallelism. As we show in our experiments, our approach
is three orders of magnitude faster than existing state-of-the-art approaches. To the best
of our knowledge, our approach is the first work in this area and we are not aware of
any distributed or parallel information flow mining algorithms.

In this paper, we propose an efficient information FLOWExtractorR algorithm, called
FLOWER, to discover these information flow patterns. We establish the complexity
class of this problem, by showing the counting problem of all maximal information flow
patterns is #P-complete. In order to scale up to large networks, we propose a parallel
version called pFLOWER that runs on vertex-centric graph computational models [8].
In the experimental section, we show that our parallel method pFLOWER is faster than
the state-of-the art algorithms by up to three orders of magnitude. We also study the
effectiveness of the discovered information flows in the context of an influence analysis
application. Our approach consistently outperforms the popular baselines in terms of
precision, recall and F1 measure.

The paper is organized as follows. The remainder of this section discusses related
work. In the next section, we introduce the preliminaries for the problem of flow mining
in networks. Then we describe the flow mining algorithm and propose a parallel version
using a vertex-centric computation model. Finally, we demonstrate the efficiency and
effectiveness of our approach using multiple real-life data sets.
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1.1 Related Work

The problem of analyzing information flow has been studied using content influence
cascades [12,13,1]. Most of these work analyze the blogosphere, and there is no explicit
network structure over which users exchange information in the blogosphere. However,
in general, for social [2] and biological networks [10], there is an explicit network over
which the flow of information occurs. Using this structure is important, because it en-
hances the discoverability of the relevant information flow patterns. In addition, informa-
tion cascades have a limited life span, and therefore the use of the information life-time
of the cascade helps in finding more active cascades caused by intrinsic social network
influence rather than external sources [16]. In some recent works [15,4] an instance of
the Independent-Cascade (IC) model is built using the log of past propagation in the
network. The aim of these techniques are to sparsify the network for scalability, while
our intent is to extract the dominant information flow patterns. There are several other
works that use only a network structure to compute social centrality of the users [22].

Content propagation in online media is usually tracked as short and distinct phrases,
referred to as memes [12,1]. Memes tend to have a broader stable vocabulary, that mimic
a slowly evolving genetic signature over time. The key idea of this work [12] is to un-
derstand how the short phrases evolve over time while the several words of the phrase
are intact during the entire period of propagation. However, there is no notion of track-
ing content flows in a network, while it does track how content evolves over time. There
are several other papers that tend to capture such bursty topic behavior over time, based
on different notions of topic identification [23]. A more detailed survey of evolution of
content in network structures can be found in [3].

In a recent experimental study [11], the diffusion of stories in social networks, such as
Twitter and Digg, are analyzed using the evolution of the number of fan votes in general
population and in a network structure. More specifically, this work confirms the impor-
tance of using network structure in such studies. There are other recent works that study
the distribution of URL cascades [7] in Twitter and propose a prediction model to predict
the number of mentions of an URL after its posting. However, none of these related work
track the dominant content flow information in a network structure over time.

2 Information Flow Mining Model

We define the information flow mining problem and related information flow properties
in this section.

Let G = (V,E) be the relationship network containing the node set V and the
edge set E. Each actor ai ∈ V performs a number of content-based actions such as
sending tweets or posting wall posts. We denote a content posted as Uj , where j is
index of the message, and the time of its posting as tk. The time points are ordered
using their index k = 1 . . . T , such that tk < tk+1. A message Uj can be propagated
by different nodes at the same time in different parts of the network, and not all nodes
may necessarily propagate all messages. Also, all nodes need not propagate a message
at every time point. Consider Figure 1, where an example network G and a table of
different messages propagated are shown. The node C does not propagate message U4,
and none of the nodes propagate a message at time point t4.
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Fig. 1. An illustrative example showing different messages U1, . . . , U5 propagated at different
times t1, . . . , t5 from different actors (A, B, C, and D) in a small example network

Definition 1 (Flow Path). A flow path s in the network G = (V,E) is a sequence of
distinct actors 〈a1, . . . , ak〉, where each actor ai ∈ V propagated the same content Uj

at least once.

Each information flow path s is a sequence of distinct actors a1, . . . , ak, who are
involved in multiple content interactions over a period of observation. Note that there
are no cycles in a single flow path as it contains a distinct set of actors. The purpose
of our approach is to determine such frequent information flow paths, where certain
content flows may occur frequently in specific paths of the network. In this paper, we
assume that flow patterns are sequential paths in the network, and a general cascade can
be constructed by overlaying multiple such sequential paths. In order to distinguish the
interesting flow patterns, we define several flow properties. These flow properties ensure
the interestingness in terms of network structure, causality, frequency and life-time.

Property 1 (Network Structure). A flow path s = 〈a1, . . . , ak〉 satisfies the network
structure property in the network G = (V,E), if for each r ∈ {1 . . . k − 1}, an edge
exists between ar and ar+1 in E.

By Property 1, we consider only the information flows that adhere to the network
structure, which also has the effect of focussing on relevant patterns. As in social net-
works, similar nodes are related to each other by a neighboring relationship, such as a
friend or a follower, and the content recommendation in a social network is often guided
by such relationships.

Property 2 (Causality). A flow path s = 〈a1, . . . , ak〉 satisfies the causality property in
the network G = (V,E), if the actors in the flow path propagate a message Uj at time
points t1 . . . tk where tm < tm+1, ∀m = 1 . . . k − 1.

The causality2 property defines the interestingness of a flow pattern in terms of the
time of propagation. An actor ai broadcasts a message at time tk and the neighbor aj

2 The notion of “causality” in this paper is only based on temporal ordering, and no explicit
mechanisms of cause and effect are assumed. Clearly, such temporal orderings might also
occur by chance.
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broadcasts the same message at time tk+1, then a valid flow must only consider the path
from ai to aj and not the other way around, as ai may have caused aj to transmit the
message.

Property 3 (Frequency). A flow path s = 〈a1, . . . , ak〉 satisfies the frequency property
in the network G = (V,E), if at least f distinct messages U1 . . . Uf are propagated
over the flow path s.

A sequence of actors who share a neighbor relationship in the network and post a
particular set of content-tokens in a temporal order is indicative of a signal of influ-
ence along the flow path. This influence signal is especially strong when actors behave
in a similar way multiple times over many (possibly different) pieces of content. The
frequency property captures the strength of such influences in a flow path through a
pre-specified frequency level. The frequency parameter f is the count of the number of
such repeated flows.

Property 4 (Life-time). A flow path s = 〈a1, . . . , ak〉 has a valid life-time period τ , if
the message propagatedUj at time points t1 . . . tk is such that ti−ti−1 ≤ τ, i = 2 . . . k.

A post on a Facebook wall is not available forever for further propagation due to new
incoming posts [11], or due to limited user attention span [24]. The notion of life-time
is designed to model such real-life situations. All the aforementioned definitions can be
generalized to multiple messages.

The problem of information flow mining is to extract all valid flow paths s that
satisfy these flow properties. In the following problem definition, we denote the set of all
messages Uj and the corresponding time stamps tj sent by each actor ai as Ti. The size
of Ti is denoted as mi. For example, in Figure 1, message table TC of actor C contains
four messages and time-stamp pairs: TC = {(U1, t3), (U2, t2), (U3, t1), (U5, t1)}.

Problem 1 (Information Flow Mining). Given a graph G = (V,E), a set of mi mes-
sages propagated by each actor ai, and their corresponding time-stamps denoted by
Ti = {(Uj, tj)j=1...mi}, the problem of information flow mining is to extract the set of
all valid flow paths F = {s1, . . . , sp} that satisfy the network, causality, frequency, and
life-time properties (Properties 1-4).

Our approach provides a generic framework to analyze information flows in a va-
riety of domains such as social networks, fMRI brain networks, or Internet networks.
The messages propagated in these networks correspond to user posts, molecular inter-
actions or data packets, respectively. With appropriate functions to compare and track
similar signals across multiple nodes, our approach can be easily generalized to other
domains [10]. However, in this paper, we restrict our attention to propagation of textual
content as information signals over discrete time points.

3 Information Flow Mining Algorithm

A major challenge in information flow mining is that of incorporating the impact of net-
work structure directly into the flow mining process. The key issue here is that a set of
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users who propagate the same message at approximately the same time period provide us
with very little knowledge about their actual path through the network. Typically, when
a message is popular, it might be independently propagated by users in many different
regions of the network. Therefore, how does one “connect up” the propagation of the dif-
ferent users over the entire network? It is here that the linkage information between the
users comes in handy. A message is assumed to have been propagated from one user to
the other, only if two neighboring users propagate the same message within the life-time
constraint. Therefore, an efficient algorithm for mining the information flow patterns
needs to integrate the sequences of user posts, the network structure, and the temporal
aspects in a holistic way, to extract the relevant flow patterns over the network structure.

One way of mining the patterns is to extract the flow paths in a content-centric fashion.
Consider a messageUj sent by a set of actors a1, a2, ..., ak. These actors might have sent
these messages at different time points. One can order the actors in increasing temporal
order and extract all subsequences of actors that appear in at least f such messages. We
can then eliminate all flow paths that do not have a valid edge in the network. In this ap-
proach, we first use the content to create the flow paths and finally we apply the network
validity property. The main disadvantage of this approach is that the number of possi-
ble subsequences of actors in general population is very large. Therefore, it is prudent
to use the network structure to eliminate such unnecessary candidates directly during
the mining process. This idea is the key ingredient of the network-centric approach. In
this approach, the message table Ti for the actor ai is sent to each of its neighbor aj
iteratively. Each neighbor checks for validity and lifetime constraints by comparing the
table Ti and Tj . If there are at least f messages that survive after the validation, the mes-
sage is sent to the neighbors of aj and so on. The advantage of this approach is that the
sparsity of the network reduces the number of candidate flow paths dramatically [20].
An added advantage of the network-centric approach is that it can be easily parallelized
using vertex-centric computational models. This aspect will be addressed in Section 4.

The pseudocode for our algorithm is shown in Algorithm 1. We refer to our approach
as FLOWER, which stands for FLOW ExtractOR. The algorithm first extract the actors
that have at least f distinct messages in their respective message tables (lines 2-4).
Then, the information flow paths originating at each actor ai are extracted by calling
a recursive procedure FLOWPROP. This procedure extracts the messages that support
causality and life-time property, compared to the incoming message table Tseq . If the
number of messages in new supporting message table is at least f , then all its neighbors
are iteratively explored (lines 4-5). If there are no neighbors for the actor ai, the message
is added to set F . This if condition ensures that the flow paths added to F are maximal
in nature; in other words, a flow path is added only when none of its sub-sequence flow
paths are already in F . One can ignore lines 6 and 7 in FLOWPROP to extract all paths
that are not only maximal.

3.1 Complexity Analysis

In this section, we show that the counting version of the information flow mining prob-
lem is #P-complete. For this purpose, we reduce the maximal frequent sequence mining
problem that is #P-complete [25], in polynomial time to the problem of mining infor-
mation flow patterns (Problem 1). The notion of maximal information flow patterns is
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Algorithm 1. FLOWER
Input: G = (V,E): Relationship network; Ti: message table for actor ai; f : frequency;

and τ : life-time;
Output: F : Set of flows satisfying all the properties

1 Initialize V ′ and S to empty set
2 for each ai ∈ V do
3 if number of distinct messages in Ti ≥ f then
4 Add ai to V ′ and F

5 for each ai ∈ V ′ do
6 FLOWPROP({φ}, Ti, ai, Ti, τ, f, V

′, F )

7 return F ;

Algorithm 2. FLOWPROP
Input: seq: current flow path; Tseq : message table supporting the current flow path; ai:

current actor; Ti: message table for actor ai; τ : life-time; f : frequency; V ′:
frequent actors set; F : frequent flows discovered;

1 Tnew = Extract messages that satisfy causality and life-time property from Ti and Tseq

2 if number of messages in Tnew ≥ f then
3 Γi = Get neighbors of ai not in current flow path seq and in V ′

4 for each aj ∈ Γi do
5 FLOWPROP(〈seq ∪ {ai}〉 , Tnew , aj , Tj , τ, f, V

′, F )

6 if Γi is empty then
7 Add 〈seq, {ai}〉 to F

to retain only the longest frequent flow paths in the set F of Algorithm 1, beyond which
the flow path does not satisfy one of the frequency, network, or lifetime constraints.

Theorem 1. [25] LetD be a database of sequences with m transactions. The problem
of counting the number of maximal f -frequent subsequences in D, where 1 ≤ f ≤ m
is #P-complete.

Let Ti be the message table of the actor ai in network G = (V,E). We define a
function Q that converts the databaseD to individual user message-tables T1, . . . , T|V |.

Definition 2 (Function Q). Let Q : D → {T1, . . . , Tn}, where Ti is the message table
of actor ai. The ith transaction maps to a unique message id Ui. For each item k in
the ith transaction of D, a corresponding set (Ui, γ(k, i)) is added to Tk by Q, where
γ(k, i) denotes the first occurrence of actor k in the ith transaction of D.

The running time of function Q for a database D with m transactions and n items is
O(mn). Let SD(f) be the set of maximal frequent sequences for support f for database
D. Let F (f,G, τ) be the set of all maximal frequent flows discovered for the infor-
mation flow mining problem, as described in Problem 1, for support f , graph G and
lifetime τ .
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Lemma 1. All maximal frequent sequences of set SD(f) are present in F (f,G, τ),
when G is complete and τ = 0.

Proof: Consider a path P that is a valid maximal frequent flow for τ = 0 and the
underlying graph G is complete. When τ = 0 all valid paths in the graph G satisfy
the lifetime constraint, because all lifetimes are non-negative. Also, given a complete
graph any permutation of n nodes in the graph is a valid path. As the path P is frequent,
there are at least f messages flowing along path P . Hence, the actors in that path must
be appearing in that order in at least f such transactions in database D, as per the
function Q. Thus, the path P must be a frequent sequence in the database D. So every
f -frequent flow path P that is a valid for τ = 0 and for a complete graph G is present
in SD(f). Because the path P is maximal, there cannot exist a longer path in set F that
contains some actor ar after P. If this is the case, per function Q, there cannot also exist
a minimum of f transactions where P followed ar is present. �

From Lemma 1, it is evident that set F (f,G, τ) can be extracted from set SD(f) by
pruning the frequent sequences with lifetime lower than τ . For sparser graphs, several
paths are invalid and hence several sequences are removed. Because the pruning process
results in a much smaller set F compared to the original set SD , the complexity of
mining maximal frequent sequences acts as an upper bound on mining sets of maximal
frequent information flows.

Theorem 2. The problem of counting all maximal flow patterns in the information flow
mining problem is #P-complete.

Proof: The maximal sequence mining problem can be reduced to an equivalent maximal
information flow mining problem in two steps: (a) converting the database D using
function Q (see Definition 2) into actor level message tables and (b) create a complete
graph G. The computational complexity of function Q is O(mn) and the complete
graph creation is polynomial in n and the total time required is O(mn + n2). When
n >> m, the total complexity is polynomial in n and when m >> n it is polynomial
in m. In either case, the maximal frequent sequence mining problem can be reduced
to maximal information flow mining in polynomial time in the size of the sequence
databaseD and hence it is #P-complete. �

4 Accelerating FLOWER

There are several computational challenges associated with the flow mining problem,
which can affect the performance of the FLOWER algorithm presented in Section 3.
While FLOWER is designed to be inherently efficient because of careful network-
centric pruning, the problem itself can sometimes be fundamentally intractable for large
networks. For example, in a completely connected graph, traversing every possible ac-
tor sequence from every source vertex has O(|V |!) complexity. This is, of course, not
true in most real networks, where the linkage structure is sparse and not all actors send
the same set of messages at the same time. Nevertheless, it is still possible to envision
scenarios, where the FLOWER approach might be undesirably slow for certain param-
eter settings (such as low values of f and high values of τ ). Because these challenges



138 K. Subbian et al.

are inherent to the problem at hand, it is natural to explore whether parallelization can
be used to accelerate FLOWER.

There are several ways to parallelize the FLOWER algorithm. In Algorithm 1, line 6
executes the subroutine Flowprop for each vertex v. This can be executed in parallel, as
each call is independent of the other. Similarly, each of the flow paths in the recursion
tree from root to leaf is independent of one another and is therefore easy to parallelize.
In these approaches, the parallelism is performed at a path-level, where each path can
be treated as a independent computational unit. In path-wise parallelization, however,
care must be taken to reduce redundant computations at the parent nodes, as they form
common prefixes in different flow paths.

The highest level of parallelism, however, can be achieved if we can parallelize at the
vertex level, where each vertex can be treated as a separate computational unit that can
be executed in parallel. This is typical in vertex-centric computational models, such as
GraphLab [14] or Pregel. As seen earlier, our sequential approach propagates messages
between the neighboring vertices, and it naturally fits into this framework. We discuss
a brief overview of the vertex-centric computational models in the next couple of para-
graphs.

In vertex-centric computational models, any vertex needs to perform three main op-
erations: Gather, Apply, and Scatter. The Gather operation receives messages through
the incoming edges of a vertex, the Apply operation processes the incoming messages
and the Scatter operation distributes the processed messages to the neighbors via out-
going edges. Due to these three operations, vertex-centric computational abstractions
are popularly referred to as the GAS framework.

The main problem with the GAS framework is in scenarios, where they deal with
natural graphs having power-law degree distribution. Such graphs have very few nodes
with extremely high degree and the remaining nodes have very small degree [8]. Hence
balanced distribution of computational load, storage and communication is extremely
challenging in this framework and to address this issue new frameworks, such as Power-
Graph [8], have been developed. For a more detailed review of the PowerGraph, please
refer to [8].

Algorithm 3. Scatter
Input: icontext type: context, vertex type: current vertex, edge type: edge

1 if edge.destination node does not have f words in its message table then
2 return

3 for each sequence to send in current vertex do
4 if sequence to send in current vertex has the destination vertex Id then
5 continue

6 if edge.destination node satisfies all properties (1)-(4) then
7 add the destination id to sequences to send and copy it to edge data

In the distributed version of our algorithm, each vertex contains three pieces of meta-
data: its message table (Uj , tl)j=1...m, frequent flows ending at that vertex, and mes-
sages to forward to neighbors in the next iteration. Each edge acts as a channel that
carries the message from a source to a destination vertex. The message carried by each
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Algorithm 4. Apply
Input: icontext type: context, vertex type: current vertex, gather type:

incoming object
1 for each sequence in the incoming object.sequences do
2 Add sequence to the current vertex saved sequences list
3 Add sequence in to sequences to send array for scatter method to pick up

4 if (context.iteration <= max iterations) && (number of sequences to send in
current vertex > 0) then

5 schedule current vertex for next iteration

Algorithm 5. Gather
Input: icontext type: context, vertex type: current vertex, edge type: edge
Output: gather type: gathered obj

1 return received sequences from edge data

Algorithm 6. Gather Operator+=
Input: gather type: that
Output: gather type: ret obj

1 if this.incoming sequences has no sequence then
2 copy that.incoming sequences to this.incoming sequences
3 return this

4 else if that.incoming sequences has no sequence then
5 return that

6 else
7 for each seq in that.incoming sequences do
8 this.incoming sequences.push back(seq)

9 return this

edge has a set of flow objects, where each flow object contains a flow sequence and
a set of word messages that support the sequence. Note that we do not need to carry
any temporal information along the edges, because it can be reconstructed at each ver-
tex based on the set of words that support the flow sequence. This approach provides
significant savings in time and space. We also optimize the computation by initializing
only the vertices that have message table of length at least f .

During the Scatter phase, each edge is invoked to scatter a message from source to
the destination vertex. Each source vertex does an advanced lookup of the destination
vertex message table, to verify the possibility of extending the flow by adding the des-
tination node. If any of the properties (1)-(4) fail, then the message is not scattered to
the destination. The pseudocode for the Scatter subroutine is listed in Algorithm 3.

In the Gather operation, each vertex is invoked to gather the messages from the
incoming edges. This step eventually appends all the incoming flows, one after the
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other, from different edges into a single incoming flow object containing several flow
sequences and corresponding word signals. In GraphLab the operator+= appends all
the sequences from each edge and the Gather function merely copies the reference
of data from each edge and passes it to the operator. The pseudocode for the Gather
subroutine and operator+= are provided in Algorithm 5 and Algorithm 6, respectively.

Each vertex during the apply phase saves the incoming sequences (from the Gather
operation) in its own frequent sequence table. As the Scatter phase does advance lookup
and scatters only valid sequences, the apply phase can save these sequences with no
additional validations. Each vertex then schedules itself for the next iteration, as there
could be potential extensions of recently added frequent flow sequences. Also, if one is
interested in sequences of length not more than L, then the vertex can stop scheduling,
if the current iteration number is greater than L. The pseudocode for the Apply routine
is listed in Algorithm 4.

The main advantage of the GraphLab framework is that it is a unified framework for
multi-core and distributed computation. Graphlab can use multiple cores on a single
multi-core server, and if that is not sufficient it can scale to multiple servers. There is
no additional coding or algorithmic changes required to switch from one infrastructure
to another. We refer to our parallel version of FLOWER as pFLOWER.

5 Experimental Results

We evaluate the efficiency of our algorithm in terms of runtime of the algorithm. The im-
plementation of the algorithm was done using C++ and the runtime was evaluated on a
Linux server with Ubuntu 10.04 OS, 24GB RAM, 24 cores with each running 2.67GHz
Intel Xeon processor. We used Graphlab version 2.1 [8] for our parallel pFLOWER
evaluation.

5.1 Data Sets

We used two data sets: the DataBase List of Publications (DBLP) and the US Patent
Office (USPTO) database. These data sets are described below in detail. We are inter-
ested in extracting the information flow patterns in the co-authorship network of both
these data sets. In DBLP, for instance, the “mining” keyword may propagate across
a sequence of authors forming an information flow path. We use all the words in the
abstract of the papers and patents to generate the messages. The time-stamp of the doc-
ument was used to generate the message time-stamp. The co-authorship network was
used as the underlying network of communication.

DBLP Data Set: We downloaded the publicly available DBLP data set3, and extracted
the year of publication, abstract and authors for each of the published documents. We
removed entities with multiple identities using the data available in the DBLP website
4. The cleaned data set had 444,406 authors and 1,572,277 papers. We stemmed the
words, removed stop words, and stripped off punctuations in the abstract. The resulting

3 http://arnetminer.org/citation
4 http://dblp.uni-trier.de/xml/

http://arnetminer.org/citation
http://dblp.uni-trier.de/xml/
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dictionary was 600,718 words. All the publications were between the time-period of
1945 to 2011. We used publication abstracts to generate the content tokens. The network
was constructed using the co-authorship relationship with 444,406 authors (nodes) and
1,280,168 edges.

US Patent Data Set: The United States (US) patent database is publicly available for
access from the US Patent Office (USPTO)5. We downloaded the following set of at-
tributes for all patents granted from June 21, 1977 to December 28, 1999: Patent Num-
ber, Granted Date, Abstract, Inventors, Assignee, Legal Representative, and Application
Number. After cleaning the data set of documents containing missing meta-information,
a total of 1,813,616 patents remained in the patent database. We used the patent abstract
to generate the content tokens. The co-authorship network for the US Patent database
contained 1,310,057 nodes and 2,444,474 edges.

5.2 Evaluation Approach

We measured the efficiency in terms of the running time of the algorithm. We evalu-
ate the scalability of the distributed approach by varying the number of cores used for
pFLOWER. We used the PrefixSpan6 [17] sequence mining algorithm followed by post-
processing of the output sequences to apply the network and life-time properties. The
input to PrefixSpan is a set of transactions, where each transaction corresponds to a mes-
sage Uj and the temporal order of the actors ai who propagated that message (as ordered
singleton itemsets). The output of PrefixSpan is a set of author sequences (correspond-
ing to information flow paths), except that they do not satisfy the network validity and
lifetime constraints. This is checked explicitly by using a constant time look-up table for
each author and message pair. The resulting output of PrefixSpan, after post-processing
yields the same output as our algorithm. Therefore, the running times of the methods
can be meaningfully compared. We also compared the running time of our sequential
version of the algorithm (FLOWER) against our parallel version (pFLOWER).

5.3 Results

We compared the running time of PrefixSpan, FLOWER and pFLOWER. However, in
Figure 2, we could not plot PrefixSpan running times as they were extremely large.
Therefore, we list the running times of PrefixSpan separately in Table 1. Furthermore,
we are unable to show the results for several values of f ≤ 450, because PrefixSpan did
not complete within a day. On the other hand, as evident from Figure 2, both FLOWER
and pFLOWER completed in less than a couple of minutes over most parameter settings.

We compared the running times of FLOWER and pFLOWER algorithm, in Fig-
ures 2(a) and (b). As the number of words (f ) required for the frequency property
(Property 3) decreases, the number of possible flow paths increases exponentially. The
FLOWER approach explores each of these paths sequentially, resulting in an exponen-
tial complexity with path length. On the other hand, the parallel algorithm pFLOWER

5 http://uspto.org/
6 http://www.cs.uiuc.edu/homes/hanj/software/prefixspan.htm

http://uspto.org/
http://www.cs.uiuc.edu/homes/hanj/software/prefixspan.htm


142 K. Subbian et al.

Table 1. The running time (seconds) for the
PrefixSpan baseline for DBLP and USPTO
data sets. For an f value smaller than 450,
PrefixSpan ran for more than a day (>86400
seconds) and did not complete.

DBLP USPTO
f Runtime (secs.) f Runtime (secs.)

480 36185.52 470 20905.63
540 16284.14 530 12311.91
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Fig. 2. The two plots in the top row show the running time measurements for the DBLP and
USPTO dataset by varying f . The two plots in the bottom row show the scalability analysis for
the DBLP and USPTO data sets by varying the number of cores.

scales extremely well at very low f values and the running time remains extremely
small throughout the entire range of f values. The pFLOWER algorithm performs up to
three orders of magnitude faster than PrefixSpan, and two orders of magnitude faster
than FLOWER at low f values. These observations are consistent in both DBLP and
USPTO data sets as shown in Figures 2(a) and (b), respectively. These observations
also highlight the importance of a network-centric approach for computing information
flow paths.

We evaluated the scalability of the pFLOWER algorithm in terms of the number
of cores in Figures 2(c) and (d). The figure shows that the running time is roughly
inversely proportional to the number of cores used for computation. In other words,
linear speed-up is achieved in terms of the number of cores. It also demonstrates the
efficiency of vertex-centric computational models in scaling up scenarios where se-
quential approaches are computationally infeasible. In this case, 14 cores were suffi-
cient to complete the flow mining algorithm in less than a minute for low values of f ,
whereas straightforward sequential approaches do not terminate in reasonable running
times (see Table 1). Thus, the proposed approach can be used to find information flows
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in networks with large number of activities and interactions, which may otherwise be
computationally intractable using a single core.

6 Influence Analysis: An Application

Information flow patterns are sequences of actors who propagate at least f messages
repeatedly preserving the temporal order in each propagation. These flow patterns de-
note the flow of influence along the network paths. The nature of influence depends
on the nature of underlying network relationship or interactions. In DBLP and USPTO
data set, we considered the co-authorship network and the nature of influence in these
data sets are through co-authorship interactions. For instance, a flow path 〈a, b, c〉 de-
notes a word w used by author a, followed by b, and then c. When a used the word
w because a and b have a co-authorship relationship, b may have been influenced by
the word w through a and propagated it further to its neighbors. Similarly, c may have
been influenced from b and propagated the word w to its neighbors. In a sense, for the
example sequence, a is the leader and b and c are its followers. Similarly, b is the leader
of the sub-sequence 〈b, c〉 with c as its follower. For each actor, we can compute the
total number of followers (in this way) across all the flow patterns and we refer to this
as the (co-authorship) influence score of that actor in the (co-authorship) network. The
actor with the highest influence score in this DBLP or USPTO co-authorship network
denotes the most influential co-author.

One might argue that using centrality measures or popular influence mining algo-
rithms (such as PMIA [5], DegreeDiscountIC [6]) in a static co-authorship network
are sufficient to measure the influence. We evaluate this hypothesis by comparing the
influential co-authors found using the popular influence analysis algorithms such as
degree-centrality, PageRank, PMIA [5] and DegreeDiscountIC [6] against the influ-
encers found using the flow patterns. As the notion of influence has no absolute ground
truth (similar to intelligence or trust), we use the author citation counts as a proxy for
author influence. Here, we assume that an author has very high citation count if the
author has considerable influence in the area. We computed the precision-at-K (P@K),
precision-recall, and the F1 score for the top-500 influencers found by each method
(compared against the ground truth).

6.1 Evaluation Baselines

Let us now describe the baselines we used for evaluating our hypothesis. PMIA [5]
is the prefix excluded extension of Maximum Influence Arborescense model. We used
the weighted cascade model proposed in [9] to compute the edge probabilities for this
approach. The degree-centrality approach uses the maximum total out-degree and De-
greeDiscountIC [6] heuristic developed for the uniform IC [9] model with propagation
probability p = 0.01. For PageRank, the restart probability was set to 0.15 and the
stopping criterion, which is based on the L1 norm difference between two successive
iterations, was set to 10−7. We use FLOWER to denote the influencers found using the
information flow-based approach.
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6.2 Evaluation Results

Our evaluation results are shown in Figure 3. The figure clearly shows that the order
of baselines are not consistent in both data sets. The first- or second-order centrality
measures might work in some data sets, while the information diffusion based method
might work in others. But the flow-based techniques (like FLOWER) capture the lead
authors whose ideas propagate dominantly and later gets picked up by other highly cited
authors, resulting in high precision and recall compared to baselines. Moreover, our ap-
proach works consistently well in both data sets. In Figures 3(a) and (d), the precision
gradually reduces as the top-K increases. This is because the number of authors in the
ground truth reduces significantly as K increases. However, our method does not sud-
denly drop unlike the baseline methods, such as PMIA. Our approach is very stable and
decreases gradually. As evident from Figures 3(b) and (e), the precision and recall of
our methods are considerably better than the baselines. In terms of the F1 measure (see
Figures 3(c) and (f)), our approach performs better than baselines over all values of K .
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Fig. 3. The P@K, P-R and F1 measure plots for DBLP and USPTO data sets

7 Conclusions

In this paper, we proposed an information flow mining problem with several desired
properties. We developed a sequential version of the algorithm and established that the
computational complexity of this problem is #P-complete. In order to scale for large
networks, we described a parallel algorithm using vertex-centric computational models.
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Our parallel algorithm provides three orders of magnitude scale up over the state-of-the-
art and with an increasing advantage with greater number of cores. Finally, we showed
the effectiveness of the discovered flow patterns using an influence analysis application.
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Abstract. Online social networks like Facebook recommend new friends
to users based on an explicit social network that users build by adding
each other as friends. The majority of earlier work in link prediction
infers new interactions between users by mainly focusing on a single
network type. However, users also form several implicit social networks
through their daily interactions like commenting on people’s posts or
rating similarly the same products. Prior work primarily exploited both
explicit and implicit social networks to tackle the group/item recom-
mendation problem that recommends to users groups to join or items
to buy. In this paper, we show that auxiliary information from the user-
item network fruitfully combines with the friendship network to enhance
friend recommendations. We transform the well-known Katz algorithm
to utilize a multi-modal network and provide friend recommendations.
We experimentally show that the proposed method is more accurate in
recommending friends when compared with two single source path-based
algorithms using both synthetic and real data sets.

Keywords: link prediction, friend recommendation.

1 Introduction

Web 2.0 technologies and especially social networking services have gradually al-
lowed users to form different types of interactions, like sharing and rating online
items, but primarily to form online friendship networks. For example, online so-
cial networks (OSNs) such as Facebook have become popular, since they enable
users to share digital content and expand their social circle by recommending
new friends, based on their explicit friendship network. Moreover, social rating
networks (SRNs) like Epinions and Flixter mainly focus on enabling users to
share opinions and rate online items (e.g. posts and movies, respectively), but
also to articulate an explicit network of trust. Both OSNs and SRNs constitute
multi-modal social networks (MSNs) since they allow people to form simulta-
neously more than one type of explicit and/or implicit networks. In Figure 1c,
we demonstrate an example of an MSN, where thick black edges connect users
in an explicit friendship social network and thin edges connect users with items
in an implicit user-item social network. In MSNs, explicit social relationships
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U1

U2 U3

U4

(a)

Users

U1

U2

U3

U4

Items

I1

I2

(b)

Users

U1

U2

U3

U4

Items

I2

I1

?

?

(c)

Fig. 1. Example of (a) Unipartite, (b) Bipartite and (c) Multi-modal Social Network

among users co-evolve simultaneously with their interactions with several digi-
tal items (e.g. co-participating in groups, co-commenting on posts, co-rating on
products etc.). MSNs have recently attracted a lot of research attention. For
example, an interesting research question is how to recommend new friends to
users by combining their existing social circle with the auxiliary information de-
rived from their user-item network. The main goal is to enhance the accuracy
of the future friendship prediction by using also the user-item network. Notice
that available information from the bipartite user-item network is crucial due to
possible absence of information from the friendship network.

There has been extended research [1,11,12] addressing the link prediction
problem within the OSNs, by only exploiting single-source information (i.e. the
unipartite user-user friendship network). However, little research has focused on
exploiting multiple sources of information in predicting links within MSNs. Lu
et al. [15] proposed a supervised framework, by incorporating three real implicit
networks (i.e. co-author, co-citation and co-reference) to predict links in the co-
author network. Vasuki et al. [22] exploited available information derived from
both explicit and implicit social networks such as Orkut and Youtube to pro-
vide users with group recommendations. They have tackled the group/affiliation
recommendation problem by employing both latent factor and graph proximity
models, whereas the latter turned out to be the most effective.

In this paper, we propose a framework that aims to boost the friend recom-
mendation task. Unlike previous works that primarily focused on recommending
affiliated groups to users [22], we recommend new friends to users. But to do this,
we look simultaneously into the user’s explicit friendship and user-item implicit
network. Our approach, elaborates one combined form of Katz algorithm [11] into
an MSN context. We first utilize the unipartite friendship network and consider
human chains of varying lengths corresponding to paths of useri −→ userj and
useri −→ userj −→ userk forms. Then, we expand our approach to an auxiliary
bipartite user-item network where we consider paths of this type useri −→ itemj

−→ userk. This combined Katz approach allows us to provide recommendations in
a unified level, traversing new paths for users to connect between and through
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two discrete networks: user-user and user-item. Our experimental evaluation
provides evidence that the usage of auxiliary information from the bipartite
user-item network succeeds in enhancing the friend recommendation task.

The rest of this paper is organized as follows. Section 2 summarizes the related
work, whereas Section 3 briefly reviews preliminaries in graphs and presents
a motivating example of the proposed approach. In Section 4, we present the
experimental protocol and our results. Finally, in Section 5 we further discuss
the proposed approach and possible directions, while Section 6 concludes this
paper.

2 Related Work

The research area of link prediction in social networks tries to infer which new
interactions among members of a social network are likely to occur in the near fu-
ture. There are two main approaches [12] that handle the link prediction problem.
The first approach is based on local topological features of a network, focusing
mainly on the structure of the nodes. There is a variety of local similarity mea-
sures such as common neighbors, Jaccard’s coefficient, Adamic/Adar index [2],
Friend of a Friend (FOAF) algorithm [4] and Preferential Attachment [12], which
compute the proximity between a potential pair of nodes. These similarity mea-
sures employ local features of the network like the number of common neighbors
or the total number of connections and several other combinations.

The second approach is based on global features, detecting the overall path
structure in a network. There is a variety of global approaches, such as Random
Walk with Restart algorithm [18] and Katz status index [11], SimRank and
PageRank [12], which have been used to compute the similarity between a pair
of nodes. The Katz status index is a proximity measure that directly sums over
the collection of all different length paths that connect two users. An attenuation
factor weights the contribution of the paths to the overall similarity according
to their length. Symeonidis et al. [20] proposed the FriendTNS algorithm to
provide more accurate friend recommendations. They defined a transitive node
similarity measure in OSNs by taking into account local and global features of
a social graph. Finally, Scholz et al. [19] performed unsupervised random walks
for predicting links in user-user networks (i.e. co-author in DBLP).

Besides the aforementioned link prediction algorithms that are based solely on
graph structure, there are also other methods that exploit other data sources such
as messages among users, co-authored paper and common tagging. For instance,
Ido Guy et al. [10], proposed a novel user interface widget for providing users
with recommendations of people. Their people recommendations were based on
aggregated information collected from various sources across IBM (e.g. common
tagging, common link structure, common co-authored papers). Chen et al. [4]
evaluated four recommender algorithms (Content Matching, Content-plus-Link,
the FOAF algorithm and, SONAR) to help users discover new friends on IBM’s
OSN. Lo and Lin [13] proposed two algorithms, denoted as weighted minimum
message ratio (WMR) and weighted information ratio (WIR), respectively, which
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generate a friend list based on real-time message interaction among members of
an OSN. Cha et al. [3] collected and analyzed large-scale traces of information
dissemination in the Flickr social network. They experimentally derived that over
50% of users find their favorite pictures (i.e., pictures they bookmark) from their
friends in an OSN. TidalTrust [9] and MoleTrust [16] are also hybrid approaches
that combine the rating data of collaborative filtering systems with the link
data of trust-based social networks (i.e. Epinions.com) in order to improve the
recommendation accuracy.

There has also been research work that uses supervised approaches to ad-
dress the link prediction problem in multiple data sources. For instance, Lu et
al. [15] exploited topological features from four networks and applied a prob-
abilistic model to learn the network dynamics. They showed that supervised
approaches can improve link prediction tasks, suggesting that independency as-
sumptions and scaling issues should be further investigated. In addition, Davis
et al. [5] introduced a probabilistically weighted extension of the local-based
Adamic/Adar measure for heterogenous networks and showed that a supervised
approach based on topological features enhances prediction performance. Finally,
maximum-likelihood methods have been proposed to deal with the link predic-
tion problem providing insights about network organization that are difficult to
obtain from similarity-based approaches [14]. However, these methods presume
specific organizing principles of the network structure and suffer from scalability
and accuracy issues.

3 Preliminaries in Multi-modal Graphs

In this section, we present the most important notations with the correspond-
ing definitions and a motivating example based on Figure 1 that will be used
throughout the rest of the paper. The multi-modal graph of Figure 1c consists of
(i) friendships among users of an OSN and (ii) users’ affiliations with items shown
in Figure 1a and 1b, respectively. For our calculations, we will use well-known
representations, such as the adjacency matrix Au×u of friendship network, and
the user-item matrix Ru×w of the affiliation network.

3.1 Link Prediction Based on User-User Unipartite Graph

Let G be a graph with a set of nodes V and a set of edges E . Every edge is defined
by a specific pair of graph nodes (vi, vj), where vi, vj ∈ V . We assume that the
graph G is undirected and unweighted, thus the graph edges do not have any
weights, plus the order of nodes in an edge is not important. Therefore, (vi, vj)
and (vj , vi) denote the same edge on G. We also assume that the graph G can
not have multiple edges that connect two nodes, thus if two nodes vi, vj are
connected with an edge of E , then there can not exist another edge in E also
connecting them. Finally, we assume that there can not be self loop edges on G
(i.e. a node can not be connected to itself). A common graph representation is
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the adjacency matrix An×n, where n=|V| is the number of nodes in G. Therefore,
it has n rows and n columns labelled by the graph nodes. For an unweighted
non-multiple graph (such as G), the adjacency matrix values are set as Aij=1
if (vi, vj) ∈ E and Aij=0 otherwise. Following all previous assumptions and
definitions, the adjacency matrix of an undirected and unweighted graph such
as G, is a symmetric matrix with values 0 and 1, if two nodes are neighbors or
not, respectively. In addition, as there are no self loop edges, the main matrix
diagonal has zero values. The adjacency matrix of the friendship network for
our running example is depicted in Figure 2a. As we want to investigate the
relations with ?, we can assume that initially are equal to 0 (i.e. there are no
connections between the corresponding users). It is obvious from Figure 1a and
its corresponding adjacency matrix A of Figure 2a that U1 is connected with
U3 and U4, while U2 only to U3. In terms of social networks, U1 and U2 have a
“mutual” friend U3, since they are both connected to this user. Let’s assume in
our running example, that we want to propose new friends to user U4. There are
several global similarity measures [12] (i.e Katz status index, RWR algorithm,
SimRank algorithm, etc.) for capturing similarity of nodes in a network, which
are path-dependent. We apply the Katz status index, which defines the similarity
score between two nodes Vx and Vy , by summing over paths of varying length �
connecting Vx to Vy given by Equation 1:

Katzβ =

∞∑
=1

β|pathsVx,Vy
| (1)

where pathsVx,Vy
is the set of all length-� paths from node Vx to Vy, which are

computed by the adjacency matrix A. Note that the algorithm can also handle
directed graphs, but this not the case for friendship relationships. Katz status
index exploits that raising the adjacency matrix in the power of n produces the
number of n-paths connecting one pair of nodes. An attenuation factor β is in-
troduced to efficiently weight the contribution of different lengths of paths to the
final similarity score between node pairs. Very low values of β force long paths
connecting a pair of nodes to contribute much less to the final similarity score.
Thus, it is possible to limit the reach of the similarity measure by weighting
higher the shorter paths from node’s neighborhood. Both analytical and factor-
ized forms of Katz are given by Equation 2 when applied to the adjacency matrix

U1 U2 U3 U4

U1 0 0 1 1
U2 0 0 1 ?
U3 1 1 0 ?
U4 1 ? ? 0

(a)

U1 U2 U3 U4

U1 0 0.16 0.49 0.43
U2 0.16 0 0.43 0.05
U3 0.49 0.43 0 0.16
U4 0.43 0.05 0.16 0

(b)

Fig. 2. Running Example: (a) Adjacency A and (b) Similarity Matrix of User-User
Unipartite Social Network
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A of Figure 2a:

Katz(A;β) = βA+ β2A2 + β3A3 + ... = (I − βA)−1 − I (2)

The identity matrix In is a n×n matrix of size n holding ones on the main
diagonal and being of the same size n as the adjacency matrix A. The attenu-
ation factor β should take values that can ensure series convergence and allow
the computation of the A−1 inverse matrix. Therefore, the β attenuation fac-
tor can take values β<1/λ, where λ is the largest absolute value among any
eigenvalue of matrix A [8,11]. We choose β equal to 1/(1+K), as L.Katz orig-
inally introduced [11] and Foster et al. [8] employed for the fast approximation
implementation, where K is the maximum row/column sum of A. This choice
satisfies the sufficient condition for the computations to fulfill (i.e. series con-
vergence) and secondly, allows the factor to adopt to each matrix, thus, to each
dataset. Back to our running example, we want to recommend new friends to U4.
Thus, we apply Katz algorithm to the unipartite friendship graph G, in order to
provide recommendations based on an induced similarity matrix. We compute
the Katz status index by applying Equation 2 to the adjacency matrix A of
Figure 2a. The attenuation factor β for matrix A is β=1/(1 + 2), equal to 0.33.
Notice that Katz calculates similarity between two nodes taking into account
paths of length �>1.

Firstly, the similarity between U4 and U2 is computed based on the unique
path that connects them 4→1→3→2, shown in Figure 1a. This path of length-
3 contributes a similarity score of 0.05 given in matrix of Figure 2b. For the
similarity between U4 and U3, there is only one path of length-2 (4→1→3) cor-
responding to a score of 0.16. The user-user similarity matrix entries of Figure 2b
capture the friendship relationships in the unipartite social network and its rows
show the “proximity” among users. There is a clear indication from the above
similarity matrix that U3 should be recommended as friend to U4 instead of U2,
with similarity value 0.16>0.05. Notice that the similarity score of (U1,U4) pair
is the highest observed matrix entry, but we do not recommend U1 to U4, since
they are already “friends” and it is not a new link.

3.2 Link Prediction Based on User-Item Bipartite Graph

Users can also form several implicit social networks through their daily in-
teractions like co-commenting on people’s posts, co-rating products, and co-
tagging people’s photos [22]. These implicit relations contain edges between two
types of entities (vertices in a graph), such as a user-item bipartite graph. Let
G′ = (V +W , E) be a bipartite graph with two sets of nodes V and W , and a
set of edges E . Every edge is defined by a specific pair of graph nodes (vi, wj),
where vi ∈ V denotes users set and wj ∈ W items set. Following the unipartite
adjacency matrix notation, we define the biadjacency matrix R corresponding to

bipartite user-item network as a new matrix B =

[
B11 B12

B21 B22

]
equal to

[
0 R
RT 0

]
,

where Rvi,wj = 1 if (vi, wj) ∈ E and Rvi,wj = 0 otherwise.
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We extend our running example by affiliating users with items, as depicted
in Figure 1b and the corresponding biadjacency matrix R of Figure 3a. Our
main task remains the friend recommendation for U4 by using this time only
the bipartite user-item R. Edges of R represent length-1 paths of from a user
Ui ending to an item Ij . By multiplying matrix R with its transpose RT , we
derive all length-2 paths of this form Ui→Ij→Uk, where users are connected
through items. We employ the Bn×n adjacency matrix of Figure 3b where block
B2

11(Ui, Uj) = R(Ui, Ij)×RT (Ij , Ui). If B
2
11(Ui, Uj) > 1, these two users are con-

nected with an implicit (i.e co-share, co-like, etc.) relationship with a potential
item. Katz algorithm is next applied to adjacency matrix B using Equation 3 to
obtain a new similarity matrix derived only from the bipartite user-item network.

I1 I2
U1 1 1
U2 1 1
U3 0 1
U4 1 0

(a)

U1 U2 U3 U4 I1 I2
U1 0 0 0 0 1 1
U2 0 0 0 0 1 1
U3 0 0 0 0 0 1
U4 0 0 0 0 1 0
I1 1 1 0 1 0 0
I2 1 1 1 0 0 0

(b)

U1 U2 U3 U4 I1 I2
U1 0 0.18 0.09 0.09 0.36 0.36
U2 0.18 0 0.09 0.09 0.36 0.36
U3 0.09 0.09 0 0.01 0.04 0.31
U4 0.09 0.09 0.01 0 0.31 0.04
I1 0.36 0.36 0.04 0.31 0 0.19
I2 0.36 0.36 0.31 0.04 0.19 0

(c)

Fig. 3. Running Example: (a) User-Item R, (b) Adjacency B and (c) Similarity Matrix
of Bipartite Social Network

Katz(B;β) = βB+ β2B2 + β3B3 + β4B4 · · · =
∞∑
=1

βB (3)

The odd factors of Equation 3 do not contribute to the similarity among users
denoted in B11 block, because they represent paths ending to items (we could
exclude them from the equation). Back to the running example, we aim to rec-
ommend friends to U4, thus we calculate its similarity with U2 and U3. We
apply Katz algorithm to the bipartite graph G′ by applying Equation 3 to the
adjacency matrix B of Figure 3b. The computed similarities are summarized in
the matrix of Figure 3c and the attenuation factor for the bipartite network is
β=1/(1+3), equal to 0.25.

In the 4th row of similarity matrix of Figure 3c is clearly indicated that user
U2 should be recommended to user U4 as a friend instead of U3, with similarity
value 0.09>0.01. There is a difference between the produced recommendations
when using different information sources, since previously we recommended U3

to U4 using only the user-user unipartite social network. The information from
user-item bipartite network suggests that we should recommend U2 to U4, since
more paths through the items connect these two users. Specifically, U4 and
U2 are connected through one path of length-2 (U4→I1→U2) and two paths
of length-4 (U4→I1→U1→I1→U2 and U4→I1→U1→I2→U2). In contrast, U4

and U3 are connected through two paths of length-4 (U4→I1→U1→I2→U3 and
U4→I1→U2→I2→U3).
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In our running example, we produced all the possible similarity scores concern-
ing both the user-user and the user-item relationships, by using the adjacency
matrix B of Figure 3b. We exploit only the information from B12 and B21 blocks
of matrix B that correspond to the user-item network, in order to capture simi-
larities concerning block B11. We also produced the similarities for the auxiliary
item-item network given by block B22 that is not currently used here. In the fu-
ture this block of the matrix could reveal semantic relationships between items
for other recommendation tasks, like cross-domain.

3.3 Proposed Approach: Link Prediction in Multi-modal Graphs

In this section, the approach of combining the heterogeneous multiple sources of
the unipartite user-user and the bipartite user-item graphs, is presented. These
two graphs are combined in a multi-modal graph of Figure 1c. This approach
enables recommendations to be made in a unified way by opening new paths for
users to connect among two distinct sets: users and items. Similarity among users
results from both the explicit user-user friendship and the implicit user-item
networks. Therefore, in case the friendship network fails to capture similarity
between two users, the auxiliary user-item network could be used for this task,
and vice versa. The combined adjacency matrix C of Figure 4a is introduced in

the following form of four blocks:

[
A R
RT 0

]
. To obtain the combined similarity

matrix of Figure 4b, which uses information from both user-user A and RRT,
we apply Equation 4 to C:

Katz(C;β) = βC+ β2C2 + β3C3 + β4C4 · · · =
∞∑
=1

βC (4)

The computed attenuation factor for the multi-modal network is β=1/(1+4),
equal to 0.2. Unlike we did previously in the bipartite network where we used only
the B12 and B21 blocks of the bipartite network, for the multi-modal we exploit
information from blocks C11, C12 and C21. Block C22 holds also for the multi-
modal network non observed values. The combined version of Katz constructs

U1 U2 U3 U4 I1 I2
U1 0 0 1 1 1 1
U2 0 0 1 0 1 1
U3 1 1 0 0 0 1
U4 1 0 0 0 1 0
I1 1 1 0 1 0 0
I2 1 1 1 0 0 0

(a)

U1 U2 U3 U4 I1 I2
U1 0 0.225 0.379 0.332 0.370 0.379
U2 0.225 0 0.357 0.106 0.307 0.357
U3 0.379 0.357 0 0.109 0.169 0.392
U4 0.332 0.106 0.109 0 0.313 0.1098
I1 0.370 0.307 0.169 0.313 0 0.169
I2 0.379 0.357 0.392 0.109 0.169 0

(b)

Fig. 4. Running Example: (a) Adjacency C and (b) Similarity Matrix of Multi-modal
Social Network
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multiple paths using both unipartite friendship and bipartite user-item networks
by traversing previously unreached paths between users. Generalization of Katz
for C11 user-user block is given by Equation 5 showing such form of paths:

Katz(C;β)11 = βA+ β2(A2 +RRT ) + β3(A3 +ARRT +RRTA)+

β4(A4 +A2RRT +RRTA2 +ARRTA+RRTRRT ) · · · =
∞∑
=1

βC
11 (5)

For instance, the ARRT factor shown in Equation 5 contains new traversable

length-3 paths of this form: Ui
A−→ Uj

RRT

−−−→ Uk. Finally, the 4th row of the
similarity matrix of Figure 4b indicates that U3 should be recommended to
U4 as a new friend and not U2, with similarity value 0.109>0.106. One can
observe that both unipartite and multi-modal approaches resulted in the same
recommendation, but with much smaller difference after the bipartite network
was also considered.

4 Experimental Evaluation

In this section, we experimentally compare the performance of the multi-modal
link prediction approach with two other single network algorithms. We want
to discover in what extent an auxiliary user-item bipartite network contributes
to predicting links in the friendship network. Firstly, we evaluate the combined
(cKatz) Katz utility for handling more networks, one user-user friendship and
one user-item network. Then, we employ RWR [18,21] and Katz algorithm [11]
for predicting links in single social networks as comparison partners:

RWR is the well-known Random Walk with Restart algorithm [18,21] taking
into account only one single friendship social network for providing recommen-
dations. In general, RWR considers one random walker starting from an initial
node Vx and randomly choosing among the available edges with a probability α.
Every time, before random walker makes a choice returns back to the initial node
with a probability 1− α. Similarity among nodes is computed by Equation 6:

RWR(P;α) = (1− α)(I − αP)−1 (6)

where In is the identity and P the transition-probability matrix.
sKatz is the model proposed in [11], which takes into account only the single

friendship social network, and analyzed in Section 3.1. The proposed approach
of this paper cKatz considers both the unipartite friendship and the bipartite
user-item auxiliary network, discussed in Section 3.3.

Parameter’s values were tuned as described in [8] and Section 3, therefore α
and β for both single network algorithms RWR and sKatz, is set at 0.0008 and
0.0003 for xSocial synthetic and Epinions 49K real data set, respectively. For
cKatz parameter β is set at 0.0005 and 0.0003. We employ a fast approximate
method of Katz introduced by [8] reducing the computational cost to O(n+m),
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where n is the number of nodes and m the number of edges, since matrix opera-
tions require O(n3) used by the original Katz algorithm. In this implementation,
adjacency matrix is normalized by dividing each entry by the row/column de-
gree. Concerning the maximum length of paths that Katz algorithm employs,
we denote � equal to infinite in Equation 2, considering all paths until series
convergence. Our experiments were performed on a Core 2 Duo processor with 4
GB of memory. All algorithms were implemented in C. To evaluate the examined
algorithms, we have generated synthetic data set using the xSocial generator [7]
and chosen one real data set from Epinions web site.

4.1 Real World Networks and Data Sets

Recognizing real-network evolution patterns enables us to better understand
the human social behavior and capture similarities among people or about their
preferences, detect network intrusions or virus propagation and highlight anoma-
lies [6]. There is a range of patterns that have been identified in real life networks,
such as power law distributions [7], six degrees [17](small worlds), scale-free and
other log-normal distributions [6], which are powerful tools to mimic observed
behaviors. Faloutsos et.al [7] classify graph generators models into emergent (e.g.
small-world), where the macro network properties emerge from the micro interac-
tions, and generative graph models, which facilitate a utility function performing
recursive iterations until the generated networks meet real network properties.

xSocial Synthetic Data. xSocial Generator proposed by [7], is a multi-modal
graph generator that mimics real social networking sites to produce simultane-
ously a network of friends and a network of their co-participation. In particular,
xSocial builds a network with N nodes performing three independent actions
at each step (i.e. write a message, add a friend and comment on a message).
A node chooses his friends either by their popularity of by the number of mes-
sages on which they have commented together, which is determined by a unique
preference value. A node can also follow the updated status of his friends by
putting comments on the corresponding new written messages. In our experi-
ments we use xSocial generator to produce simultaneously one explicit friendship
and one implicit network of co-comments. In particular, we generated a MSN
data set1 with 100K users and 384K edges among pair of users, in which users
contributed 233K messages and 467K comments. The derived MSN for xSocial
data set consists of 330K user and item nodes with 852K edges. In Figure 5a
we calculated several topological properties for xSocial data set revealing a large
clustering coefficient (LCC) equal to 0.2 and small average shortest path length
value (ASD) equal to 2.1 discovered mostly in small-worlds networks [17]. Such
networks hold sub-networks with connections between most pairs of nodes (i.e.
high LLC) which are connected by at least one short path (i.e. small ASD).

1 http://delab.csd.auth.gr/~symeon/

http://delab.csd.auth.gr/~symeon/
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TOPOLOGICAL PROPERTIES OF FRIENDSHIP NETWORKS: 
N = total number of nodes 
E = total number of edges 
ASD = average shortest path distance between node pairs 
ADEG = average node degree 
LCC = average local clustering coefficient  
GD = graph diameter (maximum shortest path distance) 
GGS = global graph sparsity (number of zeros in adjacency matrix/ N2) 
 

Data Set Type N E ASD ADEG LCC GD GGS 
xSocial 100K undirected 100000 384458 2.10 6.06 0.20 7 99.99% 
Epinions 49K Directed 49288 487183 4.00 19.77 0.26 14 99.96% 

(a)

PROPERTIES OF USER-ITEM BIPARTITE NETWORKS: 
N = total number of Nodes (users) 
R = total number of Ratings  
I = total number of Items 
MINR = minimum rating value 
MAXR = maximum rating value 
AVGR = average rating value 
GGS = global graph sparsity (zeros in matrix / existing users x items) 
 

Data-Set N R I MINR MAXR GGS 
xSocial 100K 100000 467640 233820 0 0 99.99% 
Epinions 49K 49288 664824 139738 1 5 99.98% 

(b)

Fig. 5. Topological properties of (a) friendship and (b) bipartite user-item networks

Real Data. We employ the Epinions 49K2 data set, which is a who-trusts-
whom social network. In particular, users of Epinions.com express their Web
of Trust, i.e. reviewers whose reviews and ratings they have found to be valu-
able. In addition, users are enabled to rate a variety of online items (e.g. books,
computers, movies, toys) using a 5 star rating scale. Epinions data set contains
49K users and 487K edges among pair of users, constituting one single friend-
ship social network. Apart from that, it offers a user-item network with 140K
items and 664K ratings as shown in Figure 5b. In our experiments, we use the
whole single network and we keep from the user-item network only items rated
by users with r≥3, positively affiliating users with items. Keeping all edges is
meaningful in rating prediction tasks, but for friend recommendation this bi-
narization process supports the intuition that we should not recommend users
who rated differently similar items. After this, the number of ratings, i.e. edges
in user-item network, is 570K. The MSN for Epinions 49K data set, when com-
bining the trust and rating network, has 189K nodes of users and items with
more than 1M edges. The calculated topological features of the Epinions 49K
data set shown in Figure 5a characterize also Epinions 49K as a small-world
network with LCC equal to 0.26 and ASD equal to 4. Our evaluation considers
the division of friends of each target user into two sets: (i) the training set ET is
treated as known information and, (ii) the probe set EP is used for testing and
no information in the probe set is allowed to be used for prediction. It is obvious
that, E = ET ∪EP and ET ∩EP =  . Therefore, for a target user we generate the
recommendations based only on the friends in ET . Each experiment has been
repeated 30 times (each time a different training set is selected at random) and
the presented measurements, based on two-tailed t-test, are statistically signif-
icant at the 0.05 level. All algorithms predict the friends of the target users in
the probe set. We use the classic precision/recall metric as performance measure
for friend recommendations. For a test user receiving a list of k recommended
friends (top-k list): precision is the ratio of the number of relevant users in the
top-k list (i.e. those in the top-k list that belong in the probe set EP of friends
of the target user) to k. Recall is the ratio of the number of relevant users in the
top-k list to the total number of relevant users (all friends in the probe set EP of
the target user). F1-measure is the normalized harmonic mean of precision and
recall, providing the overall performance metric.

2 http://www.trustlet.org/wiki/Downloaded_Epinions_dataset

http://www.trustlet.org/wiki/Downloaded_Epinions_dataset
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4.2 Combined Katz Sensitivity Analysis

In this section, we examine the sensitivity of the combined and single Katz in
terms of accuracy performance when we set different density degree of observed
items in the user-item network. We want to identify under which circumstances
and to what extend the recommendation task is enhanced when we gradually
use auxiliary information from an implicit user-item network.

In particular, we test how the performance of cKatz, a multi-modal network
approach, is affected when we keep the fraction of observed friend nodes fixed and
gradually increase the fraction of observed items as we select user-items edges
randomly. We test both in synthetic and real data sets. Firstly, for the synthetic
100K xSocial data set, we set 5 different density cases (i.e. 0.2, 0.4, 0.6, 0.8, 1)
by varying the fraction of observed co-comments, as depicted in Figure 6a, while
y-axis holds F1-measure at top-1, which is the average performance of the algo-
rithm in terms of both precision and recall when we recommend only one user.
Since, sKatz exploits only the friendship network to provide recommendations,
increasing the density of the user-item network has no effect in its performance.
The fraction of observed friend nodes in the friendship network is fixed to 0.5,
where sKatz achieves its best performance. However, cKatz constantly improves
its predicting performance as more items from the user-item networks are being
observed. We further verify our results in the Epinions 49K real data set shown
in Figure 6b. As expected, cKatz improves its overall predicting performance
when the fraction of observed items increases. The auxiliary information derived
from the affiliation of users with the positively rated items boosts the overall
performance, showing that there is fruitful information in the bipartite network.
The best performance that sKatz achieves is in 0.5 fraction of observed users,
since it does not exploit any auxiliary information and after a certain fraction of
friend edges the prediction space of new possible links in the friendship network
decreases. Henceforth, we tune the fraction of user nodes observed in 0.5 and
this of items observed in 1, for the rest of the experimental evaluation.

Next, we focus on the combined Katz algorithm and we further investigate
its performance sensitivity when we vary the number of k recommended friends

(a) (b)

Fig. 6. Comparing cKatz with sKatz Performance in terms of F1-measure at Top-1 vs.
fraction of items degree for (a) 100K xSocial synthetic and (b) Epinions 49K data set
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(a) (b)

Fig. 7. cKatz Performance in terms of Precision and Recall vs. Top-k for (a) 100K
xSocial synthetic and (b) Epinions 49K data set

in the top-k list. We depict the cKatz precision and recall scores versus the
varying number of recommended users when applied to the synthetic xSocial
and Epinions 49K data sets in Figure 7a and 7b, respectively. In both synthetic
and real data sets, cKatz achieves the most accurate scores when we recommend
top-1 user. The precision accuracy of cKatz, as expected, gradually decays when
we ask for a higher number k of predictions while recall scores increase. Recall
is the ratio of the number of correct predictions to the number of all the actual
friends in the test set. Each user has a different number of actual friends and this
indicates the difficulty of getting better predictions as we increase the number of
requested recommendations. The average number of friends (ADEG) for xSocial
is 6 and for Epinions 49K data set is 19, depicted in Figure 5a for both data
sets. Thus, it is more possible that we return correct recommendations in the
Epinions 49K data set as we increase k in the top-k list. In Figure 7a and 7b
the recall scores versus top-k diagram are depicted with k varying from 1, 2,
3 and 4 for the xSocial and Epinions 49K data set, respectively. In both data
sets we observe, as expected, that we get more correct predictions when we ask
for more recommendations. When we produce the top-4 list we achieve the best
results for both xSocial and Epinions 49K with recall equal to 59,7% and 54,2%,
respectively. We would expect that we get better recall scores in the Epinions
49K data set but the average shortest path distance (ASD) is 2 for xSocial and 4
for Epinions 49K, meaning that it is easier to produce more predictions localized
in node’s neighborhood since we use small values of β.

4.3 Comparison with other Methods

In this section, we conducted the comparison of our multi-modal proposed com-
bined Katz approach with the two other single network comparison partners i.e.
sKatz and RWR algorithms, in terms of precision and recall. As the number k
of the list varies starting from the top-1 user to top-4, we examine the precision
and recall scores. Achieving high recall scores while precision follows with the
minimum decline indicates the robustness of the examined algorithm.

For the xSocial synthetic data set, in Figure 8a we visualize the precision vs.
recall curve for all three algorithms. As k increases, precision falls while recall
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(a) (b)

Fig. 8. Comparing cKatz, sKatz, and RWR Performamce in terms of Precision and
Recall at Top-k for (a) 100K xSocial synthetic and (b) Epinions 49K data set

increases as expected for all algorithms. cKatz attains the best results achieving
the highest precision, outperforming both single network algorithms. This is due
the fact that cKatz exploits information from both friendship and the user-item
networks. We conduct the same experimental configuration for the Epinions 49K,
shown in Figure 8b real data set to confirm our initial results in the synthetic
one. It is clear that cKatz outperforms the two single network partners in terms
of both precision and recall, exploiting the user-item auxiliary network. Between
the two single network algorithms sKatz performs again better than RWR.

5 Discussion

In this section we discuss several issues concerning the multi-modal network
context and our approach. We based our method on path-dependent approaches
since they capture the overall structure of the network and can limit their reach
to node neighborhood level by using attenuation factors. Furthermore, we un-
derstand that weighting strategies are essential to effectively control the contri-
bution of various social networks to the final similarity among users. For us, the
main task is to recommend new friends to users by exploiting both explicit and
implicit social networks. Therefore, we promote the information derived from
the unipartite friendship network and control the contribution of the auxiliary
information from the user-item network. In this context, the combined adjacency

matrix C takes the following form C =

[
A wR

wRT 0

]
, where w ≥ 0 is the weighting

parameter controlling the user-item network contribution to the final similarity.
When w=0, the bipartite social network does not offer any information in

the similarity between users. In this case, the combined Katz behaves like the
single version of Katz, sKatz. Earlier in our running example, we observed from
the similarity matrix of Figure 2b that when we use information only from the
friendship network we recommend U3 to U4. The same result is acquired when
using the MSN and matrix of Figure 4b, where U3 is again recommended to U4,
but with much smaller similarity difference from U2. However, when we exploit
information only from the user-item network, U2 is recommended to U4 as seen in
matrix of Figure 3c. Therefore, we understand that the friendship network is in
any case important for providing friend recommendations within the friendship
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domain. However, the contribution of the user-item network could be proven
both fruitful, but in some cases also noisy. Parameter w is a factor that could
be tuned by either learning the dynamics of the network, or following a specific
range according to the recommendation domain, or being adjusted by the user.

Concerning computational issues, our approach is based on a fast approxima-
tion of Katz algorithm introduced by [8], who reduce the computational cost to
O(n+m) where n is the number of nodes and m the number of edges, since matrix
operations require O(n3) used by the original Katz algorithm [11]. Concerning
the maximum length of paths that Katz algorithm employs, we set � equal to
infinite taking into account all the paths until the convergence of the series.
Nevertheless, wisely tuning � could potentially improve the proposed approach
in terms of efficiency by not traversing very long paths. Truncated versions of
Katz can reduce the computational cost, but can also improve the efficacy of the
recommendations by learning how to avoid uninformative paths [15].

6 Conclusions and Future Work

In this paper, we presented an extended framework exploiting multi-modal social
networks to provide friend recommendations. We experimentally showed that
implicit information can be proven fruitful for the friend recommendation task.
In the future, MSNs will allow us to perform more cross-domain recommendation
tasks, but will also raise challenges like scaling, the effective weighting of multiple
information sources and the exploitation of semantic information.
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Abstract. Many real-world phenomena exhibit strong hierarchical
structure. Consequently, in many real-world directed social networks ver-
tices do not play equal role. Instead, vertices form a hierarchy such that
the edges appear mainly from upper levels to lower levels. Discovering
hierarchies from such graphs is a challenging problem that has gained
attention. Formally, given a directed graph, we want to partition ver-
tices into levels such that ideally there are only edges from upper levels
to lower levels. From computational point of view, the ideal case is when
the underlying directed graph is acyclic. In such case, we can partition
the vertices into a hierarchy such that there are only edges from upper
levels to lower edges. In practice, graphs are rarely acyclic, hence we need
to penalize the edges that violate the hierarchy. One practical approach is
agony, where each violating edge is penalized based on the severity of the
violation. The fastest algorithm for computing agony requires O(nm2)
time. In the paper we present an algorithm for computing agony that has
better theoretical bound, namely O(m2). We also show that in practice
the obtained bound is pessimistic and that we can use our algorithm to
compute agony for large datasets. Moreover, our algorithm can be used
as any-time algorithm.

Keywords: Graph mining, agony, hierarchy discovery, primal-dual,
maximum eulerian subgraph.

1 Introduction

Many real-world phenomena exhibit strong hierarchical structure [2, 5, 9, 10, 11].
For example, it is more likely that a manager in a large company will write emails
to the her subordinates than an employee writes an email to his manager. As
another example, in a tournament, it is more likely that a better team will win
a second-tear team.

Discovering hierarchy in the context of directed networks can be viewed as
the following optimization problem. Given a directed graph, partition vertices
into levels such that there are only edges from upper levels to lower levels. For
example, consider an email communication network of a large institute, directed
edge x→ y is created if x has written an email to y. We should expect that the
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upper level of the hierarchy consists of top-level managers and each level consists
of subordinates of the previous level.

Unfortunately, such a partition is only possible when the graph does not have
cycles, a rare case in practice. Instead a more fruitful approach is to find a hierar-
chy that minimizes some cost function. One possible cost function is to penalize
every edge that violates the hierarchy with a constant cost. Unfortunately, this
problem leads to Feedback Arc Set problem, where we are asked to dis-
cover a maximal directed acyclic subgraph. This problem is a classic NP-hard
problem [4].

A practical variant of discovering hierarchies that was introduced recently
by Gupte et al. [7] is to weight the edges based on the severity of the violation of
hierarchy. Unlike the constant weights, this problem can be solved in O(nm2),
polynomial time, where n is the number of vertices and m is the number of
edges.

In this paper we introduce a new algorithm for computing a hierarchy that
minimizes agony. Our algorithm achieves computational complexity of O(m2)
which is significantly better than O(nm2), the computational complexity of the
currently best approach. We also demonstrate empirically that O(m2) is in fact
pessimistic and that we can compute agony using our approach for large net-
works.

Our approach is based on a primal-dual technique. Minimizing agony has an
interpretable dual problem, finding eulerian subgraph, a graph where the in-
degree is equal to the out-degree for each vertex, with the maximum number of
edges. This relation implies that the agony will always be at least as large as any
eulerian subgraph. We are able to exploit this relation by designing an iterative
algorithm. At each iteration we decrease the gap between the current agony and
the current eulerian subgraph by either modifying the hierarchy or modifying
the eulerian subgraph. We show that each iteration requires only O(m) time and
we need at most m steps.

The rest of the paper is organized as follows. We introduce the notation and
state the optimization problem in Section 2. In Section 3 we review the con-
nection between agony and eulerian subgraphs. In Section 4 we introduce our
optimization algorithm. We discuss the related work in Section 5 and present ex-
perimental evaluation in Section 6. Finally, we conclude the paper with remarks
in Section 7.

2 Preliminaries and Problem Statement

Throughout the whole paper we assume that we are given a directed graph
G = (V,E). We will denote the number of vertices by n = |V | and the number
of edges by m = |E|. All graphs in this paper are directed and have the same
vertices V . Given a graph H = (V, F ), we will write E(H) = F .

In this paper our goal is to discover a hierarchy among vertices in a graph G.
That is, assume that we are given a graph G = (V,E) and our goal is to discover

a partition of vertices P = P1, . . . , Pk, such that Pi ∩ Pj = ∅ and
⋃k

i=1 Pi = V ,
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optimizing a certain quality score which we will define later. It will be more
convenient to express this partition using a rank function, that is, our goal is to
construct a function r : V → Z mapping each vertex to an integer. We can easily
construct a partition from this rank function by grouping the nodes mapping to
the same value together.

Our next step is to define the quality score.
Given a rank function r, we say that an edge e = (u, v) ∈ E is forward if

r(u) < r(v). Similarly, we say that e = (u, v) ∈ E is backward if r(u) ≥ r(v).
Note that the inequality is strict for forward edges.

As our goal is to discover hierarchy in G, in an ideal partition all edges are
forward. This is only possible if G is a DAG which is rarely the case in practice.
Consequently, we need a quality score that would penalize the backward edges.
Given a rank r we define the agony of an edge (u, v) ∈ E to be

q((u, v), r) = max(r(u) − r(v) + 1, 0) .

The agony for forward edges is 0 while the agony for backward edges is the
difference between ranks plus 1. Note that the edges within the same block are
penalized by 1.

Given a graph G and a rank r we define the agony of the whole graph to be
the sum of individual edges,

q(G, r) =
∑
e∈E

q(e, r) .

Example 1. The agony of the left graph given in Figure 1 is equal to

q((b, a)) + q((d, b)) + q((e, g)) + q((g, f)) = 2 + 3 + 1 + 2 = 8 .

The agony of the right graph is equal to

q((b, a)) + q((d, b)) + q((c, d)) + q((e, g)) + q((g, f)) = 1 + 3 + 1 + 2 + 1 = 8 .

We can now state the main optimization problem of this paper.

Problem 1. Given a graph G find a rank function r minimizing agony q(G, r).

a

b

c

d

e

f

g

h

ab

cd

e

f g

h

Fig. 1. Toy graphs. Dotted edges represent the eulerian subgraph. Ranks are repre-
sented by dashed grey horizontal lines.
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Graph H = (V, F ) is called eulerian if the out-degree of each vertex is equal
to its in-degree,

|{u ∈ V ; (v, u) ∈ F}| = |{w ∈ V ; (v, w) ∈ F}| .

In the literature, H is sometimes required to be connected but here we do not
impose this constraint.

Example 2. An example of eulerian subgraph in the left graph of Figure 1 con-
sists of (b, a), (a, c), (c, d), (d, b), (f, e), (e, g), and (g, f).

An example of eulerian subgraph in the right graph of Figure 1 consists of
(b, a), (a, e), (e, c), (c, d), (d, b), (f, e), (e, g), and (g, f).

Given a graph G we say that H is a maximum eulerian subgraph G if H
is an eulerian subgraph of G and has the highest number of edges among all
eulerian subgraphs of G. This graph is not necessarily unique. For notational
simplicity, we require that G and H have the same vertices, V (H) = V (G) = V .
This restriction does not impose any difficulties since we can always add missing
vertices as singletons to H .

Given a graph G we say that H is a maximal eulerian subgraph G if H is an
eulerian subgraph of G and we cannot increase H by adding new edges without
making it non-eulerian. Note that maximum eulerian subgraph is necessarily
maximal but not the other way around. It is easy to see that H is maximal if
and only if the remaining edges in G form a DAG.

As we see in the next section, the following optimization problem, that is,
finding the maximum eulerian subgraph is closely related to optimizing agony.

Problem 2. Given a graph G find an eulerian subgraph H maximizing |E(H)|,
the number of edges.

3 Agony and Eulerian Subgraphs

In this section we review the connection between agony and discovering maxi-
mum eulerian subgraph. In fact, they are dual problems. This connection allows
us to develop our algorithm in the next sections.

To see the connection let us first write the agony optimization problem as an
integer linear program, that is, our goal is to solve the following program.

min
∑

(u,v)∈E
p(u, v) such that (1)

p(u, v) ≥ r(v) − r(u) + 1 for all (u, v) ∈ E,

p(u, v) ≥ 0 for all (u, v) ∈ E,

p(u, v), r(w) ∈ Z for all (u, v) ∈ E, w ∈ V .

The solution for Eq. 1 will contain the optimal rank function r and agony for
individual edges p(u, v).
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Let us relax the program by dropping the integrality conditions, thus trans-
forming the program into a standard linear program. The dual of this program
is equal to

max
∑

(u,v)∈E
c(u, v) such that (2)

c(u, v) ≤ 1 for all (u, v) ∈ E,∑
(u,v)∈E

c(u, v) =
∑

(v,w)∈E
c(v, w) for all v ∈ V,

c(u, v) ≥ 0 for all (u, v) ∈ E .

(3)

Assume that we are given a feasible solution to a dual problem such that c(u, v)
are integral. The conditions imply that c(u, v) is either 0 or 1. If we form a
subgraphH by taking the edges for which c(u, v) = 1, then the equality condition
implies immediately that H is eulerian. Consequently, the solution for the dual
problem is at least as large as the number of edges in the maximum eulerian
graph.

Since the primal solution is always larger than the dual solution we have the
following proposition.

Proposition 1. Assume that we are given a graph G. Let r be a rank func-
tion and let H be an eulerian subgraph. Then |E(H)| ≤ q(G, r). Moreover, if
|E(H)| = q(G, r), then r minimizes agony and H has the maximum number of
edges.

Proof. Let P be the solution of Eq. 1 and let D be the solution of Eq. 2. Primal-
dual theory (see, for example, [13]) states that D = P . We now have q(G, r) ≥
P = D ≥ |E(H)|. If |E(H)| = q(G, r), then this immediately implies |E(H)| =
q(G, r) = P = D, proving the optimality of r and H . ��

The previous result only proves that if there is a rank function r whose agony
corresponds to the number of edges in the eulerian subgraphH , then r andH are
optimal. It does not guarantee that such solution exists. Gupte et al. [7] showed
that such solution always exists. However, we do not need this result. Instead,
in the next section we introduce an algorithm that finds r and H satisfying the
conditions of Proposition 1 which immediately implies the optimality of r.

4 Algorithm for Discovering Agony

In this section we present our algorithm based on the results of previous section.
As our first step, we characterize the difference between the agony of the current
rank function and the number of edges in the eulerian subgraph. We then present
an algorithm that minimizes this difference and by doing so leads to the optimal
solution. Finally, we present a fast algorithm for discovering a maximal eulerian
subgraph, an initialization step that is needed for our main algorithm.
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4.1 Gap between Agony and Eulerian Subgraphs

In order to characterize the gap between the scores we need several concepts.
Assume that we are given a graphG and letH be a maximal eulerian subgraph

G. We say that a rank function r conforms H if all backward edges with respect
to r are in H . Note that this is possible only if H is maximal, otherwise there
will be at least one backward edge in E(G) \ E(H).

We will express the gap as a sum of slacks. More formally, given a rank r we
define the slack of an edge as

slack((u, v), r) = max(r(v) − r(u) − 1, 0) .

Slack of (u, v) will be positive only if the edge is forward and the rank r(v) is at
least r(u) + 2.

We saw in the previous section that the agony is always larger than the num-
ber of edges in an eulerian graph. We can express this difference under certain
conditions using slacks.

Proposition 2. Assume that we are given a graph G = (V,E) and let H =
(V, F ) be a maximal eulerian subgraph. Let r be a rank function of V conforming
H. Then

q(G, r) = |F |+
∑
e∈F

slack (e, r) .

Moreover, if the sum of slacks is 0, then r has the lowest possible agony.

Proof. Since H is an eulerian graph, we can partition H into s edge-disjoint
cycles C1, . . . , Cs. Since backward edges are only in H we can write agony as

q(G, r) =
∑
e∈F

q(e, r) =

s∑
i=1

∑
e∈Ci

q(e, r) .

The agony of a single edge e = (u, v) can be written as

q(e, r) = max(r(v) − r(u) + 1, 0) = r(v) − r(u) + 1−min(r(v) − r(u) + 1, 0)

= r(v) − r(u) + 1 +max(r(u) − r(v) − 1, 0)

= r(v) − r(u) + 1 + slack (e, r) .

Summing the edges in a single cycle gives us∑
e∈Ci

q(e, r) =
∑

e=(u,v)∈Ci

r(v) − r(u) + 1 + slack (e, r) = |Ci|+
∑
e∈Ci

slack (e, r) .

Since the cycles are edge-disjoint, we get the first result of the proposition. If the
sum of slacks is 0, then the the agony q(G, r) is equal to the number of edges in
eulerian subgraph. Proposition 1 now implies that r is optimal and H is in fact
a maximum eulerian subgraph. ��
Example 3. Consider the left graph in Figure 1. The current agony is equal to 8
and the size of the current eulerian subgraph is equal to 7. There is one slack edge,
namely slack ((a, c), r) = 1. On the other hand, the right graph in Figure 1 has
agony of 8 which is equivalent to the number of edges in the eulerian subgraph.
There are no slack edges.
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4.2 Algorithm for Computing Agony

We are ready to describe the algorithm. Assume that we are given a graph G
and assume that we have obtained a maximal eulerian subgraph and a rank r
that conforms H . We will describe later how to obtain the initial H and r.

Proposition 2 states that r is optimal if there are no edges with slack in H .
Assume there is one, say (p, s). We begin the algorithm by increasing the rank
of p so that (p, s) has no slack. This may result that some of the edges outside
H become backward, hence we will increase the rank of the end point of each
new backward edge to make sure that there are no new backward edges. In
addition, some of edges H may obtain more slack, hence we will also increase
those vertices. These increases may require additional increases for other vertices
and we keep doing this until either there are no more increases needed. If we do
not encounter s during this algorithm, then we have successfully reduced agony
by the slack((p, s), r). Otherwise, we will show that we can modify H such that
the number of edges in increased.

The visiting order of vertices is important in order to guarantee that the
algorithm runs in O(m) time. We will show that we can guarantee the running
time if we keep the vertices in a priority queue based on how much we need to
increase their rank, larger increases first.

The pseudo-code for the algorithm is given in Algorithm 1. The algorithm
takes as an input the underlying graph G, current maximal eulerian subgraph H
and conforming r, and an edge (p, s) ∈ E(H) with positive slack. The algorithm
outputs a new subgraph H ′ and a new rank function r′.

Case 1: we can increase r(a) without increasing r(c)

a

b

c

d

e

f

g

h

(a) input graph

ab

c

d

e

f g

h

(b) final graph

Case 2: we cannot increase r(a) without increasing r(c)

a

b

c

d

e

f

g

h

(c) input graph

ab

cd

e

f g

h

(d) after increasing ranks

ab

cd

e

f g

h

(e) final graph

Fig. 2. Two examples of applying Relief for (a, c). Dotted edges represent the eulerian
subgraph. Ranks are represented by dashed grey horizontal lines.
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Algorithm 1. Relief, given an maximal eulerian subgraph H and a con-
forming rank r, computes a new subgraph H ′ and a new rank function r′

such that the agony or r is closer to the number of edges in the subgraph.

input : underlying graph G, current maximal eulerian subgraph H , current
rank function r, (p, s) ∈ E(H) an edge with positive slack

output : updated maximal eulerian subgraph and new rank function
1 F ← E(H);
2 r′ ← r;
3 t(v) ← 0 for all v ∈ V {how much we need to increase v}
4 t(p) ← r(s)− r(p)− 1;
5 add p to S with priority t(p);
6 while S is not empty do
7 u ← pop first element from S;
8 r′(u) ← r′(u) + t(u);
9 foreach (u, v) ∈ E \ F do

10 if r′(v) ≤ r′(u) then
11 t ← r′(u) + 1− r′(v);
12 if t > t(v) then
13 t(v) ← t;
14 add v to S with priority t, update v if v ∈ S already;
15 parent(v) ← u;

16 foreach e = (w, u) ∈ F do
17 if slack(e, r′) > slack(e, r) then
18 t ← slack(e, r′)− slack(e, r);
19 if t > t(w) then
20 t(w) ← t;
21 add w to S with priority t, update w, if w ∈ S already;
22 parent(w) ← u;

23 if slack((p, s), r′) > 0 then
24 O ← edges in E along the path from s to p using parent ;
25 F ← (F \O) ∪ (O \ F );
26 delete (p, s) from F ;

27 return (V, F ), r′;

Example 4. Consider the graph given in Figure 2a. The eulerian subgraph is
marked with orange dotted edges and the current rank function is represented
by the dashed grey lines. Edge (a, c) has a slack of 1. Consider applying Relief
on edge (a, c). The algorithm first increases r(a). Edge (a, e) is no longer a
forward edge, hence we need to increase e. This in turns transforms edge (e, h)
into backward and increases the slack of (f, e). Ranks for both vertices are also
increased. No other modifications are needed and the final graph is given in
Figure 2b.
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Now consider the graph given in Figure 2c and apply Relief on edge (a, c).
As in previous case, e, f , and h are increased, but in addition c. Note that we
did not manage to reduce the slack between a and c. However, if travel back
along the parent links, parent(c) = e and parent(e) = a we obtain a path from c
to a. By replacing (a, c) with these edges in the eulerian subgraph we obtain a
new subgraph that has more edges.

The previous example showed the two possible outcomes for Relief, in both
cases we reduce the slack. The following proposition states that this holds in
general, that is, the new H and r are valid and that the difference between the
costs is smaller.

Proposition 3. Assume that we are given a graph G. Let H = (V, F ) be a
maximal eulerian subgraph of G and let r be a rank function conforming H.
Assume that there is an edge (p, s) ∈ E(H) such that slack ((p, s), r) > 0. Let
H ′, r′ = Relief(H, r,G, p, s). Then H ′ is a maximal eulerian subgraph of G, r′

is conforming H ′, maxe∈E(H′) slack (e, r
′) ≤ maxe∈E(H) slack (e, r), and

|{e ∈ E(H ′) | slack (e, r′) > 0}| < |{e ∈ E(H) | slack (e, r) > 0}| .

In order to prove this result we need the following lemma.

Lemma 1. Each vertex visited at most once during Relief. Order the visited
vertices based on their visiting order, say uk. Let tk = t(uk), where t(uk) is the
priority of uk at the time when uk is visited. Then tk+1 ≤ tk.

Proof. We will prove by induction over the iteration of Relief that once a
vertex u has been removed from S it will never be added again to S and the
priorities of newly added vertices into S during processing u is at most t(u).

Assume that this holds for k − 1 first iterations, and let u = uk be a vertex
that is visited during the kth iteration. Since S selects elements with the highest
priorities, the induction assumption implies that ti+1 ≤ ti for i = 1, . . . , k − 2.

Let (u, v) ∈ E \F . Let t = r′(u)+1−r′(v). Since u is visited for the first time,
we must have r′(u) = r(u)+ t(u) which implies that t = t(u)+ r(u)+1− r′(v) ≤
t(u), where the inequality holds since (u, v) is a forward edge w.r.t. r. If v is
added in S, then its priority is at most t(u). This proves the second part of the
induction step. On the other hand, if v has been already visited, say v = uj ,
then tj = t(v) ≥ tk and v will not be added into S.

A similar argument can be made for the edges in F .
This proves the induction step and the lemma as the first step is trivial. ��

Proof (of Proposition 3). Let us consider two separate cases. In Case 1, s remains
unvisited while in Case 2 we visit s.

Case 1: Assume that we do not visit s. In such case, H ′ = H , hence H ′ is
maximal.

We need to first show that edges in E \ F remain forward. Whenever we
increase the rank of u we check that none of the edges in E \ F are backward.
Assume there is one, say (u, v). If v is already visited, then Lemma 1 states
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that t(v) ≥ t(u). Since each vertex is visited only once, this implies that r′(v) =
r(v)+t(v) and r′(u) = r(u)+t(u). This is a contradiction since (u, v) is a forward
edge w.r.t. r. Hence, either v is not visited or is in S. Either way, we will increase
r′(v) so that v will become a forward edge at some point.

Using similar argument, we see that the slack of edges in F is not increased.
Since the edge (p, s) is no longer a slack edge and we do not increase slack of
any other edges, we have proved the proposition for Case 1.

Case 2: Assume that we have visited s. Write F ′ = E(H ′).
Let us first argue that we can reach p by using the parent links. Lemma 1

implies that each vertex is visited only once which guarantees that parent links
form a tree whose root is p.

Using the same argument as in Case 1, we see that forward edges in E \ F
remain forward edges and the slackness of edges in F is not increased. Moreover,
one can easily show that (p, s) and the edges in O ∩ F are also forward edges.
This means that E\F ′ contains only forward edges. This means that r′ conforms
H ′ and E \F ′ form a DAG which is only possible when H ′ is maximal. It is easy
to see that H ′ is also eulerian.

Let O1 = O∩(E\F ). For any edge (u, v) ∈ O1, we must have r′(v) = r′(u)+1,
otherwise parent(v) �= u. This shows that the slack of the new edges is 0. Since
(p, s) is removed from H ′ and we do not increase slack of any other edges, we
have proved the proposition for Case 2. ��

Our next step that this single iteration is linear in the number of edges.

Proposition 4. The running time of Relief is O(m+ slack ((p, s), r)).

Proof. Since each vertex is visited only once (Lemma 1) we will consider each
edge only once. Hence, the inner for-loops are executed m times at most. Since
the priorities of vertices are integers, we can implement the priority queue by
storing each vertex into an array of slack ((p, s), r) − 1 linked lists. Inserting or
updating a vertex will take a constant time. Since the new priorities will always
be smaller or equal, obtaining the maximum element takes O(slack ((p, s), r)) of
total time due to the fact that we need to possibly check some empty linked
lists. This proves the proposition. ��

Alternatively, we can implement the priority queue as a heap which gives the
running time to be O(m logn).

In practice, we also apply the following speed-up. We monitor t(s) constantly
and we visit only those vertices that have larger priority. Since, Lemma 1 states
that the priorities are non-increasing, we simply stop the main loop once we
encounter a vertex with the same priority as t(s). In addition, once we are done
we backtrack rank of each visited vertex by t(s). If s is not visited, then t(s)
remains 0 and this speed-up has no effect. However, if s is inserted in the stack
S, we will prune vertices that have the same or lower priority than S. We ignore
any vertex that should be lowered by at most t(s). This may transform some
forward edges into backward edges but we counter this by lowering the rank of
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the already visited vertices by t(s). This implies that the forward edges remain
forward and the arguments done in proof of Proposition 3 are valid.

We are now ready to state the main loop, given in Algorithm 2, which applies
Relief to the edge with the largest slack.

Algorithm 2. MinAgony, given a graph G, a maximal eulerian subgraph
H and a rank function r conforming H , finds a rank function optimizing
agony

input : underlying graph G, maximal eulerian subgraph H , rank function r
output : optimal maximal eulerian subgraph and rank function

1 while q(G, r) > |E(H)| do
2 (p, s) ← an edge in E(H) with largest slack;
3 H, r ← Relief(H, r,G, p, s);

4 return H, r;

Our next step is to show that we need to call Relief at most O(m).

Proposition 5. Assume a graph G, a maximal eulerian subgraph H and a rank
function conforming H such that slack (e, r) ≤ m for any edge e ∈ H. Then
MinAgony(G,H, r) takes O(m2) time.

Proof. Proposition 3 states that each call reduces the number of slack edges by
at least 1. There can be at most m slack edges. Hence, the number of Relief
calls is at most m. Since slack (e, r) ≤ m at the beginning and Proposition 3
states that slack is never increased, Proposition 4 implies that calling Relief
takes O(m) time. This completes the proof. ��

Assume that we are given H , a maximal eulerian subgraph of G. Then E(G)\
E(H) is a DAG, and any topological order will provide a rank function that is
conforming with H . In this paper, we use a rank function, where we first remove
all source vertices simultaneously from the DAG and assign them the same rank.
We continue this until DAG is empty. The largest rank in this case is at most
n, this also bounds the slack and consequently the conditions in Proposition 5
are satisfied.

4.3 Discovering Maximal Eulerian Subgraph

Our final step is to discover a maximal eulerian subgraph. This can be done
naively by running a DFS, finding and a removing a cycle and repeating until
no cycles are left. This gives us running time of O(m2). A more sophisticated
approach can be done with a single DFS, given in Algorithm 3.

CycleDFS starts with DFS and the moment it discovers a back edge, it
finds a corresponding cycle. The algorithm proceeds by deleting the cycle and
backtracking to the first vertex of visited cycle. The following proposition shows
that the algorithm indeed finds a maximal eulerian subgraph.
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Algorithm 3. CycleDFS, discovers a maximal eulerian subgraph

input : G, directed graph
output : F , edges corresponding to a maximal eulerian subgraph

1 while V �= ∅ do
2 S ← any vertex in V ;
3 while S �= ∅ do
4 u ← first vertex in S;
5 if there is (u, v) ∈ E then
6 if v ∈ S then
7 O ← (u, v) and the path from v to u along S;
8 F ← F ∪O;
9 delete O from G;

10 pop vertices from S until the last vertex is v;

11 else
12 push v to S;

13 else
14 pop u from S;
15 remove u from G;

16 return F ;

Proposition 6. CycleDFS discovers maximal eulerian subgraph.

Proof. F consists of edge-disjoint cycles, and by definition is eulerian. Assume
that F is not maximal, that is, there is a cycle C. Let u be the first vertex in C
that is deleted from G. Let e be the outgoing edge from u in C. By definition, e
is not added in F . This implies that when we delete u from G, e is still present
in G which is a contradiction since we only delete vertices with no outgoing
edges. ��

As a final step we show that CycleDFS runs in linear time.

Proposition 7. CycleDFS executes in O(m) time.

Proof. During a single iteration of the inner while-loop we either delete x edges
or push a vertex into a stack. Hence, the total running time is bounded by the
number of edges deleted plus the number of pushes. Since each edge can be
deleted only once, the first term is bounded by m. The number of times we will
push a vertex u into S is bounded by the in-degree of u plus 1. Consequently, the
number of pushes we will do in total is O(n+m), which proves the result. ��

5 Related Work

From algorithmic point of view, the relation between our approach and the al-
gorithm given by Gupte et al. [7] is intriguing. Both methods are based on
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primal-dual techniques, that is, they rely on the relationship between the pri-
mal problem, minimizing agony, and the dual problem, maximizing the eulerian
subgraph. Gupte’s algorithm is essentially an instance of the primal-dual algo-
rithm, where one tries to improve the dual problem, in this case discovering
maximum eulerian subgraph, until no improvement is possible. This improve-
ment correspond to finding the negative cycle in a certain weighted graph, that
is, a cycle whose sum of weights is negative. Currently the best algorithm for
discovering negative cycle needs O(nm) time [1] and this can be achieved with
a Bellman-Ford algorithm [3]. Since we need m iterations at most, the compu-
tational complexity of this approach is O(nm2).

On the other hand, our approach is also an instance of the primal-dual al-
gorithm. Especially, both algorithms improve the current eulerian subgraph.
The difference is that while Gupte’s algorithm searches the improvement by
transforming the problem into discovering negative cycles, we discover the im-
provement in several calls of Relief. During each call of Relief if we have not
able to find a new improvement for the eulerian subgraph, then we are able to
improve the primal problem, that is, minimizing agony. In other words, while
searching for improvement for the eulerian subgraph, we are able to use inter-
mediate calculations to minimize the agony. This allows us to achieve a better
computational complexity of O(m2).

The agony of a single edge is chosen very carefully. For example, if we choose
agony to be 1 for every backward edge, then the problem is related to Feedback
Arc Set, where the goal is to discover a directed acyclic graph H . from a given
directed graph G such that E(G) \E(H) is minimized. This problem is not only
NP-hard, it is also APX-hard with a coefficient of c = 1.3606 [4]. There is
no known constant-ratio approximation algorithm for FAS and the best known
approximation algorithm has ratio O(log n log logn) [6].

Next, we highlight some of the existing methods for discovering hierarchies.
Maiya and Berger-Wolf [11] suggested a statistical model where the probability
of an edge is high between a parent and a child. To find the hierarchy they employ
a greedy heuristic. Clauset et al. [2] studied discovering hierarchy in undirected
graphs, where given a dendrogram, the probability of an edge between two ver-
tices is based on Erdős-Rényi model, with a probability depending on the lowest
common ancestor in the dendrogram. The authors then sample dendrograms
using MCMC techniques. Macchia et al. [10] used agony to discover summaries
of propagations based on traces. Jameson et al. [9] applied a model, where the
likelihood of the the vertex dominating other is based on the difference of their
ranks, to animal dominance data. Similar ideas has been used for ranking chess
players by Elo [5]. Finally, hierarchy partitions vertices into groups, the top-level
vertices having very different role than the bottom-level vertices. Assigning dif-
ferent roles to vertices have received some attention. Henderson et al. [8] consider
assigning roles to vertices based on features while McCallum et al. [12] assigned
topic distributions to individual vertices. An interesting direction for future work
would be to study how hierarchy can be used for role mining in graphs.
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6 Experimental Evaluation

While we were able to improve the computational complexity of computing agony
from O(nm2) to O(m2), the bound is still impractical even for graphs of modest
size. Our next goal is to demonstrate empirically that this bound is in fact
pessimistic and that we can compute the agony for large graphs.

In order to do so, we applied our algorithm for several large directed graphs,
downloaded from Stanford Large Network Dataset Collection (SNAP).1 We re-
moved any edges of form (u, u) as they have no effect on the rank. The charac-
teristics of the datasets are given in the first 2 columns in Table 1. In addition, to
our algorithm we applied a baseline algorithm of Gupte et al. [7]. The algorithm
requires a subroutine for detecting a negative cycle. We used Bellman-Ford al-
gorithm with an additional speed-up, where after each iteration over the edges
we check whether a cycle has been discovered. We implement both algorithms
in C++ and performed experiments using a Linux-desktop equipped with a
Opteron 2220 SE processor. The running times and detailed statistics are given
in Table 1.

Table 1. Basic characteristics of the datasets and statistics from experiments. The 3rd
column indicates the number of iterations, the 4th column indicates the slack of the
starting point, the 5th depicts the final score. The running times for MinAgony and
the baseline are given in 6th and 7th columns, respectively.

Dataset |V | |E| iterations gap agony time baseline

Amazon 403 394 3 387 388 89 046 911 095 1 973 965 4h27m –
Gnutella 62 586 147 892 1 907 150 851 18 964 45s 20m
EmailEU 265 214 418 956 27 679 500 177 120 874 2m 3h45m
Epinions 75 879 508 837 18 652 922 817 264 995 20m 1h40m
Slashdot 82 168 870 161 37 858 1 891 586 748 582 1h5m 7h3m
WebGoogle 875 713 5 105 039 164 708 4 110 696 1 841 215 2h32m –
WikiVote 7 115 103 689 865 76 149 17 676 7s 1m

Our first observation is that the theoretical bound is indeed pessimistic. We
are able to compute the agony for large networks in reasonable time. We spend
2.5 hours for computing agony for WebGoogle, a graph with over 5 million edges,
and 4 hours for Amazon, a graph with over 3 million edges. For smaller graphs,
the running time is significantly faster, either seconds or minutes.

The reason for this scalability is two-fold. First of all, the number of iterations,
given in 4th column, is significantly lower than the number of edges. Secondly,
Relief typically affects less than m vertices.

Our method performs better than the baseline for all datasets. We interrupted
the baseline calculation after 24 hours for Amazon and WebGoogle.

1 The datasets and their detailed descriptions are available at
http://snap.stanford.edu/data/index.html
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Finally, let us consider behaviour of agony and the size of the eulerian graph
as a function of iterations. In order to do so we plot the evolution of scores,
normalized by the final agony, in Figure 3.
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Fig. 3. Scores as a function of iteration. Each plot represents a single dataset. The
upper line depicts the current agony score, normalized by the final score, as a function
of a current iteration. The lower line depicts the current number of edges in the eulerian
subgraph, normalized by the final score, as a function of a current iteration. Note that
the x-axis is scaled.

We see that the initial agony is significantly larger than the final agony. For
most datasets the agony drops quickly. For the largest datasets the algorithm
achieves approximation ratio of 2 relatively quickly: forWebGoogle the algorithm
achieves approximation ratio of 2 during the first 8% of iterations. This suggests
that we can use the algorithm as any-time algorithm, stopping iterations early
once we achieved acceptable approximation ratio. Note that since the optimal
solution is at least as large as the current eulerian subgraph, we can at any time
bound the approximation ratio of the current agony.

7 Concluding Remarks

In this paper we introduced an algorithm for discovering hierarchy among ver-
tices in a given directed graph. The hierarchy should minimize agony, the edges
that violate the hierarchical structure. We show that our algorithm achieves com-
putational complexity of O(m2) which is significantly better than the current
bound of O(nm2). We also demonstrate that O(m2) is a pessimistic estimate of
the running time and in practice the algorithm scales up for large networks.
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There are several interesting directions for future work. An obvious and prac-
tical extension is to make edges weighted. Weighting edges will change the def-
inition of the dual problem as we no longer are looking for maximum eulerian
subgraph. On the other hand, integer weights can be viewed as multiple edges
which should imply that the same framework can be applied. Another fruit-
ful direction is to consider discovering hierarchies with constraints, such as the
number of hierarchies or demanding that certain vertices have fixed ranks.
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Abstract. The extraction of knowledge from data streams is an activ-
ity that has progressively been receiving an increased demand. However,
in this type of environment, changes in data distribution, or concept
drift, can occur constantly and is a challenge. This paper proposes the
Adaptable Diversity-based Online Boosting (ADOB), a modified version
of the online boosting, as proposed by Oza and Russell, which is aimed
at speeding up the experts recovery after concept drifts. We performed
experiments to compare the accuracy as well as the execution time and
memory use of ADOB against a number of other methods using several
artificial and real-world datasets, chosen from the most used ones in the
area. Results suggest that, in many different situations, the proposed ap-
proach maintains a high accuracy, outperforming the other tested meth-
ods in regularity, with no significant change in the execution time and
memory use. In particular, ADOB was specially efficient in situations
where frequent and abrupt concept drifts occur.

Keywords: data stream, concept drift, ensemble classifier, online boost-
ing, diversity.

1 Introduction

Nowadays, several applications need the use of mechanisms that enable the ex-
traction of knowledge in real time. Examples of such applications include mon-
itoring the purchase history of customers, the movement data from sensors, or
water temperatures. Thus, the algorithms used for this purpose must be con-
stantly updated, trying to adapt to new instances and taking into account the
computational constraints.

When working in environments with a continuous flow of data, it is not pos-
sible to guarantee that the distribution of the data will remain stationary. On
the contrary, several changes may occur over time, triggering situations com-
monly known as concept drift. The speed with which the changes occur may be
classified as abrupt, when the transition from an old to a new concept occurs
suddenly, or gradual, when such a transition is smooth [1].

There are several approaches proposed to detect changes in concepts. Some
of these approaches provide for the adaptation of the internal structure of a
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classifier to deal with the changes of concept. Others try to identify when a
concept drift has occurred, and then drop the old classifier and create a new
one for the most actual concept [1–6]. Other existing methods use ensemble
classifiers with some weighting policy applied to their members as well as for
dropping the worst classifiers and adding new ones [7–11]. Finally, there are also
approaches that seek to increase the efficiency of change detection when dealing
with concepts that have previously occurred [12–14].

In situations where many changes of concepts occur, learning algorithms con-
stantly need to adapt to the new distribution. In such scenarios, it is common to
observe a delay before the complete adaptation occurs, i.e., a period that is used
for learning a satisfactory generalization. The longer this period, the greater the
number of incorrect predictions.

Based on these observations and using an ensemble of classifiers, we decided
to try modifying the online version of boosting, originally proposed by Oza and
Russell [15], aiming at a more rapid recovery of the experts accuracy in environ-
ments with frequent changes of concepts. More specifically, we have changed the
way diversity is distributed during training.

This paper describes the Adaptable Diversity-based Online Boosting (adob)
and compares the performance of our proposal with some of the major existing
ensemble methods for dealing with data streams and concept drifts using the
Massive Online Analysis (moa) framework [16]. The results indicate that adob
maintains good accuracies in different situations, surpassing the other tested
methods in regularity.

The rest of this paper is organized as follows: Section 2 surveys the related
work; Section 3 introduces the datasets used in the experiments; Section 4 de-
scribes in detail the operation of our proposal; Section 5 compares the proposed
method to other existing ensemble methods; and, finally, Section 6 presents our
conclusions.

2 Related Work

A large number of methods have been proposed to learn from data streams con-
taining concept drifts. Examples of older methods include [12, 17, 18]. Nowadays,
several methods have been proposed using the concept of ensemble classifiers.

Bagging [19] and Boosting [20] are techniques that use a set of classifiers
trained on the original data by aggregating the responses of each classifier to
get a better prediction. They use different strategies both to manipulate the
data during the training of experts and also to combine their predictions. Online
Bagging and Boosting [15] are adapted versions of these techniques to data
stream environments. They both make use of the Poisson distribution to simulate
a behavior similar to their offline versions.

Adwin Bagging (adwinbag) [8] and Leveraging Bagging (leveraging) [9]
both make use of the online version of bagging, as it was defined by Oza and
Russell [15], adding Adaptive Windowing (adwin) [3] as their concept drift
detector. In addition, Leveraging Bagging makes two changes to the original
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proposal: the first is to increase the value of diversity (λ) which, as a consequence,
leads to an increase in the probability that an expert trains on the same instance.
The second is to change the way the experts predict instances in order to increase
diversity and reduce the correlation.

The Dynamic Weighted Majority (dwm) [7] extends the Weighted Majority
Algorithm [21] and implements a weighted ensemble classifier specifically de-
signed to identify concept drifts. This method adds and removes classifiers ac-
cording to the ensemble global performance. If the ensemble commits an error,
then a classifier is added. If one classifier commits an error, its weight is reduced.
If after many examples a classifier continues with a low accuracy, indicated by
a low weight, it is removed from the ensemble.

Diversity for Dealing with Drifts (DDD) [10] uses four ensemble classifiers with
high and low diversity, before and after a concept drift is detected. A previous
study [22] analyzedhow these ensembles behaved in data sets suffering fromabrupt
and gradual concept drifts with several speeds of change, right after the drift and
longer after.With the results obtained,Diversity for Dealing with Driftsd was pro-
posed, trying to select the best ensemble (or weighted majority of ensembles) be-
fore and after drifts, detected by the use of a drift detection method.

The Accuracy Updated Ensemble (aue2) [11], recently proposed, maintains
a set of classifiers and its strategy is to, at every n instances (called chunks),
remove the expert with the worst accuracy and replace it with a new one. The
weight of the experts are also defined according to their accuracy, making the
most accurate one have a greater influence on the prediction. The way the experts
are updated makes the method sensitive to changes in concepts.

3 Datasets

This section describes the datasets that were selected for the experiments used
to analyze the performance of adob against those of other recent methods. We
chose both real-world and artificial datasets. In the artificial ones, it is possible
to define the position of the concept drifts as well as its quantity and size. Thus,
several situations can be simulated. In the real-world datasets, the unpredictabil-
ity and volume of data makes their use interesting, complementing the scenarios
provided by the artificial data. All the datasets used are available, most of them
in the moa website at the address http://moa.cs.waikato.ac.nz/.

3.1 Artificial Datasets

For the experiments described in Section 5, we chose four artificial datasets, two
of them with gradual concept drifts and two with abrupt concept drifts. These
are: LED [23, 24], RBF [8, 25], Sine [1, 2, 4], and Stagger [7, 17].

The LED dataset is composed of 24 categorical attributes, 17 of which are
irrelevant, and one categorical class with ten possible values. It represents the
problem of predicting the digit shown by a seven-segment LED display, where
each attribute has 10% probability of being inverted (noise). We used a version
of LED available at moa that includes concept drifts to the data sets by simply

http://moa.cs.waikato.ac.nz/
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changing the attributes positions. This dataset was used in our experiments to
test gradual concept drifts.

RBF (Radial Basis Function) creates complex concept drifts that are not
straightforward to approximate with a decision tree model. It works as follows:
a fixed number of random centroids are generated. Each center has a random
position, a single standard deviation, a class label, and a weight. New examples
are generated by selecting a center at random, taking weights into consideration
so that centers with higher weight are more likely to be chosen. A random
direction is chosen to offset the attribute values from the central point. The
length of the displacement is randomly drawn from a Gaussian distribution with
standard deviation determined by the chosen centroid. The chosen centroid also
determines the class label of the example. This effectively creates a normally
distributed hypersphere of examples surrounding each central point with varying
densities. Only numeric attributes are generated. Drift is introduced by moving
the centroids with constant speed. This speed is initialized by a drift parameter.
This dataset is composed of six classes and 20 attributes, and was also used to
test gradual concept drifts.

Sine presents the problem of identifying the position of coordinates, repre-
sented by two attributes, in relation to the curve y = sin(x). In the first context,
points below the curve are classified as positive. After each concept drift, the
classification is reversed. Each coordinate has values uniformly distributed in
the [0,1] interval. It is possible to include two other attributes, filled with ran-
dom data in the same interval, with no influence on the classification function
(irrelevant data). Gama et al. [1] named these data sets as Sine1 and Sinirrel1, re-
spectively. They also described Sine2, similar to Sine1 but using a different curve:
y < 0.5 + 0.3sin(3πx). Positive and negative examples are interchanged to en-
sure a stable learning environment. This dataset was used to test abrupt concept
changes and is available at https://sites.google.com/site/moaextensions/.

In Stagger, each example consists of the following attributes: color ∈ {green,
blue, red}, shape ∈ {triangle, circle, rectangle}, and size ∈ {small, medium,
large}. According to the Stagger original paper [17], there are three kinds of
different concepts: in concept 1, color = red ∧ size = small; in concept 2,
color = green∨shape = circle; and in concept 3, size = medium∨size = large.
This data set is usually used to simulate abrupt concept drifts and is fairly simple
to learn – it has few attributes and concepts, and concepts 2 and 3 overlap.

3.2 Real Datasets

In addition to the artificial datasets, we chose three real-world datasets, from
the most used ones in the area of data streams, all with very different number of
instances and complexity. In these datasets, the number and position of concept
drifts (if existent) are unknown.

The Electricity dataset [1, 2, 7, 8, 10, 25], composed of 45,312 instances and
eight attributes, presents data collected from the Australian New South Wales
Electricity Market. In that market the prices are not fixed, varying based on
market demand and supply. The prices are set every five minutes and the class

https://sites.google.com/site/moaextensions/
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label identifies the change of the price related to a moving average of the last 24
hours. The goal of the problem is to predict if the price will increase or decrease.

The Forest Covertype dataset [8, 15, 24, 25] contains the forest cover type for
30 x 30 meter cells obtained from US Forest Service (USFS) Region 2 Resource
Information System (RIS) data. The goal is to predict the forest cover type from
cartographic variables. It contains 581,012 instances and 54 attributes, including
numeric and categoric ones.

The Poker Hand data set [8, 25] represents the problem of identifying the
value of five cards in the Poker game. It is constituted of five categoric and five
numeric attributes and one categoric class with 10 possible values informing the
value of the hand; for example, one pair, two pairs, a sequence, a street flush,
etc. “In the Poker hand data set, the cards are not ordered, i.e., a hand can
be represented by any permutation, which makes it very hard for propositional
learners, especially for linear ones” [25]. Even though a simpler modified version
exists (where the cards are sorted by rank and suit, and duplicates are removed),
we decided to use the original harder version in our experiments. The used data
set contains 1,000,000 instances.

4 Adaptable Diversity-Based Online Boosting

The Adaptable Diversity-based Online Boosting (adob) is a variation of the
Online Boosting [15] method, which proposes to distribute instances more ef-
ficiently among experts, aiming to more quickly adapt to the situation where
concept drifts occur frequently, specially if they are abrupt. This distribution is
performed by controlling the diversity (λ) through the accuracy of each expert.

When a new distribution starts, the accuracy of the experts can be used to
reduce the initial error, increasing the focus on instances of difficult classification
and accelerating the diversity. As the experts have a high degree of similarity
in the beginning, due to the reduced number of known instances, the accuracy
can be used to define their behaviors. However, because more instances of the
same distribution are coming and experts are diversifying, the use of the experts
accuracies will tend to have little influence in their behaviors.

Algorithm 1 shows the adob pseudo-code, which is our modified version of
the Online AdaBoost algorithm [15]. Initially, the ensemble of classifiers (h) is
sorted by accuracy in ascending order. Before, several variables are initialized,
including minPos and maxPos with values that represent the classifier with the
worst and best accuracy, respectively, as well as λ, λsc, and λsw (lines 1 to 4).

When an instance d arrives, initially the expert with less accuracy will be
selected. If the instance is correctly classified, we assume that probably the
other experts, which are more accurate, will also have good chances of correctly
classifying it. However, the correct classification of the worst expert does not
guarantee that the others will do it properly too, even if an error is unlikely.
Accordingly, we will refer to the error of another expert with better accuracy as
an unlikely error.
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Algorithm 1. Adaptable Diversity-based Online Boosting

Input: ensemble size M , instance d, ensemble h
1 minPos ← 1; maxPos ← M ;
2 correct ← false;
3 λ ← 1.0; λsc ← 0.0; λsw ← 0.0;
4 sort h by accuracy in ascending order;
5 for m← 1 to M do
6 if correct then
7 pos ← maxPos; maxPos ← maxPos - 1;
8 else
9 pos ← minPos; minPos ← minPos + 1;

10 end
11 K ← Poisson(λ);
12 for k ← 1 to K do
13 hpos ← Learning(hpos, d);
14 end
15 if hpos(d) was correctly classified then
16 λsc

m ← λsc
m + λ;

17 λ ← λ
(

N
2λsc

m

)
;

18 correct ← true;

19 else
20 λsw

m ← λsw
m + λ;

21 λ ← λ
(

N
2λsw

m

)
;

22 correct ← false;

23 end

24 end
25 return h;

Looking into lines 15 to 23 of Algorithm 1, it is possible to observe that the
value of λ will be reduced when the classification is done correctly and increased
when it is incorrect. In this way, if an unlikely error occurs, the later it occurs,
the smaller the influence on λ it will have. To minimize the consequences of an
unlikely error, the next expert selected to do the classification will be the one
with the best accuracy, followed by the second best, and so on (lines 6 to 7).
Using this procedure, experts with the worst accuracies, and most likely to make
mistakes, will only be selected at the end.

Another possible scenario is the case where the expert with the worst accuracy
incorrectly classifies the instance. In this situation, we distribute the greatest
possible λ for the next experts which are more likely to make mistakes in the
classification. Therefore, the next experts will be selected according to their
performances, from the worst to the best (lines 8 to 9). Assuming that experts
with the lowest performances have higher probabilities of making mistakes in
the classification, we force them to be selected earlier and maximize λ.
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As previously mentioned, after more instances of the same distribution are
presented, the lower the influence of this procedure in the experts accuracy will
be. At this stage, the experts tend to have a low correlation, and the accuracy of
the worst expert will have low importance to the others. Thus, adob will now
have similar behavior to the original online boosting [15], except for the fact
that experts begin to be selected unpredictably, varying for each instance. Thus,
these changes are especially valid for situations in which the concept changes
often and abruptly, as a consequence of their rapid recovery.

To help understanding how adob is used, Algorithm 2 presents a simplified
version of MOA’s singleClassifierDrift. The classification result is monitored by
a concept drift detection method – we used adwin. To classify new instances,
ADOBclassifier (line 4) behaves the same as defined in [15] and the return is:

h(x) = argmaxy∈Y
∑

m : hm(x) = ylog
1

βm , where

βm = εm
1−εm , εm =

(
λsw
m

λsc
m+λsw

m

)
,

and m ∈ [1..M ] is limited by the number of experts. If adwin returns a warning,
a new ensemble h2 immediately starts to be trained using adob alongside the
existing one (lines 6-7). When the drift is confirmed, the newly created ensemble
is used and the old one, representing the last distribution, is removed (lines 8-9).

Algorithm 2. Simplified code of MOA’s singleClassifierDrift with ADWIN

Input: ensemble size M , data stream D, base learner b
1 ADWIN ← new ADWIN method;
2 h, h2 ← new ensemble using M times b;
3 foreach instance d in D do
4 ADWIN ← ADOBclassifier(M , d, h);
5 switch ADWIN do
6 case detect a warning level
7 h2 ← ADOB(M , d, h2);
8 case detect a drift
9 h ← h2; h2 ← reset ensemble;

10 endsw
11 h ← ADOB(M , d, h);

12 end

It is worth pointing out that, in the real code, h2 is also reset when a warning
is not confirmed. This and other less important details were omitted here.

5 Experiments Configuration and Results

This section describes the set up and results of the experiments used to evaluate
adob against other implementations of online bagging and boosting, as well as
other recent ensemble methods aimed at detecting concept drifts in data streams.
The chosen methods are: adwinbag, leveraging, dwm, ddd, and aue2. The
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original online version of AdaBoost (OzaBoost) [15] was included in the tests for
comparative purposes, also using adwin to detect concept drifts. This method
will be called Adwin Boosting (adwinboost). All these methods were compared
in terms of accuracy, execution time, and memory used.

The choice of methods was also based on the following additional criteria:
adwinbag and adwinboost were selected because they implement the original
version of online bagging and boosting, respectively; leveraging and ddd,
because they use modified versions of the online bagging; whereas dwm and
aue2, because they set their own training strategies to detect changes.

To compute the precision, memory usage, and execution time of the meth-
ods, experiments were repeated 40 times in the artificial datasets. Average was
computed alongside with a 95% confidence interval. In addition, each artificial
dataset was composed of 10,000 instances.

Finally, all the tests were performed in a Core i3 350M processor, 2GB of
main memory, running the Ubuntu 12.04 64 bits operating system.

5.1 Drift Configuration in the Artificial Datasets

In the configuration of the artificial datasets, we inserted abrupt and gradual
concept drifts. Noise was also inserted in some datasets in order to check the
behavior of the methods in these situations.

Two versions of the LED dataset were used, both with gradual concept drifts.
In one dataset, drifts occur at instances 3,000 and 6,000. In the other, four
gradual changes were inserted at instances 2,000, 4,000, 6,000, and 8,000. In
both versions, every time a change occurs, 10% of noise was added.

Other gradual changes were tested, this time making use of the Random RBF
dataset. The position of the concept drifts in the two versions of RBF were the
same used in the LED data sets.

The two versions of both Sine and Stagger datasets have four and eight abrupt
changes, respectively. In their first configurations, the changes were inserted at
instances 2,000, 4,000, 6,000, and 8,000. In their second versions, eight changes
occur at instances 2,000, 3,000, 4,000, ..., 8,000, and 9,000, respectively.

5.2 Ensemble Methods Configuration

To perform a fair comparison between the methods, common parameters were
all set similarly: the base learner was a Hoeffding Tree [18] and the number of
experts was set to ten. To set individual parameters, each method was executed
with ten different configurations for each dataset used, to check if their default
values were the ones which produced the best accuracy. In most cases this was
indeed the case, but there were exceptions. In these few cases, we adopted a
different parametrization – specific values are given below.

To detect concept drifts, adwinbag, adwinboost, leveraging, and adob
all make use of adwin. In all of them, the δ parameter of adwin, that corre-
sponds to the maximum global error, was set to 0.1. This value influences the
hypothesis test used to check for any change in the distribution [3].
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ddd originally uses the Early Drift Detection Method (eddm) [2] to detect
changes. The parameter values used for eddm were their defaults, i.e., n = 30,
w = 0.95, and d = 0.99. These represent, respectively, the number of instances
before starting to detect changes, the confidence level to activate the warning
level, and the confidence level to detect a change.

Regarding the parameters of the methods, leveraging uses λ, which controls
the weight of resampling. The higher the value of λ, the greater the probability
that a given instance is repeated for each expert ensemble. This probability is
defined according to the Poisson distribution [9]. In our tests, we used λ = 6.

dwm uses three parameters: p, which corresponds to the time needed to verify
if any expert will be removed or added as well as to update their weights if
any classifier incorrectly classifies the actual instance; β, the value that will be
decremented by the expert every time it makes a mistake; and, finally, θ, which
is the minimum value that an expert can have without being removed [7]. We
used p = 100 (artificial datasets), p = 250 (real datasets), β = 0.5, and θ = 0.01.

The parameters of ddd are: W , responsible for controlling the robustness of
the method to false alarms; λl, useful to define the value that will represent an
ensemble with low diversity; and λh, a parameter that will represent an ensemble
with high diversity [10]. In our experiments we used W = 1 (except in the LED
datasets), W = 3 (LED datasets), λl = 1, and λh = 0.05.

Finally, aue2 has two parameters, which control the memory usage (m) and
the chunk size (c). The first is responsible for limiting the maximum amount
of memory that each component of the ensemble may have. The latter defines
the number of instances needed to check the accuracy and memory usage of
the ensemble members [11]. After preliminary tests, their values were defined as
m = 32MB, c = 50 (except in the Forest Covertype and Poker Hand datasets),
and c = 500 (Forest Covertype and Poker Hand datasets).

5.3 Accuracy Analysis

Table 1 presents the accuracies obtained for each method on the artificial and
real-world datasets. Bold values identify the best results. The average rank is
the average of the positions that each method achieved in different datasets.

In the LED dataset with two concepts drifts, the adwinbag method had the
best accuracy, closely followed by leveraging. Following, there are ddd, adob,
and aue2. In general, these methods have similar performance, with differences
ranging from 0.1% to 3%, approximately. On the other hand, adwinboost and
dwm obtained the worst results. As can be seen in the first graphic of Figure 1,
the slow recovery of adwinboost negatively affects its accuracy at every concept
drift. In addition, dwm had the worst performance throughout the dataset.

With the addition of two more drifts in the LED dataset, as might be expected,
the performance of all methods deteriorated. The most affected method was
aue2, with a drop of about 3%. The less impacted was dwm, with a worsening
of only 0.74%. However, dwm’s performance remained well below those of the
others. In descending order of accuracy, the result is leveraging, adwinbag,
ddd, adob, aue2, adwinboost, and dwm.
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Table 1. Average accuracy in percentage (%) with 95% confidence in artificial datasets

ADOB AdwinBag AdwinBoost Leveraging DWM DDD AUE2

LED2 59.30±0.14 61.18±0.08 55.52±0.53 61.08±0.09 45.48±0.78 60.62±0.16 58.18±0.23
LED4 56.86±0.10 58.57±0.09 53.69±0.52 59.01±0.06 44.74±0.89 57.92±0.14 55.13±0.29
RBF2 53.08±0.26 54.59±0.15 47.13±0.45 39.20±0.15 40.12±0.62 53.41±0.21 53.26±0.27
RBF4 56.77±0.40 58.29±0.12 51.13±0.36 43.58±0.20 42.75±0.59 57.58±0.22 57.19±0.28
Sine4 90.28±0.10 81.84±0.79 90.68±0.13 89.90±0.14 87.60±0.43 88.97±0.31 87.57±0.21
Sine8 88.42±0.10 80.14±0.53 88.91±0.12 87.42±0.14 86.90±0.36 87.55±0.33 86.06±0.23
Stagger4 99.02±0.02 92.73±0.21 96.00±1.21 97.80±0.05 96.45±0.32 97.47±0.15 94.27±0.17
Stagger8 98.74±0.02 90.32±0.18 96.52±0.82 94.70±0.13 95.34±0.29 96.59±0.13 88.29±0.19
Elec 87.98 86.44 87.09 89.71 88.17 85.72 80.98
Cov 82.79 84.44 81.31 88.16 87.34 83.96 65.95
Poker 53.74 53.20 52.42 52.18 46.60 53.19 48.84

Rank 2.82 3.82 4.18 3.36 5.09 3.18 5.55

Analyzing the RBF dataset with two concept drifts, adwinbag again had the
best accuracy, closely followed by ddd, aue2, and adob. adwinboost, dwm,
and leveraging had the worst results. Unlike the previous dataset, with the
insertion of two more concept drifts, the performance of the methods improved.
This can be explained by how the changes were defined. In RBF2, the gradual
changes take twice as long to fully occur than in RBF4. Thus, methods spend
more time to detect if there was a change and, consequently, take longer to
recover. Although all methods increased their accuracies in this version, the order
remained the same, except for the fact that dwm assumed the worst position,
swapping places with leveraging.

Up to this point, the presented datasets included gradual concept drifts. Mak-
ing a general analysis of this type of change, the methods that had the best ac-
curacies were: adwinbag, ddd, adob, and aue2, with differences ranging from
0.77% to 2.21%. Right after, with a considerable distance, follows adwinboost,
leveraging, and dwm occupying the last positions, respectively.

Differently from the other datasets, at Sine, adwinbag returned the worst
results. Its differences to aue2 are of 5.73% and 5.92%, in the datasets with four
and eight drifts, respectively. These are significant differences, given that the
differences from the first (adwinboost) to the second to last (aue2, in both
cases) are of only 3.11% and 2.85%, respectively.

Finally, on Stagger the results were somewhat different from those on Sine.
aue2 and adwinbag were again the worst methods, but the order was different
in the two versions used. The best accuracies were achieved by adob and ddd.

Analyzing the overall accuracy of the methods in all datasets with abrupt
concept drifts, adob had the best performance, followed by adwinboost, ddd,
leveraging, dwm, aue2, and adwinbag. Comparing these results with the
results of the datasets with gradual concept drifts, adwinbag had the highest
drop in performance, from first to last. The methods that maintained a better
balance in different situations were adob and ddd, respectively.

In the real datasets, leveraging was the method with the best overall per-
formance, followed by adob, adwinbag, ddd, adwinboost, dwm, and aue2,
respectively. It is worth noting that, despite its poor overall performance in these
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datasets, dwm was the second best in both Electricity and Forest Covertype.
This is explained by its very bad performance in the Poker Hand dataset.

Finally, observe that, in the first two graphics of Figure 1, it is possible to
visualize the gradual and abrupt changes, respectively. However, in the third,
referring to the Electricity dataset, apparently no drastic change occurs.
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Fig. 1. Accuracy results in the LED2, Stagger4 and Electricity datasets
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Complementing the accuracy analysis, a statistic based on the nonparametric
Friedman test [26] was used. For this test, the null hypothesis states that all
methods are statistically equal. If this hypothesis is rejected, the test indicates
that there is a statistical difference in any of the methods, but it does not specify
which method(s). For this task, the use of a post-test is required. In our case,
we used the Bonferroni-Dunn [27] to compare adob with the other methods.

Initially, we compared the accuracies of the methods, using a 95% confidence
interval: F6;60 = 2.25. Therefore, with FF = 2.79 (bigger than F6;60), the null
hypothesis is rejected. Then, proceeding to the post-test, the critical difference
(CD) was found to be 2.44. So, we can say that adob is statistically superior in
accuracy to aue2. Figure 2 graphically represents these results.

Fig. 2. Comparison results of adob against the other methods using the Bonferroni-
Dunn test with a 95% confidence interval

5.4 Time Analysis

Table 2 displays the values in seconds that each method took to rank the different
datasets. An important observation is that the times of the real-world datasets
were significantly higher than those of the artificial datasets, except for RBF
and Electricity, which presented similar times. Because the real-world datasets
are much bigger, requiring more time to be processed is an expected behavior.

Table 2. Average runtime in seconds (s) with 95% confidence in artificial datasets

ADOB AdwinBag AdwinBoost Leveraging DWM DDD AUE2

LED2 3.34±0.04 3.05±0.03 2.86±0.04 3.74±0.02 2.74±0.05 4.87±0.14 4.09±0.02
LED4 3.62±0.05 3.23±0.03 3.05±0.04 3.90±0.03 2.72±0.04 5.74±0.11 4.13±0.02
RBF2 8.10±0.07 8.79±0.10 7.76±0.10 12.63±0.06 9.63±0.11 13.80±0.50 11.65±0.11
RBF4 9.34±0.14 9.46±0.09 7.79±0.09 13.43±0.10 9.42±0.11 16.28±0.61 13.16±0.14
Sine4 2.30±0.03 2.10±0.02 2.36±0.04 3.79±0.04 1.48±0.04 2.97±0.06 2.49±0.03
Sine8 2.59±0.04 2.14±0.03 2.58±0.05 3.80±0.04 1.58±0.03 3.37±0.06 2.53±0.04
Stagger4 1.67±0.03 1.66±0.03 1.68±0.03 2.09±0.02 0.70±0.01 1.59±0.02 1.99±0.02
Stagger8 1.81±0.03 1.59±0.03 1.84±0.03 2.22±0.02 0.69±0.01 1.78±0.02 2.93±0.07
Elec 8.98 7.22 8.27 16.65 4.73 15.25 8.18
Cov 291.52 228.08 229.42 468.86 165.49 545.17 312.90
Poker 469.67 358.27 374.05 3574.45 155.88 358.56 152.66
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Analyzing these results, the slowest artificial dataset was RBF, with an av-
erage of 11.27s and 10.34s in the versions with four and two concept drifts,
respectively. All the others were much faster. The fastest was Stagger, with an
average time of 1.84s and 1.63s in the versions with 8 and 4 drifts, respectively.

In the real-world datasets, the average times were somewhat proportional to
the number of instances: Poker Hand was the one that took longer (777.65s),
followed by Forest Covertype (320.21s), and Electricity (9.90s).

A fact that possibly influences the time is diversity. The higher the diversity,
the higher the probability of the same instance be repeatedly distributed to
a different expert and hence more time be used. adob and adwinboost are
methods that tend to increase their diversities in proportion to the error. Thus,
the lower the accuracy of the method – which suggests more errors – the greater
the diversity, causing a longer running time.

For example, observing the RBF and Stagger results, the ones with the lowest
and highest accuracies, were the ones with the highest and lowest times in the
artificial datasets, respectively. The same idea might be true in the real-world
datasets, but these should be compared separately because they possess very
different numbers of instances. The differences in execution times between adob
and adwinboost demonstrate the first attempt to maximize/minimize diversity,
as discussed in Section 4, in favor of a better accuracy in different situations.

On the other hand, one of the characteristics of leveraging is to maintain
a higher diversity during the processing of the instances. As a result, it is the
slowest method, followed by ddd. Although adwinbag and leveraging use
a static diversity, Minku et al. [22] show that different diversities in different
situations of concept drifts contribute to improve the accuracy of the method.

5.5 Memory Analysis

We decided to monitor the memory usage to confirm that, despite using more
memory than adwinboost, adob is not memory intensive in absolute terms.

The evaluation was based on a metric that computes the amount of memory
used by the methods per hour (in KB) and the results are presented in Table 3.
Again, in the real-world datasets, the methods used much more memory than in
the artificial datasets as a consequence of the greater number of instances.

The method with the lowest memory usage was dwm, followed by aue2,
adwinboost, adwinbag, adob, ddd, and leveraging. A possible explanation
for the high memory usage of ddd is that it stores four times more classifiers than
the value set by the user. But not all of them are used to classify each instance:
the best ones are chosen within the ensemble according to each situation.

Memory usage by methods using both the original and the modified online
bagging/boosting versions can be explained similarly to the explanation made
to the execution time. The greater the diversity, the greater the likelihood of
repetition of an instance among experts involving more training. As a direct
consequence, it increases the used memory. The observation of the relationship
with the precision, made earlier, apparently also applies to the memory usage.
However, it is important to notice that there are exceptions in both cases.
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Table 3. Average memory usage in (KB/h) with 95% confidence in artificial datasets

ADOB AdwinBag AdwinBoost Leveraging DWM DDD AUE2

LED2 0.34±0.00 0.21±0.00 0.29±0.00 0.26±0.00 0.02±0.00 1.29±0.05 0.26±0.00
LED4 0.36±0.01 0.22±0.00 0.31±0.00 0.26±0.00 0.02±0.00 1.56±0.04 0.27±0.00
RBF2 1.14±0.01 0.94±0.01 1.09±0.01 2.18±0.05 0.10±0.00 6.23±0.29 1.20±0.01
RBF4 1.31±0.02 1.00±0.01 1.09±0.01 2.89±0.06 0.10±0.00 7.36±0.37 1.36±0.01
Sine4 0.18±0.00 0.10±0.00 0.18±0.00 0.46±0.01 0.01±0.00 0.44±0.01 0.07±0.00
Sine8 0.20±0.00 0.10±0.00 0.19±0.00 0.39±0.01 0.01±0.00 0.49±0.01 0.07±0.00
Stagger4 0.10±0.00 0.07±0.00 0.10±0.00 0.11±0.00 0.00±0.00 0.18±0.00 0.04±0.00
Stagger8 0.11±0.00 0.06±0.00 0.11±0.00 0.12±0.00 0.00±0.00 0.20±0.00 0.29±0.01
Elec 0.85 0.47 0.86 3.43 0.05 2.40 0.29
Cov 37.54 25.75 31.79 290.38 3.76 168.50 27.41
Poker 293.80 208.34 195.37 30816.18 0.67 266.08 6.17

6 Conclusion

Dealing with concept drifts in data streams is a challenging topic, given that
such drifts can be abrupt or gradual, slow or fast, rare or frequent, cyclical or
not, etc. Thus, the single classifier approach is unlikely to achieve good results in
general and, so, the ensemble of classifiers methods are becoming more popular.

This paper presented adob, an ensemble algorithm based on the Online
Boosting [15] method specially built to deal more efficiently with frequent and
abrupt concept drifts on on-line learning environments. More specifically, adob
proposes to distribute instances more efficiently among experts, by controlling
the diversity (λ) through the accuracy of each expert, aiming at recovering faster
from the situations where concept drifts occur frequently.

We run experiments to compare adob to six different online ensemble meth-
ods, including other variations of Online Bagging and Boosting [15], all of them
using adwin [3] as their drift detector, namely Adwin Bagging [8], Leverag-
ing Bagging [9], and adwinboost, as well as other well known and/or recent
ensembles such as dwm [7], ddd [10], and aue2 [11].

To perform the comparison, we used two different versions of four selected
artificial datasets (eight in total), with both abrupt and gradual concept drifts,
as well as three real-world datasets, all of them chosen from the most used ones
in the concept drift research area.

It is important emphasizing that our main subject of interest in these exper-
iments was the performance evaluation of Algorithm 1 – more specifically we
wanted to compare it to the adwinboost version that inspired it. Mainly for
this reason, adob, adwinboost, adwinbag, and leveraging all used very
similar versions of Algorithm 2 – MOA’s singleClassifierDrift using adwin as
drift detection method, as well as the same parametrization. ddd also used a
similar version of singleClassifierDrift but the selected drift detection method
was eddm, as in its original reference [10].

The tested adob configuration presented good precision in several situations
and, in particular, it was specially efficient in the Stagger [17] and Sine [1]
datasets, which had abrupt concept drifts. It is worth pointing out that adob
presented the best overall accuracy considering all tested datasets. In addition,
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according to a statistic based on the non-parametric Friedman test, adob pre-
sented statistically superior accuracy, when compared to aue2, and comparable
performance to the other methods in the tested data sets.

Even so, we believe the efficiency of adob can be further improved, both by
optimizations in the algorithms and by using different drift detection methods
in different types of datasets. These might be investigated in the near future.
Another possible future work is a deeper investigation of the relationship between
diversity and accuracy of the methods with the run time and memory usage.

Finally, it is worth pointing out that both adob and ddd were imple-
mented as part of this work. They have been added to the moa framework
and are freely available at https://sites.google.com/site/moamethods.
The implementation of adwinboost was a mere parametrization
of code previously available in moa. dwm was already available at
https://sites.google.com/site/moaextensions.
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Training Restricted Boltzmann Machines

with Overlapping Partitions
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Abstract. Restricted Boltzmann Machines (RBM) are energy-based
models that are successfully used as generative learning models as well
as crucial components of Deep Belief Networks (DBN). The most suc-
cessful training method to date for RBMs is the Contrastive Divergence
method. However, Contrastive Divergence is inefficient when the number
of features is very high and the mixing rate of the Gibbs chain is slow.
We propose a new training method that partitions a single RBM into
multiple overlapping small RBMs. The final RBM is learned by layers
of partitions. We show that this method is not only fast, it is also more
accurate in terms of its generative power.

Keywords: Restricted Boltzmann Machine, Machine Learning.

1 Introduction

The Restricted Boltzmann Machine was introduced by Hinton et al. as a parallel
network for constraint satisfaction [1]. Since computing the partition function in
the Boltzmann distribution is not tractable, training was initially inefficient, and
RBMs did not gain popularity for seventeen years until Hinton et al. developed
Contrastive Divergence, a method based on Gibbs Sampling [8]. Since then,
RBMs are used as basic components of deep learning algorithms [3,7,9]. RBMs
have also been successfully applied to classification tasks [5,10,12]. Moreover,
RBMs have been applied to many other learning tasks including Collaborative
Filtering [14].

As RBMs became popular, research on training them efficiently increased.
Tieleman modified the Contrastive Divergence method by making Markov chains
persistent [15]. Thus, the Markov chain is not reset for each training example.
This has been shown to outperform Contrastive Divergence with one step, CD-1,
with respect to classification accuracy. However, it does not address the problem
of training speed. Brekal et al. introduced an algorithm to parallelize training
RBMs using parallel Markov chains [4]. Resulting Markov chains need to share
messages and the gradient is estimated by averaging chains.

In the context of Deep Belief Networks (DBN), the DistBelief model and
data parallelization framework was developed by [6]. Here, the DBN model is
partitioned into parts. Overlapping parts then exchange messages. Moreover,
models are replicated in different computation nodes and trained on different
subsets of data to provide data parallelization.

T. Calders et al. (Eds.): ECML PKDD 2014, Part III, LNCS 8726, pp. 195–208, 2014.
c© Springer-Verlag Berlin Heidelberg 2014
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In this paper, we propose a novel algorithm, RBM-Partition, for training
RBMs that splits a single RBM into multiple partitions. Each partition then
trains on a subsection of the data instance. We explore the effects of permitting
these partitions to overlap to improve training across the boundaries of the
partitions. We then investigate the generative power of model and find that
this training process improves training performance of CD-1 in terms of both
generative power and speed.

The rest of this paper is organized as follows. In Section 2 we briefly introduce
the Boltzmann Distribution and RBMs. We describe our training method in
Section 3 and show experimental results in Section 4. Finally, we discuss future
work in Section 5.

2 Restricted Boltzmann Machines

In statistical mechanics, the Boltzmann distribution is the probability of a ran-
dom variable that realizes a particular energy level (Equation 1) [11]. Here
β = 1

kT where T is temperature and k is the Boltzmann constant. In machine
learning, β is usually set to 1, except in the context of algorithms such as sim-
ulated annealing. Z is the partition function, which is generally intractable to
compute. However, when Z is computable, all other properties of the system
such as entropy, temperature, etc. can be calculated. The equation for Z, which
summarizes over the micro states of the system, is shown in Equation 2.

p(x) =
e−βE(x)

Z
(1)

Z =
∑
i

(
e−βE(xi)

)
(2)

As a type of Hopfield Network, an RBM is a generative model with visible
and hidden nodes as shown in Figure 1. There are no dependencies between
hidden nodes, or between visible nodes, thus an RBM forms a bipartite graph.
The model represents a Boltzmann energy distribution [11], where the proba-
bility distribution of the RBM with visible (x) and hidden node (h) is given in
Equation 3.

p(x,h) =
e−E(x,h)

Z
(3)

If we marginalize over the hidden variables, we obtain the probability of the

visible variables p(x) =
∑

h

(
e−E(x,h)

Z

)
. Inspired from statistical mechanics, we

write p(x) in terms of Free Energy (A) as follows:

A(x) = − log

(∑
h

e−E(x,h)

)
(4)
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Fig. 1. Restricted Boltzmann Machine

Thus, rewriting p(x) results in

p(x) =
e−A(x)

Z
(5)

The partition function, Z =
∑

x e
−A(x). The energy function of an RBM is

given in the following equation.

E(x,h) = −bx− ch− hWx.

If θ represents the model parameters, then the gradient of the log-likelihood is
calculated as in Equation 6. The gradient contains two terms that are referred
as the positive and the negative terms respectively. The first term increases the
probability of the training data by decreasing free energy while the second term
decreases the probability of a sample generated by the model. Computing the
expectation over the first term is tractable; however, for the second term it is
not. Thus, Hinton introduced the Contrastive Divergence algorithm that uses
Gibbs sampling to estimate the second term [8].

−∂ log(p(x))
∂θ

=
∂A(x)

∂θ
−
∑
x̃

p(x̃)
∂A(x̃)

∂θ
(6)

We provide a more detailed description of the CD algorithm in Section 4.
An alternative description of Contrastive Divergence algorithm is given by
Bengio [2].

CD provides a reasonable approximation to the likelihood gradient. The
CD-1 algorithm (i.e, Contrastive Divergence with one step) is usually sufficient
for many applications; for CD-k, resetting the Markov chain after each parameter
update is inefficient because the model has already changed [15,2].
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3 Partitioned Restricted Boltzmann Machines

We propose a training method for RBMs that partitions the network into several
overlapping subnetworks. With our method, training involves several partition
steps. In each step, the RBM is partitioned into multiple RBMs as shown in
Figure 2. In this figure, the partitions do not overlap; we discuss the version
with overlap later in this section These partitioned RBMs are trained in parallel
with a corresponding partition of training data using CD-1. In other words, the
feature vector is also partitioned, and each individual RBM is trained on a section
of that feature vector. Once all partitions are trained, we generate another set
of RBMs with fewer splits. For example, in Figure 2, we initially generate four
RBMS. In the second step, we generate two, and final training occurs on the full
RBM. It should be noted that the training process in all steps is over the same
weight vector.

The motivation behind our approach is that when RBMs are small, they
can be trained with more training epochs. However, as we reduce the number of
splits, training requires fewer epochs and therefore less time to train. The pseudo-
code for our training procedure is given in Algorithm 1. Since the details for
overlapping partitions is omitted, we added notes where overlapping partitions
will need different logic.

Fig. 2. RBM Partitions
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Algorithm 1. Training with Partitions

1: partition configurations: a list of configurations that describe splits and
training instances for each training step

2: W ← Create and initialize weight vector
3: vbias← Create and initialize bias vector for visible layer
4: hbias← Create and initialize bias vector for hidden layer
5: for each configuration in partition configurations:
6: train←Training instances
7: train partitions(configuration, train, visible, hidden,W, vbias, hbias)

Algorithm 2. create rbm partitions(configuration, W, vbias, hbias)

1: //for overlapping, visible nodes and hidden nodes will increase based
2: on percentage of overlap
3: visible nodes← configuration.visible/configuration.splits
4: hidden nodes← configuration.hidden/configuration.splits
5: rbms: RBM list
6: for i in configuration.splits:
7: //Each RBM will operate on a region of the visible vector
8: and hidden vector.
9: //For overlapping partitions, vbase and hbase will change based

10: on overlap percentage
11: vbase←base index in visible vector
12: hbase←base index in hidden vector
13: rbm(i)←RBM(W, vbias, hbias, vbase, hbase, visible nodes, hidden nodes)
14: return rbms

Algorithm 3. train partitions(configuration, train, visible, hidden, W, vbias,
hbias)

1: rbm list←create rbm partitions(configuration,W, vbias, hbias)
2: for each instance in train:
3: //for overlapping, partition will change according to
4: configuration.overlap percentage
5: splits←split instance into number of configuration.splits partitions
6: for rbm in rbms list
7: rbm(i).contrastive divergence(splits(i))

Based on the intuition that neighboring RBMs may share some features
(nodes), for overlapping partitions, we define similar partitions as described
above. However, in this model, each partition has some percent of its nodes
overlap with its neighboring partitions. As shown in Figure 3, the RBMs are
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Fig. 3. RBM With Overlapping Partitions

sharing two hidden and two visible nodes. Since nodes are shared, partitioned
RBMs cannot be trained concurrently without some kind of message passing.
It should be noted that when trained sequentially, message passing between the
partitions is not required.

4 Experimental Results

The MNIST dataset is used for our experiments due to its wider association
with RBMs. MNIST has 60,000 training samples and 10,000 test samples of
images. Each image is 28× 28 pixels corresponding to handwritten digits from 0
to 9. Some sample images are presented in Figure 4. We measure performance of
our method using reconstruction error, which is defined to be the average pixel
differences between the original and reconstructed images (Equation 7). For each
epoch, we use a batch size of 10 images from the training samples. Thus, for 6,000
epochs, 60,000 samples are used for training. Unless stated otherwise, we use
CD-1 for all training steps. The unpartitioned RBM has 500 hidden nodes and
28× 28 = 784 visible nodes. To have a fair comparison in terms of performance,
rather using CPU time, we applied the following method. CD-1 training for one
sample is carried out as follows:

– For all hidden nodes, find the probability of hidden node hi as σ(ci +∑
j Wijxj) and sample hi1 from a binomial distribution given hi.

– For all visible nodes, find the probability of visible node xj asσ(bj+
∑

iWijhi1)
and sample xj1 from a binomial distribution given xj .

– For all hidden nodes, find the probability of hidden node hi2 as σ(ci +∑
j Wijxj1).

– Calculate the gradient:

• W = W + ε(hi1xj − h2ixj1) where ε is the learning rate.
• b = b + ε(xj − xj1)
• c = c+ ε(hi1 − hi2)

where σ(x) = 1
1+e−x . Since operations at each step of CD involves visible nodes×

hidden nodes updates, we estimate that the total number of Markov chain cal-
culations is

ChainOperations = visible nodes× hidden nodes× samples



Training Restricted Boltzmann Machines with Overlapping Partitions 201

Fewer chain operations translate into less CPU time.
We used reconstruction error to compare our algorithms. For reconstruction

error, we first obtain the binary representation of the original image and the
reconstructed image. 30 is chosen as the threshold for converting pixel values
[0-255] to binary 0 or 1. Thus, pixel values greater than or equal to 30 are set
to 1 while values less than 30 are set to 0. Then, the reconstruction error is
calculated as in Equation 7.

error =

∑
i(image(i) �= reconstructedImage(i))

total pixels
(7)

Table 1 shows the results of our first experiment where the learning rate is
set to 0.1 for all RBMs. Single RBM represents a fully connected RBM that is
used as a baseline for comparison. The training sample for each RBM is equal
to the number of epochs times the batch size (10). For instance, the Single
RBM algorithm is trained on 60,000 images. Moreover, we use each image sam-
ple once. Unless stated otherwise, for following experiments, we ran training
algorithms on samples for one iteration only—at the most, each sample is used
only once. Each RBM-X represents a step with X partitions. Samples chosen for
RBM-X are always from first N samples of total images. RBM-1 represents the
final model. For these experiments, partitions are trained sequentially. Thus, if
we train them concurrently, the total ChainOperations will be lower. As com-
pared to Single RBM, RBM-1 has significantly lower reconstruction error. The
total ChainOperations for partitioned RBMs is also less than Single RBM. In
the table, using a t-test, significant results with 99% confidence are shown in
bold. RBM-Partition after training on 20 partitions, significantly outperformed
the Single RBM. Furthermore, the total number of chain operations for RBM-
Partition is substantially less than for Single RBM.

Since we want fast convergence in the first step, in the following experiment
we varied the learning rate to enable this. Results are shown in Table 2.

Table 1. Training Characteristics

Configuration Number of
RBMs

Epochs
(batch=10)

Learning
Rate

Reconstruction
Error (%)

Chain
Operations

(109)

Single RBM 1 6000 0.1 3.85 23.52

RBM-28 28 6000 0.1 4.76 0.84
RBM-20 20 5000 0.1 4.03 0.98
RBM-15 15 4000 0.1 3.19 1.05
RBM-10 10 3000 0.1 2.67 1.18
RBM-5 5 2500 0.1 2.29 1.96
RBM-2 2 2000 0.1 2.33 3.92
RBM-1 1 2000 0.1 2.36 7.84
Total 17.77
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Table 2. Training Characteristics wrt Learning Rate

Configuration Number of
RBMs

Epochs
(batch=10)

Learning
Rate

Reconstruction
Error (%)

Chain
Operations

(109)

RBM-28 28 6000 0.3 3.23 0.84
RBM-20 20 5000 0.3 2.93 0.98
RBM-15 15 4000 0.3 2.66 1.05
RBM-10 10 3000 0.25 2.30 1.18
RBM-5 5 2500 0.20 2.08 1.96
RBM-2 2 2000 0.10 2.10 3.92
RBM-1 1 2000 0.10 2.10 7.84
Total 17.77

Table 3. Training Characteristics wrt Learning Rate

lr = 0.3 lr = 0.1 lr = 0.05 lr = 0.005 lr = 0.0005

Single RBM 4.43 3.85 4.22 9.40 23.15
RBM-1 3.45 2.10 1.95 1.83 1.92

Table 4. Overlapping Partitions

Configuration Number of
RBMs

Epochs
(batch=10)

Learning
Rate

Reconstruction
Error (%)

Chain
Operations

(109)

RBM-28 28 6000 0.3 3.11 0.90
RBM-20 20 5000 0.3 2.76 1.10
RBM-15 15 4000 0.3 2.50 1.18
RBM-10 10 3000 0.25 2.19 1.35
RBM-5 5 2500 0.20 1.95 2.27
RBM-2 2 2000 0.10 1.92 4.30
RBM-1 1 2000 0.10 2.08 7.84
Total 18.94

The RBM-Partition with 99% confidence outperforms the Single RBM in all
steps including the first partition, RBM-28 (with 28 partitions). Moreover, re-
construction errors are even lower compared to our previous experiment.

Using the same configuration above, we varied the learning rate (denoted lr in
the results) for the Single RBM and RBM-1. Learning rates for other RBM-X are
fixed as in the configuration given in Table 2. Reconstruction errors for different
learning rates are given in Table 3. Results demonstrate that RBM-Partition is
less sensitive to different learning rates as compared to the Single RBM with
99% confidence.
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We also wanted to determine if overlapping partitions would affect the results.
We ran our experiment with 5% overlap, which means that each RBM shares
5% of its neighbor’s nodes (5% from the left neighbor and 5% from the right
neighbor). We ran overlapping partitions sequentially. As shown in Table 4,
reconstruction errors are even lower with only a modest increase in overhead in
terms of ChainOperations.

Comparing overlapping with non-overlapping RBM-Partition algorithms us-
ing the t-test, results show that the overlapping algorithm outperforms the non-
overlapping algorithm with 99% confidence in almost every stage. However, in
the last stage, the results were not significantly different, as shown in Table 5.
We hypothesize that since overlapping partitions have more connections in each
partition, they will require more training samples.

Table 5. Non-overlapping vs. Overlapping Partitions

Configuration Number of
RBMs

Epochs
(batch=10)

Learning
Rate

Overlapping
Reconstruction

Error(%)

NonOverlapping
Reconstruction

Error(%)

Overlapping
Chain

Operations
(109)

NonOverlapping
Chain

Operations
(109)

RBM-28 28 6000 0.3 3.11 3.23 0.90 0.84
RBM-20 20 5000 0.3 2.76 2.93 1.10 0.98
RBM-15 15 4000 0.3 2.50 2.66 1.18 1.05
RBM-10 10 3000 0.25 2.19 2.30 1.35 1.18
RBM-5 5 2500 0.20 1.95 2.08 2.27 1.96
RBM-2 2 2000 0.10 1.92 2.10 4.30 3.92
RBM-1 1 2000 0.10 2.08 2.10 7.84 7.84
Total 18.94 17.77

Table 6. 10-Fold Cross Validation Results

Configuration Number of

RBMs

Samples Learning

Rate

No Overlap:

Average

Reconstruction

Error (%)

Overlap:

Average

Reconstruction

Error(%)

Chain

Operations per fold

(109)

No-Overlap/Overlap

Single RBM 1 60000 0.1 4.06 21.12

RBM-28 28 60000 0.3 3.32 3.32 0.76/0.81

RBM-20 20 50000 0.3 3.07 2.92 0.88/1.00

RBM-15 15 40000 0.3 2.68 2.62 0.94/1.06

RBM-10 10 30000 0.25 2.35 2.29 1.06/1.21

RBM-5 5 25000 0.20 2.12 2.09 1.76/2.04

RBM-2 2 20000 0.10 2.15 2.08 3.53/3.88

RBM-1 1 20000 0.10 2.18 2.14 7.06/7.06

Total 16.00/17.06
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Original

Reconstructed

Fig. 4. Original vs. Reconstructed Images

Finally, 10-fold cross validation results are given in Table 6. Rather than
using the provided training and test data sets. we pooled all of the data and split
samples into 10 equal size subsamples. One subsample was used as the validation
data for testing and the remaining 9 subsamples were used for training. We
repeated this process 10 times. It should be noted that the numbers of samples
for partitioned RBMs are not equal (Table 6) because we wanted to keep the total
time complexity of RBM-Partition to be no worse than the Single RBM. RBM-
Partition outperforms Single RBM with 99% confidence. Moreover, overlapping
RBMs have lower average reconstruction error as compared to non-overlapping
ones.

To visually compare the original images with the some of our reconstructed
images, we present some examples in Figure 4.

Learning behavior with respect to the number of training samples is given
in Figure 5. We compare RBM-10 with RBM Single. After each training cycle
where we add 10,000 more images, we tested the algorithms on 10,000 images.
RBM-10 outperforms RBM Single with 99% confidence on all training steps.

Fig. 5. Reconstruction Error vs. Training Samples
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As we described at the begining of the Section 4, so far we ran these experi-
ments for one iteration only. To see how our learning method will behave with
additional iterations, we ran RBM-Partition and Single RBM for 15 iterations.
Results are shown in Table 7. Starting with RBM-10, RBM-Partition signifi-
cantly outperforms Single RBM with 99% confidence. For RBM-Partition, on
average, the error is approximately 5 pixels out of 28 × 28 pixels, whereas it is
10 pixels for Single RBM.

The Special Database 19 dataset from the National Institute of Standards
and Technology (NIST) is the official training dataset for handprinted docu-
ment and character recognition from 3600 writers, including 810K character
images and 402K handwritten digits. Unlike the MNIST dataset, images are 128
by 128 pixels. We selected 62K images for training and testing. The dataset
consists of 62 types of images for lowercase and uppercase letters, and numbers.
Thus, in our dataset each type has 1,000 images. We used 10% for testing and
90% for training. 1-fold validation results are shown in Table 8. Based on the

Table 7. Training Iterations

Configuration Number of
RBMs

Samples Learning
Rate

Reconstruction
Error (%)

Single RBM 1 60000 0.05 1.29

RBM-28 28 60000 0.3 1.75
RBM-20 20 30000 0.3 1.45
RBM-15 15 20000 0.3 1.35
RBM-10 10 20000 0.25 1.08
RBM-5 5 20000 0.2 0.94
RBM-2 2 20000 0.1 0.75
RBM-1 1 30000 0.05 0.67

Table 8. Training Characteristics with NIST dataset

Configuration Number of
RBMs

Training
Samples

Learning
Rate

Reconstruction
Error (%)

Chain
Operations

(109)

Single RBM 1 62000 0.1 4.82 507.90

RBM-28 28 62000 0.3 3.74 19.92
RBM-20 20 50000 0.3 3.65 24.09
RBM-15 15 40000 0.3 3.70 25.19
RBM-10 10 30000 0.25 3.69 28.70
RBM-5 5 25000 0.20 3.63 47.78
RBM-2 2 20000 0.10 3.67 90.14
RBM-1 1 20000 0.10 3.74 163.8
Total 399.62



206 H. Tosun and J.W. Sheppard

Table 9. Reconstruction Error per Character

Uppercase Error Lowercase Error Number Error

A 3.93 a 3.55 0 2.95
B 6.24 b 4.14 1 1.95
C 2.8 c 2.68 2 3.55
D 5.22 d 4.49 3 4.01
E 3.34 e 2.79 4 3.67
F 3.61 f 4.14 5 4.07
G 5.68 g 5.15 6 3.35
H 4.25 h 3.35 7 3.2
I 1.47 i 1.93 8 4.49
J 4.47 j 3.2 9 3.97
K 4.89 k 4.15
L 3.08 l 1.97
M 4.26 m 4.69
N 3.64 n 2.83
O 2.58 o 2.69
P 4.62 p 3.78
Q 6.62 q 4.5
R 3.53 r 2.37
S 3.24 s 2.98
T 3.08 t 3.48
U 3.56 u 3.09
V 3.18 v 2.87
W 6.92 w 4.17
X 4.38 x 3.19
Y 3.75 y 3.37
Z 5.04 z 3.57

t-test results, RBM-Partition significantly outperforms Single RBM, again with
substantially fewer chain operations.

Finally, RBM-Partitioned reconstruction error for each character is given in
Table 9. The average reconstruction error is lowest for I, i, and 1 and it is highest
for W,Q and B.

5 Conclusions and Future Work

We showed that our RBM-Partition training algorithm with small RBM parti-
tions outperforms training full RBMs using CD-1. In addition to having superior
results in terms of reconstruction error, RBM-Partition is also faster as compared
to the single, full RBM. The reason that RBM-Partition is faster is due to having
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fewer connections in each training step. However, the reasons for the superior
generative characteristics in terms of reconstruction error is not that obvious.
We hypothesize that it is because in each training step, fewer nodes are involved
and a small partition RBM settles in a low energy configuration more rapidly. As
we move to other stages with less partitions, fewer training instances are needed
to modify the energy configuration to obtain lower energy in the full network.
Furthermore, in spatial data like an image, only neighboring nodes are involved
in representing a feature. Therefore, a fully connected RBM is not optimal for
training spatial datasets.

Our algorithm also has similarities to transfer learning. Since in each stage
we learn some weights and those weights are used as a base configuration for
the next stage, in way it corresponds to feature representation transfer [13]. One
interesting direction of future work is to investigate whether other methods of
transfer learning can be used during training or not.

Moreover, our approach opens the door to many potential applications. Since
training is done on partitioned small RBMs, we believe the method will learn
multi-model data, that is data from multiple sources, more accurately. Thus,
other directions for future work include: 1) carrying out additional experiments
to demonstrate that this training method can be applied to other domains with
a high volume of features; 2) investigating if the training layers can be used
in the form of a Deep Belief Network (i.e., the process will still require parti-
tions as we described; however, instead of training each layer independently, a
layer-wise training may produce more accurate results); and 3) investigating the
discriminative power of the model by running it on classification tasks.
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Abstract. This paper introduces integer Bayesian network classifiers
(BNCs), i.e. BNCs with discrete valued nodes where parameters are stored
as integer numbers. These networks allow for efficient implementation in
hardware while maintaining a (partial) probabilistic interpretation under
scaling. An algorithm for the computation of margin maximizing integer
parameters is presented and its efficiency is demonstrated. The resulting
parameters have superior classification performance compared to param-
eters obtained by simple rounding of double-precision parameters, partic-
ularly for very low number of bits.

Keywords: Bayesian networks, Bayesian network classifiers, custom
precision analysis, parameter learning.

1 Introduction

Bayesiannetworks (BNs) are probabilistic graphicalmodels used to represent prob-
ability distributions. They are widely used for data modeling, e.g. in medicine,
bioinformatics, image processing and pattern recognition. Their applications in-
clude inference and classification tasks, i.e. BNs are used to answer probabilistic
queries on certain random variables.

Inference and classification with BNs are typically performed on computers
with high numerical precision, i.e. using double-precision floating-point calcula-
tions. However, because of energy and computational constraints, low-power and
integrated applications implemented on embedded systems require low complex-
ity algorithms. Such applications are, for example, auditory scene classification
in hearing aids and on-satellite computations1. In these kinds of applications, a
trade-off between accuracy and algorithm complexity is essential.

In this paper, we argue that maximum-margin (MM) BNs, i.e. discriminatively
optimized BNs, achieve a good trade-off in this respect and that careful algo-
rithm design for the resource-constrained destination platform is advantageous.

� This work was supported by the Austrian Science Fund (project number P25244-
N15).

1 Computational capabilities on satellites are still severly limited due to power con-
straints and restricted availability of hardware satisfying the demanding require-
ments with respect to radiation tolerance.

T. Calders et al. (Eds.): ECML PKDD 2014, Part III, LNCS 8726, pp. 209–224, 2014.
c© Springer-Verlag Berlin Heidelberg 2014



210 S. Tschiatschek, K. Paul, and F. Pernkopf

11

12

13

14

15

16

17

18

19

20

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

m
od

el
co

m
pl

ex
it
y

(l
o
g
2
)

classification error

nonlinear SVM

1 Bit8 Bit

MM BN (RD)

1 Bit

8 Bit

MM BN (BB)

1 Bit

8 Bit

Fig. 1. Model complexities versus achieved classification errors. Nonlinear SVM refers
to an SVM with radial-basis-function kernel, MM BN (RD) refers to an MM BN
with parameters obtained by rounding, and MM BN (BB) refers to an MM BN with
parameters obtained by the method proposed in this paper.

This is substantiated in Figure 1 for the satimage dataset from the UCI repos-
itory [5]. The model complexity in terms of bits required to store the classifier
parameters versus the achieved classification error for SVMs with radial-basis-
function kernels and for MM BNs is shown. In case of MM BNs, the performance
of conventionally full-precision optimized and subsequently rounded parameters
(RD) and that of parameters optimized for resource constraint environments
using branch and bound (BB) techniques is presented — details on both pa-
rameter learning approaches are provided in the forthcoming sections. Note that
the model complexity of the SVM is significantly higher than that of MM BNs,
while classification performance is only slightly worse. Thus, if the application
of interest allows to trade-off (slightly) reduced classification performance for
tremendous savings in model complexity, MM BNs are obviously a good choice.
If very low complexity models are desired, then MM BNs using BB are the best
choice.

In this paper, we devise algorithms for efficiently learning such high perfor-
mance low complexity models. While in [18], the authors already showed that
parameters in Bayesian network classifiers (BNCs) can be mapped to the inte-
ger domain without considerable loss in classification rate (CR) performance,
we take the analysis further: A principled approach for BNC parameter learning
of margin-maximizing parameters over a discrete search space, i.e. maximum-
margin (BB) parameters, is considered. This includes BNs with fixed-point pa-
rameters and (by proper scaling) integer parameters. In the sequel, also fixed-
point parameters are termed as integer parameters because scaling enables the
representation as integers. An algorithm for parameter optimization based on
BB techniques is presented. For low bit-widths, the obtained parameters lead to
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significantly better performance than parameters obtained by rounding double-
precision maximum-margin parameters.

Our main contributions can be summarized as follows:

– An efficient algorithm for computing margin maximizing integer parameters.
The algorithm is based on the branch and bound algorithm and a set of
greedy heuristics. This offers a gain in computation time and makes learning
tractable.

– Experiments demonstrating that integer BNs with small bit-widths can be
widely applied. We especially show that a very low number of integer bits is
often sufficient to obtain classification performance close to full-precision MM
BNCs and SVMs. This offers considerable advantages when implementing
BNs on embedded systems, i.e. data storage and bandwidth requirements
are minimized.

– A brief theoretical analysis of BNs with rounded parameters.

This paper is structured as follows: In Section 2 we summarize related work.
Section 3 introduces our notation and provides background on BNs, BNCs and
parameter learning. In Section 4, integer Bayesian network classifiers (iBNCs)
are introduced and an efficient algorithm for learning margin maximizing inte-
ger parameters is provided. Experimental results are provided in Section 5. We
conclude the paper in Section 6 and provide an outlook on future work.

2 Related Work

Literature on BNs with reduced precision parameters is scarce. Directly related
work investigates the effect of parameter quantization in BNCs with focus on
comparing the robustness of BNCs with generatively and discriminatively op-
timized parameters [18], and investigates bounds on the performance loss due
to parameter quantization [17]. In the former work, the authors use bit-width
reduced floating-point parameters, while they resort to fixed-point parameters
in the latter.

Indirectly related work deals with (a) sensitivity analysis of Bayesian net-
works [3,4], stating essentially that classification using BNCs is insensitive to
parameter deviations whenever either of these parameters are not close to zero
or the class posteriors differ significantly, (b) credal networks, i.e. generalizations
of Bayesian networks that associate a whole set of conditional probability densi-
ties (CPDs) with every node in the directed acyclic graph (DAG) [19], allowing
for robust classification and supporting imprecisely specified CPDs.

In terms of undirected graphical networks, an interesting work on approx-
imating undirected graphical models using integer parameters has been pub-
lished recently [16]. The authors propose methods to perform inference and
learning entirely in the integer domain. While undirected graphical models are
more amenable to an integer approximation, there are domains where directed
graphical models are more desirable and describe the probability distributions
of interest more naturally, e.g. expert systems in the medical domain.
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In terms of parameter learning using a BB scheme, there is related work
for integer parameter learning of SVMs in the dual [1]. While some of the ideas
presented by the authors are similar, classification with non-linear SVMs is com-
putationally more demanding than classification using BNs2. Furthermore, when
memory consumption is an issue, non-linear SVMs are disadvantageous because
all support-vectors must be stored for classification.

3 Background

3.1 Notation and Bayesian Networks

We assume a set of random variables (RVs) X0, . . . , XL. These RVs are re-
lated by a joint probability distribution P∗(X), where X = (X0, . . . , XL) is a
random vector. BNs [12,9,15] are used to represent such joint probability dis-
tributions in a compact and intuitive way. A BN B = (G,PG) consists of a
DAG G = (V,E), where V = {X0, . . . , XL} is the set of nodes and E the
set of edges of the graph, and a set of local conditional probability distributions
PG = {P(X0|Pa(X0)), . . . ,P(XL|Pa(XL))}. The termsPa(X0), . . . ,Pa(XL) de-
note the set of parents ofX0, . . . , XL in G, respectively. Assuming discrete valued
nodes, we abbreviate the conditional probability P (Xi = j|Pa(Xi) = h) as θij|h
and the corresponding logarithmic probability as wi

j|h = log(θij|h). Without loss

of generality, we further assume that Xi ∈ {1, . . . , |sp(Xi)|}, where sp(Xi) is the
set of possible values of RV Xi. Each node of the graph corresponds to an RV
and the edges of the graph determine dependencies between these RVs. A BN
induces a joint probability PB(X) according to

PB(X) =

L∏
i=0

P(Xi|Pa(Xi)). (1)

To represent P∗(X) by the BN B = (G,PG), the graph G and the conditional
probabilities in PG must be selected such that PB(X) matches P∗(X). In typical
settings, however, the joint distribution P∗(X) and its properties are assumed to
be unknown and only a limited number of samples drawn from this distribution,
i.e. a training set D, is available. This set D consists of N i.i.d. samples, i.e.
D = {x(n)|1 ≤ n ≤ N}, where x(n) is the nth training sample and denotes an
instantiation of X. From this training set, the graph structure G of the BN as
well as its parameters PG have to be derived. Selecting the graph structure is
known as structure learning and selecting PG is known as parameter learning.
The structures considered throughout this paper are fairly simple. In detail,
we used naive Bayes (NB) and tree augmented network (TAN) structures [6].
Details on selecting the parameters are provided in Section 3.3.

2 For classification with non-linear SVMs, the kernel must be evaluated for all support-
vectors and a weighted summation must be performed. Classification using BNs with
naive Bayes (NB) or tree augmented network (TAN) structures [6] corresponds to a
simple summation of log-probabilities followed by an arg-max operation. Classifica-
tion using linear SVMs is similar to classification using BNs.
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3.2 Probabilistic Classification

In probabilistic classifiers, one RV in X0, . . . , XL takes the role of the class
variable. Without loss of generality, we assume that X0 corresponds to this
class variable and denote it as C. The remaining RVs X1, . . . , XL represent
the attributes/features of the classifier and are collected in the random vector

X̃ = [X1, . . . , XL]. The aim is to induce good classifiers provided the training
set, i.e. classifiers with high CR. Formally, a classifier h is a mapping

h : sp(X̃)→ sp(C), (2)

x̃ �→ h(x̃),

where x̃ denotes an instantiation of X̃, sp(X̃) denotes the set of all assignments

of X̃ and sp(C) is the set of classes. The CR of this classifier is

CR(h) := EP∗(C,X̃)

[
1{C = h(X̃)}

]
, (3)

where 1{A} denotes the indicator function and EP∗(C,X̃) [·] is the expectation

operator with respect to the distribution P∗(C, X̃). Typically, the CR cannot

be evaluated because P∗(C, X̃) is unknown. It is rather estimated using cross-
validation [2]. To determine BNCs, the training set D is assumed to consist of
N i.i.d. labeled samples, i.e. D = {(c(n), x̃(n))|1 ≤ n ≤ N}, where c(n) denotes

the instantiation of the RV C and x̃(n) the instantiation of X̃ in the nth training
sample.

Any probability distribution, hence also any BN B, induces a classifier hPB(C,X̃)

according to

hPB(C,X̃) : sp(X̃)→ sp(C), (4)

x̃ �→ argmax
c∈C

PB(C = c|X̃ = x̃).

In this way, each instantiation x̃ of X̃ is classified as the maximum a-posteriori
(MAP) estimate of C given x̃ under PB(C, X̃).

3.3 Parameter Learning for Bayesian Networks

The parameters of a BN B can be optimized either generatively or discrimina-
tively [14]. Discriminative parameter learning is suitable for classification tasks,
while in generative parameter learning one aims at identifying parameters repre-
senting the generative process of the considered data. In this paper, we advocate
a hybrid generative-discriminative parameter optimization according to [13]. The
objective is the joint maximization of the data likelihood and the margin on the
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data. Formally, MM parameters PMM
G are learned as

PMM
G = argmax

PG

[
N∑

n=1

log PB(x(n)) (5)

+λ
N∑

n=1

min

(
γ, log PB(x(n))− max

c �=c(n)
PB([c, x̃(n)])

)]
,

where PB(X) is the joint distribution in (1) induced by the BN (G,PG), λ is
a trade-off parameter between likelihood and margin, i.e. generative and dis-
criminative optimization, and γ is the desired margin. The margin of sample
n is defined as the difference in log-likelihood of the sample belonging to the
correct class to belonging to the most likely alternative class, i.e. log PB(x(n))−
maxc �=c(n) PB([c, x̃(n)]). Consequently, a sample is classified correctly iff it has
positive margin and incorrectly otherwise. Both parameters λ and γ are typi-
cally set using cross-validation.

4 Integer Bayesian Network Classifiers

In this section, we introduce iBNCs, i.e. BNCs with integer parameters. Fur-
ther, we present an algorithm for determining margin maximizing parameters
for iBNCs.

4.1 Definition

According to (1), the BN B assigns the probability

PB(x) =
L∏

i=0

P(Xi = xXi |Pa(Xi) = xPa(Xi)), (6)

to an instantiation x of X, where xXk
denotes the instantiation of Xk and

xPa(Xk) the instantiation of the parents of Xk according to x, respectively. The
above equation can be equivalently stated in the logarithmic domain, i.e.

log PB(x) =

L∑
i=0

log P(Xi = xXi |Pa(Xi) = xPa(Xi)). (7)

Hence, computing the likelihood of a sample x corresponds to a summation of
log-probabilities. Assuming all log-probabilities are represented using BI integer
bits and BF fractional bits, they can be written as

wi
j|h = logP(Xi = j|Pa(Xi) = h) = −

BI−1∑
k=−BF

bi,kj|h · 2
k, (8)
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where bi,kj|h ∈ {0, 1} denotes the kth bit of the binary representation of wi
j|h.

Hence, ignoring the possibility of underflows, all wi
j|h are in the set of negative

fixed-point numbers −BBI

BF
with BI integer bits and BF fractional bits, i.e.

wi
j|h ∈ −B

BI

BF
= −

{
BI−1∑

k=−BF

dk · 2k : dk ∈ {0, 1}
}
. (9)

Introducing this in (7) and scaling by 2BF results in

2BF log PB(x) = −
L∑

i=0

BI−1∑
k=−BF

bi,kxXi
|xPa(Xi)

· 2k+BF , (10)

i.e. all summands are integer valued. The largest summand is at most 2BI+BF−1.
The summation is over L+1 (scaled) log probabilities, i.e. the number of nodes
in B. Hence, in total at most

log2(L+ 1) +BI +BF (11)

bits are required to calculate the joint probability. This transformation to the
integer domain is advantageous in several aspects: (1) no floating-point rounding
errors of any kind are introduced when working purely in the integer domain,
(2) computations using integer arithmetic are typically faster and more efficient,
(3) the need for a floating point processing unit is eliminated which encourages
usage in many embedded systems, and (4) the integer parameters require less
memory for storage.

When used for classification, we call BNs parametrized as above iBNCs. Note
that iBNCs could also be formulated considering probabilities instead of log
probabilities. Then, the sum-to-one constraint on the parameters can always
be achieved. However, representing the log probabilities has the advantage that
a large dynamic range is achieved and that classification essentially resorts to
evaluating sums of log probabilities (more generally, max-sum message-passing
can be easily performed).

4.2 Learning iBNCs

In principle, parameters for iBNCs can be determined by first learning BNC pa-
rameters using full-precision floating-point computations and subsequent round-
ing (and scaling) to the desired number format— a brief analysis of this approach
is provided at the end of this section. However, such parameters are in general
not optimal in the sense of the MM criterion (5) and we aim at a more principled
approach.

Our approach is based on the branch and bound procedure [10], exploiting
convexity of (5) under suitable parametrization. The implications will become
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clear immediately. Optimization of the MM criterion can be represented as

maximize
w

N∑
n=1

φ(x(n))Tw + λ

N∑
n=1

min

(
γ,φ(x(n))Tw− max

c �=c(n)
φ([c, x̃(n)])Tw

)
(12)

s.t.

|sp(Xi)|∑
j=1

exp(wi
j|h) = 1 ∀i,h,

where we exploit that any log probability log P(x) can be written as

log P(x) =

L∑
i=0

∑
h∈sp(Pa(Xi))

∑
j∈sp(Xi)

wi
j|h · 1(xXi = j,xPa(Xi) = h) (13)

= φ(x)Tw (14)

by collecting for a given instantiation x the values of the indicator functions
1(xXi = j,xPa(Xi) = h) in vector φ(x) and the corresponding wi

j|h in vector

w. The above problem in (12) is nonconvex and hard to solve. However, when
relaxing normalization constraints to

|sp(Xi)|∑
j=1

exp(wi
j|h) ≤ 1, (15)

the problem becomes convex and can hence be solved efficiently. If all com-
ponents of

∑N
n=1 φ(x

(n)) are positive, e.g. when applying Laplace smoothing,
then (15) is automatically satisfied with equality by any optimal solution of the
relaxed problem, i.e. the original constraints are recovered [13].

For learning integer parameters, we restrict the parameters w to −BBI

BF
and

further relax the normalization constraints to

|sp(Xi)|∑
j=1

exp(wi
j|h) ≤ 1 + ξ(|sp(Xi)|, BI , BF ), ∀i,h (16)

where ξ(|sp(Xi)|, BI , BF ) is an additive constant depending on |sp(Xi)|, BI and
BF . This further relaxation of the normalization constraints is necessary, as in
general reduced precision parameters do not correspond to correctly normalized
parameters. The additive constant is required, as for very small bit-widths there
are no parameters that are sub-normalized, i.e.

∑
j exp(M) > 1, where M =

−2BI + 2−BF is the smallest value that can be represented. Therefore, without
this additional constant, our optimization problem would be infeasible. In our
experiments, we set

ξ(|sp(Xi)|, BI , BF ) = max

(
0,
|sp(Xi)|

2
[exp(M) + exp(M + 2−BF )]− 1

)
,

(17)



Integer Bayesian Network Classifiers 217

allowing at least half of the parameters of every conditional probability distribu-
tion P(Xi|Pa(Xi)) to take on values larger thanM . Note that ξ(|sp(Xi)|, BI , BF )
quickly goes down to zero with increasing BI . Thus, our final optimization prob-
lem is

maximize
w

N∑
n=1

φ(x(n))Tw + λ
N∑

n=1

min

(
γ,φ(x(n))Tw− max

c �=c(n)
φ([c, x̃(n)])Tw

)
(18)

s.t.

|sp(Xi)|∑
j=1

exp(wi
j|h) ≤ 1 + ξ(|sp(Xi)|, BI , BF ) ∀i,h,

wi
j|h ∈ −B

BI

BF
∀i, j,h.

For efficiently finding (global) minimizers of (18), we propose to use a BB al-
gorithm [8] and greedy heuristics for creating candidate solutions and branching
orders:

Branch and Bound Algorithm. The optimal iBNC parameters have to be
searched in a discrete solution space, i.e. wi

j]h ∈ −B
BI

BF
. For optimization, the

BB algorithm is used. BB searches the solution space by creating a tree of sub-
problems and dynamically adding (branch) and discarding (bound, also referred
to as pruning) branches. The algorithm iteratively solves (18) using upper and
lower bounds for wi

j]h depending on the considered leaf of the search tree, i.e.

the subproblem corresponding to the kth leaf is given as

maximize
w

N∑
n=1

φ(x(n))Tw + λ

N∑
n=1

min

(
γ,φ(x(n))Tw− max

c �=c(n)
φ([c, x̃(n)])Tw

)

s.t.

|sp(Xi)|∑
j=1

exp(wi
j|h) ≤ 1 + ξ(|sp(Xi)|, BI , BF ) ∀i,h,

l
i,(k)
j|h ≤ wi

j]h ≤ u
i,(k)
j|h ∀i, j,h,

where l
i,(k)
j|h , l

i,(k)
j|h ∈ R are the lower and upper bounds on the parameters, respec-

tively. These subproblems are convex and can be exactly and efficiently solved.
If the determined solution does not fit the required precision for all parameters,
the algorithm performs one of the following options:

(a) Bound. If no global maximizer is to be found, the algorithm prunes the whole
subtree (this happens if the best feasible solution found so far is better (has
larger objective) than the optimal solution of the subproblem of the current
leaf).

(b) Branch. Alternatively, the algorithm creates two new problems by adding
new lower and upper bounds to one of the parameters (branching variable)
which does not satisfy the desired precision. If multiple parameters do not
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satisfy the desired precision, i.e. different branching variables are possible, we
use the branching heuristic described below to select the branching variable.
Furthermore, to efficiently prune subtrees, it is important to generate good
lower bounds for the objective at this stage, cf. the paragraph on rounding
heuristics below.

Subproblems in the search tree are processed in order of their highest achievable
objective value (the achievable objective value of subproblem k is upper bounded
by the objective value of the relaxed problem of the parent of k according to the
search tree). In this way, the subproblem of the search tree with highest upper-
bound is processed next. The BB algorithm terminates either after a specified
amount of time, returning the best solution found so far (anytime solution), or
after there are no more open subproblems. In the latter case, the found solution
is the global optimizer of (18).

Rounding Heuristic. To efficiently apply the BB algorithm, it is important
to prune large parts of the search space at an early stage. Therefore, we need to
obtain good lower bounds for the objective every time a problem corresponding
to a leaf in the search tree has been solved. We try to achieve this using two
simple rounding heuristics. If any of these heuristics yields a better feasible
solution for (18) than the best solution found so far, the best solution is updated.

Let ŵ correspond to the intermediate solution. Then, the candidate solutions
a and b are generated as follows:

– Rounding: Set

âij|h = max

(
M,

[
ŵi

j|h
q

]
R

q

)
, (19)

where [·]R denotes rounding to the closest integer, q = 2−BF is the quan-
tization interval and M = −2BI + 2−BF the minimum value that can be
represented. Set a = Π(â), where Π is a projection-like operator ensuring
that b is feasible for (18).

– Gradient Guided Rounding: Let g be the gradient of the objective at ŵ.
Then,

b̂ij|h =

⎧⎪⎪⎨⎪⎪⎩
⌈
ŵi

j|h
q

⌉
q if gij|h > 0, and

max

(
M,

⌊
ŵi

j|h
q

⌋
q

)
if gij|h ≤ 0,

(20)

where #·$ and �·� denote the floor and ceil function, respectively. Set b =

Π(b̂), where Π is as above.

Branching Heuristics. After solving one of the subproblems of the search tree,
we check the obtained solution ŵ for optimality. If the solution is not optimal,
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we branch on the entry ŵi
j|h that has the largest deviation from the desired

precision, i.e.

(i′, j′,h′) = argmax
i,j,h

∣∣∣∣∣ŵi
j|h −

[
ŵi

j|h
q

]
R

q

∣∣∣∣∣ . (21)

4.3 Approximate iBNCs by Rounding

In this section, we provide a short analysis of the effect of rounding log param-
eters to their closest fixed-point representation. This reveals interesting insights
into why classification performance of BNCs with rounded parameters is bet-
ter than one might anticipate. Performing a similar analysis for iBNCs using
BB is much more difficult because the objective for learning margin maximizing
parameters does not decompose as a product of conditional probabilities.

We start by analyzing the Kullback-Leibler (KL)-divergence introduced by
rounding, i.e. the KL-divergence between an optimal distribution, e.g. the origi-
nal full-precision distribution, and its approximation obtained by rounding of the
log-probabilities. Clearly, the approximate distribution is not necessarily prop-
erly normalized. Therefore, we compare the KL-divergence of the optimal distri-
bution and the renormalized approximate distribution. This yields the following
lemma:

Lemma 1 (KL-divergence). Let wi
·|h be a vector of normalized log probabil-

ities (optimal distribution), i.e.
∑

j exp(w
i
j|h) = 1, and let w̃i

·|h (approximate

distribution) be such that

w̃i
j|h =

[
wi

j|h
q

]
R

q, (22)

where q = 2−BF is the quantization interval. Then the KL-divergence between
the optimal and the renormalized approximate distribution is bounded by q, i.e.

D(wi
·|h||logα+ w̃i

·|h) ≤ q, (23)

where α = (
∑

j exp(w̃
i
j|h))

−1 ensures renormalization such that
∑

j exp(logα+

w̃i
j|h) = 1.

Proof. We calculate

D(wi
·|h||logα+ w̃i

·|h) =
∑
j

exp(wi
j|h) log

exp(wi
j|h)

α exp(w̃i
j|h)

(24)

=
∑
j

exp(wi
j|h)

[
(wi

j|h − w̃i
j|h)− logα

]
(25)

(a)

≤
∑
j

exp(wi
j|h)

[q
2
− logα

]
(26)

=
q

2
− logα, (27)
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where (a) is because w̃i
·|h is derived from wi

·|h by rounding the parameters, i.e.

(wi
j|h−w̃i

j|h) ≤
q
2 . It remains to upper bound − logα. Straightforward calculation

yields

− logα = log
∑
j

exp(w̃i
j|h) ≤ log

∑
j

exp(wi
j|h +

q

2
) =

q

2
. (28)

Hence, the statement follows. ��

This bound is tight. Assuming that sufficient integer bits are used so that no
log-probabilities have to be truncated, q = 2−BF (truncation must be performed
if some wi

j|h ≤ −2BI + 2−BF , i.e. wi
j|h is smaller than the smallest value that

can be represented using the chosen number format). Hence, the KL-divergence
decays rapidly with increasing BF .

When using only a finite number of bits for the integer part, log-probabilities
may be truncated. Still, a bound on the KL-divergence can be derived:

Lemma 2 (KL-divergence). Let wi
·|h be a vector of normalized log probabili-

ties (optimal distribution), and let w̃i
·|h (approximate distribution) be such that

w̃i
j|h = max

(
M,

[
wi

j|h
q

]
R

q

)
, (29)

where q = 2−BF is the quantization interval and where M is the minimal rep-
resentable log-probability. Then the KL-divergence between the optimal and the
renormalized approximate distribution is bounded as

D(wi
·|h||logα+ w̃i

·|h) ≤
3q

2
+ |sp(Xi)| exp(M), (30)

where α = (
∑

j exp(w̃
i
j|h))

−1 ensures renormalization.

Typically, M = −2BI + 2−BF . Hence, also in this case the bound decays with
an increasing number of bits. One can further observe a dependency on the size
of individual conditional probability tables (CPTs).

Both, Lemma 1 and 2, guarantee that simply rounding the log-probabilities
of an optimal distribution does yield a good approximation in terms of KL-
divergence. Therefore, it is not surprising that BNCs with parameters obtained
by rounding achieve good performance. Furthermore, this justifies the rounding
heuristics for obtaining good candidate solutions in the BB algorithm.

5 Experimental Results

In the following, we present classification experiments. In particular, we use
BNCs with parameters determined as follows:

– branch and bound (BB): These integer parameters are obtained using the
branch and bound algorithm presented in Section 4.2.
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– rounded (RD): Integer parameters are obtained by rounding double-precision
log parameters. If necessary, parameters are clipped to the considered num-
ber of integer bits.

– double precision (DP): Double precision parameters are obtained by solv-
ing (12) using methods proposed in [13].

5.1 Classification Experiments

We consider classification experiments for four real world datasets:

– USPS [7]. This dataset contains 11000 uniformly distributed handwritten
digit images from zip codes of mail envelopes, of which 8000 are used for
training and 3000 for testing. Each digit is represented as a 16×16 grayscale
image, where each pixel is considered as feature.

– MNIST [11]. The MNIST dataset contains a training set of 60000 size-
normalized and centered images of handwritten digits of size 16×16, accom-
panied by a test set of 10000 samples.

– satimage/letter [5]. From the UCI repository, we considered the satimage
and the letter dataset. The satimage dataset consists of multi-spectral satel-
lite images. Given a 3 × 3 multi-spectral pixel image patch, the task is to
classify the central pixel as either red soil, cotton crop, grey soil, damp grey
soil, soil with vegetation stubble, mixture class (all types present), or very
damp grey soil. In total there are 6435 samples with 36 attributes. Perfor-
mance is evaluated using 5-fold cross-valdiation. The letter dataset consists
of 20000 samples, where two third of the data are used for training and
one third for testing. Each sample is a character from the English alphabet
and described by 16 numerical attributes, i.e. statistical moments and edge
counts. The task is, based on these attributes, to classify each character as
the represented English letter.

On these datasets, we compare the CR performance of BNCs (and iBNCs) with
BB, RD, and DP parameters 3.

For RD parameters and a specific number of bits B = BI +BF , we determine
the splitting into integer bits BI and fractional bits BF such that the classifi-
cation rate on the training data is maximized. The same splitting is used for
learning BB parameters with B bits. The hyper-parameters λ and γ in (18) are
set using 5-fold cross-validation. For learning BB parameters with B bits, we
allowed for up to five hours CPU time on a 3 GHz personal computer. If the
parameter learning did not finish within this time, the best solution found so far
was returned, cf. Section 4.2.

The observed CRs are shown in Figures 2, 3 and 4, for satimage, letter, USPS,
and MNIST data using BNCs with NB structures, respectively. In case of USPS

3 As mentioned in Section 4, up to log2(L+1)+BI +BF bits are necessary for classifi-
cation using BNCs with reduced precision parameters. In the presented experiments,
we assume that these additional bits are available, i.e. summation does not cause
overflows.
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data, also CR performance for BNCs with TAN structures is shown. Only 5 to
6 integer bits for RD parameters are necessary to achieve CRs close to DP CRs.
BNCs with BB parameters achieve better CRs than BNCs with RD parameters.
Especially for low number of bits, BNCs with BB parameters are significantly
better in terms of CR performance. This suggests that parameter learning un-
der precision constraints is advantageous over full-precision parameter learning
followed by subsequent rounding.

2 4 6 8

75

80

85

number of bits

c
la

s
s
if

ic
a
ti

o
n
 r

a
te

DP

RD

BB

(a) satimage

2 4 6 8

40

50

60

70

80

number of bits

c
la

s
s
if

ic
a
ti

o
n
 r

a
te

DP

RD

BB

(b) letter

Fig. 2. CRs for satimage and letter data of BNCs with BB, RD and DP parameters
for NB structures
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Fig. 3. CRs for USPS data of BNCs with BB, RD and DP parameters for NB and
TAN structures

One important aspect of integer/reduced precision parameters, is their lower
memory usage. This is exemplarily shown for USPS and MNIST data and NB
and TAN structures in Table 1. The reduction in storage requirements by a
factor of ∼ 10 can positively influence the memory access when implementing
iBNCs on embedded hardware.
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Fig. 4. CRs for MNIST of BNCs using NB structure with DP, RD and BB parameters

Table 1. Memory usage for parameter storage of DP, BB and RD parameters in
reduced precision

Dataset Structure # Parameters # bits Storage [kB]

DP BB/RD

USPS
NB 8650 6 67.6 6.3

TAN 32970 6 257.6 24.1

MNIST NB 25800 3 201.6 9.4

6 Conclusions and Future Work

In this paper we considered BNs with discrete valued nodes and parameters rep-
resented by integer numbers. We presented an efficient algorithm for computing
margin maximizing integer parameters, where subproblems are convex and can
be solved efficiently.

In experiments, we showed that a low number of bits is sufficient to achieve
good performance in classification scenarios. Furthermore, we showed that pa-
rameter learning under precision constraints is advantageous over full-precision
parameter learning followed by subsequent rounding to the desired precision.
The presented results support to understand the implications of implementing
BNCs on embedded hardware and can greatly reduce the storage requirements
and thus the time required for memory access.

Future work aims at a sample implementation of iBNCs on embedded hard-
ware for speed comparison. Furthermore, we want to derive methods for pa-
rameter learning using integer/reduced precision computations only. Another
interesting direction for future work is to incorporate reduced precision con-
straints into the task of structure learning, e.g. learning BN structures such that
rounding of parameters degrades classification performance as little as possible.
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Abstract. Multi-target regression is concerned with the simultaneous
prediction of multiple continuous target variables based on the same set
of input variables. It arises in several interesting industrial and envi-
ronmental application domains, such as ecological modelling and energy
forecasting. This paper presents an ensemble method for multi-target
regression that constructs new target variables via random linear com-
binations of existing targets. We discuss the connection of our approach
with multi-label classification algorithms, in particular RAkEL, which
originally inspired this work, and a family of recent multi-label classi-
fication algorithms that involve output coding. Experimental results on
12 multi-target datasets show that it performs significantly better than
a strong baseline that learns a single model for each target using gradi-
ent boosting and compares favourably to multi-objective random forest
approach, which is a state-of-the-art approach. The experiments further
show that our approach improves more when stronger unconditional de-
pendencies exist among the targets.

Keywords: multi-target regression, multi-output regression, multivari-
ate regression, multi-label classification, output coding, random linear
combinations.

1 Introduction

Multi-target regression, also known as multivariate or multi-output regression,
aims at simultaneously predicting multiple continuous target variables based on
the same set of input variables. Such a learning task arises in several interesting
application domains, such as predicting the wind noise of vehicle components
[1], ecological modelling [2], water quality monitoring [3], forest monitoring [4]
and more recently energy-related forecasting1, such as wind and solar energy
production forecasting and load/price forecasting.

Multi-target regression can be considered as a sibling of multi-label classi-
fication [5,6], the latter dealing with multiple binary target variables, instead
of continuous ones. Recent work [7] stressed the close connection among these
two tasks and argued that ideas from the more popular and developed area of

1 http://www.gefcom.org
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multi-label learning could potentially be transferred to multi-target regression.
Following up this argument, we present here a multi-target regression algorithm
that was conceived as analogous to the RAkEL [8] multi-label classication algo-
rithm. In particular, the proposed method creates new target variables by con-
sidering random linear combinations of k original target variables. Experiments
on 12 multi-target datasets show that our approach is significantly better than
a strong baseline that learns a single model for each target using gradient boost-
ing [9] and compares favourably to the state-of-the-art multi-objective random
forest approach [10]. The experiments further show that our approach improves
more when stronger unconditional dependencies exist among the targets.

The rest of this paper is organized as follows. Section 2 discusses related
work on multi-target regression, as well as on output coding, a family of multi-
label learning algorithm of similar nature to our approach, which is presented in
Section 3. Section 4 presents the setup of our empirical study (methods and their
parameters, implementation details, evaluation process, datasets) and Section 5
discusses our experimental results. Finally, section 6 summarizes the conclusions
of this work and points to future work directions.

2 Related Work

2.1 Multi-target Regression

Multivariate regression was studied many years ago by statisticians and two of
the earliest methods were reduced-rank regression [11] and C&W [12]. A large
number of methods for multi-target regression are derived from the predictive
clustering tree (PCT) framework [13]. These are presented in more detail in
subsequent paragraphs. An approach for learning multi-target model trees was
proposed in [14]. One can also find methods that deal with multi-target regression
problems in the literature of the related topics of transfer learning [15] and
multi-task learning [16]. Undoubtedly, the simplest approach to multi-target
regression is to independently construct one regression model for each of the
target variables.

The main difference between the PCT algorithm and a standard decision tree
is that the variance and the prototype functions are treated as parameters that
can be instantiated to fit the given learning task. Such an instantiation for multi-
target prediction tasks are the multi-objective decision trees (MODTs), where the
variance function is computed as the sum of the variances of the targets, and the
prototype function is the vector mean of the target vectors of the training exam-
ples falling in each leaf [13,17]. Bagging and random forest ensembles of MODTs
were developed in [10] and found significantly more accurate than MODTs and
equally good or better than ensembles of single-objective decision trees for both
regression and classification tasks. In particular, multi-objective random forest
(MORF) yielded better performance than multi-objective bagging.

Motivated by the interpretability of rule learning algorithms, other researchers
developed multi-target rule learning algorithms that again fall in the PCT
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framework. Focusing on multi-label classification problems, [18] proposed the
predictive clustering rules (PCR) method that extends the PCT framework by
combining a rule learning algorithm with a search heuristic that derives from
clustering. PCR yielded comparable accuracy to using multiple single-target rule
learners using a much smaller and interpretable collection of rules. Later, the
FIRE rule ensemble algorithm [19] was proposed, specifically designed for multi-
target regression. FIRE works by first transforming an ensemble of decision
trees into a collection of rules and then using an optimization procedure that
assigns proper weights to individual rules in order to prune the initial rule set
without compromising its accuracy. The connection of this method to the PCT
framework lies in the fact that the ensemble of trees comes from the MORF
method of [10]. Recently, [20] presented FIRE++, an improved version of FIRE,
which among other optimizations, offers the ability to combine rules with simple
linear functions. FIRE++ was found better than FIRE, but slightly worse than
the less interpretable MORF.

2.2 Output Coding

Linear combinations of targets have been recently used by a number of output
coding approaches [21,22,23,24] for the related task of multi-label classification
[5,6]. The motivation of the methods in [21] and [24] was the reduction of large
output spaces for improving computational complexity, which goes towards the
opposite direction of our approach. The methods in [22] and [23] on the other
hand, aimed at improving the prediction accuracy similarly to our approach.

The approach most similar to ours is the chronologically first one [21], which
is based on the technique of compressed sensing and considers random linear
combinations of the labels. This is also the only output coding method from the
ones mentioned here, where the dimensionality of the new output space is allowed
to be larger than the original output space, as in our case. Besides the opposite
motivation (compression of output space) compared to our approach, [21] starts
from the concept of output sparsity (sparsity of the output conditioned on the
input), while in multi-target data, the output space is generally non-sparse. The
encoding step of [21] is therefore based on compression matrices that satisfy a
restricted isometry property, based on a sparsity level defined by the user and
the decoding step is based on sparse approximation algorithms. In contrast, our
approach uses uniform non-zero random weights for a user-defined number of
targets in the encoding step, and standard unregularized least squares in the
decoding step.

3 Random Linear Target Combinations

Consider a set of p input variables x ∈ Rp and a set of q target variables y ∈ Rq.
We have a set of m training examples: D = (X,Y) = {(x(i),y(i))}mi=1, where X
and Y are matrices of size m× p and m× q, respectively.

Our approach constructs r >> q new target variables via corresponding ran-
dom linear combinations of y. To achieve this, we define a coefficient matrix C
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of size q × r filled with random values uniformly chosen from [0..1]. Each col-
umn of this matrix contains the coefficients of a linear combination of the target
variables. Multiplying Y with C leads to a transformed multi-target training set
D′ = (X,Z), where Z = YC is a matrix of size m × r with the values of the
new target variables. A user-specified multi-target regression learning algorithm
is then applied to D′ in order to build a corresponding model.

Note that our approach expects that the original target variables take values
from the same domain, as otherwise their linear combinations could be domi-
nated by the values of targets with a much wider domain than the others. To
ensure this, it applies 0-1 normalization in order to bring the values of all targets
into the range [0..1].

We consider an additional parameter k ∈ {2, . . . , q} for specifying the number
of original target variables involved in each random linear combination, by set-
ting the coefficients for the rest of the target variables to zero. Higher k means
that potential correlations among more targets are being considered. However,
at the same time, it means that the new targets are more difficult to predict,
especially in the absence of actual correlations among the targets. We therefore
hypothesize that low k values will lead to the best results. In practice, when
k < q, for each linear combination our approach selects k targets at random, but
with priority to targets with the lowest frequency of participation to previously
considered linear combinations. This ensures that all targets will participate in
C as equivallently (i.e. with similar frequency) as possible.

Given a new test instance, x′, the multi-target regression model is first invoked
to obtain a vector z′ with r predictions. The estimates ŷ′ for the original target
variables are then obtained by solving for ŷ′ the following overdetermined (as
r >> q) system of linear equations: C
ŷ′ = z′.

As an example of our approach, consider a multi-target training set with q = 6
targets and m = 10 training examples. Figure 1(a) shows the normalized targets,
Y of such a dataset, based on the first 10 training examples of the atp1d dataset
(see Section 4.4 for a description of this dataset). Figure 1(b) shows a potential
coefficient matrix C for r = 8 and k = 2. Finally, Figure 1(c) shows the values
of the new targets Z.

Fig. 1. An example of our approach. The q = 6 targets of a multi-target regression
dataset with m = 10 examples is shown in (a). A coefficient matrix for k = 2 and r = 8
is shown in (b). The values of the new targets is shown in (c).
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Our approach was inspired from recent work on drawing parallels between
multi-label classification and multi-target regression [7] and conceived as the twin
of the multi-label classification algorithm RAkEL [8] for multi-target regression
tasks. Similarly to RAkEL, our approach aims to exploit correlations among
target variables on one hand and to achieve the error-correction effect of ensemble
methods on the other hand, as it implicitly pools multiple estimates for each
original target variable (one for each linear combination that it participates in).
We therefore expect that the larger r is, the better the estimate of the original
target variables. Our approach follows the randomness injection paradigm of
ensemble construction [25] at a larger degree than RAkEL, as it may combine the
same target variables twice, but with different random coefficients. Randomness
is a key component for improving supervised learning methods [26,27].

After inventing our approach, we realized that linear target combination ap-
proaches have been used for multi-label data in the past. From this viewpoint,
our approach could also be considered as a sibling of multi-label compressed sens-
ing [21], if we set aside the different goal and the technical differences among the
two approaches discussed in Section 2.2.

4 Experimental Setup

This section offers details on the setup of the experiments that we conducted.
We first present the participating methods and their parameters, then provide
implementation details, followed by a description of the evaluation measure and
process that was followed. We conclude this section by presenting the datasets
that were used, their main statistics, as well as statistics of the pairwise corre-
lations among their target variables.

4.1 Methods and Parameters

Our approach (dubbed RLC) is parameterized by the number of new target
variables, r, the number of original target variables to combine, k, the multi-
target regression algorithm that is used to learn from the transformed multi-
target training set D′ and the approach used to solve the overdetermined system
of linear equations during prediction. The first two we discuss together with the
results in Section 5. The multi-target regression algorithm we employ is to learn a
single independent regressionmodel for each target (dubbed ST). Each regression
model is built using gradient boosting [9] with a 4-terminal node regression tree
as the base learner, a learning rate of 0.1 and 100 boosting iterations. The system
of linear equations is solved by the unregularized least squares approach.

The multi-target regression algorithm employed by our approach, ST with
gradient boosting, is also directly used on the original target variables as a
baseline. We further compare our approach against the state-of-the-art multi-
objective random forest algorithm [10] (dubbed MORF). We used an ensemble
size of 100 trees and the values suggested in [10] for the rest of the parameters.
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4.2 Implementation

The proposed method was implemented within the open-source multi-label learn-
ing Java library Mulan2 [28], which has been recently expanded to handle multi-
target prediction tasks and includes an implementation of ST too, as well as a
wrapper of the CLUS software3, including support for MORF. Mulan is built
on top of Weka4 [29], which includes an implementation of gradient boosting.
Therefore, the comparative evaluation of all methods was achieved using a single
Java-based software framework.

In support of open science, Mulan includes a package called experiments, which
contains experimental setups of various algorithms based on the corresponding
papers. To ease replication of the experimental results of this paper, we have
included a class called ExperimentRLC in that package.

4.3 Evaluation

We use the average Relative Root Mean Squared Error (aRRMSE) as evaluation
measure. The RRMSE for a target is equal to the Root Mean Squared Error
(RMSE) for that target divided by the RMSE of predicting the average value
of that target in the training set. This standardization facilitates performance
averaging across non-homogeneous targets.

The aRRMSE of a multi-target model h that has been induced from a train
set Dtrain is estimated based on a test set Dtest according to the following
equation:

aRRMSE(h,Dtest) =
1

q

q∑
j=1

RRMSE =
1

q

q∑
j=1

√∑
(x,y)∈Dtest

(h(x)j − yj)2∑
(x,y)∈Dtest

(ȳj − yj)2

where ȳj is the mean value of target variable yj within Dtrain and h(x)j is the
output of h for target variable yj .

The aRRMSE measure is estimated using the hold-out approach for large
datasets, while 10-fold cross-validation is employed for small datasets.

4.4 Datasets

Our experiments are based on 12 datasets5. Table 1 reports the name (1st col-
umn), abbreviation (2nd column) and source (3rd column) of these datasets, the
number of instances of the train and test sets or the total number of instances
if cross-validation was used (4th column), the number, p, of input variables (5th
column) and the number, q, of output variables (6th column).

One of the motivations of our approach is the exploitation of potential depen-
dencies among the targets. We hypothesize that our approach will do better in

2 http://mulan.sourceforge.net
3 http://dtai.cs.kuleuven.be/clus/
4 http://www.cs.waikato.ac.nz/ml/weka
5 http://users.auth.gr/espyromi/datasets.html

http://mulan.sourceforge.net
http://dtai.cs.kuleuven.be/clus/
http://www.cs.waikato.ac.nz/ml/weka
http://users.auth.gr/espyromi/datasets.html
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Table 1. Name, abbreviation, source, number of train and test examples or total
number of examples in the case of cross-validation, number of input variables and
number of output variables per dataset used in our empirical study

Name Abbreviation Source Examples p q

Airline Ticket Price 1 atp1d [7] 337 411 6
Airline Ticket Price 2 atp7d [7] 296 411 6

Electrical Discharge Machining edm [30] 154 16 2
Occupational Employment Survey 1 oes1997 [7] 334 263 16
Occupational Employment Survey 2 oes2010 [7] 403 298 16

River Flow 1 rf1 [7] 4165/5065 64 8
River Flow 2 rf2 [7] 4165/5065 576 8
Solar Flare 1 sf1969 [31] 323 26 3
Solar Flare 2 sf1978 [31] 1066 27 3

Supply Chain Management 1 scm1d [7] 8145/1658 280 16
Supply Chain Management 2 scm20d [7] 7463/1503 61 16

Water Quality wq [3] 1060 16 14

datasets where target dependencies exist. To facilitate the discussion of results
in this context, Figure 2 shows box-plots summarizing the distribution of the
correlations among all pairs of targets for all datasets, while Figure 3 shows a
heat-map of the pairwise target correlations for a sample dataset with a rela-
tively large number of targets (scm20d). The rest of this section provides a short
description for each of the datasets.

Airline Ticket Price. The airline ticket price dataset [7] was constructed
for the prediction of airline ticket prices for a specific departure date. There
are two versions of this datasets. The target attributes are the next day price
(atp1d) or the minimum price within the next 7 days (atp7d) for 6 characteristics:
any airline with any number of stops, any airline non-stop only, Delta Airlines,
Continental Airlines, Airtran Airlines and United Airlines. The input attributes
are the number of days between the observation and departure date, 7 binary
attributes that refer to the day-of-the-week of the observation date and the
complete enumeration of: 1) the minimum price, mean price and number of
quotes from, 2) all airlines and from each airline quoting more than 50% of
the observation days, 3) for non-stop, one-stop and two-stop flights, 4) for the
current day, previous day and two days before. There are 411 input attributes
in total.

Electrical Discharge Machining. The electrical discharge machining dataset
[30] represents a two-target regression problem. The task is to shorten the ma-
chining time by reproducing the behavior of a human operator which controls
the values of two variables. Each of the target variables takes 3 distinct numeric
values (1,0,1) and there are 16 continuous input variables.
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Fig. 2. Box-plots summarizing the distri-
bution of all pairwise target correlations
for all datasets

Fig. 3. Heat-map of the pairwise target
correlations for the scm20d dataset

Occupational Employment Survey. The occupational employment survey
dataset [7] was obtained from the annual occupational employment survey that
is performed by the US Bureau of Labor Statistics. Every instance contains the
aproximate number of full-time equivalent employees of different employment
positions for a specific city. There are two versions of this datasets, one with
data for 334 cities in the year 1997 (oes1997) and one with data for 403 cities
in the year 2010 (oes2010). The employment types that were present in at least
50% of the cities were considered as variables. From these, the targets are 16
randomly selected variables, while the rest constitute the input variables.

River Flow. The river flow dataset [7] was constructed for the prediction of
the flow in a river network at 8 specific sites, 48 hours in the future. Those sites
are located in the Mississippi River in the USA. There are two versions of this
dataset. River Flow 1 (rf1) contains 64 input variables that refer to the most
recent observations of the 8 sites and the observations from 6, 12, 18, 24, 36, 48
and 60 hours in the past. River Flow 2 (rf2) contains additional input variables
that refer to precipitation forecasts for 6 hour windows up to 48 hours in the
future for each gauge site. The target attributes are 8, each one corresponding to
each of the 8 sites. The data were collected from September 2011 to September
2012.

Solar Flare. The solar flare dataset [31] has 3 target variables that correspond
to the number of times 3 types of solar flare (common, moderate, severe) are
observed within 24 hours. There are two versions of this dataset. Solar Flare 1
(sf1969) contains data from year 1969 and Solar Flare 2 (sf1978) from year 1978.
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Water Quality. The water quality dataset [3] has 14 target attributes that refer
to the relative representation of plant and animal species in Slovenian rivers and
16 input attributes that refer to physical and chemical water quality parameters.

Supply Chain Management. The supply chain management dataset [7] is
obtained from the Trading Agent Competition in Supply Chain Management
(TAC SCM) tournament from 2010. The precise methods for data preprocess-
ing and normalization are described in detail in [32]. Some benchmark values
for prediction accuracy in this domain are available from the TAC SCM Pre-
diction Challenge [33]. These data sets correspond only to the Product Future
prediction type. The input attributes contain the observed prices for a specific
day in the tournament for each game. Moreover, 4 time-delayed observations for
each observed product and component (1, 2, 4 and 8 days delayed). The target
attributes are 16 and refer to the next day mean price (scm1d dataset) or the
mean price within the next 20 days (scm20d dataset).

5 Results

5.1 Investigation of Parameters

We first investigate the behaviour of our method with respect to its two main
parameters: the number of models, r, which we vary from q to 500 and the
number of targets that are being combined, k, which we vary from 2 to q.

Figure 4 shows the aRRMSE of our method (y-axis) at the atp1d dataset
with respect to r (x-axis) for k ∈ {2, 3, 4, 5, 6}. We notice that the curves have
logarithmic shape, steeply decreasing with approximately the first 50 models
and converging after approximately 250 models. The addition of models has the
typical error-correction behaviour exhibited by ensemble methods, in accordance
with our expectations. We further notice, again as we expected, that low numbers
of k (2 and 3) lead to the best results.

The behaviour of our approach with respect to r is similar in all datasets.
Figure 5 shows the average aRRMSE of our method (y-axis) with respect to r
(x-axis) across all datasets and all k values. Averages of performance estimates
across datasets are not appropriate for summarizing and comparing the accuracy
of different methods [34] and averages across different values of a parameter may
hide salient effects of this parameter. However, we believe that this average serves
well our purpose of summarizing a large number of results in a concise way in
order to highlight the general behaviour of our method, which is consistent across
all datasets and k values. The number of participating models starts from 16, to
ensure that the displayed average values are based on all datasets (recall that
the minimum number of models in our approach is q and that the maximum
number of labels across our datasets is 16). We again see that the error follows
the shape of a logarithmic curve, steeply decreasing with the first approximately
75 models and converging after approximately 280 models.
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Fig. 4. aRRMSE of our method (y-axis) for k ∈ {2, 3, 4, 5, 6} with respect to the
number of participating regression models (x-axis) at the atp1d dataset. The line cor-
responding to k = 3 is dotted instead of solid, so as to contrast it with the overlapping
line of k = 2.

Fig. 5. Average aRRMSE of our method (y-axis) with respect to r (x-axis) across all
datasets and all different k values
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Table 2. aRRMSE of our method in each dataset for r = 500 and all possible k values.
The best result of our approach in each dataset is underlined. The last two rows show
the aRRMSE of ST and MORF.

k atp1d atp7d edm sf1969 sf1978 oes10 oes97 rf1 rf2 scm1d scm20d wq

2 0.3842 0.4614 0.6996 1.2312 1.5746 0.5026 0.5593 0.7265 0.7036 0.4572 0.7469 0.9100
3 0.3840 0.4653 1.2172 1.5675 0.5084 0.5588 0.7878 0.7584 0.4610 0.7467 0.9080
4 0.3884 0.4796 0.5232 0.5730 0.8204 0.7922 0.4663 0.7472 0.9085
5 0.3952 0.4917 0.5359 0.5837 0.8584 0.8327 0.4699 0.7477 0.9086
6 0.4022 0.5029 0.5472 0.5889 0.8515 0.8257 0.4775 0.7490 0.9089
7 0.5551 0.5958 0.8446 0.8106 0.4820 0.7513 0.9090
8 0.5734 0.6076 0.8868 0.8655 0.4855 0.7536 0.9107
9 0.5911 0.6153 0.4889 0.7548 0.9122
10 0.6031 0.6229 0.4932 0.7537 0.9128
11 0.6154 0.6348 0.4978 0.7573 0.9150
12 0.6285 0.6449 0.5020 0.7571 0.9163
13 0.6354 0.6590 0.5057 0.7619 0.9188
14 0.6428 0.6682 0.5133 0.7640 0.9217
15 0.6525 0.6860 0.5155 0.7681
16 0.6652 0.6916 0.5218 0.7704

ST 0.3980 0.4735 0.7316 1.2777 1.6158 0.5421 0.5727 0.7171 0.6897 0.4625 0.7571 0.9200
morf 0.4223 0.5508 0.7338 1.2620 1.4020 0.4528 0.5490 0.8488 0.9189 0.5635 0.7775 0.8994

The performance of our approach with respect to k is similar in all datasets
too. The first 16 rows of Table 2 shows the aRRMSE of our method for 500 mod-
els. We notice that the best results of our approach, which are underlined in the
table, are obtained for k ∈ {2, 3}, while the error is in most cases monotonically
increasing with higher values of k.

5.2 Comparative Evaluation

The last two rows of Table 2 shows the aRRMSE of the ST strong baseline and
the MORF state-of-the-art approach. To compare our approach with ST and
MORF, we follow the recommendations of [34]. We first discuss the number of
datasets where each of the methods is better than each of the others based on
Table 3. We see that RLC with r = 500 is better than ST in 10/12 datasets and
better than MORF in 8/12 datasets, both for k = 2 and for k = 3. The strength
of the baseline is demonstrated by the fact that it is better than MORF in 7/12
datasets.

Table 3. Number of datasets where a method is better than another method
(wins:losses) for each pair of methods

RLC ST MORF

RLC - 10:2 8:4
ST 2:10 - 7:5

MORF 4:8 5:7 -
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The mean rank of RLC with r = 500 and k = 2 or k = 3 (same k for all
datasets), ST and MORF are 1.5, 2.25 and 2.25 respectively. The variation of
the Friedman test described in [34] to compare the three algorithms rejects the
null hypothesis for a p-value of 0.0828 (i.e. requires a = 0.1). Proceeding to a
post-hoc Nemenyi test with a = 0.1, the critical difference is 0.8377, slightly
more than the 0.75 difference among the mean rank of RLC and that of ST and
MORF. So, these differences should not be considered statistically significant
based on this test.

We also applied the Wilcoxon signed-ranks test between RLC with r = 500
and k = 2 and the other two algorithms. While multiple tests are involved in this
process, these are limited to just 2, and therefore a small bias will be introduced
if any due to this multiple testing process. For the comparison with ST the
p-value is 0.0210 suggesting that the differences are statistically significant for
a = 0.05, while for the comparison with MORF the p-value is 0.1763 suggesting
that the differences are statistically insignificant even for a = 0.1.

One could argue that a fairer comparison between RLC and MORF should
have setup MORF to use 500 trees instead of 100. The answer to such critique
is that each target is involved in rk/q regression models in RLC and thus in
datasets such as oes, scm and wq, RLC is actually at disadvantage. Three of the
wins of MORF over RLC actually occur in the oes and wq datasets. Perhaps a
fairer experiment would set r = 100q/k, assuming 100 trees in MORF. Selecting
the number of models in RLC and MORF via cross-validation would perhaps be
even fairer. Such experiments will be considered in future work.

Summarizing the comparative results, we argue that the proposed approach is
worthy of being considered by a practitioner for a multi-target regression domain,
as there is a high chance that it could give the best results compared to state-of-
the-art methods. Futhermore, being algorithm independent, it has the flexibility
and potential of doing better in a specific application, by being instantiated
with a different base learner whose hypothesis representation is more suited to
the given problem (e.g. a support vector regression algorithm), in contrast to
MORF (and other variants of the predictive clustering trees framework), whose
representation is fixed to trees.

5.3 Error with Respect to Average Pairwise Target Correlation

No clear conclusion can be drawn on whether the intensity of pairwise correla-
tions affects the improvement that our approach can give over the baseline. The
correlation among the median of the absolute value of pairwise target correla-
tions and the gain in performance over ST is 0.15.

Noticing that the high variance of pairwise correlations in the river-flow
datasets co-occurs with the failure of our approach to improve upon ST, we
also calculated the correlation between the standard deviation of the pairwise
target correlations and the gain in performance over ST, which is -0.68 (edm
was excluded in this computation as it only has two targets). This apparently
suggests that low variance of absolute value of pairwise target correlations leads
to improved gains. However, we do not have a theory to explain this correlation.
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Pairwise target correlations do not take the input features into account, so
they do not measure potential conditional dependencies among targets given the
inputs [35]. We do however notice that in the three pairs of datasets with similar
nature and amount of features (the two versions of atp, oes and sf datasets),
higher median of absolute value of pairwise target correlations does lead to
improved performance. We simplistically assume here that similar nature and
amount of features introduce similar conditional dependencies of the targets
given the features, even though the aforementioned pairs of datasets have differ-
ent, yet of similar nature, targets.

Table 4 presents the data, upon which the discussion of this subsection is
based. In specific, the 1st row shows the percentage of improvement of our ap-
proach compared to ST, while the next two rows show the median and standard
deviation respectively of the absolute value of pairwise target correlations.

Table 4. For each dataset, the 1st row shows the percentage of accuracy gain of
our method compared to ST, and the next two rows show the median and standard
deviation respectively of the absolute value of pairwise target correlations

atp1d atp7d edm sf1969 sf1978 oes10 oes97 rf1 rf2 scm1d scm20d wq

gain (%) 3.6 2.6 4.6 5.0 3.1 7.9 2.5 -1.3 -2.0 1.6 1.4 1.3
median 0.8013 0.6306 0.0051 0.2242 0.1484 0.8479 0.7952 0.4077 0.4077 0.6526 0.5785 0.0751
stdev 0.0788 0.1602 - 1.1247 1.2006 0.0972 0.0785 0.3125 0.3125 0.1316 0.1483 0.0717

To the best of our knowledge, a discussion of accuracy with respect to target
dependencies has not been attempted in past multi-target regression work. We
believe such an analysis is quite interesting both theoretically and practically
and might be good on one hand to be adopted by future work in this area, and
on another hand to be studied more elaboratively by itself.

6 Conclusions and Future Work

Multi-target regression is a learning task with interesting practical applications.
We expect its popularity to rise in the near future with the proliferation of
multiple sensors in our everyday life (Internet of Things) recording multiple
values that we might want to predict simultanteously.

Motivated from the practical interest of multi-target regression and recent
work on drawing parallels between multi-label classification and multi-target
regression, we developed an ensemble method that constructs new target vari-
ables by forming random linear combinations of existing targets, as a twin of the
RAkEL multi-label classification algorithm. At the same time, we highlighted
an additional connection of the proposed approach with recent multi-label clas-
sification algorithms based on output coding.

The proposed approach was found significantly better than a strong base-
line that learns a single model per target using gradient boosting and compares



238 G. Tsoumakas et al.

favourably against the state-of-the-art ensemble method MORF, based on exper-
iments on 12 multi-target regression datasets. Furthermore, the empirical study
reveals a relation among the pairwise correlation of targets and the gains of the
proposed approach given similar input features, suggesting succesful exploitation
of existing unconditional target dependencies by the proposed approach.

The proposed approach has the potential to be further improved in the fu-
ture. Towards that direction, we intend to investigate alternative randomization
injection processes (e.g. normal instead of uniform coefficients) and constructing
ensembles of our approach using different coefficient matrices. For example, in-
stead of constructing 500 models with one matrix, we could construct 100 models
with 5 different matrices, which is expected to improve diversity and potentially
accuracy of our idea.
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Abstract. Maximum margin clustering (MMC) approaches extend the
large margin principle of SVM to unsupervised learning with consider-
able success. In this work, we utilize the ratio between the margin and the
intra-cluster variance, to explicitly consider both the separation and the
compactness of the clusters in the objective. Moreover, we employ multi-
ple kernel learning (MKL) to jointly learn the kernel and a partitioning
of the instances, thus overcoming the kernel selection problem of MMC.
Importantly, the margin alone cannot reliably reflect the quality of the
learned kernel, as it can be enlarged by a simple scaling of the kernel. In
contrast, our ratio-based objective is scale invariant and also invariant to
the type of norm constraints on the kernel parameters. Optimization of
the objective is performed using an iterative gradient-based algorithm.
Comparative clustering experiments on various datasets demonstrate the
effectiveness of the proposed formulation.

Keywords: maximum margin clustering, unsupervised multiple kernel
learning, kernel k -means.

1 Introduction

The success of large margin techniques in supervised learning, particularly that
of support vector machines (SVM), has generated great interest in extending
such techniques to the unsupervised setting, leading to the, so called, maximum
margin clustering (MMC) problem [21]. Given a dataset X = {xi}Ni=1, xi ∈ %d,
MMC approaches attempt to find a labeling (clustering) y = [y1, . . . , yN ]
,
yi ∈ {±1}, of the instances, such that a subsequent training of a standard SVM
would result in a margin that is maximal over all possible labellings. MMC is
formulated as:

min
y

min
w,b,ξ

1

2
‖w‖2 + C

N∑
i=1

ξi, (1)

s.t. − � ≤
N∑
i=1

yi ≤ �, y ∈ {±1}N , yi
(
w
φ(xi) + b

)
≥ 1− ξi, ξi ≥ 0,

where w, b are the coefficients of the SVM hyperplane (‖w‖ is the reciprocal
of the margin), ξ the slack variables capturing the misclassification error and
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C > 0 the regularizer. Instances are implicitly mapped through transformation
φ to a higher dimensional feature space using the kernel trick (K(xi,xj) =
φ(xi)


φ(xj)). Moreover, to prevent the trivially “optimal” solution of assigning
all instances to the same cluster and thus obtaining an infinite margin (‖w‖ = 0),

a cluster balance constraint (−� ≤
∑N

i=1 yi ≤ �) was introduced by Xu et al. [21],
where � ≥ 0 is a constant controlling the imbalance of the clusters. The MMC
problem is non-convex with integer parameters y, making the optimization much
trickier than that of (convex) supervised SVM. To solve (1), some approaches
employ semidefinite programing (SDP) [18, 21, 22], others exploit the cutting
plane method [20, 25] and others rely on alternating between the outer and the
inner minimization [24].

It is well-known that the performance of kernel-based approaches, like MMC,
heavily depends on the choice of the kernel. However, it is often unclear which is
the best kernel for a particular task. Multiple kernel learning (MKL) [9], which
has been mainly studied under the SVM paradigm, attempts to simultaneously
locate the hyperplane with the largest margin and also learn a suitable kernel.
The kernel, K̃(xi,xj) = φ̃(xi)


φ̃(xj), is usually parametrized by a vector θ =

[θ1, . . . , θV ]


of parameters. Most existing MKL approaches focus on supervised

learning and in principle derive from the following optimization (subject to some
slight modifications) (e.g. [11, 12, 14, 23]):

min
θ,w,b,ξ

1

2
‖w‖2 + C

N∑
i=1

ξi, (2)

s.t. θv ≥ 0, ‖θ‖pp ≤ 1, yi

(
w
φ̃(xi) + b

)
≥ 1− ξi, ξi ≥ 0.

Kernel parameters θv are limited to nonnegative values to ensure the learned
kernel is positive semidefinite and the p-norm constraint is employed to avoid
overfitting. Usually the kernel is parametrized as a linear combination of some
given basis kernels and either the 1-norm that promotes sparsity [14,16,26], or a
more general p-norm, p ≥ 1, [11,12,23], is chosen. There also exist a few studies
that consider nonlinear combinations of basis kernels [3,8], or even general types
of parametric kernels [7,19]. The optimization problem in (2) is non-convex due
to θ. Depending on the form of the kernel parametrization and the choice of
p-norm, various optimization strategies have been proposed, several of which al-
ternate between updating θ and solving a standard SVM to obtain w, b and ξ.
For example, semi-infinite linear programming [11,16,26], gradient-based meth-
ods [7, 8, 14, 19] and closed-form methods [12, 23].

Extending MKL to the clustering domain, and in particular to MMC prob-
lems, is an interesting research direction, however, existing work is rather limited.
The methods of [18,25] seek to find a linear mixture of the basis kernels together
with the cluster assignments, such that the margin is maximized, in essence
combining (1) and (2). In this paper, we follow a similar path, but propose a
novel objective that considers the ratio between the margin (a notion of clus-
ter separability) and the intra-cluster variance criterion of kernel k -means [5] (a
notion of cluster coherence). Hence, both the separation and the compactness
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of the clusters are explicitly taken into account, which can possibly improve on
the solutions returned by approaches utilizing either of the two. Importantly,
the margin has been shown to suffer from a major deficiency when applied to
supervised MKL [7]. It can become arbitrarily large by a simple scaling of the
kernel, thus it is inappropriate for assessing the quality of the learned kernel.
The same can be demonstrated to hold for unsupervised MKL and we prove
that our ratio-based objective is invariant to kernel scaling, thus overcoming
this deficiency. Moreover, its global optimum solution is invariant to the type
of p-norm constraint on the kernel parameters θ (when a linear combination of
basis kernels is employed), making the selection of a suitable norm less crucial.

A simple gradient-based optimization procedure that alternates between up-
dating the kernel parameters θ and the cluster assignments y is devised, avoid-
ing the invocation of complex optimizers, such as the SDP solvers [18] and the
cutting plane method [25]. Experiments on several datasets, including two collec-
tions of handwritten numerals and two image collections, reveal the superiority
of the proposed method over approaches that rely solely on the margin or the
intra-cluster variance.

The rest of this paper is organized as follows. Section 2 introduces our
ratio-based formulation and presents its invariance properties and optimiza-
tion details. Experiments follow in Section 3, before the concluding remarks of
Section 4.

2 The RMKC Algorithm

2.1 Problem Formulation

Consider a dataset X = {xi}Ni=1, xi ∈ %d, for which we want to simultane-
ously infer the cluster labels and also perform kernel learning under the large
margin framework. While presenting our method we shall restrict ourselves on
a linear combination of basis kernels, which is the most common technique of
parametrizing kernels for MKL [12, 14, 23]. Later we will show that our model
can accommodate more general parametric forms of kernels.

Assume that V basis kernels, K(v) : X ×X → %, are available, each implicitly
inducing a transformation φ(v) : X → H(v) on the instances to a feature space
H(v) through K(v)(xi,xj) = φ(v)(xi)


φ(v)(xj). A linear mixture of kernels gives

rise to a composite kernel K̃:

K̃(xi,xj) =

V∑
v=1

θvK(v)(xi,xj), θv ≥ 0, (3)

that is parametrized by θ = [θ1, . . . , θV ]

. Since K̃ is a valid kernel it holds that

K̃(xi,xj) = φ̃(xi)

φ̃(xj), φ̃ : X → H̃, and actually φ̃(xi) =

[√
θ1φ

(1)(xi)

, . . . ,

√
θV φ

(V )(xi)

]
 due to the linear combination.

We propose a new formulation that does not depend only on the margin, like
most existing MMC and MKL studies, but utilizes the ratio between the margin
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and the intra-cluster variance objective of kernel k -means [5] in feature space

H̃. Minimizing such a ratio can lead to superior partitionings as both compact
and well-separated clusters are sought. Moreover, as it will be proved, it makes
our formulation invariant to kernel scaling, an important property when kernel
learning is involved [7]. Denoting by y = [y1, . . . , yN ]
, yi ∈ {±1}, the vector of
the instances’ cluster labels, we consider the following optimization problem:

min
θ,y

J (θ,y), s.t. θv ≥ 0, ‖θ‖pp = 1, −� ≤
N∑
i=1

yi ≤ �, y ∈ {±1}N , (4)

J (θ,y) = min
w,b,ξ

1

2
E(θ,y)‖w‖2 + C

N∑
i=1

ξi, (5)

s.t. yi

(
w
φ̃(xi) + b

)
≥ 1− ξi, ξi ≥ 0.

Here E(θ,y) is the kernel k -means criterion (6) describing the intra-cluster vari-
ance1, where m̃k is the k-th cluster center and δik is a cluster indicator variable
with δi1 = 1 if yi = −1 and δi2 = 1 if yi = 1. Note that due to the SVM-like
formulation we are limited to two-cluster solutions, i.e. k ∈ {1, 2}, which is the
typical case for MMC methods.

E(θ,y) = 1

N

N∑
i=1

2∑
k=1

δik‖φ̃(xi)− m̃k‖2, (6)

δik =

{
1, yi = 2k − 3
0, otherwise

, m̃k =

∑N
i=1 δikφ̃(xi)∑N

i=1 δik

Note that the squared Euclidean distances in E(θ,y) can be posed solely in

terms of the entries of the kernel matrix K̃ ∈ %N×N corresponding to K̃, i.e.
K̃ij = K̃(xi,xj) [5]. Additionally, by using (3), this composite kernel matrix

can be written as the sum of the basis kernel matrices K(v) ∈ %N×N , i.e. K̃ =∑V
v=1 θvK

(v), thus getting (7).

E(θ,y) = 1

N

V∑
v=1

θv

N∑
i=1

2∑
k=1

δik

(
K

(v)
ii −

2
∑N

j=1 δjkK
(v)
ij∑N

j=1 δjk
+

∑N
j=1

∑N
l=1 δjkδlkK

(v)
jl∑N

j=1

∑N
l=1 δjkδlk

)
(7)

For the above optimization problem (4), it is easy to verify that its objective
function J (θ,y) at a given {θ, y} is defined as the optimal objective value of
a problem (5) that closely resembles the standard SVM. The only difference is
that the variance to margin ratio is employed in place of the margin. Similar to
MMC methods [21,24], a cluster balance constraint (−� ≤

∑N
i=1 yi ≤ �) must be

1 For simplicity, on the following, we shall refer to the intra-cluster variance as the
variance of the clusters.
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imposed to prevent meaningless solutions from arising. Finally, the composite
kernel coefficients θv are required to be nonnegative so that K̃ is a valid kernel
and a p-norm constraint is introduced to avoid overfitting, as in (2).

Hence, the optimization in (4) searches for a pair of {θ,y} values that yields a
small variance to margin ratio (E(θ,y)‖w‖2) regularized by the misclassification
error (captured by the slack variables ξ). We shall call this approach Ratio-based
Multiple Kernel Clustering, abbreviated as RMKC.

It should be clarified that the actual problem we are trying to solve is (s.t.
the constraints in (4)-(5)):

min
θ,y,w,b,ξ

1

2
E(θ,y)‖w‖2 + C

N∑
i=1

ξi, (8)

which is rather difficult to directly optimize, since it constitutes a non-convex
problem with integer parameters y. Reformulating it as in (4), analogously to
Rakotomamonjy et al. [14], will enable us to devise an alternating optimization
strategy, that benefits from differentiability w.r.t. θ and does not demand the
use of complex solvers.

2.2 Properties of RMKC

In this section, two properties of RMKC are presented, which highlight some
important advantages of combining the margin with the variance of the clusters.

Suppose the composite kernel K̃ (3) is scaled by α > 0, i.e. K̃′ = αK̃. Then
the corresponding transformation becomes φ̃′ =

√
αφ̃. Moreover, as K̃ is a linear

combination of basis kernels, its scaling can be equivalently posed as a scaling
on its parameters, i.e. θ′ = αθ.

Proposition 1. (Scale Invariance) If a kernel K̃ of the form defined in (3)
is scaled by a scalar α > 0, then J (αθ,y) = J (θ,y).

Proof. From (7) it is evident that E(αθ,y) = αE(θ,y), hence:

J (αθ,y) = min
w,b,ξ

1

2
αE(θ,y)‖w‖2 + C

N∑
i=1

ξi,

s.t. yi

(
w


(√
αφ̃(xi)

)
+ b

)
≥ 1− ξi, ξi ≥ 0.

Setting w = w′/
√
α and substituting in the above equation completes the proof,

as (5) is recovered. ��
Our quest for an objective that satisfies Proposition 1 was inspired by Gai et

al. [7], where it was illustrated that relying solely on the margin is not sufficient
to perform kernel learning in the supervised case. Analogously, if J (θ,y) in (4)
is replaced with the more conventional margin-based objective:

J ′(θ,y) = min
w,b,ξ

1

2
‖w‖2 + C

N∑
i=1

ξi, s.t. yi

(
w
φ̃(xi) + b

)
≥ 1− ξi, ξi ≥ 0,

(9)
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it can be shown that an arbitrarily small J ′(θ,y) value can be achieved by
scaling the composite kernel, thus constituting the margin criterion unsuitable
for evaluating the true quality of the kernel while learning {θ,y}. Note that in
the linear combination case (3), where scaling the composite kernel is equivalent
to scaling its parameters, the scaling issue can be handled through the p-norm
constraint on θ. However, this is not possible for nonlinear mixtures of basis
kernels. On the contrary, our ratio-based objective (5) is scale invariant for ar-
bitrary forms of composite kernels (the proof is analogous to Proposition 1) and
also allows for norm invariance.

Proposition 2. (Norm Invariance) Consider a kernel K̃ of the form defined
in (3) as well as a) the optimization problem described by (4) without the p-
norm constraint on θ (p1) and b) the same problem (4), but with the slightly
more general p-norm constraint ‖θ‖pp = c, c > 0, in place of ‖θ‖pp = 1 (p2). If

{θ∗a,y∗a} is a global optimal solution of p1 then
{

c1/p

‖θ∗
a‖p θ

∗
a,y
∗
a

}
is a global optimal

solution of p2. Also, if {θ∗b ,y∗b} is a global optimal solution of p2 then {θ∗b ,y∗b}
is a global optimal solution of p1.

Proof. From the scale invariance property and since {θ∗a,y∗a} is a global optimum

of p1 we get J
(

c1/p

‖θ∗
a‖p θ

∗
a,y
∗
a

)
= J (θ∗a,y

∗
a) ≤ J (θ,y) for any {θ,y} satisfying

the constraints of p1. Note that the admissible θ values for problem p2 are a
subset of those allowed in p1, hence the above inequality also holds for every
{θ,y} adhering to the constraints of p2 (the constraints for y are identical in p1

and p2)). Together with the fact that
∥∥∥ c1/p

‖θ∗
a‖pθ

∗
a

∥∥∥p
p
= c the first part of the proof

is completed.

For any {θ,y} complying to the constraints of p1 it holds that
{

c1/p

‖θ‖pθ,y
}

is admissible for p2, since
∥∥∥ c1/p

‖θ‖p θ
∥∥∥p
p
= c. The scale invariance property and

the global optimality of {θ∗b ,y∗b} w.r.t. p2 yields J (θ∗b ,y
∗
b ) ≤ J

(
c1/p

‖θ‖p θ,y
)
=

J (θ,y), thus completing the second part of the proof. ��

Proposition 2 implies that the global optimal solution of the proposed formu-
lation (4) is insensitive to the selected type of p-norm constraint, up to a scaling
on the composite kernel parameters. The norm constraint can be even dropped
from (4) without affecting its optimal solution. Of course, a solver that locates
local optima of the ratio-based objective may produce different solutions when
different p-norms are employed for the same problem, but at least the overall
best will be the same, making the choice of the p-norm less crucial.

2.3 Optimizing the RMKC Objective

An iterative algorithm that alternates between updating the cluster labels y and
reestimating the composite kernel coefficients θ, starting from some initial {θ,y}
value, is presented and its main steps are summarized in Algorithms 1-2.
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Evaluating the Objective Function. To compute the value of the objective
function J (θ,y) for some fixed {θ,y}, we need to solve the convex SVM-like
optimization problem in (5). This can be facilitated by turning to its dual, which
can be obtained by incorporating the constraints into the primal via Lagrange
multipliers and setting the derivatives w.r.t. w, b, and ξ to zero. After some
manipulation the following dual emerges:

max
α

N∑
i=1

αi −
1

2E(θ,y)

N∑
i=1

N∑
j=1

αiαjyiyjK̃ij , s.t. 0 ≤ αi ≤ C,
N∑
i=1

αiyi = 0.

(10)

Since the cluster variance E(θ,y) is a constant for given {θ,y}, it can be
included in the kernel matrix and, thus, (10) actually coincides with the dual

of the standard SVM, with 1
E(θ,y)K̃ as the kernel matrix. Hence, the optimal

solution for (10), denoted by α∗, can be located using any of the existing SVM
solvers (the optimal values for w, b, and ξ in (5) are calculated based on the
solution of the dual). Moreover, due to strong duality, the value of J (θ,y) can
be directly acquired from the dual:

J (θ,y) =

N∑
i=1

α∗i −
1

2E(θ,y)

N∑
i=1

N∑
j=1

α∗iα
∗
jyiyjK̃ij . (11)

Updating the Kernel Parameters. Changing the composite kernel coeffi-
cients so that the ratio-based objective J (θ,y) is reduced, while keeping the
cluster labels y fixed, can be effectively performed by means of gradient descent.
Due to strong duality between (5) and (10) (Section 2.3), we can exploit (11) to
compute the gradient of J (θ,y) w.r.t. θ.

Proof for the differentiability of J (θ,y) comes from Danskin’s theorem [4],
similar to [14, 19]. To apply this theorem to our problem, two conditions must
be satisfied. First, the optimal solution α∗ of (10) must be unique. This can

be ensured by demanding the composite kernel matrix K̃ to be strictly positive
definite for every admissible θ. Second, the objective function optimized in the
dual (10) must be continuously differentiable w.r.t. θ, which can be ensured by

demanding K̃ to be continuously differentiable w.r.t. θ. As K̃ is a linear mixture
of basis kernel matrices K(v), both requirements are fulfilled as long as every
K(v) is strictly positive definite. The theorem also states that J (θ,y) can be
differentiated as if α∗ does not depend on θ. Therefore, the derivatives can be
obtained from (11) as:

∂J (θ,y)

∂θv
=

1

2E(θ,y)2
N∑
i=1

N∑
j=1

α∗iα
∗
jyiyjK̃ij

∂E(θ,y)
∂θv

− 1

2E(θ,y)

N∑
i=1

N∑
j=1

α∗iα
∗
jyiyj

∂K̃ij

∂θv
, (12)
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where
∂K̃ij

∂θv
= K

(v)
ij and ∂E(θ,y)

∂θv
follows directly from (7). Note that in order to

calculate the derivatives, we must first obtain α∗ by solving (10) for the current
{θ,y} values.

The procedure for updating θ for given y, begins by executing a standard
gradient descent update on θ, using (12). Afterwards, θ is projected back to its
feasible set, so that the positivity and p-norm constraints (4) are enforced. In
this work, we consider the values p = 1, 2 and execute the projections as shown
in [6, 15]. Note that the gradient descent step size, η, is adjusted according to
the Armijo rule, which may require additional optimizations of the dual.

Updating the Cluster Labels. Finding a new set of cluster assignments y′

that will further decrease J (θ,y) (keeping the kernel parameters θ fixed) is
not straightforward, since the underlying optimization is a non-convex integer
problem. Some single kernel MMC approaches relax y on the continuous domain
to ease the optimization (e.g. [18, 21]), however, in the end the relaxed solution
should be mapped back to the discrete space. Here, on the contrary, our aim is
to work directly on the discrete cluster labels without any relaxations.

We have developed a practical search framework, where an improved clus-
ter labeling y′ is obtained by moving instances between the two clusters. One
possible direction would be to change the cluster label of a single instance only
and then proceed with reestimating θ. However, we have empirically found that
such a minor modification on y results in premature convergence as the algo-
rithm overcommits to the initial assignments. A better strategy is to change
the labels of multiple instances before reestimating θ. The strategy we follow
is motivated by several graph partitioning heuristics that have been applied to
clustering, prominently the Kernighan-Lin algorithm [10]: an initial split of the
graph is revamped by exchanging several nodes (specified in an incremental fash-
ion) between partitions and selecting the best subset of these nodes. Based on
this idea, we build a sequence of L candidate cluster label vectors, y(1), . . . ,y(L),
(L is user-defined) and select the one generating the greatest improvement on
J (θ,y) in order to update y. These L candidate label vectors are constructed
incrementally (one after the other), such that compared to the previous can-
didate label vector, the next contains one more instance whose label has been
changed (i.e. they differ in one element). Given y(l), the (l + 1)-th instance to
change clusters is selected to be the one that is expected to produce the smallest
objective value when added to the current l changes, thus constructing y(l+1).

A meaningful approach for picking the (l + 1)-th instance is to rank the con-
tending instances based on the confidence about their labeling according to the
current (after l cluster moves) separating hyperplane and select the one with the

smallest yi(w

φ̃(xi) + b) value. This way misclassified instances (if any exist)

have a higher priority to change clusters, since yi(w

φ̃(xi)+ b) < 0, followed by

those falling inside the margin (if any exist), since 0 ≤ yi(w

φ̃(xi)+ b) < 1, and

finally those away from the margin, since yi(w

φ̃(xi) + b) ≥ 1.

More specifically, let y(0) to be the vector of the cluster labels before com-
mencing the update process. Assume that y(l) has already been generated, thus
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at this point l instances have already changed clusters w.r.t y(0). As mentioned,
the (l + 1)-th instance is selected to be the one we are the less confident about
its labeling according to the separating hyperplane. However, when the labels
change so does the hyperplane. Therefore, we must solve the dual (10) for the
current assignments y(l) to obtain the corresponding optimal hyperplane param-
eters w(l)∗ and b(l)

∗
. Then, the index of the (l + 1)-th instance is given by:

i∗ = argmin
i:y

(l)
i =y

(0)
i

y
(l)
i

(
w(l)∗
φ̃(xi) + b(l)

∗
)
, (13)

and the (l + 1)-th candidate label vector is defined as:

y
(l+1)
i =

{
y
(l)
i , i �= i∗

−y(l)i , i = i∗
. (14)

From (13), it is obvious, that an instance xi whose label has already changed

is not considered again as a contender, since y
(l)
i �= y

(0)
i , and the selected one

flips its label (14). Moreover, observe that the label changes of all previous steps
are retained when constructing y(l+1), leading to an incremental reassignment
of the instances. The above is repeated for l = 0, 1, . . . , L− 1.

The returned cluster assignments that are used to update y correspond to the
cluster label vector y(l∗) attaining the smallest objective value (i.e. y′ = y(l∗)):

l∗ = argmin
0≤l≤L

J (θ,y(l)). (15)

Note that if none of the candidate label vectors y(l) reduces the objective, then
l∗ = 0 from (15), and no label change is accepted. This ensures that the ratio-
based objective never increases after updating y.

The procedure for modifying y, as described up to this point, selects L in-
stances belonging to either of the two clusters and flips their label to construct
the candidate label vectors. Some trial experiments indicated that a better ap-
proach is to restrict all L instances that change clusters to originate from the
same (i.e. a single) cluster. For this reason, our final procedure is divided into
two phases. In the first phase the candidate vectors are formed by moving L
instances from the cluster associated with the +1 label to the cluster associated
with the −1 label, while in the second phase the opposite movement direction
is considered. The two phases are independent from each other, both starting
from y(0). Hence, one phase does not take into account the cluster changes of
the other. At the end, the best of the 2L candidate vectors is selected to update
the cluster labels. To implement the above idea, in (13) we must, additionally to

y
(l)
i = y

(0)
i , require that y

(l)
i = +1 (y

(l)
i = −1) for the first (second) phase con-

tending instances. Our complete, two phase, framework is shown in Algorithm 2.
An issue we have yet to touch on is how to impose the cluster balance con-

straint (4). Fortunately, this is rather straightforward under our framework,
since we can define an upper bound on the number L of candidate label vec-
tors in each phase and, therefore, on the number of instances allowed to change
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Algorithm 1. RMKC

Input: Basis kernel matrices {K(v)}Vv=1, Initial composite kernel coefficients θ(0) and
cluster assignments y(0)

Output: Final kernel coefficients θ and cluster assignments y

1: Set t = 0
2: Set parameters L, � and C
3: Set K̃(0) =

∑V
v=1 θ

(0)
v K(v)

4: repeat
5: Solve the dual (10) for K̃(t) (i.e. θ(t)) and y(t) to obtain α(t)∗

6: for v = 1 to V do // Update θ.

7: θ
(t+1)
v = θ

(t)
v − η(t) ∂J (θ,y)

∂θv

∣∣∣
θ=θ(t),y=y(t),α∗=α(t)∗

8: end for
9: Project θ(t+1) to satisfy the constraints in (4)

10: K̃(t+1) =
∑V

v=1 θ
(t+1)
v K(v)

11: y(t+1) = Cluster upd(K̃(t+1), y(t)) // Update y.
12: t = t+ 1
13: until converged
14: return θ = θ(t),y = y(t)

clusters, to guarantee that the constraint is never violated. For the first phase

L ≤ (� +
∑N

i=1 y
(0)
i )/2, while for the second L ≤ (� −

∑N
i=1 y

(0)
i )/2. Note that∑N

i=1 y
(0)
i describes the initial imbalance before moving any instances (which, of

course, satisfies the constraint) and � ≥ 0 the maximum admissible imbalance.

2.4 Discussion

This section examines some additional aspects of the proposed RMKC method,
starting with the convergence of the iterative algorithm used to optimize (4).
In each iteration, the gradient descent update on θ reduces the ratio-based ob-
jective value. Moreover, the subsequent update on y selects a candidate cluster
label vector that further decreases the objective. Hence, the overall process is
guaranteed to monotonically converge. The final solution, though, depends on
the initial {θ,y} values, thus a local, and not the global, minimum of J (θ,y) is
located. The solution also depends on the user-specified constants C, � and L, as
well as, on the selected p-norm for the composite kernel coefficients constraint.

An important advantage of RMKC is that it can be readily extended to learn-
ing general forms of parametric composite kernels K̃, such as a nonlinear mixture
of basis kernels, without being restricted to just the linear combination case (3).
The formulation itself remains unchanged (e.g. (4), (5), (6), (10), (11)) and the
iterative algorithm is applicable out of the box, if the gradient of the ratio-based
objective can be computed. This is possible when the composite kernel matrix
is strictly positive definite and continuously differentiable w.r.t. its parameters

θ (see Section 2.3). Of course,
∂K̃ij

∂θv
and ∂E(θ,y)

∂θv
in (12) depend on the specific

form of the composite kernel. Moreover, the scale invariance of our objective
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Algorithm 2. RMKC - cluster update

Input: Current composite kernel matrix K̃ and cluster assignments y
Output: Updated cluster assignments y′

1: function Cluster upd(K̃, y)
// First phase.

2: Set y(0) = y
3: for l = 0 to L− 1 do
4: Solve the dual (10) for K̃ and y(l) to obtain w(l)∗ and b(l)

∗

5: Calculate y(l+1) (14) with the added constraint y
(l)
i = +1 in (13)

6: end for
// Second phase. This phase ignores the cluster moves of the first.

7: Set y(L+1) = y
8: for l = L+ 1 to 2L do
9: Solve the dual (10) for K̃ and y(l) to obtain w(l)∗ and b(l)

∗

10: Calculate y(l+1) (14) with the added constraint y
(l)
i = −1 in (13)

11: end for
12: l∗ = argmin0≤l≤2L+1 J (θ,y(l))

13: return y′ = y(l∗)

14: end function

(i.e. scaling K̃ by a scalar α > 0) also holds in the general case (the proof is
analogous to that in Proposition 1), but the same is not true for the norm in-

variance. Note that scaling K̃ is no more equivalent to scaling the parameters
θ. The ability to accommodate general kernel forms broadness the applicability
of RMKC and constitutes an advantage over existing MKL approaches that are
usually limited to a particular type of composite kernel.

3 Empirical Evaluation

To investigate the potential of combining the margin with the variance in the
clustering objective and perform kernel learning, the presented RMKC frame-
work is compared to: a) kernel k -means, which serves as our baseline method,
b) iterSVR [24], an iterative margin-based MMC approach that follows formula-
tion (1), and c) two iterative variance-based MKL approaches that optimize (6),
namely multi-view kernel k -means (MVKKM) and multi-view spectral cluster-
ing (MVSpec) [17]. The evaluation is made on various diverse datasets from the
UCI repository2 (Ionosphere, Letter, Satellite, Multiple Features and Optdigits),
as well as on the COIL-20 image library of objects [13] and a subset of the Corel
image collection3. Apart from Ionosphere, all other datasets contain instances of
more than two categories. For this reason, we conduct experiments using pairs of
the included categories. For Letter and Satellite we simply focus on the first two
classes, i.e. A-B and C1(red soil)-C2(cotton crop), respectively, as in [24]. For

2 http://archive.ics.uci.edu/ml
3 http://www.cs.virginia.edu/~xj3a/research/CBIR/Download.htm

http://archive.ics.uci.edu/ml
http://www.cs.virginia.edu/~xj3a/research/CBIR/Download.htm
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Fig. 1. The COIL-20 objects considered in the experiments
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Fig. 2. Indicative images of the Corel categories considered in the experiments

the two databases of handwritten digits (i.e. Multiple Features and Optdigits)
we try several pairs of the contained numerals (0-9), while for the two image col-
lections we consider pairs of the classes depicted in Figures 1-2. The tested pairs
are shown in Tables 3-4. Since ground truth information is available for every
dataset, we employ the clustering accuracy metric to measure performance4.

Multiple Features and Corel are multi-view datasets, hence, for the same
instance multiple sets of attributes are available. Each attribute set naturally
defines a basis kernel and the linear kernel is employed here to represent each
view. For the other, single view, datasets, we follow [18,20] and construct 10 basis
RBF kernels, where the kernel width σ varies from 10% to 100% of the range of
distance between any two instances. Kernels are multiplicatively normalized [12].

Throughout the experiments, our algorithm is configured as follows: we fix the
number of candidate label vectors in each phase to L = 30, the cluster imbalance
parameter to � = 0.5N (for the Corel images only, � = 0.2N) and conduct a grid
search on the set {10−2, 10−1, . . . , 102} to locate the best performing value for
the C regularizer in each dataset. The basis kernels are linearly combined (3) and
their coefficients are uniformly initialized, i.e. θv = 1

V 1/p . To initialize the cluster
assignments y, we extract several pairs of instances (usually 0.25N pairs) using
a k -means++-like procedure [1], where the first instance is chosen randomly and
the second is picked with a probability that is proportional to its distance from
the first. For each such pair, the remaining N − 2 instances are assigned to the
closest of the two instances in the pair, thus producing a partitioning of the data.
The partitioning y with the minimum J (θ,y) value is used to initialize a run of
RMKC. Since the procedure for choosing the initial y is nondeterministic, the
RMKC performance is averaged over 30 runs for each tried set of parameters
(L, �, C, p-norm). Finally, the LIBSVM toolbox [2] is utilized for solving (10).

3.1 Norm Invariance in Practice

In Proposition 2, it was proved that the global optimal solution of our formula-
tion (4) is invariant to the p-norm applied on the composite kernel coefficients θ,

4 To evaluate performance, we make the typical assumption that clusters correspond
to classes and set their number equal to the number of classes (e.g. [18,20,22,25]).
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Table 1. RMKC clustering accuracy (%) (averaged over all pairs of categories consid-
ered in each dataset) for different p-norm constraints

Dataset No-norm 1-norm 2-norm

Ionosphere 71.51± 0.00 71.51± 0.00 71.51± 0.00
Letter 94.47± 0.00 94.47± 0.00 94.47± 0.00

Satellite 96.17± 0.50 96.19± 0.52 96.16± 0.51
COIL-20 98.75± 2.60 98.61± 2.65 98.43± 2.73
Corel 94.55± 1.62 94.64± 1.58 94.69± 1.62

Multiple Features 99.58± 0.22 99.53± 0.37 99.59± 0.23
Optdigits 97.77± 2.45 97.65± 2.71 97.75± 2.50

Table 2. Clustering accuracy (%) of the compared methods on three popular UCI
datasets

Dataset
RMKC

MVKKM MVSpec
Kernel IterSVR IterSVR

(1-norm) k-means (best) (average)

Ionosphere 71.51± 0.00 71.23 70.66 73.22± 2.90 74.83± 1.65 71.83± 1.99
Letter (A-B) 94.47± 0.00 93.50 88.68 93.63± 0.00 94.51± 1.70 92.29± 1.97

Satellite (C1-C2) 96.19± 0.52 94.19 96.24 94.15± 0.03 96.42± 0.00 91.53± 5.58

Table 3. Clustering accuracy (%) of the compared methods on image clustering

Dataset
RMKC

MVKKM MVSpec
Kernel IterSVR IterSVR

(1-norm) k-means (best) (average)

COIL-20
3-19 100.00± 0.00 100.00 100.00 94.05 ± 10.27 100.00± 0.00 100.00± 0.00
4-11 100.00± 0.00 77.78 100.00 96.30 ± 10.41 98.47± 8.37 98.34 ± 8.34
15-18 100.00± 0.00 90.28 95.83 97.57± 3.74 99.72± 0.35 99.21 ± 0.21
15-19 94.44± 10.59 68.06 86.11 86.57 ± 14.84 93.43± 14.30 91.86± 14.52
Corel

700-4990 97.62± 0.65 95.00 95.00 85.98± 9.58 96.43± 0.25 83.19 ± 1.85
700-5530 92.60 ± 1.42 94.00 94.00 85.50± 0.00 88.63± 6.40 68.03 ± 3.49
770-840 97.55± 0.91 94.50 90.00 90.47± 0.37 94.20± 3.04 87.85 ± 0.58
770-1350 94.03± 1.72 93.50 92.00 88.72± 0.96 92.67± 1.27 84.10 ± 1.89
1340-1350 95.50± 0.00 95.00 95.00 91.00± 0.00 92.50± 0.00 83.71 ± 0.00
2890-4990 90.57± 4.79 87.00 86.00 85.00± 0.00 90.00± 0.00 73.04 ± 5.68

if K̃ is a linear mixture of basis kernels (3). However, the RMKC method locates
local optima of the ratio-based objective. Hence, it is of particular interest to
explore how these local optima vary for different choices of p-norm constraints.

To demonstrate this, RMKC is executed (according to the above configura-
tion) for p = 1, 2 and also for the case where no norm constraint is imposed on θ
and the results are illustrated in Table 1. It can be observed that the solutions
obtained across the different norms are very similar, therefore, in practice, the
uncovered local optima are not significantly influenced by the choice of p-norm,
although this cannot be theoretically guaranteed. On the following, we shall
focus on the 1-norm, when presenting the results of our approach.
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Table 4. Clustering accuracy (%) of the compared methods on the task of handwritten
digits recognition

Dataset
RMKC

MVKKM MVSpec
Kernel IterSVR IterSVR

(1-norm) k-means (best) (average)

Mult. Feat.
1-7 99.62 ± 0.78 98.75 98.75 98.00± 0.00 99.75± 0.00 96.85± 0.00
2-7 100.00± 0.00 99.00 99.75 97.92± 0.24 99.75± 0.00 97.61± 1.73
2-3 99.70± 0.23 99.25 99.00 99.50± 0.00 99.50± 0.00 94.13± 7.16
3-8 99.28 ± 0.38 99.50 99.50 97.50± 0.00 99.75± 0.00 98.78± 0.04
5-6 99.42± 0.48 98.50 98.50 98.29± 0.09 98.75± 0.00 95.68± 2.37
6-8 99.15± 0.33 97.25 98.50 97.33± 0.16 99.00± 0.00 94.94± 6.47

Optdigits
1-7 99.56 ± 1.41 100.00 100.00 89.38 ± 16.06 96.93± 9.83 94.26± 13.14
2-7 98.03 ± 1.31 96.35 92.42 95.03± 8.40 99.32± 0.16 98.88± 0.84
2-3 96.29 ± 5.44 90.56 88.89 89.92± 9.10 96.50± 0.82 95.59± 2.70
3-8 92.43 ± 8.00 94.12 93.28 92.56± 7.80 96.20± 0.16 95.01± 4.08
5-6 99.72± 0.00 99.45 99.45 99.57± 0.14 99.72± 0.00 99.33± 0.01
6-8 99.89± 0.14 99.15 98.87 99.32± 0.26 99.72± 0.00 99.45± 0.06

3.2 Comparative Results

We have conducted a comprehensive evaluation of RMKC, kernel k -means,
iterSVR, MVKKM and MVSpec on all datasets. RMKC is set up as previously
described. Kernel k -means is restarted 30 times, from randomly picked initial
centers. For iterSVR we employ a similar setup to [24], i.e. the cluster imbalance
parameter is fixed to � = 0.03N for balanced and to � = 0.3N for unbalanced
datasets, while the initial cluster labels are obtained from the kernel k -means
solution (iterSVR is, thus, repeated 30 times). For the C regularizer, the same
grid search as for RMKC is implemented. Finally, the sparsity controlling pa-
rameter p for MVKKM and MVSpec is selected by a grid search on the values
{1, 1.5, . . . , 5}.

Performance is measured in terms of average clustering accuracy (and its
deviation) over the 30 restarts (MVKKM and MVSpec are deterministically
initialized [17], thus we have no restarts). Let us stress, that both kernel k -
means and iterSVR are single kernel methods that do not implement kernel
learning. For this reason, these algorithms are independently executed for each
of the individual basis kernels in each data collection and the kernel attaining
the highest accuracy is reported. Moreover, for iterSVR the average performance
over all basis kernels is also shown. It is important to make clear that it is not
possible to know a priori which is the best basis kernel for a given dataset.

In Table 2 we observe that iterSVR with the optimal basis kernel achieves the
best accuracy, being closely matched by RMKC. Only for Ionosphere the differ-
ence is large, where, surprisingly, all three MKL approaches (RMKC, MVKKM
and MVSpec) are even inferior to kernel k -means. However, this is a difficult
dataset to cluster and all methods yield rather poor outcomes (accuracy does
not exceed 75%).

Turning our attention to image clustering (Table 3), it is evident that
our ratio-based objective constantly outperforms the other methods. For the
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COIL-20 objects, whose images are taken from different angles in a neutral
background, hence are easy to distinguish, our approach manages to find the
correct clusters for 3/4 of subsets and iterSVR appears to be its closest com-
petitor. Clustering the Corel images is a more difficult task, due to variations
in the composition of the depicted scene within each class. Here the differences
of RMKC to iterSVR are more distinct and its closest competitor is MVKKM,
which clearly displays the benefits of combining information from multiple views
under MKL.

For the task of handwritten digits recognition (Table 4) the best performance
is equally shared between RMKC and iterSVR across the two datasets. Note
that for Multiple Features, which, like Corel, is a multi-view dataset, RMKC is
superior. MVKKM and MVSpec achieve the highest accuracy on a single case
(Optdigits for the pair 1-7) and are superior to RMKC for only 3/12 of subsets.

Overall, the proposed RMKC algorithm obtains a higher clustering accuracy
for the majority of the tested category pairs. The margin-based iterSVR ap-
proach seems to be close, or even better, for some cases, provided the optimal
basis kernel is used (iterSVR(best)). However, in practice, the best kernel for a
particular dataset is not a priori known. By looking at the Tables’ last column,
one can notice that iterSVR results degrade significantly if an inappropriate ba-
sis kernel is chosen. On the contrary, RMKC is able to automatically infer a
meaningful kernel by combining the basis kernels.

4 Conclusions

We have proposed a novel MKL formulation that considers the ratio between the
margin and the intra-cluster variance. Its objective is optimized by an iterative,
gradient-based algorithm to get both the cluster assignments and the composite
kernel parameters. Moreover, it is characterized by two important properties: it
is invariant to scalings of the learned kernel and, when basis kernels are linearly
mixed, is also invariant (on its global optimum) to the type of p-norm constraint
on the composite kernel parameters. Our framework compares favorably to ex-
isting approaches that rely either on the margin or the intra-cluster variance.

Although multiple cluster problems can be tackled by iteratively solving a
sequence of two-cluster problems, an interesting research direction would be to
extend our formulation to directly handle multiple clusters, following the ideas
in [22,25,26]. Moreover, evaluating different parametric forms for the composite
kernel is in our plans.
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Abstract. Markov Logic is a powerful representation that unifies first-order logic
and probabilistic graphical models. However, scaling-up inference in Markov
Logic Networks (MLNs) is extremely challenging. Standard graphical model
inference algorithms operate on the propositional Markov network obtained by
grounding the MLN and do not scale well as the number of objects in the real-
world domain increases. On the other hand, algorithms which perform inference
directly at the first-order level, namely lifted inference algorithms, although more
scalable than propositional algorithms, require the MLN to have specific sym-
metric structure. Worse still, evidence breaks symmetries, and the performance
of lifted inference is the same as propositional inference (or sometimes worse,
due to overhead). In this paper, we propose a general method for solving this
“evidence” problem. The main idea in our method is to approximate the given
MLN having, say, n objects by an MLN having k objects such that k << n and
the results obtained by running potentially much faster inference on the smaller
MLN are as close as possible to the ones obtained by running inference on the
larger MLN. We achieve this by finding clusters of “similar” groundings using
standard clustering algorithms (e.g., K-means), and replacing all groundings in
the cluster by their cluster center. To this end, we develop a novel distance (or
similarity) function for measuring the similarity between two groundings, based
on the evidence presented to the MLN. We evaluated our approach on many dif-
ferent benchmark MLNs utilizing various clustering and inference algorithms.
Our experiments clearly show the generality and scalability of our approach.

1 Introduction

Markov Logic Networks (MLNs) [18,4] unify first-order logic and probabilistic models
and are arguably the most popular representation for statistical relational learning. They
have been used in a wide variety of application domains including natural language un-
derstanding [17], computer vision [22] and planning [21]. Just as in conventional prob-
abilistic models such as Bayesian networks and Markov networks, the key challenge
in MLNs is to develop scalable inference algorithms. However, this challenge is more
pronounced in MLNs because MLNs are template models, compactly specified using a
first-order logic representation and as a result even a seemingly simple MLN can yield
an arbitrary large (propositional) probabilistic model as the number of objects in the
real-world domain increases.
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Existing MLN inference algorithms can be broadly classified into two categories,
propositional algorithms, which operate on the Markov network obtained by grounding
the MLN and lifted algorithms, which operate directly on the first-order representa-
tion, grounding only as necessary. Propositional algorithms such as Gibbs Sampling [5]
and Belief Propagation [28] do not scale well as the number of objects gets large,
because they perform inference over the Markov network obtained by grounding the
MLN, which for large domain-sizes can be huge. On the other hand, lifted inference al-
gorithms [15,3,6,26,20,10,7,2,27,13] either directly operate on the first-order structure
or exploit symmetries in the propositional model and can therefore, in principle, scale
significantly better than propositional inference algorithms.

Lifted inference algorithms typically suffer from two problems. First, they require
MLNs to have a specific symmetric structure [3,9,23], which is not always the case in
real-world applications. For example, to apply certain inference operations, the MLN
needs to be composed of purely singleton atoms [9]. Second, a far more serious problem
is that, in the presence of evidence most MLNs are not liftable because evidence breaks
symmetries. As a concrete example, the symmetrical marginal probabilities in Fig. 1 (a)
are broken with evidence (b). Therefore, a lifted algorithm that could potentially exploit
the symmetry in (a) can no longer do so in (c). Thus, in the presence of evidence, lifted
inference algorithms often resort to grounding the MLN. This is problematic because
most interesting inference problems are almost always of the form P (Q|E), i.e., com-
puting the probability of a query given evidence. Therefore, there is a pressing need for
inference algorithms that work without restrictions on the MLN structure or evidence.
The main contribution of this paper is presenting one such method.

Our main idea is to reduce the number of objects in the domain of the MLN, thereby
approximating it by a much smaller MLN such that the results obtained by performing
inference on the smaller MLN are as close as possible to the ones obtained by running an
expensive inference algorithm on the original MLN. To achieve this domain-reduction,
we pre-process the MLN utilizing standard clustering algorithms such as K-means to
merge together objects that are in some sense “similar” to each other from an infer-
ence perspective. Importantly, this pre-processing step allows us to plug-in existing
grounded/lifted inference algorithms where the sampling-space (for sampling-based in-
ference) or search-space (for search-based inference) can be controlled, which makes
inference feasible even when the original MLN’s domain is extremely large.

In order to obtain an accurate domain-reduced approximation of the original MLN,
we specify a novel distance function that measures similarity based on the evidence pre-
sented to the MLN. This distance function helps cluster together objects having similar
evidence-structure. The inherent symmetry in MLN representation makes it more likely
that similar evidence structure translates to approximately similar marginal probabili-
ties. Thus, we compute the marginal probability for a single element of the cluster and
project the same results to all elements in the cluster, thereby drastically reducing the
complexity of inference.

We evaluated our approach on several benchmark MLNs available on the Alchemy
website [11]. Also, in our experiments, we leverage a number of clustering algorithms
from data-mining/machine learning literature implemented in Weka [8] to scale-up in-
ference to very large domain-sizes. We experimented with two inference algorithms,
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Wins(A,A) 0.56
Wins(A,B) 0.56
Wins(A,C) 0.56
Wins(B,A) 0.56
Wins(B,B) 0.56
Wins(B,C) 0.56
Wins(C,A) 0.56
Wins(C,B) 0.56
Wins(C,C) 0.56

(a) Original Marginals

Strong(C)
Wins(A,C)
Wins(B,B)
Wins(B,C)
Wins(C,A)

(b) Evidence

Wins(A,A) 0.6
Wins(A,B) 0.6
Wins(B,A) 0.63
Wins(C,B) 0.85
Wins(C,C) 0.85

(c) New Marginals

Fig. 1. Effect of evidence on an MLN with one formula, 1.75 Strong(x) ⇒ Wins(x,y). The
marginal probabilities which were equal in (a) become unequal in (c) due to evidence (b).

a propositional sampling-based algorithm, Gibbs sampling [5] and a lifted message-
passing algorithm, Lifted Belief Propagation [20] to show the generality of our ap-
proach. Our results clearly illustrate that, using a fraction of the true groundings, we are
able to approximate the marginal probabilities quite consistently on a wide variety of
MLN structures with arbitrary evidence.

2 Preliminaries

First-order logic (FOL) consists of predicates (e.g., Friends) that represent relations
between objects, logical connectives (e.g., ∨, ¬, etc.) and quantifiers (∀, ∃). Each predi-
cate has a parenthesized list of arguments which can be substituted by a term which can
either be a logical variable (x), a constant (X) or a function. A formula in first order
logic is a predicate (atom), or any complex sentence that can be constructed from atoms
using logical connectives and quantifiers. For example, the formula ∀x Smokes(x) ⇒
Asthma(x) states that all persons who smoke have asthma. A ground atom correspond-
ing to a predicate is one where each term is substituted by a constant symbol.

We use a strict subset of FOL. Specifically, we make the following assumptions.
First, we assume that there is a one-to-one mapping between the constant symbols
and objects (Herbrand semantics). This means that any possible world is simply an
assignment of True or False to every distinct ground atom. Second, we assume a
function-free language where each variable is typed and the number of constant sym-
bols is finite. Therefore, for any variable x, we can define a finite set Δx (domain of
x) which consists of all the constant symbols that can be substituted for x. We re-
fer to the constants corresponding to a domain as the domain’s groundings. A ground
formula is a formula obtained by substituting all of its variables with a constant. A
ground KB is a KB containing all possible groundings of all of its formulas. For ex-
ample, the grounding of a KB containing one formula, Smokes(x) ⇒ Asthma(x)
where Δx = {Ana,Bob}, is a KB containing two ground formulas: Smokes(Ana)⇒
Asthma(Ana) and Smokes(Bob)⇒ Asthma(Bob).

Markov logic [4] extends FOL by softening the hard constraints expressed by the
formulas. A soft formula or a weighted formula is a pair (f, w) where f is a formula
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in FOL and w is a real-number. A MLN denoted by M, is a set of weighted formu-
las (fi, wi). Given a set of constants that represent objects in the domain, a Markov
logic network defines a Markov network or a log-linear model. The Markov network
is obtained by grounding the weighted first-order knowledge base and represents the
following probability distribution.

PM(ω) =
1

Z(M)
exp

(∑
i

wiN(fi, ω)

)
(1)

where ω is a world, N(fi, ω) is the number of groundings of fi that evaluate to True
in the world ω and Z(M) is a normalization constant or the partition function.

In this paper, we assume that the input MLN to our algorithm is in normal form
[9,12]. A normal MLN [9] is an MLN that satisfies the following two properties: (1)
There are no constants in any formula, and (2) If two distinct atoms with the same
predicate symbol have variables x and y in the same position then Δx = Δy . An
important distinction here is that, unlike in previous work on lifted inference that use
normal forms [9,6] which require the MLN along with the associated evidence to be
normalized, here we only require the MLN in normal form.

The two main inference problems in MLNs are computing the partition function and
the marginal probabilities of query atoms given evidence. In this paper, we focus on the
latter.

3 Domain Clustering

3.1 Problem Formulation

Let M denote an MLN with M predicates R1, R2, . . ., RM , and N weighted formulas
f1, f2, . . ., fN . Let GM denote the propositional Markov network obtained by ground-
ing all the formulas in M. Let E = {Ek}Sk=1 be the set of evidences. Each Ek ∈ E
represents a single ground atom that is known to be either True or False. Let I be a
set of indices of the form (i, j) such that 1 ≤ i ≤M , 1 ≤ j ≤ Ai, where Ai is the arity
of the i-th predicate. In other words, (i, j) is an index to the j-th argument of the i-th
predicate inM.

Let R be a binary relation on I such that (i, j) R (a, b) iff there exists a formula f ∈
M such that: (1) f contains atoms having predicate symbols indexed by i and a, and (2)
a logical variable x of f appears as the j-th argument and as the b-th argument of atoms
having predicate symbols indexed by i and a respectively. Clearly, R is symmetric and
reflexive. Let R+ be the transitive closure of R on I. R+ is an equivalence relation on I.
Let I = {I1 I2 . . . IP } denote the set of equivalence classes of I due to the equivalence
relation R+. Let ΔIk denote the domain (possible groundings) of an element of Ik.
Note that since we assume that the MLN is in normal form, all elements of ΔIk have
the same domain.

Example 1. LetM contain exactly one formula R1(x,y) ∧ R2(y,z)⇒ R3(z,x). Let Δx

= Δy = Δz = {A,B}. I = {{(1, 1), (3, 2)}, {(1, 2), (2, 1)}, {(2, 2), (3, 1)}}. ΔI1
= {A,B} and grounding I1 with A, yields the partially ground formula, R1(A,y) ∧
R2(y,z)⇒ R3(z,A).
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To reduce the total number of formulas in GM, we reduce the number of groundings
in each Ik ∈ I independently. Specifically, for each ΔIk , we learn a new domain, Δ̂Ik
and a surjective mapping ζ : ΔIk → Δ̂Ik , i.e., ∀ μ ∈ Δ̂Ik , ∃ C ∈ ΔIk such that ζ(C)

= μ. We formulate this domain-reduction problem (|Δ̂Ik | << |ΔIk |) as a standard
clustering problem below.

Definition 1. Given a distance measure d between any two groundings of Ik ∈ I and
the number of clusters for Ik equal to rk, we define the clustering problem as,

min
C1...CP

P∑
k=1

rk∑
j=1

∑
Ckj∈Ckj

d(Ckj , μkj) (2)

where Ckj corresponds to all groundings of Ik that are placed in cluster j, μkj is
the cluster-center of Ckj , i.e., it represents the “average grounding” for that cluster,
ζ−1(μkj ) = Ckj .

Each cluster-center in some sense “compresses” the original domain, and we gener-
ate a new MLN M̂ fromM by replacing each ΔIk with Δ̂Ik = {μkj}rkj=1. Importantly,

the formulation in Eq. (2) allows us control the inference-complexity in M̂ even when
GM is extremely large. This is important because, for arbitrary MLN structures or for
inference with evidence, even state-of-the-art inference techniques end up working on
a model whose size is comparable to GM and in most cases, GM grows rapidly with
domain-size. For example, consider the MLN, R(x, y) ∧ S(y, z)⇒ T(z, x), even for Δx

= Δy = Δz = Δu = 100, the number of formulas in GM is already one million. Further,
the search space (for search-based algorithms) or the sampling space (for sampling-
based algorithms) is massive, i.e., exponential in the total number of ground atoms in
the MLN. By clustering, we are essentially compressing this large space and now any
existing inference algorithm can be used to solve large problems as they implicitly work
in this reduced space. The key advantage is that this space complexity can now be con-
trolled based on the cluster-size. Specifically,

Proposition 1. The number of ground atoms in M̂ is O(MrA), where M is the number
of predicates inM, r = max

k
rk and A is the maximum arity of a predicate in M.

Clearly, the ground atoms in M̂ are different from those inM. Specifically, an atom
in M̂ is ground with cluster-centers rather than concrete objects of the original MLN.
Thus, one ground atom in M̂ implicitly corresponds to multiple ground atoms in M.
This also means that in M̂, the original evidence E needs to be modified because it is
specified on the ground atoms ofM. Therefore, we approximate E with Ê which spec-
ifies the evidence on atoms ground with cluster-centers instead of the original objects
in M. To specify this, we define the expansion of a ground atom in M̂ as the set of all
groundings that it represents inM. Formally,

Definition 2. The expansion of the j-th ground atom corresponding to the i-th predi-
cate (Ri(μi1j1 , . . . μiAi

jAi
)) in M̂ is denoted by πij and consists of all distinct ground

atoms of the form Ri(C1, . . ., CAi) where Ck ∈ ζ−1(μikjk).
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Clearly, if we assert in Ê that a ground atom in M̂ is True (or False), this implicitly
asserts that every grounding in its expansion is True (or False). Given a clustering
of the domains, in order to best approximate E for this clustering, we minimize the
approximation error as follows.

min
Ê
|E&π̄(Ê)| (3)

where Ê is a subset of the ground atoms in M̂ and each grounding is assigned a sign
(positive/True or negative/False), π̄(Ê) expands every grounding in Ê and assigns
each grounding in the expansion the same sign as its corresponding grounding in Ê.
The & operator computes the symmetric difference between E and π̄(Ê). (Note that a
grounding with different signs is treated as distinct elements for our purpose). Ê can be
optimally chosen using the following proposition.

Proposition 2. Let πij be the expansion of one grounding (Ê) in Ê. Let n+ be the
count of positive-sign elements and n−, the count of negative-sign elements in πij ∩ E.

Eq. (3) is optimized by assigning Ê as positive (negative) if n+ ≥ |πij |
2

(
n− ≥ |πij|

2

)
.

Algorithm 1 shows a schematic illustration of our algorithm to compute the marginal
probabilities in an MLN given evidence. Algorithm 1 needs three other algorithms to
be specified namely, the distance function, clustering algorithm and the inference algo-
rithm. The amount of reduction applied to each domain is specified as the cluster-bound
α. The algorithm starts by computing the partition I from the term dependencies inM.
Next, to each Ik ∈ I, the clustering algorithm L is applied which outputs the clustered
domain ΔIk as well as the mapping function ζ. ΔIk is now replaced by its approxi-
mation in the new MLN M̂. Once all the domains are suitably reduced, the next step
is to approximate the evidence based on the reduced domains. Using Proposition 2, for
every grounding of every atom in M̂, we make a decision as to whether it is to be con-
sidered positive evidence, negative evidence or treated as a grounding whose truth value
is unknown. This yields the approximate evidence set Ê. We then invoke the inference
algorithm F to compute the marginals in M̂. Finally, we project the results obtained
on M̂ back to the original domains. Specifically, if a grounding in M̂ has a marginal
probability p, then each grounding in its expansion is assigned the same probability.

3.2 Distance Function

The distance function is a key parameter that affects the quality of the generated clusters
in Eq. (2) and in turn the inference results computed in Algorithm 1. The advantage of
our formulation is that it is quite easy to plug-in a new distance function and generate
“new” inference algorithms targeted towards specific applications or datasets. Here, we
develop a generic distance measure using the evidence specified on the MLN.

Example 2. Consider the MLN with one formula R(x) ⇒ S(x,y) with weight 1.75 and
domain Δx = {A, B, C}. Let the evidence E = {R(A), R(B)}. The task is to compute
the marginal probabilities of all groundings of S(x,y) which we refer to as the query.
The exact marginal probabilities for the query are, S(A,y) = S(B,y) = 0.5, S(C,y) =
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Algorithm 1. Compute-Marginals
Input: MLN M, Evidence E, set of query predicates Q, Distance function d, Clustering

function L, Inference algorithm F , cluster-bound α
Output: Marginal probabilities P for each ground atom corresponding to a predicate in Q

1 Compute the partition I from M
2 M̂ = M
3 for Ik ∈ I do
4 numclusters = α × ΔIk

5 (Δ̂Ik , ζ) = L(numclusters, d)

6 Replace ΔIk with Δ̂Ik in M̂
7 Construct Ê based on Proposition 2

8 P̂ = F(M̂, Ê,Q)
9 for Each Rk ∈ Q do

10 for Each j, where j indexes the possible groundings of Rk in M̂ do
11 for Each t, where t indexes the possible groundings of Rk in the expansion πkj

do
12 P(Rk , t) = P̂(Rk , j)

13 return P

0.56. Thus, an ideal distance function should give us a clustering of Δx where A and B
are placed in the same cluster as they have the same marginals w.r.t the query variable.
To do this, we observe that the evidence on R(A) ⇒ S(A,y) and R(B) ⇒ S(B,y) are
“symmetrical”, i.e., they satisfy the same number of groundings and consequently the
number of groundings that are left unsatisfied in both the formulas is the same. In other
words, when x = A, the relevant evidence yields MLNM′ and when x = B, its yields
M′′ and if M′ is sufficiently close to M′′, we would want all the groundings where
x = A clustered together with the groundings where x = B because they are likely to
have the same marginal probabilities. We formalize this intuitive idea below.

Let MCkj
represent the MLN obtained after grounding Ik with the j-th constant in

ΔIk . Clearly, in the general case, for any two distinct j1, j2,MCkj1
andMCkj2

are not
necessarily independent MLNs as there may be atoms in MCkj1

that are also present
in MCkj2

. However, in our distance function, we relax the constraints/dependencies
between MCkj1

, MCkj2
and assume these to be independent MLNs and compute the

distance between these two MLNs. Specifically, we define a feature vector UCkj
= cf1 ,

. . . cfN , where cfk is the number of groundings in formula fk of MLNMCkj
satisfied

due to the evidence E. The distance is computed as d(Ckj1 , Ckj2 ) = ||UCkj1
−UCkj2

||.
Even though the above distance function seems like an intuitive and reasonable

heuristic, it turns out that computing the distance function efficiently is infeasible in
the general case because computing the counts in UCkj

is a hard problem when E is
large. Formally, the following result has been shown in [4],

Theorem 1. Computing the number of satisfied groundings of a first-order clause in a
database is #P -complete in the length of the clause.
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Using database terminology, computing the counts in UCkj
requires computing joins

over an arbitrary number of relations (or tables). Therefore, we further relax the con-
straints/dependencies within the atoms in a formula to guarantee feasibility of com-
puting UCkj

when the size of the evidence-set is very large. In order to formalize this
clearly, we specify the ground atoms using a relational database. Further, we also as-
sume that each formula is reduced to a clausal form. The i-th predicate Ri is stored as
a relational database table Ri with Ai + 1 columns (Ai is the arity), namely, id1,, id2
. . . idAi and val. The first Ai columns correspond to a specific grounding and the val
column specifies whether that ground atom is True (val = 1), False (val = 0) or
unknown (val = −1). Given such a database, computing the feature vector involves
counting the number of groundings of the formulas in MCkj

that are satisfied by the
evidence, which according to Theorem 1 is a hard problem in the general case. Though
Theorem 1 is not an issue when the number of evidence atoms is small, to scale-up
inference to arbitrarily large evidence-sets, we adopt the following approach. Instead
of computing the exact number of groundings for a formula satisfied by the evidence,
which involves an arbitrary number of joins over the relations in the formula, we ap-
proximate this with a vector of counts, where each count is computed on a subset of
relations and the computation involves a bounded number of joins over these relations.

Example 3. Let M contain one formula, ¬R(x, y) ∨ ¬S(y,z) ∨ T(z,x), where Δx =
{A,B,C}. To compute the count of satisfied groundings for x = A, we compute its
inverse, i.e., the number of unsatisfied groundings for x = A. The satisfied count is
simply the difference between the total number of groundings and the number of unsat-
isfied groundings. Since the total number of groundings Δy × Δz is a constant for all
groundings of x, it does not affect the clustering and we simply ignore it. The unsatisfied
groundings for x = A is given by the following relational algebra expression

σR.val=1∧S.val=1∧T.val=0((σR.id1=A(R) ��R.id2=S.id1 S)

��S.id2=T.id1∧R.id1=T.id2 T ) (4)

where σ is the selection operator and �� is the join operator. Clearly, the above ex-
pression has two joins. However, if we impose a constraint that no joins are allowed
during the computation of the feature vector, we approximate Eq. (4) by implicitly
assuming that each predicate in the formula is independent i.e. we ignore the joins
to obtain a vector of counts by counting the tuples returned by 3 separate queries,
σR.val=1∧R.id1=A(R), σS.val=1(S) and σT.val=0∧T.id2=A(T ). An alternate distance
function can be obtained if we only allow exactly one join in a query. In this case,
we can get a better approximation of Eq. (4) by considering two queries,

σR.id1=A∧R.val=1(R) ��R.id2=S.id1 σS.val=1(S)

σS.val=1(S) ��S.id2=T.id1 σT.val=0∧T.id2=A(T )

The algorithm illustrated in Fig. 3 generalizes the idea in the above example and
computes the feature vectors for a specific Ik ∈ I. The algorithm generates multiple
queries corresponding to each grounding of Ik such that the number of joins in each
query is lesser than J . For this, we go over each formula ft, and first check if ft is
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Algorithm 1: Build-Query
Input: Clausal formula ft
Output: Relational-Algebra expression Q

1 Q = ∅
2 for Ri ∈ ft do
3 Rvalue = 1
4 if Ri is positive then
5 Rvalue = 0

6 if Q = ∅ then
7 Q = Q + σRi.val=Rvalue(Ri)

8 else
9 Q = Q ��θ σRi.val=Rvalue(Ri)

Fig. 2. Building a query for the feature vector

relevant to Ik, i.e., if ft contains at least one atom corresponding to Ri such that for
some p, (i, p) ∈ Ik, then ft is a relevant formula for clustering Ik, otherwise, we ignore
ft. This is because, the features from ft which are not relevant to Ik remains identical
for every grounding of x and therefore never affects the clustering. For every relevant
ft, we first build the complete query which is a sequence of θ-joins on the tables cor-
responding to every atom in ft. The query selects the the groundings of ft that are not
satisfied by the evidence. The θ in the join specifies variables shared among atoms in ft.
For e.g. In a formula¬R(x) ∨ S(x), the θ-join is specified as σR.val=1(R) ��R.id1=S.id1

σS.val=0(S). Once we build the full query, we simply walk through the query executing
no more than J joins at a time. For each atom which has a variable that corresponds to
some element of Ik, we ground the variable by enforcing the select condition in line 11
of the algorithm. We execute the partial queryQ′ with a maximum of J joins and store
the result (count) in the feature vector. Next, we removeQ′ from Q and relax the next
θ- join condition as follows. Among all the tables mentioned in Q′, we select one table
Rs, that participates in the next join operation inQ−Q′. We only retain the join condi-
tions related to Rs in the next join inQ−Q′ and remove the rest of the conditions. We
continue until we empty the original query Q. Finally, we return the vector of counts
accumulated across all queries for each grounding of Ik.

4 Related Work

Several previous approaches have been suggested for improving the scalability of infer-
ence in MLNs. Most of these approaches can be termed as lifted inference algorithms
since they either use rules that can be directly applied on the first-order structure or
identify symmetries in the ground representation to perform efficient inference. Both
exact [3,6,26,1] as well as approximate [20,10,7,13,27,2] lifted algorithms have been
developed that can greatly improve scalability. However, all these algorithms are effi-
cient only when given the right MLN structure/evidence. Specifically, [1,25] show that
efficient inference is possible when presented with specific evidence-structure. More
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Algorithm 1: Compute-Features
Input: M and its associated relational DB, join-bound J , Ik ∈ I
Output: Feature vector set {UCkj}

ΔIk
j=1

1 U = ∅
2 for Ckj ∈ ΔIk do
3 UCkj = ∅
4 for ft ∈ F do
5 if ft is not relevant to Ik then
6 continue

7 Q = Build-Query(ft)
8 while Q not empty do
9 Q′ = Select a sub-query containing up to the first J joins in Q

10 for Ri ∈ Q′ do
11 if ∃ p such that (i, p) ∈ Ik then
12 Wrap a select (σRi.idp=Ckj

) around Ri

13 UCkj .append(Count(Q′))
14 Let Rs be a table in Q′ whose attribute participates in the θ-join after Q′

15 if Rs = ∅ then
16 Q = (Q−Q′)

17 else
18 Relax the θ-join and include only those constraints involving Rs

19 Q = Rs ��θ (Q−Q′)

20 U.append(UCkj )

21 return U

Fig. 3. Algorithm to compute the feature vectors

recently, [24] have proposed to counter the evidence-problem by adding more symme-
tries that make the MLN liftable. Specifically, they compute a low-rank boolean ma-
trix factorization of the evidence matrix which implicitly induces a clustering whereas
we explicitly cast it as a clustering problem thereby allowing us the flexibility to use
a range of clustering algorithms and also better control of the inference-complexity.
Further, [24] handles only binary evidence while our approach is much more general.
Finally, our approach of pre-processing the MLN is related to [19] which develops a
systematic grounding procedure that can reduce the ground MLN size in many cases,
and our approach of leveraging databases for MLN inference is related to [14].

5 Experiments

5.1 Setup

We evaluate our approach on 4 benchmark MLNs available in Alchemy [11], namely
Entity Resolution (ER), Segmentation (Seg), Web Linkage analysis (WebKB) and Pro-
tein Interaction (Protein). Additionally, we added two new MLNs that have different
structures called Student (Teaches(i, c) ∧ Prereq(c, c1)⇒ Takes(s, c1)) and Re-
lation (Related(i, j) ∧ Friends(j, k) ⇒ Loves(k, i)). For our experiments, we
implemented our system using MySQL. To speed up query processing, we created n
indexes for a table corresponding to a n-ary predicate, where the column correspond-
ing to each argument of a predicate is indexed separately. For the distance function,
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we limit the number of joins (J) to 1. In the inference subroutine, we used two algo-
rithms, a lifted algorithm based on message passing, Lifted-BP [20] and a propositional
algorithm based on sampling, Gibbs sampling [5]. We used the implementation of both
these algorithms from Alchemy. For the clustering subroutine, we experimented with
four different algorithms available in Weka [8] namely, KMeans++ (KM), Expectation-
Maximization (EM), Hierarchical clustering (HC) and XMeans (XM). We ran all our
experiments on a quad-core Ubuntu machine with 6 GB RAM.

5.2 Approximation Results on Benchmarks

Fig. 4 illustrates the approximation error on each benchmark for all combinations of the
two inference and four clustering algorithms. The x-axis plots the inverse compression
ratio ICR = NC

NG
, where NC is the total number of ground formulas in the approx-

imated MLN after clustering and NG is the total number of ground formulas in the
original MLN. The y-axis shows the approximation error calculated as follows. Err

=
∑

g∈G DKL(Pg ||P ′
g)

|G| , where DKL is the standard KL-Divergence distance measure, G
refers to all groundings of a query predicate, Pg is the marginal distribution of g com-
puted from the original MLN and P ′g is computed from the approximate MLN using
clustered domains. For fairness, both marginals are computed using the same inference
algorithm. We set 50% of arbitrary groundings as evidence, where 25% are True and
25% are False.

Fig. 4 illustrates the trade-off between accuracy and complexity. As ICR increases,
the complexity increases, however, the approximation error reduces because we map
the original domains to a larger set thereby reducing the difference between the original
MLN and the approximate MLN. The structure of the MLN also plays an important
role in determining the accuracy of the approximation. For some cases such as Student
in Fig. 4 (a), (g) the error goes down quite rapidly initially and stays consistently low
afterwards. In some other cases such as ER, Fig. 4 (f), (l), the change is more gradual.
This is because ER contains complex formulas with multiple self-joins such as the tran-
sitive relation which make it harder to approximate. In almost all cases for Lifted-BP
(except ER), the approximation error was below 0.2 for even small compression ratios.
For Gibbs sampling though, in general, it took slightly larger compression ratios before
the approximation was close to ground inference such as in the benchmarks Protein (k)
and ER (l). One of the reasons for this could be that deterministic dependencies or hard
constraints tend to be problematic for Gibbs sampling [16], i.e., if the probabilities lie at
the extremes then the Gibbs sampler mixes very slowly. Therefore the approximations
given by Gibbs sampling are not very accurate even for the fully ground model. Among
the clustering algorithms, KM and HC clearly outperformed XM and EM. In almost
all cases, KM and HC produced clusterings that produced more stable and consistent
results compared to EM and XM. For example, in (a), (d) and (h) the EM algorithm
gave poor results while in (i), XM gave poor results.

5.3 Effect of Evidence

Fig. 5 illustrates the error for different values of cluster-bounds (α) and varying amount
of evidence. The results shown Fig. 5 use K-Means++ for clustering and Lifted-BP for
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Fig. 4. Approximation-error vs ICR. The y-axis shows the average KL-Divergence of the
marginals computed on the clustered MLN from the marginals computed on the original MLN
(smaller is better). (a) - (f) show the results using Lifted-BP, (g) - (l) using Gibbs sampling.
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Fig. 5. Illustrating the effect of evidence. The x-axis varies the amount of evidence on the atoms
in the MLN. The y-axis plots the approximation error for varying cluster-bounds. The experiment
is run using K-Means for clustering and Lifted-BP for inference.

inference. As expected, using a larger value of α in most cases leads to lower errors
due to a better approximation of the original MLN. Also, it can be seen that in most
of the cases illustrated in Fig. 5, for very small or very large amounts of evidence,
the errors seem to go down. This is quite consistent with the effect that evidence has
on MLNs as previously shown in the introduction. Evidence breaks symmetries in the
MLN and thus if very few groundings or nearly all groundings are evidence, as there are
more symmetries, the inference algorithms tend to give us better approximations (for
all α values) than the cases shown in middle portion of the graphs where the random
evidence makes inference more challenging.

5.4 Scalability

Fig. 6 illustrates the scalability of our approach when handling large domain-sizes. For
different domain-sizes, we show the time in seconds it takes to compute the approximate
MLN after clustering. We used an α value of 0.25 for these experiments and introduced
50% random evidence with half of them True and the other half False. As expected,
the time taken to compute the approximate MLN increases as the domain-size grows.
However, it should be noted that none of the MLNs in Fig. 6 could be processed by
existing ground/lifted inference algorithms in Alchemy before running out of memory
as the number of ground formulas is extremely large. For example, one instance of the
Relation MLN in Fig. 6 (a) has one billion groundings. Thus, without approximating
the MLN, there is no feasible approach to inference in such large models. As shown by
our results, we were able to complete processing the MLN in a reasonable amount of
time even when the groundings reached a trillion as in Fig. 6 (e). Also, the number of
first-order formulas and their structure play a role in determining the complexity due to
the distance function computation. Recall that we compute a vector for every formula
in the MLN. Therefore, a larger number of formulas mean more computations on the
database. For instance, Fig. 6 (e) has just one formula while (f) has 8 formulas which
have more complex structure. Therefore, even though the number of ground formulas
in (e) is a trillion while in (f) it is a billion, we took more time to process (f). Further, it
can be seen that for each of the benchmarks, the third instance (the largest MLN) takes a
visibly longer time when compared to the first two instances. This is expected because,
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Fig. 6. Scalability experiments. The y-axis shows the time taken to form the approximate MLN
and the x-axis shows [Nf , Na], where Nf is the number of ground formulas and Na is the
number of ground atoms.

when the size of the database grows really large as is the case for very large domain-
sizes, it typically requires many more hard disk accesses for query processing which
causes it to slow down. Finally, as seen in the results, the type of clustering has minimal
impact on the time taken to process the MLN, i.e., nearly all clustering methods took
approximately the same amount of time.

6 Conclusion

In this paper, we presented an approach for scaling up inference in MLNs. Existing
approaches either ground the MLN which makes it too large to process or use rules to
identify symmetries and perform lifted inference. However, lifting rules are applicable
only in certain specific, symmetric cases and more importantly, in the presence of ev-
idence, these symmetries are broken, rendering lifted inference powerless. To achieve
scalable inference for such hard cases in which we can have arbitrary MLN structures
with arbitrary evidence, we proposed to compress the original MLN. Specifically, we
defined a novel distance function that is sensitive to the evidence presented to the MLN
and used it to replace groups of similar objects in the MLN by their cluster centers. Our
experimental results on several benchmark MLNs clearly illustrated the high accuracy
and scalability of our approach.

Acknowledgements. This research was partly funded by ARO MURI grant W911NF-
08-1-0242, by the AFRL under contract number FA8750-14-C-0021 and by the DARPA
Probabilistic Programming for Advanced Machine Learning Program under AFRL
prime contract number FA8750-14-C-0005. The views and conclusions contained in



272 D. Venugopal and V. Gogate

this document are those of the authors and should not be interpreted as representing
the official policies, either expressed or implied, of DARPA, AFRL, ARO or the US
government.

References

1. Bui, H., Huynh, T., de Salvo Braz, R.: Exact lifted inference with distinct soft evidence on
every object. In: Proceedings of the 26th AAAI Conference on Artificial Intelligence. AAAI
Press (2012)

2. Bui, H., Huynh, T., Riedel, S.: Automorphism groups of graphical models and lifted varia-
tional inference. In: Proceedings of the 29th Conference on Uncertainty in Artificial Intelli-
gence, pp. 132–141. AUAI Press (2013)

3. de Salvo Braz, R.: Lifted First-Order Probabilistic Inference. Ph.D. thesis, University of Illi-
nois, Urbana-Champaign, IL (2007)

4. Domingos, P., Lowd, D.: Markov Logic: An Interface Layer for Artificial Intelligence. Mor-
gan & Claypool, San Rafael (2009)

5. Geman, S., Geman, D.: Stochastic Relaxation, Gibbs Distributions, and the Bayesian
Restoration of Images. IEEE Transactions on Pattern Analysis and Machine Intelligence 6,
721–741 (1984)

6. Gogate, V., Domingos, P.: Probabilistic Theorem Proving. In: Proceedings of the Twenty-
Seventh Conference on Uncertainty in Artificial Intelligence. pp. 256–265. AUAI Press
(2011)

7. Gogate, V., Jha, A., Venugopal, D.: Advances in Lifted Importance Sampling. In: Proceed-
ings of the 26th AAAI Conference on Artificial Intelligence. AAAI Press (2012)

8. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The weka data
mining software: An update. SIGKDD Explor. Newsl. 11(1), 10–18 (2009)

9. Jha, A., Gogate, V., Meliou, A., Suciu, D.: Lifted Inference from the Other Side: The tractable
Features. In: Proceedings of the 24th Annual Conference on Neural Information Processing
Systems (NIPS), pp. 973–981 (2010)

10. Kersting, K., Ahmadi, B., Natarajan, S.: Counting Belief Propagation. In: Proceedings of the
25th Conference on Uncertainty in Artificial Intelligence. pp. 277–284. AUAI Press (2009)

11. Kok, S., Sumner, M., Richardson, M., Singla, P., Poon, H., Lowd, D., Wang, J., Domin-
gos, P.: The Alchemy System for Statistical Relational AI. Tech. rep., Department
of Computer Science and Engineering, University of Washington, Seattle, WA (2008),
http://alchemy.cs.washington.edu

12. Milch, B., Zettlemoyer, L.S., Kersting, K., Haimes, M., Kaelbling, L.P.: Lifted Probabilistic
Inference with Counting Formulas. In: Proceedings of the Twenty-Third AAAI Conference
on Artificial Intelligence, pp. 1062–1068 (2008)

13. Niepert, M.: Markov chains on orbits of permutation groups. In: Proceedings of the 28th
Conference on Uncertainty in Artificial Intelligence. pp. 624–633. AUAI Press (2012)
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Abstract. We investigate new matrix penalties to jointly learn linear
models with orthogonality constraints, generalizing the work of Xiao et
al. [24] who proposed a strictly convex matrix norm for orthogonal trans-
fer. We show that this norm converges to a particular atomic norm when
its convexity parameter decreases, leading to new algorithmic solutions
to minimize it. We also investigate concave formulations of this norm,
corresponding to more aggressive strategies to induce orthogonality, and
show how these penalties can also be used to learn sparse models with
disjoint supports.

1 Introduction

Learning several models simultaneously instead of separately, a framework often
referred to as multitask or transfer learning, is a powerful setting to leverage
information across related but different problems [10,22,4,2,12]. In particular it
has been empirically shown that when different tasks share some similarity, such
as learning binding models for similar proteins [14], predicting exams score for
students of different schools [2,12] or learning models for semantically related
concepts in a hierarchy [16,8], jointly learning the different models with a multi-
task strategy leads to better performance. In all aforementioned examples (and
many others), the underlying assumption is that different tasks share some sim-
ilarity, and the different multitask strategies exploit this assumption by, e.g.,
imposing shared parameters estimated jointly across the tasks, or penalizing
differences between the models learned in different tasks.

Alternatively, in some situations we would like to solve different tasks under
the opposite assumption, namely, that the models are different, e.g., that they
use different features or should be orthogonal to each other. This is the case for
example when we want to learn unrelated tasks, such as recognizing the identity
and the emotion of a person on a picture, where we know from literature that
these two recognition problems depend on different and uncorrelated features
of the same image [9,19]. In structured learning such as classification in a hier-
archical taxonomy, it has been proposed to learn local models at each node of
the hierarchy and to encourage the classifier at each node to be different from
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the classifiers at its ancestors, in order to better reflect the natural coarse-to-
fine nature of the classifiers at different levels of the hierarchy [24,13]. Several
approaches have been proposed recently to learn such different models. [24] pro-
posed to penalize a weighted �1 norm of the off-diagonal entries of the covariance
matrix between the tasks, in order to promote sparsity of inner products hence
orthogonality between tasks; however some extra ridge term must be added in
order to make the penalty convex and amenable to efficient optimization, leading
to potentially unwanted over-regularization. [19] proposed also a convex penalty
to learn two groups of tasks based on orthogonal subspaces; again, due to the
non-convex nature of the norm applied to inner products between vectors, an
extra ridge term is needed to make the penalty convex. Finally, [13] proposed
a method to learn a tree of metrics, enforcing disjoint sparsity between the dif-
ferent metrics. The convex penalty of [13], though, only promotes sparsity for
nonnegative vectors, such as the diagonals of metric matrices, and can not easily
be extended to enforce disjoint sparsity on general vectors.

In this work, we extend the work of [24] in two directions. First, we investigate
generalization of the penalty proposed by [24] when we decrease its convexity,
in order to make it more ”aggressive” in promoting orthogonality. Our main
findings can be visualized in Figure 1, which shows the level sets of penalties we
consider. Starting from the strictly convex penalty of [24], corresponding to a
strictly convex unit ball with singularities at matrices with orthogonal columns
(left), we show that by reducing its convexity it converges to a convex atomic
norm [11], whose unit ball is the convex hull of the singularities of the first
ball. This shows that for particular choices of parameters the penalty of [24] is
”optimal” to learn matrices with pairwise orthogonal columns, in the sense that
it is the tightest convex function which is equal to the Frobenius norm on the
subset of matrices that we are interested in. This observation has also algorithmic
consequences: while [24] propose an optimization scheme that only works when
the penalty is strictly convex, we show that the dual norm in the limit case of the
atomic norm can be estimated efficiently by solving a small semidefinite program
(SDP), leading to new algorithmic solutions to use this norm as regularizer in
a learning problem. We also propose and investigate empirically more concave
extensions of this norm in order to increase the propensity to learn matrices with
orthogonal columns (right). Our second extension is to show how these penalties
can be modified to learn sparse models with disjoint supports, a particular case
of orthogonal models which is relevant when different tasks are know to involve
different features.

2 An Atomic Norm to Learn Matrices with Orthogonal
Columns

We consider the problem of learning a d × T matrix W = (w1, . . . , wT ), where
each column wi is a d-dimensional vector corresponding to a task such as a
linear classification model at a node of a taxonomy. We call such a matrix scaled
orthogonal if W
W is diagonal, i.e., if all columns of W are orthogonal to each
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Fig. 1. Level sets of the penalty ΩK defined in (2) for 2-by-2 symmetric matrices

parametrized as
(

x y
y z

)
, when K =

(
γ 1

1 γ

)
and we vary γ from γ = 2 (left), which

corresponds to a strictly convex penalty proposed by [24], to γ = 1 (center), which is a
limit case where the penalty is convex but not strictly convex and turns out to be an
atomic norm (Theorem 1), and to γ = 1/2 (right), which corresponds to a non convex
penalty.

other, and denote by O the set of d × T scaled orthogonal matrices. Note that
this should not be confused with the stronger concept of orthogonal matrix often
used in mathematics, which means that W is square and W
W is the identity,
i.e., that the columns form an orthonormal basis.

A general approach to estimate W from observations is to formulate the in-
ference as an optimization problem:

min
W

f(W ) +
λ

2
Ω(W )2 , (1)

where f(W ) is an empirical risk which measures the fit to data (e.g., variance
captured in the case of dimensionality reduction, empirical error on the training
set in the case of regression and classification), Ω(W ) is a penalty that enforces
some constraints on the solution such as sparseness or low-rankness, and λ > 0
is a parameter adjusting the tradeoff between these two objectives. When f(W )
and Ω(W ) are convex functions, then (1) is a convex optimization problem that
can often be solved efficiently and lead to a unique solution. Classical examples
of penalties Ω(W ) include the �1 norm to promote sparsity in W [23], the nuclear
norm to learn low-rank matrices [21], and the �1/�2 norm to perform joint feature
selection across tasks [17].

Suppose we know that some or all of the columns ofW should be orthogonal to
each other. [24] proposed an orthogonal regularizer of the form

∑
i,j Ki,j|w
i wj |,

where Ki,j is a nonnegative weight to enforce more or less the orthogonality
between wi and wj . This is however not a convex function ofW , and [24] propose
to define a convex penalty by adding ridge terms to this regularizer, namely:
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ΩK(W )2 =

T∑
i=1

Kii||wi||2 +
∑
i�=j

Kij |w
i wj | , (2)

where K is an hyperparameter matrix representing structure among different
models. [24] give a sufficient condition on K to ensure that (2) is convex, but
there remains a lot of freedom in the choice of K.

Let us consider the case where we choose Kii = 1 and Kij > 0 in (2). Then
we see that for scaled orthogonal matrices W ∈ O the penalty (2) boils down to
the Frobenius norm:

∀W ∈ O , ΩK(W )2 =

T∑
i=1

||wi||2 = ||W ||2F .

The extra terms Kij |w
i wj | in (2) ensure that, in addition, the penalty is not
differentiable at scaled orthogonal matrices, allowing under some conditions the
recovery of such matrices when (2) is plugged into (1) [1,11].

There are however many penalties, including (2), that are convex, singular
on O and which equal the Frobenius norm in O. Among them, we propose to
consider the tightest one, namely, the atomic norm in the sense of [11] induced
by the set of atoms A = {W ∈ O : ||W ||F = 1}. This norm, which we denote
below by ΩO(X) for any d× T matrix X , can be expressed as

ΩO(X) = inf

{∑
Y ∈A

λY : X =
∑
Y ∈A

λY Y, λY ≥ 0

}
. (3)

In other words, this last expression writes ΩO(X) as the �1 norm of the vector
of coefficients λ in a decomposition of X into atoms, namely, scaled orthogonal
matrices of unit Frobenius norms. Plugging (3) into (1) provides a convex prob-
lem to infer an atom, or a sparse combination of atoms. Note that, contrary to
ΩK (2), ΩO is always convex without technical conditions. In addition, since
both norms are equal on the atoms A, the tangent cone of ΩO at any scaled
orthogonal matrix W ∈ O is contained in the tangent cone of ΩK at the same
point, suggesting that the recovery and inference of a scaled orthogonal matrix
through the convex procedure (1) is easier with ΩO than with ΩK [11].

The following result shows that, surprisingly, the norms ΩK with adequate
weights and ΩO coincide on matrices with two columns. This theorem is illus-
trated in Figure 1, where we show the unit ball of ΩK when we change K. The
ball at the center corresponds to a limit situation where ΩK is still convex, but
not strictly convex anymore. We see in this picture that the ball can equivalently
be defined as the convex hull of two circles, which correspond precisely to the
set of matrices with orthogonal columns and unit Frobenius norm; i.e., that ΩK

in this case is precisely the atomic norm induced by these atoms.
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Theorem 1. For any d ≥ 1 and any d× 2 matrix W = (w1, w2), it holds that:

ΩO(W ) = ΩK(W ) , (4)

with

K =

(
1 1
1 1

)
. (5)

Proof. Since K in (5) is entry-wise nonnegative, and since the companion matrix

K̄ =

(
1 −1
−1 1

)
is positive semidefinite, we know from [24, Theorem 1] that Ω2

K is convex in this
case. Since (4) obviously holds for W ∈ O, and since ΩO is the tightest convex
function such that (4) holds on O, we directly get that ΩO(W ) ≤ ΩK(W ) for
any W ∈ R

d×2. To prove the converse inequality, it suffices to find, for any
W ∈ R

d×2, a decomposition of the form W = λU + (1 − λ)V , with U, V ∈ O,
λ ∈ [0, 1], such that ΩK(U) = ΩK(V ) = ΩK(W ). Geometrically, this would
mean that any point on the unit ball of ΩK lies on a straight segment that
connects two atoms on this ball, meaning that the unit ball of ΩK is precisely
the convex hull of the unit ball restricted to the atoms. The following lemma,
which can be proved by direct calculation, shows that this is indeed possible by
explicitly providing such a decomposition.

Lemma 1. For any W = (w1, w2) ∈ R
d×2, let:

– if w
1 w2 ≥ 0, U = (w1 + w2, 0) and V =
(
w1 − w�

1 w2

‖w2 ‖2w2,
(
1 +

w�
1 w2

‖w2 ‖2
)
w2

)
,

– if w
1 w2 < 0, U = (w1 − w2, 0) and V =
(
w1 − w�

1 w2

‖w2 ‖2w2,
(
1− w�

1 w2

‖w2 ‖2
)
w2

)
,

and let λ =
|w�

1 w2 |
|w�

1 w2 |+‖w2 ‖2 . Then it holds that:

– U, V ∈ O ,
– λ ∈ [0, 1] and W = λU + (1− λ)V ,
– ΩK(W ) = ΩK(U) = ΩK(V ) .

Theorem 1 can be easily generalized (with a different set of atoms) when K
is any 2-by-2 symmetric, positive semidefinite matrix with non-negative entries
and with 0 as eigenvalue, corresponding to the limit case where ΩK is convex
but not strictly convex: it is then always an atomic norm. The extension of
Theorem 1 to more than 2 columns, however, is not true. Atoms of ΩO are
matrices with all columns orthogonal to each other, so using ΩO as a penalty
on matrices with T > 2 columns may either lead to such an atom, or to a sparse
linear combination of atoms, which would in general have no pair of column
orthogonal to each other. The following theorem, which is a simple consequence
of Theorem 1, shows that for some choices of K in the T > 2 case, the penalty
ΩK can be written as a sum of ΩO that penalizes pairs of columns.
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Theorem 2. For any T ≥ 2, let K be a symmetric T -by-T matrix with non-
negative entries and such that, for any i = 1, . . . , T ,

∀i = 1, . . . , T Kii =
∑
j �=i

Kij .

Then, for any d ≥ 1 and any d× T matrix W = (w1, . . . , wT ), it holds that:

ΩK(W ) =
∑
i<j

KijΩO((wi, wj)) ,

where (wi, wj) ∈ R
d×2 is the matrix with columns wi and wj .

Proof. Let A=

(
1 1
1 1

)
. By Theorem 1, we know thatΩA((wi, wj))=ΩO((wi, wj))

for al i �= j, therefore:∑
i<j

KijΩO((wi, wj)) =
∑
i<j

KijΩA((wi, wj))

=
∑
i<j

Kij

(
||wi||2 + ‖wj ‖2 + 2|w
i wj |

)

=

T∑
i=1

⎛⎝∑
j �=i

Kij

⎞⎠ ‖wi ‖2 +
∑
i�=j

|w
i wj |

= ΩK(W ) .

3 The Dual of the Atomic Norm

In this section we consider the atomic norm ΩO for matrices with 2 columns, and
show that we can efficiently compute its dual and a subgradient of its dual by
solving a 6-dimensional SDP. This can be useful to provide simple duality gaps
and stopping criteria to learn with convex but not strictly convex penalties ΩK ,
which are in particular not amenable to optimization with the method of [24].

Remember that the dual of a norm Ω(X) is

Ω∗(X) = sup
Y : Ω(Y )≤1

Tr(X
Y ) .

Since ΩO is an atomic norm induced by the atom set A, its dual satisfies [11]:

Ω∗O(X) = sup
Y ∈A

Tr(X
Y ) , (6)

and in addition any atom Y ∈ A which achieves the maximum in (6) is a
subgradient of Ω∗O atX . We now show that computing Ω∗O(X) and a subgradient
can be done efficiently:
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Theorem 3. For any d ≥ 1 and X ∈ R
d×2, a solution to

Ω∗O(X) = sup
Y ∈A

Tr(X
Y ) (7)

can be obtained from the solution of a SDP over matrices of size 6× 6.

Proof. From the definition of A we can reformulate (7) as:

Ω∗O(X) = maximize Tr(Y 
X)
subject to Y 
Y diagonal

‖Y ‖F = 1,

in the variable Y ∈ R
d×2. Because −Y is a feasible point whenever Y is, this

problem is equivalent to

Ω∗O(X)2 = maximize Tr(Y 
X)2

subject to Y 
Y diagonal
‖Y ‖F = 1,

(8)

which is a non-convex quadratic program in Y . We first reformulate this problem
in “vector” terms and write z = vec(Y ) ∈ R

2d, so that z
 = (z
1 , z


2 ) with

z1 = Y1 and z2 = Y2. Problem (8) becomes

maximize (X
1 z1 +X
2 z2)
2

subject to z
1 z2 = 0
‖z1‖22 + ‖z2‖22 = 1,

which is again
maximize (vec(X)
z)2

subject to z

(
0 I
I 0

)
z = 0

z
z = 1 .

Following the classical lifting technique derived by [20,15], we can produce a
semidefinite relaxation of this last problem by changing variables, setting Z =
zz
, and dropping the implicit rank constraint on Z, to get

maximize Tr
(
vec(X)vec(X)
Z

)
subject to Tr

((
0 I
I 0

)
Z

)
= 0

Tr(Z) = 1, Z ' 0,

(9)

which is a SDP in the matrix variable Z ∈ S2d. The quadratic convexity results
of [7] (see also [3], §II.14), also known as the S-procedure or Brickman’s theorem,
tells us that the optimal value of the semidefinite program (9) is equal to the
optimal value of the non-convex QP in (8), and a solution Y to (8) can be
constructed from an optimal solution Z of (9) (see, e.g.,, [6] App. B.3 for an
explicit recursive procedure).
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Problem (9) is an SDP over 2d × 2d matrices, which can be prohibitive in
practice as soon as d gets large. Let us now show that a simple decomposition
allows to reformulate the problem as a SDP of fixed dimension 6. We can com-
pute the QR decomposition of X written X = QR2 where Q ∈ R

d×d is an
orthogonal matrix and R2 ∈ R

d×2 with R2 = (R
, 0)
 where R ∈ R
2×2 is an

upper triangular matrix. This means that without loss of generality, the original
problem of computing Ω∗(X) can be rewritten

maximize Tr(Y TQR2)
subject to Y TQQTY diagonal

‖QTY ‖F = 1 ,
(10)

which is equivalent to
maximize Tr(Y TR2)
subject to Y TY diagonal

‖Y ‖F = 1 ,

in the variable Y ∈ R
d×2. This means that we can always assume that X is block

upper diagonal with lower block equal to zero. This program can be rewritten

maximize (vec(R2)
T z)2

subject to zT
(

0 Id
Id 0

)
z = 0

zT z = 1 ,

in the variable z = vec(Y ) ∈ R
2d. Now notice that(

0 Id
Id 0

)
=

(
0 1
1 0

)
⊗ Id = (PT diag(−1, 1)P )⊗ Id ,

where P = 1√
2

(
−1 1
1 1

)
is an orthogonal matrix. Let us write S = P ⊗ Id (also

an orthogonal matrix), w = Sz and b = S vec(R2), we can rewrite the QP above
as

maximize (vec(R2)
TSTw)2

subject to wT

(
−Id 0
0 Id

)
w = 0

wTw = 1 ,

in the variable w ∈ R
2d. Now b = S vec(R2) means

b = (P ⊗ Id)vec(R2) = vec(R2P ) ,

so if R2 = (RT , 0)T where R ∈ R
T×T as above, then b = vec((PTRT , 0)T ) hence

the b has only four nonzero coefficients at indices J = {1, 2, d+ 1, d + 2}. This
means that the QP can be reformatted as

maximize wT
J (bJb

T
J )wJ

subject to wT
J

(
−I2 0
0 I2

)
wJ = yT1 y1 − yT2 y2

wT
J wJ + yT1 y1 + yT2 y2 = 1 ,



282 K. Vervier et al.

in the variables wJ ∈ R
4 and y1, y2 ∈ R

d−2, where we have defined zT1 =
(w3, . . . , wd) and zT1 = (wd+3, . . . , w2d). By symmetry, we can assume w.l.o.g.
that the coefficients of the vectors y1 and y2 are uniformly equal to scalars
y1, y2 ∈ R, so the last problem is equivalent to

maximize wT
J (bJb

T
J )wJ

subject to wT
J

(
−I2 0
0 I2

)
wJ = (d− 2)y21 − (d− 2)y22

wT
J wJ + (d− 2)y21 + (d− 2)y22 = 1 ,

which is now a QP of dimension 6 in the variables wJ ∈ R
4 and y1, y2 ∈ R. This

last problem can then be lifted as above, to become

maximize TrW

(
bJb

T
J 0

0 0

)
subject to TrW

(−I2 0 0
0 I2 0
0 0 diag(−(d− 2), (d− 2))

)
= 0

TrW

(
I4 0
0 (d− 2)I2

)
= 1, W ' 0,

(11)

which is a semidefinite program in the variable W ∈ S6. The optimal values
of programs (10) and (11) are equal and a solution to (10) can be constructed
from an optimal solution to (11). Because (11) is a semidefinite program of fixed
dimension 6, it can be solved efficiently independently of the dimension d. All we
need is the QR decomposition of X which can be formed with cost O(d) when
X ∈ R

d×2.

4 Algorithms

In order to learn with the penalty ΩK we need to solve problems of the form

min
W

f(W ) +
λ

2
ΩK(W )2 . (12)

When ΩK is strictly convex, [24] propose a regularized dual averaging (RDA)
method based on subgradient descent, and show that a subgradient of ΩK(W )
in that case is given by G = (g1, . . . , gt) where

gi = Kiiwi +
∑
j �=i

sign
(
w
i wj

)
Kijwj , (13)

with the convention sign(0) = 0. When ΩK is not strictly convex, e.g., when it
is a sum of atomic norms as in Theorem 2 or when it is not even convex (as on
the right-hand plot of Figure 1), the RDA methods can not be used anymore.
In that case, we propose to use a classical subgradient descent scheme using the
subgradient (13), and a step size decreasing with t−1/2 where t is the iteration.
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Note that [24] only prove that (13) is a valid subgradient when ΩK is convex;
we keep the same formula in the general case since ΩK is differentiable almost
everywhere. In the non-convex case, subgradient descent will converge to a sta-
tionary point, so one may run it several times with random initializations before
taking the best solution. In the experiments below, we always run subgradient
descent starting from the null matrix, and observed empirically that it often
leads to a good solution compared to random initialization.

Let us now discuss another possible optimization scheme when K satisfies
the conditions of Theorem 2, i.e., when the penalty is a linear combination of
nuclear norms over pairs of columns. In that case, by Theorem 2 the optimization
problem has the form:

min
W

f(W ) +
λ

2

∑
i<j

KijΩO((wi, wj))
2 . (14)

We can then write an equivalent dual problem amenable to optimization. Let us
first consider the simple case of T = 2 columns, in which case (14) boils down
to

min
W

{
f(W ) +

λ

2
Ω2
O(W )

}
(15)

in the variable W ∈ R
d×2. Remember that for any norm, if h(x) = ‖x‖2/2 then

the Fenchel dual of h is h∗(y) = ‖y‖2∗/2 [6, §3.3.1]). Then [5, Th. 3.3.5 ] shows
that the dual of (15) is written

sup
Z

{
−f∗(Z)− 1

2λ
(Ω∗O(Z))2

}
(16)

in the variable Z ∈ R
d×2. Under mild technical conditions, the optimal values of

both problems are equal. Back to the general case (14), note that the conjugate
of the function ΩO((wi, wj)), which we write Ω̃∗ij(W ), is given by

Ω̃∗ij(W ) =

{
Ω∗O((Wi,Wj)) if Wl = 0 for l �= i, j
+∞ otherwise.

Then, using the following inf-convolution result [18, Th. 16.4]:

(f1 + . . .+ fs)
∗(y) = inf

y1,...,ys

{f∗1 (y1) + . . .+ f∗s (ys) : y1 + . . .+ ys = y},

we obtain that the Fenchel dual of problem (14) is written

sup
Z

⎧⎨⎩−f
⎛⎝∑

i<j

Zij

⎞⎠−∑
i<j

1

2λKij
Ω̃∗ij(Zk)

2

⎫⎬⎭ (17)

in the variables (Zij)i<j ∈ R
d×T . Note that the definitions of Ω̃∗ij mean that

each Zij only has two nonzero columns at positions i and j. Now, note that by
Theorem 3, the function to be optimized in (17) can be efficiently estimated and
a subgradient can be computed. Any value of (17) provides a lower bound to
(14), thus giving a duality gap that can be used to monitor convergence of the
subgradient descent method.
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5 Learning Disjoint Supports

An interesting particular case of learning orthogonal vectors is the situation
where we seek sparse vectors with disjoint supports. In this section we briefly
discuss how ΩK can help in this situation, too. For simplicity we only discuss the
case of T = 2 vectors, an extension to the general case being straightforward. The
matrix W ∈ R

d×2 has columns with complementary supports if, for i = 1, . . . , d,

W1,i �= 0 =⇒ W2,i = 0 and W2,i �= 0 =⇒ W1,i = 0 ,

or in other words W1 ◦W2 = 0 where ◦ denotes the Hadamard (entrywise) prod-
uct of matrices. If we denote by |W | the matrix whose entries are the absolute
values of the entries of W , then we further observe that |W1 ◦W2| = |W1| ◦ |W2|,
so W1 ◦W2 = 0 if and only if |W1| ◦ |W2| = 0. Interestingly, if V ∈ R

d×2 is a
matrix with non-negative entries, then V1 ◦ V2 = 0 is equivalent to V T

1 V2 = 0;
this shows that W has columns with complementary supports if and only if |W1|
and |W2| are orthogonal.

This suggest a general way to learn a matrix with disjoint supports, by solving
a problem of the form:

min
W

f(W ) +
λ

2
ΩK(|W |)2 , (18)

where ΩK is a penalty that induces orthogonality among columns. To solve (18),
we introduce a non-negative matrix V such that −V ≤W ≤ V (where ≤ refers
to elementwise comparisons), and solve the following problem:

min
−V≤W≤V

f(W ) +
λ

2
ΩK(V )2 . (19)

At the optimum of (19), we have V = |W | which shows that (19) is indeed
equivalent to (18). Since a subgradient of (19) in (V,W ) can easily be computed,
we propose to solve a(19) by a projected subgradient scheme, where at each
iteration we update V and W with a move along a subgradient, and then project
the new point to the constraint set −V ≤W ≤ V and V ≥ 0.

6 Experiments

In this section, we present numerical experiments on two simulated datasets. We
benchmark the following methods:

– Xiao: this is the method described in [24] where we solve (1) with the
penalty (2). We consider both with convex and non-convex versions, by
changing the matrix K in (2).

– Disjoint Supports: this is the approach where we solve (18), with non-convex
and convex versions.

– Ridge Regression: this standard method corresponds to learning the tasks
independently by ridge regression.
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– LASSO: this is the classical approach inducing sparsity over all tasks, without
sharing information across the tasks.

In all experiments involvingΩK , we consider a symmetric matrixK parametrized
by its diagonal value γ,

K =

⎛⎜⎝γ 1
. . .

1 γ

⎞⎟⎠ . (20)

Based on the conditions for the convexity of ΩK studied by [24], we control the
convexity of ΩK used in the Xiao and Disjoint Supports approaches with the
following rule on γ:

– γ > T − 1 leads to strictly convex ΩK function, as described in [24],
– γ = T−1 is the the limit case whereΩK satisfies the conditions of Theorem 2,

i.e., where it is a sum of atomic norms over pairs of columns:

ΩK(W ) =
∑
i<j

ΩO((wi, wj)) , (21)

– γ < T − 1 corresponds to the case where ΩK is not convex.

We test the different methods on regression problem where, given a matrix of
covariates X ∈ R

n×d and a matrix of T response variables Y ∈ R
n×T , we seek

to minimize the squared error f(W ) = ‖Y −XW‖2.

6.1 The Effect of Convexity

We use simulated data to test whether theoretical differences between ΩK , ΩO
and concave formulations have an impact on analytical performances. In par-
ticular, by playing with γ in (20), we investigate to what extent the convexity
constraint imposed by [24] is restrictive in terms of performance.

For that purpose, we randomly generate models W consisting of T = 10 tasks
in d = 10 dimensions, such that all tasks are orthogonal to each other. The
training set Xtrain is composed of n = 50 instances, each element of Xtrain

being sampled from a normal distribution N (0, 1). We simulate the response
variable Ytrain ∈ R

n×T according to Ytrain = XtrainW + ε, where ε is a noise
matrix of i.i.d. centered Gaussian variables with variance σ2. We estimate the
performance of each model on a test set of 1000 samples generated similarly. We
also measure how orthogonal the models are, by the mean absolute difference
between the angle between two columns of W and π/2. For each value of γ we
estimate the Xiao model with different regularization parameters λ over a grid of
21 values regularly spaced after log transform; the grid was set to ensure that it
covered good parameters for all methods. For each γ, we report the performance
of the best λ in terms of test MSE. We repeat the full procedure 100 times and
report the average results over the 100 repeats.
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Figure 2 shows the performance of the methods in terms of test error (top),
and in terms of how far the models learned are from orthogonal models (bottom).
On each plot, the horizontal axis is the γ parameter on the diagonal of K defined
in (20), and the vertical dotted line corresponds to the atomic norm (21) and is
the transition from convex (to its right) to non-convex (to its left). From left to
right, we show results corresponding to increasing noise in the response variable,
with the variance of ε set respectively to 1, 2.5 and 4. We see that in the small
noise regime (left), non-convex formulations perform better while with high noise
(right), the convex formulations are more adapted. Inbetween (middle), the best
performance is reached for slightly non-convex penalties. In all cases, the models
learned are similar in terms of how non-orthogonal they are; we see that non-
convex formulations lead to significantly more orthogonal models than convex
formulations. Overall, these results suggest that restricting ourselves to strictly
convex penalties may be restrictive and sub-optimal in some cases; they show
that non-convex penalties can allow to learn more orthogonal models with better
performance.
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Fig. 2. Test MSE (top) and deviation from pairwise orthogonality (bottom) as a func-
tion of the convexity parameter γ, from low to high noise regimes (from left to right:
σ2 ∈ {1, 2.5, 4}). On each plot, the horizontal axis is the γ parameter on the diagonal
of K defined in (20). The vertical dotted line corresponds to the atomic norm (21).
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6.2 Regression with Disjoint Supports

As a second proof of concept, we check the relevance of the formulation pre-
sented in Section 5 to jointly learn linear models with disjoint support. For that
purpose, we simulate data as in Section 6.1, with the additional constraint that
the columns of W are orthogonal and have disjoint supports. Since d = T = 10,
this means that W is simply diagonal. We fix the noise level at σ2 = 1, and
simulate training sets of increasing size between 10 and 50 samples, repeating
the full procedure 100 times. We compare four methods: (i) the Xiao model with
varying parameter γ according to (20), leading to orthogonal but non-sparse vec-
tors, (ii) our new method (18) again with convex and non-convex formulations
by varying γ in (20), (iii) a baseline ridge regression model and (iv) a LASSO
regression model leading to sparse but not necessarily orthogonal vectors. For
each model, a 5-fold cross-validation is performed on the training set to select
an optimal regularization parameter, which is then used to train the model on
the full training set before doing a prediction on an independent test set. We
assess the performance of each method on the test set in terms of accuracy (mea-
sured by the MSE), and in terms of disjoint support recovery, measured as the
proportion of features which are correctly selected in a single column of W .

The results are shown in Figure 3, where for sake of clarity we only report the
results of Xiao and Disjoint Supports for the optimal diagonal value γ, which in
both cases is equal to 0.1, corresponding to a very non-convex penalty. In terms
of performance, we see that Xiao is a bit better than Ridge regression for n = 50
training point, which is coherent with the observation made in Section 6.1 in the
small-noise regime, although for less than 30 samples Ridge regression is better.
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Fig. 3. Sparse regression with disjoint supports. Test MSE for training set of
increasing size (left), and proportion of correctly affected features (right). Ridge re-
gression and Xiao are not shown on the right plot because they are not sparse.
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Both methods are outperformed by LASSO, which in this case benefits from
the very sparse structure of W . Interestingly, the new Disjoint Support model
significantly outperforms all other methods for all training set sizes (P-value
< 10−3). As for the ability of different methods to correctly recover the disjoint
supports, we see that Disjoint Supports shows increasing support recovery score
for large training set size, and outperforms LASSO which induces global sparsity
but is not able to affect features to an unique column. Ridge Regression and Xiao
are not shown because they do not achieve any sparsity in the model they learn.
In summary, this simulation shows that the Disjoint Supports model has the
potential to outperform other methods when the model to learn is sparse with
disjoint supports.

7 Conclusion

We have extended the work of [24] in two directions: on the one hand, we have
investigated the possibility to work with non strictly convex or non convex for-
mulations, leading to more agressive control of model orthogonality, and on the
other hand we have shown how models to learn orthogonal columns can be ex-
tended to learn sparse models with disjoint supports. In the two-columns case,
we have proved that the penalty of [24] is an atomic norm derived from the set of
scaled orthogonal matrices, and for the general case T > 2 we have shown that
for suitable choices of parameters it can be written as a linear combination of
atomic norms applied to pairs of columns. In terms of algorithms, the RDA al-
gorithm proposed by [25] is only suitable to solve the problem (12) in the strictly
convex case, and we have shown that in the limit case where ΩK is convex but
not strictly convex we can solve iteratively with a series of 6-dimensional SDP.
Our simulations show that considering non-convex versions of the penalty can
be relevant, in particular for small noise regime. Interestingly, we observed that
non-convex formulations lead to more orthogonal models than convex formula-
tions, and that the Disjoint Support model significantly outperformed all other
models when the disjoint support hypothesis was met. In the future, we plan to
investigate the relevance of this approaches with more structured matrices K,
such as the ones used for hierarchical classifications [24] or learning groups of
models [19].
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Abstract. Topic models such as Latent Dirichlet Allocation have been
useful text analysis methods of wide interest. Recently, moment-based
inference with provable performance has been proposed for topic mod-
els. Compared with inference algorithms that approximate the maximum
likelihood objective, moment-based inference has theoretical guarantee
in recovering model parameters. One such inference method is tensor
orthogonal decomposition, which requires only mild assumptions for ex-
act recovery of topics. However, it suffers from scalability issue due to
creation of dense, high-dimensional tensors. In this work, we propose a
speedup technique by leveraging the special structure of the tensors. It
is efficient in both time and space, and only requires scanning the corpus
twice. It improves over the state-of-the-art inference algorithm by one to
three orders of magnitude, while preserving equal inference ability.

1 Introduction

Statistical topic modeling techniques are powerful tools for exploring large data
sets such as text and social networks. They are frequently used for text sum-
marization, dimensionality reduction and community detection. One important
model is latent Dirichlet allocation (LDA) [6], which has widespread use and vari-
ations in data mining and machine learning. It models documents as mixtures
of multiple topics, while every topic is modeled as a multinomial distribution
over a vocabulary. We consider the unsupervised inference problem for LDA: es-
timating the unknown word distribution of every topic so as to fit the observed
word occurrences in the documents.

The inference can be performed under different principles. Maximum likeli-
hood is the most commonly employed principle, but exact inference based on
this objective is proved to be intractable [5]. Recently, researchers have found
that a new inference principle, method of moments, enables tractable compu-
tations to recover the topics with theoretical bound [2, 3]. The intuition is to
relate model parameters to population moments, which are expected frequencies
of co-occurred word pairs, triples etc., and infer parameters from empirical esti-
mation of the population moments. Under mild assumptions, a tensor orthogonal
decomposition algorithm in [3] can perform error-bounded topic recovery, with
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best known sample complexity and numerical stability. However, it has a severe
scalability issue, which is the the problem we tackle in this paper.

The tensor orthogonal decomposition algorithm has two steps. In the first
step, it collects empirical moments (i.e., expectation of word co-occurrence fre-
quencies) from the data, and constructs two large and dense tensors (i.e., hyper-
matrices). In the second step, it uses the two large tensors to compute a small
tensor, and performs orthogonal decomposition for the small tensor based on an
iterative tensor power method. With their scale being V 2 and V 3 respectively,
where V is the vocabulary size, the large and dense tensors are prohibitive to
construct. [3] suggests an alternative by computing the tensor power iterations
on the fly scanning through the original data, without creating any tensor in
memory. However, it requires one scan of the data per iteration. The efficiency
is not satisfactory for large scale corpora.

In this work, we propose a novel strategy to scale up the tensor orthogonal de-
composition algorithm. By careful analysis of the problem, we advocate to avoid
explicit creation of large and dense tensors, but still construct the small tensor
and store it in memory. With this strategy, we bypass the scale bottleneck, yet
are still able to perform efficient tensor power iterations. To directly construct
the small tensor without creating the large and dense tensors, we leverage the
special structures of the moments: sparse, low rank and decomposable. We design
an efficient algorithm that only requires two scans of data in total while con-
suming much smaller space. With experiments on both synthetic and real data,
we demonstrate that our method can be 20-3000 times faster than the state-of-
the-art inference method, while preserving robust topic recovery capability.

2 Related Work

In the last decade, statistical topic modeling techniques have gained popularity.
Two important methods are probabilistic latent semantic analysis (PLSA) [12]
and its Bayesian extension latent Dirichlet allocation (LDA) [6]. They model
the generative process of each word from each document in a corpus. The model
parameters can be partitioned into corpus-level (the unknown word distribution
of every topic) and document-level (the unknown topic distribution of every
document). The goal of inference is to find parameters that best explain the
observed data, i.e., word occurrences in the documents. Yet there are different
principles to quantify what it means by ‘best explain the observed data’.

Most of existing topic model inference methods are based on the maximum
likelihood (ML) principle (including its Bayesian version maximum a posterior).
For example, PLSA [12] uses an Expectation-Maximization algorithm to ap-
proximately optimize the data likelihood. For LDA, two most popular approxi-
mate inference methods have been variational Bayesian inference [6] and Markov
Chain Monte Carlo (especially Gibbs sampling) [9]. In spite of the vast body of
followup work, the computational complexity of ML inference is not studied
until 2011. Sontag and Roy [19] show that the document-level inference is not
always well defined, and Arora, Ge and Moitra [5] prove the NP-hardness of
exact corpus-level ML inference.
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In accordance with their theoretical hardness, the above inference methods
tend to suffer from slow convergence and long runtime. As a result, there has
been a substantial amount of work targeting on accelerating the above methods.
e.g., by leveraging sparsity [11, 18, 20] and parallelization [16, 21], or online
learning mechanism [1, 8, 10]. However, none of them have theoretical guarantee
of convergence within a bounded number of iterations, and are nondeterministic
either due to sampling or the random initialization.

Recently, an alternative inference of topic models has been proposed based on
the method of moments [2], and improved in [3]. Compared with ML inference,
it has the following two advantages: i) the distance between inferred corpus-
level parameters and the true parameters has a theoretical upper bound that is
inversely related to sample size; ii) the convergence is guaranteed with a bounded
number of iterations. Another related study [5] assumes the existence of anchor
word that only exists in one topic, and uses that assumption to bound the
recovery error. Its efficiency is improved in [4]. This method requires stronger
assumptions than [2] and the error bound is weaker.

3 Preliminaries

We first introduce the notations:

– The input to the inference problem is a corpus of D documents with vo-
cabulary size V . The i-th document di has li word tokens, and the whole
corpus has L tokens in total. We use a k-dimensional vector θi (i ∈ [D]) to
denote the document-level topic distribution for di, and α = (α1, . . . , αk)
to denote the Dirichlet prior where θi’s are drawn from. Larger αt posits
stronger prior at θi,t. Define α0 =

∑k
t=1 αt. We use a V -dimensional vector

φt (t ∈ [k]) to denote the corpus-level word distribution for topic t. To gen-
erate a token wi,j ∈ [V ] in position j of document di, one first samples a
topic zi,j according to θi, and then samples a word from φzi,j ;

– A tensor is a hypermatrix that can contain more than two degrees. The
outer product ⊗ of any p-degree tensor A ∈ R

s1×···×sp and any q-degree
tensor B ∈ R

sp+1×···×sp+q is a (p + q)-degree tensor A ⊗ B ∈ R
s1×···×sp+q :

A⊗B[i1, . . . , ip+q] = A[i1, . . . , ip]B[ip+1, . . . , ip+q];
– For any tensor A ∈ R

s×s×s, matrix B ∈ R
s×s1 , C ∈ R

s×s2 , D ∈ R
s×s3 ,

A(B,C,D) is a tensor in R
s1×s2×s3 , A(B,C,D)[i1, i2, i3] =

∑
j1,j2,j3∈[s] A[j1,

j2, j3]B[j1, i1]C[j2, i2]D[j3, i3];

– W+ denotes the Moore-Penrose pseudoinverse of W ;
– Ω(A, a, b, c) permutes the modes of tensor A, s.t. Ω(A, a, b, c)[i1, i2, i3] =

A[ia, ib, ic].

We focus on the corpus-level inference problem in this paper. The document-
level inference problem can be solved using the method in [19] after we infer the
corpus-level parameters. Our goal is to recover the unknown φt’s based on the
observed corpus.
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Anandkumar et al. [3] propose a tractable exact inference method based on the
method of moments. In statistics, the ξ-th order population moment of a random
variable is the expectation of its ξ-th power. The method of moments derives
equations that relate the population moments to the model parameters. Then,
it collects empirical moments from observed samples, and solves the equations
using the empirical moments in place of the population moments.

In our case, the random variable is a token wi,j in a document di. The value of
wi,j is a word in [V ]. The ξ-th population moment is the expected co-occurrence
of words in ξ token positions. We can collect empirical moments from the corpus,
and estimate φt’s by fitting the empirical moments with population moments.
For example, the 2nd order moment is a matrix E2 ∈ R

V×V . The element
E2[x1, x2] in x1-th row and x2-th column of E2 is equal to the probability wi,1

being x1 and wi,2 being x2 given α.

E2[x1, x2] = p(wi,1 = x1, wi,2 = x2|α)

=

∫
θi

p(θi|α)
k∑

t1=1

k∑
t2=1

p(zi,1 = t1|θi)p(zi,2 = t2|θi)p(wi,1 = x1|zi,1 = t1)

· p(wi,2 = x2|zi,2 = t2)dθi =
∑
t1 �=t2

αt1αt2

α0(α0 + 1)
φt1,x1φt2,x2 +

k∑
t=1

αt(αt + 1)

α0(α0 + 1)
φt,x1φt,x2

(1)

Likewise, we can derive the 3rd order moment as a tensor E3 ∈ R
V×V×V .

The element E3[x1, x2, x3] is equal to the probability wi,1 being x1, wi,2 being
x2 and wi,3 being x3 given α. The equation below follows a similar derivation as
Eq. (1), written in a more concise form:

E3 =
∑

t1 �=t2 �=t3 �=t1

αt1αt2αt3

α0(α0 + 1)(α0 + 2)
φt1 ⊗ φt2 ⊗ φt3

+
∑
t1 �=t2

αt1αt2(αt1 + 1)

α0(α0 + 1)(α0 + 2)
(φt1 ⊗ φt1 ⊗ φt2 + φt1 ⊗ φt2 ⊗ φt1+

+φt2 ⊗ φt1 ⊗ φt1) +

k∑
t=1

αt(αt + 1)(αt + 2)

α0(α0 + 1)(α0 + 2)
φt ⊗ φt ⊗ φt

(2)

Moment-based inference methods set the left hand sides to empirical estima-
tion of moments, and solve these equations to estimate the parameters φt’s.

In general, one can compute moments of an arbitrary order, but the cost can
be high for computing high-order moments. Fortunately, Anandkumar et al. [3]
find that we only need up to 3rd order moments to infer an LDA model, under
some mild non-degeneracy conditions. We restate their algorithm in Section 4,
and propose a more scalable algorithm in Section 5.

4 Tensor Orthogonal Decomposition

The tensor orthogonal decomposition algorithm for LDA relies on the following
theorem (revised statement of Theorem 4.3 in [3]).
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Theorem 1. Assume that

M2 =

k∑
t=1

λtvt ⊗ vt,M3 =

k∑
t=1

λtvt ⊗ vt ⊗ vt (3)

where λt > 0, vt ∈ R
V , t ∈ [k] are linearly independent and ‖vt‖ = 1. Given

M2 ∈ R
V×V and M3 ∈ R

V×V×V as input, the equations can be uniquely solved
for unknown variables λt and vt in polynomial time.

Proof sketch. Let M2 = MΣMT be the spectral decomposition of M2, de-
fine W = MΣ−

1
2 as the whitening matrix of M2, then ṽt =

√
λtW

T vt are
orthonormal since

∑k
t=1 ṽt ⊗ ṽt = I. It follows that

∑k
t=1

1√
λt
ṽt ⊗ ṽt ⊗ ṽt =∑k

t=1 λt(W
T vt)⊗(WT vt)⊗(WT vt) = M3(W,W,W ) ≡ T̃ . Due to the uniqueness

of tensor’s orthogonal decomposition [3], ṽt and 1√
λt

are uniquely determined

from T̃ in polynomial time. So each vt = 1√
λt
(WT )+ṽt and λt are uniquely

determined. �
Note that the sole equation M2 =

∑k
t=1 λtvt⊗vt is not sufficient to determine

vt uniquely, because vt’s are not constrained to be orthogonal. By defining M1

and M2 in the following way, M2 fits into Eq. (3):

M1 =

k∑
t=1

αt

α0
φt,M2 = (α0 + 1)E2 − α0M1 ⊗M1 =

k∑
t=1

αt

α0
φt ⊗ φt (4)

And the following definition of M3 fits into Eq. (3):

U1 = E2 ⊗M1, U2 = Ω(U1, 1, 3, 2), U3 = Ω(U1, 2, 3, 1) (5)

M3 =
(α0 + 1)(α0 + 2)

2
E3 + α2

0M1 ⊗M1 ⊗M1

− α0(α0 + 1)

2
[U1 + U2 + U3] =

k∑
t=1

αt

α0
φt ⊗ φt ⊗ φt

(6)

It is clear now that the corpus-level parameters φt’s can be uniquely deter-
mined by up to 3rd order moments. Algorithm 1 outlines the tensor orthogonal
decomposition method for recovering the components, given the summation α0

of Dirichlet prior α as input. It includes two main parts:

1. Lines 1.1 to 1.5 to compute the k × k × k tensor T̃ ;
2. Lines 1.6 to 1.16 to perform orthogonal decomposition of T̃ via a robust

power method, and recover the unique λt’s and vt’s (Line 1.13).

Lemma 5.1 in [3] ensures that the power iteration loop Line 1.10 with iteration

# n converges in a quadratic rate when the tensor T̃ is accurate. The outer loop
with iteration # N ensures the convergence when T̃ is perturbed.
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Algorithm 1. Tensor Orthogonal Decomposition (TOD)
Input: Corpus with L tokens and vocabulary size V , number of components k, number

of outer and inner iterations N and n, α0

Output: The model parameters (αt, φt), t = 1, . . . , k

1.1 Compute M2 ∈ R
V ×V and M3 ∈ R

V ×V ×V ;
1.2 Compute k orthonormal eigenpairs (σt, μt) of M2;

1.3 Compute the whitening matrix W = MΣ− 1
2 ;

1.4 Compute (WT )+ = MΣ
1
2 ;

1.5 Compute a k × k × k tensor T̃ = M3(W,W,W );
1.6 for t = 1..k do
1.7 λ∗ ← 0 ; // the largest eigenvalue so far
1.8 for outIter = 1..N do

1.9 v ← a random unit-form vector in R
k;

1.10 for innerIter = 1..n do v ← T̃ (I,v,v)

||T̃ (I,v,v)||
;

1.11 if T̃ (v, v, v) > λ∗ then (λ∗, v∗)← (T̃ (v, v, v),v);

1.12 end

1.13 λt = 1
(λ∗)2

, vt = λt(W
T )+v∗;

1.14 T̃ ← T̃ − λ∗v∗ ⊗ v∗ ⊗ v∗ ; // deflation
1.15 αt = α0λt, φt = vt;

1.16 end

1.17 return (αt, φt), t = 1, . . . , k

5 Scalable Tensor Orthogonal Decomposition

5.1 Scalability Analysis of TOD

Although Algorithm 1 theoretically guarantees robust convergence, it is not scal-
able. In general, when we directly deal with large and dense 2nd or 3rd order
tensors, computation cost is huge in both time and space, and this hinders the
scalability of part 1 described in Section 4, where explicit computations for a
matrix of size V 2 and a tensor of size V 3 are involved. In contrast, part 2
(k× k× k tensor orthogonal decomposition) can be efficient in practice, because
in most cases of LDA inference, only a small number of topics are desired. In
total, the space complexity of Algorithm 1 is O(V 3) and the time complexity is

O(V 3k + Ll̂2 +Nnk4), where l̂ is the maximum document length.
Anandkumar et al. [3] discusses a plausible way to reduce the memory cost.

It suggests no explicit creation of the tensors M3 and T̃ , but going through
the document-word occurrence data for computing the power iteration update
Line 1.10. This mitigates the space challenge of part 1, but gives away the
efficiency of part 2 of Algorithm 1. One obvious disadvantage is that it needs to
scan the whole corpus for Nnk times to execute Line 1.10. The space complexity
is O(V 2) and the time complexity is O(V 2k + LNnk).

We make key contributions to solving the challenge in a different approach.
We avoid explicit creation of both tensor M3 and M2, but we do explicitly
create T̃ since it is memory efficient. It reduces the cost of part 1, and retains
efficient power iteration updates as in part 2 of Algorithm 1. Utilizing the special
structure of the tensors in our problem, we show that T̃ can be created by
scanning the corpus only twice, without incurring creations of any dense V 2 or
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V 3 tensors. One scan is needed for computing the whitening matrix W , and
the other for computing the tensor product M3(W,W,W ), as discussed in the
following two sections.

5.2 Scalable Computation of Whitening Matrix

To compute the whitening matrix, the straightforward approach by spectral
decomposition of the dense matrix M2 requires O(V 2k) time and O(V 2) space.
However, by observation of Eq. (4), we can decouple M2 into matrix E2 and
M1⊗M1. Taking advantage of the low rank and sparsity of E2, we can compute
the spectral decomposition of M2 in an efficient alternative procedure.

Low Rank. We notice that M1, E2 and M2 are in the same column space S
spanned by k linearly independent vectors φt, t ∈ [k]. Thus E2 has a low rank.

Sparsity. Let vector ci ∈ R
V be the counts of word 1 to V in document di. An

empirical estimation of M1 and E2 is:

M1 =

D∑
i=1

1

li
ci, E2 =

D∑
i=1

1

li(li − 1)
[ci ⊗ ci − diag(ci)] (7)

where li =
∑V

x=1 ci,x is the length of document di. The estimated M1 and E2

can be computed by one scan of the data. E2 is sparse because many word pairs
do not co-occur in the real documents.

Our alternative procedure performs two spectral decompositions, one on the
sparse and low rank matrix E2 and the other on a small size matrix.
1. Let E2 = UΣ1U

T be its spectral decomposition, where U ∈ R
V×k is the ma-

trix of k eigenvectors, and Σ1 ∈ R
k×k is the diagonal eigenvalue matrix. The

k column vectors of U form an orthonormal basis of S. M1’s representation
in this basis is M ′1 = UTM1. Now, M2 can be written as:

M2 = U [(α0 + 1)Σ1 − α0M
′
1 ⊗M ′1]U

T = UM ′2U
T

2. A second spectral decomposition can be performed on M ′2 ∈ R
k×k. Let the

decomposition be M ′2 = U ′ΣU ′T . It follows that:

M2 = UM ′2U
T = (UU ′)Σ(UU ′)T

Let M = UU ′. Now we effectively obtain the spectral decomposition of M2 =
MΣMT without explicitly creating M2. With this new procedure, we only need
to store a sparse matrix E2 with m � V 2 nonzero elements, and the time
complexity is reduced to O(km+ k3) = O(km).

5.3 Scalable Product of M3 and W

The straightforward computation of T̃ = M3(W,W,W ) using explicit M3 and W

requires O(V 3) space and O(V 3k+Ll̂2) time, where l̂ is the maximal document
length. To solve this challenge, we utilize two decomposing laws :
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i) (v ⊗ v ⊗ v)(W,W,W ) = (WT v)⊗ (WT v)⊗ (WT v) = (WT v)⊗3; and
ii) (v ⊗B)(W,W,W ) = (WT v)⊗B(W,W ) = (WT v)⊗ (WTBW )

where v is a vector and B is a matrix.
We break down M3 as a summation of multiple tensors, such that the product

between each tensor and W has a decomposable form as in the left hand
side of one decomposing law. According to Eq. (2), M3 is a linear combination
of tensors E3, U1, U2, U3 and M⊗31 . We discuss how to efficiently compute the
product between each part and W .

Compute E3(W,W,W). E3 can be estimated by averaging the frequency of all
the 3-word triples in each document. Using the word count vector ci we defined
before, we have:

E3 =
1

D
[A1 −A2 −Ω(A2, 2, 1, 3)−Ω(A2, 2, 3, 1) + 2A3]

A1 =

D∑
i=1

ρici ⊗ ci ⊗ ci, A2 =

D∑
i=1

ρici ⊗ diag(ci), A3 =

D∑
i=1

ρitridiag(ci)
(8)

where ρi = 1
li(li−1)(li−2) , tridiag(v) is a tensor with vector v on its diagonal:

tridiag(v)i,i,i = vi.
According to decomposing law i) and ii):

A1(W,W,W ) =

D∑
i=1

ρi(W
T ci)

⊗3 (9)

A2(W,W,W ) =

D∑
i=1

ρi(W
T ci)⊗WTdiag(ci)W (10)

Let WT
x be the x-th column of WT . We have:

A3(W,W,W ) =

V∑
x=1

D∑
i=1

ρici,x(W
T
x )⊗3 (11)

Using Eq. (9)-(11), we can compute E3(W,W,W ) without explicit creation of
E3. The time complexity is O(Lk2).
Compute M⊗31 (W,W,W),Ui(W,W,W), i = 1, 2, 3. Using the two decom-
posing laws, we can obtain:

(M1 ⊗M1 ⊗M1)(W,W,W ) = (WTM1)
⊗3 (12)

U1(W,W,W ) = WTE2W ⊗WTM1 (13)

Eq. (13) requires O(k2m) time to compute, where m is the number of nonzero
elements in E2. We can further speed it up. By definition we have WTM2W = I.
Substituting M2 with Eq. (4), we have:

WT [(α0 + 1)E2 − α0M1 ⊗M1]W = I (14)

⇒WTE2W =
1

(α0 + 1)
[I + α0(W

TM1)
⊗2] (15)
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Plugging Eq. (15) into (13) further reduces the complexity of computing
U1(W,W,W ) to O(V k + k3). U2(W,W,W ) and U3(W,W,W ) can be obtained
by permuting U1(W,W,W )’s modes, in O(k3) time.

Putting these together based on the distributive law, we can compute T̃ =
M3(W,W,W ) by one scan of the data:

T̃ = M3(W,W,W ) =
(α0 + 1)(α0 + 2)

2
E3(W,W,W )

−α0(α0 + 1)

2
[(U1 + U2 + U3)(W,W,W )] + α2

0(W
TM1)

⊗3
(16)

which requires O(Lk2 + V k + k3) = O(Lk2) time.

Algorithm 2. Scalable Tensor Orthogonal Decomposition (STOD)

Input: Corpus with L tokens and vocabulary size V , number of topics k,
number of outer and inner iterations N, n, α0

Output: The model parameters (αt, φt), t = 1, . . . , k

2.1 First scan of data: Compute M1 and E2 according to Eq. (7);
2.2 Find k largest orthonormal eigenpairs (σt, μt) of E2;
2.3 M ′

1 = UM1 ; // U = [μ1, . . . , μk], Σ1 = diag(σ1, . . . , σk)
2.4 Compute spectral decomposition for

M ′
2 = (α0 + 1)Σ1 − α0M

′
1 ⊗M ′

1 = U ′ΣU ′T ;

2.5 M = UU ′,W = MΣ− 1
2 , (W T )+ = MΣ

1
2 ;

2.6 Second scan of data: Compute T̃ = M3(W,W,W ) according to Eq. (16);
2.7 Perform power method Line 1.6 to 1.16 in Algorithm 1;

2.8 return (αt, φt), t = 1, . . . , k

5.4 Our Final Algorithm

Algorithm 2 outlines our scalable tensor orthogonal decomposition algorithm.
Line 2.1 scans the data once to collect E2, and Line 2.2–2.5 are asymptotically
equivalent to Line 1.2–1.4. Line 2.6 uses a second scan of the data to compute
T̃ , which is equivalent to Line 1.5 but much more efficient. The power method
on T̃ remains the same as in Algorithm 1.

In most applications, V 3 + L, V 2 + m,V + l̂ > k. We reduce the time
complexity for constructing the small tensor T̃ ∈ R

k×k×k to O(Lk2 + km),
and the space complexity to O(m). The total time complexity for STOD is
O(Lk2 + km+Nnk4). Comparing with TOD, STOD is superior in both space
and time. The practical speedup is significant with orders of magnitude, as we
will demonstrate in experiments.
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6 Experiments

In this section we first introduce the methods used for comparison, then present
evaluation on synthetic and real datasets respectively.

Methods for Comparison. Our main contribution is the STOD algorithm.
It accelerates the TOD algorithm, which has bounded error for LDA inference.
We also compare STOD with one of the most popular LDA inference methods
collapsed Gibbs sampling, although its error is not theoretically bounded. We do
not include other maximum-likelihood based inference methods for LDA, e.g.,
collapsed variational Bayesian inference, because they mostly have a similar per-
formance with collapsed Gibbs sampling, and no theoretical error bound either.
We list the implementation details below:

– STOD – our Algorithm 2. Outer iteration # N and inner iteration # n are
both set to 30. They are sufficient for our experiments. In fact, in most cases,
the algorithm converges with N = n = 10. α0 is fixed to be 1.

– TOD – A faster implementation of Algorithm 1 as we discussed in Sec-
tion 5.1. It skips the tensor construction and computes the power iteration
on the fly. Outer iteration # N and inner iteration # n are both set to 30.
α0 = 1.

– Collapsed Gibbs sampling. We use a fast implementation by Griffiths and
Steyvers [9]. The iteration # is set to 1500, following the common practice.
From now on, we use ‘Gibbs’ or ‘Gibbs sampling’ for short.

For fair comparison, we do not use distributed computation for any of the
methods. We conduct all the experiments on a single Linux server running MAT-
LAB 2013a with Inter Xeon CPU E5-2680 2.80GHz and 256GB RAM.

6.1 Synthetic Data

We use synthetic data to conduct controlled experiments with known topics and
other parameters. With synthetic data we are able to evaluate the error of each
method in recovering the known topics. We compare each method’s: i) topic
recovery error; and ii) runtime.

The generative process of synthetic data simply follows LDA [6]. The length
of each document is generated from a Poisson distribution, where the Poisson
parameter λ, or the expected document length, is set to 100. The Dirichlet prior
α of each document-level topic distribution θi is uniform: αt = 1

k , t ∈ [k]; the
Dirichlet prior β of each corpus-level topic-word distribution φt is also uniform:
βx = 200

V , x ∈ [V ]. The same Dirichlet prior is used for Gibbs sampling infer-
ence. We creat three controlled sets of pseudo corpora by varying the following
parameters:

1. D, ranging from 5,000 to 500,000, with fixed V = 10000, k = 50.
2. V , ranging from 3,000 to 100,000, with fixed D = 100, 000, k = 50.
3. k, ranging from 10 to 100, with fixed D = 100, 000, V = 10, 000.
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(a) topic recovery error when varying D
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(b) runtime when varying D

(c) topic recovery error when varying V
(TOD fails when V = 100, 000)
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(d) runtime when varying V (TOD fails
when V = 100, 000)

(e) topic recovery error when varying k
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(f) runtime when varying k

Fig. 1. Performance study on synthetic data (lower values are better)
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Topic Recovery Error. We measure the topic recovery error in the follow-
ing way. For each run of each algorithm, let φ̃t, t ∈ [k] denote the corpus-level
multinomial distributions inferred by the algorithm; and φ∗t , t ∈ [k] the ground-
truth generated from Dirichlet allocation. We compute all the k2 L1 distances:
‖φ̃t1 − φ∗t2‖1, t1, t2 ∈ [k], and build a bipartite graph with negative L1 distances
as edge weights. Then we use the Hungarian algorithm to compute a maximum
matching between the inferred topics and the ground truth topics. Finally, we
average the k L1 distances between matched pairs as the error for this run.

Figure 1a, 1c and 1e show the recovery errors of different methods. For each
fixed triple of (D,V, k), we run each algorithm for 5 times, then plot the mean
and standard deviation of the 5 recovery errors using an error bar. To put the
numbers in context, we include a baseline ‘uniform’, which reflects the average
distance of a uniform distribution over the vocabulary to every topic.

We observe that TOD and STOD have almost zero variance across multiple
runs, due to the robustness of tensor decomposition. Gibbs sampling produces
large variance comparing with the other two, which is a drawback most existing
maximum likelihood based LDA inference algorithms suffer.

In general, the errors of STOD and TOD decrease when D increases or V, k
decrease, i.e., the sample size increases or the model complexity decreases. This is
because the error of tensor orthogonal decomposition is bounded by the distance
of empirical moments from theoretical moments. For Gibbs sampling, this trend
is not as clear as the moment-based methods. It has no error bound of topic
recovery.

In all these datasets, the moment-based methods TOD and STOD have almost
equal errors. When the corpus size is sufficiently large (D ≥ 50, 000 in these
datasets), the error is 37–85% lower than Gibbs sampling. This verifies that
TOD has the state-of-the-art capability of topic recovery accuracy, and that our
STOD algorithm preserves that capability.

Runtime. From Figure 1b,1d and 1f, we see a clear superiority in efficiency of
our STOD algorithm in all the datasets. STOD is faster than TOD and Gibbs
sampling by 1 to 3 orders of magnitude. While TOD is generally faster than
Gibbs sampling, it consumes much larger memory, and fails to terminate when
V = 100, 000.

The runtime of STOD grows more slowly with respect to D than Gibbs sam-
pling, because STOD only scans the corpus twice while Gibbs sampling itera-
tively passes through the corpus for thousands of times. The runtime of STOD
grows more tenderly with respect to V than TOD, because the former does not
even need to construct the dense tensor of size V 2. The runtime of STOD grows
more rapidly with respect to k than Gibbs sampling and TOD, because it con-
structs a tensor of size k3 explicitly. Therefore, the advantage of STOD is most
prominent when the corpus size and vocabulary size are large, while the number
of topics is small.
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6.2 Real-World Data

We use two real-world datasets to evaluate the performance of our algorithm in
practice (we perform stemming to the favor of baseline methods, and remove
stopwords in the corpus):

– TREC AP news: A TREC news dataset (1998). It contains 106K full arti-
cles, 170K unique words, and 19M tokens. After preprocessing, the size of
vocabulary is 45,105.

– CS abstract: A dataset of computer science paper abstracts from Arnet-
miner1. The set has 529K papers, 186K unique words, and 39M tokens.
After preprocessing, the size of vocabulary is 51,069.

Runtime. Table 1 shows the overall runtime in these datasets, in two scenarios.
One scenario is that the data can be all loaded into memory, and the other
scenario is that the data are too large to be loaded into memory. STOD is one to
two orders of magnitude faster than the other methods in the first scenario, and
two to three orders of magnitude faster in the second scenario. On the largest
dataset it reduces the runtime of TOD/Gibbs sampling from 3 weeks/1.2 days
to 9.6 minutes.

Table 2 shows the decomposed runtime for STOD and TOD. In both datasets,
the most time consuming part for STOD is the spectral decomposition (Line 2.1–
2.5) and tensor construction (Line 2.6). The news dataset has longer documents
but fewer tokens than the CS dataset. As a result, the spectral decomposition
in news dataset bears a larger fraction though the total runtime is shorter than
in CS. The practical implementation of TOD does not create tensors but goes
through the corpus many times to compute the power iteration on the fly, and
that part accounts for the slow execution.

Table 1. Total runtime (in seconds) on real-world datasets (K=50)

loaded into memory not loaded into memory�������dataset
method

STOD TOD Gibbs sampling STOD TOD Gibbs sampling

news 293 6877 21641 310 768110 48999

CS 541 14439 47293 577 1661101 102136

Table 2. Decomposed runtime (%) on real-world datasets for STOD and TOD

STOD TOD�������dataset
method

spectral decomp construct tensor power iter spectral decomp power iter

news 38.0 47.8 14.2 1.2 98.8

CS 11.1 80.7 8.3 1.2 98.8

Quality of Inferred Topics. Lack of gold standard is a well known challenge for
unsupervised topic modeling methods. As such, people have proposed evaluation

1 http://www.arnetminer.org

http://www.arnetminer.org
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metrics without relying on labels. The conventional evaluation using the held-out
perplexity of test data has been challenged [7, 17], and found to have negative
correlation with human interpretability. According to the most recent work in
topic model quality evaluation [14], there are two major approaches to measure
the human interpretability: indirect approach with word intrusion, and direct
approach with observed coherence. In this study we take the direct approach,
and use the automated evaluation measure OC-Auto-NPMI in [14], which was
reported to have above 0.9 Pearson correlation with human judgment.

The OC-Auto-NPMI measure for one topic is defined to be the average of
normalized pointwise mutual information between every pair of the top-X words:

OC-Auto-PMI(t) =
2

X(X − 1)

X∑
j=2

j−1∑
i=1

log
p(wj , wi)

p(wi)p(wj)
(17)

where w1, . . . , wX are the top-X words in topic t. Then the mean of the OC-
Auto-NPMI measure for all the topics can be used to measure the quality of the
inferred topics by an inference algorithm (the higher the better).
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Fig. 2. Quality of inferred topics on real-world data (the higher the better)

As shown in Figure 2, STOD and TOD again have close performance, and
both outperform Gibbs sampling2, by as much as 80% in the news dataset, and
as much as 40% in the CS dataset. The moment-based methods not only have
theoretical low error, but also good practical performance with real-world data.

Table 3 visualizes several example topics with top-ranked words from the
TREC AP news dataset. Since STOD and TOD have identical results in this
experiment, we only keep STOD in the table. We can see when k is set to 25,
these four topics are interpretable in both methods, although a few top ranked
words are less intuitive to interpret in Gibbs. For example, in topic 4 of Gibbs
sampling, word ‘oil’ cannot be recognized as a part of weather topic, while most
of the other words have a strong correlation with weather.

2 We experimented with hyperparameter optimization for Gibbs sampling as well, and
it does not affect the conclusion
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Table 3. Example topics from a 25-topic run of STOD & Gibbs on news

topic 1: finance topic 2: politics topic 3: law topic 4: weather

STOD Gibbs STOD Gibbs STOD Gibbs STOD Gibbs

dollar cents vote city court court fair oil
yen market house black case state cloudy fair

prices stock democratic state state law city coast
late trade senate democratic judge ruling northern state
trade prices republican mayor abortion union part rain
close dollar bill white ruling abortion rain texas
london exchange committee campaign law strike central national
gold higher election election appeals judge north northen
rate futurers members republican federal case coast part
bid lower party year supreme federal south north

7 Discussion

In this work, we propose a scalable moment-based inference algorithm STOD
for latent Dirichlet allocation topic model. The algorithm is based on recent
advancement of moment-based inference methods which have robust theoretical
properties. STOD inherits the advantage of low error and high stability, while
solving critical challenge in time and space efficiency. By leveraging the special
structures of the 2nd order and 3rd order moments, we dramatically overhaul the
standard computing procedure to scale up the algorithm. It renders the tensor
orthogonal decomposition for LDA inference practical for the first time, with
orders of magnitude faster speed.

Asweobserve in the experiments, bothSTODandTODrequirea certainamount
of documents to estimate the precise empiricalmoments and recover the topicswith
low error. This is easy to satisfy in the setting of large-scale text corpora, such as
the real-world datasets in our experiments. STOD ismost promisingwhen the cor-
pus size is large, and when the number of topics is small. This makes it a desirable
method to summarize a large corpus’ topics in a hierarchical structure where every
topic has a few number of subtopics, which is one of our ongoing study.

Although we do not comparewith distributed or online inferencemechanism for
MCMC or variational Bayesian inference, we would like to point out that: i) STOD
can be easily parallelizedby employing distributed spectral decompositionmethod
such as [13, 15], with theoretically guaranteed performance; and ii) STOD scans
the data only twice, which is similar to online inference methods requiring only one
pass of data, but STOD does not trade in inference accuracy. Besides paralleliza-
tion, the advantage of STOD can be further fulfilled by adaptation to dynamic text
collections, or more advanced spectral decomposition methods.
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sen, D., Waśniewski, J., Dongarra, J. (eds.) PARA 1996. LNCS, vol. 1184, Springer,
Heidelberg (1996)

16. Newman, D., Asuncion, A., Smyth, P., Welling, M.: Distributed algorithms for
topic models. Journal of Machine Learning Research 10, 1801–1828 (2009)

17. Newman, D., Lau, J.H., Grieser, K., Baldwin, T.: Automatic evaluation of topic
coherence. In: NAACL-HLT (2010)

18. Porteous, I., Newman, D., Ihler, A., Asuncion, A., Smyth, P., Welling, M.: Fast
collapsed gibbs sampling for latent dirichlet allocation. In: KDD (2008)

19. Sontag, D., Roy, D.: Complexity of inference in latent dirichlet allocation. In: NIPS
(2011)

20. Yao, L., Mimno, D., McCallum, A.: Efficient methods for topic model inference on
streaming document collections. In: KDD (2009)

21. Zhai, K., Boyd-Graber, J., Asadi, N., Alkhouja, M.L.: Mr. lda: A flexible large
scale topic modeling package using variational inference in mapreduce. In: WWW
(2012)



Unsupervised Feature Selection via Unified Trace Ratio
Formulation and K-means Clustering (TRACK)

De Wang, Feiping Nie, and Heng Huang


Department of Computer Science and Engineering, University of Texas at Arlington,
Arlington, TX 76019, USA

{wangdelp,feipingnie}@gmail.com, heng@uta.edu

Abstract. Feature selection plays a crucial role in scientific research and prac-
tical applications. In the real world applications, labeling data is time and la-
bor consuming. Thus, unsupervised feature selection methods are desired for
many practical applications. Linear discriminant analysis (LDA) with trace ratio
criterion is a supervised dimensionality reduction method that has shown good
performance to improve classifications. In this paper, we first propose a unified
objective to seamlessly accommodate trace ratio formulation and K-means clus-
tering procedure, such that the trace ratio criterion is extended to unsupervised
model. After that, we propose a novel unsupervised feature selection method by
integrating unsupervised trace ratio formulation and structured sparsity-inducing
norms regularization. The proposed method can harness the discriminant power
of trace ratio criterion, thus it tends to select discriminative features. Meanwhile,
we also provide two important theorems to guarantee the unsupervised feature
selection process. Empirical results on four benchmark data sets show that the
proposed method outperforms other sate-of-the-art unsupervised feature selec-
tion algorithms in all three clustering evaluation metrics.

1 Introduction

Feature selection is to select relevant and informative features from the high-dimensional
feature space. Because it can improve the mode generalization capability, prevent model
over-fitting, identify useful features, and hugely reduce the computational time, feature
selection has been playing a crucial role in many scientific and practical applications,
such as text mining [7], bioinformatics [5,23,3], medical image analysis [22,24], com-
puter vision [4,12], etc.

There are three types of feature selection methods: filter method [20,13,19,5], wrap-
per method [11], and embedded method [26]. The filter methods compute a score to
each feature, so the computational cost is relatively low, but the selected features often
cannot achieve good classification performance. Wrapper methods treat the classifier as
a black box, and use classification results to evaluate potential feature subset, thus the
features selected by wrapper methods usually have good performance. However, their
computational cost is very high since it need to use the classifier all the way through the
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process of feature selection. The embedded methods treat classifier as a white box, and
incorporate feature selection and classification model into a single optimization prob-
lem. Thus, the classification performance is good, and the computational cost is much
lower than wrapper method.

From another point of view, feature selection techniques can be categorized into
supervised method (using label information) and unsupervised method (without us-
ing label information). Supervised feature selection methods determine the importance
of a feature by evaluating the feature’s correlation with label. The higher correlation
indicates a more important feature. Unsupervised feature selection approaches select
features with maximum representative and discriminant power. In the real world data
mining applications, labeling data is time and labor consuming. Thus, the unsupervised
feature selection methods are crucial for practical applications.

Many unsupervised feature selection methods have been proposed. Among them,
maximum-variance is the simplest one, which just selects top ranked features with
maximum variance. Although selected features are representative for data variance,
they are not guaranteed to be discriminant for classification [9]. Laplacian Score [9]
selects features that can preserve the local manifold structure of data, and such features
are supposed to be discriminative. SPEC [27] selects features that are most consistent
with the graph structure of data. MCFS [2] first performs regression using the eigen-
vector of graph Laplacian, and then selects features with maximum spectral regression
coefficients.

In this work, we focus on the unsupervised feature selection model design. Most ex-
isting unsupervised feature selection methods are similar to filter methods in supervised
learning, and define different score systems to select features. Considering the advan-
tages of embedded feature selection methods in supervised learning, we hope to use the
embedded feature selection mechanism in an unsupervised way. In this paper, we ad-
dress this problem using the unsupervised trace ratio formulation, and rigorously prove
that our unsupervised trace ratio formulation is the unified and unique objective of both
trace ratio linear discriminant analysis (LDA) and K-means clustering. After that, we
propose an unsupervised feature selection method using unsupervised trace ratio formu-
lation and �1,2-norm regularization. The proposed method can harness the discriminant
power of trace ratio formulation, thus it tends to select discriminative features. The
optimization algorithm is derived with rigorous convergence analysis. Moreover, we
provide important theoretical analysis to guarantee the unsupervised feature selection
process. Empirical results on four benchmark data sets show that the proposed method
outperforms other sate-of-the-art unsupervised feature selection methods on all three
standard evaluation metrics.

2 Notations and Definitions

In this paper, matrices are written as uppercase letters and vectors are written as bold
lowercase letters. Given a matrix W = {wij}, its i-th row, j-th column are denoted as
wi, wj , respectively. The �1,2-norm of matrix W is defined as ||W ||1,2 =

∑d
i=1 ||wi||2.

Tr(W ) means the trace operation for matrix W .
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Given data matrix X = [x1, · · · ,xn] ∈ %d×n, d is the number of features and n
is the number of data samples. In the classic Linear Discriminant Analysis (LDA), the
total scatter matrix St, within-class scatter matrix Sw, and between-class scatter matrix
Sb are defined as following:

St =
n∑

i=1

(xi − x̄)(xi − x̄)
T
,

Sw =
c∑

k=1

∑
xi∈lk

(xi −mk)(xi −mk)
T ,

Sb =
c∑

k=1

nk(mk − x̄)(mk − x̄)
T
,

where xi ∈ %d×1 is the i-th data sample, c is the number of clusters, nk is the num-
ber of data points belong to class lk, mk is the center of the k-th cluster, i.e. mk =
1
nk

∑
xi∈lk xi, x̄ is the center of all data, i.e. x̄ = 1

n

∑n
i=1 xi. It is well known that

St = Sb + Sw.
Suppose X ∈ %d×n is the data matrix after centralization, i.e. x̄ = 0, the formula-

tions of total scatter matrix St and between-class scatter matrix Sb can be thus reduced
to:

St =

n∑
i=1

xix
T
i = XXT , Sb =

c∑
k=1

nkmkm
T
k . (1)

Denote G ∈ %n×c as the class indicator matrix, where Gij = 1 if xi belongs to the
j-th class and Gij = 0 otherwise. We define a cluster centroid matrix M to include the
centroid vector of each cluster as M = [m1,m2, · · · ,mc]. Using the class indicator
matrix G, we can represent the cluster centroid matrix M as:

M = XG(GTG)−1 . (2)

Using matrices G and M , we can re-write the scatter matrices into more compact
manner as:

Sb = MGTGMT (3)

Sw = (X −MGT )(X −MGT )T (4)

3 Trace Ratio Linear Discriminant Analysis Review

In recent research, Linear Discriminant Analysis (LDA) with trace ratio criterion has
shown better performance than the traditional LDA with ratio trace criterion [18,10].
Thus, the trace ratio LDA has attracted more and more attention and has been well
studied. The problem of trace ratio LDA is as follows:

max
WTW=I

Tr(WTSbW )

Tr(WTSwW )
, (5)

where W ∈ %d×m is the projection matrix, which is constrained to be orthonormal,
and m is the reduced dimension.
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Using the optimal solution W of the problem (5), the data points are projected to a
lower dimensional subspace such that the Euclidean distances of data pairs within the
same class are minimized while the Euclidean distances of data pairs between different
classes are maximized. That is to say, the data points are easy to be classified after the
dimensionality reduction with W .

Because of St = Sb + Sw, problem (5) is equivalent to the following problem:

max
WT W=I

Tr(WTSbW )

Tr(WTStW )
. (6)

4 Discriminative Unsupervised Feature Selection

Because the LDA can enhance the classification tasks, several recent research works
have used this criterion for supervised feature selection and shown promising results
[15,21]. However, the LDA strategy cannot be applied to unsupervised feature selec-
tion, because the unsupervised learning models don’t provide the data labels which are
required to compute the within-class and between-class scatters. In previous work [6],
the authors utilized the clustering results to calculate Sb and Sw and iteratively do LDA
and K-means clustering, such that the LDA criterion can be applied to improve cluster-
ing results. However, the authors only presented a heuristic algorithm and didn’t have
a unified objective for two different processes, i.e. the LDA and K-means clustering
minimize different objectives. Thus, the optimality and convergence of their algorithm
are NOT guaranteed.

In this work, we are interested in designing a powerful unsupervised feature selection
method. To address the above problems, we will derive a new formulation and rigor-
ously prove it unifies both trace ratio LDA and K-means clustering, such that the trace
ratio LDA criterion can be applied to unsupervised model seamlessly. Combining with
the structured sparsity-inducing norms, we will propose a novel unsupervised feature
selection method.

4.1 Unsupervised Dimensionality Reduction Using Trace Ratio Criterion

Trace ratio LDA is a supervised dimensionality reduction method. Plugging Eq. (3) into
Eq. (6), the trace ratio LDA objective can be written as:

max
WT W=I

Tr(WTXG(GTG)
−1

GTXTW )

Tr(WTStW )
, (7)

where G ∈ %n×c is the class indicator matrix defined in Section 2.
In unsupervised circumstance where there is no label information, we don’t know

both projection matrix W and class indicator matrix G. If we apply the trace ratio strat-
egy to unsupervised dimensionality reduction, we need solve the following problem:

max
WT W=I,G∈Ind

Tr(WTXG(GTG)
−1

GTXTW )

Tr(WTStW )
, (8)
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where Ind is the set of clustering indicator matrices and G ∈ Ind means G is con-
strained to be a clustering indicator matrix. This is not LDA anymore. How does prob-
lem (8) reduce the data dimensionality to an unsupervised way? Our following theorem
will rigorously show that the problem (8) is a unified and unique objective of both trace
ratio LDA and K-means clustering.

Solving problem (8) is exactly equivalent to iteratively solving trace ratio LDA and
doing K-means clustering. When G is fixed, obviously solving problem (8) is to solve
the trace ratio LDA w.r.t. W , i.e. solving problem (7).

When W is fixed, Tr(WTStW ) is irrelevant to G. Thus, we need to solve the fol-
lowing problem:

max
G∈Ind

Tr(WTXG(GTG)−1GTXTW ) . (9)

Although the problem (9) only has one variable, it is difficult to solve due to the in-
tractable constraint. Because Tr(WTStW ) is a constant now (W is fixed), maximizing
between-class distance in problem (9) is equivalent to minimizing within-class distance.
Problem (9) is equivalent to the following problem:

min
G∈Ind,M

Tr(WTSwW ) , (10)

whereSw = (X−MGT )(X−MGT )T as shown in Eq. (4). Thus, we need to optimize:

min
G∈Ind,M

Tr(WT (X −MGT )(X −MGT )TW )

=⇒ min
G∈Ind,M

∥∥WTX −WTMGT
∥∥2
F

=⇒ min
G∈Ind,F

∥∥WTX − FGT
∥∥2
F
, (11)

where F = WTM .
Problem (11) can be easily solved by alternating optimization, i.e., iteratively opti-

mizing F when G is fixed and optimizing G when F is fixed. Interestingly, this iterative
procedure is exactly the procedure of traditional K-means clustering algorithm on the
projected data WTX : that is, when G is fixed, the optimal solution of F is the centers
of the clusters in the projected subspace; when F is fixed, the optimal solution of G can
be computed by assigning the data points to their closest centers. Thus, the objective
function in (9) is equivalent to K-means clustering objective.

Therefore, solving problem (8) is equivalent to iteratively solving trace ratio LDA
(fix G to solve W ) and doing K-means clustering (fix W to solve G).

Therefore, the objective in (8) is a good trace ratio formulation to reduce the dimen-
sionality in an unsupervised way. The K-means clustering indicators can be used as
labels to calculate scatter matrices, such that the projection matrix is discriminative to
separate different data groups.

Please notice that our method is significantly different from the method in [6], where
the traditional ratio trace LDA and K-means clustering algorithms are heuristically
combined without any optimality and convergence guarantee. Our new Theorem 1 rig-
orously proves that the trace ratio formulation in (8) is the unified and unique objective
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when we iteratively solve trace ratio LDA andK-means clustering. Thus, this procedure
is guaranteed to converge.

Based on our above derivations, the unsupervised trace ratio formulation in (8) is
equivalent to the following problem:

min
WT W=I,G∈Ind,F

∥∥WTX − FGT
∥∥2
F

Tr(WTStW )
(12)

4.2 Unsupervised Feature Selection Using Structured Sparse Trace Ratio
Formulation

Both supervised and unsupervised trace ratio LDA are dimensionality reduction meth-
ods, where the projected feature is a linear combination of all original features. How-
ever, in many applications (e.g. bioinformatics and document mining), we are more
interested in the feature selection model, i.e., selecting a few relevant features. To ad-
dress this problem, we integrate the structured sparsity-inducing norms with the above
unsupervised trace ratio formulation, such that we can select informative features in an
unsupervised way.

We hope to learn a row sparse projection matrix W in which only a few rows of W
are non-zeros. With this row sparse projection matrix W , only a few important features
are involved in the projection. This goal can be achieved by minimizing ‖W‖1,2. There-
fore, problem (12) can be changed to the following objective for unsupervised feature
selection:

min
WTW=I,G∈Ind,F

∥∥WTX − FGT
∥∥2
F

Tr(WTStW )
+ γ‖W‖1,2 , (13)

where γ is a regularization parameter which controls the row sparsity of the projection
matrix W . The greater the γ is, the more sparse rows the projection matrix W has.

The optimal solution of the problem (13) can harness the discriminative power of
the unsupervised trace ratio model, thus it tends to select discriminative features. Only
those discriminative features would have non-zero weights in W , and thus each new
projected feature is a linear combination of only these discriminative features. In this
way, only discriminative information are retained.

5 Optimization Algorithm

We use the alternating optimization method to solve the problem (13). When W is fixed,
the problem becomes problem (11), which can be solved by alternating optimization.
Specifically, when G is fixed, the optimal F is:

F = WTXG(GTG)−1 ; (14)

when F is fixed, the optimal G is:

Gij =

{
1, j = argmin

k

∥∥WTxi − fk
∥∥2
2

0, other
(15)



312 D. Wang, F. Nie, and H. Huang

As mentioned before, this update of F and G is exactly the K-means procedure.
When G and F are fixed, we substitute Eq. (14) into the problem (13) and thus the

problem (13) becomes

min
WTW=I

Tr(WTSwW )

Tr(WTStW )
+ γ‖W‖1,2 , (16)

where
Sw = (X −XG(GTG)−1GT )(X −XG(GTG)−1GT )T . (17)

Due to the trace ratio formulation, the above objective is difficult to optimize. The
standard proximal gradient, Augmented Lagrange Multiplier, fixed point, proximal meth-
ods cannot efficiently optimize it. We will use the iterative re-weighted optimization
strategy to solve this objective. Solving the above objective is equivalent to solve:

min
WTW=I

Tr(WTSwW )

Tr(WTStW )
+ γT r(WTDW ) , (18)

where D is a diagonal matrix with the i-th diagonal element di = 1
2‖wi‖2 . When

‖wi‖2 = 0, the original objective is not differentiable. Following [8], we can introduce
a small perturbation to regularize the i-th diagonal element of D as 1

2
√
‖wi‖22+ζ

. Then

it can be verified that the algorithm minimizes the following problem: Tr(WTSwW )
Tr(WTStW ) +

γ
∑d

i=1

√
‖wi‖22 + ζ is apparently reduced to problem Eq. (16) when ζ → 0.

In the following, we derive an iterative algorithm to solve the problem (18) with a
similar trick used in [17]. The Lagrangian function of the problem (18) is:

L(W,Λ) =
Tr(WTSwW )

Tr(WTStW )
+ γT r(WTDW )

−Tr(Λ(WTW − I)) . (19)

By taking the derivative w.r.t. W to zero, we have(
Sw −

Tr(WTSwW )

Tr(WTStW )
St + γT r(WTStW )D

)
W = WΛ . (20)

Thus, the optimal solution of W is the m smallest eigenvectors of the matrix:

Sw −
Tr(WTSwW )

Tr(WTStW )
St + γT r(WTStW )D. (21)

We can iteratively update the D and the W such that the Eq. (20), i.e. KKT condition,
is satisfied. Please notice that D is not a variable to optimize. In the iterative steps,
we optimize Eq. (21) to get W , and then re-calculate Eq. (21), where D is only an
intermediate value to help calculation.

In summary, the algorithm to solve the discriminative unsupervised feature selection
problem (13) is outlined in Algorithm 1. Since our formulation is based on TRACe ratio
and K-means formulations, we call this algorithm as TRACK for short.
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Algorithm 1. Algorithm to solve the objective of our TRACK method in (13).
Initialize D as an identity matrix.
repeat

1. Iteratively update F by Eq. (14) and update G by Eq. (15) till to converge.
2. Iteratively update the diagonal matrix D with the i-th diagonal element as di = 1

2‖wi‖2
,

and update W by the m eigenvectors corresponding to the m smallest eigenvalues of

Sw − Tr(W TSwW )

Tr(W TStW )
St + γTr(W TStW )D ,

till converge.
until Converges

5.1 Convergence Analysis

In Algorithm 1, the Step 1 is the K-means clustering procedure and converges to local
optimal solution. Step 2 is the iterative re-weighted algorithm to solve problem (16),
i.e. problem (18). In each iteration within Step 2, the objective value of problem (18)
is decreased until the algorithm converges. The proof is similar to [1,16], and thus we
omit it due to limited space. When the Step 2 converges, Eq. (20) is satisfied. Note
that Eq. (20) is the KKT condition of problem (18), therefore the converged solution
satisfies the KKT condition of problem (18), and thus is a local optimal solution to the
problem (18).

It deserves to be mentioned that, based on our unified and unique objective for both
steps, Step 1 and Step 2 in Algorithm 1 are guarantied to mutually benefit each other. On
the one hand, the better clustering results in Step 1 will result in better scatter matrices,
and thus results in more discriminative projection matrix in Step 2; On the other hand,
the more discriminative projection matrix in Step 2 will make the data more separable,
thus lead to better clustering results in Step 1.

5.2 Theoretical Analysis for Feature Selection

To guarantee the unsupervised feature selection process, we provide the following im-
portant theorems on the problem (13). First, we will show that our method guarantees
to have m features for selection, i.e. the sparsity shrinkage won’t over suppress the non-
zero rows in W . Second, we will prove that using the �1,2-norm regularization in our
TRACK objective is equivalent to using the �0,2-norm regularization, which is the ideal
feature selection formulation.

Theorem 1. The number of non-zero rows of the optimal solution to the problem (13)
will not be less than m.

Proof: Because W ∈ %d×m and WTW = I , the rank of W is m. Thus, the number
of non-zero rows of any feasible solution to the problem (13) will not smaller than m,
otherwise the rank of W is smaller than m. �

Theorem 1 indicates the selected feature number is at least m by solving the problem
(13) with even a very large γ. This is important, because the sparse learning based
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feature selection methods could over suppress the non-zero rows such that there are no
enough features for selection.

Moreover, we have the following theorem, which indicates that minimizing the �1,2-
norm of W in our TRACK objective is equivalent to minimizing the �0,2-norm of W
under the constraint of WTW = I .

Theorem 2. Let W ∈ %d×m. The optimal solutions to the problem min
WT W=I

‖W‖1,2
and the optimal solutions to the problem min

WTW=I
‖W‖0,2 are the same.

Proof: Obviously, the optimal solution W ∗ to the problem min
WTW=I

‖W‖0,2 is any ma-

trix with only m non-zero rows, and the matrix with the m non-zero rows is an orthonor-

mal matrix. Without loss of generality, suppose W ∗ =
[
W1

0

]
, where W1 ∈ %m×m is

an orthonormal matrix, then we have ‖W ∗‖1,2 = m. For any matrix W ∈ %d×m with

the constraint WTW = I , we can construct an orthonormal matrix Ŵ = [W,W⊥] ∈
%d×d, then the i-th row of Ŵ has ‖ŵi‖2 = 1, and then the i-th row of W has ‖wi‖2 ≤
1. So we have ‖wi‖2 ≥ ‖wi‖22, and then:

‖W‖1,2 ≥ ‖W‖
2
F = m = ‖W ∗‖1,2 . (22)

Therefore, W ∗ is the optimal solution to the problem min
WTW=I

‖W‖1,2. �
Therefore, in our TRACK method, features selected by the �1,2-norm regularization

are the same as using the ideal �0,2-norm regularization.

6 Experimental Results

In this section, we compare the proposed TRACK feature selection algorithm with other
state-of-the-art unsupervised feature selection algorithms: Maximum-Variance (Max-
Var), Laplacian Score (LS) [9], SPEC [27] and MCFS [2], and ldaKm [6].

6.1 Brief Descriptions of Comparison Methods

We briefly describe the comparison methods in this section. MaxVar is the simplest
unsupervised feature selection algorithm, which just select top ranked features with
maximum variance. Although selected features are representative for data variance, they
are not guaranteed to be discriminant for classification [9].

Laplacian Score selects features that can preserve the local manifold structure of
data, and such features are supposed to be discriminative. It computes the score for

each feature as Si =
f̂i

TLf̂i
f̂i

T
Df̂i

, where L is the graph Laplacian, and f̂i = fi − f̂i
T
D1

1TD1
1.

SPEC algorithm selects features that are most consistent with the graph structure of

data. It computes the score for each feature as Si = f̂i
TLf̂i, where f̂i =

D
1
2 fi
‖fi‖ .

MCFS algorithm first performs regression using the eigenvector of graph Laplacian,
and then selects features with maximum spectral regression coefficients. The regression
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problem is formulated as min
ak

∥∥yk −XTak
∥∥2
F
, where yk is the kth eigenvector of the

graph Laplacian matrix, ak is the spectral regression coefficients. The score for the ith
feature is defined as Si = max

k
|ak,i|.

LdaKm is an adaptive dimensionality reduction method that integrates K-means
clustering and LDA. The ldaKm alternatively performs the following two steps: (1) per-
form K-means clustering on projected space; (2) perform traditional ratio trace LDA to
get the projection matrix. Following our approach, �1,2-norm regularization is used to
select features for ldaKm method.

6.2 Data Sets and Evaluation Metrics

Four real world data sets are used to validate the effectiveness of our TRACK feature
selection algorithm: MSRC-V1, ORL, JAFFE, and XM2VTS.

MSRC-V1 database is from Microsoft Research in Cambridge. This data set contains
coarse pixel-wise labeled images, and it is commonly used for full scene segmentation.

ORL database contains a set of face images taken between April 1992 and April 1994
at the ATT lab. Ten different images are taken for each of the 40 distinct subjects. For
some subjects, the images were taken at different times, with different light condition,
facial expressions (i.e.: smiling or not smiling, open or closed eyes). All the images
were taken against a dark homogeneous background with the subjects in an upright,
frontal position.

JAFFE (Japanese Female Facial Expression) database contains 213 images of 7 fa-
cial expressions (6 basic facial expressions + 1 neutral) posed by 10 Japanese female
models, which were taken at the Psychology Department in Kyushu University. Each
image has been rated on 6 emotion adjectives by 60 Japanese subjects.

XM2VTS (Extended Multi Modal Verification for Teleservices and Security appli-
cations) database is a large multi-modal database which was captured onto high quality
digital video. It contains four recordings of 295 subjects taken over a period of four
months. Sets of data taken from this database are available including high quality color
images, 32 KHz 16-bit sound files, video sequences and a 3d Model.

Important statistics of the data sets are summarized in Table 1.

Table 1. Data set descriptions

sample # feature # class #

MSRC-V1 210 1302 7
ORL 400 644 40

JAFFE 213 1024 10
XM2VTS 1180 1024 295

Three measures are used to evaluate the clustering performance of all methods:
accuracy, normalized mutual information (NMI) and purity.
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Accuracy is the percentage of correct predicted label. Because the real label of each
cluster is unknown, the Hungarian algorithm [14] is used to get the best map to the
real label. Let C denotes the ground truth label, C′ denotes the label obtained from a
clustering algorithm, the mutual information (MI) is defined as:

MI(C,C′) = Σci∈C,c′j∈C′p(ci, c
′
j)log

p(ci, c
′
j)

p(ci)p(c′j)
(23)

where p(ci), p(c′j) are the probability of a arbitrarily selected sample belongs to cluster
ci, c′j , respectively. p(ci, c′j) is the probability of a arbitrarily selected sample belongs
to both cluster ci and c′j .

NMI is the normalized MI as following:

NMI(C,C′) =
MI(C,C′)

max(H(C), H(C ′))
(24)

where H(C)andH(C′) are the entropies of C and C′, respectively.
Purity is computed by assigning the label of a cluster to the most frequent class.

More formally, it is defined as:

purity(C,C′) =
1

N
Σj max

i
(c′j ∩ ci) (25)

6.3 Demonstration of Discriminant Power of Selected Features

In this section, we show the discriminant power of selected features by various algo-
rithms. We use different unsupervised feature selection algorithms to select top 30 fea-
tures on the MSRC-V1 data set. Then selected features are used to perform principle
component analysis (PCA), and data samples are projected onto the first 2 principle
components (PC), as shown in Figure 1 (PCA performed using top 30 features). For the
baseline method, all features are used to perform PCA.

From Figure 1, we can see that: The TRACK algorithm separates data much bet-
ter than other feature selection algorithms. The MCFS and ldaKm algorithms perform
slightly better than the remaining algorithms. Data are much more entangled with each
other using the MaxVar and SPEC algorithm. This shows that: the TRACK algorithm
can harness the discriminant power of trace ratio formulation, therefore, features se-
lected by the TRACK algorithm are much more discriminant than those selected by
other algorithms, and using those discriminant features can separate data from different
classes well.

6.4 Clustering Performance Comparison

We select top 10 till to top 100 features using different methods, and perform K-means
using the selected features to evaluate the clustering performance. Since K-means
clustering is sensitive to initialization, we perform 20 trials and record the average
clustering metric. The result of using all features is also reported as a baseline. The
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Fig. 1. Projection on first two principle components (PC) using top 30 features selected by various
feature selection algorithms on the MSRC-V1 data set. The horizontal axis is the score of the
first principle component, and the vertical axis is the score of the second principle component.
Different shape or color mark samples from different classes.

regularization parameter is tuned from {10−4, 10−3, 10−2, 10−1, 1, 10, 102, 103, 104}
for both the TRACK algorithm and the ldaKm algorithm. The reduced dimension m in
our method is set as: m = c − 1 if d <= n, and m = c − 1 + d − n if d > n, as
suggested in the paper [25]. Clustering accuracy, NMI, purity on the four data sets are
reported in Figures 2- 5.

From those figures, we can conclude that:
(1) On all the four data sets, our method can outperform other state-of-the-art unsu-

pervised feature selection algorithms on all evaluation metrics. The TRACK algorithm
can outperform the baseline (using all features) using just 20 to 50 features, which
justifies that the TRACK algorithm is able to select the most discriminant features.

(2) Generally, clustering performance becomes better when more features are
selected.
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Fig. 2. Clustering performance on MSRC-V1 data set
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Fig. 3. Clustering performance on ORL data set
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Fig. 4. Clustering performance on JAFFE data set
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Fig. 5. Clustering performance on XM2VTS data set
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Fig. 6. Clustering performance versus the regularization parameter on MSRC-V1 data set
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Fig. 7. Clustering performance versus the regularization parameter on ORL data set
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Fig. 8. Clustering performance versus the regularization parameter on JAFFE data set
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Fig. 9. Clustering performance versus the regularization parameter on XM2VTS data set



320 D. Wang, F. Nie, and H. Huang

(3) The MCFS algorithm performs the second best among the rest feature selection
algorithms on all four data sets. Especially on ORL data set, the performance of MCFS
is quite close to our TRACK algorithm.

6.5 Parameter Sensitivity

To study the sensitivity of our algorithm, we plotted the classification performance with
different regularization parameters, as shown in Figure 6 to 9. From these figures, we
can see that: our algorithm is not very sensitive to the regularization parameter. There-
fore, the parameter is easy to be tuned.

7 Conclusion

In this paper, we first rigorously prove that the unsupervised trace ratio formulation is
the unified and unique objective of both trace ratio LDA and K-means clustering. Then
we propose an unsupervised feature selection method using unsupervised trace ratio for-
mulation regularized by �1,2-norm of the projection matrix. The proposed method can
harness the discriminant power of trace ratio LDA, thus it tends to select discrimina-
tive features. We derive an efficient algorithm to solve the proposed model with proved
convergence. Four real world data sets are used to evaluate the effectiveness of the
proposed method. Empirical results show that the proposed method outperforms other
sate-of-the-art unsupervised feature selection algorithms on all three valuation metrics.
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Abstract. Neural Autoregressive Distribution Estimators (NADEs)
have recently been shown as successful alternatives for modeling high di-
mensional multimodal distributions. One issue associated with NADEs
is that they rely on a particular order of factorization for P (x). This
issue has been recently addressed by a variant of NADE called Order-
less NADEs and its deeper version, Deep Orderless NADE. Orderless
NADEs are trained based on a criterion that stochastically maximizes
P (x) with all possible orders of factorizations. Unfortunately, ancestral
sampling from deep NADE is very expensive, corresponding to running
through a neural net separately predicting each of the visible variables
given some others. This work makes a connection between this criterion
and the training criterion for Generative Stochastic Networks (GSNs).
It shows that training NADEs in this way also trains a GSN, which de-
fines a Markov chain associated with the NADE model. Based on this
connection, we show an alternative way to sample from a trained Order-
less NADE that allows to trade-off computing time and quality of the
samples: a 3 to 10-fold speedup (taking into account the waste due to
correlations between consecutive samples of the chain) can be obtained
without noticeably reducing the quality of the samples. This is achieved
using a novel sampling procedure for GSNs called annealed GSN sam-
pling, similar to tempering methods that combines fast mixing (obtained
thanks to steps at high noise levels) with accurate samples (obtained
thanks to steps at low noise levels).

1 Introduction

Unsupervised representation learning and deep learning have progressed rapidly
in recent years [5]. On one hand, supervised deep learning algorithms have
achieved great success. The authors of [15], for instance, claimed the state-of-
the-art recognition performance in a challenging object recognition task using
a deep convolutional neural network. Despite the promise given by supervised
deep learning, its unsupervised counterpart is still facing several challenges [3].
A large proportion of popular unsupervised deep learning models are based on
either directed or undirected graphical models with latent variables [12, 13, 20].
One problem of these unsupervised models is that it is often intractable to com-
pute the likelihood of a model exactly.

� CIFAR Fellow.

T. Calders et al. (Eds.): ECML PKDD 2014, Part III, LNCS 8726, pp. 322–336, 2014.
c© Springer-Verlag Berlin Heidelberg 2014



On the Equivalence between Deep NADE 323

The Neural Autoregressive Distribution Estimator (NADE) was proposed in
[16] to avoid this problem of computational intractability. It was inspired by the
early work in [4], which like NADE modeled a binary distribution by decom-
posing it into a product of multiple conditional distributions of which each is
implemented by a neural network, with parameters, representations and compu-
tations shared across all these networks. These kinds of models therefore imple-
ment a fully connected directed graphical model, in which ancestral sampling of
the joint distribution is simple (but not necessarily efficient when the number
of variables, e.g., pixel images, is large). Consequently, unlike many other latent
variable models, it is possible with such directed graphical models to compute the
exact probability of an observation tractably. NADEs have since been extended
to model distributions of continuous variables in [23], called a real-valued NADE
(RNADE) which replaces a Bernoulli distribution with a mixture of Gaussian
distributions for each conditional probability (see ,e.g., [9]). The authors of [22]
proposes yet another variant of NADE, called a Deep NADE, that uses a deep
neural network to compute the conditional probability of each variable. In order
to make learning tractable, they proposed a modified training procedure that
effectively trains an ensemble of multiple NADEs.

Another thread of unsupervised deep learning is based on the family of au-
toencoders (see, e.g., [25]). The autoencoder has recently begun to be understood
as a density estimator [1, 7]. These works suggest that an autoencoder trained
with some arbitrary noise in the input is able to learn the distribution of either
continuous or discrete random variables. This perspective on autoencoders has
been further extended to a generative stochastic network (GSN) proposed in [6].

Unlike a more conventional approach of directly estimating the probability
distribution of data, a GSN aims to learn a transition probability of a Markov
Chain Monte Carlo (MCMC) sampler whose stationary distribution estimates
the data generating distribution. The authors of [6] were able to show that
it is possible to learn the distribution of data with a GSN having a network
structure inspired by a deep Boltzmann machine (DBM) [21] using this approach.
Furthermore, a recently proposed multi-prediction DBM (MP-DBM) [11], which
models the joint distribution of data instance and its label, can be considered a
special case of a GSN and achieves state-of-the-art classification performance on
several datasets.

In this paper, we find a close relationship between the deep NADE and the
GSN. We show that training a deep NADE with the order-agnostic (OA) training
procedure [22] can be cast as GSN training. This equivalence allows us to have
an alternative theoretical explanation of the OA training procedure. Also, this
allows an alternative sampling procedure for a deep NADE based on a MCMC
method, rather than ancestral sampling.

In Sec. 2.1 and Sec. 3, we describe both NADE and GSN in detail. Based
on these descriptions we establish the connection between the order-agnostic
training procedure for NADE and the training criterion of GSN in Sec. 4 and
propose a novel sampling algorithm for deep NADE. In Sec. 5, we introduce a
novel sampling strategy for GSN called annealed GSN sampling, which is inspired
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by tempering methods and does a good trade-off between computing time and
accuracy. We empirically investigate the effect of the proposed GSN sampling
procedure for deep NADE models in Sec. 6.

2 Deep NADE and Order-Agnostic Training

In this section we describe the deep NADE and its training criterion, closely
following [22].

2.1 NADE

NADE [16] models a joint distribution p(x) where x ∈ R
D. D is the dimension-

ality of x. NADE factorizes p(x) into

p(x) =
D∏

d=1

p(xod |xo<d
) (1)

where o is a predefined ordering of D indices. o<d denotes the first d− 1 indices
of the ordering o.

The NADE then models each factor in Eq. (1) with a neural network having
a single hidden layer H . That is,

p(xod = 1|xo<d
) = σ(V.,odhd + bod),

where
hd = φ(W.,o<d

+ c).

V ∈ R
H×D, b ∈ R

D, W ∈ R
H×D and c ∈ RH are the output weights, the

output biases, the input weights and the hidden biases, respectively. σ is a logistic
sigmoid function, and φ can be any nonlinear activation function.

To train such a model, one maximizes the log-likelihood function of the train-
ing set

θ∗ = argmax
θ

Lo(θ) = argmax
θ

1

N

N∑
n=1

D∑
d=1

log p(xn
od
|xn

o<d
, o), (2)

where θ denotes all the parameters of the model.

2.2 Deep NADE

One issue with the original formulation of the NADE is that the ordering of
variables needs to be predefined and fixed. Potentially, this limits the inference
capability of a trained model such that when the model is asked to infer the
conditional probability which is not one of the factors in the predefined factor-
ization (See Eq. (1)). For instance, a NADE trained with D visible variables with
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an ordering (1, 2, . . . , D), one cannot easily infer x2‖x1, xD except by expensive
(and intractable) marginalization over all the other variables.

Another issue is that it is not possible to build a deeper architecture for
NADE with the original formulation without losing a lot in efficiency. When
there is only a single hidden layer with H units in the neural network modeling
each conditional probability of a NADE, it is possible to share the parameters
(the input weights and the hidden biases) to keep the computational complexity
linear with respect to the number of parameters, i.e., O(DH). However, if there
are more than one hidden layers, it is not possible to re-use computations in the
same way. In this case, the computational complexity is O(DH +DH2L) where
L is the number of hidden layers. Notice the extra D factor in front, compared
to the number of parameters which is O(DH+H2L). This comes about because
we cannot re-use the computations performed after the first hidden layer for
predicting the i-th variable, when predicting the following ones. In the one-layer
case, this sharing is possible because the hidden units weighted sums needed
when predicting the i+1-th variable are the same as the weighted sums needed
when predicting the i-th variable, plus the scalar contributions wki associated
with the k-th hidden unit and the extra input xi that is now available when
predicting xi+1 but was not available when predicting xi.

To resolve those two issues, the authors of [22] proposed the order-agnostic
(OA) training procedure that trains a factorial number of NADEs with shared
parameters. In this case, the following objective function is maximized, instead
of Lo in Eq. (2):

L(θ) = Exn

D∑
d=1

Eo<d
Eod log p(x

n
od |x

n
o<d

, θ, o). (3)

This objective function is, however, intractable, since it involves the factorial
number of summations. Instead, in practice, when training, we use a stochastic
approximation L̂ by sampling an ordering o, the index of predicted variable d
and a training sample xn at each time:

L̂(θ) = D

D − d+ 1

∑
i/∈o<d

log p(xn
i |xn

o<d
, θ, o). (4)

Computing L̂ is identical to a forward computation in a regular feedforward
neural network except for two differences. Firstly, according to the sampled or-
dering o, the input variables of indices o>d are set to 0, and the identity of the
zeroed indices is provided as extra inputs (through a binary vector of length D).
Secondly, the conditional probabilities of only those variables of indices o>d are
used to compute the objective function L̂.

This order-agnostic procedure solves the previously raised issues of the original
NADE. Since the model is optimized for all possible orderings, it does not suffer
from being inefficient at inferring any conditional probability. Furthermore, the
lack of predefined ordering makes it possible to use a single set of parameters for
modeling all conditional distributions. Thus, the computational cost of training
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a deep NADE with the OA procedure is linear with respect to the number of
parameters, regardless of the depth of each neural network.

From here on, we call a NADE trained with the OA procedure simply a deep
NADE to distinguish it from a NADE trained with a usual training algorithm
other than the OA procedure.

3 Generative Stochastic Networks

In [6, 7] a new family of models called generative stochastic networks (GSN)
was proposed, which tackles the problem of modeling a data distribution, p(x),
although without providing a tractable expression for it.

The underlying idea is to learn a transition operator of a Markov Chain Monte
Carlo (MCMC) sampler that samples from the distribution p(x), instead of learn-
ing the whole distribution directly. If we let p(x′ | x) be the transition operator,
then we may rewrite it by introducing a latent variable h into

p(x′ | x) =
∑
∀h

p(x′ | h)p(h | x). (5)

In other words, two separate conditional distributions p(x′ | h) and p(h | x)
jointly define the transition operator. In [6, 7] it is argued that it is easier to
learn these simpler conditional distributions because they have less modes (they
only consider small changes from the previous state), meaning that the associated
normalization constants can be estimated more easily (either by an approximate
parametrization, e.g., a single or few component mixture, or by MCMC on a
more powerful parametrization, which will have less variance if the number of
modes is small).

A special form of GSN also found with denoising auto-encoders predefines
p(h | x) such that it does not require learning from data. Then, we only learn
p(x′ | h). This is the case in [7], where they proposed to use a user-defined
corruption process, such as randomly masking out some variables with a fixed
probability, for p(h | x). They, then, estimated p(x′ | h) as a denoising autoen-
coder fθ, parameterized with θ, that reverses the corruption process p(h | x) [24].

It was shown in [7] that if the denoising process fθ is a consistent estimator
of p(x′ | h), this leads to consistency of the Markov chain’s stationary distri-
bution as an estimator of the data generating distribution. This is under some
conditions ensuring the irreducibility, ergodicity and aperiodicity of the Markov
chain, i.e., that it mixes. In other words, training fθ to match p(x′ | h) is enough
to learn implicitly the whole distribution p(x), albeit indirectly, i.e., through
the definition of a Markov chain transition operator. The result from [6] further
suggests that it is possible to also parameterize the corruption process p(h | x)
and learn both p(h | x) and p(x′ | h) together.

From the qualitative observation on some of the learned transition operators
of GSNs (see, e.g., [6]), it is clear that the learned transition operator quickly
finds a plausible mode in the whole distribution, even when the Markov chain
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was started from a random configuration of x. This is because the GSN recon-
struction criterion encourages the learner to quickly move from low probabil-
ity configurations to high-probability ones, i.e., to burn-in quickly. This is in
contrast to using a Gibbs sampler to generate samples from other generative
models that explicitly model the whole distribution p(x), which requires often
many more burn-in steps before the Markov chain finds a plausible mode of the
distribution.

4 Equivalence between Deep NADE and GSN

Having described both deep NADE and GSN, we now establish the relationship,
or even equivalence, between them. In particular, we show in this section that
the order-agnostic (OA) training procedure for NADE is one special case of GSN
learning.

We start from the stochastic approximation to the objective function of the
OA training procedure for deep NADE in Eq. (4). We notice that the sampled
ordering o in the objective function L̂ can be replaced with another random
variable m ∈ {0, 1}D, where D is the dimensionality of an observation x. The
binary mask m is constructed such that

mi =

{
1, if i ∈ o<d

0, otherwise

Then, we rewrite Eq. (4) by

L̂(θ) ∝
D∑
i=1

(1−mi) log p(x
n
i |m, xn, θ,m)

=

D∑
i=1

log (mi + (1−mi)p(x
n
i |m, xn, θ,m))

=

D∑
i=1

log
(
mi + (1−mi)p(x

n
i | h(n), θ)

)
(6)

where mi is the i-th element of the binary mask m, and , is an element-wise
multiplication. We introduced a new variable h = [m,m, xn] ∈ R

2D which is a
concatenation of the corrupted copy (some variables masked out) of xn and the
sampled mask m.

It is now easy to see the connection between the objective function of the OA
training procedure in Eq. (6) to a GSN training criterion using a user-defined
(not learned) corruption process which we described in the earlier section.

In this case, the corruption process p(h | x) (Eq. (5)) is

p(h | x) = p([m,m, x] | x) =
D∏
i=1

k

D∏
j=1

δmjxj (hj+D), (7)
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where k is a random number sampled uniformly between 0 and 1, and δμ(a) is
a shifted Dirac delta function which is 1 only when a = μ and 0 otherwise. This
means that sampling is done by first generating an uniformly random binary
mask m and then taking m, x as the corrupted version of x.

The conditional probability of x′ given h is

p(x′ | h) =
D∏
i=1

[miδxi(x
′
i) + (1−mi)p(x

′
i | ri(x,m | θ))] , (8)

where ri is a parametric function (neural network) that models the conditional
probability.

If we view the estimation of p(x′ | h) in Eq. (8) as a denoising autoencoder,
one effectively ignores each variable x′i with its maskmi set to 1, since the sample
of x′i from Eq. (8) is always xi due to δxi(x

′
i). A high-capacity auto-encoder could

learn that when mi = 1, it can just copy the i-th input to the i-th output. On the
other hand, when mi is 0, training this denoising autoencoder would maximize
log p(x′i | ri(x ,m | θ)), making it assign high probability to the original xi

given the non-missing inputs. Therefore, maximizing the logarithm of p(x′ | h)
in Eq. (8) is equivalent to maximizing L̂ in Eqs. (6) and (4) up to a constant.

In essence, maximizing L̂ in Eq. (4) is equivalent to training a GSN with the
conditional distributions defined in Eqs. (7)–(8). Furthermore, the chain defined
in this way is ergodic as every state x has a non-zero probability at each step
(x→ x′), making this GSN chain a valid MCMC sampler.

4.1 Alternative Sampling Method for NADE

Although the training procedure of the deep NADE introduced in [22] is order-
agnostic, sampling from the deep NADE is not.

The authors of [22] proposed an ancestral sampling method for a deep NADE.
Firstly, one randomly selects an ordering uniformly from all possible orderings.
One generates a sample of each variable from its conditional distribution follow-
ing the selected ordering. When D, H and L are respectively the dimensionality
of the observation variable, the number of hidden units in each hidden layer and
the number of layers, the time complexity of sampling a single sample using this
ancestral approach is O(DLH2).

We propose here an alternative sampling strategy based on our observation of
the equivalence between the deep NADE and GSN. The new strategy is simply
to alternating between sampling from p(h | x) in Eq. (7) and p(x′ | h) in Eq. (8),
which corresponds to performing Markov Chain Monte Carlo (MCMC) sampling
on p(x). The computational complexity of a single step (x → h → x′) in this
case is O(DH + LH2).

Unlike the original ancestral strategy, the proposed approach does not gener-
ate an exact sample in a single step. Instead, one often needs to run the chain
K steps until the exact, independent sample from the stationary distribution of
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the chain is collected, which we call burn-in. In other words, the new approach
requires O(KDH +KLH2) to collect a single sample in the worst case.1

If we assume that H is not too larger than D (H = O(D) or H = Θ(D)),
which is an usual practice, the time complexity of the ancestral approach is
O(D3), and that of the proposed GSN approach is O(KD2), where we further
assume that L is a small constant. Effectively, if the MCMC method used in the
latter strategy requires only a small, controllable number K of steps to generate
a single exact, independent sample such that K � D, the new approach is more
efficient in collecting samples from a trained deep NADE. Importantly, as we
have already mentioned earlier, a GSN has been shown to learn a transition
operator of an MCMC method that requires only a small number of burn-in
steps.

In the experiments, we investigate empirically whether this new sampling
strategy is computationally more efficient than the original ancestral approach
in a realistic setting.

4.2 The GSN Chain Averages an Ensemble of Density Estimators

As discussed in [22], maximizing L̂ in Eq. (3) can be considered as training
a factorial number of different NADEs with shared parameters. Each NADE
differs from each other by the choice of the ordering of variables and may assign
a different probability to the same observation.2 Based on this observation, it
is suggested in [22] to use the average of the assigned probabilities by all these
NADE, or a small randomly chosen subset of them, as the actual probability.

This interpretation of seeing the deep NADE as an ensemble of multiple
NADEs and our earlier argument showing that the deep NADE training is spe-
cial case of GSN training naturally leads to a question: does the GSN Markov
chain average an ensemble of density/distribution estimators?.

We claim that the answer is yes. From the equivalence we showed in this
paper, it is clear that a GSN trained with a criterion such as the NADE crite-
rion learns an ensemble of density/distribution estimators (in this case, masking
noise with the reconstruction conditional distribution in Eq. (8)). Furthermore,
when one samples from the associated GSN Markov chain, one is averaging the
contributions associated with different orders. So, although each of these con-
ditionals (predicting a subset given another subset) may not be consistent with
a single joint distribution, the associated GSN Markov chain which combines
them randomly does define a clear joint distribution: the stationary distribution
of the Markov chain. Clearly, this stationary distribution is an ensemble average
over all the possible orderings.

1 Since it is a usual practice to collect every t-th samples from the same chain, where
t << K, we often do not need KN steps to collect N samples.

2 The fact that all ensembles share the exact same parameters makes it similar to the
recently proposed technique of dropout [14].



330 L. Yao et al.

Fig. 1. Independent samples generated by the ancestral sampling procedure from the
deep NADE

5 Annealed GSN Sampling

With the above proposal for GSN-style sampling of a Deep NADE model, one
can view the average fraction p of input variables that are resampled at each
step as a kind of noise level, or the probability of resampling any particular
visible variable xi. With uniform sampling of subsets, we obtain p = 0.5, but
both higher and lower values are possible. When p = 1, all variables are re-
sampled independently and the resulting samples are coming from the marginal
distributions of each variable, which would be a very poor rendering of the Deep
NADE distribution, but would mix very well. With p as small as possible (or
more precisely, resampling only one randomly chosen variable given the others),
we obtain a Gibbs sampler associated with the Deep NADE distribution, which
we know has the same stationary distribution as Deep NADE itself. However,
this would mix very slowly and would not bring any computational gain over
ancestral sampling in the Deep NADE model (in fact it would be considerably
worse because the correlation between consecutive samples would reduce the
usefulness of the Markov chain samples, compared to ancestral sampling that
provides i.i.d. samples). With intermediate values of p, we obtain a compromise
between the fast computation and the quality of samples.

However, an even better trade-off can be reached by adopting a form of
annealed sampling for GSNs, a general recipe for improving the compromise
between accuracy of the sampling distribution and mixing for GSNs. For this
purpose we talk about a generic noise level, although in this paper we refer to
p, the probability of resampling any particular visible variable.

The idea is inspired by annealing and tempering methods that have been use-
ful for undirected graphical models [18, 19]: before sampling from the low-noise
regime, we run the high-noise version of the transition operator and gradually
reduce the noise level over a sequence of steps. The steps taken at high noise
allow to mix quickly while the steps taken at low noise allow to burn-in near
high probability samples. Therefore we consider an approximation of the GSN
transition operator which consists of the successive application of a sequence of
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Fig. 2. The consecutive samples from the two independent GSN sampling chains with-
out any annealing strategy. Both chains started from uniformly random configurations.
Note the few spurious samples which can be avoided with the annealing strategy (see
Figure 3).

instances of the operator associated with gradually reduced noise levels, ending
at the target noise level. Conceptually, it is as if the overall Markov chain was
composed, for each of its steps, by a short chain of steps with gradually de-
creasing noise levels. By making the annealing schedule have several steps at or
near the target low noise level, and by controlling the lengths of these annealing
runs, we can trade-off between accuracy of the samples (improved by a longer
annealing run length) and speed of computation.

In the experiments, we used the following annealing schedule:

pt = max(pmin, pmax − (t− 1) ∗ (pmax − pmin)/(α ∗ (T − 1)))

where pmax is the high noise level, pmin is the low (target) noise level, T is the
length of the annealing run, and α ≥ 1 controls which fraction of the run is spent
in annealing vs doing burn-in at the low noise level.

6 Experiments

6.1 Settings: Dataset and Model

We run experiments using the handwritten digits dataset (MNIST, [17]) which
has 60,000 training samples and 10,000 test samples. Each sample has 784 di-
mensions, and we binarized each variable by thresholding at 0.5. The training
set is split into two so that the first set of 50,000 samples is used to train a model
and the other set of 10,000 samples is used for validation.

Using MNIST we trained deep NADE with various architectures and sets of
hyperparameters using the order-agnostic (OA) training procedure (see Sec. 2.2).
The best deep NADE model according to the validation performance has two
hidden layers with size 2000 and was trained with a linearly decaying learning
rate schedule (from 0.001 to 0) for 1000 epochs. We use this model to evaluate
the two sampling strategies described and proposed earlier in this paper.
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Fig. 3. Samples generated by the annealed GSN sampling procedure for the same deep
NADE model. Visually the quality is comparable to the ancestral samples, and mixing
is very fast. This is obtained with pmax = 0.9, pmin = 0.1, α = 0.7 and T = 20.

6.2 Qualitative Analysis

Fig. 1 shows a subset of 10,000 samples collected from the deep NADE using
the conventional ancestral sampling. The average log-probability of the sam-
ples is −70.36 according to the deep NADE. As each sample by the ancestral
sampling is exact and independent from others, we use these samples and their
log-probability as a baseline for assessing the proposed GSN sampling procedure.

We first generate samples from the deep NADE using the GSN sampling
procedure without any annealing strategy. A sampling chain is initialized with
a uniformly random configuration, and a sample is collected at each step. The
purpose of this sampling is to empirically confirm that the GSN sampling does
not require many steps for burn-in. We ran two independent chains and visualize
the initial 240 samples from each of them in Fig. 2, which clearly demonstrates
that the chain rapidly finds a plausible mode in only a few steps.

Although this visualization suggests a faster burn-in, one weakness is clearly
visible from these figures (Fig. 2. The chain generates many consecutive samples
of a single digit before it starts generating samples of another digit. That is,
the samples are highly correlated temporally, suggesting potentially slow con-
vergence to the stationary distribution.

We then tried sampling from the deep NADE using the novel annealed GSN
sampling proposed in Sec. 5. Fig. 3 visualizes the collected, samples over the
consecutive annealing runs. Compared to the samples generated using the ordi-
nary GSN sampling method, the chain clearly mixes well. One can hardly notice
a case where a successive sample is a realization of the same digit from the pre-
vious sample. Furthermore, the samples are qualitatively comparable to those
exact samples collected with the ancestral sampling (see Fig. 1).

In the following section, we further investigate the proposed annealed GSN
sampling in a more quantitative way, in comparison to the ancestral sampling.
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6.3 Quantitative Results

We first evaluate the effect of using a user-defined noise level in p(h | x) (Eq. (7)).
We generated 1000 samples from GSN chains with five different noise levels;
0.1, 0.3, 0.4, 0.5 and 0.6. For each noise level, we ran 100 independent chains
and collected every 200-th sample from each chain. As a comparison, we also
generated 1000 samples from a chain with the proposed annealed GSN sampling
with pmax = 0.9, pmin = 0.1 and α = 0.7.

We computed the log-probability of the set of samples collected from each
chain with the deep NADE to evaluate the quality of the samples. Tab. 1 lists the
log-probabilities of the sets of samples, which clearly shows that as the noise level
increases the quality of the samples degrades. Importantly, none of the chains
were able to generate samples from the model that are close to those generated
by the ancestral sampling. However, the annealed GSN sampling was able to
generate samples that are quantitatively as good as those from the ancestral
sampling.

Noise Log-Probability

0.1 -77.1
0.3 -78.93
0.4 -77.9
0.5 -81.1
0.6 -88.1

Annealed -69.72

Ancestral -70.36

Table 1. Log-probability of 1000 samples when
anealing is not used. To collect samples, 100 par-
allel chains are run and 10 samples are taken from
each chain and combined together. The noise level
is fixed at a particular level during the sampling.
We also report the best log-probability of samples
generated with an annealed GSN sampling.

We also perform quantitative analysis to measure the computational gain
when using the GSN sampling procedure to generate samples. The speedup by
using annealed GSN sampling instead of ancestral sampling is shown in Figure
4. To compute the speedup factor, we timed both the ancestral NADE sampling
and GSN sampling on the same machine running single process. NADE sampling
takes 3.32 seconds per sample and GSN sampling takes 0.009 seconds. That
means the time to get one sample in ancestral sampling can get 369 samples
in GSN sampling. Although the the direct speedup factor is 369, it must be
discounted because of the autocorrelation of successive samples in the GSN chain.
Then we perform different GSN sampling runs with different settings of α. Figure
4 shows the results with different α. For each α, a GSN sampling starting at
random is run and we collect one out of every K samples till 1000 samples are
collected. The effective sample size [10] is then estimated based on the sum of the
autocorrelations in the autocorrelation factor. The speedup factor is discounted
accordingly.
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Fig. 4. The annealed GSN sampling pro-
cedure is compared against NADE an-
cestral sampling, trading off the compu-
tational cost (computational wrt to an-
cestral sampling on x-axis) against log-
likelihood of the generated samples (y-
axis). The computational cost discards
the effect of the Markov chain autocorre-
lation by estimating the effective number
of samples and increasing the computa-
tional cost accordingly.

7 Conclusions

This paper introduced a new view of the orderless NADE training procedure as
a GSN training procedure, which yields several interesting conclusions:

– The orderless NADE training procedure also trains a GSN model, where
the transition operator randomly selects a subset of input variables to be
resampled given the others.

– Whereas orderless NADE models really represent an ensemble of condition-
als that are not all compatible, the GSN interpretation provides a coherent
interpretation of the estimated distribution through the stationary distribu-
tion of the associated Markov chain.

– Whereas ancestral sampling in NADE is exact, it is very expensive for deep
NADE models, multiplying computing cost (of running once through the
neural network to make a prediction) by the number of visible variables. On
the other hand, each step of the associated GSN Markov chain only costs
running once through the predictor, but because each prediction is made in
parallel for all the resampled variables, each such step is also less accurate,
unless very few variables are resampled. This introduces a trade-off between
accuracy and computation time that can be controlled. This was validated
experimentally.

– A novel sampling procedure for GSNs was introduced, called annealed GSN
sampling, which permits a better trade-off by combining high-noise steps
with a sequence of gradually lower noise steps, as shown experimentally.
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Abstract. Nonnegative Matrix Factorization (NMF) has been applied
with great success to many applications. As NMF is applied to massive
datasets such as web-scale dyadic data, it is desirable to leverage a clus-
ter of machines to speed up the factorization. However, it is challenging
to efficiently implement NMF in a distributed environment. In this pa-
per, we show that by leveraging a new form of update functions, we can
perform local aggregation and fully explore parallelism. Moreover, un-
der the new form of update functions, we can perform frequent updates,
which aim to use the most recently updated data whenever possible. As a
result, frequent updates are more efficient than their traditional concur-
rent counterparts. Through a series of experiments on a local cluster as
well as the Amazon EC2 cloud, we demonstrate that our implementation
with frequent updates is up to two orders of magnitude faster than the
existing implementation with the traditional form of update functions.

1 Introduction

Nonnegative matrix factorization (NMF) [8] is a popular dimension reduction
and factor analysis method that has attracted a lot of attention recently. It arises
from a wide range of applications, including genome data analysis [3], text mining
[15], recommendation systems [7], and social network analysis [13, 20]. NMF
factorizes an original matrix into two low-rank factor matrices by minimizing
a loss function that measures the discrepancy between the original matrix and
the product of the two factor matrices. NMF algorithms typically use update
functions to iteratively and alternately refine factor matrices.

Many practitioners have to deal with NMF on massive datasets. For example,
recommendation systems in web services such as Netflix have been dealing with
NMF on web-scale dyadic datasets, which involve millions of users, millions of
movies, and billions of ratings. For such web-scale matrices, it is desirable to
leverage a cluster of machines to speed up the factorization. MapReduce [4] has
emerged as a popular distributed framework for data intensive computation. It
provides a simple programming model where a user can focus on the computa-
tion logic without worrying about the complexity of parallel computation. Prior
approaches (e.g., [12]) of handling NMF on MapReduce usually select an existing
NMF algorithm and then focus on implementing matrix operations.

T. Calders et al. (Eds.): ECML PKDD 2014, Part III, LNCS 8726, pp. 337–352, 2014.
c© Springer-Verlag Berlin Heidelberg 2014
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In this paper, we present a new form of factor matrix update functions. This
new form operates on blocks of matrices. In order to support the new form, we
partition the factor matrices into blocks along the short dimension and split the
original matrix into corresponding blocks. The new form of update functions
allows us to update distinct blocks independently and simultaneously when up-
dating a factor matrix. It also facilitates a distributed implementation. Different
blocks of one factor matrix can be updated in parallel. Additionally, the blocks
can be distributed in memories of all the machines in a cluster, thus avoiding
overflowing the memory of one single machine. Storing factor matrices in mem-
ory allows random access and local aggregation. As a result, the new form of
update functions leads to an efficient MapReduce implementation.

Moreover, under the new form of update functions, we can update only a
subset of its blocks when we update a factor matrix, and the number of blocks
in the subset can be adjusted. The only requirement is that when one factor
matrix is being updated, the other one has to be fixed. For instance, we can
update one block of a factor matrix and then immediately update all blocks of
the other factor matrix. We refer to this kind of updates as frequent block-wise
updates. Frequent block-wise updates aim to utilize the most recently updated
data whenever possible. As a result, frequent block-wise updates are more effi-
cient than their traditional concurrent counterparts, concurrent block-wise up-
dates, which update all blocks of either factor matrix alternately. Additionally,
frequent block-wise updates maintain the convergence property in theory.

We implement concurrent block-wise updates on MapReduce and implement
both concurrent and frequent block-wise updates on an extended version of
MapReduce, iMapReduce [25], which supports iterative computations more ef-
ficiently. We evaluate these implementations on a local cluster as well as the
Amazon EC2 cloud. With both synthetic and real-world datasets, the evaluation
results show that our MapReduce implementation for concurrent block-wise up-
dates is 19x - 57x faster than the existing MapReduce implementation [12] (with
the traditional form of update functions) and that our iMapReduce implemen-
tation further achieves up to 2x speedup over our MapReduce implementation.
Furthermore, the iMapReduce implementation with frequent block-wise updates
is up to 2.7x faster than that with concurrent block-wise updates. Accordingly,
our iMapReduce implementation with frequent block-wise updates is up to two
orders of magnitude faster than the existing MapReduce implementation.

2 Background

NMF aims to factorize an original matrix A into two low-rank factor matrices W
and H . Matrix A’s elements must be nonnegative by assumption. The achieved
factorization has the property of A � WH , and the factor matrices W and H
are also nonnegative. A loss function is used to measure the discrepancy between
A and WH . The NMF problem can be formulated as follows.

Given A ∈ R
m×n
+ and a positive integer k � min{m,n}, find W ∈ R

m×k
+ and

H ∈ R
k×n
+ such that a loss function L(A,WH) is minimized.
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Loss function L(A,WH) is typically not convex in both W and H together.
Hence, it is unrealistic to have an approach that finds the global minimum.
Fortunately, there are many techniques for finding local minima.

A general approach is to adopt the block coordinate descent rules [11]:
– Initialize W , H with nonnegative W 0, H0, t← 0.
– Repeat until a convergence criterion is satisfied:
Find Ht+1: L(A,W tHt+1) ≤ L(A,W tHt);
Find W t+1: L(A,W t+1Ht+1) ≤ L(A,W tHt+1).
When the loss function is the square of the Euclidean distance, i.e.,

L(A,WH) = ||A−WH ||2F , (1)

where || · ||F is the Frobenius norm, one of the most well-known algorithms for
implementing the above rules is Lee and Seung’s multiplicative update approach
[9]. It updates W and H as follows:

H = H ∗ WTA

WTWH
, W = W ∗ AHT

WHHT
. (2)

3 Distributed NMF

In this section, we present how to efficiently apply the block coordinate descent
rules to NMF in a distributed environment.

3.1 Decomposition

The loss function is usually decomposable [17]. That is, it can be represented
as the sum of losses for each element in the matrix. For example, the widely
adopted loss function, the square of the Euclidean distance, is decomposable.
We list several popular decomposable loss functions in Table 1. We focus on
NMF with decomposable loss functions in this paper.

Table 1. Decomposable loss functions

Square of Euclidean distance
∑

(i,j)(Aij − [WH ]ij)
2

KL-divergence
∑

(i,j) Aij log
Aij

[WH]ij

Generalized I-divergence
∑

(i,j)(Aij log
Aij

[WH]ij
− (Aij − [WH ]ij))

Itakura-Saito distance
∑

(i,j)(
Aij

[WH]ij
− log

Aij

[WH]ij
− 1)

Distributed NMF needs to partition the matrices W , H , and A across com-
puting nodes. To this end, we leverage a popular scheme in gradient descent
algorithms [6,18] that partitions W and H into blocks along the short dimension
to fully explore parallelism and splits the original matrix A into corresponding
blocks. We use symbolW (I) to denote the Ith block of W, H(J) to denote the J th
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block of H, and A(I,J) to denote the corresponding block of A (i.e., the (I, J)th

block). Under this partition scheme, A(I,J) is only related to W (I) and H(J),
and it is independent of other blocks of W and H , in terms of the loss value
(computed by the loss function). We refer to the partition scheme as block-wise
partition. The view of the block-wise partition scheme is shown in Figure 1.

W(1)

W(2)

W(c)

W = and H = 

A(1,1)  A(1,2) …  A(1,d)

A(2,1)  A(2,2) …  A(2,d)

A(c,1)  A(c,2) …  A(c,d)

A = ,H(1) H(2) … H(d)

(

… … … …… 

Fig. 1. The block-wise partition scheme for distributed NMF

Due to its decomposability, loss function L(A,WH) can be expressed as

L(A,WH) =
∑
I

∑
J

L(A(I,J),W (I)H(J)). (3)

Let FI =
∑

J L(A(I,J),W (I)H(J)) and GJ =
∑

I L(A
(I,J),W (I)H(J)), then

L(A,WH) =
∑
I

FI =
∑
J

GJ . (4)

FI and GJ can be considered as local loss functions. The overall loss function
L(A,WH) is the sum of the local loss functions. By fixing H, FI is independent of
one another. Therefore, FI can be minimized independently and simultaneously
by fixing H . Similarly, GJ can be minimized independently and simultaneously
by fixing W .

3.2 Block-wise Updates

In this paper, we use the square of the Euclidean distance as an example of
decomposable loss functions. Nevertheless, the techniques derived in this section
can be applied to any decomposable loss function.

The block-wise partition allows us to update its blocks independently when
updating a factor matrix (by fixing the other factor matrix). In other words,
each block can be treated as one update unit. We refer to this kind of updates
as block-wise updates. In the following, we illustrate how to update one block of
W (by minimizing FI) and that of H (by minimizing GJ ).

Here we first show how to update one block of H (i.e., H(J)). When W is
fixed, minimizing GJ can be expressed as follows:

min
H(J)

GJ = min
H(J)

∑
I

||A(I,J) −W (I)H(J)||2F . (5)
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We leverage gradient descent to update H(J):

H(J)
αμ = H(J)

αμ − ηαμ[
∂GJ

∂H(J)
]αμ, (6)

where H
(J)
αμ denotes the element at the αth row and the μth column of H(J), ηαμ

is an individual step size for the corresponding gradient element, and

∂GJ

∂H(J)
=
∑
I

[(W (I))TW (I)H(J) − (W (I))TA(I,J)]. (7)

If all step sizes are set to a sufficiently small positive number, the update
should reduce GJ . However, if the number is too small, the decrease speed can
be very slow. To obtain a good speed and to guarantee convergence, we derive
step sizes by following Lee and Seung’s multiplicative update approach [9]:

ηαμ =
H

(J)
αμ

[
∑

I(W
(I))TW (I)H(J)]αμ

. (8)

Then, substituting Eq. (7) and Eq. (8) into Eq. (6), we have:

H(J)
αμ = H(J)

αμ ∗
[
∑

I(W
(I))TA(I,J)]αμ

[
∑

I(W
(I))TW (I)H(J)]αμ

. (9)

Similarly, we can derive the update formula for W (I) as follows:

W (I)
αμ = W (I)

αμ ∗
[
∑

J A(I,J)(H(J))T ]αμ

[
∑

J W (I)H(J)(H(J))T ]αμ
. (10)

Block-wise updates can update each block of one factor matrix independently.
This flexibility allows us to have different ways of updating the blocks. We can
simultaneously update all the blocks of one factor matrix and then update all
the blocks of the other factor matrix. Also, we can update a subset of blocks of
one factor matrix and then update a subset of blocks of the other one, where the
number of blocks in the subsets can be adjusted. Additionally, block-wise up-
dates also facilitate a distributed implementation. Different blocks of one factor
matrix can be updated in parallel. Furthermore, the blocks can be distributed in
memories of all the machines in a cluster, thus avoiding overflowing the memory
of one single machine (when there are large factor matrices). Storing factor ma-
trices in memory allows random access and local aggregation, which are highly
useful for updating them.

3.3 Concurrent Block-wise Updates

With block-wise updates, a straightforward way of fulfilling the block coordinate
descent rules is to update all blocks of H and then update all blocks of W . Since
this approach updates all blocks of H (or W ) concurrently, we refer to it as
concurrent block-wise updates.
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From matrix operation perspective, we can show that concurrent block-wise
updates (using Eq. (9) and Eq. (10)) are equivalent to the multiplicative update
approach shown in Eq. (2). Without loss of generality, we assume that H(J) is a
block of H from the J th

0 column to the J th
b column. Let Y be a block of WTWH

from the J th
0 column to the J th

b column, then we have Y =
∑

I(W
(I))TW (I)H(J)

since WTW =
∑

I(W
(I))TW (I). Assuming that X is a block of WTA from

the J th
0 column to the J th

b column, we can show that X =
∑

I(W
(I))TA(I,J).

As a result, for both the concurrent block-wise updates and the multiplicative
update approach, the formula for updating H(J) is equivalent to H(J) = H(J) ∗
X
Y . Therefore, Eq. (9) is equivalent to the formula for updating H in Eq. (2).
Similarly, we can show that Eq. (10) is equivalent to the formula for updating
W in Eq. (2).

3.4 Frequent Block-wise Updates

Since all blocks of one factor matrix can be updated independently when the
other matrix is fixed, another (more general) way of fulfilling block coordinate
descent rules is to update a subset of blocks of W and then update a subset of
blocks of H . Since this approach updates the factor matrices more frequently
(compared to concurrent block-wise updates), we refer to it as frequent block-wise
updates. Frequent block-wise updates aim to utilize the most recently updated
data whenever possible and thus can potentially accelerate convergence.

More formally, frequent block-wise updates start with an initial guess of W
and H , and then seek to minimize the loss function by iteratively applying the
following two steps:
Step I: Fix W , update a subset of blocks of H using Eq. (9).
Step II: Fix H , update a subset of blocks of W using Eq. (10).
In both steps, the size of the subset is a parameter, and we rotate the subset
among all the blocks to guarantee that each block has an equal chance to be
updated. The size of the subset controls the update frequency. For example, if
we always set the subset to include all the blocks, frequent block-wise updates
degrade to concurrent block-wise updates.

Frequent block-wise updates maintain the convergence property. Using tech-
niques similar to that used in [9], we can prove that GJ and FI are nonincreasing
under formulae Eq. (9) and Eq. (10), respectively. Then, it is straightforward to
prove that L is nonincreasing when frequent block-wise updates are applied and
that L is constant if and only if W and H are at a stationary point of L.

Frequent block-wise updates provide a high flexibility in updating factor ma-
trices. For simplicity, we update a subset of blocks of one factor matrix and then
update all blocks of the other one in each iteration. Here, we assume that we
update a subset of blocks of W and then update all the blocks of H . Intuitively,
updating H frequently might incur additional overhead. However, we find that
the formula for updating H can be incrementally computed. That is, the cost of
updating H grows linearly with the number of W blocks that have been updated
in the previous iteration. As a result, performing frequent updates on H does
not necessarily introduce a large additional cost.
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To incrementally update H when a subset of W blocks are updated, we
introduce a few auxiliary matrices. Let X(J) =

∑
I(W

(I))TA(I,J), X(I,J) =

(W (I))TA(I,J), S =
∑

I(W
(I))TW (I), and S(I) = (W (I))TW (I). Then, H

(J)
αμ can

be updated by

H(J)
αμ = H(J)

αμ ∗
XJ

αμ

[SH(J)]αμ
. (11)

We next show how to incrementally calculate X(J) and S by saving their
values from the previous iteration. When a subset of W (I) (I ∈ C) have been
updated, the new value of X(J) and S can be computed as follows:

X(J) = X(J) +
∑
I∈C

[(W (I)new)TA(I,J) −X(I,J)]; (12)

S = S +
∑
I∈C

[(W (I)new)TW (I)new − S(I)]. (13)

From Eq. (11), Eq. (12), and Eq. (13), we can see that the cost of incrementally
updating H(J) depends on the number of W blocks that have been updated
rather than the total number of blocks that W has.

4 Implementation on Distributed Frameworks

MapReduce [4] and its extensions (e.g, [21, 22, 25]) have emerged as distributed
frameworks for data intensive computation. MapReduce expresses a computation
task as a series of jobs. Each job typically has one map task (mapper) and
one reduce task (reducer). In this section, we illustrate the implementation of
concurrent block-wise updates on MapReduce. Also, we show how to implement
frequent block-wise updates on an extended version of MapReduce, iMapReduce
[25], which supports iterative computations more efficiently.

Block-wise updates enable efficient distributed implementation. With block-
wise updates, the basic computation units in update functions (Eq. (9) and Eq.
(10)) are blocks of factor matrices and of the original matrix. The size of a
block can be adjusted. As a result, when performing essential matrix operations
that involve two blocks of matrices (e.g., (W (I))T and A(I,J)), we can assume
that at least the smaller block can be held in the memory of a single machine.
Since W and H are low-rank factor matrices, they are usually much smaller
than A, and thus the assumption that one of their blocks can be held in the
memory of a single machine is reasonable. The result matrix of an essential
matrix operation (e.g., (W (I))TA(I,J)) is usually relatively small and can be
held in the memory of a single machine as well. Storing a matrix (or a block
of a matrix) in memory efficiently supports random and repeated access, which
is commonly needed in a matrix operation such as multiplication. Maintaining
the result matrix in memory supports local aggregation. Therefore, each single
machine can complete an essential matrix operation locally and efficiently. Note
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that the other (larger) block (e.g., a block of A) is still in disk so as to scale to
large NMF problems.

Accordingly, the MapReduce programming model fits block-wise updates well.
An essential matrix operation with two blocks can be realized in one mapper,
and the aggregation of the results of essential matrix operations can be realized
in reducers. In contrast, the previous work [12], which implements the traditional
form of update functions on MapReduce, has a poor performance. For example,
to perform matrix multiplication (with two large matrices), a row (or column)
of one matrix needs to join with each column (or row) of the other one. Since
neither of these two large matrices can be held in memory, a huge amount of
intermediate data has to be generated and shuffled.

4.1 Concurrent Block-wise Updates on MapReduce

We first show an efficient MapReduce implementation for concurrent block-wise
updates. To realize matrix multiplication with two blocks of matrices in one
mapper, we exploit the fact that a mapper can load data in memory before
processing input key-value pairs and that a mapper can maintain state across the
processing of multiple input key-value pairs and defer emission of intermediate
key-value pairs until all input pairs have been processed.

The update formula for H(J) ( Eq. (9)) can be split into three parts: X(J) =∑
I(W

(I))TA(I,J), Y (J) =
∑

I(W
(I))TW (I)H(J), and H(J) = H(J) ∗ X(J)

Y (J) .

Computing X(J) can be done in one MapReduce job. The mapper calculates
(W (I))TA(I,J), and the reducer performs summation. LetX(I,J)=(W (I))TA(I,J).
When holding W (I) in memory, a mapper can compute X(I,J) via continuously

reading elements of A(I,J) from disk:X
(I,J)
·j =

∑
i=1 A

(I,J)
i,j (W

(I)
i· )T , whereX

(I,J)
·j

is the jth column of X(I,J), and W
(I)
i· is the ith row of W (I). X(I,J) (which is usu-

ally small) stays in memory for local aggregation. Then, the aggregation X(J) =∑
I X

(I,J) can be computed in a reducer. The operations of this job (Job-I) are
illustrated as follows.
– Map: Load W (I) in memory first, then calculate X(I,J) = (W (I))TA(I,J),
and last emit < J,X(I,J) >.

– Reduce: Take < J,X(I,J) > (for any I) and emit < J,X(J) >, where X(J) =∑
I X

(I,J).
Computing Y (J) =

∑
I(W

(I))TW (I)H(J) naturally needs two MapReduce
jobs. One job (Job-II) is used to compute S =

∑
I(W

(I))TW (I), and the other
one is used to calculate Y (J) = SH(J). Let S(I) = (W (I))TW (I). Calculating
S(I) (a small k × k matrix) can be performed in one mapper. Then, all the
mappers send (W (I))TW (I) to one particular reducer for a global summation.
The MapReduce operations are stated as follows.
– Map: Load W (I) in memory first, then calculate S(I) = (W (I))TW (I), and
last emit < 0, S(I) > (sending to reducer 0).

– Reduce: Take < 0, S(I) > and emit < 0, S >, where S =
∑

I S
(I).

After computing S =
∑

I(W
(I))TW (I), calculating Y (J) = SH(J) can be done

in a MapReduce job (Job-III) with the map phase only, as follows.
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– Map: Load S in memory. Emit tuples < J, Y (J) >, where Y (J) = SH(J).
Lastly, one MapReduce job (with the map phase only) can compute H(J) ←

H(J) ∗ X(J)

Y (J) . The operations of this job (Job-IV) are described as follows.

– Map: Read < J,H(J) >, < J,X(J) >, and < J, Y (J) > (column by column).

Emit tuple < J,H(J)new >, where H(J)new = H(J) ∗ X(J)

Y (J) .
In the previous implementation, we try to minimize data shuffling by utilizing

local aggregation. However, in each iteration it still needs four MapReduce jobs
to update H . In addition, intermediate data (e.g., X(J)) needs to be dumped
into disk and be reloaded in latter jobs.

Job 1 Map:

Job 2 Reduce:

Job 2 Map:

Job 1 Reduce:

Fig. 2. Overview of the optimized implementation for updating H(J) on MapReduce

To avoid dumping and reloading intermediate data, such as X(J) and Y (J),
and to minimize the number of jobs, we integrate Job-I, Job-III, and Job-IV
into one job (Job-2). The integrated job has the same map phase as Job-I.
However, in the reduce phase, besides computing X(J), it also computes Y (J)

and finally calculates H(J)new = H(J) ∗ [X(J)/Y (J)]. Job-II can be kept (as
Job-1) for the simplicity of implementation since it only produces a small (k ×
k) matrix and reloading its output does not take much time. The overview of
our optimized implementation is presented in Figure 2, and the MapReduce
operations in the integrated job (Job-2) are described as follows (the operations
in Job-1 are skipped since they are the same with those in Job-II).
– Map: Load W (I) in memory first, then calculate X(I,J) = (W (I))TA(I,J),
and last emit < I,X(I,J) >.

– Reduce: Take < I,X(I,J) >, and first calculate X(J). Load S in memory.
Then, read H(J) so as to compute Y (J). Last, calculate H(J)new .
In the above, we describe the MapReduce operations used to complete the

update ofH for one iteration. UpdatingW can be performed in the same fashion.
The formula for W ( Eq. (10)) can be also treated as three parts: U (I) =∑

J A(I,J)(H(J))T , V (I) =
∑

J W (I)H(J)(H(J))T , and W (I) = W (I) ∗ U(I)

V (I) . Due
to space limitations, we omit the description of its MapReduce operations.

4.2 Frequent Block-wise Updates on iMapReduce

Although frequent block-wise updates have potential to speed up NMF, paral-
lelizing frequent block-wise updates in a distributed environment is challenging.
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Computations such as global summations need to be done in a centralized way.
Synchronizing the global resources in a distributed environment may result in
a considerable overhead, especially on MapReduce. MapReduce starts a new
job for each computation errand. Each job needs to be initialized and to load
its input data, even when the data is from the previous job. Frequent updates
introduce more jobs. Consequently, the initialization overhead and the cost of
repeatedly loading data may cause the benefit of frequent updates to vanish.

In this subsection, we propose an implementation of frequent block-wise up-
dates on iMapReduce [25]. iMapReduce uses persistent mappers and reducers
to avoid job initialization overhead. Each mapper is paired with one reducer. A
pair of mapper and reducer can be seen as one logical worker. Data shuffling be-
tween mappers and reducers is the same with that of MapReduce. In addition,
a reducer of iMapReduce can redirect its output to its paired mapper. Since
mappers and reducers are persistent, state data can be maintained in memory
across different iterations. Accordingly, iMapReduce decreases the overhead of a
job. As a result, it provides frequent block-wise updates with an opportunity to
achieve a good performance.

We implement frequent block-wise updates on iMapReduce in the following
way. H is evenly split into r blocks, and W is evenly partitioned into p∗r blocks,
where r is the number of workers and p is a parameter used to control update
frequency. Each worker handles p blocks of W and one block of H . In each
iteration a worker updates its H block and one selected W block. That is, there
are r blocks of W in total to be updated in each iteration. Each worker rotates
the selected W block among all its W blocks. The setting of p plays an important
role on frequent block-wise updates. Setting p too large may incur considerable
overhead for synchronization. Setting it too small may degrade the effect of the
frequent updates. Nevertheless, we will show in our experiments (Section 5.4)
that quite a wide range of p can enable frequent block-wise updates to have better
performance than concurrent block-wise updates. Note that like the MapReduce
implementation, our iMapReduce implementation still reads A from disk every
time rather than holds it in memory so as to scale to large NMF problems. The
operations in our iMapReduce implementation are illustrated as follows (Map-
1x represents different stages of a mapper, and Reduce-1x represents different
stages of a reducer).

– Map-1a: Load a subset (i.e., p) of W blocks (e.g., (W (B)new)) in mem-
ory (first iteration only) or receive one updated W block from the previ-
ous iteration. For all the loaded or received blocks, compute Sl via Sl =∑

B(W
(B)new)TW (B)new (first iteration) or Sl = Sl+((W (B)new)TW (B)new−

(W (B))TW (B)), and replace W (B) with W (B)new. Broadcast < 0, Sl > to all
the reducers.

– Reduce-1a: Take < 0, Sl >, compute S =
∑

l Sl, and store S in memory.
– Map-1b: For each loaded or received W block in the previous stage (e.g.,
(W (B)new)), emit tuple < J,X(B,J) > where XJ = (W (B)new)TA(B,J) (first
iteration) or < J,ΔX(B,J) > where ΔX(B,J) = (W (B)new)TA(B,J)−X(B,J).
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– Reduce-1b: Take < J,X(B,J) > and calculate X(J) =
∑

B X(B,J) (first
iteration) or take < J,ΔX(B,J) > and calculate X(J) = X(J)+

∑
B ΔX(B,J).

Then, load H(J) into memory (first iteration) and compute Y (J) = SH(J).

Last, calculate H(J)new by (H(J)new = H(J) ∗ X(J)

Y (J) ), store it in memory, and

pass one copy to Map-1c in the form of < J,H(J)new >.
– Map-1c: Receive (just updated) H(J) from Reduce-1b. Broadcast < J,
H(J)(H(J))T > to all the reducers.

– Reduce-1c: Take < J,H(J)(H(J))T >, compute Z =
∑

J H(J)(H(J))T , and
store Z in memory.

– Map-1d: For aW block that is selected in the current iteration (e.g., (W (B))),
emit tuples in the form of < (B,U (B,J) >, where U (B,J) = A(B,J)(H(J))T .

– Reduce-1d: Take < B,U (B,J) > and calculate U (B) =
∑

J U (B,J). Then,

compute V (B) = W (B)Z. Last, calculate W (B)new = W (B) ∗ U(B)

V (B) , store it in
memory, and pass one copy to Map-1a.

5 Evaluation

In this section, we evaluate the efficiency of block-wise updates. To show the
performance improvement, we use the existing implementation [12] as a reference
point. For MapReduce, we leverage its open source version, Hadoop [1].

5.1 Experiment Setup

We build both a local cluster and a large-scale cluster on Amazon EC2. The local
cluster consists of 4 machines, and each one has a dual-core 2.66GHz CPU, 4GB
of RAM, 1TB of disk. The Amazon cluster consists of 100 medium instances,
and each instance has one core, 3.7GB of RAM, and 400GB of disk.

Table 2. Summary of datasets

Dataset # of rows # of columns # of nonzero elements

Netflix 480, 189 17, 770 100M

NYTimes 300, 000 102, 660 70M

Syn-m-n m n 0.1 ∗m ∗ n

Both synthetic and real-word datasets are used in our experiments. We use
two Real-world datasets. One is a document-term matrix, NYTimes, from UCI
Machine Learning Repository [2]. The other one is a user-movie matrix from the
Netflix prize [7]. We also generate several matrices with different choices of m
and n. The sparsity is set to 0.1, and each element is a random integer uniformly
selected from the range [1, 5]. The datasets are summarized in Table 2.

Unless otherwise specified, we use rank k = 10, and use p = 8 for frequent
block-wise updates (which means each worker updates 1/8 of its local W blocks
in each iteration).
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5.2 Comparison with Existing Work

The first set of experiments focus on the advantage of our (optimized) implemen-
tation of concurrent block-wise updates on MapReduce. We compare it with the
existing work of implementing the multiplicative update approach on MapRe-
duce [12], which uses the traditional form of update functions. We also include
the implementation of concurrent block-wise updates on iMapReduce in the
comparison (by setting p = 1) to show iMapReduce’s superiority over MapRe-
duce. As described in Section 3.4, concurrent block-wise updates are equivalent
to the multiplicative update approach, and thus we focus on the time taken in
a single iteration to directly compare the performance. Figure 3 shows the time
taken in one iteration for all the three implementations. Note that the y-axis
is in log scale. Our implementation on MapReduce (denoted by “Block-wise on
MR”) is 19x - 57x faster than the existing MapReduce implementation (denoted
by “Row/Column-wise on MR”). Moreover, the implementation on iMapReduce
(denoted by “Block-wise on iMR”) is up to 2x faster than that on MapReduce.
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Fig. 3. Time taken in one iteration for different implementations on the local cluster

5.3 Effect of Frequent Block-wise updates

To evaluate the effect of frequent block-wise updates, we compare frequent block-
wise updates with concurrent block-wise updates when both are implemented on
iMapReduce. Both update approaches start with the same initial values when
compared on the same dataset. Figure 4 plots the performance comparison. We
can see that frequent block-wise updates (“Frequent”) converge much faster than
concurrent block-wise updates (“Concurrent”) on all the three datasets. In other
words, if we use a predefined loss value as the convergence criterion, frequent
block-wise updates would have much shorter running time.

5.4 Tuning Update Frequency

As stated in Section 4.2, the update frequency affects the performance of fre-
quent block-wise updates. In the experiments, we find that quite a wide range of
p can allow frequent block-wise updates to have a better performance than their
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Fig. 4. Convergence speed on the local cluster
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Fig. 5. Convergence speed vs. update frequency on dataset Netflix. The numbers as-
sociated with “Fre” represent different settings of p.

concurrent counterparts, and the best setting of p stays in the range from 4 to
32. This is also why we set p = 8 by default. For example, Figure 5 shows the
convergence speed with different settings on dataset Netflix. Another interesting
finding is that if a setting is better during a first few iterations, it will continue to
be better. Hence, another way of obtaining a good setting of p is to test several
candidate settings, each for a few iterations, and then choose the best one.

5.5 Different Data Sizes

We also measure how block-wise updates scale with the increasing size of matrix
A. We generate synthetic datasets of different sizes by fixing the number of
(100k) rows and increasing the number of columns. We use the loss value when
concurrent block-wise updates run for 25 iterations as the convergence point.
The time used to reach this convergence point is measured as the running time.
This criterion also applies to the latter comparisons. As presented in Figure 6,
the running times of both types of updates increase linearly with the size of
the dataset. Moreover, frequent block-wise updates are up to 2.7x faster than
concurrent block-wise updates.

To summarize, our iMapReduce implementation with frequent block-wise up-
dates (“Frequent”) is up to two orders of magnitude faster than the exist-
ing MapReduce implementation (“Row/Column-wise on MR”). Take dataset
Syn-100K-20K for example. Our MapReduce implementation with concurrent
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Fig. 6. Running time vs. dataset size on the local cluster

block-wise updates (“Block-wise on MR”) is 57x faster than the existing MapRe-
duce implementation (as shown in Figure 3). The iMapReduce implementation
(“Block-wise on iMR”) achieves 1.5x speedup over the MapReduce implementa-
tion. Furthermore, on iMapReduce, frequent block-wise updates are 1.8x faster
than concurrent block-wise updates. In total, our iMapReduce implementation
with frequent block-wise updates is 154x faster than the existing MapReduce
implementation for dataset Syn-100K-20K.

5.6 Scaling Performance

To validate the scalability of our implementations, we evaluate them on the
Amazon EC2 cloud. We use dataset Syn-1M-20K, which has 1 million rows,
20 thousand columns, and 2 billion nonzero elements. Figure 7a plots the time
taken in a single iteration when all the three implementations are running on
100 nodes. Our implementation on MapReduce is 23x faster than the existing
implementation. Moreover, the implementation on iMapReduce is 1.5x faster
than that on MapReduce. Figure 7b shows the performance as the number of
nodes being used increases from 20 to 100. We can see that the running times
of both frequent block-wise updates and concurrent block-wise updates decrease
smoothly as the number of nodes increases. In addition, frequent block-wise
updates outperform concurrent block-wise updates with any number of nodes in
the cluster.
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Fig. 7. Performance on the Amazon EC2 cloud
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6 Related Work

Matrix factorization has been applied very widely [3,7,13,15,20]. Due to its pop-
ularity and increasingly larger datasets, many approaches for parallelizing it have
been proposed. Zhou et al. [26] and Schelter et al. [16] show how to distribute
the alternating least squares algorithm. Both approaches require each computing
node to have a copy of one factor matrix when the other factor matrix is updated.
This requirement limits their scalability. For large matrix factorization problems,
it is important that factor matrices can be distributed. Several works handle ma-
trix factorization using distributed gradient descent methods [6,10,18,24]. These
approaches mainly focus on in-memory settings, in which both the original ma-
trix and factor matrices are held in memory, and the forms of update functions
used are different from the form we present. Additionally, our approach allows
the original matrix to be in disk so as to scale to large NMF problems. A closely
related work is from Liu et al. [12]. They propose a scheme of implementing the
multiplicative update approach on MapReduce. Their scheme is based on the
traditional form of update functions, which results in a poor performance.

It has been shown that frequent updates can accelerate expectation maxi-
mization (EM) algorithms [14,19,23]. Somewhat surprisingly, there has been no
attempt to apply this method to NMF, even though there is equivalence between
certain variations of NMF and some particular EM algorithms like K-means [5].
Our work demonstrates that frequent updates can also accelerate NMF.

7 Conclusion

In this paper, we find that by leveraging a new form of update functions,
block-wise updates, we can perform local aggregation and thus have an efficient
MapReduce implementation for NMF. Moreover, we propose frequent block-wise
updates, which aim to use the most recently updated data whenever possible. As
a result, frequent block-wise updates can further improve the performance, com-
paring with concurrent block-wise updates. We implement frequent block-wise
updates on iMapReduce, an extended version of MapReduce. The evaluation
results show that our iMapReduce implementation is up to two orders of mag-
nitude faster than the existing MapReduce implementation.
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Abstract. We propose a new message-passing algorithm for the
quadratic optimization problem. As opposed to the min-sum algorithm,
the new algorithm involves two minimizations and one summation at
each iteration. The new min-sum-min algorithm exploits feedback from
last iteration in generating new messages, resembling the Jacobi-
relaxation algorithm. We show that if the feedback signal is large enough,
the min-sum-min algorithm is guaranteed to converge to the optimal so-
lution. Experimental results show that the min-sum-min algorithm out-
performs two reference methods w.r.t. the convergence speed.

Keywords: quadratic optimization, Gaussian belief propagation, min-
sum, min-sum-min.

1 Introduction

In this paper we consider solving a quadratic optimization problem in a dis-
tributed fashion, namely

min
x∈Rn

f(x)
Δ
= min

x∈Rn

(
1

2
x
Jx− h
x

)
, (1)

where the quadratic matrix J ∈ R
n×n is real symmetric positive definite and

h ∈ R
n. It is known that the optimal solution is given by x∗ = J−1h. We suppose

that the quadratic matrix J is sparse and the dimensionality n is large. In this
situation, the direct computation (without using the sparse structure of J) of
the optimal solution may be expensive and unscalable. One natural question is
how to exploit the sparse geometry to efficiently obtain the optimal solution.

A common approach that exploits the sparsity of J is to associate the function
f(x) with an undirected graph G = (V,E). That is, the graph has a node for
each variable xi and an edge between node i and j only if the element Jij is
nonzero. By doing so, the sparsity of J is fully captured by the graph. As a
consequence, the function can be decomposed with respect to G = (V,E) as

f(x) =
∑
i∈V

fi(xi) +
∑

(i,j)∈E
fij(xi, xj), (2)
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where each edge-function fij(xi, xj) characterizes the interaction of xi and xj as
specified by Jij . With the graphic model (2), distributed quadratic optimization
(DQO) boils down to how to spread the global information of (J, h) in (1) over
the graph efficiently by exchanging local information between neighboring nodes.

In the literature, the Jacobi algorithm is a natural approach for solving the
problem over the associated graph [1]. At each iteration, the algorithm performs
node-oriented minimizations over all the nodes in the graph, of which the mes-
sages are in a form of linear functions (see Table 1). It is known that when
the matrix J is walk-summable1, the Jacobi algorithm converges to the optimal
solution [3,5]. To fix the convergence for a general matrix J , the Jacobi algo-
rithm was under-relaxed by incorporating an estimate of x∗ from last iteration
in computing a new estimate (see Table 1). The Jacobi-relaxation algorithm pos-
sesses a guaranteed convergence if the relaxation parameter is properly chosen
[1]. For the above two algorithms, once a node-estimate is updated, this estimate
is broadcast to all its neighbors. Because the information transmitted is general,
and not edge-specific, the two algorithms are known to converge slowly [1].

Table 1. Algorithm comparison. The min-sum-min algorithm is a new method that
we will present in the paper.

J is walk-summable J is general

Jacobi Alg.:
* node-oriented minimization
* linear message

Jacobi-relaxation Alg.:
* introduce feedback in Jacobi Alg.

LiCD Alg.:
* pairwise minimization
* linear message

GLiCD Alg.:
* introduce feedback in LiCD Alg.

min-sum Alg.:
* pairwise minimization
* quadratic message

min-sum-min Alg.:
* introduce feedback in min-sum Alg.

To accelerate the convergence of the Jacobi algorithm, the linear coordinate
descent (LiCD) algorithm was proposed in [9]. At each iteration, the LiCD algo-
rithm performs pairwise minimizations over all the edges in the graph, of which
the messages are in a form of linear functions (see Table 1). As shown in [9],
if the quadratic matrix J is walk-summable, the LiCD algorithm converges to
the optimal solution. To fix the convergence for a general matrix J , the LiCD
algorithm was further extended in [10] by incorporating feedback from last iter-
ation in computing new messages, which is referred to as the generalized LiCD
(GLiCD) algorithm.

An alternative scheme for solving the quadratic problem is by using the frame-
work of probability theory. The optimal solution x∗ is viewed as the mean value
of a random vector x ∈ R

n with Gaussian distribution

1 See subsection 2.3 for the definition.



Min-Sum-Min Message-Passing for Quadratic Optimization 355

p(x) ∝ exp

(
−1

2
x
Jx+ h
x

)
. (3)

The min-sum (also known as max-product) algorithm is one popular approach to
estimate both the mean value x∗ = J−1h and individual variances [8,2]. At each
iteration, the algorithm essentially performs pairwise minimizations over all the
edges in the graph, of which the messages are in a form of quadratic functions
(see Table 1). For a graph with a tree-structure, the min-sum algorithm converges
to the optimal solution in finite steps [8]. The question of convergence for loopy
graphic models has been proven difficult. In [3,5,6], it was shown when the matrix
J is walk-summable, the min-sum algorithm converges to the optimal solution
(see Table 1). In [4], a double-loop algorithm has been proposed to compute the
optimal solution for a general matrix J , where the min-sum algorithm is used as
a subroutine. We note that the double-loop algorithm is time-consuming. This
motivates us to develop a single-loop min-sum based algorithm.

In this paper, we complete Table 1 by proposing a (single-loop) min-sum-min
algorithm for a general quadratic optimization problem. Our primary motivation
is to fix the convergence failure of the min-sum algorithm when the matrix J
is general. Inspired by the GLiCD algorithm, the min-sum-min algorithm also
incorporates feedback from last iteration in computing new messages. Compared
to the min-sum algorithm, the min-sum-min algorithm involves one more mini-
mization at each iteration. The additional minimization is performed to compute
the estimate of x∗, which is used to construct the feedback signal in generating
new messages.

We also study the convergence of the min-sum-min algorithm. We show that
by setting the feedback signal large enough in computing new messages, the al-
gorithm possesses a guaranteed convergence. Experimental results show that the
min-sum-min algorithm converges faster than the Jacobi-relaxation and GLiCD
algorithms.

2 Min-Sum-Min Message-Passing

In this section, we present the min-sum-min algorithm for the quadratic opti-
mization problem. In particular, we describe how to construct feedback signal
in update the messages.

2.1 Message-Passing Framework

Consider the quadratic optimization problem (1). Without loss of generality, we
assume the quadratic matrix J is of unit diagonal (i.e., Jii = 1, i = 1, . . . , n).
By using the sparsity of the matrix J , the quadratic function f(x) can be de-
composed w.r.t. a graph G = (V,E)

f(x) =
∑
i∈V

fi(xi) +
∑

(i,j)∈E
fij(xi, xj),
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where the node and edge functions are given by

fi(xi) =
1

2
x2
i − hixi i ∈ V (4)

fij(xi, xj) = Jijxixj (i, j) ∈ E. (5)

An edge exists between node i and j in the graph only if Jij �= 0. For each node

i ∈ V , we denote the set of its neighbors as N(i)
Δ
= {j ∈ V : (i, j) ∈ E}. For

each edge (i, j) ∈ E, we use [j, i] to denote the directed edge from node i to j.

Correspondingly, we denote the set of all directed edges of the graph as
−→
E .

The min-sum-min algorithm intends to minimize the quadratic function in an
iterative, synchronous message-passing fashion. At time t, each node i keeps track
of a message and an estimate of x∗i from each neighbor u ∈ N(i). We denote the

message and the estimate from node u to i as m
(t)
ui (xi) and x̂

u,(t)
i , respectively.

Correspondingly, we use x̂
(t)
edge to denote the vector of all the estimates at time

t. x̂
(t)
edge is of dimension |−→E |, of which each component x̂

j,(t+1)
i corresponds to a

directed edge [i, j] ∈ −→E . Note that for each node i ∈ V , the estimates {x̂u,(t)
i , u ∈

N(i)} reveal information about the optimal solution x∗i . Thus, the estimates
obtained at time t can be used as feedback in computing new messages and new
estimates at time t+ 1.

Formally, we use the estimates at time t to construct |E| penalty functions,
one for each edge in the graph. In particular, we define the penalty function

p
(t)
ij (xi, xj) for (i, j) ∈ E to be a quadratic function:

p
(t)
ij (xi, xj) =

s

2

(
xi − x̂

j,(t)
i

)2

+
s

2

(
xj − x̂

i,(t)
j

)2

, (6)

where the weighting factor 1 > s ≥ 0. Note that each penalty function only in-
volves the estimates that are computed along the associated edge. The particular
form of the penalty function enables the performance analysis of the algorithm
(see Section 3.2).

With the penalty functions (6), we define new node and edge functions at
time t as

g
(t)
i (xi) =(1− s)fi(xi) +

∑
u∈N(i)

m
(t)
ui (xi) i ∈ V (7)

g
(t)
ij (xi, xj) =(1− s)fij(xi, xj)−m

(t)
ji (xi)−m

(t)
ij (xj)

+ p
(t)
ij (xi, xj) (i, j) ∈ E. (8)

As opposed to (4)-(5), the new edge and node functions (7)-(8) include both the
current messages and the penalty functions.

In next subsection, we explain how to use (7)-(8) in computing new messages
and estimates. Note that as the weighting factor s approaches to one, the original
function f(x) has less and less impact on the new local functions (7)-(8). While
at the same time, the penalty function enlarges the impact of the estimates when
computing new estimates and messages in next iteration.
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Remark 1. We point out that when s = 0, the local-function formation (7)-(8)
coincides with that of the min-sum algorithm [6]. It is the penalty functions that
make the node and edge functions special.

2.2 Message-Updating Expressions

We have thus far presented the message-passing framework. In particular, we
have defined the penalty functions (6). In this subsection, we derive the updating
expressions for the messages and estimates. We then point out the difference
between the min-sum-min and min-sum algorithms.

Suppose that the messages at time t take a quadratic form: (see [6] for a
similar definition)

m
(t)
ui (xi) = −

1

2
γ
(t)
ui (1− s)2J2

uix
2
i + z

(t)
ui xi, ∀ [u, i] ∈ −→E , (9)

where {γui} and {zui} are quadratic parameters and linear parameters, respec-
tively. The weighting factor s is involved in (9) because of the penalty functions.
We use γ(t) to denote the vector of all the quadratic parameters at time t. Simi-
larly, we use z(t) to denote the vector of all the linear parameters. Both γ(t) and

z(t) are of dimension |−→E |.
We now compute the new estimates and messages for time t + 1 given

the information at time t. Without loss of generality, we focus on comput-

ing {m(t+1)
ij ,m

(t+1)
ji } and {x̂j,(t+1)

i , x̂
i,(t+1)
j } that are associated with the edge

(i, j) ∈ E. Note that the old messages {m(t)
ij ,m

(t)
ji } and estimates {x̂j,(t)

i , x̂
i,(t)
j }

are only involved in three local functions {g(t)i (xi), g
(t)
j (xj), g

(t)
ij (xi, xj)}. Thus,

we use the three local functions in computing the corresponding new messages
and estimates.

Formally, we define a function L
(t)
ij (xi, xj) for (i, j) ∈ E to be

L
(t)
ij (xi, xj)

Δ
= g

(t)
i (xi) + g

(t)
j (xj) + g

(t)
ij (xi, xj). (10)

The function L
(t)
ij (xi, xj) is in a quadratic form. For the time being, we assume

that L
(t)
ij (xi, xj) is a strictly convex quadratic function. In other words, the 2×2

quadratic matrix in L
(t)
ij (xi, xj) is assumed to be symmetric positive definite.

In next subsection, we explain under what conditions the assumption holds.

We compute the new estimates {x̂j,(t+1)
i , x̂

i,(t+1)
j } by minimizing the function

L
(t)
ij (·, ·) over xi and xj :(

x̂
j,(t+1)
i , x̂

i,(t+1)
j

)
= arg min

xi,xj

L
(t)
ij (xi, xj). (11)

Since L
(t)
ij (xi, xj) is a quadratic function, x̂

j,(t+1)
i and x̂

i,(t+1)
j have closed-form

expressions.



358 G. Zhang and R. Heusdens

Note that the information about x̂
j,(t+1)
i or x̂

i,(t+1)
j is embedded in both node

i and j. We design the message m
(t+1)
ji (xi) with the purpose to bring all the

information about x̂
j,(t+1)
i that is contained in node j to node i. In doing so, we

reconsider the minimization of L
(t)
ij (xi, xj):

min
xi,xj

L
(t)
ij (xi, xj) = min

xi

[
g
(t)
i (xi) + min

xj

(
g
(t)
j (xj) + g

(t)
ij (xi, xj)

) ]
= min

xi

[
g
(t)
i (xi) +

s

2
(xi − x̂

j,(t)
i )2 −m

(t)
ji (xi)

+min
xj

(
(1 − s)fj(xj) + (1− s)fij(xi, xj)

+
∑

v∈N(j)\i
m

(t)
vj (xj) +

s

2

(
xj − x̂

i,(t)
j

)2)]
. (12)

By following (12), we define m
(t+1)
ji (xi) to be

m
(t+1)
ji (xi)

Δ
=min

xj

(
(1 − s)fj(xj) + (1− s)fij(xi, xj)

+
∑

v∈N(j)\i
m

(t)
vj (xj) +

s

2

(
xj − x̂

i,(t)
j

)2)
+ κ, (13)

where κ represents an arbitrary offset term. The derivation of m
(t+1)
ij (xj) follows

a similar procedure.
Based on the above computation guideline, we present the final expressions for

the new messages and estimates. By combining (4)-(5), (9) and (13), we obtain

the expressions for γ
(t+1)
ji and z

(t+1)
ji of m

(t+1)
ji (xi) as

γ
(t+1)
ji =

1

1−
∑

v∈N(j)\i γ
(t)
vj (1− s)2J2

vj

, (14)

z
(t+1)
ji = (1 − s)Jijγ

(t+1)
ji

(
(1− s)hj + sx̂

i,(t)
j −

∑
v∈N(i)\i

z
(t)
vj

)
. (15)

The parameters γ
(t+1)
ij and z

(t+1)
ij of m

(t+1)
ij (xi) can be computed similarly. By

combining (11)-(15), we obtain the expressions for x̂
j,(t+1)
i and x̂

i,(t+1)
j as(

x̂
j,(t+1)
i

x̂
i,(t+1)
j

)
=

1

(1− s)Jij

(
1 (1− s)Jijγ

(t+1)
ij

(1− s)Jijγ
(t+1)
ji 1

)−1(
z
(t+1)
ij

z
(t+1)
ji

)
. (16)

The above expression fully characterizes the relationship between the estimates
and the linear parameters. With (14)-(16) at hand, one can easily work out the
updating-expressions of the messages and estimates associated with other edges
in the graph.
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Finally we reconsider the expression (12). Note that there are two minimiza-
tions and one summation involved in (12). As indicated in (13), the minimization

over xj and the summation of the incoming messages excluding m
(t)
ij originate

from the min-sum algorithm. The second minimization over xi in (12) computes
an estimate of x∗i , which is used as feedback in generating new messages and
estimates in next iteration. This is how the name min-sum-min message-passing
comes up.

Remark 2. It is worth noting that when s = 0 in (14)-(15), we actually obtain
the message-updating expressions for the min-sum algorithm. In other words,
the min-sum-min algorithm includes the min-sum algorithm as a special case by
setting s = 0.

2.3 Algorithm Implementation

In this subsection, we consider the algorithm implementation. We mainly study
under what conditions the minimization problem (11) is well defined for t ≥ 0
and for any (i, j) ∈ E.

Before formally presenting the algorithm implementation, we first provide
the definition of the walk-summability of a positive definite matrix below. We
emphasize that the min-sum algorithm converges to the optimal solution if the
matrix J in (1) is walk-summable [3,5,6].

Definition 1. [3,5] A symmetric positive definite matrix J ∈ R
n×n, with all

ones on its diagonal, is walk-summable if the spectral radius of the matrix R̄,
where R = I − J and R̄ = [|Rij |]ni,j=1 , is less than one (i.e., ρ(R̄) < 1).

To facilitate the analysis, we set the initial estimates and messages to be

zero, i.e., x̂
(0)
edge = 0, γ(0) = 0 and z(0) = 0. We note that x̂

(0)
edge and z(0) have

to satisfy Equation (16). In order for the algorithm to evolve continuously by
following (14)-(16), the minimization problem (11) should be correctly posed for
any t ≥ 0. By working on (11), a sufficient condition can be derived:

1 > (1− s)2J2
ijγ

(t)
ij γ

(t)
ji ∀(i, j) ∈ E, (17)

γ(t) > 0, (18)

where t = 1, 2, . . .. Note that the above two equations only involve the quadratic
vector γ(t) and J .

Next we argue that if the parameter s is chosen such that the matrix

Js = sI + (1 − s)J (19)

is walk-summable, (17)-(18) hold for any t ≥ 1. Note that Js is again of unit-
diagonal. It is not difficult to show that when s ∈ (#1 − 1/ρ(R̄)$+, 1), Js is
walk-summable. The operation #w$+ = max(0, w) for w ∈ R. From [6], it is
known that if Js is walk-summable, then γ(t) converges to a fixed point γ∗s by
following (14). Further,

γ∗s ≥ γ(t+1) ≥ γ(t) ∀t ≥ 0. (20)
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Considering the fixed point γ∗s in (17), we have

1 > (1− s)2J2
ijγ
∗
{s,ij}γ

∗
{s,ji} ∀(i, j) ∈ E

⇐⇒1
(a)
>

∑
u∈N(i)

(1− s)2J2
uiγ
∗
{s,ui} ∀(i, j) ∈ E, (21)

where step (a) follows from (14) and the fact that γ∗s is stable. (21) holds when Js
is walk-summable [6,7]. By using (20)-(21) and the initialization γ(0) = 0, it can
be easily shown that (17)-(18) hold when Js is walk-summable. We summarize
the result in a lemma below:

Lemma 1. if s is chosen from (#1−1/ρ(R̄)$+, 1) such that Js is walk-summable
and γ(0) = 0, then the minimization problem (11) is well defined for any (i, j) ∈
E, t ≥ 0. The quadratic vector γ(t) monotonically converges to γ∗s .

Besides the quadratic vector γ(0), we also have to initialize x̂
(0)
edge and z(0).

Due to the expression (16), we only need to initialize x̂
(0)
edge, the linear vector z

(0)

can be computed accordingly. If the algorithm converges to the optimal solution
as t→∞, we have

x̂
u,(∞)
i = x∗i ∀u ∈ N(i) and i ∈ V.

For the estimation vector x̂
(t)
edge, t ≥ 0, we denote its corresponding optimal

solution as x∗edge. In practice, one can measure the difference of the estimates

{x̂u,(t)
i , u ∈ N(i)} for each variable xi to terminate the iteration procedure.
To briefly summarize,the min-sum-min algorithm generalizes the min-sum

algorithm by introducing the penalty functions. Our goal in this paper is to
study whether the min-sum-min algorithm converges for an arbitrary positive
definite matrix J by choosing the weighting factor s properly.

3 Convergence of Min-Sum-Min Algorithm

In this section, we study the convergence of the min-sum-min algorithm. We
first reformulate the message updating-expressions into vector forms. We then
present the convergence analysis for the min-sum-min algorithm.

3.1 Reformulation of the Message Updating-Expressions

In this subsection, we reformulate the two updating expressions (15)-(16) into
vector forms. The vector forms provide a big picture of the evolution of the
algorithm.

We first consider the evolution of the linear vector z(t). From (15), we have

z(t+1) = (1− s)2BD(t)y + s(1− s)BD(t)x̂
(t)
edge

−(1− s)BD(t)Cz(t) t ≥ 0 (22)
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where the matrices D(t), B, C ∈ R
|−→E |×|−→E |, and the vector y ∈ R

|−→E |, are given by

D
(t)
ij,uk =

{
γ
(t)
ij u = i, k = j and [i, j] ∈ −→E

0 otherwise

Bij,uk =

{
Jij u = i, k = j and [i, j] ∈ −→E
0 otherwise

Cij,uk =

{
1 u �= j, k = i and [i, j], [u, k] ∈ −→E
0 otherwise

yij = hi [i, j] ∈ −→E .

D(t) and B are two diagonal matrices. In particular γ(t) = D(t) · 1, where 1 is
the all-one vector. As γ(t) → γ∗s over time, D(t) converges to D∗s .

Next we consider the evolution of x̂
(t)
edge. By combining (16) and (22), we have

x̂
(t+1)
edge = (1− s)A(t)D(t)y + sA(t)D(t)x̂

(t)
edge

−(1− s)A(t)D(t)CBA(t)−1x̂(t)
edge t ≥ 0, (23)

where the matrix A(t) ∈ R
|−→E |×|−→E | is given by

A
(t)
ij,uk =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

1−(1−s)2J2
ijγ

(t)
ij γ

(t)
ji

u = i, k = j and [i, j] ∈ −→
E

−(1−s)Jijγ
(t)
ij

1−(1−s)2J2
ijγ

(t)
ij γ

(t)
ji

u = j, k = i and [i, j] ∈ −→
E

0 otherwise

.

The matrix A(t) converges to A∗s as γ(t) → γ∗s .
Upon obtaining (23), the remaining work is to study under what conditions

x̂
(t)
edge converges to the optimal solution x∗edge. To achieve this goal, we analyze

(23) in two steps. In the first step, we consider the extreme case with D∗s and

A∗s in (23). In this situation, x̂
(t)
edge can be alternatively expressed as

x̂
(t)
edge = (1 − s)A∗s

t∑
i=0

[D∗s(sA
∗
s − (1 − s)CB)]

i
D∗sy. (24)

It is immediate from (24) that if the spectral radius of the matrix D∗s(sA∗s −
(1− s)CB) is less than 1 (i.e., ρ(D∗s(sA

∗
s − (1− s)CB)) < 1), x̂

(t)
edge converges to

a fixed point as t → ∞. We note that at this moment it is unclear if the fixed

point x̂
(∞)
edge is identical to x∗edge.

In the second step, we consider the overall convergence specified by (23). We
assume Js is walk-summable and the spectral radius of D∗s(sA

∗
s − (1 − s)CB)

is less than 1. By using the result of Lemma 1, it is known that there exists an
integer K such that when t ≥ K, the spectral radius of D(t)(sA(t) − (1− s)CB)

is less than one. This implies that x̂
(t)
edge in (23) also converges to a fixed point
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provided with sufficient time. In fact, both (23) and (24) converge to the same
fixed point. Due to limited space, we will not provide the proof here. One can
refer to Section VI of [6] for a detailed argument on proving a similar result.

Based on the above analysis, we summarize the result in a lemma below.

Lemma 2. Under the initialization γ(0) = 0, if the matrix Js in (19) is walk-
summable and the spectral radius of D∗s(sA

∗
s − (1 − s)CB) is less than 1, the

estimation vector x̂
(t)
edge converges to a fixed point. In particular, the fixed point

is given by

lim
t→∞ x̂

(t)
edge = (1 − s)A∗s

(
I − sD∗sA

∗
s + (1− s)D∗sCB

)−1
D∗sy. (25)

Lemma 2 provides a general sufficient convergence condition for the min-
sum-min algorithm. For the situation that the algorithm converges, one natural

question is if the fixed point x̂
(∞)
edge is identical to the optimal solution x∗edge. To

clarify, x∗edge is constructed from x∗, and is of dimension |−→E |. We show in the

following that x̂
(∞)
edge = x∗edge when the algorithm converges. We let γ(0) = γ∗s to

simplify the argument.

Lemma 3. Under the initialization γ(0) = γ∗s , if the matrix Js in (19) is walk-
summable and the spectral radius of D∗s(sA

∗
s − (1 − s)CB) is less than 1, the

fixed point x̂
(∞)
edge in (25) is the same as x∗edge

x∗edge = (1− s)A∗s
(
I − sD∗sA

∗
s + (1 − s)D∗sCB

)−1
D∗sy. (26)

Proof. From Lemma 2, it is clear that when the algorithm converges, the fixed

point x̂
(∞)
edge is independent of the initial vector x̂

(0)
edge. In other words, any initial-

ization would result in the same fixed point. In order to prove the lemma, we

consider a special initialization for the estimation vector. That is x̂
(0)
edge = x∗edge.

It is immediate from (10)-(11) and (16) that x̂
(t)
edge = x̂∗edge for any t ≥ 0. The

optimal solution x∗edge is the fixed point. The proof is complete. �

Remark 3. In fact, one can generalize Lemma 2 by considering more general
initializations. See [6] for how to initialize γ(0) and z(0). In this paper, we consider
the special initialization for simplicity.

3.2 Convergence Analysis

We have known from (6) that the parameter s determines the amount of feedback
in computing new messages and estimates. We show in the following that when
s approaches to 1, the min-sum-min algorithm converges. We use the Taylor
expansions in the argument.
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As indicated in Lemma 3, the key point in proving the algorithm convergence
is to study the spectral radius of the matrix D∗s(sA

∗
s− (1−s)CB). Note that the

two matrices D∗s and A∗s take complicated forms while the matrix CB is much
simple. We now study the properties of A∗s and D∗s in detail. Due to the special
structure of A∗s , its inverse can be easily computed:

A∗−1s = I + (1− s)D∗sH, (27)

where

H{ij,uk} =
{
Jij u = j, k = i and [i, j] ∈ −→E
0 otherwise

.

By using (27), the matrix A∗s can be represented by an infinite series in terms
of D∗sH , which is given by A∗s =

∑∞
i=0(−1)i(1− s)i(D∗sH)i. By using algebra on

the infinite series, we obtain

A∗s = I − (1 − s)A∗sD
∗
sH. (28)

Similarly, by applying the Taylor expansion on D∗s , we have

D∗s = I + (1− s)2D∗sPs, (29)

where the matrix Ps is given by

P{s,ij,uk} =

{∑
v∈N(i)\j J

2
viγ

∗
{s,vi} [i, j] = [u, k] and [i, j] ∈ −→

E

0 otherwise
.

Now we are ready to study the matrix D∗s(sA∗s − (1 − s)CB). By applying
(28)-(29), the matrix can be rewritten as

D∗s (sA
∗
s − (1− s)CB)

= D∗s(sI − s(1− s)A∗sD
∗
sH − (1 − s)CB)

= D∗s
[
sI − (1 − s)CB − (1− s)D∗sH

+(1− s)2D∗sH + s(1− s)2A∗s(D
∗
sH)2

]
= sI − (1− s)(CB +H)

+(1− s)2g(A∗s , D
∗
s , Ps, H,CB), (30)

where g(·) is a matrix function in terms of the matrices {A∗s, D∗s , Ps, H,CB}.
Note that the last term in (30) is of second order of (1 − s). Also, as s→ 1, γ∗s
converges to 1. This implies that the matrices A∗s , D

∗
s and Ps are bounded when

s ∈ (#1 − 1/ρ(R̄)$+, 1). Thus, as s → 1, the last term in (30) can be ignored,
which results in

D∗s(sA
∗
s − (1− s)CB) ≈ sI − (1− s)(CB +H), as s→ 1.

To facilitate the analysis in the following, we denote Qs = sI− (1−s)(CB+H).



364 G. Zhang and R. Heusdens

Next we derive the eigenvalues of the matrix Qs. Denote the eigenvalues of J
as {λi > 0, i = 1, . . . , |V |}. We first note that the matrix CB+H takes the form

(CB +H)ij,uk =

{
Jui k = i and [i, j], [u, k] ∈ −→E
0 otherwise

.

By relating the matrix CB +H with R = I − J , one can show that all the non-
zero eigenvalues of CB +H are {λi − 1, i = 1, . . . , |V |}. Finally, the eigenvalues
of Qs are give by

{s+ (1− s)(1 − λi), i = 1, . . . , |V |}
⋃
{s}.

Using the fact that λi > 0 for all i, it can be shown that when 1 > s >
⌊
ρ(R)−1
ρ(R)+1

⌋
+

(i.e., R = I − J), the spectral radius of Qs is less than 1. Further, as s→ 1, all
the eigenvalues of Qs approach to 1. As ρ(R) ≤ ρ(R̄) (see Corollary 6.3 in [1]),
it is immediate that ⌊

ρ(R)− 1

ρ(R) + 1

⌋
+

≤ #1− 1/ρ(R̄)$+.

Thus, we can safely say that when 1 > s > #1 − 1/ρ(R̄)$+, the spectral radius
of Qs is less than 1.

The above analysis shows that if s is sufficiently close to 1, the min-sum-min
algorithm converges, which we summarize in a theorem below.

Theorem 1. If the parameter s is sufficiently close to 1 from below, the spectral
radius of the matrix D∗s(sA

∗
s− (1− s)CB) is less than 1. Consequently, the min-

sum-min algorithm converges to the optimal solution.

Remark 4. We point out that the matrix Qs can be used to construct the
message-updating expression of the Jacobi-relaxation algorithm [1]. In partic-
ular, the expression takes the form

x̂
(t)
edge =

t−1∑
k=0

Qk
sy +Qt

sx̂
(0)
edge.

Compared with Jacobi-relaxation algorithm, the min-sum-min algorithm up-
dates the estimates nonlinearly in terms of the elements of J (see (23)), resulting
in the last term in (30).

4 Dynamic Adaption of the Weighting Factor s

We have known thus far that when the weighting factor s is sufficiently close
to 1, the min-sum-min algorithm converges to the optimal solution. Right now
we cannot provide a fixed support region for s with guaranteed convergence.
On the other hand, in practice, we have to choose some value for s. Intuitively
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Table 2. The min-sum-min algorithm with dynamic parameter s

Initialization: γ(0) = 0, x̂
(0)
edge = 0, Flag = 0,

s = �1− 1/ρ(‖R‖1�+, sbest = s, rbest = 1
repeat{min-sum-min iteration: t=1,2,...}

if r(t) is stable AND Flag=0 then

if r(t) < rbest then

rbest = r(t), sbest = s, s = s+ 0.1
else

Flag=1, s = sbest
end if

end if
until it terminates

speaking, if the parameter s is chosen to be very close to 1, the min-sum-min
algorithm may take many iterations to reach the stoping criterion, making the
algorithm less valuable. This motivate us to dynamically adjust the weighting
factor s when running the min-sum-min algorithm.

We now explain how we adjust the weighting factor s in the algorithm. we first

compress the estimation vector x̂
(t)
edge from dimension

−→
E to |V |. In particular, we

compute an estimate x̂
(t)
i for each optimal component x∗i by using {x̂u,(t)

i , u ∈
N(i)}:

x
(t)
i =

1

|N(i)|
∑

u∈N(i)

x̂
u,(t)
i . (31)

We denote the resulting estimation vector as x̂(t) = [x̂
(t)
i , . . . , x̂

(t)
|V |], which is of

dimension |V |.
With the vector x̂(t), we then define a new sequence {r(t), t ≥ 2}:

r(t) =
‖x̂(t) − x̂(t−1)‖2
‖x̂(t−1) − x̂(t−2)‖2 . (32)

For a fixed parameter s, the sequence {r(t), t ≥ 2} would become stable after
a number of iterations. We search for a value of s in [#1 − 1/‖R‖1$+, 1) such
that the corresponding stable value of the sequence {r(t), t ≥ 2} is as small as
possible, which we denote as sbest. We note that once the value sbest is found
after a number iterations, it will remain the same in the following iterations.

The pseudo-code of the min-sum-min algorithm with dynamic parameter s is
provided in Table 2. The stepsize Δs for searching for the value sbest is set to be
0.1. The parameter ”Flag” is used to indicate if the value sbest has been found
or not.
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Table 3. Numbers of iterations of the two algorithms for seven pairs of (J, h)

1 2 3 4 5 6 7

(|V |, |E|) (10,26) (10,16) (15,75) (15,39) (20,56) (20,70) (25, 182)

Jacobi-relaxation 1011 4635 4239 3498 6078 24130 15005

GLiCD 587 398 3050 2276 4568 18775 11516

min-sum-min 330 188 2474 1513 3691 16047 9801

4.1 Experiments with Synthetic Data

We tested the min-sum-min algorithm with the synthetic data. In the imple-
mentation of the min-sum-min algorithm in Table 2, we measured the error
|r(t)− r(t−1)| for checking the stability of the sequence {r(t), t ≥ 2}. The thresh-
old for |r(t) − r(t−1)| was set as 10−4.

We also implemented the Jacobi-relaxation and GLiCD algorithms for com-
parison (see Table 1). The GLiCD also has a free parameter s required to be
adjusted in order to guarantee its convergence (see [10]). We adapted a similar
procedure of Table 2 to adjust the parameter s for GLiCD. For the Jacobi-
relaxation algorithm, it is known that when s = #1− 1/‖R‖1$+, it converges to
the optimal solution [1]. Therefore, we fixed the parameter s = #1 − 1/‖R‖1$+
in implementing the Jacobi-relaxation algorithm. To terminate the iterations of
the three algorithms, the infinite norm between an estimate and the optimal
solution was measured. The convergence threshold was set as 10−5.

Seven pairs of (J, h) were randomly generated and tested by the three al-
gorithms. The experimental results are displayed in Table 3. It is seen that
the Jacobi-relaxation algorithm performs the worst in terms of number of it-
erations for all the seven optimization problems. Conversely, the min-sum-min
algorithm performs the best. This might be because the quadratic messages
carry more information than the linear messages (see Table 1 for the algorithmic
comparison).

4.2 Experiments with Real Data

We also tested the three algorithms for the J matrices downloaded from the Ma-
trix Market website repository [11], where the matrices originated from some real
applications. The vector h in (1) were randomly generated. The implementation
of the three algorithms were the same as for the synthetic data.

Fig. 1 displays the performance results of the three algorithms for two par-
ticular J matrices (one is of size 48× 48 and the other one is of size 468× 468).
The min-sum-min and GLiCD algorithms converges significantly faster than the
Jacobi-relaxation algorithm. This may be because the Jacobi-relaxation algo-
rithm only involves linear updates of the estimates while the other two algo-
rithms apply nonlinear updates of the estimate (See Remark 4 and [10]). Also
we have observed that for the J matrix of size 48× 48, the convergence speeds
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Fig. 1. Performance comparison for J matrices downloaded from [11]

of the min-sum-min and GLiCD algorithms are quite similar. For the above
particular case, the GLiCD algorithm is favorable because it only transmits linear
messages within the graph, thus saving half of transmission energy required for
the min-sum-min algorithm. Other matrices were also tested and similar results
were obtained.

5 Conclusion

In this paper, we have proposed the min-sum-min algorithm for the quadratic
optimization problem. The min-sum-min algorithm parallels with the Jacobi-
relaxation and GLiCD algorithms (See Table 1). Also we have studied the
convergence of the min-sum-min algorithm. We have shown that if the feed-
back signal is set to be large enough (i.e., the parameter s is close to 1), the
min-sum-min algorithm converges to the optimal solution. Experimental results
show that the min-sum-min algorithm is advantageous over the Jacobi-relaxation
and GLiCD algorithms in terms of the convergence speed.
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Abstract. Existing key-word based image search engines return images whose
title or immediate surrounding text contains the search term as a keyword. When
the search term is ambiguous and means different things, the results often come
in a mixed bag of different entities. This paper proposes a novel framework that
understands the context and thus infers the most likely entity in the given im-
age by disambiguating the terms in the context into the corresponding concepts
from external knowledge in a process called conceptualization. The images can
subsequently be clustered by the most likely associated entities. This approach
outperforms the best competing image clustering techniques by 29.2% in NMI
score. In addition, the framework automatically annotates each cluster of images
by its key entities which allows users to quickly identify the images they want.

1 Introduction

Images are one of the most abundant multimedia resources on the Web. Most commer-
cial search engines offer image search today, which enables the user to retrieve images
by search terms. By default, all existing image search engines rank the returned images
by the relevance of their contexts (i.e. the web pages they are embedded in) to the query
keywords. Fig. 1 shows the result for searching “bean” on Google Image in October
2013.The result appears to be a random mix of many different entities related to the
keyword “bean”, e.g., “Mr. Bean (comedian)”, “Sean Bean (actor)”, “beans (crop)”,
etc. Ambiguous search terms like this are not rare: Google Image returns at least two
different entities for “kiwi”, three for “explorer”, and over ten different persons named
“Jerry Hobbs”!

This paper is concerned with the problem of clustering web images according to the
entity or concept they represent. Once the images are clustered, the search engine can
return the original set of search results classified by distinct entities, offering easier
accessibility and more diversity. Note that a separate but different problem [21,22] is
mapping images to an entity in a knowledge base like Wikipedia or YAGO [20]. That is
a different problem because 1) the entity is unique and known in advance, so its features
in the knowledge base can be used for retrieving images whereas our problem does not
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Fig. 1. Search Result of “bean” on Google Image

assume known entities a priori; 2) the goal is to rank the relevant images to an entity
while our problem is a clustering problem.

In the past, there have been numerous research efforts on image clustering. These
efforts can be roughly divided into three categories: visual-based, context-based and
hybrid approaches.

Visual-based methods only take into account visual features such as SIFT descrip-
tors, edge histogram, color and contrast[11,27], and these are often insufficient for dis-
tinguishing real entities. For example, some images of Mr. Bean in Fig. 1 are very
different by the look, while other images of Mr. Bean and Sean Bean are fairly sim-
ilar as they both wear suits. On the other hand, high level visual object recognition
techniques[17,15] focus on detecting objects like bottle, dog, grass, etc. in an image,
but are not powerful enough to distinguish entities.

Context-based methods use only textual information in the context of the image.
Here context refers to URL, descriptive tags for the image, the surrounding text and
even search result snippets [14]. To represent the context, all previous work uses bag-
of-words or n-grams model [14]. The bag-of-words (BOW) model can not capture the
semantics of the context in an accurate way for three reasons. First, limited length of
context provide insufficient signals in words model. Second, terms with one or more
words are sometimes better semantic units than single words but they are not handled
properly by BOW models. Finally, words can be ambiguous. “Apple” may refer to an
IT company or a kind of fruit, but BOW model treats all “apple” terms equally. Similar
arguments hold for n-gram models.

Hybrid approaches attempt to combine the visual features with textual features.
However, semantic gaps between the visual and textual features make it difficult to
directly combine them into one uniform similarity measure. Some hybrid algorithms
therefore resort to co-clustering on visual and text simultaneously such as MMCP [11].
But such approach is iterative, time consuming and thus not suitable for online applica-
tions such as image search.
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Fig. 2. Partial Search Result for “bean” on Prototype System

In this paper, we propose a new context-based approach that emphasizes on under-
standing textual signals. The reason to focus on text is that, we believe, unlike visual
signals, textual signals from the right context explicitly reveal the semantics of the im-
age. Our approach is different from the existing context-based image clustering in three
aspects. First, we explicitly disambiguate the context text by converting each phrase to an
unambiguous concept from an external knowledge source such as Wikipedia. We call this
process “conceptualization”. Conceptualization has been previously shown to be a bet-
ter way to understand textual signals than bag-of-words model[19]. Second, our method
provides concept labels to annotate each cluster of images by accumulating the concepts
in the contexts from the clusters. With these labels, users can conveniently grasp what
each cluster is about. Third, we propose a modified version of hierarchical agglomerative
clustering (HAC) in a tri-stage clustering framework, which is more robust to noise. This
framework guarantees the purity of each cluster while improving the inverse purity, i.e.
forming as large clusters as possible. The experimental result shows that our approach sig-
nificantly outperforms competing algorithms, and achieves very high purity, F-measure
and NMI scores. A partial result of searching for “bean” on our prototype image search
system is shown in Fig. 2. Every cluster shows the most relevant images about a distinct
entity, and each cluster is labeled with the 5 concepts which are most related to the entity.
The four clusters in Fig. 2 have been correctly identified as Mr Bean, Sean Bean, Frances
Bean Cobain and Phaseolus vulgaris (the official name for “common bean”).

The rest of the paper is organized as follows. Section 2 presents the structure and
each component of our framework; Section 3 demonstrates the experimental results;
Section 4 introduces some related work while Section 5 concludes the paper.
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2 Framework

In this section, we introduce a novel image clustering framework based on conceptual-
ization of contexts. Our input is an image search query and a set of images returned by
this query along with their hosting HTML pages. Our output is a number of clusters of
images, each containing images of the same entity and each tagged with a concise list
of most relevant concepts. For example, the first cluster of Fig. 2 is tagged with “Mr.
Bean”, “Rowan Atkinson”, etc.

Meta context 
extrac�on 

Conceptualiza�on 

Images with original 
webpages 

Wikipedia 

Text context 
extrac�on 

Clustering by metadata 

Clustering by text context 

Context expansion 

 

Offline Online 

Tri-stage clustering 
Conceptualized 
meta context 

Conceptualized 
webpages Query 

Image clusters 

Fig. 3. The Architecture of Image Clustering by Conceptualization

The architecture of our framework is shown in Fig. 3. The framework is divided into
two parts: online and offline components. The offline components extract the meta data
of the image and conceptualize all of the text in the source page. Online components
1) extract the surrounding text context of the image and query from the conceptualized
source page and then use concepts in the context to construct the concept vector rep-
resentation of the image context; and 2) cluster the images using a tri-stage clustering
algorithm. The context extraction process is online because it cannot be done before the
query is known. Next, we present each component in more detail.

2.1 Context Extraction

This paper concerns two kinds of image context, meta data context and text context.
Meta data context extraction is an offline process while text context is extracted online.

Meta data context (or meta context in short) are all intrinsic attributes of the image,
such as the anchor text of the image (i.e., ALT attribute in image tags) in the web page,
the URL of the image. The domain and the file extension in the URLs are ignored
because they are less relevant to entity in the image. For example, images from Flickr
share the same domain but are not the same entity. We split the URL into “words” by
directory separators, special characters or letter case conversion (e.g., from lower to
upper case) to get context from URL. In some cases, the URL may contain randomly
generated strings:

http://domain.com/53C316-C2oJ5/AppleInc 2012.jpg
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contains these words: “53C316”, “C2oJ5”, “Apple”, “Inc” and “2012”. Here, “53C316”
and “C2oJ5” has no clear meanings, while “Apple”, “Inc” and “2012” are understandable.
We extract all 3-grams in each word, such as “C2o”, “2oJ” and “oJ5” in “C2oJ5”, and
“App”, “ppl” and “ple” in “Apple”. Each 3-gram corresponds to one feature of this word.
Then we learn an L2-SVM model using LIBLINEAR [8] to classify these words and
filter out meaningless ones with an accuracy of 95.69%. Note that, using a lexicon such
as Wikipedia only does not work because simple strings like “5” or “J” are also valid
terms.

Fig. 4. Image Context and Query Context

Text context is the surrounding plain text of both the image and the query terms
in the web page. The reason we employ query context in addition is that the context
surrounding the image is likely to be an accurate description of that image but not
always enough to distinguish different entities. As Fig. 4 shows, the image context
contains limited amount of information. A great deal of signals for identifying “bean”
such as “pea (a kind of bean)”, “legume (the family that bean belongs to)”, “fibre (major
ingredient of bean)” and “protein (major ingredient of bean)” can otherwise be found
in the query context part. We extract the relevant context by a sibling based method [1].
It retrieves all text nodes which contain the query terms, as well as their sibling nodes
in the Document Object Model (DOM) tree of the page.

2.2 Conceptualization of Context

Wikipedia is a rich and comprehensive knowledge source of concepts. Each concept
(e.g. Mr. Bean or Phaseolus vulgaris) has a descriptive article. The goal of conceptu-
alization based on Wikipedia is to convert a piece of plain text into a set of Wikipedia
concepts. To achieve this, we need to recognize the multi-word expressions (MWEs)1

in the text and then disambiguate them by linking each of them to a corresponding
Wikipedia article/concept. Fig. 5 shows an example of conceptualization, where “Polar
Bear” is recognized as an MWE and correctly linked to the “Snow Patrol” 2 article.

In this paper, we adopt a conceptualization approach known as wikification [5] which
is based on link co-occurrence in Wikipedia corpus. The technique first constructs a

1 MWE is any term that contains one or more words.
2 Snow Patrol is a Scottish rock band.



374 K. Zhao et al.

Fig. 5. An Example of Wikification

link co-occurrence matrix iteratively, and then uses the matrix to simultaneously disam-
biguate all MWEs in the input text by choosing the concept combination that maximizes
the likelihood of concept co-occurrence within a sliding window.

2.3 Image Clustering

We first introduce the context representation and a modified hierarchical clustering al-
gorithm. We then propose a tri-stage clustering framework.

Context Representation. With concepts extracted from the context, we can draw a
concept histogram for each image, which represents the image’s semantic information.
We use the vector space model (VSM) to represent the context. We define a CF-IDF
score for each dimension in the concept vector of a textual context. The CF-IDF score
of the concept c in context d’s concept vector is adapted from the well-known TF-IDF
score in information retrieval, and is defined as:

CF-IDF(c, d) = CF (c, d) × log
|D|

DF (c)
, (1)

where CF (c, d) is the concept frequency of c in d, |D| is the total number of Wikipedia
articles from which we compute the document frequency of each concept while DF (c)
is document frequency of c. We compute the document frequency of c by counting the
number of documents which have links to c.

HAC with Cluster Conceptualization. We apply cosine similarity to compute the
pairwise similarity of contexts. We use a modified HAC algorithm to cluster the con-
texts. There are two reasons for using HAC: First, we don’t know the exact number
of clusters in advance, but we can specify a threshold for minimal similarity within
a cluster. Second, HAC is an agglomerative algorithm that merges similar clusters in-
crementally. Therefore we are able to extend the algorithm by incorporating different
features at any step of the clustering process.

There are four common ways to compute similarity between two clusters in HAC:
Single-link, Complete-link, Group Average, Centroid. These methods compare the in-
dividual data points in each cluster without considering each cluster as a whole. This
paper adopts a new method to compute cluster similarity. It summarizes the semantic
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information in each cluster by building a concept histogram for each cluster. Specifi-
cally, given a cluster C with n image contexts, d1 . . . dn, the weight of concept c in the
concept vector for C is

V (C){c} =
∑
d∈C

CF-IDF(c, d) (2)

To restrict the size of this concept vector and to avoid noise, we keep only top K con-
cepts with the highest weights. The selected concepts and their weights thus represent
the semantics of the cluster. This process is called cluster conceptualization. The com-
plete HAC with cluster conceptualization (HAC CC) is shown in Algorithm 1. D is the
set of images, Π is the set of resulting clusters, N is the number of images, Ci is an
image cluster, V (C) is the concept vector of a cluster C, Sim is the function comput-
ing the cosine similarity of the two vectors, S is the similarity matrix of images, and
τt is the threshold that controls the clustering granularity. Line 9 to 15 merge two most
similar clusters each time.

Algorithm 1. HAC with Cluster Conceptualization (HAC CC)

Input: Set of images D
Output: Image cluster Π
1: function HAC CC(D)
2: Π ← {Ci = {di} |di ∈ D}
3: for i← 1 to N do
4: for j ← i + 1 to N do
5: S[i, j] ← Sim(V (Ci), V (Cj))
6: end for
7: end for
8: for iter ← 1 to N − 1 do
9: max sim = maxi<j S[Ci, Cj]

10: if max sim < τt then
11: return Π
12: end if
13: Ci, Cj ← argmaxCi �=Cj

S[Ci, Cj ]

14: Ci ← Combine(Ci, Cj , S)

15: Cj ← ∅
16: end for
17: return Π
18: end function

19: function COMBINE(Ci , Cj , S)
20: V ← V (Ci) + V (Cj)
21: V (Ci)← top K concepts of V
22: for m← 1 to N do
23: if m > i and m �= j then
24: S[i,m]← Sim(V (Ci), V (Cm))
25: else if m < i and m �= j then
26: S[m, i]← Sim(V (Ci), V (Cm))
27: end if
28: end for
29: return Ci ∪ Cj

30: end function

The advantage of this method is, we can boost the important signals while ignoring
noisy ones. On the other hand, since we just keep K concepts, both cluster similarity
and the generation of cluster histogram can be computed in constant time, while HAC
using Group Average or Centroid has a quadratic time complexity to the cluster size.

Similar to the original HAC algorithm, Algorithm 1 has a time complexity of O(N3)
3. We can further optimize it to O(N2 logN) by using a sorted priority queue to store
the rows of the semantic matrix S in line 5, With this optimization, the operation of
finding two most similar clusters (line 9) is reduced from N2 to constant time, and the
overall complexity only depends on the sorting process which costs O(N2 logN).

3 Strictly speaking, it is O(K2N3), but K � N so it is treated as a constant.
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Tri-stage Clustering. Generally speaking, meta context is the most reliable image
context since it is guaranteed to be related to the image, whereas the text context may
contain noise. As such, we use these two kinds of context at different stages of cluster-
ing. Further, to remedy insufficient signals, we expand the contexts by using additional
information from Wikipedia, and perform the third stage of clustering. The above stages
form a tri-stage clustering algorithm which includes meta context clustering, text con-
text clustering and expansion clustering.

In the first stage, we construct the concept vector of each image using the concepts
extracted from the URL and anchor texts, and apply the HAC CC algorithm on the
images. Although the signals from meta data are reliable, useful signals are limited.
Thus, many small clusters are formed with very high purity.

In the second stage, we merge the concept vector extracted from the text context into
the concept vector of meta context for each image and combine all the vectors for each
cluster from stage one to obtain the cluster vectors (Eq. (2)). We again apply HAC CC
algorithm on these new cluster vectors. Only top 50 concepts in each resulting cluster
are kept to filter out the noise.

The final stage takes as input the clusters formed in the second stage, and expands
the context of each cluster in an attempt to merge some of the clusters which should
have been together. For each of the top K concepts in a cluster, we extract the top 50
concepts (ranked by CF-IDF) from the Wikipedia article of that concept, and replace
the concepts in the previous stage with them. The weight of the concept c in the new
vector V ′(C) is defined as:

V ′(C){c} =
∑

ci∈VC

(V (C){ci} × CF-IDF(c, dci)) , (3)

where VC is the previous concept vector of cluster C, ci is one of the concept in VC , and
dci is the Wikipedia article of ci. After reconstructing the new concept vector, HAC CC
is again applied to form the final clusters.

When the third stage finishes, we rank the concepts (dimensions) in the aggregated
concept vector of each cluster by the values and use top concepts to represent the seman-
tics of that image cluster. The complexity of the tri-stage clustering algorithm remains
the same as HAC CC algorithm because the input size of each stage is bounded by the
total number of images.

2.4 Use Scenario

Our framework has an online component because the query terms, which are important
signals for context extraction, must be processed at runtime. Although the clustering
algorithm presented earlier has a non-linear time complexity, the following use case of
our framework is typical and practical. User enters a search term and the search engine
returns a number of relevant images on page-by-page display. On any given page, the
user can choose to “order by entity”, and the clustering framework will re-organize
the results on that page (typically a few tens to several hundred images) by entities, as
shown in Fig. 2. This is practical because, as we will show later, the online part of the
algorithm completes within a second for 100 images.
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3 Experimental Results

This section evaluates the image clustering system. We first present the experiment
set-up and evaluation metrics. Then, we show four experiments. The first experiment
evaluates the performance of each key component of our system. The second one gives
an end-to-end comparison between our approach and the state-of-the-art systems. The
third one illustrates the accuracy of concepts generated by our system for each cluster.
The last one evaluates the time efficiency of the system.

3.1 Experiment Setup

We prepare an image data set from Google Image Search, sorted by relevance. We select
a list of 50 ambiguous queries as shown in Fig. 6 (10 for parameter training and 40 for
testing). For each query, we query in Google Image and download the top 100 images
returned by Google with the original web pages of the images. This data set contains a
total of 5,000 web pages/images. We then ask two human judges to manually cluster the
collected data to create two label sets. All evaluation metrics computed in subsequent
experiments are the averaging values over these two sets. All experiments were run on
a dual-core Intel i5 machine with 14GB memory.

barcelona, berry, curve, david walker, diff, george foster, john smith, longhorn, manchester, puma

acrobat, adam, amazon, anderson, andrew appel, apple, arthur morgan, bean, british india, carrier,

champion, eclipse, emirates, explorer, focus, friends, jaguar, jerry hobbs, jobs, kiwi, lotus, malibu,

morgan, nut, palm, patriot, perfume, pluto, polo, santa fe, shell, sigma, studio one, subway, taurus,

tick, tucson, venus, visa, wilson

Fig. 6. Queries for training(above) and testing(below)

3.2 Evaluation Metrics

We adopt three well-known metrics to measure the result of image/document cluster-
ing: Purity, NMI and F1. Purity measures the intra-cluster accuracy. It has an obvious
drawback that if we create one cluster for each document, the Purity will be 1, and this
is not useful at all. Therefore, Purity should not be viewed independently. NMI (Nor-
malized mutual information) is a better measure that balances the purity of the clusters
with the number of clusters. It measures the amount of common information between
the computed clusters and the ground truth. Another measure of clustering is F1 score,
which combines Purity and Inverse Purity. Inverse purity exchanges the position of the
result and the ground truth in the the purity computation, and determines how much of
each cluster in the ground truth is correctly clustered together. Similar to the F1 score
used in information retrieval task, F1 score is computed as:

F1(C,L) =
2 · Purity(C,L) · Purity(L,C)

Purity(C,L) + Purity(L,C)
, (4)

where C is the clustering result and L is the ground truth clusters. In many studies of
clustering algorithms, NMI is more important and sometimes the only measure, because
it’s extremely difficult to achieve high NMI scores.
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3.3 Threshold of Tri-stage Clustering

The tri-stage clustering (TSC) algorithm is based on HAC CC algorithm. Similar to
traditional HAC algorithm, HAC CC has a threshold to control the granularity of the
clustering result. We tune different threshold τt of HAC CC on a training data collected
from top 100 images of 10 different queries. Cluster labels are assigned to each image
by human judges. Fig. 7 shows the clustering result on different thresholds of HAC CC.
We prefer to choose a threshold which can ensure high purity, F1 and NMI at the same
time. NMI reaches a peak value at τt = 0.15. At this threshold, the purity is significantly
higher than when τt = 0.1 and F1 score is relatively high, too. Consequently, in this
system, we set τt to be 0.15.
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Fig. 7. Clustering Result on Different τt

3.4 Evaluation on Key Components

In this sub-section, we experiment on different variants of our system. First, we investi-
gate the effects of different context extraction methods. Then we show the performance
of concept representation based on conceptualization. Finally, we show the benefits of
tri-stage hierarchical clustering.

Context Extraction: There are three variants of context: the whole page (Page), sur-
rounding text of the image (Image) and surrounding text of both the image and query
terms (I & Q). The window size of the surrounding text is empirically set to 200 words
(100 words before and after the query/image respectively). Table 1(a) compares the
end-to-end results of image clustering on 20 different queries using these three types
of context. One can stipulate that the noise in whole page contexts adversely affect the
purity of the clusters. Even though the surrounding text of the images already gives rise
to very pure clusters, adding the query context gives better F1 and NMI. Overall, the
text context of both image and query terms wins because of superior cluster accuracy at
limited computation overhead.

Context Representation: We implement two baseline systems to compare with our
concept vector (CV) model. One of them uses bag-of-words(BOW) model and the other
one uses bag-of-phrase(BOP) model. The latter is a minor enhancement to BOW, and
uses (possibly ambiguous) MWEs instead of single words to represent the context. Dif-
ferent from these two baselines, our system disambiguates MWEs in the context to
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Table 1. Comparison on Key Components

(a) Diff. Contexts

Purity F1 NMI

Page 0.71 0.78 0.35
Image 0.91 0.80 0.59
I & Q 0.90 0.81 0.62

(b) Diff. Representations

Purity F1 NMI

BOW 0.92 0.54 0.48
BOP 0.94 0.62 0.50
CV 0.94 0.62 0.55

(c) Diff. Algorithms

Purity F1 NMI Time

AP 0.92 0.55 0.50 1.9s
HAC 0.94 0.62 0.55 0.9s
HAC CC 0.94 0.76 0.59 0.7s
TSC 0.90 0.81 0.62 1.1s

generate a more accurate representation. To make the end-to-end results comparable,
we apply HAC on all three types of representations, since the tri-stage clustering algo-
rithm is only applicable to our CV model. Table 1(b) shows the comprehensive clus-
tering results. This experiment shows that the BOP/CV representations are much more
effective than BOW, with particular improvement in F1 score. Phrases are more accu-
rate to identify the semantics of text than single words. CV beats BOP on NMI because
it disambiguates the MWEs in the context and thus makes the similarity computation
between two images more accurate.

Tri-stage Clustering: We compare HAC CC and TSC with HAC and Affinity propa-
gation (AP), two very popular clustering algorithms. In this experiment, all algorithms
use the concept vector representation. Except for TSC which clusters in three stages,
all other algorithms run one time only. The threshold τt of HAC and HAC CC is set to
0.15, while the preference of AP is set to the average similarity between the data points.
We also report the time cost of the algorithms by averaging 5 independent runs in the
same setting. The result of these three algorithms are shown in Table 1(c). HAC CC
algorithm outperforms AP and HAC due to the enhancement of strong signals and re-
moval of noise in cluster conceptualization process. TSC further improves HAC CC
with concept expansion because 1) we make use of meta context, and 2) the previous
clustering stage provides accurate cluster vectors as input to the next stage to further
reduce the influence of noise. The experiment demonstrates TSC’s capability of boost-
ing important semantic signals which substantially helps improve the accuracy of web
image clustering.

3.5 End-to-end Accuracy

We compare our approach (TSC) with two image clustering systems and two text clus-
tering systems from the literature (See Table 2). The first image clustering system is im-
plemented following Cai’s [3] approach, which extracts image context using VIPS [4].
The second image clustering system is the multi-modal constraint propagation approach
(MMCP) [11]. We also compare with text clustering systems as baselines because our
approach only extracts text features from the image context and therefore can be con-
sidered as text clustering as well. The two text-based methods that we compare with
are HAC clustering on bag-of-words (BOW) and HAC clustering of topics extracted by
LDA[2], and both are input with the same text context used in our algorithm, i.e., meta
context and text context concatenated in one blob.
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Cai’s system used visual features, textual features (context), and an image link graph.
They used Color Texture Moments[25] as visual features and bag-of-words in the visual
context as textual features. We replicate the link graph from a subset of source pages
without obtaining the entire set of web pages, according to the property described by
Cai. For MMCP, we apply the same modalities mentioned by Fu: local visual, global
visual and text. Fu used tags of the images in Flickr as the textual features. However,
without available tags, we instead use the bag-of-words in the source page of the image.

The two text clustering systems use different representations for the text context (i.e.,
BOW and topics) to compute the similarity between two image contexts, and then use
HAC algorithm to cluster the contexts. In the LDA system, we directly extract topics
in the test data. The parameters of each system are tuned to the one that maximizes the
NMI score in the training data. The clustering threshold τt is set to 0.2 in BOW baseline
and 0.25 in LDA. The number of topics for LDA is set to 150.

The four competing systems generally do not have a good way of handling noise,
which is often seen in the contexts of web images. The noise usually dilutes the positive
impact of the important signals, especially when the context is of limited size. Our
conceptualization and tri-stage clustering method can help remove some of the noise.
Some systems like MMCP intends to obtain high NMI score, but their purity is very
low. The BOW system achieves the highest purity because of the exact match of the
words in the context, but otherwise has a low F1 score. In contrast, the LDA system has
some degree of generalization which makes it perform better than BOW in F1 scores.
However, LDA failed to capture high quality topics for images that have very short
and noisy contexts. Consequently, it has relatively poor purity. Over all, our approach
outperforms other systems by producing bigger clusters while preserving the high purity
in each clusters. It defeats the best of the peers by significant margins: 17.4% by F1

and 29.2% by NMI score.

Table 2. Results of End-to-End Image Clustering

Purity F1 NMI
Cai 0.60 0.71 0.10
MMCP 0.74 0.58 0.34
BOW+HAC 0.92 0.54 0.48
LDA+HAC 0.88 0.60 0.44
TSC 0.90 0.81 0.62

3.6 Cluster Conceptualization Accuracy

In this subsection, we show the conceptualization result on the test queries. To quantify
the accuracy of conceptualization on all 40 test queries, we manually label the results
in the following manner. For the top 5 clusters of each query, we pick top ten ranked
concepts for each cluster and judge whether the concept is relevant to the images in
the cluster by human. This results in around 2000 concepts to be labeled. Each query
is labeled by three persons and the accuracy for each image clusters is averaged on the
judgement from the three persons. Formally, the accuracy of conceptualization of an
image cluster is defined in Eq. (5).
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Accuracy(C) =
1

M

M∑
i=1

1

|C| ∗
∑
c∈C

fi(c), (5)

where C is the set of concepts for an image cluster, M is the number of the human
judges (M = 3 in our experiment), and fi is the judgement of the ith judge. If concept
c is labeled as relevant to the cluster, fi(c) = 1, otherwise fi(c) = 0. We average the
accuracy of all clusters on the test queries, and the final result is 71.82%.

Table 3 shows some examples of our conceptualization results. For each query, we
show only the first two clusters as well as the most related concepts generated from dif-
ferent entities. Terms listed under the images are 5 top-ranking Wikipedia concepts that
are conceptualized from each image cluster. Each of the concept has a corresponding
Wikipedia article. For example, the concept “Kiwi” in Wikipedia is the bird kiwi, while
“Kiwifruit” refers to the fruit kiwi.

Table 3. Conceptualization of Image Clusters (Adam, Eclipse, Kiwi)

Query Cluster

Adam
Adam Lambert, American Idol, God, Kris Allen, Privacy policy

Adam Levine, Hijab, Mehndi, Fashion, Hairstyle

Eclipse

Solar eclipse, Sun, Moon, Lunar, Umbra

Twilight (series), Bella, David Slade, Vampire, Stephenie Meyer

Kiwi
Kiwifruit, Fruit, Recipe, Health benefit, New Zealand

Kiwi, Bird, New Zealand, Egg, Smithsonian National Zoological Park

3.7 Time Efficiency

First, We evaluate the time cost of the online and offline components in our system.
The results are averaged over 5 independent runs, on the 40 test queries. The average
execution time per query (with 100 images to cluster) of offline and online components
are 471 seconds and 1 second, respectively. The off-line component consists of image
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context extraction, chunking, and conceptualization, of which conceptualization is the
most expensive process. The current offline-online split of the system effectively pushes
the most time consuming work to the preprocessing stage and thus makes the online part
more efficient and practical.

Second, we compare the average online clustering time of our system (1121 ms) with
MMCP (5021 ms) and Cai’s system (194 ms). All timing results are averaged over 5
independent runs. MMCP propagates the constraints among modalities. This process
clusters on each modality for several times, which explains its long execution time (5
seconds). With all features extracted off-line, Cai’s system only need spectral clustering
on the images online, which explains why it is the winner here. However, the VIPS
extraction module of Cai’s system relies on the browser rendering module and crashes
frequently. It is almost impossible to automate the context extraction process without
human intervention. Our prototype system, which is not optimized, runs for around 1
second per query on average. It is slower than Cai’s since we need to extract the query
context online, and the expansion of concepts is also time consuming. However, with
accuracy, efficiency and reliability all considered, our system is an overall winner in
practical web image search tasks.

4 Related Work

We divide existing image clustering methods into three categories: content-based,
context-based and the combined approaches.

Content-based image clustering approaches [10,7,13] rely on visual signals. For ex-
ample, Fu et al.[11] gave a constraint propagation framework for multi-model situa-
tions. They constructed multiple graphs, one for each visual modalities such as color
histogram, SIFT descriptors [18], etc. The nodes are images while the edges are sim-
ilarities between the images by a particular visual modality. A random walk process
is employed on these graphs. All of the above work uses low-level visual signals of
images such colors, gray scales, contrasts, patterns, etc. These signals are insufficient
to capture high level semantics of the images. This is evident from our experiments on
Fu’s algorithm which heavily relies on basic visual signals. There has been some devel-
opment on high level visual object recognition and semantic annotation [17], but even
the state-of-the-art techniques in this area suffer from low accuracy and unreliability.

With the difficulty in content-based clustering, some researchers turn to signals com-
ing from the context of the images, such as file name, alternate text and surrounding text.
Cai et al. made some progress in this respect. They represented a web page segmenta-
tion algorithm named VIPS [4], which works by rendering the web page visually and
detecting the important visual blocks in the page. And they subsequently proposed three
kinds of representations for images [3]: visual feature based representation, textual fea-
ture based representation and link graph based representation, and proposed a two-level
clustering algorithm which combined the latter two. Jing et al. [14] introduced a novel
method named IGroup for image clustering. Instead of clustering on returned images
directly, they first search the query on normal web search engine, and cluster the titles
and snippets from the search results. They then construct a new query string to represent
each of the cluster, and send these query strings to the image search engine to get im-
ages for each cluster. To construct the query string, they used an algorithm proposed by
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Zeng[26]. These bag-of-words approaches are inadequate for understanding the seman-
tics of the context. Relying on bag-of-words or n-grams can easily confuse noise with
meaningful signals. Our approach, on the other hand, leverages co-occurrence informa-
tion on high level concepts mined from Wikipedia, a comprehensive knowledge source,
and most importantly, is able to disambiguate entities using this knowledge. Hence, we
are able to achieve better results.

Recently there are many attempts on combining visual features and textual features
in image clustering. Feng et al.[9] used the surrounding text of images and a visual-
based classifier to build a co-training framework. Gao et al.[12] represented the rela-
tionship among low-level visual features, images and the surrounding texts in a tripar-
tite graph. Wang et al.[24] reinforced visual and textual features via inter-type links and
inversely uses those features to update these links. The visual features, text features and
inter-type links are represented as three matrices. Three linear formulas is defined to
iteratively update the three matrices. Ding et al.[6] proposed a hierarchical clustering
framework. Leuken et al.[16] investigated three methods for visual diversification of
image search results in their paper. Tsai et al.[23] proposed a technique based on visual
synset for web image annotation. They applied affinity propagation clustering on a set
of images associated with a query term based on both visual and textual features. Each
cluster represents a visual synset, and is labeled by related query terms. However, this
query-based/term-based labeling approach has two limitations: 1) it cannot produce re-
lated concepts to the clusters like our system does (e.g. “Teddy” for Cluster 1 in Fig.
2); 2) the related query terms themselves can be ambiguous and are not suitable for
representing a visual synset. In our paper, we represent each cluster with high related
concepts which are Wikipedia concepts without ambiguity. The main challenge with the
above hybrid approaches is the semantic gap between visual signals and textual signals.
There is no easy way to combine the two kinds of similarity measures into one unifying
measure.

5 Conclusion

In this paper, we proposed a novel framework for clustering web images by their con-
texts. The novelty lies in that our framework seeks to “understand” a context by convert-
ing words and phrases in the context into high level concepts in an external knowledge
base such as Wikipedia. Moreover, it performs a tri-stage modified HAC algorithm uti-
lizing information of various reliability. Our experiments show that on 40 “ambiguous”
query terms, the purity, F-measure and NMI of our clustering results are consistently
better than other recently developed image clustering systems. Our prototype system is
practical as it is able to cluster a page of 100 images within 1 second.
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Abstract. The L1-regularized support vector machine (SVM) is a pow-
erful predictive learning model that can generate sparse solutions. Com-
pared to a dense solution, a sparse solution is usually more interoperable
and more effective for removing noise and preserving signals. The L1-
regularized SVM has been successfully applied in numerous applications
to solve problems from text mining, bioinformatics, and image process-
ing. The regularization parameter has a significant impact on the perfor-
mance of an L1-regularized SVMmodel. Therefore, model selection needs
to be performed to choose a good regularization parameter. In model
selection, one needs to learn a solution path using a set of predefined
parameter values. Therefore, many L1-regularized SVM models need to
be fitted, which is usually very time consuming. This paper proposes a
novel safe screening technique to accelerate model selection for the L1-
regularized L2-SVM, which can lead to much better efficiency in many
scenarios. The technique can successfully identify most inactive features
in an optimal solution of the L1-regularized L2-SVM model and remove
them before training. To achieve safe screening, the technique solves a
minimization problem for each feature on a convex set that is formed by
the intersection of a tight n-dimensional hyperball and the upper half-
space. An efficient algorithm is designed to solve the problem based on
zero-finding. Every feature that is removed by the proposed technique
is guaranteed to have zero weight in the optimal solution. Therefore, an
L1-regularized L2-SVM solver achieves exactly the same result by using
only the selected features as when it uses the full feature set. Empiri-
cal study on high-dimensional benchmark data sets produced promising
results and demonstrated the effectiveness of the proposed technique.

Keywords: Screening, sparse support vector machine, model selection.

1 Introduction

Feature selection is an effective technique for dimensionality reduction and rele-
vance detection [1]. The L1-regularized support vector machine (SVM) is a pow-
erful feature selection algorithm [3, 4, 5, 6] that is in the embedded model [2]. It
can simultaneously fit a model by margin maximization and remove noisy fea-
tures by soft-thresholding. It has been successfully applied to solve many prob-
lems in text mining, bioinformatics, and image processing. The L1-regularized
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SVM enjoys two major advantages compared to other variances of sparse SVM
models [7, 8, 9]: first, it solves a convex problem; therefore, an optimal solution
can always be obtained without any relaxation of the original problem. Second,
it is efficient. A well-implemented L1-regularized SVM solver can readily handle
problems that have tens of millions samples and features [6].

The value of the regularization parameter λ has a significant impact on the
performance of an L1-regularized SVM model. Model selection can be used to
select a good parameter value. During model selection, a series of L1-regularized
SVM models need to be fit for a set of predefined regularization parameter
values. The best regularization parameter value can be chosen by using a pre-
specified criterion, such as the accuracy or the area under the curve (AUC) that
is achieved by the resulting models on holdout samples. When data are huge,
the computational cost of model selection can be prohibitive. Assume that k
regularization parameter values, λ1 > λ2 > . . . > λk, need to be tried in a model
selection process. It is easy to see that this process can be greatly accelerated
if the solution obtained for λi can be used to speed up the computation of the
solution for λi+1. Based on this idea, highly efficient screening techniques are
recently proposed for Lasso [10] to accelerate its model selection. The key idea
is that, given a solution w∗1 for λ = λ1, many features that have zero coefficients
in w∗2 when λ = λ2 can be identified. By removing these “inactive” features, the
cost for computing w∗2 can be significantly reduced. Although effective screen-
ing algorithms have been designed for Lasso [11, 12, 13, 14, 15], research into
screening for the L1-regularized SVM is largely untouched.

In this paper, a novel screening technique is proposed to speed up model
selection for an L1-regularized L2-SVM.1 The technique makes use of the vari-
ational inequality [16] and the nonnegative constraint on the dual variables of
the L1-regularized L2-SVM model for constructing a tight convex set, which can
be used to compute bounds for screening features. A prescreening strategy and
a fast zero-finding algorithm are designed and implemented to ensure the effi-
ciency of the screening process. Features that are removed by the technique are
guaranteed to be inactive in the optimal solution. Therefore, the screening tech-
nique is “safe,” because an L1-regularized L2-SVM solver can achieve exactly
the same result when it uses the features selected by the technique as when it
uses the full feature set. To the best knowledge of the authors, this is the first
screening technique that is proposed for accelerating the speed of model selection
for the L1-regularized L2-SVM. Empirical study on five high-dimensional bench-
mark data sets produced promising results and demonstrated that the proposed
screening technique can greatly speed up model selection for an L1-regularized
L2-SVM by efficiently removing a large number of inactive features.

1 Our ongoing work will extend the technique proposed in this paper to screen features
for the L1-regularized L1-SVM.
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2 L1-Regularized L2-SVM

Assume that X ∈ IRm×n is a data set that contains n samples, X = (x1, . . . ,xn),

and m features, X =
(
f
1 , . . . , f
m

)

. Assume also that y = (y1, . . . , yn) contains

n class labels, yi ∈ {−1,+1}, i = 1, . . . , n. Let w ∈ IRm be the m-dimensional
weight vector, let ξi ≥ 0, i = 1, . . . , n be the n slack variables, and let b ∈ IR and
λ ∈ IR+ be the bias and the regularization parameter, respectively. The primal
form of the L1-regularized L2-SVM is defined as:

min
ξ,w

1

2

n∑
i=1

ξ2i + λ||w||1, (1)

s.t. yi
(
w
xi + b

)
≥ 1− ξi, ξi ≥ 0.

Eq. (1) specifies a convex problem that has a non-smooth L1 regularizer, which
enforces that the solution is sparse. Let w
(λ) be the optimal solution of Eq. (1)
for a given λ. All the features that have nonzero values in w
(λ) are called
active features, and the other features are called inactive. Let α ∈ IRn be the n-
dimensional dual variable. By applying the Lagrangian multiplier [17], the dual
of the problem defined in Eq. (1) can be obtained as:

min
α
‖α− 1‖22 , (2)

s.t. ‖f̂
j α‖ ≤ λ, j = 1, . . . ,m,

n∑
i=1

αiyi = 0, α � 0.

Here, f̂ = Yf , and Y = diag(y) is a diagonal matrix. By defining α = λθ,
Eq. (2) can be reformulated as:

min
θ
||θ − 1

λ
||22 , (3)

s.t. ‖f̂
j θ‖ ≤ 1, j = 1, . . . ,m,

n∑
i=1

θiyi = 0, θ � 0.

In the primal formulation for the L1-regularized L2-SVM, the primal variables
are b,w, and ξ. And in the dual formulation, the dual variables are α or θ. When
b and w are known, ξ, α, and θ can be obtained as:

ξi = αi = λθi = max
(
0, 1− yi

(
w
xi + b

))
. (4)

The relation between θ and w can be expressed as:

θ
f̂j =
{
sign (wj), if wj �= 0
[−1,+1], if wj = 0

, j = 1, . . . ,m. (5)

λmax is defined as the smallest λ value that leads to w = 0 when it is used in
Eq. (1). Given a data set (X,y), λmax can be obtained in a closed form as:

λmax =

∥∥∥∥∥
n∑

i=1

(
yi −

n+ − n−
n

)
xi

∥∥∥∥∥
∞

, (6)
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where n+ and n− denote the number of positive and negative samples, respec-
tively. And when λ ≥ λmax, the optimal solution of the problem defined in
Eq. (1) can be written as:

w
 = 0, b
 =
(n+ − n−)

n
. (7)

Denote m =
∑n

i=1

(
yi − n+−n−

n

)
xi. The first feature to enter the model is the

one that corresponds to the element that has the largest magnitude in m.

3 Safe Screening for L1-Regularized L2-SVM

Eq. (5) shows that the necessary condition for a feature f to be active in an

optimal solution is |θ
f̂ | = 1. On the other hand, for any feature f , if |θ
f̂ | < 1,
it must be inactive in the optimal solution. Given a λ value, this condition can
be used to develop a rule for screening inactive features to speed up training for
the L1-regularized L2-SVM. The key is to compute the upper bound of |θ
f̂ | for
features. A feature can be safely removed if its upper bound value is less than 1.
The cost of computing the upper bounds can be much lower than training L1-
regularized L2-SVM. Therefore, screening can greatly lower the computational
cost by removing many inactive features before training.

To bound the value of |θ
f̂ |, it is necessary to construct a closed convex set K
that contains θ. The upper bound value can be then computed by maximizing
|θ
f̂ | over K, which defines a convex problem with a unique solution.

3.1 Constructing the Convex Set K

Given λ1, . . . , λk, k models need to be trained for model selection. Let θi be
the solution that corresponds to λi, this section shows that θi can be used to
construct a convex set that contains θi+1 for bounding the value of |θ
i+1 f̂ |. When
λi is close to λi+1, this convex set can be very tight.

Assume that θ
 is the optimal solution of Eq. (3) and t ≥ 0. It is easy to
verify that θ
 is also the optimal solution of the following problem:

min
θ

∥∥∥∥θ − (
t
1

λ
+ (1− t)θ


)∥∥∥∥2
2

, (8)

s.t. ‖f̂
j θ‖ ≤ 1, j = 1, . . . ,m,

n∑
i=1

θiyi = 0, θ � 0.

In the following, Eq. (8) and the variational inequality [16] are used to con-

struct a closed convex set K to bound |θ
f̂ |. Proposition 1 introduces the vari-
ational inequality for a convex optimization problem.
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Proposition 1. Let θ
 be an optimal solution of a convex problem:

min g(θ), s.t. θ ∈ K,

where g is continuously differentiable and K is closed and convex. Then the
following variational inequality holds:

∇g (θ
)
 (θ − θ
) ≥ 0, ∀θ ∈ K.

Let θ1 and θ2 be the optimal solutions of the problem defined in Eq. (3) and
Eq. (8) for λ1 and λ2, respectively. Assume that λ1 > λ2 and that θ1 is known2.
The following results can be obtained by applying Proposition 1 to the problem
defined in Eq. (8) for θ1 and θ2, respectively:(

θ1 −
(
t1

1

λ1
+ (1− t1) θ1

))

(θ − θ1) ≥ 0, (9)(

θ2 −
(
t2

1

λ2
+ (1− t2)θ2

))

(θ − θ2) ≥ 0. (10)

Let t = t1
t2
≥ 0. By substituting θ = θ2 and θ = θ1 into Eq. (9) and Eq. (10),

respectively, and then combining the two inequalities, it leads to:

Bt =
{
θ2 : (θ2 − c)



(θ2 − c) ≤ l2

}
, (11)

c =
1

2

(
tθ1 − t

1

λ1
+

1

λ2
+ θ1

)
, l =

1

2

∥∥∥∥tθ1 − t
1

λ1
+

1

λ2
− θ1

∥∥∥∥
2

.

As the value of t changes from 0 to∞, Eq. (11) generates a series of hyperballs
that contains θ2. The following theorem studies when the radius of the hyperball
generated by Eq. (11) reaches its minimum:

Theorem 1. Let a =
1
λ1
−θ1∥∥∥ 1

λ1
−θ1

∥∥∥
2

. The radius of the hyperball generated by

Eq. (11) reaches it minimum when

t = 1 +

(
1

λ2
− 1

λ1

)
a
1∥∥∥ 1

λ1
− θ1

∥∥∥
2

. (12)

Let c be the center of the ball and l be the radius. When the minimum is reached,
they can be computed as:

c =
1

2

(
1

λ2
− 1

λ1

)
Pa (1) + θ1, l =

1

2

(
1

λ2
− 1

λ1

)
‖Pa (1)‖ . (13)

Here, Pu (v) = v− v
u
‖u‖22

u is an operator that projects v to the null-space of u.

Since ‖a‖2 = 1, Pa (1) = 1−
(
a
1

)
a.

2 When λ1 = λmax, w = 0 and θ1 is given in Eq. (4).
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Proof. The theorem can be proved by minimizing the r defined in Eq. (11).

�

Theorem 1 suggests that when t = 1 +
(

1
λ2
− 1

λ1

)
a
1

∥∥∥ 1
λ1
− θ1

∥∥∥
2

−1
, the

volume of Bt is minimized, which forms a good basis for constructing K. The
nonnegative constraint on the dual variable confines θ in the upper half-space:
θ � 0, and can be used to further reduce the volume of K:

K =

{
θ : (θ − c)



(θ − c) ≤ l2, θ � 0

}
, (14)

c =
1

2

(
1

λ2
− 1

λ1

)
Pa (1) + θ1, l =

1

2

(
1

λ2
− 1

λ1

)
‖Pa (1)‖ .

3.2 Computing the Upper Bound

Given the convex set K defined in Eq. (14), the maximum value of
∣∣∣θ
2 f̂ ∣∣∣ can be

computed by solving the problem:

max
∣∣∣θ
f̂ ∣∣∣, s.t. (θ − c)



(θ − c) ≤ l2, θ � 0. (15)

Since the following equation holds:

max |x| = max {−min(x),max(x)} = max {−min(x),−min(−x)} .

The computation of max
∣∣∣θ
f̂ ∣∣∣ can be decomposed to the following two subprob-

lems: m1 = −minθ
f̂ , m2 = −minθ
(−f̂). And max
∣∣∣θ
f̂ ∣∣∣ = max (m1,m2).

This suggests that the key to bound
∣∣∣θ
f̂ ∣∣∣ is to compute:

minθ
f̂ , s.t. (θ − c)


(θ − c) ≤ l2, θ � 0. (16)

Its Lagrangian L (θ, α,ν) can be written as:

L (θ, α,ν) = θ
f̂ +
1

2
α
(
‖θ − c‖22 − l2

)
+ ν
θ, α ≥ 0, ν � 0. (17)

Since ‖θ− c‖22 ≤ l2, the problem specified in Eq. (16) is bounded from below
by − (‖c‖2 + l) ‖f‖2. Thus, minθ L (θ, α,ν) is also bounded from below. Since
the minimum achieves on the boundary, it must hold that α > 0. It is also easy

to verify that α = 0⇒
∣∣∣θ
f̂ ∣∣∣ = 0.

Setting the derivative of L (θ, α,ν) to be zero leads to the equation:

f + α (θ − c)− ν = 0⇒ θ =
1

α
ν − 1

α
f + c.
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Therefore, θi =
1
ανi −

1
αfi + ci, i = 1, . . . , n. According to the complementary

slackness condition, ν
θ = 0. Also since ν � 0 and θ � 0. It must hold that
νiθi = 0, i = 1, . . . , n. These conditions lead to the following equations:

θi = max

(
ci −

1

α
fi, 0

)
. (18)

This suggests that when α is know, θ can be computed by using Eq. (18). In the
following, it shows that the value of α can be efficiently computed by solving a
zero finding problem through binary search.

Computing α via zero finding According to the complementary slackness
condition, α

(
‖θ − c‖22 − l2

)
= 0. Because α > 0, it must hold that:

‖θ − c‖22 − l2 = 0⇒ θ
θ − 2c
θ − l2 + c
c = 0. (19)

Let A = {i : θi > 0}. The following equation can be obtained.

θ
θ − 2c
θ − l2 + c
c =
∑
i∈A

θ2i − 2
∑
i∈A

ciθi − l2 + c
c. (20)

By plugging Eq. (18) into Eq. (20). A function of α can be obtained as:

g

(
1

α

)
=

1

α2

∑
i∈A

f2
i −

∑
i∈A

c2i − l2 + c
c. (21)

And the α value can be obtained by solving the zero finding problem:

g

(
1

α

)
= 0 (22)

The following theorem suggests that g
(
1
α

)
monotonically increases as 1

α in-
creases. Therefore this problem can be solved efficiently via binary search.

Theorem 2. The function g
(
1
α

)
monotonically increases as 1

α increases.

Proof. Assume that gi
(
1
α

)
is defined as:

gi

(
1

α

)
=

{
i ∈ A, 1

α2 f
2
i − c2i

i /∈ A, 0
. (23)

g
(
1
α

)
can be rewritten as:

g

(
1

α

)
=

∑n

i=1
gi

(
1

α

)
− l2 + c
c.

The theorem can be proved by showing that for ∀i ∈ {1, . . . , n}, gi
(
1
α

)
either

increases monotonically as 1
α increases, or is a constant. Let ε > 0, this can be

proved by comparing gi
(
1
α

)
to gi

(
1
α + ε

)
in the following four cases.
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1. ci > 0, fi ≤ 0: ci > 0, fi ≤ 0⇒ θi = ci − 1
αfi, i ∈ A, for ∀ 1

a ∈ IR+. In this
case gi

(
1
α

)
can be written as:

gi

(
1

α

)
=

1

α2
f2
i − c2i . (24)

And it can be verify that gi
(
1
α + ε

)
> gi

(
1
α

)
when ci > 0, fi ≤ 0.

2. ci ≤ 0, fi > 0: ci ≤ 0, fi > 0 ⇒ θi = 0, i /∈ A, for ∀ 1
a ∈ IR+. In this case

gi
(
1
α

)
can be written as:

gi

(
1

α

)
= 0. (25)

Therefore, gi
(
1
α

)
is a constant when ci ≤ 0, fi > 0.

3. ci > 0, fi > 0: In this case gi
(
1
α

)
can be written as:

gi

(
1

α

)
=

⎧⎨⎩
1
α ∈

(
0, ci

fi

)
⇒ θi = ci − 1

αfi, i ∈ A,
1
α2 f

2
i − c2i

1
α ∈

[
ci
fi
,+∞

)
⇒ θi = 0, i /∈ A , 0

(26)

And it can be verify that gi
(
1
α + ε

)
> gi

(
1
α

)
when ci > 0, fi > 0.

4. ci < 0, fi ≤ 0: In this case gi
(
1
α

)
can be written as:

gi

(
1

α

)
=

⎧⎨⎩
1
α ∈

(
0, ci

fi

]
⇒ θi = 0, i /∈ A , 0

1
α ∈

(
ci
fi
,+∞

)
⇒ θi = ci − 1

αfi, i ∈ A,
1
α2 f

2
i − c2i

(27)

It can also be verify that gi
(
1
α + ε

)
> gi

(
1
α

)
when ci < 0, fi ≤ 0.

This finishes the proof of the theorem.

�
When a value is given to α, A can be determined via computing θi by using

one of the four equations
(
Eq. (24) – Eq. (27)

)
provided in Theorem 2 according

to the value of ci and fi. And the obtained A can be used to compute the value
of g

(
1
α

)
. When A is determined, solving Eq. (22) leads to the following equation:

1

α′
=

√√√√√ l2 − c
c+
∑
i∈A

c2i∑
i∈A

f2
i

(28)

Let an index set B is defined as B = {i : (ci > 0, fi > 0) or (ci < 0, fi ≤ 0)}.
Assume that B contains k members. A sorted index set Bsorted = {i1, . . . , ik} can
be obtained by sorting the value of ci

fi
, i ∈ B. The following theorem provides

the stopping condition for using binary search to solve the zero finding problem.

Theorem 3. Let T =
{
0,

ci1
fi1

, . . . ,
cik
fik

,+∞
}

= {t1, . . . , tk+2}, where i1, . . . , ik

are the k sorted indices in Bsorted. Given 1
α , assume that tj < 1

α ≤ tj+1. The
binary search stops when the 1

α′ computed by using Eq. (28) also satisfies that
tj <

1
α′ ≤ tj+1. In this case, set 1

α = 1
α′ and it can verified that g

(
1
α

)
= 0.
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Proof. The theorem can be proved by using the fact that when the value of 1
α

varies in (tj , tj+1], A keeps unchanged.

�

Theorem 3 suggests that tk+1 can be used as the starting point for binary
search. If g

(
1
α

)
> 0, decrease 1

α . If g
(
1
α

)
< 0, increase 1

α . The search stops when
the condition specified in Theorem 3 is satisfied. And the obtained 1

α and A can

be used to compute θ
f̂ by using the following equation:

θ
f̂ =
∑
i∈A

cifi −
1

α

∑
i∈A

f2
i . (29)

3.3 Computing the Upper Bound without Using θ � 0

When θ � 0 is not used to construct K, max
∣∣∣θ
f̂ ∣∣∣ has a closed form solution

on the hyper-ball defined in Theorem 1.

Theorem 4. The optimization problem:

max
∣∣∣θ
f̂ ∣∣∣, s.t. (θ − c)
 (θ − c) ≤ l2, (30)

has a closed form solution:

max
∣∣∣θ
f̂ ∣∣∣ = ∣∣∣c
 f̂ ∣∣∣+ l

∥∥∥f̂∥∥∥
2
. (31)

Proof. The theorem can be proved by using the method of Lagrange multipliers.

�

Let m be the bound computed by solving Eq. (15), and m′ be the bound
computed by solving Eq. (30). It is easy to see that m < m′, since the K used
in Eq. (15) is tighter. However, since m′ can be computed in closed form, its
computational cost is low . Therefore, it can be used for pre-screening features.
More specifically, If m′ < 1, there is no need to compute m by solving Eq. (15),
since m < m′ < 1. Computing m requires to solve a zero finding problem using
binary search which is usually more expensive than computing Eq. (31).

3.4 The Screening Algorithm

Algorithm 1 shows the procedure of screening features for L1-regularized L2-
SVM. Given λ1, λ2, and θ1, the algorithm returns a list L, which contains the
indices of the features that are potentially active in the optimal solution that
corresponds to λ2. The algorithm first weights a feature using Y in Line 3. It
then computes a bound for |̂f
θ| using Eq. (31) in Line 4. If this bound is less
than 1, the algorithm goes to test the next feature. This is the pre-screening
step for improving algorithm’s efficiency by using a bound that is cheaper to
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compute. If a feature passes the pre-screening, the algorithm computes a tighter
bound for the feature in Line 8 and Line 9. If the bound is larger than 1, it
adds the index of the feature to L in Line 11. The function neg min(̂f) computes
−minθ
2 f̂ . It first solves a zero finding problem for f̂ in Line 17, then uses the
obtained 1

α and A to compute minθ
2 f̂ in Line 18. It returns −minθ
2 f̂ in Line

19. The function zero finding(̂f) solves the zero finding problem. This function

first uses max
(

cj
fj
, j ∈ B

)
as the starting value for 1

α . If g
(
1
α

)
< 0, it must hold

that 1
α ≤

1
α′ < ∞. Therefore the stopping condition specified in Theorem 3 is

satisfied. The algorithm returns 1
α and A in Line 28. Otherwise it setups the

low and high variables for binary search. The binary search is performed in Line
32 to Line 45. The stopping condition is tested in Line 36. If this condition is
satisfied, the function stops searching and returns 1

α and A.
The algorithm needs to be implemented carefully to ensure efficiency. First,

each step of the computation needs to be decomposed to many small substeps, so
that the intermediate results obtained in the preceding substeps can be used by
the following substeps to accelerate computation. Second, the substeps need to be
organized and ordered properly so that no redundant computation is performed.
It turns out the procedure listed in Algorithm 1 can be very efficient.

The pre-screening step requires to compute Yf , f
y, and f
f . Since these
computations are independent of θ1, λ1, and λ2. Therefore, they can been pre-
computed before training3, and the cost is O (mp) for m features. Here p is the
average feature length4. The pre-screening step also requires to compute θ
1 1
and θ
1 θ1. They are shared by all the features. So they can be computed at the
beginning of screening, and the cost is O (n). For each feature, the pre-screening
step requires to compute θ
1 f , and its cost is O (mp) for m features. However,
when a solver fits a L1-regularized L2-SVM model, it might have already com-
puted f̂
θ1 as an intermediate result for all the features. In this case, f̂
θ1 can
be obtained from the solver for screening features at no cost. Given these inter-
mediate results, the bound in the pre-screening step can be obtained in O (m) for
m feature. Therefore, the total computational cost for pre-screening m features
is O (mp). And if f̂
θ1 can be obtained from the intermediate results generated
by the L1-regularized L2-SVM solver and Yf , f
y, and f
f are precomputed
before training, the total cost can decrease to just O (m+ n).

Assume that q features passed the pre-screening5. To compute the tighter
bounds for these features, the algorithm requires to compute c and l. The cost
is O (n). For each feature, it can be verified that the algorithm takes at most
O (log (p)) steps to solve the zero finding problem. In each step, it takes O (p) to
determine A and compute g

(
1
α

)
. Thus, cost for solving the zero-finding problem

is O (p log (p)). In the process of solving the zero-finding problem,
∑

i∈A cifi and∑
i∈A f2

i are computed as the intermediate results. Given them as well as the 1
α

3 They can also be used by the L1-regularized L2-SVM solver.
4 For dense data p = n, for sparse data usually p � n.
5 Usually, q � m.
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Input: X ∈ IRn×m, y ∈ IRn, λ1, λ2, θ1 ∈ IRn.
Output: L, the retained feature list.

1 L = ∅, i = 1, Y = diag (y);
2 for i ≤ m do

3 f̂ = Yfi;

4 m=
∣∣∣c� f̂

∣∣∣ + l
∥∥∥f̂∥∥∥

2
;

5 if m < 1 then
6 continue;
7 end

8 m1=neg min(f̂), m2=neg min(−f̂);
9 m = max {m1,m2};

10 if m ≥ 1 then
11 L = L ∪ {i};
12 end
13 i = i+ 1;

14 end
15 return L;
16 Function neg min(f̂)

17
{

1
α ,A}

= zero finding(f̂);

18 m =
∑
i∈A

cifi − 1
α

∑
i∈A

f2
i ;

19 return −m;

20 end

21 Function zero finding(f̂)
22 B = {i : (ci > 0, fi > 0) or (ci < 0, fi ≤ 0)};
23 search = true, 1

α = max
(

cj
fj

, j ∈ B
)
;

24 compute A and g
(

1
α

)
;

25 if g
(

1
α

)
< 0 then

26 compute 1
α′ using Eq. (28);

27
1
α = 1

α′ ;

28 return
{

1
α ,A}

;

29 else
30 low = 0, high = 1

α ;

31 end
32 while search do
33

1
α = 1

2 (low + high);

34 compute A and g
(

1
α

)
, compute 1

α′ using Eq. (28);

35 if the condition specified in Theroem 3 is satisfied then
36

1
α = 1

α′ , search = false;

37 else
38 if g

(
1
α

)
< 0 then

39 low = tj+1, tj+1 is as defied in Theroem 3;
40 else
41 high = tj , tj is as defied in Theroem 3;
42 end

43 end

44 end

45 return
{

1
α ,A}

;

46 end

Algorithm 1. Screening for L1-regularized L2-SVM
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determined by zero finding, θ
f̂ can be computed in O (1). Therefore, the total
cost for computing the tighter bounds for q features is O

(
n+ qp log (p)

)
.

In summary, in the worst case of the proposed procedure, the total computa-
tional cost for screening a data set that has m features is O

(
mp + qp log (p)

)
.

And if f̂
θ1 can be obtained from the intermediate results generated by the
L1-regularized L2-SVM solver and Yf , f
y, and f
f are precomputed before
training, the total cost can decrease to just O

(
m+ n+ qp log (p)

)
.

4 Empirical Study

The screening approach presented in Algorithm 1 was implemented in the C
language. This section evaluates its power for accelerating model selection for
L1-regularized L2-SVM. Experiments are performed on a Windows Server 2008
R2 with two Intel Xeon� L5530 (2.40GHz) CPUs and 72GB memory.

4.1 Experiment Setup

Five benchmark data sets are used in the experiment. One is a microarraydata set:
gli 85. Three are text data sets: rcv1.binary(rcv1b), real-sim, and news20.binary
(news20b). And one is a educational data mining data set: kdd2010 bridge-to-
algebra (kddb). The gli 85 data set is downloaded from Gene Expression
Omnibus,6 and the other four data sets are downloaded from the LIBSVM data
repository.7 According to the feature-to-sample ratio (m/n), the five data sets fall
into three groups: (1) the m + n group, including the gli 85 and news20b data
sets; (2) the m ≈ n group, including the rcv1b and kddb data sets; and (3) the
m� n group, including the real-sim data set. Table 1 shows detailed information
about the five benchmark data sets.

Table 1. Summary of the benchmark data sets

Data Set sample (n) feature (m) m/n

gli 85 85 22,283 262.15

rcv1b 20,242 47,236 2.33

real-sim 72,309 20,958 0.29

news20b 19,996 1,355,191 67.77

kddb 19,264,097 29,890,095 1.55

A L1-regularized L2-SVM solver based on the coordinate gradient descent
(cgd) algorithm [18] is implemented in the C language for training the L1-
regularized L2-SVM model. A similar solver is also implemented in the liblinear

6 www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE4412
7 www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/
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package [6]. The difference is that in liblinear, the bias term b is also penalized
by the L1 regularizer and is inactive in most cases. In contrast, the solver that
is implemented for this paper solves the problem specified in Eq. (1) exactly.
Therefore, the bias term is not penalized and is alway active.

For each benchmark data set, the L1-regularized L2-SVM
solver is used to fit model along a sequence of 20 λ values:{
λk = 1

kλmax − ε, k = 1, . . . , 20, ε = 10−8
}
. When λ = λmax − ε, only one

feature is active. Denote n+ and n− as the number of positive and negative

samples, respectively. And let m =
∑n

i=1

(
yi − n+−n−

n

)
xi. This feature

corresponds to the largest element in m.
For each given benchmark data set, the L1-regularized L2-SVM solver runs in

four different configurations: (1) In org, the solver runs without any accelerating
technique. (2) In warm, the solver runs with warm-start. In the kth iteration,
the wk−1 obtained in the (k − 1)th iteration is used as the initial wk for fitting
model. When λk and λk−1 are close, warm-start can effectively speed up training
by reducing the number of iterations for the solver to converge. (3) In scr, the
solver runs with the screening technique. (4) In warm scr, the solver runs with
both warm-start and the screening technique. Both warm-start and screening
can be used to speed up model selection. The main purpose of running the L1-
regularized L2-SVM solver with different configurations is not only to compare
screening with warm-start, but also to provide a sensitivity study to explore that
whether better performance can be achieved by combining two techniques.

Table 2. Total run time (in sec.) of the L1-regularized L2-SVM solver when different
combinations of accelerating techniques are used to speed up model selection.

Alg. gli 85 rcv1b real-sim news20b kddb

org 284.08 19.04 20.73 1040.22 9071.73

warm 259.20 11.54 14.06 786.44 5770.12

scr 1.89 4.09 8.53 25.97 947.01

warm scr 1.83 2.70 5.90 18.22 643.34

Table 3. Total number of iterations for the L1-regularized L2-SVM solver to converge
when different combinations of accelerating techniques are used

Alg. gli 85 rcv1 trainb real-sim news20b kddb

org 16,176 1004 548 2,501 737

warm 14,772 578 361 1,908 483

scr 16,028 995 591 2,857 809

warm scr 15,227 606 369 2,035 499



398 Z. Zhao, J. Liu, and J. Cox

4.2 Results

Table 2 and Table 3 show the results of the total run time and the total number
of iterations for the L1-regularized L2-SVM solver to converge when different
combinations of accelerating techniques are used. The total run time and to-
tal number of iterations are obtained by aggregating the time and number of
iterations used by the L1-regularized L2-SVM solver when it fits models using
different regularization parameters. In terms of total running time, screening
with warm-start (warm scr) provides the best performance. Compared to org,
for the m + n group, the speed-up ratio is about 155.5 for the gli 85 data and
57.1 for the news20b data. For the m ≈ n group, the speed-up ratio is about
7.1 for the rcv1b data and 14.1 for the kddb data. And for the m � n group,
the speed-up ratio is about 3.5 for the real-sim data. The result shows that
warm scr is more effective when the number of features is larger than the num-
ber of samples. A similar trend is observed on scr. In terms of the total iteration
number, the best performance is achieved by warm and warm scr. This sug-
gests that warm-start can effectively speed up convergence by providing a good
start point for optimization. When org is compared to scr, the result suggests
that the proposed screening technique can significantly improve the efficiency of
the L1-regularized L2-SVM solver. This justifies that screening can effectively
reduce the computational cost of training by removing most inactive features.
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Fig. 1. Detailed information about the “over hits” on two benchmark data sets when
λ decreases from λmax to 1

20
λmax. “Over hits” is the number of inactive features that

are not removed by screening. The results show that the number of leftover inactive
features is stable, and is small when compared to the size of the original feature set.

Figure 1 shows detailed information about the number of leftover inactive
features on the real-sim and news20b data sets when λ decreases from λmax to
1
20λmax. The result shows that this number is very stable during model selection.
Let k be the number of active features. The proposed screening technique keeps
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to retain about k+ 400 features for training the L1-regularized L2-SVM model.
This number is much smaller than the dimensionality of the original data sets.
Similar trends are also observed on other data sets and are not presented in this
paper because of the space limit. Table 4 compares the time used by screening
to the time used by training. Compared to training time, the screening time is
marginal, especially when m+ n. Notice that for training, the solver uses only
the features that are selected by screening. The training time can be much longer
if screening is not used to eliminate inactive features.

Table 4. Comparison of screening to training time. For training, the solver uses only
the features that are selected by the proposed screening technique. The training time
can be much longer if screening is not used to eliminate inactive features.

Tech. gli 85 rcv1b real-sim news20b kddb

scr

scr 0.01 0.73 1.79 1.29 35.29

tr 1.89 3.35 6.74 24.68 911.72

ratio 0.01 0.22 0.27 0.05 0.04

warm scr

scr 0.03 0.75 1.75 1.31 34.93

tr 1.79 1.95 4.15 16.91 608.41

ratio 0.02 0.38 0.42 0.08 0.06

The results indicate that the proposed screening technqiue is effective for re-
moving inactive features. And with warm-start they form a powerful combination
for accelerating model selection for the L1-regularized L2-SVM.

5 Conclusion

Screening is an effective technique for accelerating model selection for L1-regular-
ized sparse learning model by eliminating features that are guaranteed to be inac-
tive. This paper proposes a novel technique to screen features for L1-regularized
L2-SVM by bounding |̂f
θ| on a tight convex set formed by the interaction
of an n-dimensional hyper-ball and the upper half-space. An efficient binary
search algorithm is designed and implemented to compute this bound for fea-
tures. Empirical study shows that the proposed technique can greatly improve
model selection efficiency by stably eliminating a large portion of the inactive
features. Our ongoing work will extend the technique to screen features for the
L1-regularized L1-SVM model and provide support for distributed computing in
a massively parallel processing (MPP) environment.
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Abstract. Kernel alignment measures the degree of similarity between
two kernels. In this paper, inspired from kernel alignment, we propose a
new Linear Discriminant Analysis (LDA) formulation, kernel alignment
LDA (kaLDA).We first define two kernels, data kernel and class indicator
kernel. The problem is to find a subspace to maximize the alignment
between subspace-transformed data kernel and class indicator kernel.
Surprisingly, the kernel alignment induced kaLDA objective function is
very similar to classical LDA and can be expressed using between-class
and total scatter matrices. This can be extended to multi-label data. We
use a Stiefel-manifold gradient descent algorithm to solve this problem.
We perform experiments on 8 single-label and 6 multi-label data sets.
Results show that kaLDA has very good performance on many single-
label and multi-label problems.

Keywords: Kernel Alignment, LDA.

1 Introduction

Kernel alignment [2] is a way to incorporate class label information into kernels
which are traditionally directly constructed from data without using class labels.
Kernel alignment can be viewed as a measurement of consistency between the
similarity function (the kernel) and class structure in the data. Improving this
consistency helps to enforce data become more separated when using the class
label aligned kernel. Kernel alignment has been applied to pattern recognition
and feature selection recently [3,28,10,11,4].

In this paper, we find that if we use the widely used linear kernel and a
kernel built from class indicators, the resulting kernel alignment function is very
similar to the widely used linear discriminant analysis (LDA), using the well-
known between-class scatter matrix Sb and total scatter matrix St. We call this
objective function as kernel alignment induced LDA (kaLDA). If we transform
data into a linear subspace, the optimal solution is to maximize this kaLDA.

We further analyze this kaLDA and propose a Stiefel-manifold gradient de-
scent algorithm to solve it. We also extend kaLDA to multi-label problems. Sur-
prisingly, the scatter matrices arising in multi-label kernel alignment are identical
those matrices developed in Multi-label LDA [21].

T. Calders et al. (Eds.): ECML PKDD 2014, Part III, LNCS 8726, pp. 401–416, 2014.
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We perform extensive experiments by comparing kaLDAwith other approaches
on 8 single-label datasets and 6 multi-label data sets. Results show that kernel
alignment LDA approach has good performance in terms of classification accuracy
and F1 score.

2 From Kernel Alignment to LDA

Kernel Alignment is a similarity measurement between a kernel function and a
target function. In other words, kernel alignment evaluates the degree of fitness
between the data in kernel space and the target function. For this reason, we
usually set the target function to be the class indicator function. The other kernel
function is the data matrix. By measuring the similarity between data kernel and
class indicator kernel, we can get a sense of how easily this data can be separated
in kernel subspace. The alignment of two kernels K1 and K2 is given as [2]:

A(K1,K2) =
Tr(K1K2)√

Tr(K1K1)
√
Tr(K2K2)

. (1)

We first introduce some notations, and then present Theorem 1 and kernel
alignment projective function.

Let data matrix be X ∈ %p×n and X = (x1, · · · ,xn), where p is data di-
mension, n is number of data points, xi is a data point. Let normalized class
indicator matrix be Y ∈ %n×K , which was used to prove the equivalence between
PCA and K-means clustering [26,5], and

Yik =

{
1√
nk

, if point i is in class k.

0, otherwise.
(2)

where K is total class number, nk is the number of data points in class k. Class
mean is mk =

∑
xi∈k xi/nk and total mean of data is m =

∑
i xi/n.

Theorem 1. Define data kernel K1 and class label kernel K2 as follows:

K1 = XTX, K2 = Y Y T , (3)

we have

A(K1,K2) = c
TrSb√
TrS2

t

(4)

where c = 1/
√
Tr(Y Y T )2 is a constant independent of X.

Furthermore, let G ∈ %p×k be a linear transformation to a k-dimensional
subspace

X̃ = GTX, K̃1 = X̃T X̃, (5)
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we have

A(K̃1,K2) = c
Tr(GTSbG)√
Tr(GTStG)2

(6)

where

Sb =
K∑

k=1

nk(mk −m)(mk −m)T , (7)

St =

n∑
i=1

(xi −m)(xi −m)T , (8)

Theorem 1 shows that kernel alignment can be expressed using scatter matrices
Sb and St. In applications, we adjust G such that kernel alignment is maximized,
i.e., we solve the following problem:

max
G

Tr(GTSbG)√
Tr(GTStG)2

. (9)

In general, columns of G are assumed to be linearly independent.
A striking feature of this kernel alignment problem is that it is very similar

to classic LDA.

2.1 Proof of Theorem 1 and Analysis

Here we note a useful lemma and then prove Theorem 1.
In most data analysis, data are centered, i.e.,

∑
i xi = 0. Here we assume data

is already centered. The following results remain correct if data is not centered.
We have the following relations:

Lemma 1. Scatter matrices Sb, St can be expressed as:

Sb =XY Y TXT , (10)

St =XXT . (11)

These results are previously known, for example, Theorem 3 of [5].

Proof of Theorem 1. To prove Eq.(4), we substitute K1,K2 into Eq.(1) and
obtain, noting Tr(AB) = Tr(BA),

A(K1,K2) =
Tr(XY Y TXT )√

Tr(XXT )2
√
Tr(Y Y T )2

= c
TrSb√
TrS2

t

.

where we used Lemma 1. c = 1/
√
Tr(Y Y T )2 is a constant independent of data

X .
To prove Eq.(6),

A(K̃1,K2) = c
Tr(GTXY Y TXTG)√

Tr(GTXXTG)2
= c

Tr(GTSbG)√
Tr(GTStG)2

,

thus we obtain Eq.(6) using Lemma 1.
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2.2 Relation to Classical LDA

In classical LDA, the between-class scatter matrix Sb is defined as Eq.(7), and
the within-class scatter matrix Sw and total scatter matrix St are defined as:

Sw =

K∑
k=1

∑
xi∈k

(xi −mk)(xi −mk)
T , St = Sb + Sw, (12)

where mk and m are class means. Classical LDA finds a projection matrix G ∈
%p×(K−1) that minimizes Sw and maximizes Sb using the following objective:

max
G

Tr
GTSbG

GTSwG
, (13)

or

max
G

Tr(GTSbG)

Tr(GTSwG)
. (14)

Eq.(14) is also called trace ratio (TR) problem [22]. It is easy to see 1 that
Eq.(14) can be expressed as

max
G

Tr(GTSbG)

Tr(GTStG)
. (15)

As we can see, kernel alignment LDA objective function Eq.(9) is very similar to
Eq.(15). Thus kernel alignment provides an interesting alternative explanation
of LDA. In fact, we can similarly show that in Eq.(9), Sw is also maximized as
in the standard LDA. First, Eq.(9) is equivalent to

max
G

Tr(GTSbG) s.t. Tr(GTStG)2 = η,

where η is a fixed-value. The precise value of η is unimportant, since the scale of
G is undefined in LDA: if G∗ is an optimal solution, and r is any real number,
G∗∗ = rG∗ is also an optimal solution with the same optimal objective function
value. The above optimization is approximately equivalent to

max
G

Tr(GTSbG) s.t. Tr(GTStG) = η,

This is same as

max
G

Tr(GTSbG) s.t. Tr(GTSwG) = η − Tr(GTSbG),

In other words, Sb is maximized while Sw is minimized — recovering the LDA
main theme.

1 Eq.(14) is equivalent to min Tr(GT SwG)

Tr(GT SbG)
, which is min

(
Tr(GT SwG)

Tr(GT SbG)
+ 1

)
. Reversing

to maximization and using St = Sb + Sw, we obtain Eq.(15).
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3 Computational Algorithm

In this section, we develop efficient algorithm to solve kaLDA objective function
Eq.(9):

max
G

J1 =
Tr(GTSbG)√
Tr(GTStG)2

, s.t. GTG = I. (16)

The condition GTG = I ensures different columns of G mutually independent.
The gradient of J1(G) is

∇J1 � ∂J1
∂G

= 2
A√
TrD2

− 2
TrB

(TrD2)
3
2

CD, (17)

where A = SbG, B = GTA, C = StG, D = GTC.
Constraint GTG = I enforces G on the Stiefel manifold. Variations of G on

this manifold is parallel transport, which gives some restriction to the gradient.
This has been been worked out in [6]. The gradient that reserves the manifold
structure is

∇J1 −G[∇J1]
TG. (18)

Thus the algorithm computes the new G is given as follows:

G← G− η(∇J1 −G[∇J1]
TG). (19)

The step size η is usually chosen as:

η = τ‖G‖1/‖∇J1 −G(∇J1)
TG‖1, τ = 0.001 ∼ 0.01. (20)

where ‖G‖1 =
∑

ij |Gij |.
Occasionally, due to the loss of numerical accuracy, we use projection G ←

G(GTG)−
1
2 to restore GTG = I. Starting with the standard LDA solution of

G, this algorithm is iterated until the algorithm converges to a local optimal
solution. In fact, objective function will converge quickly when choosing η prop-
erly. Figure 1 shows that J1 converges in about 200 iterations when τ = 0.001,
for datasets ATT, Binalpha, Mnist, and Umist (more details about the datasets
will be introduced in experiment section). In summary, kernel alignment LDA
(kaLDA) procedure is shown in Algorithm 1.

To show the effectiveness of proposed kaLDA, we visualize a real dataset in
2-D subspace in Figure 2. In this example, we take 3 classes of 644-dimension
Umist data, 18 data points in each class. Figure 2a shows the original data
projected in 2-D PCA subspace. Blue points are in class 1; red circle points
are in class 2; black square points are in class 3. Data points from the three
classes are mixed together in 2-D PCA subspace. It is difficult to find a linear
boundary to separate points of different classes. Figure 2b shows the data in 2-D
standard LDA subspace. We can see that data points in different classes have
been projected into different clusters. Figure 2c shows the data projected in 2-D
kaLDA subspace. Compared to Figure 2b, the within-class distance in Figure 2c
is much smaller. The distance between different classes is larger.
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Algorithm 1. [G] = kaLDA(X,Y )

Input: Data matrix X ∈ �p×n, class indicator matrix Y ∈ �n×K

Output: Projection matrix G ∈ �p×k

1: Compute Sb and St using Eq.(10) and Eq.(11)
2: Initialize G using classical LDA solution
3: repeat
4: Compute gradient using Eq.(17)
5: Update G using Eq.(19)
6: until J1 Converges
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Fig. 1. Objective J1 converges using Stiefel-manifold gradient descent algorithm (τ =
0.001)

4 Extension to Multi-label Data

Multi-label problem arises frequently in image and video annotations, multi-
topic text categorization, music classification. etc.[21]. In multi-label data, a
data point could have several class labels (belonging to several classes). For ex-
ample, an image could have “cloud”, “building”, “tree” labels. This is different
from the case of single-label problem, where one point can have only one class
label. Multi-label is very natural and common in our everyday life. For example,
a film can be simultaneously classified as “drama”, “romance”, “historic” (if it
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(c) 2-D kaLDA subspace

Fig. 2. Visualization of Umist data in 2-D PCA, 2-D LDA and 2-D kaLDA subspace

is about a true story). A news article can have topic labels such as “economics”,
“sports”, etc.

Kernel alignment approach can be easily and naturally extended to multi-label
data, because the class label kernel can be clearly and unambiguously defined
using class label matrix Z on both single label and multi-label data sets. The
data kernel is defined as usual. In the following we further develop this approach.

One important result of our kernel alignment approach for single label data
is that it has close relationship with LDA. For multi-label data, each data point
could belong to several classes. The standard scatter matrices Sb, Sw are am-
biguous, because Sb, Sw are only defined for single label data where each data
point belongs to one class only. However, our kernel alignment approach on
multi-label data leads to new definitions of scatter matrices and similar objec-
tive function; this can be viewed as the generalization of LDA from single-label
data to multi-label data via kernel alignment approach.

Indeed, the new scatter matrices we obtained from kernel alignment approach
are identical to the so-called “multi-label LDA” [21] developed from a class-
separate, probabilistic point of view, very different from our point of view. The
fact that these two approaches lead to the same set of scatter matrices show that
the resulting multi-label LDA framework has a broad theoretical basis.
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We first present some notations for multi-label data and then describe the
kernel alignment approach for multi-label data in Theorem 2. The class label
matrix Z ∈ %n×K for data X ∈ %p×n is given as:

Zik =

{
1, if point i is in class k.

0, otherwise.
(21)

Let ñk =
∑n

i=1 Zik be the number of data points in class k. Note that for multi-

label data,
∑K

k=1 ñk > n. The normalized class indicator matrix Ỹ ∈ %n×K is
given as:

Ỹik =

{
1√
ñk

, if point i is in class k.

0, otherwise.
(22)

Let ρi =
∑K

k=1 Zik be the number of classes that xi belongs to. Thus ρi are
the weights of xi. Define the diagonal weight matrix Ω = diag(ρ1, · · · , ρn). The
kernel alignment formulation for multi-label data can be stated as

Theorem 2. For multi-label data X, let the data kernel and class label kernel
be

K1 = Ω
1
2XTXΩ

1
2 , K2 = Ω−

1
2 Ỹ Ỹ TΩ−

1
2 . (23)

We have the alignment

A(K1,K2) = c
TrSb√
TrS2

t

(24)

where c = 1/

√
Tr(Ω−1Ỹ Ỹ T )2 is a constant independent of data X, and Sb, St

are given in Eqs.(27, 28).
Furthermore, let G ∈ %p×k be the linear transformation to a k-dimensional

subspace,

X̃ = GTX, K̃1 = Ω1/2X̃T X̃Ω1/2, (25)

we have

A(K̃1,K2) = c
Tr(GTSbG)√
Tr(GTStG)2

(26)

The matrices Sb, St in Theorem 2 are defined as:

Sb =

K∑
k=1

ñk(mk −m)(mk −m)T , (27)

St =
K∑

k=1

n∑
i=1

Zik(xi −m)(xi −m)T , (28)
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where mk is the mean of class k and m is global mean, defined as:

mk =

∑n
i=1 Zikxi

ñk
, m =

∑n
i=1 ρixi∑K
k=1 ñk

. (29)

Therefore, we can seek an optimal subspace for multi-label data by solving
Eq.(16) with Sb, St given in Eqs.(27,28)

4.1 Proof of Theorem 2 and Equivalence to Multi-label LDA

Here we note a useful lemma for multi-label data and then prove Theorem 2.
We consider the case the data is centered, i.e.,

∑n
i=1 ρixi = 0. The results also

hold when data is not centered, but the proofs are slightly complicated.

Lemma 2. For multi-label data, Sb, St of Eqs.(27,28) can be expressed as

Sb =XỸ Ỹ TXT (30)

St =XΩXT (31)

Proof. From the definition of mk and Ỹ in multi-label data, we have

XỸ = (m1, · · · ,mK)

⎛⎜⎝
√
ñ1

. . . √
ñK

⎞⎟⎠ .

Thus XỸ Ỹ TXT =
∑K

k=1 ñkmkm
T
k recovers Sb of Eq.(27).

To prove Eq.(31), note that XΩ = (ρ1x1, · · · , ρnxn), thus XΩXT =∑n
i=1 ρixix

T
i .

Proof of Theorem 2. Using Lemma 2, to prove Eq.(24),

A(K1,K2) = c
Tr(XỸ Ỹ TXT )√
Tr(XΩXT )2

= c
TrSb√
TrS2

t

,

where c = 1/

√
Tr(Ω−1Ỹ Ỹ T )2 is independent of X .

To prove Eq.(26),

A(K̃1,K2) = c
Tr(GTXỸ Ỹ TXTG)√
Tr(GTXΩXTG)2

= c
Tr(GTSbG)√
Tr(GTStG)2

.

For single-label data, ρi = 1, Ω = I, ñk = nk, Eqs.(30, 31) reduce to
Eqs.(10, 11), and Theorem 2 reduces to Theorem 1.

As we can see, surprisingly, the scatter matrices Sb, St of Eqs.(27, 28) arising
in Theorem 2 are identical to that in Multi-label LDA proposed in [21].
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Table 1. Single-label datasets attributes

Data n p k

Caltec07 210 432 7
Caltec20 1230 432 20
MSRC 210 432 7
ATT 400 644 40

Binalpha 1014 320 26
Mnist 150 784 10
Umist 360 644 20
Pie 680 1024 68

Table 2. Classification accuracy on Single-label datasets (K − 1 dimension)

Data kaLDA LDA TR sdpLDA MMC RLDA OCM

Caltec07 0.7524 0.6619 0.6762 0.5619 0.6000 0.7952 0.7619
Caltec20 0.7068 0.6320 0.4465 0.3386 0.5838 0.6812 0.6696
MSRC 0.7762 0.6857 0.5714 0.5952 0.5667 0.7333 0.7286
ATT 0.9775 0.9750 0.9675 0.9750 0.9750 0.9675 0.9675

Binalpha 0.7817 0.6078 0.4620 0.2507 0.7638 0.7983 0.8204
Mnist 0.8800 0.8733 0.8667 0.8467 0.8467 0.8667 0.8467
Umist 0.9900 0.9900 0.9917 0.9133 0.9633 0.9800 0.9783
Pie 0.8765 0.8838 0.8441 0.8632 0.8676 0.6515 0.6515

5 Related Work

Linear Discriminant Analysis (LDA) is a widely-used dimension reduction and
subspace learning algorithm. There are many LDA reformulation publications in
recent years. Trace Ratio problem is to find a subspace transformation matrix G
such that the within-class distance is minimized and the between-class distance
is maximized. Formally, Trace Ratio maximizes the ratio of two trace terms,
maxG Tr(GTSbG)/Tr(GTStG) [22,13], where St is total scatter matrix and Sb

is between-class scatter matrix. Other popular LDA approach includes, regular-
ized LDA(RLDA) [9], Orthogonal Centroid Method (OCM) [18], Uncorrelated
LDA(ULDA) [23], Orthogonal LDA (OLDA) [23], etc.. These approaches mainly
compute the eigendecomposition of matrix S−1t Sb, but use different formulation
of total scatter matrix St [24].

MaximumMargin Criteria (MMC) [17] is a simpler and more efficient method.
MMC finds a subspace projection matrix G to maximize Tr(GT (Sb − Sw)G).
Though in a different way, MMC also maximizes between-class distance while
minimizing within-class distance. Semi-Definite Positive LDA (sdpLDA) [14]
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Table 3. Multi-label datasets attributes

Data n p k

MSRC-MOM 591 384 23
Barcelona 139 48 4
Emotion 593 72 6
Yeast 2,417 103 14

MSRC-SIFT 591 240 23
Scene 2,407 294 6

Table 4. Classification accuracy on Multi-label datasets (K − 1 dimension)

Data kaLDA MLSI MDDM MLLS MLDA

MSRC-MOM 0.9150 0.8962 0.9044 0.8994 0.9036
Barcelona 0.6579 0.6436 0.6470 0.6524 0.6290
Emotion 0.7634 0.7397 0.7540 0.7529 0.7619
Yeast 0.7405 0.7317 0.7371 0.7364 0.7368

MSRC-SIFT 0.8839 0.8762 0.8800 0.8807 0.8858
Scene 0.8870 0.8534 0.8713 0.8229 0.8771

solves the maximization of Tr(GT (Sb − λ1Sw)G), where λ1 is the largest eigen-
value of S−1w Sb. sdpLDA is derived from the maximum margin principle.

Multi-label problem arise frequently in image and video annotations and many
other related applications, such as multi-topic text categorization [21]. There are
many Multi-label dimension reduction approaches, such as Multi-label Linear
Regression (MLR), Multi-label informed Latent Semantic Indexing (MLSI) [25],
Multi-label Dimensionality reduction via Dependence Maximization (MDDM)
[27], Multi-Label Least Square (MLLS) [12], Multi-label Linear Discriminant
Analysis (MLDA) [21].

6 Experiments

In this section, we first compare kernel alignment LDA (kaLDA) with other six
different methods on 8 single label data sets and compare kaLDA multi-label
version with four other methods on 6 multi-label data sets.

6.1 Comparison with Trace Ratio w.r.t. Subspace Dimension

Eight single-label datasets are used in this experiment. These datasets come
from different domains, such as image scene Caltec [8] and MSRC [16], face
datasets ATT, Umist, Pie [19], and digit datasets Mnist [15] and Binalpha. Table
1 summarizes the attributes of those datasets.
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Fig. 3. Classification accuracy w.r.t. dimension of the subspace
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Table 5. Macro F1 score on Multi-label datasets (K − 1 dimension)

Dataset kaLDA MLSI MDDM MLLS MLDA

MSRC-MOM 0.6104 0.5244 0.5593 0.5426 0.5571
Barcelona 0.7377 0.7286 0.7301 0.7341 0.7169
Emotion 0.6274 0.5873 0.6101 0.6041 0.6200
Yeast 0.5757 0.5568 0.5696 0.5691 0.5693

MSRC-SIFT 0.4712 0.4334 0.4522 0.4544 0.4773
Scene 0.6851 0.5911 0.6411 0.5048 0.6568

Caltec07 and Caltec20 are subsets of Caltech 101 data. Only the HOG
feature is used in this paper.

MSRC is a image scene data, includes tree, building, plane, cow, face, car
and so on. It has 210 images from 7 classes and each image has 432 dimension.

ATT data contains 400 images of 40 persons, with 10 images for each person.
The images has been resized to 28× 23.

Binalpha data contains 26 binary hand-written alphabets. It has 1014 images
in total and each image has 320 dimension.

Mnist is a handwritten digits dataset. The digits have been size-normalized
and centred. It has 10 classes and 150 images in total, with 784 dimension each
image.

Umist is a face image dataset (Sheffield Face database) with 360 images from
20 individuals with mixed race, gender and appearance.

Pie is a face database collected by Carnegie Mellon Robotics Institute between
October and December 2000. In total, it has 68 different persons.

In this part, we compare the classification accuracy of kaLDA and Trace
Ratio [22] with respect to subspace dimension. The dimension of the subspace
that kaLDA can find is not restricted to K− 1. After subspace projection, KNN
classifier (knn = 3) is applied to perform classification. Results are shown in
Figure 3. Solid line denotes kaLDA accuracy and dashed line denotes Trace Ratio
accuracy. As we can see, in Figures 3a, 3b, 3c, 3g, and 3h, kaLDA has higher
accuracy than Trace Ratio when using the same number of reduced features.
In Figures 3d, 3e, 3f, kaLDA has competitive classification accuracy with Trace
Ratio. However, kaLDA is more stable than Trace Ratio. For example, in Figure
3f and 3g, we observe a decrease in accuracy when feature number increases
using Trace Ratio.

6.2 Comparison with other LDA Methods

We compare kaLDA with six other different methods, including LDA, Trace Ra-
tio (TR), spdLDA, MaximumMargin Criteria (MMC), regularized LDA (RLDA),
and Orthogonal Centroid Method (OCM). All LDA will reduce data to K − 1
dimension. KNN (knn = 3) will be applied to do the classification after data is
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Table 6. Micro F1 score on Multi-label datasets (K − 1 dimension)

Dataset kaLDA MLSI MDDM MLLS MLDA

MSRC-MOM 0.5138 0.4064 0.4432 0.4370 0.4448
Barcelona 0.6969 0.6891 0.6861 0.6904 0.6772
Emotion 0.6203 0.5779 0.6030 0.5961 0.6151
Yeast 0.4249 0.4026 0.4205 0.4216 0.4213

MSRC-SIFT 0.3943 0.3510 0.3637 0.3667 0.3959
Scene 0.6966 0.6006 0.6493 0.5062 0.6643

projected into the selected subspace. The other algorithms have already been in-
troduced in related work section. The final classification accuracy is the average
of 5-fold cross validation, and is reported in Table 2. The first column “kaLDA”
reports kaLDA classification accuracy. kaLDA has the highest accuracy on 4
out of 8 datasets, including Caltec20, MSRC-MOM, ATT and Mnist. For Umist
and Pie, kaLDA results are very close to the highest accuracy. Overall, kaLDA
performs better than all other methods.

6.3 Multi-label Classification

Six multi-label datasets are used in this part. These datasets include images
features, music emotion and so on. Table 3 summarizes the attributes of those
datasets.

MSRC-MOM andMSRC-SIFT data set is provided by Microsoft Research
in Cambridge. It includes 591 images of 23 classes. MSRC-MOM is the Mo-
ment invariants (MOM) feature of images and each image has 384 dimensions.
MSRC-SIFT is the SIFT feature and each image has 240 dimensions. About
80% of the images are annotated with at least one classes and about three classes
per image on average.

Barcelona data set contains 139 images with 4 classes, i.e., “building”,
“flora”, “people” and “sky”. Each image has at least two labels.

Emotion [20] is a music emotion data, which comprises 593 songs with 6
emotions. The dimension of Emotion is 72.

Yeast [7] is a multi-label data set which contains functional classes of genes
in the Yeast Saccharomyces cerevisiae.

Scene [1] contains images of still scenes with semantic indexing. It has 2407
images from 6 classes.

We use 5-fold cross validation to evaluate classification performance of differ-
ent algorithms. K-Nearest Neighbour (KNN) classifier is used after the subspace
projection. The algorithms we compared in this section includes Multi-label in-
formed Latent Semantic Indexing (MLSI), Multi-label Dimensionality reduction
via Dependence Maximization (MDDM), Multi-Label Least Square (MLLS),
Multi-label Linear Discriminant Analysis (MLDA). These algorithms have been
introduced in related work section.
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We compare the performance of kaLDA and other algorithms using macro
accuracy (Table 4), macro-averaged F1-score (Table 5) and micro-averaged (Ta-
ble 6) F1-score. Accuracy and F1 score are computed using standard binary
classification definitions. In multi-label classification, macro average is a stan-
dard class-wise average, and it is related to number of samples in each class.
However, micro average gives equal weight to all classes [21]. kaLDA achieves
highest classification accuracy on 5 out of 6 datasets. On the remaining MSRC-
SIFT dataset, kaLDA result is very close to the best method MLDA and beat
all rest methods. kaLDA achieves highest macro and micro F1 score on 5 out
of 6 datasets. Furthermore, kaLDA has the second highest macro and micro F1
score on dataset MSRC-SIFT. Overall, kaLDA outperforms other multi-label
algorithms in terms of classification accuracy and macro and micro F1 score.

7 Conclusions

In this paper, we propose a new kernel alignment induced LDA (kaLDA). The
objective function of kaLDA is very similar to classical LDA objective. The Stifel-
manifold gradient descent algorithm can solve kaLDA objective efficiently. We
have also extended kaLDA to multi-label problems. Extensive experiments show
the effectiveness of kaLDA in both single-label and multi-label problems.

Acknowledgment. This work is partially supported by US NSF CCF-0917274
and NSF DMS-0915228.

References

1. Boutell, M.R., Luo, J., Shen, X., Brown, C.M.: Learning multi-label scene classifi-
cation. Pattern Recognition 37(9), 1757–1771 (2004)

2. Cristianini, N., Shawe-taylor, J., Elisseeff, A., Kandola, J.S.: On kernel target align-
ment. Advances in Neural Information Processing Systems 14, 367 (2002)

3. Cristianini, N., et al.: Method of using kernel alignment to extract significant fea-
tures from a large dataset. US Patent 7,299,213 (2007)

4. Cuturi, M.: Fast global alignment kernels. In: Proceedings of the 28th International
Conference on Machine Learning (ICML 2011), pp. 929–936 (2011)

5. Ding, C., He, X.: K-means clustering via principal component analysis. In: Proc.
of International Conference on Machine Learning, ICML 2004 (2004)

6. Edelman, A., Arias, T.A., Smith, S.T.: The geometry of algorithms with orthog-
onality constraints. SIAM Journal on Matrix Analysis and Applications 20(2),
303–353 (1998)

7. Elisseeff, A., Weston, J.: A kernel method for multi-labelled classification. In: NIPS,
vol. 14, pp. 681–687 (2001)

8. Fei-Fei, L., Fergus, R., Perona, P.: Learning generative visual models from few
training examples: An incremental bayesian approach tested on 101 object cate-
gories. Computer Vision and Image Understanding 106(1), 59–70 (2007)

9. Guo, Y., Hastie, T., Tibshirani, R.: Regularized linear discriminant analysis and
its application in microarrays. Biostatistics 8(1), 86–100 (2007)



416 S. Zheng and C. Ding

10. Hoi, S.C., Lyu, M.R., Chang, E.Y.: Learning the unified kernel machines for clas-
sification. In: Proceedings of the 12th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 187–196. ACM (2006)

11. Howard, A., Jebara, T.: Transformation learning via kernel alignment. In: In-
ternational Conference on Machine Learning and Applications, ICMLA 2009,
pp. 301–308. IEEE (2009)

12. Ji, S., Tang, L., Yu, S., Ye, J.: Extracting shared subspace for multi-label classi-
fication. In: Proceedings of the 14th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 381–389. ACM (2008)

13. Jia, Y., Nie, F., Zhang, C.: Trace ratio problem revisited. IEEE Transactions on
Neural Networks 20(4), 729–735 (2009)

14. Kong, D., Ding, C.: A semi-definite positive linear discriminant analysis and its ap-
plications. In: 2012 IEEE 12th International Conference on Data Mining (ICDM),
pp. 942–947. IEEE (2012)

15. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to
document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998)

16. Lee, Y.J., Grauman, K.: Foreground focus: Unsupervised learning from partially
matching images. International Journal of Computer Vision 85(2), 143–166 (2009)

17. Li, H., Jiang, T., Zhang, K.: Efficient and robust feature extraction by maximum
margin criterion. IEEE Transactions on Neural Networks 17(1), 157–165 (2006)

18. Park, H., Jeon, M., Rosen, J.B.: Lower dimensional representation of text data
based on centroids and least squares. BIT Numerical Mathematics 43(2), 427–448
(2003)

19. Sim, T., Baker, S., Bsat, M.: The cmu pose, illumination, and expression (pie)
database of human faces. Tech. Rep. CMU-RI-TR-01-02, Robotics Institute, Pitts-
burgh, PA (January 2001)

20. Trohidis, K., Tsoumakas, G., Kalliris, G., Vlahavas, I.P.: Multi-label classification
of music into emotions. In: ISMIR, vol. 8, pp. 325–330 (2008)

21. Wang, H., Ding, C., Huang, H.: Multi-label linear discriminant analysis. In: Dani-
ilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part VI. LNCS, vol. 6316,
pp. 126–139. Springer, Heidelberg (2010)

22. Wang, H., Yan, S., Xu, D., Tang, X., Huang, T.: Trace ratio vs. ratio trace for
dimensionality reduction. In: IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2007, pp. 1–8. IEEE (2007)

23. Ye, J.: Characterization of a family of algorithms for generalized discriminant anal-
ysis on undersampled problems. Journal of Machine Learning Research, 483–502
(2005)

24. Ye, J., Ji, S.: Discriminant analysis for dimensionality reduction: An overview of
recent developments. Biometrics: Theory, Methods, and Applications. Wiley-IEEE
Press, New York (2010)

25. Yu, K., Yu, S., Tresp, V.: Multi-label informed latent semantic indexing. In: Pro-
ceedings of the 28th Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval, pp. 258–265. ACM (2005)

26. Zha, H., Ding, C., Gu, M., He, X., Simon, H.: Spectral relaxation for K-means
clustering. In: Advances in Neural Information Processing Systems 14 (NIPS 2001),
pp. 1057–1064 (2001)

27. Zhang, Y., Zhou, Z.H.: Multilabel dimensionality reduction via dependence max-
imization. ACM Transactions on Knowledge Discovery from Data (TKDD) 4(3),
14 (2010)

28. Zhu, X., Kandola, J., Ghahramani, Z., Lafferty, J.D.: Nonparametric transforms
of graph kernels for semi-supervised learning. In: Advances in Neural Information
Processing Systems, pp. 1641–1648 (2004)



Transfer Learning with Multiple Sources via Consensus
Regularized Autoencoders

Fuzhen Zhuang1, Xiaohu Cheng1,2, Sinno Jialin Pan3,
Wenchao Yu1,2, Qing He1, and Zhongzhi Shi1

1 Key Laboratory of Intelligent Information Processing, Institute of Computing Technology,
Chinese Academy of Sciences, Beijing 100190, China

2 University of Chinese Academy of Sciences, Beijing 100049, China
3 Institute for Infocomm Research, Singapore

{zhuangfz,chengxh,yuwc,heq,shizz}@ics.ict.ac.cn
sinnocat@gmail.com

Abstract. Knowledge transfer from multiple source domains to a target domain
is crucial in transfer learning. Most existing methods are focused on learning
weights for different domains based on the similarities between each source do-
main and the target domain or learning more precise classifiers from the source
domain data jointly by maximizing their consensus of predictions on the target
domain data. However, these methods only consider measuring similarities or
building classifiers on the original data space, and fail to discover a more power-
ful feature representation of the data when transferring knowledge from multiple
source domains to the target domain. In this paper, we propose a new framework
for transfer learning with multiple source domains. Specifically, in the proposed
framework, we adopt autoencoders to construct a feature mapping from an orig-
inal instance to a hidden representation, and train multiple classifiers from the
source domain data jointly by performing an entropy-based consensus regular-
izer on the predictions on the target domain. Based on the framework, a particular
solution is proposed to learn the hidden representation and classifiers simultane-
ously. Experimental results on image and text real-world datasets demonstrate the
effectiveness of our proposed method compared with state-of-the-art methods.

Keywords: Transfer Learning, Multiple Sources, Consensus Regularization,
Feature Representation.

1 Introduction

Transfer learning or domain adaptation aims to extract common knowledge across do-
mains such that a model trained on one domain can be adapted effectively to other
domains [16]. In the past decade, a number of transfer learning methods have been pro-
posed, most of which are focused on the 1vs1 transfer learning setting, where only one
source domain and one target domain are assumed to be available when knowledge is
transferred. However, in many real-world scenarios, given a target domain, there may
be more than one source domain available for building classifiers. In this case, how to
fully utilize multiple sources to ensure effective knowledge transfer is crucial.
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So far, there are several works proposed for transfer learning with multiple source do-
mains [8,27,7,4,9]. Most of them are focused on learning weights for different domains
based on the similarities between each source domain and the target domain or learning
more precise classifiers from the source domain data jointly by maximizing their con-
sensus of predictions on the target domain data. For instance, Gao et al. [8] proposed
a lazy ensemble method for multi-source transfer learning. Specifically, a number of
supervised classifiers are trained from the source domains, then given an instance in
the target domain, its local structure constructed in the source domains is used to esti-
mate the weights for different source-domain classifiers to make predictions. Zhuang et
al. [27] proposed a consensus regularization framework for multi-source transfer learn-
ing, where classifiers trained on multiple source domains are optimized jointly not only
to achieve high prediction results on the corresponding domains, but also to make con-
sistent predictions on target domain data. Similarly, Chattopadhyay et al. [4] introduced
a transfer learning framework based on the multi-source domain adaptation method-
ology for detecting different stages of fatigue using surface electromyography signals.
The works [7,4,9] need a few labeled data in the target domain, while in our work there
are only labeled data in the source domains.

A common characteristic of most transfer learning methods with multiple domains
is that knowledge transfer is performed on the original data space. However, in many
applications, the supports of features of different domains may not be the same. In
other words, there may exist domain-specific features in different domains, e.g., dif-
ferent product domains have their specific opinion words [1,14]. In this case, adapting
models on the original data space may not be able to transfer knowledge effectively.
Moreover, in many other applications, the data observed may be very complex, e.g.,
sensor signals. In this case, measuring similarity or dissimilarity between domains on
the original data space may not be precise, which may limit the transferability across
domains [13,15]. To address these issues, another branch of methods, which is referred
to as the feature-based transfer learning approach, has been proposed in the 1vs1 trans-
fer learning setting. The motivation of this approach is to learn a feature mapping or
transformation to map the original data to a new feature space where the difference or
distance between different domains can be reduced implicitly or explicitly.

Motivated by the idea of the feature-based methods in the 1vs1 transfer learning set-
ting, in this paper, we propose an embedding-based framework for multi-source transfer
learning. Specifically, in the proposed framework, we first adopt autoencoders [10] to
construct a feature mapping to map an original instance to a hidden representation. Note
that this mapping is shared by all the source and target domain data. We then train mul-
tiple classifiers on different source domain labeled data with the hidden representation
jointly by introducing an entropy-based consensus regularizer on the predictions on the
target domain data with the hidden representation. Based on the framework, a particular
solution is proposed to learn the hidden representation and consensus regularized clas-
sifiers simultaneously. Different from the existing work proposed by Zhuang et al. [27],
where a consensus regularizer is performing on the original data space, our model in-
stead of a hidden feature space. We believe the great success of representation learning
of autoencoders can lead to better transferability of our framework. As will be shown in
the Experimental section, extensive experiments on image and text datasets verify our
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hypotheses and demonstrate the superiority of our proposed framework over a variety
of state-of-the-art methods.

2 Notations and Preliminaries

In this section, we first introduce some frequently used notations as presented in Table 1,
and some preliminaries which will be used in our proposed framwork.

Table 1. The Notation and Denotation

D(i) A data domain i

r The number of source domains
m The number of original features of a data domain
ni The number of instances of a data domain i

k The number of hidden features
x An original instance
y A class label
x̂ The reconstruction of x
z An embedded instance

W, b A weight matrix and bias vector of encoding
W′, b′ A weight matrix and bias vector of decoding
θi A vector of parameters of a classifier i
� The transposition of a matrix
◦ The dot product of vectors or matrixes

2.1 Logistic Regression

In our proposed framework, we adopt logistic regression [6] as the base classifier.
Note that the proposed framework is general, thus other types of classifiers can also
be plugged into our framework. The goal of logistic regression is to estimate a condi-
tional probability P (y|x) in terms of a vector of parameters θ ∈ R

m×1 by solving the
following maximization problem,

min
θ

n∑
i=1

log σ(yiθ

xi)− λθ
θ, (1)

over a set of labeled data {xi, yi}ni=1, where xi ∈ R
m×1 is an input instance, yi is its

correspondingly discrete output, e.g., for binary classification yi ∈ {−1, 1}, and σ(u)
is a sigmoid function defined as follows,

σ(u) =
1

1 + e−u
. (2)

The second term in (1) is a regularization term to avoid overfitting, where the trade-off
parameterλ is a small positive constant. After θ is estimated, the conditional probability
of y given x can be computed by

p(y|x; θ) = σ(yθ
x), (3)

which is used to classify target domain data, i.e., the predicted label ofx ismaxy p(y|x; θ).
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2.2 Autoencoders

An autoencoder first maps an input instance x to a hidden representation z through an
encoding mapping:

z = h(Wx+ b),

where h is a nonlinear activation function, W ∈ R
k×m is a weight matrix, and b ∈

R
k×1 is a bias vector. The resulting latent representation z is then mapped back to a

reconstruction x̂ through a decoding mapping:

x̂ = g(W′z + b′),

where g is a nonlinear activation function, W′ ∈ R
m×k is a weight matrix, and b′ ∈

R
m×1 is a bias vector. Given a set of inputs {xi}ni=1, the parameters of an autoencoder

are optimized by minimizing the reconstruction error as follows,

min
W,b,W′,b′

=

n∑
i=1

‖xi − x̂i‖2. (4)

Note that, in this paper we adopt the sigmoid function σ defined in (2), which is widely
used in constructing autoencoders, as the nonlinear activation functions g and h for
encoding and decoding respectively.

2.3 Consensus Measure

Given r classifiers in terms of their parameter vectors (θ1, θ2, · · · , θr) and an instance
x, for a specific class c, we denote (p1(c), p2(c), · · · , pr(c)) a vector of the predicted
probabilities P (y = c|x) of the r classifiers accordingly. Then the consensus measure
of the predictions of the r classifiers on x is given by

ψ(x; {θi}ri=1) = −
∑
c∈C

p̄(c) log
1

p̄(c)
, (5)

where p̄(c) = 1
r

∑r
i=1 pi(c), and C is the total set of classes. As shown in [27], max-

imizing (5) is equivalent to enforcing the r classifiers to make consistent predictions
on x as well as minimizing the entropy of the predictions of each classifier on x. For
binary classification, (5) can be rewritten as

ψ(x; {θi}ri=1) = (p̄− (1− p̄))2 = (2p̄− 1)2. (6)

Note that we say (5) and (6) are equivalent for binary classification in the sense that
they have the same effect that: when maximizing them, the predictions on any instance
from all the classifiers (from the different domains) are similar. Thus, their effects on
making the prediction consensus are similar, though their value scales are not the same.
In this paper, we focus on binary classification, thus adopt (6) as the consensus measure
in the following section.
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3 Consensus Regularized Autoencoders

3.1 Problem Formalization

Given r source domainsD(1)
S , · · · ,D(r)

S , where for each source domain j ∈ {1, · · · , r},
there are nj labeled data, i.e., D(j)

S =
{
x
(j)
Si

, y
(j)
Si

}nj

i=1
, where y

(j)
Si
∈ {−1, 1}, and a

target domain DT without any labeled data, i.e, DT = {xTi , yTi}
n
i=1, the goal is to

train a classifier f to make precise predictions on DT or previously unseen instances in
the target domain. Note that, in our transfer scenario there is not any labeled data in the
target domain.

Our proposed optimization problem for multi-source transfer learning is formulated
as follows,

min
Θ,Θ′,{θj}

J = ε(xS , x̂S ,xT , x̂T ) + γΩ(Θ,Θ′)

+α�(zS , yS ; {θj})− βψ(zT ; {θj}), (7)

where the first term in the objective is the reconstruction error of the source and target
domain data, which can be written as follows,

ε(xS , x̂S ,xT , x̂T ) =
r∑

j=1

nj∑
i=1

‖xSi − x̂Si‖2 +
n∑

i=1

‖xTi − x̂Ti‖2,

and

z
(j)
Si

= σ(Wx
(j)
Si

+ b), zTi = σ(WxTi + b),

x̂
(j)
Si

= σ(W′z(j)Si
+ b′), x̂Ti = σ(W′zTi + b

′).

The second term in the objective is a regularization term on the parameters Θ =
{W, b} and Θ′ = {W′, b′}, which can be written as

Ω(Θ,Θ′) = (‖W‖2 + ‖b‖2 + ‖W′‖2 + ‖b′‖2).

The third term in (7) is the total loss of each source classifiers over the corresponding
source label data with the hidden representation, which can be written as

�(zS , yS ; {θj}) =
r∑

j=1

(
−

nj∑
i=1

log σ(y
(j)
Si
θ
j z

(j)
Si

) + λθ
j θj

)
,

where θj ∈ R
k×1. The last term in (7) is the consensus regularization terms of the

predictions of the source classifiers on the target domain data, which can be written as

ψ(zT ; {θj}) =
n∑

i=1

∥∥∥∥∥2
∑r

j=1 σ(θ


j zTi)

r
− 1

∥∥∥∥∥
2

.

The trade-off parameters α, β, γ and λ are small positive contents to balance the effect
of different terms to the overall objective (7).
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3.2 A Particular Solution

The optimization problem (7) is an unconstrained optimization with five types of vari-
ables W, b, W′, b′ and {θj}’s to be optimized, and does not have closed form solu-
tions. To derive the solutions of the five types of variables, we propose to use gradient
descent methods. To simplify the math expressions, we first introduce the following
intermediate variables.

A
(j)
Si

=
(
x̂
(j)
Si
− x(j)

Si

)
◦ x̂(j)

Si
◦
(
1− x̂(j)

Si

)
,

ATi = (x̂Ti − xTi) ◦ x̂Ti ◦ (1− x̂Ti),

B
(j)
Si

= z
(j)
Si
◦
(
1− z(j)Si

)
,

BTi = zTi ◦ (1− zTi),

C
(j)
Ti

= σ(θ
j zTi)
(
1− σ(θ
j zTi)

)
.

Then, it can be shown that the partial derivatives of the objective J in (7) with respect
to W, b, W′, b′ and {θj}’s can be computed as follows respectively,

∂J
∂W

= 2W′

⎛⎝ r∑

j=1

nj∑
i=1

A
(j)
Si
◦B(j)

Si
x
(j)
Si



+

n∑
i=1

ATi ◦BTix


Ti

⎞⎠
− α

r∑
j=1

nj∑
i=1

(
1− σ(y

(j)
Si
θ
j z

(j)
Si

)
)
y
(j)
Si
θj ◦B(j)

Si
x
(j)
Si




− 4β

r2

n∑
i=1

⎛⎝⎛⎝2 r∑
j=1

σ(θ
j zTi)− r

⎞⎠ r∑
j=1

(C
(j)
Ti
θj ◦B(j)

Si
x
Ti

)

⎞⎠
+ 2γW, (8)

∂J
∂b

=2W′

⎛⎝ r∑

j=1

nj∑
i=1

A
(j)
Si
◦B(j)

Si
+

n∑
i=1

ATi ◦BTi

⎞⎠
−α

r∑
j=1

nj∑
i=1

(
1− σ(y

(j)
Si
θ
j z

(j)
Si

)
)
y
(j)
Si
θj ◦B(j)

Si

−4β

r2

n∑
i=1

⎛⎝⎛⎝2 r∑
j=1

σ(θ
j zTi)− r

⎞⎠ r∑
j=1

(C
(j)
Ti
θj ◦B(j)

Si
)

⎞⎠
+2γb, (9)

∂J
∂W′ =

r∑
j=1

nj∑
i=1

2A
(j)
Si
z
(j)
Si



+

n∑
i=1

2ATiz


Ti

+ 2γW′, (10)
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∂J
∂b′

=

r∑
j=1

nj∑
i=1

2A
(j)
Si

+

n∑
i=1

2ATi + 2γb′, (11)

∂J
∂θj

= α

(
−

nj∑
i=1

(
1− σ(y

(j)
Si
θ
j z

(j)
Si

)
)
y
(j)
Si
z
(j)
Si



+ 2λθ
j

)

−4β

r2

n∑
i=1

r∑
j=1

(
2σ(θ
j zTi)− r

)
C

(j)
Ti
z
Ti

. (12)

Based on the above partial derivatives, with an initialization of W, b, W′, b′ and
{θj}’s, we can update them alternatively and iteratively by applying the following rules
till the solutions are converged,

W←W − η
∂J
∂W

, b← b− η
∂J
∂b

,

W′ ←W′ − η
∂J
∂W′ , b′ ← b′ − η

∂J
∂b′

,

θj ← θj − η
∂J
∂θj

,

(13)

where η is a learning rate. That is, in each iteration, we alteratively fix four of the five
types of the variables and optimize the rest one.

3.3 Target Classifier Construction

After the solutions of W, b, W′, b′ and {θj}’s are obtained, one can construct a clas-
sifier fT in terms of θT for the target domain in two ways. One way is to construct the
classifier combining all source classifiers {θj}’s based on a voting scheme. That is, for
any instance xT from the target domain, which can be either from the observed unla-
beled sampleDT or unseen data sample, the classifier fT make a prediction on it based
on

fT (xT ) =
1

r

r∑
j=1

σ
(
θ
j (σ(WxT + b))

)
.

Alternatively, another way to construct a target classifier is to first map instances from
all the source domains to their corresponding hidden representations by z

(j)
Si

=

σ
(
Wx

(j)
Si

+ b
)

, and then apply standard classification algorithms, e.g., logistic regres-

sion or Support Vector Machine (SVM) [2], on the labeled data, {z(j)Si
, y

(j)
Si
}j=1,··· ,r
i=1,··· ,nj

,
to train a unified classifier fT in terms of a vector of parameter θT . For any instance
xT from the target domain, one can first map it to an hidden representation by zT =
σ(WxT +b), and then use θT to make an prediction. In the sequel, we denote Consen-
sus Regularized Autoencoders (CRA) for our proposed framework and the particular
solution. The overall algorithm of CRA is summarized in Algorithm 1.
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Algorithm 1. Consensus Regularized Autoencoders (CRA)

Input: Given r source domains D(1)
S , · · · ,D(r)

S , where D(j)
S = {x(j)

Si
, y

(j)
Si

}nj

i=1, a target domain
DT = {xTi}ni=1, trade-off parameters α, β, γ, λ, and the number of hidden features k.
Output: A classifier on the target domain.

1. Initialize W, b, W′, and b′ by performing an autoencoder algorithm on instances of all the
domains, and train {θj}’s on the corresponding domain data independently.

2. Fix {θj}’s, update W, b, W′, and b′ alteratively based on the update rules in (13) and the
corresponding derivatives in (8), (9), (10) and (11).

3. Fix W, b, W′, and b′, update {θj}’s based on the update rules in (13) and the corresponding
derivative in (12).

4. If the solutions are converged, construct a target classifier as described in Section 3.3, other-
wise, go to Step 2.

Table 2. Description of the image dataset

flower traffic
sunflower rose lotus tulip aviation bus boat dogsled

No. of instance 85 100 66 100 100 100 100 100

4 Experiments

In this section, we conduct extensive experiments on two real-world datasets to sys-
temically evaluate the effectiveness of our proposed method for multi-source transfer
learning.

4.1 Datasets

Image Dataset. We conduct experiments on the image dataset of multi-source transfer
learning problems used in [27]. The dataset contains two main categories, flower and
traffic, selected from the COREL collection1. Each main category further contains four
subcategories. The flower category can be further classified into sunflower, rose, lotus
and tulip, while the traffic category can be further classified into aviation, bus, boat
and dogsled. Figure 1 shows one example of each subcategory respectively. Following
the same preprocessing proposed in [27], we randomly select one subcategory from
flower and one subcategory from traffic to construct a domain, thus can construct 24
(4!) different groups of domains, where each group contains 4 different domains and
each subcategory appears once and only once in each group. In each group, we then
randomly select one domain as the target domain, and the rest 3 domains as the source
domains. Finally, we can construct 96 (4 × 4!) multi-source (3 source domains) image
classification problems. Each image is represented by 87 features, which include 36
features are based on color histogram [25] and 51 features are based on SILBP texture
histogram [19]. The description of the image dataset is summarized in Table 2.

1 http://archive.ics.uci.edu/ml/datasets/Corel+Image+Features

http://archive.ics.uci.edu/ml/datasets/Corel+Image+Features
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Fig. 1. Examples of the eight subcategories of the dataset

Sentiment Dataset. We use the Multi-domain sentiment benchmark dataset generated
by [1] for experiments. The dataset contains reviews of 4 types of products, books, dvd,
electronics, and kitchen, crawled from Amazon.com. Each product review is annotated
as positive or negative based on its overall sentiment polarity. Each type of products
is considered as a domain, and each domain contains 2,000 reviews, of which 1,000
are positive and the other 1,000 are negative. Each review is represented as a vector of
3126 word features. Following similar preprocessing used in [1], we randomly select
one of the 4 domains as the target domain, and the rest 3 domains as the source domains.
Therefore, we can conduct four multi-source sentiment classification problems.

4.2 Baseline Methods and Implementation Details

Baseline Methods. We compare our proposed method CRA with various baseline
methods, including the standard logistic regression (LR) and SVM without transfer
learning, an embedding method based on autoencoders (EAER) [23], a dimensionality
reduction method for 1vs1 transfer learning problems, Transfer Component Analysis
(TCA) [15], the Centralized Consensus Regularization (CCR3) [27] for multi-source
transfer learning problems on the original data space, and a recently proposed 1vs1
transfer learning method based on autoencoders, marginalized Stacked Denoising Au-
toencoders (mSDA) [5].

Note that the methods EAER and TCA only map original data to a latent space,
where a classifier needs to be further specified for final classification problems. Here,
we consider LR or SVM as the base classifier for EAER and TCA. Moreover, except
for CCR3, all the other baselines are not proposed for multi-source transfer learning
problems, to conduct experiments with multiple source domains, we can either apply
them on each pair of a source domain and the target domain or apply them on the pair
of a unified source domain which simply combines all source domains and the target
domain to learn a target classifier. For each of these baselines, i.e., LR, SVM, EAER,
TCA, and mSDA, we report the mean, the maximum as well as the minimum accuracies
of their corresponding target classifiers based on pairwise domains. For our proposed
CRA, as we discussed, there are two ways to construct a target classifier. One is a
voting-based combination of the multiple learned source classifiers, the other is to learn
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Table 3. Average results (in %) on the 96 multi-source image classification problems

LR SVM
LR SVM

mSDA CCR3 CRAv
LR SVM

EAER TCA EAER TCA CRAu CRAu

Max 83.9 81.7 83.2 84.2 85.6 85.2 83.1 87.5
89.2 89.4 88.9Min 65.0 56.0 62.3 66.8 71.3 69.8 64.6 83.5

Mean 76.1 69.6 74.9 77.0 79.4 79.1 73.5 85.9

a unified classifier from hidden representations of all source domains. We denote CRAv

and CRAu the target classifiers built in these two ways respectively.

Implementation Details. For the trade-off parameters in CRA, the settings are listed
as follows, α = 1, β = 0.5, k = 10, γ = 0.0001, λ = 1 for the image dataset, and
α = 100, β = 20, k = 80, γ = 0.0001, λ = 1 for sentiment dataset. In experiments,
we also study the parameter sensitivity of the parameters. For the parameters in TCA,
EAER and mSDA, we carefully tune the number of dimensions k, and report the best
results (e.g., in TCA, k varies from 10 to 80 with interval 10 for image data). We set the
parameters of CCR3 as the those published in [27], in which the parameter θ controlling
the importance of consensus is sampled from [0.05, 0.25] with interval 0.05. Thus the
three values of minimum, mean and maximum for CCR3 are also reported.

4.3 Experimental Results

Results on Image Data. We show the detailed mean accuracies of 96 image classifi-
cation problems in Figure 2, and their average results in Table 3. From these results,
we have some attractive observations: 1) CRA is significantly better than the tradi-
tional machine learning algorithms LR and SVM, which validate the effectiveness of the
proposed transfer learning framework. 2) CRA outperforms TCA, EAER and mSDA,
which shows that CRA can benefit from discovering a more powerful feature repre-
sentation and incorporating consensus regularization from multiple source domains.
3) CRA performs better than CCR3, which indicates the superiority of representation
learning of autoencoders. Furthermore, the t-test with 95% confidence shows that CRA
is significantly better than all the compared baselines.

Results on Sentiment Data. To further verify the effectiveness of the proposed frame-
work CRA, we also make comparisons of all algorithms on sentiment classification
problems. The detailed results are recorded in Table 4. Except mSDA is slightly better
than CRA according to the maximum accuracies, CRA outperforms all the baselines.
These results again validate the effectiveness of CRA, which can take full advantage
of autoencoders and consensus regularization from multiple source domains simultane-
ously in a unified optimization framework.

4.4 Parameter Sensitivity

Here, we also investigate the parameter influence of three important trade-off param-
eters on image data, i.e., the relative importance of incorporating labeled information
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Fig. 2. The mean accuracies of 96 multi-source image classification problems

from source domains, the effect of considering consensus regularization and the number
of hidden nodes for autoencoder. When we consider one parameter, the rest parameters
are fixed. α and β are sampled from the value set {0.01, 0.1, 0.5, 1, 5, 10, 50, 100}, and
k is sampled from the value set {5, 10, 20, 30, 40, 50, 60, 70, 80}. Six problems are ran-
domly selected from 96 ones, and all the results of CRAv are shown in Figure 3. We
find that CRA is not sensitive to the number of hidden nodes k from Figure 3(c), so we
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Table 4. Detailed and average results (in %) on the 4 multi-source sentiment classification
problems

Tasks LR SVM
LR SVM

mSDA CCR3 CRAv
LR SVM

EAER TCA EAER TCA CRAu CRAu

tar.book
Max 79.3 78.4 67.8 68.5 73.0 66.2 82.3 78.6

79.2 79.2 79.1Min 71.0 71.5 57.0 58.9 69.3 59.3 77.6 78.2
Mean 75.7 74.9 63.0 64.2 70.9 62.8 79.9 78.4

tar.kitchen
Max 85.6 85.4 78.9 75.2 77.5 73.1 84.7 86.1

85.9 86.3 85.8Min 76.4 74.9 71.0 64.2 75.9 64.7 81.4 85.6
Mean 81.0 80.5 76.6 69.4 76.7 68.7 83.5 85.9

tar.elec.
Max 83.9 83.1 74.2 72.9 72.8 70.5 85.2 79.3

84.1 84.7 82.4Min 73.5 73.0 68.5 60.7 69.4 59.4 74.4 75.4
Mean 78.7 78.9 70.8 67.1 71.2 65.2 81.0 75.6

tar.dvd
Max 79.7 79.5 69.5 68.5 70.8 67.4 82.3 80.2

80.6 81.1 80.8Min 73.6 72.2 56.5 61.4 67.7 61.3 78.2 79.7
Mean 77.0 75.9 65.1 65.2 69.0 64.3 80.3 80.1

Average
Max 82.1 81.6 72.6 71.3 73.5 69.3 83.7 81.1

82.5 82.8 82.0Min 73.6 72.9 63.2 61.3 70.6 61.2 77.9 79.7
Mean 78.1 77.5 68.9 66.5 72.0 65.3 81.2 80.5

set k = 10 in the experiments for high efficiency. In Figure 3(a), CRA gets very low
performance when the value of α is small, which indicates the importance of labeled
information from source domains. Also in Figure 3(b), it is observed that the setting of
large value of β will lead to over-fitting and degrade the performance of CRA. Accord-
ing to these insights, we set α = 1, β = 0.5 and k = 10 in this paper to achieve good
and stable results.

5 Related Work

In this section, we survey some previous works which are closely related to our work,
including transfer learning and autoencoder.

5.1 Embedding with Autoencoder

Autoencoders are primarily seen as a dimensionality reduction technique and thus use
a bottleneck, namely the lower dimensional hidden layer of autoencoder, to learn a
compressed representation which is represented by the hidden layer [3,10]. Currently
variants of autoencoders have been investigated. Sparse autoencoders [17] use the idea
of introducing a form of sparsity regularization to restrict the capacity of hidden units.
Denoising autoencoders [21,22] learn to reconstruct the clean input from a artificially
corrupted input and capture the structure of the input distribution. Sparse coding [12]
can be viewed as a kind of autoencoder that uses a linear decoder tends to favor learning
over-complete representations. These are often called regularized autoencoders, where
some regularization terms are proposed to improve the data reconstruction performance.
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Fig. 3. The Study of Parameter Influence on CRA

Contractive autoencoders [18], which shares a similar motivation with Denoising au-
toencoders, learn robust representations by adding an analytic contractive penalty term
to the basic autoencoder. Marginalized Stacked Denoising Autoencoders (mSDA) [5]
can be seen as the first try to use autoencoding technique for domain adaptation. How-
ever they have not considered consensus regularization from multiple sources.

5.2 Transfer Learning

Recent years have witnessed numerous research in transfer learning [16]. Here we only
list some closely related works, i.e., transfer embedding and subspace learning (or learn-
ing on topic level). Pan et al. [13] proposed a dimensionality reduction approach to find
out such latent feature space that supervised learning algorithms can be applied to train
classification models and obtain satisfying results. After that, they also proposed a trans-
fer component analysis (TCA) algorithm to learn some transfer components across do-
mains [15]. Si et al. [20] developed a transfer subspace learning framework, which can
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be applicable to various dimensionality reduction algorithms and minimize the Breg-
man divergence between the distribution of training data and testing data in the selected
subspace. Zhuang et al. [26] exploited the stable associations between word topics and
document classes as the bridge for knowledge transfer. Zhang et al. [24] proposed to
match data distributions in the Hilbert space, which can be formulated as aligning ker-
nel matrices across domains when given a pre-defined empirical kernel map. However,
these works are all in the 1vs1 transfer learning setting. Compared to the previous work
learning from multiple sources [27] on the original data space, we focus on the rep-
resentation learning of autoencoders for transfer learning. For cross-domain activity
recognition, Hu et al. [11] developed a bridge between the activities in two domains
by learning a similarity function via Web search, under the condition that the sensor
readings are from the same feature space. However, they assumed some labeled target
domain data are available in their model.

To sum up, we propose a unsupervised transfer framework via consensus regular-
ized autoencoders, which takes full advantage of autoenders and consensus regular-
ization from multiple sources. And finally, the extensive experiments demonstrate its
effectiveness.

6 Conclusions

In this paper, we study the transfer learning framework from multiple source domains
via consensus regularized autoencoders. In this framework, the well known represen-
tation learning technique autoencoder is incorporated, and the consensus prediction on
target domain data given by classifiers trained from multiple source domains is consid-
ered. Then we formalize the autoencoders and consensus regularization into a unified
optimization framework. Finally, a series of experiments on image and text data are
conducted to validate the effectiveness of our framework.

We assume all the source domains play the same important role in this paper. It would
be interesting to assign different weights to different source domains and investigate
their importance in the future work.

Acknowledgments. This work is supported by the National Natural Science Founda-
tion of China (No. 61175052, 61203297, 61035003), National High-tech R&D Program
of China (863 Program) (No.2014AA012205, 2013AA01A606, 2012AA011003).
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Abstract. In the competitive world of popular brands, strong presence
in social media is of major importance for customer engagement and
products advertising. Up to now, many such tools and applications en-
able end-users to observe and monitor their company’s web profile, their
statistics, as well as their market outreach and competition status. This
work goes beyond the individual brands statistics since it automates a
brand ranking process based on opinions emerging in social media users’
posts. Twitter streaming API is exploited to track micro-blogging activ-
ity for a number of famous brands with emphasis on users’ opinions and
interactions. The social impact is captured from 3 different perspectives
(objective counts, opinion reckoning, influence analysis), which estimate
a score assigned to each brand via a multi-criteria algorithm. The results
are then exposed in a Web application as a list of the most social brands
on Twitter. But, are conventional metrics, such as followers, enough in
order to measure the social impact of a brand? Different usage scenar-
ios of our application reveal that the social presence of a brand is more
complex than current social impact frameworks care to admit.

Keywords: social media analytics, brand ranking, multiple criteria de-
cision analysis, sentiment classification, visualization.

1 Introduction

Twitter has become a valuable tool for extracting public opinion. Indeed, a
trend towards replacing conventional surveys by opinion mining over popular
social media has already been highlighted in the literature [1]. Large scale ven-
dors have always spent a lot of money to gain information about their products
and services. Exploiting social media statistics, sentiment analysis and further
metrics is today gaining a momentum and significantly impacting brands’ mar-
keting strategy. Such tools exist, a popular one being Sysomos [2], which started
as a research project and is now a large commercial company that comes with a
price, whereas free-of-charge platforms provide nearly enough data for someone
to recognize what he has to change for his brand to improve its social web profile.

Branty1 is a partly open-source social media monitoring platform that an-
alyzes, ranks and visualizes the social presence of brands on Twitter. Branty

� Authors contributed equally to this work.
1 Branty web application http://branty.org/

T. Calders et al. (Eds.): ECML PKDD 2014, Part III, LNCS 8726, pp. 432–435, 2014.
c© Springer-Verlag Berlin Heidelberg 2014
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ranks brands based on social media analytics. Users can specify their preferences
via an easy Web interface which is facilitating users adjustments and results sum-
marizations. Branty is characterized by its openness with an aim to provide
the Branty rating as an external service, which would be pluggable by other
social media tools, product review sites and e-shops.

2 Ranking Brands with Branty

Branty formulates the problem of brand ranking as a multiple criteria decision
analysis (MCDA) problem. Each brand is characterized with respect to the 16
criteria summarized in Table 1. Branty employs the Technique for Order of
Preference by Similarity to Ideal Solution (TOPSIS) [3] for ranking the moni-
tored brands. TOPSIS assumes two extra brands which have the best and worst
possible score in each criterion and assigns the best rate to the brand closest to
the optimal and furthermost to the worst one. It proceeds to ranking by receiving
input weights by the user, showing the relative importance of each criterion.

Table 1. Criteria each brand is characterized with

Objective Counts Criteria

Overall time Current week

Number of brand followers Number of tweets by users
Friends-Followers ratio Number of tweets by the brand
Verified Twitter page or not Appearances of the brand’s website
Twitter lists the brand is member of Times the brand has been mentioned
Average number of brand’s posts per month,
since its registration

Sum of re-tweets of the brand’s tweets

Sum of favorites of the brand’s tweets

Opinion Reckoning Criteria

Overall time Current week

- Number of users’ positive tweets
Number of users’ negative tweets
Number of users’ neutral tweets

Influence Analysis Criteria

Overall time Current week

Klout Score Positive tweets on trending topics

These criteria assess three different views of brands’ social impact on Twitter
and span either a small recent time period (e.g. week) or a more archival time
period (the whole dataset). Objective Counts Criteria are statistics which assess
the social presence of a brand on Twitter while Opinion Reckoning Criteria
assess the current opinion Twitter users have for this brand. Positive tweets on
trending topics show the strength a brand has among popular topics, meaning
that a @brand is met along with at least one of the most popular hashtags.
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We track the other Influence Analysis Criterion in a comparative to our score
manner, using Klout service2.

MongoDB3 was used to store the data, while the implementation was based
on the Java Twitter4J4 library in order to utilize Twitter API. The current
version of Branty is outlined with data for approximately 400 brands in 4
distinct categories: Auto, Fashion, Food/Beverages, Technology, collected from
December 2013 until today.

2.1 Classifying Tweets by Sentiment

Opinion Reckoning Criteria require the classification of tweets by sentiment as
positive, negative or neutral. This is achieved via a linear support vector machine
classifier, trained on a number of tweets (approximately 1000 tweets manually
annotated in this case study). Particular pre-processing has cleaned text by
removing URLs, references, punctuation, hash-tag symbols and all other non-
alphanumeric characters, while question and exclamation marks were converted
to words. We then used a standard tf-idf representation for the pre-processed
tweets. Also, SentiWordNet (SWN) [4] was utilized to derive 4 additional features
corresponding to the fraction of positive, negative and neutral words within
a sentence (tweet text in our case), as well as to the overall sentiment score
of the sentence (the result of the SWN lexicon). The inclusion of these SWN
attributes increased the accuracy of our approach by 5%. We managed to achieve
a prediction accuracy of around 80%, similarly to [5,6].

3 Visualizing Data on a Web Application

Figure 3 shows the interface of Branty. On the left, a folding tab hosts hor-
izontal sliders that allow users to weigh each of the criteria according to their
preferences. The calculate button at the bottom of this tab refreshes the brand
ranking according to the current weight settings. Brands are ranked in descend-
ing order according to their score, which is displayed as both a number and a
horizontal bar. At the top right, clickable icons can be used to filter the ranking
by brand category. At the same time, the top 10 hash-tags within the tweets of
the selected category’s brands are displayed above the ranking.

Experimenting with Branty, we noticed its functionality since differentiat-
ing weights in partial or all criteria has resulted in deviating brand ranking
results. Its innovative contribution is that it enables tunable weighting for the
end-users, using criteria which have different emphasis on the brands’ ranking.
Utilizing Twitter is justified by the fact that its presence is dominant, which
is why it is used by Branty, integrating all of its features into a user-friendly
interface. Via Branty’s fine grained tunable and automated brand ranking,

2 Klout Service, an external framework which ranks its users after measuring their
social influence http://klout.com/

3 http://www.mongodb.org/
4 http://twitter4j.org/

http://klout.com/
http://www.mongodb.org/
http://twitter4j.org/
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Fig. 1. Branty’s interface. The top 8 Technology brands ranking snaphot

companies can monitor their social presence relative to that of their competitors
with respect to different criteria, discover their weak points and adopt strategies
for improvements and effective decision making.

4 Conclusion and Future Work

We have developed a ranking framework based on social media for evaluating
brands in a comparative manner. Our first hypothesis was that a ranking analysis
is defined by many factors and demands a deeper analysis. On our framework, a
parameterized view of the current picture in social media can be created, giving
brands a powerful tool to play with and analyze the results near real-time.

In the future we plan to extend Branty with criteria coming from other
social media, such as Facebook, Google+ and LinkedIn. We also plan to increase
the number of monitored brands by replacing our single server system with a
distributed infrastructure solution.
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Abstract. The development of positioning systems and wireless connectivity has
made it possible to collect users’ fine-grained movement data. This availability
of movement data can be applied in a broad range of services. In this paper, we
present a novel tool for calculating users’ similarity based on their movements.
This tool, MinUS, integrates the technologies of trajectory pattern mining with
the state-of-the-art research on discovering user similarity with trajectory pat-
terns. Specifically, with MinUS, we provide a platform to manage movement
datasets, and construct and compare users’ trajectory patterns. Tool users can
compare results given by a series of user similarity metrics, which allows them
to learn the importance and limitations of different similarity metrics and pro-
motes studies in related areas, e.g., location privacy. Additionally, MinUS can
also be used by researchers as a tool for preliminary process of movement data
and parameter tuning in trajectory pattern mining.

1 Introduction

Due to the free access to GPS (global positioning system), people have access to their
precise whereabouts. This access in turn leads to the collection of enormous amount
of movement data, which offers us a new source of information to study human be-
ing’s behaviour. For instance, we can check whether humans possess swarm patterns
as birds and other animals during their movement. We can also learn the mutual in-
fluences between users’ movements and their social relationships [1]. Among all in-
teresting patterns, periodicity is naturally inherited in people’s movement [2]. In other
words, people have the intention to repeat some of their routes, possibly with similar
temporal patterns. For instance, as a student of University of Luxembourg, Pierre has
a daily routine from his residence to the train station where he takes bus to Campus
Kirchberg. We call such repeated routines trajectory patterns. Intuitively, a trajectory
pattern is a sequence of places of interests (PoIs) which a user frequently visits. With
this interpretation, the daily routine of the student can be expressed as residence →
train station → Campus Kirchberg . Typical transition time between two consecutive
places of interest can also be added as part of a trajectory pattern. The extraction of
trajectory patterns from users’ travel history has been well studied in the literature and
many mining algorithms have been proposed (e.g., [3]).

Trajectory patterns can be explored in many ways [4,5,6], one of which is friend
recommendation in social networks. This is inspired by the fact that users’ movement

� Supported by the FNR Luxembourg under project SECLOC 794361.
�� To whom correspondence should be addressed.

T. Calders et al. (Eds.): ECML PKDD 2014, Part III, LNCS 8726, pp. 436–439, 2014.
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Fig. 1. The architecture of MinUS

reflects their interest. For instance, frequent visits to a reading club can indicate a user as
a fan of literature. Thus, by the similarity between two users in terms of their trajectory
patterns, we can infer whether they share similar hobbies. To the best of our knowledge,
no tools are publicly available to calculate user similarity with trajectory patterns.

In this paper, we present a tool which integrates the technologies of trajectory pattern
mining with recent research on user similarity calculation with trajectory patterns. Com-
pared to existing trajectory pattern mining tools, our tool provides a graphical interface
and allows users to control the mining process. More specifically, users have access to
all intermediate results which can be visualised with our tool. Thus, researchers can
use MinUS as a tool to preliminarily process movement data and tune parameters in
trajectory pattern mining. With a series of metrics implemented, tool users can measure
user similarity from different perspectives and thus learn the limitations and importance
of different metrics. MinUS has one distinguishing feature that allows users to use the
semantics of spatio-temporal information in trajectory patterns to mine user similarity.

Our tool is implemented with Java and C#. It is available online and can be down-
loaded from the following link http://satoss.uni.lu/software/MinUS.

2 The MinUS Tool

The MinUS tool has three function modules which are shown in Figure 1. The first mod-
ule, data management, is in charge of managing movement datasets which are collected
by different organisations. Such a dataset consists of a number of users whose move-
ment is stored in the form of daily trajectories. This module keeps track of the statistic
information about the users in each dataset. The statistics will be updated automati-
cally once the values of the fields are available. The second function module, mobility
mining, takes users’ daily trajectories as input and outputs their trajectory patterns. The
third module, similarity calculation, calculates the similarity values between users se-
lected by tool users using the chosen similarity metric. In the following discussion, we
give more details about the last two modules.

Mobility mining. In this function module, we implement the three sequential steps to
calculate users’ trajectory patterns according to the methodology given in [7,8]. At each
step, a type of information about users’ movement is mined. At the first step, we traverse
all of the selected users’ trajectories and detect their stay points, the centroids of small
areas where a user stayed for a certain amount of time. A place of interest (PoI) is an
area where users frequently visit, stay for a while and preform certain activities, such as

http://satoss.uni.lu/software/MinUS
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(a) MapView (b) User similarity calculation

supermarkets and theatres. Based on this interpretation, at the second step, we calculate
users’ PoIs by identifying the regions where stay points are densely located. We imple-
ment a hierarchical clustering algorithm to calculate the clusters of stay points which
are close to each other. Outlying stay points that are isolated from other points may in-
crease the size of some PoIs. We make use of LOF (local outlier factor) to measure the
extent of isolation of a stay point and remove a certain percentage of stay points that are
most isolated. With extracted PoIs, users’ trajectories are transformed into sequences
of PoIs. At the last step, we explore the trajectory pattern mining tool of Giannotti et
al. [3] to extract trajectory patterns.

Our tool gives tool users the control (by specifying the parameters required by the
underlying algorithms) and the access to all intermediate results, such as users’ stay
points and PoIs. With a visualisation interface called MapView, tool users can put all
the intermediate results on the map. In Figure 2(a), we show the screen shot of the
visualisation interface. Users’ trajectories are denoted by blue lines, while the yellow
dots represent stay points and PoIs are depicted by red rectangles.

Similarity Calculation. This module provides a platform to apply different metrics to
measure user similarity with trajectory patterns. Figure 2(b) shows the interface of users
similarity calculation. The tool users start with selecting a subset of users and the tool
will return the similarity values between any two selected users. The results are visu-
alised by a grid where the grey level of each cell indicates the similarity values between
a pair of users. So far, we have implemented three categories of user similarity metrics:
maximal trajectory pattern based [9,7,8], common pattern set based [10] and Hausdorff
distance based [11]. Our tool also allows for taking into account location semantics and
temporal semantics in the calculation. Location semantics denotes the functionalities of
a PoI, e.g., restaurant and school, while temporal semantics represents the informa-
tion revealed by time, e.g., weekends and weekdays. Since a PoI may correspond to a
number of location semantics, we propose to use a probability distribution over all pos-
sible location semantics to demonstrate the uncertainty about a user’s purpose in a PoI.
Sometimes location semantics are used just for the purpose of comparison or validating
the effectiveness of different metrics. For such cases, we implement a separate panel for
tool users to simulate the distribution over location semantics for a PoI by giving the
freedom to choose the number of location semantic tags and other factors.
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The MinUS tool has been applied for experimental validation on different trajectory
datasets [7,8,10]. We refer readers to those papers for the details.

3 Related Work

There have been many tools developed for mining users’ movement patterns of different
forms. The trajectory pattern miner by Giannotti et al. [3], used in MinUS, is developed
to extract spatio-temporal frequent trajectory patterns from GPS-like trajectories of a
set of move objects. Li et al. [4] design the tool MoveMine for scalable analysis on
massive movement data, e.g., movement pattern mining and trajectory clustering. Two
types of movement patterns are extracted: periodic patterns and swarm patterns.

By applying users’ trajectory patterns, a few applications have been implemented.
AllAboard by Berlingerio et al. [6] is a software system that makes use of cellphone
data to improve existing public transport systems. Using users’ call locations stored
on cellphones, their trajectory patterns are extracted, with which new routes will be
calculated and added to reduce users’ waiting and travel time. Pelekis et al. [5] develop a
tool called Hermoupolis to generate trajectories by simulating given trajectory patterns.
This tool provides a method to synthesise trajectory datasets for researchers when real-
life datasets are unavailable or not sufficiently large in experimental validation. So far,
MinUS is the first tool which is publicly available to compare users’ trajectory patterns.
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Abstract. In this paper we present the system KnowNow, a tool whose
aim is to let the users navigate into text corpora through dynamic se-
mantic information networks, created in real-time according to delimited
time ranges. In educational scenarios, students are often asked to write
short essays on different topics linked by temporal information. This usu-
ally involves a combination of several aspects to be evaluated, such as
knowledge, imagination, structure and presentation. In the light of this,
the introduction of Natural Language Understanding techniques together
with cross-topic navigation and visualization tools and considerably help
students to retrieve, link, and create well-structured and original contri-
butions, as we demonstrate by using KnowNow.

Keywords: Natural Language Understanding, Semantic Search, Edu-
cation.

1 Introduction

In educational scenarios, it is common to find teachers’ requests for short essays
that students must elaborate by picking different topics directly connected by
temporal constraints. For instance, a student may present a work to combine
history, geography, and physics by mentioning the military and political leader
Napoleon Bonaparte (died in 1821), the Eyjafjallajokull volcano in Iceland (that
it began to erupt in 1821), and the physician Elizabeth Blackwell (born in 1821,
who was the first woman to receive a medical degree in the United States).

However, building such knowledge graph often results to be “boring” for the
following reason: students are usually interested in topics that are likely to be
temporally disconnected, so they have to select only one as starting point, and
then attach quite unintentional facts that cover other domains.

Nowadays, there is a plenty of freely available resources that can be used for
educational purposes, like Wikipedia1. Wikipedia is the largest free on-line en-
cyclopedia that includes information of different areas and in different languages
that has been already used in this context [3]. Since it contains several historical

1 www.wikipedia.org

T. Calders et al. (Eds.): ECML PKDD 2014, Part III, LNCS 8726, pp. 440–443, 2014.
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facts (and so it is full of temporal information) but also hundreds of other topics,
it perfectly fits the above-mentioned context.

In the next section we will illustrate the underlying technology of KnowNow,
which is a combination of advanced Natural Language Techniques, Data Mining,
Human-Interaction models, and Data Visualization schemes. KnowNow is the
result of the project named KnowYouAll, that won a national competition for
innovative ideas promoted by Telecom Italia2.

2 KnowNow

KnowNow is made of different modules: a Time Extractor, a Named Entity An-
alyzer and Semantic Network builder, a Content Summarizer, and an interactive
fish-eye visualization tool.

2.1 Data

As already mentioned in the introduction, we directly used Wikipedia as input
corpus. For the demonstration, we randomly selected 10, 000 Wikipedia pages,
removing metadata information, html tags, links, and Wikipedia-specific texts
that are not related to the content. This limit, however, does not reflect technical
problems since our syntactic, semantic, and statistical analyses are only applied
on small time-delimited document sets.

2.2 Time Extractor

After the cleansing of the input corpus, the system syntactically parses the text
using TULE [2], a dependency parser for English and Italian. Since a single
document may contain multiple temporal information (related to facts happened
in different periods), the system has to extract them in order to build an inverse
temporal map < tk, {docids} > that links time frames3 tk with sets of documents
{docids} that contain at least one fact happened in tk. For recognizing temporal
expressions, we used the rule-based techniques proposed in [5].

2.3 Semantic Network

While the syntactic analysis supports the extraction of temporal expressions,
the system also includes a semantic analyzer that deals with the identification
of semantic units for semantic search and access. We define a semantic unit as
a named entity in the classical NLP task Named Entity Recognition (NER) [4].
A named entity is a type of class of objects, like people, organizations, places,
and others. In KnowNow, we used the large ontology of semantic information
of DBPedia4, which is a structured version of Wikipedia. It contains several

2 Working Capital (ed. 2012), www.workingcapital.telecomitalia.it
3 Only timestamps having at least the year and the month are preserved.
4 www.dbpedia.org

www.workingcapital.telecomitalia.it
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Fig. 1. A screenshot of the KnowNow ’s main interface. The left panel contains a slider
that allows the user to focus on different the time periods automatically extracted from
the input corpus. On its right, the interface shows the list of documents that represent
the temporal window around the selected date. The larger panel on the right shows
a fish-eye semantic network calculated in real-time with respect the the left selection.
Notice that in this example, an Italian Wikipedia corpus is used, and it is navigable
through an English-based semantic network, relying on theWikipedia interlingual links.
Clicking on the button Run is then possible to see a hierarchical tag-cloud of the most
dominant common terms used in the selected texts, as in [1]. The little window on the
top shows the original content of one selected document in the list.

semantic units, organized in a multi-level taxonomy. For example, the instance
Pink Floyd is associated to the node Band, which is a subclass of Organization,
and so forth. By using these resources, KnowNow is able to let the users explore
non-English texts with navigable semantic networks written in English. This
is done by making use of the interlingual links of the Wikipedia pages, that
provides the translation of specific entity names in different languages. This is
a powerful feature, since it allows to explore the semantics of texts expressed in
several languages by means of an English-based semantic network.

2.4 Content Summarizer

Texts are not only made of semantic units, but they also contain several com-
mon words that describe the content, and specifically, which named entities are
involved in the events, and how. In this case, standard Data Mining techniques
applied on texts are useful to allow the users navigate through the content by
leveraging on words frequencies and co-occurrences. In particular, KnowNow re-
lies on a technique that applies Latent Semantic Analysis on the input texts to
construct a navigable tree of dominant terms [1].
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2.5 Visualization Tool

In KnowNow, the information is displayed using different parts of the interface,
shown in Figure 1. On the left, a slider permits to observe all the time frames
extracted by the time extractor. The user is then able to focus on a particu-
lar temporal window around the selected date. This parameter, like all the ones
mentioned (and not mentioned because of lack of space) in this paper are ad-
justable through the interface of the system. Once the user selected a temporal
window W , KnowNow shows a fish-eye tree with all the semantic units found
in the texts that have been associated to W , and so that contain facts hap-
pened in W . These documents are listed side by side with the slider, and the
content can be visualized by clicking on them. The user can do drag-and-drop
operations on the semantic network to put more visual emphasis on a specific
subtree. Then, clicking on a node (or more than one node), KnowNow highlights
those documents which are related to that relative semantics. Finally, the user
may also want to explore the content expressed by common words. In this sense,
the Content Summarizer extracts a hierarchical tag-cloud of the most dominant
terms in the input texts by leveraging on a Latent Semantic Analysis of the
term-document matrix. The user can click on the button Run to perform such
process over the content associated to the current temporal window.

3 Demo Scenario

During the demonstration, we will allow the users to select different time ranges,
showing how the semantic network is able to capture and visualize the main
semantic information contained in the input texts, in real-time. Then, the tool
allows for a number of further interactions, like the selection of specific semantic
nodes, the classification and the ranking of the most relevant texts, fish-eye
visualization of dominant terms, and the impact of parameters like size of time
ranges, amount of data to be displayed, and several others.
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Abstract. Identifying and visually analyzing interesting interactions
between variables in large-scale data sets through k-coclustering is of
high importance. We present Khiops CoViz 1, a tool for visual analysis
of interesting relationships between two or more variables (categorical
and/or numerical). The visualization of k variables coclustering takes the
form of a grid/matrix whose dimensions are partitioned: categorical vari-
ables are grouped into clusters and numerical variables are discretized.
The tool allows several kinds of visualization at various scales for grid
representation of coclustering results by means of several criteria each of
which providing different insights into the data. Hereafter, several screen
shots describe the main visual components of the tool.

1 http://www.khiops.com, an exhaustive user manual is available when downloading
the tool.
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Fig. 1. Case study on a examplary sample of dblp data set. Three-dimensional data
(Author × Y ear × Event) is considered. A screen shot of Khiops CoViz: (from left
to right) hierarchies of parts for two dimensions (Author and Event), list of terminal
parts of hierarchies and composition of selected parts.
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Fig. 2. (Left): Grid/matrix visualization of contribution to mutual information for
Y ear × Event dimensions. Other criteria for visualization are available: e.g., con-
trast, frequency, conditional probability and joint probability. . . The tool allows nav-
igating along the partition of a selected dimension (e.g., Author) while the others
(Y ear,Event) are fixed and dedicated to the visualization.
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Fig. 3. Choosing the wanted granularity for visualizing the grid is available through
the “Unfold Hierarchy” functionality. The user can control either the number of parts
of the dimensions or the grid quality (w.r.t. to the optimal grid) by optimal merging
or per-dimension customized non-optimal merging.
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Abstract. Sentiment analysis methods aim at identifying the polarity
of a piece of text, e.g., passage, review, snippet, by analyzing lexical
features at the level of the terms or the sentences. However, many of
the previous works do not utilize features that can offer a deeper under-
standing of the text, e.g., negation phrases. In this work we demonstrate
a novel piece of software, namely PYTHIA1, which combines semantic
and lexical features at the term and sentence level and integrates them
into machine learning models in order to predict the polarity of the in-
put text. Experimental evaluation of PYTHIA in a benchmark movie re-
views dataset shows that the suggested combination performs favorably
against previous related methods. An online demo is publicly available
at http://omiotis.hua.gr/pythia.

1 Introduction

Addressing sentiment analysis as a machine learning problem, e.g., as text clas-
sification, poses certain challenges, such as the large space complexity, and the
need for deeper understanding of the text, which has given rise to deep learn-
ing techniques [1]. In this paper we address the task of sentiment analysis as a
binary classification problem; positive or negative polarity. The novelty of our
approach lies in the integration of lexical features, e.g., term n-grams, which
have been used in the past by previous approaches [1] with semantic features,
e.g., count of terms with positive and negative polarity at the sentence level. For
the extraction of the semantic features we employ novel word sense disambigua-
tion techniques. Finally, we analyze systematically the effect of all feature types,
and we evaluate experimentally our approach by using a variety of machine
learners for the task. Comparative evaluation with previous works in a movie
review benchmark dataset shows that the suggested approach compares favor-
ably against the previously reported results. The resulting approach is offered as
an online system which is publicly available (http://omiotis.hua.gr/pythia)
and customizable. The users may select among different disambiguation meth-
ods, machine learners and feature types, and can test the approach with any

1 PYTHIA (pronounced pITI@), was the priestess at the Oracle of Delphi. The story
says that PYTHIA spoke gibberish, which was then interpreted by the priests.
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(a) Pipeline of PYTHIA. (b) Example of the WSD options.

Fig. 1. Overview of PYTHIA pipeline and an example of the user options

piece of text as input. The output of the system is the prediction of the overall
polarity of the text, and the annotation and highlighting of the text fragments
with information that played important role in the final polarity decision. As a
result, the presented online system is of great value to researchers of the field,
as well as practitioners who aim at utilizing sentiment analysis approaches in
wider text processing software components.

2 Methods, Evaluation and Demonstration of PYTHIA

The overview of the processing pipeline of the PYTHIA system is shown in Figure
1(a). PYTHIA implements five main components: (1) syntactic analysis of input
text, (2) word sense disambiguation (WSD), (3) tagging of terms with sentiment
labels, (4) extraction of lexical and semantic features, and, (5) application of
machine learning models to predict the polarity of the input text. For several of
these components the API of the online system offers multiple alternatives that
can be customized by the user, e.g., as Figure 1(b) shows for the WSD options.

For the syntactic analysis PYTHIA employs the Stanford Parser2. The out-
put of this step is a set of trees (one for each sentence) annotated with part of
speech (POS) information for each term. The POS information is useful for the
WSD step that follows. For the WSD component, PYTHIA implements three
options: (1) the first sense heuristic, that always selects the most frequent sense
for each word based on WordNet, (2) a graph based disambiguation technique,
called weighted degree (WDEG) [2], which is a version of Degree Centrality
for weighted graphs, and, (3) an Integer Linear Programming approach ILP
[3] which solves the ILP problem of maximizing the total pairwise relatedness of
the selected senses. For the latter WSD approach, any sense relatedness measure

2 http://nlp.stanford.edu/software/lex-parser.shtml
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Table 1. Overall accuracy obtained at the test set of the movie reviews dataset in
predicting positive or negative polarity, per feature type and machine learner used. In
parenthesis the number of features is reported.

ML
Semantic Char n−grams Term n−grams All n−grams All Features

Features (40) (11,923) (214,342) (225,475) (225,515)
SVM 68.26 73.35 80.11 79.01 80.04

Log. Regression 68.43 69.07 77.31 78.65 79.01
Naive Bayes 64.66 75.35 74.32 79.81 80.73

can be used; PYTHIA is using three alternative measures: the knowledge-based
SR measure [4], the corpus-based point-wise mutual information (PMI ) and a
Lesk-like hybrid measure [5]. For the tagging of terms with sentiment labels
PYTHIA finds the polarity of each disambiguated word using SentiWordNet3.
SentiWordNet is a lexical resource, which assigns to each synset of WordNet
sentiment scores for positivity, negativity and objectivity. Next, PYTHIA uses
the output of the previous components to extract semantic and lexical features
for the input text. The semantic features employed by PYTHIA are 40 and are
of two types: (i) at the term level, they capture the number, type and polarity
score of the terms that contribute some sentiment to the sentence, and, (ii) at
the phrases level they capture the same information as before, but by analyzing
whole phrases of the sentence instead of terms. Examples of the semantic fea-
tures are: the number of nouns with positive polarity in the sentence, the total
positive polarity score of verbs, and, the number of noun phrases with negative
polarity. In addition to the semantic features, PYTHIA also employs two types
of lexical features, namely character and term n−grams, with n = [1, 3]. The
final step is the application of a machine learning model using some or all of the
aforementioned features, in order to predict the polarity of the input text.

The selection of the offered classifiers in PYTHIA is based on the results of
the comparative experimental evaluation we conducted. For this purpose, we
used a benchmark dataset in sentiment analysis that contains 9, 613 sentences
from movie reviews. We used the split into training (7, 792) and test (1, 821)
introduced in [1]. Table 1 shows the results of the evaluation, reporting only
on the top-3 tested classifiers (Support Vector Machines, Naive Bayes, and Lo-
gistic Regression). The top accuracy obtained for each of the feature types is
highlighted, reaching up to 80.73% when all of the features are used, and Naive
Bayes is used as a learner. These results are comparable with the SoA results
presented in [1], where the authors report 79.4% for the SVM, and 81.8% for the
Naive Bayes using BoW representations of the text. The key finding of the ex-
perimental evaluation, which constitutes the novelty of the PYTHIA approach,
is that the combination of semantic and lexical features leads to the best results.

Finally, in Figure 2 we present screenshots of the PYTHIA demo. Figure
2(a) shows the results of the sentiment analysis of an input sentence, which are
presented with a user-friendly GUI. The used model is automatically selected

3 http://sentiwordnet.isti.cnr.it/
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(a) Results in PYTHIA. (b) Mouse-over functionality.

Fig. 2. Screenshots of the PYTHIA demo

based on the selection of the feature types, e.g., if all features are selected the
Naive Bayes classifier is used. Figure 2(b) shows the response of PYTHIA when
the user places her mouse over the sentence terms; the polarity score of the
specific term is shown. In addition to this, all PYTHIA features are publicly
available via an API with GET and POST methods that return JSON objects4.

3 Summary

In this article we presented PYTHIA, a demo for sentiment analysis which em-
ploys semantic and lexical features in order to predict the sentiment of an input
text. Evaluation of PYTHIA in a benchmark dataset with movie reviews showed
that the implemented methods may achieve an accuracy of up to 81%, and that
the combination of the semantic and lexical features provided the best perform-
ing set up.
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Abstract. Summarizing the evidence about medical interventions is an
immense undertaking, in part because unstructured Portable Document
Format (PDF) documents remain the main vehicle for disseminating sci-
entific findings. Clinicians and researchers must therefore manually ex-
tract and synthesise information from these PDFs. We introduce Spá,12

a web-based viewer that enables automated annotation and summari-
sation of PDFs via machine learning. To illustrate its functionality, we
use Spá to semi-automate the assessment of bias in clinical trials. Spá
has a modular architecture, therefore the tool may be widely useful in
other domains with a PDF-based literature, including law, physics, and
biology.

1 Introduction

Imposing structure on full-text documents is an important and practical task
in natural language processing and machine learning. Systematic reviews are an
instructive example. Such reviews aim to answer clinical questions by providing
an exhaustive synthesis of all the current evidence in published literature. They
are fundamental tools in Evidence-Based Medicine (EBM) [2,3]. Data must be
manually extracted from the literature to produce the systematic reviews. These
extraction tasks are extremely laborious, but could potentially be assisted by
machine learning approaches.

As an example we consider risk of bias assessment. Here reviewers assess, e.g.,
whether study participants and personnel were properly blinded [4]. Assessing
risk of bias is a time-consuming task. A single trial typically takes a domain
expert ten minutes [5], and a single review typically includes several dozen trials.
Making matters worse, due to low rates of reviewer agreement it is regarded as
best practice to have each study assessed twice by independent reviewers who
later come to a consensus [6].
1 From the Old Norse word spá or spæ referring to prophesying (prophecy)
2 Source code available under GPLv3 at https://github.com/joelkuiper/spa [1];

demo available at http://spa.clinici.co/
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Machine learning methods could provide the machinery to automate such
extractions; as they can effectively impose the desired structure onto PDFs. But
if such technologies are to be practically useful, we need tools that visualize
these model predictions and annotations. Here we describe Spá, which aspires
to realize this aim.

Spá is an open-source, web-based tool that can incorporate machine learning
to automatically annotate PDF articles. As a practical demonstration of this
technology, we have built a machine learning system that automatically anno-
tates PDFs to aid EBM. This tool is unique in that it leverages state-of-the-art
machine learning (ML) models applied to full-text articles to assist practitioners
of EBM.

Fig. 1. Screenshot of a PDF with highlighted risk of bias. Here the risk of bias is
assessed to be low, for example, and one of the supporting sentences for this assessment
describes the randomization procedure (highlighted in green).

While our application of interest is EBM, we emphasize that the visualization
tool can be used for any domain in which one wants to annotate PDFs, e.g.
genome-wide association studies or jurisprudence. Thus the contribution of this
work is two-fold, as we present: (1) a practical tool that incorporates machine
learning to help researchers rapidly assess the risk of biases in published biomed-
ical articles, and, (2) a general open-source system for visualizing the predictions
of trained models from full-text articles on the web.
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2 Case Study: Risk of Bias in Evidence-Based Medicine

2.1 Machine Learning Approaches

To automatically assess the study risk of bias, we have leveraged the Cochrane
Database of Systematic Reviews (CDSR) in lieu of manually annotated data,
which would be expensive to collect. The CDSR contains descriptions and data
about clinical trials reported in existing systematic reviews. We match the full-
texts of studies to entries in the CDSR, which contains risk of bias assessment;
providing document level labels. The CDSR also contains quotations that re-
viewers indicated as supporting their assessments. We match these strings to
substrings in the PDFs to provide sentence-level supervision. This can be viewed
as a distantly supervised [7,8] approach.

From a ML vantage, we have two tasks for a given article: (1) predict the
overall risk of bias for each of the domains, and (2) extract the sentences that
support these assessments. For both tasks we leverage standard bag-of-words
text encoding and linear-kernel Support Vector Machines. Because the risk of
bias predictions are correlated across domains, we take a multi-task [9] approach
to classification and jointly learn a model for the domains. We accomplish this
by way of a feature space construction that includes both shared and domain-
specific terms, similar to the domain adaptation approach in [10]. Specifically,
we first make sentence level prediction, and then insert features representing the
tokens in the predicted sentences for exploitation by the document level classifier.
Figure 1 shows the system in use.

3 Spá Architecture Overview

Spá relies on Mozilla pdf.js3 for visualization of the document and text extrac-
tion. The results of the text extraction are processed server-side by a variety
of processing topologies. Results are communicated back to the browser and
displayed using React components.4

For each of the annotations the relevant nodes in the document are high-
lighted. A custom scrollbar, inspired by substance.io, that acts as a ‘mini-map’
is projected to show where annotations reside within the document. The user
can interactively activate and inspect specific results.

4 Future Work

We have presented a web-based tool for visualization of annotations and
marginalia for PDF documents. Furthermore, we have demonstrated the use
of this system within the context of Evidence-Based Medicine by automatically
extracting potential risks of bias.
3 http://mozilla.github.io/pdf.js
4 http://facebook.github.io/react

http://substance.io/
http://mozilla.github.io/pdf.js
http://facebook.github.io/react
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We believe the tool to be potentially useful for a much wider range of ma-
chine learning applications. Currently we are developing a pluggable system for
processing topologies, allowing developers to quickly plug in new systems for
automated PDF annotation. Furthermore, we are working to allow users to per-
sist annotations and marginalia, possibly embedded within the document itself,
for sharing and off-line use. The vision is to have an extensible system for ma-
chine assisted data extraction that will greatly increase both the quality and the
reproducibility (i.e. data provenance) of current Evidence-Based Medicine.

Acknowledgments. Part of this research was funded by the European Union
Seventh Framework Programme (FP7/2007-2013) under grant agreement n°
261433.
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Abstract. Inductive Logic Programming and Relational Data Mining
address the task of inducing models or patterns from multi-relational
data. An established relational data mining approach is propositionaliza-
tion, characterized by transforming a relational database into a single-
table representation. The paper presents a propositionalization toolkit
implemented in the web-based data mining platform ClowdFlows. As a
contemporary integration platform it enables workflow construction and
execution, provides open access to Aleph, RSD, RelF and Wordification
feature construction engines, and enables RDM performance comparison
through cross-validation and ViperCharts results visualization.

Keywords: relational data mining, propositionalization, web access.

1 Introduction

Propositional data mining algorithms induce hypotheses in the form of models or
patterns learned from a given data table. In contrast, Inductive Logic Program-
ming (ILP) [6] and Relational Data Mining (RDM) [1] algorithms induce models
or patterns from multi-relational data (e.g., relational databases). For relational
databases with clearly identifiable instances (i.e., individual-centered representa-
tions [2], characterized by one-to-many relationships among data tables), propo-
sitionalization techniques [3] can be used to transform a relational database into
a propositional single-table format, followed by propositional learning, e.g., by
using a decision tree or a classification rule learner.

This paper presents an online propositionalization toolkit, which can be used
to construct RDM workflows. As completed workflows, data, and results can
be made public by the author of the workflow, the platform can serve as an
easy-to-access integration platform for various RDM workflows.

2 Clowdflows ILP module

The ClowdFlows platform [4] is an open-source, web-based data mining platform
that supports the construction and execution of scientific workflows. This web
application can be accessed and controlled from anywhere while the processing
is performed in a cloud of computing nodes. A public installation of ClowdFlows

T. Calders et al. (Eds.): ECML PKDD 2014, Part III, LNCS 8726, pp. 456–459, 2014.
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is accessible at http://clowdflows.org. For a developer, the graphical user
interface supports simple operations that enable workflow construction: adding
workflow components (widgets) on a canvas and creating connections between
the components to form an executable workflow, which can be shared by other
users or developers. Upon registration, the user can access, execute, modify, and
store the modified workflows, enabling their sharing and reuse. On the other
hand, by using anonymous login, the user can execute a predefined workflow,
while any workflow modifications would be lost upon logout.

We have extended ClowdFlows with the implementation of an ILP toolkit, in-
cluding the popular ILP system Aleph [9] together with its feature construction
component, as well as RSD [10], RelF [5] and Wordification [7] propositionaliza-
tion engines. Construction of RDM workflows is supported by other specialized
RDM components (e.g., the MySQL package providing access to a relational
database by connecting to a MySQL database server), other data mining com-
ponents (e.g., the Weka classifiers) and other supporting components (including
cross-validation), accessible from other ClowdFlows modules. Each public work-
flow is assigned a unique URL that can be accessed by any user to either repeat
the experiment, or use the workflow as a template to design another workflow.
Consequently, the incorporated RDM algorithms become handy to use in real-
life data analytics, which may therefore contribute to improved accessibility and
popularity of ILP and RDM.

Figure 1 shows two simple workflows using the ILP and Weka module compo-
nents. The first workflow assumes that the user uploads the files required by RSD

Fig. 1. Above: Simple RSD propositionalization workflow using ILP and Weka compo-
nents, available online at http://clowdflows.org/workflow/471/. Below: The same
RSD workflow, extended by accessing the training data using a MySQL database,
available at http://clowdflows.org/workflow/611/.

http://clowdflows.org
http://clowdflows.org/workflow/471/
http://clowdflows.org/workflow/611/
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Fig. 2. Propositionalization workflows available online: for Aleph at http://

clowdflows.org/workflow/2224/, for RelF at http://clowdflows.org/workflow/

2227/ and for Wordification at http://clowdflows.org/workflow/2222/.

as Prolog programs, while the second workflow extends this use case by retrieving
the training data from a MySQL database server and automatically construct-
ing the background knowledge and the training examples. Similar workflows,
constructed for the other three propositionalization approaches Aleph, RelF and
Wordification, are illustrated in Figure 2.

The evaluation workflow is shown in Figure 3. After reading the relational
data and data discretization, propositionalization algorithms are applied, their
results are transformed into the Weka input format for the J48 decision tree
learner, followed by 10-fold cross-validation with identical folds allowing perfor-
mance comparison of different propositionalization algorithms. The results of
cross-validation (precision, recall, F-score) are connected to the input of VIPER
(Visual Performance Evaluation) engine [8], which displays the results as points
in the precision-recall space. The evaluation workflow enables ILP researchers to
reuse the developed workflow and its components in future experimentation.

In terms of workflows reusability, accessible by a single click on a web page
where a workflow is exposed, the implemented propositionalization toolkit is a
significant step towards making the ILP legacy accessible to the research commu-
nity in a systematic and user-friendly way. To the best of our knowledge, this is
the only workflow-based implementation of ILP and RDM algorithms in a plat-
form accessible through a web browser, enabling simple workflow adaptation to
the user’s needs.

http://clowdflows.org/workflow/2224/
http://clowdflows.org/workflow/2224/
http://clowdflows.org/workflow/2227/
http://clowdflows.org/workflow/2227/
http://clowdflows.org/workflow/2222/
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Fig. 3. Performance evaluation workflow, available at http://clowdflows.org/

workflow/2210/, comparing the results of J48 after propositionalization by Aleph,
RSD, RelF and Wordification.
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[3] Kramer, S., Lavrač, N., Flach, P.A.: Propositionalization approaches to relational
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Abstract. We present our Interactive Medical Miner, a tool for classifica-
tion and model drill-down, designed to study epidemiological data. Our
tool encompasses supervised learning (with decision trees and classifica-
tion rules), utilities for data selection, and a rich panel with options for
inspecting individual classification rules, and for studying the distribu-
tion of variables in each of the target classes. Since some of the epidemi-
ological data available to the medical researcher may be still unlabeled
(e.g. because the medical recordings for some part of the cohort are still
in progress), our Interactive Medical Miner also supports the juxtaposi-
tion of labeled and unlabeled data. The set of methods and scientific
workflow supported with our tool have been published in [1].

1 Introduction

High quality decisions of personalized medicine involve identifying subgroups
that share some risk factors or symptoms associated with a certain disease. In [1],
we have presented mining methods for the discovery of risk factors in subgroups
of an epidemiological study’s cohort. In [1], we have shown a mining approach
for splitting a cohort in subgroups and for discovering factors associated with
the outcome for each subgroup. We have thereby demonstrated that different
subgroups exhibit different factors. The top-classification rules found by our
approach agree with research results in epidemiology publications.

We present here our Interactive Medical Miner1, as well as utilities for learning
and model inspection. The Interactive Medical Miner derives models from epi-
demiological data containing a nominal target variable, for instance a diagnosis
report outcome, and allows the user to drill down to the data of distinct indi-
viduals, and to further explore detailed information about summary statistics
or class distribution histograms. Contrary to medical research practice which is
hypotheses-based, we use a data-driven approach, as practiced e.g. in [2,3]. Our
Interactive Medical Miner offers, under a simple interface, several functionalities
for medical researches who aim to interactively explore their datasets and inspect
classification patterns derived on them. To this purpose, the Interactive Medical

1 The tool can be downloaded at http://kmd.cs.ovgu.de/res/imm/.
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Miner provides a tailored workflow for preparation and classification of epidemi-
ological data, including model drill-down and summary statistics for each class
and rule. The tool can also be used in a more general medical (clinical) context.

We use algorithms from the Weka2 library: We leverage the HotSpot3 algo-
rithm for classification rule discovery and employ the J48 (equivalent to the C4.5
algorithm [4]) for decision tree induction.

2 Workflow of the Interactive Medical Miner

Our tool takes as input the data of an epidemiological cohort, where the target
variable concerns a medical outcome, e.g. the presence of increased fat in the liver
[1]. The tool allows the medical researcher to specify that either the complete
dataset or a selection of cohort participants (a subpopulation) should be used for
learning. On this dataset, the Interactive Medical Miner discovers classification
rules and builds decision trees. The decision trees are presented to the expert,
while classification rules can be further explored. In particular, the expert is
shown histograms on the distribution of the participants supporting a rule with
respect to each class, and histograms on the distribution of the rule’s variables
inside each class. Since some of the cohort participants in the dataset we study
(SHIP [5]) are not yet labeled, our tool supports the inspection of the values in
each classification rule’s antecedent on the unlabeled data as well.

3 User Interface

The user interface of the Interactive Medical Miner consists of two areas; each one
is comprised of six panels. Subsequently, we describe the layout of the Interactive
Medical Miner while referring to Figure 1.

In the upper left “Settings” panel, the user controls the most important algo-
rithmic parameters. For classification rules generation, the user has to specify:

– Minimum value count: the minimum percentage (or number) of instances
supporting the rule AND belonging to specified target class,

– Maximum rule length: the number of variables in the antecedent,
– Maximum branching factor: the maximum number of variables that may be

added to an existing classification rule,
– Minimum improvement: the minimum relative confidence improvement to

be achieved by the addition of a further variable to the classification rule.

For decision tree induction, the following three parameters are required:

– Minimum number of data records in a leaf node,
– Pruning factor: the threshold that must be satisfied if the tree is pruned; if

the value falls below this threshold, the tree is not pruned further,

2 http://www.cs.waikato.ac.nz/ml/weka/
3 http://weka.sourceforge.net/packageMetaData/hotSpot/Latest.html

http://www.cs.waikato.ac.nz/ml/weka/
http://weka.sourceforge.net/packageMetaData/hotSpot/Latest.html
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Fig. 1. Screenshot of the Interactive Medical Miner with its six panels

– Only binary splits: a flag indicating, whether nominal variables with a value
range of n values should be subjected to binary splits or to n-ary splits.

Further, the tool allows the user to specify a subpopulation of the dataset. For
instance, one might filter out the male participants and study only female partici-
pants. To this purpose, a new frame pops up where filtering queries in the form of
Variable Operator Value can be specified. The defined restrictions are shown
in a table where the user can optionally select and remove single entries. Next,
the Interactive Medical Miner also offers a button “Filter Variables. . . ” which
opens a pop-up frame where the user can (de-)select one or more variables for
model generation by shifting them from one list to the other. For example, the
user might exclude a variable that is known to be highly correlated with another
variable that is already considered for model learning.

By clicking on “Build Rules”/ “Generate Tree”, the resulting model is de-
picted in the “Tree View” panel. For classification rules, the retrieved rules can
be sorted via the radio buttons in the panel “Sorting Preference” (area right
to “Settings”) according to several criteria, including confidence (default), sup-
port, alphabetical and minimum value count. For decision trees, the output tree
structure can be visualized with Weka’s TreeVisualizer.

When a rule/ node is selected, the top middle area “Summary Statistics” is
refreshed. The first row shows the class distribution of the dataset, while the
second row shows how the instances supporting the antecedent are distributed
among the existing classes. Hence, the user gets insights about the class distribu-
tion of a single rule/ node and thus can control the mining process by adapting
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parameters or selecting specific variables or value ranges. For instance, the tool
allows the user to trade of high confidence against high support rules.

The summary statistics table contains information about the labeled instances,
while the histogram in the bottom right panel covers the unlabeled instances.
The user can choose a further variable from the panel “Variable Selection” (cf.
Figure 1, upper right corner) to see how the values of these variables are dis-
tributed. Unlabeled data are marked as “Missing”. To plot the histograms, we
employ the open source chart library JFreeChart4.

4 Conclusion

The Interactive Medical Miner generates classification models on epidemiological
datasets and supports interactive exploration of individual classification rules
and decision tree nodes. The tool provides options for filtering cohort partici-
pants and selecting a subset of variables. It allows the user to tune algorithm
parameters and thus guide the mining process. The visual representation of class
distributions and the juxtaposition of labeled and unlabeled cohort participants
improves data understanding and might reveal idiosyncrasies of the labeled data.
In future work, we intend to extend the tool by adding more classifiers, a more
elaborate visualization as well as model and graphic export possibilities.
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Abstract. Data reduction is a common preprocessing task in the context
of the k nearest neighbour classification. This paper presents WebDR, a
web-based application where several data reduction techniques have been
integrated and can be executed on-line. WebDR allows the performance
evaluation of the classification process through a web interface. Therefore,
it can be used by the academia for educational and experimental purposes.

Keywords: k-NN classification, data reduction, web-based application.

1 Introduction

The k Nearest Neighbour (k-NN) classifier [3] is an effective classifier but has
some weaknesses that may render its use inappropriate. The first one is the
high computational cost involved (all distances between each unseen item and
all training data must be computed). In cases of large datasets, this drawback
renders the classification a time-consuming procedure. Another weakness is that
the k-NN classifier must maintain all the training data always available. Thus,
it involves high storage requirements. Moreover, the accuracy achieved by the
classifier depends on the quality of the training set (TS). Noise and mislabelled
data, as well as outliers and overlaps between data regions of different classes
may mislead the algorithm and affect the accuracy.

Data Reduction Techniques (DRTs) can cope with all the weaknesses. They
can be grouped into two main categories: (i) prototype selection algorithms
(PS) [6], and, (ii) prototype abstraction algorithms (PA) [17]. PS algorithms
select representative items (or prototypes) from the initial training set, whereas
PA algorithms generate items by summarizing on similar training items.

PS algorithms are divided into two subcategories. They can be either con-
densing or editing algorithms. PA and PS-condensing algorithms have the same
motivation. They aim to build a small representative set of the TS. This set is
called the condensing set (CS). Usage of the CS has the benefits of low compu-
tational cost and storage requirements, while accuracy is not affected. Editing
algorithms aim to improve accuracy rather than achieve high reduction rates.
For that purpose, they try to improve the quality of the TS by removing outliers,
noise and by smoothing the class decision boundaries.

� S. Ougiaroglou is supported by the State Scholarships Foundation of Greece (I.K.Y.)
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Several papers have been published that present DRTs with the correspond-
ing experimental results. Some of them have been implemented under KEEL [2],
an open-source java-based framework. However, to the best of our knowledge
there is no software that allows experimentations over the web. This observa-
tion is behind the motivation of this work. We introduce WebDR1 (Web-based
Data Reduction), a web-based application that allows the execution and the
performance evaluation of several DRTs over the web.

Section 2 outlines k-NN classification through data reduction. Section 3
presents WebDR. Finally, Section 3 concludes the paper and presents our
future plans.

2 k-NN Classification through Data Reduction

The reduction rates achieved by many PA and PS-condensing algorithms depend
on the level of noise in the TS. The higher the level of noise is, the lower reduction
rates are achieved. Hence, their effective application implies the removal of noise,
i.e., execution of editing beforehand [4]. Therefore, an editing algorithm should
be run in order to either improve accuracy or make more effective the application
of a PA or PS-condensing algorithm.

k-NN classification through data reduction is summarized in Figure 1. The
process has two stages, preprocessing (optionally) and classification. There are
four possible preprocessing types: (i) No-preprocessing: If the TS is small and
noise-free, no preprocessing is required. (ii) Only editing: If the TS is small
but contains noise, only editing should be executed during preprocessing. (iii)
Only condensing: In cases of large and noise-free TSs, data reduction without
editing should be executed (i.e., a PA or PS-condensing algorithm). (iv) Both
editing and PA or PS-condensing: In cases of large TSs that contain noise,
both types of preprocessing algorithms must be run.

The goal of a complete data reduction preprocessing procedure is to build
a noise-free CS by keeping or generating for each class a sufficient number of
prototypes that are essential for the k-NN classification.

Fig. 1. k-NN classification through data reduction

1 http://dbtech.uom.gr/webdr

http://dbtech.uom.gr/webdr
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3 WebDR

WebDR offers several DRTs available on-line. The user can plan and run exper-
iments and measure the classification performance through an interactive web
interface over several known datasets distributed by the KEEL2 or/and the UCI3

dataset repositories and time-series datasets distributed by the UCR time-series
classification/clustering website4. All the available datasets can be explored in
detail using the “dataset explorer” tool that is available in WebDR.

WebDR allows the performance evaluation of the DRTs by measuring three
criteria, namely, (i) Reduction rate: the ratio of the discarded items over
the initial items of the TS. The higher the reduction rate, the faster the k-
NN classification (fewer distances are computed); (ii) Accuracy achieved by
the k-NN classifier when it runs over the CS; (iii) Preprocessing cost: the
computational cost required for the construction of the CS.

The preprocessing costs are estimated by counting the distances computed
by the corresponding DRTs. WebDR adopts the Euclidean distance as the dis-
tance metric. The reported performance measurements are averages obtained via
five-fold cross-validation. It is worth mentioning that all datasets built during
preprocessing are available to the users in a five-fold form (five pairs of train-
ing and testing sets). They can be downloaded and used by the user locally. Of
course, the number of the nearest neighbours and the DRT specific parameters
(if any) can be adjusted through the interface.

All the possible preprocessing types can be executed by WebDR. Its main
page offers four links. Each one leads to the corresponding type of preprocessing.
Currently, the following DRTs have been integrated in WebDR:

– Editing algorithms: ENN-rule [18], All-k-NN [16], Multiedit [5], EHC [14]
– Condensing algorithms: CNN-rule [7], IB2 [1], PSC [8]
– PA algorithms: RSP3 [15], RHC [11,10], dRHC [10], ERHC [9], AIB2 [13],

RkM [12]

WebDR is hosted on a Debian GNU/Linux server with two 64-bit Quad-Core
CPUs and 2GB of main memory. All algorithms were coded in C. The web
interface was developed using PHP (server-side programming) and html/CSS
and javascript (client-side programming). The executable binaries of the imple-
mented algorithms are located and executed on the server.

4 Conclusions and Future Work

The paper presented WebDR, a web-based application that allows the perfor-
mance evaluation of several DRTs over the web. It aspires to support teaching
and research on data reduction. We plan to integrate more DRTs and datasets
in WebDR. Moreover, we will develop a mechanism that will allow users to run
experiments on their own datasets.

2 http://sci2s.ugr.es/keel/datasets.php
3 http://archive.ics.uci.edu/ml/
4 http://www.cs.ucr.edu/~eamonn/time_series_data/

http://sci2s.ugr.es/keel/datasets.php
http://archive.ics.uci.edu/ml/
http://www.cs.ucr.edu/~eamonn/time_series_data/
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Abstract. The problem of frequent and anomalous patterns discovery in time
series has received a lot of attention in the past decade. Addressing the com-
mon limitation of existing techniques, which require a pattern length to be known
in advance, we recently proposed grammar-based algorithms for efficient dis-
covery of variable length frequent and rare patterns. In this paper we present
GrammarViz 2.0, an interactive tool that, based on our previous work, imple-
ments algorithms for grammar-driven mining and visualization of variable length
time series patterns.1

1 Introduction

The ability to efficiently detect frequent and anomalous patterns in time series allows
for the exploration, summation, and compression of data. In addition, such informa-
tion is crucial to a variety of application domains where these patterns convey critical
and actionable information, such as health care, equipment safety, and security. Fur-
thermore, these patterns are often used as input features for data mining tasks, such as
association rule mining and classification.

Previously, we defined time series motifs (frequent patterns) [1] and time series dis-
cords (anomalous patterns) [2], and proposed efficient exact solutions for their discov-
ery based on Symbolic Aggregate Approximation (SAX) [3]. While there has been a
great amount of follow-up work on the discovery of both pattern types [4], one common
limitation of currently available techniques is that they require the length of a potential

1 This research is partially supported by the National Science Foundation under Grant No.
1218325 and 1218318.

T. Calders et al. (Eds.): ECML PKDD 2014, Part III, LNCS 8726, pp. 468–472, 2014.
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The time series plot supports 

interactive zooming and navigation

Shows the rules length histogram
Saves the data panel chart

Data source (text file) and the load volume limit

Superimposed rule subsequencesThe true anomaly location

Fig. 1. An example of a recurrent grammar rule (i.e. motif ) discovery in the ECG dataset using
GrammarViz 2.0. Note, that the highlighted motif does not cover an anomalous heartbeat and that
rule-corresponding subsequences vary in length.

motif or discord to be specified as input. This is unreasonable for most real-world prob-
lems as such information may not be known in advance, and patterns of different lengths
may co-exist in the data.

Addressing this limitation, we recently proposed an alternative solution for the dis-
covery of variable-length motifs [5] and anomalies [6] based on SAX discretization and
the Sequitur grammar inference algorithm [7]. We showed that our algorithm is able to
efficiently discover co-existing variable-length approximate motifs and anomalies with-
out any prior knowledge about their length, shape, or minimal occurrence frequency. In
this work, we present a time series pattern discovery application called GrammarViz 2.0
that can simultaneously discover variable-length motifs and anomalies.

2 Our Approach and the Tool for Time Series Patterns Mining

Our approach is built on a three phase process: time series discretization, context free
grammar induction, and motif/anomaly detection. The first step is to model the time
series as discretized elements and convert it into a symbolic representation. The sec-
ond step is to parse the symbolic series and decompose it into a context free gram-
mar [5, 6]. Since rules of a context free grammar are hierarchically organized, it is
possible to establish the probability of occurrence of a time series subsequence using
its corresponding rule hierarchy and rule counts in the entire time series. Intuitively,
since each grammar rule represents a discretized subsequence pattern of the input time
series, frequently used rules are likely to correspond to recurrent subsequences, while
infrequently used rules are likely to correspond to rare subsequences.

Next, we discuss the detailed steps of the above approach and its implementation in
our grammar-driven workflow for time series patterns discovery.
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Fig. 2. An example of an anomalous grammar rule discovered in the ECG dataset which corre-
sponds to a very subtle anomaly in the ST wave annotated by an expert [2].

2.1 Dimensionality Reduction and Discretization with SAX

Time series are real-valued data whereas grammar induction algorithms are designed
for discrete values. We rely on SAX [3] to discretize the input time series. For time se-
ries T of length m, SAX obtains a lower-dimensional representation by first performing
a z-normalization then dividing the time series into w equal-sized segments. Next, for
each segment, SAX computes a mean value and maps it to a symbol according to a pre-
defined set of breakpoints dividing the data space into α equiprobable regions, where α
is the user specified alphabet size. While dimensionality reduction is a desirable feature
for exploring global patterns, the high compression ratio (m/w) significantly affects
performance in cases where localized phenomena are of interest. Thus, for the local
pattern discovery, and specifically for motif and anomaly detection, SAX is typically
applied to a set of subsequences that represent local features – a technique called sub-
sequence discretization [1] which is implemented via a sliding window.

Our tool implements both global and local discretization and allows an interactive
tuning of discretization parameters using “SAX parameters” panel (Fig.1). In addition,
next to the SAX parameters selection, users can toggle the numerosity reduction strat-
egy, which not only mitigates for trivial and degenerate pattern discovery [2,3], but en-
ables an essential feature of our technique – the discovery of variable-length co-existing
patterns [5, 6].

2.2 Context Free Grammar Induction with Sequitur

For grammar inference, we rely on Sequitur - a linear time and space algorithm that
derives a context-free grammar from a string incrementally [7]. By identifying frequent
subsequences in the input string, the algorithm builds a compact context-free grammar
reflecting the input string specificity. In addition, we are currently extending our ap-
plication with mSequitur algorithm implementation that introduces a merging operator
and is capable of further grammar reduction by generalization [11].

Since Sequitur requires no input parameters, in a single “Process data” step (Fig.1)
our tool performs both discretization and grammar induction procedures. Once gram-
mar is built, its rules are presented to the user in a table format enabling efficient exami-
nation and exploration of rules and their corresponding subsequences. GrammarViz 2.0
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Dark background color where rule density is high

Anomalous heartbeat

Light color where rule density is low

Fig. 3. An example of the “Data display” panel showing the “Rule density” plot used for highly
efficient approximate anomaly discovery through visual examination.

shows rule locations on the original time series and superimposes all rule subsequences
on a separate panel. This allows visual evaluation of the results from selected parame-
ters as well as their interactive tuning (Fig.1).

2.3 Exploiting Context-Free Grammar for Pattern Discovery

Motif Discovery. With the capability to sort the rule table by the rule usage frequency,
as well as the effective visual presentation of grammar rules, GrammarViz 2.0 allows
user to navigate the rules and visually inspect their corresponding subsequences (“mo-
tifs”).
Discord discovery. GrammarViz 2.0 enables anomaly detection in two ways: by inte-
grating grammar induction in the HOTSAX discord discovery framework [2] (Fig.2),
and by visualization of the grammar rule density (Fig.3). Both approaches allow the user
to visually evaluate potential anomalous rules and their corresponding subsequences.

3 Target Audience and Similar Applications

As time series are often used as a proxy to represent a large variety of wide ranging
real-life phenomena, the GrammarViz 2.0 application targets diverse audiences includ-
ing researchers, practitioners, engineers, medical specialists, and safety and security
personnel. While other time series pattern visualization tools exist [9, 10], we are not
aware of any tool that has the same capabilities as GrammarViz 2.0; namely, the discov-
ery of hierarchical patterns and variable-length motifs and discords.
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Abstract. We present the Insight4News system that connects news
articles to social conversations, as echoed in microblogs such as Twitter.
Insight4News tracks feeds from mainstream media, e.g., BBC, Irish
Times, and extracts relevant topics that summarize the tweet activity
around each article, recommends relevant hashtags, and presents comple-
mentary views and statistics on the tweet activity, related news articles,
and timeline of the story with regard to Twitter reaction. The user can
track their own news article or a topic-focused Twitter stream. While
many systems tap on the social knowledge of Twitter to help users stay
on top of the information wave, none is available for connecting news to
relevant Twitter content on a large scale, in real time, with high precision
and recall. Insight4News builds on our award winning Twitter topic
detection approach and several machine learning components, to deliver
news in a social context.

Keywords: news tracking, social media, Twitter, summarization.

1 Introduction

Famously in August 2011, news of an earthquake in Virginia, USA, reached New
York by Twitter before the tremors were felt. Media stories such as the death
of Michael Jackson have spread rapidly on social media in advance of breaking
on the mainstream media. Nowadays, more often than not, news stories break
online long before appearing in newspapers. The landscape of news delivery
and dissemination has changed dramatically in less than a decade since the
widespread take-up of social media. Writer and entrepreneur Chris Anderson
captures this through his statement “The ants have megaphones now.” [5].

Insight4News links news articles from mainstream media (e.g., BBC), to
relevant Twitter conversations, as delivered by tweets, hashtags and automati-
cally detected events. It builds on our prior work [1] for automatically mining
social media streams to provide users with a set of headlines summarizing the
most important topics discussed over a given time period. Our topic detection
approach was assessed by practicing journalists and ranked first as the most ef-
fective “news miner” with regards to several evaluation criteria, amongst which
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were precision and recall. Furthermore, Insight4News provides social context
for news articles via a machine learning algorithm that classifies and ranks hash-
tags [2] and provides a timeline of each article with respect to relevant tweets,
hashtags, topics and photos.

Since Twitter has become very popular as a channel for citizen-driven me-
dia, many systems aim to tap this resource. Storyful [7] is a social media news
agency that tracks and curates Twitter content for breaking news and potential
stories for newsrooms. The focus is mostly on content curation and licensing.
The headlines feature of Twitter provides links to articles that relate to a spe-
cific tweet. The Tweeted Times promises a personal newspaper, by aggregating
news from the Twitter stream and ranking them by popularity among the users’
friends. Storify [8] provides a service where users can manually search for topics
of interests on several platforms (Twitter, Facebook, YouTube) in order to add
social context to a story. Blews [4] focuses on political news by tracking blogs
and the articles they cite, tagging each article with the number of blogs citing it,
political orientation and emotional charge of those blogs. Hash2News [9] takes
a hashtag as input and presents relevant news articles for that hashtag. Most
of these systems go from the social media to the news, via the urls shared in
tweets. This drastically reduces recall, since many related tweets do not post the
url explicitly. We propose a system that combines both directions, by connecting
mainstream media news articles to the relevant social feeds on Twitter, while
allowing the user to track in real-time the newsworthy topics directly from the
Twitter stream. Most readers are interested in other people’s opinion on the top-
ics, the connections between articles and the development of stories, ”users crave
more relevant news with deeper contextualization” [6]. Insight4News aims to
fulfil this need. This is also an important step in the development of new digital
journalism support tools. It is expected that such tools will become commonplace
in the newsroom of the near future [10].

2 The Insight4News System

In this section, we present the key components of Insight4News [3], as illus-
trated in Figure 1. The system is written in Python3 with the Django web
framework and is deployed on an Apache web server. Celery, a distributed task
queue, is used for back end data collection and processing.
Data Collection and Processing.We poll 14 RSS news feeds every 15 minutes
(currently from BBC and Irish Times), covering international and local news. We
extract the urls and retrieve the articles (around 400 daily). We automatically
extract representative keywords for each article, pool keywords for all articles,
and feed them to the Twitter Streaming API, constraining each retrieved tweet
to contain at least two article keywords (for more details see [2]). On average,
we get about 500k tweets per day. Each article’s keywords are streamed for 24
hours, by updating the all-article-keywords-list every 5 minutes. This step aims
to retrieve a large set of relevant tweets without being restricted to a set of
manually curated user lists, locations or article urls. Via shallow matching of
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Fig. 1. High-level overview of the Insight4News system

tweet and article keywords, we get a local tweet-bag per article which we use for
topic detection and hashtag recommendation (recomputed every 5 mins).
Topic Extraction. Based on our award winning aproach [1], this stage relies on
tweet-clustering combined with a few layers of filtering, aggregation and ranking.
The detailed steps include hierarchical clustering of tweets, time-dependent n-
gram and cluster ranking and headlines re-clustering. For each article tweet-bag,
we execute these steps to obtain a set of headlines or topics that summarize the
tweet activity relevant to the article. This approach also works on an arbitrary
Twitter stream (not article-focused).
Hashtag Recommendation. We pose this as a learning problem. Using the
tweets-bag per article, we form article-hashtag pairs, and compute four features
for each pair that capture the global (whole stream) and local (article tweet-
bag) profile of the hashtag (wrt popularity and relevance). To train a hashtag
classifier, we use 2,500 manually labeled article-hashtag pairs. A good source
of relevant hashtags that does not require manual effort, are user tweets that
post the article url and hashtags for that article. We use a Logistic Regression
classifier with 87% Precision and 79% Recall from [2]. The classifier provides a
score describing the likelihood that a hashtag is relevant to the article, which we
use to rank hashtags for each article, and recommend the top10 hashtags with
classification score above 0.5.
The web interface currently has 6 views. TrackedNews shows the latest
news articles, with headline, number of tweets retrieved and published time.
ArticleDetails shows content and social context, recommended hashtags and
extracted topics from related tweets. The default hashtag view is the classifier
result, while 3 other views show top10 hashtags based on frequency, recency, and
cosine similarity between hashtag and article profiles. TrackYourArticleHere
allows the user to track their own news article by providing a valid url or the
full text. TrackYourTopicsHere allows the user to track events by providing
keywords (e.g., Russia, Ukraine, EU). PopularHashtags lists the top50 most
popular hashtags in the last 24 hours.HashtagDetails shows a specific hashtag,
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its definition as retrieved from http://tagdef.com, and co-occurring hashtags. A
plot shows the activity of the hashtag in the last 30 hours. A group of articles
and a tweet stream related-to/filtered-by the hashtag are also shown.

3 Insight4News Use Case

On May 13, 2014, an explosion in a coal mine in Soma, Turkey killed at least 280
people. Insight4News captures a series of articles on this sad story. BBC: Turkey
coal mine disaster: Desperate search at Soma pit is one such example, with around
5k related tweets. Clicking on this headline leads to ArticleDetails, which
shows top10 hashtags, including #PRAYFORSOMA, #Turkey, #turkeymine,
#WorkersRights. Top10 topics extracted from the article’s tweet-bag are shown
(e.g., 1. Mourners by miners’ graves in the western town of Soma. The toll from

Turkey’s worst mining accident is now 282., 2. Bayram Ilki poured water on the grave

of his son Saban, as many other coal miners were buried nearby.). A photo is shown
beside each topic, which can be expanded to show the tweets summarized by
this topic-headline. Top10 learned hashtags are shown by default. Clicking on
#Soma leads to the hashtag definition and related hashtags (#PrayForTurkey,
#Protests). A plot shows the activity for #Soma in the last 30 hours. Below
the plot, there are articles related to #Soma. One of the articles Turkish mine

disaster prompts violent protests is a follow up news. It is therefore useful to look
at news articles related to the same story by following related hashtags. On the
right side of the plot we show the most recent 100 tweets for the current hashtag.

In the future we intend to scale Insight4News to more RSS news feeds and
tap into additional social media (e.g., Facebook, Reddit) as sources of social
context for news.
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Abstract. Given a set of time series, we aim at finding representatives
which best comprehend the recurring temporal patterns contained in
the data. We demonstrate BestTime, a Matlab application that uses
recurrence quantification analysis to find time series representatives.

1 Introduction

This work presents BestTime, a platform-independent Matlab application with
graphical user interface, which enables us to find representatives that best com-
prehend the recurring temporal patterns contained in a certain time series dataset.
Although BestTime was originally designed to analyze vehicular sensor data and
identify characteristic operational profiles that comprise frequent behavior pat-
terns [6], our extended version [7] can be used to find representatives in arbitrary
sets of single- or multi-dimensional time series of variable length.

Our approach to find representatives in time series datasets is based on ag-
glomerative hierarchical clustering [3]. We define a representative as the time
series that is closest to the corresponding cluster center of gravity [5]. Since we
want a representative to comprehend the recurring temporal patterns contained
in the time series of the respective cluster, we need a distance measure that
accounts for similar subsequences regardless of their position in time [6].

However, traditional time series distance measures, such as the Euclidean
distance (ED) and Dynamic Time Warping (DTW), are not suitable to match
similar subsequences that occur in arbitrary order [1,2]. Hence, we propose to
employ Recurrence Plots (RPs) and corresponding Recurrence Quantification
Analysis (RQA) [4,9] to measure the pairwise (dis)similarity of time series with
similar patterns at arbitrary positions. In earlier work [8] we introduced a novel
Recurrence Plot-based distance measure, which is used by our BestTime tool to
cluster time series and find representatives.

The following section describes the operation of our BestTime application
and illustrates the identification of representatives on a small set of sample time
series. We furthermore provide supplementary online material [7], including the
executable Matlab code of BestTime, real-life data for testing, a video demon-
stration of BestTime, and a technical report with an introduction to the formal
problem statement and employed recurrence plot-based distance measure.
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2 BestTime

BestTime is a platform-independent Matlab application which provides an user-
friendly interface. It enables a user to find representatives in arbitrary time series
datasets by clustering the data sequences according to co-occurring patterns. In
the following we briefly describe the operation of our BestTime application and
illustrate the data processing for a small set of sample time series in Figure
1. Please feel free to download our BestTime tool [7] to follow the stepwise
operating instructions given below.

Input Data. BestTime is able to analyze multivariate time series with same
dimensionality and of variable length. Each individual time series needs to be
stored in an independent csv (comma separated values) file, where rows corre-
spond to observations and columns correspond to variables. Optionally, the first
row may specify the names of the variables. The user selects an input folder that
should contain all time series in specified csv format. A small set of sample time
series that we use as input is illustrated in Figure 1(a).

Minimum Number of Observations. Depending on the application, the
user can optionally reduce the size of the dataset by specifying the minimum
length of the time series which should be consider for further processing.

Data Reduction Rate. Since the cost of our pairwise distance calculations
is quadratic in the length of the time series, we offer the possibility to reduce the
length via piecewise aggregate approximation [2]. Given a time series of length
n and a reduction rate r, the approximate time series is of length n/r.

Minimum Pattern Length. The predetermined minimum pattern length
directly influences the time series similarity. This parameter strongly depends
on the application and needs to be chosen by a domain expert.

Variable Selection. In case of time series datasets with multiple dimensions,
the user interface of our tool offers the possibility to select the variables that
should be considered for further analysis.

Similarity Threshold. This parameter is usually very sensitive and directly
influences the clustering result. Since it may be challenging to determine an
appropriate similarity threshold for each variable, our tool can alternatively rec-
ommend (estimated) thresholds.

Parallel Computing. Calculating the distance matrix is costly for large
datasets. However, this step is fully parallelized and runs almost nCPU -times
faster than serial processing. Up to twelve parallel workers are supported.

Quality Control. Our tool presents a colored plot of the computed distance
matrix and a histogram of the distance distribution in order to ensure appropri-
ate parameter settings as well as clusters that preserve the time series character-
istics. Since both plots are updated iteratively during distance calculations, we
can abort computation anytime the preview suggests undesired results. For the
distance matrix, a high variance in the distances/colors indicates an appropriate
parameter setting, and a low variance in the distances/colors may result in poor
clustering. In general, good clustering results can be achieved when the distances
do not accumulate at either end of the interval (all close to zero or one). Figure
1(b) shows the quality control for our sample dataset.
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Fig. 1. BestTime operation and data processing for finding representatives in a certain
time series dataset. (a) Given a set of time series with previously unknown patterns,
we aim to cluster the data and find a representative (highlighted) for each group.
(b) Visualization of computed distance matrix and distance distribution, which are
used to ensure both appropriate parameter settings and clusters that preserve the
time series characteristics. (c) Clustering results which show various validation indexes
for a changing number of clusters, the list of identified representatives for a selected
number of clusters, and the cardinality of the individual clusters. (d) Detailed view of
a representative with corresponding pattern frequency regarding the selected cluster.
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Clustering Validation. To support the user in choosing an optimal num-
ber of k clusters or representatives, our tool validates the cluster goodness for
changing k according to three cluster validation indexes. Figure 1(c) shows the
cluster validation for our sample dataset.

Cluster Distribution. The clustering may result in groups of different size.
Our tools illustrates the cluster distribution to identify outliers and emphasize
prominent groups with expressive representatives. For our sample dataset all
clusters have the same size, see Figure 1(c).

List of Representatives. Since we aim at finding representatives, our tool
does not only show a list of identified candidates as illustrated in Figure 1(c),
but also allows to visualize the time intervals or patterns that co-occur in other
time series of the same cluster as shown in Figure 1(d).

3 Conclusion and Future Work

We have introduced BestTime, a Matlab tool, which implements a recurrence-
plot based approach to find time series representatives that best comprehend
the recurring temporal patterns in a corresponding dataset. Furthermore, we
provide supplementary online material [7], which includes our BestTime tool,
real-life testing data, a video demonstration, and a technical report. In future
work we plan to reduce the computational complexity of pairwise (dis)similarity
comparisons by means of an approximate distance measure.
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Abstract. Boolean matrix decomposition is a method to obtain a com-
pressed representation of a matrix with Boolean entries. We present
a modular framework that unifies several Boolean matrix decomposi-
tion algorithms, and provide methods to evaluate their performance.
The main advantages of the framework are its modular approach and
hence the flexible combination of the steps of a Boolean matrix de-
composition and the capability of handling missing values. The frame-
work is licensed under the GPLv3 and can be downloaded freely at
http://projects.informatik.uni-mainz.de/bmad.

1 Introduction

The goal of a Boolean matrix decomposition (BMD) is to represent a given
Boolean matrix as a product of two or more Boolean factor matrices. It is a
well-known and researched problem with a wide range of applications [2], e.g. in
multi-label classification [9], clustering [7], bioinformatics [10], or pattern mining
[6]. In this demo, we introduce BMaD system, that understands BMD as a
three step process. This division into three steps is inspired by the work of Pauli
Miettinen [3,5,4] and uses and extends this work.

The presented implementation differs from previous ones in three points. First,
the BMD is implemented as a modular algorithm, where each step can be carried
out using multiple algorithms. Hence, different modules from different previous
publications can be freely combined to a new BMD method. Second, all im-
plemented matrix decomposition methods support missing values in the data.
Published algorithms for BMD can be easily extended to support this. In most
cases, no modification of the algorithms were necessary, yet no previous im-
plementation supported missing values in the data. This became necessary in
previous work, when BMD was applied to multi-label classification, where some
labels can be set to unknown [9]. Third, BMaD is implemented in Java, which
makes it easy to use with WEKA [1] and run on many systems out of the box.
Methods to load WEKA instances directly into BMaD are provided.

While BMaD does not introduce a completely new algorithm, it provides an
easy way to combine state-of-the-art steps of BMD to use established methods
for new ways of BMD. Due to its capability to handle missing values, it was
already used in previous publications [9] and has the potential to be used in
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future research, e.g. for developing machine learning algorithms using BMD, or
any applications using BMD that benefit from a Java implementation.

Previous implementations did not provide such a wide range of BMD methods
in one framework. Additionally, so far there is no implementation capable of
handling missing values and no implementation available in Java.

2 Boolean Matrix Decomposition

Let B be the two-element Boolean algebra, i.e. the set {0, 1} equipped with binary
operations ∧ (AND), ∨ (OR), and the unary operation ¬. First, we define the
Boolean matrix product. Let A ∈ B

h×m and B ∈ B
m×w be two Boolean matrices

for h,w,m ∈ N. Their Boolean product A⊗B ∈ B
h×w is defined as:

A⊗B :=

[
m∨

k=1

Ai,k ∧Bk,j

]
i,j

.

Real-world data often contains missing values (which we denote by ’?’). BMaD
accepts Boolean matrices with missing values as input for the decomposition
algorithms. Given a Boolean matrix A ∈ (B ∪ {?})h×w and a parameter d ∈
{1, . . . , h}, the goal is to find factor matrices C ∈ B

h×d and B ∈ B
d×w, such

that the reconstruction C ⊗ B is as close to the original matrix A as possible.
More precisely, the reconstruction error E is defined as:

E(A, Ã) := #
{
(i, j) ∈ {1, . . . , h} × {1, . . . , w} : Ai,j �=?andAi,j �= Ãi,j

}
for A ∈ (B ∪ {?})h×w and Ã ∈ B

h×w, that is, the number of entries in Ã that
differ from known values of the matrix A. If all entries of A are known, this error
is just the L1 norm of the real-valued difference between Ã and A. Using these
definitions, a more precise formulation of the BMD problem is as follows: given
A ∈ (B ∪ {?})h×w, and compression dimension d ∈ {1, . . . , h}, find matrices
C ∈ B

h×d and B ∈ B
d×w, such that the reconstruction error E(A,C ⊗ B) is

minimized.
The problem is known to be NP-complete for Boolean matrices without un-

known values [3,5]. By obvious reduction, this also holds for the problem pre-
sented here. Hence, we do not attempt to solve the problem exactly, but instead
consider a family of heuristics suitable for finding approximate solutions.

3 Algorithms and Implementation

We provide an implementation of a family of modular algorithms, which include
several algorithms previously proposed by Miettinen et al. [3,5,4]. As previously,
let A ∈ B

w×h, d ∈ {1, . . . , h} and c > 0 be the input parameters. Algorithms
representable in BMaD consist of three subalgorithms, which are more or less
independent of each other.
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Table 1. Example program using BMaD. First, the single modules are created, then
they are used to decompose the matrix. Finally, the reconstruction error is calculated
on the decomposition.

1 // initialize the modules

2 CandidateGenerator generator = new AssociationGenerator(0.2);

3 BasisSelector selector = new GreedySelector();

4 Combinator combinator = new DensityGreedyCombinator();

5 // import matrix from WEKA instances objet

6 BooleanMatrix original = new BooleanMatrix(instances);

7 // decompose matrix using variable dim as dimension

8 BooleanMatrixDecomposition bmd = new

BooleanMatrixDecomposition(generator, selector, combinator);

9 Tuple<BooleanMatrix, BooleanMatrix> t = bmd.decompose(original,

dim);

10 BooleanMatrix c = t._1, b = t._2;

11 // generate reconstruction by Boolean multiplication

12 BooleanMatrix reconstruction = c.booleanProduct(b);

13 // calculate the relative reconstruction error

14 double reconstructionError =

original.relativeReconstructionError(reconstruction,

onesWeight);

Candidate generation First, a set of potential basis patterns is generated
from the matrix A. It consists of rows of same width as matrix A.
Identity All rows of A are declared to be candidates [5].
Association Candidates are generated using pairwise associations [5].
Intersection For each pair of rows of A, the entrywise minimum is a can-

didate [8].
Basis selection The size of the set generated in the first step is usually much

larger than the parameter d. Hence we have to sort out the less meaningful
patterns and retain exactly d candidate patterns that are included into the
basis matrix B (basis, second factor). Most of the subalgorithms discussed
here also generate a coarse approximation of the matrix C at this step. In
the next step, one can obtain the final version of the matrix C by either
refining the approximation, or building C from scratch.
Greedy Algorithm The error is minimized in a greedy manner [5].
Local Search (with minor variations) Similar to the Greedy Algorithm

but it iterates over k ∈ {1, . . . , d}, replacing the k-th basis row of B [5].
Boolean combination In this step, the matrix C (combination, first factor)

is constructed. The goal is to represent rows of the original matrix A as
Boolean combinations of the basis patterns from the matrix B. Clearly, each
row of the matrix A can be represented independently, hence it is enough to
specify how to calculate entries of one single row of C.
Iter Iterates multiple times over entries of C, and uses the change in recon-

struction error to check if flipping an entry decreases the error [5].
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Cover-greedy algorithm Start with an empty matrix C and repeatedly
search a basis row ρ that maximizes the change in reconstruction error.

Density-greedy algorithm Basis rows with fewer 1s are preferred to rows
with more 1s.

The API of BMaD is straightforward (an example call is given in Table 1).
For each module, a class exists, for each step, a class must be initialized and
used. The classes provide the appropriate methods to perform the given step
of the BMD. Additionally, methods to compute errors or visualize matrices and
errors are implemented (examples of visualizations are shown on the web site
http://projects.informatik.uni-mainz.de/bmad and in the demo).

4 Conclusion

This demo presents a modular framework for BMD, implementing it as a modular
algorithm. Each step of the algorithm can be carried out by several modules,
providing a flexible implementation of the BMD. It is implemented in Java and
provides support for missing values in the data set and a WEKA interface. In
the demo, we will present a step-by-step tutorial how to use BMaD, showing
the possibilities of it and visualizing the results.
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Abstract. In social network analysis, there are a variety of options for investi-
gating social interactions. This paper reviews our recent work on analyzing and
grounding social interactions in online and offline networks considering distribu-
tional semantics, structural network correlation and network inter-dependencies.
Specifically, we focus on the analysis of user relatedness, community structure,
and relations on online and offline networks. We discuss findings and results that
justify the use of even implicitly accruing social interaction networks for the anal-
ysis of user-relatedness, community structure, etc. Furthermore, we provide in-
sights into recent work on analyzing and grounding offline social networks.

Keywords: social network analysis, social interaction networks, mining social
media, distributional semantics, community structure, social distributional
hypothesis.

1 Introduction

The analysis of user relatedness [10, 13, 14], community structure [11, 12, 15], and the
relation between online and offline networks [7, 16] are prominent research topics in
data mining and social network analysis. In this context, this paper summarizes our
recent work on analyzing and grounding social interaction. We analyze user interaction
formalized in so-called social interaction networks [2, 14]: These refer to user-related
social networks in social media that are capturing social relations inherent in social
interactions, social activities and other social phenomena which act as proxies for social
user-relatedness. Essentially, social interaction networks focus on interaction relations
between people, see [19, p. 37 ff.], that are the corresponding actors.

First, we present the social distributional hypothesis [13] – a pragmatic proxy for
homophily [10] – stating that users with similar interaction characteristics are related,
and provide supporting evidence. Second, we extend this to the analysis of communi-
ties [11, 12] showing structural correlations between implicit networks of user interac-
tions. Third, we investigate the structural grounding considering both online and offline
network properties [5, 16]. In this way, we provide novel insights into the grounding of
offline behavior. Our analysis results justify the analysis of even implicitly accruing
social interaction networks with respect to user-relatedness, semantics and community
structure, and provide for valuable insights, e. g., for the development of link analysis
methods, community detection, and the connection of online and offline information.
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2 Analysis of Social Interaction Networks

With the rise of social software and social media, a wealth of user-generated data and
user interactions is being created in online social networks. We adopt an intuitive def-
inition of social media, regarding it as online systems and services in the ubiquitous
web, which create and provide social data generated by human interaction and commu-
nication [1, 3]. We consider social interactions in an online and offline context, that is,
connections and relations in online systems as well as real-world face-to-face contacts.

In the following, we focus on the analysis of such social interaction networks. Fig-
ure 1 provides an overview on the analysis and grounding approaches, while Table 1
further summarizes the methods, applied techniques and results which we discuss below
in more detail, reviewing our recent work. In particular, we propose the social distri-
butional hypothesis [13] stating, that users with similar interaction characteristics tend
to be related. Considering users as (social) entities, their distributional characteristics
can be observed utilizing social interaction networks. The social distributional hypoth-
esis is postulated similar to the distributional hypothesis [8] in linguistics; it states that
words with similar distributional characteristics tend to be semantically related, i. e.,
that words occurring in similar contexts have a similar meaning.

Social 
Distributional 

Hypothesis 

Semantic 
Grounding 

Structural 
Correlation 

Thresholded 
Dynamics 

Individual 
Behavior 

Community 
Structure 

Fig. 1. Overview on the analysis and grounding setup: Starting with the social distributional hy-
pothesis, we apply several methods for analyzing individual behavior and community structure

In [13, 14] we conduct a series of experiments on social interaction networks from
Twitter, Flickr and BibSonomy and investigate the user-relatedness concerning the in-
teractions, their frequency, and the specific interaction characteristics. The results indi-
cate interrelations between structural similarity of interaction characteristics and
semantic relatedness of users, supporting the social distributional hypothesis. This also
grounds methods for analyzing social interaction networks in general.

On a structural level, we investigate two further issues in [11, 12] on the social in-
teraction networks: Are there interrelations and correlations between the interaction
networks? Furthermore, can these be applied for the analysis and data-driven assess-
ment of communities? We analyze general structural properties of the obtained net-
works and comparatively discuss major structural characteristics in order to show that
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Table 1. Overview on the applied methods and specific analysis techniques

Analysis Method Results

Semantic
Grounding [13, 14]

Similarity Covariate
Analysis (tag-based,
location-based)

Interrelations between structural similarity
of interaction characteristics and semantic
user-relatedness

Structural
Correlation [11, 12]

Degree Correlation,
Neighborhood, Graph
Covariance

Structural inter-network correlations;
consistent community structure and
ranking accross networks

Time-based Link
Patterns [5, 9, 16]

Community Analysis,
Role Analysis, Link
Prediction

Semantically consistent community and
role structures; indicators for
complementing network structures

there are structural and semantic inter-network correlations between the different ev-
idence networks. In particular, we examine several general structural properties, the
degree distribution and the degree correlation, indicating significant similarities of the
networks. Furthermore, we analyze dependencies of the networks’ neighborhood, and
inter-network correlations. The results indicate strong correlations and interrelations
between the considered social interaction networks, that are strong enough for infer-
ring reciprocal conclusions between the networks. Based on these results, we propose
an approach for (relative) community assessment based on the idea of reconstructing
existing social structures [18] for the assessment and evaluation of a given clustering.

Furthermore, for analyzing and grounding offline networks we focus on real-world
offline networks of human contacts, that is, face-to-face proximity contacts between
persons in [5, 9, 16]. In contrast to virtual networks, the involved contacts were col-
lected using the social conference guidance system CONFERATOR [4] – a ubiquitous
RFID-based system that allows us to collect face-to-face contact data [6]. Thus, we
can observe and analyze (offline) social interaction at a very detailed level, includ-
ing the specific event sequences and durations. Also, we complement the analysis of
the offline social interaction networks with additional node-level properties and further
networks, e. g., utilizing the DBLP co-authorship relations. In this context, we ana-
lyze different time-based link patterns using offline and online information. We ground
user-interaction and community structure accordingly using different online and offline
properties in [5]. In a threshold-based analysis, e. g., using different minimal contact
durations of the contact data, we analyze general structural properties of the contact
network, investigate the stability and dynamics of community structures, and examine
different explicit and implicit roles [17] of conference participants. Furthermore, we
analyze the predictability of links grounded using different online and offline informa-
tion [16]. Our results show semantically grounded consistent community and role struc-
ture. In addition, we observe that different online and offline networks can complement
each other well for improving link analysis methods, e. g., concerning link prediction.
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3 Conclusions and Outlook
We proposed the social distributional hypothesis as one foundational issue for the analy-
sis of social interaction networks and presented supporting experimental results.
Furthermore, we successfully investigated structural correlation and time-based link
patterns on online and offline social interaction networks. Overall, our analysis results
are not only relevant for gaining justifications and important insights into structural and
semantic relations for social interaction networks. They can also help, e. g., for imple-
menting new link mining, community detection or user recommendation algorithms.
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Abstract. The purpose of this technical note is to introduce the problems of
similarity detection and summarization in uncertain data. We provide the essen-
tial arguments that make the problems relevant to the data-mining and machine-
learning community, stating major issues and summarizing our contributions in
the field. Further challenges and directions of research are also issued.

1 Uncertainty: What We Have to Face

The term uncertainty describes an ubiquitous status of the information as being pro-
duced, transmitted, and acquired in real-world data sources. Exemplary scenarios are
related to the use of location-based services for tracking moving objects and sensor net-
works, which normally produce data whose representation (attributes) is imprecise at
a certain degree. Imprecision arises from the presence of noisy factors in the device or
transmission medium, but also from a high variability in the measurements (e.g., loca-
tions of a moving object) that obviously prevents an exact representation at a given time.
This is the case virtually for any field in scientific computing, and consequently for a
plethora of application fields, including: pattern recognition (e.g., image processing),
bioinformatics (e.g., gene expression microarray), computational fluid dynamics and
geophysics (e.g., weather forecasting), financial planning (e.g., stock market analysis),
GIS applications to distributed network analysis [1].

For data management purposes, uncertainty has been traditionally treated at the at-
tribute level, as this is particularly appealing for inductive learning tasks [6]. In general,
attribute-level uncertainty is handled based on a probabilistic representation approach
that exploits probability distributions describing the likelihood that any given data tu-
ple appears at each position in a multidimensional domain region; the term uncertain
objects is commonly used to refer to such data tuples described in terms of probability
distributions defined over multidimensional domain regions.

Uncertainty in data representation needs to be carefully handled in order to produce
meaningful knowledge patterns. Consider for instance the scenario depicted in Fig. 1—
uncertain objects are represented in terms only of their domain regions for the sake
of simplicity (probability distribution assumed to be uniform for all the objects). The
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(a) (b)

(c)

Fig. 1. Grouping uncertain data: (a) true representations of objects and their desired grouping, (b)
observed representations which may lead to unexpected groupings, (c) desired grouping identified
by considering the object uncertainty (domain regions).

“true” representation of each uncertain object (black circles in Fig. 1(a)) corresponds
to a point within its domain region and can be in general far away from its “observed”
representation (black circles in Fig. 1(b)). Thus, considering only the observed rep-
resentations may lead to discover groups of similar objects (i.e., {o′1,o′2}, {o′′1,o′′′1 },
{o′′2,o′′′2 } in Fig. 1(b)) that are substantially different from the ideal ones which would
be identified by considering the true representations (i.e., {o′1,o′′1,o′′′1 }, {o′2,o′′2 ,o′′′2 } in
Fig. 1(a)). Instead, considering the whole domain regions (and pdfs) of the uncertain
objects, may help to recognize the correct grouping (Fig. 1(c)).

The computation of proximity between uncertain objects is a fundamental primitive
needed in many data-management tasks. Existing approaches fall into two main cate-
gories: (i) computing the distance between aggregated values extracted from the proba-
bility distributions of the uncertain objects (e.g., expected values), or (ii) computing the
expected distance (ED) between distributions, which involves the whole information
available from the distributions. The first approach is efficient as it has a time complex-
ity linear in the number of statistical samples used for representing distributions, but it
also has an evident accuracy issue since all the information available from the distribu-
tions is collapsed into a single numerical value; conversely, the ED-based approach is
more accurate but also inefficient (it takes quadratic time). Within this view, our major
contribution presented in [4] was to define a novel distance function that achieves a
good tradeoff between accuracy and efficiency, by being able to capitalize on the whole
information provided by the object distributions while keeping linear-time complexity.

Summarization of uncertain objects is another critical task, which is generally re-
quired in scenarios where a more compact representation is essential to analyze and/or
further process a large set of (uncertain) objects that would be hard to manage other-
wise. Surprisingly, a common trend in the early state-of-the-art was to employ a simple
average of the expected values of the set members, which is clearly ineffective in most
cases. Our contribution on this topic was to account also for the variance of the indi-
vidual set members. In particular, we proposed a model based on a random variable
derived from the realizations of the uncertain objects to be summarized [5], as well as
a mixture-model-based summarization method [3,2].

Similarity detection in uncertain data is obviously central in a variety of mining
tasks. Analogous consideration holds for uncertain data summarization, as it impacts
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on how proximity can conveniently be computed between any uncertain object and
a “prototype” object summarizing a set (e.g., cluster) of uncertain objects. Next we
informally articulate the approaches we have proposed in the aforementioned contexts.

2 Uncertainty: How We Can Deal With

Similarity Detection in Uncertain Data. Information-theory (IT) has represented a
fruitful research area to devise measures for comparing probability distributions ac-
curately and, in most cases, in linear time with respect to the number of distribution
samples. However, none of the prominent existing IT measures can be directly used to
define distances for uncertain objects, mainly because of the assumption that the dis-
tributions need to share a common event space, which does not necessarily hold for
distributions associated to uncertain objects. For this purpose, in [4] we developed a
distance measure between uncertain objects that is able to exploit the full information
stored in the object distributions, while being fast to compute. A major feature of our
proposed distance is a combination of an IT measure with a measure based on aggre-
gated information (i.e., expected value) extracted from the object distributions.

Besides representing a good tradeoff between effectiveness and efficiency, a further
nice feature of the proposed distance is that the frequency of occurrence of the no-
intersection event, and thus the overall accuracy of the measure, can be statistically
controlled. Specifically, the width of the domain region shared between the uncertain
objects to be compared represents a useful indicator of the feasibility of the distance cal-
culation by means of the IT term only, and hence of the limited need for comparing the
object distributions by also considering the expected-value-based term. This reasoning
can profitably be exploited in tasks where the distances are to be computed for objects
whose domain regions become larger as their processing goes on. An exemplary task
where this happens is prototype-based agglomerative hierarchical clustering, where
each cluster of uncertain objects is represented according to some notion of prototype
whose domain region is ensured to increase with later steps of the clustering process.

Uncertain Data Summarization. As previously mentioned, the naı̈ve notion of uncer-
tain prototype as average of the expected values of the objects in a set has been widely
used in the literature. Notwithstanding, it might easily result in limited accuracy, as (i) it
has a deterministic representation, and (ii) it expresses only the central tendency of the
objects to be summarized. This prompted us to investigate better ways of summarizing
uncertain data. As a first attempt towards this matter, we proposed in [3,2] a notion of
uncertain prototype as a mixture model of the set of random variables representing the
uncertain objects to be summarized; that is, a notion that enables an uncertain repre-
sentation while, at the same time, accounting for the variance of the individual objects
rather than their central tendency only. A significant part of our work also focused on
how to exploit our summarization approach in a classic data-mining task like cluster-
ing. Particularly, we demonstrated that a clustering objective criterion can be defined
based on the minimization of the variance of the cluster mixture models, and that both
efficiency and accuracy requirements can be satisfied. A major remark in this regard is
that the proposed criterion enables the definition of fast heuristics that do not require
any distance measure between uncertain objects.
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(a) (b)

Fig. 2. Impact of the use of central tendency and variance of the individual objects on uncertain
data summarization. (a) The two groups of objects have the same central tendency, but different
variances: considering only central tendency leads to mistakenly summarize the two sets by the
same prototype. (b) Considering only the variance is however not enough: even though the objects
on the left have lower variance, they evidently form a less compact group than the one on the right.

Although the mixture-model-based approach has the merit of introducing a defini-
tion of uncertain prototype that is an uncertain object itself, a criterion based only on
the minimization of the variance of the uncertain objects may still lead to unsatisfactory
results. (Figure 2). Thus, in [5] we introduced a novel notion of uncertain prototype,
named U-centroid: an uncertain object that is defined in terms of a random variable
whose realizations correspond to all possible deterministic representations deriving
from the uncertain objects to be summarized. Besides deriving the analytical expres-
sions of domain region and probability distribution of the proposed U-centroid, a major
contribution in this regard was the definition of a closed-form-computable compactness
criterion that, coupled with the proposed U-centroid, naturally defines an effective yet
efficient objective criterion for grouping uncertain objects.

3 Challenges and Future Directions

We provided a short review of problems related to similarity detection and summariza-
tion in uncertain data, and how we addressed them in our previous studies [3,5,2,4],
which the interested reader is referred to for any technical details, including further
developments we envisaged. Here we rather conclude raising a couple of concerns re-
garding the current trends of representing uncertainty and evaluating the induced mining
results. First, we argue that a more complete treatment of uncertainty in data mining and
machine learning could be obtained by integrating attribute-level with tuple-level no-
tions of uncertainty, which have been long studied in database theory and management
fields. This could imply the specification of a new yet more expressive class of models
and algorithms for mining uncertain data. Second, we believe there is a strong need for
the construction of benchmarks for assessing the mining results, which would avoid to
bias the performance evaluation often due to the artificial, non-standardized methods
for the generation of uncertainty in the selected test data. Another open problem that
is worth to be addressed is the design of new assessment criteria to evaluate the many
aspects inherent the quality of knowledge patterns induced from uncertain datasets.

References

1. Aggarwal, C.C.: Managing and Mining Uncertain Data. Springer (2009)
2. Gullo, F., Ponti, G., Tagarelli, A.: Minimizing the variance of cluster mixture models for clus-

tering uncertain objects. In: IEEE ICDM, pp. 839–844 (2010)



Be Certain of How-to before Mining Uncertain Data 493

3. Gullo, F., Ponti, G., Tagarelli, A.: Minimizing the variance of cluster mixture models for clus-
tering uncertain objects. Statistical Analysis and Data Mining 6(2), 116–135 (2013)

4. Gullo, F., Ponti, G., Tagarelli, A., Greco, S.: A Hierarchical Algorithm for Clustering Uncer-
tain Data via an Information-Theoretic Approach. In: IEEE ICDM, pp. 821–826 (2008)

5. Gullo, F., Tagarelli, A.: Uncertain Centroid based Partitional Clustering of Uncertain Data.
PVLDB 5(7), 610–621 (2012)

6. Sarma, A.D., Benjelloun, O., Halevy, A.Y., Nabar, S.U., Widom, J.: Representing uncertain
data: models, properties, and algorithms. The VLDB Journal 18(5), 989–1019 (2009)



Active Learning Is Planning: Nonmyopic
ε-Bayes-Optimal Active Learning of Gaussian Processes

Trong Nghia Hoang1, Kian Hsiang Low1, Patrick Jaillet2, and Mohan Kankanhalli1

1 National University of Singapore, Singapore
{nghiaht,lowkh,mohan}@comp.nus.edu.sg

2 Massachusetts Institute of Technology, USA
jaillet@mit.edu

Abstract. A fundamental issue in active learning of Gaussian processes is that
of the exploration-exploitation trade-off. This paper presents a novel nonmyopic
ε-Bayes-optimal active learning (ε-BAL) approach [4] that jointly optimizes the
trade-off. In contrast, existing works have primarily developed greedy algorithms
or performed exploration and exploitation separately. To perform active learning
in real time, we then propose an anytime algorithm [4] based on ε-BAL with
performance guarantee and empirically demonstrate using a real-world dataset
that, with limited budget, it outperforms the state-of-the-art algorithms.

1 Introduction

Active learning/sensing has become an increasingly important focal theme in environ-
mental sensing and monitoring applications (e.g., precision agriculture [7], monitoring
of ocean and freshwater phenomena). Its objective is to derive an optimal sequential
policy that plans the most informative locations to be observed for minimizing the
predictive uncertainty of the unobserved areas of a spatially varying environmental
phenomenon given a sampling budget (e.g., number of deployed sensors, energy con-
sumption). To achieve this, many existing active sensing algorithms [1,2,3,6,7,8] have
modeled the phenomenon as a Gaussian process (GP), which allows its spatial correla-
tion structure to be formally characterized and its predictive uncertainty to be formally
quantified (e.g., based on entropy, or mutual information criterion). However, they have
assumed the spatial correlation structure (specifically, the parameters defining it) to be
known, which is often violated in real-world applications. The predictive performance
of the GP model in fact depends on how informative the gathered observations are for
both parameter estimation and spatial prediction given the true parameters.

Interestingly, as revealed in [9], policies that are efficient for parameter estimation
are not necessarily efficient for spatial prediction with respect to the true model param-
eters. Thus, active learning/sensing involves a potential trade-off between sampling the
most informative locations for spatial prediction given the current, possibly incomplete
knowledge of the parameters (i.e., exploitation) vs. observing locations that gain more
information about the parameters (i.e., exploration). To address this trade-off, one prin-
cipled approach is to frame active sensing as a sequential decision problem that jointly
optimizes the above exploration-exploitation trade-off while maintaining a Bayesian
belief over the model parameters. Solving this problem then results in an induced pol-
icy that is guaranteed to be optimal in the expected active sensing performance [4].
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Unfortunately, such a nonmyopic Bayes-optimal active learning (BAL) policy cannot
be derived exactly due to an uncountable set of candidate observations and unknown
model parameters. As a result, existing works advocate using greedy policies [10] or
performing exploration and exploitation separately [5] to sidestep the difficulty of solv-
ing for the exact BAL policy. But, these algorithms are sub-optimal in the presence of
budget constraints due to their imbalance between exploration and exploitation [4].

This paper presents a novel nonmyopic active learning algorithm [4] that can still
preserve and exploit the principled Bayesian sequential decision problem framework
for jointly optimizing the exploration-exploitation trade-off (Section 2.2) and conse-
quently does not incur the limitations of existing works. In particular, although the exact
BAL policy cannot be derived, we show that it is in fact possible to solve for a nonmy-
opic ε-Bayes-optimal active learning (ε-BAL) policy (Section 2.3) given an arbitrary
loss bound ε. To meet real-time requirement in time-critical applications, we then pro-
pose an asymptotically ε-optimal anytime algorithm based on ε-BAL with performance
guarantee (Section 2.4). We empirically demonstrate using a real-world dataset that,
with limited budget, our approach outperforms state-of-the-art algorithms (Section 3).

2 Nonmyopic ε-Bayes-Optimal Active Learning

2.1 Modeling Spatial Phenomena with Gaussian Processes

Let X denote a set of sampling locations representing the domain of the phenomenon
such that each location x ∈ X is associated with a realized (random) measurement zx
(Zx) if x is observed (unobserved). Let ZX � {Zx}x∈X denote a GP [4]. The GP is
fully specified by its prior mean μx � E[Zx] and covariance σxx′|λ � cov[Zx, Zx′ |λ]
for all locations x, x′ ∈ X ; its model parameters are denoted by λ. When λ is known
and a set zD of realized measurements is observed for D ⊂ X , the GP prediction for
any unobserved location x ∈ X \D is given by p(zx|zD, λ) = N (μx|D,λ, σxx|D,λ) [4].
However, since λ is not known, a probabilistic belief bD(λ) � p(λ|zD) is maintained
over all possible λ and updated using Bayes’ rule to the posterior belief bD∪{x}(λ) ∝
p(zx|zD, λ) bD(λ) given a new measurement zx. Then, using belief bD, the predictive
distribution is obtained by marginalizing out λ: p(zx|zD) =

∑
λ∈Λ p(zx|zD, λ) bD(λ).

2.2 Problem Formulation

To cast active sensing as a Bayesian sequential decision problem, we define a sequen-
tial active sensing policy π � {πn}Nn=1 that is structured to sequentially decide the
next location πn(zD) ∈ X \ D to be observed at each stage n based on the current
observations zD over a finite planning horizon of N stages (i.e., sampling budget). To
measure the predictive uncertainty over unobserved areas of the phenomenon, we use
the entropy criterion and define the value under a policy π to be the joint entropy of its
selected observations when starting with some prior observations zD0 and following π
thereafter [4].
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The work of [7] has established that minimizing the posterior joint entropy (i.e., pre-
dictive uncertainty) remaining in unobserved locations of the phenomenon is equivalent
to maximizing the joint entropy of π. Thus, solving the active sensing problem entails
choosing a sequential BAL policy π∗n(zD) = argmaxx∈X\DQ∗n(zD, x) induced from
the following N -stage Bellman equations, as formally derived in [4]:

V ∗n (zD) � max
x∈X\D

Q∗n(zD, x)

Q∗n(zD, x) � E [− log p(Zx|zD)] + E
[
V ∗n+1(zD ∪ {Zx}) |zD

] (1)

for stage n = 1, . . . , N where p(zx|zD) is defined in Section 2.1 and the second expec-
tation term is omitted from right-hand side expression of Q∗N at stage N . Unfortunately,
since the BAL policy π∗ cannot be derived exactly, we instead consider solving for an
ε-BAL policy πε whose joint entropy approximates that of π∗ within ε > 0.

2.3 ε-BAL Policy

The key idea of our proposed nonmyopic ε-BAL policy πε is to approximate the expec-
tation terms in (1) at every stage using truncated sampling. Specifically, given realized
measurements zD, a finite set of τ -truncated, i.i.d. observations {zix}Si=1 [4] is generated
and exploited for approximating V ∗n (1) through the following Bellman equations:

V ε
n (zD) � max

x∈X\D
Qε

n(zD, x)

Qε
n(zD, x) �

1

S

S∑
i=1

− log p
(
zix|zD

)
+ V ε

n+1

(
zD ∪

{
zix
}) (2)

for stage n = 1, . . . , N . The use of truncation is motivated by a technical necessity
for theoretically guaranteeing the expected active sensing performance (specifically, ε-
Bayes-optimality) of πε relative to that of π∗ [4].

2.4 Anytime ε-BAL (〈α, ε〉-BAL) Algorithm

Although πε can be derived exactly, the cost of deriving it is exponential in the length N
of planning horizon since it has to compute the values V ε

n (zD) (2) for all (S|X |)N possi-
ble states (n, zD). To ease this computational burden, we propose an anytime algorithm
based on ε-BAL that can produce a good policy fast and improve its approximation
quality over time. The key intuition behind our anytime ε-BAL algorithm (〈α, ε〉-BAL)
is to focus the simulation of greedy exploration paths through the most uncertain re-
gions of the state space (i.e., in terms of the values V ε

n(zD)) instead of evaluating the
entire state space like πε. Interested readers are referred to [4] for more details.

3 Experiments and Discussion

This section evaluates the active sensing performance and time efficiency of our 〈α, ε〉-
BAL policy π〈α,ε〉 empirically under using a real-world dataset of a large-scale traffic
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Fig. 1. (a) Traffic phenomenon (i.e., speeds (km/h) of road segments) over an urban road network,
graphs of (b) root mean squared prediction error of APGD, IE, and 〈α, ε〉-BAL policies with
horizon length N ′ = 3, 4, 5 and (c) total online processing cost of 〈α, ε〉-BAL policies with
N ′ = 3, 4, 5 vs. budget of N segments, and (d-f) road segments observed (shaded in black) by
respective APGD, IE, and 〈α, ε〉-BAL policies (N ′ = 5) with N = 60.

phenomenon (i.e., speeds of road segments) over an urban road network; refer to [4]
for additional experimental results on a simulated spatial phenomenon. Fig. 1a shows
the urban road network X comprising 775 road segments in Tampines area, Singapore
during lunch hours on June 20, 2011. Each road segment x ∈ X is specified by a
4-dimensional vector of features: length, number of lanes, speed limit, and direction.
More details of our experimental setup can be found in [4]. The performance of our
〈α, ε〉-BAL policies with planning horizon length N ′ = 3, 4, 5 are compared to that of
APGD and IE policies [5] by running each of them on a mobile robotic probe to direct
its active sensing along a path of adjacent road segments according to the road network
topology. Fig. 1 shows results of the tested policies averaged over 5 independent runs:
It can be observed from Fig. 1b that our 〈α, ε〉-BAL policies outperform APGD and
IE policies due to their nonmyopic exploration behavior. Fig. 1c shows that 〈α, ε〉-
BAL incurs < 4.5 hours given a budget of N = 240 road segments, which can be
afforded by modern computing power. To illustrate the behavior of each policy, Figs. 1d-
f show, respectively, the road segments observed (shaded in black) by the mobile probe
running APGD, IE, and 〈α, ε〉-BAL policies with N ′ = 5 given a budget of N = 60.
Interestingly, Figs. 1d-e show that both APGD and IE cause the probe to move away
from the slip roads and highways to low-speed segments whose measurements vary
much more smoothly; this is expected due to their myopic exploration behavior. In
contrast, 〈α, ε〉-BAL nonmyopically plans the probe’s path and direct it to observe the
more informative slip roads and highways with highly varying traffic measurements
(Fig. 1f) to achieve better performance.
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Abstract. This paper presents a novel online sparse Gaussian process (GP) ap-
proximation method [3] that is capable of achieving constant time and memory
(i.e., independent of the size of the data) per time step. We theoretically guaran-
tee its predictive performance to be equivalent to that of a sophisticated offline
sparse GP approximation method. We empirically demonstrate the practical fea-
sibility of using our online sparse GP approximation method through a real-world
persistent mobile robot localization experiment.

1 Introduction

Gaussian process (GP) models are a rich class of Bayesian non-parametric models that
can perform probabilistic regression by providing Gaussian predictive distributions with
formal measures of the predictive uncertainty. Unfortunately, the expressive power of
a full GP model comes at a cost of poor scalability (i.e., cubic time) in the size of
the data, which hinders its practical use for performing real-time predictions necessary
in many time-critical applications and decision support systems (e.g., ocean sensing,
traffic monitoring, geographical information systems) that need to process and analyze
huge quantities of data streaming in over time (e.g., in astronomy, internet traffic, me-
teorology, surveillance). When the data stream is expected to be (possibly indefinitely)
long, it is also computationally impractical to repeatedly use existing offline sparse GP
approximation methods [2] or online GP model [1] for training at each time step be-
cause they incur, respectively, linear and quadratic time in the data size per time step.

This paper presents a novel online sparse GP approximation method [3] (Section 3)
that, in contrast to existing works mentioned above, is capable of achieving constant
time and memory (i.e., independent of the size of the data/observations) per time step.
We provide a theoretical guarantee on its predictive performance to be equivalent to
that of the offline sparse partially independent training conditional (PITC) approxi-
mation method. Our proposed method [3] generalizes the sparse online GP model of
[1] by relaxing its conditional independence assumption significantly, hence potentially
improving the predictive performance. We empirically demonstrate the practical feasi-
bility of using our generalized online sparse GP approximation method [3] through a
real-world persistent mobile robot localization experiment described in Section 4.

T. Calders et al. (Eds.): ECML PKDD 2014, Part III, LNCS 8726, pp. 499–503, 2014.
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2 Background

A Gaussian process (GP) model can be used to perform probabilistic regression as
follows: Let X be a set representing the input domain such that each input x ∈ X
denotes a d-dimensional feature vector and is associated with a realized output value zx
(random output variable Zx) if it is observed (unobserved). Let {Zx}x∈X denote a GP,
that is, every finite subset of {Zx}x∈X has a multivariate Gaussian distribution. The GP
is fully specified by its prior mean μx � E[Zx] and covariance σxx′ � cov[Zx, Zx′]
for all x, x′ ∈ X . Supposing a column vector zD of realized outputs is observed for
some set D ∈ X of inputs, the full GP model can exploit these observations to predict
the unobserved measurement for any input x ∈ X \ D as well as provide its predictive
uncertainty using a Gaussian predictive distribution p(zx|x,D, zD) = N (μx|D, σxx|D)
with the following posterior mean and variance, respectively:

μx|D � μx +ΣxDΣ−1DD (zD − μD) and σxx|D � σxx −ΣxDΣ−1DDΣDx (1)

where μD is a column vector with mean components μx′ for all x′ ∈ D, ΣxD is a row
vector with covariance components σxx′ for all x′ ∈ D, ΣDx is the transpose of ΣxD,
and ΣDD is a matrix with components σx′x′′ for all x′, x′′ ∈ D.

The key limitation hindering the practical use of the full GP model is that comput-
ing (1) requires inverting the covariance matrix ΣDD, which incurs O(|D|3) time and
O(|D|2) memory. To improve its scalability, the sparse partially independent training
conditional (PITC) [2] approximation method is the most general form of a class of
reduced-rank covariance matrix approximation methods in [2] exploiting the notion of
a support set S ⊂ X . PITC computes a Gaussian predictive distribution of the unob-
served measurement for any x ∈ X \D with the following posterior mean and variance:

μPITC
x|D � μx+ΓxD(ΓDD+Λ)−1(zD−μD) and σPITC

xx|D � σxx−ΓxD(ΓDD+Λ)−1ΓDx

(2)
where ΓAA′ = ΣASΣ−1SSΣSA′ for all A,A′ ⊂ X and Λ is a block-diagonal matrix
constructed from the N diagonal blocks of ΣDD|S , each of which is a matrix ΣDnDn|S
for n = 1, · · · , N where D =

⋃N
n=1Dn. The covariance matrix ΣDD in (1) is ap-

proximated by a reduced-rank matrix ΓDD summed with the resulting sparsified resid-
ual matrix Λ in (2). So, computing either μPITC

x|D or σPITC
xx|D (2), which requires inverting

the approximated covariance matrix ΓDD + Λ, incurs O(|D|(|S|2 + (|D|/N)2)) time
and O(|S|2 + (|D|/N)2) memory. The sparse fully independent training conditional
(FITC) approximation method is a special case of PITC where Λ is a diagonal matrix
constructed from σx′x′|S for all x′ ∈ D (i.e., N = |D|).

3 Generalized Online Sparse GP (GOSGP) Approximation

The key idea of our GOSGP approximation method [3] is to summarize the newly gath-
ered data/observations at regular time intervals/slices, assimilate the summary informa-
tion of the new data with that of all the previously gathered data/observations, and then
exploit the resulting assimilated summary information to compute a Gaussian predictive
distribution of the unobserved measurement for any input. Let x1:t−1 � {x1, . . . , xt−1}
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denote a set of inputs from time steps 1 to t − 1, each time slice n span time steps
(n − 1)τ + 1 to nτ for some user-defined slice size τ ∈ Z

+, and the number of time
slices available thus far up until time step t be denoted by N (i.e., Nτ < t).

Definition 1 (Slice Summary). Given a support set S ⊂ X , a subset Dn �
x(n−1)τ+1:nτ ∈ x1:t−1 of inputs associated with time slice n, and the column vec-
tor zDn = z(n−1)τ+1:nτ of corresponding realized measurements, the slice sum-
mary of time slice n is defined as a tuple (μn

s
, Σn

s
) for n = 1, . . . , N where μn

s
�

ΣSDnΣ
−1
DnDn|S(zDn − μDn) and Σn

s
� ΣSDnΣ

−1
DnDn|SΣDnS such that μDn is de-

fined in a similar manner as μD in (1) and ΣDnDn|S is a posterior covariance matrix
with components σxx′|S for all x, x′ ∈ Dn, each of which is defined in a similar way
as (1).

Definition 2 (Assimilated Summary). Given (μn
s , Σ

n
s ), the assimilated summary

(μn
a
, Σn

a
) of time slices 1 to n is updated from the assimilated summary (μn−1

a
, Σn−1

a
)

of time slices 1 to n−1 using μn
a � μn−1

a +μn
s andΣn

a � Σn−1
a +Σn

s for n = 1, . . . , N

where μ0
a
� 0 and Σ0

a
� ΣSS .

Remark 1. After constructing and assimilating (μn
s
, Σn

s
) with (μn−1

a
, Σn−1

a
) to form

(μn
a , Σ

n
a ), Dn = x(n−1)τ+1:nτ , zDn = z(n−1)τ+1:nτ , and (μn

s , Σ
n
s ) (Definition 1) are

no longer needed and can be removed from memory. As a result, at time step t where
Nτ + 1 ≤ t ≤ (N + 1)τ , only (μN

a
, ΣN

a
), xNτ+1:t−1, and zNτ+1:t−1 have to be kept

in memory, thus requiring only constant memory (i.e., independent of t).
Remark 2. The slice summaries are constructed and assimilated at a regular time interval
of τ , specifically, at time steps Nτ + 1 for N ∈ Z

+.

Theorem 1. Given S ⊂ X and (μN
a
, ΣN

a
), our GOSGP approximation method com-

putes a Gaussian predictive distribution p(zt|xt, μ
N
a
, ΣN

a
) = N (μ̃xt , σ̃xtxt) of the

measurement for any xt ∈ X at time step t (i.e., Nτ + 1 ≤ t ≤ (N + 1)τ ) where

μ̃xt � μxt +ΣxtS
(
ΣN

a

)−1
μN

a
and σ̃xtxt � σxtxt −ΣxtS

(
Σ−1SS −

(
ΣN

a

)−1)
ΣSxt .

(3)
If t = Nτ + 1, μ̃xt = μPITC

xt|x1:t−1
and σ̃xtxt = σPITC

xtxt|x1:t−1
.

Remark 1. Theorem 1 implies that our GOSGP approximation method [3] is in fact
equivalent to an online learning formulation/variant of the offline PITC (Section 2).
Supposing τ < |S|, the O(t|S|2) time incurred by offline PITC can then be reduced
to O(τ |S|2) time (i.e., time independent of t) incurred by GOSGP [3] at time steps
t = Nτ + 1 for N ∈ Z

+ when slice summaries are constructed and assimilated.
Otherwise, GOSGP [3] only incurs O(|S|2) time per time step.

Remark 2. The above equivalence result allows the structural property of GOSGP [3]
to be elucidated using that of offline PITC: The measurements ZD1 , . . . , ZDN , Zxt be-
tween different time slices are assumed to be conditionally independent given ZS . Such
an assumption enables the data gathered during each time slice to be summarized in-
dependently of that in other time slices. Increasing slice size τ (i.e., less frequent as-
similations of larger slice summaries) relaxes this conditional independence assumption
(hence, potentially improving the predictive performance), but incurs more time at time
steps when slice summaries are constructed and assimilated (see Remark 1).
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Fig. 1. (a) Pioneer 3-DX mobile robot trajectory of about 280 m in SMART FM IRG office/lab
generated by AMCL package in ROS, along which (b) 561 relative light (%) observations/data
are gathered at locations denoted by small colored circles. (c) Graphs of incurred time (s) per
time step vs. number of time steps comparing different GP localization algorithms.

Remark 3. Since offline PITC generalizes offline FITC, our GOSGP approximation
method [3] generalizes the online learning variant of FITC (i.e., τ = 1) [1].

When Nτ+1 < t ≤ (N+1)τ (i.e., before the next slice summary of time slice N+1
is constructed and assimilated), the most recent observations (i.e.,D′ � xNτ+1:t−1 and
zD′ = zNτ+1:t−1), which are often highly informative, are not used to update μ̃xt and
σ̃xtxt (3). This may hurt the predictive performance when τ is large. To resolve this,
we exploit incremental update formulas of Gaussian posterior mean and variance [3] to
update μ̃xt and σ̃xtxt with the most recent observations, thereby yielding a Gaussian
predictive distribution p(zt|xt, μ

N
a
, ΣN

a
,D′, zD′) = N (μ̃xt|D′ , σ̃xtxt|D′) where

μ̃xt|D′ � μ̃xt + Σ̃xtD′Σ̃−1D′D′ (zD′ − μ̃D′) and σ̃xtxt|D′ � σ̃xtxt − Σ̃xtD′Σ̃−1D′D′Σ̃D′xt

(4)
such that μ̃D′ is a column vector with mean components μ̃x (i.e., defined similarly to
(3)) for all x ∈ D′, Σ̃xtD′ is a row vector with covariance components σ̃xtx (i.e., defined
similarly to (3)) for all x ∈ D′, Σ̃D′xt is the transpose of Σ̃xtD′ , and Σ̃D′D′ is a matrix
with covariance components σ̃xx′ (i.e., defined similarly to (3)) for all x, x′ ∈ D′.
Theorem 2. Computing (4) incursO(τ |S|2) time at time steps t = Nτ+1 for N ∈ Z

+

andO(|S|2) time otherwise. It requires O(|S|2) memory at each time step.
So, GOSGP [3] incurs constant time and memory (i.e., independent of t) per time step.

4 Experiments and Discussion

In contrast to existing localization algorithms that train the GP observation model of a
Bayes filter offline, GOSGP [3] is used to learn it online for persistent robot localiza-
tion and the resulting algorithm is called GP-Localize [3]. The adaptive Monte Carlo
localization (AMCL) package in the Robot Operating System (ROS) is run on a Pioneer
3-DX mobile robot mounted with a SICK LMS200 laser rangefinder to determine its
trajectory (Fig. 1a) and the 561 locations at which the relative light measurements are
taken using a weather board (Fig. 1b); these locations are assumed to be ground truth.
For empirical evaluation of GP-Localize with other real-world datasets, refer to [3].

The localization performance/error (i.e., distance between the robot’s estimated and
true locations) and scalability of GP-Localize are compared to that of two sparse GP lo-
calization algorithms [3]: (a) The Subset of Data (SoD)-Truncate method uses |S| = 10
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most recent observations (i.e., compared to |D′| < τ = 10 most recent observations
considered by GOSGP [3] besides the assimilated summary) as training data at each
time step while (b) the SoD-Even method uses |S| = 40 observations (i.e., compared
to the support set of |S| = 40 possibly unobserved locations selected prior to localiza-
tion and exploited by GOSGP [3]) evenly distributed over the time of localization. The
scalability of GP-Localize is further compared to that of GP localization algorithms em-
ploying full GP and offline PITC. GP-Localize, SoD-Truncate, and SoD-Even achieve,
respectively, localization errors of 2.1 m, 5.4 m, and 4.6 m averaged over all 561 time
steps and 3 runs. Fig. 1c shows the time incurred by GP-Localize, SoD-Truncate, SoD-
Even, full GP, and offline PITC at each time step. GP-Localize is clearly much more
scalable (i.e., constant time) than full GP and offline PITC. Though it incurs slightly
more time than SoD-Truncate and SoD-Even, it can localize significantly better.

Acknowledgments. This work was supported by Singapore-MIT Alliance for Re-
search and Technology Subaward Agreement No. 41 R-252-000-527-592.
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3. Xu, N., Low, K.H., Chen, J., Lim, K.K., Özgül, E.B.: GP-Localize: Persistent mobile robot

localization using online sparse Gaussian process observation model. In: Proc. AAAI (2014)



Distributional Clauses Particle Filter

Davide Nitti1, Tinne De Laet2, and Luc De Raedt1

1 Department of Computer Science, KU Leuven, Belgium
2 Tutorial services, Faculty of Engineering Science, KU Leuven, Belgium

{davide.nitti,luc.deraedt}@cs.kuleuven.be, {tinne.delaet}@kuleuven.be

Abstract. We review the Distributional Clauses Particle Filter (DCPF),
a statistical relational framework for inference in hybrid domains over
time such as vision and robotics. Applications in these domains are chal-
lenging for statistical relational learning as they require dealing with
continuous distributions and dynamics in real-time. The framework ad-
dresses these issues, it supports the online learning of parameters and it
was tested in several tracking scenarios with good results.

Keywords: statistical relational learning, probabilistic programming,
particle filters, sequential monte carlo, tracking.

1 Introduction

Robotics and vision have made a lot of progress in state estimation, planning
and learning, often employing probabilistic techniques [7]. However, the majority
of the techniques used in these domains cannot easily represent relational infor-
mation, i.e., objects, properties and the relations that hold between them. This
calls for the use of probabilistic programming and statistical relational learning
techniques (SRL) [1], which have integrated rich relational representations with
uncertainty reasoning. Even though many such formalisms are described in the
literature, only few of them have been applied to robotics or vision, especially
in an online setting. The main challenges are dealing with the dynamics of the
environment, continuous distributions and the real-time aspect. This paper re-
views the Distributional Clauses Particle Filter (DCPF) framework [5,6] that
addresses these issues and that has been applied in [6,3,4].

2 The Probabilistic Language: Distributional Clauses

The DCPF is based on a dynamic variation of Distributional Clauses [2], a
language that extends logic programming formalism to define random variables.
A distributional clause is of the form h ∼ D ← b1, . . . , bn. Informally speaking,
whenever the conditions in the body b1, . . . , bn hold, a random variable h is
defined with distribution D. A distributional clause is a powerful template to
define conditional probabilities; indeed bi, h, and D can contain logical variables
that parametrize the clause. Consider the following examples:

T. Calders et al. (Eds.): ECML PKDD 2014, Part III, LNCS 8726, pp. 504–507, 2014.
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n ∼ poisson(6). (1)

pos(P) ∼ uniform(1, 10)← between(1,�(n), P). (2)

type(A) ∼ uniform([magnet, ferromagnetic, nonmagnetic])← object(A). (3)

Clause (1) states that the number of people n is governed by a Poisson dis-
tribution with mean 6; clause (2) models the position pos(P) as a continuous
random variable uniformly distributed from 1 to 10, for each person P such that
between(1,�(n), P) succeeds (i.e., 1 ≤ P ≤ n with P integer). Thus, if the out-
come of n is 2, there will be 2 independent random variables pos(1) and pos(2).
The term �(d) represents the value of the random variable d. Finally clause (3)
describe a uniform distribution over 3 possible types for each object A.

Dynamic Distributional Clauses (DDC) extend Distributional Clauses to-
wards temporal domains. They define a discrete-time stochastic process fol-
lowing the same idea of a Dynamic Bayesian Network. We need clauses that
define: 1) the prior distribution: h0 ∼ D ← body0, 2) the state transition model:
ht+1 ∼ D ← bodyt, 3) the measurement probability: ht+1 ∼ D ← bodyt+1, and
finally, 4) clauses that define a random variable at time t from other variables at
the same time: ht ∼ D ← bodyt. For example, to describe that the next position
of every ball is equal to the current position plus gaussian noise we write:

pos(A)t+1 ∼ gaussian(�(pos(A)t), cov)← ball(A). (4)

3 Inference and Parameter Learning in DCPF

Given a set of DDC clauses, the DCPF performs filtering, that is, it estimates the
current (non-directly observable) world state through the observations obtained
from sensors. Formally, filtering or state estimation computes the probability
density function p(xt|z1:t, u1:t), where xt is the current state, z1:t is the set of
observations, and u1:t the actions (inputs) performed from time step 1 to t.

Given a model defined as a set of DDC clauses, DCPF performs inference
based on particle filtering [7], a Monte-Carlo technique to perform filtering in
temporal models. Thus, DCPF is a relational particle filter where each particle

x
(i)
t is an interpretation, i.e., a set of ground facts for the predicates and values of

random variables at time t. A key advantage of the DCPF is that it exploits the
relational representation to optimize inference. Rather than working with full
interpretations (that list the values for all state variables), DCPF propagates
partial interpretations (Fig. 1), these are partial world descriptions in which the
many state variables have been marginalized. This significantly improves the
performance with respect to classical particle filters that keep the full state [5].

DCPF supports online parameter learning, that is, state estimation of static
variables. Learning can be considered as a state estimation problem, adding the
parameters to learn in the state. However, this solution produces poor results due
to the degeneracy problem in particle filters. To solve the problem we focused on
two simple techniques that have a limited computational cost: artificial dynamics
and a variation of resample-move. Details can be found in [6].
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pos(1)t = (1, 0)
pos(2)t = (2, 0)

type(X) ∼ uniform(...)
near(X, Y)t

pos(1)t = (1, 0)
pos(2)t = (2, 0)

near(1, 2)t
type(1) = nonmagnetic
pos(1)t+1 = (0.9, 0)
pos(2)t+1 = (2.1, 0)

type(X) ∼ uniform(...) for X �= 1
near(X, Y)t for (X, Y) �= (1, 2)

Sampled

{

Marginalized

{

Before

After

Fig. 1. Partial particle example in the magnetic scenario, before (left) and after (right)
the propagation step. Initially the particle contains only the position of the two objects
of interest, marginalizing over all other variables. The model states that distant objects
do not interact, while close objects interact according to their types. Thus, to sample
the next position, DCPF needs to check whether the objects are close. This is the case,
so DCPF needs to sample the type of the objects to determine the possible interaction.
Object 1 is nonmagnetic in this example, therefore there is no interaction and we can
sample the next positions without sampling the type of the second object.

4 Applications

The DCPF framework has been applied to several tracking scenarios 1. In all
scenarios the objects are marked so that their position and orientation can be
easily recognized.

Magnetism Scenario [5]: there is a table with objects that can be either per-
manent magnets, ferromagnetic, or non-magnetic objects. The goal is to track
the objects and estimate their type from interactions of pair of objects. To rea-
son about the types of the objects, a theory of magnetism is provided. At the
high level it describes interactions, e.g., that two magnets attract or repulse each
other. At the lower level, it describes how the positions of the objects evolve over
time given the interactions between them.

Box Scenario [6]: the goal of this scenario is to track objects moved by a
human during a packaging activity with boxes (Fig. 2a-d). The model provided
implements principles such as: an object may fall inside the box if it is on the
box in the previous step; if the box is rotated upside down the objects inside will
fall down with a certain probability and so on. The framework is able to keep
track of objects inside boxes, even objects inside a box inside another box.

String Scenario [6]: we have a table with several objects possibly connected
by strings (Fig. 2e). The goal is to track the objects, estimate the current object
directly moved by human and learn online the length of the strings between
objects. To perform inference and learning we provide a model in DDC that
describe the behavior of objects connected by a string.

Distributional Clauses (the static version) have also been used for modeling
affordances in manipulation tasks [3] and occluded object search [4].

1 Videos available at https://dtai.cs.kuleuven.be/ml/systems/dc/

https://dtai.cs.kuleuven.be/ml/systems/dc/
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(a) cube on the box(b) cube inside the
box

(c) rotated box on a
beige box

(d) cube and box
inside the beige box

(e) String scenario

Fig. 2. (a-d) packaging scenario. The bottom images represent moments of the experi-
ment, while the top images show the corresponding estimated objects’ positions, where
each colored point represents an object in a particle. The cube is in blue, the small box
in fuchsia and the big box in beige (e) string scenario. The top figure represents the
estimated objects’ positions (yellow and grey), and the estimated string length in red.

5 Experiments and Conclusions

We proposed a flexible representation for hybrid relational domains in tempo-
ral models and provided an efficient inference algorithm for filtering and on-
line learning. This framework exploits the relational representation and the
(in)dependence assumptions to reduce the particle size (through partial interpre-
tations) and the inference cost. DCPF is particularly suited for (probabilistic)
relational models that involve objects and relations between them. It was empir-
ically evaluated and applied in several tracking scenarios with good results. The
results show that DCPF outperforms the classical particle filter, and is promising
for more complex robotics applications. The code, papers and videos (of all these
scenario’s) are available at https://dtai.cs.kuleuven.be/ml/systems/dc/.
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1 Introduction

Network reconstruction from data is a data mining task which is receiving a
significant attention due to its applicability in several domains. For example, it
can be applied in social network analysis, where the goal is to identify connec-
tions among users and, thus, sub-communities. Another example can be found
in computational biology, where the goal is to identify previously unknown rela-
tionships among biological entities and, thus, relevant interaction networks. Such
task is usually solved by adopting methods for link prediction and for the iden-
tification of relevant sub-networks. Focusing on the biological domain, in [4] and
[3] we proposed two methods for learning to combine the output of several link
prediction algorithms and for the identification of biological significant interac-
tion networks involving two important types of RNA molecules, i.e. microRNAs
(miRNAs) and messenger RNAs (mRNAs). The relevance of this application
comes from the importance of identifying (previously unknown) regulatory and
cooperation activities for the understanding of the biological roles of miRNAs
and mRNAs. In this paper, we review the contribution given by the combination
of the proposed methods for network reconstruction and the solutions we adopt
in order to meet specific challenges coming from the specific domain we consider.

2 Learning to Combine Link Predictions

In the literature, several approaches for link prediction can be found, but they
often fail in simultaneously considering all the possible criteria (e.g. network
topology, nodes properties, autocorrelation among nodes). In [4] we presented
a method for learning to combine the scores returned by several link predic-
tion algorithms (which are based on one or few of the possible criteria) for the
identification of interactions between miRNAs and mRNAs. In such case, some
issues have to be taken into account: i) very few interactions are experimentally
validated and can be considered as “stable” examples; ii) only positive examples
are generally available; iii) prediction algorithms consider similar features and
their combination can lead to collinearity problems.

In order to face i) and ii), we propose a semi-supervised learning algorithm,
which considers both positively labeled examples of interactions and the huge
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set of unlabeled (unknown) instances. As for iii), the collinearity problem is alle-
viated by considering as features the scores (outputs) obtained by the prediction
algorithms (instead of original features), resorting to a solution which is simi-
lar to meta-learning algorithms. The advantage of applying a machine learning
method to the outputs of prediction algorithms consists in automatically adapt-
ing to unknown patterns of the outputs and performing more reliable predictions
when these patterns occur. The proposed method consists in three main steps:

1. Each example of interaction is represented by a vector of scores, obtained
by prediction algorithms, and is associated with a label representing the fact
that it is labeled as positive (i.e. experimentally validated) or unlabeled.

2. A probabilistic classifier is learned to compute the likelihood that an example
of interaction is labeled (known) / unlabeled.

3. A new probabilistic classifier which also exploits (à la Bayes) the likelihood
computed in the step 2) is learned. Such classifier associates a score to each
interaction to decide whether this interaction is true.

In step 3), scores are computed by exploiting the assumption that all the labeled
examples are taken randomly from all the positive examples. In other words, the
probability of an existing interaction to belong to the set of labeled examples is
independent of the specific interaction. Formal definitions can be found in [4].

It is noteworthy that steps 2) and 3) require to learn a classifier from a highly
unbalanced dataset. Indeed, the set of labeled (in the first case) and positive
(in the second case) examples is significantly smaller than the set of unknown
examples and negative examples, respectively. Thus, we adopt an ensemble-based
approach. In particular, K classifiers are learned by considering as training set
the whole set of positive examples and a subset of negative examples, built
through a random sampling with replacement. The score associated to each
example is computed by averaging the output of all the classifiers that considered
it during the learning phase. Further (formal) details can be found in [4].

3 Identification of Relevant Interaction Networks

In [3] we proposed the biclustering algorithm HOCCLUS2 for the identification
of miRNA:mRNA interaction networks from the identified interaction scores. Al-
though, in the literature, the application of biclustering techniques to biological
data has already been proposed [1,2], some specific aspects are not considered. In
particular, identified networks should be: a) possibly overlapping, since mRNAs
and miRNAs can be involved in multiple interaction networks; b) hierarchi-
cally organized, allowing biologists to better interpret results and to distinguish
between miRNAs involved only in specific pathways or in many biological pro-
cesses; c) highly cohesive, i.e. miRNAs and mRNAs in the same network should
be highly related and show only reliable interactions. HOCCLUS2 takes into
account these aspects and allows the user to identify the most promising biclus-
ters through a ranking based on a statistical test comparing intra- and inter-
bicluster similarity in the Gene Ontology. In the following we describe the first
two steps, whereas details about the ranking step can be found in [3].
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The first step requires a threshold value β, i.e. the minimum score for a
miRNA:mRNA interaction to be considered as reliable. The algorithm builds bi-
clusters in the form of bicliques, by considering: avg mirna - the average number
of miRNAs which target each mRNA, with a score greater than β; abs min mrna
and min mrna - the absolute and the outlier-proof (respectively) minimum num-
ber of mRNAs which are targeted by each miRNA, with a score greater than
β. min mrna (outlier-proof ) is computed by discarding the lowest 0.15% values
(possibly outliers, according to the 3σ rule), by assuming a Normal distribu-
tion. The algorithm builds an initial set of bicliques, each consisting of a single
miRNA and of the set of mRNAs associated with a score greater than β. The
algorithm, then, iteratively aggregates two biclusters C′ and C′′ into a new bi-
cluster C′′′ as follows: C′′′r = C′r ∩ C′′r ; C′′′c = C′c ∪ C′′c , where Cr and Cc are
mRNAs and miRNAs in C, respectively. Necessary conditions for aggregating
are: C′r ∪ C′′r ≥ min mrna; C′c ∩ C′′c ≤ avg mirna. The basic idea is that a
good biclique should contain approximately avg mirna miRNAs, while keeping
the highest possible number of mRNAs (at least min mrna). Moreover, since
we want to obtain a set of highly cohesive bicliques, among the possible ag-
gregations of pairs of bicliques 〈C′, C′′〉, we select the pair which maximizes

jaccard(C′r , C′′r ) ∗ q(C′′′, A), where jaccard(C′r , C′′r ) =
|C′

r∩C′′
r |

|C′
r∪C′′

r | , q(C,A) is a co-

hesiveness measure defined as q(C,A) = (|Cr| ∗ |Cc|)−1 ∗
∑

x∈Cr

∑
y∈Cc

Ax,y and
A is the adjacency matrix containing the score associated to each interaction.
The same iterative process is repeated starting from bicliques containing a single
mRNA and the two sets of identified bicliques are merged into a single set.

The second step consists of an iterative process in which overlap identifi-
cation and merging are performed. The assumption behind the overlap identifi-
cation is that two non-overlapping biclusters should be separable in the space.
Given two biclusters C′ and C′′ (belonging to the same hierarchical level), we
identify two optimal separating hyperplanes between C′ and C′′ by learning an
SVM model for each dimension (miRNAs and mRNAs). Objects in C′ and C′′

are used as both training and testing set. Misclassified objects are those which
possibly belong to both the biclusters and are added to the bicluster which pre-
viously did not contain them. As regards the merging, we assume that miRNAs
and mRNAs are normally distributed and consider the distance between pairs
of biclusters. In particular, two biclusters C′, C′′ are candidates for merging if:
dist(C′r, C′′r ) − 2σ(C′r) − 2σ(C′′r ) ≤ 0 or dist(C′c, C′′c ) − 2σ(C′c) − 2σ(C′′c ) ≤ 0,
where dist(w, z) is the Euclidean distance between the centroids of the clusters
w and z, and σ(w) is the standard deviation of the cluster w. Intuitively, two
biclusters are candidates for merging if they are close according to at least one
dimension. A pair of biclusters C′, C′′, candidate for merging, is merged if the
quality constraint q(C′′′, A) > α is satisfied, where C′′′r ← C′r∪C′′r , C′′′c ← C′c∪C′′c
and α is a user-defined threshold. Low values of α facilitate merging, decreas-
ing cohesiveness. Since a bicluster can be a candidate for multiple merging, we
perform that resulting in the bicluster with maximum cohesiveness.
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4 Discussion and Conclusions

The proposed methods have been applied for the identification of miRNA:mRNA
interaction networks. In particular, our combination approach has been applied to
validated data in miRTarBase 2.5 (4,270 interactions, available at:
mirtarbase.mbc.nctu.edu.tw), and on the scores returned by 10 prediction al-
gorithms in mirDIP (> 5,000,000 interactions, available at:ophid.utoronto.ca/
mirDIP). We evaluated the accuracy in terms of the AUCmeasure on an indepen-
dent testing set, i.e. TarBase (> 65, 000 examples, available at
www.microrna.gr/tarbase), comparing the results with those obtained by sin-
gle prediction algorithms and by baseline combination approaches based on score
averaging. Moreover, we applied HOCCLUS2 with different values of its parame-
ters to the set of predictions obtained by our combination approach and by base-
line combination strategies to evaluate the significance of the extracted networks.
In this case, the evaluation was performed in terms of cohesiveness and of a sta-
tistical test that takes into account the intra- and inter- bicluster similarity with
respect to the classification in Gene Ontology. The evaluation in terms of AUC
showed that the proposed approach is able to identify a set of more reliable pre-
dictions with respect to the considered competitive approaches. This is also con-
firmed by the higher significance of the interaction networks extracted by HOC-
CLUS2, both in terms of the considered evaluation measures and in terms of a
biological evaluation performed by a domain expert. These results prove that the
proposed approach is able to better filter out false positives and let HOCCLUS2 fo-
cus onmore reliable predictions so to obtainmore significant interaction networks.
Details about quantitative and biological analysis can be found in [3,4]. Download
links: semi-supervised system: www.di.uniba.it/~ceci/micFiles/systems/

semisupervised HOCCLUS2/; HOCCLUS2: www.di.uniba.it/~ceci/

micFiles/systems/HOCCLUS/;biological query system: comirnet.di.uniba.it.
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Abstract. Microbes exists everywhere. Current generation of genomic
technologies have allowed researchers to determine the collective DNA
sequence of all microorganisms co-existing together. In this paper, we
present some of the challenges related to the analysis of data ob-
tained from the community genomics experiment (commonly referred by
metagenomics), advocate the need of machine learning techniques and
highlight our contributions related to development of supervised and un-
supervised techniques for solving this complex, real world problem.

1 Background

Advances in genome-sequencing have transformed the manner of characterizing
large populations of microbial communities, that are ubiquitous across several
environments. The process of “metagenomics” involves sequencing of the genetic
material of all organisms co-existing within ecosystems ranging from ocean, soil
and the human body. (can be referred to as community genomics). Orthogonally,
proteomics and mass spectrometry allow the study of bio-transformations due
to these microbial communities in the form of metaproteomes and metabolomes,
respectively. Several researchers and clinicians have embarked on studying the
pathogenic role played by the microbiome (i.e., the collection of microbial or-
ganisms within the human body) with respect to human health and disease
conditions. In a similar effort, other groups of researchers are using the metage-
nomics technology to characterize different ecological environments across the
planet (also referred by “Earth Microbiome”).

Annotating microbial sequences (reads or quasi-assembled contigs) within a
sample is a challenging task due to the unknown, diverse and complex nature
of microbial communities within the different environments. There is a critical
need to develop mining methods that can characterize metagenome data in terms
of taxonomy, function and metabolic potential, and correlate the multi-modal,
microbial data to clinical or environmental metadata.

We present our ongoing efforts that have lead to the development of novel
supervised learning approaches and scalable clustering methods to solve these
real world challenges.
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2 Large Scale Metagenome Clustering

The sequencing technologies of today do not provide the complete genome for
the micro-organisms, but produce short, contiguous subsequences (referred to
as reads) that are fragmented from random positions of the entire genome. The
problem of metagenome sequence assembly involves stitching together different
reads (e.g., overlapping the prefixes and suffixes of smaller subsequences) to pro-
duce organism-specific contiguous genomes. Other challenges are introduced due
to the varying abundance, diversity, complexity, genome lengths of previously
uncultured (or never sequenced before) microbes within different communities.
Genomic technologies also produce large number of sequence reads, and reads
that may have varying error idiosyncrasies [5]. As such, the metagenome as-
sembly and analysis problem is complex and challenging [2]. Targeted metage-
nomics or 16S rRNA gene sequencing provides a first step for the quick and
accurate characterization of microbial communities. 16S sequences are marker
genes, which exists in most microbial genomes and have a conserved portion for
detection (primer development) and a variable portion that allows for catego-
rization within different taxonomic groups [7]. Targeted metagenomics are also
effective in detecting species with low abundances. However, they may not be
good in discovering unique species (orphans) that have never been sequenced
before.

Several algorithms have been developed to analyze targeted metagenomes
(16S rRNA marker gene) and whole metagenome samples [5]. Clustering/binning
approaches involve the unsupervised grouping of sequences that belong to the
same species. Successful grouping of sequence reads has several advantages: (i) it
improves the metagenome assembly, (ii) it allows computation of species diversity
metrics and (iii) it serves as a pre-processing step by reducing computational
complexity within several work-flows that analyze only cluster representatives,
instead of individual sequences within a sample.

Contributions: We have developed a locality sensitive hashing (LSH) for bin-
ning 16S sequences [11,10] called MC-LSH. We further extended the approach
using minwise hashing [1] (called MC-MinH[9]) to operate on unequal length
sequences and evaluate the approach for both, 16S and whole metagenome se-
quences. We also extended the minwise hashing algorithm to develop a scalable
Map-Reduce based algorithm for metagenome clustering. We refer to this ap-
proach as MrMC-MinH [8]. The key contributions of this work included the
development of a distributed map-reduce based implementation of clustering al-
gorithm and the ability to perform hierarchical agglomerative clustering instead
of greedy clustering as in MC-LSH and MC-MinH.These developed methods
provide key biodiversity estimation metrics that are used by biologists.

3 Multiple Hierarchical Classification

The relationship between the microbial communities and human health (or
environment) is characterized by first identifying the content, abundance and
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variance of the microbes across different samples. For an understanding of the
microbial-host interaction, it is also crucial to determine the “functionality” and
“metabolic potential” induced by these microbes. As such, there is a need to
develop methods that annotate the metagenome in terms of “taxa” content and
further characterize the ORFs (predicted from metagenomes [12,4]) and tran-
script sequences in terms of functional and metabolic activity.

The past decade has also seen an explosion in the number of diverse databases
that are curated and maintained by different researchers with varying expertise
and interests. These databases have a unique characteristic i.e., the data is struc-
tured as a hierarchy. We seek to develop approaches that can benefit from jointly
learning the prediction models for taxonomy, function and metabolic potential.
Different hierarchical databases have implicit similarities between them. For ex-
ample, the Gene Ontology database has 27 different mappings from other an-
notation databases, defined using manual and semi-automated procedures. The
basis for these mapping include use of sequence, literature search, evolutionary
information and structure information.

Contributions: Towards this end, we have developed regularized multi-task learn-
ing models [3] that leverage the existing hierarchical structure present in the an-
notation databases. The models also leverage the implicit relationships between
the different databases available for the same annotation problem (e.g., KEGG
and MetaCyc for metabolic potential).

Given, multiple hierarchical source databases; within our formulation the ob-
jective is to classify an instance accurately across all the multiple hierarchies.

For each of the different classes across multiple hierarchies, we define a bi-
nary classification task. These classification tasks predict whether an example
belongs to the particular class or not. However, instead of training each of these
tasks independently (single task learning), the training for all these tasks are
combined using the MTL approach [3] The rationale for the proposed approach
is that each of the binary tasks are related “within” the hierarchy due to the ex-
plicit structure in the databases. Across the hierarchical sources, it is expected
that if the underlying relationships are modeled well, it will benefit the gen-
eralization performance for individual annotation problems. Further, the MTL
approach is also suited for tasks (classes) that have scarce training examples.
This MTL approach leveraged the underlying relationships between the multi-
ple hierarchies and significantly outperformed traditional prediction models for
classifying sequence data within multiple hierarchical annotation databases. We
also extended this approach to classify text documents across large archives like
WikiPedia and DMOZ Web directory [6].

4 Conclusion and Future Work

In summary, we presented a set of clustering and classification approaches to
analyze metagenome associated data. Using the annotated sequences, we plan
to extract an aggregated taxonomic, functional and metabolic activity profile
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for the microbial samples. These profiles will allow us to compare metagenome
samples and correlate the information to clinical or environmental metadata;
and train supervised phenotypic classifiers. All the developed tools are freely
available and integrated within bioinformatics work-flows that are easy to use
for the biology community.
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Abstract. Sampling a dataset for faster analysis and looking at it as a
sample from an unknown distribution are two faces of the same coin. We
discuss the use of modern techniques involving the Vapnik-Chervonenkis
(VC) dimension to study the trade-off between sample size and accuracy
of data mining results that can be obtained from a sample. We report
two case studies where we and collaborators employed these techniques to
develop efficient sampling-based algorithms for the problems of between-
ness centrality computation in large graphs and extracting statistically
significant Frequent Itemsets from transactional datasets.

1 Sampling the Data and Data as Samples

There exist two possible uses of sampling in data mining. On the one hand,
sampling means selecting a small random portion of the data, which will then
be given as input to an algorithm. The output will be an approximation of the
results that would have been obtained if all available data was analyzed but,
thanks the the small size of the selected portion, the approximation could be ob-
tained much more quickly. On the other hand, from a more statistically-inclined
point of view, the entire dataset can be seen as a collection of samples from
an unknown distribution. In this case the goal of analyzing the data is to gain
a better understanding of the unknown distribution. Both scenarios share the
same underlying question: how well does the sample resemble the entire dataset
or the unknown distribution? There is a trade-off between the size of the sample
and the quality of the approximation that can be obtained from it. Given the
randomness involved in the sampling process, this trade-off must be studied in
a probabilistic setting. In this nectar paper we discuss the use of techniques re-
lated to the Vapnik-Chervonenkis (VC) dimension of the problem at hand to an-
alyze the trade-off between sample size and approximation quality and we report
two case studies where we and collaborators successfully employed these tech-
niques to develop efficient algorithms for the problems of betweenness centrality
computation in large graphs [8] (“sampling the data” scenario) and extracting
statistically significant frequent itemsets [10] (“data as samples” scenario).

2 The Sample-Size/Accuracy Trade-Off: Modern
Techniques

There exist many probabilistic techniques to study the trade-off between accu-
racy and sample size: large deviation Chernoff/Hoeffding bounds, martingales,
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tail bounds on polynomials of random variables, and many others [3, 5]. These
classical results bound the probability that the measure of interest (e.g., the
frequency) for a single object (e.g., an itemset) in the sample deviates from its
expectation (its true value in the dataset or according to the unknown prob-
ability distribution) by more than some amount. An application of the union
bound is then needed to get simultaneous guarantees on the deviations for all
the objects. The so-obtained sample size or quality guarantee then depends on
the logarithm of the number of objects. Due to the number of objects involved in
many data mining problems (e.g., all possible itemsets or all nodes in a graph),
the sample size may be excessively loose and the benefit of sampling could be lost
or not enough information about the unknown distribution may be extracted.
In a sequence of works [6–10] we investigated the use of techniques based on
the Vapnik-Chervonenkis (VC) Dimension [11] to study the trade-off between
accuracy and sample size. The VC-dimension of a data mining task is a measure
of the complexity of that problem in terms of the richness of the set of measures
that the task requires to compute. The advantage of techniques involving VC-
dimension is that they allow to compute sample sizes that only depend on this
combinatorial quantity (see below), which can be very small and independent
from the number of objects and from the size of the dataset. The techniques
related to VC-dimension are widely applicable as we show in our case studies.

Definitions and Sampling Theorem. A range space is a pair (D, R) where
D is a domain and R is a family of subsets of D. The members of D are called
points and those of R are called ranges. The VC-dimension of (D, R) is the size
of the largest A ⊆ D such that {R ∩ A : R ∈ R} = 2A. If ν is any (unknown)
probability distribution over D from which we can sample, then a finite upper
bound to the VC-dimension of (D, R) implies a bound to the number of random
samples from ν required to approximate the probability ν(R) =

∑
r∈R ν(r) of

each range R simultaneously using the empirical average of ν(R) as estimator.

Theorem 1 ([4, 12]). Let d be an upper bound to the VC-dimension of (D, R).
Given ε, δ ∈ (0, 1), let S be a collection of independent samples from ν of size

|S| ≥ 1
ε2

(

d + ln 1
δ

)

. (1)

Then, with probability at least 1 − δ, we have
∣
∣
∣
∣
∣
ν(R) − 1

|S|
∑

a∈S
1R(a)

∣
∣
∣
∣
∣

≤ ε, for all R ∈ R .

The bound on the deviations of the estimation holds simultaneously over all
ranges. The sample size in (1) depends on the user-specified accuracy and confi-
dence parameters ε and δ and on the bound to the VC-dimension of the range
space. If the latter does not depend on the size of the D, then neither will the
sample size. This is a crucial and very intriguing property that allows for the



518 M. Riondato

development of sampling-based data mining algorithms that use small samples
and are therefore very efficient. The main obstacles in developing such algorithms
are: 1. formulate the data mining task in terms of range spaces and unknown
distributions; 2. compute (efficiently) an upper bound to the VC-dimension of
the task at hand; 3. have an efficient procedure to sample from the unknown
distribution. It is possible but not immediate to overcome these obstacles as we
did for different important data mining problems.

3 Case Studies
In line with the nature of this Nectar paper, we present two case studies where we
and collaborators successfully used VC-dimension to develop efficient sampling-
based algorithms for important data and graph mining problems.
Betweenness Centrality In [8] we developed a sampling-based algorithm to
compute guaranteed high-quality approximations of the betweenness centrality
indices of all vertices in a large graph. We defined a range space (D, R) where D
is the set of all shortest paths in the graph and R contains one range Rv for each
node v in the graph, where Rv is the set of shortest paths that pass through v.
A shortest path p between two nodes u and w is sampled with probability ν(p)
proportional to the number of nodes in the graph and the number of shortest
paths between u and w. With this definition of the sampling distribution, we have
that ν(Rv) is exactly the betweenness centrality of the node v. We showed that
the VC-dimension of this range space is at most the logarithm of the diameter of
the graph. Thus, through Thm. 1, the number of s−t-shortest path computations
to approximate all betweenness values depends on this quantity rather than on
the logarithm of the number of nodes in the graph as previously thought.

True Frequent Itemsets. In [10] we introduced the problem of finding the
True Frequent Itemsets from a transactional dataset. The dataset is seen as a
sample from an unknown distribution ν defined on all possible transactions and
the task is to identify the itemsets generated frequently by ν, without report-
ing false positives (i.e., non-frequently-generated itemsets). We formulated the
problem in terms of range spaces and computed its VC-dimension in order to
use (a variant of) Thm. 1. The domain D is the set of all possible transaction
built on the set of items. For each itemset A we define the range RA as the set
of transactions in D that contain A. The frequency of A in the dataset is now
the empirical average of the “true frequency of A”, i.e., the probability that ν
generates a transaction that contains A. We showed that the (empirical) VC-
dimension of (D, R) is tightly bounded from above by a characteristic quantity
of the dataset, namely the maximum integer d such that the dataset contains at
least d transactions of length at least d forming an antichain. A bound to this
quantity can be computed with a single linear scan of the dataset. A more refined
bound to the empirical VC-dimension can be computed by solving a variant of
a knapsack problem. These bounds allow us to compute a value ε such that the
itemsets with frequency in the dataset greater than θ + ε have, with high prob-
ability, true frequency at least θ. The use of VC-dimension allows us to achieve
much higher statistical power (i.e., to identify more true frequent itemsets) than
methods based on the classical bounds and the Bonferroni correction.
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4 Future Directions and Challenges

Sampling will always be a viable option to speed up the analysis of very large
datasets. The database research community, often an early adopter of modern
storage technologies, is showing a renovated interest in sampling [1, 13]. There
is thriving research to develop stronger simultaneous/uniform bounds to the
deviations of sets of functions by leveraging modern probability results involving
the Rademacher averages, the shatter coefficients, the covering numbers, and the
many extensions of VC-dimension to real functions [2]. The major challenges
in using these techniques for more and more complex data mining problems
are 1. understanding the best formulation of the problem in order to leverage
the best available bounds to the sample size, and 2. developing bounds to the
VC-dimension (or other combinatorial quantities) to be able to use sampling
theorems similar to Thm. 1. There is huge room for additional contributions from
the data mining community, to show how powerful theoretical results can be used
to develop efficient practical algorithms for important data mining problems.
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Abstract. We give an overview of an intelligent urban traffic manage-
ment system. Complex events related to congestions are detected from
heterogeneous sources involving fixed sensors mounted on intersections
and mobile sensors mounted on public transport vehicles. To deal with
data veracity, sensor disagreements are resolved by crowdsourcing. To
deal with data sparsity, a traffic model offers information in areas with
low sensor coverage. We apply the system to a real-world use-case.

Keywords: smart cities, crowdsourcing, event pattern matching, traffic,
stream processing, big data.

1 Introduction

New technologies related to mobile computing combined with sensing infrastruc-
tures distributed in a city or country are generating massive, heterogeneous data
and creating opportunities for innovative applications. Levering such data to ob-
tain a detailed and real-time picture of traffic, water or power networks, to name
a few, is a key challenge to achieve better management and planning.

In this context, the goal of the INSIGHT project1 is to support city or country
managers in the detection of interesting events. The present work, originally
presented in [3], gives a high-level overview of a traffic monitoring application in
Dublin City, Ireland. Two particularly interesting features of this work for the
machine learning and data mining communities are as follows.

– We present the general framework of an advanced smart city monitoring sys-
tem leveraging large scale and heterogenous streams of sensor measurements,
and the challenges that come up from a real application.

1 www.insight-ict.eu/
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Fig. 1. Architecture overview
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Fig. 2. RTEC event recognition

– We used real data streams coming from the buses and vehicle count SCATS
sensors of Dublin city that we made publicly available2. The bus dataset
includes 942 buses. Operating buses emit every 20-30 seconds. The SCATS
dataset includes 966 sensors transmitting information every few minutes.
They were collected during January 2013 and totalize 13GB of data.

The system architecture is schematized in Fig. 1. Inputs consist in the afore-
mentioned sensors. Additional inputs can be requested from volunteering citi-
zens through a crowdsourcing component (Sec. 4). The system outputs, in
real time, a set of complex events (CEs) (Sec. 3), and congestion estimates
for every intersection (Sec. 5). The architecture is implemented as a streaming
system, using the Streams framework (Sec. 2).

2 Stream Processing

The Streams framework [4] is the backbone of our system. It provides a XML-
based language to describe data flow graphs that work on sequences of data items
(key-value pairs, i.e. attributes and their values). Nodes of the data flow graph
are processes that comprise a sequence of processors. Processes take a stream
or a queue as input and processors apply a function to the data items in a
stream. These concepts are implemented in Java. Adding customized processors
is realized by implementing the appropriate interfaces of the Streams API.

3 Complex Event Processing

For complex event processing, we use the Event Calculus for Run-Time reasoning
(RTEC) [1,2], a Prolog-based engine. Event Calculus is a logic programming
language to represent and reason about events and their effects.

In RTEC, event types are represented as n-ary predicates of the form
event(Attribute1,. . . ,AttributeN). The occurrence of an event E at time T is
modeled by the predicate happensAt(E, T ). The effects of events are expressed
by means of fluents, i.e. properties that may have different values at different
points in time, for example holdsAt(F =V, T ).

2 www.dublinked.ie

www.dublinked.ie
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In collaboration with domain experts, CEs have been defined over the input
streams. For example, an intersection is congested if at least n (n > 1) of its
SCATS sensors are congested, or if busses suffer a high delay. CEs are modeled
as logical rules defining event instances, for example,

happensAt(delayIncrease(Bus), T )← happensAt(move(Bus ,Delay ′), T ′),
happensAt(move(Bus ,Delay), T ),

Delay−Delay ′ > d , 0 < T−T ′ < t .

A delayIncrease(Bus) CE is recognized when the delay value of a Bus increases
by more than d seconds in less than t seconds.

At query times Qi, RTEC recognizes CEs within a specified ‘working memory’
(WM) interval, based on data items received during the WM. Overlapping WMs
allow to process, at Qi, data items generated in [Qi−WM, Qi−1] but arrived
after Qi−1. This is illustrated in Fig. 2. We performed both ‘static’ recognition,
taking into consideration all sources, and ‘self-adaptive recognition’, where noisy
sources are detected at run-time and temporarily discarded.

4 Crowdsourcing

We use crowdsourcing to ameliorate the veracity problem of the data. When
the bus and SCATS sensors disagree about a congestion, the CE processing
component requests additional inputs from the crowdsourcing component that
queries human volunteers, or ‘workers’, close to the location of the disagreement.

Workers are presented with a set of possible labels (such as ‘no congestion’
or ‘traffic jam’) and select one. A key problem is to estimate the reliability of
each worker, which we model by pi, the probability that worker i provides a
wrong label. Estimating Θ ≡ {pi}i is typically done in batch mode, for example
using the Expectation-Maximization (EM) algorithm. In order to estimate Θ on
streaming data, we use an online EM based on stochastic approximation.

We employ the MapReduce programming model to communicate queries to
the workers without effort from the user to reach him and to achieve real-
time and reliable communication [5]. MapReduce allows processing parallelizable
tasks across distributed nodes by decomposing the computational task into two
steps, namely map and reduce. In our system, the crowdsourcing query engine
communicates the queries to the workers (map task), and aggregates the results
(reduce task). The interface of the mobile application is illustrated in Fig. 3.

5 Traffic Modeling

Large parts of the city are not covered by the sensors available. A Gaussian
Process regression provides operators with a picture on the entire city [6,7] .

To each vertex vi in the traffic graph G corresponds a latent variable fi, the
true traffic flow at junction vi. We assume that any finite set f = fj has a

multivariate Gaussian distribution P (f) = N (0, K̂). K̂ =
[
β(L + I/α2)

]−1
is
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Fig. 3. Interface of the mobile crowd-
sourcing application

Fig. 4. Traffic Flow estimates. Green dots in-
dicate low traffic, red dots congestions

the regularized Laplacian kernel function, with hyperparameters α and β. Zero
mean is assumed without loss of generality. L = D − A is the Laplacian, A the
adjacency matrix of G, and D a diagonal matrix with entries di,i =

∑
j Ai,j .

We also assume observations are affected by Gaussian noise: yi = fi + εi,
εi ∼ N (0, σ2). A joint distribution over observed and unobserved traffic flows
can be defined, and the distribution of the unobserved flows conditionally on the
observed ones computed. Results visible to operators are illustrated in Fig. 4.

Acknowledgments. This work is funded by the following projects: EU FP7
INSIGHT (318225); ERC IDEAS NGHCS; the Deutsche Forschungsgemeinschaft
within the CRC SFB 876 “Providing Information by Resource-Constrained Data
Analysis”, A1 and C1.

References

1. Artikis, A., Sergot, M., Paliouras, G.: Run-time composite event recognition. In:
DEBS, pp. 69–80. ACM (2012)

2. Artikis, A., Weidlich, M., Gal, A., Kalogeraki, V., Gunopulos, D.: Self-adaptive
event recognition for intelligent transport management. In: Big Data, pp. 319–325.
IEEE (2013)

3. Artikis, A., Weidlich, M., Schnitzler, F., Boutsis, I., Liebig, T., Piatkowski, N., Bock-
ermann, C., Morik, K., Kalogeraki, V., Marecek, J., Gal, A., Mannor, S., Gunopulos,
D., Kinane, D.: Heterogeneous stream processing and crowdsourcing for urban traffic
management. In: EDBT, pp. 712–723 (2014)

4. Bockermann, C., Blom, H.: The streams framework. Tech. Rep. 5, TU Dortmund
University (December 2012)

5. Kakantousis, T., Boutsis, I., Kalogeraki, V., Gunopulos, D., Gasparis, G., Dou, A.:
Misco: A system for data analysis applications on networks of smartphones using
mapreduce. In: MDM 2012, pp. 356–359 (2012)

6. Liebig, T., Xu, Z., May, M., Wrobel, S.: Pedestrian quantity estimation with trajec-
tory patterns. In: Flach, P.A., De Bie, T., Cristianini, N. (eds.) ECML PKDD 2012,
Part II. LNCS, vol. 7524, pp. 629–643. Springer, Heidelberg (2012)

7. Schnitzler, F., Liebig, T., Mannor, S., Morik, K.: Combining a gauss-markov model
and gaussian process for traffic prediction in dublin city center. In: EDBT/ICDT
Workshops, pp. 373–374 (2014)



Agents Teaching Agents in Reinforcement Learning
(Nectar Abstract)

Matthew E. Taylor1 and Lisa Torrey2

1 Washington State University, School of EECS, Pullman, WA, USA
mtaylor@eecs.wsu.edu
eecs.wsu.edu/˜taylorm/

2 St. Lawrence University, Math and Computer Sciences, Canton, NY, USA
ltorrey@stlawu.edu

myslu.stlawu.edu/˜ltorrey/

1 Introduction

Using reinforcement learning [4] (RL), agents can autonomously learn a control policy
to master sequential-decision tasks. Rather than always learning tabula rasa, our recent
work [5,7,8] considers how an experienced RL agent, the teacher, can help another
RL agent, the student, to learn. As a motivating example, consider a household robot
that has learned to perform tasks in a household. When the consumer purchases a new
robot, she would like the student robot to quickly learn to perform the same tasks as the
teacher robot, even if the new robot has different state representation, learning method,
or manufacturer. Our goals are to: 1) Allow the student to learn faster with the teacher
than without it, 2) Allow the student and teacher to have different learning methods and
knowledge representations, 3) Not limit the student’s performance when the teacher is
sub-optimal, 4) Not require a complex, shared language, and 5) Limit the amount of
communication required between the agents.

Our approach was influenced by learning from demonstration [1] (LfD) and trans-
fer learning [6] (TL). LfD methods typically do not achieve goals 3 and 5, limiting an
agents’ performance to that of the demonstrator, and requiring many trajectory demon-
strations. The majority of TL methods assume that the trained agent knows the new
agent’s learning method or knowledge representation, failing to meet goal 2, and as-
sumes direct access to the the “brain” of the student agent, failing goals 4 or 5.

We investigate how an RL agent can best teach another RL agent using a limited
amount of advice, assuming that the teacher can observe the student’s state and that the
student can receive (and execute) action advice from the teacher. The teacher can give
advice a fixed number of times, but cannot observe or change anything internal to the
student. This paper presents three of our teaching algorithms and shows a selection of
results in the Ms. Pac-Man domain, although our work has also evaluated our methods
in the Mountain Car and StarCraft domains. A key insight is that the same amount
of advice, given at different moments, can have different effects on student learning.
Results show our teaching methods can achieve all five of the above goals.

2 Teaching on a Budget

In this setting, a teacher RL agent has learned a (potentially sub-optimal) policy πT for
a task. Using this fixed policy, it will assist a student agent. As the student learns using

T. Calders et al. (Eds.): ECML PKDD 2014, Part III, LNCS 8726, pp. 524–528, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

eecs.wsu.edu/~taylorm/
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RL, the teacher will observe each state s the student encounters and each action a the
student takes. The teacher has a fixed budget — it may suggest an action at most b times
for the student’s current state using the teacher’s policy: πt(s). Theoretically calculating
how the teacher should best spend its advice is difficult except in the simplest of RL
problems. We instead take an experimental approach to this question, proposing and
testing several algorithms for deciding when to give advice.

Early Advising. Students should benefit more from advice early on, when they know
very little. Early Advising serves as a baseline where the teacher always provides advice
for the first b states the student encounters.

Importance Advising. When all states in a task are equally important, Early Advising
should be an effective strategy. However, we hypothesized that some states are more
important for learning than others, and saving advice for more important states would be
a more effective strategy. In some situations, the wrong action could cause catastrophic
failure, while in other situations, any action may be acceptable and none are disastrous.
A teacher that is conscious of state importance could give advice only when it reaches
some threshold th. We call this approach Importance Advising (Fig. 1, left).

When th is 0, this becomes equivalent to Early Advising, assuming importance val-
ues are non-negative. In this work, we consider teachers that learn Q-functions. If the
teacher estimates the Q-values for all actions in s to be the same, it does not matter
which action is selected.1 However, if some actions have larger Q-values than others in
s, the action selected matters and the state has some importance. We therefore define
state importance as: I(s) = maxa Q(s, a)−mina Q(s, a).

Predictive Advising. The final algorithm builds upon Importance Advising by attempt-
ing to provide advice only when 1) the teacher evaluates the current state to be important
and 2) the teacher believes the student will execute a sub-optimal action. Although the
teacher cannot access the student’s policy, it may be able to infer the policy through
observation — by observing s, a pairs the student has executed, the teacher can train a
classifier to predict student actions, πs.

If a teacher’s action predictor performs perfectly, the teacher will never “waste” ad-
vice on a state where the student would execute the action that would have been ad-
vised. Inaccurate predictions may waste advice, or miss opportunities for the teacher
to give useful advice. Our implementation used the SVM-Light software package [2]
where the SVM used the teacher’s state representation of observed states as input and
observed student actions as classification labels. The teacher trains a new SVM after
each episode using training examples from the previous episode.2 This classification
task is inherently challenging: a student’s behavior is non-stationary and includes ex-
ploration, and differences between teacher and student state representations mean that
the classifier’s hypothesis space may not even be able to represent the student’s policy.
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procedure IMPORTANCEADVISE(πt, b, th)
for each student state s do

if b > 0 and I(s) ≥ th then
b ← b− 1
Advise πt(s)

procedure PREDICTIVEADVISE(πt, b, th)
for each student state s do

if b > 0 and I(s) ≥ th and
πs(s) �= πt(s) then
b ← b− 1
Advise πt(s)

Fig. 1. Both teaching algorithms use a teacher’s policy, the budget, and a threshold
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Fig. 2. Students with the high-asymptote feature learn from high-asymptote teachers (left) and
low-asymptote teachers (right)

3 Experiments in Ms. Pac Man

Our experiments use an implementation based on the Ms. Pac-Man vs. Ghosts [3] com-
petition. Pac-Man can move in the four cardinal directions but only some of these ac-
tions are available in many states of the maze. Points are awarded for eating the small
food pellets, larger power pellets, or ghosts shortly after eating a power pellet. The
episode ends if any ghost touches Pac-Man, Pac-Man eats all pellets, or after 2000
steps. Useful high-level features tend to describe distances, such as “the distance from
Pac-Man to the nearest food pellet,” detailed in the released code.3

We defined two feature sets. One representation uses 16 features; this “low-asymptote”
feature set allows agents to average 2,250 points per episode after training. The other
uses 7 heavily-engineered features; this “high-asymptote” feature set allows agents to
average 3,380 points after training because they typically learn to eat at least one ghost.
Teachers have an advice budget of 1000, roughly half the number of steps in a single
well-played episode. The RL parameters that agents use for learning with the SARSA(λ)
algorithm are ε = 0.05, α = 0.001, γ = 0.999, and λ = 0.9.

1 I(s) is computed with the teacher’s learned Q-function, leveraging the teacher’s knowledge
without requiring any knowledge of the student’s policy or internal representation.

2 Training the SVM required approximately 1 second — in other domains, it may be possible to
update the SVM during episodes or use incremental update methods to improve performance.

3 http://www.eecs.wsu.edu/˜taylorm/13ConnectionScience.html
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In Fig. 2, students in both figures use a high-asymptote feature set. In the left figure,
the teacher also uses the high-asymptote feature set. In this setting, Early Advising fails
to improve over no advice, but Importance Advising significantly outperforms both,
and Predictive Advising significantly outperforms all methods. In the right figure, the
teacher uses the low-asymptote feature set. In this case, only Predictive Advising signif-
icantly outperforms learning without advise.4 Even though the teacher has a different
representation of state and an average performance of only 2,250 points, it is able to
significantly improve student learning performance.

Teachers provide advice in only a small fraction of the training steps but can still
significantly improve student learning. How quickly teachers provide advice is partly
controlled by the importance threshold, th. Teachers in Fig. 2 (right) perform best by
using their advice quickly before the students surpass them (th = 50). Teachers in Fig. 2
(left) perform better by using less frequent advice over longer periods (th = 250).

4 Conclusions and Future Work

As more problems become solvable by agent-based methods, it is important for agents
to be able to work together, even if they have very different implementations. RL agents
succeed at learning control policies for specific tasks, and allowing them to serve as
teachers for these tasks can significantly improve the speed and applicability of RL
for fielded agents. Our experimental results, a sample of which were presented in the
previous section, lead us to the following conclusions about teaching with an advice
budget. First, student learning can be improved with a small advice budget. Second,
advice can have greater impact when it is spent on more important states. Third, when
teachers can successfully predict student mistakes, they can use their advice budget
more effectively. Fourth, students can benefit from advice even from teachers with less
inherent ability, different representations, and different learning methods.

There are many exciting directions for future work. The concept of state importance
could benefit from further investigation: there may exist better domain-specific ways
to measure state importance or effective strategies for automatically selecting and ad-
justing importance thresholds. The teaching framework could be extended to include
multiple teachers and/or students. Students currently always execute actions suggested
by the teacher — in the future, the student could decide to ignore advice, or proactively
ask the teacher for advice. We are interested in testing our method on other student
learning methods, and modifying our methods to work other teacher learning methods.
Finally, we are also excited about testing our teaching algorithms with human students.

Acknowledgements. This work was supported in part by NSF IIS-1149917.
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Mahé, Pierre III-274
Maillard, Odalric-Ambrym I-115

Malerba, Donato III-508
Manco, Giuseppe I-258
Mannor, Shie I-66, I-115, III-520
Marchal, Kathleen II-98
Marecek, Jakub III-520
Marshall, I.J. III-452
Martin, Victorin II-370
Mart́ınez-Ramón, Manel I-450
Mateos, Gonzalo I-50
Matsubara, Yasuko I-386
Mezine, Adel II-306
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Sebag, Michèle I-547, II-306
Sechidis, Konstantinos III-66
Seidl, Thomas I-149
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