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Abstract. According to the proportional allocation mechanism from
the network optimization literature, users compete for a divisible re-
source — such as bandwidth — by submitting bids. The mechanism allo-
cates to each user a fraction of the resource that is proportional to her bid
and collects an amount equal to her bid as payment. Since users act as
utility-maximizers, this naturally defines a proportional allocation game.
Recently, Syrgkanis and Tardos (STOC 2013) quantified the inefficiency
of equilibria in this game with respect to the social welfare and presented
a lower bound of 26.8% on the price of anarchy over coarse-correlated
and Bayes-Nash equilibria in the full and incomplete information set-
tings, respectively. In this paper, we improve this bound to 50% over
both equilibrium concepts. Our analysis is simpler and, furthermore, we
argue that it cannot be improved by arguments that do not take the equi-
librium structure into account. We also extend it to settings with budget
constraints where we show the first constant bound (between 36% and
50%) on the price of anarchy of the corresponding game with respect to
an effective welfare benchmark that takes budgets into account.

1 Introduction

The proportional allocation mechanism, introduced by Kelly [11], is fundamental
in the network optimization literature. According to this mechanism, a divisible
resource — such as bandwidth of a communication link — is allocated to users
as follows. Each user submits a bid to the mechanism; this corresponds to the
user’s willingness-to-pay for sharing the resource. The mechanism allocates to
each user a fraction of the resource that is equal to the ratio of her bid over the
total amount of bids. It also receives a payment from each user that is equal to
her bid. This naturally defines a proportional allocation game among the users
who act as players; each player has a (typically concave, non-negative, and non-
decreasing) valuation function for the resource share she receives and aims to
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maximize her utility, i.e., her value for the resource share minus her payment to
the mechanism. As it is typically the case in games, the social welfare (i.e., the
total value of the players for the resource share they receive) at equilibria is, in
general, suboptimal.

We aim to quantify this inefficiency of equilibria by bounding the price of
anarchy [12] of proportional allocation games. Besides the well-known work of
Johari and Tsitsiklis [9] who considered pure Nash equilibria in the full informa-
tion setting, there has been surprisingly little focus on price of anarchy bounds
over more general equilibrium concepts. The only exception we are aware of is
the recent work of Syrgkanis and Tardos [22] who studied proportional allocation
as part of a broader class of mechanisms. Motivated by their work, we present
new bounds on the price of anarchy of proportional allocation under general
equilibrium concepts, such as coarse-correlated equilibria in the full information
setting and Bayes-Nash equilibria in the incomplete information setting. In par-
ticular, we prove that the social welfare at equilibrium is at least 1/2 of the
optimal social welfare. The bound holds for coarse-correlated and pure Bayes-
Nash equilibria in the full information and Bayesian setting, respectively, and
improves the bound of 26.8% of [22]. The proof is conceptually simple and is
obtained by bounding the utility of every player at equilibrium by the utility
this player would have by deviating to a particular deterministic bid.

We also consider the scenario where players have budget constraints repre-
senting their ability-to-pay. Here, each player has a budget and is never allowed
to bid above it. We assess the quality of equilibria in this case in terms of an
effective welfare benchmark — proposed in previous work but further refined
here — that takes budgets into account. We show that the effective welfare at
equilibrium is at least a constant fraction of the optimal one. To the best of
our knowledge, this is the first constant price of anarchy bound (in particular,
between 36% and 50%) with respect to this benchmark!. Again, our proofs fol-
low by considering a single deterministic deviation for each player, defined in a
slightly different way compared to the deviation we consider in our bound on
the social welfare.

Related Work. The proportional allocation mechanism and its variations have
received significant attention in the network optimization literature. Propor-
tional allocation games have been considered in [7,13,14] where the existence
and uniqueness conditions for pure Nash equilibria are proved. Variations of the
mechanism with different definitions for the allocation rule or the payments have
been considered in [15,16,17,20] (see also the discussion in [8]).

Johari and Tsitsiklis [9] were the first who assessed the quality of proportional
allocations in terms of the social welfare. They focused on pure Nash equilibria
and proved a lower bound of 3/4 on their price of anarchy. Their analysis is based
on the important observation that a pure Nash equilibrium in a proportional
allocation game is also a pure Nash equilibrium in a game where each player

! Previously, Syrgkanis and Tardos [22] had shown that the social welfare at equilib-
rium is at least 2 — v/3 ~ 26.8% of the optimal effective welfare. Our techniques can
be used to improve this particular guarantee to 1/2.
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has a linear valuation function with slope equal to the derivative of the original
valuation function at the share value they get at equilibrium. The optimal social
welfare in the new game is not smaller than the original one and this allows them
to consider the significantly simpler case of linear valuations in their analysis.
Then, the price of anarchy bound is obtained by solving a linear program. An
alternative proof to the result of [9] without using this argument is presented in
[18] (see also [8]).

Unfortunately, this transformation does not apply to more general equilibrium
concepts since the resource share each player receives is, in general, a random
variable. This is a rather common difficulty that manifests itself in the analysis of
games, as we depart from pure Nash equilibria and full information. In particular,
Bayes-Nash equilibria have such an extremely rich structure that, typically, the
price of anarchy analysis assesses their quality by rather ignoring this structure.
Instead, it resorts to bounding the utility of each player by appropriately selected
deviations which reveal a relation between the social welfare at equilibrium and
the optimal social welfare. This approach has been used in a series of papers
that mostly focus on auctions (e.g., see [1,2,3,6,10,19,22]) and is actually the
approach we follow in the current paper as well.

Syrgkanis and Tardos [22] present a general analysis framework for the broad
class of smooth mechanisms. Among other results, they show a price of anarchy
lower bound of 26.8% over coarse-correlated and mixed Bayes-Nash equilibria of
proportional allocation games. In their analysis, they bound the utility of each
player by the utility she would have by deviating to an appropriately defined
randomized bid (an approach that has also been used in different contexts in
[2,10,21,23]) with a probability distribution that depends only on the optimal
allocation and the valuation function of the player. In contrast, the deviating
bid we consider depends on the bid strategies at equilibrium (this is in the same
spirit as the recent analysis of Feldman et al. [6]) and, more interestingly, it
is deterministic. In particular, it is defined as the product of the (expected)
resource share a bidder receives in the optimal allocation and the expectation of
bids of the other players at equilibrium.

Budget constraints are well-motivated in auction settings. In a slightly differ-
ent context than ours, the effective welfare benchmark is considered by Dobzin-
ski and Paes Leme, who call it liguid welfare in [5]. In proportional allocation,
Syrgkanis and Tardos [22] prove that the social welfare at equilibrium is a con-
stant fraction of the optimal effective welfare. Note that our guarantee is consid-
erably stronger as we compare directly the effective welfare at equilibrium with
its optimal value.

Roadmap.The rest of the paper is structured as follows. We begin with prelim-
inary definitions in Section 2. Our price of anarchy bounds in terms of the social
welfare are proved in Section 3. There, we also argue that in order to improve our
analysis, radically new ideas are required. The budget-constrained setting is stud-
ied in Section 4. We remark that we have not mentioned mixed Bayes-Nash equi-
libria in the above presentation of our results. Actually, we have observed that
such equilibria coincide with pure ones even in the budget-constrained setting.
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We discuss related issues as well as additional open problems in Section 5. Due to
lack of space, many proofs have been omitted; they will appear in the full version
of the paper.

2 Preliminaries

Each player (henceforth called bidder) i in a proportional allocation game has
a concave’ non-decreasing valuation function v; : [0,1] — RT. A strategy for
bidder ¢ is simply a non-negative bid. Given a bid vector b = (b, ba, ..., by),
with one bid per bidder, the proportional allocation mechanism allocates to each
bidder a fraction of the resource that is proportional to the bid submitted by her
Denoting by d; the resource share that is allocated to bidder i, it is d; = Z b,

We often use the notation B_; to denote the sum of bids of all bidders be&des
i (hence, d; = bi+B_i)' The utility of bidder 7 from an allocation is simply the
difference of her value for the fraction of the resource she gets minus her bid,
i.e., ’U,Z(b) = ’Uz(dz) — bz

A bid vector b is a pure equilibrium if the utility of all bidders is maximized,
given the bid strategies of the other bidders. So, in a pure equilibrium, no bidder
has any incentive to deviate to another strategy. Denoting by (b}, b_;) the bid
vector that is obtained from b when bidder ¢ unilaterally deviates to bid strategy
b;, we can express this condition as wu;(b) > u; (b}, b_;).

The social welfare of an allocation d is the total value of bidders for the
resource shares they receive, i.e., SW(d) = >, vi(d;). We denote by SW* the
maximum value of the social welfare over all possible allocations. The price of
anarchy over pure Nash equilibria is defined as the minimum value of the social
welfare among all pure Nash equilibria divided by the optimal social welfare.

The bid strategy of a bidder 7 can be randomized. In this case, b; is a random
variable and the bidder aims to maximize her expected utility E [u;(b)]. The
bid strategies of different bidders can be independent or correlated. A vector
of independent randomized bid strategies is called a mixed Nash equilibrium if
it simultaneously maximizes the expected utility of each bidder, given the bid
strategies of the other bidders. More generally, coarse-correlated equilibria are
solution concepts that capture correlated bid strategies. A vector of (possibly
correlated) bid strategies is called a coarse-correlated equilibrium if no bidder has
any incentive to unilaterally deviate to any deterministic bid strategy in order
to improve her expected utility (again, given the strategies of the other bidders).
The notion of the price of anarchy naturally extends to these solution concepts
as well. For example, the price of anarchy over correlated equilibria is defined
as the minimum value of the expected social welfare among all coarse-correlated
equilibria divided by the optimal social welfare.

The above setting is known as the full (or complete) information setting. We
consider the incomplete information (or Bayesian) setting as well; in this case,

2 Very recently, Correa et al. [4] studied proportional allocation games in the less
standard scenario of non-concave valuation functions.
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the valuation function v; of each bidder 4 is drawn randomly (and independently
from the other bidders) from a probability distribution F; over concave, non-
decreasing, and non-negative functions in [0, 1]. Again, bidder ¢ aims to maximize
her expected utility for each possible valuation function v; drawn from F;. In
the incomplete information setting, each bidder i bases her decision on her exact
valuation v; and on the probability distributions according to which other bidders
draw their valuations (and their corresponding bid strategies); these distributions
are common knowledge.

So, the bid strategy of bidder 4 is a (possibly random) bid function b;(v;).
A vector with one such strategy per bidder (with independence between bid
strategies of different bidders) is called a mixed Bayes-Nash equilibrium if no
bidder has any incentive to deviate to some other bid for any valuation function
drawn from F;. In pure Bayes-Nash equilibria, bidders use deterministic bid
functions. The price of anarchy over Bayes-Nash equilibria is defined as the
minimum value of the expected social welfare among all Bayes-Nash equilibria
divided by the expectation of the optimal social welfare. With some abuse in
notation, we also use SW* to denote the expectation of the optimal social welfare
in the Bayesian setting.

We also extend the above model by adding budget constraints to the bidders.
In this setting, each bidder ¢ has a non-negative budget ¢; and she is never
allowed to bid above her budget. This restriction can result to equilibria that have
extremely low social welfare compared to the optimal one (whose definition does
not take budgets into account). Following [22] and [5], we use the effective welfare
benchmark in order to assess the quality of equilibria with budget-constrained
bidders. The effective welfare of a (deterministic) allocation d = (dy,ds, ...,dy) is
defined as EW (d) =}, min{v;(d;), ¢;}. Note that the definition is similar to the
definition of the social welfare; the important difference is that the value of each
bidder is capped by her budget. We extend this definition to random allocations
das EW(d) = ), min{E [v;(d;)], ¢;}. We denote by EW* the maximum value
of the effective welfare over all allocations. The price of anarchy with respect to
the effective welfare benchmark (over equilibria in a given class) is the minimum
value of the effective welfare (among all allocations induced by equilibria in the
class) divided by the optimal effective welfare.

In the Bayesian setting, both the budget c; of bidder ¢ and her valuation v;
are drawn randomly according to the probability distribution F;. We refine the
effective welfare benchmark in this case as

EW(d) = Z]E(Vi,ci)NFi [min{]E(Vfi’Cfi)NF—i [VZ(dZ)] ’Ci}]v

where the inner expectation is taken over the valuation-budget value pairs of
the other bidders once the pair for bidder ¢ has been fixed (and over the corre-
sponding bid strategies). In order to simplify notation in the proofs below, we
will not explicitly use the subscripts in the expectations.
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3 Bounding the Social Welfare of Equilibria

In this section, we prove the price of anarchy bounds with respect to the social
welfare. We consider both coarse-correlated equilibria in the full information
setting as well as pure Bayes-Nash equilibria in the Bayesian setting. Our proofs
use the following lemma (its proof is omitted) which bounds the utility of a
bidder at a deterministic deviation. We also use this lemma later in Section 4
where we study budget-constrained bidders.

Lemma 1. Consider a bidder with a concave and non-decreasing valuation func-
tion v : [0,1] — RT and let I' be the random variable denoting the sum of bids
of the other bidders. Then, for every z € [0,1] and for every u > 0, the expected
utility the bidder would have by deviating to the deterministic bid pzE [I'] is at
least 32;11)(2) — pzE ().

We are ready to prove our price of anarchy bounds. We begin with the case of
coarse-correlated equilibria in the full information setting which is much simpler.

Theorem 1. The price of anarchy of proportional allocation games over coarse-
correlated equilibria is at least 1/2.

Proof. Consider a full information proportional allocation game with n bidders
in which bidder 4 has valuation function v; and denote by x; the resource fraction
bidder ¢ gets in the optimal allocation. Let b be a coarse-correlated equilibrium
that induces a random allocation d = (di,...,d,) and let B = ) .b; be the
random variable denoting the sum of bids of all bidders, with B_; being the sum
of bids of all bidders besides bidder i. Since b is a coarse-correlated equilibrium,
bidder ¢ has no incentive to deviate to any deterministic bid (including the
deviating bid z;E [B_;]). By applying Lemma 1 for bidder ¢ with z = x;, p =1
and I' = B_;, we obtain that

E (b)) 2 E [us(wE[B-i] b)) 2 oi(wi) — wE[B-].

Summing over all bidders and using the fact that B_; < B for every bidder 1,
we have

v

SUE[usb)] = ) Y viw) - Y B (B (1)

>0 uw) - Y B 5]
- ;sw* _E[B].

The theorem follows by this inequality since the social welfare equals the sum
of bidders’ utilities plus their bids, i.e., E[SW(d)] = >, E [u;(b)] + E [B]. a
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The last step of the proof above begins with inequality (1). Essentially, this
inequality has the form

D E[uwi(b)] Z ASW* —p} S wi [B)

The price of anarchy bound of [22] follows after first proving an inequality of

this type and then concluding to a price of anarchy bound of max?l Be The

smoothness arguments of [22] lead to a version of this inequality with A = 2—+/3
and p = 1. Here, we have been able to improve the parameters to A = 1/2 and
p = 1. The next lemma demonstrates that these parameters cannot be improved
further; the proof is omitted.

Lemma 2. For every € > 0, there exists a proportional allocation game such
that for every X\, p satisfying

Zuz(b) > ASW™ — ,uinB_i (2)

where x; is the resource fraction of bidder i in the optimal allocation and B_;
is the sum of bids of all bidders besides bidder i at a (pure Nash) equilibrium, it

A 1
holds that max{ 1} <, +te

The proof for Bayes-Nash equilibria (omitted) follows the same general ap-
proach with that of Theorem 1.

Theorem 2. The price of anarchy of proportional allocation games over pure
Bayes-Nash equilibria is at least 1/2.

4 Budget-Constrained Bidders

In this section, we consider budget-constrained bidders and prove a lower bound
of approximately 36% and an upper bound of 50% on the price of anarchy in
terms of the effective welfare benchmark. Here, we prove Theorem 3 for Bayes-
Nash equilibria only; the (simpler) proof for coarse-correlated equilibria is omit-
ted. Our upper bound (Theorem 4) applies even to pure Nash equilibria.
Before proceeding to the presentation of our bounds for budget-constrained
bidders, we remark that minor modifications of the proofs in the previous section
can show that the social welfare over equilibria with budget-constrained bidders
is at least 1/2 of the optimal effective welfare, improving a corresponding bound
of 26.8% from [22]. The necessary modifications are as follows. First, we need to
define the deviating bids in terms of the resource shares in the allocation that
maximizes the effective welfare. Then, there is a subtle case where Lemma 1
cannot be used, namely when the deviating bid for a bidder exceeds her budget.
Fortunately, the inequality provided by Lemma 1 follows trivially in this case
(actually, we use this argument in the proof below). By repeating the analysis
in the proofs of Theorems 1 and 2, we can conclude that the social welfare at
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equilibrium is at least 1/2 of the social welfare of the allocation that maximizes
the effective welfare. The bound then follows by observing that the effective
welfare of this allocation is upper-bounded by its social welfare.

Theorem 3. The price of anarchy of proportional allocation games with budget-
constrained bidders over coarse-correlated or Bayes-Nash equilibria is at least
0.3596.

Proof. Let pu € (1/3,1] be a parameter whose exact value will be defined later.
Consider an incomplete information proportional allocation game with n bidders
in which the valuation function v; and the budget c; of bidder i are drawn from
the probability distribution F;, independently for each bidder. Let z; be the
random variable denoting the resource fraction bidder 7 gets in the allocation
that maximizes the effective welfare. Let b be a pure Bayes-Nash equilibrium
that induces a random allocation d = (dy, ..., d,) and B be the random variable
denoting the sum of bids of all bidders; again, B_; denotes the sum of bids of
all bidders besides bidder i. We denote by A; the set that contains all pairs of a
valuation function and a corresponding budget value (v;, ¢;) that are drawn from
the probability distribution F; and satisfy E [v;(d;)|v;] < ¢;. Consider a bidder i
with valuation-budget pair (v;, ¢;) € A;. By the definition of A4;, we have

min{E [v;(d;)|vi] , ¢;} > min{E [v;(z;)|vi] , e;}-
By considering all valuation-budget pairs not belonging to A;, we obtain
E [min{E [vi(di)], ¢; }1(vi, ¢;) € A;] > E [min{E [vi(z;)], ci}L(vi, ¢;) € Al
and summing over all bidders, we have
> E[min{E [vi(d:)], ci}1(vi, ¢;) & Aj]
> E[min{E [v;(z;)] , ¢i}1(vi, ¢;) & Aj]. 3)

Now consider a valuation-budget pair (v;,¢;) € A; for bidder ¢ that is
drawn from F;. If uE [z;|v;] E [B_;|v;] < ¢;, we can bound the expected utility
E [u;(b)|v;] by considering the deviation of bidder 4 to bid ulE [z;|v;] E [B_;|v;]
(which is within bidder i’s budget ¢;). By Lemma 1, we have

E [ui(b)|v;] > 3’1; 1Ui(E [zi|vs]) — pE [2i|vs]) E [B_i|vs]
> % E@l] - kB[] ELB]
> % mindE () 0] ) - i o] B[B].

The second inequality follows by Jensen’s inequality and by the fact E[B_;|v;] =
E [B_;]. Otherwise, if uE [x;|v;] E [B_;|v;] > ¢;, the same inequality follows easily
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since

> ¢; — pE [z;|v;| E [B_;|vi]
3p—1 |
= min{E [v; (z;)|vi] , ¢i} — pE [z;|v;] E[B].

Hence, when (v;,¢;) € A;, we have

>3,u—1

E [u;(b)|vi] 4+ plE [z]v;] E[B] > 4

min{E [v;(z;)|vi], ¢ }.

By considering all valuation-budget values belonging to A;, we have
E [u;(b)1(v;,c;) € A;] + pE [z;1(vy, ¢;) € A;) E[B]
3u—1

> Emin{E [vi()] e} (v e) € A

n

Using the obvious fact that E [z;] > E [z;1(v;, c;) € A;] and the above inequality,
we obtain that

E [u;(b)1(v;, ¢;) € A;] + nE [x;] E [B]
E [u;(b)1(v;,c;) € A;] + pE [x;1(v4, ¢;) € A E[B]
3u—1

2
>
Z

E [min{E [v;(2;)], i} 1(vi, i) € Aj]. 4)
Now, we have
ZIE [min{E [v;(di)] , ¢; }1(vs, ¢;) € Aj
_:MZIE min{E [vi(d;)], ¢} 1(vs, ¢;) & Ai
> ZIEZ[(ui(b) +0)L(vs, ¢;) € Ay +,uZ]E [bil(vi,ci) & Ail
> iE [(ui(b) 4+ ub)1(vi,c;) € Ag] + uZZJE [bi1(vi,c;) & Al
— iIE [ui(b)1(vi,c;) € Ai] + pE [B] |
- Z (E [ui(b)1(vi, ¢;) € A;] + puE [z;] E[B])

i

3u—1 )
> :U;HL zz: E [mln{]E [Vi (.’L‘Z)] s Ci}]l(Vi, Ci) S A,] (5)
The first inequality follows since the quantity min{E [v;(d;)], c;} equals E [v;(d;)]
when (v;,c;) € A; and c; otherwise; in the latter case, the budget is clearly not
smaller than the bid of bidder i. The second inequality follows since p < 1, the
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two equalities are obvious, and the last inequality follows by (4). Now, using (3)
and (5), we have

EW(d) = ZE (min{E [vi(di)], ei}]
= XZ:IE [min{E [v;(d;)],c; }1(vi, c;) € Aj
J:MZJE (min{E [vi(di)] , ¢i}1(vi, ¢i) & Al
+(1 :u) ZE (min{E [vi(di)] , ¢i}1(vi, ¢i) & Aj]

> 3/1; 1 Z]E [min{E [v;(z;)],c;} 1(vs, ;) € Aj]

%

(1= 1) SO B [mindE [vi(2:)] e} (vi,c:) € A4
>mind T 3" E [min{E [vi(x:)] , ¢i}]
- 4M b l’l‘ - 1 K3 g3
Ju—1

= min{ M4M ,1— p} EW™.
Hence, the price of anarchy with respect to the effective welfare benchmark is
3p—1 1 _ T-VIT

8

p
0.3596 for p = Y17 O

bounded by the quantity min{ u} which is maximized to

We conclude this section by presenting our upper bound on the price of an-
archy; note that it holds even for pure Nash equilibria.

Theorem 4. For every e > 0, there exists a proportional allocation game among
budget-constrained bidders with price of anarchy at most 1/2+ € over pure Nash
equilibria, with respect to the effective welfare benchmark.

5 Discussion and Open Problems

Our work leaves the obvious open problem of computing the tight bound on
the price of anarchy over coarse-correlated and Bayes-Nash equilibria. So far,
the only upper bound that is known is the counter-example of 3/4 from [9] for
pure Nash equilibria. Is 3/4 the tight bound for all equilibrium concepts con-
sidered in the current paper? Actually, we have not been able to identify any
coarse-correlated equilibrium in the full information model that is non-pure. Do
such equilibria really exist? Interestingly, we can show that mixed Nash equi-
libria coincide with pure ones (see the statement in Lemma 3). More generally,
this statement applies to mixed Bayes-Nash equilibria in the budget-constrained
setting. Does it extend to coarse-correlated ones? We believe that this is an
interesting open problem.
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Lemma 3. The set of mized Bayes-Nash equilibria in any proportional alloca-
tion game (possibly with budget-constrained bidders) coincides with that of pure
Bayes-Nash equilibria.

In the Bayesian setting, we have not considered more general equilibrium
concepts such as coarse-correlated Bayesian equilibria. The main reason is that
our analysis requires that the expectation of the sum of bids of the other bidders
is the same for any possible valuation bidder 7 can draw from her distribution;
this property is not satisfied by more general equilibrium concepts. What is the
price of anarchy in this case? Interestingly, the answer cannot be 3/4 as our next
counter-example indicates; the proof is omitted due to lack of space.

Lemma 4. There exists a proportional allocation game that has price of anarchy
at most 0.7154 over coarse-correlated Bayesian equilibria.

Also, recall that we have assumed that bidders have independent valuations.
This is a typical assumption in the Bayes-Nash price of anarchy literature
[1,3,6,10,19,21,22] with [2] being the only exception we are aware of. Unfor-
tunately, our proof of the pure Bayes-Nash price of anarchy bound does not
carry over to the case of correlated valuations either (for the same reason men-
tioned above). Still, we have not been able to find any counter-example with
non-constant price of anarchy in this setting. Again, what is the price of anarchy
in this case? These questions are interesting in the budget-constrained setting
as well.
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