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Preface

This book contains the proceedings of the 7th International Symposium on Al-
gorithmic Game Theory (SAGT) held in Haifa, Israel, in October 2014.

The program of SAGT 2014 consisted of five invited lectures and 29 pre-
sentations of refereed submissions. The Program Committee selected 29 out of
65 submissions after a careful reviewing process. The PC found that this year’s
submissions included many papers of high quality, more papers than a regular
program can accommodate. The PC therefore decided to accept 26 regular pa-
pers, and to invite 3 additional submissions to be presented in the form of a brief
announcement at the conference. The PC feels that these brief announcements
added inspiration and novelty to the program.

The accepted submissions were invited to these proceedings. They cover var-
ious important aspects of algorithmic game theory that were grouped into 8
sessions: Matching Theory, Game Dynamics, Games of Coordination, Networks
and Social Choice, Markets and Auctions, Price of Anarchy, Computational as-
pects of games, and Mechanism Design and Auctions.

I would like to thank all authors who submitted their research work and all
Program Committee members and external reviewers for their effort in selecting
the program for SAGT 2014.

July 2014 Ron Lavi
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Social Welfare in One-Sided Matchings:

Random Priority and Beyond�

Aris Filos-Ratsikas1, Søren Kristoffer Stiil Frederiksen1, and Jie Zhang2

1 Department of Computer Science, Aarhus University
{filosra,ssf}@cs.au.dk

2 Department of Computer Science, University of Oxford
jie.zhang@cs.ox.ac.uk

Abstract. We study the problem of approximate social welfare maxi-
mization (without money) in one-sided matching problems when agents
have unrestricted cardinal preferences over a finite set of items. Ran-
dom priority is a very well-known truthful-in-expectation mechanism for
the problem. We prove that the approximation ratio of random prior-
ity is Θ(n−1/2) while no truthful-in-expectation mechanism can achieve
an approximation ratio better than O(n−1/2), where n is the number of
agents and items. Furthermore, we prove that the approximation ratio of
all ordinal (not necessarily truthful-in-expectation) mechanisms is upper
bounded by O(n−1/2), indicating that random priority is asymptotically
the best truthful-in-expectation mechanism and the best ordinal mech-
anism for the problem.

1 Introduction

We study the problem of approximate social welfare maximization (without
money) in one-sided matching problems when agents have unrestricted cardi-
nal preferences over a finite set of items. Specifically, each agent has a valuation
function mapping items to real numbers, which can be arbitrary. These valuation
functions should be interpreted as von Neumann-Morgenstern utility functions,
i.e. they induce orderings on outcomes, which are standardly defined up to pos-
itive affine transformations (multiplication by a positive scalar and shift by a
scalar).

A (direct revelation) mechanism (without money) is a function J mapping
vectors of valuation functions (valuation profiles) to matchings, that is, allo-
cations of items to agents such that each agent is allocated exactly one item.
Mechanisms can also be randomized, and then the function J is a random map.

� The authors acknowledge support from the Danish National Research Foundation
and The National Science Foundation of China (under the grant 61061130540) for
the Sino-Danish Center for the Theory of Interactive Computation, within which
this work was performed. The authors also acknowledge support from the Center for
Research in Foundations of Electronic Markets (CFEM), supported by the Danish
Strategic Research Council. Jie Zhang also acknowledges support from ERC Ad-
vanced Grant 321171 (ALGAME).

R. Lavi (Ed.): SAGT 2014, LNCS 8768, pp. 1–12, 2014.
c© Springer-Verlag Berlin Heidelberg 2014



2 A. Filos-Ratsikas, S.K.S. Frederiksen, and J. Zhang

We will be interested in truthful mechanisms, that is, mechanisms that do not
give incentives to agents to misreport their valuation functions. For randomized
mechanisms, we are interested in mechanisms that are truthful-in-expectation,
which means that no agent can increase its expected utility by misreporting.

A very intuitive and well-studied truthful-in-expectation mechanism is ran-
dom priority (often also referred to as random serial dictatorship), which first
fixes a uniformly random ordering of the agents and then serially matches each
agent to its most preferred item from the set of still unmatched items, based on
that ordering. Random priority is an ordinal mechanism, i.e., a mechanism that
only depends on the ordering of items induced by the valuation functions and
not the actual numerical values.

We will look to maximize the social welfare, that is, the sum of agents’ val-
uations for the items they are matched with in the outcome of the mechanism.
We measure the performance of a mechanism by its approximation ratio, which
is the worst ratio between the (expected) social welfare of the mechanism and
the welfare of the optimal allocation, over all valuation profiles. It is easy to see
that the mechanism that always outputs the optimal outcome is not truthful.

For a meaningful discussion on social welfare maximization for von Neumann-
Morgenstern utilities, one has to fix a canonical representation of the valuation
functions [7, 9, 11, 12]. These functions are usually represented in one of two
canonical forms, unit-sum [7, 12] (the valuations sum up to one) or unit-range
[4,11,19] (all valuations are in the interval [0, 1] with both 0 and 1 in the image
of the function). Our main result is given by the following theorem, which holds
for both normalizations.

Theorem 1. The approximation ratio of random priority is Θ(1/
√
n). Further-

more, random priority is asymptotically the best truthful-in-expectation mecha-
nism and the best ordinal (not necessarily truthful-in-expectation) mechanism for
the problem.

The theorem also holds for an extension to the unit-range representation, when 0
is not required to be in the image of the function; we discuss how in Section 5. An
implication of Theorem 1 is that the well-known Probabilistic Serial mechanism
[6], which is often preferred to random priority, does not give better social welfare
guarantees, even if we assume truthful reporting.

1.1 Discussion and Related Work

In the presence of incentives, the one-sided matching problem (often referred to
as the assignment problem or house allocation problem) was originally defined
in [13] and has been studied extensively ever since [6, 9, 12, 14, 18, 19]. There are
several surveys discussing the problem [1, 17] and we refer the interested reader
to those for a more detailed exposition. Random priority is a folklore mechanism
that solves the problem fairly (in the sense of anonymity) and satisfies some ad-
ditional nice properties; it is truthful-in-expectation and ex-post Pareto efficient.
On the other hand, it is not ex-ante Pareto efficient. Most of the previous work
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in literature [6, 13, 19] has mainly been directed towards designing mechanisms
with desired properties that achieve efficiency criteria for different Pareto ef-
ficiency notions and less towards whether truthful mechanisms achieve “good
levels” of social welfare. This is a really important question to ask, especially
since the notion of approximation ratio gives us a systematic way of comparing
mechanisms or proving their limitations. The term approximate mechanism de-
sign without money was used in [16] to describe problems where the goal is to
approximately optimize some objective function, given the constraint of truth-
fulness. This approach has been adopted by a large body of computer science
literature [3,5,9,11,12,15] and the approximation ratio is now considered to be
the predominant measure of efficiency for truthful mechanisms.

Social welfare maximization is arguably a less natural objective when agents
are endowed with von Neumann-Morgenstern utilities, because of adding up
valuations after normalization. On the other hand, it is quite widespread in
quasi-linear settings. We strongly believe that considering the social welfare
objective for von Neumann-Morgenstern utilities is just as natural and in fact
there is a growing amount of literature that embraces the same idea and provides
arguments to support it [5, 7, 11, 12].

A different approach, often encountered in literature, is to consider ordinal
measures of efficiency. For example, Bhalgat et al [5] calculate the approximation
ratio of random priority when the objective is the maximization of ordinal social
welfare, a notion of welfare that they define based solely on ordinal information.
Ordinal measures of efficiency have also been studied in terms of incentives and
approximation ratios [8, 15]. However, these measures do not encapsulate the
“socially desired” outcome in the way that social welfare does, i.e., they do not
necessarily maximize the aggregate happiness of individuals [3]. This is even
more evident if one considers that the the standard assumption in social choice
and economics theory is that such an underlying cardinal structure exists, even if
agents are not asked to report it. In our setting, not reporting the full cardinal in-
formation corresponds to using ordinal mechanisms, which by our main theorem,
is enough for achieving the (asymptotically) best approximation guarantees. On
the other hand, cardinal reports are also often encountered in literature, with
the pseudo-market mechanism of [13] being a prominent example. Several car-
dinal mechanisms were also presented in [11,12] for social welfare maximization
and [10] for information elicitation. Our main theorem does not only prove the
capabilities of random-priority but also the limitations of all truthful (including
cardinal) mechanisms. In the full version of our paper, we give an example of an
non-ordinal mechanism that actually provides better approximation guarantees
for concrete sizes of the set of agents.

Independently of our work, Adamczyk et al. [2] study truthful mechanisms
for social welfare in one-sided matchings when agents have von Neumann - Mor-
genstern utilities, normalized in the unit interval, but not necessarily unit-sum
or unit-range. Their main result on the approximation ratio of random priority
can be combined with some additional arguments to obtain our lower bounds
but our upper bounds are more general.
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2 Preliminaries

Let N = {1, . . . , n} be a finite set of agents and M = {1, . . . , n} be a finite set
of indivisible items. An outcome is a matching of agents to items, that is, an
assignment of items to agents where each agent gets assigned exactly one item.
We can view an outcome μ as a vector (μ1, μ2 . . . , μn) where μi is the unique
item matched with agent i. Let O be the set of all outcomes. Each agent i has
a private valuation function mapping outcomes to real numbers that can be ar-
bitrary except for two conditions; agents are indifferent between outcomes that
match them to the same item and they are not indifferent between outcomes
that match them to different items. The first condition implies that agents only
need to specify their valuations for items instead of outcomes and hence the
valuation function of an agent i can be instead defined as a map ui : M → R

from items to real numbers. The second condition requires that valuation func-
tions are injective, i.e., they induce a total ordering on the items. This is mainly
for convenience, to avoid having to specify tie-breaking rules. As we discuss in
Section 5, all of our results extend to most natural tie-breaking rules. Valuation
functions are standardly considered to be well-defined up to positive affine trans-
formations, that is, for item j : j → αui(j) + β is considered to be a different
representation of ui. The two standard ways to fix the canonical representation
of ui in literature are unit-range, i.e., maxj ui(j) = 1 and minj ui(j) = 0 and
unit-sum, that is

∑
j ui(j) = 1.

Let V be the set of all canonically represented valuation functions of an agent.
Call u = (u1, u2, . . . , un) a valuation profile and let V n be the set of all valua-
tion profiles with n agents. A direct revelation mechanism (without money) is a
function J : V n → O mapping reported valuation profiles to matchings. For a
randomized mechanism, we define J to be random map J : V n → O. Let J(u)i
denote the restriction of the outcome of the mechanism to the i’th coordinate,
which is the item assigned to agent i by the mechanism.

We will be interested in truthful mechanisms, that is, mechanisms that do not
incentivize agents to report anything other than their true valuation functions.
Formally, a mechanism J is truthful if for each agent i and all u = (ui, u−i) ∈ V n

and ũi ∈ V it holds that ui(J(ui, u−i)i) ≥ ui(J(ũi, u−i)i), where u−i denotes the
valuation profile u without the i’th coordinate. In other words, if ui is agent i’s
true valuation function, then it has no incentive to misreport. For randomized
mechanisms, a mechanism is truthful-in-expectation if for each agent i and all u =
(ui, u−i) ∈ V n and ũi ∈ V it holds that E[ui(J(ui, u−i)i)] ≥ E[ui(J(ũi, u−i)i)].

A class of mechanisms that turns out to be important for our purposes is that
of neutral and anonymous mechanisms. Formally, a mechanism is anonymous if
for any valuation profile (u1, u2, . . . , un), every agent i and any permutation π :
N → N it holds that J(u1, u2, . . . , un)i = J(uπ(1), uπ(2), . . . , uπ(n))π(i). By this
definition, in an anonymous mechanism, agents with exactly the same valuation
functions must have the same probabilities of receiving each item. Similarly, a
mechanism is neutral if for any valuation profile (u1, u2, . . . , un), every item j
and any permutation σ : M →M it holds that J(u1, u2, . . . , un)i = σ−1(J(u1 ◦
σ, u2 ◦σ, . . . , un ◦σ)i), i.e., the mechanism is invariant to the indices of the items.
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We will consider both ordinal and cardinal mechanisms. A mechanism J is
ordinal if for any i, any valuation profile u = (ui, u−i) and any valuation function
u′
i such that for all j, j′ ∈ M , ui(j) < ui(j

′) ⇔ u′
i(j) < u′

i(j
′), it holds that

J(ui, u−i) = J(u′
i, u−i). A mechanism for which the above does not necessarily

hold is cardinal. Informally, ordinal mechanisms operate solely based on the
ordering of items induced by the valuation functions and not the actual numerical
values themselves.

We measure the performance of a mechanism by its approximation ratio,

ar(J) = inf
u∈V n

∑n
i=1 ui(J(u)i)

maxμ∈O

∑n
i=1 ui(μi)

.

The quantity
∑n

i=1 ui(J(u)i) is the social welfare of mechanism J on valuation
profile u and maxμ∈O

∑n
i=1 ui(μi) is the social welfare of the optimal matching.

For ease of notation, let w∗(u) = maxμ∈O

∑n
i=1 ui(μi). For randomized mech-

anisms, we are interested in the expected social welfare E [
∑n

i=1 ui(J(u)i)] of
mechanism J and the approximation ratio is defined accordingly.

Next we will state a lemma that will be useful for our proofs. These kinds
of lemmas are standard in literature (e.g. see [11, 12]). The lemma implies that
when trying to prove upper bounds on the approximation ratio of mechanisms,
it suffices to consider mechanisms that are anonymous.

Lemma 1. For any mechanism J , there exists an anonymous mechanism J ′

such that ar(J ′) ≥ ar(J). Furthermore, if J is truthful (for deterministic mech-
anisms) or truthful-in-expectation (for randomized mechanisms) then it holds
that J ′ is truthful-in-expectation.

We will particularly be interested in the mechanism random priority. Random
priority fixes an ordering of the agents uniformly at random and then lets them
pick their favorite items from the set of available items based on this ordering.
Note that random priority is truthful-in-expectation, ordinal, anonymous and
neutral. We conclude the section with the following lemma.

Lemma 2. For any valuation profile u, the optimal allocation on u is a possible
outcome of random priority.

3 Unit-Range Valuation Functions

In this section, we assume that the representation of the valuation functions is
unit-range. It will be useful to consider a special class of valuation functions Cε

that we will refer to as quasi-combinatorial valuation functions, a straightforward
adaptation of a similar notion in [11]. Informally, a valuation function is quasi-
combinatorial if the valuations of each agent for every item are close to 1 or close
to 0 (the proximity depends on ε). Formally,

Cε = {u ∈ V |u(M) ⊂ [0, ε) ∪ (1− ε, 1]} ,
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where u(M) is the image of the valuation function u. Let Cn
ε ⊆ V n be the set

of all valuation profiles with n agents whose valuation functions are in Cε. The
following lemma implies that when we are trying to prove a lower bound on the
approximation ratio of random priority, it suffices to restrict our attention to
quasi-combinatorial valuation profiles Cn

ε ⊆ V n for any value of ε.

Lemma 3. Let J be an ordinal, anonymous and neutral randomized mechanism
for unit-range representation, and let ε > 0. Then

ar(J) = inf
u∈Cn

ε

E[
∑n

i=1 ui(J(u)i)]

w∗(u)
.

The lemma formalizes the intuition that because the mechanism is ordinal,
the worst-case approximation ratio is encountered on extreme valuation profiles.
In fact, the proof of the lemma inductively “pushes” agents’ valuations towards
0 or towards 1, without increasing the approximation ratio each time and ends
up with a quasi-combinatorial profile.

For unit-range representation, Theorem 1 is given by the following lemmas.

Lemma 4. For unit-range representation, ar(RP ) = Ω
(
n−1/2

)
.

Proof. Because of Lemma 3, for computing a lower bound on the approximation
ratio of random priority, it is sufficient to only consider quasi-combinatorial
valuation profiles. Let ε ≤ 1/n3. Then, there exists k ∈ N such that

|k − w∗(u)| ≤ 1

n2
,

where w∗(u) is the social welfare of the maximum weight matching on valuation
profile u. Since random priority can trivially achieve an expected welfare of 1
(for any permutation the first agent will be matched to its favorite item), we can
assume that k ≥ √

n, otherwise we are done. Note that the maximum weight
matching μ∗ ∈ O assigns k items to agents with ui(μi) ∈ (1− ε, 1]. Since random
priority is anonymous and neutral, without loss of generality we can assume that
these agents are {1, . . . , k} and for every agent j ∈ N , it holds that μ∗

j = j. Thus
uj(j) ∈ (1 − ε, 1] for j = 1, . . . , k and uj(j) ∈ [0, ε) for j = k + 1, . . . , n.

Consider any run of random priority; one agent is selected in each round. Let
l ∈ {0, . . . , n− 1} be any of the n rounds. We will now define the following sets:

Ul = {j ∈ {1, . . . , n}| agent j has not been selected prior to round l}
Gl = {j ∈ Ul|uj(j) ∈ (1 − ε, 1] and item j is still unmatched}
Bl = {j ∈ Ul|uj(j) ∈ [0, ε) or item j has already been matched to some agent}

These three families of sets should be interpreted as three sets that change over
the course of the execution of random priority. Ul is the set of agents yet to be
matched, which is partitioned into Gl, the set of “good” agents, that guarantee
a welfare of almost 1 when picked, and Bl, the set of “bad” agents, that do not
guarantee any contribution to the social welfare. For the purpose of calculating
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a lower bound, we will simply bound the sizes of the sets in these families.
Obviously, G0 = {1, . . . , k} and B0 = {k + 1, . . . , n}.

The probability that an agent i ∈ Gl is picked in round l of random priority
is |Gl|/(|Gl| + |Bl|), whereas the probability that an agent i ∈ Bl is picked is
|Bl|/(|Gl| + |Bl|). By the discussion above, we can assume that whenever an
agent from Gl is picked its contribution to the social welfare is at least 1 − ε
whereas the contribution from an agent picked from Bl is less than ε. In other
words, the expected contribution to the social welfare from round l is at least
|Gl|/(|Gl|+ |Bl|)− ε.

We will now upper bound |Gl| and lower bound |Bl| for each l. Consider
round l and sizes |Gl| and |Bl|. First suppose that some agent i from Gl is
picked and the agent is matched with item j. If j �= i and agent j is in Gl, then
|Gl+1| = |Gl|− 2 and |Bl+1| = |Bl|+1, since agent j no longer has its item from
the optimal allocation available and so agent j is in Bl+1. On the other hand, if
j = i or agent j is in Bl then |Gl+1| = |Gl| − 1 and |Bl+1| = |Bl|. In either case,
|Gl+1| ≥ |Gl| − 2 and |Bl+1| ≤ |Bl|+ 1. Intuitively, the picked agent might take
away some item from a good agent and turn it into a bad agent.

Now suppose that agent i from Bl is picked and the agent is matched with
item j. If agent j is in Gl then |Gl+1| = |Gl| − 1 and |Bl+1| = |Bl|, since
agent j no longer has its item from the optimal allocation available and so agent
j is in Bl+1. On the other hand, if agent j is in Bl then |Gl+1| = |Gl| and
|Bl+1| = |Bl| − 1. In either case, |Gl+1| ≥ |Gl| − 2 and |Bl+1| ≤ |Bl|+ 1.

To sum up, in each round l of random priority, we can assume the size of Bl

increases by at most 1 and the size of Gl decreases by at most 2. Given this and
that |G0| = k and |B0| = n− k and that |Gl| > 0 for l ≤ k/2�, we get

E

[
n∑

i=1

ui(RP (u)i)

]
≥

n∑
l=0

(
|Gl|

|Gl|+ |Bl|
− ε

)
≥
 k

2 �∑
l=0

k − 2l

n− l
− nε

and the ratio is

E [
∑n

i=1 ui(RP (u)i)]

w∗(u)
≥
∑ k

2 �
l=0

k−2l
n−l − nε

k + 1
n2

≥
∑ k

2 �
l=0

k−2l
n−l − nε

2k

=

 k
2 �∑

l=0

1− 2l
k

2(n− l)
− nε

2k
>

 k
2 �∑

l=0

1− 2l
k

2n
− nε

2k
≥ k − 11

8n
− nε

2k
.

The bound is clearly minimum when k is minimum, that is, k =
√
n. Since

this bound holds for any u ∈ Cn
ε , we get

ar(RP ) = inf
u∈Cn

ε

E[
∑n

i=1 ui(J(u)i)]

w∗(u)
≥
√
n− 11

8n
− nε

2
√
n
.

We can choose ε so that the approximation ratio is at least 1
20

√
n
for n ≥ 400

and for n ≤ 400, the bound holds trivially since random priority matches at least
one agent with its favorite item. �
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Next, we state the following lemma about ordinal mechanisms. We leave the
details for the full version.

Lemma 5. Let J be any ordinal mechanism for unit-range representation. Then
ar(J) = O

(
n−1/2

)
.

Our final lemma provides a matching upper bound on the approximation ratio
of any truthful-in-expectation mechanism.

Lemma 6. Let J be a truthful-in-expectation mechanism for unit-range repre-
sentation. Then ar(J) = O

(
n−1/2

)
.

Proof. By Lemma 1, we can assume that Mechanism J is anonymous. Let k ≥ 1
be a parameter to be chosen later and let u = (u1, u2, . . . , un) be the valuation
profile where

ui(j) =

⎧⎪⎨⎪⎩
1, for j = i
2
k −

j
n , for 1 ≤ j ≤ k + 1, j �= i

n−j
n2 , otherwise

∀i ∈ {1, . . . , k + 1},

ui(j) =

⎧⎪⎨⎪⎩
1, for j = 1
2
k −

j
n , for 2 ≤ j ≤ k + 1

n−j
n2 , otherwise

∀i ∈ {k + 2, . . . , n}.

For i = 2, . . . , k+1, let ui = (u′
i, u−i) be the valuation profile where all agents

besides agent i have the same valuations as in u and u′
i = uk+2. Note that when

agent i on valuation profile ui, reports ui instead of u′
i, the resulting valuation

profile is u. Since J is anonymous and u′
i = u1 = uk+2 = . . . = un, then agent

i receives at most a uniform lottery among these agents on valuation profile ui

and so it holds that

E[u′
i(J(u

i)i)] ≤
1

n− k + 1
+

k+1∑
j=2

1

n− k + 1

(
2

k
− j

n

)
+

n∑
j=k+2

1

n− k + 1
· n− j

n2

≤ 4

n− k + 1
.

Next observe that since J is truthful-in-expectation, agent i should not in-
crease its expected utility by misreporting ui instead of u′

i on valuation profile
ui, that is,

E[u′
i(J(u

i)i)] ≥ E[u′
i(J(u)i)]. (1)

For all i = 2, . . . , k + 1, let pi be the probability that J(u)i = i. Then,

E[u′
i(J(u)i)] ≥ pi

(
2

k
− i

n

)
≥ pi

(
2

k
− k + 1

n

)
,

and by Inequality (1) we get

pi

(
2

k
− k + 1

n

)
≤ 4

n− k + 1

⇒ pi ≤
4

n− k + 1
· kn

2n− k(k + 1)
≤ 4

n− k
· kn

2n− (k + 1)2
.
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Let p = 4
n−k ·

kn
2n−(k+1)2 , i.e. for all i, pi ≤ p. We will next calculate an upper

bound on the expected social welfare achieved by J on valuation profile u.
For item j = 1, the contribution to the social welfare is upper bounded by 1.

Similarly, for each item j = k + 2, . . . , n, its contribution to the social welfare
is upper bounded by 1/n. Overall, the total contribution by item 1 and items
k + 2, . . . , n will be upper bounded by 2.

We next consider the contribution to the social welfare from items j =
2, . . . , k + 1. Define the random variables

Xj =

{
1, if J(u)j = j
2
k −

j
n , otherwise

.

The contribution from items j = 2, . . . , k + 1 is then
∑k+1

j=2 Xj and so we get

E

⎡⎣k+1∑
j=2

Xj

⎤⎦ =

k+1∑
j=2

E [Xj ] ≤
k+1∑
j=2

(
p+

2

k
− j

n

)
≤ kp+ 2.

Overall, the expected social welfare of mechanism J is at most 4 + pk while
the social welfare of the optimal matching is k + 1 +

∑n
i=k+2

n−i
n2 which is at

least k. Since p = 4
n−k ·

kn
2n−(k+1)2 , the approximation ratio of J then is

ar(J) ≤ 4 + pk

k
=

4

k
+

4

n− k
· kn

2n− (k + 1)2
.

Let k = 
√
n� − 1 and note that

√
n− 2 ≤ k ≤

√
n− 1. Then,

ar(J) ≤ 4

k
+

4

n− k
· kn

2n− (k + 1)2
≤ 4√

n− 2
+

4

n−
√
n+ 1

· (
√
n− 1)n

2n− (
√
n)2

≤ 4√
n− 2

+
4√
n
≤ 12√

n
+

4√
n
=

16√
n
.

The last inequality holds for n ≥ 9 and for n < 9 the bound holds trivially. This
completes the proof. �

4 Unit-Sum Valuation Functions

In this section, we assume that the representation of the valuation functions
is unit-sum. We prove Theorem 1 using the following three lemmas. The first
lemma provides a lower bound on the approximation ratio of random priority.

Lemma 7. For unit-sum representation, ar(RP ) = Ω
(
n−1/2

)
.

Proof. Let u be any unit-sum valuation profile and let C be the constant in the
bound from Lemma 4. Suppose first that the w∗(u) < 4

√
n/C. We will show
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that random priority guarantees an expected social welfare of 1, which proves
the lower bound for this case. Consider any agent i and notice that in random
priority, the probability that the agent is picked by the l’th round is l/n, for
any 1 ≤ l ≤ n and hence the probability of the agent getting one of its l most
preferred items is at least l/n. Let ul

i be agent i’s valuation for its l’th most
preferred item; agent i’s expected utility for the first round is then at least u1

i /n.
For the second round, in the worst case, agent i’s most preferred item has already
been matched to a different agent and so the expected utility of the agent for
the first two rounds is at least u1

i /n + u2
i /n. By the same argument, agent i’s

expected utility after n rounds is at least
∑n

i=1 u
l
i/n = 1/n. Since this holds for

each of the n agents, the expected social welfare is at least 1.
Suppose now w∗(u) ≥ 4

√
n/C. We will transform u to a unit-range valuation

profile u′′. By Lemma 2, the optimal allocation can be achieved by a run of
random priority, so we know that in the optimal allocation at most 1 agent will
be matched with its least preferred item. Now consider the valuation profile u′

where each agent i’s valuation for its least preferred item is set to 0 (unless
it already is 0) and the rest of the valuations are as in u. Since the ordinal
preferences of agents are unchanged, random priority performs worse on this
valuation profile, and because of Lemma 2, w∗(u′) ≥ w∗(u)−1/n. Next consider
the valuation profile

u′′ =

(
u′ 1
oT 1

)
.

where o ∈ Rn and oj = (j−1)/n5. That is, u′′ has n+1 agents and items, where
agents 1, . . . , n have the same valuations for items 1, . . . , n as in u′, every agent
has a valuation of 1 for item n+1, and agent n+1 only has a significant valuation
for item n + 1. Notice that u′′ is a unit-range valuation profile, and w∗(u′′) ≥
w∗(u′) + 1. Furthermore, E [

∑n
i=1 ui(RP (u′))] ≥ E [

∑n
i=1 ui(RP (u′′))] − 2 and

hence

E [
∑n

i=1 ui(RP (u)i)]

w∗(u)
≥ E [

∑n
i=1 ui(RP (u′)i)]

w∗(u′) + 1/n
≥ E [

∑n
i=1 ui(RP (u′′)i)]− 2

w∗(u′′) + 1/n− 1

≥ E [
∑n

i=1 ui(RP (u′′)i)]

w∗(u′′)
− 2

w∗(u′′)
≥ C√

n
− 2

w∗(u)

≥ C√
n
− 2

4
√
n/C

=
C

2
√
n
.

This completes the proof. �

Next, we bound the approximation ratio of any ordinal (not necessarily truthful-
in-expectation) mechanism. The proof is similar to that of Lemma 5.

Lemma 8. Let J be an ordinal mechanism for unit-sum representation. Then
ar(J) = O

(
n−1/2

)
.

Finally, the upper bound for any truthful-in-expectation mechanism is given
by the following lemma.
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Lemma 9. Let J be a truthful-in-expectation mechanism for unit-sum represen-
tation. Then ar(J) = O

(
n−1/2

)
.

For the proof, the main observation is that the valuation profile used in the
proof of Lemma 6 can easily be modified in a way such that all rows of the
matrices of valuations sum up to one, to obtain a unit-sum valuation profile.
Then exactly the same steps used in the proof of Lemma 6 also prove Lemma 9.

5 Extensions

Allowing Ties

Our results extend if we allow ties in the image of the valuation function. All
of our upper bounds hold trivially. For the approximation guarantee of random
priority, first the mechanism clearly must be equipped with some tie-breaking
rule to settle cases where indifferences appear. For all natural (fixed before the
execution of the mechanism) tie-breaking rules the lower bounds still hold. To see
this, consider any valuation profile with ties and a tie-breaking rule for random
priority. We can simply add sufficiently small quantities εij to the valuation
profile according to the tie-breaking rule and create a new profile without ties.
The assignment probabilities of random priority will be exactly the same as for
the version with ties, and random priority achieves an Ω(1/

√
n) approximation

ratio on the new profile. Then since εij were sufficiently small, the same bound
holds for the original valuation profile.

[0,1] Valuation Functions

All of our results apply to the extension of the unit-range representation where
0 is not required to be in the image of the function, that is maxj ui(j) = 1
and for all j, ui(j) ∈ [0, 1]. This representation captures scenarios where agents
can be more or less indifferent between every single item. Since every unit-range
valuation profile is also a valid profile for this representation, the upper bounds
hold trivially. For the approximation ratio of random priority, we obtain the
following corollary.

Corollary 1. The approximation ratio of random priority, for the setting with
[0, 1] valuation functions is Ω

(
n−1/2

)
.

The intuition for the proof is that, similarly to the proof of Lemma 7, we can
“turn” a [0, 1] profile into a unit-range profile with only a constant change in the
approximation ratio and then use our bound for unit-range profiles. The details
are left for the full version.
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Abstract. We study the efficiency (in terms of social welfare) of truthful
and symmetric mechanisms in one-sided matching problems with
dichotomous preferences and normalized von Neumann-Morgenstern pref-
erences. We are particularly interested in the well-known Random Serial
Dictatorship mechanism. For dichotomous preferences, we first show that
truthful, symmetric and optimal mechanisms exist if intractable mecha-
nisms are allowed.We then provide a connection to online bipartite match-
ing. Using this connection, it is possible to design truthful, symmetric and
tractable mechanisms that extract 0.69 of the maximum social welfare,
which works under assumption that agents are not adversarial. Without
this assumption, we show that Random Serial Dictatorship always returns
an assignment in which the expected social welfare is at least a third of
the maximum social welfare. For normalized von Neumann-Morgenstern
preferences, we show that Random Serial Dictatorship always returns an

assignment in which the expected social welfare is at least 1
e

ν(O)2

n
, where

ν(O) is the maximum social welfare and n is the number of both agents
and items. On the hardness side, we show that no truthful mechanism can

achieve a social welfare better than ν(O)2

n
.

1 Introduction

We study the efficiency of mechanisms in one-sided matching problems, where
the goal is to allocate n indivisible items to n unit-demand rational agents having
private preferences over items. Agents are rational, i.e., they would like to be
assigned to the best items according to their private preferences. The problem
essentially captures variants of practical applications such as allocating houses
to residents, assigning professors to courses and so on. In this paper, we mainly
focus on cardinal preferences in which agents have values for different items.
A practical setting would be that residents have values for different houses. A
mechanism maps preferences that agents report to a matching, which is a one-to-
one mapping between agents and items. Throughout the paper, depending on the
context, we use sometimes term matching and sometimes assignment, but they
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always mean essentially the same. One immediate question arises: if there exist
mechanisms in which no agent could benefit by deviating from reporting his true
preference regardless the preferences reported by other agents? Such mechanisms
are often called truthful mechanisms. The question was answered in [15], where it
was shown that there exists only one truthful, nonbossy and neutral mechanism.
A mechanism is nonbossy if an individual agent cannot change the output of
the mechanism without changing his assignment. A mechanism is neutral if the
mechanism is independent of the identities of items, e.g., the assignment get
permuted accordingly when the items are permuted. The unique mechanism
works as follows. First, agents are sorted in a fixed order, and then the first
agent chooses his favorite item, the next agent chooses his favorite item among
remaining items, etc. When the fixed order is picked uniformly among all possible
orderings, the resulted mechanism is called Random Serial Dictatorship (RSD).

Besides the truthfulness, an important issue left is to understand the efficiency
of mechanisms in one-sided matching problems. The efficiency of a mechanism is
defined as the social welfare of the assignment the mechanism returns. Zhou [17]
confirmed Gale’s conjecture by showing that there is no symmetric, Pareto opti-
mal and truthful mechanism for general preferences. A mechanism is symmetric
if agents are treated equally if they report the same preferences. A mechanism
is Pareto optimal if the mechanism never outputs an assignment that the so-
cial welfare could be improved without hurting any agent. It is well-known that
RSD is truthful and ex post efficient, i.e., it never outputs Pareto dominated
outcomes.

We observe that there is few work that study the efficiency of RSD. The main
reason is that its average social welfare could be even O (n) far away from the
optimal social welfare if the preferences of agents for items are unrestricted.
It happens when assigning a particular item to a particular agent contributes
most of the optimal social welfare. However, in RSD it is possible that the agent
only gets that item with a probability of 1/n. In this paper, we circumvent this
problem by considering smaller but still rich domains of preferences. The first
type of preferences we consider is dichotomous preferences, where agents have
binary preferences over items. We shall call this setting simply dichotomous. Di-
chotomous preferences are fairly natural in assignment problems. For example,
professors indicate the courses they like or dislike to teach, or workers choose
the working shifts they want. The goal here is to design good mechanisms to
assign courses/shifts to professors/workers. One can model these problems with
bipartite graphs: workers on one side, shifts on the other, an edge indicates
whether a worker wants to participate in a particular shift. Then one can find a
maximum matching in the graph to optimize the total value of the assignment.
It is shown in [5] that with some careful tie-breaking rule, finding a maximum
matching yields a truthful mechanism. However, such mechanisms fail to capture
the symmetry. To make this approach symmetric, one could find all maximum
matchings and randomly choose one. Note that it implies that Zhou’s impossibil-
ity result does not pertains to dichotomous preferences. However, since finding all
maximum matchings in bipartite graphs is #P -complete, we conjecture that it
is computationally infeasible to design truthful and symmetric mechanisms that
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obtain optimal welfare. Therefore, we turn our attention to investigate how well
mechanisms can approximate the maximum social welfare. By the connection to
the online bipartite matching problem [11,12], we get the following result:

Result 1 In dichotomous setting there exists a truthful and symmetric mecha-
nism that is a 0.69-approximation to the maximum social welfare.

Due to the limitation of such mechanisms, next we show that RSD also obtains
a constant approximation for dichotomous preferences.

Result 2 Random Serial Dictatorship in dichotomous setting returns an assign-
ment in which the expected social welfare is a 3-approximation of the maximum
social welfare.

The second type of preferences we consider is normalized von Neumann-
Morgenstern preferences, where the value of agent i for item j lies in [0, 1].
We shall call this setting simply normalized. In this setting our result gives
asymptotically tight description of the social welfare achieved by RSD.

Result 3 In normalized setting with n agents and n items, Random Serial Dic-

tatorship returns a matching which expected social welfare is at least 1
e
ν(O)2

n ,
where ν(O) is the maximum social welfare.

This result implies that RSD achieves an
√
e · n-approximation of the optimal

social welfare in unit-range preferences, i.e., when maxi va(i) = 1, mini va(i) = 0.
Recently [6] presented an O (

√
n)-approximation for RSD in unit-range setting.

Finally, we complement the above result with the following upper-bound.

Result 4 Given n, for any k = 1, . . . , n and for any ε > 0 there exist an instance
of one-sided matching problem with normalized von Neumann-Morgenstern pref-
erences where ν (O) = k and no truthful mechanism can achieve expected social

welfare better than k2

n + ε, where k is the optimal social welfare.

1.1 Related Work

Here we only mention the most relevant work on one-sided matching prob-
lems. For more details, we refer the reader to surveys [13,14]. One-sided match-
ing problems modeled in [9] gave a market-like procedure to produce efficient
assignments. There, the procedure is Pareto optimal but not truthful. Gale
and Shapley [7] considered a similar problem, the marriage problem, but they
turned attention to the incentive issues on whether agents would or would not
reveal their private preferences. In [8] authors were asking about existence of
good mechanisms when preferences are also considered. Zhou [17] answered this
question by showing that there is no symmetric, Pareto optimal and truthful
mechanism. Between ex-ante Pareto optimality and ex-post Pareto optimality,
Bogomolnaia and Moulin [2] introduced a new concept called ordinal efficiency.
They gave a probabilistic serial mechanism that always returns ordinal efficient
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assignments. However, the probabilistic serial mechanism is not truthful. Bhal-
gat et al. [1] studied the efficiency of RSD in a more restricted setting than ours,
where agents have values of n−j+1

n for their jth favorite item. Chakrabarty and
Swamy [4] introduced the notion of rank approximation to measure the social
welfare under ordinal preferences. One-sided matching problems with dichoto-
mous preferences were studied by Bogomolnaia and Moulin [3]. They used the
Gallai-Edmonds decomposition of bipartite graphs to characterize the (most) ef-
ficient assignments.The most related work to ours is that Filos-Ratsikas et al. [6]
independently gave the similar approximation ratio of RSD under unit-range
preferences while our results applies to more general settings.

Cardinal preferences enable agents to explicitly express how much they prefer
each item, while this can not be done in ordinal preferences. The space of car-
dinal preferences could be shown to be the same as the space of von Neumann-
Morgenstern preferences. In addition, the normalization of preferences is a
standard procedure, see [10]. Besides the literature of operational research and de-
cision theory, normalized von Neumann-Morgenstern preferences are widely used
to model individual behavior in game-theoretical settings.

2 Preliminaries

The model We model one-sided matching problems as bipartite graphs. In a
bipartite graph, its left side is a set A of agents and its right side are a set I of
indivisible items. We assume |A| = |I| = n and each agent is matched to exactly
one item. For each agent a ∈ A and each item i ∈ I, there is an edge (a, i)
representing a possible allocation of item i to agent a. The preference of agent
a for item i is denoted by va (i), which is the value that agent a has for item
i. We consider two different types of preferences, dichotomous preferences and
normalized von Neumann-Morgenstern preferences. In dichotomous preferences,
it holds that va (i) ∈ {0, 1}, while in normalized von Neumann-Morgenstern
preferences, it holds that va (i) ∈ [0, 1]. In dichotomous case we shall say shortly
that agent a 1-values item i, if va (i) = 1, instead of clunky “agent a has value
1 for item i”; the same with value 0.

We say va (·) is the preference profile of agent a. Denote by V the set of
all possible preference profiles of a single agent: for dichotomous preferences
V = {0, 1}I , for normalized von Neumann-Morgenstern preferences V = [0, 1]

I
.

Preference profiles of all agents are denoted by vA = (va)a∈A ∈ VA; by v−a =
(va′)a′∈A\a we denote all profiles except of agent a’s. By (v′a, v−a) we denote

agents’ preferences with a’s preference changed from va to v′a; if (v
′
a, v−a) is an

argument of a function, then we skip writing double brackets. Consider a set of
items I ′ ⊆ I and suppose that agent a values items i1, . . . , ik ∈ I ′ equally and
more than any other item in I ′. We say that items i1, . . . , ik are favorite items
of agent a in I ′.

We call matrix pA = (pa)a∈A, where pa =
(
pia
)
i∈I

, a feasible matching if

the following conditions hold: 1) for any a ∈ A and i ∈ I, pia ∈ {0, 1}; 2) for
any a ∈ A,

∑
i∈I p

i
a = 1; 3) for any i ∈ I,

∑
a∈A pia = 1. Given a feasible
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matching pA, we say item i is matched to agent a if pia = 1. Thus, the value of
agent a for the matching pA is given by va · pa =

∑
i∈I va (i) p

i
a, where · is an

operator of the vector product. The social welfare of the matching pA is given
by ν (pA) =

∑
a∈A va · pa.

From each agent a ∈ A mechanism M collects declarations da ∈ V about his
preference profile — we overload notations here a bit, since vector da does not
always have to be declared completely, i.e., when some of the items are already
matched, then the mechanism does not ask a about values for these items. Of
course, the connection between true valuations va ∈ V and declarations da ∈ V ,
which M collects, depends heavily on the mechanism M itself. Mechanism M
maps agents declarations dA to a feasible matching MA (dA) (i.e., the pA ma-
trix);Ma (vA) denotes the allocation to agent a (i.e., the pa vector). Mechanism
M might be randomized, and then matching MA (dA) is a random matrix, and
allocation Ma (vA) is a random vector as well. In this case, E [ν (MA (dA))] is
the expected social welfare of mechanism MA, but since all of the mechanisms
we analyze are randomized, we shall call it just social welfare.

We measure the performance of the mechanism by comparing the social wel-
fare it produces with the optimal social welfare ν (O (vA)), where O (vA) denotes
a matching that maximizes the social welfare when preferences are given by vA.
Note that O (vA) can be seen as a maximum weight matching in the graph
G = (A ∪ I, A× I) where weight of edge (a, i) is equal to va (i). For simplicity
however, throughout the paper we shall just write O, instead of O (vA).

A mechanism M is truthful, if for every a ∈ A, every vA ∈ VA and every
v′a ∈ V , it holds that (even when the mechanism is randomized)

va · Ma (vA) ≥ va ·Ma (v
′
a, v−a) .

A mechanism M is symmetric if for every a1, a2 ∈ A, every dA ∈ VA such that
da1 = da2 , it holds that E [Ma1 (dA)] = E [Ma2 (dA)], i.e., agents with identical
declarations have the same (expected) value for the allocation.

RSD and iterative analysis Now let us give the formal description of the Random
Serial Dictatorship (RSD) mechanism. RSD first picks an ordering of agents
uniformly at random and then asks agents to choose sequentially with respect to
the order. We assume that agents are rational, i.e., they will always choose the
best items among the unmatched items. Ties are broken randomly, i.e., when
agent a is asked in RSD and his favorite items are i1 and i2 among unmatched
items, agent a will chose items i1 and i2 with an equal probability. This is an
important assumption for the analysis of RSD with dichotomous preferences. If
we would like to analyze RSD when agent would always deterministically choose
among the best items, then the competitive ratio guarantees and lower bounds
from von Neumann-Morgenstern preferences would apply.

Let us observe a property of RSD that is important for our analysis. Instead
of thinking that a random ordering is fixed before any agent is considered se-
quentially, we can think that RSD chooses an agent randomly from remaining
agents in each step. It is easy to see that agents are considered in the same
random order in both cases.
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RSD is iterative in nature, and so is the analysis. Let us index its time-steps
by t, which ranges from 0 to n. t = 0 indicates the moment after sorting the
agents, but before asking first agent to choose. Let Rt represent the (partial)
matching constructed by RSD after first t steps. Then ν (Rt) represents the
social welfare obtained after first t steps; in particular ν

(
R0

)
= 0. As RSD is

being executed, the set of unmatched agents and the set of available items are
gradually decreasing. Let At and It be the set of unmatched agents and the set
of available items after step t. For example, A0 = A and I0 = I. As the sets At

and It are being modified, we also keep track of the way in which ν (O) is being
changed (recall that O denotes a matching that maximizes the welfare). More
precisely, we start with ν

(
O0

)
= ν (O). Suppose that at step t, RSD asks agent

a to choose and then a picks item i, then ν (Rt) = ν
(
Rt−1

)
+va (i). We remove a

from At−1 and i from It−1, e.g., At = At−1−{a} and It = It−1−{i}. In addition,
we also remove welfare contributed by a and i from ν

(
Ot−1

)
. Certainly, when

t = n, then ν (On) = 0, while ν (Rn) is the social welfare obtained by RSD.
Sequence {ν (Rt)} t≥0, which represents the increasing welfare of RSD, is a

random process. Moreover, E [ν (Rn)] represents the expected social welfare re-
turned by RSD. The sequence {ν (Ot)} t≥0, which represents how the optimal
social welfare is affected by the random choices within RSD, is a random process
as well. Therefore, we want to describe a relation between E [ν (Rn)] and ν

(
O0

)
,

and to do so we deploy theory of martingales.

Martingales Below we only introduce notions and properties that we use later
in the paper. For a thorough treatment of martingale theory see [16].

Definition 1 Consider a random process (Xt)
n
t=0. Suppose we observe first k

steps of the process, and let Hk denote the information we have acquired in steps
0, 1, . . . , k. Expected value ofXk+1, conditioned on the information we have from
steps 0 to k, is formally presented as E

[
Xk+1

∣∣Hk
]
. If for any k = 0, . . . , n− 1,

we have E
[
Xk+1

∣∣Hk
]
= Xk, then the process is called a martingale.

In other words, the process does not change on expectation in one step. We
shall also consider a sub-martingale (Xt)

n
t=0 which satisfies E

[
Xk+1

∣∣Hk
]
≥ Xk

instead of equality in the above definition.

Theorem (Doob’s Stopping Theorem) Let (Xt)
n
t=0 be a martingale, re-

spectively sub-martingale. For any k = 0, 1, . . . , n it holds that E
[
Xk

]
= E

[
X0

]
,

respectively E
[
Xk

]
≥ E

[
X0

]
.

The above is not the Doob’s theorem in its full generality, but rather the simplest
variant that still holds in our setting.

3 Dichotomous Preferences and Online Bipartite
Matching

In this section, we establish a connection between one-sided matching with di-
chotomous preferences and online bipartite matching. A similar connection was
also presented in [1].
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Consider a variant of online bipartite matching. We are given a bipartite graph
G = (A∪B,E), where one side A of the graph is given, while vertices from other
side B and edges between A and B are unknown. Suppose that vertices from
B arrive one by one, and upon the arrival of vertex b ∈ B, all edges adjacent
to b are revealed. On vertices of A there is an ordering σ given by a random
permutation. Consider RANKING algorithm that upon arrival of vertex b ∈ B
it matches b to the unmatched neighbor in a ∈ A with the highest ranking
σ (a). In their seminal paper, Karp et al. [11] have proven that this algorithm
constructs a matching of expected size at least

(
1− 1

e

)
OPT , where OPT is

the offline optimum, and the bound holds even if the vertices of B arrive in
an adversarial order. Furthermore, Mahdian and Yan [12] have shown that the
performance of RANKING algorithm is even better when the order of vertices
in B is also given by a random permutation:

Theorem Given that the vertices in B arrive uniformly at random and the
order of vertices in A is random, RANKING algorithm constructs a matching
of expected size at least 0.69 · OPT , where OPT is the offline optimum.

Now let us see consider the following mechanisms for one-sided matching
with dichotomous preferences. Given the agents and items, mechanism RSD*
generates a random ordering on agents and a random ranking on items. RSD*
considers agents one by one according to the random ordering. Suppose that
agent a is considered at step τ and let da(·) be the preference reported by
agent a. Denote by Iτ the set of items yet unmatched at step τ . If agent a
1-values any unmatched item, RSD* assigns agent a an item with the highest
rank among all remaining items. Otherwise, RSD* assigns nothing to agent a.
Finally, RSD* matches any unmatched items to unmatched agents. Truthfulness
of RSD* follows from the observation that τ as well as Iτ are independent of
a’s declaration da. More precisely, the moment τ is given only by a random
permutation of agents, while set Iτ depends on the permutation of agents and
declarations da′ of agents a′ that came before a. Therefore, if a declares da (i) = 1
for item i such that va (i) = 0, then he can only increase the probability that at
moment τ he is matched to a 0-valued item. Analogically, if a declares da (i) = 0
for item i such that va (i) = 1, then he can only decrease the probability that
at moment τ he is matched to a 1-valued item. Suppose now that agent a has
0 value for all items in Iτ . In this case agent gains nothing regardless of what
his declarations are. An agent that reports truthfully in this case, we call non-
adversarial. Since RSD* is guided by two random permutations, the symmetry
of the mechanism is clear.

Theorem 1 Assuming that agents are non-adversarial, RSD* is a truthful and
symmetric mechanism that achieves 0.69-approximation to the maximum social
welfare in one-sided matching problems with dichotomous preferences.

One can imagine that sometimes an agent can be adversarial, and he would
not admit that he does not value any of the remaining items. To address this
issue, in the next section we present an analysis of RSD mechanism in which
every agent can be adversarial.
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Algorithm 1. RSD*(A, I)

1 Let random permutation σ : {1, ..., n} �→ {1, ..., n} be the ranking of items;
2 For each agent a ∈ A in random order:

3 ask agent a about his preference profile da ∈ V = {0, 1}I ;
4 if there is no unmatched item i such that da (i) = 1, then discard agent a;
5 otherwise, assign a to unmatched item i that has the highest rank σ (i);
6 Match any unmatched items to unmatched agents anyhow.

4 Dichotomous Preferences and RSD

Theorem 2 Random Serial Dictatorship always returns an matching in which
the expected welfare is at least 1

3ν (O) in one-sided matching problems with di-
chotomous preferences.

Proof. Recall, O is an optimal matching. Let At be the set of agents remaining
after t steps, let It be the set of remaining items, and Ot ⊂ O is what remains
from optimal solution after t steps of RSD. Also, Rt is the partial matching
constructed by RSD after t steps, and ν (Rt) be its welfare. For an agent a let
Oa ∈ I be the item to which a is matched in O.

Let Y t be the set of agents who are matched to an item in Ot which they
value 1, i.e., {a ∈ At| va (Oa) = 1}. Therefore |Y t| = ν (Ot) for every t. It can
happen that at time t, an agent does not 1-value any of remaining items It, even
though he could have 1-valued some of the items in I0. Thus let Zt ⊆ At be
the agents who 0-value all items in It. Let us denote yt = |Y t| and zt = |Zt|
for brevity. Consider step t + 1 of RSD, and assume we have all information
available after first t steps, represented by Ht. Let a be the agent who is to
make his choice in this step, and let i be the item a chooses. Agent a does
not belong to Zt with probability 1 − zt

n−t , and if this happens, then for sure

va (i) = 1, which adds 1 to the welfare of RSD, i.e., ν
(
Rt+1

)
= ν (Rt)+1. Hence

E
[
ν
(
Rt+1

)∣∣Ht
]
= ν (Rt) + 1− zt

n−t .

Now let us analyze the expected decrease ν (Ot) − ν
(
Ot+1

)
. Suppose that

agent a does not belong to Zt, again with probability 1 − zt

n−t . Edge (a, i) is

adjacent to at most two 1-value edges in Ot, since Ot is a feasible matching.
Thus when a /∈ Zt, then ν (Ot)−ν

(
Ot+1

)
is at most 2 . Now suppose that agent

a belongs to Zt, which happens with probability zt

n−t . Since va (i) = 0, then a

is not adjacent to any 1-value edge in Ot, and i may be adjacent to at most
one such edge since agent a choose an item randomly from unmatched items.
Therefore, when a ∈ Zt, then ν (Ot) − ν

(
Ot+1

)
is at most 1. Hence, together

with noting that zt

n−t +
yt

n−t ≤ 1, we can conclude that the expected decrease

ν (Ot)− ν
(
Ot+1

)
is:

E
[
ν
(
Ot
)
− ν

(
Ot+1

)∣∣Ht
]
≤ 2 ·

(
1− zt

n− t

)
+

zt

n− t
· yt

n− t
≤ 3 ·

(
1− zt

n− t

)
.
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Since E
[
ν
(
Rt+1

)∣∣Ht
]
= ν (Rt) + 1− zt

n−t , we get that

E
[
ν
(
Ot
)
− ν

(
Ot+1

)∣∣Ht
]
≤ 3 ·

(
1− zt

n− t

)
= 3 · E

[
ν
(
Rt+1

)
− ν

(
Rt

)∣∣Ht
]
.

This means that sequence (Xt)
n
t=0, defined by X0 = 0 and Xt+1 − Xt =

3 ·
(
ν
(
Rt+1

)
− ν (Rt)

)
−
(
ν (Ot)− ν

(
Ot+1

))
, satisfies E

[
Xt+1

∣∣Ht
]
≥ Xt, and

therefore is a sub-martingale. From Doobs Stopping Theorem we get that E [Xn]
≥ E

[
X0

]
= 0, and hence

0 ≤ E [Xn] = E

[
n∑

t=1

Xt −Xt−1

]
= 3 · E

[
n∑

t=1

ν
(
Rt
)
− ν

(
Rt−1

)]
−

− E

[
n∑

t=1

ν
(
Ot−1

)
− ν

(
Ot
)]

= 3 · E [ν (Rn)]− E
[
ν
(
O0

)]
,

since R0 = On = ∅. This allows us to conclude that 3 ·E [ν (Rn)] ≥ ν (O), which
finishes the proof. ��

Our analysis is simple, and most likely not tight — approximation ratio should
be below 3. On the other hand, it is not very close to 2, as there exist instances
with dichotomous preferences in which RSD gives expected outcome close to
1

2.28 · ν (O). One can see a resemblance between the following instance and the
worst case instance for algorithm RANDOM from Karp et al. [11].

Fact 1 Consider the following instance of a problem. We have numbers k, z
and n = z+k, with k even, and also sets A = {1, ..., n}, I = {1, ..., n}. Define the
valuations: va (i) = 1 if a = i ∈ {1, . . . , k} or a ∈

{
1, . . . , k

2

}
∧ i ∈

{
k
2 , . . . , k

}
,

and 0 otherwise. The optimum solution in this case is obviously k. Simulations
indicate that for k = 104 and z = 107, the expected performance of RSD is

around 4378 giving ratio of 104

4378 ≈ 2.28. Taking different values of k or z did not
significantly changed the outcome of simulations.

5 Normalized Von Neumann-Morgenstern Preferences
and RSD

Theorem 3 Random Serial Dictatorship always returns an assignment in which

the expected social welfare is at least 1
e
ν(O)2

n in one-sided matching problems with
normalized von Neumann- Morgenstern preferences, where ν (O) is the maxi-
mum social welfare.

Proof. As before, let O be the optimal assignment, and Ot ⊆ O be the subset of
the optimal assignment that remains after t steps of RSD. Consider step t+ 1,
and let Ht be all information available after t steps. We choose agent a uniformly
at random from the remaining agents, and then a chooses item i that he prefers
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the most, i.e., edge (a, i) has the greatest value among edges {(a, i)| i ∈ It}. The
number of agents without an assigned item is exactly n − t after t steps, and
hence the probability of choosing a particular agent is 1

n−t .
Let O (a) denote the item matched to agent a in O. Since agent a has the

largest value for item i among remaining items, it has to hold that va (i) ≥
va (O(a)). Therefore, the expected welfare of RSD in step t+1 increases at least∑

a∈At

va (i)

n− t
≥

∑
a∈At

va (O(a))

n− t
=

ν (Ot)

n− t
,

and hence E
[
ν
(
Rt+1

)∣∣Ht
]
≥ ν (Rt) +

ν(Ot)
n−t . Similar martingale-based reason-

ing as in Section 4 yields that E [ν (Rn)] ≥ E

[∑n−1
t=0

ν(Ot)
n−t

]
, so in the remaining

part we give a lower bound on this sum.
When we remove agent a and item i in step t+1, what is the average decrease

ν (Ot)− ν
(
Ot+1

)
? Surely, we remove edge (a,Ot (a)) from Ot. However, item i

may be assigned a different agent than a in Ot, and the value of this assignment
can be arbitrary — let us denote by Lt+1 ∈ [0, 1] the decrease of Ot caused
by deleting the assignment of i. Therefore, the average decrease at step t + 1

is ν (Ot) − E
[
ν
(
Ot+1

)∣∣Ht
]
= E

[
Lt+1

∣∣Ht
]
+

ν(Ot)
n−t , so if we define sequence

(Yt)
n
t=1, where

Y t+1 = Lt+1 +
ν (Ot)

n− t
−
(
ν
(
Ot
)
− ν

(
Ot+1

))
, (1)

then E
[
Y t+1

∣∣Ht
]
= 0 for t = 0, 1, . . . , n−1. We define another sequence (Xt)

n
t=0

with X0 = 0 and Xt =
∑t

i=1 Y
i.

Equality E
[
Y t+1

∣∣Ht
]
= 0 implies E

[
Xt+1

∣∣Ht
]
= Xt, which means that

(Xt)
n
t=0 is a martingale, and from Doob’s Stopping Theorem, we get that 0 =

E
[
X0

]
= E [Xn] = E [

∑n
t=1 Y

t]. Thus summing equality (1) for t from 1 to n−1
and taking expectation yields that

E

[
n−1∑
t=0

ν (Ot)

n− t

]
= ν (O)− E

[
n−1∑
t=1

Lt

]
.

And since E

[∑n−1
t=0

ν(Ot)
n−t

]
is the outcome of RSD, we just need to upper-bound

E

[∑n−1
t=1 Lt

]
now.

Let us note that equality (1) can be transformed into

Y t+1

n− t− 1
=

Lt+1

n− t− 1
−
(
ν (Ot)

n− t
−

ν
(
Ot+1

)
n− t− 1

)

for t + 1 < n. Since E
[
Y t+1

∣∣Ht
]
= 0, we have E

[
Y t

n−t

∣∣∣Ht−1
]
= 0 as well.

Thus sequence (Zt)
n−1
t=0 with Z0 = 0 and Zt =

∑t
i=1

Y i

n−i is a martingale, and
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again from Doob’s Stopping Theorem we get that 0 = E
[
Z0

]
= E

[
Zn−1

]
=

E

[∑n−1
t=1

Y t

n−t

]
, which gives

0 = E

[
n−1∑
t=1

Y t

n− t

]
= E

[
n−1∑
t=1

Lt

n− t

]
− E

[
n−1∑
t=1

ν
(
Ot−1

)
n− t+ 1

− ν (Ot)

n− t

]
,

and since the second sum telescopes we obtain that

E

[
n−1∑
t=1

Lt

n− t

]
=

ν
(
O0

)
n

− E
[
ν
(
On−1

)]
≤ ν (O)

n
. (2)

For any Lt ∈ [0, 1] it holds that Lt

n−t ≥
∫ t

t−Lt
dx

n−x . Moreover all intervals [t− Lt, t]

are disjoint, and they are of total length of
∑n−1

t=1 Lt, hence

n−1∑
t=1

Lt

n− t
≥

n−1∑
t=1

∫ t

t−Lt

dx

n− x
≥
∫ ∑n−1

t=1 Lt

0

dx

n− x
= ln

n

n−
∑n−1

t=1 Lt
.

Function x �→ ln n
n−x is convex, so from Jensen’s inequality and (2) we get that

ν (O)

n
≥ E

[
n−1∑
t=1

Lt

n− t

]
≥ E

[
ln

n

n−
∑n−1

t=1 Lt

]
≥ ln

n

n− E

[∑n−1
t=1 Lt

] ,
which yields n

(
1− e−

ν(O)
n

)
≥ E

[∑n−1
t=1 Lt

]
. We can now finish lowerbounding

the outcome of RSD:

ν (R) ≥ E

[
n−1∑
t=0

ν
(Ot

)
n− t

]
= ν (O)−E

[
n−1∑
t=1

Lt

]
≥ ν (O)−n+n·e− ν(O)

n ≥ 1

e

ν (O)2

n
,

where the last inequality follows from x− 1 + e−x ≥ 1
ex

2 for x ∈ [0, 1]. ��
On the hardness side, Result 4 says that no truthful mechanism can achieve

social welfare greater than ν(O)2

n . The proof is deferred to the full version of the
paper.

6 Open Question

As mentioned in the introduction, we can give the following truthful and sym-
metric mechanisms that outputs optimal social welfare. The mechanism works
as follows. First, collect agents preferences da for all a ∈ A. Then consider graph
G = (A, I) with edge between every pair a ∈ A, i ∈ I for which da(i) = 1..
Next, find the all maximum matchings. Finally, output a maximum matching
uniformly at random. Unfortunately, such a mechanism is not feasible when
computational efficiency is required. The problem is that it is #P -complete to
count all maximum matchings. Therefore, we suspect that any truthful, sym-
metric and optimal mechanism would be somehow connected with an algorithm
for counting all maximum matchings. And because of that, we conjecture that
such mechanism should be #P -complete as well.



24 M. Adamczyk, P. Sankowski, and Q. Zhang

References

1. Bhalgat, A., Chakrabarty, D., Khanna, S.: Social welfare in one-sided matching
markets without money. In: Goldberg, L.A., Jansen, K., Ravi, R., Rolim, J.D.P.
(eds.) RANDOM 2011 and APPROX 2011. LNCS, vol. 6845, pp. 87–98. Springer,
Heidelberg (2011)

2. Bogomolnaia, A., Moulin, H.: A new solution to the random assignment problem.
Journal of Economic Theory 100(2), 295–328 (2001)

3. Bogomolnaia, A., Moulin, H.: Random matching under dichotomous preferences.
Econometrica 72(1), 257–279 (2004)

4. Chakrabarty, D., Swamy, C.: Welfare maximization and truthfulness in mecha-
nism design with ordinal preferences. In: In Proceedings of the 5th Conference on
Innovations in Theoretical Computer Science, pp. 105–120 (2014)

5. Dughmi, S., Ghosh, A.: Truthful assignment without money. In: In Proceedings of
the 11th ACM Conference on Electronic Commerce, pp. 325–334 (2010)

6. Filos-Ratsikas, A., Frederiksen, S.K.S., Zhang, J.: Social welfare in one-sided
matchings: Random priority and beyond. In: In Proceedings of the 7th Interna-
tional Symposium on Algorithmic Game Theory (to appear, 2014)

7. Gale, D., Shapley, L.S.: College admissions and the stability of marriage. American
Mathematical Monthly, 9–15 (1962)

8. Gale, D.: College Course Assignments and Optimal Lotteries. University of
California at Berkeley (1987)

9. Hylland, A., Zeckhauser, R.: The efficient allocation of individuals to positions.
The Journal of Political Economy, 293–314 (1979)

10. Kalai, E., Schmeidler, D.: Aggregation procedure for cardinal preferences: A
formulation and proof of Samuelson’s impossibility conjecture. Econometrica 45(6),
1431–1438 (1977)

11. Karp, R.M., Vazirani, U.V., Vazirani, V.V.: An optimal algorithm for on-line
bipartite matching. In: STOC, pp. 352–358 (1990)

12. Mahdian, M., Yan, Q.: Online bipartite matching with random arrivals: an
approach based on strongly factor-revealing lps. In: In Proceedings of the 43rd
Annual ACM Symposium on Theory of Computing, pp. 597–606 (2011)

13. Roth, A.E., Sotomayor, M.A.O.: Two-sided matching: A study in game-theoretic
modeling and analysis. Cambridge University Press, Cambridge (1992)
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Extended Abstract

Linda Farczadi, Konstantinos Georgiou, and Jochen Könemann

University of Waterloo, Waterloo, Canada

Abstract. We propose a generalization of the classical stable marriage
problem. In our model, the preferences on one side of the partition are
given in terms of arbitrary binary relations, which need not be transi-
tive nor acyclic. This generalization is practically well-motivated, and as
we show, encompasses the well studied hard variant of stable marriage
where preferences are allowed to have ties and to be incomplete. As a
result, we prove that deciding the existence of a stable matching in our
model is NP-complete. Complementing this negative result we present a
polynomial-time algorithm for the above decision problem in a significant
class of instances where the preferences are asymmetric. We also present
a linear programming formulation whose feasibility fully characterizes
the existence of stable matchings in this special case. Finally, we use our
model to study a long standing open problem regarding the existence
of cyclic 3D stable matchings. In particular, we prove that the problem
of deciding whether a fixed 2D perfect matching can be extended to a
3D stable matching is NP- complete, showing this way that a natural
attempt to resolve the existence (or not) of 3D stable matchings is bound
to fail.

1 Introduction

The Stable Marriage (SM) problem is a classical bipartite matching problem
first introduced by Gale and Shapley [8]. An instance of the problem consists
of a set n of men, and a set of n women. Each man (woman) has a preference
list that is a total order over the entire set of women (men). The goal is to
find a stable matching between the men and women, meaning that there is no
(man, woman) pair that both prefer each other to their current partners in the
matching. Since its introduction, the stable marriage problem has become one of
the most popular combinatorial problems with several books being dedicated to
its study [10, 15, 21] and more recently [17]. The popularity of this model arises
not only from its nice theoretical properties but also from its many applications.
In particular, a wide array of allocation problems from many diverse fields can
be analyzed within its context. Some well known examples include the labour
market for medical interns, auction markets, the college admissions market, the
organ donors market, and many more [21].

In their seminal work Gale and Shapley showed that every instance of SM ad-
mits a solution and such a solution can be computed efficiently using the so-called
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c© Springer-Verlag Berlin Heidelberg 2014



26 L. Farczadi, K. Georgiou, and J. Könemann

Gale-Shapley (or man- proposing) algorithm. Among the many new variants of
this classical problem, two extensions have received most of the attention: incom-
plete preference lists and ties in the preferences. Introducing either one of these
extensions on its own does not pose any new challenges, meaning that solutions
are still guaranteed to exist, all solutions have the same size, and they can be
computed using a modification of the original Gale-Shapley algorithm [9, 10].
However, the same cannot be said about the Stable Marriage problem with Ties
and Incomplete Lists (SMTI) that incorporates both extensions. In this variant
stable matchings no longer need to be of the same size, even though they are
still guaranteed to exist. In fact, deciding whether a given instance admits a
stable matching of a given size is NP-hard [18], even in the case where ties occur
only on one side of the partition. Several papers have studied the approximate
variants of this problem (see [17] for a more complete account).

A central assumption in most variants of SM is that agents’ preferences are
transitive (i.e., if x is preferred to y, and y is preferred to z then x is also preferred
to z). However, there are several studies [1, 6, 3, 19] that suggest that non-
transitive, and even cyclic preferences arise naturally. Cyclicity, for example, may
be introduced in the context of multi-attribute comparisons [7]; e.g., consider the
following study from [19] where 62 college students were asked to make binary
comparisons between three potential marriage partners x,y and z according to
the following three criteria: intelligence, looks and wealth. The candidates had
the following attributes: candidate x was very intelligent, plain, and well off;
candidate y was intelligent, very good looking, and poor; and candidate z was
fairly intelligent, good looking, and rich. From the 62 participants, 17 displayed
the following cyclic preference: x was preferred to y, y was preferred to z, and
z was preferred to x. In order to better capture such situations there is a need
for a model that allows for more general preferences.

Addressing this need we propose the Stable Marriage with General Preferences
(SMG) problem. As in SM, in an instance of SMG we are given n men, and
n women, and the preferences of men are complete total orders over the set of
women. The preferences of women, on the other hand, are given in terms of
arbitrary binary relations over the men. Each of these binary relations will be
represented by a set of ordered pairs of men. We say that a woman prefers man
x at least as much as man y if the ordered pair (x, y) is part of her preference
set. A matching is then stable as long as for every unmatched (man, woman)
pair at least one member prefers her mate in the matching at least as much as
the other member of the pair.

This introduction of non-transitive preferences, even when restricted to just
one side of the partition, changes the properties of the model drastically. Like in
SM any solution must be a perfect matching. However, solutions are no longer
guaranteed to exist. We show that non-transitive preferences generalize both
incomplete lists and ties by reducing the SMTI to SMG. In doing so, we prove
that the SMG problem is also NP-hard. In addition, we provide results on the
structural properties of the SMG problem and give sufficient conditions for the
problem to be solvable in polynomial time.
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The second half of this paper focuses on three-dimensional stable matching
models whose study was initiated by Knuth [15]. We will be particularly inter-
ested in the Cyclic 3-Dimensional Stable Matching problem (c3DSM), where we
are given a set of n men, a set of n women and in addition a set of n dogs. The
preferences of the men are complete total orders over the set of women. Similarly
the women have preferences over the dogs, and the dogs have preferences over
the men. A 3D matching is said to be stable if there is no (man, woman, dog)
triple that is strictly preferred to their current triples in the matching by each of
its members. A prominent open question is whether every instance of c3DSM
admits a stable matching, and whether it can be computed efficiently.

A natural avenue for attacking c3DSM is to solve the following problem which
we refer to as Stable Extension (SE): suppose we fix a perfect matching M on
dogs and men, can we efficiently determine whether M is extendible to a 3D
stable matching? Recall that women have preferences over dogs only, but note
that the given matching M induces preferences over their male owners as well!
In essence, this allows us to state the SE problem as a two dimensional bipartite
matching problem, and we show in Theorem 4 that SE can be seen as a special
case of SMG. We then prove that SE remains NP-complete.

Contributions. In Section 3.1 we show the following result.

Theorem 1. SMG is NP-complete.

We then identify a significant class of instances that are solvable in polynomial
time: those where the preferences are asymmetric, meaning that for every pair
of men x, y, each woman prefers at most one to the other. We then prove the
following result.

Theorem 2. For instances of SMG with asymmetric preferences, there exists
a polynomial time algorithm that finds a solution if and only if one exists.

We provide two different proofs. The first (given in Section 3.2) employs an
adaptation of the classical Gale-Shapley man-proposing algorithm. The second
(given in Section 3.3) relies on a polyhedral characterization: we define a polytope
that is non-empty if and only if the instance admits a stable matching. We
also develop an efficient rounding algorithm for its fractional points. Despite
displaying stronger structural properties than SMG, we show that SE remains
hard to solve.

Theorem 3. SE is NP-complete.

The proof of the above theorem is given in Section 4. At a high level, its strategy
resembles that of the proof of Theorem 1. The details are however significantly
more intricate, mainly due to the fact that SE instances correspond to SMG
instances in which preferences are induced by a given 3D matching instance. As
an interesting consequence for the c3DSM, Theorem 3 rules out the natural
algorithmic strategy of fixing and extending a 2D perfect matching on two of
the input sets.
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Related work. To the best of our knowledge, the stable marriage problem with
non-transitive preferences has not been studied before. However, there is a rich
literature about SM and its variants. In particular, there has been significant
work concerning the approximation variant of the SMTI problem, where the goal
is to find a maximum size stable matching. When ties are allowed on both sides,
the problem is NP-hard to approximate within 33/29 [23] and the currently best
known ratio is 3/2 [20]. When ties are only allowed on the side of the women
the problem is NP-hard to approximate within 21/19 [11] and the currently best
known ratio is 25/17 [14].

A related model known as Stable Marriage with Indifference [13, 16], allows
for preferences to be given in the form of partial orders. In this case, it is possible
for a pair of agents to be incomparable, but transitivity is still assumed to hold.
This model allows for several definitions of stability, and depending on which
definition is used, solutions might not always exist. However, there is an efficient
algorithm for computing each type of stable matchings, whenever they exist.

For c3DSM, it is known that every instance admits a stable matching for
n ≤ 4 [4]. The authors conjectured that this result can be extended to general
instances. In [2] it was shown that if we allow unacceptable partners, the exis-
tence of a stable matching becomes NP-complete. In the same paper, and also
independently in [12], it was shown that the c3DSM problem under a different
notion of stability known as strong stability is also NP-complete.

2 Definitions and Notation

Throughout this paper we denote the set of men by B and the set of women
by C. In the 3D setting, we have an additional set of n dogs A. A 3D perfect
matching M is a set of n disjoint triples from A× B × C. For every dog a ∈ A
we denote by M(a) the man that a is matched to inM. Similarly for every man
b ∈ B,M(b) denotes the woman that b is matched to inM, and for every woman
c ∈ C, M(c) denotes the dog that c is matched to in M. A 3D perfect matching
can also be induced by fixing perfect matchings on any two of the following sets
A×B, B ×C or C ×A. We will use M to denote a perfect matching on A×B
and N to denote a perfect matching on B×C. We then define the 3D matching
M ◦N by setting (a, b, c) ∈ M ◦N if and only if (a, b) ∈M and (b, c) ∈ N . For
each q ∈ A∪B we denote by M(q) the partner of q in M , and similarly for each
q ∈ B ∪ C we denote by N(q) the partner of q in N . If the preferences of an
agent q are given in terms of an ordering P (q) (with or without ties) over a set
A then for all x, y ∈ A we write x �q y to denote that q strictly prefers x to y
and x �q y to denote that q prefers x at least as much as y.

2.1 Stable Marriage with Ties and Incomplete Lists (SMTI)

An instance I of SMTI consists of a set B of n men and a set C of n women.
Each man b ∈ B has a preference list P (b) that is an ordering over a subset of
C and is allowed to contain ties. Similarly each woman c ∈ C has a preference
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list P (c) that is an ordering over a subset of B and is also allowed to contain
ties. A pair (b, c) is said to be acceptable if b appears in P (c) and c appears in
P (b). It is assumed that a woman c is acceptable to a man b if and only if man
b is acceptable to woman c. A pair (b, c) is blocking with respect to a matching
N if (b, c) is an acceptable pair that is not in N , c �b N(b) and b �c N(c). A
matching N is stable if it uses only acceptable pairs and it has no blocking pairs.
In that case, we also say that N is a solution to I. If a solution is of size n we
refer to it as a perfect stable matching. While all instances of SMTI admit a
stable matching, not all instances admit a perfect stable matching. In this paper
we use SMTI to refer to the decision problem of whether a given instance admits
a perfect stable matching. This problem is known to be NP-complete [18], even
when the ties occur only in the preference lists of the women.

2.2 Stable Marriage with General Preferences (SMG)

An instance I of SMG consists of a set B of nmen and a set C of n women. Each
man b ∈ B has a preference list P (b) that is complete total order over C. Each
woman c ∈ C has a preference relation given in terms of a set of ordered pairs
Rc ⊆ B × B. For a given pair of men b, b′ ∈ B and woman c ∈ C we interpret
(b, b′) ∈ Rc as woman c preferring man b at least as much as man b′. Note
that whether (b, b′) is in Rc is completely independent of whether (b′, b) ∈ Rc.
We say that a pair (b, c) is blocking with respect to a matching N , if b and c
are not matched to each other and neither one prefers its partner in N at least
as much as the other. Formally, (b, c) is blocking if (b, c) /∈ N , c �b N(b) and
(N(c), b) /∈ Rc. A matching N is stable if it has no blocking pairs. It follows from
this definition that any stable matching is a perfect matching. In this paper we
use SMG to refer to the decision problem of whether a given instance admits a
stable matching (which we also call a solution). An instance I of SMG is said
to have asymmetric preferences if for every b1, b2 ∈ B and c ∈ C at most one of
the following two conditions holds: (b1, b2) ∈ Rc or (b2, b1) ∈ Rc.

Note that we could have obtained an alternate definition of stability by saying
that a pair (b, c) is blocking if (b, c) /∈ N , c �b N(b) and (b,N(c)) ∈ Rc. However,
the two models are equivalent via the following correspondence: create a new
instance I ′ with sets R′

c where (b, b′) ∈ R′
c if and only if (b′, b) /∈ Rc. Then the

solutions that are stable for I under the definition of stability used in this paper,
are exactly those that are stable for I ′ using the alternate definition of stability.
Hence, we can use our definition of stability without loss of generality.

2.3 Stable Extension (SE)

An instance I of SE consists of a set of n dogs A, a set of n men B, and a set of
n women C, together with a fixed perfect matching M on A×B. The preferences
are defined cyclically (A over B, B over C, and C over A) and are complete total
orders over the corresponding sets. A triple (a, b, c) is blocking with respect to a
3D matching M if (a, b, c) /∈ M, b �a M(a), c �b M(b) and a �c M(c). Note
that if (a, b, c) is a blocking triple then a, b and c must be part of three disjoint
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triples in M. A 3D matching M is stable if it has no blocking pairs. It follows
from this definition that any stable 3D matching must be a perfect matching.
We say that a perfect matching N on B × C is a stable extension, or a solution
to I, if M ◦N is a 3D stable matching, and we use SE to refer to the decision
problem of whether a given instance admits a stable extension.

We now demonstrate how an instance I of SE can be reduced to an SMG
instance. First, for each man b ∈ B we define Ab to be the set of dogs in A
that prefer b to the man assigned to them in the fixed perfect matching M .
That is Ab = {a ∈ A : b �a M(a)}. The set Ab contains exactly those dogs in A
with whom man b can potentially be in a blocking triple when extending M to
a 3D matching. It follows that if Ab = ∅ then man b cannot be in a blocking
triple in any extension of M to a 3D matching. Now, for each pair (b, c) we
define α(b, c) to be the dog in the set Ab that woman c prefers the most. That is
α(b, c) = max�c Ab. If Ab = ∅ then we let α(b, c) be the dog in the last position
in woman c’s preference list. We now define preferences for each woman c ∈ C

Rc := {(b, b′) | b, b′ ∈ B, b �= b′, M(b) �c α(b
′, c)} . (1)

Note that if (N(c), b) ∈ Rc then in the 3D matching M ◦ N the woman c
will be matched to a dog that she prefers at least as much as any dog in Ab,
therefore guaranteeing that the man b and woman c will never be part of the
same blocking triple. Hence, in order for M ◦ N to be a 3D stable matching it
suffices to ensure that for all (b, c) /∈ N we either have b matched to someone
better than c, meaning N(b) �b c, or we have c matched to some N(c) such
that (N(c), b) ∈ Rc. But this is exactly the definition of a stable matching for
an instance of SMG. Hence we have the following theorem.

Theorem 4. SE can be reduced in polynomial time to SMG.

Note that Theorem 4, together with Theorem 3 imply NP-hardness of SMG, and
hence prove Theorem 1 (modulo containment in NP which is straightforward).
Nevertheless, we choose to present first the proof of Theorem 1 as a warm-up,
as it shares many similarity with that of Theorem 3.

3 Results for SMG

3.1 NP-completeness of SMG (Proof of Theorem 1)

Containment in NP is straightforward, and is based on the observation that
deciding whether an edge not in a perfect matching of an instance of SMG is
blocking or not can be done in polynomial time in n. The rest of our argument
focuses on hardness.

Our proof uses a polynomial time reduction from SMTI where ties occur only
in the preference lists of the women. This problem is known to be NP-complete
[18]. Let I be an instance of SMTI where ties occur only on the side of the
women. We let B = {b1, · · · , bn} denote the set of men and C = {c1, · · · , cn}
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denote the set of women for the instance I. For each person q ∈ B ∪ C we let
P (q) denote their preference list.

We now describe how to construct an instance J of SMG. The set of men
for our instance will be given by B′ = B ∪{bn+1, bn+2} and the set of women by
C′ = C ∪ {cn+1, cn+2}. The preferences of the men are defined as follows: each
original man b ∈ B ranks the women in P (b) first, in the same order as in P (b),
followed by the woman cn+1, and the remaining women of C′ ranked arbitrarily;
each new man bn+i for i ∈ {1, 2} ranks the woman cn+i first, and the remaining
women of C′ arbitrarily. Now, for each original woman c ∈ C we define the
binary relation Rc ⊆ B ×B as follows Rc := {(b, b′) | b, b′ ∈ P (b), b �c b

′}. That
is, Rc contains the ordered pair (b, b′) when both b and b′ are acceptable to c
under the instance I and c prefers b at least as much as b′. Finally, for each
extra woman cn+i for i ∈ {1, 2} we set Rcn+i := ∅. This completes the definition
of the instance J . The new agents are used to establish the following property.

Lemma 1. In any solution N to J every man b ∈ B is matched to a woman
from the set P (b).

Note that each b ∈ B ranks cn+1 immediately after all acceptable partners and
before any unacceptable partners. Now if b is matched to someone outside of
P (b), the pair (b, cn+1) will be blocking, since b will prefer cn+1 to its current
partner, and cn+1 cannot be matched to someone she prefers at least as much as
b since we defined Rcn+1 = ∅. The full proof can be found in [5]. The following
lemma completes the proof of Theorem 1.

Lemma 2. I admits a perfect stable matching if and only if J admits a stable
matching.

Proof. Suppose that N is a perfect stable matching for I. Then complete N to
a perfect matching on B′ ∪ C′ by matching bn+i to cn+i for every i ∈ {1, 2}.
To see that this is a stable matching for J , note that both men bn+1 and bn+2

are matched to their most preferred woman in C′, hence they cannot be part
of any blocking pairs. It remains to show that no man in B can be part of a
blocking pair. Consider a man b ∈ B, and suppose that c is a woman that b
strictly prefers to N(b) according to the preferences in J . Then it must be the
case that c ∈ P (b) and b also strictly prefers c to N(b) in I. Since N is a solution
to I, woman c prefers N(c) at least as much as b in I. Hence from the way we
defined the set Rc we have (N(c), b) ∈ Rc, implying that (b, c) is not blocking.

To see the other direction suppose that J admits a stable matching, and let N
be the part of this stable matching obtained by restricting it to the sets B∪C. It
follows from Lemma 1 that N is a perfect matching and every man is matched to
an acceptable woman. To see that there are no blocking pairs, consider any pair
(b, c) /∈ N such that (b, c) is an acceptable pair, that is b ∈ P (c) and c ∈ P (b).
Assume now that in I man b strictly prefers c to N(b). Since c ∈ P (b) it follows
that b also strictly prefers c to N(b) in J . Hence, since N is a stable matching for
J , we must have (N(c), b) ∈ Rc. From the way we defined Rc this implies that
N(c) is acceptable to c, and c prefers N(c) at least as much as b in I. Therefore
N does not have any blocking pairs, and is a stable matching in I.
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3.2 Algorithmic Results

In this section we introduce a variant of the Gale-Shapley man- proposing al-
gorithm for instances of SMG that have asymmetric preferences. Let I be an
SMG instance as defined in Section 2.2. Like in the classical algorithm, each man
in B is originally declared single and is given a list containing all the women of
C in order of preference. In each round, every man b that is still single proposes
to its most preferred woman in C that is still in his list. If a woman c accepts
a proposal from a man b then they become engaged, and b’s status changes
from single to engaged. On the other hand, if c rejects b’s proposal then b re-
moves woman c from his list and remains single. The difference from the original
Gale-Shapley algorithm is in the way that the women decide to accept or reject
incoming proposals. A woman c accepts a proposal from a man b if and only if
(b, b′) ∈ Rc for all other men b′ that have proposed to c up to that point in the
algorithm. This will ensure that whenever a woman c rejects a proposal from a
man b, c is guaranteed to be matched at the end of the algorithm to some b′

such that (b′, b) ∈ Rc therefore ensuring that (b, c) will not be a blocking pair.
The description of the algorithm is given below.

Algorithm 1. A deferred acceptance algorithm for SMG

1. while there a single man in B with a non-empty list do
2. for all b single with a non-empty list do
3. b proposes to the top c in its list
4. for all b, c such that b proposed to c do
5. if (b, b′) ∈ Rc for all b′ �= b that proposed to c then
6. c accepts b ( (b, c) become an engaged pair)
7. else
8. c rejects b
9. If the set of engaged pairs forms a perfect matching return this solution, else con-

clude that I does not admit a stable matching.

It is easy to see that Algorithm 1 terminates and runs in polynomial time
since each man in B proposes to every woman in C at most once. The following
lemma is easy to establish and its proof is found in [5].

Lemma 3. Any solution returned by Algorithm 1 is a stable matching.

Proof of Theorem 2. Using Lemma 3 it suffices to show that if Algorithm 1
does not find a solution then the given instance does not admit a stable matching.
Suppose by contradiction that there exists a stable matching N but Algorithm
1 does not find a solution. First note that since the preferences are asymmetric,
no woman c ∈ C accepts more then one proposal at any point in the algorithm.
Hence every woman is engaged to at most one man. Now since Algorithm 1
does not find a solution there is a man b that is rejected by every woman in
C. In particular, b is rejected by N(b). Among all pairs (b, c) ∈ N such that b
proposed to c and c rejected b, let (b0, c0) be the one that corresponds to the
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earliest rejection. As observed earlier, no man is rejected because of an arbitrary
choice. Therefore, if b0 was rejected at c0 then there must be some man b1 that
also proposed to c0 and (b0, b1) /∈ Rc0 . Let c1 be the partner of b1 in N . We must
have c1 �b1 c0, since otherwise (b1, c0) would be a blocking pair for the stable
matching N . Thus b1 proposed to c1 before proposing to c0 and c1 rejected b1
before c0 rejected b0. But this contradicts our choice of (b0, c0). This concludes
the proof of the theorem. ��

3.3 A Polyhedral Characterization

In this section we provide a polyhedral description for SMG, that is an analogue
of the well studied stable marriage polytope, first introduced in [22]. It is well
known that the latter polytope is integral, meaning that the optimization version
of SM can be solved in polynomial time. For our setting, we show that our
polytope can be used to efficiently decide the feasibility of an SMG instance
with asymmetric preferences, thus giving an alternative proof of Theorem 2.
We remark however that our polytope is not integral for this class of instances.
Indeed, one can easily find instances with asymmetric preferences for which our
polytope has fractional extreme points.

Given an instance I of SMG we associated with each pair (b, c) ∈ B × C a
variable xbc, with the intended meaning that xbc = 1 if b and c are matched to
each other and xbc = 0 otherwise. We then consider the following relaxation of
the problem and let P (I) denote the set of all vectors satisfying the constraints
below ∑

c

xbc = 1 ∀b ∈ B (2)∑
b

xbc = 1 ∀c ∈ C (3)

xbc +
∑
c′�bc

xbc′ +
∑

(b′,b)∈Rc

xb′c ≥ 1 ∀b ∈ B, c ∈ C (4)

xbc ≥ 0 ∀b ∈ B, c ∈ C (5)

It is easy to check that x is the incidence vector of a stable matching for I if
and only if x is an integer vector in P (I). Our main result is the following.

Theorem 5. Let I be an instance of SMG with asymmetric preferences. Then
P (I) �= ∅ if and only if I admits a stable matching. Furthermore any fractional
point x ∈ P (I) can be efficiently rounded to a stable matching solution for I.

Proof. The first direction is trivial since if I admits a stable matching then
the incidence vector corresponding to this stable matching is clearly in P . Now
assume P �= ∅ and let x be any point in P . We will show how to efficiently
round x to a stable matching, thus completing the proof of the theorem. For
each b ∈ B let f(b) be b’s most preferred woman in the set {c ∈ C : xbc > 0}.
Define N = {(b, f(b)) : b ∈ B}. We first show that N is a perfect matching. Since
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each man selects exactly one woman it suffices to show that no two men select
the same woman. Suppose by contradiction that f(b1) = f(b2) = c for some
b1 �= b2. Note that

f(b) = c ⇒
∑
c′�bc

xbc′ = 0 from the definition of f(b)

⇒ xbc +
∑

(b′,b)∈Rc

xb′c ≥ 1 from the stability constraint for (b, c)

⇒ xbc +
∑

(b′,b)∈Rc

xb′c = 1 from the matching constraint for c

⇒
∑

(b′,b)/∈Rc

xb′c = 0.

Therefore f(b1) = f(b2) = c implies that (b1, b2) ∈ Rc and (b2, b1) ∈ Rc.
But this contradicts the assumption that the preferences are asymmetric. Hence
N must be a perfect matching. To see that N satisfies the stability constraints
consider any pair (b, c). If f(b) = c or f(b) �b c then (b, c) cannot be blocking,
since b will be matched in N to someone he prefers at least as much as c.
Hence it suffices to consider the case where c �b f(b). But then we must have
xbc +

∑
c′�bc

xbc′ = 0 and since x ∈ P (I) this implies that
∑

(b′,b)∈Rc
xb′c = 1.

Now, since N uses only edges in the support of x, it follows that (N(c), b) ∈ Rc

and hence (b, c) is not blocking. Therefore N is a stable matching for I. ��

4 NP-completeness of SE (Proof Outline of Theorem 3)

In this section we outline the major ideas behind the proof of Theorem 3. The
full version of the proof can be found in [5].

At a high level, our proof adopts a similar strategy as that of Theorem 1. In
particular, we will provide a polynomial-time reduction for SMTI to SE. How-
ever, due to the additional structural properties of SE instances this reduction
becomes significantly more intricate. As in the proof of Theorem 1 we start with
an instance I of SMTI where ties occur only on the side of the women. We then
create an instance J of SE that will consist of three sets A′, B′ and C′. We will
have B ⊂ B′ and C ⊂ C′. We will also define some additional agents and fix a
perfect matching M on A′ × B′. Our goal will be to show that I admits a per-
fect stable matching if and only if J admits a stable extension. Using Theorem
4, we can show that J admits a stable extension by arguing instead that the
corresponding instance of SMG defined from J admits a stable matching.

The major difference from the proof of Theorem 1 is that there we had the
freedom of defining the sets Rc directly, but here the sets Rc are implicitly de-
fined through the structure of the SE instance J . This implicit definition entails
a significant amount of inter-dependence between the Rc sets. In particular it
now becomes more difficult to establish the following property of the sets Rc:
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for every acceptable pair (bj , ci) of the instance I we have (b, bj) ∈ Rci if and
only if b is a man that ci prefers at least as much as bj in I. This property was
crucial for establishing a correspondence between the pairs that are blocking in
I and those that are blocking in J . In order to establish this property here we
will need to introduce new agents in J corresponding to each position of woman
ci’s preference list P (ci) from I. In particular if P (ci) consists of ti positions,
then there will be ti new dogs ai,1, · · · , ai,ti . We will then define the preference
of the dogs as well as the fixed perfect matching M in such a way as to ensure
that if man bj appears in position k in P (ci) then the only dog from the set
{ai,1, · · · , ai,ti} that prefers man bj over his partner in M will be ai,k. Finally
we will define the preference of woman ci over the set of dogs in J as follows: ci
will rank the dogs that are matched in M to men from the first position in P (ci)
at the top of its list, in any arbitrary order among them, followed by the dog
ai,1; then the dogs that are matched in M to men from the second position in
P (ci) followed by the dog ai,2, and so on until the dogs that are matched in M
to men from the last position in P (ci) followed by the dog ai,ti . The remainder
of ci’s preference list will be completed arbitrarily. We will then show how this
will imply the desired structure for the set Rci .

The other major difference from the proof of Theorem 1 lies in ensuring that
the new agents will be matched between themselves in any solution to J . Before,
if we wanted to ensure that a given pair bn+1, cn+1 are always matched to each
other, it was sufficient to set cn+1 as the most preferred woman of bn+1 and
Rcn+1 = ∅. However, since our instance of SMG arises from the SE instance
J the sets Rc are never empty. Indeed it follows from their definition that
(M(α(b, c), b) ∈ Rc for every pair b ∈ B and c ∈ C we have. Thus, in order to
ensure that a given pair bn+1, cn+1 are always matched to each other we now
need to introduce an extra gadget consisting of two new men bn+2, bn+3 and two
new women cn+2, cn+3. We will have bn+i rank cn+i first in its preference list
for all i ∈ {1, 2, 3}. It is then possible to ensure that (b, bn+1) ∈ Rcn+1 if and
only if b = bn+2, (b, bn+3) ∈ Rcn+3 if and only if b = bn+2, and (b, bn+2) ∈ Rcn+2

if and only if b = bn+3. This will then guarantee that in any solution to J the
men bn+2 and bn+3 are matched to the women cn+2 and cn+3 (in any of the two
possible ways) and that man bn+1 is always matched to woman cn+1 as desired.
The full details of the proof can be found in [5].
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Abstract. In classic bin packing, the objective is to partition a set of
n items with positive rational sizes in (0, 1] into a minimum number of
subsets called bins, such that the total size of the items of each bin at
most 1. We study a bin packing game where the cost of each bin is 1,
and given a valid packing of the items, each item has a cost associated
with it, such that the items that are packed into a bin share its cost
equally. We find tight bounds on the exact worst-case number of steps
in processes of convergence to pure Nash equilibria. Those are processes
that are given an arbitrary packing. As long as there exists an item
that can reduce its cost by moving from its bin to another bin, in each
step, a controller selects such an item and instructs it to perform such a
beneficial move. The process terminates when no further beneficial moves
exist. The function of n that we find is Θ(n3/2), improving the previous
bound of Han et al., who showed an upper bound of O(n2).

1 Introduction

We study a class of bin packing games, that are based on the well-known standard
bin packing problem [15,3,5,4], a basic combinatorial optimization problem. In
this problem, a set of n items I = {1, 2, . . . , n} is given, where the size of item t,
denoted by st, satisfies 0 < st ≤ 1. The goal is to partition (or pack) the items
into a minimum number of subsets or blocks. Each such block is packed into a
unit capacity bin, and the load of a bin is defined to be the total size of items
packed into it (and can never exceed 1). Here, we study bin packing from the
point of view of algorithmic game theory.

We now define the game theoretical concepts required for the definition of
the bin packing game. In a strategic game, there is a finite set of players, and
a finite and non-empty set of strategies (or actions) that players can perform.
Each player has to choose a strategy (possibly independently from other players).
Each player has a cost for each one of the possible situations or outcomes, where
an outcome is a possible set of strategies of all players, containing one strategy
for each player. A classic form of a stable solution is a Nash equilibrium (NE)
[19]. This is a kind of solution concept of a game with at least two players, where
no player can decrease its cost by changing only its own strategy unilaterally.
That is, if each player has chosen a (pure or mixed) strategy and no player can
benefit by changing its strategy while the other players keep theirs unchanged,

R. Lavi (Ed.): SAGT 2014, LNCS 8768, pp. 37–48, 2014.
c© Springer-Verlag Berlin Heidelberg 2014
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then the current set of strategy choices and the corresponding costs result in an
outcome or solution that is a Nash equilibrium (NE). We are interested in pure
Nash equilibria, where the actions of each player are chosen in a deterministic
way, and will discuss only this kind of NE.

Given an input for bin packing, the set of players are the items. The pure
strategy of a player is the bin in which it is packed (the number of possible bins
is n, as this number of bins is always sufficient). We say that a bin B ⊆ I is
a valid bin if

∑
t∈B st ≤ 1, that is, if its load does not exceed 1. Changing the

strategy of an item means that it moves to be packed in a different (non-empty
or empty) bin. For 0 ≤ k ≤ n, we define a k-bin to be a bin that has exactly
k items, and a k+-bin is a bin that has at least k items. The cost of an item
packed into a valid k-bin (for k ≥ 1) is 1

k . We let the cost of an item that is not
packed into a valid bin be infinite. The deviation of an item t packed in a k1-bin
B1 (where t is included in the number of items of B1) to a k2-bin B2 (where t is
not included in the number of items of B2) is beneficial if s(B2) + st ≤ 1 (since
otherwise the cost of the item in the alternative bin is infinite) and k2 ≥ k1 (as
otherwise its cost is not reduced by moving). The standard bin packing problem
can be therefore seen as a class of games, where every input corresponds to a
game.

In this paper, we are interested in convergence processes. Such a process re-
ceives a set of items and a packing. The packing obviously corresponds to an
outcome of the game whose players are those items. The process stops when it
reaches a solution that is an NE. As long as it is not an NE, a step is performed.
In each step, a controller selects an item that can benefit (reduce its cost) by
moving to another bin, and instructs it to move from its current bin to a spec-
ified bin (where its cost will be smaller). In each step a single item moves and
decreases its cost, while other items may be affected (those that were packed
with the moving item will have larger costs, and those that were packed into
the bin where it moved will have smaller costs). It is shown by Han et al. [12]
(who were the first to study the variant with equal sharing of the bin costs)
that such a process always converges in O(n2) steps. This kind of games are
in fact singleton congestion games [13,14], but the number of resources has an
exponential size in the number of players, and it is not given explicitly (these are
all possible subsets of items that can be packed into a bin), so the convergence
and existence of NE can be deduced from previous work on congestion games,
but the polynomial time convergence cannot be deduced from those.

Bin packing in general, and more specifically bin packing games, have a num-
ber of applications [2,7,8]. Equal sharing is the simplest form of sharing and
does not require prior information given by the players (who may or may not
be truthful). Bin packing games where items share the cost of the bin propor-
tionally (according to sizes) rather than equally was introduced by Bilò [2], who
was the first to study the bin packing problem from this kind of game-theoretic
perspective. He proved that every game in this class has an NE. He also proved
that any such bin packing game converges to an NE after a finite (but possibly
exponentially long) sequence of steps, starting from any initial configuration of
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the items. The time of convergence for this type of cost sharing was also studied
in [17,18]. Multiple papers studied the quality of NE and other types of equilib-
ria [2,7,8,6,1]. Polynomial time algorithms that compute an NE for games with
proportional cost sharing equal cost sharing are given in [20,12,6]. Note that the
term “bin packing games” is used in the literature for a completely different type
of games [10,11,16], and there is recent interest in those games as well.

Our result We show the the worst-case number of steps for convergence is
Θ(n1.5). The exact function expressing the worst-case number of steps is

i(i+ 1)(i− 1)

3
+ j − ij ,

where

n =
i(i+ 1)

2
− j for 0 ≤ j ≤ i− 1 .

We prove the lower bound by defining a sequence of steps, while the upper bound
is proved using two potential functions, one of which is used in [12] and the other
one is completely different. Interestingly, combining the two potential functions
allows us to find a tight bound for any n ≥ 1.

2 The Exact Convergence Time

In [12], processes of the following kind were studied. The process starts with an
arbitrary packing, and in each step one item that can reduce its cost by moving
to another bin is selected by a controller and is moved to another bin such that
its cost becomes smaller. The number of steps for convergence was shown to be
O(n2) [12]. In this section we find the exact worst-case number of steps, which
turns out to be Θ(n3/2). Note that [17] showed using methods from [9] (where
convergence for scheduling problems is studied) that for the case of proportional
cost sharing, the number of steps can be exponential.

Given an integer n ≥ 1, we let

i = min{h|h(h+ 1)/2 ≥ n} and j = i(i+ 1)/2− n .

Thus, n = i(i+ 1)/2− j, where i ≥ 1, and 0 ≤ j ≤ i− 1 (since n > i(i− 1)/2 =
i(i+1)/2− i). Additionally, since n ≤ i(i+1)/2 < (i+1)2 and n > i(i− 1)/2 >
(i− 1)2/4, we have i >

√
n− 1 and i < 2

√
n+1, and thus i = Θ(

√
n). We show

that the maximum number of steps that can be performed for any set of items
and initial configuration is exactly

∇i,j =
i(i+ 1)(i− 1)

3
+ j − ij .

Note, that in case i ≥ 12, all next inequalities are valid: i− 1 ≥ i/2, i/6− 1 ≥
i/12 and i+ 1 ≤ 2i. Thus we can easily check that

∇i,j ≤
i(i+ 1)(i− 1)

3
< i3
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and

∇i,j >
i3

6
− i2 = i2(i/6− 1) ≥ i3/12 .

Thus, ∇i,j = Θ(n
3
2 ).

We start with the lower bound.

Lemma 1. There exists an input of n items, for which there is an initial pack-
ing, and a sequence of

∇i,j =
i(i+ 1)(i− 1)

3
+ j − ij

steps that are performed until no additional steps can be done.

Proof. Consider a set of n items, each of size 1
n , and an initial packing where

each one of the items is packed in its own bin. Let a staircase packing be a
packing where for every 1 ≤ η ≤ i, η �= j, there is exactly one bin with η items.

We show using induction on i that there exists a sequence of exactly Δi,j =
i(i + 1)(i − 1)/6 − j(j − 1)/2 steps which results in a staircase packing. Note
that for i = 1, j = 0 follows, and thus Δ1,0 = 0. Otherwise i ≥ 2, and in this
case j ≥ 0, 0 ≤ j(j − 1) ≤ (i− 1)(i− 2) are valid. Thus we get the next chain of
inequalities:

i(i+1)(i−1)−3j(j−1) ≥ i(i+1)(i−1)−3(i−1)(i−2) = (i−1)(i2−2i+6) > 0

where we also used that i2−2i+6 ≥ 6. First, we show the claim for the case j = 0
(where Δi,0 = i(i + 1)(i − 1)/6) by induction on i. For i = 1, in every packing
there is exactly one bin with one item, and this packing is a staircase packing. For
a given value of i, n = i(i+1)/2. We consider a subset of n′ = n− i = i(i− 1)/2
items. By the induction hypothesis it is possible to obtain a packing such that
for any 1 ≤ η ≤ i − 1 there is a bin with η items. Considering the complete
set of n items, we get that for any 2 ≤ η ≤ i − 1 there is a bin with η items,
and additionally there are i+ 1 bins, each with a single item. By the induction
hypothesis, this packing is obtained in i(i − 1)(i − 2)/6 steps. Let Bη denote
a specific bin with η items for 1 ≤ η ≤ i − 1, where the bin B1 is chosen
arbitrarily. The i other items packed in dedicated bins are called free items. For
k = 1, . . . , i− 1, the k-th free item is moved from its bin, to the bins B1, B2, . . .,
Bi−k, in this order. Bi−k will now contain i − k + 1 items and will not be used
again in this process. After all these steps, Bη (for 1 ≤ η ≤ i − 1) will contain
η+ 1 items. The i-th free item remains packed in its own bin, so as a result, for
any 1 ≤ η ≤ i there is a bin with η items. The number of additional steps for
the free items (the steps that are applied after the bins Bη are created using the
induction hypothesis) is

i−1∑
k=1

(i − k) = i(i− 1)/2 ,
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as the number of steps for the kth free item is i− k. The total number of steps
is therefore

i(i− 1)(i− 2)

6
+

i(i− 1)

2
=

i(i+ 1)(i− 1)

6
.

To show the claim for the case for j �= 0 (and i ≥ 2), we use the claim that was
proved for j = 0. Assume that n = i(i + 1)/2− j where 0 < j < i. In this case,
first we create a staircase packing of a subset of n′ = i(i − 1)/2 items, leaving
i − j free items. For k = 1, . . . , i − j, the k-th free item is moved from its bin,
to the bins B1, B2, . . ., Bi−k, in this order. The bin Bi−k will contain i− k + 1
items as a result and will not be used for later steps. After this is done for i− j
items, Bη will contain η + 1 items for j ≤ η ≤ i − 1, and for 1 ≤ η ≤ j − 1, Bη

still contains η items. Thus, for every 1 ≤ η ≤ i, η �= j, there is exactly one bin
with η items and this is exactly a staircase packing as required. The number of
additional steps (after the bins Bη are created using the claim for j = 0) is

i−j∑
k=1

(i − k) = i(i− 1)/2− j(j − 1)/2 .

The total number of steps is

i(i+ 1)(i− 1)

6
− j(j − 1)

2
.

Once a staircase packing is achieved, we show that it is possible to reach a
packing where all items are packed in one bin together using exactly i(i+1)(i−
1)/6− ij + j(j + 1)/2 steps. We define a phase as follows. In the beginning of a
phase there are bins with different numbers of items. Let

J = {j1 < j2 < · · · < j|J|}

be the set of numbers of items before some phase, and let the bin Bη for η ∈ J
be the bin with η items. If |J | > 1, we repeatedly take an item from Bj1 , and
move it to Bj2 then to Bj3 and so forth until it reaches Bj|J| . A phase ends when
all items of Bj1 were moved. If j = 0, then initially J = {1, . . . , i}, there are i−1
phases, and the number of steps in all phases is

i−1∑
k=1

k(i− k) =
i2(i − 1)

2
− (i− 1)i(2i− 1)

6
=

i(i− 1)(i+ 1)

6
.

Otherwise, initially J = {1, . . . , i}− {j}, there are i− 2 phases, and the number
of steps is

j−1∑
k=1

k(i− 1− k) +

i−1∑
k=j+1

k(i− k) =

i−1∑
k=1

k(i − k)−
j−1∑
k=1

k − j(i− j)

=
i2(i − 1)

2
− i(i− 1)(2i− 1)

6
− j(j − 1)

2
−j(i−j) =

i(i+ 1)(i− 1)

6
−ij+

j

2
+
j2

2
.
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The total number of steps is therefore

i(i+ 1)(i− 1)

6
− j(j − 1)

2
+
i(i− 1)(i+ 1)

6
+
j

2
−ij+

j2

2
=

i(i+ 1)(i − 1)

3
+j−ij .

��

Next, we prove the main result of this paper.

Theorem 1. The maximum number of steps until convergence is at most

i(i+ 1)(i− 1)

3
+ j − ij = Θ(n

3
2 ) ,

and there exists an input of n items where this bound can be achieved.

Proof. The lower bound was proved in the previous lemma. For the upper bound,
consider an input I of n = i(i + 1)/2 − j items for 0 ≤ j ≤ i − 1, an initial
configuration and a sequence of moves. Let pmin denote the smallest item size in
I. Let ε = min{pmin, 1/n}, and let I ′ be the input where st = ε for 1 ≤ t ≤ n.
For the input I ′ there cannot be invalid moves, since all items can be packed
into one bin.

Lemma 2. The initial configuration and the sequence of moves of I are valid
for I ′ as well.

Proof. Since no item size was increased, all configurations of I are valid for I ′.
Since the cost of an item in a packing depends only on numbers of items in its
bin and not on their sizes, modifying the sizes may only increase sets of beneficial
deviations, that is, every move which was beneficial and possible for I remains
such for I ′ and the sequence of moves is still valid. ��

In what follows, we will consider only sequences of moves for I ′. In particular,
we consider only sequences with a maximum number of moves. Such a sequence
must exist since from the results of [12] every sequence of moves has a finite
length.

Lemma 3. Every sequence with a maximum number of moves starts with the
configuration where every item is packed in a separate bin, and ends with the
configuration that all items are packed in one bin.

Proof. Consider a sequence of � moves. Assume that there is a bin B with k ≥ 2
items in the initial configuration, and let φ ∈ B. Modify the configuration such
that instead of B the starting configuration has the two bins B \ {φ} and {φ}
(other bins remain unchanged). Next, add a step in the beginning of the sequence
of moves where φ moves to join the items of B \ {φ}. This is an improving step
since φ reduces its cost from 1 to 1

k . This results in a sequence of � + 1 steps,
which contradicts maximality.

Next, assume that after the sequence of moves there are at least two non-
empty bins, containing k1 and k2 items respectively, where k1 ≤ k2. Let ψ be
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an item packed in the first bin. Add a move of ψ to the second bin in the end
of the sequence. This is an improving step since ψ reduces its cost from 1

k1
to

1
k2+1 ≤

1
k1+1 < 1

k1
. This results in a sequence of � + 1 steps, which contradicts

maximality. ��

Let k > 0 be an integer. We define a level k small step to be a move where
an item moves from a k-bin to another k-bin. A step is called a small step if
there is an integer k such that the step is a level k small step. Given the set of
sequences of steps of maximum length we focus on sequences where the prefix
of small steps has maximum length.

Lemma 4. Assume that after a prefix of the sequence of steps is applied there
are at least two k-bins. Then the first step in the remainder of the sequence of
steps involving a k-bin is a level k small step.

Proof. Assume by contradiction that there is no level k small step in the re-
maining part of the sequence. Since the sequence of steps terminates only when
all items are packed in one bin, there is at least one item in the union of the
k-bins that will perform a move (in fact, all the items of all the k-bins except
for possibly one such bin will do that). Consider the first step after the current
configuration was reached that involves a k-bin (either an item moving to the
bin or moving out of it).

There are two possible moves. If an item ψ moves from a k-bin into a bin with
k′ > k items, we modify the sequence as follows. First ψ moves to another k-bin,
and then it moves to the bin with k′ items. The second step is still beneficial for ψ
since in the second step it moves from a (k+1)-bin to a bin with k′ ≥ k+1 items.
This modification augments the length of the sequence by 1, which contradicts
maximality.

If an item φ moves from a bin with k̃ < k items to one of the k-bins, we
modify the sequence as follows. First choose an arbitrary item from one of the
k-bins and move it to another k-bin. Then, move φ to the bin out of which the
item was just moved (which now has k − 1 items). This last move is beneficial
since k̃ ≤ k − 1. This modification augments the length of the sequence by 1,
which contradicts maximality. ��

Lemma 5. Consider the prefix of small steps. After this prefix is performed,
every bin has a different number of items.

Proof. Assume by contradiction that at this time there are two k-bins. Using
Lemma 4, there will be a level k small step later in the sequence, which will be
the first move which involves k-bins. Since all items are identical, it is possible
to perform such a step immediately instead of at a later time. This does not
change the number of steps in the sequence, and it increases the length of the
prefix of small steps, which contradicts maximality of the prefix. ��

Lemma 6. Consider the prefix of small steps. After this prefix is performed,
there is one bin of each number of items in {1, 2, . . . , i} \ {j}, that is, a staircase
packing is created.
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Proof. We prove an invariant which is kept as long as only small steps are done.
Let bk be the number of bins with k items, and recall that initially b1 = n and
b� = 0 for 0 < � ≤ n. Assume that at a given time, km is the maximum integer
such that bkm > 0. We say that a number 1 ≤ k ≤ km − 1 is bad if bk = 0, and
otherwise it is good. That is, a number k is bad if there are no k-bins, but there
exists at least one (k + 1)+-bin. If bk ≥ 2 then we say that k is very good. Two
bad numbers are called consecutive bad numbers if all numbers between them
are good, that is, if k1 and k2 such that k1 < k2 < km are both bad (bk1 = 0
and bk2 = 0), and for all k′ such that k1 < k′ < k2, bk′ > 0.

The invariant is as follows. For every pair of consecutive bad numbers k1, k2,
where 1 ≤ k1 < k2 < km, there exists a number k̃, where k1 < k̃ < k2, such that
k̃ is very good.

Initially, km = 1, thus there are no bad numbers, and the invariant holds triv-
ially. Recall that we only analyze small steps and consider the change resulting
from a single level k small step. Every level k small step implies that before this
step there are at least two k-bins and so k is very good.

Note that k is the only number that can become bad as a result of a level k
small step. Moreover, if k = km, then the value km increases by 1. Assume first
that k remains very good. No bad numbers are created, and since no number
stops beings very good then the invariant holds (even if some number stops
being bad). If k remains good, but not very good, then still no new bad numbers
are created and we only need to consider the case that k was the only very
good number between two consecutive bad numbers. Let these two numbers be
k1 < k < k2. If k2 > k + 1 and k1 < k − 1, then the numbers of k1-bins and
k2-bins are unchanged (that is, these numbers remain zero) and the numbers k1,
k2 remain consecutive bad numbers between which we need to show that a very
good number exists after the step. Since k+1 was good, as a result of the move
bk+1 ≥ 2, and since k1 < k + 1 < k2, there is a very good number between k1
and k2, as required. If k1 = k − 1 but k2 > k + 1 then k1 becomes good. If k1
was the minimum bad number then we are done. Otherwise, let k3 < k1 be a
bad number such that k3 and k1 were consecutive bad numbers. We now have
that k3 and k2 are consecutive bad numbers and bk+1 ≥ 2 so k+1 is a very good
number between them. If k1 < k − 1 but k2 = k + 1 then k2 becomes good. If
k2 was the maximum bad number then we are done. Otherwise, let k4 > k2 be
a bad number such that k2 and k4 were consecutive bad numbers. We now have
that k3 and k4 are consecutive bad numbers and bk−1 ≥ 2 so k−1 is a very good
number between them. Finally, if both k1 = k− 1 and k2 = k+1 hold, then the
only case of interest is when k1 was not the minimum bad number and k2 was
not the maximum bad number. We let k3 < k1 be a bad number such that k3
and k1 were consecutive bad numbers, and let k4 > k2 be a bad number such
that k4 and k2 were consecutive bad numbers. Now k3 and k4 are consecutive
bad numbers. There is a very good number in (k3, k1) which is now a very good
number between k3 and k4.

Finally, we consider the case where k becomes bad. If there previously was a
bad number k2 such that k2 > k, we distinguish two cases. If k2 > k + 1, then
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k and k2 becomes a consecutive bad pair of numbers, and k + 1 becomes a very
good number between them. Otherwise, k2 = k+1 becomes good. If k2 was the
maximum bad number then we are done, and otherwise, let k4 > k2 be such that
k2 and k4 were consecutive bad numbers. Instead, k and k4 are now consecutive
bad numbers, and the very good number between them is the same one which
was very good between k2 and k4. The proof is symmetric for the case that there
previously was a bad number k1 such that k1 < k.

To complete the proof, consider the configuration after the prefix of small
steps. Since every bin has a different number of items, there are no very good
numbers, and hence, by the invariant, there is at most one bad number. If there
exists a bin with at least i + 1 items, and there is just one bad number, then
there are at least (i + 1)(i + 2)/2− i = i(i + 1)/2 + 1 > n items. If there is no
bin with at least i items, then there are at most i(i − 1)/2 < n items. Thus,
there is a bin with i items, and since there is at most one bad number, the bad
number must be j if j �= 0, and otherwise there is no bad number. Therefore,
the packing at this time is a staircase packing. ��

Lemma 7. The number of steps in the prefix of small steps is at most

i(i+ 1)(i− 1)

6
− j(j − 1)

2
.

Proof. We use the potential function as in [12] which is the sum of squares of
number of items in the bins. In the beginning every item is in a dedicated bin,
so the potential is equal to n = i(i+1)/2− j. Consider a level k small step. The
potential function increases by exactly 2 in this step, since the only change is
that instead of two k-bins, there is a (k − 1)-bin a (k + 1)-bin, and the increase
in the potential is exactly

(k + 1)2 + (k − 1)2 − 2k2 = 2 .

Since a staircase packing is achieved in the prefix of small steps, the value of
the potential after this prefix is

i∑
k=1

k2 − j2 =
i(i+ 1)(2i+ 1)

6
− j2 .

Thus, the number of steps cannot exceed half the difference between the final
potential and the initial potential, which is(

i(i+ 1)(2i+ 1)

6
− j2 −

(
i(i+ 1)

2
− j

))
/2 =

i(i+ 1)(i− 1)

6
− j(j − 1)

2
.

��

Lemma 8. The number of steps in the remainder of the sequence after the prefix
of small steps is at most

i(i+ 1)(i− 1)

6
− ij +

j(j + 1)

2
.
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Proof. In this case we define a different potential function. Sort the bins in non-
increasing order according to numbers of items. Let the index of an item be the
index of the bin into which it is packed. The potential of a packing is sum of
indices of items.

The potential is clearly positive at all times. The final potential is n, since all
items are packed in one bin. Consider a step in which an item moves from a k1-
bin Bv to a k2-bin Bu (where k2 ≥ k1). Since all items are identical, we assume
that Bv is the k1-bin of maximum index, and Bu is the k2 bin of minimum index.
This holds even if k1 = k2, since in this case there are at least two bins with this
number of items. Since the bins are sorted by non-increasing order according to
numbers of items we have v > u. As a result of the move, Bv now has k1 − 1
items, and Bu now has k2 + 1 items. By definition, if u > 1 then Bu−1 has at
least k2 + 1 items. Similarly, if Bv+1 exists then it has at most k1 − 1 items,
so the sorted order is still valid. The change in the potential in this step is the
change in the index of the bin of the moving item, which is v − u ≥ 1.

If j = 0, then the potential before the remainder of the sequence of moves is
performed is

i∑
k=1

k(i − k + 1) =
i(i+ 1)2

2
− i(i+ 1)(2i+ 1)

6
=

i(i+ 1)(i+ 2)

6

while n = i(i+1)
2 , so the number of steps is at most

i(i+ 1)(i+ 2)

6
− i(i+ 1)

2
=

i(i+ 1)(i− 1)

6
.

If j > 0, then the potential before the remainder of the sequence of moves is
performed is

i−j∑
k=1

k(i − k + 1) +

i−1∑
k=i−j+1

k(i− k) = i

i−1∑
k=1

k +

i−j∑
k=1

k −
i−1∑
k=1

k2

=
i2(i− 1)

2
+

(i − j)(i− j + 1)

2
− i(i− 1)(2i− 1)

6

=
i(i− 1)(i+ 1)

6
+

i2

2
+

j2

2
− ij +

i

2
− j

2
.

In each step the function decreases by at least 1, so the number of steps is at
most

i(i− 1)(i+ 1)

6
+
i2

2
+
j2

2
−ij+

i

2
− j

2
− i(i+ 1)

2
+j =

i(i+ 1)(i− 1)

6
−ij+

j

2
+
j2

2
.

��
Summing up the maximum number of steps in the prefix and in the remainder

we get

i(i+ 1)(i− 1)

6
− j(j − 1)

2
+

i(i+ 1)(i− 1)

6
− ij +

j(j + 1)

2
=

i(i+ 1)(i− 1)

3
+ j − ij .

��
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3 Further Research - Open Questions

In this paper the completely adversarial/arbitrary strategy is considered only.
What about adversarial order of players, but choosing the move that best im-
proves the individual cost? This question is very natural, and is of sense.

Another issue is the following: We determined the worst-case number of steps
for convergence, when in the initial configuration there is only one item in any
bin. This setting can be seen in a very natural manner, from the reverse side:
Consider a game, when there are balls in one bin, and there are many further
bins. Any ball (i.e. any item) wants to be in a more safe place, i.e. it moves to
another bin where it will share the bin with a smaller number of another balls. In
this game the final configuration will be just where any ball has an own bin. Thus
the number of steps is the same. Returning to our original bin packing game, it
remains open, that how many steps are possible in the worst case, starting with
an arbitrary initial configuration. It seems that the investigation can be handled
in a similar way.

Both questions are open now, and remain for further research.
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Abstract. We present an algorithm that computes approximate pure
Nash equilibria in a broad class of constraint satisfaction games that
generalize the well-known cut and party affiliation games. Our results
improve previous ones by Bhalgat et al. (EC 10) in terms of the obtained
approximation guarantee. More importantly, our algorithm identifies a
polynomially-long sequence of improvement moves from any initial state
to an approximate equilibrium in these games. The existence of such
short sequences is an interesting structural property which, to the best
of our knowledge, was not known before. Our techniques adapt and ex-
tend our previous work for congestion games (FOCS 11) but the current
analysis is considerably simpler.

1 Introduction

Constraint satisfaction games are generalizations of the well-known cut games
and party affiliation games. In a constraint satisfaction game, there is a set of
boolean variables and a set of weighted constraints; each constraint depends on
some of these variables. Each player controls the value of a distinct variable and
has two possible strategies: setting the value of the variable to either 0 (false) or 1
(true). The payoff (or utility) of a player is the total weight in satisfied constraints
where her variable appears. Constraint satisfaction games are potential games.
The total weight of satisfied constraints serves as an exact potential function in
the sense that the difference in the potential between two states that differ in
the strategy of a single player equals the change in the utility of that player.
Hence, pure Nash equilibria (i.e., states in which no player has an incentive to
unilaterally move in order to improve her utility) can be computed by solving
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the local search problem (see [14] for a theoretical treatment of local search) of
computing a local maximum of the potential function. Unfortunately, this is a
computationally-hard problem [19]. In this paper, we resort to the question of
whether relaxed solution concepts — namely, approximate (pure Nash) equilibria
— can be computed efficiently.

In particular, we consider constraint satisfaction games where each constraint
depends on the value of at most k variables and has the property that its value
can change from false to true by a unilateral change in any of its variables. In
general, we refer to such games as Pk–Flip games following the terminology of
Bhalgat et al. [3]. Particular examples of this type of constraints include “parity”
and “not–all–equal” constraints. An odd (respectively, even) parity constraint
requires that the number of its true variables is odd (respectively, even). A
not-all-equal constraint consists of literals (i.e., variables or their negations) and
requires that at least two of its literals have different values. We refer to Pk–Flip
games consisting of parity constraints as Parity–k–Flip games; Pk–Flip games
with not–all–equal constraints with at least k̄ literals are called nae–(k̄, k)–Flip
games. Party affiliation games are Parity–2–Flip games and, in particular,
cut games are Parity–2–Flip games with odd constraints or nae–(2, 2)–Flip
games whose constraints have no negative literals.

By adapting and extending our techniques in [4] for congestion games, we
present a polynomial-time algorithm that computes approximate equilibria in
Pk–Flip games. The approximation guarantee is related to the stretch θ of the
potential function of games in a given class, defined as the maximum over all
games in the class of the maximum ratio between the potential values in two
equilibria. As we show, Pk–Flip games have a stretch of k+1; hence, for general
Pk–Flip games, the approximation guarantee θ + ε of our algorithm improves
a previous one of 2k − 1 + ε by Bhalgat et al. [3] for k ≥ 3. By bounding
the stretch of nae–(k̄, k)–Flip and Parity–k–Flip games, we are able to show
further improvements. For nae–(k̄, k)–Flip games, the approximation guarantee
becomes 3 + ε for k̄ = 2 and 2 + ε for k̄ ≥ 3; these results improve a bound
of 2k̄

k̄−1
+ ε from [3]. For Parity–k–Flip games with odd k, the approximation

guarantee is k+ε. The running time of the algorithm is bounded by a polynomial
of the number of players, k, and 1/ε. Our analysis follows the same general
structure of [4] but uses different technical arguments and is considerably simpler
due to the simplicity in the definition of Pk–Flip games.

More importantly, for every initial state of the game, our algorithm identi-
fies a polynomially-long sequence of improvement moves of the players that lead
to an approximate equilibrium. The existence of such short sequence suggests
an interesting structural property of Pk–Flip games which, to the best of our
knowledge, was not known before. Actually, Bhalgat et al. [3] argue about the
limitations of (uncoordinated) improvement move sequences by presenting a par-
ticular cut game in which any sequence of ρ-moves (i.e., moves that improve the
utility of the moving player by a factor of at least ρ) from some states to any
ρ–approximate equilibrium has exponential length for any ρ ∈ [1, 21/20). This
negative result complements nicely with the structural property we prove.
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Our algorithm is simple. Players are classified into blocks so that the players
within the same block have polynomially-related maximum utility (i.e., total
weight of the constraints a player can affect). Then, a set of phases is executed.
In each phase the players in two consecutive blocks are allowed to move. The
players in the block of higher maximum utility are allowed to make p-moves and
the players of the other block are allowed to make q-moves. Then, the strategies of
the players that were allowed to perform p-moves within a phase are irrevocably
decided at its end. Clearly, this defines a sequence of improvement moves by
the players. We show that by setting the parameters q and p appropriately, the
algorithm terminates in polynomial time and, furthermore, the players whose
strategies are irrevocably decided at the end of a phase will not be affected
significantly by later moves. In order to do so, we select a value for parameter p
that is slightly higher than the stretch of the class of games to which the input
game belongs and a value for parameter q that is very close to 1.

Related Work. Schäffer and Yannakakis [19] proved that the problem of com-
puting a pure Nash equilibrium in constraint satisfaction games is complete for
the class PLS— standing for polynomial local search— that has been introduced
by Johnson et al. [11]. The negative result of [19] covers all games considered
in the current work and have been strengthened in [12,13] to capture instances
in which each player participates in a constant number of constraints. Among
the few rare non-trivial positive results is an algorithm by Poljac [17] who shows
that a local maximum of the potential function in cut games can be computed
in polynomial time when each player participates in at most three constraints.

The algorithm of [3] for approximate equilibria in Pk–Flip games has the
following structure. Players are partitioned into layers in a similar way to the
block partitioning that we use in the current paper. Then, a rearrangement
phase moves players across blocks in order to guarantee that the total weight
of constraints, in which a player i participates together only with players in
the same block or ones having lower maximum utility, is at least 1/k of player
i’s maximum utility. This can be done in such a way that, eventually, each
layer contains players with polynomially-related maximum utility. Then, a top-
down layer dynamics phase takes place, where players within each layer play
(1+ ε/k)-moves in a restricted game among them until they reach an (1+ ε/k)–
approximate equilibrium in this restricted game. The authors of [3] show that
the state computed in this way is a (2k−1+ε)–approximate equilibrium for the
original game. They also present a variation of their algorithm for nae–(k̄, k)–

Flip games that computes ( 2k̄
k̄−1

+ ε)–approximate equilibria. As the authors of

[3] emphasize, in general, the moves during the top-down layer dynamics phase
are not improvement moves in the original game. In contrast, our algorithm
consists only of improvement moves.

Another class of potential games where the problem of computing an (approx-
imate) equilibrium has received a lot of attention is that of congestion games.
A classical potential function for these games has been defined by Rosenthal
[18]. Fabrikant et al. [8] prove that computing a local minimum of this function
(corresponding to a pure Nash equilibrium) is PLS-hard as well. Even worse,
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for sufficiently general congestion games, Skopalik and Voecking [20] show that
computing a ρ–approximate equilibrium is PLS-hard for every reasonable (i.e.,
polynomially-computable) value of ρ. In our previous work [4], we have presented
an algorithm to compute O(1)-approximate equilibria for congestion games un-
der mild assumptions for the structure of the game. The current paper adapts
and extends the main algorithmic techniques in that paper, which have also been
applied to (non-potential) weighted variants of congestion games in [5]. Exact or
almost exact equilibria can be computed in several special cases, e.g., see [6,8].

We remark that, even though it is hard to compute exactly, a local opti-
mum of a potential function can be approximated with extremely low precision
under very mild assumptions [15]. This does not imply that equilibria can be
approximated with a similar precision, as the negative results of [20] show. Also,
uncoordinated move sequences have been shown to reach states of high social
value quickly [1,2,7], i.e., to states with low potential in the case of Pk–Flip
games. Unfortunately, these states are not approximate equilibria either, since
some player typically has a high incentive to move.

Roadmap. The rest of the paper is structured as follows. We begin with prelim-
inary definitions in Section 2. Section 3 is devoted to our upper bounds on the
stretch of Pk–Flip games. The algorithm and the statement of our main result
are presented in Section 4 and the analysis follows in Section 5. We conclude
with open problems in Section 6.

2 Preliminaries

A constraint satisfaction game consists of a set N of n players, a set of at least
n boolean variables V = {s1, s2, ..., s|V |}, and a set C of constraints (henceforth
called clauses) over the variables in V . Each clause c ∈ C has a non-negative
weight wc. Player j ∈ N controls the value of a distinct variable sj from V and
has two possible strategies: setting the value of sj to either 0 (false), or 1 (true).
The variables of V that are not controlled by any player (if any) are frozen to
certain boolean values. A state S of the game is simply a snapshot of variable
values (or a snapshot of players’ strategies complemented with the fixed values
of the frozen variables), i.e., S = (s1, s2, ..., s|V |). Given a state S of the game,
we denote by SAT (S) the set of satisfied clauses. For a subset of players R ⊆ N ,
we denote by SATR(S) the subset of SAT (S) that consists of clauses in which
the variable of some player from R appears. With some abuse of notation, we
simplify SAT{j}(S) to SATj(S). The utility of a player j is the total weight of
the true clauses in which her variable appears, i.e., uj(S) =

∑
c∈SATj(S) wc. We

also denote by CR the set of clauses in which at least one player of R participates
and simplify C{j} to Cj . We use Uj to denote the maximum possible utility that
player j might have, i.e., Uj =

∑
c∈Cj

wc.

Given a state S = (s1, s2, ..., s|V |) and a player j, we denote by (S−j , s
′
j) the

state obtained from S when player j unilaterally changes her strategy from sj to
its complement s′j . This is an improvement move (or simply, a move) for player
j if her utility increases, i.e., uj(S−j , s

′
j) > uj(S). We call it a ρ–move when the
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utility increases by more than a factor of ρ, i.e., uj(S−j , s
′
j) > ρ · uj(S). A state

S is a pure Nash equilibrium (or simply, an equilibrium) if no player has a move
to make. Similarly, S is a ρ–approximate (pure Nash) equilibrium if no player
has a ρ-move.

We specifically consider clauses with the following property: any false clause
can become true by changing the value of any of its variables. We will refer to
games with clauses satisfying this property and with at most k variables per
clause as Pk–Flip games. This class is broad enough and contains (general-
izations of) several well-studied games such as cut games and party affiliation
games. We are particularly interested in two subclasses of Pk–Flip games. A
nae-clause contains literals (i.e., variables or their negations) and equals 1 if
and only if there are two literals with different values. We will refer to games
consisting of nae-clauses with at least k̄ ≥ 2 and most k literals as nae–(k̄, k)–
Flip games. Observe that these games are Pk–Flip games since changing the
value of any variable that appears in a clause can change the value of the clause
from 0 to 1. In Parity–k–Flip games, each clause is characterized as odd or
even; an odd (respectively, even) clause is true if the number of its variables which
are 1 is odd (respectively, even). An important property of Pk–Flip games is
that for any state S and any player j, it holds that Uj ≤ uj(S) + uj(S−j , s

′
j).

Given a state S of a Pk–Flip game, we denote by Φ(S) the total weight
of all true clauses, i.e., Φ(S) =

∑
c∈SATN (S) wc. The function Φ is a potential

function for this game. In particular, it has the remarkable property that for
every two states S and (S−j , s

′
j) differing only in the strategy of player j, the

difference of the potential is equal to the difference of the utility of player j, i.e.,
Φ(S)− Φ(S−j , s

′
j) = uj(S)− uj(S−j , s

′
j).

In the following, we will be often considering sequences of moves in which
only players in a certain subset R ⊆ N are allowed to move. We can view such
moves as moves in a subgame among the players in R, with the set of clauses
CR (each clause in CR has the same weight as in the original game), and with
fixed values for the variables that are not controlled by players in R. Observe
that any subgame of a Pk–Flip game is a Pk–Flip game as well. Similarly, any
subgame of a nae–(k̄, k)–Flip (respectively, Parity–k–Flip) game is a nae–
(k̄, k)–Flip (respectively, Parity–k–Flip) game as well. The function ΦR(S) =∑

c∈SATR(S) wc is an exact potential function for the subgame among the players
in R. The next lemma follows easily by the definitions.

Lemma 1. For every state S of a Pk–Flip game and any set of players R ⊆ N ,
it holds that ΦR(S) ≤

∑
j∈R uj(S) ≤ kΦR(S). Furthermore, for every set of

players R′ ⊆ R, it holds that ΦR′ (S) ≤ ΦR(S).

3 The Stretch of Pk–Flip Games

The approximation guarantee of our algorithm depends on a quantity related to
the potential function of Pk–Flip games that we call the stretch.
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Definition 1. Given η ≥ 0, the (1 + η)-stretch of a Pk–Flip game is the ratio
between the maximum and the minimum value of the potential function taken
over all (1 + η)-approximate pure Nash equilibria of the game.

We use the term stretch as a synonym of 1-stretch; observe that it is simply
the ratio between the maximum and minimum potentials of (exact) equilibria. In
Theorem 1, we present upper bounds on the (1 + η)–stretch of Pk–Flip games.
Note that these bounds may be of independent interest; bounds on the stretch
of congestion games from our previous work [4] have been used by Piliouras et
al. [16] in order to quantify the price of anarchy of congestion games in settings
with uncertainty where players have particular risk attitudes.

Theorem 1. For any η > 0, the (1+η)–stretch of Pk–Flip games, nae–(3, k)–
Flip games, nae–(2, k)–Flip games, and Parity–k–Flip games with odd k is
at most k + 1 + kη, 2 + kη, 3 + kη, and k + kη, respectively.

Due to lack of space, the proof (as well as counterexamples showing that the
bounds are tight) is omitted. In the following, we use the notation θ(1 + η) to
denote our upper bound on the (1 + η)-stretch of Pk–Flip games (and clarify
when we refer to the stretch of particular subclasses of Pk–Flip games). We use
simply θ to denote the upper bound on the 1-stretch.

4 The Algorithm

The pseudocode of our algorithm appears below as Algorithm 1. We supplement
this formal description with a detailed line–by–line explanation. The algorithm
takes as input a Pk–Flip game G with n players, an initial state Sin, and an
accuracy parameter ε ∈ (0, 1]. Starting from state Sin, it identifies a sequence of
moves that lead to a state Sout; this is the output of the algorithm. As we will
prove later, Sout is an approximate equilibrium. The algorithm starts (lines 1 and
2) by setting the values of parameters q and p. Parameter q has a value very close
to 1 (namely, q = 1 + ε

3k ) and parameter p has a value slightly higher than the
q-stretch of the class to which the input game belongs (namely, p = θ(q) + ε/3).
In particular, using our upper bounds on θ(q) from Theorem 1, p is set to be
k+1+2ε/3 in general, 2+2ε/3 if G is a nae–(3, k)–Flip game, 3+2ε/3 if it is a
nae–(2, k)–Flip games, and k+2ε/3 if it is a Parity–k game and k is odd. The
algorithm also sets the value of parameter Δ to be a polynomial depending on
n, k, p, and 1/ε (line 3). Then (lines 4-5), it implicitly partitions the players into
blocks B1, B2, ..., Bm according to their maximum utility. Denoting by Umax the
maximum values among all players’ maximum utilities, block Bi consists of the
players j with maximum utility Uj ∈ (UmaxΔ

−i, UmaxΔ
1−i]. By the definition of

Δ, the players in the same block have polynomially related maximum utilities.
The sequence of moves from state Sin to state Sout is computed by the code

in the lines 6-15. The subsequence of moves described in lines 7-9 constitutes
phase 0. During phase 0, the players in block B1 make q-moves. After that, each
phase i for i ≥ 1 consists of p-moves of players in block Bi and q-moves of players
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in block Bi+1. Strategies of players in block Bi are irrevocably decided at the
end of phase i.

We are ready to state our main result which we will prove in the next section.

Theorem 2. On input a Pk–Flip game G with n players, an initial state Sin,
and ε ∈ (0, 1], Algorithm 1 computes a sequence of at most poly(n, k, 1/e) moves
that starts from Sin and converges to a (k + 1 + ε)–approximate pure Nash
equilibrium Sout. The approximation guarantee is at most 2 + ε when G is a
nae–(3, k)–Flip game, at most 3 + ε when it is a nae–(2, k)–Flip games, and
at most k + ε when it is a Parity–k–Flip game and k is odd.

Input : A Pk–Flip game G with a set N of n players, an arbitrary initial state
Sin, and ε ∈ (0, 1]

Output: A state Sout of G
1 q ← 1 + ε

3k
;

2 p ← θ(q) + ε/3;
3 Δ = 200p3nk/ε2;
4 Set Umin ← minj∈N Uj , Umax ← maxj∈N Uj , and m ← 1 + �logΔ (Umax/Umin)	;
5 (Implicitly) partition players into blocks B1, B2, . . . , Bm, such that j ∈ Bi

implies that Uj ∈ (
UmaxΔ

−i, UmaxΔ
1−i

]
;

6 S ← Sin;
7 while there exists a player j ∈ B1 such that uj(S−j , s

′
j) > q · uj(S) do

8 S ← (S−j , s
′
j);

9 end
10 for phase i ← 1 to m− 1 such that Bi �= ∅ do
11 while there exists a player j that either belongs to Bi and satisfies

uj(S−j , s
′
j) > p · uj(S) or belongs to Bi+1 and satisfies

uj(S−j , s
′
j) > q · uj(S) do

12 S ← (S−j , s
′
j);

13 end

14 end
15 Sout ← S;

Algorithm 1. Computing approximate equilibria in Pk–Flip games.

5 Proof of Theorem 2

Before presenting the proof of Theorem 2, we give some intuition behind our
analysis. The analysis uses two properties that are formally stated in Lemma
2. What this lemma essentially says is that, during each phase, the total utility
of the moving players as well as an increase in the potential of the subgame
among these players are small. The first property is used in Lemma 4 to prove
that, once the strategy of a player is irrevocably decided, later phases may have
only a negligible effect on her. And since no player has a p-move to make at the
end of the phase when her strategy is decided, she cannot improve her utility
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by a factor of (almost) p until the end of the algorithm. Together with the fact
that each player’s move increases her utility by some non-negligible amount, the
second property is used in Lemma 5 to bound the total number of moves.

In our analysis, we denote by Si the state reached at the end of phase i ≥ 0,
i.e., Sout = Sm−1. We also denote by Ri the set of players that move during
phase i. We also denote the upper boundary of block Bi by Wi and by Wm+1

the lower boundary of block Bm, i.e., Wi = UmaxΔ
1−i for i = 1, 2, ...,m+ 1. So,

the players of block Bi are those with maximum utility Uj ∈ (Wi+1,Wi].

Lemma 2. For every phase i ≥ 1, it holds that

1.
∑

j∈Ri
Uj ≤ 10pknWi+1/ε

2. ΦRi(S
i)− ΦRi(S

i−1) ≤ 3p2nWi+1/ε.

Proof. First observe that players not in Ri have the same set of strategies in
states Si−1 and Si. Furthermore, the total weight of clauses depending on vari-
ables that are controlled by players from Ri ∩Bi+1 is at most nWi+1. Hence, by
the definition of the subgame potential, we have that the potential of the state
(Si−1

−Ri∩Bi
, Si

Ri∩Bi
) in which the players in Ri ∩Bi play their strategies in state

Si and the remaining players play their strategies in Si−1 satisfies

ΦRi∩Bi(S
i−1
−Ri∩Bi

, Si
Ri∩Bi

) ≥ ΦRi(S
i)− nWi+1. (1)

We will use inequality (1) in the proof of the next lemma that provides a bound
on the potential ΦRi(S

i−1) as well as later in the current proof.

Lemma 3. ΦRi(S
i−1) ≤ 3pnWi+1/ε.

Proof. We assume on the contrary that ΦRi(S
i−1) > 3pnWi+1/ε and we are

going to conclude that the potential of the state (Si−1
−Ri∩Bi

, Si
Ri∩Bi

) satisfies

ΦRi∩Bi(S
i−1
−Ri∩Bi

, Si
Ri∩Bi

) > θ(q) ·ΦRi∩Bi(S
i−1). By Theorem 1, this would con-

tradict the fact that Si−1 is the output of phase i − 1, i.e., a q-approximate
equilibrium of the subgame among the players in Ri ∩Bi, since there is another
q–approximate equilibrium (the one that can be reached from (Si−1

−Ri∩Bi
, Si

Ri∩Bi
)

with q-moves by the players in Ri∩Bi) with a potential that is higher than θ(q)
times the potential at state Si−1.

We denote by �(j) the utility of player j ∈ Ri ∩ Bi right after she makes her
last move in phase i. Then we have

ΦRi(S
i)− ΦRi(S

i−1) ≥ (1− 1/p) ·
∑

j∈Ri∩Bi

�(j). (2)

Indeed, the last move of a player j ∈ Ri ∩Bi increases her utility by a factor of
at least p and the difference ΦRi(S

i)−ΦRi(S
i−1) equals to the total increase in

the utility of the deviating players within the phase.
Furthermore, we claim that∑

j∈Ri∩Bi

�(j) + nWi+1 ≥ ΦRi(S
i). (3)
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To see why (3) is true, observe that the right-hand side is the sum of the weights
of the clauses in SATRi(S

i). The term nWi+1 is an upper bound on the total
weight of the clauses in SATRi∩Bi+1(S

i). The weight of each of the remaining
ones (i.e., the clauses in SATRi(S

i) \ SATRi∩Bi+1(S
i)) is accounted for at least

once in the sum
∑

j∈Ri∩Bi
�(j), as part of the utility of some player from Ri∩Bi

after her last move.
By (2) and (3) (i.e., by multiplying (2) by p and (3) by p − 1 and summing

them), we obtain that

ΦRi(S
i) ≥ p · ΦRi(S

i−1)− (p− 1)nWi+1. (4)

Hence, using (1), (4), the definition of p, and the second inequality of Lemma 1,
we obtain

ΦRi∩Bi(S
i−1
−Ri∩Bi

, Si
Ri∩Bi

) ≥ ΦRi(S
i)− nWi+1 ≥ p · ΦRi(S

i−1)− pnWi+1

> (p− ε/3) · ΦRi(S
i−1) ≥ θ(q) · ΦRi∩Bi(S

i−1).

We have obtained the desired contradiction. ��
Using the observation that no player in Ri ∩Bi has a q-move to make at the

end of phase i − 1 (i.e., at state Si−1) as well as the first inequality of Lemma
1, we obtain that∑

j∈Ri∩Bi

Uj ≤
∑

j∈Ri∩Bi

(
uj(S

i−1) + uj(S
i−1
−j , s′j)

)
≤

∑
j∈Ri∩Bi

(1 + q)uj(S
i−1)

≤ (1 + q)k · ΦRi∩Bi(S
i−1) ≤ 9pknWi+1/ε.

The proof of the first inequality in the statement of the lemma follows by ob-
serving that the total utility of the players in Ri ∩Bi+1 is at most nWi+1.

In order to prove the second inequality we use inequality (1), the q-stretch
bound for the subgame among the players in Ri∩Bi, the fact that θ(q) ≤ p, the
second inequality of Lemma 1, and the bound on ΦRi(S

i−1) from Lemma 3.

ΦRi(S
i)− ΦRi(S

i−1) ≤ ΦRi∩Bi(S
i−1
−Ri∩Bi

, Si
Ri∩Bi

)− ΦRi(S
i−1) + nWi+1

≤ θ(q) · ΦRi∩Bi(S
i−1)− ΦRi(S

i−1) + nWi+1

≤ (p− 1) · ΦRi(S
i−1) + nWi+1

≤ 3p2nWi+1/ε.

��
The first property of Lemma 2 indicates that the total weight of the moving

players in phase i is significantly smaller than the upper boundary of block Bi. In
Lemma 4 we combine this with the fact that the upper boundary of subsequent
blocks decreases exponentially and formally prove that, after the strategy of a
player is irrevocably decided, subsequent phases may have only a negligible effect
on her. Recall that θ is the stretch of the class of games to which the input game
belongs to and equals k + 1 for Pk–Flip games, 3 for nae–(2, k)–Flip games,
and 2 for nae–(3, k)–Flip games, and k − 1 for Parity–k–Flip games with
odd k.
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Lemma 4. The state Sout is a (θ + ε)–approximate pure Nash equilibrium.

Proof. By the definition of phase m − 1, the players in blocks Bm−1 and Bm

have no p-move to make at the end of phase m− 1. We will consider a player j
belonging to block Bt whose strategy is irrevocably decided at the end of phase
t with t ≤ m− 2, and will show that she has no (p+ ε/3)-move to make at the
end of phase m − 1 (i.e., at state Sm−1 = Sout). The lemma will then follow
since p+ ε/3 = θ(1 + ε

3k ) + 2ε/3 = θ + ε.
Let sj be the strategy used by player j at the end of phase t. Using Lemma

2 and the definition of the block boundaries, we can bound the quantity∑m−1
i=t+1

∑
r∈Ri

Ur. Thus, we get an upper bound on the total weight of clauses
with players that move in phases t+ 1, ...,m− 1, as follows:

m−1∑
i=t+1

∑
r∈Ri

Ur ≤
m−1∑
i=t+1

10pnkWi+1/ε ≤
10pnkWt+1

ε

∞∑
i=1

Δ−i

=
10pnkWt+1

ε(Δ− 1)
≤ Wt+1ε

10p2
. (5)

The last inequality follows by the definition of Δ and the fact that Δ−1 ≥ Δ/2.
Now observe that since player j has no p-move at the end of phase t (i.e., at

state St), it holds that uj(S
t) ≥ uj(S

t
−j , s

′
j)/p andWt+1 ≤ uj(S

t)+uj(S
t
−j , s

′
j) ≤

(1 + p)uj(S
t), i.e., uj(S

t) ≥ Wt+1

1+p . Furthermore, during phases t + 1, ...,m − 1,
the total change in the utility of player j or in the utility player j would have by
deviating is at most

∑m−1
i=t+1

∑
r∈Ri

Ur. Using these observations and inequality
(5), we have

uj(S
m−1) ≥ uj(S

t)−
m−1∑
i=t+1

∑
r∈Ri

Ur

≥ p

p+ ε/3
uj(S

t) +
ε/3

p+ ε/3

Wt+1

1 + p
−

m−1∑
i=t+1

∑
r∈Ri

Ur

≥ 1

p+ ε/3
uj(S

t
−j , s

′
j) +

Wt+1ε

5p(p+ ε/3)
−

m−1∑
i=t+1

∑
r∈Ri

Ur

≥ 1

p+ ε/3
uj(S

m−1
−j , s′j) +

Wt+1ε

5p(p+ ε/3)
−
(
1 +

1

p+ ε/3

) m−1∑
i=t+1

∑
r∈Ri

Ur

≥ 1

p+ ε/3
uj(S

m−1
−j , s′j) +

Wt+1ε

5p(p+ ε/3)
− 2p

p+ ε/3

m−1∑
i=t+1

∑
r∈Ri

Ur

≥ 1

p+ ε/3
uj(S

m−1
−j , s′j),

as desired. In the third and fifth inequalities we have used the inequalities 3(1+
p) ≤ 5p and p + 1 + ε/3 ≤ 2p which follow since p ≥ 2 and ε ∈ (0, 1]. This
completes the proof of the lemma. ��
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To conclude the proof of Theorem 2, it remains to bound the running time of
the algorithm; the proof of the next statement is omitted due to lack of space.

Lemma 5. On input of Pk–Flip (in particular, nae–(k̄, k)–Flip) game, the al-
gorithm identifies a sequence of at most O(n3k7/ε4) (in particular, O(n3k2/ε4))
moves.

6 Open Problems

A challenging open problem is to improve the approximation guarantee of our
algorithm. Our analysis indicates that a state with lower stretch at the beginning
of each phase would allow us to use an even smaller value for parameter p and,
subsequently, to obtain a better approximation guarantee. One idea that comes
immediately to mind is to replace the q-moves of the players of block Bi+1

within phase i with the execution of an algorithm that computes states with
approximately–optimal potential. For example, a random assignment to players
of Bi+1 would yield a 2-approximation to the potential of the subgame among
them. Furthermore, for more structured Pk–Flip games such as cut games, one
might think to use the famous algorithm of [9] that is based on semi-definite
programming. Unfortunately, we do not see how to include these ideas into our
algorithm at this point. The main difficulty is that the low-stretch property
should hold for the subgame among the players that will move during the next
phase which we do not know in advance. An algorithm that approximates the
potential of all subgames simultaneously would be ideal here but, besides the
local search approach implied by the q-moves, neither the random assignment
nor the SDP-based algorithms satisfy this property.

Even if we could bypass these obstacle, our technique has limitations since
computing states with low-stretch in Pk–Flip games includes famous hard-to-
approximate problems (e.g., see [10]). So, in order to compute almost exact
equilibria, we need new techniques. Of course, we have no idea whether this is
at all possible. To put the question differently, is there some inapproximability
threshold for approximate equilibria? We remark that such negative statements
are not known in the literature: the only known negative results are either specific
to exact equilibria (such as the PLS-hardness results of [8,19]) or rule out any
reasonable approximation guarantee in games with very general structure (e.g.,
in [20]). We believe that such questions that are related to the computational
complexity of approximate pure Nash equilibria deserve further attention.
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Abstract. The stable allocation problem is one of the broadest exten-
sions of the well-known stable marriage problem. In an allocation prob-
lem, edges of a bipartite graph have capacities and vertices have quotas
to fill. Here we investigate the case of uncoordinated processes in stable
allocation instances. In this setting, a feasible allocation is given and the
aim is to reach a stable allocation by raising the value of the allocation
along blocking edges and reducing it on worse edges if needed. Do such
myopic changes lead to a stable solution?

In our present work, we analyze both better and best response dynam-
ics from an algorithmic point of view. With the help of two deterministic
algorithms we show that random procedures reach a stable solution with
probability one for all rational input data in both cases. Surprisingly,
while there is a polynomial path to stability when better response strate-
gies are played (even for irrational input data), the more intuitive best
response steps may require exponential time. We also study the special
case of correlated markets. There, random best response strategies lead
to a stable allocation in expected polynomial time.

Keywords: Stable matching, stable allocation, paths to stability, best
response strategy, better response strategy, correlated market.

1 Introduction

Matching markets without prices model various real-life problems such as, e. g.,
employee placement, task scheduling or kidney donor matching. Research on
those markets focuses on maximizing social welfare instead of profit. Stability is
probably the most widely used optimality criterion in that case.

Finding equilibria in markets that lack a central authority of control is another
widely studied, challenging task. Besides modeling uncoordinated markets, like
third-generation (3G) wireless data networks [11], selfish and uncontrolled agents
can also represent modifications in coordinated markets, e. g., the arrival of a new
participant or slightly changed preferences [4]. In our present work, those two
topics are combined: we study uncoordinated capacitated matching markets.

1.1 Stability in Matching Markets

The theory of stable matchings has been investigated for decades. Gale and Shap-
ley [10] introduced the notion of stability on their well-known stable marriage
problem. An instance of this problem consists of a bipartite graph where color
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classes symbolize men and women, respectively. Each participant has a prefer-
ence list of their acquaintances of the opposite gender. A set of marriages (a
matching) is stable, if no pair blocks it. A blocking pair is an unmarried pair
so that the man is single or he prefers the woman to his current wife and vice
versa, the woman is single or she prefers the man to her current husband. The
Gale-Shapley algorithm was the first proof for the existence of stable matchings.

A natural extension of matching problems arises when capacities are intro-
duced. The stable allocation problem is defined in a bipartite graph with edge
capacities and quotas on vertices. The exact problem formulation is provided in
Section 2, and a detailed example can be found in the full version of the paper [6].

1.2 Better and Best Response Steps in Uncoordinated Markets

Central planning is needed in order to produce a stable solution with the Gale-
Shapley algorithm. In many real-life situations, however, such a coordination is
not available. Agents play their selfish strategy, trying to reach the best possible
solution. A path to stability is a series of myopic operations. The intuitive picture
of a myopic operation is the following. If a man and a woman block a marriage
scheme, then they both agree to form a couple together, even if they divorce
their current partners to that end. This step may induce new blocking pairs.
Such changes are made until a stable matching is reached. Note that stability
is naturally a desirable property of uncoordinated markets. A stable matching
seems to be the best reachable solution for all participants, because they cannot
find any partnership that could improve their own position.

The study of uncoordinated matching processes has a long history. In the case
of one-to-one matchings, two different concepts have been studied: better and best
response dynamics. One of the color classes is chosen to be the active side. These
vertices submit proposals to the passive vertices. According to best response dy-
namics, the best blocking edge of an active vertex is chosen to perform myopic
changes along. In better response dynamics, any blocking edge can play this role.

The core questions regarding uncoordinated processes rise naturally. Can a
series of myopic changes result in returning back to the same unstable matching?
If yes, is there a way to reach a stable solution? How do random procedures
behave? The first question about uncoordinated two-sided matching markets
was brought up by Knuth [14] in 1976. He also gives an example of a matching
problem where better response dynamics cycle. More than a decade later, Roth
and Vande Vate [16] came up with the next result on the topic. They show that
random better response dynamics converge to a stable matching with probability
one. Analogous results for best response dynamics were published in 2011 by
Ackermann et al. [2]. They also show an instance in which best response dynamics
cycle (see the full version of this paper [6]), give a deterministic algorithm for
reaching a stable solution in polynomial time and prove that the convergence
time is exponential in both random cases.

Besides these works on the classical stable marriage problem, there is a number
of papers investigating variants of it from the paths-to-stability point of view. For
the stable roommates problem, the non-bipartite version of the stable marriage
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problem, it is known that there is a series of myopic operations that leads to a
stable solution, if one exists [8]. A path to stability also exists in the bipartite
matching case with payments where flexible salaries and productivity are taken
into account [5]. In the hospitals/residents assignment problem, when couples
are present, the existence of such a path is only guaranteed if the preferences
are weakly responsive [13]. Weak responsiveness ensures consistence between the
preferences of each partner and the couple’s preference list on pairs of hospitals.
In many-to-many markets, supposing substitutable preferences on one side and
responsive preferences on the other side, a path to stability can be found [15].
Both substitutable and responsive preferences are defined in instances where
preferences are given on sets of vertices. Although many variants of the stable
marriage problem have been studied, no paper discusses the case of allocations
(instead of matchings or b-matchings), where edges are capacitated, thus, they
can be partially in stable solutions. Our present work makes an attempt to fill
this gap in the literature.

Structure of the paper In the next section, the essential theoretical basis is pro-
vided: stable allocations, and better and best response modifications on such
instances are defined. In Section 3, a special case of allocation instances are in-
vestigated. We show that although random best response processes generally run
in exponential time, in the case of correlated markets, polynomial convergence
is expected. Better and best response dynamics in the general case on ratio-
nal input are extensively studied in Section 4. We describe two deterministic
algorithms that generalize the result of Ackermann et al. on one-to-one match-
ing markets to stable allocation instances and also show algorithmic differences
between the two strategies. In the case of random procedures, convergence is
shown for both strategies. Section 5 focuses on running time efficiency. There, a
better response algorithm is presented that terminates with a stable solution in
O(|V |2|E|) time, even for irrational input data. A counterexample proves that
such an acceleration for the best response dynamics cannot be reached.

Table 1. Our results for rational input

shortest path to stability random path to stability
best response dynamics exponential length converges with probability 1

better response dynamics polynomial length converges with probability 1

Applied to a matching instance, our best-response algorithm performs the
same steps as the two-phase best response algorithm of Ackermann et al. Our
better-response variant can also be interpreted as an extended version of the
above mentioned method. The only difference is that while our first phase is
better response, theirs is best response. However, this seems to be a minor dif-
ference, as their proof is also valid for a better response first phase, and our proof
still holds if only best blocking edges are chosen. Moreover, stable allocations
might be the most complex model in which this approach brings results. The
most intuitive extension of Ackermann’s algorithm for stable flows [9] does not
even result in feasible myopic changes.



64 Á. Cseh and M. Skutella

On the other hand, our accelerated better-response algorithm generalizes an-
other known method. Applied directly to the instance with the empty allocation,
the accelerated Phase II performs augmentations like the augmenting path algo-
rithms of Baïou and Balinski, and of Dean and Munshi. Since our algorithm is
an accelerated version of our first algorithm, our concept offers a bridge between
two known methods for solving two completely different problems, providing a
solution to both of them.

2 Preliminaries

2.1 Stable Allocations

The marriage problem has been extended in several directions. A great deal of
research effort has been spent on many-to-one and many-to-many matchings,
sometimes also referred to as b-matchings. Their extension is called the stable
allocation problem, also known as the ordinal transportation problem, since it
is a direct analog of the classical cost-based transportation problem. In this
problem, the vertices of a bipartite graph G = (V, E) have quotas q : V → R≥0,
while edges have capacities c : E → R≥0. Both functions are real-valued, unlike
the respective functions in many-to-many instances, where capacities are unit,
while quotas are integer-valued. Therefore, allocations can model more complex
problems, for example where goods can be divided unequally between agents. In
order to avoid confusion caused by terms associated with the marriage model, we
call the vertices of the first color class jobs and the remaining vertices machines.
For each machine, its quota is the maximal time spent working. A job’s quota
is the total time that machines must spend on the job in order to complete it.
In addition, machines have a limit on the time spent on a specific job; this is
modeled by edge capacities. A feasible allocation is a set of contracts where no
machine is overwhelmed and no job is worked on after it has been completed.

Definition 1 (allocation). Function x : E → R≥0 is called an allocation if
both of the following hold for every edge e ∈ E and every vertex v ∈ V of G:

1. x(e) ≤ c(e);
2. x(v) :=

∑
e∈δ(v) x(e) ≤ q(v), where δ(v) is the set of edges incident to v.

To define stability we need preference lists as well. All vertices rank their
incident edges strictly. Vertex v prefers uv to wv, if uv has a lower rank on
v’s preference list than wv: rankv(uv) < rankv(wv). In this case we say that
uv dominates wv at v. A stable allocation instance consists of four elements:
I = (G, q, c, O), where O is the set of all preference lists.

Definition 2 (blocking edge, stable allocation). An allocation x is blocked
by an edge jm if all of the following properties hold:
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1. x(jm) < c(jm);
2. x(j) < q(j) or j prefers jm to its worst edge with positive value in x;
3. x(m) < q(m) or m prefers jm to its worst edge with positive value in x.

A feasible allocation is stable if no edge blocks it.

In other words, edge jm is blocking if it is unsaturated and neither end vertices
of jm could fill up its quota with at least as good edges as jm. If an unsaturated
edge fulfills the second criterion, then we say that it dominates x at j. Similarly,
if the third criterion is fulfilled, then we talk about an edge dominating x at m.

Baïou and Balinski [3] prove that stable allocations always exist. They also
give two algorithms for finding them, an extended version of the Gale-Shapley
algorithm and an inductive algorithm. The worst case running time of the first
algorithm is exponential, but the latter one runs in strongly polynomial time.
Dean and Munshi [7] speed up the polynomial algorithm using sophisticated data
structures: their version runs in O(|E| log |V |) time for any real-valued instance.

2.2 Better and Best Response Steps for Allocations

First, we provide some basic definitions and notations we will use throughout
the entire paper. A feasible, but possibly unstable allocation x is given at the
beginning, the instance can be written as I= (G, q, c, O, x). Increasing x along a
blocking edge and possibly decreasing it along worse edges is a better response
step: through this operation, both end vertices of the blocking edge come better
off. The definition of better and best response strategies is not as straightforward
as it is in the matching instance with unit quotas and capacities. Here, the
possible outcomes of a player are ordered lexicographically.

Although lexicographical order seems to be a natural choice, it is somewhat
against the convention when discussing stable allocations. In most cases, when
comparing the position of an agent in two stable allocations, the so called min-
min criterion is used [3]. According to this rule, the agent prefers the allocation
in which its worst positive edge is ranked higher. In order to make use of such
an ordering relation, each vertex has to have the same allocation value in all
stable solutions. Therefore here, when studying and comparing arbitrary feasible
allocations, this concept proves to be counter-intuitive.

In our instance I, jobs form the active side J , machines M are passive players.
For sake of simplicity we denote the residual capacity c(jm) − x(jm) of edge jm
by x̄(jm) and similarly, the residual quota q(v) − x(v) of vertex v by x̄(v).

An active player j having some blocking edges is chosen to perform a best
response step on the current allocation x. Amongst j’s blocking edges, let jm
be the one ranked highest on j’s preference list. The aim of player j is to reach
its best possible lexicographical position via increasing x(jm). To this end, j
is ready to allocate all its remaining quota x̄(j) to jm, moreover, it reassigns
allocation from all edges worse than jm to jm. Thus, j aims to increase x(jm)
by x̄(j) + x(edges dominated by jm at j). To preserve feasibility, x(jm) is not
increased by more than x̄(jm). The passive player m agrees to increase x(jm)
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as long as it does not lose allocation on better edges. This constraint gives the
third upper bound, x̄(m)+x(edges dominated by jm at m). To summarize this,
in a best response step x(jm) is increased by the following amount.

A := min{x̄(j) + x(edges dominated by jm at j), x̄(jm),
x̄(m) + x(edges dominated by jm at m)}

Once this A and the new x(jm) is determined, j and m fill their remaining quota,
then refuse allocation on their worst allocated edges, until x becomes feasible.

Better response steps are much less complicated to describe. The chosen active
vertex j increases the allocation on an arbitrary blocking edge jm. Both j and
m are allowed to refuse allocation on worse edges than jm. This rule guarantees
that j’s lexicographical situation develops and that the change is myopic for
both vertices. By definition, best response steps are always better response steps
at the same time. The execution of a single better response step consists of
modifications on at most |δ(j)| + |δ(m)| − 1 ≤ |V | − 1 edges.

3 Correlated Markets

Before tackling the general paths to stability problem, we first restrict ourselves
to instances with special preference profiles. In this section, we study the case of
stable allocations on an uncoordinated market with correlated preferences. Later
we will prove that the convergence time of random best and better response
strategies is exponential on general instances. By contrast, here we show that
on correlated markets, random best response strategies terminate in expected
polynomial time, even in the presence of irrational data. At the end of this
section we also elaborate on the behavior of better response dynamics.

Definition 3 (correlated market). An allocation instance is correlated, if
there is a function f : E → N such that rankv(uv) < rankv(wv) if f(uv) < f(wv)
for every u, v, w ∈ V and no two edges have the same f value.

Correlated markets are also called instances with globally ranked pairs or
acyclic markets. The latter property means that there is no cycle of edges such
that every edge is preferred to the previous one by their common vertex. Abra-
ham et al. [1] show that acyclic markets are correlated and vice versa. Ackermann
et al. [2] were the first to prove that random better and best response dynamics
reach a stable matching on correlated markets in expected polynomial time. Us-
ing a similar argumentation, we extend their result to allocation instances. The
detailed proof can be found in the full version of the paper [6].

Theorem 1. On correlated allocation instances with real-valued input data, ran-
dom best response dynamics reach a stable solution in expected time O(|V |2|E|).

In order to establish a similar result for better response dynamics in real-
valued instances, an exact interpretation of random events would be needed.
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In the matching case, best and better response dynamics differ exclusively in
the rank of the chosen blocking edge: when playing best response strategy, the
best blocking edge is chosen by an active vertex j. In contrast to this, here,
better response steps differ also in the amount of modification and in the edges
chosen to refuse allocation along. The first factor indicates a continuous sample
space.

If we assume that any better response step results in reassigning the highest
possible allocation value to an arbitrary blocking edge, an analogous proof can
be derived. Then, termination needs O(|V |3|E|) steps in expectation.

4 Best and Better Responses with Rational Data

In this section, the case of allocations on an uncoordinated market with rational
data is studied. As already mentioned, better and best response dynamics can
cycle in such instances. We describe two deterministic methods, a better-response
and a best-response algorithm that yield stable allocations in finite time. The
main idea of our algorithms is to distinguish between blocking edges based on
the type of blocking at the job: dominance or free quota.

A blocking edge can be of two types. Recall point 2 of Definition 2: if jm
blocks x, then x(j) < q(j) or j prefers jm to its worst edge with positive value
in x. We talk about blocking of type I in the latter case, if jm blocks x because
j prefers jm to its worst edge having positive value in x. Blocking of type II
means that j has no allocated edge worse than jm, but j has not filled up its
quota yet, x(j) < q(j). Note that the reason of the blocking property at m is
not involved when defining the two groups.

4.1 Better Response Dynamics

First, we provide a deterministic algorithm that constructs a finite path to stabil-
ity from any feasible allocation. In the first phase of our algorithm, only blocking
edges of type I are chosen to perform myopic changes along. The active vertices
(jobs) choose one of their blocking edges of type I, not necessarily the best one.
In all cases, withdrawal is executed along worst allocated edges. The amount
of allocation set to the better edge is determined in such a way that at least
one edge or a vertex becomes saturated or empty. Active vertices replace their
worst edges with better ones, even if they had free quota. When no blocking
edge of type I remains, the second phase starts. The allocation value is increased
on blocking edges of type II such that they cease to be blocking. The runtime
of our algorithm is exponential. Later, in Section 5 we will also show that this
algorithm can be accelerated such that a stable solution is reached in polynomial
time. The detailed proof of correctness, a pseudocode and execution on a sample
instance are provided in the full version of the paper [6].

Theorem 2. For every allocation instance with rational data and a given fea-
sible allocation x, there is a finite sequence of better responses that leads to a
stable allocation.
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The main idea of the proof is the following. We need to keep track of the
change in total allocation value and in the lexicographical position of the active
vertices simultaneously. In one step of the first phase along edge jm, either both
j and m refuse edges, thus, the allocation value |x| =

∑
j∈J x(j) decreases, or

only j does so, keeping |x| and improving its situation lexicographically. Since
both procedures are monotone and the second one does not impair the first one,
the first phase terminates. Termination for the second phase is implied by the
fact that passive vertices improve their lexicographical situation in each step.

This algorithm also proves an important result regarding rational random
better response processes. If the input is rational (there is a smallest positive
number that can be represented as a linear combination of all data), it is clearly
worthwhile to restrict the set of feasible better response modifications to the
ones that reassign a multiple of this unit. For this reason, the set of reachable
allocations is finite and they can be seen as states of a discrete time Markov
chain. Our algorithm proves that from any state there is a finite path to an
absorbing state with positive probability.

Theorem 3. In the rational case, random better response strategies terminate
with a stable allocation with probability one.

Polynomial time convergence cannot be shown, since better response strate-
gies need exponential time to converge even in matching instances [2].

4.2 Best Response Dynamics

In this subsection, we derive analogous results for best response modifications
to the ones established for better response strategies. The main difference from
the algorithmic point of view is that instances can be found in which no se-
ries of best response strategies terminate with a stable solution in polynomial
time. A small example resembles the instance given by Baïou and Balinski [3]
to prove that the Gale-Shapley algorithm requires exponential time to termi-
nate in stable allocation instances. Let G be a complete bipartite graph on four
vertices, with quota q(j1) = N + 1, q(j2) = q(m1) = q(m2) = N and initial
allocation x(j1m1) = x(j2m2) = N for an arbitrary large number N . If the
preference profile is chosen to be cyclic, such that rankj1 (m1) = rankj2 (m2) =
rankm1(j2) = rankm2(j1) = 1, the unique series of best-response steps consists
of 2N operations. A path of exponential length to stability can still be found.

Theorem 4. For every allocation instance with rational data and a given feasi-
ble allocation x, there is a finite sequence of best responses that leads to a stable
allocation.

A similar two-phase algorithm is constructed to find a path to stability. Details
can be found in the full version of the paper [6]. The same arguments using finite
Markov chains imply the result on random procedures.

Theorem 5. In the rational case, random best response strategies terminate
with a stable allocation with probability one.
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5 Irrational Data - A Strongly Polynomial Algorithm

In our previous section, we relied several times on the fact that in each step,
x is changed with values greater than a specific positive lower bound. When
irrational data are present, e. g., q, c or x are real-valued functions, this cannot
be guaranteed. Hence, our arguments for termination are not any more valid.
Moreover, both of our algorithms require exponentially many steps to termi-
nate. In this section, we describe a fast version of our two-phase better response
algorithm that terminates in polynomial time with a stable allocation also for
irrational input data. In the full version of the paper [6], we give a detailed proof
of correctness for the first phase and show a construction with which all Phase II
steps can be interpreted as Phase I operations on a slightly modified instance.

5.1 Accelerated First Phase

The algorithm and the proof of its correctness can be outlined the following
way. A helper graph is built in order to keep track of edges that may gain or
lose some allocation. A potential function is also defined, it stores information
about the structure of the helper graph and the degree of instability of the
current allocation. In the helper graph we are looking for walks to augment
along. The amount of allocation we augment with is specified in such a way
that the potential function decreases and the helper graph changes. When using
walks instead of proposal-refusal triplets, more than one myopic operation can
be executed at a time. Moreover, we also keep track of consequences of locally
myopic improvements. For example, we spare running time by avoiding reducing
allocation on edges that later become blocking anyway.

First, we elaborate on the structure of the helper graph, define alternating
walks and specify the amount augmentation. Whereas the method is described
in details here, the proof of correctness, the pseudocode and a sample execution
can be found in the full version of the paper [6].

Helper Graph. Recall that our real-valued input I consists of a stable allo-
cation instance (G, q, c, O) and a feasible allocation x. First, we define a helper
graph H(x) on the same vertices as G. This graph is dependent on the current
allocation x and will be changed whenever we modify x. The edge set of H(x)
is partitioned into three disjoint subsets. The first subset P is the set of Phase I
blocking edges. Each job j that has at least one edge with positive x value, also
has a worst allocated edge, r(j). These are the edges jobs tend to reduce x along
when a myopic change is made. These refusal pointers form R, the second subset
of E(H(x)). We also keep track of edges that are currently not of blocking type I,
but later on they may enter set P . This last subset P ′ consists of edges that may
become blocking of type I after some myopic changes. An edge jm /∈ P has to
fulfill three criteria in order to belong to P ′: 1) c(jm) > x(jm); 2) m has at
least one refusal edge; 3) j prefers jm to its worst allocated edge r(j). Such an
edge immediately becomes blocking if m loses allocation along one of its refusal
edges. Edges in P ′ are called possibly blocking edges, the set P ∪P ′ forms the set
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of proposal edges. Note that a job j may have several edges in P and P ′, but at
most one in R. Moreover, if j has a proposal edge in H(x), it also has an edge
in R. Regarding the machines, if m has a P ′-edge, it also has an R-edge. The
following lemma provides an additional structural property of H(x).

Lemma 1. If jm ∈ P and j′m ∈ P ′, then rankm(jm) < rankm(j′m).
That is, machines prefer their blocking edges to their possibly blocking edges.

Alternating Walks. Our algorithm performs augmentations along alternating
walks, so that the allocation value of the refusal edges decreases, while the value
of proposal edges increases. This is done in such a way that R, P or P ′ (and
thus, H(x)) changes. The main idea behind these operations is the same we used
in our previous proof: reassigning allocation to blocking edges from worse edges,
such that the procedure is monotone. The difference between the two methods
is that while our first algorithm tackles a single blocking edge in each step, here
we deal with a set of blocking edges (forming the alternating walk) at once.

When choosing the alternating proposal-refusal walk W to augment along,
the following rules have to be observed:

1. The first edge jm1 is a P -edge.
2. P and P ′-edges are added to W together with the refusal edge they are

incident with on the active side.
3. Machines choose their best P or P ′-edge.
4. W ends at m if 1) m has no proposal edge or 2) its best proposal edge goes

to a vertex already visited by W .

As long as there is a blocking edge of type I, the first edge jm1 of such a
walk can always be found. Lemma 1 guarantees that point 3 is not harmed by
this jm1. After taking r(j), all that remains is to continue on best proposal edges
of machines and refusal edges of jobs they end at. Since G is a finite set, either of
the cases listed in point 4 will appear. According to these rules, proposal-refusal
edge pairs are added to the current path until 1) there is no pair to add or 2) the
path reaches a vertex already visited. In the first case, W is a path. In the latter
case, W is a union of a path and a cycle, connecting at exactly one vertex. This
vertex is the last vertex listed on W , where our method halts, observing point 4.
W can be, of course, a single path or a single cycle as well.

Before elaborating on the amount of augmentation, we emphasize that W is
a subset of the set of edges whose x value changes during an augmentation step.
The goal is to reassign allocation from refusal edges to blocking edges, until a
stable solution is derived. Naturally, on an alternating walk, refusal edges lose
the same amount of allocation proposal edges gain. But, except if augmentations
are performed along a single cycle, there is a single machine m1 that gains
allocation in total. In order to preserve feasibility, this machine might have to
refuse allocation on edges not belonging to W . The exact amount of these refusals
is discussed later, together with the amount of augmentation along W . Since
no other vertex gains allocation in an augmentation step, feasibility cannot be
harmed elsewhere. Thus, these are the only edges not on W that are modified.
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By contrast, if the augmentation is performed along a single cycle C, refusals
only happen on r(j) ∈ W ∩ R edges. Even if the machine m1 that started C
has a full quota, it does not need to refuse any allocation, since x(m1) remains
unchanged during the augmentation. Note that executing several local myopic
steps greedily, like in our first algorithm, would lead to a different output. Then,
m1 would refuse edges, not knowing that it loses allocation later. As a result of
that, m1 would go under its quota, and would possibly create new blocking edges.
Both strategies are better response, the difference is that our second algorithm
keeps track of changes made as a consequence of a myopic operation.
Amount of Augmentation. Once W is fixed, the amount of allocation A
has to be determined to augment with. It must be chosen so that 1) a feasible
allocation is derived and 2) at least one refusal edge becomes empty or at least
one proposal edge leaves P ∪ P ′. These points guarantee that H(x) changes. To
fulfill these two requirements, the minimum of the following terms is determined.

1. Allocation value on refusal edges along W : x(r(j)), where r(j) ∈ W ∩ R.
2. Residual capacity on proposal edges along W : x̄(p), x̄(p′), where p, p′ ∈ W ∩

(P ∪ P ′).
3. If W is not a single cycle, m1 may refuse sufficient amount of allocation such

that jm1 does not become saturated, but it stops dominating x at m1. In
this case, the residual quota of m1 must be filled up and, in addition, the
sum of allocation value on edges worse than jm1 must be refused. With this,
jm1 becomes the worst allocated edge of a full machine. Until reaching this
point, jm1 may gain x̄(m1) + x(edges dominated by jm1 at m1) amount of
allocation in total.

To summarize this, we augment with A := min{x(r(j)), x̄(p), x̄(p′)|r(j) ∈ W ∩
R, p, p′ ∈ W ∩ (P ∪ P ′)} if W is a cycle, because then the last case with the
starting vertex m1 may not occur. Otherwise, the amount of augmentation is
A := min{x(r(j)), x̄(p), x̄(p′), x̄(m1) + x(edges dominated by jm1 at m1)|r(j) ∈
W ∩ R, p, p′ ∈ W ∩ (P ∪ P ′)}.

The second phase of our method can be interpreted as the execution of the first
phase on a modified instance. The modification needed consist of introducing a
dummy job and swapping the roles of the active and passive color classes.

In total, the algorithm performs O(|V ||E|) rounds, each of them needs O(|V |)
time to be computed. Thus, it runs in O(|V |2|E|) time. For a detailed proof of
correctness and runtime computation, see the full paper [6].

Theorem 6. For every real-valued allocation instance and given feasible allo-
cation, there is a sequence of better responses leading to a stable allocation in
O(|V |2|E|) time.

Our method resembles the well-known notion of rotations [12]. They can be
used when deriving a stable solution from another, by finding an alternating
cycle of matching and non-matching edges and augmenting along them. In our
algorithm, when we are searching for augmenting cycles or walks, we use an
approach similar to rotations: jobs candidate their edges better than their worst
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positive edge, while machines choose the best out of them. However, two differ-
ences can be spotted right away. While rotations are always assigned to a stable
solution different from the job-optimal, our method works on unstable input.
Moreover, besides cycles we also augment along paths and walks.
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Abstract. Dynamics in a distributed system are self-stabilizing if they
are guaranteed to reach a stable state regardless of how the system is
initialized. Game dynamics are uncoupled if each player’s behavior is in-
dependent of the other players’ preferences. Recognizing an equilibrium
in this setting is a distributed computational task. Self-stabilizing un-
coupled dynamics, then, have both resilience to arbitrary initial states
and distribution of knowledge. We study these dynamics by analyzing
their behavior in a bounded-recall synchronous environment. We deter-
mine, for every “size” of game, the minimum number of periods of play
that stochastic (randomized) players must recall in order for uncoupled
dynamics to be self-stabilizing. We also do this for the special case when
the game is guaranteed to have unique best replies. For deterministic
players, we demonstrate two self-stabilizing uncoupled protocols. One
applies to all games and uses three steps of recall. The other uses two
steps of recall and applies to games where each player has at least four
available actions. For uncoupled deterministic players, we prove that a
single step of recall is insufficient to achieve self-stabilization, regardless
of the number of available actions.

1 Introduction

Self-stabilization is a failure-resilience property that is central to distributed
computing theory and is the subject of extensive research (see, e.g., [3] for a sur-
vey). It is characterized by the ability of a distributed system to reach a stable
state from every initial state. Dynamic interaction between strategic agents is a
central research topic in game theory (see, e.g., [4,11]). One area of interest is
uncoupled dynamics, in which each player’s strategy is independent of the other
players’ payoffs [9]. Here, we bring together these two research areas and study
of self-stabilizing uncoupled dynamics within the broader research agenda of dis-
tributed computing with adaptive heuristics [10]. The same questions we answer
here can be asked for a broad variety of dynamics and notions of convergence and
equilibria. These directions, as well as a conjecture, are discussed in Section 5.
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We focus our investigation on a bounded-recall, synchronous setting. We con-
sider self-stabilization in a multi-agent distributed system in which, at each
timestep, the agents act as strategic players in a game, simultaneously selecting
actions from their respective finite action sets to form an action profile. The
space of action profiles is relevant throughout this work, and we refer to its size
as the size of the game. We study the effects of bounded recall, in which the
state of this system at any time consists of the r most recent action profiles,
for some finite r. The stable states in r-recall systems necessarily have the same
action profile in r consecutive time steps. In our context, we want stable states
that are robust to players acting selfishly—i.e., those where the repeated action
profile is an equilibrium of the stage game. In this paper, we consider pure Nash
equilibria (PNE). Thus, in our setting, dynamics self-stabilize for a given game
if, from every starting state, players are guaranteed to converge to a PNE. For
games without PNE, dynamics cannot self-stabilize in this sense. Throughout
this paper, we say that particular dynamics succeed on a class of games if they
self-stabilize for games in that class whenever a PNE exists.

Traditional study of convergence to equilibria in game dynamics makes various
assumptions about the “reasonableness” of players’ behavior, restricting them to
always play the game in ways that are somehow consistent with their self-interest
given their current knowledge. In contrast to these behavioral restrictions on the
players, uncoupledness is an informational restriction, in that the players have
no knowledge of each other’s payoffs. In this situation, no individual player can
recognize a PNE, so finding an equilibrium is a truly distributed task.

If uncoupledness is the only restriction on the dynamics, then the players can
find a PNE through a straightforward exhaustive search. However, this changes
when players’ abilities to remember past actions is restricted. In a continuous-
time setting, Hart and Mas-Colell [7] showed that deterministic uncoupled dy-
namics fail to reach a stable state for some games that have PNE if the dynamics
must be historyless, i.e., if the state space of the system is identical to the action
profile space of the game. This suggests the central question that we address:

On a given class of games, how much recall do uncoupled players need
in order to self-stabilize whenever a PNE exists? That is, when are there
successful k-recall dynamics?

This question was answered in part by Hart and Mas-Colell [8], who showed
that in a discrete-time setting, even when players are allowed randomness, no his-
toryless uncoupled dynamics succeed on all two-player games where each player
has three actions. Moreover, they showed that even for generic games (where
at every action profile each player has a unique best response), no historyless
uncoupled dynamics succeed on games with three three-action players. They
also gave positive results, proving that there are historyless uncoupled dynamics
that succeed on all two-player generic games, and that if the players have 2-recall
(i.e., they are allowed to see the two most recent action profiles), then over every
action profile space there are stochastic uncoupled dynamics that succeed on all
games.
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Our results. We show in Section 3 that there exist historyless uncoupled dy-
namics that succeed on all two-player games with a two-action player and on
all three-player generic games with a two-action player (Theorems 4 and 9). In
both cases, we prove that these results are tight, in that they do not hold for any
larger size of game (Theorems 5 and 11). Combined with the results of Hart and
Mas-Colell [8], this provides a complete characterization of the exact minimum
recall needed, for any action profile space, for uncoupled dynamics to succeed
on all games over that space and on generic games over that space. In Sec-
tion 4, turning to deterministic dynamics, we demonstrate 3-recall deterministic
uncoupled dynamics that succeed on all games (Theorem 14) and 2-recall de-
terministic uncoupled dynamics that succeed on all games in which every player
has at least four actions (Theorem 15). We also prove for every action profile
space that no historyless deterministic uncoupled dynamics succeed on all games
over that space (Theorem 16). Some proofs are omitted from the proceedings
version of this paper. A longer version with all proofs included can be found at
http://arxiv.org/abs/1403.5791.

Related work. There are rich connections between distributed computing and
game theory, some of which are surveyed by Halpern [5]. Jaggard, Schapira, and
Wright [10] investigated convergence to pure Nash equilibria by game dynamics
in asynchronous distributed systems. Most closely related to our specific setting,
Hart and Mas-Colell introduced the concept of uncoupled game dynamics [7].
In addition to the results mentioned above, they also addressed convergence to
mixed Nash equilibria by bounded-recall uncoupled dynamics [8]. Babichenko
investigated the situation when the uncoupled players are finite-state automata,
as well as completely uncoupled dynamics, in which each player can see only
the history of its own actions and payoffs [1,2]. Young [13] and Pradelski and
Young [12] gave completely uncoupled dynamics that achieve an equilibrium in
a high proportion of steps but do not necessarily converge. Hart and Mansour [6]
analyzed the time to convergence for uncoupled dynamics.

2 Preliminaries

We begin with definitions of the concepts used in the paper.

Games. Let n ∈ N and (k1, ..., kn) ∈ Nn, with n ≥ 2 and each ki ≥ 2. A game of
size (k1, ..., kn) is a pair (A,U), where A = A1× ...×An such that each |Ai| = ki,
and U = (u1, ..., un) is an n-tuple of functions ui : A → R. Ai and ui are the
action set and utility function of player i. Δ(Ai), the probability simplex over
Ai, is player i’s set of mixed actions. When n is small, we may describe a game
(A,U) as a k1-by-...-by-kn game. Elements of A are the (action) profiles of the
game, and A is called the (action) profile space. U(A) is the the class of all U
such that each ui takes Ai as input, so A× U(A) is the class of all games with
profile space A. When A is clear from context, we often identify the game with
the utility function vector U .

http://arxiv.org/abs/1403.5791
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Let U ∈ U(A). For i ∈ {1, ..., n} and a = (a1, ..., an) ∈ A, we say that player
i is U -best-replying at a if ui(a) ≥ ui((a1, ..., a

′
i, ..., an)) for every a′i ∈ Ai. We

define the set of U -best-replies for player i at a,

BRU
i (a) = {a′i ∈ Ai : i is U -best-replying at (a1, ..., a

′
i, ..., an)}.

We omit U from this notation when the game being played is clear from context.
A profile p ∈ A is a pure Nash equilibrium, abbreviated PNE, for U if every
player i ∈ {1, ..., n} is best-replying at p. An action ai ∈ Ai is weakly dominant
for player i if ai ∈ BRi(x) for every x ∈ A; it is strictly dominant for player i if
BRi(x) = {ai} for every x ∈ A.

A game (A,U) ∈ A× U(A) is generic if every player’s best-replies are unique,
i.e., if for every a ∈ A and i ∈ {1, ..., n}, |BRU

i (a)|=1. For generic games (A,U)
we may abuse notation slightly by using BRU

i (a) to refer to this set’s unique
element. A× G(A) is the class of all generic games on A.

Dynamics. We now consider the repeated play of a game. Let the profile at

timestep t ∈ Z be a(t) =
(
a
(t)
1 , ..., a

(t)
n

)
∈ A. The stage game (A,U) ∈ A ×

U(A) is then played: each player i simultaneously selects a new action a
(t+1)
i by

applying an r-recall stationary strategy fU
i : Ar → Δ(Ai), where r ∈ N and

Ar is the Cartesian product of A with itself r times. A deterministic r-recall
stationary strategy mapping ranges over Ai instead of Δ(Ai). The strategy fU

i ,
which is stationary in the sense that it does not depend on t, will take as input
(a(t−r+1), ..., a(t)), the r most recent profiles. We call this r-tuple the state at
time t. The terms 1-recall and historyless are interchangeable. A strategy vector
is an n-tuple fU = (fU

1 , ..., fU
n ), where each fU

i is a strategy for player i. F(A)
will denote the set of all strategy vectors for A.

A strategy mapping for A is a mapping f : U(A)→ F(A) that assigns to each
U a strategy vector fU . A strategy mapping f is uncoupled if the strategy it
assigns each player depends only on that player’s utility function and not, e.g.,
on the other players’ payoffs. That is, there are mappings f1, ..., fn where each
fi maps utility functions on A to strategies for A, such that fi(ui) ≡ fU

i for
i = 1, ..., n. If fU

i is stationary, deterministic, or r-recall for i = 1, ..., n, then fU

is also. If every fU has any of those properties, then f does also.
Now let x =

(
x(1), ..., x(r)

)
∈ Ar, and let fU be an r-recall strategy vector.

For T ≥ r, a partial fU -run for T steps starting from x is a tuple of profiles(
a(1), ..., a(T+r)

)
∈ AT+r such that x = (a(1), ..., a(r)) and for every r < t ≤ T+r,

Pr
(
fU

(
a(t−r), ..., a(t−1)

)
= a(t)

)
> 0.

An fU -run is an infinite sequence of profiles a(1), a(2), ... such that every finite
prefix is a partial fU -run. We say that y ∈ Ar is fU -reachable from x ∈ Ar if there
exist a T ∈ N and a partial fU -run

(
a(1), ..., a(T+r)

)
such that x = (a(1), ..., a(r))

and y =
(
a(T ), ..., a(T+r)

)
. The state x is an fU -absorbing state if for every fU -

run a(1), a(2), ... beginning from x,
(
a(t+1), ..., a(t+r)

)
= x for every t ∈ N. Notice
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that any fU -absorbing state x =
(
a(1), ..., a(r)

)
must have a(1) = ... = a(r). We

omit the strategy vector from this notation when it is clear from context. The
game dynamics of f consist of all pairs (U,R) such that R is an fU -run.

Convergence. A sequence of profiles a(1), a(2), ... converges to a profile a if there
some T ∈ N such that a(t) = a for every t ≥ T . If from every x ∈ Ar, some
fU -absorbing PNE is fU -reachable, then f self-stabilizes on game (A,U). We
say that f succeeds on a game U if f self-stabilizes on (A,U) or if (A,U) has
no PNE. Let C(A) be a class of games on A. If f succeeds on every game
(A,U) ∈ A× C(A), then f succeeds on C(A).

Let A = A1 × ... × An and B = B1 × ... × Bn be profile spaces of the
same size, in the sense that there is some permutation π on {1, ..., n} such that
(|A1|, ..., |An|) = (|Bπ(1)|, ..., |Bπ(n)|). Then we write A � B. If f succeeds on
C(A), then there is a strategy mapping derived from f that succeeds on C(B),
simply by rearranging the players and bijectively mapping actions in each Ai

to actions in Bπ(i). This new strategy mapping retains any properties of f that
are of interest here (uncoupledness, r-recall, stationarity, and determinism). For
this reason we define

C(|A1|, ..., |An|) =
⋃

B�A

C(B),

and we say that f succeeds on C(|A1|, ..., |An|) if f succeeds on C(B) for some
B � A. For example, “f succeeds on G(2, 3)” means “f self-stabilizes on every
generic 2-by-3 game with a PNE (up to renaming of actions).”

3 Stochastic Uncoupled Dynamics

In this section, we determine, for every profile space A, the minimum r ∈ N such
that an uncoupled r-recall stationary strategy mapping exists that succeeds on
all games (A,U) ∈ A × U(A) or all generic games (A,U) ∈ A × G(A). Hart
and Mas-Colell [8] proved that 2-recall is sufficient to succeed on all games, 1-
recall is sufficient to succeed on generic two-player games, and that 1-recall is
not sufficient to succeed on all games, or even all generic games. We state these
results in the present setting.

Theorem 1 (Hart and Mas-Colell [8]). For any profile space A, there exists
an uncoupled 2-recall stationary strategy mapping that succeeds on all games
(A,U).

Theorem 2 (Hart and Mas-Colell [8]). There is no uncoupled historyless
stationary strategy mapping that succeeds on all 3-by-3 games, or on all 3-by-3-
by-3 generic games.

Theorem 3 (Hart and Mas-Colell [8]). For any two-player profile space A,
there is an uncoupled historyless stationary strategy mapping that succeeds on all
generic games (A,U).
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We now describe the strategy mapping given in the proof of Theorem 3. Notice
that for a historyless stationary strategy mapping, the state space is exactly the
profile space, so the terms state and profile are interchangeable in this context.

Definition For any n-player profile spaceA, the canonical historyless uncoupled
stationary strategy mapping for A is h : U(A) → F(A), defined as follows. Let
U = (u1, ..., un) ∈ U(A). Then h(U) = (hU

1 , ..., h
U
n ), where for i ∈ {1, ..., n},

hU
i : A→ Ai is given by

Pr
(
hU (ai) = ai | ai ∈ BRi(a)

)
= 1

Pr
(
hU (ai) = bi | ai �∈ BRi(a)

)
= 1/ki,

for all ai, bi ∈ Ai. That is, if player i is already best replying, then it will continue
to play the same action. Otherwise, i will play an action chosen uniformly at
random from its action set.

In their proof of Theorem 2, Hart and Mas-Colell make the following obser-
vation.

Observation 1 (Hart and Mas-Colell [8]). Suppose f is an uncoupled his-
toryless stationary strategy mapping for profile space A and f succeeds on all
generic games (A,U). Then two conditions hold for every game (A,U) and a =
(a1, ..., an) ∈ A. First, if player i is best-replying at a, then Pr(fU

i (a) = ai) = 1.
Second, if player i is not best replying at a, then Pr(fU

i (a) = a′i) > 0 for some
a′i ∈ Ai � {ai}.

Informally, no player can move when it is best-replying, and each player must
move w.p.p. whenever it is not best-replying. The first condition guarantees
that every PNE is an absorbing state; the second guarantees that no non-PNE
is an absorbing state. Implicit in the same proof is the fact that h is at least as
“powerful” as any other historyless uncoupled strategy mapping.

Observation 2 (Hart and Mas-Colell [8]). If any historyless uncoupled sta-
tionary strategy mapping succeeds on U(A) or on G(A), then h succeeds on that
class.

3.1 Stochastic Dynamics for U(A)

We now describe the profile spaces in which there are uncoupled historyless
strategy mappings that succeed on every game, or equivalently (by Observation
2), the A for which h succeeds on U(A). A proof that h succeeds on 2-by-k
games proceeds by simple case checking.

Theorem 4. For every two-player profile space A in which one player has only
two actions, h succeeds on all games (A,U).

It turns out that 2-by-k profile spaces are the only ones where h succeeds on
all games.
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Theorem 5. Let A be a profile space. Unless A has only two players and one of
those players has only two actions, no historyless uncoupled stationary strategy
mapping succeeds on all games (A,U).

We give three lemmas that will be used in the proof of Theorem 5. Informally,
Lemma 6 says that additional actions do not make a profile space any “easier”
in this context; the players will need at least as much recall to succeed on all
games in the larger space. The proof relies on a type of reduction in which the
players take advantage of a strategy mapping for a larger game by “pretending”
to play the larger game. Whenever player i plays ki, all players guess randomly
whether i would have played ki or ki + 1 in the larger game.

Lemma 6. Let n ≥ 2, k1, ..., kn ≥ 2, and i ∈ {1, ..., n}. If h succeeds on
U(k1, ..., ki + 1, ..., kn), then h succeeds on U(k1, ..., ki, ..., kn).

Lemma 7 tells us that the same is true of adding players to the game. Its
proof also uses a simple reduction. The players utilize the strategy mapping for
the (n+1)-player game by behaving as if there is an additional player who never
wishes to move. This preserves genericity, so the lemma also applies to the class
of generic games.

Lemma 7. Letn ≥ 2 and k1, ..., kn, kn+1 ≥ 2. Ifh succeeds on U(k1, ..., kn, kn+1),
then h succeeds on U(k1, ..., ki, ..., kn). The same is true if we replace U with G.

Finally, Lemma 8 says that h does not succeed on all 2-by-2-by-2 games. An
example is given in its proof of a game with a PNE where h fails to converge.

Lemma 8. No historyless uncoupled stationary strategy mapping succeeds on
U(2, 2, 2).

Proof of Theorem 5. Let A = A1 × ... × An. By Observation 2, it suffices to
show that h does not succeed on U(|A1|, ..., |An|). Assume that h does succeed
on U(|A1|, ..., |An|). If n = 2, |A1|, |A2| > 2, and h succeeds on U(k1, k2), then by
repeatedly applying Lemma 6, h succeeds on U(3, 3). This contradicts Theorem
2. Now suppose that n ≥ 3. If h succeeds on U(|A1|, ..., |An|), then by repeatedly
applying Lemma 7, h succeeds on U(|A1|, |A2|, |A3|). So by repeatedly applying
Lemma 6, h succeeds on U(2, 2, 2). This contradicts Lemma 8.

3.2 Stochastic Dynamics for G(A)

We now turn to generic games and to describing the class of profile spaces A
for which there exist historyless uncoupled strategy mappings that succeed on
G(A). Theorem 3 tells us that h succeeds on two-player generic games. In fact,
h also succeeds on three-player generic games where one player has only two
options.

Theorem 9. Let A be a three-player profile space such that one player has only
two actions. Then h succeeds on all generic games (A,U).
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The proof of this theorem relies partially on an analogy between a k-by-�-by-2
generic game and a k�-by-2 game that might not be generic. This requires the
following technical lemma showing that under h, two players in a generic game
sometimes behave similarly to a single player.

Lemma 10. Let k, l ∈ N, and let U ∈ G(k, �) be a game in which neither player
has a strictly dominant action. For every a, b ∈ A such that a is not a PNE for
U , b is hU -reachable from a.

Proof of Theorem 9. Let A = {1, ..., k}×{1, ..., �}×{0, 1} for some �, k ∈ N. Let
U ∈ G(A) and a = (a1, a2, a3) ∈ A. All PNE are absorbing states under h, so it
will suffice to show there is some PNE that is hU -reachable from a.

Let A′ = {1, ..., k} × {1, ..., �}, and consider the games U0 = (u0
1, u

0
2) and

U1 = (u1
1, u

1
2) ∈ G(A′) defined by

u0
i (x1, x2) = ui(x1, x2, 0)

u1
i (x1, x2) = ui(x1, x2, 1)

for every x1 ∈ {1, ..., k}, x2 ∈ {1, ..., �}, and i ∈ {0, 1}. In this proof we will re-
peatedly use the fact that over any finite number of steps, w.p.p. player 3 doesn’t
move, so if (y1, y2) ∈ A′ is hU0

-reachable from (x1, x2) ∈ A′, then (y1, y2, 0) ∈ A

is hU -reachable from (x1, x2, 0) ∈ A, and similarly for hU1

.

Claim. If either player has a strictly dominant action in U0 or U1, then some
PNE is hU -reachable from a.

Thus we may assume that neither player has a strictly dominant action in
U0 or in U1. Consider a two-player game Û = (û1, û2) on Â = ({1, ..., k} ×
{1, ..., �})× {0, 1} given by

û1(x) =

{
1 if (x1, x2) is a PNE for Ux3

0 otherwise

û2(x) = u3((x1, x2, x3)),

for every x = ((x1, x2), x3) ∈ Â. Note that unlike U , this game is not necessarily

generic. By Theorem 4, some PNE p̂ = ((p1, p2), p3) for Û is hÛ -reachable from
â = ((a1, a2), a3).

Now let x̂ = ((x1, x2), x3) and ŷ = ((y1, y2), y3) ∈ Â such that w.p.p. ŷ =

hÛ (x̂). If x3 �= y3, then x3 �∈ BRÛ
2 (x̂), so x3 �= BRU

3 (x). Thus w.p.p. hU (x) =
(x1, x2, y3). Since BRU

3 (x) �= x3 �= y3 and |A3| = 2, we must have BRU
3 (x) = y3,

so if (x1, x2) is a PNE for Uy3 , then (x1, x2, y3) is a PNE for U . Otherwise,
by Lemma 10 (y1, y2) is hUx3

-reachable from (x1, x2), so y = (y1, y2, y3) is hU -
reachable from (x1, x2, y3) and therefore from x.

Applying this to the each step on the path by which p̂ is hÛ -reachable from â,
we see that either p = (p1, p2, p3) (which is a PNE for U) is hU -reachable from a,
or some other PNE for U is encountered in this process and thus hU -reachable
from a.
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In fact, two-player and 2-by-k-by-� are the only sizes of generic games on
which h always succeeds.

Theorem 11. Let A be a profile space. If A has more than three players, or if
every player has more than two actions, then no historyless uncoupled stationary
strategy mapping succeeds on all generic games (A,U).

Before proving this theorem, we present two lemmas. Lemma 12 says that h
does not succeed on all 2-by-2-by-k-by-� generic games. It is proved by giving
an example of such a game.

Lemma 12. For every k, � ≥ 2, h does not succeed on G(2, 2, k, �).

Lemma 13 says that h doesn’t succeed on all three-player generic games in
which all players have at least three actions. This is demonstrated by simple
modifications of the 3-by-3-by-3 game used by Hart and Mas-Colell in their
proof of Theorem 2.

Lemma 13. For every k1, k2, k3 ≥ 3, h does not succeed on G(k1, k2, k3)

Proof of Theorem 11. By Observation 2, if suffices to show that h does not
succeed on G(|A1|, ..., |An|). Assume for contradiction that h does succeed on
G(|A1|, ..., |An|). If n = 3 and h succeeds on G(|A1|, |A2|, |A3|), then by Lemma
13 we cannot have |A1|, |A2|, |A3| > 2. If n = 4 and h succeeds on G(|A1|, ...,
|A4|), then by Lemma 12 there are distinct i, j, k ∈ {1, 2, 3, 4} such that |Ai|, |Aj |,
|Ak| > 2. But by Lemma 7, h succeeds on G(|Ai|, |Aj |, |Ak|), contradicting
lemma 13. If n > 4 and h succeeds on G(|A1|, ..., |An|), then by repeatedly ap-
plying Lemma 12, h succeeds on G(|A1|, ..., |A4|), which we have already shown
to be impossible.

4 Deterministic Uncoupled Dynamics

Both h and the strategy mapping used by Hart and Mas-Colell [8] to prove
Theorem 1 are variations on random search. For deterministic dynamics, an
exhaustive search requires more structure, and the challenge for deterministic
players in short-recall uncoupled dynamics is in keeping track of their progress
in the search.

We show that there are successful 3-recall deterministic dynamics by using
repeated profiles to coordinate.

Theorem 14. For every profile space A, there exists a deterministic uncoupled
3-recall stationary strategy mapping that succeeds on all games (A,U).

Proof. Let n ≥ 2, k1, ..., kn ≥ 2, and A = {1, ..., k1} × ...× {1, ..., kn}. It suffices
to show that such a strategy mapping exists for U(A). Let σ : A → A be a
cyclic permutation on the profiles. We write σi(a) for the action of player i in
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σ(a). Let f : U(A) → F(A) be the strategy mapping such that, for every game
U ∈ U(A), player i ∈ {1, ..., n}, and state x = (a, b, c) ∈ A3,

fU
i (x) =

⎧⎪⎪⎨⎪⎪⎩
ci if b = c and ci ∈ BRi(c)
minBRi(c) if b = c and ci �∈ BRi(c)
σi(a) if a = b �= c
ci otherwise.

Informally, the players use repetition to keep track of which profile is the current
“PNE candidate” in each step. If a profile has just been repeated, then it is the
current candidate, and each player plays a best reply to it, with a preference
against moving. If the players look back and see that some profile a was repeated
in the past but then followed by a different profile, they infer that a was rejected
as a candidate and move on by playing a’s successor, σ(a). Otherwise the players
repeat the most recent profile, establishing it as the new candidate. We call
these three types of states query, move-on, and repeat states, respectively. Here
“query” refers to asking each player for one of its best replies to b.

Let U ∈ U(A) be a game with at least one PNE. We wish to show that fU

guarantees convergence to a PNE. Let x = (a, b, c) ∈ A3, and let y be the next
state (b, c, fU (x)). If x is a repeat state, then y = (b, c, c), which is a query state.
If x is a move-on state, then b �= c, and y = (b, c, σ(a)). If c = σ(a), then this
is a query state; otherwise, it’s a repeat state, which will be followed by the
query state (c, σ(a), σ(a)). Thus every non-query state will be followed within
two steps by a query state.

Now let x = (a, b, b) ∈ A3 be a query state, and let y and z be the next two
states. If b is a PNE, then y = (b, b, b), which is an absorbing state. Otherwise,
y = (b, b, c) for some c �= b, so y is a move-on state, which will be followed by a
query state (b, σ(b), σ(b)) or (c, σ(b), σ(b)) within two steps. Let p be a PNE for
U . Since σ is cyclic, p = σr(b) for some r ∈ N. So (p, p, p) is reachable from x
unless σs(b) is a PNE for some s < r. It follows that fU guarantees convergence
to a PNE, so f succeeds on U(A).

Recall that Lemma 6 says that in the stochastic setting, adding actions to
a profile space A does not make success on U(A) any easier. In light of that
result, it is perhaps surprising that we can improve on the above bound when
every player has sufficiently many actions.

Theorem 15. If A is a profile space in which every player has at least four
actions, then there exists a 2-recall deterministic uncoupled stationary strategy
mapping that succeeds on all games (A,U).

Proof. Let n ≥ 2, k1, ..., kn ≥ 4, and A = {1, ..., k1} × ...× {1, ..., kn}. It suffices
to show that such a strategy mapping exists for U(A).

Define a permutation σ : A→ A such that for every a ∈ A, σ(a) is a’s lexico-
graphic successor. Formally, σ(a) = (σ1(a), ..., σn(a)) where for i = 1, ..., n− 1,

σi(a) =

{
ai + 1 mod ki if aj = kj for every j ∈ {i+ 1, ..., n}
ai otherwise,
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and σn(a) = an + 1 mod kn. Observe then that σ is cyclic, and for each player i
and a ∈ A, we have

σi(a)− ai mod ki ∈ {0, 1}.

We now describe a strategy mapping f : U(A) → F(A). To each U ∈ U , f
assigns the strategy vector fU defined as follows. At state x = (a, b) ∈ A2, fU

differentiates between three types of states, each named according to the event
it prompts:

– move-on: If a �= b and aj − bj mod kj ∈ {0, 1} for every j ∈ {1, ..., n}, then
the players “move on” from a, in the sense that each player i plays σi(a),
giving fU (x) = σ(a).

– query: If bj − aj mod kj ∈ {0, 1, 2}, then we “query” each player’s utility
function to check whether it is U -best-replying at b. Each player i answers
by playing bi if it is best-replying and bi − 1 mod ki if it is not. So at query
states,

fU
i (x) =

{
bi if bi ∈ BRi(b)
bi − 1 mod ki otherwise,

for i = 1, ..., n.
– repeat : Otherwise, each player i “repeats” by playing bi, giving fU (x) = b.

Notice that because k1, ..., kn ≥ 4, it is never the case that both aj−bj mod kj ∈
{0, 1} and bj − aj mod kj ∈ {0, 1, 2}. Thus the conditions for the move-on and
query types are mutually exclusive, and the three state types are all disjoint.

The state following x = (a, b) is y = (b, fU (x)). If x is a move-on state,
then y = (b, σ(a)). Since for every player i, ai − bi mod ki ∈ {0, 1} and σ(a)i −
ai mod ki ∈ {0, 1}, we have σi(a)− bi mod ki ∈ {0, 1, 2}, so y is a query state. If
x is instead a query state, then bi − fU

i (x) mod ki ∈ {0, 1} for every player i, so
y is a move-on state unless b = fU (x), in which case y = (b, b) is a query state.
But if b = fU (x) and x was a query state, then bi ∈ BRi(b) for every player i,
i.e., b is a PNE. Finally, if x is a repeat state, then y = (b, b) is a query state.

Thus move-on states and repeat states are always followed by query states,
and ask-all states are never followed by repeat states. We conclude that with
the possible exception of the initial state, every state will be a move-on or query
state, and no two consecutive states will be move-on states. In particular, some
query state is reachable from every initial state.

For any query state x = (a, b), x will be followed by (b, b) if and only if b is a
PNE, and (b, b) is an absorbing state for every PNE b. If b is not a PNE, then
x will be followed will be a move-on state (b, c), for some c ∈ A. This will be
followed by the query state (c, σ(b)). Continuing inductively, since σ is cyclic,
unless the players converge to a PNE, they will examine every profile v ∈ A with
a query state of the form (u, v). Thus for every game U with at least one PNE,
fU guarantees convergence to a PNE, i.e., f succeeds on U(A).

While there are deterministic uncoupled 2-recall dynamics that succeed on
at least some classes that require 2-recall in the stochastic setting, historyless
dynamics of this type fail on U(A) for every profile space A.



Self-stabilizing Uncoupled Dynamics 85

Theorem 16. For every profile space A, no deterministic uncoupled historyless
stationary strategy mapping succeeds on all games (A,U).

5 Future Directions

It remains open to determine tight bounds on the minimum recall of successful
deterministic uncoupled dynamics for every profile space, analogous to those
given in Section 3 for stochastic dynamics. In particular, we make the following
conjecture.

Conjecture 1. There exists a profile space A such that no deterministic uncou-
pled 2-recall strategy mapping succeeds on all games (A,U).

The same questions answered in this work may naturally be asked for other
important classes of games (e.g., symmetric games) and other equilibrium con-
cepts, especially mixed Nash equilibrium. More generally, the resources (e.g., re-
call, memory) required by uncoupled self-stabilizing dynamics in asynchronous
environments should be investigated.
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Abstract. We study profit sharing games in which players select
projects to participate in and share the reward resulting from that project
equally. Unlike most existing work, in which it is assumed that the
player utility is monotone in the number of participants working on their
project, we consider non-monotone player utilities. Such utilities could
result, for example, from “threshold” or “phase transition” effects, when
the total benefit from a project improves slowly until the number of
participants reaches some critical mass, then improves rapidly, and then
slows again due to diminishing returns.

Non-monotone player utilities result in a lot of instability: strong Nash
equilibrium may no longer exist, and the quality of Nash equilibria may
be far away from the centralized optimum. We show, however, that by
adding additional requirements such as players needing permission to
leave a project from the players currently on this project, or instead play-
ers needing permission to a join a project from players on that project,
we ensure that strong Nash equilibrium always exists. Moreover, just
the addition of permission to leave already guarantees the existence of
strong Nash equilibrium within a factor of 2 of the social optimum. In
this paper, we provide results on the existence and quality of several
different coalitional solution concepts, focusing especially on permission
to leave and join projects, and show that such requirements result in the
existence of good stable solutions even for the case when player utilities
are non-monotone.

1 Introduction

Resource selection games, in which players choose which project, market, or
group to participate in, and then receive utility based on the number of people
who choose the same strategy as them, have been heavily studied in algorithmic
game theory (see for example [2,3,11,15,17]). Closely related to such games are
coalition formation games, in which players choose which coalition to participate
in, and player utility depends on the members of their coalition (such utilities are
often called hedonic [4–7,9,12,14]). In most such games, player utility is assumed
to either only increase with the number of players that choose the same group or
project, or only decrease with the number of players that choose the same group
or project (for example in [15], where more people choosing the same project
means more competition).

R. Lavi (Ed.): SAGT 2014, LNCS 8768, pp. 86–97, 2014.
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In many important situations, however, player utility may not be a monotone
function in the number of players who choose the same strategy. For example,
consider the scenario where players choose which project to work on (or form
teams in order to submit funding proposals). It is mostly true that more par-
ticipants will improve the overall outcome of the project; in most existing work
the overall success of the project is assumed to either be convex or concave non-
decreasing as a function of the number of participants. However, many projects
exhibit “threshold” or “phase-transition” behavior: until there is a critical mass
of participants there will be very little progress, and after that critical mass,
each additional participant only makes a marginal amount of difference to the
project’s success. In such a scenario, and assuming that the benefit (e.g., credit)
from a project’s success is divided equally among the participants, the utility of
a player as a function of the number of project participants may increase until
this threshold is reached, and then begin to decrease. In this paper, we study
such resource selection games, but for player utility functions which do not have
to be monotone, and thus are much more general.

Our Model. More concretely, consider the following simple profit sharing game
in which multiple projects are available to the players. There are n identical
players and m projects; the strategy set of each player is {∅, 1, 2, . . . ,m}. Each
project k has a payoff function pk : N≥0 → R≥0 that is monotone nondecreasing
in the number of players working on the project: this function represents the total
benefit or success of this project. Each player selects a project and shares the
reward equally with everyone else working on that project. That is, the utility

of a player i that selects strategy k �= ∅ is ui(s) =
pk(xk(s))

xk(s)
, where xk(s) is the

number of players selecting k in solution s. This payoff scheme is very robust and
can model many different situations. For example, if the project payoff function
is convex, then the individual reward function will also be increasing. On the
other extreme, if the project payoff function is constant, then the individual
reward function is strictly decreasing. Finally, if the project payoff function is a
“threshold” function, then the individual reward function will alternate between
being increasing and decreasing. More generally, the individual payoff function
may not even be single-peaked: it can increase, decrease, and then increase again.

While games of this type with either convex or concave project payoff func-
tions pk have been shown to have very nice properties, arbitrary non-decreasing
payoff functions cause a lot of instability. First, observe that Nash equilibrium is
not a good solution concept for threshold payoff functions (and tends to perform
very poorly compared to the social optimum), since players typically cannot sat-
isfy thresholds with unilateral deviations. Just as teams form to tackle difficult
projects, we need to consider group deviations. Unfortunately, unlike for the case
when pk are constant or convex, strong Nash equilibrium does not exist when pk
are threshold functions. To illustrate this, consider the following simple example
of n ≥ 3 players and two projects.

Example 1. Project A is a small project that any number of people can work
on and share the credit, while project B is a large project that will only succeed
with a large team. Formally, project A has total value of 2 no matter how many
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players choose to work on it, while projectB requires n players (any fewer players
working on project B would get nothing), and has a total payoff of n if there
are n players working on it. In other words, pA is a constant function, while pB
is a threshold function with the threshold being n. If everyone chooses to work
on project B, then the utility of each player is 1, and so they would each rather
unilaterally switch to project A. It is not difficult to verify that the only Nash
Equilibrium solution is for all players to pick project A, and thus is very far
from optimum. Perhaps even worse, strong Nash equilibrium does not exist: if
everyone chooses project A, then all the players could together deviate to project
B, and obtain 1 utility instead of 2

n .

Contractual Stability. Given the motivation of players forming teams to
work on projects, or forming teams to submit grant proposals, the above bad
example does not seem satisfactory to the authors. While it is true that strong
Nash equilibrium does not exist above, this occurs because of a strange player
interaction. When all players choose project A, they together decide to switch
to project B; everyone is better off. After this occurs, a single player says: “Aha!
Now that you have left project A unoccupied, I will leave projectB,” a side-effect
of which is that all the other players receive nothing, since every player is an
integral part of the team. It is unusual that team members drop out once a grant
proposal has been funded: this is because there is often a contractual obligation
for them to perform the work, and because by dropping out they will incur the
bad will and shame from the other members of the team. If players are not
allowed to leave a project without the permission of the other project members,
then the above example has a wonderful stable solution where everyone chooses
project B. On the other hand, someone is usually not allowed to join a grant
proposal or a team project without permission of its members. If this were true
in the above example, then once again a coalitionally stable solution exists. This
line of thought suggests the study of different coalitional stability concepts in
which players must obtain permission to leave or join projects.

In this paper, we provide an analysis of this generalized profit sharing game.
In particular, we provide results on the existence and quality of many different
coalitional solution concepts, focusing especially on permission to leave and join
projects. These ideas are captured precisely by solution concepts from hedonic
games literature [4–7, 9, 12, 14]; to our knowledge we are the first to consider
them in the context of non-cooperative games.

1.1 Our Contributions

For the Profit Sharing model defined above, we introduce stability concepts
which include permission to join and permission to leave. For permission to
leave, players cannot leave a project with other players remaining on it, unless the
utility of those players does not decrease as a result of their leaving. Permission
to leave can be thought of as the enforcement of a contract: when a player decides
to work on a project with a group, she is essentially entering into a contract with
them to complete the project, and she will only be let out of this contract if it
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benefits the rest of the participants. Using the terminology from hedonic games,
we call strong Nash stability with permission to leave strong contractual Nash
stability (SCNS). Unlike strong Nash equilibrium, we show that SCNS always
exists. Furthermore, we show there always exists a SCNS solution which is within
a factor of 2 of the social optimum, thus implying that the price of stability with
respect to SCNS is at most 2. We show that this bound is asymptotically tight.
Our results indicate that adding contractual obligations to not leave projects
before they are completed not only results in the creation of coalitionally stable
solutions, but also in the creation of high welfare stable solutions.

For permission to join, players cannot join a project with other players already
on it unless the utility of those players does not decrease as a result of their
joining. Permission to join is a natural idea, since a person cannot typically
work on a team with other people unless they allow her to join their group.
Again borrowing the terminology from coalition formation, we call strong Nash
stability along with permission to join strong individual stability (SIS). We show
that SIS solutions always exist as well. However, the quality of SIS can be very
bad; the price of stability with respect to SIS can be n, the number of players.
This is because a player can join a high value project by itself, and since others
cannot join to lower the player’s utility from that project, it has no incentive
to ever switch. The other players might be left on projects with high thresholds
that cannot be satisfied without everyone’s cooperation, which means they are
receiving very little utility potentially. Essentially, permission to join does not
encourage cooperation as well as permission to leave does.

Finally, we consider what happens when both permission to leave and per-
mission to join are in effect: we call the corresponding solution concept strong
contractual individual stability (SCIS). Not surprisingly, this stability notion is
very strong: we show that the centrally optimal solution is always SCIS. How-
ever, since every SIS state is a SCIS state, the price of anarchy with respect to
SCIS can be as high as n.

Our results show that unlike in cases where pk is convex or concave, in profit
sharing where the project benefit can contain threshold effects (or in general
when player utilities are not monotone), it is crucial to have some coordinating
mechanism like permission to leave a project or permission to join a project.
Without such a mechanism coalitionally stable solutions are not guaranteed to
exist, and Nash equilibrium can be very inefficient. Once permission to leave is
added through contractual obligations, however, this results in the creation of
high-quality solutions which are resilient even to deviations by coalitions.

1.2 Related Work

Our model is a generalization of the well-studied market sharing game [3,11,17].
In the market sharing game, each market has an associated value that is shared
equally among the players that have selected that particular market. In other
words, it is a special case of our model in which the payoff functions are constants.
The threshold model can be thought of as the market sharing game in which the
value of the market is not awarded to the players until a sufficient number of
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players have selected the market. The market sharing game is a simple example
of a monotone valid-utility game [17, 19], but our model is not: the utility of a
player can be less than their marginal contribution to the total welfare, and the
total player utility is not submodular.

The stability concepts used to analyze our model are borrowed primarily
from hedonic games literature; consult [4–7, 9, 12, 14] and their references. He-
donic games are coalition formation games in which how much a player values
a group depends solely on who is in her group and is independent of how the
remaining players are partitioned into groups. Our model has this property as
well, since a player’s payoff depends only on how many people are on her chosen
project. Hedonic games differ from the non-cooperative game we study primar-
ily in that they are cooperative games in which players form groups rather than
select projects: the utility of a player depends only on the members of the group,
and not on which project they select together. In fact, in many hedonic game
formulations, the players have ordinal preferences over groups rather than util-
ities. Hedonic games literature consists primarily of results characterizing the
existence of stability concepts such as the core, (strong) Nash stability, (strong)
individual stability, (strong) contractual Nash stability, etc. We use these con-
cepts to model permission to join and to leave projects in our model. However,
the quality of stable solutions for hedonic games has received little attention; in
contrast we consider the price of stability and price of anarchy [18] with respect
to these stability concepts.

Numerous other games are motivated by project/group selection, and, in some
cases, apply concepts from hedonic games literature to non-cooperative models.
Kutten et al. [16] define several group formation games where there is only
a single project with a payoff function that is essentially our threshold payoff
function. Players form groups (that require permission to join) that compete for
this project, but only one group receives a payoff. Chalkiadakis et al. [8] define
a cooperative game that is similar to our threshold model, but it has additional
constraints on the project payoff functions, and there is an infinite number of
each type of project. Augustine et al. [2] define non-cooperative project selection
games based on monotone convex cooperative games and provide quality of
equilibria and convergence results for them. Kleinberg and Oren [15] define a
project selection game with decreasing player payoff functions, unlike ours which
may not be monotone, and their results focus on redesigning project payoff
functions to ensure that the optimal solution is stable. Finally, Feldman et al. [10]
define a class of non-cooperative games called hedonic clustering games, and
provide quality of equilibrium results for them. Their model has little in common
with ours, but they borrow heavily from hedonic games literature and apply
concepts like price of anarchy, as we do.

2 Definitions

Model. As mentioned in the Introduction, the Profit Sharing game we consider
consists of n identical players, and m projects, with each player strategy being to
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choose one of these projects. We let [n] = {1, 2, . . . , n} and [m] = {1, 2, . . . ,m}.
Each project has a non-decreasing payoff function pk. We define xk(s) to be the
number of players who choose project k in state s; then the utility of a player

i with si = k is ui(s) = pk(xk(s))
xk(s)

. We allow players to opt out of playing by

selecting the null strategy ∅ where for all players i, ui(∅, s−i) = 0.
While our results will generally hold for arbitrary non-decreasing functions

pk, we will sometimes refer to the important special case of threshold payoff
functions. We define a threshold payoff function for a project k to be

pk(x) =

{
0, if x < tk

ck, otherwise

where tk ∈ Z>0 is the threshold of project k and ck ∈ R≥0 is the value of the
project k once the threshold has been met, which will be split equally among all
players on project k.

Stability Concepts. We now introduce several stability concepts. Many of
these concepts are adapted from hedonic games literature [4–7,9,12,14] to fit into
the framework of non-cooperative game theory. These concepts take standard
non-cooperative game theory equilibrium concepts such as Nash equilibrium and
strong Nash equilibrium and add permission to join and/or permission to leave.
“Individually stable” refers to permission to join, and “contractually stable”
refers to permission to leave a project.

A state is a Nash equilibrium or Nash stable (NS) if no player can change her
strategy to improve her utility. That is, if for every player i and every strategy
s′i ∈ [m], we have ui(s) ≥ ui(s

′
i, s−i).

A state is individually stable (IS) if for every player i and every strategy
s′i ∈ [m], either ui(s) ≥ ui(s

′
i, s−i) or there exists player j with sj = s′i such that

uj(s) > uj(s
′
i, s−i).

A state is contractually Nash stable (CNS) if for every player i and every
strategy s′i ∈ [m], either ui(s) ≥ ui(s

′
i, s−i) or there exists player j with sj = si

such that uj(s) > uj(s
′
i, s−i).

A state is contractually individual stable (CIS) if for every player i and every
strategy s′i ∈ [m], either ui(s) ≥ ui(s

′
i, s−i) or there exists player j with sj = s′i

such that uj(s) > uj(s
′
i, s−i) or there exists player j with sj = si such that

uj(s) > uj(s
′
i, s−i).

A state is a strong Nash equilibrium or strong Nash stable (SNS) if for every
non-empty subset of players C ⊆ [n] and for every s′C ∈ [m]C , there exists a
player i ∈ C such that ui(s) ≥ ui(s

′
C , s−C).

A state is strong individually stable (SIS) if for every non-empty subset of
players C ⊆ [n] and for every s′C ∈ [m]C , there exists a player i ∈ C such
that ui(s) ≥ ui(s

′
C , s−C) or there exists player j �∈ C with sj = s′i such that

uj(s) > uj(s
′
C , s−C).

A state is strong contractually Nash stable (SCNS) if for every non-empty
subset of players C ⊆ [n] and for every s′C ∈ [m]C , there exists a player i ∈ C
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such that ui(s) ≥ ui(s
′
C , s−C) or there exists j �∈ C with sj = si such that

uj(s) > uj(s
′
C , s−C).

A state is strong contractually individually stable (SCIS) if for every non-
empty subset of players C ⊆ [n] and for every s′C ∈ [m]C , there exists a player
i ∈ C such that ui(s) ≥ ui(s

′
C , s−C) or there exists player j �∈ C with sj = s′i

such that uj(s) > uj(s
′
C , s−C) or there exists j �∈ C with sj = si such that

uj(s) > uj(s
′
C , s−C).

Price of Anarchy and Price of Stability. The global objective function we
consider (i.e., the social welfare) is simply u(s) =

∑
i ui(s). Let N (G, SC) denote

the set of states that are stable with respect to the stability concept SC. The

price of anarchy with respect to SC of G is u(s∗)
mins∈N(G,SC) u(s)

. The price of stability

with respect to SC of G is u(s∗)
maxs∈N(G,SC) u(s)

3 Properties of Profit Sharing with Thresholds

First, we note that Profit Sharing model is an exact potential game [18], with

the standard potential function Φ(s) =
∑

k∈[m]

∑xk(s)
l=1

pk(l)
l , which implies that

pure Nash equilibrium always exists. As we saw in Example 1, there is no such
guarantee for strong Nash equilibrium.

Claim 2. A Nash equilibrium always exists. A strong Nash equilibrium need
not exist.

As mentioned in Example 1 in the Introduction, the quality of Nash equi-
librium can be very bad even for threshold payoff functions. Although strong
Nash equilibria are not guaranteed to exist (and in fact don’t exist for even very
simple cases), when they do, they are efficient. The proofs of Theorems 3 and 4
and all other omitted proofs can be found in the full version of this paper [1].

Theorem 3. The price of stability with respect to NS is at most n, and the
price of anarchy with respect to NS is unbounded.

Theorem 4. The price of stability and price of anarchy with respect to SNS is
at most 2, and this bound is tight.

3.1 Existence and Quality of Contractually Stable Solutions

We prove the main results of this paper in this section. Since strong Nash stable
states do not necessarily exist, we add permission to leave to the solution concept
to give us SCNS. This puts a restriction on the types of deviations that coalitions
are allowed to make. Namely, players cannot abandon their old projects if it
means the players remaining on those projects will be harmed.

We will use a lexicographic improvement argument [13] to show that a SCNS
state always exists. In this paper, we will need two different notions of lexico-
graphic ordering, as defined below.
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Lexicographic Orderings. Define v(s) to be the vector of player payoffs, i.e.,
v(s) = (u1(s), u2(s), . . . , un(s)). We let v̂(s) denote the sorted vector in which
the entries of v(s) are sorted in non-decreasing order, i.e., v̂1(s) ≤ v̂2(s) ≤ · · · ≤
v̂n(s). Then we say that s is min-lex strictly larger than s′ if there exists an index
k such that for all i < k, v̂i(s) = v̂i(s

′) and v̂k(s) > v̂k(s
′). We say that a solution

s is the min-lex maximizer if there does not exist a solution s′ such that s′ is
min-lex strictly larger than s. Similarly, we say that s is max-lex larger than s′ if
there exists an index k such that for all i > k, v̂i(s) = v̂i(s

′) and v̂k(s) > v̂k(s
′).

Intuitively, min-lex order ranks solutions by how well the players with the
least utility are doing, while max-lex ranks solutions by how well the players
with the most utility are doing. The min-lex maximizer maximizes the minimum
utility received by any player, while the max-lex maximizer maximizes the the
maximum utility received by any player.

We will see that when permission to leave a project must be granted by its
participants, any improving deviation results in a min-lex improvement. That is,
the minimum utility never becomes worse. Then any state that is a min-lex local
maximum is SCNS. Thus, our model will always converge to a SCNS under best
response dynamics.

Theorem 5. A SCNS state always exists.

Proof. We claim that the min-lex maximizer s is a SCNS state. For a coalition
C, let X(C) be the set of players j such that sj = si for some i ∈ C. In other
words, X(C) is the set of players who share projects with at least one member
of C.

Suppose there exists a coalition C with an improving deviation from state
s to state s′, such that for every player j �∈ C who is on the same project as
any player i ∈ C in state s, it must be that uj(s

′) ≥ uj(s). In other words,
players who are not part of the coalition will allow the players in C to leave
their projects, because they do not suffer due to this coalitional deviation. This
would occur, for example, if the project payoff function is a threshold function,
and after some players of C leave, the threshold is still satisfied. Thus, for all
players i ∈ C ∪X(C), it must be that ui(s

′) ≥ ui(s).
The utility of some players not in C must have decreased in s′ since s is the min-

lex maximizer. Thus, there must be some project k such that pk(xk(s))/xk(s) >
pk(xk(s

′))/xk(s
′).

Because we have permission to leave, we know for every project that had
players deviate from it, the utility of the players that remained on those projects
did not decrease. Then only projects that gained players from s to s′ can have
players who lost utility. Since every player in the deviating coalition increased
her utility, it must have been the players who were already part of the project
in s whose utility decreased (that is, there must exist at least one project that
gained players and was non-empty in s). However, for every player i whose
utility decreased, there exists a player j ∈ C who joined her project such that
ui(s

′) = uj(s
′) > uj(s). Thus, all of the players whose utility decreased from s

to s′ on this project still have > uj(s) utility, which means that s′ is min-lex
larger than s, a contradiction. �
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We will now show that there are always good SCNS solutions, by demon-
strating that the min-lex maximizer is always within a factor of 2 of the optimal
solution. Notice that since SNS solutions usually do not exist, this result does
not follow from Theorem 4.

Theorem 6. The price of stability with respect to SCNS is at most 2, and this
bound is tight.

Proof. To prove the upper bound, we show that the social welfare of the min-lex
maximizer is at least 1

2 that of the optimal solution. Let s denote the min-lex
maximizer. Let s∗ denote the optimal solution. We claim that u(s) ≥ 1

2u(s
∗).

Suppose, by way of contradiction, that u(s) < 1
2u(s

∗).
Let l = mini∈[n] ui(s). Let A denote the set of players in s∗ that receive ≤ l

utility. Let B denote the set of players in s∗ that receive > 2l utility. Since s is
the min-lex maximizer, we know that A is nonempty.

We claim that B is nonempty. We observe that

ln ≤
∑
i∈[n]

ui(s) = u(s) <
1

2
u(s∗),

which implies that the average utility of a player in s∗ is strictly larger than 2l.
We will now reassign players in A to create a new solution such that they

receive > l utility using the following algorithm.
We start with s∗. Let M ′ denote the set of projects that the players in B are

assigned to. For each player i ∈ A, we move it to any project in M ′ where the
utility of that player will be > l. That is, if a project k ∈ M ′ currently has xk

players assigned to it, then we do not assign players to it if pk(xk+1)
xk+1 < l. We

repeat this process until every player in A is assigned to a project in M ′ or until
we cannot assign a player in A to a project in M ′ such that she receives > l
utility. We call the resulting solution s′.

We claim that our algorithm always assigns every player in A to a project in
M ′ such that her utility is > l. Suppose not. We begin by observing that

2ln < u(s∗) =
∑
i∈A

ui(s
∗) +

∑
i∈B

ui(s
∗) +

∑
i/∈A∪B

ui(s
∗)

≤ |A|l +
∑
i∈B

ui(s
∗) + 2 (n− |A| − |B|) l

=⇒
∑
i∈B

ui(s
∗) =

∑
k∈M ′

pk (xk(s
∗)) > |A|l + 2|B|l.

Since there are players in A that could not be assigned to projects in M ′, it must

be the case that for all k ∈ M ′, pk(xk(s
′)+1)

xk(s)′+1 < l, because otherwise we would

have assigned that player to that project. Furthermore, since not every player
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in A was reassigned,
∑

k∈M ′ xk(s
′) < |A|+ |B|. Combining these facts together

allows us to derive that

|A|+ 2|B| >
∑
k∈M ′

xk(s
′) + |M ′| =

∑
k∈M ′

(xk(s
′) + 1)

>
∑
k∈M ′

pk(xk(s
′) + 1)

l
≥

∑
k∈M ′

pk(xk(s
∗))

l

=
1

l

∑
i∈B

ui(s
∗) > |A|+ 2|B|

which is a contradiction. Then our algorithm terminated with every player in A
reassigned to a project in M ′. Then every player in s′ has strictly larger than l
utility, which contradicts that s is the min-lex maximizer. We conclude that s is
within a factor of 2 of the optimal solution.

The corresponding lower bound comes from the following example: suppose
there are n projects with pA(x) = n + ε for some ε > 0 and pk(x) = 1, for all
other projects k. The optimal solution s∗ is assigning one player to each project,
and u(s∗) = 2n− 1 + ε. The sole SCNS state is every player working on project
A, because they are always guaranteed to receive > 1 utility by working on A.
Thus, as n goes the infinity and ε goes to 0, the price of stability approaches 2.
�

3.2 Existence and Quality of Individually Stable Solutions

We now examine what happens when we add permission to join to strong Nash
stability. The resulting concept is called SIS. We are able to show the our game
has a similar lexicographic improvement property with respect to SIS, which
implies SIS states always exist. However, unlike SCNS which uses min-lex, SIS
uses max-lex. In other words, the utility of the players with the most utility
always increases with improving deviations.

Theorem 7. A SIS state always exists.

We will now see that the quality of SIS states is not as good as the quality
of SCNS states. This is because dynamics that would lead to players deviat-
ing to good, high threshold projects together cannot occur. For example, if a
player is alone on a project with low utility which gives slightly more than what
they would receive on the high value, high threshold project, then they have no
incentive to deviate. If there are no other projects to join, the remaining play-
ers have no options: they cannot meet the threshold of the high value project,
nor can they join the low value project to drive the value down and force the
lone player there to deviate to the high value project. Thus, many players are
stranded without any projects to join.

Theorem 8. The price of stability and price of anarchy with respect to SIS is
at most n, and this bound is tight.
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3.3 Permission to Join and Leave Results

We finally analyze what happens when we must have both permission to join
and permission to leave a project. We observe that the optimal solution becomes
stable, but there still exist stable, low quality states since SCIS is more general
than SIS.

Theorem 9. The optimal solution s∗ is SCIS.

Corollary 10. The price of stability with respect to SCIS is 1, while the price
of anarchy with respect to SCIS is n.

4 Conclusion

Our results show that in profit sharing games when player utilities are not mono-
tone, it is crucial to have some coordinating mechanism like permission to leave
a project or permission to join a project. Without such a mechanism no coali-
tionally stable solutions exist, and even Nash equilibrium can be very bad. Once
permission to leave is added through contractual obligations, however, this re-
sults in the creation of high-quality solutions which are resilient even to devi-
ations by coalitions. Making sure that people honor their commitments seems
to have more effect than excluding people from joining your project, as the for-
mer will always have good stable solutions, while the latter may still have high
price of stability. Finally, requiring permission to both leave and join a project
is perhaps too constraining: a very large number of solutions become stable due
to the paucity of allowed deviations, leading to price of stability of 1 but to high
price of anarchy.

A natural extension of our model is to allow even more general project pay-
off functions. In particular, what if we allow the project payoff function to be
non-monotone as well? For example, at a certain point, having too many people
working on the same project can make communication and organization more
difficult, and there may not be enough tasks for everyone, so adding more peo-
ple may actually hurt the project. This captures the idea of the project having
a capacity, for example. Due to the extremely powerful stability concept, the
centrally optimal solution is still SCIS even for this more general case. Unfor-
tunately, even for simple non-monotone project payoff functions, the price of
stability with respect to SCNS can be horrible. Suppose there is a single project
with the payoff function pA(x) = 1 if x < n and pA(n) = ε. Then we need one
player to remain unassigned to the project, but that player will always prefer to
receive some utility rather than none, so the only SCNS solution is having all
players work on the project. One extension that seems to avoid such issues is
project payoff functions with hard capacities: that is, non-decreasing functions
which, after a certain point, suddenly become 0. We conjecture that the price
of stability with respect to SCNS for this case is still small, and consider this a
good future direction.
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Abstract. We study scenarios in which consumers have several alternatives for
using a shared resource. We investigate whether rewards can be used to motivate
effective usage of the resource. Our goal is to design reward schemes that, in
equilibrium, minimize the cost to society and the total sum of rewards. We intro-
duce a generic scheme which does not use any knowledge about the valuations
of the consumers, yet its cost in equilibrium is always close to the cost of the
optimal scheme that has complete knowledge of the consumers’ valuations. We
show that our scheme is essentially optimal in some settings while in others no
good schemes exist.

1 Introduction

In this paper we study the management of resources that are overly demanded.
Traditionally, taxes are used to control consumption, see, e.g., London’s or
Paris’ congestion charges [3,17]. In contrast, recent experiments in traffic con-
gestion reduction [12,11,16] take a different approach. Instead of charging users
for driving during peak hours, drivers who travel during off-peak hours receive
monetary compensation. While in a purely quasi-linear world taxes and rewards
are equivalent, in practice they may differ greatly, as established by a large body
of research in, e.g., psychology [14] and prospect theory [10]. We refer the in-
terested reader to [2] and references within for a thorough discussion on fees vs.
rewards in congestion control1.

We study a basic problem of managing the consumption of a single public
resource. We assume that there are several alternative consumption methods,
such as time slots, locations, etc. The social cost is determined not only by the
total consumption but also by the way that this consumption is distributed across
alternatives (e.g., it is preferred that factories will consume electricity during off
peak hours). Our goal is to develop mechanisms that minimize the sum of the
social cost of the consumption and the total payment of the mechanism.
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1 We emphasize that our claim is not that rewards are better than prices; just that they may serve
as a powerful tool in some settings.
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Our interest is not limited only to congestion control; Similar settings include
basic infrastructures such as electricity that can be consumed in peak or non-
peak hours, fresh air and water, forest preservation, and more. All of which are
settings in which a designer – such as a transportation authority – may work
with a small number n of big consumers (polluting factories, large truck fleets,
major electricity consumers, etc.) on a voluntary basis to improve the efficiency
of using the resource2. Our main contributions are as follows:

1. We present a stylized model of resource management via reward schemes.
2. We introduce a novel solution concept for analyzing the performance of

reward schemes: in many settings the designer either does not know the val-
uations of the consumers or is legally not allowed to use them for designing
reward schemes. In these cases, the designer may use only his own costs.
The competitive ratio of a scheme R is obtained by considering all possible
instances I (i.e., all possible realizations of the valuations of the players)
and taking the maximum ratio between the worst equilibrium induced by R
and the best equilibrium induced by any other scheme RI . Notice that RI
may be designed using knowledge on the valuations of the consumers.

3. We present a generic reward scheme, the square root scheme, and show that
it is competitive in many settings. In other settings, we prove that no scheme
is competitive. We focus on two basic consumption models: atomic (e.g.,
truck drives to downtown) and non atomic (e.g., electricity consumption).

We now provide a more formal description of our model, the solution concept,
and our results.

The Model. In our formal setup we have n agents (consumers), each is inter-
ested in consuming one unit of the public good (a unit could be, for example,
a single drive to the city center or 1000KW of electricity). There are m differ-
ent alternative ways to consume the resource, such as time slots or locations, so
the strategy of each agent i is a vector f i = (f i

1, . . . , f
i
m) such that for each j,

f i
j ≥ 0 and Σjf

i
j = 1. In the atomic model we always assume that f i

j ∈ {0, 1}.
In the non atomic model we do not make this assumption.

For each consumer i and alternative j, there is a function uij that depends only
on the use of the alternative fj = Σif

i
j . This function quantifies the gains of con-

sumer i from consuming via alternative j. We assume that uij(fj) = vij ·Lj(fj),
where vij is privately known to consumer i and the attractiveness functions Lj(·)
are public information. The attractiveness functions are decreasing monotoni-

2 E.g., a municipality attempting to incentivize an international company to locate its polluting
factory further away from the city.
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cally. The utility of consumer i is defined to be Σjf
i
j · uij(fj) + pif1,...,fn , where

pif1,...,fn ≥ 0 is the payment that the consumer receives.
We assume that the cost to society for every unit of good consumed via al-

ternative j is wj > 0. The direct loss to society is therefore Σjwj · fj . Without
loss of generality we assume that w1 ≥ . . . ≥ wm. The ratio α = w1

wm
will be

essential in our analysis. We assume without loss of generality that wm = 1.
In this paper we seek for pif1,...,fn’s so that in equilibrium the total cost to

the society Σjwj · fj +Σip
i
f1,...,fn is minimized (notice that this cost includes

payments). To illustrate this point, observe that the VCG mechanism can be used
to minimize the direct loss of the society (Σjwj · fj). However, it is well known
that in the VCG mechanism the amount that the society has pay might be huge,
whereas in many settings big subsidies are unacceptable either politically or
economically. A set of payment functions pif1,...,fn’s as above is called a reward
scheme or payment scheme. Of particular interest are simple reward schemes
where payment to each consumer i depends only on its own consumption f i. In
this paper we seek for such payment schemes that are competitive with respect to
arbitrarily complicated schemes. Given a reward scheme R and a consumption
profile f , we let CR(f) = Σjwj · fj + Σip

i
f1,...,fn denote the overall cost to

society, i.e. the total loss plus the total payment.

The Solution Concept: Robustness in an Incomplete Information Setting

Assuming full information of the consumers’ utilities is often unrealistic. For
instance, it equips the designer with the unlikely power to accurately estimate
the profit of a specific freight forwarder for sending a specific truck at peak
hours. In some other cases, the designer might be legally prohibited from us-
ing knowledge of the consumers’ valuations in a reward scheme. On the other
extreme, the popular approach in the Algorithmic Mechanism Design commu-
nity is to design truthful mechanisms. However, since our objective function
involves payments, more often than not this leads to impossibility results. See,
e.g., the various impossibility results on the design of frugal mechanisms (e.g.,
[7,1]). Externalities among the consumers also make the existence of satisfac-
tory truthful mechanisms even less likely3.

This paper takes a middle way that allows us to design payment schemes
with good guarantees for games with incomplete information. The private in-
formation of the consumer i is vi = vi1, . . . , v

i
m. Suppose that all the private

information v = v1, . . . , vn is known. Let R be a reward scheme. Together, we
have a complete information game. Let f be an equilibrium in this game. The
total cost of f in R equals Σjwj · fj + Σip

i
f1,...,fn . An optimal solution is a

3 For VCG, while the welfare is maximized, it is easy to see that the payment can be huge.
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reward scheme O and an equilibrium f ′ in O, such that the total cost of f ′ is
minimal among all reward schemes and equilibria. In other words, CO(f ′) de-
notes the total cost to society of the best equilibrium of the best reward scheme
given that the values of the consumers are v.

Definition 1. (competitive scheme) A reward scheme R is c-competitive if for
every vector of values of the consumers v, equilibrium f in the game defined
by v and R, an optimal scheme O for v, and every equilibrium f ′ in the game
defined by O and v it holds that CR(f)

CO(f ′) ≤ c.

Notice our guarantee: if the “market” converges to an equilibrium, then the to-
tal cost to society of the solution is not too far away from the total cost of the op-
timal solution – even had we known the consumers’ valuations in advance. Thus,
to some extent we seek for Nash implementation of reward schemes. However,
while most work on Nash implementation usually considers full information
games or takes a Bayesian approach, we assume private information and our
guarantees are worst-case ones. In this sense, our work lies on the border of
price of anarchy analysis and algorithmic mechanism design.

Related to our work is a series of works on setting tolls in congestion games
to improve the efficiency of equilibrium (see, e.g., [6,8,9]). One main difference
between this line of work and ours is that the aforementioned papers design
tolls for a specific complete-information game. In our approach consumers have
private information, yet equilibrium is always guaranteed to be approximately-
efficient. Another key difference is that our objective function takes into account
only the cost to the society and not the cost to the consumers. Finally, there are
also technical differnces in the approximation notion.

Our approach is closely related to coordination mechanisms [4], and in par-
ticular to coordination mechanisms for congestion games [5]. A coordination
mechanism is allowed to change the latencies of some edges in order to improve
the price of anarchy in the network. One main difference between our work and
the work on coordination mechanisms (besides considering completely different
models) is that our benchmark takes into account the effort needed to change the
network (in the sense of payments), while in coordination mechanisms changes
in the network are “free” as long as the quality of the solution improves.

Some Comments on Our Modeling Choices. A few words are in place about
our modeling choices. First, perhaps our most controversial design choice is the
separation of the welfare of the consumers from the public welfare. This seems
justified to us as in the applications we envision the designer works with a few
big consumers on a voluntary basis (note that the consumers can always choose
an option that will not give them any rewards) in order to improve the welfare
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of a large public. For example, consider a big freight company that has to send
trucks to the center of the city. Suppose that there are only two alternatives: use
peak hours (and negatively affect the commute time of many drivers) or off peak
hours. We think about the wj’s (the cost of alternative j to the society) as the
marginal loss that the rest of the drivers incur from the freight company that uses
alternative j. Notice that the freight company can always decline changing and
get no rewards. It is thus reasonable for the society to neglect the welfare of such
a consumer and focus on the rest of the public as long as voluntary participation
is kept. Nevertheless, relaxing this assumption is an interesting future direction.

We also assume that society’s loss from a specific alternative is linear in the
congestion. This assumption may be considered as more technical than concep-
tual and we leave relaxing this assumption to future work.

A Simple Example. In order to make our model and notation more concrete
consider the following toy example. We will have only a single consumer (n =
1) and two alternatives with w1 = 9 and w2 = 1. Thus, α = 9. Suppose that
the consumer must choose either alternative 1 or alternative 2 but cannot split
its consumption (e.g., cannot use half of alternative 1 and half of alternative 2).
Notice that the attractiveness functions Lj(·) have no real meaning here since
there is only a single consumer. Thus we assume that Lj(.) is always 1.

Consider the case were no reward is given. Suppose that consumer that slightly
prefers alternative 1 over alternative 2, e.g. v11 = 1+ ε and v12 = 1. Thus, he will
choose alternative 1, i.e. f1

1 = 1, and the overall cost will be 9. Paying ε for using
alternative 2 will yield a total cost of only 1 + ε.

Consider the scheme that gives the consumer a reward of 2 for using alterna-
tive 2, and no reward for using alternative 1. We claim that the social cost of the
solution in this scheme is always at most a factor of 3 away from the cost of the
optimal solution, regardless of the valuation of the consumer. Since this scheme
is actually a special case of the square root scheme, to be introduced shortly, we
will not formally prove this but instead analyze some interesting instances.

Suppose that the customer’s preferences are as before, alternative 2 will be
chosen and the overall cost would be 1 + 2 = 3 (1 for using alternative 1 and
a reward of 2). However, when the value of the consumer for using alternative
1 is 1 and 1 + ε for using alternative 2, the optimal solution is to pay nothing
to the consumer, since he prefers the less costly alternative anyway. Similarly to
before, the total cost is 1 + 2 = 3 while the optimal cost is 1.

The last instance we consider is when the value of the consumer for using al-
ternative 1 is 100 and his value for using alternative 2 is 1. The optimal solution
is to pay nothing to the consumer and let him use alternative 1, since we have
to pay the consumer at least 99 to prefer alternative 2. In this case the consumer
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will use alternative 1 and the total cost is 9. In our scheme the total cost is also
9, since the offered reward is too small for the consumer to prefer alternative 2.

Results. Our main tool is a new payment scheme – the square root scheme.
Divide the alternatives to two: an alternative j is cheap if wj ≤

√
α (recall that

w1 = α and wm = 1), and is expensive otherwise. The reward for choosing a
cheap alternative j is pj =

√
α−wj and 0 for expensive alternatives. Note that

the more attractive an alternative is to society, the higher its payment. We pay
consumer i that plays a strategy f i = (f i

1, . . . , f
i
m) a payment of Σj f

i
j · pj .

Notice that the scheme is simple to implement: the designer announces only
which alternatives are cheap, and the reward for using every cheap alternative.

We show that the square root payment scheme produces good results in some
settings – in particular it is applicable to the two alternative case (e.g., peak
and off-peak hours), both in the atomic and the non-atomic settings4, and in the
case of a single consumer. The later can also be applied to cases where there
is no friction between consumers so they can be considered separately. In the
non-atomic model, however, we prove these results only with respect to linear
schemes – where the payment is proportional to the usage of the alternative.

Theorem: The square root payment scheme is O(
√
α) competitive in the fol-

lowing settings, both in the atomic model and with respect to linear schemes in
the non-atomic model: (1) a single consumer and multiple alternatives, and (2)
multiple consumers and two alternatives.

The proofs are based on charging arguments comparing the contribution of each
consumer to the total cost in the optimal solution and in the equilibrium pro-
duced by the scheme. We state this charging argument as one key lemma, and
apply it in different settings. Proving the result in the non-atomic model is more
involved and requires structural understanding of the equilibrium. For some set-
tings we can show that the competitive ratio cannot be substantially improved:

Theorem: Every payment scheme is Ω(
√
α)-competitive for a single consumer

and many alternatives both in the atomic and the non-atomic settings. Further-
more, no payment scheme is

√
α
n -competitive in the atomic model with n ≥ 2

consumers.

When there are at least three alternatives and at least two consumers, we show
that there are essentially no good schemes, at least in the atomic case and when
the number of consumers is small:

Theorem: No non-increasing payment scheme is n−1+α
n -competitive in the

atomic model when there are at least three alternatives and n ≥ 2 consumers.
4 The two models may look superficially similar, but in fact give rise to different behavior.
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Observe that the multi-consumer bounds hold only in the atomic model and are
tight only for a small number of consumers. Extending these bounds to non-
atomic settings, as well as obtaining tight bound for a large number of con-
sumers, is an open question. On the positive side, for the non-atomic model, we
show that when the consumers preferences are identical (but unknown to – or
unused by – the designer) an optimal competitive ratio can be achieved:

Theorem: In the non-atomic model, when all the consumers have the same
preferences, the square root scheme is

√
α-competitive with respect to any linear

anonymous reward scheme.

2 The Square Root Reward Scheme

A main tool in our constructions is the following square root scheme. Before
introducing it, we require some notation. We say that an alternative j is cheap if
wj ≤

√
α. Otherwise, the alternative is called expensive.

Definition 2. (square root reward scheme). The square root reward scheme is
defined as follows. The reward function to each consumer i is identical for all
consumers, and depends only on the actions of consumer i.

tj =

{√
α− wj , j is cheap;

0, j is expensive.

The payment is then defined by pif = Σj f
i
j · tj .

Notice that in the atomic case a consumer is rewarded by
√
α − wj when

choosing a cheap alternative j and zero otherwise. A concrete example of the
square root scheme was given in the introduction.

2.1 A Key Lemma

To facilitate the analysis of our scheme in various settings, we now provide
a lemma that will be form the basis of our analysis in each proof. Roughly
specking, the lemma relies on two facts. The first is that the overpayment of the
square root scheme on cheap alternatives is not so big. On the other hand, if the
usage of cheap alternatives is greater in the square root scheme, then the optimal
scheme pays at least as the square root scheme. Let C denote the set of cheap
alternatives. Recall that tj denotes the threshold of the square root scheme.

Definition 3. Let M be the square root scheme and denote by p(·) its payment
function. Let M∗ be any scheme, and p∗(·) its payment function. We say that
M is payment bounded with respect to M∗ if the following holds for every
equilibrium f, f∗ of M,M∗ respectively:
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– If there exists an expensive alternative e such that fe > f∗
e , then it holds that

for every consumer i and cheap alternative j such that f∗
j > fj we have

that M∗ pays consumer i at least as M for using alternative j: p∗i (f
∗) ≥∑

j∈C,f∗
j ≥fj

(f∗i
j − f i

j) · tj .

In other words, for each cheap alternative j, either the usage of j in f is greater
than the usage of j in f∗, or M∗’s rewards are at least as M ’s for it. We now use
this property to analyze the competitive ratio of the square root scheme.

Lemma 1. (key lemma) Let M be the square root scheme and denote by p(·)
its payment function. Let M∗ be any scheme, and p∗(·) its payment function. If
M is payment bounded with respect to M∗ than for every equilibrium f, f∗ in
M,M∗ respectively, CM (f) ≤ √

α · C∗
M (f∗).

Proof. Let C and E denote the sets of cheap and expensive alternatives, respec-
tively. Let fC =

∑
j∈C fj, fE =

∑
j∈E fj denote the total usage of cheap and

expensive alternatives respectively. We divide the proof into two different cases.
In the first one, the usage of cheap alternatives in f is bigger than the the usage
of cheap alternatives in f∗. We will then consider the complement case.

– Case 1: fC ≥ f∗
C . The square root scheme pays nothing on the expensive

alternatives. On each cheap alternative j we the cost is [(
√
α − wj) + wj] ·

fj =
√
α · fj . Thus,

CM (f) ≤ α · fE +
√
α · fC ≤ √

α · (√α · fE + fC) ≤
√
α · (√α · f∗

E + f∗
C ) ≤

√
α · opt

The third inequality holds since fC − f∗
C = f∗

E − fE so we only “shifted
mass” from the cheap to the expensive alternatives (i.e., from weight

√
α to

weight α).
– Case 2: fC < f∗

C . In this case fE > f∗
E so there exists at least one expensive

alternative e such that fe > f∗
e . Thus, by the payment bound condition, for

every cheap alternative j, if f∗
j ≥ fj then M∗ pays at least as M for using

alternative j. Given a consumer i, we can thus decompose i’s payment to∑
j t

′i
j ·(f∗i

j −f i
j) such that t′ij ≥ tj on every cheap alternative j where f∗

j ≥

fj . Let t′j denote the weighted average reward (over consumers)
∑ f i∗

j −f i
j

f∗
j −f i

j
·

t′ij . In particular, t′j ≥ tj for all the cheap alternatives for which f∗
j ≥ fj .

We now divide the total usage of both schemes into three groups and show
the competitive ratio in each group separately.

1. S1 is composed of usage of expensive alternatives of size f∗
E from each

of the equilibria. On f∗ this comprises from all usage of expensive al-
ternatives. On f this covers all except fE − f∗

E of it.
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2. S2 will be a consumption of size fE − f∗
E = f∗

C − fC . From the square
root scheme M we will take this mass from the expensive consumption.
From M∗ we will take this mass5 only from alternatives j ∈ C such
that f∗

j ≥ fj and from consumers i such that f∗i
j ≥ f i

j . From each such
consumer we will take up to f∗i

j − f i
j . This is feasible as, f∗

C − fC =∑
j∈C,f∗

j ≥fj
f∗
j − fj +

∑
j∈C,f∗

j <fj
f∗
j − fj ≤

∑
j∈C,f∗

j ≥fj
f∗
j − fj ≤∑

i,j s.t.j∈C,f∗
j ≥fj ,f∗i

j ≥f i
j
f∗i
j − f i

j .

3. S3 is a mass of size fC from the cheap alternatives in both equilibria. In
f this is all usage of cheap alternatives. In f∗ this is the remaining usage
of cheap alternatives after we took f∗

C − fC to S2.

The reader may verify that these groups cover exactly the total consumption,
both cheap and expensive, in both equilibria. Let CM (Si), CM∗(Si) denote
the costs of each set. Let |Si| denote the total mass of Si. We now show that
the

√
α ratio is preserved for each of the sets. Since the total cost of each

equilibrium is the sum of its cost on the sets the lemma will follow.
For S1, all the mass is taken from expensive alternatives. The square root
scheme pays nothing for using these alternatives. Thus, CM (S1) ≤ α · |S1|
and CM∗(S1) ≥

√
α · |S1| yielding CM (S1)

CM∗ (S1)
≥ √

α.
For S2, recall that M is payment bounded w.r.t. M∗. Since all the mass
for S2 of f∗ is taken from cheap alternatives j with f∗

j ≥ fj , the pay-
ment decomposition defined above implies that the payment per unit t′j for
each such alternative j is at least

√
α−wj . (Note that the only place where

we charge payment to M∗ is S2 so we can use this decomposition.) Thus,
CM∗(S2) ≥

√
α · |S2|. Since CM (S2) is at most α · |S2| the ratio follows.

Observe that S3 is fully composed of mass from cheap alternatives. The
scheme pays

√
α−wj on each cheap alternative j and thus its average cost

per unit of usage of a cheap alternative is
√
α. Thus CM (S3) ≤

√
α · |S3|.

The cost of f∗ is at least |S3|, and the ratio follows. This finishes the proof.

3 Atomic Consumption

This section assumes that each consumer chooses a single alternative and cannot
divide his usage between several alternatives. Examples include a company that
can build a new factory either close to the city or in a more remote site, a single
drive that can to be made either in peak hours or in off-peak hours, etc. From a
technical perspective, in this case each f i

j is in {0, 1}.

5 By taking mass of size m we mean that we are given a set S of pairs i, j where i is a consumer
and j alternative s.t.

∑
(i,j)∈S f i

j ≥ m and we take up to m of it, for example by letting c s.t.

c ·∑(i,j)∈S f i
j = m and taking c · f i

j from every such pair.
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We first prove the existence of Nash equilibrium under some mild condi-
tions6. A scheme is non-increasing if the reward for using an alternative j does
not increase with fj . A scheme is alternative-based if the reward for using alter-
native j depends only on fj . The square root scheme maintains both properties.

Proposition 1. If the reward scheme is alternative-based and non-increasing
then a pure Nash equilibrium exists in the induced complete information game.

The proof is in the full version. In the sequel we analyze the power and limita-
tions of reward schemes. We start with analyzing the two-alternative case.

3.1 Two Alternatives

Theorem 1. If m = 2 the square root payment scheme is
√
α-competitive.

Proof. Recall that by our convention alternative 1 is the expensive alterna-
tive and alternative 2 is the cheap one. Let M∗ be some scheme. According
to Lemma 3 it suffices to show that the square root scheme M is payment
bounded w.r.t M∗. Let f, f∗ denote equilibria in M and in M∗, respectively.
If f1 ≤ f∗1 then Lemma 3 trivially holds for f and f∗, therefore assume that
f1 > f∗

1 . Thus, f2 < f∗
2 . Since the attractiveness functions are non-increasing

L1(f
∗
1 ) ≥ L1(f1), L2(f

∗
2 ) ≤ L2(f2), our goal is to show that if consumer i uses

alternative 2 in f∗ and alternative 1 in f , then M∗ pays to consumer i at least as
the possible payment of M to i, which is

√
α− 1.

Let pij, p
∗i
j denote the payment to i when choosing j in each scheme respec-

tively (fixing the actions of the other consumers). Since M pays nothing for
using alternative 1 but the consumer still uses it, pi2 + vi2 ·L2(f2) ≤ vi1 ·L1(f1).
In M∗ the consumer prefers alternative 2 and therefore:

p∗i2 ≥ p∗i1 + vi1 · L1(f
∗
1 )− vi2 · L2(f

∗
2 ) ≥ p∗i1 + vi1 · L1(f1)− vi2 · L2(f2) ≥ pi2 =

√
α− 1.

Thus the conditions of Lemma 3 are met and we have that Cf (M) ≤
√
α ·

Cf (M
∗), and the competitive ratio follows. �

We now show that under mild conditions, this bound is essentially tight. An
attractiveness function Lj is bounded away from 0 if for every if for any number
of consumers n′ and any value t ≥ 0 there exists some v such that v ·Lj(n

′) = t
(i.e., Lj(n

′) > 0). The following theorem (proof in the full version) provides
bounds which are tight up to a constant for the case of m = 2 and for the single
consumer case. We will later provide stronger bounds when both the number of
alternatives and the number of consumers is big.

6 In general the existence of an equilibrium is not guaranteed: consider a scheme for two alter-
natives and two players that pays a huge amount for one consumer to use any alternative alone,
and a huge payment for the second consumer to use any alternative with the second consumer.
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Theorem 2. Consider the case where m ≥ 2. For all attractiveness functions
that are bounded away from 0, and for all ε > 0, no deterministic payment
scheme can provide a competitive ratio better than (n−1)+α

(n−1)+
√
α

. Furthermore, no

randomized scheme can provide a competitive ratio better than (n−1)+α
2(n−1)+

√
α

.

3.2 Multiple Alternatives

We begin with a lower bound for multiple alternatives and consumers. Our
bound is meaningful only for small number of players, and we do not know how
to extend it further. After proving the lower bound we will show that if there is
a single consumer the square root scheme does provide a good competitive ratio
when there are multiple alternatives. Proofs appear in the full version.

Theorem 3. When m ≥ 3, n ≥ 2 and the attractiveness functions that are
bounded away from 0, no non-increasing reward scheme provides a competitive
ratio better than n−1+α

n .

Theorem 4. When n = 1, the square root payment scheme is
√
α-competitive.

4 Non Atomic Consumption

In this section we focus on consumption that can be split between different
alternatives (e.g. a total of 1000KW has to be consumed, but some of it can be
consumed in off-peak hours). From a technical point of view, the difficulty of
analysis in this model stems from the fact that the attractiveness functions are
functions of the overall load on the alternatives (including the consumer’s own
usage), so the marginal utility of a consumer from using an alternative depends
not just on the total load, but also on his own usage of that alternative. Due to
lack of space we postpone this section to the full version.

5 Discussion and Open Questions

We studied a basic problem of managing a single shared resource via positive
incentives. We focused on the case where a central designer is interested in
motivating a few big consumers to change their demand while minimizing the
cost. Various concrete open questions are mentioned in the body of this paper.
Perhaps the most important one is understanding the setting where there are
multiple alternatives and many consumers – our lower bounds hold only when
the number of consumers is small and good schemes may exist.
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Many extensions of our model almost suggest themselves. For example, what
happens if the consumers have combinatorial preferences over each set of alter-
natives (two drives in peak hours worth more than a drive in peak hours and
a drive in off-peak hours). Also, broadening the set of attractiveness functions
and the set of society’s cost functions is a natural extension. One can also take
a graph-theoretic view of our model by considering two nodes (source and tar-
get) connected by m parallel edges, each corresponding to another alternative.
Analyzing different graph topologies seems like a worthy research avenue.
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Abstract. We introduce the concept of budget games. Players choose
a set of tasks and each task has a certain demand on every resource in
the game. Each resource has a budget. If the budget is not enough to
satisfy the sum of all demands, it has to be shared between the tasks. We
study strategic budget games, where the budget is shared proportionally.
We also consider a variant in which the order of the strategic decisions
influences the distribution of the budgets. The complexity of the optimal
solution as well as existence, complexity and quality of equilibria are
analyzed. Finally, we show that the time an ordered budget game needs
to convergence towards an equilibrium may be exponential.

1 Introduction

Recent advancements of network technology enabled and simplified outsourcing
of processing and storing information to remote facilities. The offering of such
services in a competitive environment has become known as cloud computing.
The competitive aspect is twofold. On the one hand, customers compete over
the allocation of various types of services and resources like bandwidth, memory
space, computing power etc. These resources are usually limited in capacity
and as soon as the demand exceeds that capacity customers’ demand can only
be satisfied partially. On the other hand, the service providers face strategic
decisions in the markets which have to take into account the budget of their
clients. As long as a client can afford all the desired products, his budget has
no consequence. But once their total costs exceed his budget, he has to split it
between them. When deciding to offer a product, a provider therefore has to
consider the remaining budgets of the interested clients.

We study this in a game theoretic setting called budget games in which several
tasks (or products) have a certain demand for resources (or money) and the
resources (or clients) have budgets. As long as the sum of the demands does
not exceed the budget, the demands can be completely satisfied, otherwise only
partially. For example in scheduling, where tasks are allocated to one or more
servers. Each server disposes of a limited amount of computational capacity,

� This work was partially supported by the German Research Foundation (DFG)
within the Collaborative Research Centre “On-The-Fly Computing” (SFB 901) and
by the EU within FET project MULTIPLEX under contract no. 317532.

R. Lavi (Ed.): SAGT 2014, LNCS 8768, pp. 110–121, 2014.
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space or bandwidth and when it runs too many tasks, this capacity has to be
split between them. Naturally, every job will aim to obtain as much capacity as
it needs, which may vary between the different servers. Also, not every server
combination may be possible for every task.

We study budget games as strategic games as well as in a variant that takes
into account temporal aspect. Strategic games are often analyzed as one-shot
games which do not capture situations like a new provider entering a market
having a disadvantage against those already established. The clients prioritize
the products they already know and spend only what may be left of their budget
on what the new provider offers. As a result, he cannot gain more than what is
left of a clients budget.

In the strategic game the utility of a resource is shared proportional among
all tasks. In the second approach, called ordered budget games, we also take into
account the order in which the tasks arrived. Each resource has an ordering of
the tasks and its utility is allocated to the tasks in that order. If a player decides
to deviate to another strategy, the tasks that are allocated to different resources
are moved to the last position in the ordering of those resources.

Related Work. There are several models which share similarities to budget
games. Li et al. [5] developed cost-sharing mechanisms for set cover games. Every
element ei has a coverage requirement ri, every set Sj has a cost cj and the
multiplicity of ei in Sj is kj,i. The multiplicity states how many times ei is
covered by Sj . The sets are chosen on the condition that ei has to be covered at
least ri many times. The total costs are distributed between the elements such
that the result is 1

ln(dmax)
-budget-balanced and fair under core. In [6], Li et al.

analyze set cover games in which the elements are the agents and declare bids
for the sets. They give mechanisms which decide which elements will be covered,
which sets are used and how much each element is charged.

Other games have been defined on the facility location problem [4]. In [1],
Ahn et al. studied the Voronoi game in which two players alternately choose
their facilities and the space they control is determined by the nearest-neighbor
rule. They give a winning strategy for player 2, although player 1 can ensure
that the advantage is only arbitrarily small.

Also related to our model are congestion games. Rosenthal [10] showed that
they always have a pure Nash equilibrium. Milchtaich [8] extended this result
to weighted congestion games with player-specific payoff functions, where the
utility of player i playing strategy j is a monotonically nonincreasing function
Sij of the total weight of all players with the same strategy. Mavronicolas et al.
[7] considered the special case of latency functions fie = ge� cie, where ge is the
latency function of resource e, cie > 0 and � is the operation of an abelian group.
A characterization of the class of congestion games with pure Nash equilibria was
recently given by Gairing and Klimm [3]. They showed that the player-specific
cost functions of the weighted players have to be affine transformations of each
other as well as be affine or exponential. These games emphasize that the impact
of the same strategic choice may vary between the players.
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Finally, the strategic version of our game is a basic utility game. One property
of basic utility games is that the social welfare function is submodular and non-
decreasing, which is used in Section 3 to approximate the optimal solution for
any of our games. Vetta [11] showed that any basic utility game has a Price
of Anarchy at most 2. We prove the same for the non-strategic ordered budget
games.

Our Contribution. We show that computing an optimal allocation for both
variants of budget games is NP-hard in general but can be approximated within
a factor of 1− 1/e if the strategies of the players have a matroid structure.

In standard budget games a stable solution, i. e., a pure Nash equilibrium,
might not exist and deciding if one exists is NP-hard. For ordered budget games
the situation is more positive. Nash and even strong equilibria exist and can be
computed in polynomial time. We show that this complexity result cannot be
extended to super strong equilibria as these are NP-hard to compute. Moreover,
we compare the performance of equilibria to optimal solutions and show that the
price of (strong) stability is 1 and the price of (strong) anarchy is 2. Concerning
the convergence of repeated improvement steps we show that the dynamic that
emerges if players repeatedly make improving moves converges towards a Nash
equilibrium and this is even true for simultaneous moves of several players if
ties are broken in a certain way. However, there are games and initial strategy
profiles in which the convergence process may take exponentially long.

2 Model

A budget game B is a tuple (N ,R, (br)r∈R, (Si)i∈N , (ui)i∈N ), where the set of
players is denoted byN = {1, . . . , n}, the set of resources byR = {1, . . . ,m}, and
the budget of resource r by br. Each player i has a set of tasks Ti = {ti1, . . . , tiqi}
with tik ∈ Rm

≥0. For a task t ∈ Ti, we use t(r) to denote the demand for resource r.
We say a task t is connected to a resource r if t(r) > 0. If the task demands the full
resource, i. e. t(r) = br, we say that t is fully connected to r. Now, let T = ∪i∈N Ti
denote the set of all tasks. A strategy of a player is a set of tasks and Si ⊆ 2Ti

denotes the set of strategies available to player i. S = S1 × . . .×Sn is the set of
strategy profiles and ui : S → R≥0 denotes the private utility function player i
strives to maximize. For a strategy profile s = (s1, . . . , sn), let ut,r(s) : S → R≥0

denote the utility of t from r and ui(s) :=
∑

t∈si

∑
r∈R ut,r(s). We demand that

the utilities are always valid, i. e.
∑

i∈N
∑

t∈si
ut,r ≤ br for every r ∈ R.

We consider two different utility distribution rules and call the games standard
budget games (or simply budget games) and ordered budget games. In a standard
budget game, the utility of task t ∈ si from resource r is defined as ut,r(s) :=

min
(
t(r), br ·t(r)/

(∑
j∈N

∑
t′∈sj

t′(r)
))

.

In an ordered budget game, the utilities do not only depend on the current
strategy profile, but also on the course of the game up to this point. To that end
a strategy profile is augmented by an ordering of the tasks for each resource.
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Let ≺= (≺e)r∈R be a vector of total orders on the set T . The utility of a task
t ∈ si in (s,≺) is ut,r(s,≺) := t(r) if

∑
j∈N

∑
t′∈sj with t′≺rt

t′(r) ≤ br and

ut,r(s,≺) := max
(
0, br −

∑
j∈N

∑
t′∈sj with t′≺rt

t′(r)
)
otherwise.

When player i changes its strategy from si to s′i all new tasks are moved to
the end of ≺r for all resources. Let τ = s′i \si then the new state is ((s′i, s−i),≺′)
with x ≺′

r y if and only if x ≺r y and x ≺′
r t for all x, y ∈ T \ τ and t ∈ τ . Here,

the order for given tasks of the same player is arbitrary, as it does not change
the utility function of the specific player. For strategy changes of a coalition
C ⊆ N of players the definition is analogous and we set τ = ∪i∈C(s

′
i \ si). For

the ordering between tasks in τ , we show two tie-breaking rules in Section 5.
A pure Nash equilibrium (NE) is a strategy profile s in which no player has

an incentive to deviate, i. e., there is no s′i ∈ Si such that ui(s
′
i, s−i) > ui(s)

for all i ∈ Ni. A strong equilibrium is a profile s in which there is no coalition
C ⊆ N which can improve, i. e., there is no s′C ∈ ×i∈CSi such that ui(s

′
C , u−C) >

ui(sC , s−C) for all i ∈ N . For super strong equilibrium we only demand that
this inequality is strict for at least one player.

For a strategy profile s, u(s) :=
∑

i∈N ui(s) is the social welfare of s. The
optimal solution of B is the strategy profile opt with u(opt) ≥ u(s) for every

s ∈ S. The price of anarchy (PoA) is defined as max u(opt)
u(s) , the price of stability

(PoS) as min u(opt)
u(s) , where s is a NE. Analogously the price of (super) strong

anarchy and stability is defined with s being a (super) strong equilibrium.

3 Complexity of the Optimal Solution

For any form of budget game, the social welfare is independent of the order of the
tasks. The following results hold for both standard and ordered budget games.

Theorem 1. Computing the optimal solution for a budget game with respect to
social welfare is NP-hard, even if the tasks and strategy sets of all players are
equal and the strategies are restricted to singletons.

Proof. We give a reduction from the maximum set coverage problem. An instance
I = (U ,W , w) of this problem is given by a set U , a collection of subsets W =
{W1, . . . ,Wq} with Wi ⊆ U and an integer w ∈ N. The task is to cover as many
elements from U as possible by choosing at most w sets from W .

From I, we create a budget game B = (N ,R, (br)r∈R, (Si)i∈N , (ui)i∈N ). We
create a number of w players, that isN = {1, . . . , w}. Now, let the set of resources
correspond to the set U , i. e. R = U , and set the budget of each resource j ∈ R
to bj = 1. For each player i, we define the set of tasks as Ti = {tW1 , . . . , tWq},
where the demands of a task are set to tWk

(r) = 1 for r ∈ Wk and tWk
(r) = 0

otherwise. Note that the set of tasks is equal for all players. Finally, we set the
strategy space to be Si = {{tWk

} | 1 ≤ k ≤ q} for all i ∈ N .
Given a strategy profile s for B, the social welfare increases by 1 for every

resource r that is used by some task. This applies if and only if there is a setWk
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with r ∈ Wk so that the chosen strategy of some player i is si = {tWk
}. Choosing

strategies for all players corresponds to choosing w sets from {W1, . . . ,Wq} and
thus a strategy profile for B also describes a solution for I where the number of
covered elements equals the social welfare of s. In addition, every solution for I
can be transformed into a strategy profile for B by assigning each chosen setWk

to one player i by setting si = {tWk
}. Again, the social welfare and the number

of covered elements are equal. Therefore, the problems of finding an optimal
solution for B and finding an optimal solution for I is equivalent. ��

If the sets of strategies Si correspond to bases of some matroid (with the
tasks as elements), the optimal solution for a budget game can be approximated
up to a constant factor, since computing an optimal solution corresponds to
maximization of a submodular monotone function. A function g : 2U → R over
a set U is submodular if g(X ∪ {u}) − g(X) ≥ g(Y ∪ {u}) − g(Y ) for X ⊆
Y, u /∈ Y and monotone if g(A) ≤ g(B) for all A ⊆ B. For budget games, the
function mapping the set of tasks chosen by the players to the social welfare has
these properties. Nemhauser et al. [9] proved that greedy maximization yields
an approximation factor of 1 − 1

e . In our case, this means always picking the
task (out of all) with the highest utility next. The resulting strategies are then
valid, provided the number of tasks in each is not too large. Feige [2] showed
that there is no better approximation algorithm for the maximum set coverage
problem unless P = NP. Therefore, we conclude the following result.

Corollary 1. In a matroid budget game, greedy maximization of the social wel-

fare creates a strategy profile s with u(opt)
u(s) ≤ 1− 1

e . This bound is tight if P �= NP.

4 Standard Budget Games

A (standard) budget game does not always possess a NE. In addition, the ques-
tion whether a given game instance has at least one NE is NP-hard.

Theorem 2. To decide for a budget game B whether it has a NE is NP-complete.

Proof. We only give a short sketch of the proof. See the full version of the
paper for the complete proof. The problem is obviously in NP. To show that
it is also NP-hard, we reduce from the exact cover by 3-sets problem. Given
an instance I = (U ,W) consisting of a set U with |U| = 3m and a collection
of subsets W = W1, . . . ,Wq ⊆ U with |Wk| = 3 for every k, the question
whether W contains an exact cover for U in which every element is covered by
exactly one subset is NP-hard. We create a budget game B with the players
N = {1, . . . , q, A,B,C,D}, each having two strategies Si = {{ti0}, {ti1}}. The
players 1, . . . , q correspond to the sets in W . Basically, our game consists of two
smaller ones. The first involves the players 1, . . . , q and is based on I, the other
revolves around A,B and C and is mostly constant. PlayerD forms a connection
between the two games. The fact whether I has a solution determines how the
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NE in the first game looks like. If I can be solved, there is a NE which causes
D to participate in the first game. This in turn is necessary for the existence of
any NE in the second game and therefore for the existence in B as a whole. ��

As a finite strategic game, every budget game has a mixed Nash equilibrium.
It is also a basic utility game and from [11] we know that the price of anarchy is
at most 2 for this class of games. If a budget game has a NE, this upper bound
applies as well. We can get arbitrarily close to it as shown in the following
example. Let B be a budget game with N = {1, . . . , n + 1}, Ti = {ti0, ti1} for
i = 1, . . . , n and Tn+1 = {tn+1}. Each player may only choose a single task, i. e.
Si = {{ti0}, {ti1}} and Sn+1 = {{tn+1}}. There are two resources R = {r1, r2}
with b1 = b2 = 1. The demands are ti0(r1) =

1
n+1 − ε, ti1(r2) = b, tn(r2) = b and

0 else. The optimal solution is the strategy profile opt = (t10, . . . , t
n
0 , t

n+1) with
a social welfare of n · ( 1

n+1 − ε) + 1. The only NE is s = (t11, . . . , t
n
1 , t

n+1) with a
social welfare of 1.

5 Ordered Budget Games

We now turn to an extension of budget games namely ordered budget games
that take into account chronological aspects. Note that ordered budget games
are not strategic games as the utility of a player does not only depend on the
strategy profile but also on the order in which they made their choices. For
ordered budget games, the social welfare function is a potential function. Since
every strategy change by a player (or a coalition of players) does not decrease
the utility of the remaining players, it is easy to observe that every improvement
step by a player (or a coalition of players where every player improves his utility)
increases social welfare.

Corollary 2. The social welfare function is a potential function as every im-
provement step of a player increases social welfare.

Using this insight we derive a simple method to compute a strong equilibrium.

Theorem 3. A strong equilibrium can be computed in time O(n).

Proof. A (strong) equilibrium can be computed in time O(n) by inserting players
one after the other. In the resulting state, no player has an incentive to deviate
from its strategy as long as the players which have been inserted before him play
the strategy they chose when they were inserted. ��

Thus, computing both Nash and strong equilibria can be done in polynomial
time. However, if we consider super strong equilibria, the situation is different.
We show that finding such a state is NP-hard.

Theorem 4. Computing a super-strong equilibrium for an ordered budget game
with n players is NP-hard, even if the number of strategies per player is constant.
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Proof. We prove the theorem via a reduction from the monotone One-In-Three
3SAT problem. Given is a set U = {x1, . . . , xn} of variables and a collection C
of clauses over U with |c| = 3 for each c ∈ C. In this context, monotone implies
that no c contains a negated literal. We therefore call the literals just variables.

We construct an ordered budget game B = (N ,R, (br)r∈R, (Si)i∈N , (ui)i∈N )
from the sets U and C. Every variable xi ∈ U defines a player i ∈ N with
Ti = {0i, 1i}. Every clause cj ∈ C defines two resources rj,0, rj,1 ∈ R with
bj,0 = 2 and bj,1 = 1. Si = Ti for every player i. The demands are defined as

0i(rj,0) =

{
1, if xi ∈ cj
0, else

1i(rj,1) =

{
1, if xi ∈ cj
0, else

Set the remaining demands 0i(rj,1) and 1i(rj,0) to 0. Let ki be the number of
clauses the variable xi occurs in. Then each task of i has a demand of 1 on ki
many resources and a demand of 0 on all others. The highest utility the player
i can obtain is also ki. If there is a satisfying truth assignment φ for C, then
each player can obtain this individual maximum. If φ(xi) = 0, let player i choose
strategy 0i, otherwise 1i. φ has to one-in-three property, which means that in
each clause, only one variable is set to 1. Thus, every resource rj,1 is covered
by exactly one task 1i and every resource rj,0 by exactly two tasks 0i1 and 0i2 .
No resource experiences a demand higher than its budget, therefore the order of
the tasks is not important here. In this case, the social welfare achieves a value
of
∑

i∈N ki. If there exists a strategy profile with this social welfare in B, then
it induces in turn a satisfying truth assignment φ for C. Note that if such a
strategy profile exists, it is also the only super-strong equilibrium of the game.
In each other state, all players can form a coalition to collectively assume this
strategy profile without reducing their utility. Therefore, computing a super-
strong equilibrium for B determines whether C can be satisfied or not. ��

Since the optimal solution of an ordered budget game is a NE and even a
super-strong equilibrium, we obtain the following bound on the price of (super
strong) stability.

Corollary 3. The price of (super strong) stability of ordered budget games is 1.

For the price of anarchy we obtain the following, nearly tight bound.

Theorem 5. For every ordered budget game, the price of anarchy is at most 2.
For every ε > 0, there exists an ordered budget game with PoA = 2− ε.

Proof. We begin by upper bounding the price of anarchy of an ordered budget
game B. Let (s,≺) be a NE of B and s∗ be the strategy profile with the maximal
social welfare. Note that the ordering of the players is irrelevant for the social
welfare. To simplify notation we will use s and (s−i, s

∗
i ) as a shorthand for (s,≺)

and ((s−i, s
∗
i ),≺′) with ≺′ the new ordering as defined in Section 2. We can
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lower bound the social welfare of a NE s as follows.∑
i∈N

ui(s) =
∑
r∈R

∑
i∈N

∑
t∈si

ut,r(s)

≥
∑
r∈R

∑
i∈N

∑
t∈s∗i

ut,r(s−i, s
∗
i ) (1)

≥
∑
r∈R

∑
i∈N

∑
t∈s∗i

min

⎛⎝t(r), br −
∑
i′ �=i

∑
t′∈si′

ut′,r(s)

⎞⎠ (2)

≥
∑
r∈R

∑
i∈N

∑
t∈s∗i

min

⎛⎝ut,r(s
∗), br −

∑
i′ �=i

∑
t′∈si′

ut′,r(s)

⎞⎠

≥
∑
r∈R1

∑
i∈N

∑
t∈s∗i

min

⎛⎝ut,r(s
∗), br −

∑
i′ �=i

∑
t′∈si′

ut′,r(s)

⎞⎠+
∑
r∈R2

∑
i∈N

∑
t∈s∗i

ut,r(s
∗)

(3)

≥
∑
r∈R1

⎛⎝br −
∑
i′∈N

∑
t′∈si′

ut′,r(s)

⎞⎠+
∑
r∈R2

∑
i∈N

∑
t∈s∗i

ut,r(s
∗)

≥
∑
r∈R1

⎛⎝∑
i∈N

∑
t∈s∗i

ut,r(s
∗)−

∑
i∈N

∑
t′∈si

ut′,r(s)

⎞⎠+
∑
r∈R2

∑
i∈N

∑
t∈s∗i

ut,r(s
∗)

≥
∑
r∈R

∑
i∈N

∑
t∈s∗i

ut,r(s
∗)−

∑
r∈R1

∑
i∈N

∑
t′∈si

ut′,r(s)

≥
∑
i∈N

ui(s
∗)−

∑
r∈R

∑
i∈N

∑
t′∈si

ut′,r(s)

≥
∑
i∈N

ui(s
∗)−

∑
i∈N

ui(s) (4)

Observe that (1) follows from the Nash inequality and (2) from the definition
of the utility functions. In (3) we partition R into R1 and R2 where R1 contains
all resources with at least one task that evaluates the min statement to the
second expression. That is there is a i ∈ N and a t ∈ s∗i with ut,r(s

∗) >
br −

∑
i′ �=i

∑
t′∈si′

ut′,r(s). Adding
∑

i∈N ui(s) to both sides at (4) shows that
the price of anarchy is bounded by 2.

For a lower bound, consider the game B = (N ,R, (br)r∈R, (Si)i∈N , (ui)i∈N )
with N = {1, 2} with T1 = {t11, t12} and T2 = {t2}, R = {r1, r2} with b1 = b and
b2 = b(1 − ε). Set the demands to t11(r1) = b, t12(r2) = b(1 − ε), t2(r2) = b and
all others to 0. Set S1 = {{t11, }, {t12}} and S1 = {{t2}}. In the optimal solution,
the social welfare is u1(opt) + u2(opt) = b − b · ε + b = 2b − b · ε. If player 1 is
inserted first, his best response is to open task t11. This leads to a NE in which
the utility of player 2 is 0 and the price of anarchy 2− ε. B can be extended to
n players by using n

2 instances of the two-player version. ��
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In contrast to the fact that one can easily construct an equilibrium in n steps
by inserting players one after the other, the situation is different when starting in
an arbitrary situation. We now study the dynamic that emerges if players repeat-
edly perform strategy changes that improve their utilities. This may also lead
to situations in which a resource is simultaneously newly allocated by two tasks
of different players which necessitates the existence of a tie-breaking rule. We
introduce two tie-breaking rules which guarantee that the game still converges
towards an equilibrium. For an ordered budget game B, let p : N → N be an
injective function that assigns a unique priority to every player i. Whenever si-
multaneous strategy changes occur, they are executed sequentially, in decreasing
order of the priorities of the players involved. This corresponds to setting t1 ≺r t2
for all resources r and all pairs of tasks where the priority of the player with t1
was higher than the priority of the player with t2. For pfix, the priorities are fixed.
For pmax, they change over time, with pmax(i0) > pmax(i1) if ui0(s) > ui1(s) for
the current strategy profile s. Any ties may be broken arbitrarily.

Theorem 6. Let B be an ordered budget game which allows multiple simulta-
neous strategy changes. If B uses either pfix or pmax to set the priorities of the
players, then it reaches a NE after finitely many improvement steps.

Proof. Let s be the current strategy profile B and −→u (s) ∈ Rn
≥0 the vector con-

taining the current utilities of all players. We call −→u (s) the utility vector of B
under s. We always sort −→u (s) in decreasing order of the player priorities, i. e.
the player at position i has a higher priority than the player at position i + 1.
For pmax, this order may change over time. Let N ⊆ N be the set of players
who are simultaneously performing a strategy change. Each player would im-
prove his utility if he were the only player in N . Let s′ be the resulting strategy
profile. Note that −→u (s) <lex

−→u (s′) for both priority functions, where <lex is the
lexicographical order. Let i ∈ N be the player with the highest priority among
those in N . For pfix, i receives exactly the utility increase he expected from the
strategy change. From all the players in N , he is also the one with the smallest
index in both −→u (s) and −→u (s′). This alone warrants that −→u (s) <lex

−→u (s′). For
pmax, the same argumentation holds if the position of i in the utility vectors does
not change. Otherwise, his index in −→u (s) is now occupied by a player i′ with
ui(s) < ui(s

′) < ui′(s
′). Again, we have −→u (s) <lex

−→u (s′). Since the utility vec-
tors are strongly monotonely increasing, but bounded by the vectors containing
the maximal utility of each player, a NE is reached after finitely many steps. ��

For the following, we assume that pfix is used as tie-breaking rule and that
the priority of a player corresponds to her index. We show that the number of
improvement steps towards an equilibrium may be exponential in the number of
players, even if the number of strategies per player is constant.

Theorem 7. For any n, there is an ordered budget game Bn with polynomial
description length in n and a strategy profile s0 so that the number of best-
response improvement steps from s0 to any NE s of Bn is exponential in n.
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Proof. We give a recursive construction of the game Bn. Bn contains the game
Bn−1, for which there is exactly one path of best-response improvement steps
of length O(2n−1). Bn−1 is executed once. Then it is reset to its original state
and executed once more along the same path. In the end, Bn has reached a NE
after O(2n) steps. Each player has only two tasks and as a strategy, she can
choose one of them, i. e. Si = {{ti1}, {ti2}}. Labeling the strategies of player i
with 0i and 1i, each strategy profile can be written as a binary number. The
initial strategy profile s0 can be regarded as 0 and the first execution of Bn−1

counts up to 2n−1−1. The reset of Bn−1 corresponds to increasing that value by
1 to 2n−1 and the second iteration of Bn−1 continues counting up to 2n − 1. In
the final state of Bn, every player i plays strategy 1i. Since the strategies contain
only single tasks, the ordering of these tasks on the resources is also an ordering
of the players and we can abuse notation and say i1 ≺ i2 for players i1 and i2 if
t1 ≺r t2 holds for any pair of tasks t1 ∈ Ti1 and t2 ∈ Ti2 and any resource r.

In the following construction, for any pair of task t and resource r, t is either
fully connected to r or not connected to r at all. Thus, t(r) is either br or 0. In
the following, connecting a task t to a resource r means setting t(r) := br.

We need a few new notations for our proof. The only NE that is reached in
our construction is the state where every player i plays strategy 1i and in which
the players reach their final state in descending order, i. e. i1 ≺ i2 for i1 > i2. Let
pin be the utility of player i in that NE for Bn. For the ordered budget game Bn,
let sn0 be the initial strategy profile in which it is started. Let i1 ≺ i2 for i1 > i2
in sn0 . Intuitively, this means that players with a higher index get prioritized.

For n = 1, we build an instance B1 with a single player: N = {1} with tasks
T1 = {t11, t12}, strategy space S1 = {{t10}, {t11}} and two resources R = {r1, r2}
with b1 = 1, b2 = 2. We connect t11 to r1 and t12 to r2. The initial strategy profile
is s10 = ({t11}) and after one improvement step, B1 is in an equilibrium.

For n > 1, we extend the game Bn−1. Let m denote the number of players
in Bn−1. We split the rest of the proof in two parts. First, we explore how to
reset Bn−1 to sn−1

0 . The structure is sketched in Figure 1(a). We introduce a
new player n with Tn = {tn0 , tn1} and Sn = {{tn0}, {tn1}}. The initial strategy of
each i is {ti0}. We now add several new resources.

Resource r10 , . . . , r
m
0 r11 , . . . , r

m
1 ri2, i = 1, . . . ,m r r′

Budget 1 1 pin−1 + 2 m− 1
∑m

i=1 p
i
n−1 + 2m

For i = 1, . . . ,m, we connect ri0 to task ti0 and ri1 to task ti1. Since all budgets are
1, this does not influence the game Bn−1. We connect all ri0 to tn1 and r to tn0 .
Now, the initial utility of player n is un(s

n
0 ) = m− 1 and when all other players

i play strategy {ti1}, player n can improve her utility by 1 by switching to {tn1}.
It remains to extend the current game such that once player n has switched

to tn1 , the remaining players m,m−1, . . . , 1 also switch their strategy to recreate
sn−1
0 . For i = 1, . . . ,m, connect each resource ri2 to tn0 and ti0. This increases the
utility of tn0 by

∑m
i=1 p

i
n−1 +2m. As a compensation, we connect the resource r′

to tn1 . When n switches to tn1 , all the budgets of the resources r
i
2 become available

again. This will cause the players 1, . . . ,m to change their strategies to ti0. Before
switching, the utility of player i is pin−1 + 1 due to the connection between ri1
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(a) extension of Bn−1 that is necessary to
reset Bn−1

(b) extension of Bn−1 that is necessary to
restart Bn−1

Fig. 1. Construction of the ordered budget game Bn. Figure 1(a) shows the extension
of Bn−1 necessary to reset Bn−1. Once all players i are playing {ti1}, the player n
changes its strategy, creating for all others the incentive to go back to {ti0}. Here, we
set Σ1 =

∑m
i=1 p

i
n−1 + 2m. Figure 1(b) shows the extensions of Bn−1 which restart

Bn−1. The principle is the same, this time the player aux is used to create the new
budget available. We set Σ2 =

∑m
i=1(p

i
n−1) +m.

and ti1. Switching the strategy improves this value by at least 1. By definition of
strategy changes of a coalition with pfix, we have i1 ≺ i2 for all i1 > i2 and thus
the resulting strategy profile is identical to the initial one for players 0, . . . ,m.

To restart the game Bn−1, we apply a similar trick as before. The construction
is sketched in Figure 1(b). We introduce an auxiliary player auxn with Tauxn =
{tauxn

0 , tauxn
1 }, Sauxn = {{tauxn

0 }, {tauxn
1 }} and the following resources.

Resource r13 , . . . , r
m
3 , rn3 r14 , . . . , r

m
4 , rn4 ri5, i = 1, . . . ,m rauxn

Budget 1 1 pin−1 + 2
∑m

i=1(p
i
n−1) +m

In sn0 , we set auxn ≺ n and initially, her strategy is {tauxn
0 }. We connect taux0

to ri5 for all i ∈ {1, . . . ,m}. Now, this auxiliary player starts the game with a
utility of

∑m
i=1 p

i
n−1 +2m. We also connect taux1 to rauxn and to all resources ri3

for i ∈ {1, . . . ,m, n}. Finally, for every player i = 1, . . . ,m, we connect ri4 to ti0,
ri4 to ti1 and ri5 to ti1. For player n, we establish these connections the other way
around, such that rn3 is connected to tn0 and rn4 to tn1 .

Again, the effects of ri3 and ri4 regarding Bn−1 cancel out. Only when every
player i in Bn−1 plays strategy {ti0} and player n plays strategy {tn1}, the aux-
iliary player will change to taux1 and obtain a utility of

∑m
i=1(p

i
n−1) + 2m + 1.

This frees the budget of all resources ri5 and the utility of every task ti1 in Bn−1

is increased by the same amount we increased the utility of ti0 in the first part
of the construction. The game Bn−1 is executed once more, only the player n
remains idle. When all players i are playing strategy {ti1}, Bn has reached a NE.
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Thus, together with the auxiliary players we get a total of 2 · n − 1 players
in Bn. and the number of steps to reach the NE is at least 2n − 1. At the same
time, the number of tasks and resources is polynomial in n. ��
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Abstract. We study influence maximization problems over social networks, in
the presence of competition. Our focus is on diffusion processes within the family
of threshold models. Motivated by the general lack of positive results establishing
monotonicity and submodularity of the influence function for threshold models,
we introduce a general class of switching-selection threshold models where the
switching and selection functions may also depend on the node activation history.
This extension allows us to establish monotonicity and submodularity when (i)
the switching function is linear and depends on the influence by all active neigh-
bors, and (ii) the selection function is linear and depends on the influence by the
nodes activated only in the last step. This implies a (1− 1/e− ε)-approximation
for the influence maximization problem in the competitive setting. On the nega-
tive side, we present a collection of counterexamples establishing that the restric-
tions above are essentially necessary. Moreover, we show that switching-selection
threshold games with properties (i) and (ii) are valid utility games, and thus their
Price of Anarchy is at most 2.

1 Introduction

A large part of recent research on social networks concerns the design of marketing
strategies for advertising new products over a network. The focus of these efforts is on
exploiting viral effects for the spread of new ideas and technologies among networks
of friends, colleagues, relatives or other circles. The algorithmic question that naturally
arises under such diffusion processes is then the following: find a subset of “most influ-
ential” nodes to target (i.e., advertise the new product to or even give it for free), so as
to maximize the expected number of product adoptions, subject to a budget constraint.

This problem was initially formalized and studied by Domingos and Richardson [3]
and by Kempe et al. [9], who focused on two of the most popular families of stochastic
diffusion processes, namely the so-called threshold models [6,12] and cascade models
[4]. Finding the optimal set of influential nodes under this framework is an NP-hard
problem, and the work of [9] proposed an approximation algorithm, achieving a guar-
antee of 1−1/e. The algorithm is based on the observation that the function quantifying
the total influence of a set of early adopters is a monotone and submodular function, and
thus, the classical greedy approach for maximizing such set functions applies [11].

The models above however, do not take into account the presence of multiple com-
peting products in a market. In real networks, customers (i.e., nodes) end up choosing
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a product among various alternatives. To take the simplest possible scenario, suppose
there are two firms, R and B (standing for the red and blue product respectively), trying
to promote their product over a social network. A convenient way to model the process
now is by viewing this setting as a 2-player game, with the strategy space being the
subsets of nodes that can be targeted subject to each firm’s budget constraint.

Within this game-theoretic framework, interesting research questions arise. First, one
can have a natural extension of the problem studied in [9] for a single product, as fol-
lows: Given a strategy of firm B, find the best subset of nodes for firm R, so as to
maximize the expected number of product adoptions in her favor. In other words, find
an algorithm to compute the best response of a player to a strategy of her competitor. At
first sight, it may appear that the problem under competition may not differ significantly
from that without competition. For certain cascade models, this is indeed the case, see
e.g. [1]. Interestingly enough however, this does not hold for threshold models. In [2],
several extensions of the threshold model were presented where the best response func-
tion is nonmonotone and/or nonsubmodular and the techniques used in [9] cannot be
employed to obtain a good approximation. It is still a major open problem in the area
to understand for which diffusion models, one can compute (near) optimal strategies
efficiently. Moreover, apart from best responses, another direction is to study further
the properties of Nash equilibria of the game and quantify their performance, as was
done recently in [7,5]. For example, one can study the Price of Anarchy of such games,
or other criteria, such as the Budget Multiplier, introduced in [5].

Our Contribution: Motivated by the lack of positive results establishing monotonicity
and submodularity of the influence function in competitive threshold models, we em-
bark on a more systematic study of this question. On the conceptual side, we introduce a
fairly general class of threshold models that belong to the family of switching-selection
models. Under these models, a node first makes a decision on whether to adopt some
product (i.e., whether to switch to being activated) and then makes a separate decision
on which product to adopt (selection process). These two steps are determined by a
switching and a selection function. Our class is essentially a threshold version of the
models studied recently in [5] and [7], generalizing at the same time some of their as-
pects. In particular, we do not restrict the switching and selection functions to depend
only on the set of currently active neighbors. Instead, we let them depend on the whole
activation history, i.e., on the sets of active nodes at every time step. This extension
allows for a careful investigation of properties that lead to a monotone and submodular
influence function, and we obtain both positive and negative results under this class.

On the positive side, our main technical contribution is a set of conditions on the
switching and selection functions that lead to monotonicity and submodularity and thus,
enable us to obtain an (1−1/e−ε)-approximation for the influence maximization prob-
lem in the competitive setting, for any ε > 0. Specifically, our main result (Section 3)
is that the best response of a switching-selection threshold model is monotone and sub-
modular if (i) the switching function is linear and depends on the weight of all active
neighbors of a node, and (ii) the selection function is linear and depends on the weight
of the nodes activated in the last step (i.e., the most recent buyers are the ones to influ-
ence the actual product selection). For the proof, we first establish the equivalence of
such models with a generalization of the “live edges” approach [9], applicable to this



124 D. Fotakis et al.

particular setting, and then we develop quite delicate coupling arguments for establish-
ing monotonicity and submodularity. Moreover, we conjecture that our positive results
extend to the case where the switching function is any nondecreasing concave function
of the weight of all active neighbors (see the discussion at the end of Section 3).

On the negative side, we present (Section 4) a comprehensive collection of coun-
terexamples establishing that the restrictions above are essentially necessary. Regarding
the switching process, we present examples showing that the influence function may not
be monotone and submodular if the switching function is either not monotone or not
concave, or it allows for the influence to decrease over time. For the selection process,
we have analogous counterexamples when the selection function depends on the weight
of neighbors activated in steps before the last one, or when it deviates from linearity.

Finally, we also study the performance of Nash equilibria of the underlying game,
motivated by the properties established for the models in [5,7]. We show (Section 5)
that switching-selection threshold games with the properties identified above are valid
utility games, and thus their Price of Anarchy is at most 2.

2 The Model

In this section, we define the class of Switching-Selection Threshold Models. This is
essentially a ”threshold” version of the Switching-Selection Model introduced in [5],
generalizing at the same time some of its aspects, as we clarify later within this section.

Social Networks. We model a social network by a directed graph G(V,E), |V | = n.
Each edge (u, v) has a weight wuv ∈ [0, 1], specifying the degree of influence of node
u towards node v. For any node v, we denote by N(v) the set of in-neighbors of v,
and we require that the sum of the weights of the edges towards v is no more than 1:∑

u∈N(v)wuv ≤ 1.
We consider a 2-player game between two competing firms that try to promote their

product over the network (in fact our results generalize to games with more players, as
we state later on, but for simplicity the presentation in Section 3 is for 2 players). We
denote the two players by R and B standing for the red and blue product respectively.
Each player p ∈ {R,B} has a budget Kp ∈ N+, which they will use to target selected
nodes in the network. The decision that the firms need to make is to choose how to
disperse their budget to the n nodes, hence the strategy space for each firm p consists
of all vectors (i.e., multisets) in the form ap = (a1p, a2p, . . . , anp), where ajp ∈ N and∑n

j=1 ajp ≤ Kp.
Once the firms make a choice, the spread of the two products is modeled by a stochas-

tic diffusion process that takes as input the strategies of the 2 firms, aR, aB . We describe
next a family of such processes that we are interested in.

Switching-Selection Diffusion Processes. The process that determines the eventual
adoptions, takes place in discrete steps. The state sut ∈ {R(ed),B(lue),U(ncolored)},
of node u, denotes whether node u has adopted a product at step t and, if yes, which
product it adopted. As with the majority of the literature, we assume that the process
is progressive, i.e., once a node is colored, it never changes its state afterwards. The
process evolves as follows:
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– At time step t = 0, the initialization takes place. For every node u:
• A threshold θu is selected uniformly at random in [0, 1].
• Given the strategies aR, aB of the 2 firms, if (auR = 0 ∧ auB = 0) then
su0 = U .

• Otherwise su0 = R with probability auR

auR+auB
and su0 = B w.p. auB

auR+auB

– At any time step t > 0, each uncolored node u decides:
1. whether to adopt some product based on the decisions of its neighbors up until

step t− 1, on its threshold, θu, and on a switching function f , described below.
2. which product to adopt, in case that it decided to adopt some product. The

choice of product is determined by a selection function g, also described below.

Clearly, the process can last for at most n − 1 steps. We allow for fairly general
functions f and g. In particular, let Rt (respectively Bt) denote the set of red (blue)
nodes at step t and let At = Rt ∪Bt. Similarly, let Wut(R) (respectively Wut(B))
denote the total weight of the edges (v, u) such that v ∈ Rt (resp. Bt). Let also
Wut = Wut(R) +Wut(B).
1. The switching function applied at step t to node u, takes as argument the vec-

tor Cut = (Wu0,. . . , Wu,t−1), i.e., the whole history of how the cumulative
weight of active neighbors has evolved in the previous steps. Node u switches
from uncolored to colored at time t if

f(Cut) ≥ θu

2. The selection function takes as arguments the vectors Cut(R) = (Wu0(R),. . . ,
Wu(t−1)(R)), and Cut(B) = (Wu0(B), . . . ,Wu,t−1(B)), i.e., the histories
for the total weight of red and blue neighbors in the previous steps. Then with
probability

g(Cut(R),Cut(B)),

node u selects the red product and sut = R. Else sut = B.

Note that the model can be easily extended to the case of k > 2 players.

Comparisons with related models: The model encompasses some families that have
already been described before. For example, for linear f and g, and with f(Cut) :=

f(Wu,t−1), and g(Cut(R), Cut(B)) := g(
Wu,t−1(R)
Wu,t−1

), we have the Weight-
Proportional Competitive Linear Threshold Model studied in [2].

Our model can be viewed as a threshold version of the models studied in [7,5]. We
allow more general switching and selection functions, in the sense that these functions
can depend on how the total weight evolves over time. In [7,5], these functions depend
only on the active nodes at step t−1, when applied for step t. Finally, another technical
difference is that we do not have any update schedule determining the order of updates.
Instead, we consider that at each step any node that can switch to a colored state will do
so by taking into account what has happened up until time t− 1.

Best Response Computation. As with other competitive diffusion models, such as
[1,2], our primary focus is on the problem of computing the best strategy for a firm,
given its opponent’s strategy. Suppose we take the viewpoint of the Red firm. Given
strategies aR, aB , we let σ(aR, aB) denote the expected number of red nodes at the end
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of the diffusion process. The expectation here is over both the tie-breaking rule in the
initialization phase and over the probabilistic choice of thresholds. We take this as the
utility function of the red firm under this game.The problem we are interested then is:

The Influence Maximization Problem: Given a diffusion process, specifying the func-
tions f and g, and given the strategy of the blue firm, aB , find a strategy aR for the red
firm so as to maximize σ(aR, aB).

3 Dependence of Selection Function only on New Influencers

In this section, we will focus on the case where

– The switching function f depends only on the aggregate weight of all the colored
neighbors, up until the previous step. Hence, to check if a node u becomes colored
at step t, we check if f(Wu,t−1) ≥ θu.

– The selection function depends on the set of nodes that became active exactly at
the previous step of the process. In particular, at step t, the function g depends
on the aggregate weights of colored nodes at the previous 2 steps, in the form
g := g(

Wu,t−1(R)−Wu,t−2(R)
Wu,t−1−Wu,t−2

), and we also require that g is a linear function.

To see the motivation behind these types of switching and selection functions, one
can think of the competition between two smartphones. The choice of the switching
function is quite natural, and follows the recent works in the literature. E.g., the decision
on whether to buy a smartphone or not, is affected by the set of all neighbors who have
already bought one, regardless of which of the two products they have chosen. As for
the selection function, the rationale is that a node may be more heavily influenced by the
most recent buyers, i.e., the nodes that became active at the previous step in our model.
If in the recent past more people made a choice towards one of the two products, then
the node will have a higher probability to select the same product as well.

As we will see in Section 4, significant deviations from these assumptions make the
algorithmic considerations that we are interested in more challenging.

Linear Switching Functions. Our positive results concern the case where f is a lin-
ear function. In fact, we can assume WLOG that f and g are the identity function. We
will refer to this as the LSMSTM model (Linear Switching-Marginal Selection Thresh-
old Model). We conclude this section with a discussion regarding non-linear switching
functions.

From now on, fix a strategy of the blue firm, say aB = (a1B, a2B, . . . , anB). We
want to find a strategy aR = (a1R, a2R, . . . , anR) so as to maximize σ(aR, aB). We
will provide an approximation algorithm to this problem by using the standard tools of
optimizing monotone and submodular functions.

Definition 1. Consider a function h : Zn → R. Let x, y ∈ Zn be two vectors with
xj ≤ yj for every j = 1, ..., n. Let also ej ∈ Rn be the unit vector with ej(j) = 1 and
ej(k) = 0, for k �= j. We will say that h is

– monotone, if h(x) ≤ h(y),
– submodular, if h(x+ ej)− h(x) ≥ h(y + ej)− h(y) for j = 1, ..., n.
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Note that this is a generalization of the standard definition of submodularity, to the
case of functions defined over multisets rather than sets, as defined also in [8].

We are interested in the expected number of red nodes at the end of the diffusion
process as a function of the red firm’s strategy, i.e., σ(aR, aB) viewed as a function of
aR only. Our main result is the following:

Theorem 1. Under the LSMSTM model, and for any given strategy aB of the blue firm,
the function σ(aR, aB) is monotone and submodular.

In order to use the machinery of [11] or [8] (for multisets), we also need to be able
to compute the expectation σ(aR, aB), for any strategies aR, aB . We can use sampling
methods to approximate this value within any accuracy and as explained in [9], this
suffices for the greedy algorithm of [11]. This implies the following corollary:

Corollary 1. Under the LSMSTM model, and for any ε > 0, there is a (1 − 1/e− ε)-
approximation algorithm for computing the best response of any player against her
competitor.

To prove Theorem 1, we will begin by showing that LSMSTM is equivalent to an-
other model, which we will refer to as Single Incoming Edge Analog (SIEA). This is in
a similar spirit as the approach via ”live edges” in [9].

Definition 2. (SIEA) Under this stochastic process, given aR, aB , the initialization
phase is exactly the same as in LSMSTM. Then, for each node u we preserve at most
one incoming edge. Node u selects the edge e = (v, u) with probability wv,u and no
edge w.p. 1 −

∑
v∈N(u) wv,u. We refer to the selected edges as live edges. Afterwards

the contagion process works deterministically. At step t = 1, any node that has an in-
coming live edge from a colored neighbor, obtains the color of its neighbor. Continuing
in this manner, at step t, any node that has an incoming edge from a colored node,
becomes colored with the color of that node.

A crucial observation is the following:

Lemma 1. Given a pair of strategies aR, aB , the distributions over red-colored sets
and blue-colored sets derived from running LSMSTM are the same as the distributions
produced by SIEA.

The proof of Lemma 1 is based on similar techniques as the proof of Claim 2.6 in [9].
From now on and till the end of the proof of Theorem 1, we will work only with the
SIEA model. We first prove monotonicity1.

Lemma 2. Let aR, a
′
R ∈ Zn such that aR ≤ a′R. Under SIEA, and for any aB ,

σ(aR, aB) ≤ σ(a′R, aB).

Proof. Consider 2 SIEA processes, π1 and π2 with aπ1

R = aR, aπ2

R = a′R, and aπ1

B =
aπ2

B = aB . We will prove that the expected number of red nodes at π2 is at least as high
as that in π1.

1 Note that in the case of a single product, monotonicity is trivial. This is not always the case in
threshold models with at least two competing products. See e.g. [2] for some examples.



128 D. Fotakis et al.

We define a coupling between π1 and π2, and prove the lemma using induction on the
number of steps. We consider the following coupled processes, which by slight abuse
of notation, we will keep denoting by π1 and π2: We first pick randomly the set of live
edges, as described in the SIEA model, which we take to be the same for both processes.
At step t = 0, for every node u, where aπ1

uR + auB > 0, we pick a number uniformly at
random in [0, 1] and we decide on the color of u at each process, based on the following
3 intervals of [0, 1].

– with probability auB

a
π2
uR+auB

, we color u blue in both processes.

– with probability auB

a
π1
uR+auB

− auB

a
π2
uR+auB

, we color u blue in π1 and red in π2.

– with probability 1− auB

a
π1
uR+auB

, we color u red in both processes.

Any other node can be colored with no ambiguity in π1 and π2 or remain uncolored in
one or both of the processes (e.g., if aπ2

uR = auB = 0). The next steps in both processes
continue as in the original SIEA processes (but note that both processes will use the
same set of live edges).

It is quite straightforward to see that this is a valid coupling, since it produces the
same distribution of blue and red nodes at each step t, as if we run the original processes.
Indeed, at step t = 0, the probability that in π1 a node u is colored blue is the probability
that the result of the coin flip falls in one of the first two cases and hence equal to:

auB
aπ2

uR + auB
+ (

auB
aπ1

uR + auB
− auB

aπ2

uR + auB
) =

auB
aπ1

uR + auB

This is precisely the same for the original π1 process without coupling. The same is
true for the process π2 and by induction we can then prove that the distributions of red
and blue nodes is the same as in the uncoupled processes.

Coupling helps us in establishing the following claim, which trivially then implies
monotonicity:

Claim. For the coupled processes π1 and π2, for every step t and for every node u, it
holds that if sπ1

ut = R, then sπ2
ut = R.

Proof. We proceed by induction on the number of steps.
Induction basis: This is trivial by the construction of the coupling.
Induction step: Suppose that the claim holds until step t− 1. We will show that it holds
for step t. For an arbitrary node u, suppose sπ1

u,t = R. If it is the case that the node was
colored in previous steps, then we would also have sπ1

u,t−1 = R. But by the induction
hypothesis, then sπ2

u,t−1 = R, and hence, sπ2
u,t = R. Now consider the case where node

u becomes red in π1 exactly at step t. This means that there is a live edge from a node
v, and also sπ1

v,t−1 = R. But then by the induction hypothesis, sπ2
v,t−1 = R. Recall now

that the coupled processes use the same set of live edges, and also that there can be at
most one incoming live edge to a node u. Hence, node u cannot have possibly been
colored in π2 by some other live edge before step t. Thus u is uncolored in π2 at step
t− 1, and it will become red in π2 as well, at step t. ��

We established that for any random selection of live edges, the number of red nodes
at the end of π2 is at least as high as those in π1. Hence the expected number of red
nodes will also have the same property, i.e., the SIEA model satisfies monotonicity. ��
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We now proceed to prove submodularity for our model.

Lemma 3. Let aR, a′R ∈ Zn such that aR ≤ a′R. Under SIEA, and for any aB , and any
j ∈ {1, ..., n}, σ(aR + ej, aB)− σ(aR, aB) ≥ σ(a′R + ej , aB)− σ(a′R, aB).

Proof. The proof is based on more involved coupling arguments than the case of mono-
tonicity.

Consider 4 processes, π1,π2, π3 and π4 with the following features:

– aπ1

B = aπ2

B = aπ3

B = aπ4

B = aB ,
– aπ1

R = aR, and aπ2

R = a′R,
– aπ3

R = aπ1

R + ej , and aπ4

R = aπ2

R + ej .

Let pi =
a
πi
uR

a
πi
uR+auB

be the probability that node i is colored red at the initialization

phase of process πi, i ∈ {1, 2, 3, 4}. We consider now the following coupling between
these processes: We pick at random a set of live edges as described under the SIEA
model, which will be the same for all the processes. Then at step t = 0, for a node u
with aπ1

uR + auB > 0, we pick uniformly at random a number in [0, 1] and we decide
on the color of u at each of the coupled processes, based on whether the number falls
in one of 5 subintervals of [0, 1], with lengths as defined below. In particular,

– With probability p1, we paint node u red in all processes.
– With probability (p2 + p3)− (p1 + p4) : s

π2
u0 = sπ3

u0 = sπ4
u0 = R ∧ sπ1

u0 = B.
– With probability p4 − p3 : sπ2

u0 = sπ4
u0 = R ∧ sπ1

u0 = sπ2
u0 = B.

– With probability p4 − p2 : sπ3
u0 = sπ4

u0 = R ∧ sπ1
u0 = sπ3

u0 = B.
– With probability 1− p4: we color u blue in all processes.

We can easily see that the probabilities above sum up to 1. It is also easy to check
that this is indeed a valid coupling that produces the same distribution of blue and red
nodes at each step t as if we run the original processes. For example, at step t = 0, the
probability that in π4 a node u is colored red is the probability that the result of the coin
flip falls in one of the first four cases above and hence equal to:

p1 + (p2 + p3)− (p1 + p4) + (p4 − p3) + (p4 − p2)

The above is equal to p4, as desired. The same holds for the other processes as well. For
nodes where, aπ1

uR+auB = 0, we need to have an analogous (but simpler) construction,
and the same holds for the case where aπ2

uR+auB = 0. We omit the details for handling
these simpler cases from this version.

The claim that we need in order to conclude our proof is the following:

Claim. For the coupled processes, for every step t and for every node u, it holds:

– (sπ4
ut = R)⇒ (sπ2

ut = R) ∨ (sπ3
ut = R).

– (sπ1
ut = R)⇒ (sπ2

ut = R) ∧ (sπ3
ut = R).

Proof. Induction basis: The properties hold by the construction of the coupling.
Inductive step: Suppose the claim holds for step t− 1. To see the first part of the claim,
consider a node u with sπ4

u,t = R. If it is the case that the node was colored in previous
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steps, then we would also have sπ4
u,t−1 = R. But by the induction hypothesis, then either

sπ2
u,t−1 = R, and hence, sπ2

u,t = R or sπ3
u,t−1 = R, and hence, sπ3

u,t = R. Now consider
the case where node u becomes red in π4 exactly at step t. This means that there is a
live edge from a node v, and also sπ4

v,t−1 = R. But then by the induction hypothesis,
sπ2
v,t−1 = R, or sπ3

v,t−1 = R. Recall now that the coupled processes use the same set of
live edges, and also that there can be at most one incoming live edge to a node u. This
means that node u cannot have possibly been colored in both π2 and π3 by some other
live edge up until step t− 1. Hence u will become red in π2 or π3 at t. This establishes
the first part of the claim. The second part is established in a very similar way. ��

It is easy to see that the claim implies submodularity of σ(aR, aB). Hence this com-
pletes the proof. ��
Remark 1. We can generalize the above results (the equivalence to SIEA as well as
monotonicity and submodularity) for the case of k > 2 players. The selection function
would still retain the same form, taking into account in the denominator the weight of
all neighbors that were colored in the last step. To prove the same results say for player
1, we only need to consider that there is one Blue opponent with budget for node u
equal to the sum of all other players’ budgets for i = 2, . . . , k. The intuition behind this
is that for each player, the identity of her opponents does not make a difference. Hence,
it is as if playing versus one Blue player that is the union of all other players.

Discussion about Non-linear Switching Functions. In the absence of competition,
when the switching function is concave (and there is no selection function), monotonic-
ity and submodularity hold [10]. This gives some indication that with such a switch-
ing function and with a linear selection function that is implemented just on the new
adopters, the same properties may also hold. However, in the competitive setting, con-
cave switching functions make the problem more challenging.

Firstly, the live-edge technique cannot be used in the case of a concave switching
function. The reason for this is that the model ceases to be equivalent to SIEA. The acti-
vation time is more crucial now, and the unconditional probability of a node influencing
a neighbor, depends on the order with which it will become active. The later it becomes
active, the smaller the influence it will exert.

Secondly, the technique used by Mossel and Roch in [10] for the single product case
cannot apply here. Their proof relies on the so called antisense coupling technique. A
crucial point for the technique to apply is that the ordering with which the neighbors
will get colored does not affect the outcome. This is not the case in the competitive
setting as the nodes might get painted with different colors and the ordering affects the
probability of a node getting colored with a particular color.

Despite the technical difficulty of dealing with this case, we conjecture that mono-
tonicity and submodularity hold in the case of concave switching functions along with
a linear selection function depending solely on new adopters. This would provide an
interesting generalization of [10] in the concave setting with competition.

4 Necessity of Assumptions

Next, we justify the assumptions behind LSMSTM, by demonstrating that they are es-
sentially necessary for the monotonicity and the submodularity of the influence
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Fig. 1. Using this social network, we show that the utility function may not be submodular if the
edge weights decrease in the diffusion process

functions. Specifically, we present examples showing that any significant deviation from
LSMSTM yields a utility function that is nonmonotone or nonsubmodular (or both).

Monotonicity and Concavity of the Switching Function. Clearly, if the switching
function is nonmonotone, the utility function need not be monotone. We also show here
that the submodularity of the utility function requires that the switching function should
be concave. For simplicity, we focus on the monopoly case with one product. Let the
social network consist of 3 nodes s1, s2 and t and of two directed edges (s1, t) and
(s2, t) with weights w1 and w2. Then, if the switching function f is strictly convex at
some point, i.e., if there are w1 and w2 such that f(w1 + w2) < f(w1) + f(w2), then
the utility of the firm is not subadditive, and thus not submodular in such an instance.

Influence from the Neighbors in the Switching Function. Next, we show that if the
edge weights decrease by an additive term of ε in the k-th step after their infection, the
utility function is nonsubmodular. Thus, we demonstrate that submodularity requires
that the edge weights, as taken into account by the switching function, should not de-
crease over time. Since we focus on models that do not depend on the node identities,
we assume that this decrease takes place in any edge in the k-th step after its infection.

Let us consider the network in Fig. 1 where the blue firm selects nodes s1 and s2
and the red firm selects nodes s3 and s4. We assume that k = 2, i.e., the weight of each
edge decreases by an additive term of ε in the second step after the edge’s infection,
that f satisfies f(2x) < f(2x+ ε), and that the selection function g is linear. Then, if
t has not become blue by step 2 of the process, its threshold is larger than f(2x). Then,
in the third step, the weight of (s1, t) decreases by ε and the total switching influence
on t is 2x + ε, if both s3 and s4 are selected by the red firm from the beginning, and
at most 2x, otherwise. Therefore, the probability that t becomes red is positive iff the
red firm selects both s3 and s4 from the beginning. Thus, the utility function of the
red firm is nonsubmodular in this case. Connecting s2 to a2 by a (k − 1)-chain of unit
weight edges and connecting s3 to a3 and s4 to a4 by a k-chain of unit weight edges, we
can generalize this example to the case where the edge weights decrease in the k-th step
after their infection, for any k ≥ 2. In fact, using similar in spirit (but more complicated)
constructions, we can generalize this example to the case where the weight of each edge
can decrease by a time dependent quantity in each step after the edge’s infection.

Dependence of Selection Function on Previously Colored Nodes. Since we do not
differentiate the nodes based on their identities, we can only differentiate them based
on activation time. If the selection function considers not only the nodes colored in the
last step, but also the nodes colored in previous steps, we can adjust the example in [2,
Section 2] and show that the utility function may be nonmonotone and nonsubmodular.
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(Almost) Linearity of the Selection Function. Finally, we observe that if the selection
function g is highly convex at some point, i.e., if there exist some x1, x2, x3 such that

g
(

x1

x1+x3

)
f(x1+x3)+g

(
x2

x2+x3

)
f(x2+x3) < g

(
x1+x2

x1+x2+x3

)
f(x1+x2+x3) , (1)

then the utility function may not be submodular. This follows directly from (1) applied
to a simple network with 4 nodes t, s1, s2, and s3, and 3 directed edges (s1, t), (s2, t),
and (s3, t), with weights x1, x2, and x3, respectively, where the blue firm selects s3.
The same argument shows that the selection function (of the red firm) g(x) should not
be highly concave, since otherwise, the selection function 1 − g(x) of the blue firm
would be highly convex. Therefore, the selection function should be almost linear.

5 Performance of Equilibria

We conclude our work with a different and orthogonal question, namely studying the
performance of Nash equilibria of the underlying game. We will present the analysis
directly for an arbitrary number of competing firms, say k of them. For ease of presen-
tation, we consider the case where the players choose a set rather than a multiset as their
strategy to seed nodes.

Viewing the process as a game, we take as the utility of player i the expected num-
ber of nodes adopting product i at the end of the process. For a strategy profile S =
(S1, ..., Sn), we denote the payoff of i by σi(S). Note that the nature of our switching
function is such that the number of colored nodes at the end (independently of what
color they chose), when starting from a strategy profile S = (S1, ..., Sn) only depends
on the set S = ∪Si. Hence our social utility function can be defined simply over subsets
of seeded nodes S ⊆ V , i.e., as γ(S) = γ(S) =

∑
i σi(S) where S can be any strategy

profile that results in seeding S at step t = 0.
To quantify the Price of Anarchy of this game, we need to compare the values of

γ(·) at the optimal seeding set against that at an equilibrium. For this we will use the
approach of Vetta regarding utility games [13], also used by [1,7]. We start with the
definition of a utility game.

Definition 3. Consider a game with k players, and a ground set V , so that the strategy
space of each player are the subsets of V . Let γ(S) be a social welfare function. A game
is defined to be a utility game if it satisfies the following three properties:

1. The social utility function γ(·) is submodular.
2. Given a profile S resulting in a seeding set S, the total value for all the players is

less than or equal to the total social value:
∑

σi(S) ≤ γ(S).
3. The value for a player i is at least her added value for the society: σi(S) ≥ γ(S)−

γ(S−i)

Theorem 2. The LSMSTM model induces a utility game.

The proof of this theorem is by establishing the three properties listed above. Note that
Property 2 in Definition 3 is trivial. In fact, in our case it holds with equality. Hence,
the main part of the proof is to ensure the first and the third property as well. For this
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we use the equivalence with the SIEA model, which facilitates the analysis (note that
according to Remark 1, this equivalence holds for an arbitrary number of players). We
omit further details from this version.

From the above theorem, using [13], we have:

Corollary 2. The Price of Anarchy even for coarse correlated equilibria is at most 2.

A modification of the tight example in [7] shows that our upper bound is tight as well.
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Abstract. Weconsider network cost-sharing gameswith non-anonymous
cost functions, where the cost of each edge is a submodular function of its
users, and this cost is shared using the Shapley value. The goal of this pa-
per is to identify well-motivated equilibrium refinements that admit good
worst-case approximation bounds. Our primary results are tight bounds
on the cost of strong Nash equilibria and potential function minimizers in
network cost-sharing games with non-anonymous cost functions, param-
eterized by the set C of allowable submodular cost functions. These two
worst-case bounds coincide for every set C, and equal the summability pa-
rameter introduced in [31] to characterize efficiency loss in a family of cost-
sharing mechanisms. Thus, a single parameter simultaneously governs the
worst-case inefficiency of network cost-sharing games (in two incompara-
ble senses) and cost-sharingmechanisms. This parameter is always atmost
the kth Harmonic numberHk ≈ ln k, where k is the number of players, and
is constant for many function classes of interest.

1 Introduction

We consider network cost-sharing games with non-anonymous cost functions.
Such a game takes place in a directed graph G = (V,E) and has k players.
Player i has a source si ∈ V and a sink vertex ti ∈ V , and its strategy set is
the si-ti paths of the graph.1 Outcomes of the game correspond to path vectors
(P1, . . . , Pk), with the semantics that the subnetwork (V,∪k

i=1Pi) gets formed.
Each edge e has a cost function Ce, specifying the total cost incurred on edge

e as a function of its users — the players Se that pick a path that includes e.
The function Ce(Se) models the infrastructure or service cost of supporting the
users Se between e’s endpoints. We always assume that Ce(∅) = 0 and that Ce

is monotone, meaning Se ⊆ Te implies Ce(Se) ≤ Ce(Te). For most of the paper,
we assume that Ce is submodular, meaning it exhibits diminishing costs in the
following sense:

Ce(Te ∪ {i})− Ce(Te) ≤ Ce(Se ∪ {i})− Ce(Se)

for all i and Se ⊆ Te. Almost all previous work on network cost-sharing games,
beginning with [1], considers only anonymous cost functions, where the cost of
an edge depends solely on the number of users. For anonymous cost functions,

1 The main results of this paper continue to hold, with the same proofs, when the
strategy set of a player i is an arbitrary subset of 2E .

R. Lavi (Ed.): SAGT 2014, LNCS 8768, pp. 134–145, 2014.
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submodularity is equivalent to non-increasing marginal costs. Non-anonymous
cost functions model asymmetries between players, which can arise from different
bandwidth requirements, durations of use, services needed, and so on.

Example 1 (Weighted Players). For a simple example of a non-anonymous cost
function, suppose each player i has a positive weight wi. The joint cost function
Ce(Se) depends on the set Se of users only through the sum of their weights∑

i∈Se
wi. If Ce(Se) = f(

∑
i∈Se

wi) for a nondecreasing concave function f ,
then Ce is monotone and submodular.

Example 2 (Coverage Functions). For a more general class of non-anonymous
cost functions, consider a ground set X of services, where supporting a service
j ∈ X imposes a weight of wj on the service provider. Each player i requires a
set Ai ⊆ X of services. The cost Ce of supporting all of the services required by a
set Se of users is Ce(Se) = f(

∑
j∈∪i∈SeAi

wj). Provided f is a monotone concave
function, Ce is a monotone submodular function. Example 1 corresponds to the
special case in which the players require disjoint sets of services. If all of the Ai’s
coincide, we recover the special case of (anonymous) constant cost functions.

To complete the description of the game, we need to define players’ costs. We
assign a cost share χe(i, Se) to each user i ∈ Se of each edge e. The cost ci(S) of
a player i in a strategy profile S = (P1, . . . , Pk) is then

ci(S) =
∑
e∈Pi

χe(i, Se),

where Se = {j : e ∈ Pj} is the set of users of e.
With anonymous cost functions, the natural cost shares proposed in [1] are

the equal cost shares: χe(i, Se) = Ce(Se)/|Se|. With non-anonymous cost func-
tions, however, such cost shares are not as well motivated. We extend the idea
of equal cost-sharing to non-anonymous cost functions by taking χe(i, Se) to
be i’s Shapley value in the cooperative game induced by Ce and Se. In more
detail, for a permutation σ of the players of Se, let Δσ(i) denote the increase
C(Sσ(1..i−1) ∪ {i}) − C(Sσ(1..i−1)) in cost due to i’s arrival, where Sσ(1..i−1) is
the set of players that precede i in σ. Then, χe(i, Se) is defined as the expected
value of Δσ(i), where the expectation is over the (uniform at random) choice of
σ. It is easy to verify that: (i) these cost shares coincide with equal cost-sharing
when Ce is anonymous; (ii) the joint cost is shared fully across the players, with∑

i∈Se
χe(i, Se) = Ce(Se); and (iii) a submodular cost function Ce leads to pos-

itive externalities, in the sense that χe(i, Se) ≤ χe(i, Te) whenever i ∈ Te ⊆ Se.
Properties (ii) and (iii) are called budget-balance and cross-monotonicity. These
cost shares also ensure that every network cost-sharing game has a potential
function and therefore admits at least one pure Nash equilibrium (see Section 2).

Example 3 (Weighted Players Revisited). Consider two players with weights 1
and 3 and the cost function Ce(Se) = (

∑
i∈Se

wi)
1/2. The joint cost of the two

players is 2. The players’ cost shares are their Shapley values, namely 1
2 (3−

√
3) ≈

.635 and 1
2 (1 +

√
3) ≈ 1.365, respectively.
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1.1 Measures of Equilibrium Inefficiency

The primary goal of this paper is to characterize the inefficiency of equilibria
in network cost-sharing games with non-anonymous cost functions, in as many
senses as possible. We define the cost C(S) of a strategy profile S of a network
cost-sharing game as the sum of players’ costs:

C(S) =
∑
e∈E

Ce(Se) =

k∑
i=1

ci(S), (1)

and take (1) as our objective function. Recall that a pure Nash equilibrium
(PNE) is a strategy profile from which no player can decrease its cost via a
unilateral deviation. To what extent do PNE minimize the cost (1)?

A Non-starter: The Price of Anarchy. It is well known that network cost-
sharing games can have multiple PNE of wildly varying quality. The canonical
example in the basic model with constant cost functions [1,2] posits k players,
each choosing between an edge e1 with fixed cost 1+ ε and an edge e2 with fixed
cost k. Since all players using the second edge is a PNE, the ratio between the
worst PNE and an optimal solution (i.e., the “price of anarchy”) can be as large
as k.

Equilibrium Refinements. The bad equilibrium identified above does not
imply that network cost-sharing games are uninteresting — just that, to reason
meaningfully about the quality of their equilibria, a more fine-grained approach
is required. Recall that an equilibrium refinement defines a subset of equilibria.
We are interested in equilibrium refinements with the following two properties:

1. All equilibria in the refined set have cost close to optimal.
2. There is a plausible explanation why equilibria in the refinement are more

“important” or “likely” than those outside the set.

Previous work on network-cost sharing games with anonymous submodular cost
functions can be interpreted as proposing two refinements with these two prop-
erties: potential function minimizers and strong Nash equilibria.

Potential Function Minimizers and the Price of Stability. Anshelevich et
al. [1] proposed circumventing bad PNE by studying the price of stability, defined
as the ratio between the minimum-cost PNE and that of an optimal outcome.
They prove that the worst-case price of stability in network cost-sharing games
with anonymous submodular cost functions is exactly the kth Harmonic number
Hk =

∑k
i=1

1
i = ln k + Θ(1). We can interpret the upper bound in [1] as a

worst-case bound for an equilibrium refinement by examining its proof. The first
step in [1] constructs a potential function [28] for every network cost-sharing
game with anonymous cost functions — a function Φ such that the change in
Φ under a unilateral deviation by player i equals the change in i’s cost. The
PNE correspond to the local minimizers (under unilateral deviations) of Φ. The
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second step of the proof shows that every global minimizer of Φ has cost at most
Hk times that of an optimal outcome. The global minimizers of Φ therefore
form an equilibrium refinement of the PNE that satisfies the first property in
Section 1.1. As for the second property, global potential function optimizers
have been previously proposed as a plausible equilibrium refinement in the game
theory and economics literature, together with supporting theoretical [3,8,34]
and experimental evidence [13].

Strong Nash Equilibria. Epstein et al. [17] studied an incomparable equi-
librium refinement in network cost-sharing games with anonymous concave cost
functions. Recall that a strong Nash equilibrium (SNE) [4] is a strategy profile
such that no coalition of players can deviate in a coordinated way to strictly
decrease all of their costs. Robustness to coalitional deviations provides good
motivation for favoring strong Nash equilibria over non-strong PNE.

Global potential function minimizers need not be SNE — indeed, SNE are not
guaranteed to exist in general [17] — and SNE need not minimize the potential
function, except in very simple networks [21]. Nevertheless, [17] proved that the
worst-case ratio between an SNE and an optimal outcome is also precisely Hk.

1.2 Contributions and Paper Organization

The goal of this paper is to identify well-motivated equilibrium refinements that
admit good worst-case approximation bounds. Our primary positive results are
characterizations of the worst-case inefficiency of both potential function mini-
mizers and strong Nash equilibria in network cost-sharing games, as a function
of the class C of allowable submodular cost functions. Despite their instance-by-
instance incomparability, we prove in Section 3 that the worst-case approxima-
tion ratios of these two equilibrium refinements are identical for every set C of
allowable cost functions, and equal the worst-case summability of a function in
C.2 This bound is always at most Hk, (Proposition 1), and is constant for many
cost function classes of interest. For example, consider weighted players (Exam-
ple 1) and a polynomial cost function Ce(Se) = (

∑
i∈Se

wi)
d. For d ∈ (0, 1], this

function is at most 1
d -summable, independent of the number of players and their

weights (Example 5). This yields a constant-factor approximation guarantee for
potential function minimizers and strong Nash equilibria in games with such
cost functions.

Additionally, in Section 4 we extend the equivalence of summability and worst-
case approximation bounds for strong Nash equilibria to network cost-sharing
games with non-submodular cost functions and arbitrary cross-monotonic cost-
sharing methods. At this level of generality the games typically have no potential
function, so the first refinement is not well defined.

Our results in Sections 3 and 4 effectively isolate the key features of the
standard network cost-sharing model that drive inefficiency bounds. While there

2 Our upper bound for strong Nash equilibria meets the “coalitional smoothness”
criterion of [5], and therefore extends to additional solution concepts.
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exist properties that require the full symmetry of anonymous cost functions (we
consider these in the full version of this paper), tight worst-case bounds for
potential function minimizers only rely on cross-monotonicity of the underlying
cost-sharing method and (obviously) the existence of a potential function, and
tight bounds for strong Nash equilibria do not even require a potential function.

1.3 Further Related Work

This paper contributes to the literature on network cost-sharing games that
was initiated in [1,2]. Subsequent works on these and related models include
[18,27,7,15,6,25,10,9,35,11,12,26]. All of these papers study only anonymous cost
functions. There are two previous papers that treat network cost-sharing games
with non-anonymous cost functions. Gopalakrishnan et al. [19] characterize cost-
sharing rules that guarantee the existence of PNE and do not consider equilib-
rium inefficiency. Von Falkenhausen and Harks [37] consider machine scheduling
games and design cost sharing methods that yield small PoA bounds.

Many other models of network formation have been studied; see [36] for a
survey. For a comprehensive treatment of game-theoretic models of network for-
mation, see [22].

The idea of using the Shapley value to define cost-sharing methods with good
properties is not new; see [30] and the references therein. In network cost-sharing
games, the weighted Shapley value [33,24] was first introduced in [12] for games
with constant cost functions to characterize cost-sharing rules that guarantee the
existence of pure Nash equilibria. This characterization was recently generalized
by [19] to all cost functions. Shapley value-based cost shares have also been
used in congestion games, which can be thought of as the “negative externality
version” of network cost-sharing games [26].

2 Preliminaries

Summability. We recall the summability parameter introduced in [31] to char-
acterize efficiency loss in cost-sharing mechanisms [30]. Let C(·) denote a cost
function defined on a ground set U and χ a cost-sharing method – a function
from player sets to cost shares. We call χ α-summable for C if for every S ⊆ U
and every ordering σ of the players of S:

|S|∑
�=1

χ(iσ(�), Sσ(1..�)) ≤ α · C(S), (2)

where iσ(�) denotes the �th player, and Sσ(1..�) denotes the set of the first �
players in the ordering σ. In words, we begin with the empty set and add players
of S one-by-one according to σ. Letting X� denote the cost share of the �th
player (according to χ) when the player is first added, the cost-sharing method
χ is α-summable for C if the sum

∑
� X� only overestimates the cost of C(S)

by an α factor (for a worst-case choice of the subset S and the ordering of
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the players). Let α(C) denote the smallest α such that C is α-summable and
α(C) = supC∈C α(C). The Shapley value is never worse than Hk-summable for
a monotone cost function C.

Proposition 1 (Roughgarden & Sundararajan [31]). For the Shapley cost-
sharing method and a set C of monotone cost functions, α(C) ≤ Hk.

Moreover, for many cost functions, the summability is constant in k.

Example 4 (Polynomial Cost Functions). Consider anonymous polynomial cost
functions, of the form C(S) = |S|d with d ∈ (0, 1]. Since the cost function is
anonymous, the players have equal cost shares: |S|d/|S| = |S|d−1. Since the
summands are decreasing, we can upper bound the sum that ranges from 1 to
|S| by an integral that ranges from 0 to |S|:

|S|∑
i=1

id−1 ≤
∫ |S|

0

td−1dt = d−1td
∣∣∣|S|

0
= d−1|S|d,

which shows that α(C) ≤ 1/d, independent of k.

More interesting is the following computation for the non-anonymous case.
The summability remains 1

d with weighted players and a polynomial cost func-
tion.

Example 5 (Weighted Players). Suppose every player i has a weight wi and

C(S) =
(∑

i∈S wi

)d
with d ∈ (0, 1]. Shapley cost sharing yields different costs

for players with different weights. However, the summability is highest with
equal-weight players (see the full paper for a proof). Therefore, the summability
with weighted players is bounded by our previous example, with α(C) ≤ 1/d.

The Shapley Value Yields Potential Games. Every network cost-sharing
game with Shapley cost shares is a potential game in the sense of [28]. First we
define the ordered potential Φσ(S) with respect to an ordering σ of the players:

Φσ(S) =
∑
e∈E

|Se|∑
�=1

χe(iσ(�), Se,σ(1..�)) (3)

where Se,σ(1..�) is Se restricted to the first � in players σ. Remarkably, when the
Shapley value is used as the cost-sharing method, the ordered potential (3) is
the same for every ordering σ, even though individual summands generally dif-
fer [20,26]. We can therefore define Φ(S) as the value in (3) for an arbitrary choice
of the ordering σ. The next proposition notes that the “order-independence”
property of Φ implies that it is a potential function.

Proposition 2 (e.g. [26]). For every network cost-sharing game with Shapley
cost sharing, and for every pair S and S′ = (S′

i, S−i) of strategies that differ
only in their ith component,

Φ(S′)− Φ(S) = ci(S
′)− ci(S).
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The order-independence property also implies that when χ is the Shapley
value, the left-hand side of the summability equation (2) is independent of the
ordering. The more general cross-monotonic cost-sharing methods we consider
in Section 4 do not have this order-independence property, but summability (2)
will continue to characterize the inefficiency of strong Nash equilibria.

3 Summability Characterizes Worst-Case Inefficiency

In this section we give tight bounds for the strong price of anarchy and poten-
tial function minimizers for network cost-sharing games with submodular cost
functions. The proofs appear in the full version of this paper.

3.1 Strong Price of Anarchy Upper Bound

The strong price of anarchy is the worst-case ratio between the cost at a strong
Nash equilibrium and the optimal cost. For network cost-sharing games, this is
bounded by the summability.

Theorem 1. The strong price of anarchy in a network cost-sharing game IC
with submodular cost functions and Shapley cost-sharing is at most the summa-
bility α(C).

Smoothness frameworks extend price of anarchy bounds automatically to more
general solution concepts. The coalitional smoothness framework of [5] applies
to equilibria that are resistant to deviations of a group of players, and the proof
of Theorem 1 can be recast as a coalitional smoothness argument.

Proposition 3. Network cost-sharing games with monotone submodular cost
functions and Shapley cost-sharing are (α(C), 0)-coalitionally smooth.

Since network cost-sharing games are coalitionally smooth, we inherit the
extensions described in [5] to strong correlated equilibria [29], strong coarse
correlated equilibria [32], and coalitional sink equilibria [5].

Corollary 1. For network cost-sharing games, the expected cost at

– any strong correlated equilibrium is at most α(C) times the optimal.
– any strong coarse correlated equilibrium is at most α(C) times the optimal.
– a coalitional sink equilibrium is at most Hk · α(C) times the optimal.

In Section 4, we consider cost-sharing methods other than the Shapley value,
and prove that the strong price of anarchy remains bounded by the summability
α even in games without potential functions.

3.2 Potential Function Minimizer Inefficiency Upper Bound

We now consider the second equilibrium refinement, potential function minimiz-
ers. Given the existence of a potential function (Proposition 2), it is straightfor-
ward to apply the potential function method (see [36]) to bound the cost of its
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minimizers in terms of the summability. When we consider cross-monotonic cost-
sharing methods other than the Shapley value in the next section, this method
will no longer apply.

Theorem 2. The inefficiency of the potential function minimizer in a network
cost-sharing game IC with submodular cost functions is at most the summability
α(C).

3.3 Lower Bounds

We now show how to adapt a well-known instance from [1] to show simulta-
neously that our two upper bounds are tight for every set C of monotone sub-
modular cost functions. The key reason that the lower bound instance from [1]
remains relevant in the present more general context is the cross-monotonicity
of the Shapley value for a submodular cost function.

s1 s2 sk

t

1 + ε

χ
C̃
(1,S1..1)

C̃({1})

0 0 0

χ
C̃
(2,S1..2)

C̃({2}) χ
C̃
(k,S1..k)

C̃({k})

Fig. 1. A network cost-sharing game that shows matching lower bounds

In Figure 1 we have a network with k players that start at si and have a
common sink t. The cost functions on all edges are scalar multiples of C̃(Se),
where C̃ ∈ C is a cost function with α(C̃) = α(C) (or arbitrarily close to α(C));
the numbers on the edges denote the multiples.

As ε goes to 0, the total cost is minimized when all players share the cost
of the top route. This is not a Nash equilibrium: player k pays slightly less by
taking its own personal shortcut to t. This is true no matter what the other
players do, by cross-monotonicity. Given that player k takes the shortcut, player
k − 1 has a (conditional) dominant strategy to take its shortcut, and so on
until player 1 does the same. None of the players have an incentive to devi-
ate from this strategy, so this is the unique Nash equilibrium in this network.
The equilibrium is strong as it consists of (conditional) dominant strategies, and
it is the potential function minimizer since it is the only equilibrium. The cost
that each player pays is χC̃(i, S1..i), so by the definition of summability, the total

cost of the equilibrium is α(C) worse than the optimal cost C̃(S).
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Proposition 4. For every set of submodular cost functions C, there exists a
network cost-sharing game IC in which the strong Price of Anarchy is α(C).

Proposition 5. For every set of submodular cost functions C, there exists a
network cost-sharing game IC in which the potential function minimizer yields
an equilibrium with cost α(C) times that of an optimal solution.

Recall that the summability parameter that we use was originally proposed in
the context of cost-sharing mechanisms. The connection is stronger: it is possible
to give a one-to-one mapping from Moulin (cost-sharing) mechanisms to network
cost-sharing games with the structure given in Figure 1. Therefore, an alternative
way of giving these lower bounds, is using the known lower bound instances from
the Moulin mechanism literature [31].

4 Beyond Submodular Cost Functions

The previous section considered submodular cost functions and cost sharing
according to the Shapley value. This section considers two natural directions
for further generalization. Section 4.1 retains Shapley cost shares (and hence a
potential function) but relaxes submodularity, with the consequence that Shap-
ley cost shares are not generally cross-monotonic. Section 4.2 considers cross-
monotonic (and hence non-Shapley) cost-sharing methods for non-submodular
cost functions.

4.1 Non-submodular Costs with Shapley Cost Sharing

If we use Shapley cost-sharing with non-submodular (monotone) cost functions,
the corresponding network cost-sharing games continue to have a potential func-
tion (Proposition 2), the summability remains bounded by Hk (Proposition 1),
and the summability continues to upper bound the worst-case approximation
ratio of potential function minimizers (Theorem 2). However, without cross-
monotonicity the lower bound in Proposition 5 no longer holds. The reason is
that we use cross-monotonicity to argue conditional dominant strategies. The
last player has a dominant strategy to take their lower path, because she knows
that her most advantageous situation is when all players share the cost of the top
path, and in that case she pays less by taking the bottom path. However, if her
cost could decrease by another player choosing to deviate to their lower path,
this is no longer a dominant strategy for her, and the equilibrium will depend
on the cost function. Indeed, there are examples of monotone non-submodular
cost functions such that the approximation ratio of potential function minimizes
is strictly better than the summability (see [16] for one).

Also, without cross-monotonicity, the upper bound (Theorem 1) for the strong
price of anarchy fails to hold. The proof of Theorem 1 uses cross-monotonicity
to upper bound the cost for a player in an entangled strategy profile. Indeed,
Theorem 1 is probably false for non-cross-monotonic cost-sharing methods (see
[14, Theorem 5.1] for an example). The lower bound argument (Proposition 4)
for the price of anarchy of strong Nash equilibria breaks down for the same
reasons as for potential function minimizers.
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In summary, relaxing cross-monotonicity constraint has significant consequ-
ences: none of the bounds for strong Nash equilibria carry over, and only an upper
bound that we know is loose carries over for potential function minimizers.

4.2 Non-shapley Cross-Monotonic Cost Sharing

This section explores non-Shapley-value cost-sharing methods that are cross-
monotonic; the design of such methods has been explored extensively in the
context of cost-sharing mechanisms (see [23] for a survey). Network cost-sharing
games with arbitrary cross-monotonic cost-sharing methods no longer admit
potential functions in general, and even the best PNE can be arbitrarily bad
(see [11] for an example), so we focus on strong Nash equilibria. Despite the
non-existence of a potential function, we can still prove that whenever a strong
Nash equilibrium exists, it is approximately optimal.

We also allow non-budget-balanced rules; this relaxation permits cross-
monotonic cost-sharing rules for many non-submodular cost functions (see [23]).
We call a cost-sharing method β-budget balanced if it recoups at least a β fraction
of the cost from its players.

Let F denote the class of all admissible cost functions (including non-
submodular functions), and let IF denote an instance of a network cost-sharing
game with cost functions from F . Similarly, α(F) denotes the summability of
F . Since we no longer use the Shapley value for cost sharing, the cost-sharing
method χ is no longer order-independent, and summability is defined to hold for
all orders σ as in (2). Finally, we also revert to the ordered potential Φσ in the
original definition in (3).

Theorem 3. For arbitrary monotone cost functions F , and a cost-sharing
method χ that is cross-monotonic and β-budget balanced, the strong Price of
Anarchy in a network cost-sharing game IF is at most β · α(F).

The smoothness proof (Proposition 3) and therefore the extension to addi-
tional solution concepts (Corollary 1) also carry over to the present more general
setting, with a loss of β in the approximation factors.

While the summability of a cost-sharing method other than the Shapley value
can be larger than Hk, for many non-submodular cost functions, there exist
O(1)-budget-balanced cross-monotonic cost-sharing methods with summability
O(log k) or O(log2 k); see [31] for a survey.

5 Conclusion

This paper studied systematically network cost-sharing games with non-
anonymous cost functions; the large literature on network cost-sharing games has
confined its attention almost entirely to the anonymous case. Non-anonymous
cost functions arise naturally when, for example, different players have different
sizes or service requirements. Two well-studied equilibrium refinements, strong
Nash equilibria and potential function minimizers, are near-optimal with non-
anonymous cost functions as long as the functions are submodular and costs
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are shared using the Shapley value. Strong Nash equilibria remain near-optimal,
when they exist, provided costs are shared by a cost-monotonic cost-sharing
method. All of these worst-case approximation guarantees equal the summabil-
ity of the cost-sharing method used for the set of allowable cost functions.

References

1. Anshelevich, E., Dasgupta, A., Kleinberg, J., Tardos, E., Wexler, T., Roughgar-
den, T.: The price of stability for network design with fair cost allocation. SIAM
Journal on Computing 38(4), 1602–1623 (2008)

2. Anshelevich, E., Dasgupta, A., Tardos, E., Wexler, T.: Near-optimal network
design with selfish agents. Theory of Computing 4(1), 77–109 (2008)

3. Asadpour, A., Saberi, A.: On the inefficiency ratio of stable equilibria in conges-
tion games. In: Leonardi, S. (ed.) WINE 2009. LNCS, vol. 5929, pp. 545–552.
Springer, Heidelberg (2009)

4. Aumann, R.J.: Acceptable points in general cooperative n-person games. Contri-
butions to the Theory of Games 4, 287–324 (1959)

5. Bachrach, Y., Syrgkanis, V., Tardos, E., Vojnovic, M.: Strong price of anarchy
and coalitional dynamics. arXiv preprint arXiv:1307.2537 (2013)
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7. Bilò, V., Caragiannis, I., Fanelli, A., Monaco, G.: Improved lower bounds on
the price of stability of undirected network design games. In: Kontogiannis, S.,
Koutsoupias, E., Spirakis, P.G. (eds.) SAGT 2010. LNCS, vol. 6386, pp. 90–101.
Springer, Heidelberg (2010)

8. Blume, L.E.: The statistical mechanics of strategic interaction. Games and Eco-
nomic Behavior 5(3), 387–424 (1993)

9. Charikar, M., Karloff, H., Mathieu, C., Naor, J., Saks, M.: Online multicast with
egalitarian cost sharing. In: Parallelism in Algorithms and Architectures, pp. 70–
76. ACM (2008)

10. Chekuri, C., Chuzhoy, J., Lewin-Eytan, L., Naor, J., Orda, A.: Non-cooperative
multicast and facility location games. IEEE Selected Areas in Communica-
tions 25(6), 1193–1206 (2007)

11. Chen, H., Roughgarden, T.: Network design with weighted players. Theory of
Computing Systems 45(2), 302–324 (2009)

12. Chen, H., Roughgarden, T., Valiant, G.: Designing network protocols for good
equilibria. SIAM Journal on Computing 39(5), 1799–1832 (2010)

13. Chen, R., Chen, Y.: The potential of social identity for equilibrium selection.
American Economic Review 101(6), 2562–2589 (2011)

14. Chien, S., Sinclair, A.: Strong and pareto price of anarchy in congestion games.
In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W.
(eds.) ICALP 2009, Part I. LNCS, vol. 5555, pp. 279–291. Springer, Heidelberg
(2009)

15. Christodoulou, G., Chung, C., Ligett, K., Pyrga, E., van Stee, R.: On the price of
stability for undirected network design. In: Bampis, E., Jansen, K. (eds.) WAOA
2009. LNCS, vol. 5893, pp. 86–97. Springer, Heidelberg (2010)

16. Christodoulou, G., Koutsoupias, E.: On the price of anarchy and stability of
correlated equilibria of linear congestion games. In: ESA, pp. 59–70 (2005)



Network Cost-Sharing without Anonymity 145

17. Epstein, A., Feldman, M., Mansour, Y.: Strong equilibrium in cost sharing con-
nection games. Games and Economic Behavior 67(1), 51–68 (2009)

18. Fiat, A., Kaplan, H., Levy, M., Olonetsky, S., Shabo, R.: On the price of stabil-
ity for designing undirected networks with fair cost allocations. In: Bugliesi, M.,
Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4051, pp.
608–618. Springer, Heidelberg (2006)

19. Gopalakrishnan, R., Marden, J.R., Wierman, A.: Potential games are necessary
to ensure pure Nash equilibria in cost sharing games. In: Proceedings of the Four-
teenth ACM Conference on Electronic Commerce, pp. 563–564. ACM (2013)

20. Hart, S., Mas-Colell, A.: Potential, value, and consistency. Econometrica: Journal
of the Econometric Society, 589–614 (1989)

21. Holzman, R., Law-Yone, N.: Strong equilibrium in congestion games. Games and
economic behavior 21(1), 85–101 (1997)

22. Jackson, M.O.: Social and Economic Networks. Princeton (2008)
23. Jain, K., Mahdian, M.: Cost sharing. Algorithmic Game Theory, pp. 385–410

(2007)
24. Kalai, E., Samet, D.: On weighted Shapley values. International Journal of Game

Theory 16(3), 205–222 (1987)
25. Kawase, Y., Makino, K.: Nash equilibria with minimum potential in undirected

broadcast games. Theoretical Computer Science (2013)
26. Kollias, K., Roughgarden, T.: Restoring pure equilibria to weighted congestion

games. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part II. LNCS,
vol. 6756, pp. 539–551. Springer, Heidelberg (2011)

27. Li, J.: An upper bound on the price of stability for undirected Shapley network
design games. Information Processing Letters 109(15), 876–878 (2009)

28. Monderer, D., Shapley, L.S.: Potential games. Games and Economic Behav-
ior 14(1), 124–143 (1996)

29. Moreno, D., Wooders, J.: Coalition-proof equilibrium. Games and Economic Be-
havior 17(1), 80–112 (1996)

30. Moulin, H.: Incremental cost sharing: Characterization by coalition strategy-
proofness. Social Choice and Welfare 16(2), 279–320 (1999)

31. Roughgarden, T., Sundararajan, M.: Quantifying inefficiency in cost-sharing
mechanisms. Journal of the ACM (JACM) 56(4), 23 (2009)

32. Rozenfeld, O., Tennenholtz, M.: Strong and correlated strong equilibria in mono-
tone congestion games. In: Spirakis, P.G., Mavronicolas, M., Kontogiannis, S.C.
(eds.) WINE 2006. LNCS, vol. 4286, pp. 74–86. Springer, Heidelberg (2006)

33. Shapley, L.S.: Additive and Non-Additive Set Functions. PhD thesis, Department
of Mathematics, Princeton University (1953)

34. Slade, M.E.: What does an oligopoly maximize? Journal of Industrial Eco-
nomics 42, 45–61 (1994)

35. Syrgkanis, V.: The complexity of equilibria in cost sharing games. In: Saberi, A.
(ed.) WINE 2010. LNCS, vol. 6484, pp. 366–377. Springer, Heidelberg (2010)

36. Tardos, É., Wexler, T.: Network formation games and the potential function
method. In: Algorithmic Game Theory, ch. 19, pp. 487–516. Cambridge University
Press (2007)

37. von Falkenhausen, P., Harks, T.: Optimal cost sharing for resource selection
games. Mathematics of Operations Research 38(1), 184–208 (2013)



Recognizing 1-Euclidean Preferences:
An Alternative Approach

Edith Elkind1 and Piotr Faliszewski2

1 University of Oxford, Oxford, UK
2 AGH University, Krakow, Poland

Abstract. We consider the problem of detecting whether a given election is
1-Euclidean, i.e., whether voters and candidates can be mapped to points on the
real line so that voters’ preferences over the candidates are determined by the
Euclidean distance. A recent paper by Knoblauch [14] shows that this problem
admits a polynomial-time algorithm. Knoblauch’s approach relies on the fact that
a 1-Euclidean election is necessarily single-peaked, and makes use of the proper-
ties of the respective candidate order to find a mapping of voters and candidates to
the real line. We propose an alternative polynomial-time algorithm for this prob-
lem, which is based on the observation that a 1-Euclidean election is necessarily
singe-crossing, and we use the properties of the respective voter order to find the
desired mapping.

1 Introduction
There are many settings where agents express their preferences over a finite set of can-
didates by submitting full rankings of the candidates. Often, the set of candidates has
a special structure, which influences the agents’ preferences. For instance, it may be
the case that voters and/or candidates can be mapped to points on the real line so that
the agents’ preferences are consistent with this mapping. Different instantiations of this
idea give rise to such well-known preference domains as single-peaked preferences [4],
single-crossing preferences [15], and 1-dimensional Euclidean, or 1-Euclidean, prefer-
ences [13].

In this paper, we study 1-Euclidean elections (though we will also discuss single-
peaked and single-crossing elections, as all three domains are closely interrelated).
These are elections that can be succinctly described by embedding both voters and
candidates in the real line so that each voter prefers an alternative that is closer to her to
the one that is further away. A typical situation that results in 1-Euclidean preferences is
facility location on a line: there is a single facility (such as a bus stop, a playground, or a
library) to be constructed in one of several possible locations along a street, and the vot-
ers (who are the residents of that street) want the facility to be located as close to them
as possible. 1-Euclidean preferences can also arise in settings where the structure of the
alternative space is not immediately obvious: for instance, political elections may turn
out to be 1-Euclidean when the voters rank the candidates according to some combina-
tion of factors that happens to map onto the real line. It is then natural to ask whether,
given an election, we can uncover its hidden metric structure, i.e., decide whether it is
1-Euclidean. This is the question that is the main focus of this paper.

R. Lavi (Ed.): SAGT 2014, LNCS 8768, pp. 146–157, 2014.
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Before we discuss 1-Euclidean preferences in further detail, let us review the rela-
tionship between, on the one hand, 1-Euclidean preferences and, on the other hand,
single-peaked and single-crossing preferences, as the nature of this relationship will
play an important role for our algorithmic results. Recall that the agents’ preferences
are said to be single-peaked when the candidates can be ordered on the line so that each
voter, when comparing two candidates located on the same side of her favorite point,
prefers one that is closer to her top choice to the one that is further away from it; in con-
trast with 1-Euclidean domain, voter’s preferences concerning two candidates located
on different sides of her favorite point are unconstrained. On the other hand, a prefer-
ence profile is said to be single-crossing if the voters can be ordered so that for each
pair of candidates a, b, the “trajectories” of a and b in the voters’ preferences cross at
most once, i.e., if the first voter prefers a to b, then all voters who prefer a to b precede
all voters who prefer b to a. Both of these domains have received a considerable amount
of attention in social choice literature, as they have a number of desirable properties:
for instance, both single-peaked and single-crossing elections are guaranteed to have
a Condorcet winner, and admit a non-trivial strategyproof social choice rule [16,17,1].
Recently, it has also been shown that some of the algorithmic problems related to elec-
tions (such as winner determination, manipulation, bribery, and control) become easier
if the voters’ preferences belong to one of these domains [11,5,3,18]. Further, there are
polynomial-time algorithms for checking whether an election is single-peaked [2,10] or
single-crossing [6,9], and, if this is the case, finding an ordering of candidates or voters
witnessing this. It is not hard to see that 1-Euclidean elections are both single-peaked
and single-crossing [12]; however, the converse is not true, i.e., there are single-peaked
single-crossing elections that are not 1-Euclidean [8,7].

It is fairly easy to see that, given an ordering of voters and candidates in an election
E, we can efficiently check whether there is a mapping that places the voters and the
candidates on the real line in a way that is consistent with this ordering and witnesses
that E is 1-Euclidean; indeed, this question can be captured by a simple linear feasibility
program (a variant of this observation is due to Knoblauch [14]; see also Proposition 3).
Thus, checking whether an election is 1-Euclidean can be reduced to finding an appro-
priate ordering of voters and candidates. Since 1-Euclidean elections are single-peaked
and single-crossing, given an input election E with a candidate set C and a voter set V ,
it is natural to first check whether E is single-peaked and single-crossing, and, if so, use
the respective orderings of C and V to construct the required ordering of C∪V . Indeed,
a variant of this approach has been recently pursued by Knoblauch [14], who used an
ordering of candidates witnessing that E is single-peaked as a starting point for her al-
gorithm for checking whether E is 1-Euclidean. We discuss Knoblauch’s algorithm in
more detail in Section 5; at this point, we would like to mention that a single-peaked
ordering of candidates is not unique, which causes considerable complications.

In contrast, in this paper we start with an ordering of voters witnessing that a given
election E = (C, V ) is single-crossing, and show how to extend it to an ordering of
C ∪ V witnessing that E is 1-Euclidean. The advantage of this approach is that, if
E is single-crossing, there is effectively a unique ordering of voters that certifies this
(this is shown in Proposition 1). As a result, we construct an algorithm for recognizing
1-Euclidean preferences that is arguably simpler than that of Knoblauch.
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The rest of the paper is organized as follows. After introducing the necessary nota-
tion and formally defining single-peaked, single-crossing and 1-Euclidean preferences
(Section 2), we state a few basic observations about the 1-Euclidean domain (Section 3),
followed by a presentation of our algorithm (Section 4). We then provide an overview
of Knoblauch’s algorithm (Section 5). We conclude the paper by discussing topics for
future research (Section 6).

2 Preliminaries
For every positive integer s, we let [s] denote the set {1, . . . , s}. An election is a pair
E = (C, V ) where C = {c1, . . . , cm} is a set of candidates and V = (v1, . . . , vn) is
an ordered list of voters. Each voter vi ∈ V has a preference order, or vote, �i, i.e., a
linear order over C that ranks all the candidates from the most desirable one to the least
desirable one. We refer to the list V as the preference profile. In what follows, we use
the terms “election”,“preferences” and “preference profile” interchangeably.

We denote the most preferred candidate in a vote vi by top(vi). Given an election
E = (C, V ) and a subset of candidates D ⊂ C, we denote by V |D the restriction of
the preferences of the voters in V to D. Given two sets A,B ⊂ C, we write · · · � A �
B � . . . to denote a vote where all candidates in A appear above all candidates in B.

Euclidean, Single-Crossing and Single-Peaked Profiles. We will now define three
important preference domains that will be considered in this paper.

Perhaps the most intuitive of the three is the domain of Euclidean preferences: both
voters and candidates are identified with points on the real line (or, more generally,
in Rd), and the voters’ preferences are determined by the Euclidean distance to the
candidates.

Definition 1. An election E = (C, V ) is said to be d-Euclidean if there is a mapping
x : C ∪V → Rd such that for every voter v ∈ V and every pair of candidates a, b ∈ C
it holds that a �v b if and only if ‖x(v) − x(a)‖d < ‖x(v) − x(b)‖d, where ‖ · ‖d
is the Euclidean norm on Rd, i.e., for every vector u = (u1, . . . , ud) ∈ Rd we have

‖u‖d =
(
u2
1 + · · ·+ u2

d

)1/2
.

Note that in Definition 1 a voter cannot be equidistant from two distinct candidates
a and b. One might argue that such a situation should be allowed, and the voter can
then be indifferent between a and b, or break the tie arbitrarily. However, the former
interpretation would not fit our model of preference orders being strict, and the latter
would render the notion of d-Euclidean elections useless: Every election would be d-
Euclidean (for each d ∈ N), since we could map all voters and all candidates to a single
point. One can deal with this objection by requiring that the positions of all candidates
are distinct; the resulting model (and the associated algorithmic problem), while non-
standard, deserves future study (see Section 6).

The notion of single-crossing preferences (sometimes also called intermediate pref-
erences) dates back to the work of Mirrlees [15].

Definition 2. An election E = (C, V ), where C is a set of candidates and V =
(v1, . . . , vn) is an ordered list of voters, is single-crossing with respect to V if for
every pair of candidates a, b ∈ C such that a �1 b, there exists a t ∈ [n] such that
{i ∈ [n] | a �i b} = [t].
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Definition 2 refers to the ordering of the voters given by V . Alternatively, we could say
that an election is single-crossing if the voters can be reordered so that the condition
of Definition 2 is satisfied. However, from the algorithmic perspective, this distinction
is not essential: one can compute an order of the voters that makes an election single-
crossing or decide that such an order does not exist, in polynomial time [9,6].

Another relevant concept is that of single-peaked preferences [4].

Definition 3. Let� be a preference order over a candidate set C and let � be an order
over C. We say that� is single-peaked with respect to � if for every triple of candidates
a, b, c ∈ C such that a� b� c or c� b�a it holds that a � b implies b � c. An election
E = (C, V ) is single-peaked with respect to an order � over C if the preference order
of every voter v ∈ V is single-peaked with respect to �. An election E = (C, V ) is
single-peaked if there exists an order � over C with respect to which it is single-peaked.

If E is single-peaked with respect to some order � then we call � a societal axis for E.
There are polynomial-time algorithms that, given an election E, decide if it is single-
peaked and if so, compute a societal axis for it [2,10].

It is not hard to show that 1-Euclidean elections are both single-peaked and single-
crossing, see, e.g., [12]. However, there exist elections that are both single-peaked and
single-crossing, but not 1-Euclidean [7,8].

3 Basic Observations
We will now present some simple observations that will be used in the analysis of our
algorithm.

Our first observation is that for single-crossing elections there is effectively a unique
ordering of voters that witnesses that it is single-crossing, up to flipping the entire or-
dering and reordering identical voters.

Proposition 1. Consider an election E = (C, V ) that is single-crossing with respect
to V = (v1, . . . , vn). If the preferences of the voters in V are pairwise distinct, then the
only other order of the voters witnessing that E is single-crossing is (vn, . . . , v1).

Proof. The proof is by induction on n. For n = 1 and n = 2, our claim is trivially true.
Now suppose that it is true for n− 1, where n ≥ 3; we will show that it is true for n.

Since v1 �= v2, there is a pair of candidates a, b such that v1 prefers a to b, but v2
prefers b to a. SinceE is single-crossing, all voters other than v1 prefer b to a. Therefore,
if E is single-crossing with respect to some order V̂ , then voter v1 has to be first or last
in V̂ .

Now, consider the election (C, V ′), where V ′ = (v2, . . . , vn). It is single-crossing
and has n− 1 voters, so by the induction hypothesis the voters in V ′ have to be ordered
as (v2, . . . , vn) or (vn, . . . , v2).

It remains to argue that E is not single-crossing with respect to (v2, . . . , vn, v1) and
(v1, vn, . . . , v2). It suffices to consider the first of these two orderings. Since n ≥ 3
and we assume that all preferences are pairwise distinct, there is a pair of candidates
c, d such that v2 prefers c to d, but vn prefers d to c. Since the original election is
single-crossing, it has to be the case that v1 prefers c to d. But this means that E is not
single-crossing with respect to (v2, . . . , vn, v1). ��
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In contrast, there can be exponentially many axes witnessing that a given election
is single-peaked [10]. For instance, a unanimous election where all voters order the
candidates as c1 � · · · � cm is single-peaked with respect to 2m−1 axes (any subset of
{c2, . . . , cm} can appear to the left of c1 on the axis).

We will now list some useful properties of 1-Euclidean elections.

Proposition 2. Let E = (C, V ) be a 1-Euclidean election with V = (v1, . . . , vn) such
that all votes are pairwise distinct, and let x : C ∪V → R be some mapping witnessing
that E is 1-Euclidean. Assume without loss of generality that x(v1) < x(vn). Suppose
that top(v1) = a, top(vn) = b (and hence x(a) < x(b)). Let

CL = {c ∈ C | x(c) < x(a)},
CM = {c ∈ C | x(a) ≤ x(c) ≤ x(b)},
CR = {c ∈ C | x(c) > x(b)}.

Then

(1) CM = {c ∈ C | c �1 b and c �n a} ∪ {a, b}.
(2) For every pair of candidates c, d ∈ C, if c �1 d, but d �n c, then c ∈ CL ∪ CM

and d ∈ CM ∪ CR.

Proof. Obviously, a, b ∈ CM . If c ∈ CM and c �= a, b, then v1 ranks c above b and vn
ranks c above a. On the other hand, if c ∈ CR then v1 ranks c below b and if c ∈ CL,
then vn ranks c below a. This proves our first claim.

To prove the second claim, consider a pair of candidates c, d ∈ C such that v1 prefers
c to d, but vn prefers d to c. If c ∈ CR, we have x(v1) < x(vn) ≤ x(c). Now, if v1
prefers c to d, we have x(c) < x(d), which implies that vn, too, prefers c to d, a
contradiction. If d ∈ CL, we obtain a contradiction as well by a similar argument. ��

Finally, once we have an ordering of candidates, finding a mapping x that witnesses
that an election is 1-Euclidean and is consistent with this ordering reduces to solving
a system of linear inequalities. A variant of this observation is due to Knoblauch [14];
however, Knoblauch’s reduction produces a system of strict inequalities, and standard
tools of linear programming are not directly applicable to such systems. The following
proposition shows that for a fixed ordering of candidates our problem can be reduced to
a system of non-strict inequalities.

Proposition 3. There exists a polynomial-time algorithm that, given an election E =
(C, V ) and an ordering of candidates �, decides whether there exists a mapping x :
C ∪ V → R that witnesses that E is 1-Euclidean and respects �, i.e., such that for
every pair of candidates a, b ∈ C it holds that x(a) < x(b) if and only if a� b.

Proof. We introduce a real variable xv for each v ∈ V and a real variable xc for each
c ∈ C; these variables encode the positions of voters and candidates on the real line. For
every pair of candidates a, b ∈ C such that a�b we introduce the inequality xa+1 ≤ xb.
Also, for every voter v ∈ V , if v prefers a to b, we introduce the inequality xv + 1 ≤
(xa + xb)/2, and if v prefers b to a, we introduce the inequality xv ≥ (xa + xb)/2+1.
Thus, altogether we introduce (n + 1)m(m − 1)/2 inequalities. It is easy to see that
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every feasible solution to this linear program (LP) describes a mapping x that respects
� and witnesses that E is 1-Euclidean.

Conversely, if E is 1-Euclidean and this is witnessed by a mapping x that respects
�, this LP has a feasible solution. Indeed, set δ1 = mina,b∈C |x(a) − x(b)|, δ2 =
1
2 mina,b∈C,v∈V |2x(v) − x(a) − x(b)|. Note that δ1 > 0, since otherwise there would
be a pair of candidates a, b with x(a) = x(b) and then the voters would be indifferent
between a and b. Similarly, δ2 > 0 since otherwise there would be a pair of candidates
a, b and a voter v such that |x(v) − x(a)| = |x(v) − x(b)|, i.e., voter v would be
indifferent between a and b. We can now set δ = min{δ1, δ2} and xz = x(z)/δ for all
z ∈ C ∪ V ; it is easy to see that this provides a feasible solution to our LP. ��

In what follows, we refer to the algorithm that takes a candidate set C, a voter list
V and an ordering � of C as its input, and returns a mapping x : C ∪ V → R that
corresponds to a feasible solution to our LP (or⊥ if this LP admits no feasible solution)
as LP(C, V,�).

4 Algorithm
We are now ready to present our algorithm.

Theorem 1. Given an electionE = (C, V ) with C = {c1, . . . , cm}, V = (v1, . . . , vn),
we can decide in time polynomial in n and m whether E is 1-Euclidean, and, if so,
construct a mapping x that witnesses this.

Proof. We can assume without loss of generality that the voters’ preferences are pair-
wise distinct. Indeed, if this is not the case, we can simply remove the “duplicate”
voters: the resulting election is 1-Euclidean if and only if the original one is. Also, we
can assume that n > 1, since otherwise the election is clearly 1-Euclidean.

We first verify that E is single-crossing and output ⊥ (indicating that E is not 1-
Euclidean) if this is not the case. From now on, we assume that E is single-crossing with
respect to the voter order (v1, . . . , vn); note that by Proposition 1 this order is unique
up to a reversal. We then execute Algorithm 1. This algorithm consists of three main
stages. First, it colors the candidates red, green, blue, or grey based on the preferences
of voter 1 and voter n (lines 2–14). We will argue that this is done in such a way
that the set of red candidates is exactly CM , blue candidates are contained in CR,
and green candidates are contained in CL (see Proposition 2 for definitions of these
sets). Then our algorithm defines a complete order � on the set C+ that consists of all
non-grey candidates (lines 16–24). This order is passed to the algorithm described in
Proposition 3, which places the voters and the candidates in C+ on the real line (lines
25–28). The result of this step is a mapping x : V ∪ C+ → R. Finally, the algorithm
inserts the grey candidates. To this end, it partitions the grey and non-grey candidates
into groups according to the order of their appearance in the preferences of the first
voter (line 29). After placing the voters and the first group of each type (lines 32–33), it
“stretches” x to ensure that different non-grey groups are well-separated (lines 34–39),
and inserts the grey candidates into the appropriate spaces (lines 40–41).
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Algorithm 1: 1-Euclidean
Input: a single-crossing election E = (C, V ).
Output: a mapping y : C ∪ V → R witnessing that E is 1-Euclidean, or ⊥ if E is not

1-Euclidean.
1 c− ← top(v1), c+ ← top(vn);
2 foreach c ∈ C do
3 if (c �1 c+ and c �n c−) or c ∈ {c−, c+} then
4 γ(c) ← red
5 else
6 γ(c) ← grey

7 foreach a, b ∈ C do
8 if (a �1 b and b �n a) then
9 if γ(a) = blue or γ(b) = green then

10 return ⊥
11 if γ(a) = grey then
12 γ(a) ← green

13 if γ(b) = grey then
14 γ(b) ← blue

15 C+ ← {c | γ(c) �= grey}, C− ← {c | γ(c) = grey};
16 foreach a, b ∈ C+ do
17 if (γ(a) = green and γ(b) = red) or
18 (γ(a) = red and γ(b) = blue) or
19 (γ(a) = green and γ(b) = blue) then
20 set a� b

21 if (γ(a) = γ(b) = red and a �1 b) or
22 (γ(a) = γ(b) = blue and a �1 b) or
23 (γ(a) = γ(b) = green and b �n a) then
24 set a� b

25 if LP(C+, V |C+ ,�) = ⊥ then
26 return ⊥
27 else
28 x ← LP(C+, V |C+ ,�)

29 Represent �1 as F1 �1 G1 �1 . . . �1 Fk �1 Gk, where Fi ⊆ C+, Gi ⊆ C−, Fi �= ∅
for all i ∈ [k], Gi �= ∅ for all i ∈ [k − 1], Gi = {gi1, . . . , gisi}, where gi1 �1 . . . �1 gisi
for all i ∈ [k];

30 xL ← mint∈V ∪F1 x(t), x
R ← maxt∈V ∪F1 x(t);

31 Δ ← maxt,t′∈V ∪C+ |x(t)− x(t′)|;
32 foreach t ∈ V ∪ F1 do y(t) ← x(t)

33 foreach g1� ∈ G1 do y(g1� ) ← xR + 6Δ+ �
m
Δ

34 foreach i = 2, . . . , k do
35 foreach c ∈ Fi do
36 if x(c) < xL then
37 y(c) ← x(c)− (i+ 1)2Δ

38 if x(c) > xR then
39 y(c) ← x(c) + (i+ 1)2Δ

40 foreach � = 1, . . . , si do
41 y(gi�) ← xR + (i+ 1)2Δ+ 2Δ+ �

m
Δ

42 return y;
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The algorithm then returns the resulting mapping y. Note that the algorithm returns
⊥ if the input election is not single-crossing, or the coloring stage cannot be completed
(line 10), or the linear program does not have a feasible solution (line 26).

We will now argue that this algorithm is correct. Suppose that E is 1-Euclidean, and
consider an arbitrary mapping z with z(v1) < z(vn) that witnesses this. Let c− =
top(v1), c+ = top(vn), and observe that z(c−) < z(c+). Let CL = {c | z(c) <
z(c−)}, CM = {c | z(c−) ≤ z(c) ≤ z(c+)}, CR = {c | z(c) > z(c+)}. The first
claim of Proposition 2 implies that the set of all red candidates is exactly CM . Further,
the second claim of Proposition 2 implies that if the conditions in line 8 are satisfied
then a ∈ CL ∪ CM and b ∈ CM ∪ CR. This explains why our algorithm outputs ⊥
in line 10: if we have already decided that a is blue (and hence a ∈ CR) or that b is
green (and hence b ∈ CL), we obtain a contradiction. Also, it follows that every green
candidate belongs to CL and every blue candidate belongs to CR. Indeed, when we
color a green in line 12, we know from line 8 that a ∈ CL ∪CM , and if a were in CM ,
it would have been colored red already; the argument for blue candidates is similar.

Now, suppose that the algorithm has not output⊥ in line 10, i.e., we have consistently
colored some set of candidates C+ red, green, and blue. Clearly, we have z(a) <
z(b) < z(c) for any a ∈ CL, b ∈ CM , c ∈ CR. Moreover, if a, b ∈ CM ∪ CR then
z(a) < z(b) if and only if a �1 b and if a, b ∈ CL then z(a) < z(b) if and only if
b �1 a. Thus, the ordering � constructed in lines 16–24 is consistent with z. Note that
z is an arbitrary mapping witnessing that E is 1-Euclidean such that z(v1) < z(vn);
our argument shows that every such mapping orders C+ in the same way.

We now invoke Proposition 3. If E is 1-Euclidean, then so is (C+, V |C+), and our
mapping z witnesses this fact (clearly, z is consistent with �). Thus, LP(C+, V |C+ ,�)
outputs some such mappingx : V ∪C+ → R. On the other hand, if LP(C+, V |C+ ,�) =
⊥, then there is no mapping witnessing that E is 1-Euclidean that is consistent with �,
and hence, as argued above, E is not 1-Euclidean.

Now, suppose that LP(C+, V |C+ ,�) returned a mapping x : V ∪C+ → R witness-
ing that (C+, V |C+) is 1-Euclidean. In line 29 we represent the preference ordering of
the first voter as an alternating sequence of non-grey and grey blocks; the first block
is non-grey since c− = top(v1) is red. Since all blocks, except possibly the last grey
block, are required to be non-empty, this representation is unique. If G1 = ∅, we have
C = C+, so we are done. Thus, assume that G1 �= ∅. The following lemmas present
some useful observations about the sets Fi and Gi for i ∈ [k].

Lemma 1. We have F1 �i G1 �i . . . �i Fk �i Gk for all i ∈ [n]. Moreover, if
a, b ∈ C− then a �i b if and only if a �1 b.

Proof. Consider a candidate a ∈ C−. Since a remained grey by the end of the coloring
stage, v1 and vn agree on all comparisons involving a. Since E is single-crossing with
respect to (v1, . . . , vn), this means that for every candidate b �= a either all voters prefer
a to b or all voters prefer b to a. This immediately implies our second claim. For the
first claim, consider a voter vi and a pair of candidates a ∈ Fj , b ∈ Gj for some j ≥ 1.
We have a �1 b, so, by the argument above, a �i b. Similarly, if a ∈ Gj , b ∈ Fj+1 for
some j, 1 ≤ j < k, then a �1 b, so, by the argument above, a �i b. Now our claim
follows by induction on j. ��
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Lemma 2. For all j = 2, . . . , k and all c ∈ Fj we have x(c) �∈ [xL, xR], where xL, xR

are defined in line 30 of our algorithm.

Proof. Fix a j with 2 ≤ j ≤ k and a candidate c ∈ Fj . Assume for the sake of
contradiction that x(c) ∈ [xL, xR]. We consider the following four cases.

– xL = x(a), xR = x(b) for some a, b ∈ F1. Then either x(v1) ≤ x(c), in which
case v1 prefers c to b, or x(v1) > x(c), in which case v1 prefers c to a.

– xL = x(a), xR = x(vi) for some a ∈ F1, vi ∈ V . Then c �i a.
– xL = x(vi), xR = x(b) for some b ∈ F1, vi ∈ V . Then c �i b.
– xL = x(vi), xR = x(v�) for some vi, v� ∈ V . Pick some a ∈ F1 (note that
F1 �= ∅). If x(a) < x(c), then v� prefers c to a, and if x(a) > x(c), then vi prefers
c to a.

In all cases, we obtain a contradiction, since by Lemma 1 we have a �i c for all a ∈ F1

and all i ∈ [n]. ��

Now, consider the mapping y returned in line 42. Fix an arbitrary voter vi and a
pair of candidates a, b ∈ C. To complete the proof of correctness, we will show that
|y(vi)− y(a)| < |y(vi)− y(b)| if and only if a �i b. Note that the quantity Δ defined
in line 31 satisfies Δ > 0, since otherwise it would be the case that x(v1) = x(vn), in
which case all voters have the same preference order, and we assumed that this is not
the case.

It suffices to consider the following six cases; the remaining cases follow by the
transitivity of �i.

– a, b ∈ F1. Then we have y(a) = x(a), y(b) = x(b), y(vi) = x(vi). Since a, b ∈
C+ and x is a witness that (C+, V |C+) is 1-Euclidean, our claim follows.

– a, b ∈ Fj , j ≥ 2. We have y(vi) ∈ [xL, xR], and y(a), y(b) �∈ [xL, xR] by
Lemma 2. Thus,

|y(vi)−y(a)| = |x(vi)−x(a)|+(j+1)2Δ, |y(vi)−y(b)| = |x(vi)−x(b)|+(j+1)2Δ

(lines 35–39). Again, our claim follows, since a, b ∈ C+ and x is a witness that
(C+, V |C+) is 1-Euclidean.

– a, b ∈ Gj , j ≥ 1. Assume without loss of generality that a �i b. Then by Lemma 1
we have a �1 b and hence xR < y(a) < y(b) (lines 33 and 41). Since x(vi) ≤ xR,
our claim follows.

– a ∈ F1, b ∈ G1. By Lemma 1 we have a �i b. On the other hand, y(a) ∈ [xL, xR],
y(vi) ∈ [xL, xR], whereas y(b) > xR + 6Δ. Since |xR − xL| ≤ Δ, the claim
follows.

– a ∈ Fj , b ∈ Gj , j > 1. By Lemma 1 we have a �i b. Since j > 1, we have
x(a) ∈ [xL −Δ,xR +Δ] \ [xL, xR], so we have

y(a) ∈ [xR + (j + 1)2Δ,xR + (j + 1)2Δ+Δ]

∪ [xL − (j + 1)2Δ−Δ,xL − (j + 1)2Δ],

y(b) ∈ [xR + (j + 1)2Δ+ 2Δ+
Δ

m
,xR + (j + 1)2Δ+ 3Δ].
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Since y(vi) ∈ [xL, xR], we have

|y(a)− y(vi)| ≤ (j + 1)2Δ+ 2Δ, |y(b)− y(vi)| > (j + 1)2Δ+ 2Δ,

and our claim follows.
– a ∈ Gj , b ∈ Fj+1, 1 ≤ j < k. Again, by Lemma 1 we have a �i b, and x(b) ∈
[xL −Δ,xR +Δ] \ [xL, xR], so

y(a) ∈ [xR + (j + 1)2Δ+ 2Δ+
Δ

m
,xR + (j + 1)2Δ+ 3Δ],

y(b) ∈ [xR + (j + 2)2Δ,xR + (j + 2)2Δ+Δ]

∪ [xL − (j + 2)2Δ−Δ,xL − (j + 2)2Δ].

Hence,

|y(a)− y(vi)| ≤ (j + 1)2Δ+ 4Δ, |y(b)− y(vi)| ≥ (j + 2)2Δ;

since (j + 1)2 + 4 < (j + 2)2 for all j ≥ 1, our claim follows.

It remains to analyze the running time of our algorithm. One can check whether an
election is single-crossing and, if so, determine the voter order that witnesses this, in
time O(nm2) [6]. Further, our procedures for coloring the candidate set and construct-
ing the order � run in time O(m2). The algorithm described in the proof of Propo-
sition 3 is based on solving a linear program with coefficients in {−1,− 1

2 , 0,
1
2 , 1},

O(n + m) variables, and O(nm2) constraints. Finally, the mapping y is computed by
performing a constant number of arithmetic operations for each voter or candidate, and
these operations involve numbers that form a feasible solution to our linear program.
Thus, the overall running time of our algorithm is polynomial in n and m, and is domi-
nated by the time needed to solve the linear program. ��

Remark 1. Note that, while we chose to place the candidates in Gi to the right of the
candidates in Fi, we could have also placed them to the left of the candidates in Fi.
Further, instead of dealing with an entire grey block in a single step, we could have
processed the grey candidates one by one. This shows that, after the end of the coloring
stage, we can arbitrarily color all grey candidates green or blue, use this coloring to
construct an order � on C, and apply Proposition 3 to E and �. While the resulting
algorithm is simpler, it may require solving a much larger linear program.

Remark 2. The reader may wonder if stretching x (lines 34–39) is necessary to place the
candidates in C−: perhaps we can find suitable positions for them without modifying
the positions of the candidates in C+? The following example shows that this is not
always the case. Consider an election E = (C, V ) with C = {a, b, c, d, e}, V = (u, v),
where u ranks the candidates as a � b � c � d � e and v ranks the candidates as
b � a � c � e � d. For this election we have F1 = {a, b}, G1 = {c}, F2 = {d, e} and
the ordering� overC+ is given by d�a�b�e. A feasible solution to the corresponding
linear program is xu = −2, xv = 2, xa = −6, xb = 6, xd = −12, xe = 12. Now,
suppose that we want to place c on the real line without changing the positions of other
points. Since our construction is symmetric, we can assume without loss of generality
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that c should be placed to the right of 0. Since v prefers a to c, it has to be the case that
xc > 10. However, this means that u prefers d to c, a contradiction.

However, one can eliminate the stretching steps by adding constraints saying that
different non-grey blocks are well-separated to the linear program itself. Then each
grey block can be simply placed in the middle of the respective interval.

5 An Overview of Knoblauch’s Algorithm
The main difference between our algorithm and that of Knoblauch is that the latter
uses a single-peaked ordering of the candidates as its starting point. It then partitions
the candidates into groups so that, for each group, the ordering of the candidates in
this group is the same (up to reversal) for all societal axes witnessing that the election
is single-peaked. This partition is fairly straightforward to derive from the votes, and
can be shown to be a refinement of the partition {F1, G1, . . . , Fk, Gk} implicitly con-
structed by our algorithm. The groups that correspond to subsets of C+ are then “glued
together”, i.e., the algorithm defines an ordering on C+; this procedure is the heart
of the algorithm, and is quite complicated. From this point on, Knoblauch’s algorithm
proceeds in the same manner as our algorithm: it uses a linear program to embed C+

and V into the real line, and then places the candidates from C−. However, both of
these steps are implemented somewhat differently. In more detail, Knoblauch’s linear
program only has variables for elements of C+, and the number of inequalities in it
is bounded by O(nm4); effectively, it is obtained from our linear program by variable
elimination. While it uses strict inequalities, it is not hard to modify it so that only non-
strict inequalities are used (see Proposition 3). Finally, Knoblauch’s algorithm places
the candidates in C− one by one rather than in blocks; whenever a candidate in C−

is placed, some of the candidates in C+ are shifted by an unspecified “large enough”
amount. As a consequence, candidates in C+ may be shifted multiple times.

In terms of performance, neither algorithm has a clear advantage over the other:
the running time of both algorithms is dominated by solving a linear program, and the
two linear programs are closely related. Thus, our main contribution is conceptual: we
provide a quick and simple method for obtaining an ordering of the non-grey candi-
dates that is based on the single-crossing property of 1-Euclidean elections. We find it
remarkable that our algorithm does not use the fact that a 1-Euclidean election is single-
peaked, whereas Knoblauch’s paper does not mention single-crossing elections at all;
thus, the two approaches provide very different perspectives on the problem at hand.

6 Future Work
We have presented an alternative algorithm for recognizing whether an election is 1-
Euclidean. Both our algorithm and that of Knoblauch rely on solving a linear program.
A natural question is whether this step can be eliminated, i.e., whether our problem
admits a purely combinatorial algorithm.

Further, it would be interesting to see if our algorithm (or that of Knoblauch) can be
extended to higher dimensions, i.e., the problem of recognizing whether an election is
d-Euclidean for d > 1. We remark that, while d-Euclidean elections with d > 1 are
not particularly attractive from a purely social choice-theoretic perspective (e.g., such
elections are not guaranteed to have a Condorcet winner), it is plausible that they may
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admit efficient algorithms for problems in computational social choice that are known
to be hard on the general domain.

Another promising direction is to explore whether our ideas can be used to identify
elections that are close to being 1-Euclidean, for an appropriate notion of distance. A
challenge that one would need to cope with in this context is that an “almost Euclidean”
election need not be single-peaked or single-crossing. One can also consider a variant
of the 1-Euclidean model where a voter can be equidistant from two different candi-
dates, in which case she may prefer either of these candidates, but the positions of all
candidates are required to be pairwise distinct, and ask whether preference profiles that
are 1-Euclidean in this sense can be recognized in polynomial time.
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Abstract. We study algorithms for combinatorial market design problems, where
a set of heterogeneous and indivisible objects are priced and sold to potential
buyers subject to equilibrium constraints. Extending the CWE notion introduced
by Feldman et al. [STOC 2013], we introduce the concept of a Market-Clearing
Combinatorial Walrasian Equilibium (MC-CWE) as a natural relaxation of the
classical Walrasian equilibrium (WE) solution concept. The only difference be-
tween a MC-CWE and a WE is the ability for the seller to bundle the items
prior to sale. This innocuous and natural bundling operation imposes a plethora
of algorithmic and economic challenges and opportunities. Unlike WE, which is
guaranteed to exist only for (gross) substitutes valuations, a MC-CWE always
exists. The main algorithmic challenge, therefore, is to design computationally
efficient mechanisms that generate MC-CWE outcomes that approximately max-
imize social welfare. For a variety of valuation classes encompassing substitutes
and complements (including super-additive, single-minded and budget-additive
valuations), we design polynomial-time MC-CWE mechanisms that provide tight
welfare approximation results.

1 Introduction

The resource allocation problem lies at the heart of theoretical economics: how should
scarce resources be allocated among individual agents with competing interests? Since
the emergence of the Internet, which enables complex resource allocation on a grand
scale, this has naturally become a central problem in computer science as well.
Economists generally approach this problem by adopting the notion of market equilib-
rium. Broadly speaking, a market equilibrium is a set of resource prices that are stable
in the sense that all agents are maximally happy with their allocations and no resources
are left unallocated. A long line of work has been dedicated to addressing the existence
of equilibrium prices, and it has been shown (see, e.g., [2]) that market equilibria exist
very generally, as long as the market is convex.

While this result sounds appealing in its generality, the convexity assumption usually
requires that resources be infinitely divisible. In many applications of interest, especially
those with a computational aspect, resources are indivisible; in these cases the convexity
assumption is inapplicable. Do the results from the convex environments carry over to
non-convex environments? In general the answer is no: the existence of equilibrium
prices is not guaranteed. As a result, the study of markets for indivisible goods tends to
focus on specific cases for which such prices exists, such as when buyer values satisfy
the gross substitutes condition.
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To be more precise, consider the following model. There are m indivisible, hetero-
geneous items to be allocated among n agents. Each agent i ∈ [n] has preferences over
bundles of items in the form of a valuation function vi that maps every subset S of items
into the value vi(S) that agent i derives from the bundle S (in monetary terms). Given
a price vector p = (p1, . . . , pm), a bundle S is said to be in agent i’s demand set if S
maximizes i’s utility given p, defined as the difference between vi(S) and

∑
j∈S pj .

A Walrasian equilibrium (WE) is an assignment of item prices to the m items, and an
assignment of the objects to the agents, such that: (1) every agent is allocated a bundle
in his demand set, and (2) the market clears; i.e., all items are allocated. Such a solution
is appealing; every agent is maximally happy despite competing preferences, the market
clears, and the pricing structure is natural, simple, and transparent. Unfortunately, WE
do not exist in general. A WE is guaranteed to exist only for the rather narrow class
of gross substitutes (GS) valuations (a strict subset of submodular functions) [11]. This
eliminates any hope for the applicability of WE to environments with valuations that
exhibit complementarities, and many forms of substitutes as well.

Recently, [8] proposed a relaxation of WE, termed a combinatorial Walrasian equi-
librium (CWE). In a CWE, the seller can choose to bundle objects prior to assigning
prices. This is a natural power to afford the seller, since as the owner of the resources he
has some inherent ability to define what is meant by an “item.” The generated bundles
induce a reduced market — a market in which the items for sale are the bundles gen-
erated by the seller. In addition to the bundling operation, the CWE further relaxes the
WE notion in that it allows for items to remain unallocated (even when they are priced
above zero). A CWE exists for any valuation profile, since the seller could bundle all
objects into a single item. The important issue, then, is whether there exists a CWE
that is (approximately) efficient with respect to social welfare. Indeed, [8] show there
always exists a CWE with at least half of the optimal (unconstrained) welfare.

The CWE notion relaxes the WE notion in two ways: (i) it allows bundling, (ii) it
does not require market clearance. While the bundling relaxation is central to the notion
of CWE, the second relaxation warrants some discussion. The relaxation of market
clearance is somewhat at odds with the notion of a two-sided market equilibrium: prices
might not be stable from the seller’s perspective. After all, if an object (i.e. bundle) does
not sell, the seller may be tempted to decrease its price in order to to sell it and increase
revenue. The concept of CWE therefore implicitly requires that the seller pre-commit
to (sub-optimal) prices, in addition to committing to a bundling of the items. With this
in mind, we consider whether the relaxation of market clearance is truly necessary. It
is easy to see that the bundling relaxation alone is enough to guarantee existence of
an equilibrium, so the question becomes one of welfare. Can we hope to achieve the
welfare bound of [8] without relaxing market clearance?

To answer this question we define Market-clearing CWE (MC-CWE), which allows
the bundling operation, but requires market clearance. A MC-CWE is precisely a WE
over the reduced market; it differs only in the ability of the seller to pre-bundle the
items, and in particular it is a stronger (more restrictive) concept than CWE.

For a number of valuation classes, encompassing both substitutes and complements,
we provide two types of results. The first finds the fraction of the optimal social welfare
that can be obtained in a MC-CWE outcome. The second addresses the same problem
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but under the additional requirement of operating in polynomial time. Note that the
approximation result established in [8] is only semi-computational — given the opti-
mal allocation, it finds in polynomial time a CWE outcome that gives at least a half
of the optimal welfare. Here, we devise polynomial approximation algorithms that do
not need any initial allocation. Moreover, all of our approximation results match the
computational lower bounds for their corresponding valuation classes.

We note that while the focus of our paper is welfare maximization, our analysis and
results have some immediate implications on revenue maximization. In particular, all
of our approximation results carry over to revenue approximation, since for each of our
mechanisms the bound we obtain on the social welfare is precisely the revenue extracted
at equilibrium. Further discussion of MC-CWE revenue appears in the full version of
the paper.

1.1 Our Results and Techniques

Uniform BA Uniform BA Super additive Single minded
identical budgets

MC-CWE gap
1 ≥8/7 1 1

≤2

Poly-time MC-CWE approx.
≤ 4/3 ≤ 8/3 O(m/

√
logm) [value] θ(

√
m)

θ(
√
m) [demand]

Fig. 1. Summary of our approximation results. The columns correspond to valuation classes. The
first column corresponds to uniform budget additive valuations with identical budgets, and the
second column corresponds to uniform budget additive valuations with arbitrary budgets. The
first row corresponds to the gap in social welfare due to MC-CWE, disregarding computational
considerations. The second row corresponds to the approximation that can be achieved with a
MC-CWE poly-time mechanism. All approximation results assume the value-query model, un-
less otherwise stated. Note that m is the number of items for sale.

Super-additive valuations. In the case where agent valuations are super-additive, we
show that there always exists a MC-CWE that maximizes social welfare. Note that it
is not always possible to maximize social welfare without bundling, even if the market
clearance requirement is relaxed: there exist input instances in which all bidders are
single-minded, but every outcome with item pricing obtains only an O(

√
m) fraction

of the optimal social welfare [8]. The use of bundling is therefore crucial in generating
a socially efficient equilibrium outcome.

We next turn to computational algorithms. We show how to construct a MC-CWE
that obtains an O(

√
m) approximation to the optimal social welfare in a polynomial

number of demand queries1, matching known lower bounds [16]. Our mechanism pro-
ceeds by first crafting an O(

√
m)-approximate allocation and prices, then applying lo-

cal search to repeatedly satisfy agent demands (bundling objects and/or raising prices in
the process) until every agent obtains a demanded set at the given prices. Our construc-
tion makes use of demand queries in a way similar to that of [8]: rather than querying
demand sets over the original space of objects, we query demand over bundles of objects

1 A demand query returns the utility-maximizing set given a vector of item prices.
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(under linear prices). With value queries, we show that the O(m/
√
logm)-approximate

mechanism due to [13] satisfies the MC-CWE property. We also show that in the case
of single-minded valuations, our demand-query mechanism can be modified to achieve
an O(

√
m) approximation in a polynomial number of value queries.

Sub-additive valuations: uniform budget additive. Since efficient WE exist for the class
of GS valuations, efficient MC-CWE exist for this class as well. We therefore consider
a class of non-GS valuations: those that are uniform budget-additive. In this class, each
item a has a value va, and each agent values the item at either 0 or va. Furthermore,
each bidder has a budget that limits his value for any set of items. For this class, we
demonstrate that WE do not necessarily exist. Moreover, we provide an instance in
which no MC-CWE can achieve more than a 7/8 fraction of the optimal welfare. On
the other hand, we show that any allocation can be converted (in polynomial time) into
a MC-CWE outcome that achieves at least half of the original social welfare. Thus, at
least half of the optimal welfare can always be achieved in a MC-CWE outcome.

Turning to computational considerations, the welfare-maximization problem for this
valuation class is known to be APX-hard. The best-known algorithm achieves an ap-
proximation of 4/3 (see [1,3,18,6]). Combined with the aforementioned algorithm,
which converts every outcome to a MC-CWE outcome with at least half of the welfare,
this implies a MC-CWE mechanism that achieves a 8/3 approximation. Our analysis
is based on the observation that an outcome can be implemented at MC-CWE if and
only if that outcome is an optimal solution (among all fractional solutions) to a certain
linear program: the configuration LP for the assignment problem restricted to the bun-
dles in the outcome allocation. Our construction is based upon local search, but of a
different nature than our super-additive mechanism. Rather than attempting to improve
social welfare, we repeatedly bundle objects to reduce the optimal fractional welfare,
shrinking the gap between fractional and integral solutions to the configuration LP.

If agents have identical budgets, the factor-2 loss disappears: any allocation can be
made MC-CWE without loss in social welfare. Yet, even within this restricted class, a
Walrasian equilibrium may not exist. These results are driven by connections between
MC-CWE and the configuration LP for the combinatorial assignment problem.

1.2 Relation to Prior Work

There is a long line of work studying pricing equilibria in theoretical economics. Wal-
rasian equilibria (i.e., market-clearing prices) in the market assignment problem were
studied by Shapley and Shubik [17]. Further characterizations of existence of Walrasian
equilibria were studied in, for example, [14,4,11]. Our work is motivated by the non-
existence of Walrasian equilibrium in general combinatorial markets.

The problem of algorithmic pricing [12] is to find revenue-optimal item prices for
unit-demand buyers. In contrast, we are primarily interested in maximizing social wel-
fare for more general valuations, and we permit bundling of items before setting prices.

An alternative to Walrasian equilibrium is to allow a seller to set (non-linear) prices
on arbitrary bundles. Such package auctions were formalized by Bikhchandani and Os-
troy [5]. Our notion of MC-CWE differs from package auctions in that the seller com-
mits to a partition of the objects, then sets linear prices over those bundles.
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The concept of MC-CWE can be viewed as a strengthening of envy-freeness since,
in particular, we require that no agent envies any subset of other agents. Fiat et al. [9]
study this extension of envy-freeness directly, which they term multi-envy-freeness.

Fu, Kleinberg and Lavi [10] introduce the notion of conditional equilibrium, where
no buyer wishes to add additional items to his allocation under given prices. Our equi-
librium concept MC-CWE differs in that it is based on reducing the space of objects via
bundling, rather than directly relaxing the demand-satisfaction condition of WE.

2 Preliminaries

The auction setting considered in this work consists of a set M of m indivisible objects
and a set of n agents. Each agent has a valuation function vi(·) : 2M → R≥0 that
indicates his value for every set of objects, is non-decreasing (i.e., vi(S) ≤ vi(T ) for
every S ⊆ T ⊆M ) and is normalized so that vi(∅) = 0. The profile of agent valuations
is v = (v1, . . . , vn), and an auction setting is defined by A = (M,v).

A price vector p = (p1, . . . , pm) consists of a price pj for each object j ∈ M . An
allocation is a vector of sets x = (x0, x1, . . . , xn), where xi ∩ xk = ∅ for every i �= k,
and

⋃n
i=0 xi = M . In the allocation x, for every i ∈ N , xi is the bundle assigned to

agent i, and x0 is the set of unallocated objects; i.e., x0 = M \
⋃n

i=1 xi.
We assume that each agent has a quasi-linear utility function; i.e., the utility of agent

i being allocated bundle xi under prices p is ui(xi,p) = vi(xi) −
∑

j∈xi
pj . Given

prices p, the demand correspondence Di(p) of agent i contains all sets of objects that
maximize agent i’s utility: Di(p) =

{
S∗ : S∗ ∈ argmaxS⊆M{ui(S,p)}

}
. A tuple

(x,p) is said to be buyer stable for auction A = (M,v) if xi ∈ Di(p) for every i ∈ N .
A tuple (x,p) is said to be seller stable for auction A = (M,v) if for every j ∈ x0,
pj = 0. The seller stability condition is also known as market clearance.

A tuple (x,p) is said to be a Walrasian equilibrium (WE) for auction A = (M,v)
if it is both buyer stable and seller stable. The class of gross substitutes (GS) valuations
is a maximal class that admits Walrasian equilibria [11]. This class is a strict subset of
submodular valuations. It is also known that if a WE exists, it is economically efficient
(i.e., maximizes social welfare — the sum of agents’ valuations).

We now define Market-Clearing CWE (MC-CWE). The crux of the concept is that
items are pre-partitioned into indivisible bundles. The constructed bundles are treated
as indivisible objects, and the MC-CWE notion reduces to WE over the bundles. Cru-
cially, although prices are now associated with bundles (of the original market), unlike
previous notions, prices are linear once bundles are fixed. A formal definition follows.

For a partition A = (A1, . . . ,Ak) of the item set M we slightly abuse notation and
denote by A = {A1, . . . ,Ak} the reduced set of items, where the valuation of each
agent i of a subset S ⊆ A is vi(

⋃
j:Aj∈S Aj). We denote by AA an auction over the

reduced set of items A with the induced valuation profile.
Every allocation x induces a partition A(x) = (x0, . . . , xn). A tuple (x,p), where

x = (x0, . . . , xn), and pi is the price of xi for every xi �= ∅, is a Market-Clearing CWE
(MC-CWE) if (x,p) is a WE in the auction AA(x). Allocation x is said to be MC-
CWE if it admits a price vector p ∈ Rn+1

≥0 such that (x,p) is MC-CWE. A mechanism
is MC-CWE if it maps every valuation profile v to an MC-CWE outcome (x,p).
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A tuple (x,p), where x = (x0, . . . , xn), and pi is the price of xi for every xi �= ∅, is
a CWE if (x,p) is buyer stable in the auction AA(x). Note that a MC-CWE is weaker
than a WE, since it allows for a pre-sale partition of the goods. On the other hand, MC-
CWE is stronger than a CWE, since it requires seller stability on top of buyer stability.

2.1 Characterization

The characterization of a CWE allocation is closely related to the characterization of an
allocation that can be supported in a WE [4]. A similar observation was already given
in [8], but we state it here for completeness, as it is used in later sections.

For a given partition A of the objects, the allocation of A to N can be specified by
a set of integral variables y

i,S
∈ {0, 1}, where y

i,S
= 1 if the set S ⊆ A is allocated

to agent i ∈ N and yi,S = 0 otherwise. These variables should satisfy the following
conditions:

∑
S y

i,S
≤ 1 for every i ∈ N (each agent is allocated to at most one bundle)

and
∑

i,S⊇Aj

y
i,S

≤ 1 for every Aj ∈ A (each element of the partition is allocated to at

most one agent). A fractional allocation of A is given by variables yi,S ∈ [0, 1] that
satisfy the same conditions and intuitively might be viewed as an allocation of divisible
items. The configuration LP for AA is given by the following linear program, which
computes the fractional allocation that maximizes social welfare.

max
∑
i,S

vi(S) · yi,S

s.t.
∑
S

y
i,S
≤ 1 for every i ∈ N∑

i,S⊇Aj

y
i,S
≤ 1 for every Aj ∈ A

yi,S ∈ [0, 1] for every i ∈ N,S ⊆ A

The characterization given in [4] states that a WE exists if and only if the optimal frac-
tional solution to the allocation LP occurs at an integral solution. This characterization
of a WE allocation can be used to derive a characterization of a MC-CWE allocation.

Recall that every allocation x induces a partition A(x) = (x0, . . . , xn). The WE
characterization implies the following MC-CWE characterization.

Claim. An allocation x = (x0, x1, . . . , xn) is a MC-CWE for A iff the configuration
LP for AA(x) has an integral optimal solution that sets y

i,xi
= 1 for all i ∈ N .

By the last claim, finding a MC-CWE allocation is equivalent to finding bundles
such that the optimal welfare generated by fractional and integral allocations of those
bundles are identical, then returning an efficient allocation of those bundles.

Gap in social welfare due to MC-CWE: a lower bound. In [8], an example was given
in which the welfare of any CWE allocation is at most 2/3 of the welfare of an opti-
mal (non-CWE) allocation. We note that the same example carries over to the stronger
notion of MC-CWE; i.e., the welfare of an MC-CWE allocation is at most 2/3 of the op-
timal welfare. The established lower bound holds for general valuations, but disappears
for some families of valuation functions (as will be shown in the sequel).
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3 Super-additive Valuations

A valuation v is super-additive if, for all sets of items S and T , v(S) + v(T ) ≥ v(S ∪
T ). In this section we study MC-CWE outcomes when valuations are super-additive.
Missing proofs from this section appear in the full version. We first show that there is
no loss in efficiency due to MC-CWE: every efficient allocation is MC-CWE.

Allocation x is bundle-efficient for v if, for all functions β : [n] → [n], we have∑
i vi(xi) ≥

∑
i vi

(⋃
j∈β−1(i) xj

)
. That is, a bundle-efficient allocation x maximizes

social welfare among all ways to allocate the bundles x1, . . . , xn to the agents.

Theorem 1. If agents are super-additive and x is a bundle-efficient allocation, then the
price vector pi = vi(xi) is such that (x,p) is MC-CWE.

Proof. Pick any agent i and set of agents S. If i ∈ S, then

vi(xi)− pi = 0 ≥ vi(∪j∈Sxj)−
∑
j∈S

vj(xj) = vi(∪j∈Sxj)−
∑
j∈S

pj ,

where the inequality follows from the efficiency of allocation x. Consider next the case
where i �∈ S. It holds that

vi(xi) +
∑
j∈S

vj(xj) ≥ vi(∪j∈S∪{i}xj) ≥ vi(xi) + vi(∪j∈Sxj),

where the first inequality follows from the efficiency of allocation x, and the second
inequality follows from the super additivity of vi. It follows that vi(xi) − pi = 0 ≥
vi(∪j∈Sxj)−

∑
j∈S vj(xj) = vi(∪j∈Sxj)−

∑
j∈S pj , as desired.

A consequence of Theorem 1 is that the full surplus can be extracted as revenue.
The use of bundling is necessary for the statement of Theorem 1, even if we relax

the market-clearing requirement of Walrasian equilibrium and even for single-minded
bidders. There are instances for which, given any set of item prices for which agent
demand sets are disjoint, the social welfare of the resulting allocation is an O(

√
m)

fraction of the optimal social welfare [8]. We describe an example in the full version.

3.1 Polynomial-Time Mechanisms

We next study the power of poly-time approximation mechanisms for maximizing
social welfare in MC-CWE outcomes (compared to the optimal welfare that can be
achieved by any mechanism, poly-time or not, MC-CWE or not). Of particular interest
is the question whether the MC-CWE requirement entails an additional loss on top of
the loss incurred due to the poly-time requirement alone. In our analysis, we distin-
guish between mechanisms that operate in the value-query and demand-query models,
as is standard in the literature. We find that in both models, it is possible to construct
a MC-CWE mechanism with an approximation factor matching that of the best-known
approximation algorithms for welfare maximization. In particular, there exist poly-time
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MC-CWE mechanisms that achieve an O(
√
m) approximation under the demand-query

model, and an O(m/
√
logm) approximation under the value-query model.

We first present a MC-CWE approximation mechanism for superadditive valuations
using demand queries. This mechanism, which we call SuperAdditiveMC-CWE, pro-
ceeds in two phases. In the first phase, it builds a preliminary solution by repeatedly
allocating the set that maximizes value density. That is, set S is allocated to agent i so
that vi(S)/|S| is maximized, and this process is then iterated on the remaining items.
A bidder can be allocated to multiple times in this phase, in which case she is allocated
the union of the assigned sets. After all objects have been allocated, we check whether
the welfare can be improved by allocating all objects to a single player; if so, we do so
and the mechanism ends. Otherwise we proceed to phase 2, where we repeatedly ap-
ply local improvements to the allocation. Specifically, if we write (x1, . . . , xn) for the
tentative allocation, we look for circumstances in which some player i has more value
for a set of bundles from among {x1, . . . , xn} than the players to whom those bundles
were previously assigned; if such a case exists, we bundle all of these items together
and reallocate them to player i, then repeat the process with this updated tentative al-
location. Note that this step amounts to repeatedly satisfying the demand of a player in
the market with items {x1, . . . , xn} and prices pi = vi(xi), until no further demands
are made (which must occur since these prices only increase). When this process termi-
nates we return the resulting allocation. The following theorem establishes the O(

√
m)

approximation and polynomial run time of the algorithm. Due to space constraints, we
defer its proof, along with a pseudocode listing of SuperAdditiveMC-CWE, to the full
version of the paper.

Theorem 2. Algorithm SuperAdditiveMC-CWE returns a MC-CWE outcome that
O(
√
m)-approximates the optimal social welfare over all assignments. Furthermore,

it can be implemented in a polynomial number of demand queries.

We next move to the value-query model. We show that the O(m/
√
logm) approxi-

mation mechanism due to [13] is guaranteed to generate CWE outcomes. We note that
it nearly matches the lower bound of Ω(m/ logm) on the approximability of CAs with
superadditive bidders (using value queries) [15].

Theorem 3. If agents are super-additive, then there exists a mechanism that makes a
polynomial number of value queries and generates a CWE outcome that achieves a
O(m/

√
logm) approximation to the optimal social welfare.

Proof. The mechanism groups the objects into logm bundles, each of sizem/ logm, ar-
bitrarily. It then returns the bundle-efficient allocation over those bundles. This achieves
a O(m/

√
logm) approximation, and can be implemented in a polynomial number of

value queries [13]. Since the allocation is bundle-efficient, it is CWE.

3.2 Single-minded Valuations and Value Queries

In the special case in which agents are single-minded, Algorithm SuperAdditiveMC-
CWE can be improved to run in a polynomial number of value queries, obtaining an
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O(
√
m) approximation to the optimal welfare. This mechanism is new; as far as we are

aware, existing O(
√
m)-approximation mechanisms do not satisfy MC-CWE.

Our algorithm, which we call SingleMindedMC-CWE, proceeds as follows. We split
the bidders into two groups: those with “small” desired sets (of size at most

√
m) and

those with larger desired sets. We first generate a provisional allocation that only in-
cludes the bidders with small desired sets. We construct this preliminary allocation
greedily: we order players from largest value to smallest, then allocate to players in this
order if their desired set is available. Any object that is left unallocated is then added
to an arbitrary non-empty allocation. Then, in the second phase of the algorithm, we
consider those bidders with large desired sets. We order these large-set bidders from
highest value to smallest, and for each bidder i in this order, say with value vi for set
Si, we ask whether vi is greater than the sum of values of all players whose allocations
intersect set Si. If so, we take all of those intersecting allocations from their respective
bidders and allocate them all to player i. After this operation has been completed for
every large-set bidder (in order from highest value to smallest), we return the resulting
allocation. The following theorem establishes the O(

√
m) approximation and polyno-

mial run time of the algorithm. Due to space constraints, we defer its proof, along with
a pseudocode listing of SingleMindedMC-CWE to the full version of the paper.

Theorem 4. When agent valuations are single-minded, Algorithm SingleMindedMC-
CWE returns a MC-CWE outcome that O(

√
m)-approximates the optimal social wel-

fare over all assignments. Furthermore, it can be implemented in a polynomial number
of value queries.

4 Uniform Budget-Additive Valuations

A budget-additive valuation is specified by budget B and item values vj , j ∈ M . The
value of set S is then v(S) = min{B,

∑
j∈S vj}. Note that the uniform-valuation case

implies vi(j) ≤ Bi for all i ∈ [n], j ∈M .
The problem of maximizing social welfare with budget-additive valuations has been

extensively studied in recent years from a computational perspective [6,18,7,1,3]. It is
known to be APX-hard [6], and the best known approximation ratio is 4/3 (achieved via
iterative rounding or primal-dual algorithms). This factor also matches the integrality
gap of the corresponding linear program. In this section we consider problem instances
in which agents have uniform budget-additive valuations [1], in the sense that for each
object j there is a value vj such that, for all i, vi(j) ∈ {0, vj}. In other words, each
object has a fixed value vj ; each player with non-zero value for j values it at vj . Here
too, the best approximation known is 4/3.

4.1 Arbitrary Budgets

We first give an example in which no MC-CWE allocation can achieve more than an
7/8 fraction of the optimal welfare.

Claim. There is a profile of uniform budget-additive valuations for which no MC-CWE
allocation achieves more than 7/8 of the optimal welfare.
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Fig. 2. Instances of uniform budget-additive agents. Agents and items are represented by thin and
thick nodes, respectively. An agent and item are connected if the agent values the item. Values
written next to agents and items correspond to budgets and (uniform) values, respectively.

The full proof is deferred to the full version of the paper. An illustration of the
instance that realizes this gap is given in Figure 2(a) with 5 players, {ci}i=1..5 (thin
nodes), and 4 items, {ai}i=1..4 (thick nodes). In this example, the optimal fractional as-
signment has social welfare 8. However, the optimal integral assignment obtains value
8 − ε. Therefore, in order to get a MC-CWE outcome, one must bundle some items
together. We show that, for any bundling choice, one cannot achieve a higher welfare
than 7.

We next present an algorithm that converts any allocation into a MC-CWE alloca-
tion while preserving at least half of the original welfare. The algorithm, which we
call UniformBudgetAdditiveMC-CWE, proceeds as follows. Given an allocation pro-
file x = (x1, . . . , xn), the algorithm checks whether there is an instance in which
vj(xi) > vi(xi). Note that this can occur only if

∑
k∈xi

vk > Bi and Bj > Bi. If
there is no such instance, then the algorithm terminates and the current allocation is
returned. Otherwise, if there is a pair of agents i and j with vj(xi) > vi(xi), then the
item of lowest value in xi is removed from xi and added to xj . The algorithm then
repeats. Note that the algorithm must terminate, since every iteration results in an item
being shifted from one agent to another agent with strictly larger budget. Due to space
considerations, a pseudocode listing of the algorithm is deferred the full version of the
paper.

The intuition behind UniformBudgetAdditiveMC-CWE is that we would like to re-
duce the social welfare of the optimal fractional allocation of the bundles in x. Indeed,
if there are no instances in which vj(xi) > vi(xi), then it must be that the assignment
x is an optimal fractional allocation, and hence by Claim 2.1 is MC-CWE. Thus, by
transforming the input allocation into an allocation that satisfies this property, we are
reducing the integrality gap of our reduced market to 1. In the full version we show that
this iterative procedure does not drastically reduce the welfare of the allocation.

Theorem 5. Suppose x is an arbitrary allocation with welfare SW (x). Given x, Algo-
rithm UniformBudgetAdditiveMC-CWE returns, in polynomial time, a MC-CWE out-
come x′ such that SW (x′) ≥ 1

2SW (x).
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As a corollary, the known 4/3 approximation algorithm for budget-additive
valuations can be turned into an 8/3 approximation MC-CWE mechanism in
the case of uniform values. Furthermore, the allocation returned by Algorithm
UniformBudgetAdditiveMC-CWE has the property that the full surplus can be ex-
tracted from the MC-CWE outcome as revenue. This result is established formally in
the full version of the paper.

4.2 Identical Budgets

In this section we study the restriction to identical budgets. The welfare maximization
problem is NP-hard even under this restriction, as it includes PARTITION as a special
case2. Moreover, we shall show that there are input instances in this class for which
Walrasian equilibria do not exist3. Nevertheless, we shall show that any allocation can
be transformed into a MC-CWE allocation with no loss to the social welfare.

We first show that there exist input instances for which no Walrasian equilibrium
exists. Consider the instance given in Figure 2(b) with 4 players and 7 items. In this
example, the optimal fractional assignment has social welfare 8. For example, the frac-
tional assignment in which ci gets sets {ai, αi} and {bi, αi} with probability 1/2, and
di gets sets {ai, bi} and {β} with probability 1/2, for i ∈ {1, 2}, achieves welfare 8.
However, the optimal integral assignment obtains value at most 7. Thus the optimal
fractional welfare does not occur at an integral solution, and hence a WE does not exist.

We now show that, for any allocation, there exists a MC-CWE allocation that obtains
at least as much social welfare, and moreover it can be found efficiently.

Theorem 6. Suppose x is an arbitrary allocation. There exists MC-CWE allocation x′

with SW (x′) ≥ SW (x), and x′ can be found in polynomial time given x.

Proof. Given x, we construct x′ by taking any object j such that j ∈ xi with vi(j) = 0
and re-allocating it to an arbitrary agent with non-zero value for it. This can be done in
polytime and can only increase the social welfare of the resulting allocation. It remains
to show that this allocation is MC-CWE.

Suppose x′ has the property that j ∈ x′
i implies vi(j) > 0. In this case, vi(x′

i) =
min{B,

∑
j∈x′

i
vj} = max� v�(x

′
i) for each i. The social welfare of allocation x′ is

therefore
∑

imax� v�(x
′
i), which is an upper bound on the value of any fractional as-

signment of bundles x′
1, . . . , x

′
n. Thus the optimal fractional allocation of these bundles

obtains the same welfare as x′, and hence x′ is MC-CWE as required.

As a corollary, known 4/3-approximate algorithms for budget-additive valuations
can be made MC-CWE for uniform values and identical budgets. In contrast, when
budgets are identical but item values are non-uniform, there are instances where no MC-
CWE allocation achieves optimal welfare. We present an example in the full version of
the paper.

2 For a given instance of PARTITION with integers a1, . . . , an such that
∑

j∈[n] aj = 2B,
construct an instance of our problem with two agents, each with budget B, and n items, with
item j having value aj .

3 While this is well known for the case of arbitrary budget additive valuations, here we consider
the further restricted class of uniform values and identical budgets.
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Abstract. We study the existence and the properties of Walrasian equi-
librium (WEQ) in combinatorial auctions, under two natural classes of
valuation functions. The first class is based on additive capacities or
weights, and the second on the influence in a social network. While nei-
ther class holds the gross substitutes condition, we show that in both
classes the existence of WEQ is guaranteed under certain restrictions,
and in particular when there are only two competing buyers.

1 Introduction

In a combinatorial auction, multiple items are for sale, and the utility of a buyer
may depend on the particular set of acquired items in some composite manner.

In the most general case, a buyer may assign an arbitrary value to any group
of items. However, typically there is some structure to the value function that is
derived from the context. A trivial example is when the value for the buyer only
depends on the number of acquired items, which are all identical.

In the following scenario, buyers’ valuations can still be described by a rel-
atively simple function. Consider a game where we can attribute some fixed
capacity or weight to each item. The value to each buyer is then some function
of the total (additive) capacity of its acquired items.

Concrete examples for such a scenario are when the items are storage devices,
discrete time intervals for advertising, routers with certain throughput and so
on. The utility of each buyer is increasing in the total storage/time/throughput,
regardless of how it is divided among the purchased items.

Another interesting scenario is when buyers are firms recruiting influential
nodes of a social network (such as news sites or popular blogs), trying to promote
a product. The value for a firm in this case is proportional to the joint influence
of the recruited nodes, which depends on the network structure and dynamics.

The most fundamental question in combinatorial auctions is regarding the ex-
pected outcomes, i.e. how will items be divided among buyers, and at what price.
A standard solution is to ask whether there are prices such that if each buyer
independently selects her optimal bundle of items, a valid allocation of items will
arise. Such prices—if exist—are known as Walrasian equilibrium (WEQ). It is
known that the allocation under Walrasian prices maximizes the social welfare
(sum of buyers’ utilities). A seemingly different combinatorial setting is that of

R. Lavi (Ed.): SAGT 2014, LNCS 8768, pp. 170–181, 2014.
c© Springer-Verlag Berlin Heidelberg 2014
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a labor market, where buyers are firms competing on hiring workers, which are
strategic agents rather than passive “items” [10]. However it is known that the
models are in fact equivalent, and induce the same equilibrium outcomes. For
details see [8], as well as the full version of this paper [14]. The labor market
interpretation is very natural in both of the scenarios we consider: the “weight”
of a worker corresponds to his productivity level (e.g., the number of images
that an Amazon Turk user can tag in an hour). Similarly, the workers can be
particularly influential members in a social network.

It is therefore of great interest to study the conditions under which Walrasian
equilibria exist. Kelso and Crawford [10] provide sufficient conditions for the
existence of a WEQ—namely, that all buyers’ value functions hold a technical
property called gross substitutes.

A characterization of all games that have a WEQ (see Section 3.2) was given
in a classic paper by Bikhchandani and Mamer [2], which also commented that
they “...have been less successful at identifying sufficient conditions [for existence
of a WEQ] on agents’ preferences” (p. 403).

Our contribution Our primary goal is to characterize the conditions under which
a WEQ exists. In particular, we are interested in extending the results of Kelso
and Crawford on existence of equilibrium for buyers with value functions based
on capacities or social connections, two important cases that violate the gross-
substitutes condition. We start by formally defining new classes of valuation
functions inspired by the examples in the introduction.

In Section 4 we study games with additive capacities (weights) and show that
an equilibrium always exists with two buyers. In games with arbitrary capacities
and more than two buyers, a WEQ may not exist. We show through analysis and
simulations that particular heuristic prices are usually quite stable, and that a
WEQ exists in almost every instance. Further, simple heuristics can be applied
to find prices that are usually almost market-clearing.

In the social network model, studied in Section 5, we prove the existence
of equilibrium for two buyers when the network is sufficiently sparse. We also
demonstrate that our conditions for existence are minimal, in the sense that
by relaxing any of them we can construct a game with no WEQ. Results are
summarized in Table 1 (page 180).

All of the omitted proofs and examples, as well as the details of our simula-
tions, are available in the full version of this paper.1

2 Preliminaries

We denote vectors by bold lowercase letters, e.g. a = (a1, a2, . . .). Sets are
typically denoted by capital letters, e.g. B = {1, 2, . . .}. When a is a vector
of indexed elements and B is a set of indices, we use the shorthand notation
a(B) =

∑
b∈B ab.

1 A version with the proofs is available from http://tinyurl.com/melp84c. See [14]
for an earlier version that contains further discussions and computational details.

http://tinyurl.com/melp84c
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Combinatorial auctions We consider a set K of k items, and a set N of n
buyers, where n ≥ 2. Every buyer i ∈ N is associated with a non-decreasing
value function vi : 2

K → R+, where vi(∅) = 0.
Given an auction G = 〈K,N, (vi)i∈N 〉, a valid outcome is a pair (P,x), where

P = (S0, S1, S2, . . . , Sn) is a partition of K among the buyers, where S0 contains
unallocated items. x = (x1, x2, . . . , xk) is a price vector.

(P,x) is a Walrasian equilibrium (WEQ), if for every buyer, Si = argmaxS⊆K

(v(S)−x(S)), and unsold items have price 0. That is, market is cleared and the
bundle of every buyer maximizes her utility under prices x. The profit (utility)
of buyer i is denoted by ri(Si) = vi(Si)−x(Si). The social welfare of a partition
P is the sum of buyers values, i.e.

∑
i∈N vi(Si). Note that the social welfare does

not depend on prices.

2.1 Value Functions

We use the notation mi for the marginal value of an item to buyer i. For every
S ⊆ K and j /∈ S, mi(j, S) = vi(S ∪ {j})− vi(S).

vi is submodular (a.k.a. concave), if vi(S ∪ T ) + vi(S ∩ T ) ≤ vi(S) + vi(T ) for
all S, T ⊆ K. It is strictly submodular if the inequality is strict. Equivalently,
vi is submodular if the marginal contribution is nonincreasing. That is, for all
T ⊆ S and j /∈ S, mi(j, T ) ≥ mi(j, S). If the [strict] inequality holds only when
S, T are disjoint, then we say that vi is [strictly] subadditive. All value functions
studied in this paper are submodular, i.e. have decreasing marginal returns. This
assumption is standard in the economics literature [4,12].

Types We say that items j and j′ are of the same type if all buyers are indifferent
between them. That is, if for all i ∈ N , S ⊆ K \{j, j′}, vi(S∪{j}) = vi(S∪{j′}).
Similarly, we say that buyers i and i′ have the same type, if vi ≡ vi′ . Games
where all buyers are of the same type are called symmetric games. In the simplest
form of games, called homogeneous games, all items are of the same type. In such
games each vi : [k]→ R+ is a function of the number of the items used by buyer
i, i.e. vi(S) = vi(|S|).

Weighted games The primary type of value functions we consider in this work
is based on capacities, or weights. Every item has some predefined nonnegative
integer weight wj , and the value of a set S depends only on its total weight.

Thus each vi is a function vi : N→ R+, where vi(S) = vi

(∑
j∈S wj

)
.

A game where all value functions are weight-based is called a weighted game.
Homogeneous games are a special case of weighted games, where all items have
the same weight (w.l.o.g. weight 1).

A partition P = (S0, S1, . . . , Sn) of items in a weighted game is balanced, if
the total weight of items that each buyer gets is the same, i.e. w(Si) = w(Si′)
for all i, i′ ∈ N . A partition is almost balanced if the total weight of any Si and
Si′ (except S0) differ by at most 1.

Influence in social networks Another value function we consider is inspired by
social networks. Every social network then induces a game, where the items
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are some particular set of influential nodes (news sites, blogs, influential writ-
ers, etc.), and buyers are firms trying to purchase or hire nodes with maximal
influence in the network (following [7,11]).

Synergy graphs Simple synergies between items can be represented by a weighted
undirected graph, where every vertex is an item, and the value of a set is the
total weight of edges linked to vertices in the set. This includes edges between
vertices in the set, and edges between these vertices and external vertices.

All classes described above—except homogenous valuations—may violate the
gross-substitute condition (see full version for examples).

Fair pricing We also consider other natural requirements from prices. A price
vector x = (x1, . . . , xk) is fair if for every pair j, j′ of the same type, it holds
that xj = xj′ . In weighted games, a price vector x is proportional, if for all j, j′

it holds that
xj

xj′
=

wj

wj′
. Any proportional price vector is fair.

Note that we do not externally enforce fairness nor proportionality.

3 Properties of Equilibrium Outcomes

A WEQ has many desired properties, which motivate the search for such out-
comes. In addition, some of these properties will be used as tools in the next
sections to prove existence and non-existence of WEQ in various games.

The first property, which follows directly from the definition of WEQ, means
that a buyer does not prefer a bundle with one additional item or one item less.

Lemma 1. Let (P,x) be a WEQ outcome in game G. Then (1) for all i ∈ N, j ∈
Si, xj ≤ mi(j, Si \ {j}); and (2) for any i′ �= i ∈ N, j ∈ Si, xj ≥ mi′(j, Si′ ).

3.1 Individual Rationality, Fairness and Envy Freeness

We next present three simple observations (phrased as lemmas), showing that a
WEQ outcome is always individually rational, envy free, w.l.o.g. fair.

Lemma 2 (Individual rationality). Let (P,x) be a WEQ outcome in game
G, then (1) xj ≥ 0 for all j ∈ K; and (2) v(Si)− x(Si) ≥ 0 for all i ∈ N .

We say that buyer i envies buyer t in an outcome (P,x), if i wants to trade
items and payments. That is, if vi(St)−

∑
j∈St

xj > vi(Si)−
∑

j∈Si
xj = ri(P,x).

An outcome is envy-free if no buyer envies any other buyer.

Lemma 3 (Envy freeness). Let (P,x) be a WEQ outcome in game G. Then
(P,x) is envy-free.

The above holds because an envious buyer i can always forgo its current items
Si and buy St instead.

Lemma 4 (Fairness). If (P,x) is a WEQ in game G, then there is a fair
outcome (P,x∗) that is a WEQ in G, where the profit of each buyer remains the
same.
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3.2 LP Formulation and the Welfare Theorems

Computational schemes for representing combinatorial markets and to solve
them, as well as the properties of Walrasian equilibria, have been thoroughly
studied (see Blumrosen and Nisan [3] for a detailed review). Briefly, there is a
standard Integer Linear Program, denoted ILP (G), whose solutions describe the
optimal partitions in the game. The Linear Program Relaxation of ILP (G) is
denoted by LPR(G).

Two fundamental properties state that every WEQ is efficient, and charac-
terize the conditions for existence [2,3].

First Welfare Theorem (FWT). Every Walrasian equilibrium, if exists, is
optimal in terms of the social welfare.

Second Welfare Theorem (SWT). A Walrasian equilibrium exists if and only
if the integrality gap of ILP (G) is zero, i.e. if the solution quality of ILP (G)
and LPR(G) is the same.

Moreover, in such cases it is known that the solutions to the dual linear
program of LPR(G) yield the market clearing prices x, which in the labor market
interpretation represent workers’ salaries under WEQ.

4 Weighted Games

The first class of value functions we study is based on capacities, or weights.
Recall that a weight based value function v : N→ R+ is a subadditive function,
which maps the total weight of a set of items w(S) to utility. This implies
submodularity of v(S) (see full version). We sometimes write v as a vector of
w(K) + 1 entries (v(0), v(1), . . . , v(w(K))), where v(0) = 0.

Before continuing to our existence results, we observe that without the sub-
additivity assumptions, weighted games may not posses a WEQ even in a most
simple scenario

Homogeneous games Suppose that all items have unit weight. Kelso and Craw-
ford [10] show that in such games the core is always non-empty. It follows that
a WEQ always exists. Moreover, when buyers are symmetric, then such a WEQ
has a particularly simple form.

Let q = k/n� and δ = v(q + 1) − v(q). By FWT, in any WEQ every buyer
has either q or q + 1 items. Also, by Lemma 1, there is a WEQ where the price
of every item is δ.

4.1 The Case of Two Buyers

Consider a symmetric weighted game with two buyers and only two items K =
{h, l}, where wh ≥ wl. This simple case can be solved as follows. Let xl =
v(wl+wh)−v(wh), and xh = v(wl+wh)−v(wl), i.e. we set the payment of each
item to be its own marginal contribution to the set K. Then, for a partition P
where |S1| = |S2| = 1, (P,x) is a WEQ.

However, the described prices are not necessarily proportional. A proportional
outcome, which is also a WEQ, would be to pay xj = v(wj) for each item
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j ∈ {l, h}. If v is strictly subadditive, then there are also other proportional
WEQs where the buyers keep some of the profit. We next show that we can
always find a proportional WEQ for two buyers and any number of items. Note
that we only require that each value function will be subadditive.

Our main result for the weighted setting is as follows.

Theorem 5. Let G = 〈K,N,w, v1, v2〉 be a weighted game with two buyers,
then G admits a proportional WEQ.

The proof hinges on the idea of computing the marginal value of a unit of weight.
However in the general case this is an evasive notion that requires a nontrivial
case analysis (see full version). We bring here a simplified proof of the symmetric
unbalanced case, and explain the main ideas of the general case.

Proof (sketch). Indeed, let P = (S∗
1 , S

∗
2 ) be an optimal partition. For the sym-

metric case, denote H = w(S∗
1 ), L = w(S∗

2 ), and suppose that L < H . By

optimality, the gap H − L is minimal. We define δ = v(H)−v(L)
H−L , and argue that

it induces a WEQ (P,x), where x = δ ·w. Indeed, the profit of a buyer with items
of total weight q is r(q) = v(q)− δq. Since v(q) is concave, r(q) is also concave,
with maximum in q∗ ∈ {W/2� , %W/2&} (since δ is between m(SW/2� , 1) and
m(%SW/2& , 1)). Also, in P we have

(H − L)r1 = (H − L)(v(H) −Hδ) = (H − L)v(H)−H(v(H)− v(L))

= H · v(L)− L · v(H) = (H − L)(v(L)− Lδ) = (H − L)r2

This means that r1 = r2, and by minimality of the gap, buyers cannot get
closer to the theoretical optimal profit r(q∗): for any set of items S′

i, we have
|w(S′

i)− q∗| ≥ |w(S∗
i )− q∗|, and thus ri(q

′
i) ≤ r(qi).

For the general case, assume that both S∗
1 , S

∗
2 are non-empty (otherwise the

solution is fairly easy). Let qi = w(S∗
i ), w̌i = minj∈S∗

i
wj . Since value functions

are different, the marginal contribution of each unit of weight to each buyer
may also be different. We therefore replace the “slope” δ with four different
quantities y1, z1, y2, z2. We denote by yi, zi the normalized marginal value of
the “lightest” item below and above the threshold qi, respectively. Formally,
yi =

1
w̌i

(vi(qi)− vi(qi − w̌i)), and zi =
1

w̌−i
(vi(qi + w̌−i)− vi(qi)).

Next, set z∗i = maxd≥1

{
vi(qi+d)−vi(qi)

d ≤ y−i

}
. Intuitively, z∗i is the closest

slope to y−i that we can get by adding weight above the threshold qi. By its
definition, yi, y−i ≥ z∗i ≥ zi.

To complete the construction, we use z∗i as a proxy for the marginal value of a
unit. We define δ = max{z∗1 , z∗2}, and set the (proportional) prices xj = δwj . The
proof proceeds by showing that to improve the profit of a buyer, the total weight
of acquired items changes by less than w̌i. On the other hand, we show that if
such a small change is possible, a better partition than P can be constructed,
which is a contradiction to FWT. ��
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4.2 More than Two Buyers

A question that naturally arises is whether we can generalize Theorem 5, i.e.
prove that a WEQ always exists for any number of buyers, perhaps even with the
additional requirement of proportionality. A result by Gul and Staccheti [8] shows
that whenever there is a buyer whose value function violates gross-substitutes, it
is possible to construct an example (with additional unit-demand buyers) where
an equilibrium does not exist. While we cannot apply their construction directly,
it gives little hope that a WEQ exists in the general case of weighted games.

Indeed, Proposition 6 below shows that a WEQ is not guaranteed for multiple
buyers. We first show nonexistence of proportional WEQ.

Example 1. Consider a symmetric game G∗ where w1 = 5, w2 = 6, w3 = 7, and
v(5) = 5, v(6) = 6, v(7) = 6. Clearly in the optimal partition each buyer has a
single item. Suppose there is some proportional WEQ, where xj = δ · wj for all
j. Then by Envy-freeness (Lemma 3), all three buyers make the same profit, i.e.

r1 = r2 = r3 ⇒ v(5)− 5δ
(#1)
= v(6)− 6δ

(#2)
= v(7)− 7δ.

By Eq. (#1), δ = v(6) − v(5) = 1, whereas by (#2), δ = v(7) − v(6) = 0. A
contradiction. ♦

Proposition 6. For any n ≥ 3, there is a symmetric weighted game with n
buyers that does not have a WEQ at all.

An example proving the proposition appears in the full version. We hereby con-
struct an example with n = 4 buyers.

Example 2. Our gameG has 9 items in total, where the weights are (2, 2, 2, 2, 2, 3,
3, 3, 5).We define v(w) = min{w, 6}. We claim that the optimal partition must be
either P1 = ({5}, {3, 2, 2}, {3, 3}, {2, 2, 2}) or P2 = ({3, 2}, {5, 2}, {3, 3}, {2, 2, 2})
(up to permutations of items of the same type). See Fig. 1.

By the shape of v, the optimal partition minimizes |{i ∈ N : w(Si) < w′}| for
w′ = 1, then for w′ = 2, 3, 4, etc. Indeed, the total weight is 24, but it cannot be
divided in a balanced way. Thus we get that every optimal partition has total
weights of (5, 7, 6, 6). P1 and P2 are the only ways to construct such a partition.
Next, we want to assign payments.

By Lemma 4, we can set a uniform payment to each type of item, thus we
should determine the values of x2, x3 and x5. Now, by Envy-freeness (Lemma 3),
r3 = r4, and thus 0 = r3−r4 = (v(6)−3x2)−(v(6)−2x3) = 3x2−2x3. Similarly,
buyers 1 and 2 can trade the 5-item for the set {2, 3}. Thus x5 = x2 + x3. We
get that x must be a proportional payment vector, where x = δw for some unit
payoff δ. However, buyers 1,2 and 3 have a total weight of 5,7 and 6 respectively,
exactly as in the game G∗ in Example 1. As we show above, such a proportional
payment vector cannot be stable.2 ♦

2 The integrality gap of this example is LPR(G)
ILP (G)

= 23.5
23

= 47
46
.
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Fig. 1. The optimal partition P1

We argue that while examples with-
out WEQ exist even for symmetric buy-
ers, proportional payoffs can be derived
from an optimal partition using sim-
ple and heuristics. We show that the
stability of these payoffs is inversely
related to the gap between the to-
tal weight buyers acquire, supporting
this claim with a formal argument and
with simulations. First, we prove that
if there exists a partition that is almost
balanced, then together with the pro-
portional payoffs it forms a WEQ,
regardless of the value function v. Note
that when weights are small integers, there is typically an almost-balanced parti-
tion.3 We also generate weighted games from a simple distribution, showing that
the incentive of buyers to deviate grows as the partition becomes less balanced
(see full version).

Proposition 7. Let G = 〈K,N,w, v〉 be a weighted game with n symmetric
buyers. (a) If there is an almost-balanced partition of w, then G admits a pro-
portional WEQ. (b) symmetry is a necessary condition.

5 Games Over a Social Network

5.1 Network Model

Consider a social network H = 〈V,EH〉 (a directed graph), and a subset of
“influencers” K ⊆ V . Given some diffusion scheme in the network, every set
S ⊆ K influences some portion of the nodes V , whose size is denoted by IH(S).

Given such a social network H and a set of buyers (firms) N , we define a
symmetric game where buyers bid over a set of influential nodes K (the items),
trying to advertise to as many people (all nodes of H) as possible. The value
function of every buyer is thus vi(S) = v(S) = IH(S).4

We apply one of the most widely known diffusion schemes, called the inde-
pendent cascade model, which has been suggested by Goldenberg et al. [7] and
further promoted in [11]. We briefly describe the diffusion process.

In the Independent Cascade model, every edge in the network H has an
attached probability pu,u′ . Once a node u is activated, it tries to activate once
each neighbor u′, and succeeds w.p. of pu,u′ , independently of the state of any
other node. Once a node is activated, it remains active. The influence of a set
S, denoted by IH(S), is the expected number of nodes that end up as active if
we activate the set S.

3 For example, if there are at least n · maxj wj items with weight 1, then an almost-
balanced partition must exist.

4 We can define asymmetric games by using a different network Hi for each buyer.
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vi(S) = v(S) = IH(S) =
∑
u∈V

pr(u is activated|S is active).

This is equivalent to summing the probabilities of all percolations (subgraphs of
H) in which there is a directed path from some node in S to u. We should note
that IH(S) is a submodular function [11]. However, IH(S) does not necessarily
hold the gross-substitute condition.

While the independent cascade model seems to be more powerful than the
weighted model studied in the previous section, it turns out that no model gen-
eralizes the other. Indeed, we show in the full version a weighted value function
over 3 homogeneous items, that cannot be represented as the influence in any
graph H . Therefore, weighted value functions and influence value functions are
two different classes of submodular valuations. A natural question is whether a
WEQ always exists with two buyers in the independent cascade model. Unfor-
tunately, the answer is negative in the general case, but we can prove existence
is a special case of interest.

We say that a network H = 〈V,EH〉 is t-sparse (w.r.t the set K ⊆ V ), if every
node u ∈ V can be reached by at most t items from K.

Intuitively, t-sparsity means that the influence cones of different items hardly
intersect. A 1-sparse network means that the cones of influence are pairwise
mutually exclusive and thus that the influence is completely additive (a trivial
case). A 2-sparse network means that two cones may intersect, but never three
or more. A k-sparse network puts us back in the general case. In order to analyze
sparse networks, it will be useful to formally define synergy graphs.

5.2 Synergy Graphs and Sparse Social Networks

A synergy graph is an undirected graphM = 〈K,EM 〉 with non-negative weights,
where self-edges are allowed. It can thus be represented as a symmetric matrix,
which is also denoted by M . Every synergy graph M induces a value function
vM , where the value of a subset S ⊆ K is the sum of weights of edges between
items in the subset (including self edges), and edges going outside the subset.
That is,

vM (S) =
∑
j∈S

M(j, j) +
∑

j,j′∈S,j<j′
M(j, j′) +

∑
j∈S

∑
j′′ /∈S

M(j, j′′).

Lemma 8. A value function v over a set of items K can be described by a
synergy graph if and only if it can be described as the influence in a 2-sparse
network. I.e. there is M s.t. v = vM iff there is H s.t. v = IH .

As an intuition, the mapping is constructed s.t. M(j, j′) equals the expected
number of nodes that are influenced by both item j and item j′ (i.e. the in-
tersection of their influence cones). Fig. 2 demonstrates a network H and its
corresponding synergy graph M . Our main positive result in the network model
is the following.
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(a) The network H

1
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3

4

5

6

7

8 A

B

C

(b) The matrix M

A B C

A 1 2 1

B 2 0 2

C 1 2 2

total 4 4 5

(c) The synergy graph M

A C

B

2 2

1

1 2

Fig. 2. An example of a sparse network / synergy graph with three items A,B and
C. The maximal cut in M , which is also the optimal partition, is P ∗ = ({A,C}, {B}).
Then SW (P ∗) = v({A,C}) + v({B}) = 8 + 4 = 12.

Theorem 9. Let G = 〈K,N, vM 〉 be a symmetric game with 2 buyers over a
synergy graph M (or, equivalently, a 2-sparse network). Then G has a WEQ.

The outline of the proof is as follows. The maximal cut in M is the optimal
partition in G, and we set the payoff of each item j to be the average of her total

influence and her exclusive influence (i.e., xj = v({j})+M(j,j)
2 ), and show that x

induce a WEQ.
Unfortunately, if we relax any of the conditions in Theorem 9 (symmetry,

number of buyers, or sparsity) then the existence of a WEQ is no longer guar-
anteed.

6 Discussion

We considered combinatorial auctions without gross substitutes, and showed that
a Walrasian equilibrium (or, equivalently, a pure Nash equilibrium of the first
price auction) is guaranteed to exist under certain restrictions, with a special
focus on the case of few buyers.

In games based on capacities (weights) with subadditive production, we proved
that a WEQ must exist if there are two buyers or if there is an almost balanced
partition.

Finally, we showed that a WEQ always exists in a particular case of the
network model, when the network is sparse and featuring two identical competing
buyers Unfortunately, there may not be a WEQ if any of these conditions is
violated. Our results are summarized in Table 1.

Related work and implications Following Kelso and Crawford’s seminal paper,
multiple authors studied the implications of the gross substitutes restriction. In
particular, Lehmann et al. showed that only a tiny fraction of all submodular
value functions are gross substitutes [12]. Further, Gul and Stacchetti proved that
for any value function without this property (and with additional unit-demand
buyers), it is possible to construct a market with no WEQ [8]. However, the
construction by Gul and Stacchetti used an unbounded number of buyers/firms
(one for every item/worker).

Some recent papers show that despite the Gul and Stacchetti negative result,
the gross substitutes condition can be slightly relaxed. This is either by allowing
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Table 1. Existence results for the cases where a WEQ is guaranteed to exist are
marked with V. Cases marked with X mean that there are instances where no WEQ
exists.

homogeneous weighted games network games
# of buyers games near-balanced any 2-sparse (syn. graphs) any

n = 2, symm.
V (⇐) V (T. 5)

V (T. 9) X
n = 2, asym. V X

X (⇒,⇓)n ≥ 3, symm. (Kelso & V (P. 7a) X (P. 6) X
n ≥ 3, asym. Crawford [10]) X (P. 7b) X (⇓) X (⇓)

very restricted complementarities [15], or by introducing a modified version of
unit-demand [1]. Our results demonstrate that there are entire natural classes
of value functions where items are neither substitutes not complements, yet
existence of equilibrium can be guaranteed if the number of firms is low (and in
particular for two firms).

Integrality gap Dobzinski and Schapira [5] study upper and lower bounds on
the integrality gap of various submodular value functions. The integrality gap
is an important factor in the construction of efficient approximation algorithms
that find optimal allocations in combinatorial auctions. For general submodular
functions, they show that the (maximal) integrality gap is between 8

7 and 4
3 . Since

our construction implements theirs, we get that the lower bound of 8
7 still applies

for value functions based on sparse networks. As for weighted functions, the
integrality gap of Example 2 is 47

46 , which gives us a lower bound. An interesting
challenge is to find the maximal integrality gap of instances that correspond to
weighted or network games. In particular, it is an open question whether tighter
bounds can be proved compared to general submodular functions.

Possible extensions While most real world networks are not 2-sparse, many of
them demonstrate other forms of sparsity [6,13]. We would like to develop a
heuristic solution similar to the one suggested for weighted functions, and test
whether it provides us with an exact or approximate WEQ in a more general
class of sparse networks.

Another direction concerns the context of the competition. In our network
model the firms compete only for the services of the influencing nodes, in sep-
aration from other arenas in which they might affect one another. However, if
companies are also competing for market share, then there are externalities:
users in the network that are exposed to an ad of one company may become
less likely to purchase the products of its competitor. Refining the model can
contribute to the literature on competitive diffusion in networks (see e.g. [9]).

Other natural directions would be to study the relation between the integrality
gap of various classes of valuation functions (such as those studied in [5,3]), and
the number of buyers. In particular, it would be interesting to find new classes
of valuations where the integrality gap with few buyers is trivial—and thus a
Walrasian equilibrium exists.
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Abstract. We study the existence of Cournot equilibria in multimarket
oligopolies under the additional restriction that every firm may sell its
product only to a limited number of markets simultaneously. This situa-
tion naturally arises if market entry is subject to a valid license and each
firm holds a fixed number of licenses only, or, equivalently, if the firms’
short-term assets only suffice to serve up to a certain number of markets.
We allow for firm-specific market reaction functions modeling hetero-
geneity among products. As our main result, we show the existence of a
Cournot equilibrium under the following assumptions stated informally
below: (i) cost functions are convex; (ii) the marginal return functions
strictly decrease for strictly increased own quantities and non-decreased
aggregated quantities; (iii) for every firm, the firm-specific price functions
across markets are identical up to market-specific shifts. While assump-
tions (i) and (ii) are frequently imposed in the literature on single market
oligopolies, only assumption (iii) seems limiting. We show, however, that
if it is violated, there are games without a Cournot equilibrium.

1 Introduction

Cournot’s work on industrial organization [3] doubtlessly represents a landmark
of economic theory and is one of the earliest reference points of game theory.
To date, his model of oligopolistic competition remains a corner stone of em-
pirical and mathematical analysis in these fields. Most of the work on the ex-
istence of equilibria in Cournot oligopolies has to make strong assumptions on
the topological properties of the firms’ strategy sets and their utility functions.
Commonly it is assumed that the strategy space of each firm corresponds to a
closed interval on the real line (and, thus, forms a convex and compact subset
of a one-dimensional Euclidean space) and utilities are continuous and quasi-
concave. This way, classical fixed point theorems of Kakutani [7] and adapted
versions (cf. Debreu [4], Glicksberg [5]) can be applied. In the past decades, the
assumptions on the quasi-concavity of the utility functions have been consid-
erably relaxed, see Vives [18] for an excellent survey. E.g., Novshek [11] only
requires that the marginal revenue of each firm is decreasing in the aggregate
quantities of other firms. Starting with Topkis [15] several works (cf. Amir [1],

R. Lavi (Ed.): SAGT 2014, LNCS 8768, pp. 182–193, 2014.
c© Springer-Verlag Berlin Heidelberg 2014
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Kukushkin [8], Milgrom and Roberts [9], Milgrom and Shannon [10], Topkis [16],
Vives [17]) discovered that Tarski’s fixed-point theorem (cf. [14]) yields the ex-
istence of an equilibrium if the underlying game is supermodular, that is, the
strategy space forms a lattice and the marginal utility of each firm is increasing
in any other firm’s output. Like this, one can obtain existence results without
requiring quasi-concavity of utilities.

In multimarket oligopolies, firms may produce quantities for a set of markets;
see Bulow et al. [2] and Topkis [16, §4.4.3]. In the classical model of Bulow et
al., each firm has a firm-specific set of markets on which positive quantities of
a homogeneous good can be offered. The utility of each firm equals the profit
from selling the produced goods on the markets minus the total production cost.
Similar to the single market case, under the assumption that the utilities of
the firms are continuous and quasi-concave in the outputs, the existence of an
equilibrium follows by standard fixed-point theorems in the spirit of Kakutani.
Analogously, if the underlying game is supermodular, the application of Tarski’s
fixed-point theorem yields the existence of an equilibrium; see Topkis [16, §4.4.3].

In this paper, we study multimarket oligopolies in which firms may only offer
positive quantities on a limited number of markets. Such situations arise for
instance if governmental policies oblige each firm to be engaged in at most a
fixed number of markets at a time, e.g., by issuing a limited number of licenses to
enter a market (see, e.g., Stähler and Upmann [13]). Another typical situation in
which support constraints occur is when the firms’ short-term assets only suffice
to serve a certain number of markets.1 We model these situations by assuming
that every firm i may only choose positive production quantities for up to ki ∈ N

many markets out of a firm-specific set of markets. Formally, the restriction of
serving at most ki markets at a time with positive quantities imposes a support
restriction on the vector of production quantities of firm i.

In previous work (cf. Harks and Klimm [6]), we considered a class of games
in which a strategy of a player can be represented as a tuple consisting of an
action and a (one-dimensional) demand quantity. Under certain regularity as-
sumptions on the allowable class of utility functions, the main result establishes
the existence of a pure Nash equilibrium. As a special case of this result it is
shown that multimarket oligopolies in which each firm procures a homogeneous
product only on a single market at a time possess an equilibrium provided that
market price functions are equal across markets, see [6, §4]. Regarding multi-
market oligopolies, in this paper we prove a much more general result showing
that there exist (pure) equilibria even for general support constraints and player-
specific market reaction functions (allowing for heterogeneous products). These
generalizations also require a substantially different proof technique. The main
proof idea of the result in [6] crucially relies on the decoupled structure of strate-
gies. As each firm uses only a single market at a time, there are only two local
effects whenever a firm changes its strategy: only the quantities of the “new”

1 As an illustration, think of a company running several ice cream vans that sell ice
cream on local beaches. In the short term, the number of vans is fixed and their
number imposes an upper bound on the number of beaches that can be visited.
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and the “old” market change. In the case of multimarket oligopolies with general
support constraints, however, whenever a firm changes the current support set
(even if it adds only a single market at a time to its support set), the deviating
firm will adapt the quantities on all markets contained in its support set be-
cause of the coupling in the production cost. This adaption may trigger global
cascading effects on possibly all markets since those firms having support sets
intersecting with that of the deviating firm will change their quantities, which,
in turn, triggers the adaption of the production quantities by further firms.

Our Results. We study multimarket oligopolies with restrictions on the num-
ber of markets on which each firm can offer positive quantities. In our model,
every firm has access to a firm-specific set of markets and is associated with a
firm-specific non-decreasing and convex cost function. We allow for firm-specific
market price functions modeling the price effect of heterogeneous products. The
main result of this paper is an existence theorem for Cournot equilibria in
multimarket oligopolies assuming that (i) the firm-specific price functions are
non-increasing; (ii) the marginal return functions strictly decrease for strictly
increased own quantities and non-decreased aggregated quantities; (iii) for ev-
ery firm the firm-specific price functions per markets are identical up to market
specific shifts. The proof of our existence result relies on a combination of ideas.
We first show that for any strategy profile, if a firm can improve, there is always
a restricted improvement that only adds a single new market to the support but
also yields an improvement. We further introduce the notion of a partial equi-
librium, a strategy profile that is stable against unilateral quantity deviations
assuming fixed support sets. We show (using Kakutani’s fixed point theorem)
that partial equilibria always exist. Based on these two properties, we design an
algorithm that computes an equilibrium. Our algorithm relies on iteratively com-
puting a partial equilibrium and, whenever a firm can improve, this firm deviates
to a restricted best reply defined as the best restricted improvement. After such
a restricted best reply, the algorithm recomputes the partial equilibrium and
reiterates. We prove that a firm-specific load vector of the partial equilibria lex-
icographically decreases in every iteration and, thus, the algorithm terminates.
The key for proving this is to derive certain monotonicity properties of the com-
puted partial equilibrium after executing a restricted best reply. It might seem
surprising that there is enough structure on the thus computed partial equilibria
given they are computed only implicitly using Kakutani’s fixed-point theorem as
a black box. We finally show that our existence result is “tight” in the sense that
if the requirement of having essentially “identical markets per firm” is dropped,
there is a game without an equilibrium. We conclude the paper by outlining an
important generalization of our model.

2 The Model

In a multimarket oligopoly, there is a non-empty and finite set N of firms and a
non-empty and finite set M of markets each endowed with a non-increasing firm-
specific market reaction function pi,m,m ∈ M, i ∈ N . A strategy of firm i ∈ N
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is to choose a production quantity xi,m for each market m. Given a vector
xi = (xi,m)m∈M of production quantities of firm i, the support of firm i is
S(xi) = {m ∈M : xi,m > 0}. We impose two restrictions on the support of each
firm i in each strategy profile. First, we assume that each firm is associated with
a subset Mi ⊆M of markets that it can potentially procure, i.e., we require that
S(xi) ⊆Mi. Furthermore, we assume that there is an upper bound ki ∈ N with
ki ≤ |Mi| on the number of markets that firm i may serve in a strategy profile,
i.e, we require that |S(xi)| ≤ ki.

Formally, we derive a strategic game as follows. The set Xi of feasible strate-
gies of firm i is defined as

Xi =
{
xi = (xi,m)m∈M ∈ Rm

≥0 : S(xi) ⊆Mi and |S(xi)| ≤ ki
}
.

The Cartesian product X =×i∈N
Xi of the firms’ sets of feasible strategies is

the joint strategy space. An element x = (xi)i∈N ∈ X is called a strategy profile.
With a slight abuse of notation, for a firm i and one of its strategies xi ∈ Xi, we
write xi =

∑
m∈M xi,m for the total production quantity of firm i. Analogously,

for a market m, and a strategy profile x ∈ X , we write xm =
∑

i∈N xi,m for the
total quantity offered on market m under strategy profile x. The utility of firm i
under strategy profile x ∈ X is then defined as ui(x) =

∑
m∈M pi,m(xm)xi,m −

ci(xi). In the remainder of the paper, we will compactly represent the strategic
game by the tuple

G = (N, (Mi)i∈N , (pi,m)i∈N,m∈Mi, (ci)i∈N , (ki)i∈N ).

We call G a multimarket oligopoly with support constraints.
We use standard game theory notation. For a player i ∈ N and a strategy

profile x ∈ X , we write x as (xi,x−i). A Cournot equilibrium is a strategy profile
x ∈ X such that no firm can improve its utility by a unilateral deviation, i.e.,
ui(x) ≥ ui(yi,x−i) for all i ∈ N and yi ∈ Xi.

We impose the following assumptions on the market reaction and cost func-
tions, respectively.

Assumption 1. For each firm i ∈ N the cost function ci : R≥0 → R≥0 is
non-decreasing, convex and differentiable.

Assumption 2. For all i ∈ N,m ∈ Mi, the market reaction function pi,m :
R≥0 → R≥0 has the following properties:

(a) The market reaction function pi,m is non-increasing.
(b) The return function x �→ pi,m(x+x0)x is differentiable with respect to x for

all residual quantities x0 ∈ R≥0.
(c) There exists x̄i,m > 0 with pi,m(x̄i,m) = 0.
(d) For all x, x′, x0, x

′
0 ∈ R≥0 with x < x′ and x+ x0 ≤ x′ + x′

0 ≤ x̄i,m we have
∂
∂x

(
pi,m(x+ x0)x

)
> ∂

∂x′
(
pi,m(x′ + x′

0)x
′).

The above Assumption 2 implies that the marginal profits of every firm are de-
creasing in both, the own quantity and the aggregate quantities of the competi-
tors. Bulow et al. [2] call this property strategic substitutes : A more aggressive
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play of one firm leads to a quantity reduction of the other competing firms.
Assumption 2(c) implies that for every firm, there is an upper bound on the
quantity that a firm will produce, hence, the space of feasible quantity vectors
can be bounded. It is a simple observation that Assumption 2(d) is, e.g., satisfied
if the market reaction functions are concave, decreasing and differentiable.

Finally, we require that the set of firm-specific market reaction functions con-
sists of “compatible” functions, that is, up to market-specific shifts the firm-
specific market reaction functions must be identical.

Assumption 3. For every market m ∈M there is a constant x0,m ∈ R≥0 such
that for all i ∈ N , there is a function pi : R≥0 → R≥0 with pi,m(x) = pi(x+x0,m)
for all m ∈Mi.

This last assumption is restrictive since it requires that different markets have
identical player-specific responses for equal aggregated quantities (or identical
player-specific responses up to market-specific shifts). In Section 5, we show,
however, that this assumption is necessary in the sense that, if it is relaxed, there
are multimarket oligopolies with support constraints not possessing a Cournot
equilibrium.

In the remainder of this paper, whenever a game satisfies Assumption 3,
we slightly abuse notation as we set xm = x0,m +

∑
i∈N xi,m for all m ∈ M .

This allows us to write the utility of player i in strategy profile x as ui(x) =∑
m∈M pi(xm)xi,m − ci(xi).

3 Existence of a Cournot Equilibrium

To show the existence of a Cournot equilibrium in multimarket oligopolies with
support constraints we first introduce a relaxation of the Cournot equilibrium
concept which we call partial equilibrium. Roughly speaking, a strategy profile
is a partial equilibrium, if it is a Cournot equilibrium in a game in which the set
of accessible markets of each firm i is restricted to a certain active set Qi ⊆Mi

of cardinality |Qi| = ki. We show – using standard fixed point arguments –
that partial equilibria always exist and are essentially unique when fixing the
underlying active set vector (Qi)i∈N .

For a given partial equilibrium, we further show that if a firm can improve,
there is always a restricted improvement that exchanges only one market in the
deviating firm’s active set. On these two ingredients we design an algorithm
that iteratively computes a partial equilibrium and, whenever possible let a firm
deviate to a restricted improvement. The main result of this paper shows that
the algorithm terminates after finitely many iterations and outputs a Cournot
equilibrium.

Partial Equilibria. For a firm i, we call a set Qi ⊆Mi of ki markets an active
set of firm i.
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Definition 1 (Partial Equilibrium). A strategy profile x is a partial equi-
librium, if for each i ∈ N there is an active set Qi such that Si(xi) ⊆ Qi and
ui(yi,x−i) > ui(x) for all yi ∈ Xi with S(yi) ⊆ Qi.

If x and (Qi)i∈N satisfy the conditions of Definition 1, we active sets say that
x is a partial equilibrium for the active set vector (Qi)i∈N . We proceed to prove
that for each active set vector (Qi)i∈N there is a partial equilibrium for (Qi)i∈N .

Lemma 1 (Existence of a Partial Equilibrium). Let G be a multimarket
oligopoly with support constraints for which Assumptions 1 and 2 hold. For each
vector of active sets (Qi)i∈N , there is a partial equilibrium x for (Qi)i∈N .

The proof follows by applying classical fixed point results for concave games with
convex and compact strategy spaces [5,7].

We proceed to prove that for a fixed active set vector (Qi)i∈N , the partial
equilibria for (Qi)i∈N are essentially unique. In order to prove this result, we
need the following lemma that expresses necessary optimality conditions for a
partial equilibrium.

Lemma 2. Let G be a multimarket oligopoly with support constraints for which
Assumptions 1 and 2 hold. Let x be a partial equilibrium for (Qi)i∈N . Then, the
following conditions hold for all i ∈ N and all m ∈ Qi:

(a) ∂
∂xi,m

ui(x) ≤ 0.

(b) ∂
∂xi,m

ui(x) = 0, if xi,m > 0.

We are now ready to prove that a given vector (Qi)i∈N of active sets, the
partial equilibrium for the active sets (Qi)i∈N is essentially unique in the sense
that all such equilibria give rise to the same aggregated production quantities
on all markets.

Lemma 3 (Uniqueness of Partial Equilibria). Let G be a multimarket
oligopoly with support constraints for which Assumptions 1 and 2 hold. Let x
and y be two partial equilibria for the active set vector (Qi)i∈N . Then, xm = ym
for all m ∈M .

The proof can be found in the full version.

Restricted Improvements. For a partial equilibrium x for the active sets
vector (Qi)i∈N , we introduce the notion of a restricted improvement from x.

Definition 2 (Restricted Improvement, Restricted Best Reply). Let G
be a multimarket oligopoly with support constraints and let x be a partial equi-
librium for the vector of active sets (Qi)i∈N .

1. A restricted improvement for firm i is a strategy zi ∈ Xi with |S(zi)\Qi| ≤ 1
and ui(zi,x−i) > ui(x).

2. A restricted best reply maximizes ui(·,x−i) among all restricted improve-
ments.

Note that a restricted best reply of player i ∈ N to x need not always exist. If
it exists, say zi ∈ Xi, it always satisfies ui(zi,x−i) > ui(x).
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Equilibrium Existence. We are now ready to state an algorithm that actually
computes an equilibrium for multimarket oligopolies with support constraints
provided Assumptions 1−3 are satisfied.

The algorithm starts with arbitrary active set vector (Qi)i∈N and computes
a partial equilibrium x for (Qi)i∈N . Here, we assume that an oracle outputs an
equilibrium (or, we apply Rosen’s continuous best response dynamics, which are
guaranteed to converge under rather mild conditions on utility functions [12]).

As long as there is a player i that can improve its utility by deviating from
x, the algorithm computes a restricted best reply in which only one market
enters the active set of firm i. Then, a partial equilibrium is recomputed and the
algorithm reiterates.

Algorithm 1.
Input: G = (N, (Mi)i∈N , (pi)i∈N , (ci)i∈N , (ki)i∈N )
Output: Cournot equilibrium x

1. Choose an active set vector (Qi)i∈N arbitrarily.
2. Compute a partial equilibrium x for (Qi)i∈N .
3. If there is a firm i ∈ N who can improve unilaterally,

(a) compute a restricted best reply zi ∈ Xi

(b) choose an active set Q′
i ⊇ S(zi) with |Q′

i \Qi| = 1 arbitrarily
(c) Qi ← Q′

i

(d) proceed with (2).
4. Else, output x.

Theorem 4. Let G be a multimarket oligopoly with support constraints for
which market reaction functions and cost functions satisfy Assumptions 1−3.
Then, Algorithm 1 computes a Cournot equilibrium for G.

4 Proof of the Theorem

In this section, we present a formal proof of Theorem 4. The proof consists of
two steps showing that Algorithm 1 is correct and that it terminates.

For the remainder of this section we consider a multimarket oligopoly with
support constraints G that satisfies Assumptions 1−3. Recall that by Assump-
tion 3, for all i ∈ N and m ∈ Mi we can represent the market price function
pi,m by a single function pi (see the input of Algorithm 1).

Correctness of the Algorithm. For the correctness of the algorithm, we only
have to show that Step (3a) is well-defined, i.e., whenever there is a unilateral
improvement for some firm i ∈ N , then, there is also a restricted improvement
for firm i. The proof can found in the full version.
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Lemma 4 (Existence of restricted improvements). Let x be a partial equi-
librium of G for the active set vector (Qi)i∈N . If firm i can improve unilaterally,
then there exists a restricted improvement zi ∈ Xi.

Termination of the Algorithm. We finally have to show that Algorithm 1
terminates. We do this by proving a series of lemma showing that whenever a
partial equilibrium or a restricted best response is computed, a vector-valued
potential monotonically decreases.

First, we show that whenever a firm plays a restricted best reply in which one
market enters its support, then the total production quantity on the market that
entered the support after the best reply is strictly smaller than the production
quantity on the market that left the active set. Furthermore, for all markets that
are contained in the support set of the deviating firm both before and after the
best reply, the quantity offered by the deviating firm may only decrease.

Lemma 5. Let x be a partial equilibrium of G for the active set vector (Qi)i∈N .
Let yi be a restricted improvement of firm i and let r ∈Mi, s ∈ Qi be such that
S(yi) ⊆ (Qi \ {s}) ∪ {r}. Then, the following properties hold:

(a) xr − xi,r + yi,r < xs,
(b) xm − xi,m + yi,m ≤ xm for all m ∈M \ {r, s}.
Proof. We first prove (a). For a contradiction, assume xr − xi,r + yi,r ≥ xs. We
distinguish the following three cases:

First case yi,r > xi,s. As x is a partial equilibrium Lemma 2 implies 0 ≥
∂

∂xi,s

(
pi(xs)xi,s

)
− c′i(xi). Since the strategy yi is a restricted best reply and

yi,r > xi,s ≥ 0, we get ∂
∂yi,r

(
pi(xr − xi,r + yi,r)yi,r

)
= c′i(yi). We obtain

c′i(xi) ≥
∂

∂xi,s

(
pi(xs)xi,s

)
>

∂

∂yi,r

(
pi(xr − xi,r + yi,r) yi,r

)
= c′i(yi). (1)

Using that ci is convex, we derive that yi < xi. If ki = 1, this is a contradiction
to yi,r > xi,s. If, on the other hand, ki > 1 there is another market m̃ ∈ Qi \ {s}
with yi,m̃ < xi,m̃. We then obtain along the same lines

c′i(yi) ≥
∂

∂yi,m̃

(
pi(xm̃ − xi,m̃ + yi,m̃) yi,m̃

)
>

∂

∂xi,m̃

(
pi(xm̃)xi,m̃

)
= c′i(xi),

which contradicts (1).
Second case yi,r = xi,s. We first show that firm i does not change its supplied

quantity on all markets used in both strategies xi and yi, i.e., xi,m = yi,m for
all markets m ∈ Qi \ {s}. For the sake of a contradiction, let us assume that
there is a market m̃ ∈ Qi \ {s} with xi,m̃ �= yi,m̃. We distinguish two cases. If
xi,m̃ < yi,m̃, we use that x is a partial equilibrium and that yi is a restricted
improvement and obtain

0 ≥ ∂

∂xi,m̃

(
pi(xm̃)xi,m̃

)
− c′i(xi)

>
∂

∂yi,m̃

(
pi(xm̃ − xi,m̃ + yi,m̃) yi,m̃

)
− c′i(yi) = 0,

(2)
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which is a contradiction! If, on the other hand, xi,m̃ < yi,m̃, we obtain the same
contradiction as in (2), but with all inequality signs reversed. We conclude that
xi,m = yi,m for all markets m ∈ Qi \ {s}. This implies

ui(yi,x−i)− ui(x) = pi(xr − xi,r + yi,r) yi,r − pi(xs)xi,s ≤ 0.

Thus, firm i does not improve, a contradiction to the fact that yi is a restricted
best response of firm i.

Third case yi,r < xi,s. Consider the strategy wi = (wi,m)m∈M in which firm
i plays as in strategy yi except that the quantity yi,r is put on market s instead
of market r and market r is not served at all. Formally,

wi,m =

⎧⎪⎨⎪⎩
yi,m, if m ∈ Qi \ {s}
yi,r, if m = s

0, otherwise.

We observe that xs − xi,s + wi,s < xs as wi,s = yi,r < xi,s. We obtain

ui(wi,x−i) =
∑
m∈M

pi(xm − xi,m + wi,m)wi,m − ci(wi)

= ui(yi,x−i)− pi(xr−xi,r+yi,r) yi,r + pi(xs−xi,s+wi,s)wi,s

> ui(yi,x−i) > ui(x), (3)

where the first inequality in (3) follows from

xs − xi,s + wi,s < xs ≤ xr − xi,r + yi,r

and the assumption that market reaction functions are non-increasing. As S(y′
i) ⊆

S(xi) this is a contradiction to the fact that x is a partial equilibrium.
We proceed to show part (b) of the statement of the lemma. Let us assume for

a contradiction that there is a market m̃ ∈M \{r, s} with xm̃−xi,m̃+yi,m̃ > xm̃

and, hence, yi,m̃ > xi,m̃. It follows that

c′i(xi) ≥
∂

∂xi,m̃

(
pi(xm̃)xi,m̃

)
>

∂

∂yi,m̃

(
pi(xm̃ − xi,m̃ + yi,m̃) yi,m̃

)
= c′i(yi), (4)

which implies together with the convexity of ci that yi < xi. This implies that at
least one of the following two cases holds: (i) yi,r < xi,s; or (ii) there is a market
m ∈ Qi \ {s} with yi,m < xi,m.

We proceed to derive contradictions for both cases. First, suppose that case
(i) holds. Using xr − xi,r + yi,r < xs from the first part of the statement of this
lemma, we obtain

c′i(yi) ≥
∂

∂yi,r

(
pi(xr − xi,r + yi,r) yi,r

)
>

∂

∂xi,s

(
pi(xs)xi,s

)
= c′i(xi), (5)

a contradiction to (4).
Next, suppose that (ii) holds, i.e., there is a market m ∈ Qi \ {s} with yi,m <

xi,m and, thus, xm − xi,m + yi,m < xm. The same calculations as in (5) where
we replace r and s by m give a contradiction to (4). ��
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Second, we show that whenever a firm plays a restricted improvement in which
one market enters its active set, then after recomputing a partial equilibrium,
the total quantity offered on each market may only decrease. The proof can be
found in the full version.

Lemma 6. Let x be a partial equilibrium of G for the active set vector (Qi)i∈N ,
yi be a restricted improvement of firm i with S(yi) ⊆ Q′

i, Q
′
i = (Qi ∪ {r}) \

{s}, s ∈ Qi, r ∈ Mi \ Qi. Let (ỹi, x̃−i) be a partial equilibrium for the active
set vector (Q′

i)i∈N where Q′
j = Qj for all j ∈ N \ {i}. Then, the following two

properties hold:

(a) x̃r − x̃i,r + ỹi,r ≤ xr − xi,r + yi,r.
(b) x̃m − x̃i,m + ỹi,m ≤ xm for all m ∈M \ {r}.

We are now ready to prove that Algorithm 1 terminates.

Lemma 7 (Termination). Algorithm 1 terminates.

Proof. To prove that Algorithm 1 terminates, we consider the function

L :×
i∈N

2Mi →×
i∈N

R2
≥0, (Qj)j∈N �→

(
Li((Qj)j∈N )

)
i∈N

, with

Li

(
(Qj)j∈N

)
=
(
L1
i

(
(Qj)j∈N

)
, L2

i

(
(Qj)j∈N

))
=
(
max
m∈Qi

xm,
∣∣arg max

m∈Qi

xm

∣∣),
for all i ∈ N , where x is an arbitrary partial equilibrium for the active set vector
(Qi)i∈N . In words, L maps each active set vector (Qi)i∈N to the vector that
contains for each player (under a partial equilibrium x for the active set vector
(Qi)i∈N ) the tuple of the maximum aggregated supply that firm i experiences
among the markets contained in Qi and the number of markets for which this
maximum is attained. Note that L is well-defined as, by Lemma 3, for a given
active set vector (Qi)i∈N the aggregated demands for all markets are unique for
all partial equilibria for (Qi)i∈N .

Let us denote by L̃
(
(Qj)j∈N

)
the vector that contains the |N | tuple of

L
(
(Qj)j∈N

)
in non-decreasing lexicographical order, i.e.,

L̃1
i

(
(Qj)j∈N

)
≥ L̃1

i+1

(
(Qj)j∈N

)
,

and L̃2
i

(
(Qj)j∈N

)
≥ L̃2

i+1

(
(Qj)j∈N

)
, if L̃1

i

(
(Qj)j∈N

)
= L̃1

i+1

(
(Qj)j∈N

)
.

We claim that L̃ decreases lexicographically during the execution of Algo-
rithm 1. To see this, fix an active set vector (Qi)i∈N with Qi ⊆Mi for all i ∈ N
and an arbitrary partial equilibrium x for (Qi)i∈N . If there is no firm with a
profitable unilateral deviation, then there is nothing left to show as we have
reached a Cournot equilibrium. So, let us assume that there is a firm i with
a strategy yi ∈ Xi such that ui(yi,x−i) > ui(x). Lemma 4 implies that the
strategy zi chosen in Line (3a) of Algorithm 1 yields also an improvement of
firm i. We denote the partial equilibrium recomputed in Line (2) of Algorithm 1
by (z̃i, x̃i).
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For all m ∈ M \ {r} we obtain x̃m − x̃i,m + z̃i,m ≤ xm using Lemma 6.
Furthermore, we obtain

x̃r − x̃i,r + z̃i,rz ≤ xr − xi,r + yi,r < xs, (6)

where the first inequality follows from Lemma 6 and the second inequality follows
from Lemma 5. For firm i, the tuple Li

(
(Qi)i∈N

)
does decrease because firm i

leaves market s with maximal aggregated quantity and using (6) the aggregated
quantity on the new market r settles strictly below the old aggregated quantity
on s. For all firms j ∈ N \ {i} with maxm∈Qj xm ≥ xs, we conclude that the
tuple Lj

(
(Qi)i∈N

)
does not increase since the maximum was not attained at s

and s is the only market on which the aggregated quantity increases. Finally, for
all firms j ∈ N \ {i} with maxm∈Qj xm < xs we observe that maxm∈Qj xm < xs

since the aggregated quantity on r does not increase beyond xs as shown in (6).
We conclude that L̃ decreases lexicographically.

Since there are only finitely many active set vectors (Qi)i∈N , Algorithm 1
terminates after a finite number of steps and outputs a Cournot equilibrium. ��

5 Violation of Assumptions

In this section, we show that our assumptions on the market price functions
are necessary conditions in the sense that if one of them is violated, a Cournot
equilibrium may fail to exist. Since Assumption 2 frequently appears in the
literature on Cournot equilibria and some kind of regularity of the market price
functions is already necessary for games with a single market (cf. Novshek [11]),
we here show only the necessity of the critical Assumption 3.

Proposition 1. There is a multimarket oligopoly with support constraints for
which market reaction functions and cost functions satisfy Assumptions 1−2 that
does not admit a Cournot equilibrium.

The proof can be found in the full version.

6 Conclusions

We studied multimarket oligopolies in which players face a bound on the number
of markets they can be engaged in simultaneously. We assumed that the firms’
cost functions are convex and the player-specific market reaction functions are
concave. We proved that a Cournot equilibrium is guaranteed to exist provided
that the player-specific market reaction functions on the markets are identical
up to a market-specific shift in the argument. While this condition seems may
seem very demanding, we further showed that if this assumption is violated, a
Cournot equilibrium need not exist. We see this as a first step towards a better
understanding of multimarket oligopolies with market access restrictions.
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Abstract. We undertake a formal study of the value of targeting data
to an advertiser. As expected, this value is increasing in the utility differ-
ence between realizations of the targeting data and the accuracy of the
data, and depends on the distribution of competing bids. However, this
value may vary non-monotonically with an advertiser’s budget. Similarly,
modeling the values as either private or correlated, or allowing other ad-
vertisers to also make use of the data, leads to unpredictable changes in
the value of data. We address questions related to multiple data sources,
show that utility of additional data may be non-monotonic, and pro-
vide tradeoffs between the quality and the price of data sources. In a
game-theoretic setting, we show that advertisers may be worse off than
if the data had not been available at all. We also ask whether a publisher
can infer the value an advertiser would place on targeting data from the
advertiser’s bidding behavior and illustrate that this is impossible.

1 Introduction

Good targeting is paramount to successful advertising: showing the right ad to
the right person is beneficial to all parties involved. On the other hand, poor
targeting is wasteful: knowing about the latest car is of limited use to someone
who only commutes by bike; ads for umbrellas are spam to someone who lives
in the desert. In the past few years several companies have begun assisting ad-
vertisers in their targeting efforts. Firms like BlueKai and eXelate build profiles
of web users and classify them into different interest categories, such as those
interested in buying a new car, traveling to Barcelona, or with an obsession over
the latest gadget. Data management is a multi billion dollar business, but there
has been little analysis characterizing the value data to an advertiser.

An advertiser usually knows which segments of the population she wants
to pitch her products to. However, these may not be perfectly aligned with the
classification available from the firms above. For example, a hotel owner in Milan
is not explicitly interested in Americans going to Barcelona, but does know that
they may respond better than the average individual to her pitch since they
have already expressed willingness to travel internationally. How much would
the hotel owner be willing to pay for the “travel to Barcelona” demographic?
On the other hand, suppose she instead appeals to people interested in fashion.
Although not all of them have expressed interest to travel, they may be tempted
by a fashion week promotion that she is running. How much should she pay for
this segment? What if she buys the two segments together?

R. Lavi (Ed.): SAGT 2014, LNCS 8768, pp. 194–205, 2014.
c© Springer-Verlag Berlin Heidelberg 2014
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At first glance, the answer is relatively simple: by using the additional tar-
geting the advertiser increases the value of the “typical” user seeing her pitch,
and thus the value for the targeting data is bounded above by the difference in
the two values. In a similar fashion, the quality of targeting, which accounts for
the alignment between the segmentation provided by the data provider and that
desired by the buyer also comes into play, and higher quality (better aligned)
targets should garner higher prices. However, for online advertisements, the im-
pressions will be sold at auction, making the analysis more subtle. We show that
the actions of other bidders as well as the broader competitive landscape play a
big role in determining the value of the data. We outline our results below:

Model and Basics (Sections 2 and 3). We formalize the problem and present
basic findings. As expected, we prove that the value for the data is higher for
data segments that occur more frequently, are closely aligned with the targeting
criteria, and have a larger impact on whether the advertiser wins the auction.

Budgets (Section 3.3). We show that the addition of a budget constraint
changes the nature of the optimization problem, as bidders no longer bid their
true value. This leads to potentially counterintuitive behavior, where an increase
in a budget results in a lower valuation for the data in an optimal solution.

Private and Correlated Values (Section 3.4). The presence of correlated values
also changes the underlying optimization problem. We show that the value of
data crucially depends on the competition, and one may do better trying to
entice others to buy the data rather than spending the money yourself.

Game Theoretic Setting (Section 4). We characterize the nature of equilibria
in a game where multiple buyers simultaneously decide whether to purchase
targeting data. We show that a pure equilibrium need not exist, and advertisers
can be worse off, compared to a situation where no targeting data is present.

Multiple Data Sources (Section 5). We study the problem of selecting from
multiple independent data sources. We show that the value of the data is non-
monotone in the number of the sources, even if they are all identical, and give a
prior-independent bound on the value of data as a function of its quality.

Value to Publishers (Section 6). We prove that simply observing an advertiser’s
bids on a large number of heterogeneous impressions does not provide enough
information for a publisher to infer the advertiser’s value for the data.

1.1 Related Work

A large body of existing work studies the effect of targeting in auctions, but most
of this work is from the perspective of the publisher. [15] addresses the question of
whether a seller should enable buyers to improve targeting in a correlated values
auction by revealing information about the quality of the seller’s goods. More
recently, [9] and [14] consider the question of when improved targeting increases
a seller’s revenue in an auction where the buyers have independent private values.
These papers all suggest that it is often beneficial for a seller to enable buyers
to more finely target in an auction. Finally, [1] analyzes how revenue is affected
by the asymmetries in information possessed by different participants and finds
that such asymmetries can sometimes lead to adverse revenue effects.
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A related thread of analysis considers revenue optimization strategies for an
auctioneer with targeting data. [7] explores how an auctioneer selling a prob-
abilistic good might reveal partial information to maximize its revenue. [12]
considers a similar problem in a discrete setting with many goods. And [2] stud-
ies the mechanism design problem where a seller might use the asymmetry of
information to maximize his revenue. All of these results describe the effects of
additional data on the seller’s revenue and the overall welfare. In this work we
tackle the converse problem of the value of data to an individual buyer.

There have also been papers on how targeting affects market equilibria when
there are multiple publishers. [10] considers the question of how cookie-matching
affects the market equilibrium in a model in which advertisers can use a cookie
from one publisher to better target users on other publishers. And [3] inves-
tigates the question of how enabling advertisers to target certain segments of
the population would affect the market equilibrium for advertising in a model
of informative advertising. This work differs from our work in that it does not
consider the underlying auctions that are used to sell advertising opportunities.

Another line of work is on advertiser optimization. Here the focus is either on
getting a fair or representative allocation [11], or on finding bidding strategies
that work well with poor forecasts [4,6,13]. These approaches are data agnostic
and do not explore advertiser actions when she can use better targeting.

Our approach is quite different from any of the above papers, as we focus
on what factors affect the advertiser’s utility for targeting data in an auction
setting. None of the papers considered above address this question.

2 Preliminaries

We consider the setting of a single agent (advertiser) buying items (impressions)
in a second price auction. The items are heterogeneous, and different items are
valued differently by the buyer. Let T = {t1, t2, . . .} be the partition of items
into types. For an item of type t ∈ T (e.g., impressions from Texas), we say that
the buyer draws his value from a distribution with cdf Gt and corresponding pdf
gt. In the simplest case when Gt is a point distribution, we denote it by vt. We
denote by πt the prior that the buyer has on the item being of type t. This is
the probability that a random item is of type t; thus

∑
t πt = 1.

In addition to knowing her prior, the buyer has access to additional data
sources (signals) about the impression type. We assume that each signal is drawn
from a distribution that depends only on the impression type and that condi-
tional on the impression type, the signals are independent from the buyer’s prior
and from each other. The data sources may be imperfect.

For part of the manuscript we will focus on the special case in which a data
source only identifies whether a user is in one of two subsets of the population,
which we denote by H and L (high and low). The advertiser then has a prior
π for the high type, and 1 − π for the low type, and values them at vH and vL
respectively. In this setting we also assume that a signal has the same benefit of
predicting both types. Formally, we model this by saying that each signal si has
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a quality qi ∈ [ 12 , 1], which represents the probability of the signal being correct,
qi = Pr[si = t]; the signal is then incorrect with probability 1− qi.

The items are sold in a second price auction, and we let f (F ) denote the
pdf (cdf) of the distribution of the highest competing bid. In the independent
private value (IPV) setting, the distributions are the same for all of the different
types. A natural generalization is the correlated value setting, where items of
different types sell for different prices, whose densities and cumulative distribu-
tion functions we denote by ft and Ft respectively. For the rest of the paper, we
will assume the IPV setting unless explicitly specified otherwise.

We work with the standard quasilinear utility model, with buyers acting to
maximize the difference between their value and the price paid. When the type
is known to the buyer, she maximizes her utility by bidding her value for each
impression type. If, on the other hand, she only has the prior information about
the item type, she bids v̄ =

∑
t πtvt in the IPV setting.

3 Data Basics

We begin by considering simple settings to develop some intuition about the
value of targeting data. We first illustrate that the buyer’s value for the data
results both from buying more desired items and not overpaying for lower quality
items. We extend this analysis to show that the value inherently depends on four
quantities: the buyer’s prior information, the quality of the signal, the difference
in values for the different types, and the competitive landscape, expressed as the
additional fraction of impressions the buyer can win with the value.

3.1 Binary User Types

To develop intuition we first consider the setting in Section 2 with two types of
users, H and L. The advertiser has access to a noisy data source that will either
assume the value h or �. In particular, if the user is of type H (resp., L), then
the data source produces a signal h (resp., �) with probability q > 1/2 and �
(resp., h) with probability 1− q.

In this case, if the advertiser has access to the data, she updates her prior
based on the signal. The probabilities that a user is of type H upon receiving
signals of h and � respectively are:

π|h =
πq

πq + (1 − π)(1− q)
π|� = π(1 − q)

π(1− q) + (1− π)q

Thus the expected value of an advertising opportunity upon receiving a signal of
h or � respectively is v|h = π|h ·vH +(1−π|h)vL and v|� = π|� ·vH +(1−π|�)vL.
We now precisely characterize the value of the signal to the advertiser:

Lemma 1. The advertiser’s value for this noisy signal is∫ v|h

v̄

(πq(vH−p)+(1−π)(1−q)(vL−p))f(p)dp−
∫ v̄

v|�
(π(1−q)(vH−p)+(1−π)q(vL−p))f(p)dp.
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For complete proofs see the full version of this paper [5]. While Lemma 1 gives
an exact expression for the advertiser’s value for a noisy signal, it may be not
be immediately transparent how the different parameters in the model affect it.
Our next result gives a simpler expression which bounds this value and shows
that value can be decomposed into four independent factors.

Theorem 1. The advertiser’s value for the data can be bounded from above by
(vH − vL)π(1 − π)(2q − 1)(F (v|h)− F (v|�)).

Theorem 1 provides some basic rules of thumb for valuing the data. If there
is not much difference between the advertiser’s values for advertising to different
types of users, (vH − vL), then the advertiser will not care much whom she
advertises to, and will have little value for the data. Thus the advertiser’s value
for the data is increasing in this quantity. It is also intuitive that the advertiser’s
value for the data is increasing in the accuracy of the signal, (2q − 1).

Additionally, if competing buyers rarely place a bid that falls between the
values the advertiser may have for the different types of users, an advertiser’s
ability to adjust her bid in response to the different possible realizations of the
targeting data will rarely have an effect on whether she wins the advertising
opportunity. Thus the value of the data is increasing in the likelihood of a com-
peting advertiser placing a bid between the advertiser’s possible values for the
different types of advertising opportunities, (F (v|h)− F (v|�)).

Finally, it makes sense that the advertiser’s value for the data is single-peaked
in π. If π is very close 0 or 1, then the data almost always takes on the same value,
and there is little gain to seeing it. By contrast, when π is closer to 1/2, there is
more uncertainty in the true type of the item, and thus more heterogeneity in
the different realizations of the targeting data, so the data is more valuable.

3.2 General Distributions of Valuations

We now move to a more general model, where we consider what happens when
an advertiser’s best estimate for his value for advertising to a particular user may
assume a large number of distinct values. We show formally that more “refined”
signals on the value of the item are more valuable to the advertiser.

To model this setting, suppose that when an advertiser has access to data, she
learns that the best estimate for her value for advertising to a particular user is
v, which is a random draw from some distribution G(·) with corresponding pdf
g(·). If an advertiser has no access to data, then the advertiser simply knows
her expected value, E[v|v ∼ G] = v̄. The utility gain from the data is then∫∞
0

∫ v

v̄
(v − p)f(p)dp g(v)dv.

Now suppose there are two different data sources that an advertiser might use,
with distributions G and H . If they are unbiased, the distributions will satisfy
EG[v] = EH [v]. We address the question of when one data source would be more
useful to an advertiser than another:

Theorem 2. Consider two data sources with corresponding cdfs G and H sat-
isfying EG[v] = EH [v]. Then if H(·) second order stochastically dominates G(·),
the advertiser has more value for the data source G than the data source H.
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3.3 Budgets

Throughout the analysis so far we have assumed that an advertiser does not
face any budget constraints, but in some settings an advertiser only has a fixed
budget for advertising. It is natural to ask how this possibility would affect an
advertiser’s value for targeting data. We address this possibility in this section.

We again consider the binary case, with types H and L and corresponding
price distributions FH(·) and FL(·). Let f(·) ≡ πfH(·) + (1 − π)fL(·) be the
density of the highest competing bid unconditional on type. In addition, let B
denote the maximum amount the advertiser can spend per advertising opportu-
nity. Note that if the advertiser does not have access to the data, then in every

auction she makes a bid b satisfying
∫ b

0
pf(p)dp = B.

If the advertiser has access to a perfectly informative data source, then the
advertiser bids bL(bH) when the user is type L(H), where the values of bL and

bH must satisfy π
∫ bH
0

pfH(p)dp + (1 − π)
∫ bL
0

pfL(p)dp = B. The advertiser

then chooses the values of bL and bH to maximize π
∫ bH
0 vHfH(p)dp + (1 −

π)
∫ bL
0

vLfL(p)dp−B subject to this budget constraint.
Now we address how small changes in the budget (which induce small changes

in b, bL, and bH) affect the advertiser’s value for the data. One might think that
an advertiser’s value for the data would always increase with the advertiser’s
budget because the advertiser would be better able to exploit the targeting
information. However, this is not the case as the following theorem illustrates:

Theorem 3. The advertiser’s value for the data is not monotone in her budget.

While it is intuitive that an advertiser’s value for the data may increase with
the advertiser’s budget, it may be less obvious why an advertiser’s value for the
data might decrease with the advertiser’s budget. To see why this might arise,
suppose the advertiser always has a larger value for all advertising opportunities
than the competing advertisers. In this case, if an advertiser has a large budget,
the data hardly has any effect on the impressions that the advertiser purchases
since she would purchase almost all impressions anyway. However, if the adver-
tiser has a smaller budget, then the targeting data may have a significant effect
on which advertising opportunities the advertiser wins. Thus the advertiser’s
value for the data may be decreasing in the size of the advertiser’s budget.

3.4 Correlated Value Setting

In Sections 3.1 and 3.2 we restricted attention to scenarios in which there is no
correlation between an advertiser’s value for an advertising opportunity and the
highest competing bid. However, in practice this assumption does not always hold
because user characteristics like income make advertising opportunities more or
less valuable to multiple advertisers at the same time. In this section, we address
how this possibility affects an advertiser’s value for targeting data.

To illustrate our results, we again consider the binary case, with users of type
H and L. However, we now assume that if the user is of type H(resp., L), then
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the highest bid placed by a competing advertiser is a random draw from the
distribution FH(·)(resp., FL(·)) with pdf fH(·)(resp., fL(·)).

Before we can figure out how the advertiser would value targeting data, we
must first figure out the bidding strategy that the advertiser would use when
she does not have access to this targeting data. With continuous densities, in
equilibrium, she will bid some amount v∗ ∈ [vL, vH ] that satisfies1

v∗ =
πfH(v∗)vH + (1− π)fL(v

∗)vL
πfH(v∗) + (1− π)fL(v∗)

. (1)

Thus if the advertiser does not have access to the data, her expected payoff

is uND = π
∫ v∗

0 (vH − p)fH(p)dp + (1 − π)
∫ v∗

0 (vL − p)fL(p)dp. However, if the
advertiser has access to the data, then she places a bid of vH(vL) for users of type
H(L). The advertiser’s expected payoff is then uD = π

∫ vH
0

(vH − p)fH(p)dp +

(1− π)
∫ vL
0

(vL − p)fL(p)dp. Her value for the data is the difference between the
two expressions and it depends on similar things in the correlated value setting
as in the private value setting. In particular, we obtain the following result:

Theorem 4. An advertiser’s value for targeting data is increasing in her utility
difference between advertising to different users (vH − vL), increasing in the
likelihood of a competing advertiser placing a bid between these possible values
(fH(p) for p ∈ [v∗, vH ] and fL(p) for p ∈ [vL, v

∗]), and is single-peaked in the
relative likelihoods of the different realizations of the targeting data (π).

While the advertiser’s values for the data in the correlated and private value
settings depend on similar terms, the two values are incomparable: the value is
not always higher in one setting than the other. In the correlated value frame-
work, it is entirely possible for the advertiser to have zero value for the data, as
the advertiser may be able to exploit the fact that the competing advertisers are
perfectly segmenting the market, so that she always wins high value impressions
and always loses on the low value impressions. In these circumstances, the ad-
vertiser’s value for the data will be lower under the correlated value framework
than in the private value framework.

At the same time, it is also possible that the advertiser could have greater value
for the data in the correlated value framework than in the private value frame-
work. If the competing advertisers are making bids that are strongly correlated
with the advertiser’s value for the advertising opportunity, then the advertiser
may not be able to profitably bid in the auction without access to the data.
In this case, the data is especially valuable for the advertiser in the correlated
value framework, and the data may be more valuable under correlated values
than under private values. We make this precise below.

Observation 1. The advertiser’s value for the data may be either greater or
lower in the correlated value setting than in the private value setting.

1 We defer the proof of this claim to [5].
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4 Game Theoretic Setting

So far we have focused on the value a particular advertiser would place on
targeting data while ignoring the possibility that other advertisers may also use
this data. We now ask how this possibility affects an individual advertiser’s value
for the data in a game-theoretic setting.

4.1 Value of Data

We show that when there are two bidders, each bidder prefers the competitor to
buy the data regardless of her own actions. However, the exact value an advertiser
places on the data may go up or down as a function of the other bidder’s actions,
and there are situations where there are no pure strategy equilibria to the game
where advertisers simultaneously decide whether to purchase the data.

Consider the case with two advertisers. Each advertiser i ∈ {1, 2} has a value
vi for a given advertising opportunity, where each vi is an independent draw
from the distribution Fi(v) with pdf fi(v). If advertiser i has access to the
data, then advertiser i knows her value for a particular advertising opportunity.
If not, then this advertiser only knows the distribution from which her value is
drawn. Naturally each advertiser obtains positive value from having access to the
data regardless of whether the other advertiser also has access to the data. Less
obviously, each advertiser also has preferences over whether the other advertiser
has access to the data. In particular, we obtain the following result:

Theorem 5. When there are two advertisers, each advertiser prefers that the
other advertiser have access to the data regardless of whether she has access to
the data herself.

To understand the intuition behind this result, first note that when neither
advertiser has access to the data, then some advertiser (say advertiser 2) never
wins the auction. However, if advertiser 1 has access to the data, then she may
sometimes bid less than advertiser 2 is bidding, which leads to advertiser 2
earning positive profit. Similarly, if advertiser 2 has access to the data, then
advertiser 1 will sometimes pay less for advertising opportunities that she would
have won anyway (because advertiser 2 may discover that she values these im-
pressions for less than she originally thought), but advertiser 1 will not have to
pay for impressions where advertiser 2 learns that she values these impressions
for more than advertiser 1. Thus advertiser 1 is also better off when advertiser
2 has access to the data.

This result does not necessarily extend when there are more than two ad-
vertisers. Nonetheless, it does illustrate that an advertiser can have preferences
over whether competing advertisers have access to targeting data, and that these
preferences may be the opposite of what one might conjecture naively.

An advertiser’s value for the data can also depend on whether the other
advertiser has access to the data. However, there is no general relationship as to
how an advertiser’s value for the data depends on whether the other advertiser
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has access to the data, even with two bidders. This is a corollary of Theorem
4: by purchasing the data the second advertiser may affect the competing bid
distribution in an arbitrary manner, thereby changing the value of the data.

Observation 2. An advertiser’s value for the data may either increase or de-
crease as a result of the other bidder having access to the data in both the private
and correlated value framework.

4.2 Data Buying Equilibria

We now turn to the question of whether there exists a pure strategy equilibrium
to the game in which advertisers simultaneously decide whether to purchase data
and then bid in the auction. In general the fact that one advertiser may prefer
everyone to have the data, whereas another may prefer to be the unique holder
of the data, means that pure strategy equilibria to this game need not exist.

Theorem 6. There may be no pure strategy equilibrium to the game in which
advertisers simultaneously decide whether to purchase a data source.

While it is generally the case that there will not exist a pure strategy equilibrium
to the game in which advertisers simultaneously decide whether to purchase a
given source of data, there are important special cases under which such pure
strategy equilibria exist. In particular, in a pure private values setting with
symmetric bidders, we can prove that pure strategy equilibria exist.

Theorem 7. Suppose each advertiser’s estimate of her value is an independent
draw from the distribution H(·) if the advertiser purchases the data and from
the distribution G(·) otherwise. Then there is a pure strategy equilibrium to the
game in which advertisers simultaneously decide whether to purchase the data.

Finally, we present a result on the value of data when multiple symmetric
bidders are all given access to the same data. In general, sources of data may
refine an advertiser’s estimate of her value by helping an advertiser learn that
her true value for an advertising opportunity is v+ε for some mean-zero random
variable ε, where v denotes the advertiser’s original estimate of her value. It is
interesting to ask how the value of a data source depends on whether it helps
advertisers distinguish amongst high or low value advertising opportunities. We
show below that the data is more valuable for picking out high valued impressions
when multiple advertisers are given access to the same data.

To illustrate this, we consider a situation in which each advertiser’s initial
estimate of her value is an independent and identically distributed draw from
the distribution F (·). We call a data source a (v∗, δ)-refinement signal, if, given
an initial estimate of an advertiser’s value v:

– it provides no information for v �∈ [v∗ − δ, v∗ + δ],
– refines the value to v+ ε when v ∈ [v∗−δ, v∗+δ] for some ε that is a random

draw from some distribution with mean zero and narrow support.
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Theorem 8. Suppose there are at least three advertisers, and all advertisers are
given access to a (v∗, δ) refinement signal for some v∗ in the support of F (·) and
an arbitrarily small value of δ. Then there is a threshold τ in the interior of
the support of F (·) such that the value of the data source to the advertisers is
positive for values of v∗ > τ and negative for values of v∗ < τ .

To understand this result, note that if a data source helps advertisers dis-
tinguish amongst high value advertising opportunities, then this data is likely
to help an advertiser identify a high-value advertising opportunity that the ad-
vertiser might not have won in the absence of the data. Such a possibility is
beneficial for the advertiser. But if a data source helps advertisers distinguish
amongst low value advertising opportunities, this data is unlikely to help an
advertiser much, because advertisers with low values are unlikely to win the
auction. Instead all this data source is likely to do is increase the expected price
paid by the winner of the auction. Thus a data source that helps advertisers
distinguish amongst high-value advertising opportunities increases welfare when
multiple advertisers have this data, but a data source that only helps advertisers
distinguish amongst low-value advertising opportunities decreases welfare.

5 Working with Multiple Signals

In the previous sections we derived the value of a single data source to the buyer
in several diverse settings. We now address questions related to multiple data
sources. Will additional data sources become more or less valuable when an
advertiser already has access to other data sources? How should an advertiser
resolve the trade-off between the cost of a data source and its quality in deciding
which of several possible data sources to purchase?

One might think intuitively that when an advertiser is buying multiple inde-
pendent signals that the marginal value of additional signals would be decreasing
in the number of signals that an advertiser has already purchased because each
additional signal would do less to refine the advertiser’s assessment of the user’s
type. However, this need not be the case because the advertiser’s value for tar-
geting data depends crucially on the landscape of competing bids, and as a
result, a second signal may be much more likely to have an effect on whether
the advertiser wants to win the auction than the first signal:

Observation 3. In the independent private values setting with two types of
users, the marginal value of an additional signal need not vary monotonically
with the number of signals the advertiser already has access to.

While the value of the data depends on what other signals the advertiser has
access to, below we derive a bound on the value solely as a function of the quality
of the data, independent of what other data sets are present:

Theorem 9. In the independent private value model with two user types, H
and L, an advertiser’s value for a signal with quality q is bounded by (vH −
vL)

2f̄
(
2
3q

3 − 1
2q

2 + 1
24

)
, where f̄ ≡ supp∈[vL,vH ] f(p).
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By applying very similar logic we can illustrate bounds on the maximum
additional amount that an advertiser would be willing to pay for a more accurate
signal regardless of the advertiser’s prior. This is done below:

Corollary 1. Suppose an advertiser has the option of buying two different types
of signals with qualities q1 and q2 respectively, where q1 > q2. Then if the cost
of the first signal is more than f̄(vH − vL)

2[ 23 (q
3
1 − q32)− 1

2 (q
2
1 − q22)] greater than

the cost of the second signal, the advertiser will always prefer to purchase the
second signal regardless of the advertiser’s prior.

The results in this section illustrate that there are natural bounds on the
price of the data that one can use to quickly rule out whether certain sources of
data are cheap enough to be worthwhile, without knowing the advertiser’s prior
or the entire distribution of competing bids. If the cost of the data exceeds the
bounds in the previous theorems, an advertiser will never want to purchase it.

6 Reverse Engineering the Value of Data

So far, we have focused on how an advertiser values targeting data. However, it is
also natural to inquire about the value of data from the publisher’s perspective.
If a publisher is supplying data that maps the user to a specific population
segment, can he deduce how much an advertiser would value this data solely by
observing the advertiser’s average bidding behavior for the different realizations
of the data? Unfortunately the answer to this question is no. We prove this
formally below, but first provide some intuition behind the result.

Suppose the publisher supplies data that identifies whether a user lives in
California, and further suppose that the advertiser is making a higher average
bid on users from California. There are several possible ways for the advertiser
to exhibit this aggregate bidding behavior. First, it is possible that the only
factor that influences how much the advertiser values a particular advertising
opportunity is whether the user lives in California. In this case, the targeting
information that the publisher supplies is truly valuable to the advertiser.

Another possibility is that the advertiser only values advertising to some sub-
set of the users in California that she can already target on, and values all other
users equally. In this case, the publisher’s data is worthless to the advertiser
because the advertiser would make the same bids without this data, yet the av-
erage bids for users in and outside of California are the same as before. Thus it
is also possible for the advertiser to have zero value for this data.

Furthermore, by taking convex combinations of the two extremes, it is possible
to construct scenarios where the advertiser’s value for the data can assume any
value in this range. We thus obtain the following result:

Theorem 10. It is not possible to infer an advertiser’s value for targeting data
if the publisher only observes the advertiser’s average bids for different realiza-
tions of the targeting data as well as the distribution of the highest competing
bids. Given these average bids, the advertiser’s value for the targeting data may
range anywhere from zero to some maximal value.
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7 Conclusion

In this paper we extensively analyzed the problem of valuing targeting data
to an advertiser, and showed precisely how it depends both on the advertiser’s
parameters (value, budget, etc.) and the actions of other players (competing
bids, participation, etc.). A natural next step is to design truthful and welfare
maximizing mechanisms that can aid in a creation of an effective marketplace.
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Abstract. According to the proportional allocation mechanism from
the network optimization literature, users compete for a divisible re-
source – such as bandwidth – by submitting bids. The mechanism allo-
cates to each user a fraction of the resource that is proportional to her bid
and collects an amount equal to her bid as payment. Since users act as
utility-maximizers, this naturally defines a proportional allocation game.
Recently, Syrgkanis and Tardos (STOC 2013) quantified the inefficiency
of equilibria in this game with respect to the social welfare and presented
a lower bound of 26.8% on the price of anarchy over coarse-correlated
and Bayes-Nash equilibria in the full and incomplete information set-
tings, respectively. In this paper, we improve this bound to 50% over
both equilibrium concepts. Our analysis is simpler and, furthermore, we
argue that it cannot be improved by arguments that do not take the equi-
librium structure into account. We also extend it to settings with budget
constraints where we show the first constant bound (between 36% and
50%) on the price of anarchy of the corresponding game with respect to
an effective welfare benchmark that takes budgets into account.

1 Introduction

The proportional allocation mechanism, introduced by Kelly [11], is fundamental
in the network optimization literature. According to this mechanism, a divisible
resource — such as bandwidth of a communication link — is allocated to users
as follows. Each user submits a bid to the mechanism; this corresponds to the
user’s willingness-to-pay for sharing the resource. The mechanism allocates to
each user a fraction of the resource that is equal to the ratio of her bid over the
total amount of bids. It also receives a payment from each user that is equal to
her bid. This naturally defines a proportional allocation game among the users
who act as players; each player has a (typically concave, non-negative, and non-
decreasing) valuation function for the resource share she receives and aims to

� This work was partially supported by the EC-funded STREP EULER, by the Euro-
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the University of Patras.
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maximize her utility, i.e., her value for the resource share minus her payment to
the mechanism. As it is typically the case in games, the social welfare (i.e., the
total value of the players for the resource share they receive) at equilibria is, in
general, suboptimal.

We aim to quantify this inefficiency of equilibria by bounding the price of
anarchy [12] of proportional allocation games. Besides the well-known work of
Johari and Tsitsiklis [9] who considered pure Nash equilibria in the full informa-
tion setting, there has been surprisingly little focus on price of anarchy bounds
over more general equilibrium concepts. The only exception we are aware of is
the recent work of Syrgkanis and Tardos [22] who studied proportional allocation
as part of a broader class of mechanisms. Motivated by their work, we present
new bounds on the price of anarchy of proportional allocation under general
equilibrium concepts, such as coarse-correlated equilibria in the full information
setting and Bayes-Nash equilibria in the incomplete information setting. In par-
ticular, we prove that the social welfare at equilibrium is at least 1/2 of the
optimal social welfare. The bound holds for coarse-correlated and pure Bayes-
Nash equilibria in the full information and Bayesian setting, respectively, and
improves the bound of 26.8% of [22]. The proof is conceptually simple and is
obtained by bounding the utility of every player at equilibrium by the utility
this player would have by deviating to a particular deterministic bid.

We also consider the scenario where players have budget constraints repre-
senting their ability-to-pay. Here, each player has a budget and is never allowed
to bid above it. We assess the quality of equilibria in this case in terms of an
effective welfare benchmark — proposed in previous work but further refined
here — that takes budgets into account. We show that the effective welfare at
equilibrium is at least a constant fraction of the optimal one. To the best of
our knowledge, this is the first constant price of anarchy bound (in particular,
between 36% and 50%) with respect to this benchmark1. Again, our proofs fol-
low by considering a single deterministic deviation for each player, defined in a
slightly different way compared to the deviation we consider in our bound on
the social welfare.

Related Work. The proportional allocation mechanism and its variations have
received significant attention in the network optimization literature. Propor-
tional allocation games have been considered in [7,13,14] where the existence
and uniqueness conditions for pure Nash equilibria are proved. Variations of the
mechanism with different definitions for the allocation rule or the payments have
been considered in [15,16,17,20] (see also the discussion in [8]).

Johari and Tsitsiklis [9] were the first who assessed the quality of proportional
allocations in terms of the social welfare. They focused on pure Nash equilibria
and proved a lower bound of 3/4 on their price of anarchy. Their analysis is based
on the important observation that a pure Nash equilibrium in a proportional
allocation game is also a pure Nash equilibrium in a game where each player

1 Previously, Syrgkanis and Tardos [22] had shown that the social welfare at equilib-
rium is at least 2−√

3 ≈ 26.8% of the optimal effective welfare. Our techniques can
be used to improve this particular guarantee to 1/2.
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has a linear valuation function with slope equal to the derivative of the original
valuation function at the share value they get at equilibrium. The optimal social
welfare in the new game is not smaller than the original one and this allows them
to consider the significantly simpler case of linear valuations in their analysis.
Then, the price of anarchy bound is obtained by solving a linear program. An
alternative proof to the result of [9] without using this argument is presented in
[18] (see also [8]).

Unfortunately, this transformation does not apply to more general equilibrium
concepts since the resource share each player receives is, in general, a random
variable. This is a rather common difficulty that manifests itself in the analysis of
games, as we depart from pure Nash equilibria and full information. In particular,
Bayes-Nash equilibria have such an extremely rich structure that, typically, the
price of anarchy analysis assesses their quality by rather ignoring this structure.
Instead, it resorts to bounding the utility of each player by appropriately selected
deviations which reveal a relation between the social welfare at equilibrium and
the optimal social welfare. This approach has been used in a series of papers
that mostly focus on auctions (e.g., see [1,2,3,6,10,19,22]) and is actually the
approach we follow in the current paper as well.

Syrgkanis and Tardos [22] present a general analysis framework for the broad
class of smooth mechanisms. Among other results, they show a price of anarchy
lower bound of 26.8% over coarse-correlated and mixed Bayes-Nash equilibria of
proportional allocation games. In their analysis, they bound the utility of each
player by the utility she would have by deviating to an appropriately defined
randomized bid (an approach that has also been used in different contexts in
[2,10,21,23]) with a probability distribution that depends only on the optimal
allocation and the valuation function of the player. In contrast, the deviating
bid we consider depends on the bid strategies at equilibrium (this is in the same
spirit as the recent analysis of Feldman et al. [6]) and, more interestingly, it
is deterministic. In particular, it is defined as the product of the (expected)
resource share a bidder receives in the optimal allocation and the expectation of
bids of the other players at equilibrium.

Budget constraints are well-motivated in auction settings. In a slightly differ-
ent context than ours, the effective welfare benchmark is considered by Dobzin-
ski and Paes Leme, who call it liquid welfare in [5]. In proportional allocation,
Syrgkanis and Tardos [22] prove that the social welfare at equilibrium is a con-
stant fraction of the optimal effective welfare. Note that our guarantee is consid-
erably stronger as we compare directly the effective welfare at equilibrium with
its optimal value.

Roadmap.The rest of the paper is structured as follows. We begin with prelim-
inary definitions in Section 2. Our price of anarchy bounds in terms of the social
welfare are proved in Section 3. There, we also argue that in order to improve our
analysis, radically new ideas are required. The budget-constrained setting is stud-
ied in Section 4. We remark that we have not mentioned mixed Bayes-Nash equi-
libria in the above presentation of our results. Actually, we have observed that
such equilibria coincide with pure ones even in the budget-constrained setting.
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We discuss related issues as well as additional open problems in Section 5. Due to
lack of space, many proofs have been omitted; they will appear in the full version
of the paper.

2 Preliminaries

Each player (henceforth called bidder) i in a proportional allocation game has
a concave2 non-decreasing valuation function vi : [0, 1] → R+. A strategy for
bidder i is simply a non-negative bid. Given a bid vector b = (b1, b2, ..., bn),
with one bid per bidder, the proportional allocation mechanism allocates to each
bidder a fraction of the resource that is proportional to the bid submitted by her.
Denoting by di the resource share that is allocated to bidder i, it is di =

bi∑
j bj

.

We often use the notation B−i to denote the sum of bids of all bidders besides
i (hence, di =

bi
bi+B−i

). The utility of bidder i from an allocation is simply the

difference of her value for the fraction of the resource she gets minus her bid,
i.e., ui(b) = vi(di)− bi.

A bid vector b is a pure equilibrium if the utility of all bidders is maximized,
given the bid strategies of the other bidders. So, in a pure equilibrium, no bidder
has any incentive to deviate to another strategy. Denoting by (b′i,b−i) the bid
vector that is obtained from b when bidder i unilaterally deviates to bid strategy
b′i, we can express this condition as ui(b) ≥ ui(b

′
i,b−i).

The social welfare of an allocation d is the total value of bidders for the
resource shares they receive, i.e., SW (d) =

∑
i vi(di). We denote by SW ∗ the

maximum value of the social welfare over all possible allocations. The price of
anarchy over pure Nash equilibria is defined as the minimum value of the social
welfare among all pure Nash equilibria divided by the optimal social welfare.

The bid strategy of a bidder i can be randomized. In this case, bi is a random
variable and the bidder aims to maximize her expected utility E [ui(b)]. The
bid strategies of different bidders can be independent or correlated. A vector
of independent randomized bid strategies is called a mixed Nash equilibrium if
it simultaneously maximizes the expected utility of each bidder, given the bid
strategies of the other bidders. More generally, coarse-correlated equilibria are
solution concepts that capture correlated bid strategies. A vector of (possibly
correlated) bid strategies is called a coarse-correlated equilibrium if no bidder has
any incentive to unilaterally deviate to any deterministic bid strategy in order
to improve her expected utility (again, given the strategies of the other bidders).
The notion of the price of anarchy naturally extends to these solution concepts
as well. For example, the price of anarchy over correlated equilibria is defined
as the minimum value of the expected social welfare among all coarse-correlated
equilibria divided by the optimal social welfare.

The above setting is known as the full (or complete) information setting. We
consider the incomplete information (or Bayesian) setting as well; in this case,

2 Very recently, Correa et al. [4] studied proportional allocation games in the less
standard scenario of non-concave valuation functions.
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the valuation function vi of each bidder i is drawn randomly (and independently
from the other bidders) from a probability distribution Fi over concave, non-
decreasing, and non-negative functions in [0, 1]. Again, bidder i aims to maximize
her expected utility for each possible valuation function vi drawn from Fi. In
the incomplete information setting, each bidder i bases her decision on her exact
valuation vi and on the probability distributions according to which other bidders
draw their valuations (and their corresponding bid strategies); these distributions
are common knowledge.

So, the bid strategy of bidder i is a (possibly random) bid function bi(vi).
A vector with one such strategy per bidder (with independence between bid
strategies of different bidders) is called a mixed Bayes-Nash equilibrium if no
bidder has any incentive to deviate to some other bid for any valuation function
drawn from Fi. In pure Bayes-Nash equilibria, bidders use deterministic bid
functions. The price of anarchy over Bayes-Nash equilibria is defined as the
minimum value of the expected social welfare among all Bayes-Nash equilibria
divided by the expectation of the optimal social welfare. With some abuse in
notation, we also use SW ∗ to denote the expectation of the optimal social welfare
in the Bayesian setting.

We also extend the above model by adding budget constraints to the bidders.
In this setting, each bidder i has a non-negative budget ci and she is never
allowed to bid above her budget. This restriction can result to equilibria that have
extremely low social welfare compared to the optimal one (whose definition does
not take budgets into account). Following [22] and [5], we use the effective welfare
benchmark in order to assess the quality of equilibria with budget-constrained
bidders. The effective welfare of a (deterministic) allocation d = (d1, d2, ..., dn) is
defined as EW (d) =

∑
imin{vi(di), ci}. Note that the definition is similar to the

definition of the social welfare; the important difference is that the value of each
bidder is capped by her budget. We extend this definition to random allocations
d as EW (d) =

∑
i min{E [vi(di)] , ci}. We denote by EW ∗ the maximum value

of the effective welfare over all allocations. The price of anarchy with respect to
the effective welfare benchmark (over equilibria in a given class) is the minimum
value of the effective welfare (among all allocations induced by equilibria in the
class) divided by the optimal effective welfare.

In the Bayesian setting, both the budget ci of bidder i and her valuation vi

are drawn randomly according to the probability distribution Fi. We refine the
effective welfare benchmark in this case as

EW (d) =
∑
i

E(vi,ci)∼Fi

[
min{E(v−i,c−i)∼F−i

[vi(di)] , ci}
]
,

where the inner expectation is taken over the valuation-budget value pairs of
the other bidders once the pair for bidder i has been fixed (and over the corre-
sponding bid strategies). In order to simplify notation in the proofs below, we
will not explicitly use the subscripts in the expectations.
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3 Bounding the Social Welfare of Equilibria

In this section, we prove the price of anarchy bounds with respect to the social
welfare. We consider both coarse-correlated equilibria in the full information
setting as well as pure Bayes-Nash equilibria in the Bayesian setting. Our proofs
use the following lemma (its proof is omitted) which bounds the utility of a
bidder at a deterministic deviation. We also use this lemma later in Section 4
where we study budget-constrained bidders.

Lemma 1. Consider a bidder with a concave and non-decreasing valuation func-
tion v : [0, 1] → R+ and let Γ be the random variable denoting the sum of bids
of the other bidders. Then, for every z ∈ [0, 1] and for every μ > 0, the expected
utility the bidder would have by deviating to the deterministic bid μzE [Γ ] is at
least 3μ−1

4μ v(z)− μzE [Γ ].

We are ready to prove our price of anarchy bounds. We begin with the case of
coarse-correlated equilibria in the full information setting which is much simpler.

Theorem 1. The price of anarchy of proportional allocation games over coarse-
correlated equilibria is at least 1/2.

Proof. Consider a full information proportional allocation game with n bidders
in which bidder i has valuation function vi and denote by xi the resource fraction
bidder i gets in the optimal allocation. Let b be a coarse-correlated equilibrium
that induces a random allocation d = (d1, ..., dn) and let B =

∑
i bi be the

random variable denoting the sum of bids of all bidders, with B−i being the sum
of bids of all bidders besides bidder i. Since b is a coarse-correlated equilibrium,
bidder i has no incentive to deviate to any deterministic bid (including the
deviating bid xiE [B−i]). By applying Lemma 1 for bidder i with z = xi, μ = 1
and Γ = B−i, we obtain that

E [ui(b)] ≥ E [ui(xiE [B−i] ,b−i)] ≥
1

2
vi(xi)− xiE [B−i] .

Summing over all bidders and using the fact that B−i ≤ B for every bidder i,
we have ∑

i

E [ui(b)] ≥
1

2

∑
i

vi(xi)−
∑
i

xiE [B−i] (1)

≥ 1

2

∑
i

vi(xi)−
∑
i

xiE [B]

=
1

2
SW ∗ − E [B] .

The theorem follows by this inequality since the social welfare equals the sum
of bidders’ utilities plus their bids, i.e., E [SW (d)] =

∑
i E [ui(b)] + E [B]. ��
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The last step of the proof above begins with inequality (1). Essentially, this
inequality has the form∑

i

E [ui(b)] ≥ λSW ∗ − μ
∑
i

xiE [B−i].

The price of anarchy bound of [22] follows after first proving an inequality of
this type and then concluding to a price of anarchy bound of λ

max{1,μ} . The

smoothness arguments of [22] lead to a version of this inequality with λ = 2−
√
3

and μ = 1. Here, we have been able to improve the parameters to λ = 1/2 and
μ = 1. The next lemma demonstrates that these parameters cannot be improved
further; the proof is omitted.

Lemma 2. For every ε > 0, there exists a proportional allocation game such
that for every λ, μ satisfying∑

i

ui(b) ≥ λSW ∗ − μ
∑
i

xiB−i (2)

where xi is the resource fraction of bidder i in the optimal allocation and B−i

is the sum of bids of all bidders besides bidder i at a (pure Nash) equilibrium, it
holds that λ

max{1,μ} ≤
1
2 + ε.

The proof for Bayes-Nash equilibria (omitted) follows the same general ap-
proach with that of Theorem 1.

Theorem 2. The price of anarchy of proportional allocation games over pure
Bayes-Nash equilibria is at least 1/2.

4 Budget-Constrained Bidders

In this section, we consider budget-constrained bidders and prove a lower bound
of approximately 36% and an upper bound of 50% on the price of anarchy in
terms of the effective welfare benchmark. Here, we prove Theorem 3 for Bayes-
Nash equilibria only; the (simpler) proof for coarse-correlated equilibria is omit-
ted. Our upper bound (Theorem 4) applies even to pure Nash equilibria.

Before proceeding to the presentation of our bounds for budget-constrained
bidders, we remark that minor modifications of the proofs in the previous section
can show that the social welfare over equilibria with budget-constrained bidders
is at least 1/2 of the optimal effective welfare, improving a corresponding bound
of 26.8% from [22]. The necessary modifications are as follows. First, we need to
define the deviating bids in terms of the resource shares in the allocation that
maximizes the effective welfare. Then, there is a subtle case where Lemma 1
cannot be used, namely when the deviating bid for a bidder exceeds her budget.
Fortunately, the inequality provided by Lemma 1 follows trivially in this case
(actually, we use this argument in the proof below). By repeating the analysis
in the proofs of Theorems 1 and 2, we can conclude that the social welfare at
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equilibrium is at least 1/2 of the social welfare of the allocation that maximizes
the effective welfare. The bound then follows by observing that the effective
welfare of this allocation is upper-bounded by its social welfare.

Theorem 3. The price of anarchy of proportional allocation games with budget-
constrained bidders over coarse-correlated or Bayes-Nash equilibria is at least
0.3596.

Proof. Let μ ∈ (1/3, 1] be a parameter whose exact value will be defined later.
Consider an incomplete information proportional allocation game with n bidders
in which the valuation function vi and the budget ci of bidder i are drawn from
the probability distribution Fi, independently for each bidder. Let xi be the
random variable denoting the resource fraction bidder i gets in the allocation
that maximizes the effective welfare. Let b be a pure Bayes-Nash equilibrium
that induces a random allocation d = (d1, ..., dn) and B be the random variable
denoting the sum of bids of all bidders; again, B−i denotes the sum of bids of
all bidders besides bidder i. We denote by Ai the set that contains all pairs of a
valuation function and a corresponding budget value (vi, ci) that are drawn from
the probability distribution Fi and satisfy E [vi(di)|vi] ≤ ci. Consider a bidder i
with valuation-budget pair (vi, ci) �∈ Ai. By the definition of Ai, we have

min{E [vi(di)|vi] , ci} ≥ min{E [vi(xi)|vi] , ci}.

By considering all valuation-budget pairs not belonging to Ai, we obtain

E [min{E [vi(di)] , ci}�(vi, ci) �∈ Ai] ≥ E [min{E [vi(xi)] , ci}�(vi, ci) �∈ Ai] ,

and summing over all bidders, we have∑
i

E [min{E [vi(di)] , ci}�(vi, ci) �∈ Ai]

≥
∑
i

E [min{E [vi(xi)] , ci}�(vi, ci) �∈ Ai]. (3)

Now consider a valuation-budget pair (vi, ci) ∈ Ai for bidder i that is
drawn from Fi. If μE [xi|vi]E [B−i|vi] ≤ ci, we can bound the expected utility
E [ui(b)|vi] by considering the deviation of bidder i to bid μE [xi|vi]E [B−i|vi]
(which is within bidder i’s budget ci). By Lemma 1, we have

E [ui(b)|vi] ≥
3μ− 1

4μ
vi(E [xi|vi])− μE [xi|vi]E [B−i|vi]

≥ 3μ− 1

4μ
E [vi(xi)|vi]− μE [xi|vi]E [B]

≥ 3μ− 1

4μ
min{E [vi(xi)|vi] , ci} − μE [xi|vi]E [B] .

The second inequality follows by Jensen’s inequality and by the fact E [B−i|vi] =
E [B−i]. Otherwise, if μE [xi|vi]E [B−i|vi] > ci, the same inequality follows easily
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since

E [ui(b)|vi] ≥ 0

> ci − μE [xi|vi]E [B−i|vi]

≥ 3μ− 1

4μ
min{E [vi(xi)|vi] , ci} − μE [xi|vi]E [B] .

Hence, when (vi, ci) ∈ Ai, we have

E [ui(b)|vi] + μE [xi|vi]E [B] ≥ 3μ− 1

4μ
min{E [vi(xi)|vi] , ci}.

By considering all valuation-budget values belonging to Ai, we have

E [ui(b)�(vi, ci) ∈ Ai] + μE [xi�(vi, ci) ∈ Ai]E [B]

≥ 3μ− 1

4μ
E [min{E [vi(xi)] , ci}�(vi, ci) ∈ Ai] .

Using the obvious fact that E [xi] ≥ E [xi�(vi, ci) ∈ Ai] and the above inequality,
we obtain that

E [ui(b)�(vi, ci) ∈ Ai] + μE [xi]E [B]

≥ E [ui(b)�(vi, ci) ∈ Ai] + μE [xi�(vi, ci) ∈ Ai]E [B]

≥ 3μ− 1

4μ
E [min{E [vi(xi)] , ci}�(vi, ci) ∈ Ai] . (4)

Now, we have∑
i

E [min{E [vi(di)] , ci}�(vi, ci) ∈ Ai]

+μ
∑
i

E [min{E [vi(di)] , ci}�(vi, ci) �∈ Ai]

≥
∑
i

E [(ui(b) + bi)�(vi, ci) ∈ Ai] + μ
∑
i

E [bi�(vi, ci) �∈ Ai]

≥
∑
i

E [(ui(b) + μbi)�(vi, ci) ∈ Ai] + μ
∑
i

E [bi�(vi, ci) �∈ Ai]

=
∑
i

E [ui(b)�(vi, ci) ∈ Ai] + μE [B]

=
∑
i

(E [ui(b)�(vi, ci) ∈ Ai] + μE [xi]E [B])

≥ 3μ− 1

4μ

∑
i

E [min{E [vi(xi)] , ci}�(vi, ci) ∈ Ai]. (5)

The first inequality follows since the quantity min{E [vi(di)] , ci} equals E [vi(di)]
when (vi, ci) ∈ Ai and ci otherwise; in the latter case, the budget is clearly not
smaller than the bid of bidder i. The second inequality follows since μ ≤ 1, the
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two equalities are obvious, and the last inequality follows by (4). Now, using (3)
and (5), we have

EW (d) =
∑
i

E [min{E [vi(di)] , ci}]

=
∑
i

E [min{E [vi(di)] , ci}�(vi, ci) ∈ Ai]

+μ
∑
i

E [min{E [vi(di)] , ci}�(vi, ci) �∈ Ai]

+(1− μ)
∑
i

E [min{E [vi(di)] , ci}�(vi, ci) �∈ Ai]

≥ 3μ− 1

4μ

∑
i

E [min{E [vi(xi)] , ci}�(vi, ci) ∈ Ai]

+(1− μ)
∑
i

E [min{E [vi(xi)] , ci}�(vi, ci) �∈ Ai]

≥ min

{
3μ− 1

4μ
, 1− μ

}∑
i

E [min{E [vi(xi)] , ci}]

= min

{
3μ− 1

4μ
, 1− μ

}
EW ∗.

Hence, the price of anarchy with respect to the effective welfare benchmark is

bounded by the quantity min
{

3μ−1
4μ , 1− μ

}
which is maximized to 7−

√
17

8 ≈

0.3596 for μ = 1+
√
17

8 . ��

We conclude this section by presenting our upper bound on the price of an-
archy; note that it holds even for pure Nash equilibria.

Theorem 4. For every ε > 0, there exists a proportional allocation game among
budget-constrained bidders with price of anarchy at most 1/2+ ε over pure Nash
equilibria, with respect to the effective welfare benchmark.

5 Discussion and Open Problems

Our work leaves the obvious open problem of computing the tight bound on
the price of anarchy over coarse-correlated and Bayes-Nash equilibria. So far,
the only upper bound that is known is the counter-example of 3/4 from [9] for
pure Nash equilibria. Is 3/4 the tight bound for all equilibrium concepts con-
sidered in the current paper? Actually, we have not been able to identify any
coarse-correlated equilibrium in the full information model that is non-pure. Do
such equilibria really exist? Interestingly, we can show that mixed Nash equi-
libria coincide with pure ones (see the statement in Lemma 3). More generally,
this statement applies to mixed Bayes-Nash equilibria in the budget-constrained
setting. Does it extend to coarse-correlated ones? We believe that this is an
interesting open problem.
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Lemma 3. The set of mixed Bayes-Nash equilibria in any proportional alloca-
tion game (possibly with budget-constrained bidders) coincides with that of pure
Bayes-Nash equilibria.

In the Bayesian setting, we have not considered more general equilibrium
concepts such as coarse-correlated Bayesian equilibria. The main reason is that
our analysis requires that the expectation of the sum of bids of the other bidders
is the same for any possible valuation bidder i can draw from her distribution;
this property is not satisfied by more general equilibrium concepts. What is the
price of anarchy in this case? Interestingly, the answer cannot be 3/4 as our next
counter-example indicates; the proof is omitted due to lack of space.

Lemma 4. There exists a proportional allocation game that has price of anarchy
at most 0.7154 over coarse-correlated Bayesian equilibria.

Also, recall that we have assumed that bidders have independent valuations.
This is a typical assumption in the Bayes-Nash price of anarchy literature
[1,3,6,10,19,21,22] with [2] being the only exception we are aware of. Unfor-
tunately, our proof of the pure Bayes-Nash price of anarchy bound does not
carry over to the case of correlated valuations either (for the same reason men-
tioned above). Still, we have not been able to find any counter-example with
non-constant price of anarchy in this setting. Again, what is the price of anarchy
in this case? These questions are interesting in the budget-constrained setting
as well.
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10. de Keijzer, B., Markakis, E., Schäfer, G., Telelis, O.: Inefficiency of standard
multi-unit auctions. In: Bodlaender, H.L., Italiano, G.F. (eds.) ESA 2013. LNCS,
vol. 8125, pp. 385–396. Springer, Heidelberg (2013)

11. Kelly, F.P.: Charging and rate control for elastic traffic. European Transactions on
Telecommunications 8, 33–37 (1997)

12. Koutsoupias, E., Papadimitriou, C.: Worst-case equilibria. In: Meinel, C., Tison,
S. (eds.) STACS 1999. LNCS, vol. 1563, pp. 404–413. Springer, Heidelberg (1999)

13. La, R.J., Anantharam, V.: Charge-sensitive TCP and rate control in the Internet.
In: Proceedings of the 19th Annual Joint Conference of the IEEE Computer and
Communications Societies (INFOCOM), pp. 1166–1175 (2000)

14. Maheswaran, R.T., Basar, T.: Nash equilibrium and decentralized negotiation in
auctioning divisible resources. Group Decision and Negotiation 12(5), 361–395
(2003)

15. Maheswaran, R.T., Basar, T.: Social welfare of selfish agents: motivating efficiency
for divisible resources. In: Proceedings of the 43rd IEEE Conference on Decision
and Control (CDC), pp. 1550–1555 (2004)

16. Nguyen, T., Tardos, E.: Approximately maximizing efficiency and revenue in poly-
hedral environments. In: Proceedings of the 8th ACM Conference on Electronic
Commerce (EC), pp. 11–20 (2007)

17. Nguyen, T., Vojnovic, M.: Weighted proportional allocation. In: Proceedings of the
2011 ACM SIGMETRICS International Conference on Measurement and Modeling
of Computer Systems, pp. 173–184 (2011)

18. Roughgarden, T.: Potential functions and the inefficiency of equilibria. In: Pro-
ceedings of the International Congress of Mathematicians, vol. III, pp. 1071–1094
(2006)

19. Roughgarden, T.: The price of anarchy in games of incomplete information. In:
Proceedings of the 13th ACM Conference on Electronic Commerce (EC), pp. 862–
879 (2012)

20. Sanghavi, S., Hajek, B.: Optimal allocation of a divisible good to strategic buyers.
In: Proceedings of the 43rd IEEE Conference on Decision and Control (CDC), pp.
2748–2753 (2004)

21. Syrgkanis, V.: Bayesian games and the smoothness framework. ArXiv: 1203.5155
(2012)

22. Syrgkanis, V., Tardos, E.: Composable and efficient mechanisms. In: Proceedings of
the 45th Annual ACM Symposium on Theory of Computing (STOC), pp. 211–220
(2013)

23. Syrgkanis, V., Tardos, E.: Bayesian sequential auctions. In: Proceedings of the 13th
ACM Conference on Electronic Commerce (EC), pp. 929–944 (2012)



Strong Price of Anarchy, Utility Games

and Coalitional Dynamics

Yoram Bachrach1, Vasilis Syrgkanis2,�, Éva Tardos2,��, and Milan Vojnović1
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Abstract. We introduce a framework for studying the effect of coopera-
tion on the quality of outcomes in utility games. Our framework is a coali-
tional analog of the smoothness framework of non-cooperative games.
Coalitional smoothness implies bounds on the strong price of anarchy, the
loss of quality of coalitionally stable outcomes. Our coalitional smooth-
ness framework captures existing results bounding the strong price of
anarchy of network design games. Moreover, we give novel strong price
of anarchy results for any monotone utility-maximization game, showing
that if each player’s utility is at least his marginal contribution to the
welfare, then the strong price of anarchy is at most 2. This captures a
broad class of games, including games that have a price of anarchy as
high as the number of players. Additionally, we show that in potential
games the strong price of anarchy is close to the price of stability, the
quality of the best Nash equilibrium.

We also initiate the study of the quality of coalitional out-of-equilibrium
outcomes in games. To this end, we define a coalitional version of myopic
best-response dynamics, and show that the bound on the strong price of
anarchy implied by coalitional smoothness, also extends with small degra-
dation to the average quality of outcomes of the given dynamic.

1 Introduction

We introduce a framework for studying the effect of cooperation on the quality of
outcomes in games. In the past decade we have developed a good understanding
of the degradation in social welfare in games due to selfish play, quantified by
the price of anarchy. There are known tight bounds on the price of anarchy in
a range of games from routing, to network design, to various scheduling games.
Much less is understood about outcomes of games where players may cooperate.

In many settings players do cooperate, and cooperation can help improve the
outcome. The worst possible Nash equilibrium is a very pessimistic prediction
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of the outcome in games that are not strictly competitive, and where coopera-
tion may improve the utility for all participants. A key issue in understanding
cooperative outcomes is the extent to which players can transfer utility among
each-other. The two dominant notions of cooperative outcomes considered in
the literature are the strong Nash equilibrium of Aumann [5] assuming no util-
ity transfer between players, and the transferable utility notion of the core (see
[13] for a survey). Allowing utility transfers between the players leads to an ex-
tremely demanding form of equilibrium, a solution is unstable in this sense, if
there is a possible joint deviation for a group that improves the total utility of
a group, even if this is not improving the utility of every single player. A sta-
ble outcome in this sense is automatically socially optimal (otherwise the grand
coalition can deviate). An outcome is a strong Nash equilibrium if it is stable
subject to coalitional deviations, meaning that no group of players can jointly
deviate to improve the solution for every member of the coalition. Strong Nash
equilibria do not imply the optimality of the outcome. We identify properties of
a game such that a stable outcome cannot be too far from the social optimum.
An even less restrictive notion, coalition proof equilibrium, was introduced by
Moreno et al [14] requiring extra conditions from a coalitional deviation to be
feasible, such as the non-existence of subsequent unilateral deviations. We focus
here mainly on strong Nash equilibria and on randomized versions.

The strong price of anarchy was introduced by Andelman et al. [2] and mea-
sures the quality degradation of strong Nash equilibria in games. One of the most
compelling examples is the class of cost-sharing games, where players choose
costly resources and equally share the cost with other users of each resource.
Anshelevich et al. [3] showed that the price of anarchy in this class of games
with n players can be as bad as n, but showed a tight Hn = O(log n) bound
on the price of stability, the quality loss in the best Nash equilibria compared
to the socially optimal solution. While the worst Nash equilibria seems too pes-
simistic a prediction for the outcome, the best Nash equilibria is potentially too
optimistic: while significant cooperation is needed to identify and reach this so-
lution, the stability concept used is that of Nash equilibria, assuming that only
individual players can deviate, and not groups. Epstein et al. [8] showed an Hn

bound on the the strong price of anarchy, matching the price of stability bound.
For the case of worst-case Nash equilibria, Roughgarden [16] introduced the

framework of smooth games, encompassing most price of anarchy bounds. How-
ever, such a unified framework does not exist for worst-case coalitionally stable
outcomes. We propose a smoothness framework that captures efficiency in most
well-established cooperative equilibrium solution concepts such as the strong
Nash equilibrium and randomized versions of it. We show how our framework
implies existing results on the strong price of anarchy of cost-sharing games and
we generate new results on the strong price of anarchy of utility maximization
games and of potential games.

The second goal of our paper is to initiate a study of outcomes of dynamic co-
operative play and of efficiency of non-equilibrium solution concepts. A key point
in the wide applicability of the price of anarchy analysis and of the smoothness
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framework of [16] is that bounds proved via smoothness automatically extend
to coarse correlated equilibria, which are outcomes of no-regret learning by each
player [7]. Extending the price of anarchy results to no-regret outcomes is ap-
pealing as it is a natural model of player behavior, and no-regret can be achieved
via simple strategies.

Studying the efficiency of out-of-equlibrium solution concepts that capture
cooperation is even more compelling in the strong price of anarchy analysis,
as strong Nash equilibria, unlike for instance mixed Nash equilibria, are not
guaranteed to exist, and do not exist in even small and simple cost-sharing
games [8]. Hence, we need to identify properties of games that would not only
imply approximate efficiency of coalitionally stable equilibrium outcomes, but
whose efficiency implications would directly extend with very small degradation
even to out-of-equilibrium cooperative dynamic solution concepts.

To this end, we propose a coalitional version of myopic best-response dynam-
ics and we analyze the average welfare of such dynamics in the long run. Our
dynamics can be viewed as a coalitional version of sink equilibria proposed by
Goemans et al. [9]. More importantly, we show that the efficiency guarantees im-
plied by our coalitional smoothness framework directly extend with small loss to
this form of out-of-equilibrium cooperative dynamics. These out-of-equilibrium
outcomes always exist and are meaningful even in games that do not admit a
strong Nash equilibrium and thereby the direct extension is rather appealing as
it provides an efficiency bound that is not conditional on existence.

Our Results. We propose a framework for quantifying the quality of strong
Nash equilibria by introducing the notion of coalitional smoothness. We show
how coalitional smoothness captures existing results on network design games,
we give new results on the strong price of anarchy in utility maximization games,
and show that coalitional smoothness in such games implies high social welfare
at coalitional sink equilibria, which we define as the out-of-equilibrium myopic
behavior as defined by a natural coalitional version of best-response dynamics.

– We define the notion of a (λ, μ)-coalitionally smooth games and show that
the strong price of anarchy of a (λ, μ)-coalitionally smooth game is bounded
by λ/(1 + μ) in utility games and λ/(1 − μ) in cost minimization games.

– We show that the cost-sharing games of [8] as well as network contribution
games [4] studied in the literature are coalitionally smooth.

– We show that in any monotone utility-maximization game, if each player’s
utility is at least his marginal contribution to the welfare then the strong
price of anarchy is at most 2, while the price of anarchy in this class of
games can be as high as n. This result complements the results of [22,9]
who studied the price of anarchy of utility-maximization games that have
submodular social welfare function.

– In potential games, such as the cost-sharing game of [8], the potential mini-
mizer is a Nash equilibrium of high quality. This equilibrium is typically used
to bound the price of stability by showing that the social welfare function
is similar to the potential function, namely λ · SW (s) ≤ Φ(s) ≤ μ · SW (s),
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implying a bound of λ/μ on the price of stability. We show that in utility
games this condition also implies that the game is (λ, μ)-coalitionally smooth
implying a λ

1+μ bound on the strong price of anarchy, and give conditions

for a similar bound in cost-minimization games, extending the work of [8].
– Strong price of anarchy bounds via coalitional smoothness also extend to

the notions of strong correlated equilibria (see e.g. Moreno et al. [14]) and
strong coarse correlated equilibria of [19], which correspond to randomized
outcomes where no group of players C has a joint distribution of strategies
D̃C that each member of the group has regret for. Though there exist games
with no strong Nash, that admit such randomized strong equilibria, unfor-
tunately, there are no learning algorithms that guarantee this coalitional
no-regret property, and in fact, these concepts may not exist in some games.

– We define a natural coalitional best response dynamic and the corresponding
coalitional sink equilibria, the analog of the notion of myopic sink equilibria
introduced by Goemans et al. [9] for coalitional dynamics. While myopic sink
equilibria correspond to steady state behavior of the Markov chain defined by
iteratively doing random unilateral best respond dynamics, coalitional sink
equilibria are the steady state under our coalitional best response dynamic.
We do not explicitly model how players choose to transfer utility to each
other. However, our dynamic assumes that when a group cooperates, then
they can also transfer utility, and hence will choose to optimize the total
utility of all group members. We show that in (λ, μ)-coalitionally smooth
utility games the social welfare of any coalitional sink equilibrium is at least
a 1

Hn

λ
1+μ fraction of the optimal; extending our analysis of outcomes of

coalitional play to games when strong Nash equilibria do not exist.

Related Work. The study of efficiency of worst-case Nash equilibria via the
price of anarchy was initiated by [12], and has triggered a large body of work.
Roughgarden [16] introduced a canonical way of analyzing the price of anarchy by
proposing the notion of a (λ, μ)-smooth game and showing that most efficiency
proofs can be cast as showing that the game is smooth. Most importantly, [16]
showed that any efficiency proven via smoothness arguments directly extends
to outcomes of no-regret learning behavior. Recently, similar frameworks have
been proposed for games of incomplete information [17,20,21] and games with
continuous strategy spaces [18]. However, these frameworks do not take into
account coalitional robustness and no canonical way of showing efficiency bounds
for coalitional solution concepts existed prior to our work.

The most established coalitionally robust solution concept is that of the strong
Nash equilibrium introduced by Aumann [5]. The study of the efficiency of the
worst strong Nash equilibrium (strong price of anarchy) was introduced in [2],
and follow-up research mostly focused on specific cost minimization games such
as network design games [3,1,8]. Our coalitional smoothness framework captures
some of the results in this literature and gives a generic condition under which
the strong price of anarchy is bounded.

For utility maximization games Vetta [22] defined the class of valid-utility
games, which are utility maximization games with a monotone and submodular
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welfare function and where each player’s utility is at least his marginal contri-
bution to the welfare. Vetta [22] showed that every Nash equilibrium of a valid
utility game achieves at least half of the optimal welfare. Later these games were
analyzed from the perspective of best response dynamics by [9], who introduced
the notion of a sink equilibrium (i.e. steady state distribution of the Markov
chain defined by best-response dynamics) and showed that for a subclass of
valid-utility games the half approximation is achieved after polynomially many
rounds, while for the general class, the sink equilibria can have an efficiency
that degrades linearly with the number of players. In this paper, we show that
without the assumption of submodularity every monotone utility maximization
game that satisfies the marginal contribution condition has good strong price
of anarchy. Additionally, we define a coalitional version of sink equilibria of [9]
and show that for any coalitionally smooth game the efficiency bound at these
out-of-equilibrium dynamics degrades from the strong price of anarchy bound
by a factor that is only logarithmic in the number of players.

The efficiency of coalitionally robust solution concepts was also studied by An-
shelevich et al [4] for a class of contribution games in networks, where pairwise-
stable outcomes were analyzed. Most of our theorems imply social welfare bounds
for strong Nash equilibria of network contribution games, that hold under much
more general assumptions than the ones considered in [4].

The existence of strong Nash equilibria was examined by both game theorists
and computer scientists (see e.g. [15,10,8]). [19] show that in singleton congestion
games with increasing resource value functions there always exists a strong Nash
equilibrium, while [11] show that for decreasing function the set of pure Nash
equilibria, which is non-empty, coincides with the set of strong Nash equilibria.

2 Coalitional Smoothness

In this section we introduce the notion of coalitional smoothness and show that it
captures the core of a proof on the efficiency of strong Nash equilibria in several
games studied in the past, such as network cost sharing games [3,8] as well as in
new classes of games that we give, which generalize the well-studied valid-utility
games of Vetta [22], by dropping the assumption of submodularity.

For ease of presentation we will present the definition of coalitional smoothness
for utility maximization games rather than cost minimization, but the definitions
naturally extend to analogous ones for cost minimization. We will consider a
standard normal form game among n players. Each player i has a strategy space
Si and a utility ui : S1 × . . . × Sn → R+. For a subset of players C ⊆ [n] we
will denote with SC = (Si)i∈C the joint strategy space, with sC ∈ SC a joint
strategy profile and with Δ(SC) the space of distributions over strategy profiles.
We are interested in quantifying the efficiency of coalitional solution concepts
with respect to the social welfare, which is defined as the sum of all player
utilities: SW (s) =

∑
i∈[n] ui(s). For convenience, we will denote with OPT the

maximal social welfare (resp. minimum social cost) achieved among all possible
strategy profiles and we will try to upper bound the price of anarchy, which is
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the ratio of the optimal social welfare over the social welfare at any equilibrium
in the class of solution concepts that we study (e.g. strong price of anarchy for
the case of strong Nash equilibria), or equivalently to lower bound the fraction
of the optimal welfare that every equilibrium in the class achieves.

The intuition behind coalitional smoothness is that it requires from the game
to admit a good strategy profile such that if enough players coalitionally deviate
to this strategy from any state with low social welfare then they achieve a good
fraction of the optimal welfare. Specifically, it imposes that if we order the players
arbitrarily and consider only the coalitional deviations of all the suffixes of this
order, then the sum of utilities of the first player in each of the suffixes, after the
coalitional deviation of the suffix, is at least a λ fraction of the optimal welfare
or else μ times the current social welfare is at least a λ fraction of the optimal.

Definition 1 (Coalitional Smoothness). A utility maximization game is
(λ, μ)-coalitionally smooth if there exists a strategy profile s∗ such that for any
strategy profile s and for any permutation π of the players:∑n

i=1 ui(s
∗
Nπ(i)

, s−Nπ(i)
) ≥ λ ·OPT− μ · SW (s) (1)

where Nπ(i) = {j ∈ [n] : π(j) ≥ π(i)} is the set of all players succeeding i in the
permutation and (sNt , s−Nt) is the strategy profile where all players in i ∈ Nt

play s∗i and all other players play s. 1

We now formally define the notion of a strong Nash equilibrium introduced
by Aumann [5] and show that coalitional smoothness implies high efficiency at
every strong Nash equilibrium of a game.

Definition 2 (Strong Nash Equilibrium). A strategy profile s is a strong
Nash equilibrium if for any coalition C ⊆ [n] and for any coalitional strategy
sC ∈ SC , there exists a player i ∈ C such that: ui(s) ≥ ui(sC , s−C).

Theorem 3. If a game is (λ, μ)-coalitionally smooth for some λ, μ ≥ 0 then
every strong Nash equilibrium has social welfare at least λ

1+μ of the optimal. 2

Proof. Let s be strong Nash equilibrium strategy profile and let s∗ be the optimal
strategy profile. If all players coalitionally deviate to s∗ then, by the definition
of a strong Nash equilibrium, there is a player i who is blocking the deviation,
i.e. ui(s) ≥ ui(s

∗). Without loss of generality, reorder the players such that
this is player 1. Similarly, if players {2, . . . , n} deviate to playing their strategy
in s∗ then there exists some player, obviously different than 1 who is blocking
the deviation. Without loss of generality, by reordering we can assume that this
player is 2. Using similar reasoning we can reorder the players such that if players
{i, . . . , n} deviate to their strategy in the optimal strategy profile x∗ then player

1 In the case of cost minimization games we would require:
∑n

i=1 ci(s
∗
Nπ(i)

, s−Nπ(i)
) ≤

λ · SC(s∗) + μ · SC(s).
2 In cost-minimization games (λ, μ)-coalitional smoothness for λ ≥ 0, μ ≤ 1 implies
that the social cost at a strong Nash is at most λ

1−μ
of the minimum cost.
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i is the one blocking the deviation. That is player i’s utility at the strong Nash
equilibrium is at least his utility in the deviating strategy profile. Thus under
this order ∀k ∈ N : ui(s) ≥ ui(s

∗
Nk

, s−Nk
). Summing over all players and using

the coalitional smoothness property for the above order we get the result:

SW (s) =
∑N

i=1 ui(s) ≥
∑N

i=1 ui(s
∗
Ni
, s−Ni) ≥ λSW (s∗)− μSW (s)

��

Extension to Randomized Solution Concepts. Similar to smoothness, coalitional
smoothness also implies efficiency bounds even for randomized coalition-proof
solution concepts. Adapting randomized solution concepts such as correlated
equilibria so as to make them robust to coalitional deviations is not as straight-
forward as in the case of unilateral stability. This is mainly due to information
considerations. One such concept is that of strong correlated equilibria (see e.g.
Moreno and Wooders [14]) and it’s relaxation, the strong coarse correlated equi-
librium (see e.g. Rozenfeld et al. [19]).

Essentially, a strong correlated equilibrium is a distribution over strategy pro-
files, such that if players are recommended strategies based on this distribution,
then there exists no coalitional (randomized) deviation under which every mem-
ber of the coalition is strictly better off. The coalitional deviation can depend on
the recommendation that each member of the coalition received. Thus implicitly
it is assumed that if players commit to a coalition ex-ante, then after receiving
their recommendations on which strategy to play, they share it publicly among
the players in the coalition and decide on a joint deviation. The strong coarse
correlated equilibrium is a relaxation of the above concept where the coalitional
deviation is independent of the recommendations. We defer a formal definition
of the two concepts and a more elaborate discussion to the full version [6].

Non-Submodular Monotone Utility Games. Consider a utility maximiza-
tion game in which every player has an souti strategy, corresponding to the player
not entering the game. Further assume that the game is monotone with respect to
participation, i.e. no player can decrease the social welfare by entering the game:
∀i ∈ [n], ∀s : SW (s) ≥ SW (souti , s−i). We show that the coalitional smoothness
of such a game is captured exactly by the proportion of the marginal contribution
to the social welfare that a player is guaranteed to get as utility.

Theorem 4. Any monotone utility maximization game is guaranteed to be
(γ, γ)-coalitionally smooth, if each player is guaranteed at least a γ fraction of
his marginal contribution to the social welfare:

∀s : ui(s) ≥ γ (SW (s)− SW (souti , s−i)) (2)

Proof. Consider any order of the players and let s∗ be the strategy profile that
maximizes the social welfare. By the marginal contribution property we have:∑n

i=1 ui(s
∗
Ni
, s−Ni) ≥ γ ·

∑n
i=1

(
SW

(
s∗Ni

, s−Ni

)
− SW

(
souti , sN∗

i+1
, s−Ni

))
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In addition, by the monotonicity assumption the social welfare can only increase
when a player enters the game with any strategy:

SW (souti , s∗Ni+1
, s−Ni) ≤ SW (sk, s

∗
Ni+1

, s−Ni) = SW (s∗Ni+1
, s−Ni+1)

Combining the above inequalities we get a telescoping sum that yields the desired
property:∑n

i=1 ui(s
∗
Ni
, s−Ni) ≥ γ ·

∑n
i=1

(
SW (s∗Ni

, s−Ni)− SW (sN∗
i+1

, s−Ni+1)
)

≥ γ · SW (s∗)− γ · SW (s) = γ ·OPT− γ · SW (s)

Which is exactly the (γ, γ)-coalitional smoothness property we wanted. ��

This latter result complements Vetta’s [22] results on valid-utility games. A
valid-utility game is a monotone utility-maximization game with the following
additional structural property: strategies of the players can be viewed as sets of
some ground set of elements and the social welfare can be viewed as a monotone
submodular set function on the union of the chosen strategies. As re-interpreted
by Roughgarden [16], Vetta showed that in any monotone utility-maximization
game with a submodular welfare function, if each player receives a γ fraction
of their marginal contribution to the welfare, then the game is (γ, γ)-smooth
implying that every Nash equilibrium achieves a γ

γ+1 fraction of the optimal
welfare. In the absence of submodularity there are easy examples where the
worst Nash equilibrium doesn’t achieve any constant fraction of the optimal
welfare, despite satisfying the marginal contribution condition. However, our
result shows that even in the absence of submodularity every such game will
be (γ, γ)-coalitionally smooth, implying that every strong Nash equilibrium will
achieve a γ

γ+1 fraction of the welfare.
It is important to note that the approximate marginal contribution condition

and the submodularity condition are very orthogonal ones. For instance, it is
possible that a game satisfies the approximate marginal contribution condition
for some constant, but is not submodular or even approximately submodular
under existing definitions of approximate submodularity. In the full version of
the paper, we give a class of welfare sharing games, where our efficiency theorem
applies to give constant bounds on the string price of anarchy, whilst the price
of anarchy is unbounded due to the non-submodularity of the social welfare.

Network Cost-Sharing Games. In this section we analyze the well-studied
class of cost sharing games [3], using the coalitional smoothness property. The
game is defined by a set of resources R each associated with a cost cr. Each
player’s strategy space Si is a set of subsets of R. The cost of each resource
is shared equally among all players that use the resource and a players total
cost is the sum of his cost-shares on the resources that he uses. If we denote
with nr(s) the number of players using resource r under strategy profile s, then:
ci(s) =

∑
r∈si

cr
nr(s)

.

Epstein et al [8] showed that every strong Nash equilibrium of the above class
of games has social cost at most Hn times the optimal, where Hn is the n-th
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harmonic number. Here we re-interpret that result as showing that these games
are (Hn, 0)-coalitionally smooth. In the next section we show that the analysis
of [8] can be applied to a more broad class of potential games, showing a strong
connection between the price of stability and the strong price of anarchy.

Theorem 5 ([8]). Cost sharing games are (Hn, 0)-coalitionally smooth.

3 Best Nash vs. Worst Strong Nash Equilibrium

Strong Nash equilibria are a subset of Nash equilibria, so in games when strong
Nash equilibria exist, the strong price of anarchy cannot be better than the price
of stability (the quality of best Nash). In this section we show that in potential
games these two notions are surprisingly close. We show that through the lens of
coalitional smoothness there is a strong connection between the analysis of the
efficiency of the worst strong Nash equilibria and the dominant analysis of the
best Nash equilibria in potential games. A game admits a potential function if
there exists a common function Φ(s) for all players, such that a player’s difference
in utility from a unilateral deviation is equal to difference in the potential:

ui(s
′
i, s−i)− ui(s) = Φ(s′i, s−i)− Φ(s) (3)

A large amount of recent work in the algorithmic game theory literature has
focused on the analysis of the efficiency of the best Nash equilibrium (price of
stability). For the case of potential games the dominant way of analysing the
price of stability is the Potential Method: suppose that the potential function is
(λ, μ)-close to the social welfare, in the sense that λ ·SW (s) ≤ Φ(s) ≤ μ ·SW (s),
for some parameters λ, μ ≥ 0. Then the best Nash equilibrium achieves at least
λ
μ of the optimal social welfare. The proof relies on the simple fact that the

potential maximizer is always a Nash equilibrium and by the (λ, μ) property it’s
easy to see that the potential maximizer has social welfare that is the above
fraction of the optimal social welfare.

The following theorems show that for such potential games the price of stabil-
ity is very close to the strong price of anarchy, i.e. the implied quality of the best
Nash equilibrium is close to the quality of the worst strong Nash equilibrium.

Theorem 6. In a utility-maximization potential game with non-negative utili-
ties, if the potential is (λ, μ)-close to the social welfare then the game is (λ, μ)-
coalitionally smooth, implying that every strong Nash equilibrium achieves at
least λ

1+μ of the optimal social welfare.

Proof. Consider an arbitrary order of the players and some strategy profile s.
By the definition of the potential function and the fact that utilities are non-
negative, we have

ui(s
∗
Ni

, s−Ni) = Φ(s∗Ni
, s−Ni)− Φ(s∗Ni+1

, s−Ni+1) + ui(s
∗
Ni+1

, s−Ni+1)

≥ Φ(s∗Ni
, s−Ni)− Φ(s∗Ni+1

, s−Ni+1)
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Combining with our assumption on the relation between potential and social
welfare we obtain the coalitional smoothness property:∑n

i=1 ui(s
∗
Ni
, s−Ni) ≥

∑n
i=1

(
Φ(s∗Ni

, s−Ni)− Φ(s∗Ni+1
, s−Ni+1)

)
= Φ(s∗)− Φ(s) ≥ λ · SW (s∗)− μ · SW (s)

��
The (λ, μ)-closeness property of the potential function does not imply smooth-

ness of the game according to the standard definition of smoothness [16] and
hence a price of anarchy bound. It does so only if the potential is a submodular
function and by following a similar analysis as in the case of valid utility games
as we show in the full version. Such a property for instance, holds in utility con-
gestion games with decreasing resource utilities. However, Theorem 6 does not
require submodularity of the potential.

One application of Theorem 6 is in the context of network contribution games
[4]. In a network contribution game each player corresponds to a node in a
network. Each edge corresponds to a ”friendship” between the connecting nodes
or more generally some joint venture. Each player has a budget of effort that he
strategically distributes among his friendships. Each friendship e between two
players i and j, has a value ve(xi, xj) that corresponds to the value produced as
a function of the efforts put into it by the two players. This value is equally split
among the two players. It is easy to see that in such a game the social welfare
is the total value produced, while the potential is equal to half of the social
welfare. Thus, by applying Theorem 6 we get that for arbitrary ”friendship”
value functions ve(·, ·) the game is

(
1
2 ,

1
2

)
-coalitionally smooth and hence every

strong Nash equilibrium achieves at least 1
3 of the optimal welfare. In contrast,

observe that Nash equilibria can have unbounded inefficiency,3 and the game is
not (λ, μ)-smooth under the unilateral notion of smoothness for any λ, μ.

For settings where a player can only have non-negative externalities on the
utilities of other players by entering the game, a much stronger connection can
be drawn. More concretely, a utility maximization game has non-negative ex-
ternalities if for any strategy profile s and for any pair of players i, j: ui(s) ≥
ui(s

out
j , s−j).

4 The souti strategy is not required to be a valid strategy that the
player can actually pick, but rather a hypothetical strategy, requiring the prop-
erty that the cost of the player in that strategy is 0, and the cost functions and
the potential are extended appropriately such that the potential function prop-
erty is maintained even in this augmented strategy space and the potential when
all players have left the game is 0: Φ(sout) = 0. For instance, every congestion
game has the above property if souti is defined as the empty set of resources.

3 Consider a line of four nodes (A,B,C,D). Each player has budget 1. Edges (A,B)
and (C,D) have constant value of 1, while edge (B,C) has a huge value H , if both
players put all their budget on it and 0 o.w.. Players B,C placing their budget on
their alternative friendships is a Nash equilibrium, but not a strong Nash equilibrium.

4 A cost-minimization game has non-negative externalities if ci(s) ≤ ci(s
out
j , s−j).
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Theorem 7. A utility-maximization potential game with only positive external-
ities and such that Φ(s) ≥ λ · SW (s) is (λ, 0)-coalitionally smooth. Similarly, a
cost-minimization, potential game with only positive externalities and such that
Φ(s) ≤ λ · SC(s) is (λ, 0)-coalitionally smooth.

In the context of cost-minimization, one well-studied example of such a setting
is that of network cost-sharing games and the log(n) strong price of anarchy
result of [8] is a special instance of Theorem 7. For utility-maximization games,
one example is that of network contribution games under the restriction that
friendship value functions ve(·, ·) are increasing in both coordinates. Under this
restriction applying Theorem 7 we get the improved bound that every strong
Nash equilibrium achieves at least 1/2 of the optimal social welfare.

4 Coalitional Best-Response Dynamics

In this section we initiate the study of efficiency of dynamic coalitional behavior.
We show that if a utility game is (λ, μ)-coalitionally smooth then this implies an
efficiency guarantee for out of equilibrium dynamic behavior in a certain best-
response like dynamic. This is particularly interesting for games that do not
admit a strong Nash equilibrium, but where coalitional deviations are bound to
occur. Our approach is similar in spirit to the notion of myopic sink equilibria
introduced by Goemans et al. [9]. Myopic sink equilibria correspond to steady
state behavior of the Markov chain defined by iteratively doing random unilateral
best respond dynamics. However, such a notion does not capture settings where
players can communicate and at each step perform coalitional deviations.

We introduce a version of coalitional best-response dynamics, that allows
for coalitional deviations at each time step, giving more probability to small
coalitions. In our dynamic, at each step a selected group is chosen to cooperate.
We assume that when a group cooperates, then they can also transfer utility,
and hence will choose to optimize the total utility of all group members. Then
we analyze the social welfare of the steady states arising in the long run as
we perform coalitional best response dynamics for a long period. Similar to
[9] we will refer to these steady states as coalitional sink equilibria. Similar to
sink equilibria that are a way of studying games whose best response dynamics
might not converge to a pure Nash equilibrium or even games that do not admit
a pure Nash equilibrium, coalitional sink equilibria are an interesting alternative
for analyzing efficiency in games that do not admit a strong Nash equilibrium,
which admittedly is even more rare than the pure Nash equilibrium.

Our coalitional dynamics are as follows: At each iteration a coalition is picked
at random from a distribution that favors coalitions of smaller size. Specifically,
first a coalition size k is picked inversely proportional to the size and then a coali-
tion of size k is picked uniformly at random. Next, the picked coalition deviates
to the joint strategy profile that maximizes the total utility of the coalition,
conditional on the current strategy of every player outside of the coalition.
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Theorem 8. If a utility maximization game with non-negative utilities is (λ, μ)-
coalitionally smooth then the expected social welfare at every coalitional sink
equilibrium is at least 1

Hn

λ
1+μ of the optimal.

If we picked the coalitional size k, according to some probability distribution
with a density p(k) satisfying p(k) ≥ 1

c
1

Hn·k , then by the analysis of the above
theorem we get that every coalitional sink equilibrium achieves welfare at least

1
c·Hn

λ
1+μ of the optimal.

Remark 1. The Markov chain defined by the coalitional best-response dynamics
might take long time to converge to a steady state. However, our analysis shows
a stronger statement: at any iteration T if we take the empirical distribution
defined by the best-response play up till time T , then the expected welfare of
this empirical distribution is at least T−1

2T
λ

Hn+μ of the optimal welfare.
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Abstract. We consider the task of computing an approximation of a
trembling hand perfect equilibrium for an n-player game in strategic
form, n ≥ 3. We show that this task is complete for the complexity class
FIXPa. In particular, the task is polynomial time equivalent to the task
of computing an approximation of a Nash equilibrium in strategic form
games with three (or more) players.

1 Introduction

Arguably [17], the most important refinement of Nash equilibrium for finite
games in strategic form (a.k.a. games in normal form, i.e., games given by their
tables of payoffs) is Reinhard Selten’s [15] notion of trembling hand perfection.
The set of trembling hand perfect equilibria of a game is a non-empty subset of
the Nash equilibria of that game. Also, many “unreasonable” Nash equilibria of
many games, e.g., those relying on “empty threats” in equivalent extensive forms
of those games, are not trembling hand perfect, thus motivating and justifying
the notion. The importance of the notion is illustrated by the fact that Selten
received the Nobel prize in economics together with Nash (and Harsanyi), “for
their pioneering analysis of equilibria in the theory of non-cooperative games”.
In this paper, we study the computational complexity of finding trembling hand
perfect equilibria of games given in strategic form.

The computational complexity of finding a Nash equilibrium of a game in
strategic form is well-studied. When studying this computational task, we as-
sume that the game given as input is represented as a table of integer (or rational)
payoffs, with each payoff given in binary notation. The output is a strategy pro-
file, i.e., a family of probability distributions over the strategies of each player,
with each probability being a rational number with numerator and denominator
given in binary notation. The computational task is therefore discrete and we
are interested in the Turing machine complexity of solving it. Papadimitriou [13]

R. Lavi (Ed.): SAGT 2014, LNCS 8768, pp. 231–243, 2014.
c© Springer-Verlag Berlin Heidelberg 2014
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showed that for the case of two players, the problem of computing an exact Nash
equilibrium is in PPAD, a natural complexity class introduced in that paper, as
a consequence of the Lemke-Howson algorithm [10] for solving this task. For the
case of three or more players, there are games where no Nash equilibrium which
uses only rational probabilities exists [12], and hence considering some relaxation
of the notion of “computing” a Nash equilibrium is necessary to stay within the
discrete input/output framework outlined above. In particular, Papadimitriou
showed that the problem of computing an ε-Nash equilibrium, with ε > 0 given
as part of the input in binary notation, is also in PPAD, as a consequence of
Scarf’s algorithm [14] for solving this task. Here, an ε-Nash equilibrium is a
strategy profile where no player can increase its utility by more than ε by de-
viating. In breakthrough papers, Daskalakis et al. [5] and Chen and Deng [4]
showed that both tasks are also hard for PPAD, hence settling their complexity:
Both are PPAD-complete. Subsequently, Etessami and Yannakakis [6] pointed
out that for some games, ε-Nash equilibria can be so remote from any exact
Nash equilibrium (unless ε is so small that its binary notation has encoding size
exponential in the size of the game), that the former tells us little or nothing
about the latter. For such games, the ε-Nash relaxation is a bad proxy for Nash
equilibrium, assuming the latter is what we are actually interested in comput-
ing. Motivated by this, they suggested a different relaxation: Compute a strategy
profile with �∞-distance at most δ from an exact Nash equilibrium, with δ > 0
again given as part of the input in binary notation. In other words, compute an
actual Nash equilibrium to a desired number of bits of accuracy. They showed
that this problem is complete for a natural complexity class FIXPa that they
introduced in the same paper. Informally, FIXPa is the class of discrete search
problems that can be reduced to approximating (within desired �∞-distance)
any one of the Brouwer fixed points of a function given by an algebraic circuit
using gates: +,−, ∗, /,max,min. (We will formally define FIXPa later.)

In this paper, we want to similarly understand the case of trembling hand
perfect equilibrium. For the case of two players, the problem of computing an
exact trembling hand perfect equilibrium is PPAD-complete. This follows from
a number of known exact pivoting algorithms for computing refinements of this
notion [18,11,16]. For the case of three or more players, we are not aware of any
natural analogue of the notion of ε-Nash equilibrium as an approximate proxy
for a trembling hand perfect equilibrium.1 Thus, we only discuss in this paper
the approximation notion of Etessami and Yannakakis. The main result of the
present paper is the following:

Theorem 1. The following computational task is FIXPa-complete for any n ≥
3: Given an integer payoff table for an n-player game Γ , and a rational δ > 0,

1 The already studied notion of an ε-perfect equilibrium (ε-PE), which we discuss
later, does not qualify as such an analogue: For some three-player games, every ε-
PE uses irrational probabilities, and thus “computing” an (exact) ε-PE is just as
problematic as computing an exact NE. Indeed, the notion of a ε-PE is used as a
technical step towards the definition of trembling hand perfect equilibrium, rather
than as a natural “numerical relaxation” of this notion.
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with all numbers given in standard binary notation, compute (the binary repre-
sentation of) a strategy profile x′ with rational probabilities having �∞ distance
at most δ to a trembling hand perfect equilibrium of Γ .

As an immediate corollary of our main theorem, and the results of Etessami
and Yannakakis, we have that approximating a Nash equilibrium and approxi-
mating a trembling hand perfect equilibrium are polynomial time equivalent tasks.
In particular, there is a polynomial time algorithm that finds an approximation
to a trembling hand perfect equilibrium of a given game, using access to any
oracle solving the corresponding approximation problem for the case of Nash
equilibrium. To put this result in perspective, we note that Nash equilibrium
and trembling hand perfect equilibrium are computationally quite different in
other respects: if instead of finding an equilibrium, we want to verify that a given
strategy profile is such an equilibrium, the case of Nash equilibrium is trivial,
while the case of trembling hand perfect equilibrium for games with 3 (or more)
players is NP-hard [8]. This might lead one to believe that approximating a trem-
bling hand perfect equilibrium for games with 3 or more players is likely to be
harder than approximating a Nash equilibrium, but we show that this is not the
case.

1.1 About the Proof

Informally (for formal definitions, see below), FIXP (resp., FIXPa) is defined as
the complexity class of search problems that can be cast as exactly computing
(resp., approximating) a Brouwer fixed point of functions represented by circuits
over basis {+, ∗,−, /,max,min} with rational constants. It was established in
[6] that computing (resp., approximating) an actual Nash Equilibrium (NE)
for a finite n-player game is FIXP-complete (resp., FIXPa-complete), already for
n = 3. Since trembling hand perfect equilibria constitute a refinement of Nash
Equilibria, to show that approximating a trembling hand perfect equilibrium is
FIXPa-complete, we merely have to show that this task is in FIXPa.

An ε-perfect equilibrium (ε-PE for short) is defined to be a fully mixed strategy
profile, x, where every strategy j of every player i that is played with probability
xi,j > ε must be a best response to the other player’s strategies x−i. Then, a
trembling hand perfect equilibrium (PE for short) is defined to be a limit point
of a sequence of ε-PEs, for ε > 0, ε→ 0. Here, by limit point we mean, as usual,
any point to which a subsequence of the sequence converges. Such a point must
exist, by the Bolzano-Weierstrass theorem.

In rough outline, our proof that approximating a PE is in FIXPa has the
following structure:

1. We first define (in section 3) for any n-player game Γ , a map, F ε
Γ , pa-

rameterized by a parameter ε > 0, so that F ε
Γ defines a map from Dε

Γ to
itself, where Dε

Γ denotes the space of fully mixed strategy strategy profiles x
such that every player plays each strategy with probability at least ε. Also,
F ε
Γ (x) is described by a {+,−, ∗,min,max}-circuit with ε as one of its inputs.
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In particular, the Brouwer fixed point theorem applies to this map. We show
that the circuit defining F ε

Γ can be computed in polynomial time from the
input game instance Γ , and that every Brouwer fixed point of F ε

Γ is an ε-PE
of the original game Γ , making crucial use of, and modifying, a new fixed
point characterization of NEs that was defined and used in [6].

2. We then show (in section 4) that if ε∗ > 0 is made sufficiently small as a
function of the encoding size |Γ | of the game Γ , and of a parameter δ > 0,

specifically if ε∗ ≤ δ2
g(|Γ |)

, where g is some polynomial, then any ε∗-PE must
be δ-close (in the l∞-norm) to an actual PE. This part of the proof relies on
real algebraic geometry.

3. We then observe (in section 5) that for any desired δ, we can encode such
a sufficiently small ε∗ > 0 as a circuit that is polynomially large in the
encoding size of Γ and δ, simply by repeated squaring. We think of this as
constructing a virtual infinitesimal and believe that this technique will have
many other applications in the context of proving FIXPa membership using
real algebraic geometry. Finally, plugging in the circuit for ε∗ for the input
ε in the circuit for F ε

Γ , we obtain a Brouwer function F ε∗
Γ (x), defined by a

{+,−, ∗,max,min}-circuit, such that any fixed point of F ε∗
Γ (x) is guaranteed

to be a fully mixed strategy profile, x∗
ε∗ , that is also within l∞ distance δ of

a PE, x∗, of Γ . The triangle inequality completes the proof.

2 Definitions and Preliminaries

2.1 Game-Theoretic Notions

We use Q+ to denote the set of positive rational numbers. A finite n-player
normal form game, Γ = (N, 〈Si〉i∈N , 〈ui〉i∈N ), consists of a set N = {1, . . . , n}
of n players indexed by their number, a set of n (disjoint) finite sets of pure
strategies, Si, one for each player i ∈ N , and n rational-valued payoff functions
ui : S → Q, from the product strategy space S = Πn

i=1Si to Q.
The elements of S, i.e., combinations of pure strategies, one for each player, are

called pure strategy profiles. The assumption of rational values is for computa-
tional purposes. Each rational number r is represented as usual by its numerator
and denominator in binary, and we use size(r) to denote the number of bits in
the representation. The size |Γ | of the instance (game) Γ is the total number of
bits needed to represent all the information in the game: the strategies of all the
players and their payoffs for all s ∈ S.

A mixed strategy, xi, for a player i is a probability distribution on its set
Si of pure strategies. Letting mi = |Si|, we view xi as a real-valued vector
xi = (xi,1, . . . , xi,mi) ∈ [0, 1]mi, where xi,j denotes the probability with which
player i plays pure strategy j in the mixed strategy xi. Note that we must have
xi ≥ 0 and

∑mi

i=1 xi,mi = 1. That is, a vector xi is a mixed strategy of player
i iff it belongs to the unit simplex Δmi = {y ∈ Rmi |y ≥ 0;

∑mi

j=1 yj = 1}. We
use the notation πi,j to identify the pure strategy j of player i, as well as its
representation as a mixed strategy that assigns probability 1 to strategy j and
probability 0 to the other strategies of player i.
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A mixed strategy profile x = (x1, . . . , xn) is a combination of mixed strategies
for all the players. That is, vector x is a mixed strategy profile iff it belongs to the
product of the n unit simplexes for the n players, {x ∈ Rm | x ≥ 0;

∑mi

j=1 xi,j = 1
for i = 1, . . . , k}. We let DΓ denote the set of all mixed profiles for game Γ .
The profile is fully mixed if all the pure strategies of all players have nonzero
probability. We use the notation x−i to denote the subvector of x induced by
the pure strategies of all players except for player i. If yi is a mixed strategy of
player i, we use (yi;x−i) to denote the mixed profile where everyone plays the
same strategy as x except for player i, who plays mixed strategy yi.

The payoff function of each player can be extended from pure strategy profiles
to mixed profiles, and we will use Ui to denote the expected payoff function
for player i. Thus the (expected) payoff Ui(x) of mixed profile x for player i
is
∑

x1,j1 . . . xk,jkui(j1, . . . , jk) where the sum is over all pure strategy profiles
(j1, . . . , jk) ∈ S.

A Nash equilibrium (NE) is a (mixed) strategy profile x∗ such that all i =
1, . . . , n and every mixed strategy yi for player i, Ui(x

∗) ≥ Ui(yi;x
∗
−i). It is

sufficient to check switches to pure strategies only, i.e., x∗ is a NE iff Ui(x
∗) ≥

Ui(πi,j ;x
∗
−i) for every pure strategy j ∈ Si, for each player i = 1, . . . , n. Every

finite game has at least one NE [12].
A mixed profile x is called a ε-perfect equilibrium (ε-PE) if it is (a) fully mixed,

i.e., xi,j > 0 for all i, and (b), for every player i and pure strategy j, if xi,j > ε,
then the pure strategy πi,j is a best response for player i to x−i. We call a mixed
profile x∗, a trembling hand perfect equilibrium (PE) of Γ if it is a limit point of
ε-PEs of the game Γ . In other words, we call x a PE if there exists a sequence
εk > 0, such that limk→∞ εk = 0, and such that for all k there is a corresponding
εk-PE, x

εk of Γ , such that limk→∞ xεk = x∗. Every finite game has at least one
PE, and all PEs are NEs [15].

2.2 Complexity Theoretic Notions

A {+,−, ∗,max,min}-circuit is a circuit with inputs x1, x2, . . . , xn, as well as ra-
tional constants, and a finite number of (binary) computation gates taken from
{+,−, ∗,min,max},witha subset of the computationgates labeled{o1, o2, . . . , om}
and called output gates.2

All circuits of this paper are {+,−, ∗,min,max}-circuits, so we shall often just
write “circuit” for “{+,−, ∗,min,max}-circuit”. A circuit computes a continuous
function from Rn → Rm (and Qn → Qm) in the natural way. Abusing notation
slightly, we shall often identify the circuit with the function it computes.

By a (total) multi-valued function, f , with domain A and co-domain B, we
mean a function that maps each a ∈ A to a non-empty subset f(a) ⊆ B. We
use f : A � B to denote such a function. Intuitively, when considering a multi-
valued function as a computational problem, we are interested in producing just
one of the elements of f(a) on input a, so we refer to f(a) as the set of allowed

2 Note that the gates {+,−, ∗,min,max} are of course redundant: gates {+, ∗,max}
with rational constants are equally expressive.
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outputs. A multi-valued function f : {0, 1}∗ � R∗ is said to be in FIXP if there
is a polynomial time computable map, r, that maps each instance I ∈ {0, 1}∗ of

f to r(I) = 〈1kI

, 1d
I

, P I , CI , aI , bI〉, where

– kI , dI are positive integers and aI , bI ∈ QdI

.

– P I is a convex polytope in RkI

, given as a set of linear inequalities with
rational coefficients.

– CI is a circuit which maps P I to itself.
– φI : {1, . . . , dI} → {1, . . . , kI} is a finite function given by its table.

– f(I) = {(aIi yφI(i) + bIi )
dI

i=1 | y ∈ P I ∧ CI(y) = y}. Note that f(I) �= ∅, by
Brouwer’s fixed point theorem.

The above is in fact one of many equivalent characterizations of FIXP [6]. Infor-
mally, FIXP are those real vector multi-valued functions, with discrete inputs,
that can be cast as Brouwer fixed point computations. A multi-valued function
f : {0, 1}∗ � R∗ is said to be FIXP-complete if:

1. f ∈ FIXP, and
2. for all g ∈ FIXP, there is a polynomial time computable map, mapping

instances I of g to 〈yI , 1kI

, 1d
I

, φI , aI , bI〉, where yI is an instance of f , kI

and dI are positive integers, φI maps {1, . . . , dI} to {1, . . . , kI}, aI and bI

are dI -tuples with rational entries, so that g(I) ⊇ {(aIi zφI(i) + bIi )
dI

i=1 | z ∈
f(yI)}. In other words, for any allowed output z of f on input yI , the vector

(aIi zφI(i) + bIi )
dI

i=1 is an allowed output of g on input I.

Etessami and Yannakakis [6] showed that the multi-valued function which maps
games in strategic form to their Nash equilibria is FIXP-complete.3

Since the output of a FIXP function consists of real-valued vectors, and as
there are circuits whose fixed points are all irrational, a FIXP function is not
directly computable by a Turing machine, and the class is therefore not directly
comparable with standard complexity classes of total search problems (such as
PPAD, PLS, or TFNP). This motivates the following definition of the discrete
class FIXPa, also from [6]. A multi-valued function f : {0, 1}∗ � {0, 1}∗ (a.k.a.
a totally defined discrete search problem) is said to be in FIXPa if there is a
function f ′ ∈ FIXP, and polynomial time computable maps δ : {0, 1}∗ → Q+

and g : {0, 1}∗ → {0, 1}∗, such that for all instances I,

f(I) ⊇ { g(〈I, y〉) | y ∈ Q∗ ∧ ∃y′ ∈ f ′(I) : ‖y − y′‖∞ ≤ δ(I) }.

Informally, FIXPa are those totally defined discrete search problems that re-
duce to approximating exact Brouwer fixed points. A multi-valued function
f : {0, 1}∗ � {0, 1}∗ is said to be FIXPa-complete if:

1. f ∈ FIXPa, and

3 To view the Nash equilibrium problem as a total multi-valued function, fNash :
{0, 1}∗ � R∗, we can view all strings in {0, 1}∗ as encoding some game, by viewing
“ill-formed” input strings as encoding a fixed trivial game.
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2. For all g ∈ FIXPa, there are polynomial time computable maps r1, r2 :
{0, 1}∗ → {0, 1}∗, such that g(I) ⊇ { r2(〈I, z〉) | z ∈ f(r1(I)) }.

Etessami and Yannakakis showed that the multi-valued function that maps pairs
〈Γ, δ〉, where Γ is a strategic form game and δ > 0, to the set of rational δ-
approximations (in �∞-distance) of Nash equilibria of Γ , is FIXPa-complete.

3 Computing ε-PEs in FIXP

Given a game Γ , let m =
∑

i∈N mi denote the total number of pure strategies
of all players in Γ . For ε > 0, let Dε

Γ ⊆ DΓ denote the polytope of fully mixed
profiles of Γ such that furthermore every pure strategy is played with probability
at least ε > 0 (recall that DΓ is the polytope of all strategy profiles). In this
section, we show the following theorem.

Theorem 2. There is a function, F ε
Γ (x) : DΓ → Dε

Γ , given by a circuit com-
putable in polynomial time from Γ , with the circuit having both x and ε > 0
as its inputs, such that for all fixed 0 < ε < 1/m, every Brouwer fixed point of
the function F ε

Γ (x) is an ε-PE of Γ . In particular, the problem of computing an
ε-perfect equilibrium for a finite n-player normal form game is in FIXP.

The rest of the section is devoted to the proof of Theorem 2. We will directly
use, and somewhat modify, a construction developed and used in [6] (Lemmas
4.6 and 4.7, and definitions before them) which characterize the Nash Equilibria
of a game as fixed points of a {+,−, ∗,max,min}-circuit. In particular, compared
to Nash’s original functions [12], the use of division is avoided. The construction
defined in [6] that we modify amounts to a concrete algebraic realization of
certain geometric characterizations of Nash Equilibria that were described by
Gul, Pierce, and Stachetti in [7].

Concretely, suppose we are given 0 < ε < 1/m. For each mixed strategy profile
x, let v(x) be a vector which gives the expected payoff of each pure strategy of
each player with respect to the profile x for the other players. That is, vector
x is a vector of dimension m, whose entries are indexed by pairs (i, j), i =
1, . . . , n; j = 1, . . . ,mi, and v(x) is also a vector of dimensionm whose (i, j)-entry
is Ui(πi,j ;x−i). Let h(x) = x + v(x). We can write h(x) as (h1(x), . . . , hn(x))
where hi(x) is the subvector corresponding to the strategies of player i. For each
player i, consider the function fi,x(t) =

∑
j∈Si

max(hij(x)− t, ε). Clearly, this is
a continuous, piecewise linear function of t. The function is strictly decreasing as
t ranges from −∞ (where fi,x(t) = +∞) up to maxj hij(x)− ε (where fi,x(t) =
mi · ε). Since we have mi · ε < 1, there is a unique value of t, call it ti, where
fi,x(ti) = 1. The function F ε

Γ is defined as follows:

F ε
Γ (x)ij = max(hij(x) − ti, ε)

for every i = 1, . . . , n, and j ∈ Si. From our choice of ti, we have
∑

j∈Si
F ε
Γ (x)ij =

1 for all i = 1, . . . , n, thus for any mixed profile, x, we have F ε
Γ (x) ∈ Dε

Γ . So F ε
Γ

maps DΓ to Dε
Γ , and since it is clearly also continuous, it has fixed points, by

Brouwer’s theorem.
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Lemma 1. For 0 < ε < 1/m, every fixed point of the function F ε
Γ is an ε-PE

of Γ .

Proof. If x is a fixed point of F ε
Γ , then xij = max(xij + v(x)ij − ti, ε) for all i, j.

Recall that v(x)ij = Ui(πi,j ;x−i) is the expected payoff for player i of his j’th
pure strategy πi,j , with respect to strategies x−i of the other players.

Note that the equation xij = max(xij + Ui(πi,j ;x−i) − ti, ε) implies that
Ui(πi,j ;x−i) = ti for all i, j such that xij > ε, and that Ui(πi,j ;x−i) ≤ ti for all
i, j such that xij = ε. Consequently, by definition, x constitutes an ε-PE. ��

The following Lemma shows that we can implement the function F ε
Γ (x) by a

circuit which has x and ε as inputs. The proof exploits sorting networks.

Lemma 2. Given Γ , we can construct in polynomial time a {+,−, ∗,max,min}-
circuit that computes the function F ε

Γ (x), where x and ε are inputs to the circuit.

Proof. The circuit does the following.
Given a vector x ∈ DΓ , first compute y = h(x) = x + v(x). It is clear from

the definition of v(x) that y can be computed using +, ∗ gates. For each player
i, let yi be the corresponding subvector of y induced by the strategies of player
i. Sort yi in decreasing order, and let zi be the resulting sorted vector, i.e. the
components of zi = (zi1, . . . , zimi) are the same as the components of yi, but they
are sorted: zi1 ≥ zi2 ≥ . . . ≥ zimi . To obtain zi, the circuit uses a polynomial
sized sorting network,Wi, for each i (see e.g. Knuth [9] for background on sorting
networks). For each comparator gate of the sorting network we use a max and
a min gate.

Using this, for each player i, we compute ti as the following expression:

max{(1/l) · ((
l∑

j=1

zij) + (mi − l) · ε− 1)|l = 1, · · · ,mi}

We will show below that this expression does indeed give the correct value of
ti. Finally, we output x′

ij = max(yij − ti, ε) for each i = 1, . . . , d; j ∈ Si.

We now have to establish that ti = max{(1/l)·((
∑l

j=1 zij)+(mi−l)·ε−1)|l =
1, · · · ,mi}. Consider the function fi,x(t) =

∑
j∈Si

max(zij − t, ε) as t decreases
from zi1 − ε where the function value is at its minimum of miε, down until the
function reaches the value 1. In the first interval from zi1 − ε to zi2 − ε the
function is fi,x(t) = zi1 − t + (mi − 1) · ε; in the second interval from zi2 − ε
to zi3 − ε it is fi,x(t) = zi1 + zi2 − 2t + (mi − 2) · ε, and so forth. In general,

in the l-th interval, fi,x(t) =
∑l

j=1(zij − t) + (mi − l) · ε =
∑l

j=1 zij − lt +
(mi − l) · ε. If the function reaches the value 1 in the l’th interval, then clearly

ti = ((
∑l

j=1 zij) + (mi − l) · ε − 1)/l. In that case, furthermore for k < l, we

have
∑k

j=1(zij − ti) + (mi − k) · ε ≤
∑l

j=1(zij − ti) + (mi − l) · ε = 1, because in
that case we know (zij − ti) ≥ ε for every j ∈ {1, . . . , l}. Therefore, in this case

((
∑k

j=1 zij) + (mi − k) · ε − 1)/k ≤ ti. On the other hand, if l < mi, then for
k > l we have ti ≥ zik − ε, i.e., zik − ti ≤ ε, and thus for all k > l, k ≤ mi, we
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have
∑k

j=1(zij − ti) + (mi− k) · ε ≤
∑l

j=1(zij − ti) + (mi− l) · ε = 1. Thus again

((
∑k

j=1 zij) + (mi − k) · ε− 1)/k ≤ ti. Therefore, ti = max{(1/l) · ((
∑l

j=1 zij) +
(mi − l) · ε− 1)|l = 1, · · · ,mi}. ��

Lemma 1 and Lemma 2 together immediately imply Theorem 2.

4 Almost Implies Near

As outlined in the introduction, in this section, we want to exploit the “uniform”
function F ε

Γ (x) devised in the previous section for ε-PEs, and construct a “small
enough” ε∗ > 0 such that any fixed point of F ε∗

Γ (x) is δ-close, for a given δ > 0,
to an actual PE.

The following is a special case of the simple but powerful “almost implies
near” paradigm of Anderson [1].

Lemma 3 (Almost implies near). For any fixed strategic form game Γ , and
any δ > 0, there is an ε > 0, so that any ε-PE of Γ has �∞-distance at most δ
to some PE of Γ .

Proof. Assume to the contrary that there is a game Γ and a δ > 0 so that for
all ε > 0, there is an ε-PE xε of Γ so that there is no PE in a δ-neighborhood
(with respect to l∞ norm) of xε. Consider the sequence (x1/n)n∈N. Since this is
a sequence in a compact space (namely, the space of mixed strategy profiles of
Γ ), it has a limit point, x∗, which is a PE of Γ (since xε is a ε-PE). But this
contradicts the statement that there is no PE in a δ-neighborhood of any of the
profiles x1/n. ��

A priori, we have no bound on ε, but we next use the machinery of real
algebraic geometry [2,3] to obtain a specific bound as a “free lunch”, just from
the fact that Lemma 3 is true.

Lemma 4. There is a constant c, so that for all integers n,m, k,B ∈ N and

δ ∈ Q+, the following holds. Let ε ≤ min(δ, 1/B)n
cm3

. For any n-player game Γ
with at most m pure strategies for all player, and with integer payoffs of absolute
value at most B, any ε-PE of Γ has �∞-distance at most δ to some PE of Γ .

Proof. The proof involves constructing formulas in the first order theory of real
numbers, which formalize the “almost implies near” statement of Lemma 3, with
δ being “hardwired” as a constant and ε being the only free variable. Then, we
apply quantifier elimination to these formulas. This leads to a quantifier free
statement to which we can apply standard theorems bounding the size of an
instantiation of the free variable ε making the formula true. We shall apply and
refer to theorems in the monograph of Basu, Pollack and Roy [2,3]. Note that we
specifically refer to theorems and page numbers of the online edition [3]; these
are in general different from the printed edition [2].
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First-order formula for an ε-perfect equilibrium: Define Ri(x \ k) as the polyno-
mial expressing Ui(πi,k;x−i), that is, the expected payoff to player i when it uses
pure strategy k, and the other players play according to their mixed strategy in
the profile x. Thus,

Ri(x \ k) :=
∑
a−i

ui(k; a−i)
∏
j �=i

xj,aj .

Let EPS-PE(x, ε) be the quantifier-free first-order formula, with free variables
x ∈ Rm and ε ∈ R, defined by the conjunction of the following formulas that
together express that x is an ε-perfect equilibrium:

xi,j > 0 for i = 1 . . . , n, and j = 1, . . . ,mi ,

xi,1 + · · ·+ xi,mi = 1 for i = 1 . . . , n ,

(Ri(x \ k) ≥ Ri(x \ l)) ∨ (xi,k ≤ ε) for i = 1 . . . , n, and k, l = 1, . . . ,mi .

First-order formula for perfect equilibrium: Let PE(x) denote the following first-
order formula with free variables x ∈ Rm, expressing that x is a perfect equilib-
rium:

∀ε > 0 ∃y ∈ Rm : EPS-PE(y, ε) ∧ ‖x− y‖2 < ε .

First-order formula for “almost implies near” statement: Given a fixed δ > 0 let
PE-boundδ(ε) denote the following first-order formula with free variable ε ∈ R,
denoting that any ε-perfect equilibrium of G is δ-close to a perfect equilibrium
(in �2-distance, and therefore also in �∞-distance):

∀x ∈ Rm ∃y ∈ Rm : (ε > 0) ∧
(
¬EPS-PE(x, ε) ∨

(
PE(y) ∧ ‖x− y‖2 < δ2

))
.

Suppose δ2 = 2−k and the payoffs have absolute value at most B = 2τ . Then
for this formula we have

– The total degree of all involved polynomials is at most max(2, n− 1).
– The bitsize of coefficients is at most max(k, τ).
– The number of free variables is 1.
– Converting to prenex normal form, the formula has 4 blocks of quantifiers,

of sizes m, m, 1, m, respectively.

We now apply quantifier elimination [3, Algorithm 14.6, page 555] to the
formula PE-boundδ(ε), converting it into an equivalent quantifier free formula
PE-bound′δ(ε) with a single free variable ε. This is simply a Boolean formula
whose atoms are sign conditions on various polynomials in ε. The bounds given
by Basu, Pollack and Roy in association to Algorithm 14.6 imply that for this
formula:

– The degree of all involved polynomials (which are univariate polynomials in

ε) is max(2, n− 1)O(m3) = nO(m3).
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– The bitsize of all coefficients is at most max(k, τ)max(2, n − 1)O(m3) =

max(k, τ)nO(m3).

By Lemma 3, we know that there exists an ε > 0 so that the formula
PE-bound′δ(ε) is true. We now apply (as the involved polynomials are univari-
ate, simpler tools would also suffice) Theorem 13.14 of Basu, Pollack and Roy
[3, Page 521] to the set of polynomials that are atoms of PE-bound′δ(ε) and

conclude that PE-bound′δ(ε
∗) is true for some ε∗ ≥ 2−max(k,τ)nO(m3)

. By the
semantics of the formula PE-boundδ(ε), we also have that PE-boundδ(ε

′) is true
for all ε′ ≤ ε∗, and the statement of the lemma follows. ��

5 Proof of the Main Theorem

We now prove Theorem 1. Let Γ be the n-player game given as input. Let m
be the total number of pure strategies for all player. Let B ∈ N be the largest
absolute value of any payoff of Γ . By the definition of FIXPa, our task is the
following. Given a parameter δ > 0, we must construct a polytope P , a circuit
C : P → P , and a number δ′, so that δ′-approximations to fixed points of C
can be efficiently transformed into δ-approximations of PEs of Γ . In fact, we
shall let δ′ = δ/2 and ensure that δ′-approximations to fixed points of C are
δ-approximations of PEs of Γ . The polytope P is simply the polytope DΓ of
all strategy profiles of Γ ; clearly we can output the inequalities defining this
polytope in polynomial time. The circuit C is the following: We construct the
circuit for the function F ε

Γ of Section 3. Then, we construct a circuit for the num-

ber ε∗ = min(δ/2, B−1)2
�cm3 lgn� ≤ min(δ/2, B−1)n

cm3

, where c is the constant
of Lemma 4: The circuit simply repeatedly squares the number min(δ/2, B−1)
(which is a rational constant) and thereby consists of exactly %cm3 lg n& multi-
plication gates, i.e., a polynomially bounded number. We then plug in the circuit
for ε∗ for the parameter ε in the circuit for F ε

Γ , obtaining the circuit C, which is
obviously a circuit for F ε∗

Γ . Now, by Theorem 2, any fixed point of C on P is an
ε∗-PE of Γ . Therefore, by Lemma 4, any fixed point of C is a δ/2-approximation
in �∞-distance to a PE of Γ . Finally, by the triangle inequality, any δ′ = δ/2-
approximation to a fixed point of C on P is a δ/2+ δ/2 = δ approximation of a
PE of Γ . This completes the proof.

6 Conclusion

We have showed that the problem of approximating a trembling hand perfect
equilibrium for a finite strategic form game is in FIXPa. We do not know if exactly
computing a trembling hand perfect equilibrium is in FIXP, and we consider this
an interesting open problem, although it should be noted that if one is interested
exclusively in the Turing Machine complexity of the problem, FIXPa membership
of the approximation version is arguably “the real thing”. We also note that
this makes our proof interesting as a case where membership in FIXPa is not
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established as a simple corollary of the exact problem being in the “abstract
class” FIXP, as was the case for all examples in the original paper of Etessami
and Yannakakis.
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Centre for Discrete Mathematics and its Applications (DIMAP)
Department of Computer Science, University of Warwick, UK
{A.Czumaj,M.Fasoulakis,M.Jurdzinski}@warwick.ac.uk

Abstract. The ε-well-supported Nash equilibrium is a strong notion of
approximation of a Nash equilibrium, where no player has an incentive
greater than ε to deviate from any of the pure strategies that she uses in
her mixed strategy. The smallest constant ε currently known for which
there is a polynomial-time algorithm that computes an ε-well-supported
Nash equilibrium in bimatrix games is slightly below 2/3. In this paper
we study this problem for symmetric bimatrix games and we provide a
polynomial-time algorithm that gives a (1/2 + δ)-well-supported Nash
equilibrium, for an arbitrarily small positive constant δ.

1 Introduction

The problem of computing Nash equilibria is one of the most fundamental prob-
lems in algorithmic game theory. It is now known that the complexity of com-
puting a Nash equilibrium is PPAD-complete [4], even for two-player games [3].
Given this evidence of intractability of the problem, further research has fo-
cused on the computation of approximate Nash equilibria. In this context—and
assuming that all payoffs are normalized to be in the interval [0, 1]—the stan-
dard notion of approximation is the additive approximation with a parameter
ε ∈ [0, 1]. There are two different notions of additive approximation of Nash
equilibria: the ε-Nash equilibrium and the ε-well-supported Nash equilibrium.

An ε-Nash equilibrium is a strategy profile—one strategy for each player—
in which no player can improve her payoff by more than ε through unilateral
deviation from her strategy in the strategy profile. Several polynomial-time al-
gorithms have been proposed to find ε-Nash equilibria for ε = 1/2 [6], for
ε = (3 −

√
5)/2 ≈ 0.38 [5], for ε = 1/2 − 1/(3

√
6) ≈ 0.36 [2], and finally for

ε ≈ 0.3393 [13]. It is also known how to find ε-Nash equlibria in quasi-polynomial

time nO(logn/ε2) for arbitrarily small ε > 0 [11], where n is the number of pure
strategies.

The notion of an ε-well-supported Nash equilibrium requires that no player
has an incentive greater than ε to deviate from any of the pure strategies she uses
in her mixed strategy. It is a notion stronger than that of an ε-Nash equilibrium:
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every ε-well-supported Nash equilibrium is also an ε-Nash equilibrium, but not
necessarily vice-versa. The smallest ε for which a polynomial-time algorithm
is currently known that computes an ε-well-supported Nash equilibrium in an
arbitrary bimatrix game is slightly above 0.6619 [9,7]. It is also known that
for the class of win-lose bimatrix games one can find 1/2-well-supported Nash
equilibria in polynomial time [9].

In this paper we study computation of approximate well-supported Nash equi-
libria in symmetric bimatrix games, a class of bimatrix games in which swapping
the roles of the two players does not change the payoff matrices, that is if the
payoff matrix of one is the transpose of the payoff matrix of the other. Sym-
metric games are an important class of games in game theory; their applications
include auctions and congestion games. They have already been studied by Nash
in his seminal paper in which he introduced the concept of a Nash equilibrium; he
proved that every symmetric game has at least one symmetric Nash equilibrium,
that is one in which all players use the same mixed strategy [12].

Computing Nash equilibria in symmetric bimatrix games is known to be as
hard as computing Nash equilibria in arbitrary bimatrix games because there
is a polynomial-time reduction from the latter to the former [8]. In contrast to
arbitrary bimatrix games, it is known how to compute (1/3 + δ)-Nash equilib-
ria in symmetric bimatrix games in polynomial time, where δ > 0 is arbitrarily
small [10]. In this paper we improve our understanding of the approximability of
Nash equilibria in symmetric bimatrix games by considering the task of comput-
ing approximate well-supported Nash equilibria. Our main result is an algorithm
that computes (1/2 + δ)-well-supported Nash equilibria in symmetric bimatrix
games in polynomial time, where δ > 0 is arbitrarily small (Theorem 3).

Our (1/2+ δ)-approximation algorithm splits the analysis into two cases that
are then considered independently. The first case is based on the following re-
laxation of the concept of a symmetric Nash equilibrium: we say that a strat-
egy profile (x, x) prevents exceeding u ∈ [0, 1] if the expected payoff of every
pure strategy in the symmetric game is at most u when the other player uses
strategy x. This is indeed a relaxation of the concept of the symmetric Nash
equilibrium because if (x∗, x∗) is a symmetric Nash equilibrium then it prevents
exceeding its value (that is, the expected payoff each player gets when they both
play strategy x∗). We justify relevance of this concept by showing that a strategy
profile (x, x) that prevents exceeding u is a u-well-supported Nash equilibrium,
so in order to provide a latter it is sufficient to find a former. Moreover, we show
that this relaxation of a symmetric Nash equilibrium is algorithmically tractable
because it suffices to solve a single linear program to find a strategy profile (x, x)
that prevents exceeding u, if there is one. The first case in our algorithm is to
solve this linear program for u = 1/2 and if it succeeds then we can immediately
report a 1/2-well-supported Nash equilibrium. Note that by the above, if there is
indeed a symmetric Nash equilibrium with value 1/2 or smaller, then the linear
program does have a solution.

If the first case in the algorithm fails to identify a 1/2-well-supported equi-
librium because the game has no symmetric Nash equilibrium with value 1/2
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or smaller, then we consider the other, and technically more challenging, case.
We use another relaxation of the concept of a symmetric Nash equilibrium: we
say that a strategy profile (x, y) well supports u ∈ [0, 1] if the expected payoff
of every pure strategy in the support of x is at least u when the other player
uses strategy y, and the expected payoff of every pure strategy in the support
of y is at least u when the other player uses strategy x. We observe that if a
strategy profile (x, y) well supports u then it is a (1 − u)-well-supported Nash
equilibrium, so in order to provide a latter it is sufficient to find a former.

Therefore, in order to obtain a (1/2+ δ)-well-supported Nash equilibrium, we
are interested in finding a strategy profile (x, y) that well supports u ≥ 1/2− δ.
While it may not be easy to verify if there is such a strategy profile, let alone find
one, both can be achieved in polynomial time by solving a single linear program
if we happen to know the supports of strategies of each player in such a strategy
profile. The obvious technical obstacle to algorithmic tractability here is that
the number of all possible supports to consider is exponential in the number of
pure strategies. We overcome this difficulty by proving the main technical result
of the paper (Theorem 2) that for every symmetric Nash equilibrium (x∗, x∗)
and for every δ > 0 establishes existence of a strategy profile (x, y), with both
strategies having supports of constant size, that well supports u∗−δ, where u∗ is
the value of the Nash equilibrium. Note that by the failure of the first case every
symmetric Nash equilibrium has value larger than 1/2, and hence Theorem 2
implies that there is such a strategy profile with constant-size supports that well
supports 1/2−δ. The second case of our algorithm is to solve the linear programs
mentioned above for u = 1/2 − δ and for all supports I and J of sizes at most
κ(δ)—where κ(δ) is a constant (which depends on δ, but does not depend on
the number n of pure strategies) that is specified in Theorem 2—and to output
a solution (x, y) as soon as one is found.

In order to prove our main technical result (Theorem 2) we use the probabilis-
tic method to prove existence of constant-support strategy profiles that nearly
well support the expected payoffs of a Nash equilibrium. Our construction and
proof are inspired by the construction of Daskalakis et al. [5] used by them to
compute (3−

√
5)/2-Nash equilibria in bimatrix games in polynomial time, but

our analysis is different and more involved because we need to guarantee the
extra condition of nearly well supporting the equilibrium values. The general
idea of using sampling and Hoeffding bounds to prove existence of approximate
equlibria with small supports dates back to the papers of Althofer [1] and Lipton
et al. [11], who have shown that strategies with supports of size O(log n/ε2) are
sufficient for ε-Nash equilibria in games with n strategies.

2 Preliminaries

We consider bimatrix games (R,C), where R,C ∈ [0, 1]n×n are square matrices
of payoffs for the two players: the row player and the column player, respectively.
If the row player uses a strategy i, 1 ≤ i ≤ n and if the column one uses a strategy
j, 1 ≤ j ≤ n, then the row player receives payoff Rij and the column player
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receives payoff Cij . We assume that the payoff values are in the interval [0, 1]; it
is easy to see that equilibria in bimatrix games are invariant under additive and
positive multiplicative transformations of the payoff matrices.

A mixed strategy x ∈ [0, 1]n is a probability distribution on the set of pure
strategies {1, 2, . . . , n}. If the row player uses a mixed strategy x and the column
player uses a mixed strategy y, then the row player receives payoff xTRy and
the column player receives payoff xTCy. A pair of strategies (x, y), the former
for the row player and the latter for the column player, is often referred to as a
strategy profile. We define the support supp(x) of a mixed strategy x to be the
set of pure strategies that have positive probability in x, i.e., supp(x) = {i : 1 ≤
i ≤ n and xi > 0}.

For every i, 1 ≤ i ≤ n, let Ri• be the row vector of the payoffs of the payoff
matrix R when the row player uses the strategy i. Note that if the row player uses
a pure strategy i, 1 ≤ i ≤ n, and if the column player uses a mixed strategy y,
then the row player receives payoff Ri•y. Similarly, for every j, 1 ≤ j ≤ n, let C•j
be the column vector of the payoffs of the matrix C when the column player uses
the strategy j. Note that if the column player uses a pure strategy j, 1 ≤ j ≤ n,
and if the row player uses a mixed strategy x, then the column player receives
payoff xTC•j .

Definition 1 (Nash equilibrium). A Nash equilibrium is a strategy profile
(x∗, y∗) such that

– for every i, 1 ≤ i ≤ n, we have Ri•y
∗ ≤ (x∗)TRy∗, and

– for every j, 1 ≤ j ≤ n, we have (x∗)TC•j ≤ (x∗)TCy∗,

or, in other words, if x∗ is a best response to y∗ and y∗ is a best response to x∗.

Definition 2 (Approximate Nash equilibrium). For every ε > 0, an ε-
Nash equilibrium is a strategy profile (x∗, y∗) such that

– for every i, 1 ≤ i ≤ n, we have Ri•y
∗ − (x∗)TRy∗ ≤ ε, and

– for every j, 1 ≤ j ≤ n, we have (x∗)TC•j − (x∗)TCy∗ ≤ ε,

or, in other words, if x∗ is an ε-best response to y∗ and y∗ is an ε-best response
to x∗.

Definition 3 (Approximate well-supported Nash equilibrium). For ev-
ery ε > 0, an ε-well-supported Nash equilibrium is a strategy profile (x∗, y∗)
such that

– for every i, 1 ≤ i ≤ n, and i′ ∈ supp(x∗), we have Ri•y
∗ −Ri′•y

∗ ≤ ε, and
– for every j, 1 ≤ j ≤ n, and j′ ∈ supp(y∗), we have (x∗)TC•j−(x∗)TC•j′ ≤ ε,

or, in other words, if every i′ ∈ supp(x∗) is an ε-best response to y∗ and ev-
ery j′ ∈ supp(y∗) is an ε-best response to x∗.

Definition 4 (Symmetric game, symmetric Nash equilibrium). A bima-
trix game (R,C) is symmetric if C = RT .
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A symmetric Nash equilibrium in a symmetric bimatrix game (R,RT ) is a
strategy profile (x∗, x∗) such that for every i, 1 ≤ i ≤ n, we have Ri•x

∗ ≤
(x∗)TRx∗. Note that then it also follows that for every j, 1 ≤ j ≤ n, we have:

(x∗)TRT
•j = Rj•x

∗ ≤ (x∗)TRx∗ = (Rx∗)Tx∗ = (x∗)TRTx∗.

Let us recall a fundamental theorem of Nash [12] about existence of symmetric
Nash equilibria in symmetric bimatrix games.

Theorem 1 ([12]). Every symmetric bimatrix game has a symmetric Nash
equilibrium.

3 Computing Approximate Well-Supported Nash
Equilibria

Fix a bimatrix game G = (R,C) for the rest of the paper, where R,C ∈ [0, 1]n×n.
We will use N to denote the number of bits needed to represent the matrices R
and C with all their entries represented in binary. We say that a strategy x is
k-uniform, for k ∈ N \ { 0 }, if xi ∈ {0, 1

k ,
2
k , . . . , 1}, for every i, 1 ≤ i ≤ n.

3.1 Strategies that Prevent Exceeding a Payoff

Definition 5 (Preventing exceeding payoffs). We say that a strategy x ∈
[0, 1]n for the row player prevents exceeding u ∈ [0, 1] if for every j = 1, 2, . . . , n,
we have xTC•j ≤ u or, in other words, if the column player payoff of the best
response to x does not exceed u. Similarly, we say that a strategy y ∈ [0, 1]n for
the column player prevents exceeding v ∈ [0, 1] if for every i = 1, 2, . . . , n, we
have Ri•y ≤ v or, in other words, if the row player payoff of the best response
to y does not exceed v.

For brevity, we say that a strategy profile (x, y) prevents exceeding (v, u) if x
prevents exceeding u and y prevents exceeding v.

Observe that the following system of linear constraints PE(v, u) characterizes
strategy profiles (x, y) that prevent exceeding (v, u) ∈ [0, 1]2:

n∑
i=1

xi = 1; xi ≥ 0 for all i = 1, 2, . . . , n;

n∑
j=1

yj = 1; yj ≥ 0 for all j = 1, 2, . . . , n;

Ri•y ≤ v for all i = 1, 2, . . . , n;

xTC•j ≤ u for all j = 1, 2, . . . , n.

Note that if (x, y) is a Nash equilibrium then, by definition, it prevents exceeding
(xTRy, xTCy), which implies the following Proposition.
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Proposition 1. If (x, y) is a Nash equilibrium, v ≥ xTRy, and u ≥ xTCy, then
PE(v, u) has a solution and it prevents exceeding (v, u).

By the following proposition, in order to find an ε-well-supported Nash equi-
librium it suffices to find a strategy profile that prevents exceeding (ε, ε).

Proposition 2. If a strategy profile (x, y) prevents exceeding (v, u) then it is a
max(v, u)-well-supported Nash equilibrium.

Proof. Let i′ ∈ supp(x) and let i ∈ { 1, 2, . . . , n }. Then we have:

Ri•y −Ri′•y ≤ Ri•y ≤ v,

where the first inequality follows from Ri′•y ≥ 0, and the other one holds because
y prevents exceeding v. Similarly, and using the assumption that x prevents
exceeding u, we can argue that for all j′ ∈ supp(y) and j ∈ { 1, 2, . . . , n }, we
have xTC•j − xTC•j′ ≤ u. It follows that (x, y) is a max(v, u)-well-supported
Nash equilibrium. ��

3.2 Strategies that Well Support a Payoff

Definition 6 (Well supporting payoffs). We say that a strategy x ∈ [0, 1]n

for the row player well supports v ∈ [0, 1] against a strategy y ∈ [0, 1]n for
the column player if for every i ∈ supp(x), we have Ri•y ≥ v. Similarly, we
say that a strategy y ∈ [0, 1]n for the column player well supports u ∈ [0, 1]
against a strategy x ∈ [0, 1]n for the row player if for every j ∈ supp(y), we have
xTC•j ≥ u.

For brevity, we say that a strategy profile (x, y) well supports (v, u) if x well
supports v against y and y well supports u against x.

The following theorem states that the payoffs of every Nash equilibrium can
be nearly well supported by a strategy profile with supports of constant size.

Theorem 2. Let (x∗, y∗) be a Nash equilibrium. For every δ > 0, there are
κ(δ)-uniform strategies x, y such that the strategy profile (x, y) well supports(
(x∗)TRy∗ − δ, (x∗)TCy∗ − δ

)
, where κ(δ) = %2 ln(1/δ)/δ2&.

The proof of this technical result is postponed until Section 4.
Let v, u ∈ [0, 1], δ > 0, and let I and J be multisets of pure strategies of

size κ(δ). Consider the following system WS(v, u, I,J , δ) of linear constraints:

xi = ki/κ(δ) for all i = 1, 2, . . . , n;

yj = �j/κ(δ) for all j = 1, 2, . . . , n;

Ri•y ≥ v − δ for all i ∈ I;
xTC•j ≥ u− δ for all j ∈ J ;

where ki is the number of times i occurs in multiset I, and �j is the num-
ber of times j occurs in multiset J . Note that the system WS(v, u, I,J , δ) of
linear constraints characterizes κ(δ)-uniform strategy profiles (x, y), such that
supp(x) = I and supp(y) = J , that well support (v − δ, u − δ). Theorem 2
implies the following.
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Corollary 1. If (x, y) is a Nash equilibrium, v ≤ xTRy, u ≤ xTCy, and δ > 0,
then there are multisets I and J from { 1, 2, . . . , n } of size κ(δ), such that
WS(v, u, I,J , δ) has a solution and it well supports (v − δ, u− δ).

By the following proposition, in order to find an ε-well-supported Nash equi-
librium it suffices to find a strategy profile that well supports (1− ε, 1− ε).

Proposition 3. If a strategy profile (x, y) well supports (v, u) then it is a
(
1−

min(v, u)
)
-well-supported Nash equilibrium.

Proof. Let i′ ∈ supp(x) and let i ∈ { 1, 2, . . . , n }. Then we have:

Ri•y −Ri′•y ≤ 1−Ri′•y ≤ 1− v,

where the first inequality follows from Ri•y ≤ 1, and the other one holds because
y well supports v. Similarly, and using the assumption that x well supports u,
we can argue that for all j′ ∈ supp(y) and j ∈ { 1, 2, . . . , n }, we have xTC•j −
xTC•j′ ≤ 1 − u. It follows that (x, y) is a

(
1 −min(v, u)

)
-well-supported Nash

equilibrium. ��

3.3 The Algorithm for Symmetric Games

Propositions 2 and 3 suggest that in order to identify a 1/2-well-supported Nash
equilibrium it suffices to find either a strategy profile that prevents exceeding
(1/2, 1/2) or one that well supports (1/2, 1/2). Moreover, verifying existence and
identifying such strategy profiles can be done efficiently by solving the linear pro-
gram PE(1/2, 1/2), and by solving linear programs WS(1/2+ δ, 1/2+ δ, I,J , δ)
for all multisets I and J of pure strategies of size κ(δ), respectively.

For arbitrary bimatrix games the above scheme may fail if none of these sys-
tems of linear constraints has a solution. Note, however, that—by Proposition 1
and Corollary 1—it would indeed succeed if we could guarantee that the game
had a Nash equilibrium with both payoffs at most 1/2, or with both payoffs at
least (1/2+δ). Symmetric bimatrix games nearly satisfy this requirement thanks
to existence of symmetric Nash equilibria in every symmetric game [12].

If (x∗, x∗) is a symmetric Nash equilibrium in a symmetric bimatrix game
(R,RT ) then—trivially—either (x∗)TRx∗ ≤ 1/2 or (x∗)TRx∗ > 1/2. In the
former case, by Proposition 1 the linear program PE(1/2, 1/2) has a solution,
and by Proposition 2 it is a (1/2)-well-supported Nash equilibrium. In the latter
case, by Corollary 1 there are multisets I and J of pure strategies of size κ(δ),
such that WS(1/2, 1/2, I,J , δ) has a solution (x, y) and it well supports (1/2−
δ, 1/2−δ). It then follows by Proposition 3 that (x, y) is a (1/2+δ)-well-supported
Nash equilibrium.

Algorithm 1. Let (R,RT ) be a symmetric game and let δ > 0.

1. If PE(1/2, 1/2) has a solution x then return (x, x).
2. Otherwise, that is if PE (1/2, 1/2) does not have a solution:
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(a) Using exhaustive search, find multisets I and J of pure strategies, both
of size κ(δ), such that WS (1/2, 1/2, I,J , δ) has a solution.

(b) Return a solution (x, y) of WS (1/2, 1/2, I,J , δ). ��

In order to find appropriate I and J in step 2(a), an exhaustive enumeration
of all pairs of multisets I and J of size κ(δ) is done, and for each such pair
the system of linear constraints WS(1/2, 1/2, I,J , δ) is solved. Note that the
number of κ(δ)-element multisets from an n-element set is(

n+ κ(δ)− 1

κ(δ)

)
= nO(κ(δ)) = nO(ln(1/δ)/δ2).

Therefore, step 2. of the algorithm requires solving nO(ln(1/δ)/δ2) linear programs
and hence the algorithm runs in time NO(ln(1/δ)/δ2).

Theorem 3. For every δ > 0, Algorithm 1 runs in time NO(ln(1/δ)/δ2) and it
returns a strategy profile that is a (1/2 + δ)-well-supported Nash equilibrium.

4 Proof of Theorem 2

We use the probabilistic method: random κ(δ)-uniform strategies are drawn
by sampling κ(δ) pure strategies (with replacement) from the distributions x∗

and y∗, respectively, and Hoeffding’s inequality is used to show that the prob-
ability of thus selecting a strategy profile that well supports

(
v∗ − δ, u∗ − δ

)
is

positive if κ(δ) ≥ 2 ln(1/δ)/δ2, where v∗ = (x∗)TRy∗ and u∗ = (x∗)TCy∗.
Consider 2κ(δ) mutually independent random variables It and Jt, 1 ≤ t ≤

κ(δ), with values in { 1, 2, . . . , n }, the former with the same distribution as
strategy x∗ and the latter with the same distribution as strategy y∗, that is
we have P{It = i} = x∗

i and P
{
Jt = j

}
= y∗j for i, j = 1, 2, . . . , n. Define

the random distributions X = (X1, X2, . . . , Xn) and Y = (Y1, Y2, . . . , Yn), with
values in [0, 1]n, by setting:

Xi =
1

κ(δ)
·
κ(δ)∑
t=1

[It = i] and Yj =
1

κ(δ)
·
κ(δ)∑
t=1

[Jt = j].

Note that every realization of Y is a κ(δ)-uniform strategy that uses the pure

strategy j, 1 ≤ j ≤ n, with probabilityKj/κ(δ), whereKj =
∑κ(δ)

t=1 [Jt = j] is the
number of indices t, 1 ≤ t ≤ κ(δ), for which Jt = j. A similar characterization
holds for every realization of X . Observe also that supp(X) ⊆ supp(x∗) and
supp(Y ) ⊆ supp(y∗) because for all i and j, 1 ≤ i, j ≤ n, the random variablesXi

and Yj are identically equal to 0 unless x∗
i > 0 and y∗j > 0, respectively.

Since we want (a realization of) the random strategiesX and Y to well support
a certain pair of values, we now characterizeRi•Y , for all i ∈ supp(x∗); the whole
reasoning presented below for Ri•Y can be carried out analogously for XTC•j ,
for all j = 1, 2, . . . , n, and hence it is omitted.
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First, observe that for all i = 1, 2, . . . , n, we have:

Ri•Y =

n∑
j=1

RijYj =
1

κ(δ)
·

n∑
j=1

Rij ·
κ(δ)∑
t=1

[Jt = j] =
1

κ(δ)
·
κ(δ)∑
t=1

RiJt .

Therefore, the random variable Ri•Y is equal to the arithmetic average

Zi =
1

κ(δ)
·
κ(δ)∑
t=1

Zit

of the independent random variables Zit = RiJt , 1 ≤ t ≤ κ(δ).
For every i ∈ supp(x∗), we will apply Hoeffding’s inequality to the correspond-

ing random variable Zi. Hoeffding’s inequality gives an exponential upper bound
for the probability of large deviations of the arithmetic average of independent
and bounded random variables from their expectation.

Lemma 1 (Hoeffding’s inequality). Let Z1, Z2, . . . , Zk be independent ran-

dom variables with 0 ≤ Zt ≤ 1 for every t, let Z = (1/k) ·
∑k

t=1 Zt, and let E
{
Z
}

be its expectation. Then for all δ > 0, we have P
{
Z − E

{
Z
}
≤ −δ

}
≤ e−2δ2k.

Before we apply Hoeffding’s inequality to the random variables Zi defined
above, observe that for every t = 1, 2, . . . , κ(δ), we have:

E{Zit} = E{RiJt} =
n∑

j=1

Rij · P{Jt = j} = Ri•y
∗.

Note, however, that if i ∈ supp(x∗) then E{Zit} = Ri•y
∗ = v∗, because (x∗, y∗)

is a Nash equilibrium, and hence every i ∈ supp(x∗) is a best response to y∗. It

follows that E
{
Zi

}
= (1/κ(δ)) ·

∑κ(δ)
t=1 E{Zit} = v∗.

Applying Hoeffding’s inequality, for every i ∈ supp(x∗), we get:

P{Ri•Y < v∗ − δ} = P
{
Zi − E

{
Zi

}
< −δ

}
≤ e−2δ2κ(δ). (1)

It follows that if I ⊆ supp(x∗) and |I| ≤ κ(δ), then:

P
{
Ri•Y < v∗ − δ for some i ∈ I

}
≤

≤
∑
i∈I

P
{
Ri•Y < v∗ − δ

}
≤ κ(δ) · e−2δ2κ(δ) = 2δ2 ln(1/δ) <

1

2
, (2)

for all δ > 0. The first inequality holds by the union bound, and the second
follows from (1) and because |I| ≤ κ(δ). The last inequality can be verified by
observing that the function f(x) = 2x2 ln(1/x), for x > 0, achieves its maximum
at x = 1/

√
e and f(1/

√
e) = 1/e < 1/2.

In a similar way we can prove that if J ⊆ supp(y∗) and |J | ≤ κ(δ), then:

P
{
XTC•j < (x∗)TCy∗ − δ for some j ∈ J

}
<

1

2
, (3)
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for all δ > 0.
We are now ready to argue that

P
{
Ri•Y ≥ v∗ − δ for all i ∈ supp(X),

and XTC•j ≥ u∗ − δ for all j ∈ supp(Y )
}
> 0,

and hence there must be realizations x, y ∈ [0, 1]n of the random variables X =
(X1, X2, . . . , Xn) and Y = (Y1, Y2, . . . , Yn), such that (x, y) well supports

(
v∗ −

δ, u∗ − δ
)
. Indeed, we have:

P
{
Ri•Y < v∗ − δ for some i ∈ supp(X),

or XTC•j < u∗ − δ for some j ∈ supp(Y )
}

≤
∑

I⊆supp(x∗)

P
{
I = supp(X) and Ri•Y < v∗ − δ for some i ∈ I

}
+

∑
J⊆supp(y∗)

P
{
J = supp(Y ) and XTC•j < u∗ − δ for some j ∈ J

}
=

∑
I⊆supp(x∗)
|I|≤κ(δ)

P
{
I = supp(X)

}
·P
{
Ri•Y < v∗− δ for some i ∈ I

∣∣ I = supp(X)
}

+
∑

J⊆supp(y∗)
|J|≤κ(δ)

P
{
J = supp(Y )

}
·P
{
XTC•j < u∗−δ for some j ∈ J

∣∣ J = supp(Y )
}

<
∑

I⊆supp(x∗)

P
{
I = supp(X)

}
· 1
2
+

∑
J⊆supp(y∗)

P
{
J = supp(Y )

}
· 1
2

= 1,

where the first inequality follows from the union bound, and from supp(X) ⊆
supp(x∗) and supp(Y ) ⊆ supp(y∗); the equality holds because |supp(X)| ≤ κ(δ)
and |supp(Y )| ≤ κ(δ) by the definitions of X and Y ; and the latter (strict)
inequality follows from (2) and (3).
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1 Northwestern University, USA
manolis@u.northwestern.edu

2 CWI and VU University Amsterdam, The Netherlands
g.schaefer@cwi.nl

Abstract. We consider the problem of designing mechanisms for hiring
a matroid base without money. In our model, the elements of a given
matroid correspond to agents who might misreport their actual costs
that are incurred if they are hired. The goal is to hire a matroid base
of minimum total cost. There are no monetary transfers involved. We
assume that the reports are binding in the sense that an agent’s cost
is equal to the maximum of his declared and actual costs. Our model
encompasses a variety of problems as special cases, such as computing a
minimum cost spanning tree or finding minimum cost allocation of jobs
to machines.

We derive a polynomial-time randomized mechanism that is truthful
in expectation and achieves an approximation ratio of (m − r)/2 + 1,
where m and r refer to the number of elements and the rank of the
matroid, respectively. We also prove that this is best possible by showing
that no mechanism that is truthful in expectation can achieve a better
approximation ratio in general. If the declared costs of the agents are
bounded by the cost of a socially optimal solution, we are able derive
an improved approximation ratio of 3

√
m. For example, this condition is

satisfied if the costs constitute a metric in the graphical matroid.
Our mechanism iteratively extends a partial solution by adding feasi-

ble elements at random. As it turns out, this algorithm achieves the best
possible approximation ratio if it is equipped with a distribution that
is optimal for the allocation of a single task to multiple machines. This
seems surprising given that matroids allow for much richer combinatorial
structures than the assignment of a single job.

1 Introduction

The task of designing algorithms that are resilient to manipulations of strategic
agents in large, distributed systems (such as the Internet) has become a major
challenge in recent years. For example, in online marketplaces (such as eBay or
eBid) auction formats are desired that incentivize truth revelation of the bidders’
valuations for the items on auction. In online workplaces (like Elance, oDesk or
Guru) that match freelance experts to clients mechanisms are sought to prevent
unjustified declarations of costs.
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The classical approach to incite truth telling in strategic environments is to
use mechanism design (see, e.g., [15,14]). Here the basic idea is to issue payments
to the agents in order to convince them to behave truthfully. Typically, these
payments are used to compensate for the advantage that an agent could obtain
by lying. Mechanism design is a powerful approach that gave rise to several
enlightening results in the past and still is a very active research area with many
intriguing open questions.

However, there are many applications in which monetary transfers (as used in
the traditional setting) are infeasible. As a result, researchers have more recently
started to look into what is known asmechanism design without money. Here the
basic question one asks is: Can one incite agents to behave truthfully without
the use of monetary transfers? Unfortunately, classical results in voting theory
show that the answer to this question is “No!” in general. In particular, the
well-known Gibbard-Satterthwaite theorem [9,18] states that for unrestricted
domains and at least three outcomes the only mechanism enforcing truthfulness
without monetary transfers is dictatorial, i.e., the outcome is determined by a
single agent. In particular, this also rules out the possibility of approximating
any interesting objective in such a setting.

In light of this strong intractability result, there has recently been a large in-
terest in studying more restrictive settings of mechanism design without money.
A partial list of proposals that have been addressed in the literature includes
the limitation of the agents’ preferences [17], changing the social choice model
using imposition [16] or binding reports [11,3,2].

Our Model. In this paper, we study the problem of selecting a minimum cost
matroid base in a strategic environment. Here the elements of the matroid corre-
spond to agents who might misreport their actual costs. The intuition behind our
model is that a certain task can be accomplished only through the collaboration
of certain groups of agents. These groups correspond to the bases of the given
matroid. Each agent i declares a cost ci for performing the task, which is not
necessarily equal to his actual cost. Based on the declared costs, the mechanism
designer wants to “hire” a matroid base at the cheapest possible cost. There are
no monetary transfers between the mechanism designer and the agents.

As an example, suppose that the mechanism designer wants to hire a spanning
tree in a given network in order to establish connectivity between all nodes at the
lowest possible cost. Here the agents are the edges and each edge declares a cost
that it incurs for establishing connectivity between its endpoints. This problem
falls into our matroid model simply by using the graphic matroid whose bases
correspond to the spanning trees of the given graph.

Another example is the problem of scheduling n jobs on m unrelated machines
(possibly with restrictions). Every machine i declares for each job j ∈ [n] it can
execute a processing time pij . The goal is to determine an assignment of jobs
to machines such that the total processing time is minimized. It is not hard
to see that this problem is a special case of finding a minimum cost basis in a
partitioning matroid and is therefore captured by our matroid model.
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Binding Reports. The latter problem was studied by Koutsoupias [11] under
the assumption that the reports are binding. This notion was first considered
by Christodoulou e. al. [3] and Angel et al. [2]. Basically, this means that one
can detect whether an agent overstates his actual cost. The motivation for this
assumption is that in many situations costs are “observable” and thus declaring
a cost that is larger than the actual one can be punished. On the other hand,
if an agent understates his cost then his actual cost remains unaffected through
this false declaration. For example, in the scheduling problem mentioned above
binding reports means that the mechanism can enforce that the machine is busy
for at least the declared processing time.

Koutsoupias [11] settles the problem of assigning one job to m machines com-
pletely. He designs a randomized algorithm that is truthful in expectation and
achieves an approximation ratio of (m+ 1)/2 (which he shows is best possible).
He also extends these results to the case of scheduling n jobs on m machines.
The crucial insight in [11] that enables him to derive these results is a charac-
terization of the distributions for the assignment of a single job that guarantee
truthfulness in expectation. Given this characterization, he then determines a
distribution that achieves the best possible approximation ratio.

Our Contributions. Here we continue this line of research. We consider the
problem of designing mechanisms without money for the more general model
of hiring a matroid base under binding reports. Our main contributions are as
follows:

1. We give a randomized algorithm that is truthful in expectation and achieves
an approximation ratio of (m− r)/2+1, where m and r refer to the number
of elements and the rank of the underlying matroid, respectively.

2. We prove that this approximation ratio is best possible. More specifically, we
show that no (randomized) mechanism that is truthful in expectation can
achieve a better approximation ratio.

3. We then show that an improved approximation ratio of 3
√
m can be achieved

if the declared costs of the agents are bounded by the cost of a socially op-
timal solution. For example, this condition is satisfied if the costs constitute
a metric in the graphic matroid.

Our Techniques. Our results are based on a natural extension of the greedy
algorithm for the computation of a minimum cost basis of a matroid. The al-
gorithm iteratively extends a partial solution by adding elements that maintain
feasibility. However, because of truthfulness we cannot enforce that a minimum
cost element is chosen in each iteration (as in the standard greedy algorithm).
Instead, we have to ensure that in each iteration each feasible addition of an ele-
ment is chosen with some positive probability such that the resulting probability
of picking an element meets certain monotonicity properties.

Although we have some freedom to choose these distributions, their choice im-
pacts the resulting approximation ratio of the mechanism. Intuitively, we would
like to tailor these distributions in such a way that the minimum cost element is
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chosen with some good probability, while the required monotonicity properties
are still satisfied. Here the insights obtained by Koutsoupias [11] for assigning a
single job to m machines turn out to be very useful.

Our findings show that an appropriate composition of the distribution that
is proven to be optimal for the single task assignment in [11] also delivers the
best possible results in the more general setting of hiring a matroid base. We find
this somewhat surprising because matroids allow for combinatorially much richer
structures than the assignment of a single job. In fact, the problem of optimally
assigning a single job to m machines is equivalent to computing a minimum cost
basis of a 1-uniform matroid (which is one of the most trivial matroids). For this
special case our mechanism coincides with the one of Koutsoupias.

In order to bound the approximation ratio of our mechanism we crucially
exploit properties of the matroid. However, there are many approximation algo-
rithms that follow a similar design paradigm of iteratively extending a partial
solution in a greedy manner (e.g., the greedy algorithm for the set cover prob-
lem). We conjecture that our findings might be extended to a broader context of
greedy-like approximation algorithms which gives rise to some intriguing ques-
tions for follow-up research.

Additional Related Work. The design of mechanism that do not use mon-
etary transfers has recently received considerable attention in the literature on
economics and computation. Procaccia and Tennenholtz [17] initiated the study
of approximate mechanism design without payments for combinatorial problems
by studying facility location problems. Their studies triggered several follow-
up articles on this topic (see, e.g., [1,13,12,6,7]). Dughmi and Gosh [4] derived
approximate mechanisms without money for several variants of the assignment
problems. Guo and Conitzer [10] studied the problem of selling items without
payments for the case of two agents.

The idea of binding reports is also related to mechanisms with verification,
whose study was first proposed by Nisan and Ronen [15]. However, the notion
of verification is much stronger than the notion of binding reports that we con-
sider here. In particular, mechanisms with verification may defer the issuing of
payments to the agents until they learned the actual outcome. As a result, these
mechanisms can punish misreports a posteriori by imposing very high penalties
for lying.

Mechanism with binding reports are related to the notion of imposition pro-
posed by Nissim et al. [16]. In the context of the facility location problem, agents
might be forced to connect to the facility that is closest to their declared po-
sition instead of the one that is closest to their actual position. This approach
was further pursued by Fotakis and Tzamos [8].

2 Preliminaries

In this section, we give a formal definition of the model that we consider in this
paper and introduce some basic concepts.
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2.1 Matroids

We first formally introduce the notion of a matroid :

Definition 1. A matroid M = (E,F ) is defined by a finite set E of elements
and a set F ⊆ 2E of subsets of E satisfying

1. ∅ ∈ F (non-emptiness),
2. if S ∈ F and S′ ⊆ S then S′ ∈ F (downward closure),
3. if S, T ∈ F and |S| > |T | then there exists some i ∈ S \T such that T +i ∈ F

(exchange property).1

The sets in F are called independent sets. An inclusion-wise maximal indepen-
dent set B ∈ F is a basis of M.2 The common size of all bases of M is called
the rank of M and will be denoted by r(M).3

Throughout this paper, we assume that the matroidM = (E,F ) is implicitly
represented by an independent set oracle: given a set S ⊆ E, the oracle specifies
whether S is an independent set or not. Unless specified otherwise, we identify
the elements in E with the first m natural numbers, i.e., E = [m]. We assume
that every element i ∈ E constitutes and independent set, i.e., i ∈ F .4 Note that
this assumption is without loss of generality because we can remove all elements
from E that do not occur in any independent set.

Example 1. A typical example of a matroid is the graphic matroid. Given a
graph G = (V,E), we let the edges E of G be the elements of the matroid and
each subset S ⊆ E of edges that does not contain a cycle in G constitutes an
independent set in F . It is easy to verify that Properties 1–3 of Definition 1 are
satisfied. The bases of M = (E,F ) correspond to the spanning trees of G. The
rank of M is r(M) = n− 1, where n is the number of vertices in G.

2.2 Hiring a Matroid Base

Let M = (E,F ) be a matroid. In our model, we associate an agent with each
element i ∈ E of the matroid. Each agent i ∈ E has a non-negative cost c̄i ∈ R+.
Intuitively, by choosing agent i ∈ E a cost of c̄i is incurred. The cost c̄i is
“private” in the sense that it is unknown to us. Our goal is to select (or hire) a
base of the matroid of minimum total cost. The intuition behind our model is
that the bases of the underlying matroid represent groups of agents that together
can perform a certain task.

1 For ease of notation, for a set T ⊆ E and an element i ∈ E we also use T + i and
T − i as a short for T ∪ {i} and T \ {i}, respectively.

2 Subsequently, by “maximal” we mean “inclusion-wise maximal”, i.e., B is maximal
if for every i ∈ E \B, B + i is not an independent set.

3 Using the properties of Definition 1, it is not hard to show that all bases of a matroid
M have the same size.

4 We slightly abuse notation here and write i ∈ F instead of {i} ∈ F for notational
convenience.
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Example 2. In order to establish connectivity among all nodes in a given graph
G = (V,E) one may want to determine a minimum cost spanning tree of G. Here
each edge i ∈ E corresponds to an agent and selecting an edge incurs a cost of
c̄i. Our goal then is to select a minimum cost basis of the graphic matroid.

2.3 Binding Reports

We assume that agents might misreport their costs, i.e., each agent i ∈ E declares
a cost ci, which is possibly different from his actual cost c̄i. Based on the matroid
M and the declared costs c = (c1, . . . , cm), the mechanism selects a basis of the
underlying matroid. We consider mechanisms without money, i.e., the mechanism
does not receive/issue any payments from/to the agents.

In order to achieve truthfulness it will turn out to be crucial to allow for
random selections of agents, i.e., we consider randomized mechanisms. Subse-
quently, we use pi(c) to refer to the probability that our (random) mechanism
picks element i ∈ E, given the reported costs c.

We assume that the reports are binding as proposed by Koutsoupias [11].
More precisely, if agent i’s reported cost is ci then his actual cost is max{c̄i, ci}.
That is, if agent i overstates his actual cost by reporting ci > c̄i and agent i is
selected then his actual cost becomes ci. On the other hand, if agent i understates
his actual cost c̄i and is selected then his actual cost remains c̄i because this is
the cost incurred by i. Formally, we assume that each agent i ∈ E strives to
minimize his expected cost

Ci(c) = max{c̄i, ci}pi(c).

Subsequently, we use c̄ = (c̄1, . . . , c̄m) ∈ Rm
+ to refer to the vector of actual costs

and c = (c1, . . . , cm) ∈ Rm
+ to refer the vector of declared costs.

2.4 Truthful Mechanisms

We are interested in designing mechanisms that are truthful in expectation, which
we define next. To this aim, we first need to introduce some standard notation.
Let c = (c1, . . . , cm) ∈ Rm

+ be a cost vector. Then we denote by c−i, i ∈ [m], the
(m− 1)-dimensional vector with the ith coordinate removed, i.e.,

c−i = (c1, c2, . . . , ci−1, ci+1, . . . , cm).

For a subset T ⊆ [m], we will also use cT to refer to the restriction of c to index
set T , i.e., cT = (ci1 , ci2 , . . . , ci|T |) with T = {i1, . . . , i|T |}.
Definition 2 (Truthful mechanism). A mechanism M is truthful in expec-
tation if for every agent i and every vector c−i, the expected cost of i is minimized
by declaring the actual cost truthfully, i.e., for every i ∈ E,

Ci(c̄i, c−i) = c̄ipi(c̄i, c−i) ≤ max{c̄i, ci}pi(c) = Ci(c).

There are stronger notions of truthfulness (e.g., truthfulness or universal
truthfulness). However, it is easy to see that with these stronger notions of
truthfulness no positive results are possible; see also [11].



Mechanisms for Hiring a Matroid Base without Money 261

2.5 Approximate Social Cost

The social cost function that we consider throughout this paper is the sum of the
individual costs, i.e., SC(c) =

∑
i∈E Ci(c). We use OPT(c) to refer to the cost of

a socially optimal solution, i.e., the minimum cost of a base ofM = (E,F ) with
respect to c. Ideally, we would like to derive a truthful mechanism that computes
a socially optimal outcome. However, this is impossible and we therefore relax
the optimality condition and resort to approximate solutions.

Definition 3. A mechanism M is α-approximate with α ≥ 1 if for every vector
c of declared costs, the expected social cost satisfies

SC(c) =
∑
i∈E

Ci(c) =
∑
i∈E

max{c̄i, ci}pi(c) ≤ αOPT(c).

2.6 Koutsoupias’ Characterization

Koutsoupias [11] considers the problem of scheduling one job on m available
machines. The actual cost incurred by machine i to schedule job j is p̄i and each
machine wants to minimize his cost. The overall objective is to determine an
assignment of minimum total cost.5 Note that this corresponds to computing a
minimum cost basis in the matroid that consists only of singletons.

Koutsoupias characterizes the set of truthful mechanisms for this problem.

Proposition 1 ([11]). Let pi(c) be the probability that element i is chosen by
mechanism M given the vector of declared costs c. Then M is truthful in expec-
tation if and only if for every i ∈ E:

1. pi(ci, c−i) is non-increasing in ci,
2. cipi(ci, c−i) is non-decreasing in ci.

Based on the above characterization result, Koutsoupias then derives a dis-
tribution that satisfies the above properties and whose expected social cost is at
most (m+1)/2 times the optimal one. He also proves that this is best possible in
the sense that no other truthful in expectation mechanism (without payments)
can achieve a better approximation ratio.

3 Greedy Mechanism and Truthfulness Conditions

In this section, we provide a general framework for constructing truthful mecha-
nisms. Our framework is based on the greedy approach which iteratively extends
a partial solution (i.e., independent set) by adding a least cost element. We pa-
rameterize our mechanism with a collection of distributions: for every T ⊆ E we
are given a distribution dT = {dTi (cT ) | i ∈ T } over the elements i in T .6

5 We note that in [11] also the objective of minimizing the makespan is considered.
6 The assumption that all these distributions are given is a conceptual one. Subse-
quently, it will become clear that we can generate the relevant distributions consid-
ered by the algorithm efficiently.
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Definition 4 (Greedy Mechanism). Given a matroid M = (E,F ) with a
cost vector c and a collection of distributions (dT )T⊆E, the greedy algorithm is
as follows:

1. Let S ← ∅
2. While S is not a base

(a) Let T = {i ∈ E \ S | S + i ∈ F}
(b) Draw i ∈ T with probablity dTi (cT )
(c) Set S ← S + i

3. Output S

Note that the set T in Step 2(a) contains all elements that can be added to
the independent set S without rendering it infeasible. The main difference of
our algorithm to the standard greedy algorithm for matroids is that we do not
require that the element i ∈ T added to S in Step 2(c) is of minimum cost.
Indeed, such a mechanism would not be truthful because it failed to satisfy
Condition (b) of Proposition 1. Instead, here we choose an element i from T
with probability dTi (cT ). In particular, our algorithm coincides with the standard
greedy algorithm if dTi (cT ) > 0 only for the minimum cost elements in T .

We next establish some sufficient conditions for the distributions used by our
greedy algorithm that ensure truthfulness.

Theorem 1. The greedy mechanism is truthful in expectation if for every T ⊆ E
and every i ∈ T it holds:

1. dTj (ci, cT−i) is non-decreasing in ci for every j ∈ T − i,

2. dTi (ci, cT−i)ci is non-decreasing in ci.

Proof. Fix a collection of distributions (dT )T⊆E that satisfies Properties (1) and
(2). Let pi(c) be the probability of picking element i ∈ E after the execution of
the mechanism. We need to show that Properties (1) and (2) of Proposition 1
are satisfied, i.e.,

1. pi(ci, c−i) is non-increasing in ci,
2. pi(ci, c−i)ci is non-decreasing in ci.

We prove these by induction on the number m of elements in E. If m = 1 then
there is only one element to be picked and the properties clearly hold.

Suppose that the claim holds true for all element sets of size less than m. We
show that it continues to hold for sets of size m. We use M(j) to refer to the
matroid that we obtain from M by contracting element j, i.e., the sub-matroid
that contains only the sets that include j.

Let p
(j)
i (c−j) be the probability of picking element i in the matroid M(j).

Note that p
(j)
i (c−j) is precisely the probability of picking element i conditional

on the event that player j has been picked in the first round.
First property: Using Bayes rule, we obtain

pi(c) = dEi (c) +
∑

j∈E−i

dEj (c)p
(j)
i (c−j) = 1−

∑
j∈E−i

dEj (c) +
∑

j∈E−i

dEj (c)p
(j)
i (c−j)
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= 1 +
∑

j∈E−i

dEj (c)[p
(j)
i (c−j)− 1].

By assumption, dEj (c) is non-decreasing in ci for every j �= i. Also, by our induc-

tion hypothesis, p
(j)
i (c−j) is non-increasing in ci. Thus, the product d

E
j (c)[p

(j)
i (c)−

1] is non-increasing in ci. We conclude that pi(c) is non-increasing in ci.
Second property: Using Bayes rule, we obtain

pi(c)ci = dEi (c)ci +
∑

j∈E−i

dEj (c)[p
(j)
i (c−j)ci]

By assumption and our induction hypothesis, dEj (c) and p
(j)
i (c−j)ci are non-

decreasing in ci for every j �= i. Thus, their product is non-decreasing in ci.
By assumption, also dEi (c)ci is non-decreasing in ci. We conclude that pi(c)ci is
non-decreasing in ci.

4 Optimal Distributions and Approximation Ratio

In this section we identify a distribution that satisfies Properties (1) and (2) of
Theorem 1 and yields a truthful in expecation mechanism with approximation
ratio (m− r)/2 + 1, where r = r(M) is the rank of the underlying matroid M.

4.1 Optimal Distributions

A natural choice for a collection (dT )T⊆E of distributions to be used by the
greedy algorithm is to choose each element i from a given set T with probability
that is inversely proportional to its cost ci. This distribution is also independently
considered in [5]. More precisely, for every T ⊆ E and every i ∈ T , we define

dTi (cT ) =
c−1
i∑

k∈T c−1
k

. (1)

The distribution dT is also called the proportional distribution. It is not hard
to show that these distributions satisfy Properties (1) and (2) of Theorem 1.
However, the problem is that the greedy mechanism equipped with these distri-
butions results in an approximation ratio which is arbitrarily close to m.

The following distribution was introduced by Koutsoupias [11] for scheduling
a single job on m machines. (A similar probability distribution is considered and
analyzed in the Facility Location setting in [7].)

Definition 5 (Optimal Distribution). Let T ⊆ E be a subset of elements
and assume without loss of generality that T = {1, . . . , |T |} such that c1 ≤ c2 ≤
· · · ≤ c|T |. Define probabilities7

dT1 (cT ) =
1

c1

∫ c1

0

∏
k �=1

(
1− x

ck

)
dx

7 This distribution corresponds to the following experiment: We select uniformly at
random and independently a number xi ∈ [0, ci] for each element i. The distribution
dTi of Definition 5 corresponds to the distribution of the minimum of these xi’s.
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dTj (cT ) =
1

c1cj

∫ c1

0

∫ y

0

∏
k �=1,j

(
1− x

ck

)
dxdy for j �= 2.

This generalized distribution yields a truthful in expectation greedy mecha-
nism that achieves the best possible approximation ratio.

Theorem 2. The greedy mechanism equipped with the distributions of Defini-
tion 5 is truthful.

All omitted proofs from this and future sections can be found in the full
version of the paper.

4.2 Approximation Ratio

Koutsoupias [11] used the distribution dT given in Definition 5 to handle the
case of allocating a single job to m machines. He showed that the resulting
mechanism achieves an approximation ratio of (m + 1)/2. Here we prove that
our greedy mechanism, equipped with the distributions in Definition 5, has an
approximation ratio of (m− r)/2 + 1, where r is the rank of the matroid.

Theorem 3. The greedy mechanism with distributions dT as defined in Defini-
tion 5 has approximation ratio (m− r)/2 + 1.

5 Lower Bound

In this section, we provide a general lower bound on the approximation ratio of
truthful in expectation mechanisms for hiring a matroid base that matches the
upper bound of our greedy algorithm established in the previous section.

We show that for any given parameters m and r, we can always construct a
matroid with m elements and rank r such that no mechanism that is truthful in
expectation can achieve an approximation ratio better than (m− r)/2 + 18.

Using the previous lemma we show that for every choice of m and r our
upper bound is tight in the sense that there exists a matroid instance where any
truthful mechanism has approximation ratio (m− r)/2 + 1.

Theorem 4. Given m and r, there exists a matroid M = (E,F ) with |E| = m
and r(M) = r for which no mechanism that is truthful in expectation can achieve
an approximation ratio better than (m− r)/2 + 1.

Finally, we show a weaker result regarding only graphical matroids. Specifi-
cally, we show that there is a family of graphs where the worst case bound of
(m− r)/2 + 1 occurs.

Theorem 5. There is no mechanism that is truthful in expectation that achieves
an approximation ratio better than (m− r)/2 + 1 for graphical matroids.

8 Note this result does not necessarily imply that every truthful mechanism will per-
form poorly given any matroid set system with these parameters.
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6 Improved Approximation Ratio for Metrics

In this section, we show that we can derive an improved approximation ratio
of O(

√
m) for our greedy algorithm if each agent’s declared cost is at most the

cost of a socially optimal solution, i.e., for every agent i ∈ E, ci ≤ OPT(c).
Said differently, this condition requires that the cost of an arbitrary base of the
matroid is at least as large as maxi∈E ci. We call a vector c = (c1, . . . , cm) of
declared costs opt-bounded if it satisfies this condition.

Note that in the case of a graphical matroid this property is trivially satisfied
if the declared cost vectors c are restricted to constitute a metric. if the declared
cost vectors c are restricted to constitute a metric then this condition is triv-
ially satisfied. It is interesting to note that we obtain this result for the greedy
algorithm using the proportional distributions.

Theorem 6. If the declared cost vector is opt-bounded then the greedy mecha-
nism using the proportional distributions as defined in (1) is truthful in expecta-
tion and achieves an approximation ratio of 3

√
m.

7 Future Work

There are a lot of open problems that arise from our work. We designed an
algorithm that achieves an approximation ratio based on the size of the matroid
and its rank. In Section 5 we proved a lower bound that was dependent on the
substitutability of elements within the matroid’s bases. It could be possible to
provide a more refined upper bound using this parameter.

Also there are many questions still open in the case of graphical matroids
when the costs constitute a metric. We analyzed only the proportional method
which generally performs worse than the distribution in Definition 5. We also
have no matching lower bounds. Additionally, our iterative algorithm and gen-
erally our framework didn’t depend on the matroid property of the set system
to satisfy truthfulness. Thus, it will be interesting to analyze its performance
in more general settings especially where the classic greedy has good approxi-
mation guarantees. Finally, we only considered social costs and not other social
objectives like a minmax solution concept.
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Abstract. We study how standard auction objectives in sponsored
search markets are affected by refinement in the prediction of ad rel-
evance (click-through rates). As the prediction algorithm takes more
features into account, its predictions become more refined; a natural
question is whether this is desirable from the perspective of auction ob-
jectives. Our focus is on mechanisms that optimize for a convex combi-
nation of efficiency and revenue, and our starting point is the observation
that the objective of such a mechanism can only improve with refined
prediction, making refinement in the best interest of the search engine.
We demonstrate that the impact of refinement on market efficiency is
not always positive; nevertheless we are able to identify natural – and
to some extent necessary – conditions under which refinement is guar-
anteed to also improve efficiency. Our main technical contribution is in
explaining how refinement changes the ranking of advertisers by value
(efficiency-ranking), moving it either towards or away from their ranking
by virtual value (revenue-ranking). These results are closely related to
the literature on signaling in auctions.

1 Introduction

Sponsored search is a multi-billion dollar market; it enables contextual advertis-
ing, and generates revenue that supports innovation in search algorithms. Spon-
sored search markets are also technically interesting and have been investigated
theoretically from several perspectives [12], including auction theory [1,4], game
theory [21,3], and bipartite matching theory [15].

Sponsored search markets exhibit an interesting interplay between auctions
and machine learning. Value is realized by the combination of two processes.
First, the search engine displays relevant ads to the user, i.e., ones that maximize
the odds of the user clicking on an ad. Second, users conduct a transaction with
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some probability and of some value on the advertiser’s website, resulting in some
(expected) value per click to the advertiser. To facilitate the first process, the
search engine uses a combination of machine learning and historical data to
estimate the relevance of an ad to the user [9]. The second process is not directly
observable by the search engine, and so it uses an auction to elicit the value
per click from the advertisers [1,4]. It then combines this with ad relevance to
determine which ads to show to the user.

The explosion of data available to search engines makes it possible to improve
relevance prediction by seemingly endless refinements, taking into account more
and more features of the ad and the user. For example, consider a search query
‘pizza’ emanating from an unspecified location in the Bay Area. By adding a
feature that pinpoints the user’s location within this region, the relevance of
advertisements showcasing pizza merchants based in San Francisco relative to
those in nearby San Jose becomes clear, and this helps in deciding between these
ads.

Refinement is often perceived as a positive, win-win opportunity making ev-
eryone better off – the users view more relevant ads and engage more with them,
increasing overall value.1 However, to our knowledge this has not been rigorously
studied. The focus of this paper is to explore how standard objectives of truthful
auctions, specifically welfare, behave with refinement of relevance prediction. We
apply theory tools in order to understand the high-stake effects of refinement de-
cisions carried out by sponsored search practitioners. We view this as a first step
in better understanding the interaction between machine learning and market
design objectives. We also discuss the connection to the signaling literature.

As out first contribution, we formalize the conventional wisdom that refine-
ment aids optimization. While it holds generally that refinement only improves
the efficiency of the optimally-efficient mechanism, or the revenue of the revenue-
optimal mechanism [7], we build upon the latter to establish this result for all
truthful mechanisms that optimize some fixed convex combination of revenue
and efficiency (trade-off optimal mechanisms). We discuss such mechanisms and
justify why the search engine would be interested in a mechanism from this class
in Section 3.2 Thus, performing refinements always benefits the search engine.

What about the impact of refinement on social welfare? Our main contribu-
tion (Section 4) is to study conditions under which refinement is simultaneously
favorable for the auctioneer and for market efficiency. Indeed, this is not always

1 Obviously, refinement should not be at the cost of using features that violate user
privacy; in this work we leave aside issues of privacy to focus on welfare considerations
of refinement.

2 The mechanisms used in practice, though not truthful, have equilibria that are
allocation- and revenue-equivalent to the corresponding truthful mechanisms [3,4].
Thus, we expect the gist our results to apply to practically used mechanisms in equi-
librium. This raises an interesting open problem: As we show, refinement changes
advertiser ranking in non-trivial ways; how do the equilibrium bids of the advertisers
change in response? Will their level of granularity mirror that of the refinement? In
other words, how does personalization affect the analysis of [3,4]? The answer will
depend on the informational assumptions of the model.
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the case – the twin objectives of revenue and efficiency are not necessarily aligned
in the context of refinement. We identify two assumptions under which refine-
ment improves the efficiency of every trade-off optimal mechanism. The first
assumption is fairly standard, and requires that the value-per-click distributions
are i.i.d. and satisfy the monotone hazard rate condition. The second assump-
tion is arguably more restrictive, requiring that refinements distinguish among
advertisers, by causing the relevances of every pair of advertisers for every query
to either grow further apart or switch order. We demonstrate the need for both
assumptions by two examples (see Section 2.2 and full version [20]).

From a technical perspective, a main challenge is in understanding the math-
ematical effect of refinement. The revenue-optimal auction and the efficient auc-
tion both rank advertisers by a monotone function of their bids and then use
this ranking to allocate them to available ad slots. The key difference is that
the two mechanisms employ different ranking functions to the bids. Refinement
harms efficiency precisely when it causes the revenue-optimal ranking to drift
apart from the efficient ranking. The allocation ranking of every trade-off optimal
mechanism is guaranteed to draw closer to the efficient ranking with refinement
under the assumptions mentioned above.

2 Model

In this section we present our model, which encompasses the standard model for
position auctions [12] while capturing the effect of prediction refinement.

A search engine sells m ad slots to n ≤ m advertisers.3 The slots appear
alongside search results for a search query q. Advertiser i has a private value
vi ∈ R+ for a click on his ad, and his value for an impression (appearance) of the
ad is vi multiplied by the corresponding click-through rate. This multiplicative
relation is an important feature of the model. If the click-through rates are 1 we
get a standard m-unit auction.

A standard assumption is that click-through rates are separable, i.e., can be
separated into the advertiser’s relevance to q and the slot position on the web-
page. Formally, the click-through rate for advertiser i’s ad in slot j is pq,isj , where
1 ≥ pq,i > 0 is the query-advertiser relevance, and 1 ≥ s1 ≥ · · · ≥ sm ≥ 0 are
the slot effects.4 The relevance is essentially the slot-independent click-through
rate. We omit q from the notation where clear from context. We denote the value
per impression in slot j by vi,j = pisjvi, and the realized value without the slot
effect by ri = pivi.

The advertisers’ private values are assumed to be independently distributed
according to a publicly-known distribution F with positive smooth density f
(note that the realized values are not i.i.d. and so the setting is not symmetric).

3 The assumption that m ≥ n is without loss of generality.
4 The assumption that pq,i �= 0 is without loss, to simplify the exposition.
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2.1 Prediction Schemes and Refinements

The machine learning system that predicts query-advertiser relevance has access
to a set of features : keywords, geographic location, time, user demographics,
search history, ad text, etc. As is standard we assume features are discretized [9].
The system partitions the set of query-advertiser pairs according to the features
and produces a relevance estimate for each part. For example, a part can consist
of pizzeria advertisers and queries for “pizza” by users located in the Bay Area.
We refer to the output of the machine learning system as a prediction scheme:

Definition 1. [Prediction scheme] A partition T of all query-advertiser pairs
with a relevance prediction pt for every part t ∈ T .5

Overloading notation we also denote the prediction scheme itself by T . The
prediction given a search query q is according to T if for every advertiser i,
pq,i = pt where t is the part in T containing the query-advertiser pair (q, i).

Refinements A prediction scheme can be refined by refining its partition, i.e.,
dividing coarse parts into finer subparts. This can be achieved by taking into
account additional features, such as more precise user location. For example,
a subpart may consist of pizzeria advertisers and queries for “pizza” by users
located in a specific city within the Bay Area. We use the notational convention
that T̄ is a coarse partition and t̄ a coarse part, whereas T is a refined partition
and t is a subpart.

The relevence of a subpart can be very different from that of the original coarse
part, and for this reason refinement can completely alter the outcome of the ad
auction. However, the coarse and refined relevance predictions must maintain
the following relation. Given a query-advertiser pair belonging to a coarse part t̄,
there is a certain distribution with which it falls within its different subparts. We
require that in expectation over this distribution, the refined relevance prediction
equals the coarse one. To summarize:

Definition 2. [Refinement] A prediction scheme T is a refinement of T̄ if its
partition is a refinement of T̄ ’s partition, and the relevance of every coarse part
t̄ equals the expected relevance over t̄’s subparts: pt̄ = Et⊆t̄[pt].

(If the subpart t and its coarse counterpart t̄ are clear from context, we use p
and p̄ to denote their relevance predictions.)

Distinguishing Refinements A natural subclass of refinements is those which
distinguish among advertisers, thus enabling a better matching between them
and the search queries.

5 This definition matches that of Ghosh et al.’s deterministic clustering scheme [8].
In general a prediction scheme can be randomized, by including a distribution over
relevance predictions for each part (cf. [5,17]). Our results hold for randomized pre-
diction schemes as well.
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Definition 3. [Spread or flipped pairs] A pair of numbers a, b is spread or
flipped with respect to another pair c, d if

a

b
≥ c

d
≥ 1, or 1 ≥ c

d
≥ a

b
, or

a

b
≥ 1 ≥ c

d
, or

c

d
≥ 1 ≥ a

b
.

Definition 4. [Distinguishing refinement] A prediction scheme T is a distin-
guishing refinement of T̄ if T is a refinement of T̄ , and for every query q and
pair of advertisers, their relevance p1, p2 according to T is spread or flipped with
respect to their relevance p̄1, p̄2 according to T̄ .

Fig. 1. An example of relevance pair p1, p2 spread (left) or flipped (right) with respect
to p̄1, p̄2.

Remark 1. Our model is compatible with the standard assumption in theoretical
study of sponsored search auctions, by which click-through rates are estimated
accurately. It does not take into account that very fine prediction schemes may
be inaccurate due to the emergence of over-thin submarkets with insufficient
data. This simplifying assumption helps our goal of studying how finer pre-
diction schemes affect auction objectives, by distilling this aspect of prediction
refinement from various machine learning and other considerations.

2.2 Examples

Example 1. [Every refinement is distinguishing] If all advertisers competing for
a query q belong to the same part in T̄ and so appear equally relevant, then
every refinement of T̄ is distinguishing.

As a concrete example, consider the auction described in the introduction in
which two pizzerias – the first located in San Francisco (SF) and the second in
San Jose (SJ) – compete for a single advertisement slot next to search results
for a query ‘pizza’ by a Bay Area user. Let T̄ be a coarse prediction scheme in
which both pizzerias appear equally relevant, i.e., both query-advertiser pairs
belong to the same part t̄ ∈ T̄ . Let the corresponding relevance be p̄t̄ = 3/4.
Now assume the search engine has access to a more precise location feature of the
query q, indicating whether the user is in SF or in SJ, and each occurs with equal
probability 1/2. When the prediction scheme is refined by including this feature,
the relevances according to the refined scheme T behave antisymmetrically, and
the realized values are:

User from SF User from SJ City unknown

Advertiser 1 pSF,1v1 = pSJ,1v1 = p̄1v1 =
(from SF) v1 v1/2 3v1/4

Advertiser 2 pSF,2v2 = pSJ,2v2 = p̄2v2 =
(from SJ) v2/2 v2 3v2/4
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In both cases it can be observed that the refined relevances are either spread or
flipped with respect to p̄1, p̄2.

Example 2. [A non-distinguishing refinement] Consider again a single-slot posi-
tion auction for a query ‘pizza’. Assume now that advertiser 1 is a nationwide
chain of pizzerias whose relevance does not depend on user location, while adver-
tiser 2 is a local artisan pizzeria in SF. Consider a coarse prediction scheme T̄ as
above, and a refinement T where this time the refining feature indicates whether
q = SF (happens with probability 1/4− δ for δ = 15ε/(8− 20ε) and some small
ε) or q = ¬SF (happens with probability 3/4 + δ). The realized values are:

User from SF User not from SF City unknown

Advertiser 1 pSF,1v1 = p¬ SF,1v1 = p̄1v1 =
(chain) 4v1/5 4v1/5 4v1/5

Advertiser 2 pSF,2v2 = p¬ SF,2v2 = p̄2v2 =
(from SF) 2v2/5 εv2 v2/10

Refinement T is not distinguishing, since the relevances for q = SF are neither
spread nor flipped with respect to p̄1, p̄2.

3 Trade-off Optimal Mechanisms

3.1 Bayesian Mechanism Design

This section contains mechanism design preliminaries in the ad auction context;
the expert reader may wish to skip to Section 3.2.

Given a private value vi ∼ F , the inverse hazard rate is λF (vi) = (1 −
F (vi))/f(vi) and the virtual value is ϕF (vi) = vi − λF (vi). Similarly, given a
realized value ri, let G with density g be the distribution from which ri is drawn;
the realized virtual value is then ϕG(ri) = ri − λG(ri). Since ri = pivi,

G(ri) = F (vi), g(ri) =
1
pi
f(vi), ϕ

G(ri) = piϕ
F (vi). (1)

From now on, we omit the distribution and value from the notation where clear
from context, and follow the convention that ϕ(vi) or ϕi is the virtual value, and
ϕ(ri) is the realized virtual value.

A distribution F is MHR (montone hazard rate)6 if its inverse hazard rate
function λ(·) is non-increasing, and regular if its virtual value function ϕ(·) is
non-decreasing. In other words, F is MHR if for every pair of values v1, v2 ∼ F
such that v1 > v2, their inverse hazard rates λ1, λ2 are flipped: v1/v2 > 1 ≥
λ1/λ2. It immediately follows that their virtual values ϕ1, ϕ2 are spread with
respect to v1, v2:

1 < v1/v2 < ϕ1/ϕ2. (2)

We say that values are MHR (resp., regular) if they’re drawn from an MHR
distribution, and that a position auction is MHR if its advertisers’ values are
MHR. By Equation 1, MHR (resp., regular) values imply MHR realized values.

6 The assumption of MHR values is standard in the mechanism design literature (e.g.,
[14]). Many commonly studied distributions are MHR, including the uniform, expo-
nential and normal distributions, and those with log-concave densities [6].
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Efficiency-Optimal and Revenue-Optimal Mechanisms The VCG auction max-
imizes efficiency while maintaining truthfulness and individual rationality (IR)
[22,2,10]. In the context of position auctions, VCG allocates the slots to the m
advertisers with highest realized values ri, in high to low order [1]. We assume
throughout that ties are broken lexicographically. Every bidder is charged his
externality – the difference in social efficiency due to his participation.

The Myerson mechanism maximizes expected revenue among all truthful and
IR mechanisms ([18], cf. [4,11]). Consider an allocation rule xi,j(v), which indi-
cates whether bidder i wins slot j given a reported value profile v; we say it is
monotone if as vi increases, i is only allocated higher slots. The following lemma
is an adaptation of Myerson to the sponsored search context.

Lemma 1 (Myerson [18]).

1. Every monotone allocation rule can be coupled with a unique pricing rule
such that the resulting mechanism is truthful and IR.7

2. The expected revenue of every truthful and IR mechanism is equal to its
expected realized virtual surplus, i.e., Ev[

∑
i,j sjϕi(ri)xi,j(v)].

When values are regular, the Myerson mechanism allocates slots to the ≤ m
advertisers with highest non-negative realized virtual values, in high to low or-
der. By regularity this allocation rule is monotone, and so by the first part of
Lemma 1, with appropriate payments we get a truthful and IR mechanism. This
allocation rule maximizes the expected revenue by the second part of Lemma 1
coupled with the standard rearrangement inequality, which is applied to realized
virtual values and slot effects. More formally, we say that π is a partial ranking
of an n-element vector x if it ranks a subset of n′ ≤ n acceptable elements. We
denote by x(π) a vector of length n in which the first n′ entries are the acceptable
elements ranked by π, and the rest are zero entries.

Lemma 2 (Rearrangement inequality). Let s ≥ 0,x be two non-increasing
vectors, and let π be a partial ranking of x such that x(π) ≥ 0. Then s·x(π) ≤ s·x.

3.2 Trade-off Optimality

We now define a class of virtual value based mechanisms, of which the VCG
auction and the Myerson mechanism are extremal members. We apply a result
of Myerson and Satterthwaite to the sponsored search context, showing that
mechanisms in this class optimize any efficiency-revenue trade-off [19,13]. Such
mechanisms are termed trade-off optimal, and their outcomes lie on the Pareto
frontier of efficiency and revenue.8

7 For our purpose we need not specify the pricing rule, because the second part of this
lemma gives us a handle on revenue even without knowing the precise price form.

8 Mechanisms on the efficiency-revenue Pareto frontier are not to be confused with
mechanisms that generate Pareto optimal outcomes, in which no bidder’s utility can
be increased without decreasing another’s. Diakonikolas et al. study computational
complexity aspects of the Pareto frontier; the difference between their work and ours
is that we focus on trade-off optimal mechanisms, which are not required to realize
every point on the Pareto optimal curve.
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Our interest in trade-off optimal mechanisms stems from our belief that search
engines aim to optimize some convex combination of efficiency and revenue.
While commercial search engines are “revenue maximizers”, the “revenue” they
aim to maximize is not just the short-term revenue referred to in this paper;
rather, they care about a combination of revenue and efficiency, due to their
interest in the long-term health and efficiency of sponsored search markets.

Definition 5. [α-virtual value] For α ≥ 0, the α-virtual value of v ∼ F is
ϕα(v) = v − αλF (v) (where λF is the inverse hazard rate).

The α-virtual value of v can be rewritten as a combination of v and its corre-
sponding virtual value: ϕα(v) = (1 − α)v + αϕ(v). The following definition en-
compasses the VCG auction (α = 0) as well as the Myerson mechanism (α = 1).

Definition 6. [α-virtual value based mechanism] For α ≥ 0, the α-virtual value
based mechanism is a deterministic mechanism which asks the advertisers to
report their values vi, ranks them according to their realized α-virtual values
piϕ

α
i , and allocates the slots to those ranked highest with non-negative piϕ

α
i .

Lemma 3 (Truthfulness). For 0 ≤ α ≤ 1 and regular values, the α-virtual
value based mechanism is truthful.

Proof. By regularity, ϕα = (1 − α)v + αϕ(v) is non-decreasing in v when 0 ≤
α ≤ 1, thus the allocation rule is monotone; truthfulness follows from Lemma 1.

Lemma 4 (Trade-off optimal mechanisms). Consider a regular position
auction.9 For 0 ≤ α ≤ 1, the optimal mechanism for the objective (1 − α)E
[efficiency]+αE[revenue] among all truthful and IR mechanisms is the α-virtual
value based mechanism.

Proof. From Myerson’s results applied to sponsored search (Lemma 1) it follows
that the optimal mechanism for the objective maximizes the realized α-virtual
surplus. The standard rearrangement inequality (Lemma 2) ensures that the
optimal mechanism is the α-virtual value based mechanism.

4 Refinement Effects on Auction Objectives

Our starting point is an observation regarding the search engine’s incentive to
perform refinement. Recall from Section 3.2 that we assume the search engine
aims to optimize a fixed trade-off between revenue and efficiency. We observe
that in expectation, refinement helps this objective, thus generalizing a previous
result of Fu et al. beyond revenue maximization [7].10 This indicates that up
to practical limitations, the search engine would prefer as refined a prediction
scheme as possible.

9 A similar result holds for irregular position auctions, by replacing realized α-virtual
values with their ironed counterparts.

10 Note however that the result of Fu et al. [7] applies to completely general signals
whereas we focus on the linear form standard in the context of sponsored search.
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Lemma 5 (Refinement improves trade-off). Let prediction scheme T be a
refinement of scheme T̄ , and let q be a query belonging to a coarse part t̄ ∈ T̄ .
Then with respect to its objective, a trade-off optimal mechanism M performs as
well for q with scheme T as with T̄ , in expectation over value profiles and over
the refined part t ∈ T to which q belongs.

Proof. Follows from the fact that the trade-off optimal mechanismM is α-virtual
value based (Lemma 4), combined with the proof of Proposition 3 of Fu et al. [7]
in which, mutatis mutandis, the notion of value is replaced with that of α-virtual
value.

We now turn to the effect of refined relevance prediction on the efficiency
guarantees of trade-off optimal mechanisms. In our main technical result, we
identify natural conditions under which refining the prediction improves the
efficiency of any trade-off optimal mechanism. The proof appears in Section 4.1.

Theorem 1 (Refinement improves efficiency). Let prediction scheme T
be a distinguishing refinement of scheme T̄ . Consider an i.i.d., MHR position
auction for a query q. Then with respect to social efficiency, a trade-off optimal
mechanism M performs as well for q with scheme T as with T̄ , for every value
profile of the advertisers.

It is instructive to compare the two above results. Lemma 5 is less conditional,
that is, the conditions of i.i.d., MHR values and distinguishing refinement are
not required. On the other hand, Theorem 1 holds entirely pointwise, that is,
it does not require averaging over the value profiles or query types. The fact
that Theorem 1 requires more conditions, whose necessity is discussed in the
full version [20] by analyzing Examples 1 and 2, indicates a non-trivial trade-
off between efficiency and revenue: When the search engine is optimizing for a
combination of efficiency and revenue, refining “ad infinitum” will not always
be the right thing to do in terms of social efficiency. This can be the case,
for example, if the refinement is indistinguishing. On the flip side, when the
conditions of Theorem 1 hold, the social interest is aligned with that of the search
engine; prediction refinement is in both their best interest since it simultaneously
increases social efficiency and its combination with revenue. This is formalized
in Corollary 1, which is a direct consequence of Lemma 5 and Theorem 1.

Corollary 1. Let prediction scheme T be a distinguishing refinement of scheme
T̄ , and let q be a query belonging to part t̄ ∈ T̄ . Consider an i.i.d., MHR position
auction for q. Then with respect to both its objective and social efficiency, a trade-
off optimal mechanism M performs as well for q with scheme T as with T̄ , in
expectation over value profiles and the part t ∈ T to which q belongs.

In particular, mechanism M in Corollary 1 can be the revenue-optimal Myerson
mechanism, for which a distinguishing refinement improves both efficiency and
revenue. It is an interesting question whether there are additional mechanisms
for which this desirable property of simultaneous improvement holds.
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Application to Signaling The above results are closely related to signaling of
seller information in auctions, studied in the economic literature since the semi-
nal work of Milgrom and Weber [16], and more recently in the computer science
literature starting with [8,5,17]. The seller can adopt a signaling scheme by
which he communicates his information to the bidders, who adjust their realized
values accordingly. In the sponsored search context, the features which deter-
mine advertiser relevance can be viewed as the seller’s information, making it
a special case in which the effect of the information on values is multiplicative,
and refinement is equivalent to revealing more of the seller’s information. To
our knowledge, this mathematical equivalence between prediction and signaling
schemes has not been previously observed. Our results apply to settings to which
the fundamental Linkage Principle does not, due to the inherent asymmetry of
advertiser relevance (indeed, it is not hard to see that refinement may decrease
the expected revenue of mechanisms such as the second-price auction). Our main
result stated in the context of signaling is that if releasing information distin-
guishes among i.i.d. MHR bidders, then it improves both the expected outcome
of a Pareto optimal mechanism and its efficiency.

4.1 Proof of Theorem 1

Refinement has a delicate effect in the context of ad auctions. The transfor-
mation of values to realized values using different relevance terms causes the
revenue-optimal ranking to differ from the efficieny-optimal one, even under as-
sumptions of i.i.d. and MHR. This is in contrast to simple single-item multi-unit
settings, where the revenue- and efficiency-optimal rankings both order bidders
in the same way, and differ only in that the former excludes bidders with nega-
tive virtual values. In this section we show that the difference between the two
rankings in sponsored search diminishes with refinement, as long as the condi-
tions stated in Theorem 1 hold. In fact we show this for any trade-off optimal
ranking according to α-virtual values, in addition to the revenue-optimal one
where α = 1.

Throughout, fix a query q and let prediction scheme T be a distinguishing
refinement of a scheme T̄ . We begin with two lemmas, whose proofs appear in
the full version [20]. The first lemma shows that if according to T , advertiser
1 has lower realized value but higher realized α-virtual value in comparison
to advertiser 2, then the same holds according to T̄ . This indicates that any
inefficiency due to the trade-off optimal ranking according to T occurs according
to T̄ as well, and so refinement can only increase efficiency.

Lemma 6 (Inefficient allocation). Consider two advertisers with i.i.d. MHR
values v1 �= v2, and α-virtual values ϕα

1 , ϕ
α
2 . Let p1, p2 be their relevance predic-

tions according to T , and p̄1, p̄2 their predictions according to T̄ . Then

p1v1 < p2v2 and p1ϕ
α
1 ≥ p2ϕ

α
2 > 0 =⇒ p̄1ϕ

α
1 ≥ p̄2ϕ

α
2 .

We now state a generalization of the standard rearrangement inequality in
Lemma 2. Let π1, π2 be two partial rankings of an n-element vector x. We say
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π1 is more ordered than π2 if the same elements are acceptable in both, and
for every pair of acceptable elements xi > xj such that xi appears before xj in
x(π2), this pair also appears in the correct order in x(π1).

Lemma 7 (Generalized rearrangement inequality). Let s ≥ 0,x be two
non-increasing vectors, and let π1, π2 be two partial rankings of x such that π1

is more ordered than π2, and x(π1),x(π2) ≥ 0. Then s · x(π1) ≥ s · x(π2).

Proof (Theorem 1). Consider n advertisers with i.i.d. MHR values v, competing
for m ≥ n ad slots to appear along search results for a query q. For every
advertiser i, let p̄i be the relevance prediction according to T̄ , and let pi be the
prediction according to the distinguishing refinement T . We want to show that
with respect to social efficiency, the trade-off optimal mechanism M performs
better with T than with T̄ .

For simplicity, rename the advertisers such that their true realized values, i.e.,
those according to the refined scheme T , are in decreasing order p1v1 ≥ · · · ≥
pnvn. (These are the true realized values since they are based on an accurate
prediction of the click-through rates, and so reflect the true added efficiency from
allocating a slot to each advertiser). The advertisers are now ordered according
to the efficiency-optimal ranking.

We know that M is α-virtual value based for some α (Lemma 4). It thus ranks
the advertisers by their realized α-virtual values – either p̄iϕ

α
i if using scheme

T̄ , or piϕ
α
i if using scheme T . Let π1 be the partial ranking of advertisers with

non-negative α-virtual values according to T , and let π2 be the same according
to T̄ .

We first claim it is sufficient to show that, as partial rankings of the advertisers
and their realized values r = (p1v1, . . . , pnvn), π1 is more ordered than π2. The
sufficiency follows from the generalized rearrangement inequality (Lemma 7):
Both r and the vector of slot effects s are decreasing, so if π1 is more ordered
than π2 it holds that s · r(π1) ≥ s · r(π2), i.e., the efficiency of M with T is at
least its efficiency with T̄ .

It’s left to show that π1 is more ordered than π2. First observe that advertiser i
is acceptable according to either partial ranking if and only if his (non-realized)
α-virtual value ϕα

i is non-negative, and so π1 and π2 rank the same subset
of advertisers as acceptable. Now consider a pair of acceptable advertisers i, j
(ϕα

i , ϕ
α
j ≥ 0), whose realized values are ri = pivi < pjvj = rj . We claim that

if their ranking according to π1 is reversed (i appears before j even though his
realized value is lower), then this will also be the case according to π2, and so
π1 is indeed more ordered.

If the ranking according to π1 is reversed then we know that piϕ
α
i ≥ pjϕ

α
j .

We can now invoke Lemma 6 to get p̄iϕ
α
i ≥ p̄jϕ

α
j (note that while Lemma 6

requires that ϕα
i , ϕ

α
j are both positive, if at least one of these is zero then the

inequality holds trivially). We have shown that advertiser i is ranked before j in
π2, completing the proof.
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Abstract. A fundamental question in algorithmic mechanism design is whether
any approximation algorithm for a single-parameter social-welfare maximization
problem can be turned into a dominant-strategy truthful mechanism for the same
problem (while preserving the approximation ratio up to a constant factor). A par-
ticularly desirable type of transformations—called black-box transformations—
achieve the above goal by only accessing the approximation algorithm as a black
box.

A recent work by Chawla, Immorlica and Lucier (STOC 2012) demonstrates
(unconditionally) the impossibility of certain restricted classes of black-box trans-
formations—where the tranformation is oblivious to the feasibility constrain of
the optimization problem. In this work, we remove these restrictions under stan-
dard complexity-theoretic assumptions: Assuming the existence of one-way func-
tions, we show the impossibility of all black-box transformations.

1 Introduction

A central area in mechanism design focuses on designing dominant-strategy truthful
mechanisms that 1) maximize some global objective function (e.g., social welfare) in
some feasible outcome space, while 2) incentivizing agents to truthfully report their
private values, no matter what everyone else does (that is, being truthful is a dominant
strategy).

Our focus is on computational aspects of this task; we restrict to NP -optimization
problem (that is, problems for which there exists an efficient procedure to check whether
an outcome is feasible,) and are interested in computationally-efficient mechanisms that
satisfy the above properties. A fundamental question in algorithmic mechanism design
is whether any algorithm for solving some single-parameter social-welfare optimization
problem (either exactly or approximately) can be transformed into a dominant-strategy
truthful mechanism for the same problem. Ideally, we would like these transformations
to be black-box—that is, given a description of optimization problem f (i.e., the agents’
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utility functions, the global objective function, and the feasibility constraints), they only
require black-box access to the algorithmA.

The celebrated Vickrey-Clarke-Groves mechanism gives a strong positive result of
this kind for any single-parameter social welfare maximization problem with quasi-
linear utilities. It shows how to efficiently convert any exact algorithm for a social wel-
fare maximization problem into a dominant-strategy truthful mechanism for the same
problem, by appropriately charging agents prices.

However, in many cases, we do not have access to efficient exact algorithms, but
only an approximation algorithm, which finds an outcome that is within some approx-
imation factor of the optimal outcome. It is well-known that the VCG transformation
fails when applied to approximation algorithms [NR00], leaving open the question of
whether some other black-box transformation can be used to achieve the above goal:

Does there exists an efficient black-box transformation T such that for any
(single-parameter) class of social welfare maximization problems F ∈ NPO1,
any instance f ∈ F , any approximation algorithm A for f, T A(f, F )(·) is a
dominant-strategy truthful mechanism for f which preserves the approximation
ratio of A (up to a constant factor)?

For a relaxed version of this problem, considering a Bayesian setting where play-
ers’ values are sampled from some publicly known distribution and we only require
a weaker notion of Bayes Nash truthfulness, we can essentially replicate the success
of VCG: work by [HL09, BH11] shows that any approximation algorithm can be ef-
ficiently converted into a mechanism that is ”Bayes-Nash truthful” for social welfare
maximization problems, while preserving the approximation ratio of the original algo-
rithm to within an arbitrarily small factor. ([HKM11] show how to achieve a similar
result even in a multi-parameter setting, such as multi-item auctions). But the Bayesian
setting makes strong assumptions in terms of the knowledge of both the mechanism de-
signer and the players—in many settings it is unreasonable to assume there is a publicly
known distribution over player values.

For the case of dominant-strategy truthfulness, Chawla, Immorlica and Lucier [CIL12]
gave an elegant partial negative result. That is, they presented a family of problem in-
stances, together with a corresponding family of approximation algorithms for these
instances, and showed that every polynomial time transformation must fail to yield a
worst-case approximation-preserving dominant-strategy truthful mechanism2 on some
member of this family, given black-box access to the corresponding approximation al-
gorithm. However, their result only applies to a restricted class of transformations that
on top of having black-box access to the algorithm, have no access to feasibility con-
straint of the problem statement f (they only give the transfomation access to the utility

1 Recall that NPO is the class of NP-optimization problems.
2 In fact their negative result also encompassed a slightly weaker notion of truthfulness that

arises in the case of randomized mechanisms, namely truthfulness in expectation (TIE). A
mechanism is TIE if each agent wants to be truthful given knowledge of the other players’
values, but not the random coin flips of the mechanism. This notion can be contrasted with full
ex-post incentive compatibility (EPIC), where the agents want to be truthful even given the
coin flips of the mechanism.
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functions of the players). In fact, the [CIL12] analysis actually fails if the transformation
knows the feasible space.

In this work, we address the above question with respect to arbitrary black-box trans-
formations.

1.1 Our Results

Our central theorem shows how to remove the restrictions on the transformation from
[CIL12] by using standard complexity-theoretic hardness assumptions: Assuming the
existence of one-way functions, we show the impossibility of all black-box transfor-
mations.3 Comparing our results to [CIL12], we rule out all black-box transformation
(whereas [CIL12] only rules out restricted classes of transformation that are oblivious
to the feasibility constraints). On the other hand, the impossibility result of [CIL12] is
unconditional (whereas we assume one-way functions). We finally observe that we can-
not hope to obtain our result without making complexity-theoretic assumptions (unless
we prove strong complexity-theoretic hardness results): ruling our arbitrary black-box
transformation requires assuming NPO �= P4; roughly, this follows from the obser-
vation that if NPO = P, then there exists an exact algorithm for every social-welfare
optimization problem, and we can then rely on the VCG mechanism. We defer a full
proof of this observation to the full version of the paper.

At a high level, the approach in our impossibility result is to consider a family of
problem instances that have their feasibility constraints expressed in an “obfuscated”
form. This obfuscated description fully determines the set of feasible allocations, and
enables efficiently checking whether a particular allocation is feasible, but the obfusca-
tion makes it computationally hard to find the explicit set of feasible allocations for the
problem instance given just this description.

1.2 Overview of the Construction

Before describing our results, let us briefly review the construction of [CIL12]. At a high
level, their problem instances consist of choosing two privileged subsets of players, U
and V ⊆ [n], with V ⊆ U . There are three feasible allocations: a high allocation to U , a
low allocation to U , and a “dummy” allocation that gives a tiny amount to all n players.
When the players in V have high value, the approximation algorithmA returns the high
allocation on U . However, when the players in U have high value, A returns the low
allocation on U . Since V ⊆ U , this arrangement creates an essential non-monotonicity5

in the output ofA: increasing the valuations of players in U \V causes their allocations
to decrease.

3 Our results also apply to black-box TIE transformations.
4 Our results assume the existence of one-way functions, which imply that NPO �= P, but it is

a major open question whether NPO �= P implies one-way functions.
5 It is well known that, in the single parameter setting, if an algorithm produces allocations that

are monotone in the valuations of the individual players, then there is a simple pricing rule that
converts it into a truthful mechanism. Hence their impossibility result must necessarily use an
approximation algorithm that is non-monotone.
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Additionally,A has the property that given an input that produces one of the high or
low allocation on U , it is hard to find an input that produces the other kind of allocation.
This is the crucial property that causes any transformation T to fail: given an input that
produces one kind of allocation on U , T must proceed as if the other allocation didn’t
exist, since it can never encounter it. [CIL12] show that this leads every transformation
T to unfairly punish the players in the set V , leading to a low approximation ratio in
the transformed mechanism.

Hiding the feasible allocation set from the transformation is essential to their analy-
sis: the argument for not being able to find the second allocation given the first depends
on it. In our construction, we would like the a description of the feasible set to be ac-
cessible to the transformation.

One attempt could be to release a cryptographic “commitment” to the feasible sets.
Roughly speaking, a commitment scheme can be viewed as the cryptographic analog
of a “sealed enveloped”. It enables a party to “commit” to a value v in a way that
hides it with respect to computationally-bounded (i.e., polynomial-time) parties—this
is referred to as the hiding property of the commitment. Yet at a later stage the party may
reveal the value v by releasing some “decommitment string” and it is garanteed that it
can only decommit to the actual value v—this is referred to as the binding property of
the commitment scheme. A bit more formally, a non-interactive commitment scheme
Com is a polynomial-time computable function that given a message m and a random
string r outputs a commitment c = Com(m, r) that determines m, yet hides it with
respect to polynomial-time parties; the string r is the decommitment information.

The binding property of the commitment scheme would now ensure that the released
description fully determines the set of feasible allocations, while the hiding property
would make it computationally infeasible for the transformation to recover the actual
feasible set without the decommitment information. However, this solution is unsat-
isfactory, because it makes it impossible to efficiently check whether a particular al-
location is feasible or not (and thus the class of optimization problems wouldn’t be in
NPO). Given just a set of commitments, there is no efficient way to verify if a particular
allocation is the value committed to in one of them.

A natural second approach would be to release an “obfuscated” version of the func-
tionality that checks whether a given allocation is one in the feasible set. In theory, this
would allow us to release a description of the feasible allocations, together with an effi-
cient functionality to check whether a given allocation is feasible, and still make it hard
for the transformation to explicitly find the feasible sets. However, we do not know how
to obfuscate general functionalities [BGI+12]. Although there are results for specific
functionalities [Wee05, HRV+07, CRV10, BR13], and also some recent progress for
weakened notions of obfuscation [GGH+13], it is not clear how to use these weakened
version for our purposes. Finally, even if such obfuscation were possible, we could not
longer rely on the result of [CIL12]—this result no longer holds when the black-box
transformation can just check whether an allocation is feasible or not.

Our key idea for overcoming these problems is by embedding the [CIL12] instance
in larger instance such that the impossibility results still applies even if one can check
whether an allocation to the “larger” instance is feasible (but this does not permit
checking whether an allocation to the “smaller” embedded instance is feasible). More
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precisely, we release commitments to each of the feasible allocations, and addition-
ally modify the problem to add in some “dummy” agents with no values, that can be
allocated either 1 or 0. An allocation to these players can be interpreted as a binary
decommitment string r for one of the released commitments. Thus a feasible alloca-
tion now consists of an allocation to the “real” agents, together with an allocation to
the dummy agents that shows that the allocation to the real agents is in fact a correct
decommitment to one of the released commitments. This scheme now satisfies our re-
quirements: it allows for a public description of the feasibility constraints that enables
efficiently checking whether a particular allocation is feasible.

To ensure that the approximation algorithm A can efficiently find a solution, we
provide it with the decommitment information r for all commitments. This will al-
low A to compute the feasible allocations efficiently, and thus provide a good approx-
imation. This decommitment information—which we refer to as A’s “trapdoor” (or
“secret-sauce”)—however, is not publicly released and in particular, cannot be directly
accessed by the transformation—since we only consider black-box transformations T ,
T only gets black-box access to A and can only access the “secret-sauce” indirectly
through the output of A. (As is always the case with black-box separation results, we
need to provide the algorithm that the reduction/transformation operates on with some
extra “power” (e.g., a trapdoor, or the ability to perform super-polynomial-time compu-
tation) that the reduction/transformation itself does not get; see e.g., [IR88]. If we did
not do this, we would rule out not only black-box transformations, but also non-black-
box ones.)

1.3 Paper Layout

The layout of our paper is as follows: In Section 2 we provide preliminaries. Section 3
contains the main results of the paper. In Section 3.2 we give both a description of the
family of problem instances and approximation algorithms for those instances. Section
3.3 gives a very high-level idea of the analysis of the construction; the actual proof is
deferred to the full version of the paper.

2 Preliminaries

2.1 Notation

Let N denote the set of positive integers, and [n] denote the set {1, 2, . . . , n}. We call
a function negligible if it grows more slowly than the inverse of any polynomial. By
a probabilistic algorithm we mean a Turing machine that receives an auxiliary random
tape as input. If M is a probabilistic algorithm, then for any input x, M(x) represents
the distribution of outputs of M(x) when the random tape is chosen uniformly. By
x← S, we denote an element x is sampled from a distribution S. If F is a finite set, then
x ← F means x is sampled uniformly from the set F . To denote the ordered sequence
in which the experiments happen we use semicolon, e.g. (x← S; (y, z)← A(x)). Us-
ing this notation we can describe probability of events. For example, if p(·, ·) denotes a
predicate, then Pr[x← S; (y, z)← A(x) : p(y, z)] is the probability that the predicate
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p(y, z) is true in the ordered sequence of experiments (x← S; (y, z)← A(x)). The no-
tation {(x ← S; (y, z)← A(x) : (y, z))} denotes the resulting probability distribution
{(y, z)} generated by the ordered sequence of experiments (x← S; (y, z)← A(x)).

2.2 Optimization Problems

In this work, we restrict ourselves to single-parameter social welfare maximization
problems with quasilinear utilities, which is a central class of problems in the mech-
anism design literature.

In this class of problems we are given an input vector v = (v1, v2, . . . , vn), represent-
ing the valuations of each of n players. Each vi is assumed to be drawn from a known set
Vi ⊆ R corresponding to the possible valuations for player i, and V = V1×V2×· · ·×Vn

is the set of possible input vectors. Each problem also defines allocations x ∈ f ⊆ Rn,
where f is called the set of feasible allocations. In allocation x, player i is allocated xi,
and that player’s utility is vi ·xi−pi, where pi is the price charged to player i. The goal
in a social welfare maximization problem is to choose x ∈ f such that the total social
welfare of all players,

∑
i vi · xi, is maximized. Different sets f and V can be thought

of as defining different instances of the problem.
An algorithmA for the problem defines a mapping from input vectors v to outcomes

x ∈ Rn. We use A(v) to represent the output of A on input v. If A is randomized, then
A(v) is a random variable. We may also allow A to take additional inputs as “hints”.

We use OPT f to refer to the optimal algorithm for a social welfare problem f and
the social welfare φ(x, v), that is, for all v ∈ V , OPT f(v) = argmaxx∈f φ(x, v) (for
a maximization problem, as in the case of social welfare). For an arbitrary algorithm
A, we let approxf(A) denote the worst-case approximation ratio of A for f. For a
maximization problem, approxf (A) = minv∈V

E[A(v)]
OPT f(v) .

An familyF of optimization problems is in the class NPO if the following conditions
hold:

– For every f ∈ F , f’s feasible allocations are each of size at most polynomial in |f|.
– There exists a verifierVer such that, for every f ∈ F , Ver(f, x) = 1 ⇐⇒ x is in the

set of feasible allocations for f. Additionally, Ver is polynomial-time computable.
– Given the valuations of players, the utility Φ of an allocation is polynomial-time

computable (this is the case when Φ is the social-welfare maximization objective).

2.3 Mechanisms

We consider our optimization problems in a mechanism design setting with n rational
agents, where each agent receives one of the n input values as private information. We
think of allocation x as an allocation to agents, where xi is the allocation to agent i.
A (direct-revelation) mechanism then proceeds by eliciting declared values b ∈ Rn

from the agents, then applying an allocation algorithm A : Rn → f that maps b to an
allocation x and a payment rule that maps b to a payment vector p. We write x(b) and
p(b) for the allocations and payments generated on input b. The utility of agent i, given
that agents declare values b, is taken to be ui(b) = vixi(b)− pi(b).
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A (possibly randomized) mechanismM is called truthful in expectation (TIE) if each
agent maximizes it’s expected utility by reporting its value truthfully, regardless of the
reports of the other agents (the expectation is over the randomness of the mechanism.
That is, E[ui(vi, v−i)] ≥ E[ui(bi, v−i)] for all i, for all bi ∈ Vi and for all b−i ∈ V−i.
An algorithm is TIE if there exists a payment rule such that the resulting mechanism is
TIE. It is known that an algorithm is TIE if and only if, for all i and v−i, E[xi(vi, v−i)]
is a monotone non-decreasing function of vi, where again the expectation is over the
randomness of the mechanism.

A mechanism M is ε-TIE if an agent cannot gain more than ε by lying, regardless
of the reports of the other agents (the expectation is over the randomness of the mech-
anism. That is, E[ui(vi, v−i)] ≥ E[ui(bi, v−i)] − ε for all i, for all bi ∈ Vi and for all
b−i ∈ V−i.

2.4 Transformations

A polytime transformation T is an algorithm that is given black-box access to an al-
gorithm A. We will write T A(v) for the allocation returned by T on input v given
black-box access to algorithm A. We can think of T A(·) as the algorithm T that runs
with multiple black-box accesses to A. We say T is TIE (resp. ε- TIE) if for every
algorithmA, T A(·) is TIE (resp. ε-TIE).

We write T A for the allocation rule that results when T runs with black-box access
toA. We assume T is aware of the objective function φ and the domain Vi of values for
each agent i.

A transformation T for a family F ∈ NPO additionally takes as input an instance f
∈ F , the utility function Φ and the verifier Ver for the family F . We say T is TIE for F
(resp. ε- TIE) if for every instance f ∈ F , for every algorithmA for f, T A(f, Φ,Ver)(·)
is TIE (resp. ε-TIE)

2.5 Commitment Schemes

Recall that, roughly speaking, a non-interactive commitment scheme Com is a
polynomial-time computable function that given a message m and a random string r
outputs a commitment c = Com(m, r) that determines m, yet hides it with respect to
polynomial-time parties. More formally,

Definition 1 (Commitment Schemes[Gol01]) A non-interactive commitment scheme
Com is a polynomial-time computable function satisfying the following two properties:

– computational hiding: for every pair of message sequences{m0,n}n∈N, {m1,n}n∈N

such that m0,n,m1,n ∈ {0, 1}n for all n ∈ N, for every non-uniform probabilistic
polynomial time adversaryA, there exists a negligible functionμ(·) such that for all
n ∈ N:

|Pr[r ← {0, 1}n : A(Com(m0,n, r)) = 0]− Pr[r ← {0, 1}n : A(Com(m1,n, r)) = 0]| ≤ μ(n)

(In other words, A should not be able to distinguish between commitments to any
pair of messages m0,n and m1,n except with negligible probability.)
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– perfect binding: there do not exist m0,m1, r0, r1 ∈ {0, 1}n such thatm0 �= m1 but
Com(m0, r0) = Com(m1, r1). (In other words, no commitment c can be opened to
two different values m0 and m1.)

Non-interactive commitment schemes can be constructed based on any one-to-one one-
way function (see Section 4.4.1 of [Gol01]).

In many applications—and in particular ours—it, however, suffices to consider a
family of non-interactive commitments that are parametrized by some initialization
string k, and the security properties of the commitment (i.e., hiding and binding) need
only hold with all but negligible probability over the choice of k. Such commitment
schemes can be constructed based on any “plain” one-way function [Nao91, HILL99].
For ease of notation, in this extented abstract, we here simply assume the existence of
non-interactive commitment schemes and note that our construction can be easily mod-
ified to work also with any family of non-interactive commitments (and thus be based
on any one-way function).

3 Main Result

3.1 Problem Definition and Main Theorem

In this section, we will give the main result of this paper:

Theorem 1 (Main Theorem) Assuming the existence of one-way functions, there exist
constants c, d > 0, a family F ∈ NPO of single-parameter social-welfare optimization
problems with verifier Ver, and a sequence of distributions {Dn}n∈N such that Dn is a
distribution over pairs (f,A) where each f ∈ F , andA is a polynomial size approxima-
tion algorithm for f, such that for any poly-time ε-TIE transformation T with ε ≤ 1/nd,
for all n, with all but negligible probability over (f,A)← Dn, approxf(A)

approxf(T A(f,Ver)) ≥ nc.

As mentioned above, our overall approach will be to appropriately modify the con-
struction of [CIL12]—roughly speaking, embedding each instance into a larger in-
stance, which uses cryptographic commitments to release the feasibility constraints to
the transformation.

3.2 Construction

We consider instances where there are 3n agents. The first n agents have private values
vi drawn from {v, 1}, where 0 < v < 1 is a parameter we set below. The remaining
2n agents are dummy agents, that all have value 0, however allocating to these agents
is necessary in order to satisfy the feasibility constraints f, which we describe below.
We refer to the set of the first n agents as Y1, the second n agents as Y2, and the
third n agents as Y3. We can therefore interpret an input vector as a subset y ⊆ Y1,
corresponding to those of the first n agents that have value 1 (the remaining agents in
Y1 have value v, and all agents in Y2 and Y3 have value 0).

Since every player in sets Y2 and Y3 always has value 0, we will sometimes omit
these players from the input to A, since their valuations are known by default. Accord-
ingly, for every y ⊆ Y1, we define A(y), OPT f(y), and so on, as the output of the
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algorithms on the set of values corresponding to the subset y, with the valuations of the
players in Y2 and Y3 set to 0.

Also, for a1, a2, a3 ≥ 0, and y1 ⊆ Y1, y2 ⊆ Y2, y3 ⊆ Y3, we will let (xa1
y1
, xa2

y2
, xa3

y3
)

denote the allocation where each agent i ∈ y1 is allocated a1, each agent j ∈ y2 is
allocated a2, each agent k ∈ y3 is allocated a3 and all remaining agents are allocated 0.
We will also sometimes refer to allocations in the form (xa

y , r, r
′), where a ≥ 0, y ⊆ Y ,

and r, r′ ∈ {0, 1}n. This corresponds to allocating a to every i ∈ y, allocating 1 to ev-
ery j ∈ Y2 such that rj , the jth bit of r, is 1, and also allocating 1 to every k ∈ Y3 such
that r′k, the kth bit of r′, is 1, while allocating 0 to all remaining agents in Y1 ∪Y2 ∪Y3.

Problem Instances: We now define the family F of problems corresponding to the
problem instances. Each instance f will have a trapdoor trap. Intuitively, the set of fea-
sible allocations for f will be computationally difficult to find without knowledge of
trap.

Let Com be a non-interactive commitment scheme.6 Then each instance f in our
family will consist of a choice of α, γ ∈ (0, 1) with γ < α, sets S, T ⊆ Y1 of agents,
and commitments to the preceding parameters c1 = Com(S, rS), c2 = Com(T, rT ),
c3 = Com(α, rα), for rS , rT , rα ∈ {0, 1}n. We let c = 〈c1, c2, c3〉, r = 〈rS , rT , rα〉.
The feasible allocations are:

– (xγ
[n], 0

n, 0n)

– (x1
S′ , r, 0n) such that c1 = Com(S′, r)

– (xα′
T ′ , r, r′) such that c2 = Com(T ′, r) and c3 = Com(α′, r′).

We also require that S and T satisfy the same properties as in [CIL12], namely that
they are sufficiently large, and have a sufficiently large intersection. Formally, we define
parameters r ≥ 1, and t ≥ 1 (which we fix below to functions of n), such that t -
r - γ−1 - α−1, and t

γn . 1. We think of t as a bound on “small” sets, and r as
a ratio between “small” and “large” sets. We also use a third set V ⊆ [n] as part of
our description. Then, if V, S and T are subsets of [n], we say that the triple V, S, T is
admissible if:

1. |S| = |T | = r3t
2. |S ∩ T | = r2t
3. V ⊂ S ∩ T and
4. |V | = rt

Additionally, for an admissible V, S, T , we let U = S∩T . Then, each problem instance
corresponds to a choice of V, S and T and a value α, together with c corresponding to
commitments to S, T and α under randomness given by r. The description of a problem
instance is thus given by

fV,S,T,α,r = (c, γ)

6 As mentioned above, such schemes can be constructed based on any one-to-one one-way
function. But, by slightly modifying our construction, we can also rely on a family of non-
interactive commitment schemes which can be based on any “plain” one-way function. We
defer the details to the full version.
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and the trapdoor for that instance is given by

trapV,S,T,α,r = 〈S, T, α, r〉

The utility function Φ for each instance is simply the social welfare maximization ob-
jective. The verifier Ver, given an instance fV,S,T,α,r and an allocation x simply checks
whether x falls into one of the three feasible types of allocations described above. This
corresponds to performing at most three decommitments, implying Ver is efficient.

Note that, given the trapdoor, it is easy to come up with feasible allocations corre-
sponding to fV,S,T,α,r: simply use the decommitments in the trapdoor together with α
to create any of the three different allocations. However, as we will argue later that,
without the trapdoor, it is infeasible to construct any allocation other than the first, and
this argument will be the heart of the impossibility result. Also, notice that neither f nor
trap depend on V . Note also that each of the three feasible allocations is independent
of V , and thus it is not strictly necessary to include V in our description of a prob-
lem instance. However, we include it for notational convenience, as it is an important
component of the approximation algorithm, as we will see shortly.

Algorithm. We now give an approximation algorithm for the family of problem in-
stances described above. Our algorithm closely follows the approximation algorithm of
[CIL12], and is designed to resist black-box transformation into a mechanism. We note
that the algorithm depends on f, and in particular needs to have trap for f baked into it.

Algorithm 1. Allocation algorithmAV,S,T,α,r

Input: A subset y ∈ Y1 or agents with value 1
Output: An allocation valid with respect to fV,S,T,α,r

1. if nS(y) ≥ t, nS(y) ≥ γ|n|, and nS(y) ≥ nT (y) then
2. return (x1

S, rS , 0
n)

3. else if nT (y) ≥ t, nT (y) ≥ γ|n|, and nT (y) ≥ nS(y) then
4. return (xα

T , rT , rα)
5. else
6. return (xγ

[n], 0
n, 0n)

7. end if

As in [CIL12], we define the following functions used by our algorithm given an
input y ∈ Y1:

nT (y) = |y ∩ T |+ |y ∩ U |

and
nS(y) = |y ∩ S|+ 2|y ∩ V |

We also inherit Lemma 3.2 from [CIL12], which guarantees the approximation ratio of
the above algorithm. We restate this lemma here:

Lemma 2 approxfV,S,T,α,r (AV,S,T,α,r) ≥ α/6
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Finally, we also have the following version of Claim 3.3 from [CIL12], closely follow-
ing their proof, but modified to handle ε-TIE transformations. The lemma guarantees
that any mechanism solving one of the problem instances we described must allocate
similar amounts to agents in U on inputs y = U and y = V .

Lemma 3 Suppose A′ is a ε-TIE algorithm for fV,S,T,α,r. Let aU and aV be the ex-
pected allocation to each agent in U inA′(U) andA′(V ) respectively. Then aV −aU ≤
ε · (|U | − |V |)

Proof. Consider any set W with V ⊆ W ⊆ U and |W | = |V |+ 1. Then, on input W ,
the expected allocation to the agent in W \ V must not decrease by more than ε. Since
all allocations are constant on U , this means that the expected allocation to each agent
in U must not decrease by more than ε. By the same argument, for each W such that
V ⊆W ⊆ U , A′ must allocate at least aV − ε · (|W | − |V |) to each agent in U , and in
particular, this holds for W = U . ��

3.3 Analysis of Construction

The crux of the analysis of [CIL12] is showing that when T A(·) is given input y =
V , it has difficulty finding the feasible output xα

T , while on input y = U , it cannot
find the feasible output x1

S . Being unable to find these allocations, and simultaneously
needing to maintain the TIE property, the transformed algorithm is forced to make poor
choices. The proof of these result in [CIL12], however, crucially rely on the fact that
the the feasible allocations are not revealed to the transformation. In the full version
of the paper, we show how to extend their proof to also work when commitments to
the feasible allocations are given to the transformation. The key idea is that to analyze
the probability of a “bad event” (i.e., that the transformation finds a feasible output in
a situation when it shouldn’t), we can consider a mental experiment where the actual
commitments are replaced with commitments to 0. In this mental experiment we can
then rely on the [CIL12] analysis to bound the probability of the bad event, and finally,
we rely on the hiding propery of the commitment scheme to argue that the probability
of the bad even in the real experiment is also small. Due to lack of space, the actual
analysis is omitted.

Acknowledgements. We would like to thank Nicole Immorlica for helpful discussions.
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In this paper, we consider two-sided, many-to-one matching problems where
agents on one side of the market (hospitals) impose some distributional con-
straints. The regional maximum quotas provide one such example, where a hos-
pital belongs to a region, and each region has an upper bound on the number
of assigned agents on the other side (doctors). Furthermore, minimum quotas
are relevant in many markets, e.g., school districts may need at least a certain
number of students in each school in order for the school to operate. Yet another
type of constraints takes the form of diversity constraints, e.g., public schools
are often required to satisfy balance on the composition of students, typically
in terms of socioeconomic status. Several mechanisms have been proposed for
each of these various constraints, but previous studies have focused on tailoring
mechanisms to specific settings, rather than providing a general framework.

We show that when the preference of the hospitals is represented as an M�-
concave function, the following desirable properties hold: (i) the time complexity
of the generalized Deferred Acceptance (DA) mechanism is O(|X |3), where |X |
is the number of possible contracts, (ii) the generalized DA mechanism is strat-
egyproof, (iii) the obtained matching is stable, and (iv) the obtained matching
is optimal for doctors within all stable matchings. Equipped with this general
result, we study conditions under which the hospitals’ preferences can be rep-
resented by an M�-concave function. We start by separating the preference of
hospitals into two parts, i.e., hard distributional constraints for the contracts to
be feasible, and soft preferences over a family of feasible contracts. We show that
if a family of hospital-feasible contracts forms a matroid, and the soft preferences
satisfy certain easy-to-verify conditions (e.g., it can be represented as a sum of
weights associated with individual contracts), then hospital preferences can be
represented by an M�-concave function. These conditions are general enough to
cover most of existing works, i.e., stability notions under constraints in existing
works can be mapped to stability for preferences that satisfy M�-concavity, and
our generalized DA mechanism corresponds to proposed solutions. These con-
ditions provide a recipe for non-experts in matching theory or discrete convex
analysis to develop desirable mechanisms in such settings.

� A draft full version is available at http://mpra.ub.uni-muenchen.de/56189/
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Abstract. Budget constraints are central to big business auctions. In
Google’s GSP keyword auction and other search engine advertising plat-
forms, the bidders are required to specify their bids as well as their budget
limits. We study multidimensional mechanism design in a common sce-
nario where players have private information about their willingness to
pay and their ability to pay. We provide a necessary and sufficient con-
ditions for the dominant-strategy incentive-compatible implementability
of direct mechanisms. Immediate applications of these results include
simple characterizations for auctions with publicly-known budgets and
for auctions without monetary transfers.

The celebrated revenue equivalence theorem states that the seller’s
revenue for a broad class of standard auction formats and settings will
be the same in equilibrium. Our main application is a revenue equivalence
theorem for financially constrained multidimensional bidders.

� A significant part of this research was done while the author was a Post-Doctoral
Fellow at the Social and Information Sciences Laboratory, Caltech.
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We introduce the class of spot-checking games (SC games). These games can be
seen as the graphical counterpart of security games, and can be used to model
problems where the goal is to distribute fare inspectors over a toll network.
In an SC game, the pure strategies of network users correspond to paths in a
graph, and those of the fare inspectors are subset of edges to be controlled.
Mixed strategies of the network users entail a non-atomic traffic model without
congestion, and can be represented using multicommodity flows. Similarly, mixed
strategies of the inspector can be represented by flows in a time-extended duty
graph and yield Markovian patrolling policies. With this model, best responses
of the network users to a given inspector’s strategy correspond to shortest paths
for some weights that depends on the control intensities.

Although SC games are not zero-sum, we show that a mixed Nash equilibrium
can be computed by linear programming. However, the computation of a strong
Stackelberg equilibrium is more relevant – because the inspector can credibly
commit to a strategy– and we give a mixed integer programming (MIP) formu-
lation for this problem. We show that the computation of such an equilibrium
is NP-hard, even in the simplest case, in which the game has a “zero-sum plus
costs” structure; Consequently, it is NP-hard to compute a strong Stackelberg
equilibrium in a polymatrix game, even if the game is pairwise zero-sum.

Then, we study the price of spite, which measures how the payoff of the
inspector degrades when committing to a Nash equilibrium, that is, when he
looses his ability to credibly commit. In fact, the Nash equilibrium is easy to
compute and we regard it as an efficient heuristic for the inspector, but this is
also the most harmful strategy for the network users (thus the name spite). We
give two upper bounds for this measure. The first one depends on the detour done
by the flow of users’ best responses to the Nash controlling strategy, with respect
to a particular metric. The second one is valid for networks with a distance-based
toll: in this situation the price of spite is bounded from above by a constant which
depends only on the ratio of the toll rate per kilometer to the average penalty
to pay per evaded kilometer for a uniform control.

Finally, we report computational experiments on instances constructed from
real data, for an application to the enforcement of a truck toll in Germany.
These numerical results show the efficiency of the proposed methods, as well as
the quality of the bounds derived in this article.

� This work was funded by the German federal office for Good Transport (BAG).
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Abstract Today’s networks, like the Internet, do not consist of one
but a mixture of several interconnected networks. Each has individual
qualities and hence the performance of a network node results from the
networks’ interplay.

We introduce a new game theoretic model capturing the interplay
between a high-speed backbone network and a low-speed general purpose
network. In our model, n nodes are connected by a static network and
each node can decide individually to become a gateway node. A gateway
node pays a fixed price for its connection to the high-speed network, but
can utilize the high-speed network to gain communication distance 0 to
all other gateways. Communication distances in the low-speed network
are given by the hop distances. The effective communication distance
between any two nodes then is given by the shortest path, which is
possibly improved by using gateways as shortcuts.

Every node v has the objective to minimize its communication costs,
given by the sum (SUM-game) or maximum (MAX-game) of the effective
communication distances from v to all other nodes plus a fixed price α >
0, if it decides to be a gateway. For both games and different ranges of α,
we study the existence of equilibria, the price of anarchy, and convergence
properties of best-response dynamics.

� This work was partially supported by the German Research Foundation (DFG)
within the Collaborative Research Center “On-The-Fly Computing” (SFB 901), by
the EU within FET project MULTIPLEX under contract no. 317532, and the Inter-
national Graduate School “Dynamic Intelligent Systems”.
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Optimal Lobbying is the problem a lobbyist or a campaign manager faces in a
full-information voting scenario of a multi-issue referendum when trying to influ-
ence the result. The Lobby is faced with a profile that specifies for each voter and
each issue whether the voter approves or rejects the issue, and seeks to find the
smallest set of voters it must influence to change their vote, for a desired outcome
to be obtained. This computational problem also describes problems arising in
other scenarios of aggregating complex opinions, such as principal-agents incen-
tives scheme in a complex combinatorial problem, and bribery and manipulation
in Truth-Functional Judgement Aggregation. We study the computational com-
plexity of Optimal Lobbying when the issues are aggregated using an anonymous
monotone function and the family of desired outcomes is an upward-closed fam-
ily. We analyze this problem with regard to two parameters: the minimal number
of supporters needed to pass an issue, and the size of the maximal minterm of
the desired set (the maximal issues set that is desired s.t. each subset of it is not
desired). We show that for the extreme values of the parameters, the problem
is tractable, and provide algorithms. On the other hand, we prove intractability
of the problem for the non-extremal values, which are common values for the
parameters.

Previous versions of this work were presented at AAMAS 2013 (Extended abstract)
and at The 5th Israeli Game Theory conference.

The author would like to thank Yehuda (John) Levy as well as the anonymous
referees for their comments that helped improve this paper.
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