
A Trust Management Framework for Secure
Cloud Data Storage Using Cryptographic

Role-Based Access Control

Lan Zhou, Vijay Varadharajan(B), and Michael Hitchens

Advanced Cyber Security Research Centre, Department of Computing,
Macquarie University, North Ryde, Sydney, NSW, Australia

{lan.zhou,vijay.varadharajan,michael.hitchens}@mq.edu.au

Abstract. In recent times, there has been an increasing development of
storing data securely in the cloud. The Role-based access control (RBAC)
model, a widely used access control model, can provide a flexible way
for data owners to manage and share their data in the cloud environ-
ment. To enforce the access control policies in the cloud, several cryp-
tographic RBAC schemes have been proposed recently, which integrate
cryptographic techniques with RBAC models to secure data storage in
an outsourced environment such as a cloud. However, these schemes do
not address the issue of trust in such a data storage system. In this
paper, we introduce a trust management framework which can enhance
the security of data in cloud storage systems using cryptographic RBAC
schemes. The trust management framework provides an approach for
each party in such a cloud storage system to determine the trustworthi-
ness of other parties. The framework consists of a series of trust models,
which (i) enable the users and the data owners to decide whether to
interact with a particular role for accessing and sharing data in the sys-
tem and (ii) allow the role managers to evaluate the trustworthiness of
users and data owners. These trust models take into account role inher-
itance and hierarchy in the evaluation of trustworthiness of the roles.
In addition, we present a design of a trust-based cloud storage system
which shows how the trust models for users and roles can be integrated
into a system that uses cryptographic RBAC schemes.

Keywords: Role-based access control · Trust model · Cryptographic
RBAC

1 Introduction

Controlling the access to data is an important issue in data storage systems.
A proper access control mechanism is needed depending on the context and the
requirement of the system. Many access control models have been proposed over
the years in the literature. Role-based access control (RBAC) is a well-known
access control model which can help to simplify security management especially

c© Springer-Verlag Berlin Heidelberg 2014
M.S. Obaidat and J. Filipe (Eds.): ICETE 2013, CCIS 456, pp. 226–251, 2014.
DOI: 10.1007/978-3-662-44788-8 14

A Trust Management Framework for Secure Cloud Data Storage 227

in large-scale systems. In RBAC, roles are used to associate users with permis-
sions on resources. Users are assigned roles and permissions are allocated to
roles instead of individual users; only users who have been granted member-
ship to roles can access the permissions associated with the roles and hence can
access the resources. Since being first formalised in the 1990’s [5], RBAC has
been widely used in many systems to provide users with flexible controls over
the access to their data. The RBAC model was extended and updated in 1996
[11], and a NIST RBAC standard was proposed in 2000 [12].

In traditional systems, access control policies are usually specified and enforced
by a central authority who has administrative control over all the resources in the
system. With the rapid increase in the amount of digital information that needs
to be stored, cloud storage has attracted much attention in recent years because
of its ability to deliver storage resources to users on demand in a cost effective
manner. In such an environment, there may not exist a central authority as the
data may be stored in distributed data centres which cannot be under the control
of a single authority. One approach to control the access to data in an untrusted
environment is to encrypt the data and give the key to users who require access
to the data.

Several cryptographic schemes have been developed to allow data encryption
in the context of the RBAC model. A hierarchical cryptographic access control
scheme [1] was proposed in 1983. Because of the similarity in structures between
hierarchical access control and RBAC, a hierarchical cryptographic access con-
trol scheme can be easily transformed into a cryptographic RBAC scheme. The
problem of access control for securely outsourcing data using cryptographic tech-
niques was first considered in [7]. Some other schemes were proposed afterwards,
such as in [3,10,16]. Recently, a new role-based encryption (RBE) scheme has
been proposed in [15]. In this scheme, the user memberships are managed by
individual roles as opposed to a central administrator as in other cryptographic
RBAC schemes. These schemes combine cryptographic techniques and access
control to protect the privacy of the data in an outsourced environment where
data can be encrypted in such a way that only the users who are allowed by the
access policies can decrypt and view the data.

In some cases though the access control policies may be specified by the cloud
provider authority itself in a centralised way, there could be multiple authori-
ties to enforce these access policies distributed throughout the cloud system.
Therefore there would be a need to trust these authorities to correctly specify
the access control policies and enforce them properly. In some cryptographic
RBAC schemes, roles and their users are managed by administrators who hold
the master secrets of the systems. All the administration tasks in these schemes
are centralised. Therefore, if one wants to know if a RBAC system is secure, it is
primarily dependent on the trustworthiness of the administrator of the system.

However, in large-scale RBAC systems, it is impractical to centralise the task
of managing these users and permissions, and their relationships with the roles
in a small team of security administrators. Reference [15] proposes a new cryp-
tographic RBAC scheme called Role-based Encryption (RBE) in which the user

228 L. Zhou et al.

management can be decentralised to individual roles; that is, the administrators
only manage the roles and the relationship among them while the role managers
have the flexibility in specifying the user memberships themselves. In this paper,
we consider trust models for cloud storage systems that are using cryptographic
RBAC schemes like RBE, where each individual role manager can manage their
user memberships without the need of involving the administrators. We believe
this case is more general and can be used in large-scale RBAC systems. In such
systems, the trust on the individual roles needs to be considered instead of the
trust on the administrators.

There have been several trust models [2,14] for RBAC proposed in the lit-
erature. These trust models considered the trust on users to assist the decision
making about whether or not to grant permissions to the users. In a cloud stor-
age system using cryptographic RBAC schemes, it would be helpful if a user
could determine whether or not a role in the system is trusted before joining
it. This would be useful especially in systems where there is a cost for users to
join a role, for example, users need to pay the subscription fee for joining roles.
When a user evaluates the trust value of a role, she or he will only proceed with
joining the role if the trust value of the role is above a certain trust threshold
(this threshold being set by the users, and being different for different applica-
tions and context dependent). In a system where owners are allowed to choose
the roles to which to assign their data, from the users’ perspective, malicious
owners can also cause negative behaviours of roles by assigning bad resources
(e.g. virus, malware) to roles. Therefore, roles will also need to consider the trust
of the data owners so that only data from well-behaved owners will be accepted.

In this paper, we introduce a trust management framework for securing data
storage in cloud storage systems that are using cryptographic RBAC schemes.
Though much work exists on trust models in RBAC, none of this work considers
the trust on the RBAC system itself. The proposed trust management framework
addresses this missing aspect of trust in cryptographic RBAC schemes to improve
the decision making for entities in the cloud system. This framework consists of
trust models which can assist (i) the users to evaluate the trust in the roles
in a RBAC system and use this trust evaluation to decide whether to join a
particular role or not, (ii) the role managers to evaluate the trust in the owners
in the RBAC system and use this trust in the decision to accept data from an
owner, (iii) the data owners to evaluate the trust in the roles in a RBAC system
and use this trust evaluation to decide whether to store their encrypted data in
the cloud for a particular role, and (iv) the role managers to evaluate the trust
in the users in the RBAC system and use this trust in the decision to grant the
membership to a user. Theses trust models take into account the effect of role
inheritance in RBAC systems on trust evaluation. If a role A inherits all the
permissions that a role B has, then we say role A is a ancestor role of role B,
and role B is a descendent role of role A.

We give the formal definition of the first two trust models, users’ trust
in role managers and role managers’ trust in data owners. These two trust
models form a natural pair as they consider trust from a user’s perspective.

A Trust Management Framework for Secure Cloud Data Storage 229

We refer to these trust models as User-Role RBAC and Role-Owner RBAC
trust models respectively. These two trust models can not only prevent users
from joining roles which have bad historical behaviour in terms of sharing poor
quality resources or misleading users on the content of resources, but also assist
the role managers to identify the malicious owners who have caused a nega-
tive impact on the roles’ trustworthiness. We also present the architecture of a
trust-based cloud storage system which integrates the these two trust models in a
cryptographic RBAC system. Then we describe the other two trust models, data
owners’ trust in role managers and role managers’ trust in users. Furthermore,
we describe the relevance of all the trust models in the framework by considering
practical application scenarios and then illustrate how the trust evaluations can
be used to enhance the quality of secure decision making by different entities of
cloud storage service.

The paper is organised as follows. Section 2 reviews relevant preliminary
knowledge that is needed for the design of our trust models. Section 3 describes
the trust issues in a cryptographic RBAC system and discusses the trust require-
ments for each type of entities. We give the formal User-Role and Role-Owner
RBAC trust models in Sect. 4. The architecture of our secure cloud storage sys-
tem is presented in Sect. 5. We describe the owners’ trust models in Sect. 6. In
Sect. 7, we illustrate how the trust models in the framework can be used in a
cloud service application to enhance the quality of security decision making.
Section 8 discusses relevant related works and compares them with our proposed
trust management framework. Section 9 concludes the paper.

2 Preliminaries

2.1 Experience-Based Trust

Trust has played a foundational role in security for a long period of time. It
is clear that two entities may not trust each other on the basis of identity
alone. There are a range of other attributes and credentials such as different
types of privileges, the state of the platform being used as well as reputa-
tions, recommendations and histories that come into play in decision making. An
experience-based trust model is a trust management system which enables the
trust decisions to be made based on the historical behaviour of an entity. Such
a system allows an entity to rate the transactions with other entities, and the
trustworthiness of an entity is determined using the collection of ratings of the
transactions that other entities have had with this entity. In most experience-
based trust systems, one entity derives the trustworthiness of another entity from
both experience of the former with the latter and the feedback on transactions
provided by other entities which have had interactions with target entity in the
past. An entity is able to evaluate its trust in another entity and the former can
make a decision as to whether to not to continue its transaction with the latter,
based on whether the trust value exceeds a certain threshold; this threshold is
dependent on the context of the application at hand.

230 L. Zhou et al.

2.2 Bayesian Trust Model

Many approaches have been proposed that use probabilistic models to evaluate
trust based on evidence which contains the number of “positive” and “nega-
tive” transactions in which a given entity have been involved. Perhaps the most
common probabilistic model is the one based on Bayesian trust [6,8,9] using
the beta probability distribution function. The beta family of distributions is a
collection of continuous probability density functions defined over the interval
[0, 1]. Suppose a beta distribution used for a parameter θ is defined as

P (θ) =
Γ (α + β)
Γ (α)Γ (β)

θα−1(1 − θ)β−1

where α and β are two parameters controlling the distribution of the parameter
θ, and 0 ≤ θ ≤ 1, α > 0, β > 0. Assume X = {x1, . . . , xn} is the collection of
the feedbacks from the past n transactions, and X has r “positive” feedbacks
and s “negative” feedbacks. Then the likelihood function can be defined as

P (X|θ) =
n∏

i=1

P (xi|θ) = θr(1 − θ)s

The posterior distribution P (θ|X) is proportional to the multiplication of the
prior P (θ) and the likelihood function P (X|θ), and we then have

P (θ|X) =
P (X|θ)P (θ)

P (X)

=
Γ (r + α + s + β)
Γ (r + α)Γ (s + β)

θr+α−1(1 − θ)s+β−1

Now let xi+1 be the possible feedback of the next transaction. The proba-
bility that xi+1 is a “positive” feedback given the transaction history X can be
represented as

P (xi+1|X) =
∫ 1

0

dθ P (xi+1|θ)P (θ|X)

=
∫ 1

0

dθ θP (θ|X)

= E(θ|X)

Then we write the probability that the next transaction will be a “good” one
as follows:

E(r, s) = P (xi+1|X) =
r + α

r + α + s + β
(1)

Using Eq. 1, one entity can derive the probability that the next transaction
with another entity will be positive from the transaction history of the other
entity. Most Bayesian trust systems assume that the parameters α = β = 1,
such as in [6]. Some other approaches allow the parameters α and β to be chosen
depending on the system context.

A Trust Management Framework for Secure Cloud Data Storage 231

3 Trust Issues in Using Cryptographic RBAC Schemes
in Secure Cloud Storage

Cryptographic RBAC schemes integrate cryptographic techniques with RBAC
models to secure the data storage. They inherit the features and concepts from
RBAC models, and also have additional components that are specific to data
storage systems. In the standard RBAC model, permissions are assigned to roles
by the administrator of the system. However, in a system using cryptographic
RBAC schemes, “permissions” are the data encrypted to roles, and the security
policies are specified to control the users’ access to data. Because data are usu-
ally not owned by a single party, cryptographic RBAC systems assume that data
can be encrypted to a role by whoever owns the data as opposed to the admin-
istrator in the standard RBAC system. In this paper, we address trust issues for
cryptographic RBAC systems. Therefore we adopt the above described concepts
for cryptographic RBAC systems in our trust models.

Using cryptographic RBAC schemes in cloud storage systems, a data owner
can encrypt the data to a role, and only the users who have been granted mem-
bership of that role or an ancestor role of that role can decrypt the data. In this
paper, we assume that the data owners and users reside outside this role system
infrastructure (where the roles are being administered). Hence the entities in a
cloud storage system need to consider the following issues. Users consider their
trust in roles (role managers) in order to ensure that joining roles guarantee
access to data assigned to these roles, and data owners consider the trust of role
managers in order to ensure that their data is secure after being assigned to the
roles. The role managers need to consider trust on both data owners and users;
role managers consider their trust in data owners to ensure that data owners
who have assigned malicious data to the roles will not be allowed to assign data
to the roles any more, and they consider the trust of users so that users with
negative behaviours are excluded from the roles, which in turn makes owners
trust these roles. In this section, we discuss the trust issues that need to be
considered by different entities of a cryptographic RBAC system.

3.1 Data Users’ Trust in Role Managers

In some RBAC systems, user-role assignment is managed by administrators of
the systems where the administrators check the qualification of users and grant
role membership to them. In these systems, users trust all the roles at the same
level as they are all managed by the same administrators. The roles are trusted
as long as the administrators are trusted.

In RBAC systems that use cryptographic RBAC schemes, users-role assign-
ment can be decentralised to individual role managers to allow more flexibility in
user management, especially in large-scale systems. Assume for example in these
systems users join a role based on subscription for accessing the data assigned
to that role. It is clear that users need to choose a trusted role when subscribing.

If the data that a user wants to access is encrypted to one role only, the
user considers the trustworthiness of that role in deciding whether or not to join

232 L. Zhou et al.

that role. When the same data is encrypted to multiple roles, users will need
to evaluate the trustworthiness of these roles to choose the most reliable role
to join. From the user’s perspective, a trusted role should meet the following
requirements:

– Requirement 1: The role manager should grant membership to the users who
are qualified for that role.
In order to access data, a user needs to join a role to which the data is
encrypted. When the user requests to join the role, the role manager should
give access (grant the membership) to the user if the user qualifies for that
role, e.g. the user has paid the subscription fee. Refusing to give access will
be considered as bad behaviour of the role manager.

– Requirement 2: The data that a role claims to have should have been encrypted
properly to that role.
When users want to access data, they need to know what data has been
encrypted to which role so that they can choose a particular role to join.
The list of the data is provided by roles. However, a user may find that she
or he cannot locate or decrypt the data even after she or he has joined that
specific role. This may happen if the data was not encrypted properly to
that role by the owner, or the role claims to possess data that has not been
encrypted to the role. Each role should take the responsibility of providing a
valid and up-to-date list of the data that is in its possession.

– Requirement 3: The data that the descendant roles of the role claim to have
should have been encrypted properly to the descendant roles.
Since a role can inherit permissions from its descendant roles, a user who has
joined a role should be able to access the data that is encrypted to any of
its descendant roles. Each role is liable for the validity of the data that its
descendant roles claim to have, as it is considered to be part of the data that
this role has.

3.2 Role Managers’ Trust in Data Owners

In cryptographic RBAC systems, owners can encrypt their data to any role.
Obviously, role managers do not want owners to encrypt malicious data (e.g.
virus, malware) to their roles. Therefore, role managers need to decide whether
or not to accept data that owners want to assign to them. Having malicious
data assigned to a role may result in a low trust value of the role because users
who have joined the role will place negative trust records against the role if they
detect that the data they get from the role is malicious. In the case where roles
are profiting from users’ subscriptions, low trust values in roles imply the risk of
losing business.

To help role managers detect malicious owners, and hence avoid accepting
data from them, another trust model is required to assist role managers in eval-
uating the trustworthiness of owners. Each time an owner wants to assign data
to a role, the role manager will use the trust model to determine whether the
data is coming from a trusted owner or not. From a role manager’s perspective,
a trusted owner should meet the following requirements:

A Trust Management Framework for Secure Cloud Data Storage 233

– Requirement 1: The data from the owner should be the same as its description.
When owners encrypt and assign data to a role, the role manager may not be
able to verify each individual record from the owners. When a user who has
joined a role finds that the data she or he has accessed is not the data it claims
to be or contains malicious records, the user will inform the role manager about
the malicious data, and the role manager should place a negative trust record
against the owner who owns that data. Then next time this owner wishes to
assign data to the role, this trust record will be used by the role manager in
making the decision whether or not to accept the data.

– Requirement 2: The owner should not be considered as untrusted by role man-
agers of any role to which the owner has assigned data before.
An owner may have had interactions with more than one role in the system.
A trusted owner is supposed to act consistently in the interaction with dif-
ferent roles. An owner may still be considered untrusted even though she or
he has good interaction histories with a small portion of roles in the system.
Therefore a trusted owner should try to maintain good interaction histories
with all the roles in the system. When a role manager is interacting with an
owner with which it has not interacted before, the trust opinions from the
role managers of other roles can assist this role manager to determine the
trustworthiness of the owner.

3.3 Data Owners’ Trust in Role Managers

In a cloud storage system, owners are the parties who want to share the data.
When they encrypt their data to the roles (in an RBAC system), they need
to determine the trustworthiness of the role managers to reduce the risks of
unauthorised parties accessing their data. For instance, a data owner may choose
not to encrypt the data to a specific role if the role manager is found to have
“bad” behaviour histories. Let us now consider some of the key requirements
that the owner must consider in determining whether a role manager should
be trusted or not. From the owner’s perspective, a trusted role manager should
meet the following requirements.

– Requirement 1: The role manager should grant membership to users who are
qualified for that role.
When a data owner encrypts her or his data to a role, the intention of the
owner is to allow the data to be decrypted by the users who are qualified to be
in that role. Therefore, it is a basic requirement that the qualified users should
have the access to the data. The violation of this requirement is detected by
checking whether or not the qualified users can decrypt the data. Not granting
the membership to a qualified user is therefore considered as a bad behaviour
of a role.

– Requirement 2: The role manager should not grant membership to users who
are not qualified to that role.
Another requirement that is expected by a data owner is to prevent users who
are not qualified from accessing the permissions to decrypt the data stored

234 L. Zhou et al.

in the cloud. A trusted role manager should only grant membership to a user
when the qualifications of the user are verified. Granting membership to an
unqualified user is therefore considered as a bad behaviour.

– Requirement 3: The qualified users in a role should not leak the data to unqual-
ified users.
Even if a role manager grants membership only to the qualified users, it is
possible that a qualified user may leak the data to unqualified users. For exam-
ple, consider the situation whereby a user, who is allowed to access the private
information that an owner has stored in the cloud, leaks it to another user to
whom the owner does not want to reveal the information. The violation of this
requirement is detected if it is found that an unqualified user has knowledge of
the data. It may or may not be possible to discover this situation. In general,
we assume that it is not possible to track down the user who leaks the data;
this implies that all the users in that role will need to be under suspicion when
such a data leak is detected.
In a hierarchical RBAC system, a role can inherit permissions from other roles.
The users of a role have access to the data encrypted to any of its descendant
roles. When a leakage is detected in the data encrypted to one of the descen-
dant roles of a role, the users of this role are also under suspicion as they have
the potential ability to cause the leakage. Therefore, when an owner wants to
determine the trustworthiness of a role manager, the behaviour histories of
role managers of descendant roles of this role need to be taken into account
in the evaluation, as the users in this role could be the cause of the leakage of
its descendant roles’ data which are not reflected in the behaviour history of
the role manager of this role.

– Requirement 4: The role managers of ancestor roles of the role under consid-
eration should be trusted.
Since a role’s permissions are inherited by all its ancestor roles, when an owner
encrypts data to a role, all its ancestor roles also have access to the data. So
the data owners need to consider the trustworthiness of not only the role to
which they want to encrypt the data, but also of all the ancestor roles of this
role, as encrypting data to this role is equivalent to encrypting data to any of
the ancestor roles of this role.

3.4 Role Managers’ Trust in Data Users

Since roles have the role managers to manage their user memberships, it is
role managers’ responsibility to build up their own reputation. Therefore it is
important for each role manager to be able to evaluate the trustworthiness of
users. Role managers can exclude malicious users from the roles; so these users
would not affect the trustworthiness of the roles. The ability to evaluate the
trust of users is also useful when a user wants to join the role. The role manager
can determine the trustworthiness of the new user and decide whether or not to
grant the membership to that user. The proper management of users can result
in a good behaviour history for a role manager, which in turn affects the owners’

A Trust Management Framework for Secure Cloud Data Storage 235

decisions on the role manager. From the role managers’ perspective, a trusted
user should meet the following requirements.

– Requirement 1: The user should not be involved in the event of leaking resources
of the role.
When a leak of data is detected, we assume that the role manager can track
which users have accessed the data but the role manager does not know who
leaked the data. Here we say that a user is involved in leaking data if the data
was found to be leaked, and this user has accessed the data before the leakage
is detected. A user who has been involved in a leaking event m times will be
considered as less trusted than the user who has been involved in a leaking
event n times if m > n.

– Requirement 2: The user should not be considered as untrusted by role man-
agers of any role of which the user is or was a member.
A user may belong to different roles in a RBAC system. Therefore, the role
managers of some other roles to which the user belongs may also hold trust
opinions on the user. A trusted user is supposed to act consistently in dif-
ferent roles. Though a user may behave well in one role, she or he will still
be considered as untrusted if she or he has bad behaviours in the other roles.
The trust opinions of the role managers of other roles on a user can support
the evaluation of the user’s trustworthiness. A role manager who does not
have any trust records in regards to a user (e.g. when a new user requests to
join the role) will still be able to determine the trust of the user.

4 User’s Trust Models for Cryptographic RBAC

In this section, we consider the user’s trust models for a cryptographic RBAC
system. There are three types of entities in our trust models, Owner, User and
Role. Our trust models can assist a User to decide whether a Role to interact
with is trusted, and assist a Role in determining the trustworthiness of an Owner.
We first review these three entities. Owner is the entity who owns the data and
stores it in an encrypted form for particular roles in the cloud. User is the
entity who wishes to access the data stored in the cloud. Role is the entity that
associates users with the access to owners’ data, and each role manages the user
membership of itself. Here when we say that users are managed by a role, we
refer to the managers of the role who determine the user set of that role.

In our trust models, we assume that all the feedback and recommendations
provided are honest. In other words, we assume that the trust system has the
ability to verify the submitted feedback and recommendations, and only the
valid ones will be considered in the trust evaluations.

4.1 User-Role RBAC Trust Model

In this subsection, we consider the trust model for user’s trust in roles in a RBAC
system.

236 L. Zhou et al.

Definition 1 (Interaction). From a user’s perspective, an interaction is a
transaction in which a user accesses data that is encrypted to a role to which
the user belongs.

A successful interaction is an interaction where a user has successfully accessed
the data. An unsuccessful interaction is an interaction where a user failed in access-
ing the data to which she or he should have legitimate access. Next we define two
types of unsuccessful interactions.

User Management Failure: User management failure is an unsuccessful interac-
tion caused by incorrect user membership management of a role; that is, the
role did not grant the membership to the user even when the user qualifies
for the role.

Permission Management Failure: Permission management failure is an unsuc-
cessful interaction where the data encrypted to a role is invalid, or the data
is not encrypted to the role. In other words, the owner of the data did not
encrypt the data to the role in question or encrypted an invalid data to the
role.

Definition 2 (Trust Vector). We define a trust vector to represent the behav-
iour history of a role as follows:

v = (r, sU , sP)

In the trust vector, r is the value related to successful interactions that users
have had with a given role, sU is the value related to User Management Failure
of the role, and sP is the value related to the Permission Management Failure.

Using the function E in Eq. 1, we define the trust function T (v) that repre-
sents the trust value derived from the trust vector v as

T (v) = E(r, sU + sP)

Definition 3 (Interaction History). We assume that there exists a central
repository in the system that collects and stores the ratings from users on the
interactions between users and roles. We define the trust record history derived
from the ratings of the role R from n users as

HistU (R) = {HR
1 ,HR

2 , · · · ,HR
n }

Each entry HR
i in Hist(R) is defined as a pair of parameters, HR

i = 〈Ui,vi,R〉,
where vi,R = (r, sU , sP) is a trust vector that represents the trust record of
interactions that the user Ui has had with the role R. r is the number of Ui’s
positive feedbacks on the interactions with R, sU is the number of negative
feedbacks on the interactions with R due to User Management Failure, and sP

is the number of negative feedbacks on the interactions with R due to Permission
Management Failure.

In a cryptographic RBAC system, a user who belongs to a role not only
has access to the data of the role, but also has access to the data of descen-
dent roles. Therefore, an invalid resource from a descendent role may also cause

A Trust Management Framework for Secure Cloud Data Storage 237

an unsuccessful interaction. Since a role knows whether a resource comes from
its descendent roles, we assume that users give feedback to the roles to whom
the resources are directly assigned; that is, if a user detects an invalid resource
from a descendent role, she or he will update the feedback for the descendent
role directly instead of the role she or he belongs to.

As discussed in Sect. 3.1, from the users’ perspective, the trustworthiness
of a role is affected by the interaction history of the role and its descendant
roles. Therefore users need to consider the following types of trust classes when
evaluating the trustworthiness of roles.

Individual Trust. Individual trust is a belief that is derived directly from the
interaction history of the role R.

When a user Uk wishes to evaluate the trust value of a role R, the user first
obtains the interaction history HistU (R) of the role from the central repository.
Assume that wu is the weight that the user Uk assigns to the feedbacks from
other users. Then the individual trust value of the role R can be computed as
follows,

TU (R)D = T (vD
k,R),

where vD
k,R = vk,R + wu ·

n∑

i=1,i �=k

vi,R

where the trust vector vD
k,R is a combination of all trust vectors in HistU (R)

considering the weighting for the trust vectors from other users.

Inheritance Trust. Inheritance trust is a belief that is derived from the inter-
action history of the descendant roles of a given role.

Assume a role R has m immediate descendant roles {R1, · · · , Rm}, and a
weight vector wRi

is defined as (wR
Ri

, 0, wR
Ri

) where wR
Ri

∈ [0, 1] is the weight
assigned to the inheritance relationship between R and Ri. The second element
is set to zero because User Management Failure is not considered in inheritance
trust as user management of descendant roles will not cause any unsuccessful
interaction for this role. The inheritance trust of roles in a hierarchy is computed
as follows:

TU (R)I = T (vI
k,R),

where vI
k,R =

m∑

i=1

[(vD
k,Ri

+ vI
k,Ri

),wRi
]

In the above equation, [v,w] := vTw is the usual dot product on Z
3
q.

Combination Trust. To compute the trust value of a role, we define a combi-
nation trust function for a role R as TU (R) to combine the above described two
types of trust together. Assume that w ∈ [0, 1] is the weight of the inheritance
trust. The trust value is computed as

TU (R) = (1 − w) · TU (R)D + w · TU (R)I

238 L. Zhou et al.

R1

R2 R5

R3 R4

Fig. 1. Hierarchical RBAC example.

4.2 Example of User-Role RBAC Trust Model

Now we use an example to show how the users’ trust in a role is affected by
feedback for different roles in a RBAC system. In this example, we consider all
the bad feedback as Permission Management Failure, as our intention is to show
how the role hierarchy affects the trust value of roles. Consider the role hierarchy
example shown in Fig. 1.

In Fig. 1, the role R1 inherits from role R2 and role R5, and the role R2

inherits from R3 and R4. We set the weight between every two roles and the
weight of other owners’ feedback to 1; that is, the weight vector for each role Rk

where k ∈ [1, 5] is defined as wRi
= (1, 0, 1),∀ i ∈ [1, 5], i �= k, and wu = (1, 1, 1).

When a user wants to access a resource that has been assigned to the role R2,
she or he will need to evaluate the trust value of R2 to decide whether R2 is
reliable to join. In Fig. 2, we show the trust values of R2 when only different
individual roles in the RBAC system have feedback. For example, the curve for
R1, GFP = 75% shows the trust values of R2 when only R1 in the RBAC system
has feedback, and 75 % of the feedback is positive.

When the good feedback percentage is 75 %, the trust value for R2 goes
up with the increasing number of feedbacks that R2 and R3 have. This trend
implies that the more resources a role has, the more impact the good feedback
percentage has on the trust value of the role. Note that the feedback for R1 does
not affect the trust value of R2. This is because an untrusted R1 will not cause
an unsuccessful interaction of R2. When the feedback is only given for R2, the
increase in the trust value is the fastest. This is because the individual trust of
the role has more weight than the inheritance trust by our assumption. It is clear
that the increase in the trust value of R2 is slower when the feedback is for R3

only, because inheritance trust has less weight in this example.
When the good feedback percentage is 25 %, the trust value for R2 goes down

with the increasing number of feedbacks that R2 and R3 have. Similarly, this
trend implies that the more resources a role has, the more impact the good
feedback percentage has on the trust value of the role. The feedback for R1 does

A Trust Management Framework for Secure Cloud Data Storage 239

0 10 20 30 40 50 60 70 80 90 100
0.45

0.5

0.55

0.6

0.65

0.7

Number of Feedbacks

T
ru

st
 V

al
ue

s

Trust Values of Roles, Good Feedback Percentage 75%, w = 0.3

R1
R2
R3

0 10 20 30 40 50 60 70 80 90 100
0.3

0.35

0.4

0.45

0.5

0.55

Number of Feedbacks

T
ru

st
 V

al
ue

s

Trust Values of Roles, Good Feedback Percentage 25%, w = 0.3

R1
R2
R3

Fig. 2. Trust values on R2 for users from feedback on different roles.

not affect the trust value of R2 either. When feedback is only given for R2, the
decrease in the trust value is the fastest. This is because the individual trust of
the role has more weight than the inheritance trust by our assumption. Therefore
the decrease in the trust value of R2 is slower when the feedback is for R3 only.

From Fig. 2, we see that the feedbacks for different roles in the system have
different impacts on the trust value of R2. Firstly, the feedback for ancestor roles
does not affect the trust of the role. Secondly, the more resources that have been
assigned to a role, the more impact the feedback for the role will have on its
ancestor roles as well as itself. These results show that our users’ trust model
is useful in assisting users to determine properly the trust of roles in RBAC
systems.

4.3 Role-Owner RBAC Trust Model

In the case when any owner can choose roles to encrypt their resources to, assign-
ing malicious resources or invalid resources to a role may cause the Permission

240 L. Zhou et al.

Management Failure of the role. Therefore, it would be useful to have a trust
model to assist role managers in determining the trustworthiness of an owner,
and hence decide whether or not to accept the resources from the owner.

As discussed in Sect. 3.2, the trust requirement on owners is simpler compared
to the users’ trust in roles, and we see some important differences. The trust in
owners is independent from the role hierarchy; that is, the role hierarchy does
not affect the trustworthiness of owners. We note that a general trust model can
be used in this scenario. For completeness purposes, we also give the definition
of the trust model for the role managers’ trust in data owners in this subsection.

Definition 4 (Interaction). From a role manager’s perspective, an interaction
with an owner is a transaction in which an owner assigned a resource to that
role, and that the role manager has accepted the resource.

Definition 5 (Trust Vector). We define a trust vector to represent the behav-
iour history of an owner as follows:

v = (h, s)

where h is the value related to resources owned by the owner, and s is the value
related to malicious or invalid resources owned by the owner.

Using the function E in Eq. 1, we define the trust function T (v) that repre-
sents the trust value derived from the trust vector v as

T (v) = E(h − s, s)

Definition 6 (Interaction History). We assume that there exists a central
repository in the system that collects and stores the behaviour histories provided
by role managers to which the owner has assigned the resources. We define the
trust record history provided by a set R of n roles as

HistR(O) = {HO
1 ,HO

2 , · · · ,HO
n }

Each entry HO
i in Hist(O) is defined as a pair of parameters, HO

i = 〈Ri, vi,O〉
where vi,O = (h, s) is a trust vector that represents the trust record of the owner
O on the resources that she or he has assigned to the role Ri. h is the total
number of O’s resources that has been assigned to Ri, and s is the number of
bad resources assigned by O.

We assume that an owner O has a resource and wants to assign it to a role
Rk. When this resource is assigned to the role Rk, Rk updates the trust record
of the owner by increasing the value h in the trust vector HO

k of O by 1. Now
assume that a user has found the resource to be invalid, and then she or he
reports to the role of this resource. If the role has confirmed that the user’s
complaint is true after verifying the resource, Rk will find out that it is O who
uploaded this resource, and Rk will increase the value s in trust vectors HO

k for
this owner by 1.

A user that belongs to a role has the permission to access resources of the
descendant roles of the role. When the user reports a bad resource from its

A Trust Management Framework for Secure Cloud Data Storage 241

descendant role, this role may not be able to identify the owner of the resource
as the resource is not assigned to this role directly. Hence the role cannot update
the trust records of the owner. In this case, the role can notify all its descendant
roles about this bad resource, and the role to which the resource is assigned to
will update the trust record of the owner who owns the resource.

Assume that w is the weight that the role Rk assigns to the feedback from
other roles. Taking as input the interaction history of an owner, the trust value
of the owner can be computed as follows:

TR(O) = T (vT
k,O), vT

k,O = vk,O + w ·
n∑

i=1,i �=k

vi,O

This trust value is evaluated based on a combination of all trust records in
HistR(O) considering the weighting for the trust records from other roles.

5 Architecture for User’s Trust Models

In this section, we present the design of a secure cloud storage system by combin-
ing the user’s trust models for RBAC proposed in Sect. 4 with a cryptographic
RBAC system. This architecture provides a practical solution for building a reli-
able and trusted RBAC system while retaining the use of cryptographic tech-
niques. We have implemented a prototype of this architecture and have been
conducting a range of experiments.

5.1 System Overview

Consider the system architecture shown in Fig. 3. Each solid line in the figure
shows the communication channel set by the system between two components

Owner Behaviour
Auditor

Role Behaviour
Auditor

Interaction History Central Repository

Users

Owner Behaviour
Controller

Trust Decision
Engine

Cloud

Administrator

Roles

Trust Management
System

8

5

7

4

1

11

10 3

13

9

Owner
6

2

14 12

Fig. 3. Architecture for using user’s RBAC trust models in a cryptographic RBAC
system.

242 L. Zhou et al.

joined together by the line, and the arrows indicate the direction in which the
information flows. Since our trust models are based on cryptographic RBAC
schemes, our system contains all the entities that a cryptographic RBAC scheme
has, including an administrator, roles, users, and owners. The administrator is
the certificate authority of the RBAC system, and it generates the system para-
meters and issues all the necessary credentials. In addition, the administrator
manages the role hierarchy of the system. To put a role into the role hierarchy,
the administrator needs to compute the parameters for that role. These parame-
ters represent the position of the role in the role hierarchy. They are stored in
the cloud, and are available publicly. Roles are the entities that associate users
and owners together. Each role has its own role parameters which define the user
membership. These role parameters are stored in the cloud, and a role needs to
update them in the cloud when updating the user membership of the role. Own-
ers are the parties who possess the data and want to store the encrypted data
in the cloud for other users to access, and they specify the roles who can access
the data. In the RBAC model, they are the parties who manage the relationship
between permissions and roles. Users are the parties who wish to acquire certain
data from the cloud. When a user wishes to access stored data in the cloud, she
or he first sends the request to the cloud, and decrypts the data upon receiving
the response from the cloud.

In addition to these four entities in a basic cryptographic RBAC scheme, our
trust models enhanced the cryptographic RBAC system by integrating an extra
trust management system, which consists of five components.

Central Repository. In our trust models, all the interaction histories and trust
records related to roles and users are stored in a central repository. The central
repository is used to keep the records of all these interaction histories and trust
records which are used by the Trust Decision Engine (described below) in eval-
uating the trust value of roles and owners. Any entity that is residing outside
the trust management system is not able to access the central repository.

Role Behaviour Auditor. In order to protect the integrity of the feedback on
roles, a role behaviour auditor collects the feedback on roles from users. The role
behaviour auditor needs to ensure that a user who uploads feedback against a
role has been granted the membership of the role or an ancestor role of that role.
All the valid feedback will be forwarded to the central repository, and invalid
feedback will be discarded.

Owner Behaviour Auditor. An owner behaviour auditor is an entity to collect
the feedback on owners’ behaviour. However, unlike the role behaviour auditor,
the owner behaviour auditor listens for feedback on two channels. One is from the
roles who may report the invalid data, and another is from the owner behaviour
controller which reports the ownership of the stored data in the cloud. This
auditor will determine whether an owner has uploaded any malicious or invalid
data to the cloud, and can update the central repository.

Owner Behaviour Controller. Owner behaviour controller acts as a proxy server
between owners and the cloud. It controls and forwards the owners’ encrypted
data to the cloud. The controller can decide whether to store data in the cloud

A Trust Management Framework for Secure Cloud Data Storage 243

based on the decision from the role to which the data is assigned. The controller
will inform the owner behaviour auditor about which owner the uploaded data
belongs to.

Trust Decision Engine. The trust decision engine is the entity which evaluates
the trust of the roles for users and the trust of the owners for roles. The trust
decision engine takes as input the interaction histories or trust records stored in
the central repository, and outputs the trust value of a particular role or owner.

5.2 System Workflow

All the entities in the system are connected through different communication
channels which are labelled with numbers in Fig. 3. We explain how the system
works by describing the information flow through these channels.

First, the administrator initialises the system and specifies the role hierar-
chy of the system. The generated system parameters are uploaded to the cloud
via (1). Roles grant the membership to users, and upload role parameters to
the cloud via (2). Users download and decrypt data from the cloud via (3).
When an owner wants to encrypt and store data in the cloud to a particular
role, she or he first encrypts the data and sends a request to the owner behav-
iour controller via (6). Then the owner behaviour controller notifies the role via
(11) and forwards the request to the cloud through (7) if the role agrees to
accept the data from this owner. The cloud then communicates with the owner
as in a normal cryptographic RBAC scheme. The controller also sends the owner
behaviour auditor the information about the owner’s identity and the resource’s
identity via (8).

When a user wants to access a resource in the RBAC system, the system first
returns a list of roles who claim to have this resource. Then the user requests
the trust evaluation on these roles from the trust management system. The trust
value of the roles will be returned to the user through the (13). The user may
choose a role who has the highest trust value to send the join request. When a
user has found that the data she or he has accessed from the role is malicious
or invalid, she or he then provides feedback on the role to whom the resource
is encrypted to the role behaviour auditor through (4). Once the role behaviour
auditor verifies that the feedback is from an authorised user, it will forward the
feedback to the central repository.

When a negative feedback of a role has been raised by a user because of
an invalid resource, the role will send the identity of the resource to the owner
behaviour auditor via (10) if it believes that the resource was invalid when the
owner uploaded the resource. The auditor then updates the trust records of the
owner of this resource to the central repository via (9). When an owner wants
to assign a resource to a role, the role can ask the trust management system
about the trust evaluation for an owner, and the trust value will be returned by
the trust decision engine through (14). Upon receiving the trust values for the
owner from the trust decision engine, the role can inform the owner behaviour
controller via (11) whether to accept the data. Moreover, this trust evaluation
process can be made automatically by connecting the owner behaviour controller

244 L. Zhou et al.

to the trust decision engine directly. Roles can pre-determine a trust threshold
for accepting data from owners. Every time an owner wants to upload a resource,
the owner behaviour controller can check the trust value of the owner from the
trust decision engine directly, and decide whether to accept the resource by
comparing the trust value with the role’s threshold.

6 Owner’s Trust Models for Cryptographic RBAC

In this section, we consider the remaining two trust relationships in crypto-
graphic RBAC systems, data owners’ trust in role managers and role man-
agers’ trust in users. We refer to these trust models as Owner-Role RBAC and
Role-User RBAC trust models respectively. The Owner-Role RBAC trust model
assists the data owners to evaluate the trust in role managers in a RBAC system
and use this trust evaluation to decide whether to store their encrypted data in
the cloud for particular roles. The Role-User RBAC trust model helps the role
managers to evaluate the trust in users in the RBAC system and use this trust in
deciding whether to grant membership to the users. These trust models can not
only prevent the owners from interacting with role managers which have a poor
track record in terms of carrying out their functions properly, but also assist the
role managers to identify the malicious users who caused the negative impacts
on the role managers’ trustworthiness. This can in turn be used to reduce the
risks associated with interacting with the RBAC system for the data owners
and help role managers to keep the RBAC system authentic. The Owner-Role
RBAC and Role-User RBAC trust models are independent of each other and
serve different purposes.

6.1 Owner-Role RBAC Trust Model

An important feature of the proposed trust models is that they take role inheri-
tance into account. Since our trust models are for cloud storage systems dealing
with hierarchical RBAC schemes, the trustworthiness of a role manager is also
affected by the historical behaviour of the role managers of its ancestor roles
and/or descendent roles. Hence in our trust evaluation, we take into account
the impact of role hierarchy and inheritance on the trustworthiness of the role
managers and users.

In Sect. 3.3, we discussed the trust requirements that an owner should con-
sider when deciding whether or not to trust a role. From that discussion, we see
that the factors which can affect the owners’ decision come from the interaction
history of the role with whom owners have interacted as well as its ancestor roles
and descendant roles. When an owner evaluates the trust of a role R, the owner
needs to consider the interaction history of other roles that have inheritance
relationships with the role R.

First we consider the inheritance trust where only the interaction history of
the descendant roles is included. When an owner detects that a user of a descen-
dant role Rd of a role R leaked data to unqualified users, the feedback that

A Trust Management Framework for Secure Cloud Data Storage 245

the owner provided should not only be applied to that descendant role Rd, but
should also affect the trust of R as users belonging to the role R also have the
access to owner’s data assigned to Rd and hence are under suspicion of causing
an unsuccessful interaction. Therefore, while evaluating the trust of the role R,
the interaction history from all its descendant roles including Rd needs to be
considered.

Then we look at the interaction history of ancestor roles’ impacts on the
trust of the role. Consider the scenario where the trust score of a role is higher
than the trust score of one of its ancestor roles. Then the owners will trust this
role at the same level as its ancestor role which has a lower trust score, as the
users of its ancestor role have the same level of access as the users in this role.
So the trust score of the role will be the minimum value of the trust of this role
and the trust of all its ancestor roles.

6.2 Role-User RBAC Trust Model

Since the trustworthiness of a role is primarily determined by the behaviour of
users of the role, it is important for the role to ensure that only users with good
behaviour are granted membership. If roles do not have a way to evaluate the
trust of their users, it would be difficult for them to distinguish the malicious
users from those with good behaviours.

When a role wishes to evaluate the trust value of a user, the role first considers
the user’s trust record rated by the role itself. Then the role needs to consider
the trust records of the user from other roles in the system. Therefore, the trust
score of the user is evaluated based on all the trust records of this user including
the trust records from other roles.

This trust model can either work independently or work together with the
Owner-Role RBAC trust model. Roles can use this model to periodically check
the trust value of the existing users in the roles, and revoke the memberships
from users whose trust values are below the preset threshold. This trust model
can also be used by roles to determine the trust value of a new user requesting
to join; the request from the users whose trust values are below the threshold
will be rejected.

7 Application Scenario

In this section, we use application examples to illustrate how the trust models in
the framework can be used in a cloud service application to enhance the quality
of security decision making.

7.1 Application for User’s RBAC Trust Models

In this subsection, we describe a digital library system which uses our proposed
user’s trust models to illustrate how the trust models can assist security decision
making in this system. The digital library system uses an external public cloud

246 L. Zhou et al.

M1 M2

B1 Business 1

B2 Business 2

M1 Marketing 1

M2 Marketing 2

E Economics

AD Advertising

CS Customer Service

PR Public Relations

C Commerce

E

PRCS

B1

AD

B2

C

Fig. 4. Digital library system example for user’s RBAC trust models.

to store all the digital format resources such as books, papers, theses, and other
types of publications. There are many distributors who use the platform provided
by the digital library system to share digital resources. Each distributor can get
the authorisations for sharing the digital resources from the publishers directly.
A party who subscribes to a distributor can access all the resources of the dis-
tributor. Assume that the distributors have two types of subscription licenses;
personal licenses that allow only the subscribed user to access the resources, and
business licenses that allow another distributor to resell the resources to other
users or distributors.

Now let us consider the example of a distributors’ network for this digi-
tal library system. The hierarchical relationship of the distributors is shown in
Fig. 4. In this system, distributors choose the resources to share by their cat-
egories. The distributors AD, CS, PR, C, and M1 get the authorisations for
selling digital resources in the categories Advertising, Customer Service, Public
Relations, Commerce and Marketing respectively from the publishers. Distribu-
tors M2 and E sell a wider ranger of resources which cover all the categories in
Marketing and Economics respectively, and these two distributors get authori-
sations from the distributors of sub-categories instead of the publishers directly.
Note that the categories of resources sold by M1 and M2 are overlapped. The
difference is the channels they get the resources from: M1 from publishers, and
M2 from sub-distributors. Similarly, distributors B1 and B2 get authorisations
from M1, E, and M2, E respectively, and their resources both cover the categories
Business.

To use cryptographic RBAC schemes to protect the resources so that only the
authorised users can access them, the administrator of the digital library system
first sets up the system parameters based on the relationships of the distributors.
Then the publishers can encrypt their resources to the distributors whom they
authorised to sell the resources. Here we consider the distributors as roles in the
RBAC, and publishers as owners of the resources. When a user subscribes to a
distributor, the distributor simply adds the user to the role. Then the user can
use the key given by the system administrator to decrypt the resources of the role.
Because the cryptographic RBAC schemes support role hierarchy, in this example,

A Trust Management Framework for Secure Cloud Data Storage 247

users who subscribed to the role M2 can also access the resources of the role AD,
CS and PR, and users subscribed to B1 can access the resources of all the roles
M1, E, and C.

First let us consider how the trust model can assist the users. Assume that
the distributor M2 also gets some resources, which the distributors AD, CS, and
PR do not have directly from the publishers. To save the cost of storing resources
in the cloud, M2 chooses to reprint some resources in a lower quality to reduce
the file size. Users subscribed to M2 may give negative feedbacks on M2 because
they have difficulties in reading some of the resources. Later on, when a user
want to access marketing resources, she or he evaluates the trust of M1 and M2,
and the trust model will output a higher trust value for M1 than for M2 because
of the negative feedbacks of M2. Then the user will know the quality of resources
from M1 is better than those from M2. However, the distributors AD, CS, and
PR will not be affected because the poor quality resources are not coming from
them. When a user wants to subscribe to a distributor for Business, B2 will
have lower trust value than B1 as resource the user would get from B1 may come
from M2.

Now let us look at the trust model for roles’ trust in owners. Assume that
publishers want to promote their digital resources, and they actively assign their
resources to distributors. The resources that have come from some publishers
may be of poor quality or alternatively some resources are not what the publish-
ers claim them to be. The distributors may not be able to verify each individual
resource due to the lack of expertise in certain areas. When users complain about
a bad resource, the role can give a negative feedback on the publisher who owns
the resource, after confirming that the users’ complaints is valid. The feedback
of the publisher can be accessed by all the distributors so they can avoid using
this publisher in the future.

7.2 Application for Owner’s RBAC Trust Models

Finally, we consider another application scenario based on a digital library sys-
tem. Similarly, assume that the digital library system uses an external cloud
storage platform to store all the resources. A party can subscribe to the pub-
lisher for particular resources in order to access the resources stored in the cloud,
and the subscription to a publisher needs to be authorised by the publisher. The
publisher may reject the subscription request for reasons such as the party is
not reliable in paying the subscription or the party has the potential to leak the
resources to unauthorised parties.

Now assume that there is an organisation with several branches in different
geographical locations and that each branch consists of several departments.
When employees of the organisation need to access the digital resources stored
in the cloud, the relevant department or the branch (where the employee works)
can subscribe to the publisher. Let us assume that the organisation uses a RBAC
system to control the access to resources, and the role hierarchy is shown in Fig. 5.

In this example, the organisation consists of two branches B1 and B2, and
each branch has two departments MD1 and PD1, MD2 and PD2 respectively.

248 L. Zhou et al.

MD1 PD2 PD1 MD2

PD MD B2

ORG

B1

ORG Organisation

B1 Branch 1

B2 Branch 2

MD Marketing Department

PD Production Department

MD1 Marketing Department 1

PD1 Production Department 1

MD2 Marketing Department 2

PD2 Production Department 2

Fig. 5. Digital library system example for owner’s RBAC trust models.

Assume that the head office has two head departments MD and PD which
manage the relevant departments in both branches. Recall that a role can inherit
from other roles in the RBAC system. For example, when PD has subscribed to
a resource from a publisher, both PD1 and PD2 will have access to the resource.
Similarly, a resource subscribed by the role ORG can be accessed by all the roles
in the system.

By using a cryptographic RBAC scheme in this system, a publisher is able
to encrypt the resource to the branch or department (who subscribes to the
resource) and store it in the cloud so that the employees who work in the branch
or department can access it. There is an assumption that these employees are
trusted and will not redistribute resources of the publisher to employees who
are not in that branch or department. However, it is possible that an employee
leaks the content of a resource to others. Therefore, the publishers will need a
trust system to assist them in identifying the roles who have malicious users,
and hence avoid accepting the subscriptions from them.

Let us now consider how our trust model can be used in this system to assist
the publishers (owners). Assume that no publisher has ever interacted with the
role PD1, PD2, and now a publisher wishes to evaluate the trust of these two
roles. We also assume that B1,MD1 and PD1 are the same as B2,MD2 and
PD2 in terms of the number of employees and percentage of good feedbacks for
B1 is higher than that for B2. Since the trust of the role is affected by descendant
roles in our model, the publisher will get the result where the role PD1 is more
trusted than PD2. This result aligns to the fact that if the branch B1 is more
trusted than the branch B2, then the department PD1 of the branch B1 will
also be considered more trusted than the department PD2 of the branch B2.

Now assume that the role ORG only has good feedbacks; that is, the resources
the role ORG has subscribed have never been leaked. Since the trust value of a
role is taken from the minimum value of the trust value for all its ancestor roles,
when a publisher evaluates the trust of the role ORG, its trust value may be low
if the good feedback percentage for B2 is low. This is because employees in the

A Trust Management Framework for Secure Cloud Data Storage 249

role B2 inherit permissions from the role ORG, and employees in this branch
could potentially leak the resources.

When the role B2 realises that its trust value is low, it may decide to warn
or even exclude some potential malicious users. Then our Role-User RBAC trust
model can be useful to assist roles in identifying the potential malicious users.
Our trust model allows the trust for employees in B2 to be evaluated based on
the feedbacks from all the roles in the organisation. That is, if an employee was
working in the branch B1 and relocated to B2 recently, the feedbacks on the
user from B1 when the user was working in B1 is also taken into account when
B2 determines the trustworthiness of the user.

From this digital library system example, we see that our owner’s trust model
can be used in the cloud storage system using cryptographic RBAC schemes
where role managers themselves have the flexibility in managing the user mem-
bership.

8 Related Works

There have been some related works which have addressed only trust on users in
RBAC systems. Reference [2] proposed a trust model for RBAC system which
considers users’ trust by assigning trust levels to users. These trust levels are
based on a number of factors such as user credentials, user behaviour history
and recommendations from other users. Trust levels are then mapped to roles.
Another trust model for RBAC was proposed in [13] to assist roles with the deci-
sion of user-role assignment based on a wide range of criteria of users, including
behaviour history and reputation. In [4], a trust model for RBAC was introduced
which evaluates the trust in the users based on user behaviours and context, in
a context-aware access control model. Another trust model was discussed in [14]
which also uses trust level to determine the access privileges of users. All these
trust models only consider the trust on users in a RBAC system. None of these
works address the other trust relationships in the RBAC system. The trust for
role managers is critical in cloud storage systems which has been addressed in
this paper. Our trust models have also addressed the roles’s trust on data owners
and users. Another difference between our model and the previously proposed
ones is that our trust models work in RBAC systems which use cryptographic
RBAC schemes. That is, our models take into account cryptographic operations
and the access privileges to decrypt the data stored in the cloud, which none of
the previous works address.

9 Conclusions and Future Work

In this paper, we have addressed trust issues in cryptographic role-based access
control systems for securing data storage in a cloud environment. We have pro-
posed trust models for different entities in RBAC systems which are using crypto-
graphic RBAC schemes to secure stored data. These trust models assist the users
and role managers to determine the trustworthiness of individual role managers

250 L. Zhou et al.

and data owners, and data owners and role managers to evaluate the trustwor-
thiness of individual role managers and users, in the RBAC system respectively.
They allow the users and the data owners to perform the trust evaluation to
decide whether or not to access/share a resource from/to a particular role. Our
trust model takes into account role inheritance and hierarchy in the evaluation of
trustworthiness of roles. The models also enable the roles to use the trust evalu-
ation in their decision to accept the resources from a particular owner and grant
the role membership to a user. We have given the design of an architecture of
a trust-based cloud storage system which has integrated the user’s trust models
with the cryptographic RBAC schemes. We have also described the application
of the proposed trust models by considering a practical scenario and illustrating
how the trust evaluations can be used to reduce the risks and enhance the quality
of security decision making by different entities of the cloud storage service.

The proposed trust models used a centralised trust management system to
assist entities with their trust evaluations. Though these entities in the system
still need to trust the centralised trust management components, we believe that
this approach has much improved the cases where entities need to trust every
other individual entity in the system. We note that the auditing components in
our designed architecture need to collect all the provided feedback. In large-scale
systems, the load of these auditing components could be high. One solution to
this issue is using decentralised auditing components which will be considered
in our future work. In addition, we only considered two types of feedbacks in
our trust models, positive and negative. However, a user who has unsatisfactory
experiences with roles may want to provide varying levels of negative feedback.
For example, the user may have retrieved a malware instead of valid data from
a role and a poor quality data instead of a good quality one from the same role.
It is clear that some cases are more harmful than others, and the user may want
to rate the role less untrusted when it is more harmful. We will also consider
this issue in our future work.

References

1. Akl, S.G., Taylor, P.D.: Cryptographic solution to a problem of access control in
a hierarchy. ACM Trans. Comput. Syst. 1(3), 239–248 (1983)

2. Chakraborty, S., Ray, I.: TrustBAC - integrating trust relationships into the RBAC
model for access control in open systems. In: 11th ACM Symposium on Access
Control Models and Technologies, SACMAT 2006, pp. 49–58. ACM, 7–9 June
2006

3. De Capitani di Vimercati, S., Foresti, S., Jajodia, S., Paraboschi, S., Samarati, P.:
Encryption policies for regulating access to outsourced data. ACM Trans. Database
Syst. 35(2), 12:1–12:46 (2010)

4. Feng, F., Lin, C., Peng, D., Li, J.: A trust and context based access control model
for distributed systems. In: 10th IEEE International Conference on High Perfor-
mance Computing and Communications, HPCC 2008, pp. 629–634. IEEE, 25–27
September 2008

A Trust Management Framework for Secure Cloud Data Storage 251

5. Ferraiolo, D.F., Kuhn, D.R.: Role-based access controls. In: Proceedings of the
15th NIST-NCSC National Computer Security Conference, pp. 554–563. National
Institute of Standards and Technology, National Computer Security Center, 10–13
October 1992

6. Jøsang, A., Ismail, R.: The beta reputation system. In: Proceedings of the 15th
Bled Conference on Electronic Commerce (2002)

7. Miklau, G., Suciu, D.: Controlling access to published data using cryptography. In:
Proceedings of 29th International Conference on Very Large Data Bases, VLDB
2003, pp. 898–909, 9–12 September 2003

8. Mui, L., Mohtashemi, M., Ang, C., Szolovits, P., Halberstadt, A.: Ratings in dis-
tributed systems: a bayesian approach. In: Workshop on Information Technologies
and Systems (2001)

9. Mui, L., Mohtashemi, M., Halberstadt, A.: A computational model of trust and
reputation for e-businesses. In: HICSS, p. 188 (2002)

10. Samarati, P., De Capitani di Vimercati, S.: Data protection in outsourcing scenar-
ios: issues and directions. In: Proceedings of the 5th ACM Symposium on Informa-
tion, Computer and Communications Security, ASIACCS 2010, pp. 1–14. ACM,
13–16 April 2010

11. Sandhu, R.S., Coyne, E.J., Feinstein, H.L., Youman, C.E.: Role-based access con-
trol models. IEEE Comput. 29(2), 38–47 (1996)

12. Sandhu, R.S., Ferraiolo, D.F., Kuhn, D.R.: The NIST model for role-based access
control: towards a unified standard. In: ACM Workshop on Role-Based Access
Control, RBAC00, pp. 47–63 (2000)

13. Takabi, H., Amini, M., Jalili, R.: Trust-based user-role assignment in role-based
access control. In: AICCSA, pp. 807–814. IEEE, 13–16 May 2007

14. Toahchoodee, M., Abdunabi, R., Ray, I., Ray, I.: A trust-based access control model
for pervasive computing applications. In: Gudes, E., Vaidya, J. (eds.) Data and
Applications Security XXIII. LNCS, vol. 5645, pp. 307–314. Springer, Heidelberg
(2009)

15. Zhou, L., Varadharajan, V., Hitchens, M.: Enforcing role-based access control for
secure data storage in the cloud. Comput. J. 54(13), 1675–1687 (2011)

16. Zhu, Y., Hu, H., Ahn, G.-J., Wang, H., Wang, S.-B.: Provably secure role-based
encryption with revocation mechanism. J. Comput. Sci. Technol. 26(4), 697–710
(2011)

	A Trust Management Framework for Secure Cloud Data Storage Using Cryptographic Role-Based Access Control
	1 Introduction
	2 Preliminaries
	2.1 Experience-Based Trust
	2.2 Bayesian Trust Model

	3 Trust Issues in Using Cryptographic RBAC Schemes in Secure Cloud Storage
	3.1 Data Users' Trust in Role Managers
	3.2 Role Managers' Trust in Data Owners
	3.3 Data Owners' Trust in Role Managers
	3.4 Role Managers' Trust in Data Users

	4 User's Trust Models for Cryptographic RBAC
	4.1 User-Role RBAC Trust Model
	4.2 Example of User-Role RBAC Trust Model
	4.3 Role-Owner RBAC Trust Model

	5 Architecture for User's Trust Models
	5.1 System Overview
	5.2 System Workflow

	6 Owner's Trust Models for Cryptographic RBAC
	6.1 Owner-Role RBAC Trust Model
	6.2 Role-User RBAC Trust Model

	7 Application Scenario
	7.1 Application for User's RBAC Trust Models
	7.2 Application for Owner's RBAC Trust Models

	8 Related Works
	9 Conclusions and Future Work
	References

