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Abstract. In this study, a novel filtering method called Randomized Sigma 
Point Kalman Filter (RSPKF) is introduced for feature based 3D Simultaneous 
Localization and Mapping (SLAM). Conventional SLAM methods are mostly 
based on Extended Kalman Filters (EKF) for ‘mild’ nonlinear processes and 
Unscented KF (UKF) or Cubature KF (CKF) for ‘aggressive’ nonlinear 
processes. A critical problem of the existing filtering methods is that they lead 
to biased estimates of the state and measurement statistics. The main purpose of 
this study is to propose a new local filter, RSPKF, based on stochastic integra-
tion rules providing an unbiased estimate of an integral for feature based 
SLAM. The simulation based on point features in 2D and experimental results 
based on planar features in 3D show that the RSPKF based SLAM method pro-
vides more accurate results than the traditional methods.  

Keywords: SLAM, feature extraction, randomized sigma point filters. 

1 Introduction 

Simultaneous Localization and Mapping plays a central role for fully autonomous 
system when the Global Navigation Satellite System is not available or denied. 
SLAM is an active research area of the last decade and its solution is considered as 
the “holy grail” by the robotics researchers [1]. Feature based SLAM (Fb-SLAM) 
methods requires sophisticated feature extraction methods. These features are princi-
pally considered as rotation and translation independent and can be distinguished 
when they are exists in the two consecutive observations. The aim of the feature based 
SLAM methods is to estimate the robot pose and landmark locations combined in a 
state vector.  

A traditional representation in SLAM is to use state space model with additive 
Gaussian noise, which leads to the local filters such as EKF, UKF, and CKF. EKF is 
the well-known filtering method using the first order approximation of the nonlinear 
functions [2]. Therefore, it is appropriate for ‘mild’ nonlinear processes and mea-
surement models. In order to overcome the linearization problem of ‘aggressive’ non-
linearities, Julier and Uhlman [3] proposed Unscented Kalman Filter (UKF) known as 
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derivative-free approach. The UKF, instead of linearization of the nonlinear functions, 
estimate the mean values and covariance matrices with sigma points, which are ob-
tained by a deterministic sampling approach. Cubature Kalman Filters (CKF) is  
proposed as a more accurate filtering method and a more mathematically principled 
method than UKF for nonlinear state estimation by Arasaratnam and Haykin [4]. CKF 
is also more stable filter than the UKF and has a square root solution providing nu-
merical advantages and maintains the positive definiteness the of covariance matrix.  

The UKF and CKF methods can be jointly considered as sigma point or derivative-
free Kalman filters. The difference between these local filter is originated from the 
approximation used in computation of the integrals. The approximations based on the 
Taylor expansion, unscented transform, and cubature transform has a significant 
weakness which is the systematic error emerged by the approximate solution to the 
integrals [5]. To solve this problem, a randomized unscented Kalman filter (RUKF) 
has been proposed for solving the integrals without systematic errors  very recently 
[5]. RUKF is based on the stochastic integration rule for infinite regions proposed by 
the Genz and Monohan [6]. 

In this paper, Randomized Sigma Point Kalman Filters (RSPKF) are used in simul-
taneous localization and mapping problem. To test the method in a more challenging 
SLAM problem, we introduce a novel landmark extraction method based on plane 
detection. Unlike the conventional methods, the 4D infinite plane parameters are en-
coded into the state vector and they are estimated with the latest 6D robot pose. The 
proposed observation model consists of dense trigonometric functions and cannot be 
considered as a mild nonlinear function; therefore, the RSPKF is obviously suitable 
for this type of problem. The appropriateness of the proposed SLAM method is vali-
dated through both simulations and experimental datasets in 2D and 3D, respectively. 
In 2D, point features are used as landmarks, and in 3D planes are used as landmarks 
in the SLAM state vector representation. 

In Section 2, the Sigma Point Kalman Filter is introduced. Then the Randomized 
Sigma Point Kalman Filter (RSPKF) based on stochastic integration rule and RSPKF 
based SLAM method is presented in Section 3. Finally, the simulation and experi-
mental results are given in Section 4 and a conclusion is drawn in Section 5. 

2 Sigma Point Kalman Filter 

The Sigma Point Kalman Filters (SPKFs) based on the unscented transform (UT) or 
cubature transform (CT) is introduced in this section. 

2.1 Unscented Transformation  

The aim of the unscented transformation is to calculate first two moments of a known 
nonlinear function y=g(x) where x and y are the random vector variables. The mean 
vector y , the covariance matrix Py, and the cross-covariance matrix Pxy are described 

by  
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The solution to the problem with UT is based on the approximation of the random 

variable x by using a deterministically chosen set of sigma points, iχ ,  and their 

corresponding weights iw . 
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where i=1,2, … n, and n is the dimension of the state vector. The term (•)i  represents 
the ith column of the matrix. The covariance matrix satisfy the definition of P=SST 
where S is the square root of P. Then sigma points are propagated based on the nonli-
near function g(x) as  

( ),   .i iy iχ= ∀g             (3) 

Then the mean and covariance values are approximated as follows 
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The variable κ  is the scaling parameter and suggested setting is the 3 nκ = −  [3]. 
However, the positive semi-definiteness is lost for multi-dimensional variable x, 
which is the indispensable occasion of SLAM methods, because of negative κ (n > 3, 
κ < 0). For that reason, a possible practical solution is to choose 0κ =  for the multi-
dimensional case although there is no mathematical justification. Moreover, the adap-
tive setting of the scaling parameters may improve the estimation accuracy of the  
UT [7]. 

2.2 Cubature Transformation  

Cubature transformation, a more accurate and mathematically principled transforma-
tion than the UT, is proposed by Arasaratnam and Haykin [4]. The cubature transfor-
mation is based on the cubature theory and it is summarized as follows. 
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The key point of the Cubature theory [8] is to find multi-dimensional integrals us-
ing cubature rules since its integrands are in the form of,  

 
non-linear function × Gaussian. 

 
Thus, the Bayesian filter solution is approximated by the help of cubature theory. 

Cubature Rules  
The cubature rule is used to approximate an n-dimensional Gaussian weighted 
integral as 
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where N is the normal distribution of x  with mean x  and covariance matrix P . The 

relation for covariance matrix
T

=P P P is satisfied. The 2n set of cubature array set 
is defined by ζ , and iζ  the ith element of the set ζ , 
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2.3 Sigma Point Kalman Filters: UKF and CKF 

The UKF and CKF are jointly called as Sigma Point Kalman filters (SPKF). The 
SPKF methods are based on either the unscented or the cubature transformations. 
Consider the following discrete time process and observation models. 
 

1 1 1( , )k k k kf w− − −= +x x u        (7) 

 
where 1kw −  denotes the zero mean Gaussian distribution noise vector with covariance 

matrix Q, and uk-1 the control signal or odometry data. The two fundamental steps of 
the Kalman filters are explained as follows. 

Time Update 
In the time update step, SPKFs computes the predicted mean −x and covariance ma-

trix −P depending on the transformation. 
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where 1kD − denotes the history of the input and measurement pairs up to k-1. Since 

1kw −  is assumed to be zero mean and independent of the measurement sequence, one 

can write 
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The corresponding error covariance matrix can be written as 
 

k-1

1 1 1 1

1 1 1 1 1 1 1

[( - )( - ) | z  ]

( , ) ( , )

( ) .

n

T
k k k k k

T
k k k kR

T
k k k k k k k

E

f f

x N ; , d Q

− − −

− − − −

− − − − − − −

=

=

− +
∫

P x x x x

x u x u

x x P x x x

          (10) 

 
Measurement Update. The predicted measurement vector, the corresponding cova-
riance and cross covariance matrices are given by 
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After new zk measurements are obtained, the sigma point Kalman filter updates the 

state vector and covariance matrix as 
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where the Kk is the Kalman gain given by 
 

1
, ,k xz k zz kK = P P−                                            (13) 

 
The main difference between the UKF and CKF is the approximations used to 

solve the given integrals. While the UKF filters uses unscented transform, CKF uses 
the cubature transform for solving the integrals. In the next subsection, we state the 
problem of the systematic error caused by approximations.  
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2.4 Problem Statement 

The sigma point filters provides an approximate solutions to the nonlinear functions. 
However, these approximations are biased and generate systematic errors. To keep the 
equations more certain, we elucidate this situation on the UT. The error utε  is ex-
pressed by means of the Taylor expansion of the actual mean and the approximate 
mean [3].  
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is the kth term of the Taylor series expansion of the pth sigma point pχg( )  and ( )p iχ  

is the ith element of pχ . The error utε  is different from zero if the function g is not a 

polynomial of degree 2n. This systematic error is also appears in the computations of 
the covariance matrices in a similar fashion.  

In the next section, the randomized sigma point Kalman filter is presented to elimi-
nate the mentioned systematic error. 

3 Randomized SPKF Based Slam 

Randomized Sigma Point Kalman Filter (RSPKF) proposed by Dunik et al. [5] uses 
the stochastic integration rule (SIR) introduced by Genz and Monohan [6]. SIR is 
explained as follows. 

3.1 Stochastic Integration Rule (SIR) 

SIR is appropriate for solving the integral of the form 
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This relation can be considered as a computation of the expected value of the func-

tion g where x is a random variable with ( ) ( )p = N ; ,x x x P . The algorithm to solve 

the integral (16) based on SIR is given by the Algorithm 1 in Table 1. 
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Table 1. Algorithm 1. Stochastic Integration Rule 

 

Algorithm 1. μ = SI(x,P,g(x))   
 
1:   Define Nmax 
2:   Set μ = 0  and compute )χ =0 g(x  

3:   for i=1 to Nmax do 
4:         Generate a uniformly random orthogonal matrix nxnR∈Q  and generate a    
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The matrix Q can be generated using a product of appropriately chosen random 

reflections [6].  

3.2 Randomized Sigma Point Kalman Filter 

The time update and the measurement update steps of the filter are given as follows. 

Time Update 
The relations of the time update step is previously given by the equations (8) and (10). 
Here the integrals are solved by the SIR algorithm.  
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Measurement Update 
The relations of the measurement update step is previously given by the equations 
(11) and the integral obtained by the SIR as 
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Finally, the estimated state vector and covariance matrix is computed as in (12).   

3.3 SLAM Based on RSPKF   

The conventional Fb-SLAM representation consists of three models, which are ve-
hicle model f, observation model h, and the augmentation model g. These representa-
tions are expressed as follows. 

Vehicle Model 
The vehicle model is given by f 
 

1
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where 1kw −  denotes the zero mean Gaussian distribution noise vector with the cova-

riance matrix Q, and the control signal u. 

Landmark Model 
The landmarks are assumed as stationary

1k km m +
=x x  and represented in world (W) 

frame. The SLAM map is augmented with the following state vector representation, 
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Observation Model 
Measurement or observation model parameters, kz  are provided by the feature extrac-

tion method and stated as  
 

1 1( )k kk vz h − −= +x,u                              (21) 

 
where h is the measurement model and 1kv − is the zero mean observation noise with R 

error covariance matrix.  
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Motion Update 
Motion update step is based on the vehicle model (19). The state and covariance ma-
trix is augmented as  
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where kx  is the state vector in the kth time step and ku  is the applied control signal at 

this time. kP denotes the state covariance matrix and augmented as in (22). The square 

root, S, of the covariance matrix, kP , is obtained by the Cholesky decomposition 

S=chol( kP ). Then the time prediction step of the RSPKF algorithm is applied to the 

augmented vectors (22). The error covariance matrix of the motion is shown by kQ .  
 

( )
( )

, ( )

, ( ( ) )( ( ) )

k k k k k

T
k k k k k k k k k k

f

f f Q

−

−

=

= − − +

x SI x P , x

P SI x P , x x x x
     (23) 

Measurement Update 
 The measurement update step is based on the observation model (21) and the state 
and covariance estimations are obtained using the SIR as in (18) 
 

   
,

( )k k k k k

T
k k k zz k k

K

P P K P K

+ −

−

= + −

= −

x x z z
                        (24) 

 

where the Kk is the Kalman gain given by 
 

1
, ,k xz k zz kK = P P−                                         (25) 

State Augmentation 
The state augmentation is based on the augmentation given by (20) and operated in 
every new landmark observations. The state augmentation is applied in two steps. 
Firstly, the state vector and covariance matrix is augmented with the new observations 
as follows. 
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where kR is the error covariance matrix of the measurement.  
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The augmented state model [ ]a
xv mg = x  is constructed, and then the augmented 

state vector and covariance matrix are computed by following the same procedure in 
motion update step with (22) and (23) which are restated here to save space. 

4 Performance Evaluatıons 

RSPKF based SLAM performance is compared to the SPKF based SLAM in both 
simulations and experimental in 2D and 3D respectively.  

4.1 Simulation Results in 2D 

In this section, an artificial environment containing landmark position in 2D is gener-
ated and the robot way points are defined. The aim of the SLAM algorithm is to esti-
mate the landmark positions and last robot pose information using the range and bear-
ing observation model.  

Vehicle Model 
The explicit vehicle model (19) is given by  
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where V  and γ  are the control input representing the constant velocity and steering 

angle with zero mean Gaussian noise w, respectively, and 
kvφ  denotes the vehicle 

heading angle at time k. 

Observation Model  
The range and bearing observation model (21) is  
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where r is the range and b represents the bearing measurements, and the measure-
ments are with zero mean Gaussian noise ν .  
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State Augmentation Model 
The state augmentation model 

kmx  is given by  
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The Monte Carlo simulations are carried out and the average position and orienta-

tion error norms for UKF and RSPKF SLAM methods are shown in Fig. 1. The con-
trol noise is 1 m/s in speed and 1 degree in steering angle. Similarly, the measurement 
noise in range and bearing is assumed as 1 meter and 1 degree, respectively. There-
fore, the process covariance matrix Q=R=diag(1, π/180). The vehicle speed is taken 
as 2 m/s and time interval between two control signals is set by 0.05 seconds. The 
time interval between the two observations is assumed as 2.5 seconds. 
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Fig. 2. The feature map and the estimated robot path 



130 C. Ulas and H. Temeltas 

 

The feature map and the estimated paths based on the filtering methods are shown 
in Fig. 2. 

4.2 Experimental Results in 3D 

In this section, an experimental data set provided by Oliver Wulf  is used [9]. This 
data set was recorded at the Leibniz University Campus and contains 468 3D scans, 
each with approximately 20,000 data points. A scan is given by three columns in x, y, 
and z-axes. The initial pose estimates are given by xv, yv as position, and θv as orienta-
tion in 3D. The ground truth pose data is available in 6D, [ ]

p ov v vx x x= , and the size 

of the map is about 30 meter by 60 meter. The proposed RPSKF-SLAM method re-
quires the Gaussian noise; however, the relative Odometry error variation is neither 
zero-mean nor Gaussian as shown in Fig. 3. Therefore, the problem becomes more 
challenging with respect to the Gaussian case. The vehicle model, observation model, 
and the augmentation models are expressed below. 

Vehicle Model 
The vehicle model function given by f, and it can be disclosed explicitly as in (30) for 
the odometry data having the relative rigid body transformation parameters. The 
odometry data is provided by the relations of         [ ]x y zδ δ δ δα δβ δγ=u . The vehicle 

state vector is represented by [ ]
p ov v v=x x x  where    [ ] 

pv x y z=x  and 

   [ ] 
ov α β γ=x  denote the robot position and the orientation, respectively. In the vec-

tor representations, the transpose T symbol is dropped for convenience. 
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Fig. 3. Odometry error variation for the first 100 scans in Hannover dataset [9]. Translation 
errors are in cm and rotation error is in radian. 
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where Rot matrix represent the three successive rotations defined by the Euler angles 
in x, y, and z-axes. 

Observation Model 
The observation model is based on the feature extraction method proposed by Ulas 
and Temeltas [10]. The plane features are used as landmarks and are encoded in the 
state vector with their infinite plane representations. The observation model h is given 
by  
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         (31) 

 
where 

k

L
Fn  is the plane normal vector represented in the local (L) frame, and 

k

L
Fd  is 

the plane minimum distance to the robot location 
,p kvx provided by the feature extrac-

tion method. The reader is referred to [10] for more information about the feature 
extraction method.  Based on the robot orientation 

,o kvx and location 
,p kvx the plane 

patch parameters are transformed to the world (W) frame for state augmentation. 

State Augmentation Model 
The state augmentation model is given by   
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.         (32) 

 
The infinite plane representations in local and world frame are shown in Fig. 4. 

For the data association purpose, the other plane properties such as center of gravi-
ty of the planes L

FG , the covariance matrix L
FC  of the plane points and convex hull 

points ,
L

XYZ FΔ  are also transferred to the world frame by using the estimated robot 

position.  
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Fig. 4. Infinite Plane representation in local and world frame 

 

 
Fig. 5. Estimated planar map of the environment. The estimated robot position with uncertainty 
ellipsoids and ground truth path (orange) are shown. 
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In Fig. 5, the planar map constructed form the SLAM and the actual robot path is 
shown. In addition, the error uncertainty ellipsoids of the robot 3D position with their 
mean are shown on the map. Here, the point cloud is registered based on the ground 
truth as the reference.  
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Fig. 6. Average position error norm 
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Fig. 7. Average rotation error norm 

The results show that UKF and CKF based SLAM satisfy the similar results with a 
maximum position error around 6.5 meters (in the 35 time index). On the other hand, 
the RSPKF based SLAM has a maximum of 4 meter position error norm and more 
accurate than the conventional sigma point approaches. The rotation error norm looks 
similar for all filter types. 
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5 Conclusion 

In this study, a new filtering method based on randomized sigma point sampling is 
introduced for localization mapping problem. The advantage of the proposed method 
is that the estimations are unbiased and does not yield the systematic error which is 
always the case of the classical filtering approaches. The performance evaluations are 
given for both simulations and experimental data. The proposed method is more accu-
rate than the traditional sigma point Kalman filters like UKF and CKF which have 
similar performances. Although this approximation takes more computational time, it 
can be used accurately in SLAM problems without any systematic error. 
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