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Abstract. Attitude determination, along with attitude control, is crit-
ical to functioning of every space mission. In this paper, we investigate
and compare, through simulation, the application of two autonomous se-
quential attitude estimation algorithms, adopted from the literature, for
attitude determination using attitude sensors (sun sensor and horizon
sensors) and rate-integrating gyros. The two algorithms are: the direc-
tion cosine matrix (DCM) based steady-state Kalman Filter, and the
classic quaternion-based Extended Kalman Filter. To make the analy-
sis realistic, as well as to improve the attitude determination accuracies,
detailed sensor measurement models are developed. Modifications in the
attitude determination algorithms for estimation of additional states to
account for sensor biases and misalignments are presented. A modular
six degree-of-freedom closed-loop simulation, developed in house, is used
to observe and compare the performances of the attitude determination
algorithms.
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1 Introduction

Maintaining a desired orientation in space, with a specified level of accuracy, is
a mission requirement for every spacecraft. Attitude determination along with
attitude control is responsible for satisfying this requirement. Based on the func-
tion of the spacecraft the level of pointing accuracy required varies. During the
past four decades, extensive research has been done in the area of spacecraft
attitude determination. Various algorithms exist in the literature, with varied
level of complexity and applicability [1]. The choice of algorithm for a mission
depends on pointing accuracy requirements, the type of sensors available and
capability of the on-board computer.

Here, we consider analysis of the attitude determination subsystem for Low
Earth Orbit satellites using sun sensors, horizon sensors and fiber optic gyros
to achieve three-axis pointing accuracy requirement of 0.1 deg. To make the
analysis of these algorithms realistic, as well as to improve the accuracy of the
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attitude determination algorithms, detailed models of measurements with sun
sensor, horizon sensor and gyros are utilized. Instead of treating measurement
errors as white noise, an effort is made to develop realistic systemic errors and
noise models. For instance, horizon sensor modeling includes errors arising from
Earth’s oblateness, atmospheric radiance and sensor electronics.

Further, a modular six degree-of-freedom closed-loop MATLAB-Simulink R©

simulation is developed, which comprises true attitude kinematics and dynam-
ics, sensor models, orbit propagation, attitude determination and control. This
simulation setup is used to compare the performances of the attitude determi-
nation algorithms developed. The modular design of simulation allows a straight
forward approach to include or exclude sensors and to test different attitude
estimators and controllers.

Two attitude estimation algorithms are considered, which mainly vary with
respect to their attitude representations and computational requirements. First,
a steady-state Kalman Filter, adopted from [2], is analyzed and simulated to
obtain estimates of satellite attitude and gyro drift rate bias. Direction cosine
matrix and Euler angles are used to represent the attitude, for ease of physical
interpretation. The steady-state formulation does away with expensive matrix
covariance computations, but if dictated by mission requirements the formula-
tion can be easily modified to its recursive gain counterpart. This is followed
up with the analysis and simulation of the classic quaternion-based Extended
Kalman Filter of Lefferts, Markley and Shuster [3] for the on-board sensor suite
considered . The classic EKF is modified to estimate exponentially-correlated
radiance error in horizon sensor measurements. Lastly, the effect of sensor mis-
alignments on attitude estimation performance is assessed through simulations,
and Pittelkau’s remedy to mitigate the performance degradation due to the mis-
alignments, i.e., alignment Kalman filter [4], is presented.

Reference Frames

We consider three frames of reference. The Earth-centered Inertial (ECI) frame is
an inertial frame with origin at the Earth’s center. The coordinate axes xI and zI
point towards the direction of the vernal equinox and the north pole, respectively,
and yI completes the right-handed coordinate system. The Local Vertical Local
Horizontal (LVLH) frame describes the current orbit frame of the satellite, and
has its origin at the center of mass of the satellite. The coordinate axis zL points
towards the center of the earth (direction of the nadir), yL points opposite to
the satellite’s angular momentum, and xL completes the right-handed triad. The
instantaneous LVLH frame is used as reference to measure the local attitude of
the satellite. Body frame is an orthogonal coordinate system fixed to the satellite
body with origin at its center of mass.

The symbols x̂ and x× denote the estimate and the cross-product matrix
associated with x, respectively.



S/C Attitude Determination with Sun Sensors, Horizon Sensors and Gyros 415

2 Sensor Models

This section briefly describes the sensor models for the sensor suite considered.
As these sensors have been used in various space missions, sufficient technical
research exists regarding their characteristics and performance [5,6]. However,
in spite of the literature, usually additional analysis is required to arrive at
customized and realistic model of these sensors (especially so for the attitude
sensors) based on the sensor configuration of a particular spacecraft.

2.1 Rate-Integrating Gyros

Gyros are inertial sensors which measure change in attitude as opposed to the
absolute attitude. Gyros are of various types, such as, mechanical gyros, ring
laser gyros, fiber optic gyros, and can be classified based on their accuracy,
mechanisms and form of output. Rate gyros measure angular rate directly, while
the rate-integrating gyros (RIG) measure integrated angular rate [1]. In our atti-
tude determination study, we consider application of fiber optic rate-integrating
gyros, which provide incremental angle vector.

The measurement equation which, essentially, corresponds to the inertial rate
of the body expressed in body frame ωB

BI corrupted by various noise sources is
given as,

ωm = Amalgnω
B
BI + b+ ηg (1)

ḃ = ηu (2)

where, the subscript ‘m’ denotes the measured rate, b denotes the gyro drift-rate
bias, Amalgn denotes the misalignment and scale factor matrix matrix, and ηg

(random-walk rate vector) and ηu (drift acceleration) are two continuous time
white noise vectors. These equations when converted to discrete time yield [7],

Δϕ = Δθ + Tgyrobk + βk + νq,k (3)

where ωin = Amalgnω
B
BI (4)

Δθ =

∫ (k+1)Tgyro

kTgyro

ωin(t)dt (5)

The term Δθ expresses the true change in the spacecraft attitude, whereas the
Δϕ denotes the rate-integrating gyro output during one gyro sample period
(Tgyro). The zero-mean noise due to ηg(t) and ηu(t) is expressed by βk. The
variance of βk is a 3 × 3 diagonal matrix for which the diagonal element is
σ2
β = σ2

vTgyro+σ2
uT

3
gyro/3, where σ

2
v (rad2/s) and σ2

u (rad2/s3) are power spectral
densities of the scalar elements of ηg and ηu, respectively. The gyro drift-rate
bias evolves in discrete-time as,

bk = bk−1 +αk (6)

where, αk is a zero-mean discrete random-rate noise vector, with variance of each
element being σ2

α = σ2
uTgyro [2]. The term νq,k, a discrete-time white noise with
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variance σ2
e , represents the quantization error of the gyro. Lastly, scale factor

and misalignment errors occur due to mounting errors of the system, or due to
intrinsic sensor errors. We use the notation of Pittelkau [4] to define the scale
factor and misalignment matrix, where λj denotes the scale factor error, while
δij denotes the axis misalignment,

Amalign =

⎡
⎣(1 + λx) −δyz δzy

δxz (1 + λy) −δzx
−δxy δyx (1 + λz)

⎤
⎦ (7)

For simulations presented later, we have used parameters of a fiber optic gyro
(Table 1). Initial value of gyro drift rate bias is taken as 0.05 deg/hr.

Table 1. Gyro Parameters

Parameter Value Units

σv 7.27 μrad/s1/2

σu 3× 10−4 μrad/s3/2

σe 15 μrad

2.2 Sun Sensors

Sun sensors measure the direction of the sun relative to the spacecraft, and pro-
vide an attitude reference. These sensors measure the impinging solar energy
on their surface and determine the angle made by the sun with respect to the
sensor, which in turn is used to arrive at the sun vector. The sun vector, along
with a sun model, can also be used to determine the yaw attitude of the space-
craft. However, as the sun sensors measure the radiation from the sun they can
function only in the sun-lit phase of the orbit.

The model of sun sensor being used for a particular satellite depends on the
type of the sensor, its positioning and error characteristics. For our analysis, we
assume six solar cells (represented by blue circles in Fig. 1) placed on each side
of the satellite. This configuration and the sun vector construction algorithm is
adapted from that of the Pratham student-satellite [8], and has the advantage

Fig. 1. Sun Sensor Configuration
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that in the sun-lit phase the sun is usually visible to three of the sun sensors.
Each of the individual cell measures, with some noise, the cosine of the angle
made between the Sun vector (s) and the solar cell vector (ci). The measurement
model for one individual solar cell is given by

ui = ciB · sB + νc, ∀i = 1 : 6 (8)

The noise in the measurement arises due to the sensor mechanism, electron-
ics, and quantization, the strength of which depends on the type of the sensor.
Lastly, each of the cell has a limited field-of-view, hence the measurement model
equation (Eq. 8) is valid only within the FOV of each sensor. The sensor param-
eters for simulation have been taken corresponding to that of a single-axis solar
cell [6], as listed in Table 2.

Table 2. Sun Sensor Parameters

Parameter Value Units Remark

σc 0.05 deg Standard Deviation of νc
FOV 80 deg Field-of-View (conical)

Tc 1 s Sample Time

These measurements are then used to determine the Sun vector through el-
ementary linear transformation [8], which is then used in the attitude determi-
nation formulations. The measured Sun vector can be represented as,

sm,B = sB + s̃m,B (9)

where, s̃m,B is a random zero-mean Gaussian variable, with noise covariance,
Rc = σ2

c I3×3.

2.3 Horizon Sensors

Horizon sensors, essentially, measure the direction of Earth (nadir) by observing
the shape of the Earth’s limb as seen from the spacecraft and comparing it with
a modeled shape, to arrive at the spacecraft attitude. These can be classified
into two types - scanning and static - which differ in their mechanism to sense
the Earth’s horizon, error characteristics and field-of-view. The horizon sensors
measure roll and pitch angles. Thus, in the sun-lit phase, along with the sun
sensor the horizon sensor provide complete attitude information. We consider
scanning-type horizon sensors, and follow the work presented in [9,10,11] for
their analysis and error characteristics.
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Scanning type horizon sensors consist of moving optical scanners mounted on
the spacecraft, which scan and detect the Earth’s limb. The sensor electronics
converts the radiation information to scan width of Earth’s limb. This mea-
surements of scan width are then processed to obtain measurements of roll and
pitch. The scanning type sensors though relatively less accurate have a much
larger field-of-view than the static horizon sensors.

Mathematical Model. The horizon sensor configuration considered involves
two optical scanners mounted on opposite sides of the spacecraft in the pitch-
yaw plane. These two scanners measure four semi-scan angles - (θω0R,θω1R,θω0L,
and θω1L) - corresponding to the space-to-earth and earth-to-space transition
of left and right scanners. For a detailed description of the sensor configuration
the reader is directed to [11]. In order to generate the scan width measurements
based on the semi-scan angles due to an oblate earth model, we use the equations
specified in [11] and [12], along with the model of oblate earth by Liu [5], with
appropriate modifications to suit our coordinate convention. Once the four semi-
scan angles are obtained, the roll and pitch angles are obtained as follows [11],

φ =
1

4
K (θω0R + θω1R − θω0L − θω1L) (10)

θ =
1

4
cos ξ (θω0R − θω1R + θω0L − θω1L) (11)

where, K and ξ are known parameters which depend on spacecraft’s altitude
and sensor hardware parameters.

The horizon sensor measurements are affected both by the noises in elec-
tronics and the errors arising from the limitation in accurately modeling the
Earth’s limb. The major sources of horizon sensor errors are Earth’s oblate-
ness, variation of Earth’s radiation, electronic noise, quantization error, and
sensor bias and misalignment [9]. Errors due to Earth’s oblateness are systemic
and highly predictable. Thus, by using an appropriate model of Earth’s shape
these errors can be largely eliminated. We follow the approach described in
[11] to account for errors due to oblateness. Earth’s radiation suffers from sea-
sonal and latitudinal variations, which are partly systemic and partly stochastic
[13]. The systemic variations can be largely corrected based on modeling of sen-
sor optics and Earth’s radiation. The available horizon sensor hardware largely
compensates for these systemic variations internally; however, stochastic errors
of the order of 0.06 deg still persist post corrections [9]. Sensor bias, misalign-
ment and electronic noise are inherent sensor errors that arise due to the sensor
hardware.

For simulation, the roll and pitch angles obtained from Eq. (10-11) are cor-
rupted with bias, white noise (to simulate the electronic noise) and noise due to
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radiance. Radiance models exist in literature based on analytical modeling of the
Earth’s atmosphere and data observed from various space missions [10,14]. In
order to obtain the radiance errors in roll and pitch, these radiance models are
then used along with the model of sensor optics, signal processing and electronics.
However, this procedure involves detailed knowledge of the sensor hardware.
Hence, we approximate the noise due to radiance as an exponentially correlated
noise in both the roll and pitch axes [15]. This model, though approximate,
models the radiance errors as varying with time with a specified steady-state
RMS value. The discrete time equation for horizon sensor noise due to radiance
variation (wφ and wθ) is thus given as,

wφ,k+1 = awφ,k + l
√
1− a2νk (12a)

wθ,k+1 = awθ,k + l
√
1− a2νk (12b)

where l denotes the steady-state RMS value of radiance variation error and is
taken as 0.06 deg [9], νk is the discrete time white noise with variance equal
to unity, and the parameter a is defined in terms of the horizon sensor sample
period (Ths) and the correlation time of exponentially auto-correlated noise (τw),

a = exp

[−Ths

τw

]
(13)

To account for the cyclic variation with latitude occuring every orbit, the
parameter τw is selected as one-eighth of the orbital period. Sensor noise due
to radiance variation for a sample simulation run is illustrated in Fig. 2. Errors
due to sensor bias and static misalignment errors are added as constant bias (bφ
and bθ) of magnitude 0.02 deg in each axis. Other random errors arising from the
sensor hardware are modeled as discrete white (νφ and νθ) noise with its 3σ value
as 0.042 deg. The measurements are sampled every 1 s. The values of parameters
describing sensor bias and random errors are chosen based on brochure of Sodern
Horizon Sensors [16].

Fig. 2. Horizon sensor noise due to Radiance Variation
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Horizon sensor measurement equations containing error from all the sources
considered above can be written as,

φm,hs =

[
1

4
K (θω0R + θω1R − θω0L − θω1L)

]
+ wφ + bφ + νφ (14)

θm,hs =

[
1

4
cos ξ (θω0R − θω1R + θω0L − θω1L)

]
+ wθ + bθ + νθ (15)

Oblateness Corrections. The horizon sensor errors described above contain
both systemic as well as stochastic terms. To improve the accuracy of mea-
surements, the systemic errors are predicted through analytical models, and
subtracted from the measurements to mitigate the systemic errors. Earth’s
oblateness is one of the major systemic error which can be largely eliminated
by proper modeling. Following the formulation of [11] oblateness corrections are
calculated.

Fig. 3. Horizon Sensor : Oblateness Corrections

These oblateness corrections are added to the sensor measurements to remove
the noise due to the Earth’s oblateness. The variation of oblateness correction for
orbit considered in our simulation is illustrated in Fig. 3. Corrections for other
systemic errors, such as bias and residual noise due to radiance variation, can be
done through on-board estimation techniques [17] or through post-processing of
measurement residuals [9].

Horizon Sensor Parameters. A horizon sensor with clockwise scanning pat-
tern is considered with realistic sensor parameters based on [9,16]. Table 3 lists
the sensor parameters used during the simulation of the scanning type horizon
sensors. Note that the sensor field-of-view is limited.
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Table 3. Scanning Horizon Sensor Parameters

Parameter Value Units Remark

ξ 20 deg Canting Angle

δc 45 deg Semi-cone Angle

FOV 25 deg Field-of-View

l 0.06 deg Radiance noise RMS (each axis)

bhs 0.02 deg Bias (each axis)

3σhs 0.042 deg White noise (each axis)

Ths 1 s Sample Time

3 Development of Simulation

In order to validate and compare the attitude determination formulations, a
six degree-of-freedom closed-loop simulation setup (Fig. 4), similar to that of
Pratham student-satellite [8], is developed using MATLAB�-Simulink. A con-
troller is included to observe the pointing accuracy obtained by the attitude
determination and control sub-system.

Fig. 4. Overview of Simulation

The design of the simulation is kept modular, so that it can be utilized to
test different sets of sensors and attitude determination algorithms. The overall
simulation sample rate is selected as 20 Hz, as it is sufficient to capture the
system dynamics in simulation. Further, various sub-systems are simulated at
different sample rates in order to account for their different sample times (see
Table 4).

Standard equations for various simulation blocks as shown in Fig. 4 have been
used [5]. Environmental torques due to gravity-gradient, solar radiation pressure
and aerodynamic disturbance are considered. A sun-synchronous circular orbit
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Table 4. Simulation rates of different sub-systems

Sub-system Simulation Rate

True Attitude Dynamics 20 Hz

True Orbit Propagation 20 Hz

Sensors (Gyro) 10 Hz
Sensors (SS & HS) 1 Hz

On-board Models 10 Hz

Attitude Estimator 10 Hz

Controller 10 Hz

with altitude of 720 km and 98.28 deg inclination is considered, which is similar
to that of the Oceansat-2 satellite [18]. Earth’s gravity model which incorporates
terms due to the Earth’s oblateness upto J2 zonal harmonics is used for orbit
propagation [6]. The complete simulation setup has been validated with the
help of conservation of angular momentum check in absence of external torques.
Other models being standard, we here describe briefly the controller and rate
estimation filter employed in our simulation.

3.1 Controller

A controller is required for the purpose of simulation, in order to observe the
closed-loop performance of the attitude estimator. Here, we use a basic PID con-
troller for our simulations. The gains of the PID controller are selected to obtain
the desired damping ratio (ζ) of 0.707, and natural frequency (ωn) correspond-
ing to a time period of half minute, i.e., (0.5)(60)s. The parameter δ influences
the integral gain, and helps to eliminate the steady-state error of the controller.
The values of the normalized controller gains, for the listed specifications, are
listed in Table 6.

Table 5. Controller Parameters

δ 0.7

ζ 0.707

ωn
2π

(0.5)(60)
= 0.2094

Table 6. Normalized Controller Gains

ad (2 + δ)ζωn 0.3998

ap ω2
n(1 + 2δζ2) 0.0746

ai δζω3
n 0.0045

Based on the values of controller gains the control torque vector is determined
using the attitude and rate error, and satellite’s moment of inertia, I.

gcon = I

(
apθerr + ai

∫
θerrdt+ adωerr

)
(16)

θerr = θcom − θ̂ (17)

ωerr = ωcom − ω̂ (18)

Lastly, for all the simulation results presented the commanded attitude and
angular rates align the spacecraft body frame with the LVLH frame.
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3.2 Rate Filter

Estimate of inertial angular velocity of the spacecraft is required for control of
the satellite. However, in the attitude estimation algorithms presented next, we
only estimate the gyro drift rate bias and satellite attitude. Using the estimates
of gyro drift rate bias the gyro measurement can be corrected for bias error;
however, the measurements still include the random noise. The rate integrating
gyros along with the above Kalman filter provide incremental attitude vector.
Since the gyros work at a very high rate the incremental angles are related to ω
as follows

Δθ̂k = Δϕk − Tgyrob̂k (19)

ω̂kf ≈ Δθ̂k

Tgyro
(20)

In order to remove the high frequency noise associated with above calculation
of ω, a discrete low pass filter with bandwidth (ωc) is used,

ω̂k,lpf =
Tgyroωc

Tgyroωc + 2
ω̂k,kf +

Tgyroωc

Tgyroωc + 2
ω̂k−1,kf − Tgyroωc − 2

Tgyroωc + 2
ω̂k−1,lpf (21)

This filtered estimate is used to arrive at the control torque, which results in
a relatively smoother control action which is beneficial for actuator hardware. In
our simulation the filter bandwidth is chosen as ten times that of the controller
bandwidth.

4 Steady-State Kalman Filter

A steady-state three-axis Kalman Filter [2,7] is first presented for attitude de-
termination. The filter provides the estimate of the spacecraft attitude and the
gyro drift-rate bias. The gyro measurements, which are available at a very high
rate, are used as the process model for the filter. The attitude sensors are used
for correction of the attitude estimate and gyro drift-rate bias, and represent the
measurement model. The prediction step using the rate integrating gyro mea-
surements takes place at a higher rate, while the correction step is used only
after a predetermined update interval (Tup).

Propagation equations, as they occur at a different rate, are described by us-
ing the subscript k. At the n-th gyro interval correction step is applied using
the attitude sensors. In the following analysis, the indices (−) and (+) indicate
the estimates prior to and post measurement updates from attitude sensors,
respectively. The choice of update interval depends on the sensor error charac-
teristics, sensor sampling rate and required pointing accuracy, and is discussed
subsequently.
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4.1 Prediction

Based on the gyro measurement model (Eq. 3) the propagation equations for
the filter, which utilize the gyro measurements Δϕ, are given as:

Δθ̂k = Δϕk − Tgyrob̂k (22)

b̂k = b̂k−1 (23)

In order to obtain incremental inertial attitude from the attitude estimates,
following propagation equations for the direction cosine matrix are used [19],

Ĉk,I = Ĉk,k−1Ĉk−1,I (24)

Ĉk,k−1 = I3×3 −Δ[θ̂
×
] +

Δθ̂kΔθ̂T
k − ‖Δθ̂k‖2I3×3

2
(25)

4.2 Steady-State Kalman Gains

To obtain the correction equations, we first need to determine the Kalman Filter
gains. The gains depend on innovation covariance, error covariance of the process
and measurement noise. Following the steady-state analysis of [2], the Kalman
Gains for each axis are represented using three non-dimensional parameters -
dependent on the sensor errors σu, σv, σn and the correction update interval Tup

- characterizing the readout noise (Se =
σe

σn
), random-walk noise (Su =

T 3/2
up σu

σn
),

and drift angle Sv =
T 1/2
up σv

σn
. Based on the steady-state covariance analysis, the

steady-state Kalman Filter gains are,

Khs = (ζσn)
−2

⎡
⎣Pθθ(−)
Pθb(−)
Pθϕ(−)

⎤
⎦ =

⎡
⎣ 1− ζ−2

(ζTup)
−1Su

(Se/ζ)
2

⎤
⎦ (26)

where,

γ = (1 + S2
e +

1

4
S2
v +

1

48
S2
u)

1
2 (27)

ζ = γ +
1

4
Su +

1

2
(2γSu + S2

v +
1

3
S2
u)

1
2 (28)

4.3 Correction

In order to utilize the attitude sensors (sun and horizon sensors) the measure-
ments of roll, pitch, and yaw, are transformed and represented as,

Ĉn.att,I =
(
I3×3 − [νatt

×]
)
Ĉn,I (29)

wherein the subscript ‘att’ refers to both the horizon and sun sensors and νatt

quantifies the total noise in the attitude measurements. In order to obtain a
three-axis equivalent of the small angle error residual, we observe that
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θatt − θ̂0 (−) ⇔ Ĉn.att,IĈI,n.gyro (30a)

≈ I3×3 − [νatt − ν̂n.gyro]
× (30b)

= I3×3 − [νatt/gyro
×] (30c)

Hence, νatt/gyro characterizes the required difference, and can be obtained in

terms of the available matrices Ĉn.att,I (from measurement) and ĈI,n.gyro (from
estimator),

ν×
att/gyro = I3×3 − Ĉn.att,IĈI,n.gyro (31)

The correction equation in terms of νatt/gyro for attitude and bias are given
as,

νatt/update =

⎡
⎣(1− ζ−2

x )νatt/gyro,x
(1− ζ−2

y )νatt/gyro,y
(1− ζ−2

z )νatt/gyro,z

⎤
⎦ (32)

Ĉ0.gyro,I(+) = (I3×3 − [νatt/update]
×)Ĉn.gyro,I (33)

b̂0(+) = b̂0(−)−
⎡
⎣Su,x(ζxTup)

−1νatt/gyro,x
Su,y(ζyTup)

−1νatt/gyro,y
Su,z(ζzTup)

−1νatt/gyro,z

⎤
⎦ (34)

The filter thus provides estimates of inertial attitude which can be transformed
to other frames as per the requirement of the attitude control sub-system. The
estimates of bias are used to correct the gyro measurement. Note that since the
KF gains in the three axes are independent of each other, asynchronous sun and
horizon sensor measurements can also be used by the steady-state Kalman filter.
Next, we discuss the initialization of the filter, selection of the update parameter
and the filter’s simulated performance.

4.4 Initialization

To reduce the filter transients, the filter should be initialized with the best at-
titude estimate available. This a priori estimate can be obtained from the Sun
and horizon sensor measurements. These measurements are used to initialize the
attitude states of the filter. The drift bias states of the filter should be initial-
ized with the drift bias value specified in the specification sheet or as obtained
through ground testing of the gyro.

4.5 Update Interval

In the above formulation, all but one variables influencing Kalman gains are de-
pendent on the sensor characteristic. The parameter Tup also influences Kalman
Gains, and can be chosen by the designer. The achievable values of Tup will be
limited due to the sample time of attitude sensors (Ths and Tc), and compu-
tational capability of the on-board computer. Based on steady-state covariance
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analysis, variation of achievable estimate covariance with respect to Tup is ob-
tained, as shown in Figs. 5-6. Both pre- and post-update covariance estimates
at steady-state and corresponding standard deviation of attitude sensor errors
are shown. Using the plots, the parameter Tup is chosen as 2s, since it provides
estimation accuracy of ∼ 0.01 deg at steady-state.

Fig. 5. Tup anlaysis : Attitude Fig. 6. Tup anlaysis : Gyro Bias

4.6 Estimator Performance

The results of the three-axes attitude determination algorithm developed above
are now presented. The filter is propagated at a rate of 10 Hz and the attitude
sensor measurement corrections are effected every 2s. The rate low-pass filter
with cut-off frequency ωc = 0.32 Hz is used. Horizon sensor measurements are
corrected for oblateness prior to being used in the filter and no gyro misalign-
ments are considered. Initial estimation errors, tabulated in Table 7, have been
included as per section 4.4.

Table 7. Initial Estimation Errors

Attitude Estimation Error(deg)

φ θ ψ

0.1 0.1 0.1

Drift Bias Estimation Error (deg/hr)

bx by bz
0.03 0.03 0.03

Test Case: As a theoretical test case, we observe the performance of the filter
in presence of white noise in attitude sensors, where the model in the Kalman
filter completely matches with the measurements. The estimation performance
is within the predicted bounds (Figs. 7-8); however, long duration transients
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(up to 20% of the orbit period) persist before the steady-state is arrived at. Due
to the coupling between the roll and yaw axis, and propagation due to the gyro
measurements, performance in the eclipse region is also satisfactory.

Fig. 7. Steady-state KF with white
measurement noise : Attitude

Fig. 8. Steady-state KF with white
measurement noise : Gyro Bias

Performance with Realistic Measurement Errors: Next, using the estima-
tor parameters specified earlier, we obtain the performance of the steady-state
KF in presence of all sensor errors except gyro misalignments. As observed in
Figs. 9-10, the estimation performance has degraded considerably as compared
to the theoretical test case. However, this is expected as the bias and radiance
variations in horizon sensor measurements are not being compensated for in the
estimation algorithm.

Fig. 9. Steady-state KF : Attitude Fig. 10. Steady-state KF : Gyro bias
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5 Extended Kalman Filter

This section briefly describes the quaternion-based extended Kalman filter (EKF)
of Lefferts, Markley and Shuster [3] for satellite attitude determination. As with
the steady-state KF, this filter too estimates the satellite attitude and gyro drift
rate bias.

5.1 Formulation

The quaternion-based EKF estimates the attitude quaternion (qBI , 4 elements)
and gyro bias (b, 3 elements) resulting in seven states. However, the covariance
propagation is achieved through error state to avoid the quaternion singularity.
The error states for quaternion (δq = q⊗ q̂−1) and bias (Δb = b− b̂) result in
a six-element state vector: Δx = [δq,Δb]′. Process model for error state is then
given as Δẋ = FΔx+Gw, where,

F =

[−[ω×] −1/2I3×3

03×3 03×3

]
(35)

G =

[−1/2I3×3 03×3

03×3 I3×3

]
(36)

w =
[
ηv ηu

]′
(37)

The development of the quaternion EKF in [3] provides freedom while using
the attitude sensors, in the sense that the measurements can be used either as
scalar angles or reference vectors. Through simulation it was observed that use
of either approaches produces similar performance; hence, here we present only
one of them. Sensor models presented earlier represent the measurement models.
Here, we list the measurement noise covariance (R) and sensitivity (H) matrices
corresponding to the two attitude sensors,

Sun Sensor

Rk = E[v′
kvk] = σ2

c (I3×3) (38)

Hk =

⎡
⎣2(r1 × ẑk)

′ 01×3

2(r2 × ẑk)
′ 01×3

2(r3 × ẑk)
′ 01×3

⎤
⎦ (39)

where, ri = [δi1, δi2, δi3]
′, the symbol δij representing the Kronecker delta; and

ẑk(= ŝB = [C(q̂)]sI) corresponds to the modeled sun vector in the body frame.
The sensitivity matrix Hk is derived through application of the corresponding
general expressions provided in (Eq. 151-157) of [3].

Horizon Sensor

Rk =

[
σ2
θ 0
0 σ2

φ

]
(40)

Hk =

[
2(r1 × ẑk)

′ 01×3

2(r2 × ẑk)
′ 01×3

]
(41)
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where ẑk corresponds to the modeled value of the nadir vector in the body frame;
and horizon sensor measurement is represented as [−θm, φm]′ to correspond to
the definition of the nadir vector. As expected these measurements depend only
on the attitude and not on the gyro bias. For further details of this filter and
the standard Kalman Filter equations the reader is directed to reference [3].

5.2 Estimator Performance

We present the performance of the quaternion-based EKF using similar measure-
ment models and parameters as to that for the steady-state KF. As the mea-
surements from different sensors need not be synchronous, each measurement
update is applied independently, using Murell’s approach [20]. While calculating
filter gains we need to specify P0. When the sun and horizon sensors are used
to provide the initial estimates, value of P0 corresponding to the accuracy of
these sensors is used. The initial drift bias state covariances can be obtained
from ground testing of the gyro.

Test Case: The Kalman filter is optimal in presence of measurement errors
being white noise. Hence, similar to the case of steady-state KF, as a theoretical
test case, we first observe the performance of the EKF in presence of only white
noise in attitude sensors. The absence of yaw (sun sensor) measurements, during
the eclipse phase, results in increased state covariance in yaw estimates. Due to
the exact correspondence between the measurement noise and its model being
white, the assumptions of EKF are satisfied, resulting in the expected estimation
performance, shown in Figs. 11-12.

Fig. 11. EKF (white noise) : Attitude Fig. 12. EKF : Gyro bias

Performance with Realistic Measurement Errors: Having verified the fil-
ter through a simplified measurement model, we observe its performance in pres-
ence of the complete measurement models except for misalignments. Similar to
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the case of steady-state KF, the performance of the filter deteriorates. The ob-
served estimation accuracy in presence of colored noise and bias in measurement
is given as seen in Figs. 13-14.

Fig. 13. EKF : Attitude Fig. 14. EKF : Gyro bias

6 Estimation of Additional States

The horizon sensor measurements used in both the steady-state KF and quater-
nion-based EKF described earlier contain errors such as biases and radiance
variations, which are not just white noise. These filters, however, work under
the assumption that the errors entering the measurement model are white - re-
sulting therefore in sub-optimal estimation performance. Better estimates of the
attitude requires augmentation of the state vector, albeit without any additional
measurements. This may result in the system becoming unobservable, degrading
the attitude performance. Attempts to estimate biases of attitude sensors [17]
and the noise due to radiance variation [21] have been reported earlier in the
literature, and mixed results have been obtained. Hence, the augmented state
vector filter should be implemented only after verifying the performance of the
estimator through analysis and simulation. We proceed with the state vector
augmentation for the quaternion-based EKF instead of the steady- state KF,
due to its relatively straight-forward formulation and ease of implementation.
A similar approach of state vector augmentation for estimation of misalignment
and scale factor errors has been developed by Pittelkau.

6.1 Horizon Sensor Error Estimation

The state vector is augmented with the noise terms corresponding to the horizon
sensor radiance error (wφ, wθ) : x(t) = [qBI ,Δbg, wφ, wθ]

′. The discrete-time
model for radiance errors in roll and pitch is given by Eq. (12a-12b). This can
be represented as a differential equation,
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ẇφ(t) = −βwφ + ηφ,w (42)

ẇθ(t) = −βwθ + ηθ,w (43)

where the parameter β and the PSD of η are obtained by comparing the con-
tinuous model with the discrete-time equation: β = 1

τw
, PSD of ηφ,wand ηθ,w =

l2(1−a2)
Ths

. The evolution of these error parameters is independent of the attitude
and gyro bias, and the same is reflected in the modified process model,

d

dt

⎡
⎢⎢⎣
qBI

Δbg
wφ

wθ

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
−[ω×] −1/2I3×3 03×1 03×1

03×3 03×3 03×1 03×1

01×3 01×3 −β 0
01×3 01×3 0 −β

⎤
⎥⎥⎦

⎡
⎢⎢⎣
qBI

Δbg
wφ

wθ

⎤
⎥⎥⎦+

⎡
⎢⎢⎣
−1/2ηv

ηu

ηφ,w
ηθ,w

⎤
⎥⎥⎦ (44)

Propagation equation for the quaternion and bias is the same as for the filter
described earlier. The propagation for the radiance variation is done using the
discrete counterpart of the process model described above. Sun sensor measure-
ment equations and corresponding noise covariance (Eq. 38) remains the same.
Horizon sensor measurements are corrected for noise due to oblateness. In the
current formulation, an estimate of the horizon sensor noise due to radiance vari-
ation is developed so as to subtract it from the horizon sensor measurements.
The corresponding sensitivity matrix is given as,

Hk =

[
2(r1 × ẑk)

′ 01×3 0 −1
2(r2 × ẑk)

′ 01×3 1 0

]
(45)

Radiance Noise Estimation. The initial estimate of the attitude and gyro
bias are specified to be the same as before, whereas since no estimate of residual
error due to radiance variation is available its initial value is taken as zero. The
steady-state RMS value of radiance noise is used to define P0, the initial state
covariance. As seen in Figs. 15-16, the estimation error of the radiance noise is
within the covariance bounds. However, the predicted bounds for the most part
of the orbit are the same as l, the steady-state RMS of the radiance noise.

Although the radiance noise is estimated to certain accuracy, the improve-
ments in attitude estimation are not significant even with the application of this
modified filter (Fig. 6.1). Similar results were reported in [21] wherein with real
attitude data a similar augmented filter was able to estimate the radiance noise
but improved the attitude estimation performance only marginally.

Bias Estimation. Apart from radiance noise, the horizon sensor measurements
also have a constant bias which may arise due to sensor electronics or static
misalignment. Since our filter currently does not estimate the bias, the attitude
estimate might improve with estimation of this bias, even though the magnitude
of this bias is relatively smaller than the radiance noise. Hence, we try to estimate
the horizon sensor bias using the augmented filter, instead of the radiance noise.
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Fig. 15. Horizon Sensor Radiance
Noise : Estimation Error

Fig. 16. Horizon Sensor Radiance
Noise : True v/s Estimate

Fig. 17. Effect of Radiance Estimation : Attitude

The formulation to estimate radiance noise can be adapted to estimate horizon
sensor bias, by choosing the parameter β in the process model of the filter as zero.
The filter is initialized similar to the case of radiance estimation. The horizon
sensor bias estimation performance is portrayed in Figs. 18-19.

Fig. 18. Horizon Sensor Bias :
Estimation Error

Fig. 19. Horizon Sensor Bias : True v/s
Estimate
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Improvements in attitude estimation accuracy are obtained due to estimation
of the horizon sensor bias. As seen in Fig. 20, the attitude estimation accuracy
is generally within the predicted covariance, and yaw estimates do not degrade
much during eclipse.

Fig. 20. Effect of Bias Estimation : Attitude

6.2 Misaligned Sensors

In the simulation discussed till now, no sensor misalignments were considered.
Presence of misalignment in either the gyro or the attitude sensors may result
in incorrect estimates of both the attitude and gyro drift rate bias. Both batch
and sequential misalignment estimation method exist in the literature. Here, we
consider application of the misalignment estimation Kalman filter developed by
Pittelkau [4], which is called the Alignment Kalman Filter (AKF). This filter is
suited for on-board real time estimation of sensor misalignments and scale factor
errors.

The AKF, too, is an augmentation of the quaternion-based EKF. The aug-
mented state vector is given as x = [δqv,Δbg, δg,bHS ]

′, where, the parameter
δg (= [λx, δyz, δzy, δxz, λy, δzx, δxy, δyx, λz ]

′) denotes the gyro misalignments and
scale factor terms, and bHS (= [bφ, bθ]

′) denotes the two components of hori-
zon sensor bias . The alignment Kalman filter, thus, attempts to estimate ad-
ditional states - misalignment of sensors - along with the attitude and sensor
biases. However, the number of measurements used for correction of the state
vector still remain the same. Naturally, this causes concerns of observability of
the state vector and potential degradation of the estimate. In order to make
the system observable, and prevent ill effects of state augmentation, in-flight
attitude maneuvers are performed. These maneuvers are of higher frequency
then the spacecraft dynamics, and for on-board implementation require capa-
ble actuators. The system is made observable by subjecting the spacecraft to
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non-harmonic sinusoidal angular rates. Hence, the rate command for the attitude
controller is modified to be as,

ωB
BO = (0.05 deg / sec)

⎡
⎣sin[2π(0.0100)]sin[2π(0.0085)]
sin[2π(0.0080)]

⎤
⎦ (46)

The process model for the above state vector is given as,

d

dt

⎡
⎢⎢⎣
qBI

Δbg
δg
bHS

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
−[ω×] −1/2I3×3 1/2Ωg 03×2

03×3 03×3 03×9 03×2

09×3 09×3 09×9 09×2

02×3 02×3 02×9 02×2

⎤
⎥⎥⎦

⎡
⎢⎢⎣
qBI

Δbg
δg
bHS

⎤
⎥⎥⎦+

⎡
⎢⎢⎣
−1/2(I3×3 +M)ηv

ηu

ηg

ηb

⎤
⎥⎥⎦
(47)

where, M denotes the gyro misalignment and scale factor matrix,

M =

⎡
⎣ λx −δyz δzy

δxz λy −δzx
−δxy δyx λz

⎤
⎦ (48)

and Ωg is defined in terms of the inertial rates,

Ωg =

⎡
⎣ωx −ωy ωz 0 0 0 0 0 0
0 0 0 ωx ωy −ωz 0 0 0
0 0 0 0 0 0 −ωx ωy ωz

⎤
⎦ (49)

The propagation equations for δg and bHS is the same as that of the Δbg due
to analogous continuous time equations. The propagation of the full quaternion
is also done similar to that of the 6-state EKF, except that rate-integrating gyro
measurements are compensated not just for drift rate bias but also misalignments
and scale factors using available estimates. The measurement sensitivity matrix
is expanded to account for the additional states; for instance, for horizon sensor
the sensitivity matrix is given as,

Hk =

[
2(r1 × ẑk)

′ 01×3 01×9 0 −1
2(r2 × ẑk)

′ 01×3 01×9 1 0

]
(50)

When the spacecraft is subjected to sinusoidal rate maneuvers, as specified
in Eq. 46, the misalignment states are expected to become observable, resulting
in improvement in attitude estimation performance. Further, the attitude and
gyro drift rate bias performance is within the Kalman filter covariance bounds
(Figs. 21-22).

The estimation of scale factors and misalignment in all the three axes is pos-
sible. Within two orbits the scale factor and miaslignment estimation errors
achieve steady-state (Figs. 23-24), after which the maneuvers are terminated
and normal spacecraft operation is resumed.



S/C Attitude Determination with Sun Sensors, Horizon Sensors and Gyros 435

Fig. 21. AKF : Attitude Fig. 22. AKF : Gyro Bias

Fig. 23. Gyro Scale Factors :
Estimation Error

Fig. 24. Gyro Misalignment (x-axis) :
Estimation Error

7 Conclusions and Comments

Sequential on-board attitude estimation algorithms for the sensor suite - sun
sensor, horizon sensor and gyros - are studied, analyzed and simulated. As the
attitude estimation algorithms are tested through simulation, an effort is made
to consider detailed models of sensors and to test the algorithms in presence
of realistic sensor errors. A standard, realistic model of rate-integrating gyro is
used which includes time varying drift-rate bias, static misalignment, scale fac-
tor errors and quantization noise. Horizon sensor modeling includes effects of
Earth’s oblateness, atmospheric radiance, bias and electronic noise. An approxi-
mate model of noise due to atmospheric radiance, treating it as an exponentially
auto-correlated noise, is considered. A modular six degree-of-freedom closed-
loop simulation has been developed, and performance of the attitude estimation
algorithms using this simulation is presented.
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Two attitude estimation algorithms - the DCM-based steady-state KF and
quaternion-based EKF - are simulated. Modifications in the standard algorithms
have been made, to customize them for the sensors under consideration. The
steady-state filter is observed to work for the current sensor suite if only white
noise is present in the attitude sensors. Hence, the steady-state KF, which is
computationally efficient, may be a preferred choice in the case of the sensors
primarily exhibiting such noise characteristics, such as the star trackers [7]. Fur-
ther, depending on sensor error characteristics and required estimation accuracy,
the steady-state KF may not be suitable during the eclipse phase of the orbit.

The quaternion-based EKF, too, in its original form works only for attitude
sensors with white noise. Hence, there is a need to estimate other errors in the
attitude sensors through augmentation of the state vector. The quaternion-based
EKF offers a natural framework for estimation of additional states. Through es-
timation of horizon sensor bias, but not that of radiance noise, improvement
in estimator performance is observed. Even during the eclipse phase of the or-
bit, when the sun sensor measurements are not available, the filter performance
is satisfactory. The performance of steady-state KF may also be improved by
estimation of horizon sensor bias; however, the quaternion-based EKF offers a
simpler way of augmenting the state vector and can better handle asynchronous
measurements. Hence, we recommend the use of the quaternion-based EKF with
augmented state vector. Lastly, to account for sensor misalignment and scale fac-
tor errors, the alignment Kalman filter is studied and simulated. Due to satellite
maneuvers, the AKF is able to estimate the misalignment parameters, resulting
in desired attitude estimation performance.
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