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Preface

Background

Itzhack Y. Bar-Itzhack, professor Emeritus of Aerospace Engineering at the Tech-
nion – Israel Institute of Technology, was a prominent and world-renowned member
of the applied estimation, navigation, and spacecraft attitude determination commu-
nities. He touched the lives of many. He had a love for life, an incredible sense of
humor, and wisdom that he shared freely with everyone he met.

To honor Professor Bar-Itzhack’s memory, as well as his numerous seminal pro-
fessional achievements, an international symposium was held in Haifa, Israel, on
October 14–17, 2012, under the auspices of the Faculty of Aerospace Engineering
at the Technion and the Israeli Association for Automatic Control.
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Itzhack Yoav Bar-Itzhack (1937-2007)

Since receiving his Ph.D. degree in electrical engineering from the University of
Pennsylvania in 1968, with a dissertation titled "Strapdown Inertial Navigation",
Professor Bar-Itzhack had made seminal contributions to the art of Inertial and
Aided Navigation Systems, and was one of the pioneers of the theory of strap-
down Inertial Navigation Systems (INS). Prof. Bar-Itzhack was also a distinguished
member of a select group of international experts in the field of spacecraft attitude
determination. He published extensively in this area, often with NASA co-workers,
covering problems of attitude and angular rates estimation from vector measure-
ments, attitude determination from GPS measurements, and combined attitude and
orbit determination. Professor Bar-Itzhack contributed to the theory of applied op-
timal filtering as well, by developing, with students, batch-recursive data compres-
sion filters, and eigenfactor-based square root filters. Between 1968-1971 he was
employed by Bellcomm Inc. in Washington DC, where he worked on the Apollo-
project, analyzing the navigation system of the Lunar Roving Vehicle (LRV). In
1977-8, during his sabbatical, he served as a member of the technical staff at the
Analytic Sciences Corporation (TASC) in Reading MA, where he was involved in
the Improved Accuracy Program on the Trident missile guidance system. Prof. Bar-
Itzhack also spent several sabbaticals and summers at the NASA Goddard Space
Flight Center. There he was instrumental in developing the first real time attitude
filter for use in the spacecraft control center and he supported the development of
attitude estimation systems for several NASA spacecraft.

Professor Bar-Itzhack was very active in national and international professional
communities, serving, among others, as an International Advisor of the Journal of
Guidance, Control, and Dynamics, a member of the AIAA Guidance, Navigation
and Control Technical Committee, and as a President of the Israeli Association for
Automatic Control (national member organization of IFAC). He contributed im-
mensely to the security of Israel by sharing knowledge and wisdom with the Israeli
MoD and with Israeli defense related industries, including Rafael-Advanced defense
Systems, Ltd., IAI-Israel Aerospace Industries, Ltd., and IMI-Israel Military Indus-
tries, Ltd. At the Technion-Israel Institute of Technology, he served as Dean of the
Faculty of Aerospace Engineering, among numerous other positions.

Professor Bar-Itzhack graduated 33 doctoral and master’s students, and published
over 80 papers in major archival journals and 140 papers in conference proceedings.
He received numerous professional honors, including the IEEE Third Millenium
Award, the IEEE Kershner Award, the NASA Exceptional Technology Achievement
Medal, and the NASA Goddard Space Flight Center Group Achievement Award.
Along with two NASA colleagues, he was awarded a US patent in 2004 for an
autonomous navigation system. He was a Fellow of AIAA ". . . in recognition of
professional distinction and valuable contributions made to the arts, sciences and
technology of aeronautics and astronautics," and a Fellow of IEEE ". . . for contribu-
tions to the development of inertial navigation system." Prof. Bar-Itzhack was cho-
sen by the IEEE Aerospace and Electronic Systems Society to serve as a member
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of the Distinguished Lecturers Program, with his talk on "The Evolution of Inertial
Navigation."

About the Book

For the Itzhack Y. Bar-Itzhack Memorial Symposium on Estimation, Navigation,
and Spacecraft Control, the International Program Committee conducted a formal
review process. Each paper was reviewed in compliance with good journal practices
by at least two independent and anonymous reviewers. The papers published in this
book were selected based on the results and recommendations from the reviewers.

The book contains 27 selected, revised, and edited contributed chapters written by
eminent international experts. The book is organized in three parts: (1) Estimation,
(2) Navigation and (3) Spacecraft Guidance, Navigation and Control. The volume
was prepared as a reference for research scientists and practicing engineers from
academy and industry in the fields of estimation, navigation, and spacecraft GN&C.

About the Symposium

The international Itzhack Y. Bar-Itzhack Memorial Symposium on Estimation, Nav-
igation, and Spacecraft Control, chaired by

• Yaakov Oshman (Technion-Israel Institute of Technology)
• Julie Thienel (NASA Goddard Space Flight Center)

was held in Haifa, Israel, on October 14–17, 2012. Along this four days single-
track event, attended by more than 100 participants, 50 talks were presented with
contributors from 18 different countries. Six eminent experts from academy and
industry delivered the following keynote talks during the technical sessions:

• Mark J. Balas (Embry-Riddle Aeronautical University)
"The Beautiful Simplicity of Direct Adaptive Control in Theory and (maybe) in
Practice"

• F. Landis Markley (NASA Goddard Space Flight Center)
"I Have Some Attitude Issues"

• Mark. L. Psiaki (Cornell University)
"Securing Civilian GNSS Services in the Presence of Jamming and Spoofing"

• Hector P. Rotstein (Rafel-Advanced Defense Systems, Ltd.)
"FOG, MEMS, and all the rest-Some thoughts on Inertial Navigation
technologies and algorithms"

• Jason L. Speyer (University of California, Los Angeles)
"Stochastic Estimation and Control for Linear Systems with Cauchy Noise"

and two keynote talks were given during a social session at the Gala dinner
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• Daniel Weihs (Technion - Israel Institute of Technology)

"Learning Engineering from Nature"

• Yoav Medan (Technion - Israel Institute of Technology)

"StarTrek Surgery-Science Meets Fiction"
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Steady-State Time Constant of the Kalman Filter 

Joseph Etzion 
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Abstract. Under conditions of constant sampling rate and constant sampling 
errors, after a sufficiently long tracking time,  all terms of the covariance matrix 
converge to their corresponding asymptotic magnitudes. After convergence, all 
variables of the Riccati equation remain unchanged. In such conditions the only 
unknown in this equation is the steady-state covariance matrix. An analytic 
solution of the resulting steady-state Riccati equation for "short" sampling times 
is derived. After solution all terms of the resulting covariance matrix are then 
expressed as functions of a particularly defined "time constant". The application 
of the time constant produces several practical advantages: it greatly facilitates 
the determination of the model-noise parameter (q), provides a fair assessment 
of the tracking accuracies, and determines the steady-state transfer function of 
the filter. 

Keywords: Time constant, tracking accuracy, transfer function. 

1 Kalman Equations in Steady State 

A sequential tracking by a Kalman filter is done by a repeated execution of prediction 
and update of both the covariance matrix and the state vector. In the analysis that 
follows the discretized continuous-time white noise acceleration (CWNA) model is 
assumed. 

Assume that at a given time t the covariance matrix, P, and the state vector, X, are 
known. Also assume that at time t+T some measurement has been made. At this time 
the variables of the filter are predicted to the new time instant by the following 
equations: 

T
pP P Q= Φ Φ +  Covariance, (1) 

pX X= Φ  State vector, (2) 

where Φ is the transition matrix and Q is the covariance matrix of model-noise. Both 
these matrices depend on the sampling time T (see definite expressions in the 
following sections). 

Then, the data of the new measurement are used for updating the predicted 
variables as follows: 

( ) 1T T
p pK P H HP H S

−
= +  Gain matrix, (3) 
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( )u pP I KH P= −  Covariance, (4) 

u pX X Kε= +  State vector, (5) 

where H is the measurement matrix, S is the covariance matrix of the measurement 
errors, I is an identity matrix, and ε is the innovation vector (see definition in the 
following sections). 

Assume a scenario where the H and S matrices are time independent. If, in 
addition, the sampling time is also kept constant, then Φ and Q remain time 
independent as well. In such scenario, after long enough cycling of (1), (3), and (4) 
the covariance matrix, P, and the gain matrix, K, remain virtually constant. In other 
words, after the variance stabilization, the updated covariance, uP , returns to its 

unpredicted magnitude, P, or 

uP  =  P. (6) 

By a substitution of (1) in (3), and a further substitution in (4), and then a 
substitution of the resulting expression of uP  in (6), we get an equation with a single 

unknown, which is the covariance matrix P. This matrix equation breaks down into a 
number of scalar equations with the same number of scalar unknowns. For instance, 
in a first-order filter applied to a single coordinate the covariance matrix contains 
three distinct (unknown) elements, which can be evaluated by solving the three scalar 
equations. For a second-order filter, the number of unknowns, or the number of 
equations, is six. 

Approximate solutions of the first and the second order filters are presented in the 
following three sections. For convenience, all covariances are expressed in terms of a 
time constant. Despite the approximations used, the resulting accuracy of filter 
characteristics is remarkable. The simple covariance expressions derived here and the 
concept of the time constant are greatly instrumental in a preliminary estimation of 
filter performance, even in cases of multiple-coordinate dynamic scenarios. 

2 Steady-State Solution of First-Order Filter 

In stead-steady conditions the process of first-order Kalman filter becomes identical to 
the alpha-beta filter or the Wiener filter ([1], Sections 6.5.4 and 9.5). The solution 
presented here, however, is aimed at deriving at a linkage between the time constant, τ, 
and the model-noise parameter, q. Such linkage is helpful for a practical determination 
of the required q-parameter. In addition, as will be shown below, the time constant is 
advantageous for a preliminary assessment of the expected tracking errors. 

Consider Kalman filtering on a single coordinate. Assume the position in this 
single coordinate is sampled at constant time intervals, T. The "true" position of the 
tracked body will be called y. This time-dependent position is sampled with 
measurement errors of a constant standard deviation (STD), yσ . The sampled y, with 

its measurement error, is the input to the filter. The resulting output from the filter 
will be x for position and v for velocity. 
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In such single-coordinate scenario, the arrays used in the preceding section are 
defined as follows. 

x xv

xv v

p p
P

p p

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

 Covariance matrix, (7) 

1

0 1

T⎛ ⎞
Φ = ⎜ ⎟

⎝ ⎠
 Transition matrix, (8) 

3 2

2

3 2

2

T T
Q q

T T

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

 Model-noise, (9) 

x
X

v

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

 State vector, (10) 

H  =  (1   0) Measurement matrix, (11) 

S  = 2
yσ  Meas. variance, (12) 

1 0

0 1
I

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

 Identity matrix. (13) 

Note that X is the state vector, whereas x is the position variable, which is an element 
of X. 

The model-noise matrix, Q, used here (equation 9), is in the form of the popular 

Singer model [2]. In this form, q is the model-noise parameter, defined by 22 m mq σ τ= , 

where mσ  is an acceleration STD of the tracked target's maneuver, and mτ  is the time 

constant of the maneuvers. In practice, however, the two parameters, mσ  and mτ , are 

extremely vague, and even meaningless. As a result of this uncertainty, the q 
parameter is being routinely determined empirically, by way of extensive simulations 
or field experimentations. In contrast, the time constant (measured in seconds) is a lot 
easier to assess by considering the expected maneuverability of the tracked object. For 
instance, appropriate time constant for tracking a maneuvering aircraft by radar is 
typically between four and ten seconds; for vessel tracking the optimal time constant 
is somewhat larger that that. 

In the present analysis, in any case, the q-parameter is considered as a given 

number, expressed in units of 2 3m sec , which can be interpreted as a per-second 

growth of the velocity variance.  In the analysis that follows, the derived covariance 
terms will be expressed as functions of q. 

By using (7), (8), and (9) in (1), we get the following predicted covariance terms: 

2 32 3xp x xv vp p Tp T p T q= + + +               Position, (14) 

2 2xvp xv vp p Tp T q= + +                       Covariance, (15) 

vp vp p Tq= +                        Velocity.                   (16) 
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We know in advance that all terms of the covariance matrix in steady-state 
conditions of the filter's operation are approximately proportional to the sampling 
time, T. For sufficiently small sampling times, most terms in the above three 
equations become negligible. For the needs of the present analysis, in these equations 

we only retain the terms which exceed the magnitude of 2T . After such omission, 
these equations reduce to the following approximate form: 

2xp x xvp p Tp≈ +  Position, (17) 

xvp xv vp p Tp≈ +  Covariance, (18) 

vp vp p Tq≈ +  Velocity. (19) 

Next, we simplify the expression of the gain matrix, K, given by (3). In this 

equation, the product THPH  becomes a scalar, given by 

THPH  = 2
yσ . (20) 

By using this result in (3), the gain matrix becomes 

2 2

1 1xp xp

xvp xvpxp y y

p p
K

p pp σ σ
⎛ ⎞ ⎛ ⎞

= ≈⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟+ ⎝ ⎠ ⎝ ⎠
,                                  (21) 

where xpp  has been neglected relative to 2
yσ . 

Further, the resulting gain, K, is substituted in (4), which likewise can be broken 
down into its separate scalar components. Again after ignoring all powers of T greater 
than 2, the following updated expressions are obtained: 

2 22xu x xv x yp p Tp p σ≈ + −  Position, (22) 

2
xvu xv v x xv yp p Tp p p σ≈ + −  Covariance, (23) 

2 2
vp v xv yp p Tq p σ≈ + −  Velocity. (24) 

In steady-state conditions, the updated covariances return to their previous 
magnitudes, before the prediction stage, which are the same as after the previous 
update. Such equality is expressed by (6), which is in this case equivalent to three 
scalar equations. By using these equalities in the last three equations, the dominant 
terms (on the left) cancel out, and we are left with their following reduced form: 

2 22 xv x yTp p σ= ,                                        (25) 

2
v x xv yTp p p σ= ,                                      (26) 

2 2
xv yTq p σ= .                                    (27) 
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These simple equations provide the following solution for the three steady-state 
covariance terms: 

3 64 4x yp T qσ=  Position,                         (28) 

2 34 4v yp T qσ=  Velocity,                        (29) 

2
xv yp T qσ=  Covariance.                   (30) 

We now introduce the following definition of the time constant: 

24
yT qτ σ= ,                       (31) 

or the inverse relation 

2 4
yq Tσ τ= .                  (32) 

The time constant defined by (31) is also related to "target maneuvering index," 

cλ , defined in [1], (6.5.4-10). This particular relation becomes 

2 2
c Tλ τ= .                        (33) 

In real applications, however, a preliminary assessment of an optimal τ magnitude 

is practically easier than an assessment of both cλ  and q before some simulation 

testing can be accomplished. While optimal values of cλ  or q can vary by orders of 

magnitude depending on the system parameters, the optimal τ varies remarkably little. 
For instance, for tracking a maneuvering aircraft the optimal time constant can vary 
between about 4 and 6 seconds; for tracking a ship the time constant can become 
about 10 seconds. In contrast, the high power of τ in (32) or (33) make the other 
alternative parameters a lot more uncertain. It is therefore advisable, for practical 
system design, to first make an estimate of an optimal time constant, and then to 
determine the corresponding q magnitude by means of (32).  

The particular definition of the time constant by means of (31) will become clearer 
by considering the dynamic response of the filter, presented in the next section. 

Equation (32) is now substituted in (28) and (29) in order to provide alternative 
expressions for the position and the velocity variances. The square roots of these 
variances are the STDs of the corresponding estimation errors: 

2
x y

Tσ σ
τ

=  Position,                            (34) 

2y
v

Tσ
σ

τ τ
=  Velocity,                           (35) 

where yσ  is the STD of the measurement error, T is the sampling time, and τ is the 

time constant. 
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In addition, the position-velocity correlation coefficient is given as follows: 

1

2
xv

x v

p

p p
ρ = = .                                    (36) 

For the dynamic specification of the filter, expressions of the filter gains will be 
necessary. For the first-order filter, the gains are given by the two terms of the gain 
matrix, K, according to (21). By substituting the results of xp  and xvp  (from (28) and 

(30)) for xpp  and xvpp  in (21), the following steady-state gains are obtained: 

2xk T τ=  Position gain,                     (37) 

2
vk T τ=  Velocity gain.                     (38) 

3 Dynamic Response of First-Order Filter 

The response of the Kalman filter is determined by a sequential execution of (2) and 
(5). For the first-order filter, these equations are expressed by the following two scalar 
equations: 

1n n n xx x Tv k ε+ = + +  Position,                     (39) 

1n n vv v k ε+ = +  Velocity,                    (40) 

where n is the sample number, and ε is the innovation, given by the difference 
between the last measurement and the predicted position: 

1n py xε += − .                   (41) 

In steady-state conditions, the gains used in (39) and (40) are given by (37) and 
(38). In the limit T→0, (39) and (40) convert to integrals, where the sampling time, 
T, is replaced by the infinitesimal time increment dt. The resulting continuous 
response of the filter can then be described by a corresponding flow diagram, as 
shown in Fig. 1. 

 

Fig. 1. Transfer function of first-order filter 
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The diagram of Fig. 1 provides the following transfer functions of the first-order 
Kalman filter: 

2 2

1 2

1 2

x s

y s s

τ
τ τ

+=
+ +

            Position,                     (42) 

2 21 2

v s

y s sτ τ
=

+ +
            Velocity,                    (43) 

where τ is the time constant (equation (31)) and s is the Laplace variable. 
It can be seen that the transfer function given by (42) is analogous to the transfer 

function of the Wiener filter ([1], (9.5.2-28)). 
In time domain, (42) and (43) convert to the following differential equations: 

2 2 2x x x y yτ τ τ+ + = +                     Position, (44) 

2 2v v v yτ τ+ + =                                   Velocity. (45) 

The homogeneous part of any of the last two equations (their left-hand sides) has 
the following two complex zeros: 

1

2 2

i
z

τ τ
= − ± .                             (46) 

Hence, the homogeneous solution of (44) is given by 

( ) 2
1 2sin cos

2 2
t

h

t t
x t C C e τ

τ τ
−⎛ ⎞

= +⎜ ⎟
⎝ ⎠

,                        (47) 

where 1C  and 2C  are constants to be determined by the appropriate initial conditions. 

As an example, a step response of the filter is presented for a case of a unit step, 
introduced at time zero. The step function at the input to the filter is defined by 

( ) 0, 0

1, 0

t
y t

t

<⎧
= ⎨ ≥⎩

,                                  (48) 

where t is time, measured from the unit step. 
It is assumed, however, that at time zero the filter has already stabilized in the 

steady-state conditions, where the filter gains remain constant at their asymptotic 
values, given by (37) and (38). 

After the introduction of the unit step, the general solution of the position function 
is given by 

( ) ( )1 hx t x t= + ,                        (49) 

where ( )hx t  is the homogeneous solution, given by (47). 
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The initial conditions, necessary for the constants' determination, can be deduced 
from the diagram in Fig. 1. They are given by 

( ) ( )0 0, 0 2x x τ= = .                                            (50) 

By using the initial conditions in conjunction with (49) and its derivative, the 
following constants are obtained: 

1 21, 1C C= = − ,                                  (51) 

which provide the following position function for the step response: 

( ) 21 sin cos
2 2

tt t
x t e τ

τ τ
−⎛ ⎞

= + −⎜ ⎟
⎝ ⎠

.                               (52) 

For velocity, the solution of (45) is similar to the position solution, except that in 
this case the asymptotic velocity magnitude is zero. The initial conditions for velocity 
are 

( ) ( ) 20 0, 0 1v v τ= = .                                     (53) 

The general solution for velocity becomes 

( ) 22
sin

2
tt

v t e τ

τ τ
−= .                                      (54) 

Both the position and the velocity responses are of the form of damped oscillations. 

The first position maximum is / 21 1.2079e π−+ = , and it occurs at time 

/ 2 2.2214t τπ τ= = . The first velocity maximum is / 4 / 0.4459 /e π τ τ− = , and it 

occurs at time / 2 2 1.1107 .t τπ τ= =  
Figs. 2 and 3 present a comparison between the approximate analytic solution of 

the filter response and the actual sequential solution of the first-order Kalman filter. 
Both solutions take place in steady-state conditions, which become valid after long 
enough filter operation with constant measurement errors and constant time steps, 
when the covariance matrix stabilizes at its asymptotic values. In order to achieve the 
steady-state conditions of the actual Kalman filter prior to the unit-step introduction, 
(1), (3), and (4) have been cycled until all terms of the covariance matrix stopped 
changing up to their sixth decimal significant figure. The initial covariance matrix in 
this stabilization was constructed from the expressions given by (34), (35), and (36), 
according to the definition given by (7). For convergence to six significant figures a 
time span of about 6τ was required. However, no detectable effect on the results 
shows up even after convergence to four figures. The extra two figures were left for 
the sake of safety. 

Fig. 2 shows a comparison between the actual and the analytic response of the 
first-order Kalman filter to a unit step in steady-state conditions. This example is 
given for a time step of T = 0.2τ. For such time step a maximum position difference of 
about 2% between the two calculations is detected, while in velocity the difference is 
too small to be seen at the given scale. For time steps smaller than 0.05τ, even the 
position differences practically vanish. 
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Fig. 2. Step response of first-order Kalman filter 

Even though the analytic solution was derived for "small" time steps, in practice, 
time steps as large as T =τ  provide remarkable similarity between the two solutions, 
with differences of only 10% or less. One reason of such closeness of solution is the 
radical insensitivity of the Kalman filter to most elements of the model-noise matrix, 
Q (equation (9)). In the derivation of the analytic approximation, the only non-
negligible term of Q was its bottom-right element. This means that virtually the same 
results are obtained with a degenerate matrix of the following form: 

0 0

0
Q q

T

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

.   (55) 

The use of the degenerate form of the model-noise matrix, instead of its original 
form taken from the Singer model [2], does not create any detectable differences in 
the filter's response even for time steps as large as T =τ  in any of the above 
calculations. This sort of test of the filter's performance clearly shows that the "high 
sophistication" of the popular Singer model is actually an illusion, meaningless in its 
practical applications. 

Fig. 3 presents a comparison between the analytic and the true filtering errors of 
the first-order Kalman filter in steady-state conditions for varying magnitudes of time 
step. This comparison is done between the analytic STDs, given by (34) and (35), and 
the square roots of the diagonal elements of the asymptotic covariance matrix. For 
moderate time steps, of T = 0.2τ, the differences are 7% and 4% for position and 
velocity, respectively. For the extreme case of T =τ the differences amount to 37% 
and 17% for the two functions. 

The results presented in Figs. 2 and 3 demonstrate a remarkable reliability of the 
approximate solution of Riccati equation, summarized by (34) and (35), even for 
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relatively large time steps (T), relative to the time constant (τ) of the Kalman filter. In 
particular, the results show that a preliminary estimate of model-noise parameter, q, 
can confidently be done by means of (32). 
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Fig. 3. Error differences between analytic and actual solutions of first-order Kalman filter 

For very large time steps, when T >τ, the Kalman filter in fact degenerates into a 
straight line drawn between the latest two samples, disregarding all preceding 
measurements. In such cases the solution presented above is no longer necessary; 
rather, the filter's performance can then be assessed by a much simpler analysis of the 
straight-line fit. 

Even though the analysis presented above has been derived for a sufficiently long 
tracking time, the resulting equations provide a fair approximation of the filter 
performance even when the tracking time is comparable to the time constant. For 
shorter tracking times, of less than one time constant, the filter becomes equivalent to 
least-squares fit of a straight line to all measurements collected so far. In this case, 
again, the solution presented above becomes unnecessary because it can be replaced 
by the simpler approach of the least-squares principle. 

4 Steady-State Solution of Second-Order Filter 

In steady-state conditions the second-order Kalman filter becomes identical to the 
alpha-beta-gamma filter ([1], Section 6.5.5). 

The derivation of an approximate analytic solution in steady state is repeated here 
for the second-order Kalman filter. For the second order, all equations shown in 
Section I remain valid in this case as well, and only the matrices involved increase 
their dimensions. The previous matrices, given above by (7) through (13), are 
replaced here by the following expressions: 
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x xv xa

xv v va

xa va a

p p p

P p p p

p p p

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

               Covariance, (56) 

21 2

0 1

0 0 1

T T

T

⎛ ⎞
⎜ ⎟

Φ = ⎜ ⎟
⎜ ⎟
⎝ ⎠

                     Transition, (57) 

5 4 3

4 3 2

3 2

20 8 6

8 3 2

6 2

T T T

Q T T T q

T T T

⎛ ⎞
⎜ ⎟

= ⎜ ⎟
⎜ ⎟
⎝ ⎠

              M. noise               (58) 

x

X v

a

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

                                    State vector, (59) 

H  =  (1   0   0)                     Measurement matrix, (60) 

S  = 2
yσ                                Measurement variance, (61) 

1 0 0

0 1 0

0 0 1

I

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

                         Identity matrix, (62) 

where x, v and a stand for position, velocity and acceleration, respectively. 

In the second-order filter, the units of the model-noise parameter, q, are 2 5m sec , 

which can be interpreted as a per-second growth of the acceleration variance. 
The derivation of the approximate solution of the second-order filter exactly 

follows the steps used in the case of the first-order filter (Sections 2 and 3), only with 
a higher algebraic complication. Here we skip the lengthy algebra, and proceed to the 
presentation of the analytic results. 

For the second-order filter, the time constant is defined by 

26
yT qτ σ= , (63) 

or the inverse relation 

2 6
yq Tσ τ= . (64) 

Here, due to the sixth power of τ in (64), the contrast between the magnitudes of τ 
and q is even higher than in the case of the first-order filter. As explained above (see 
paragraph after (33)), there are typical values of τ that correspond to certain targets. 
Surprisingly, the same typical values mentioned before remain almost unchanged for 
the second order as well. Hence again, it is highly preferable to first select an 
appropriate magnitude of an optimal time constant, and then make a determination of 
q by means of (64). 
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By the (63) definition of the time constant, the approximate steady-state output 
STDs of the second-order filter are given by 

2
x y

Tσ σ
τ

=                     Position STD, (65) 

3y
v

Tσ
σ

τ τ
=                     Velocity STD, (66) 

2

2y
a

Tσ
σ

ττ
=                          Acceleration STD. (67) 

In the second-order filter there are three correlation coefficients between the three 
output variables: 

2 3 0.816xvρ = =                  Pos.-vel., (68) 

1 2xvρ =                    Pos.-acc., (69) 

2 3 0.816vaρ = =                     Vel.-acc. (70) 

In this case, the following steady-state Kalman gains are obtained: 

2xk T τ=                   Position, (71) 

22vk T τ=                   Velocity, (72) 

3
ak T τ=                    Acceleration. (73) 

In the limit T→0, the recursive filter equations convert to integrals, which can be 
presented by a flow diagram. The flow diagram in this case is an extension of the 
first-order flow diagram of Fig. 1. The extended diagram is shown in Fig. 4. 

a

x

v

+ y 2

2

2 1

s

1

s

3

1 1

s

 

Fig. 4. Transfer function of second-order filter 
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The diagram of Fig. 4 provides the following transfer functions of the second-order 
Kalman filter: 

2 2

2 2 3 3

1 2 2

1 2 2

x s s

y s s s

τ τ
τ τ τ
+ +=

+ + +
                        Position, (74) 

( )
2 2 3 3

1 2

1 2 2

s sv

y s s s

τ
τ τ τ

+
=

+ + +
                        Velocity, (75) 

2

2 2 3 31 2 2

a s

y s s sτ τ τ
=

+ + +
                      Acceleration, (76) 

where τ is the time constant (equation (63)) and s is the Laplace variable. 
The differential equations, determined by the above three transfer functions, will be 

determined by the zeros of their denominators, which are third-degree polynomials of 
s. These polynomials have one real zero and two complex zeros, as follows: 

1 2,3

1 1 3
,

2 2

i
z z

τ τ τ
= − = − ± .                                        (77) 

These zeros provide the following homogeneous solution of the differential 
equations: 

( ) 2
1 2 3

3 3
sin cos

2 2
t t

h

t t
x t C e C C eτ τ

τ τ
− −⎛ ⎞

= + +⎜ ⎟⎜ ⎟
⎝ ⎠

.                     (78) 

The general solution for the step response of x(t) is given as before by (49). 
For a determination of the three constants in (78), the following initial conditions 

of the position variable are applied: 

( ) ( ) 20 0, 0 2 , (0) 2x x xτ τ= = = − .                            (79) 

These initial conditions, and the constants that follow, determine the following 
general solution for the position step-response of the second-order filter: 

( ) 22 3
1 sin

23
t tt

x t e eτ τ

τ
− −= − + .                                  (80) 

For velocity and acceleration the homogeneous equation is the same as (78), but 
their asymptotic values are zero. The initial conditions for velocity are 

( ) ( ) 2 30 0, 0 2 , (0) 3v v vτ τ= = = − ,                            (81) 

and its general solution becomes 

( ) 21 3 3
3 sin cos

2 2
t tt t

v t e eτ τ

τ τ τ
− −

⎡ ⎤⎛ ⎞
= − + +⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

.                      (82) 

 



16 J. Etzion 

 

The initial conditions for acceleration are the following: 

( ) ( ) 3 40 0, 0 1 , (0) 2a a aτ τ= = = − ,                              (83) 

and its unit-step response is then 

 ( ) 2
2

1 1 3 3
sin cos

2 23
t tt t

a t e eτ τ

τ ττ
− −

⎡ ⎤⎛ ⎞
= − + +⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

.                         (84) 

A comparison between the analytic solutions, given by (80), (82) and (84), and the 
sequential solution of the Kalman equations is shown in Fig. 5. The time step is same 
as before (in Fig. 2), T = 0.2τ. Here again, like in the first-order case, the differences 
between the two solutions are remarkably small. At much greater time steps, even as 
large as T = τ, the differences between the two solutions also remain moderate (up to 
about 20% in this case). 

Fig. 6 presents a comparison between the analytic and the true filtering errors of 
the second-order Kalman filter in steady-state conditions for varying magnitude of 
time step. For moderate time steps, such as T = 0.2τ, the relative STD-differences 
remain small, about 10%, but they grow substantially for much larger time steps. In 
addition, unlike the case of the first-order filter (Fig. 3), they do not converge to zero 
at the limit of T→0, even though the absolute STD magnitudes do converge to zero 
at that limit. Such characteristics take place apparently because at the small time steps 
there still remains some non-negligible effect of higher powers of T, which were 
ignored in the approximate solution of the second-order filter. 

The almost complete insensitivity of the filter performance to the form of the 
model-noise matrix, Q, is manifest in the case of the second-order filter as well. By 
replacing all elements except one in the matrix in (58) by zeros, no meaningful 
change in the filter's response can be detected. Such insensitivity exists even with the 
large time step of T = τ. The degraded matrix in this case is given by 

0 0 0

0 0 0

0 0

Q q

T

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

.                                      (85) 

By using (85) instead of (58) for the model-noise matrix, no change can be 
detected in the sequential solution in Fig. 5. In Fig. 6 there is some change only in the 
acceleration curve in case of such replacement. 

This insensitivity again emphasizes the futility of attempts of formulating an 
advanced model-noise matrix. 

Similar to the first-order case, for the second-order filter as well a remarkable 
reliability of the approximate solution of the Riccati equation is demonstrated. This 
means that in this case the model-noise parameter, q, can confidently be evaluated by 
means of (64), and the expected performance of the second-order Kalman filter can be 
represented by (65), (66) and (67). 

Also similar to the first-order filter, for time steps larger than one time constant the 
filter this time degenerates into a second-order polynomial drawn between the latest 
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three samples. In the other situation, when the tracking time is shorter than one time 
step, the filter becomes equivalent to least-squares fit of a second-order polynomial to 
all measurements collected up to that point. 
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Fig. 5. Step response of second-order Kalman filter 
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Fig. 6. Error differences between analytic and actual solutions of second-order Kalman filter 
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5 Summary 

The analytic solution of the first- and second-order Kalman filter has been derived for 
a single coordinate in steady-state conditions, with constant sampling time and 
constant measurement errors. However, despite those limitations, the analytic 
solutions for the estimation errors and the dynamic response of the filter are extremely 
useful in preliminary assessments of the filter's performance in much broader 
operation conditions. In a variety of actual scenarios the magnitude of the time 
constant, τ, can safely be estimated by using (31) or (63) by assuming quasi-static 
conditions, separately for each measured coordinate. For example, in a three-
dimensional radar tracking, a separate time constants can be obtained for the range, 
azimuth and elevation coordinates by using the actual measurement errors in those 
directions at a given time. True, the three line-of-sight coordinates are not entirely 
uncorrelated, but except for cases of very short ranges the correlation is quite small. 
In addition, in dynamic scenarios the measurement errors may change in time, but 
again, except for very short ranges the dynamics are not very high in relation to the 
magnitude of the time constant. 

In reality, in a three-dimensional tracking system, because of the different 
measurement errors in (32) and (64) for each coordinate, there will be three possible 
values of the q-parameter. The selected magnitude of q should be the largest one of 
the three. Later, at the practical filter application, the actual magnitudes of τ will 
automatically be determined for each coordinate separately in accordance with (31)  
or (63). 

A possible variation of the sampling time in a given scenario is also not very 
disturbing with respect to the time-constant estimate. As seen in (31) and (63), the 
dependence of the time constant on T is very weak, so that a use of some "average" 
value of the sampling time can still provide very useful performance estimates. Then, 
on the base of the representative time constants, the anticipated output errors from the 
filter can be calculated by means of (34) and (35) for the first-order filter, or by (65), 
(66), and (67) for the second-order filter. 

The transfer functions of the filter ((42) and (43) for the first-order filter, and (74), 
(75), and (76) for the second-order filter) can also be very useful for a quick 
estimation of the effect of various tracking disturbances. For example, a systematic 
error caused by a presence of acceleration when the first-order filter is applied, can be 
estimated by means of (42). Similar estimates can be done for other deviations, such 
as a ramp response (a velocity step) or an acceleration step. 

The approximate analytic results of the filter performance, presented above, 
provide possibilities for very fast estimates of the filter's performance, before an 
investment of big efforts and resources in developing extensive simulation programs 
and field experiments. The preliminary analysis is capable of a timely identification of 
unexpected problems in the early stages of development of technological projects. 

Another by-product of the present analysis is the demonstration of the filter's 
insensitivity to the exact form of the model-noise matrix. Instead of the "advanced" 
form of this matrix, given by (9) or (58), the degenerate form by (55) or (85) can be 
used without fear of any unwanted side effects. In addition, instead of the usual 
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guesswork involved in the "exact" determination of the model-noise parameter, q (see 
description after (13)), a much more practical approach is to first select a reasonable 
magnitude for the time constant, and then calculate the corresponding value of q by 
using (32) or (64), according to the case. 
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Abstract. This chapter starts with a review of the architectures for
track-to-track fusion (T2TF). Based on whether the fusion algorithm
uses the track estimates from the previous fusion and the configuration
of information feedback, T2TF is categorized into six configurations,
namely, T2TF with no memory with no, partial and full information
feedback, and T2TF with memory with no, partial and full information
feedback. The exact algorithms of the above T2TF configurations and
the impact of information feedback on fusion accuracy are presented.
Although (under the Linear Gaussian assumption) the exact T2TF algo-
rithms yield theoretically consistent fusion results, their major drawback
is the need of the crosscovariances of the tracks to be fused, which dras-
tically complicates their implementation. The information matrix fusion
(IMF) is a special case of T2TF with memory. Although it is heuristic
when not conducted at full rate, it was shown to have consistent and
near optimal fusion performance for practical tracking scenarios. Due
to its simplicity, it is a good candidate for practical tracking systems.
For the problem of asynchronous T2TF (AT2TF), a generalized version
of the IMF is presented. It supports information feedback for AT2TF
in the presence of communication delay, and was shown to have good
consistency and close to optimal fusion accuracy. Finally the fusion of
heterogenous tracks where the states at the local trackers are nonlinearly
related and of different dimension is discussed. For the problem of the
fusion of the track from an Interacting Multiple Model (IMM) estimator
from an active sensor with the track from a passive sensor, a counterintu-
itive phenomenon that heterogenous T2TF may have better performance
than the centralized measurement-to-track fusion approach (which is the
known optimum in the linear case) is demonstrated and explained.

1 Introduction

In tracking applications, when more than one sensor is used to obtain measure-
ments, there are several possible configurations for information processing, which
are summarized in Fig. 1. They differ in the sequence in which the data associ-
ation and tracking are carried out and the information available to the various
processors [6].
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Type I configuration:
Single sensor situation 
(baseline)

Type II configuration:
Single sensor tracking followed by 
track to track association (T2TA) 
and fusion (T2TF)

Type III configuration: 
Static association, followed by central 
dynamic association and tracking

Type IV configuration: 
Completely centralized association 
and tracking/fusion (CTF)

T2TFwoMnf
(no feedback)

T2TFwoMpf
(partial feedback)

T2TFwoMff
(full feedback)

T2TFwMnf
(no feedback)

T2TFwMpf
(partial feedback)

T2TFwMff
(full feedback)

T2TFwM
(with memory)

T2TFwoM 
(without 
memory)

IMF: Information 
matrix fusion

“equivalent 
measurement”

Equivalent 
at full rate

Equivalent

A special 
form

Fig. 1. Configurations for Multisensor Information Processing

Fig. 2. Type I configuration — single sensor tracking

Type I configuration refers to the (standard) tracking system using a single
sensor, which has the flowchart depicted in Fig. 2. In a multisensor situation this
corresponds to reporting responsibility (RR). Each sensor operates alone and
has responsibility for a certain sector of the surveillance region – no fusion of
the data (measurements or tracks) from the multiple sensors is done. As targets
move from one sector to another, they are handed over – handoff – in a manner
that depends on the system. Generally, the mechanism is to assign responsibil-
ity to the sensor with the highest expected accuracy, although workload and
communication constraints can also play a role.

Type III configuration is the static intersensor association and fusion followed
by central processing which consists of two stages. In the first stage, the mea-
surements from the various sensors, assumed to be from the same time, i.e., the
sensors are assumed synchronized, are first associated and fused. This is a static
intersensor measurement association and centralized measurement fusion (CMF)
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Fig. 3. Type III configuration — static association, extraction of composite measure-
ments (fusion), followed by dynamic association/tracking

Fig. 4. Type IV configuration — centralized multisensor tracking (Centralized
Tracker/Fuser — CTF)

that yields composite measurements, also known as supermeasurements. Then
in the second stage, these composite measurements are processed by a (central)
dynamic association and tracking algorithm. Fig. 3 shows such a configuration
for 3 sensors.

The Type IV configuration, which is the centralized tracking (also called cen-
tralized tracker/fuser — CTF), is depicted in Fig. 4. In this configuration all
the measurements are sent to the center, which carries out the association with
all the available information and then uses these measurements to update the
tracks. Since this configuration uses the maximum available information, it will
provide (subject to the limitations of the specific data association algorithm it
uses) the best results [6]. In the absence of the need for data association, it will
yield, for linear systems, the globally optimal estimates [6]. As it will be shown
later, in a nonlinear problem with heterogenous trackers, HT2TF (heterogenous
T2TF) can be superior to CTF.

The Type II configuration, which is the main subject of this chapter, is the
single sensor tracking followed by track fusion. Its importance stems from the fact
that it can run at a low rate, e.g., on demand. This is important in situations
where the communication bandwidth from the sensors to the fusion center is
limited. This configuration is distributed and decentralized, where each sensor
has its own information processor local data associator/tracker and yields
full tracks. A Fusion Center (FC) carries out the association and fusion of the
local tracks into system tracks. These steps are designated as Track-to-Track
Association (T2TA) and Track to Track Fusion (T2TF), respectively. The Type
II configuration is very important in distributed tracking systems. Compared to
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the CTF, which requires the transmission of local sensor measurements to the
FC at the full rate, T2TF can be conducted at much lower rates, which can
significantly reduce communication requirements.

As shown in Fig. 1, depending on whether the fusion algorithm uses the track
estimates from the previous fusion and the configuration of information feed-
back, T2TF configurations are further categorized as: T2TF with no mem-
ory with no information feedback (T2TFwoMnf), partial information feedback
(T2TFwoMpf) and full information feedback (T2TFwoMff), and T2TF with
memory with no information feedback (T2TFwMnf), partial information feed-
back (T2TFwMpf) and full information feedback (T2TFwMff). These configu-
rations as well as the impact of information feedback on the fusion accuracy are
discussed in detail in Sect. 2.

The impact of the crosscorrelation between local estimation errors on fused
estimate for T2TFwoMnf is discussed in Sect. 3.

Also shown in Fig. 1, the information matrix fusion (IMF) [10,8,15,11,6] is
a special form of T2TFwM. Operating at full rate the IMF is equivalent to
the Type IV Configuration, i.e., the CTF, while, at a reduced rate, the IMF
is heuristic. However, for the practical range of system process noises levels, it
was shown to yield consistent1 fusion results and close to the optimal fusion
accuracy [9]. Also note that the IMF is algebraically equivalent to the equivalent
measurement approach [6]. Compared to the exact T2TF fusion algorithms, the
IMF has the advantage of not requiring the crosscovariances of the errors of
the tracks to be fused, which significantly simplifies the implementation. Sect. 4
reviews the IMF at full and reduced rate, as well as a generalized IMF (GIMF)
for the fusion of asynchronous tracks which supports information feedback in the
presence of communication delay and was shown to have consistent and close to
optimal fusion results [18].

Another special type of T2TF that may occur in practical tracking systems
is the fusion of tracks from heterogeneous trackers that are using different state
vectors, discussed in Sect. 5. In [19] the HT2TF problem was investigated, where
the track from an interacting multiple model (IMM) filter with states in Carte-
sian coordinates and using an active sensor was fused with the track from a
passive sensor with angular states. Counterintuitively, it was shown that when
the IMM tracker is involved, HT2TF yielded better performance than the CTF
approach. These results are presented in Sect. 6. Sect. 7 summarizes the chapter
with concluding remarks.

2 Track-to-Track Fusion Configurations and the Impact
of Information Feedback

Depending on whether the track estimates from the previous fusion are used for
the current fusion and the configuration of information feedback, T2TF can be
categorized as the following configurations:

1 Its errors were commensurate with its calculated covariance [2].
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– T2TFwoM with no information feedback (T2TFwoMnf)
– T2TFwoM with partial information feedback (T2TFwoMpf)
– T2TFwoM with full information feedback (T2TFwoMff)
– T2TFwM with no information feedback (T2TFwMnf)
– T2TFwM with partial information feedback (T2TFwMpf)
– T2TFwM with full information feedback (T2TFwMff)

Tracker 1

Tracker 2

(a) T2TFwoM with no feedback

Fusion
Center

Fusion
Center

Fusion
Center

Tracker 1

Tracker 2

Tracker 1

Tracker 2

(c) T2TFwoM with full feedback (Fusion Center to Tracker 1 and Tracker 2)

(b) T2TFwoM with partial feedback (Fusion Center to Tracker 1)

Fusion
Center

Fusion
Center

Fusion
Center

Fusion
Center

Fusion
Center

Fusion
Center

Fig. 5. Information configurations for T2TFwoM

2.1 T2TF without Memory

In T2TFwoM, the FC uses only the current track estimates with no memory
of the track estimates from the previous fusion. Fig. 5 illustrates the three in-
formation configurations of T2TFwoM, where two local tracks (that pertain
to the same target) are fused at certain times. The first configuration is the
T2TFwoMnf [5], designated as Config. IIa for multisensor tracking in [1]. As
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indicated in Fig. 5(a), the two tracks evolve independently without any infor-
mation from each other, thus the improved accuracies are achieved only at the
fusion times at the FC. The second configuration is the T2TFwoM with partial
information feedback (T2TFwoMpf) which belongs to the Config. IIb in [1]. In
this case, as shown in Fig. 5(b), track 1 is fused with track 2 and continues with
the fused track (feedback) from the FC. However, track 2 does not receive the
fused track in view of the partial information feedback. The third configuration
is the T2TFwoM with full information feedback (T2TFwoMff), which also be-
longs to the Type IIb configuration in [1]. As shown in Fig. 5(c), in this case
both trackers receive and continue with the fused track.

The exact algorithms for T2TFwoM can be found in [6,16]. The key is to eval-
uate the crosscovariances between the local tracks. As shown in [3], although the
measurements at different local trackers have independent noises, the local tracks
are correlated due to common process noises of the target’s motion. Ignoring the
crosscovariances in T2TF will lead to over-optimistic fused covariance and track
inconsistency [6]. In [16] it was shown that, compared to CTF, T2TFwoM al-
ways has a certain loss in fusion accuracy and, counterintuitively, information
feedback has a negative impact on the accuracy of T2TFwoM.

To illustrate this phenomenon, consider the following generic T2TF example.
The target state is defined as [x ẋ]

′
. The target motion is modeled as the discrete

white noise acceleration (DWNA) model in [2], Sect. 6.3.2. It is assumed that two
sensors obtain position measurements of the target with a sampling interval of
T = 1 s. The standard deviation of the measurement noise is σw =

√
Rl = 30m

for each sensor (i.e., at each local tracker) and the process noise variance is
q = 1m2/s4. T2TFwoM takes place every 5 s, i.e., at a reduced rate.

Table 1. Fuser variances (at fusion times) in steady state (fusion interval: 5 s)

Fusion Type
FC track at fusion time

Position Velocity

T2TFwoMff 133 6.29

T2TFwoMpf 131 6.30

T2TFwoMnf 125 6.30

CTF 119 6.03

Single sensor tracker 205 7.26

Table 1 shows the steady state variances of position and velocity at the FC. All
the fused tracks are more accurate than the single-sensor (local) tracks without
fusion, which have steady state variances as 205 in position and 7.26 in veloc-
ity. Note that at the fusion time the position estimates of all the fused tracks
have a small degradation compared to the CTF: 5% for T2TFwoMnf, 10% for
T2TFwoMpf, 12% for T2TFwoMff. This shows that T2TFwoM has a degrada-
tion in fusion accuracy compared to CTF and this degradation increases in the
presence of information feedback.
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To explain this phenomenon consider the gains of the steady state filter for
the above problem, namely, the alpha-beta filter. In steady state the filter gain
is a monotonically increasing function of the maneuvering index λ [2].

Under T2TFwoMnf, the filter gain of each measurement in the fused track
(with two equal-accuracy sensors) is

WT2TFwoMnf =
1

2
[α(λl), β(λl)/T ]

′ (1)

where λl =
√
qT 2

√
Rl

is the local maneuvering index of the two trackers (
√
q and√

Rl are the standard deviations of the process noise and measurement noise,
respectively).

Under CTF, zc = 1
2 (z1 + z2) and Rc = 1

2Rl. Thus, the central maneuvering

index is λc =
√
2λl, i.e., larger. For each measurement, the centralized (globally

optimal) filter gain in steady state for each measurement — its weighting — is

WC =
1

2
[α(λc), β(λc)/T ]

′
=

1

2
[α(

√
2λl), β(

√
2λl)/T ]

′

> WT2TFwoMnf =
1

2
[α(λl), β(λl)/T ]

′
(2)

With information feedback, the local filter gains will be even smaller than
without feedback, i.e., they will deviate further from the globally optimal gains.2

This is because the local trackers have more accurate information due to the
feedback (compared to the no feedback case) and this reduces their filter gains
for the new measurements.

2.2 T2TF with Memory

In the configuration of T2TFwM, the fusion involves both the track estimates at
the current fusion time and those from the previous fusion time. Fig. 6 illustrates
T2TFwM with no, partial and full information feedback.

The exact fusion algorithms for the three T2TFwM configurations were pre-
sented in [16]. It was shown that, at full rate, T2TFwM has equivalent fusion
performance with the CTF (for a linear system). However, at a reduced rate,
compared to the CTF there is a certain loss of fusion accuracy, which is unavoid-
able [16]. And unlike the case with T2TFwoM, information feedback improves
the fusion accuracy of T2TFwM. This phenomenon is illustrated with the fol-
lowing example.

The state of the target (taken as a scalar for simplicity) evolves according to

x(k) = x(k − 1) + v(k) k = 2, 3, . . . (3)

where v(k) is the process noise with variance q = 0.3.

2 Gains smaller or larger than the optimal gains (which yield the minimum MSE) will
lead to a MSE larger than the minimum [2]. The relationship between the optimal
gain and the optimal state estimation MSE is discussed in detail in [2].
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(c) T2TFwM with full information feedback (one cycle: form fusion time l to the next fusion time k)
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Fig. 6. T2TFwM at arbitrary rate

Two trackers, 1 and 2, take measurements of the target with independent
measurement noises w1 and w2, namely,

zi(k) = x(k) + wi(k) i = 1, 2 (4)

where wi(k) are zero-mean Gaussian noises with variance Ri = 1, i = 1, 2. The
two trackers calculate tracks of the target with their own measurements using
a Kalman filter. Each local track is initialized at time 1 with the first local
measurement. The first T2TF happens at time 1. Then T2TFwM occurs every
Nf = 3 sampling times.

Table 2 shows the fuser- and tracker-calculated variances when the fuser (with
memory) is operating at reduced rate. These results verify the conclusions on the
impact of information feedback on T2TFwM, namely, that feedback is beneficial.
Note that due to the reduced rate, T2TFwM is suboptimal compared to CTF,
but only slightly.
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Table 2. Fuser and tracker 1 calculated variances at fusion times for Nf = 3 (reduced
rate), q = 0.3, R1 = R2 = 1

Time 1 3 6 9 12 15

T2TFwMnf
Tracker1 1.0000 0.4639 0.4196 0.4180 0.4179 0.4179
Fuser 0.5000 0.2772 0.2698 0.2694 0.2694 0.2694

T2TFwMpf Fuser 0.5000 0.2763 0.2690 0.2688 0.2688 0.2688

T2TFwMff Fuser 0.5000 0.2755 0.2683 0.2682 0.2682 0.2682

CTF/CMF 0.5000 0.2743 0.2654 0.2653 0.2653 0.2653

Note that the IMF, detailed in the Sect. 4, also uses the previous track esti-
mates (i.e., it has memory). When operating at full rate, IMF is algebraically
equivalent to CTF and also to the algorithms for T2TFwM (for a linear system).
However, at a lower rate, the IMF is heuristic.

Limitations of the exact T2TF algorithms discussed above include i) the exact
fusion algorithms only exist under the Linear Gaussian assumption, ii) the algo-
rithms require the crosscovariances of the tracks to be fused, which are generally
difficult to obtain and greatly increase the complexity of the algorithms’ im-
plementation. For T2TF in practical tracking systems, approximate algorithms
with near optimal fusion performance and less complexity are desirable. The
IMF has been shown as a good candidate for the purpose and will be discussed
in the next section.

3 Impact of Crosscorrelation on the Track-to-Track
Fusion without Memory and No Feedback

A simple approximate approach for T2TF is to ignore the crosscovariances
among different tracks. However this will lead to over-optimistic fused covari-
ances, which, especially when full information feedback is used, could lead to
large errors and filter divergence [16]. Here we use a simple example to show the
effect of the crosscovariance on T2TF.

Two sensors tracking the same target, each with its local processor, are con-
sidered. The target is modelled by the kinematic model

x(k + 1) =

[
1 1
0 1

]
x(k) +

[
1/2
1

]
v(k) (5)

This is a nearly constant velocity (NCV) or white noise acceleration (WNA)
motion model with unity sampling time with “piecewise constant” process noise
(see [2], Sect. 6.3) with variance q entering into the system. A range of values
for q will be considered.

The measurements at the two sensors are

zm(k) = [1 0]x(k) + wm(k) m = 1, 2 (6)
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with the two measurement noises mutually independent and with unity variance.
The maneuvering index for this target (see Eq. (6.5.3-14) in [2]), is thus

λ =
√
q (7)

Fig. 7 presents in the first column the “2σ” steady-state estimation error el-
lipses (corresponding to 85% probability mass under Gaussian assumption) in
the state space x2-x1 (velocity-position) for each sensor. The values of q con-
sidered are 0.01, 0.1, 0.5, 1, 2 and 5. These correspond to maneuvering indices
from 0.1 to

√
5.

The second column presents the error ellipses one obtains by combining these
estimates assuming they are independent. These ellipses are exactly half (in area)
compared to the single-sensor error ellipses — they are, however, optimistic
because the half variance (in each coordinate) is unachievable.

The third column presents the exact ellipses corresponding to the combined
estimates obtained by taking into account the dependence between the two tracks
due to the common process noise, quantified by the crosscovariance [6].

Fig. 8 shows the ratio of the areas of the ellipses of uncertainty of

– the fused estimates from the two sensors accounting for their dependence and
– the single sensor estimates

for various values of the target maneuvering index. This ratio would be equal
to 1/2 in the absence of the dependence. However, due to the dependence, it is
around 0.7 for a wide range of process noise variances.

Fig. 9 shows the decreases in the elements of the covariance matrix for the
same situation — as before, in the absence of dependence, each element would
be halved after fusion.

For linear systems the crosscorrelations are positive and ignoring them leads
to optimistic covariance for the fused estimates.

4 The Information Matrix Fusion

This section reviews the information fusion algorithm [10,8,15,11,6] and its ex-
tensions. The IMF operates similarly to the Information Matrix form of the KF
— the Information Filter — and, consequently, it is designated as Information
Matrix Fusion (IMF). The following versions of the IMF will be discussed, which
are the IMF with full communication rate (IMFfcr), the IMF with reduced com-
munication rate (IMFrcr) and the Generalized IMF (GIMF) for asynchronous
T2TF (AT2TF) in the presence of communication delay.

4.1 IMF with Full Communication Rate – IMFfcr

The IMF, when operating at full rate, is equivalent to the optimal CTF [6]. The
fused (central) estimate follows (for simplicity, N synchronized local trackers are
assumed here)
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(Fig. 7. Error ellipses for various levels of maneuvering index (Column 1: for each sensor
alone; Column 2: for two sensors combined assuming independence; Column 3: for two
sensors combined correctly)
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Fig. 8. Decrease in the error ellipse area in view of the dependence of the errors in the
fusion process

Fig. 9. Decrease of the state covariance matrix elements after fusion in view of the
dependence of the errors
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P (k|k)−1x̂(k|k) = P (k|k − 1)−1x̂(k|k − 1)

+

N∑
i=1

[P i(k|k)−1x̂i(k|k)− P i(k|k − 1)−1x̂i(k|k − 1)] (8)

The updated fused covariance needed above is obtained as

P (k|k)−1 = P (k|k − 1)−1 +

N∑
i=1

[P i(k|k)−1 − P i(k|k − 1)−1] (9)

In IMFfcr each local estimate/covariance has to be available at the center, i.e.,
full communication rate is necessary. The implementation of information feed-
back to local trackers is trivial in this configuration. Also note that the IMF is
algebraically equivalent to the equivalent measurement approach [6].

4.2 IMF with Reduced Communication Rate – IMFrcr

If the communication occurs only every n sampling times, equations (8)–(9) are
used with the following modification. The fused (central) estimate follows from

P (k|k)−1x̂(k|k) = P (k|k − n)−1x̂(k|k − n)

+

N∑
i=1

[P i(k|k)−1x̂i(k|k)− P i(k|k − n)−1x̂i(k|k − n)] (10)

The updated central covariance needed above is obtained in terms of the local
covariances as

P (k|k)−1 = P (k|k − n)−1 +

N∑
i=1

[P i(k|k)−1 − P i(k|k − n)−1] (11)

It should be noted that the above is no longer equivalent to the CTF — the
modified equations (10)–(11) are heuristic. As shown in [9], with full informa-
tion feedback, the IMFrcr diverges for extremely large values of process noise
variance. However, for practical levels of process noises, the IMFrcr was shown
to have consistent and close optimal fusion performance. Compared to the ex-
act T2TF fusion algorithms, the IMFrcr does not require the evaluation of the
crosscovariances between the tracks to be fused, which significantly simplifies the
implementation and makes it a good candidate for T2TF in practical tracking
systems. Next the generalization of the IMF for the problem of asynchronous
T2TF will be discussed.

4.3 Generalized Information Matrix Fusion for Asynchronous T2TF

The T2TF algorithms mentioned above assume that the local tracks are synchro-
nized. In practical distributed tracking systems, the synchronicity assumption
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can hardly be satisfied, which raises the problem of asynchronous track-to-track
fusion (AT2TF). In addition local tracks arrive at the FC with transmission de-
lays, which further complicates the fusion problem and the implementation of
information feedback. To address this problem, a generalized IMF (GIMF) for
AT2TF was presented in [18], and is reviewed next.

Without loss of generality consider the fusion of tracks from two asynchronous
local trackers 1 and 2. Tracker 1 is collocated with the FC (no communication
delay and information feedback to tracker 1). Tracker 2 is a remote tracker (with
communication delay; no feedback to it). Suppose at the fusion time tf one has

– track (x̂1(tf |tf ), P 1(tf |tf )) from tracker 1 (same as FC) and
– tracks (x̂2(t1|t1), P 2(t1|t1)) and (x̂2(t2|t2), P 2(t2|t2)) from tracker 2, t1 <
t2 ≤ tf ,

where t1 and t2 are the previous and current communication times from sensor
2.

According to the Generalized Information Matrix fusion (GIMF) the fused
track is given by

P (tf )
−1 = P 1(tf |tf )−1 +

[
P 2(tf |t2)−1 − P 2(tf |t1)−1

]
(12)

P (tf )
−1x̂(tf ) = P 1(tf |tf )−1x̂1(tf |tf )

+
[
P 2(tf |t2)−1x̂2(tf |t2)− P 2(tf |t1)−1x̂2(tf |t1)

]
(13)

where x̂(tf ) is the fused track at tf , P (tf ) is its covariance, x̂1(tf |tf ) and
P 1(tf |tf ) are the track and its covariance from tracker 1 at the fusion time
tf , x̂

2(tf |ti) and P 2(tf |ti) are the predicted local track 2 from ti to the fusion
time tf and the corresponding covariance, i = 1, 2.

In the presence of communication delay, information feedback to the remote
tracker 2 needs to be carefully handled. See [18] for the details of the implemen-
tation for both AT2TF with partial and AT2TF with full information feedback.
It was shown that the proposed GIMF based AT2TF algorithms yield consis-
tent and close to optimal fusion results. The following reasons contribute to the
applicability of the GIMF:

– The predicted information gain from track 2 quantified by[
P 2(tf |t2)−1 − P 2(tf |t1)−1

]
in (12), is due to the local measurements from

(t1 t2] and can be viewed as approximately independent from the other
tracks.

– The subtraction structure of the information gain
[
P 2(tf |t2)−1−P 2(tf |t1)−1

]
provides a desirable feature that cancels (approximately) its crosscorrelation
with other local tracks caused by the common process noises with the use of
prediction.

5 Heterogenous Track-to-Track Fusion

The previously discussed T2TF configurations and algorithms assume that the
local trackers use the same target state vector. In practical tracking systems, local
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trackers may use different motion models and state vectors, due to observability
issues (e.g., active vs. passive sensors).

A concrete example of such a situation is when (i) tracker 1 uses an active
sensor which is able to obtain range and azimuth measurements (full 2D or 3D
position, the latter requires elevation measurements as well) and its target state
vector comprises Cartesian position, velocity, etc. (ii) tracker 2 uses a passive
sensor with angle only measurements and its target state vector comprises an-
gular position, velocity and possibly acceleration.

5.1 The Heterogenous Track-to-Track Fusion Problem

Without loss of generality, consider the following state-space models

xi(k + 1) = f i[xi(k)] + vi(k) (14)

zi(k) = hi[xi(k)] +wi(k) (15)

at sensor i and

xj(k + 1) = f j [xj(k)] + vj(k) (16)

zj(k) = hj [xj(k)] +wj(k) (17)

at sensor j. In the above, fs[·] and hs[·], s = i, j, are different and can be
nonlinear; vs(·) and ws(·), s = i, j, are the process and measurement noises,
respectively.

The state vectors xi and xj are in different spaces. Let xi be the larger
dimension state. For example, one can have full Cartesian position and velocity
in 2-dimensional space for tracking with an active sensor

xi = [ x ẋ y ẏ ]′ (18)

and xj be the smaller dimension state (e.g., angular position and velocity for
tracking with a passive sensor)

xj = [ θ θ̇ ]′ (19)

These state vectors, in general, have the nonlinear relationship

xj Δ
= g(xi) (20)

The two sensors are assumed synchronized3 and the time index k for sampling
time tk will be omitted if there is no ambiguity.

3 Generalization to asynchronous sensors is possible [17], but the notations become
very cumbersome. Without considering the crosscovariance matrix, the extension to
asynchronous case is straightforward. If the crosscovariance matrix is considered (for
the configuration with no memory at the FC and no information feedback to the
local trackers), each track’s latest estimate available at the FC is predicted to the
fusion time and then they are fused using the appropriate covariance matrices.
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The corresponding estimates (approximate conditional means) at these het-
erogeneous local sensors are x̂i with (conditional) covariance matrix (the condi-
tioning is omitted for brevity)

P i Δ
= E[(xi − x̂i)(xi − x̂i)′] (21)

and x̂j with (conditional) covariance matrix

P j Δ
= E[(xj − x̂j)(xj − x̂j)′] (22)

The problem is how to carry out the fusion of the estimate x̂i with covari-
ance P i and the estimate x̂j with covariance P j to achieve better estimation
performance for the full state of interest xi.

5.2 The LMMSE Fuser

The approach to HT2TF discussed next is to use the linear technique based on
the fundamental equations of LMMSE estimation [2]. Considering the full state
estimate x̂i as the prior and the smaller state estimate x̂j as the measurement,
we have the LMMSE fused estimate

x̂i
LMMSE = x̂i + PxzP

−1
zz

[
x̂j − g

(
x̂i
)]

(23)

with the corresponding fused covariance matrix

P i
LMMSE = P i − PxzP

−1
zz P ′

xz (24)

where (the details can be found in [19])

Pxz
Δ
= E

[(
xi − x̂i

) (
x̂j − g(x̂i)

)′]

≈ P i(Gi)′ − P ij (25)

Pzz
Δ
= E

[(
x̂j − g(x̂i)

) (
x̂j − g(x̂i)

)′]

≈ P j −GiP ij − P ji(Gi)′ +GiP i(Gi)′ (26)

with Gi the Jacobian of g(xi)

Gi Δ
=

[∇xig(xi)′
]′
xi=x̂i (27)

and P ij the crosscovariance matrix

P ij Δ
= E[(xi − x̂i)(xj − x̂j)′] (28)
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5.3 The ML Fuser

Under the Gaussian assumption, the heterogeneous T2TF problem can be solved
by minimizing the negative log-likelihood function4 (NLLF) based on (20). The
LF of xi (the full state) is [6]

Λ(xi) = p(x̂i, x̂j |xi) = N
{[

x̂i

x̂j

]
;

[
xi

xj

]
, P−1

}
(29)

where

P =

[
P i P ij

P ji P j

]
(30)

Then the ML fused estimate is the solution of

∇xiL(xi) = 0 (31)

where
L(xi)

Δ
= − lnΛ(xi) (32)

Because of the nonlinearity of the function g(xi), there is no explicit expression
for the solution of (31). Consequently, (32) is minimized by a numerical search,
e.g., the gradient projection algorithm. The result is denoted as x̂i

ML and the
corresponding covariance matrix is

P i
ML =

([
I Gi

]
P−1

[
I
Gi

])−1

(33)

where Gi is defined in (27) and I is the identity matrix (4 × 4 in our case).

6 Example

Fig. 10 shows an example scenario (see [19] for details), where the active sen-
sor is located at

(−6× 104, 2× 104
)
m with sampling interval Ta = 5 s and the

passive sensor located at
(−5× 104, 4× 104

)
m with sampling interval Tp = 1 s.

Measurement noises from the two sensors are assumed to be mutually inde-
pendent zero mean white Gaussian noises with standard deviations σr = 20m,
σa = 5mrad for the active sensor, and σp = 0.5mrad for the passive sensor.

The tracker at the active sensor uses an IMM estimator with two modes:
mode 1, a linear nearly constant acceleration (NCV) model [2], and mode 2, a
nonlinear nearly coordinate turn (NCT) model [2]. The tracker at the passive
sensor uses a linear KF (rather than IMM estimator, because target maneuvers
are practically unobservable by the passive sensor). The motion model is the
discretized continuous Wiener process acceleration (CWPA) model (with angle,
angle rate and angle acceleration).

In [19] it was observed that for this (nonlinear) HT2TF problem

4 As it is pointed out in [8], the LMMSE T2TF approach is, in the linear Gaussian
case, optimal in ML sense.
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– The crosscorrelation of the estimation errors from heterogeneous local track-
ers is too complicated to capture — it can be positive or negative. The esti-
mation errors’ crosscorrelation has been examined by MC simulations.

– When using a LMMSE fuser, neglecting the track crosscovariance in HT2TF
leads to sometimes optimistic, sometimes pessimistic fused covariance. Note
this is different from the homogenous T2TF where neglecting the crossco-
variance between the local tracks will always result in optimistic fused co-
variance. This is because for linear systems the crosscorrelation coefficients
are always positive.

– When the configuration of fusion without memory and no information feed-
back is used, neglecting the track crosscovariance is a reasonable practical
choice, which yields little loss in fusion performance.

The results using x̂i
LMMSE with P i

LMMSE and x̂i
ML with P i

ML were found to
be practically the same so only the former is compared with the CTF which
processes all the measurements (from both the active and the passive sensor) in
the FC.

Fig. 11 compares the position RMSE of the HT2TF algorithm to that of the
CTF IMM tracker from 400 Monte Carlo runs. Surprisingly, the results show
that, in the scenario considered, the HT2TF is superior to the centralized IMM
tracker (CTF IMM) during the maneuver periods when the latter experiences a
spike in its error.

To explain this apparently counterintuitive result, Fig. 12 shows the maneu-
vering mode probabilities (NCT) in the active sensor IMM and CTF IMM. It
turns out that the use of the passive measurements in the CTF IMM “clouds”
the maneuvers because of low maneuvering index, which leads to the degraded
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performance of the CTF IMM filter. Specifically, as can be seen from Fig. 12,
when there is a maneuver, the maneuvering mode probability in the CTF IMM
rises slower and to a lower level than in the active sensor’s IMM. (Note that in
this example the passive sensor has a higher sampling rate than the active sensor
with Ta = 5 s and Tp = 1 s.) In the scenario considered, the freedom available to
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each local sensor to flexibly design a more suitable local estimator is what allows
the heterogeneous T2TF approach to achieve a better estimation performance
than the CTF IMM.

7 Conclusions

This chapter discusses the various architectures for track-to-track fusion (T2TF).
Based on whether the track estimates from the previous fusion are used by the
current fusion and the presence of information feedback, T2TF can be further
categorized into six configurations, namely, T2TF without memory with no,
partial and full information feedback, and T2TF with memory with no, partial
and full information feedback.

T2TF without Memory (T2TFwoM) uses only the latest local tracks. It has
a small loss in fusion accuracy compared to the centralized tracker/fuser (CTF)
regardless of fusion rate. It was shown that information feedback has a negative
impact on the accuracy of T2TFwoM.

T2TF with Memory (T2TFwM) uses both the latest local tracks and the
track estimates from the previous fusion. It is algebraically equivalent to the
CTF when operating at full rate. At reduced rates, it has a slight loss in fusion
accuracy compared to the CTF. In contrast to T2TFwoM, information feedback
has a positive impact on the fusion accuracy of T2TFwM.

The Information Matrix Fusion (IMF) is a special form of T2TFwM. It is
equivalent to the CTF at full rate. At reduced rates it is heuristic but performs
well for practical levels of process noises: it has near optimal fusion performance
and is consistent. For the fusion of asynchronous tracks in the presence of com-
munication delay, fusion algorithms were developed based on a generalized IMF,
which are easy to implement, support the use of information feedback and yield
consistent, close to optimal fusion results.

The Heterogenous Track-to-Track Fusion (HT2TF) problem involves the fu-
sion of tracks in different state spaces. Unlike in the conventional T2TF, the
crosscorrelations of local tracks have indefinite impact on the fuser-calculated
accuracy of the fused track. When an IMM tracker is used, HT2TF allows each
local sensor to flexibly design a more suitable local estimator which can lead to
a better estimation performance than the CTF.
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Abstract. Estimation of target maneuvers with unknown varying turning rate is 
considered. The modeling of the target's equations of motion takes into account 
the rotation of the velocity and acceleration vectors as the target maneuvers. 
This is more complex target maneuver than the simple turning maneuver.  The 
inclusion of the more detailed kinematic behavior of the maneuvering target 
creates nonlinear equations of motion.  The position, velocity, acceleration, 
jerk, angular rate and angular acceleration of the velocity vector are estimated. 
This is done without inclusion of the angular rate and angular acceleration into 
the state vector, but in separate equations. As the equations of motion are 
nonlinear the State Dependent Differential-Difference Riccati Equation based 
estimator (SDDRE) is implemented and compared to the Kalman Filter based 
on the constant-step acceleration target maneuver model. It is demonstrated via 
simulations for the two dimensional spiraling target maneuvers that the detailed 
modeling of the maneuvering target based filter-estimator has improved 
performance with respect to the Kalman Filter based on the constant-step 
acceleration target maneuver model. 

1 Introduction 

The issue of estimating a maneuvering target is widely treated subject. A 
comprehensive survey of models and estimators is presented in [1-5]. The simplest 
approach is to implement three independent Constant-Step acceleration filters (CA) or 
Exponentially Correlated Acceleration (ECA) filters [6], one filter for each 
coordinate. 

However these filters may not achieve the required performance for spiraling target 
maneuvers as they are not matched to these maneuvers, i.e. steady state errors are 
created.  

For more advanced estimators it has been understood that incorporating detailed 
information on the target dynamics and kinematics into the estimator's equations has 
the potential to increase the quality of estimation.  However, the inclusion of more 
detailed target maneuver model and the related constraints lead to nonlinear models. 
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Thus the Kalman Filter is not directly applicable. The most common approach to deal 
with nonlinear systems is the Extended Kalman Filter (EKF).  

In [7] the issue of pseudo measurements had been introduced and the Extended 
Kalman Filter was applied. In [7] it was pointed out that inclusion of a constraint is 
usually difficult to incorporate into the dynamic equation and it is much easier to 
incorporate them into the measurement equations. 

In [29] filtering techniques for spiraling target with almost constant angular rate 
and drag are considered.   

In this paper spiraling target maneuvers [9, 26] with unknown angular rate and 
angular acceleration are considered. One of the main and important issues is the 
estimation of the angular rate and angular acceleration. This is needed for achieving 
better matching of the estimator to the target maneuver. Derivation of high 
performance guidance law for this type of evading maneuver see [8].  

Although there are many publication on estimation of barrel roll target maneuvers, 
i.e. constant turning rate, there are no publication dealing with estimation of spiraling 
target maneuvers with unknown varying angular rate and angular acceleration. 

There are several options to model Spiraling Maneuver. Following [9] the target's 
spiraling maneuver is modeled as a constant absolute value (modulus) velocity 
rotating vector with increasing rotation frequency. This creates the acceleration and 
frequency profile as described in [9, figure 5]. 

The current approaches to estimation of nonlinear systems include many methods. 
A comprehensive survey of such methods applied to maneuvering target estimation is 
presented in [1-5]. For example: in [10] a multiple model approach is applied; in [11] 
algebraic constraint is incorporated in the state equations; and in [12] the IMM 
approach is applied for estimation of maneuvering target.  

In this paper the State Dependent Differential-Difference Riccati Equation 
(SDDRE) based estimator is applied to the nonlinear equations of motion based on 
onboard sensors. The authors are unaware of any publication estimating a 
maneuvering target by the SDDRE method. The SDDRE approach is very intuitive, 
although it is not optimal as shown for the State Dependent Algebraic Riccati 
Equation (SDARE) approach in [13-16]. In [27, 28] the SDARE has been used for 
angular rate estimation of satellites. The optimal filter requires additional terms for 
optimality [14-17]. Albeit the sub-optimality of the direct SDDRE approach it is 
known that the SDDRE based estimator is BIBO stable [18].  

The novelty in this paper is: 

i) Modeling of spiraling target maneuver based on the rotating constant 
modulus velocity vector with increasing frequency; 

ii) Derivation of the differential equations of the Snap (derivative of the 
Jerk); 

iii) Estimation of the turning rate and turning acceleration; 
iv) Application of the SDDRE to estimation of a spiraling target maneuver.  

The mathematical derivations are presented in the three dimensional space, 
however for simplicity the simulations are presented in two dimensions, i.e. planar 
target's maneuver. Simulations show that estimator based on the rotating velocity 
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kinematics equations of motion give better performance than the Kalman Filter based 
on constant acceleration target model. These simulations demonstrate the 
effectiveness of the proposed SDDRE based estimator. 

2 Problem Statement and Approach to the Solution 

The problem considered here is the state estimation of the nonlinear stochastic system 
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where x(t) is the state vector, z(t) is the measurement, w(t), v(t) are the white Gaussian 
stochastic processes representing the system driving noise and the measurement noise, 
respectively, x(to) is a Gaussian random vector, and 
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All vectors and matrices are of appropriate dimensions.  
The problem being considered here is finding the optimal estimate )(ˆ tx  as a 

functional of {z(t), to≤t≤tf} that minimizes the quadratic criterion: 
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2.1 Estimator for Linear System 

For the linear system  
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The solution of the preceding problem is the Kalman filter [19, 20].  
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2.2 Estimators for Nonlinear System 

For nonlinear systems there are several approaches. Here the State Dependent Riccati 
Equation (SDRE) [13-16] approach is considered. The SDRE approach is based on 
the dual of the SDRE based nonlinear control [16]. This approach parameterizes the 
state equation (2.1) into a linear structure called the State Dependent Coefficient 
Form, and is also called Extended Linearization. This approach includes the State 
Dependent Algebraic Riccati Equation (SDARE) based estimation and the State 
Dependent Differential-Difference Riccati Equation (SDDRE) based estimation. Then 

for linear measurement of the state, i.e. ( ) )()( tCxtxg = , the state equations (2.5) 

can be represented in the State Dependent Coefficients Form (SDC form) as 
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The SDRE/SDARE based estimator is [13]  
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This is a suboptimal estimator. The optimal estimator has additional terms as 
detailed in [14,15,16]. Here the discrete version of the following SDDRE based state 
estimator [18] is implemented.  
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The difference between the SDARE as applied in [14,15,16] , eq. (2.7), and eq. 
(2.8), the one implemented in this paper, is that in this paper the differential-
difference Riccati equation is used for computation of the gains (2.8) and not the 
algebraic Riccati equation (2.7) that is solved each  sampling interval. 

3 The Constant Acceleration Target Maneuver Model 

For comparison in this paper the performance of a most common estimator of target 
motion is presented. This estimator is based on the target Constant Acceleration (CA) 
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step target maneuver. The following dynamic model of the target-missile encounter 
[1,2,6] is assumed for the CA target manuver model. 

For each inertial coordinate it is assumed that 
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where 

x   - target position [m] 

x   - target velocity [m/s] 

Ta   - target acceleration [m/s2] 

)(twT  - target process driving noise (jerk) [m/s3] 

)(tv   - target measurement noise (glint) [m] 

z   - measured target position[m] 
 

The preceding assumes that the target performs an evasive maneuver (a stochastic 

process), that is, a step acceleration maneuver of amplitude 0Ta whose initiation 

instant is uniformly distributed in the interval [to,tf]. The continuous shaping filter 
[1,2,6] of this process is represented by 

  

),(twa
dt

d
sTcontinuouT =                                          (3.2) 

 

where the spectral density of the target maneuver (the process noise), )(twT , is  
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0Ta  - target step maneuver value [m/s2] 

ofm ttt −=  is the time interval over which the target is expected to take an 

evasive maneuver.  

4 Kinematic Equations of Spiraling Target 

Comprehensive survey of modeling the behavior of a maneuvering target can be 
found in [1-5]. Here one specific case is considered. 

A redundant set of assumptions with respect to maneuvering target behavior is: 

i. Constant absolute value of target velocity, constantvT =  ; 

ii. 0=⋅ TT av , velocity perpendicular to acceleration (aerodynamically 

controlled aircraft); 

iii. 0=⋅ TTv ω , velocity perpendicular to turning rate (angular velocity); 

iv. 0=⋅ TTv ω , velocity perpendicular to angular acceleration; 

v. no loss of target energy (constant altitude).  

4.1 The Kinematics as a Function of Velocity 

It is assumed that the target's velocity is expressed as 

vTT vv 1=                                                         (4.1) 

where 

Tv  - target velocity vector [m/sec] 

Tv  - absolute value of the target's velocity 

v1  - unit vector in the target velocity direction 

A.  Acceleration equations. First order equations of motion based on the target's 
velocity (4.1) are derived. As the target is maneuvering the velocity vector is 
rotating. The target's acceleration is given by [21] 
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Ta - target acceleration vector [m/s2] 

Tω - angular rate of the target velocity direction [rad/sec] 

B. Jerk equations – VJ. Second order equations of motion based on the targets 
velocity (4.1) are derived. As the target is maneuvering the velocity and 
acceleration vectors are rotating. The jerk (derivative of acceleration) is the given 
by [21,22]. This is called here Velocity based Jerk (VJ) equations of motion. The 
target's jerk is [21,22] 
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Tj  - target's jerk vector [m/sec3] 

 

Substituting  vTv 1 from (4.2) gives [22] 
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Tω - angular acceleration of the target velocity direction [rad/s2] 

and  

2

T
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v
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C. Snap equations – VS. Third order equations of motion based on the targets 
velocity (4.1) are derived. As the target is maneuvering the velocity, acceleration and 
jerk vectors are rotating. The snap (derivative of jerk) is derived-presented here. This 
is called here Velocity based Snap (VS) equations of motion. The target's snap is 
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Ts  - target's jerk vector [m/s4] 

Tω - angular jerk of the target velocity direction [rad/s3] 

 

Substituting  vTv 1 from (4.2) and vTv 1 from (4.4) gives  
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5 The Variance and Spectrum of the Glint Noise 

For simplicity it is assumed assume that the only measurement noise is the glint noise. 

The standard deviation of the glint noise, gσ , for uniformly distributed reflectors,  

is [23] 
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where 

D  - the effective linear dimension of the target perpendicular to the target-
missile LOS. 

L   - the linear dimension of the target perpendicular to the target-missile LOS. 
 

When frequency agility is applied at rate of fs=1/Ts [Hz], the spectral density of 
(stair type random stochastic process - i.i.d. sequence) the glint is given by [24] 
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where Ts is the sampling interval of the frequency agile radar. Therefore, the spectral 

density of the measurement noise, v(t), is 2 HzmVgo . 

6 Incorporation of the Kinematic Constraint 

The kinematic equation in section 4 is a constraint that can be incorporated into the 
estimator equations.  It is possible to incorporate the kinematic constraint into the 
state equation or measurement equation and the "unknown" quantities are interpreted 
as either a measurement noise or system driving noise. The approach here has the 
advantage that the kinematic constraint is incorporated in the system equations, the 
unknown is the system driving noise and the measurements are linear. The derivation 
here is in three dimensions although the simulations are performed in two dimensions. 
The following modeling and the assumptions in section 4 mean that the target's 
maneuver is modeled as piece-wise constant accelerating turning rate maneuver in 
target's coordinates. 

6.1 Velocity Based Snap Kinematic Equation 

With velocity based snap equations (4.6) it is assumed that 0=ω . Thus from (4.7) 
the kinematics of maneuvering target is modeled as 
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where Tw represents the deviation of the actual behavior of the target from the 

constant angular turning acceleration and constant absolute value of the velocity 
assumptions.  

The state space representation in the State Dependent Coefficient Form is in three 
dimensions 
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In two dimensions this reduces to 
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7 Planar Spiraling Target Maneuver Trajectory Model 

This section presents a model of a planar spiraling target trajectory. It is called here 
the Spiraling Evading Maneuver (SEM). The target moves with constant speed. At 
certain moment it starts a spiraling maneuver at constant speed (absolute value of the 
velocity) and constant altitude, i.e. in the (x-y) plane only. 
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The velocity of planar spiraling maneuver, similarly to [25], is modeled as 
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where 

 

TV  - Speed of the target [m/s] 

Toω  - The initial turning rate of the target's velocity [rad/s] 

Tα  - The turning acceleration of the target's velocity [rad/s2] 

ϕ  - Initial phase [rad] 

 
Then the position is given by 
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where (x,y,z) are the target's coordinates, and the rest of the variables are self 

evident. 

8 The SDDRE Based Discrete Estimator 

The discrete nonlinear stochastic system in the State Dependent Coefficient Form is 
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where x(t) is the state vector, z(t) is the measurement, u(t) is the input, w(t), v(t)  

are white Gaussian stochastic sequences representing the system driving noise and the 
measurement noise, respectively, xo is a Gaussian random vector, and 
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All vectors and matrices are of appropriate dimensions.  
The State Dependent Difference Riccati Equation (SDDRE) based estimator is for 

k=0,1,2,…, an adaptation of the State Dependent Differential Riccati Equation 
(SDDRE) 
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9 Simulation Results 

In this section the performance of the constant acceleration (CA) (3.1), and the 
velocity based snap (VS) equation based filters (section 6) are compared via 
simulations. The simulations are performed against the spiraling evasive maneuver. In 
effort to perform the comparison on common basis all simulation are performed for 
system driving noise (process noise) with power spectral density of 
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for sampling interval 
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and for measurement noise level of σg =3m. 
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The instantaneous frequency of the spiraling maneuver (7.1) is 
 

tTToz αωω +=  

 
Table 9.1 presents the parameters of the examples that are presented in this paper. 

The signal-to-noise ratio is the "power" of the target position divided by the noise 
power (ratio of half of the squared ratio of the radius of the maneuvering trajectory to 
the measurement noise standard deviation). However for spiraling maneuver this 
value changes. Therefore here the initial signal-to-noise ratio, (S/N)I, is used as a 
measure of the signal-to-noise ratio. 
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The "bandwidth" of the "SEM" filter can be approximately estimated by 

 

8
28

sg

VST

go

T
o T

W

V

W

σ
ω == . 

 

Table 9.1. Parameters of the examples 

 VT  
[m/s] 

ωΤο  
[rad/s] 

αΤ  
[rad/s2] 

σg  
[m] 

WT 
[(m/s4)2/Hz] 

(S/N)I 
[dB] 

ωo 
[rad/s] 

SEM 40 1 1 3 
100 

19 2.4 
SEM 100 1 1 3 27 2.4 

 
 

Simulation results in this section are presented for the spiraling evasive maneuver 
(SEM) for two cases as presented in table 9.1. 

Figure 9.1 presents the trajectories of the coordinated turn target maneuver. Figure 
9.2 presents the deterministic position tracking error. One can see that the CA filter 
develops a diverging tracking error while the VS filters have zero steady state error. 

Figure 9.3 presents the deterministic estimation error of the turning rate (ω) and 

acceleration (ω dot) of the maneuver. Again the CA filter develops a diverging 
estimation error while the VS filter has zero steady state estimation error. 
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Fig. 9.1. Trajectory of spiraling evasive maneuver 
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Fig. 9.2. Deterministic tracking position error of spiraling evasive maneuver 
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Fig. 9.3. Deterministic estimation error of the turning rate (ω) and acceleration (ω dot) of 
spiraling evasive maneuver 



 State Dependent Difference Riccati Equation Based Estimation 59 

 

Figure 9.4 presents the stochastic tracking. One can see that the CA filter develops 
higher tracking error than the VS filter thus demonstrating the improved performance 
of the based filter. Figure 9.5 presents the mean of the estimation error of the turning 

rate (ω) and acceleration (ω dot) of the maneuver with noisy measurements. Again 
the CA filter develops higher estimation error than the VS based filters. 
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Fig. 9.4. Stochastic RMS tracking position error of spiraling evasive maneuver 
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Fig. 9.5. Mean estimation error of the turning rate (ω) and acceleration (ω dot) for spiraling 
evasive maneuver with noisy measurements 

 
Figure 9.6 presents sample run of the estimates of the state in the x-coordinate for 

spiraling evasive maneuver with noisy measurements. The y-axis exhibits similar 
behavior with the corresponding shift of 90 degrees. The better performance of the 
VS based filters is demonstrated. 
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Fig. 9.6. Sample run of the estimates of the state in the x-coordinate for spiraling evasive 
maneuver with noisy measurements 

10 Conclusions 

Estimation of evading target maneuvers with unknown varying turning rate is 
considered. The equations of motion take into account the rotation of the velocity and 
acceleration vector as the target maneuvers. The inclusion of the more detailed 
kinematic behavior of the maneuvering target creates nonlinear equations of motion.  
The estimates of the target's state- position, velocity and acceleration, and the angular 
rate and acceleration of the velocity vector are derived. This is done without inclusion 
of the angular rate and acceleration into the state vector. As the equations of motion 
are nonlinear the State Dependent Differential-Difference Riccati Equation based 
estimator (SDDRE) is implemented and compared to the Kalman Filter based on the 
constant-step acceleration target maneuver model. It is demonstrated via simulations 
that the detailed modeling of the maneuvering target based filter-estimator have 
improved performance with respect to the Kalman Filter based on the constant-step 
acceleration target maneuver model. 

Appendix 

This appendix presents for the completeness of presentation derivation of the 
formulas of the turning rate and acceleration, together with the assumptions that are 
presented in section 4. 

The turning rate is derived 
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TTvT
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Abstract. A recursive filter for polynomial systems is derived, where
the bound on the mean square estimation error is explicitly calculated.
The derivation relies on the recently introduced theory of positive poly-
nomials. The general form of the filter is similar to the extended Kalman
filter, but the filter gain is calculated differently.

1 Introduction

The purpose of this paper is to present a recursive filter for a polynomial system.
The filter is in the form of the extended Kalman filter, but it inherently includes
bounds on the mean square error of the estimated states. The derivation relies
on the recently introduced positive polynomials [9], [10], [1], and the software
SOSTOOLS [11]. SOSTOOLS translates the problem to a semi-definite program,
which is readily solved by SeDuMi [13]. This set of software makes possible the
numerical calculation of the bounds used in this paper routine.

There have been many attempts to use polynomial approximations for non-
linear Kalman filters [14], [2], the latter also includes a bibliography of earlier
work. A barrier to these efforts has been the moment closure problem [12], [6].
The problem refers to the fact that the calculation of nth order moments of a
stochastic process requires the calculation of at least (n + 1)th order moments,
eventually leading to an infinite sequence of moments. In any practical appli-
cation of polynomial approximation in filtering, some rule for truncating this
infinite sequence is required. A popular method has been to assume that mo-
ments of higher order are related to lower order moments as if the underlying
probability density were Gaussian, [6].

An approach to estimation for cone bounded non-linearities was proposed in
[5,4,3]. The special feature of these papers, compared to the many publications
that deal with estimation for non-linear systems, is the derivation of an analytic
bound on the performance of the estimator, without requiring any sort of trun-
cation approximation. A different approach to nonlinear estimation is [8], which
is based on a special type of discretization of the exact equations of nonlinear
filtering.

The present paper derives similar performance bounds, without resorting to
truncating an infinite sequence, for estimators for the state of a non-linear system
whose right hand sides are polynomials. The use of SOSTOOLS to derive bounds
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on the moments and other nonlinear functions of jump diffusion processes was
initiated in [7]. The paper derived time varying bounds on nonlinear functions,
including moments, of the state of a polynomial system. In contrast to this, here
the derived bounds are solutions of differential inequalities. The use of these
bounds is more suited to state estimation than the time functions derived in [7].

The present paper is restricted to the simplest possible case. The system is
assumed to be first order, and only the simplest extended Kalman filter type
formulas for the propagation of the estimate. The observation equation is re-
stricted to being linear. The data processing uses a formula similar to the one
in the extended Kalman filter, but the filter gain is computed differently. The
contribution of the paper is the derivation of precomputable bounds on the mean
square error of the resulting filter. Thus the class of systems with precomputable
mean square bounds is expanded from the cone bounded non-linearities in [5,4,3]
to systems with polynomial right hand sides.

2 Problem Statement

Let

dx = f(x)dt+ g(x)dw (1)

be a scalar diffusion, f(x) and g(x) are polynomial functions, and w is a standard
Wiener process. The polynomials f(x) and g(x) are arbitrary, but the next as-
sumption ensures that all the moments of the random variable x exist, provided
that all the moments exist at the initial time.

Assumption 1. The highest order term of f(x)+g2(x) is odd, and its coefficient
is negative.

The variable y

y(Tk) = h1x(Tk) + vk (2)

is observed at regular intervals, defined by the sequence of times, {Tk}; and, vk
is a zero mean white noise sequence, independent of the state x, whose variance
is R. The aim is to derive an estimate for x, and bounds on its mean square
error from the observations y.

The functions f(x), g(x) are defined as

f(x) =

Nf∑
k=1

fkx
k (3)

g(x) =

Ng∑
k=0

gkx
k (4)



A Guaranteed Bound Filter for Polynomial Systems 67

3 The Data Processing Step

The update rule here is restricted to being linear, that is of the form

x̂(Tk) = x̃(Tk) +K [y(Tk)− h1x̃(Tk)] (5)

for some K, which is to be determined. Here the x̃ represents the predicted
value of the state variable and the x̂ the estimate of the state, after processing
the observation at time Tk. This rule is sub-optimal, nevertheless, a bound is
here derived for the mean square error after the update. Let

n(Tk) = h1x(Tk)− h1x̃(Tk) = −h1ẽ(Tk) (6)

where
ẽ(Tk) = x̃(Tk)− x(Tk) (7)

is the prediction error at time Tk. Then the error in the estimate ê after the data
processing step, using the update rule (5), is

ê(Tk) = x̂(Tk)− x(Tk) = x̃(TK) +K [n(Tk) + vk]− x(Tk)
= ẽ(Tk) +K [n(Tk) + vk]

(8)

The mean square error after the update is

Ek{ê2} = Ek−1{ẽ2}+K2Ek−1{n2}+K2R+ 2KEk−1{ẽn} (9)

where the subscript k on the expectation operator indicates conditioning on all
observations up to the kth observation, and the time subscript on all the variables
is Tk, but has been suppressed for readability. Let σ2

ẽẽ(x̃, Tk) be the bound on
the prior mean square error of the estimate, ẽ, at time Tk. Since only partial
information is available on the prior mean square error, a reasonable criterion
for choosing the gain K of the update rule is

min
K

max
Ek−1{ẽ2}≤σ2

ẽẽ

Ek{ê2} (10)

The expectations on the right hand side of (9) are readily calculated,

Ek−1{n2} = h2
1Ek−1{ẽ2} (11)

Ek−1{ẽn} = −h1Ek−1{ẽ2} (12)

The mean square error after the update evaluates to

Ek{ê2} = (1−Kh1)
2
Ek−1{ẽ2}+K2R (13)

The maximum for any K such that

1−Kh1 > 0 (14)
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is achieved at the maximum value of Ek−1{ẽ2}; namely, by substituting

Ek−1{ẽ2} = σ2
ẽẽ(x̃, Tk) (15)

The minimizing value of K is

K =
σ2
ẽẽ(x̃, Tk)h1

σ2
ẽẽ(x̃, Tk)h2

1 +R
(16)

so that (14) is satisfied for all Ek−1{ẽ2} ≤ σ2
ẽẽ(x̃, Tk). The value of the mean

square error after the update is

Ek{ê2} = R

(
REk−1{ẽ2}+ σ4

ẽẽ(x̃, Tk)h
2
1(

σ2
ẽẽ(x̃, Tk)h2

1 +R
)2

)
(17)

which, when the bound for Ek−1{ẽ2} is substituted, becomes

Ek{ê2} ≤ σ2
êê(x̃, Tk) (18)

where,

σ2
êê(x̃, Tk) =

Rσ2
ẽẽ(x̃)

σ2
ẽẽ(x̃, Tk)h2

1 +R
(19)

The σ2
êê(x̃, Tk) serves as the initial condition for the propagation of the bound

on the mean square error during the time update step. Note that

Ek{ê2} < Ek−1{ẽ2} (20)

so that a decrease in the mean squared error after each data processing step is
ensured.

4 The Time Update Step

Between measurements the estimate is propagated as

dx̃ = f(x̃)dt (21)

The initial condition for (21) is

x̃(Tk) = x̂(Tk) (22)

where x̂ was calculated in (5). This estimate propagation rule is not optimal,
but is the simplest to use. It forms the basis of the analysis here. The estimation
error propagates according to

dẽ = [f(x̃)− f(x̃− ẽ)] dt− g(x̃− ẽ)dw (23)

Note that x̃ can be calculated in (21), so that it is a known time function between
measurements. Suppose that functions A(x̃) and B(x̃) can be found such that

2ẽ [f(x̃)− f(x̃− ẽ)] + g2(x̃− ẽ) ≤ 2A(x̃)ẽ2 +B2(x̃) (24)
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Using the Ito rule [6] the error squared propagates according to

dẽ2 =
[
2ẽ [f(x̃)− f(x̃− ẽ)] + g2(x̃− ẽ)

]
dt− g(x̃− ẽ)dw (25)

Then taking expectations,

dEk−1{ẽ2} = Ek−1

{
2ẽ [f(x̃)− f(x̃− ẽ)] + g2(x̃− ẽ)

}
dt (26)

Hence the bound σ2
ẽẽ on Ek−1{ẽ2} evolves according to,

dσ2
ẽẽ =

{[
2A(x̃)σ2

ẽẽ +B2(x̃)
]
dt, A(x̃) ≥ 0

B2(x̃)dt, A(x̃) < 0
(27)

The initial condition for σ2
ẽẽ is from the last data processing step, (19), with

σ2
ẽẽ(Tk) = σ2

êê(Tk) (28)

When A(x̃) ≤ 0 equation (27) is a Lyapunov equation. An interpretation of
A(x̃) and B(x̃) is that between measurements, the covariance of ẽ in the linear
stochastic differential equation

dẽ = A(x̃)ẽdt+B(x̃)dw (29)

dominates the covariance of ẽ in (23), for a given value of the covariance. Equa-
tion (27) is the differential equation normally used to propagate the covariance
in the Kalman filter.

4.1 Calculating A(x̃) and B(x̃)

Ideally the most desirable A(x̃) and B(x̃) is the one that results in the tightest
bound in (24), that is the least upper bound is sought. The first step in the
exposition is to show that there always exists A(x̃) and B(x̃) that satisfies (24).

When f is a linear function of x, and g is constant, there is no need to
calculate a bound, therefore this possibility is not considered here. Choose A(x̃)
be an arbitrary function. Then from Assumption 1 there exists ẽM (x̃), such that

2ẽ [f(x̃)− f(x̃− ẽ)] + g2(x̃− ẽ) ≤ 2A(x̃)ẽ2, ∀|ẽ| > eM (x̃) (30)

since the highest power of the polynomial on the left hand side of (30) is even and
its coefficient is negative, the polynomial is bounded above, and for sufficiently
large |ẽ| the highest power, and its coefficient dominate. Since the left hand side
of (30) is bounded from above, there exists B(x̃) such that (24) holds ∀ẽ.

To calculate the least upper bound, the MATLAB toolbox SOSTOOLS [11]
is available. Using the toolbox the problem is formulated as

min
A,B

λAA(x̃) + λBB
2(x̃) (31)

subject to (24). For each value of λA and λB a different bound is obtained.
Alternatively, A(x̃) may be fixed at some value and the criterion is simplified to

min
B

B2(x̃) (32)



70 G. Hexner, I. Rusnak, and H. Weiss

Assumption 1 ensures that both problems have solutions. When implementing
the filter this calculation needs to be carried out for all the relevant values of x̃
off-line, and stored in tables.

There are two special cases of some interest. Suppose that A(x̃) is chosen as

A(x̃) =
∂f(x̃)

∂x̃
(33)

Then A(x̃) is the value often used in covariance propagation of the extended
Kalman filter. Then the optimization problem (32) amounts to calculating the
minimum value of the process noise for the extended Kalman filter to ensure that
the mean square error of the extended Kalman filter is less than the calculated
bound. Note that the present filter is not necessarily unbiased.

Another interesting value for A(x̃) is

A(x̃) =
f(x̃)

x̃
(34)

Now the minimum value of the process noise is calculated to ensure that the
mean square error of the state dependent Riccati equation (SDRE) filter is less
than the calculated bound.

5 Outline of the Filter Algorithm

In this section , the algorithm is summarized. The summary of the algorithm is
shown in Table 1. Note that it includes an off line step, where the functions A(x̃)
and B(x̃) are calculated. Once the algorithm is started after the first measure-
ment, it cycles between the steps “Measurement update”, and “Time update”,
similar to the standard extended Kalman filter. A crucial difference between the
extended Kalman filter and the new proposed algorithm is that the extended
Kalman filter calculates an approximation to the estimate covariance, whereas
the present filter calculates a bound on the mean squared error of the estima-
tion error. The estimate may be biased, nevertheless the calculated mean square
error bound is valid. In the following paragraph the equations of the algorithm
are collected.

Table 1. Summary of the algorithm

Step Description Equation

Off line Bound calculation (31), (24)
Measurement Update Gain calculation (16)

Update state (5)
RMS bound calculation (19)

Time Update Propagation of the estimate (21), (22)
RMS error bound propagation (27), (28)
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Off Line
Calculate the bound

min
A,B

λAA(x̃) + λBB
2(x̃)

subject to

2ẽ [f(x̃)− f(x̃− ẽ)] + g2(x̃− ẽ) ≤ 2A(x̃)ẽ2 +B2(x̃)

for all relevant values of x̃.

Measurement Update
Gain Calculation:

K =
σ2
ẽẽ(x̃, Tk)h1

σ2
ẽẽ(x̃, Tk)h2

1 +R

Update estimate
x̂(Tk) = x̃(Tk) +K [y(Tk)− h1x̃(Tk)]

Mean square bound calculation:

σ2
êê(x̃, Tk) =

Rσ2
ẽẽ(x̃, Tk)

σ2
ẽẽ(x̃, Tk)h2

1 +R

Time Update
Propagation of the estimate

dx̃ = f(x̃)dt

with the initial condition
x̃(Tk) = x̂(Tk)

Mean square error bound propagation:

dσ2
ẽẽ =

{[
2A(x̃)σ2

ẽẽ +B2(x̃)
]
dt, A(x̃) ≥ 0

B2(x̃)dt, A(x̃) < 0

with the initial condition

σ2
ẽẽ(x̃, Tk) = σ2

êê(x̃, Tk)

6 An Example

The example chosen to illustrate the bound filter is the following: The underlying
continuous time process is generated by the stochastic differential equation,

dx = x(c2 − x2)dt+ gdw (35)

while the discrete time observations are generated by the equation

y(Tk) = x(Tk) + v(Tk) (36)
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Fig. 1. The stationary probability density of continuous time process

Table 2. Parameter values in the example

Parameter Description Value

c — 2
g process noise intensity 2
R observation noise variance 16
Tk − Tk−1 time between observations 0.025
λA weight for calculating bound 1
λB weight for calculating bound 0.1

Note that in (35) there are three critical points, at x = −c, x = 0, x = c.
The critical point at x = 0 is repulsive, while the remaining two are attractive.
The stationary probability density of x is shown in Fig. 1. It was obtained
from a 10000 sample Monte-Carlo simulation of (35) between 0 and 10 s, with
initial condition x = 0 at t = 0. The time interval is sufficiently long to achieve
stationary probability density. The values of the parameters used in the example
are shown in table 2.

To illustrate the bound the left and right hand sides of the inequality (24)
were plotted for λA = 1 and λB = 0.005, 0.01, 0.05, 0.1. The resulting plots are
shown in Fig. 2, for x̃ = 0. The bold line is a plot of the left side of (24), and
the dotted lines are the values of the bounding quadratic function. The values
of A and B as a function of x̃ are plotted in Figs. 3 and 4.

Figs. 5 and 6 show the estimation errors and the 1σ values of the error for
the new bound based filter and for the traditions extended Kalman filter. These
graphs were obtained by averaging the results of 250 Monte-Carlo simulations.
The mean sample squared error and the average standard deviation of the error



A Guaranteed Bound Filter for Polynomial Systems 73

−10 −8 −6 −4 −2 0 2 4 6 8 10
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
x 10

4

e

 

 

λ
B
=0.005

λ
B
=0.01

λ
B
=0.05

λ
B
=0.1

diff eq
apprxs

Fig. 2. Illustration of the bound for the example
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Fig. 6. Sample run for the extended Kalman filter
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Fig. 8. Extended Kalman filter: Root mean square error (dotted line) and average filter
calculated error standard deviation (full line)

in calculating the gains of the bound based filter and the extended Kalman
filter are shown in Figs. 7 and 8 respectively. The level of process noise used
in the extended Kalman filter was that given by the value of g. Note that for
the bounded filter case the filter calculates a conservative estimate for the error
standard deviation; whereas, for the extended Kalman filter the calculated error
standard deviation severely underestimates the sample standard deviation. It
may be possible to increase the value of the process noise and thereby improve
the correspondence between the sample mean squared error and the covariance
calculated by the filter.

7 Summary and Conclusions

The paper presents a new filter for estimating the state of a system with polyno-
mial dynamics, and linear measurements. The filter is in the form of an extended
Kalman filter, but the calculation of the gain differs from the commonly used
filter gain calculation of the extended Kalman filter. An integral part of the new
gain calculation is the generation of guaranteed bounds for the mean squared
estimation error. The calculation of the bound relies on the recently introduced
theory of positive polynomials, and the sum of squares approximation for test-
ing their positiveness. The estimate is not necessarily unbiased, nevertheless the
mean square error between the estimate and the true value, of the state, satisfies
the calculated bound.

It is worth noting that for the class of systems considered in this paper the
last part of section 4, which considers the A(x̃) derived from the EKF and
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SDRE based filter, has a special meaning. It can be interpreted as a proof of the
existence of a process noise value that renders the calculated filter error variance
a valid bound of the filter error.
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Abstract. The area known as model updating is concerned with the correction 
of analytical models of flexible structures, mostly finite element by processing 
test data. The topic is of great practical and theoretical importance and a large 
number of methods have been suggested over the last decades. Reference basis 
is one of the main approaches to model updating. Its underlying principle is to 
fix certain quantities and minimize the changes of the others while matching the 
measured eigendata exactly. The method was first introduced in a seminal paper 
of Baruch and Bar-Itzhack and immediately became a subject of extensive re-
search activity. The current paper presents the classical reference basis method 
and some later results that were inspired by it.  

Keywords: Model updating, flexible structures. 

1 Introduction 

Accurate models are essential in analyzing flexible structures, such as airplanes, space 
equipment, car bodies and modern bridges systems. The model enables prediction of 
the behavior under various excitations, boundary conditions and parameter changes 
and design of control systems. Analytical models, typically obtained by Finite Ele-
ment method, inevitably deviate from the true model due to uncertainties in geometry, 
material properties, boundary conditions, etc.  Consequently the natural frequencies 
and modeshapes that are extracted from the test results do not agree with the predicted 
values from the analytical model.  It should be noted that the experimental results are 
always partial, so even if they are assumed to be absolutely accurate, which is far 
from being true, they still cannot be the sole source of the final model. Model updat-
ing is the process of using the test results to correct the model so that it agrees, either 
completely or approximately, with the experimental data. In broader terms, it can be 
described as fusion of two sources of information, both inaccurate and possibly in-
complete, to obtain a better model. 

A wide variety of model updating methods have been suggested, and a comprehen-
sive survey of them can be found in [2]. They range from formal use of system identi-
fication, which, to a certain degree, completely disregards the analytical model [3], to  
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methods that use the entire frequency response function (FRF) [4]. Most approaches 
though do incorporate the analytical model and their starting point is the eigenvalue 
equation that should be satisfied. The notion of satisfying the equation is not unique 
however and has three main interpretations. Sensitivity methods, e.g. [5-7] aim at 
matching the solution of the equation, i.e. natural frequencies and modeshapes, with 
the experimental data. The dependence of the natural frequencies and modeshapes on 
the physical parameters is calculated either numerically or analytically. This method 
is presumably the most popular among practitioners.  

A second approach is minimizing the equation error. This is the common theme in 
the class of methods known as Minimization of the Error in the Constitutive Equa-
tions (MECE), which minimize the difference between the static stiffness forces and 
the dynamic inertia forces [8-10]. With parameterization that is similar to the one in 
sensitivity methods, the various methods in this class differ mainly in the weighting of 
the error (residual force). 

In Reference Basis (RB) methods perfect satisfaction of the eigenvalue equation, 
with the measured data, is required. With certain parameters that are assumed to be 
accurate, hence reference basis, the minimal change of the free quantities, typically 
stiffness, from their analytical values is sought. In mathematical terms, the minimal 
deviation requirement defines the optimization criterion while the characteristic equa-
tion is the constraint. The method was first introduced in the seminal paper of Baruch 
and Bar-Itzhack [1] and soon after was followed by several other publications of Ba-
ruch [11, 12] and Berman [13-15]. The main advantages of the reference basis me-
thods are their ability to match the measured natural frequencies and modeshapes and 
the mathematical and numerical convenience. They provide closed form solutions, 
requiring only elementary matrix operations and inversion of low dimension matrices. 
The main disadvantage of the original methods is that they do not take into account 
any dependence of the matrices on physical properties, i.e. do not preserve the con-
nectivity of the system. Perhaps the first attempt to solve this problem was given in 
[16] that minimizes a similar criterion yet imposes certain connectivity on the stiff-
ness matrix. The updated stiffness matrix is closer to the true one, provided that the 
assumed connectivity is correct, however the method requires an extremely large 
number of parameters and involves the solution of a set of equations whose dimension 
is orders of magnitude larger than the number of measured modes. A similar problem 
was solved in [17] with a projection based, more efficient, algorithm. 

This paper presents some improved and generalized versions of the main results in 
the reference basis methods, presented by the author and his colleagues in the last 
fifteen years. In [18], Kenigsbuch and Halevi introduced the generalized reference 
basis (GRB) that offers more flexibility by using a general weight instead of the mass 
matrix in the original RB. This result was heavily used by Halevi and Bucher in [19] 
in which RB and the parametric optimization, used in other methods, were merged in 
the connectivity constrained reference basis (CCRB) method. The updated model is 
found using RB methods but has the required connectivity. Taking the same idea one 
step further, Halevi, Vilensky and Datta [20] derived a direct method, called manifold 
distance minimization (MDM) that defines the sets of models that have the correct 
structure and models that yield the measured data, and look for the minimum distance 
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between them. A technical simple example is used throughout the paper to demon-
strate the use of the various methods and for comparison of their performance.  

The material is organized as follows. The model updating problem is stated in sec-
tion 2. Section 3 gives a short introduction to reference basis following Baruch and 
Bar-Itzhack [1]. The generalized reference basis method is given in section 4, the 
connectivity constrained reference basis in 5 and the manifold distance minimization 
in section 6. The results are briefly summarized and discussed in section 7. 

2 The General Model Updating Problem 

Consider a conservative, i.e. without damping, flexible structure with N degrees of 
freedom (dof). Let the ‘true’ equations of the system be 

 ( ) ( ) ( )T TM x t K x t f t+ =  (1) 

where x∈RN is a vector of generalized displacements and MT>0 and KT≥0 are the mass 
and stiffness matrices respectively. Clearly the absolutely accurate model of the sys-
tem is non-linear, infinite dimensional, damped, etc., so ‘true’ means here accurate 
enough for all practical purposes. The natural frequencies ωi and the modeshapes φi 
satisfy the eigenvalue equation 

 2( ) 0 , 1, ,T T i iK M i Nω φ− = = …  (2) 

It is well known that the modeshapes are orthogonal w.r.t the mass matrix so with 
appropriate normalization of their length  

 T
i T j ijMφ φ δ=  (3) 

The analytic model of the system, usually obtained by finite elements, is given by 

 ( ) ( ) ( )A AM x t K x t f t+ =  (4) 

where in general MA≠MT and KA≠KT.  
The result of a modal test of the system are m (m<N) natural frequencies, ωxi, and 

m modeshapes φxi. Since not all dof’s of the model are measured, in general the meas-
ured modeshapes contain only a partial set of Nx ≤ N of values of those vectors. The 
modal experimental data thus consists of two matrices: A diagonal matrix Ωx∈Rm×m of 
the measured natural frequencies and a full matrix Φx∈RNx×m containing the values of 
the modeshapes at the measured dof’s. 

The most general statement of the model updating problem is how to combine the 
analytic information MA, KA and the experimental results Ωx, Φx to obtain a model 
which is more accurate. More specifically, how to find M(MA, KA, Ωx, Φx) and K(MA, 
KA, Ωx, Φx) that are close to MT, KT.  
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3 Reference Basis Model Updating 

In this section the results of Baruch and Bar-Itzhack [1] are repeated. Three assump-
tions are first made.   

Assumption 1: The measured modeshapes contain all the dof’s, i.e. Nx=N. This does 
not necessarily mean that all dof’s are measured, which is usually unrealistic, but 
rather that a preliminary step of expansion or reduction [21-24] has already been ap-
plied to the partial (dof wise) set of modeshapes or to the model. 

Assumption 2: The measured natural frequencies are correct, i.e. Ωx = ΩT = Ω. The 
physical justification for this is that natural frequencies are global variables, which are 
common to all measurements in the system and therefore after processing their error 
is relatively small. 

Assumption 3: The mass matrix is correct, i.e. MA=MT =M. The physical justification 
for this is that the mass is usually known better than the stiffness since it involves 
mainly geometry. However, in some cases that will be discussed later this assumption 
was replaced by another or even removed. 

Assumptions 2 and 3 provide the “reference basis” for the updating algorithms in 
the next two sub-sections.  

3.1 Orthogonalization 

The first step towards stiffness updating is correcting the measured modeshapes so 
that they satisfy the orthogonality condition. Though not required specifically by the 
algorithm it is assumed for practical reasons that each modeshape has already been 
scaled individually so that φxi

TMφxi =1. With M as a reference basis, the problem is 
formulated as follows 

 
( )1 2min

.

X F

T

J M

s t M I

Φ
= Φ − Φ

Φ Φ =
 (5) 

Where F denotes the Frobenius norm. The solution was found using Lagrange multip-
liers and is given by  

 ( ) 1 2T
X X XM

−
Φ = Φ Φ Φ  (6) 

3.2 Stiffness Updating  

With M andΦ, that are assumed to be accurate, as reference basis, the updating of K 
follows two principles. First, the eigenvalue equation should be satisfied exactly, 
which means that the natural frequencies and modeshapes of the updated model coin-
cide with the measured values. Secondly, among all stiffness matrices satisfying that 
the method seeks the one with minimum change from the analytical model. The opti-
mization problem is therefore as follows.   
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( ) 21 2 1 2

2

min

.

A FK

T

J M K K M

s t K M
K K

− −= −

Φ = ΦΩ
=

 (7) 

The solution, which was obtained by means of Lagrange’s multipliers, is given by 

( ) ( ) ( )2 2 2TT T T
A A A AK K K M M M K M M K M= − Φ − ΦΩ Φ − Φ Φ − ΦΩ + Φ Φ Φ − Ω Φ

  (8) 

To summarize, the reference basis has the following main advantages. 

─ It matches the measured (processed) eigendata exactly. 
─ It provides closed form expressions. 
─ The amount of calculation is small. Only matrix multiplications and summation in 

the stiffness updating and a single inversion in the dimension of the measurements 
in the modeshapes orthogonalization are required.    

3.3 Alternative Formulation – Mass Matrix Update 

The procedure in sub-section 3.1 is based on the assumption that the mass matrix is 
known exactly and the modeshapes are corrected to ensure an orthogonal set with 
respect to it. Berman [13] claimed that after model reduction this is not necessarily so 
and suggested to use the stiffness matrix in the orthogonalization. In [15] the roles of 
the mass matrix and the measured modeshapes are reversed. It is assumed that the 
measured modeshapes are exact, and the mass matrix is corrected accordingly. The 
optimization problem of that formulation becomes 

 
( )1/ 2 1/2min

.

A A A FM

T

J M M M M

s t M I

− −= −

Φ Φ =
 (9) 

With the solution 

 1 1( ) ( )( )T T T T
A A A A A AM M M M I M M M− −= + Φ Φ Φ − Φ Φ Φ Φ Φ  (10) 

The updated M is then used in the stiffness updating in sub-section 3.2 without any 
further change. 

4 Generalized Reference Basis 

The advantages of the reference basis method were listed in the previous section. 
However, its lack of ability, in its original form, to maintain the correct connectivity 
was labeled by both researchers and practitioner as a major disadvantage. This is 
demonstrated by the following simple example. 
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Fig. 1. A simplified model of a flexible system 

Example: The system shown in Fig. 1 contains five masses and six springs and can be 
regarded as an approximation of a rod in tension or torsion. The mass and stiffness 
matrices are given by  
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The true numerical values are m=1, k1=k3=k4=k5=k6=50, k2=70, whereas in the analyt-
ical model, m=1, and ki=50, i=1,…6. The true and analytic stiffness matrices are then  

,

120 70 0 0 0 100 50 0 0 0
70 120 50 0 0 50 100 50 0 0

0 50 100 50 0 0 50 100 50 0
0 0 50 100 50 0 0 50 100 50
0 0 0 50 100 0 0 0 50 100

T AKK = =

− −⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥− − − −
⎢ ⎥ ⎢ ⎥− − − −⎢ ⎥ ⎢ ⎥

− − − −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦

 

The experimental data consists of the first two natural frequencies and mode-
shapes. This technical example will be used throughout the paper to demonstrate the 
properties of the various updating algorithms. Applying the reference basis algorithm 
to this example resulted in 

 

50.61 1.96 1.72 1.01
50.61 103.01 48.28 1.51 0.88
1.96 48.28 99.83 50.15 0.09
1.72 1.51 50.15 99.87 50.08
1.01 0.88 0.09 50.08 99.95

97.88

RBK =

− − −
− −

− − −
− − −
− − −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

As can be seen the updated matrix is not close to the true one neither in structure 
nor in its values. The change from the analytical model is minimal, yet sufficient to 
match exactly the first two natural frequencies and modeshapes. Furthermore, the 
matrix contains stiffness elements that are clearly non-physical.  

One of the key features of reference basis is the use of the inverse of the mass ma-
trix as the weight in the optimization criterion (7). This choice has a physical justifica-
tion, and it is convenient for the derivation because of the orthogonality condition 
ΦTMΦ =I. However, as was shown by the example, it does not always lead to good 



 Reference Basis Model Updating – Following the Baruch and Bar-Itzhack Approach 85 

 

results. Kenigsbuch and Halevi [18] introduced the generalized reference basis (GRB) 
that offers more flexibility by using a general weight W >0. The problem is defined as 

 
( ) 21 2 1 2

2

min

.

A FL

T

J W K K W

s t K M
K LL

− −= −

Φ = ΦΩ
=

 (11) 

The second constraint requires non-negativity of the updated stiffness matrix rather 
than only symmetry as in previous works. The solution of this problem, that involves 
some matrix operations, is given by 

 ( ) ( ) ( )2 2 2TT T T
A A A AK K K M R R K M R K R= − Φ − ΦΩ − Φ − ΦΩ + Φ Φ − Ω  (12) 

where  

 ( ) 1TR W W
−

= Φ Φ Φ  (13) 

R is a right inverse of ΦT whose ‘angle’ depends on the weight W. If W=M, as in RB, 
then R=MΦ and (12) coincides with (8). A second form of expressing the same up-
dated K is 

 ( ) ( ) ( )2 2TT T T T
AK M M I R K M M I R= ΦΩ Φ + − Φ − ΦΩ Φ − Φ  (14) 

Both (12) and (14) have a structure of predictor-corrector. In (12) KA is interpreted as 
the a priori estimate and the experiment results Φ and Ω are the new data. In (14) the 
roles are reversed and MΦΩ2ΦT M is the a priori estimate, partial in this case, and KA 
is the new data. The form (14) has also a geometrical interpretation. To see this, de-
fine the complete set of natural frequencies and modeshapes as ΦF=[Φ  Φu] and 
ΩF=diag{Ω, Ωu} where Φu and Ωu are the unmeasured quantities. Then 

 
2

2 2

T
T F F F

T T
u u u

K M M

M M M M

= Φ Ω Φ

= ΦΩ Φ + Φ Ω Φ
 (15) 

Notice that KA-MΦΩ2ΦTM is an approximation of the contribution of the unmeasured 
part that is given in the last term in (15) and is equal to it when KA is accurate, i.e. 
KA=KT. Since R is a right inverse of ΦT, I-ΦRT is a projection into a subspace ortho-
gonal to Φ. Thus K has an accurate part (the first term) in a subspace defined by the 
measured modeshapes Φ and a correction part, projected into a subspace orthogonal 
to Φ. In case KA=KT, the difference already belongs to that subspace and therefore 
remains unchanged by the projection. The weight W affects only the ‘angle’ of the 
projection but not its image. However, as will be demonstrated in the sequel, this has 
a strong effect on the results.  
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GRB is now applied to the same example. Suppose that it is somehow known in 
advance that the inaccuracy lies in the first two dof’s and therefore the weight is cho-
sen as 

 { }, ,1,1,1W diag a a=  (16) 

a=1 is the same as RB, and as it increases the updated stiffness K gets closer to the 
true values and structure of the stiffness matrix. For example, for a=100 and a=1000 
we have  

 

100

1000

112.98 -64.02 -0.37 -0.59 -0.45

-64.02 114.91 -49.68 0.50 0.38
-0.37  -49.68 99.98 -50.03 -0.02
-0.59 0.50 -50.03 99.95 -50.04
-0.45 0.38 -0.02 -50.04  99.97

119.72 -69.76 -0.01 -0.02 -0.02
-69.76 119.80 -49

K

K

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

=
.99 0.02 0.02

-0.01  -49.99 100.00 -50.00 -0.00
-0.02 0.02 -50.03 100.00 -50.00

-0.02 0.02 -0.00 -50.00 100/00

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

  

The generalized reference basis method [18] has also two other results that are not 
given here; a counterpart of the orthogonalization procedure with general weight in-
stead of the matrix M and an algorithm for simultaneous updating of the mass and 
stiffness matrices.    

5 Generalized Reference Basis with Connectivity Constraints 

5.1 Connectivity 

The stiffness matrix has usually inherent connectivity properties. In their simplest 
form, which we call zero-nonzero connectivity, some of the entrees should be identi-
cally zero. Let I0 be the set of entries of the stiffness matrix which are known to be 
identically zero. Then this type of connectivity is defined formally by  

 00 ,ijK i j I= ∀ ∈  (17) 

Further connectivity requirements exist in the structured connectivity case, where 
certain relationships between the nonzero elements of the stiffness matrix should 
hold. Hence the model is actually determined by a smaller set of parameters. As an 
example, in the case of n masses connected serially by springs in a fixed-fixed form, 
as in our example, the stiffness matrix is completely determined by the n+1 spring 
constants with the requirement that the sum of each row, except the first and last, is 
zero. Similar conditions arise from the Finite Element structure. Following the 
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framework suggested in many publications, e.g. [5], it is assumed that the stiffness 
matrix depends on the free parameters linearly 

 
1

p

A i i
i

K K Kα
=

= +∑  (18) 

where Ki are given matrices and αi are scalar parameters, nominally equal zero. In 
case the true dependence on the parameters is nonlinear, eq. (18) can be viewed as 
linearization, assuming small deviations. In [5-7], as well as in other publications, the 
problem was solved using sensitivity methods which minimizes the error between the 
measured eigendata and the same variables when obtained using K(α). Setting up  
the problem with the RB criterion and the parameterization (18) is straightforward.  

 

( ) 21 2 1 2

2

1

min

. .

A F

p

A i i
i

J W K K W

s t K M

K K K

α

α

− −

=

= −

Φ = ΦΩ

= +∑
 (19) 

Getting a solution, on the other hand, is hard if not impossible. The main problem 
with (19) is that the number of parameters that are required to satisfy the constraint 
equation is in the order of the number of dof’s, which is unrealistic. Furthermore, all 
the nice properties of RB, including closed form solution, and low order matrix inver-
sion are no longer valid. In this section we follow the results of Halevi and Bucher 
[19] that adopted the parametric modeling philosophy, but used different means to 
solve the problem. 

5.2 Implicit Parameterization by Weighting Matrix Adjustment  

Considering for simplicity a diagonal weighting matrix W=diag{wi}, the cost function 
in eq. (11) is a weighted sum of the deviations of K from KA. More specifically,  

 ( )21 1
,

1 1

n n

i j ij A ij
i j

J w w K K− −

= =

= −∑∑  (20) 

If wi is large, a unit change in the i-th degree of freedom results in a small contribu-
tion to J and vice versa. The optimization machinery will therefore automatically try 
to direct the changes to areas with large wi and to avoid changes in areas where wi is 
small. The conclusion from this intuitive analysis is that the weighting matrix W pro-
vides means of restricting the updating to the desired dof’s in a soft manner. This set 
of dof’s can be a result of either a priori or a posteriori knowledge. Sometimes it is 
clear that certain areas are better modeled than others. In such cases wi

-1 is a confi-
dence measure of the model of that dof.  

In this paper we consider the other possibility, i.e. a priori equal confidence in all 
dof’s. The selection of the weighting matrix is then based on detection, rather than 
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expectation, and the specific tool which is going to be used is error localization. There 
exist a variety of error localization methods, e.g. [8, 25], and the output of all of them 
is, or can be translated to, a numerical value describing the magnitude of the error in 
that dof. We consider here the eigenvalue equation error as such indicator but other, 
more sophisticated, methods can be applied as well without any effect on the general 
scheme. Let di be proportional to the norm of the i-th row of the eigenvalue equation 
error matrix.  

 ( )2

,*i i A i
d c K M= Φ − ΦΩ   (21) 

where the ci are constants that can be used as normalization factors  for non-identical 
dof’s, such as displacements and angles, or to contain any a priori knowledge. W is 
selected as  

 { }iW diag d β=   (22) 

Where β is a parameter for adjusting the updating procedure. For β=0, W becomes the 
identity matrix and all dof’s are treated equally. As β increases, areas with larger er-
rors in the eigenvalue equation are more and more emphasized. In case the mode-
shapes contain some noise, too large values of β tend to increase it, hence in general 
there is a finite optimal β. 

5.3 A Posteriori Connectivity Assignment 

The main idea of connectivity constrained reference basis (CCRB) [19] is applying 
the connectivity constraints after the standard GRB updating procedure. Clearly this 
is wrong from pure mathematical considerations; however from practical point of 
view the procedure combines the best features of both reference basis and parametric 
approaches. The starting point is a GRB update K, given by eq. (12) or (14), that does 
not satisfy the connectivity constraints. This update will be replaced by Kcon that satis-
fies the connectivity constraints, and is closest to K. The following optimization prob-
lem yields that Kcon. 
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1
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con F
p

con A i i
i

J K K
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α

α
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= −

= +∑
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This problem is easily transformed into least squares with the closed form solution  
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 (24) 
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Let us define now two measures of the quality of the update. The ‘updating cost’ Jup is 
the distance between the updated stiffness matrix and the true one.  

 T con F
up

con F

K K
J

K

−
=  (25) 

This cost requires knowledge of the unknown KT, thus cannot be calculated in real 
applications. It can serve in simulations as a measure of the quality of the updated 
model.  

The difference between K, that satisfies all the updating requirements, except for 
connectivity, and Kcon can be regarded as ‘payment’ for invoking connectivity. It is 
termed the ‘connectivity cost’. Several criteria can be defined for that purpose [19], 
e.g. the deviation in natural frequencies (unlike K, Kcon is not completely compatible 
with the measured eigendata). No matter how the cost Jcon is defined, it involves only 
known quantities and can be calculated in real applications. The cost used here is 
again the normalized distance, which is a measure of how much the assumed connec-
tivity was violated in the updated K.  

 con F
con

con F

K K
J

K

−
=  (26) 

The entire updating procedure still has one free parameter, the power β in the weight-
ing matrix W in eq. (22). Since K depends on W, and Kcon on K, it follows that with 
given analytical model and measurement data, the connectivity cost is a function of β. 

 { }( )( )con con iJ J W diag d ββ = =  (27) 

To decide what value of β to use, consider first the following scenario: The correct 
connectivity is known but not imposed, and the unconstrained updated model happens 
to conform to it. This is of course the ideal situation. The fundamental premise of the 
suggested algorithm is therefore stated as follows. 

Unconstrained updated models with smaller connectivity cost are closer to the true 
model.  

The meaning of that idea is that a weighting matrix is considered to be better if it 
leads to an unconstrained updated stiffness matrix which is closer to the assumed 
connectivity. In other words, the amount of connectivity violation of K can serve as 
an indicator for the quality of the β. This abstract reasoning was confirmed by exten-
sive simulations showing good correlation between Jcon that can be computed and Jup 
that is available only in simulations. The algorithm is based on searching for β which 
minimizes Jcon. With perfect measurements, larger values of β always yield better 
results. When the measurements contain some noise, larger β tend to increase it, and 
usually there is a finite optimal value.  

Consider once more the example and define as parameters the changes in all the 
springs. Fig. 2 shows the updating cost and the connectivity cost in two cases, perfect 
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and noisy measurement. The correlation between the unknown Jup and the known Jcon 
is evident. Without noise, any β > 0.3 is practically optimal. With β=0.5 the algorithm 
found exactly the correct values of 70 for k2 and 50 for the others. With 1% noise in 
the modeshapes, the optimum occurs at β=3.3 with the following reasonably accurate 
values for the springs 

 k1÷k6={49.19, 70.27, 49.05, 50.07, 49.98, 50.03}  
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Fig. 2. The updating cost Jup (red) and the connectivity cost Jcon (blue). Top – without noise, 
Bottom (normalized) – 1% noise in modeshapes.  

6 Direct Method – Manifold Distance Minimization 

The discussion in the previous section revolved around the inherent conflict, existing 
in practically all methods of model updating, between satisfying the characteristic 
equation and complying with the connectivity that is known to exist in the model. 
CCRB tries to bridge that gap by going through GRB. In [20], Halevi, Vilensky and 
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Datta went one step further and suggested a direct method called manifold distance 
minimization (MDM). The main results of that paper are presented in this section.  

Consider two sets of stiffness matrices. The first is the set of all matrices that  
satisfy exactly the eigenvalue equation with the m measured natural frequencies and 
modeshapes. 

 { }2:ES K K M= Φ = ΦΩ  (28) 

It can be shown that an equivalent definition of the set is 

 { }2: , 0T T T
ES K K M M BXB X X= = ΦΩ Φ + = ≥  )29(  

where B=null(ΦT). SE is a linear manifold in the elements of X. Since N, the number 
of dof’s, is in practice very large, and m<<N, the actual calculation of B can require 
heavy computation. However, it is shown later that B needs not be calculated at all. 
The second set is that of all matrices that satisfy the required connectivity by having 
the standard linear parameterization. 
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If the two manifolds intersect, there exists a stiffness matrix with the correct connec-
tivity that is in full agreement with the measurement and the problem has a unique 
and perfect solution. Since this is almost never the case, we look for the point in SC 
that is closest to SE, i.e., the minimum distance between the manifolds. We therefore 
define, with some positive weighting matrix W, the following optimization problem. 
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In more specific terms, the problem is 
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An explicit expression for the solution of the optimal parameters is given by  
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where 
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Notice that the actual calculation of the null space B is not required as the projection 
P is defined by the problem data. In [20] the method was compared to connectivity 
constrained reference basis (CCRB) and to minimization of the error in the constitu-
tive equation (MECE). It was shown that MDM covers a larger set of potential ma-
trices and that it is more efficient computationally and less sensitive to noise. 

It is clear from the MDM problem definition that if there is a stiffness matrix with 
the correct connectivity that satisfies the characteristic equation, the method will find 
it. This is, by the way, not true for many existing methods, including reference basis 
and sensitivity. The appropriate comparison is therefore in the presence of noise. The 
method was applied to the same example, with different levels of noise and was com-
pared to CCRB and its iterative version (see [19]). The results, which are averages of 
extensive simulation, are shown in Fig. 3. It is evident that the error in MDM is much 
smaller. Similar results were obtained for MECE. A qualitative explanation is that in 
CCRB the noisy data is used twice, not only as the modeshape, but also for computing 
the optimal weight for the generalized reference basis problem. Similar argument can 
be made about MECE. However these points still need to be investigated rigorously. 
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Fig. 3. Update error vs. noise level. MDM – blue, CCRB – green, CCRB with 25 iterations – 
red. 

7 Conclusion 

The reference basis model updating method was revisited. The seminal results of 
Baruch and Bar-Itzhack were discussed and several extensions of the method were 
presented. Most of these later results try to combine, one way or another, the mathe-
matical and computational advantages of reference basis with the requirement that the 
updated model should have a certain structure. An example that was used for all the 
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methods demonstrated the progress from no connectivity in classical reference basis 
in section 3, through ad hoc weighting selection in generalized reference basis in sec-
tion 4 to the systematic connectivity constrained reference basis in section 5. Though 
not sharing exactly the same philosophy, the manifold distance minimization in sec-
tion 6 can be regarded as reference basis because one of the two manifolds is defined 
by satisfying the characteristic equation accurately. As a concluding remark, it is 
worth noting that the principles of reference basis, which was developed for conserva-
tive systems, were applied also to systems with damping [26-28].  
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Abstract. The light-tailed Gaussian paradigm has dominated the foun-
dation of estimation and control algorithms. However, in many realistic
applications the system can experience large impulsive noises far more
often than the Gaussian would admit. In this paper the Cauchy proba-
bility density function (pdf) is used to develop a new class of estimation
and control algorithms. First, the scalar Cauchy estimation problem is
addressed which entails the generation of the state pdf conditioned on
the measurement history. Next, based on this Cauchy conditional pdf,
a model predictive optimal controller is developed. Finally, the vector
stated estimator is derived by recursively propagating the characteris-
tic function of the unnormalized conditional pdf through measurement
updates and dynamic state propagation. The conditional mean and vari-
ance are easily computed from the first and second derivatives of this
characteristic function.

Keywords: Estimation, Stochastic control, Optimal Controller Synthe-
sis for Systems with Uncertainties, Heavy-Tailed Distributions.

1 Introduction

The Gaussian paradigm has dominated the foundation of estimation and control
algorithms for over fifty years. These algorithms were developed for linear system
models that assume additive Gaussian noises. They extended classical control
system design from single-input/single-output using frequency domain analysis
to multi-inpt/multi-output systems based on state space formulations. State
space methods produced general estimation and control algorithms such as the
Kalman filters, the linear-quadratic-Gaussian (LQG or H2) controller, and the
linear-exponential-Gaussian (LEG or H∞) controller [6]. The Kalman filter is
optimal only for Gauss-Markov processes, where the filter gains operate linearly
on the residuals. The LQG and LEG controllers operate on a state estimate or
the worst case state estimate, respectively, leading to a linear controllers with
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respect to the measurements. These controllers assume Gaussian uncertainty
and noises where most of the probability is concentrated near the mean.

However, in many realistic applications, i.e., radar and sonar measurements,
atmospheric turbulence, adversarial motion effecting missile guidance, or abrupt
changes in financial markets, the system experiences large impulsive noise far
more often then the light-tailed Gaussian would admit [10]. As a result these
controllers track impulsive noise inputs, be it process or measurement noise,
leading to large deterioration in performance. To mitigate these effects, ad hoc
procedures are introduced into the algorithms which may help, but sometimes
induce even poorer performance.

In this work, the Cauchy probability density function (pdf) is suggested to
model the system uncertainty, hence leading to the development of a new class
of estimation and control algorithms. Heavy-tailed pdfs capture physical phe-
nomena with a more impulsive character [11]. The Cauchy pdf is a member of
a class of heavy-tailed distributions that are represented by their characteristic
functions, called symmetric α-stable distributions (or sub-Gaussian). The char-
acteristic function for the symmetric α-stable distributions [5], in its simplest
form, is φ(ν) = exp(−σα|ν|α). For α = 2, the characteristic function represents
the Gaussian, for α = 1 it represents the Cauchy pdf. The pdf can be expressed
in closed form only for α = .5, 1, 2, and can be shown to have an infinite vari-
ance for α ∈ (0, 2). This paper summarized the results we have attained in the
area of estimation and control of dynamic linear discrete systems with additive
Cauchy noises.

The paper is structured as follows. In section 2 we formulate the scalar dy-
namic estimation problem. The scalar Cauchy estimator is derived in sections 3
and 4. Comparing the Cauchy solution to the Gaussian reveals interesting dif-
ferences between them. [2]. A Cauchy model-predictive controller (MPC) based
on the conditional pdf of a scalar state [8] is presented in section 5. In its sim-
plest form, when addressing a single measurement and a one-step prediction, this
controllers exhibits a nonlinear behavior in strong contrast to the linear Gaus-
sian controller. Then, in the multi-stage formulation, the advantage of Cauchy
controller is demonstrated when handling impulsive measurement noise, outper-
forming the linear Gaussian model-predictive controller. The vector state esti-
mation problem is addressed in section 6. This solution is based on propagating
the characteristic function of the unnormalized conditional pdf [3]. Numerical
results for the two-state problem is given and contrasted with an equivalent
Gaussian estimator [9]. Conclusions and future research directions are offered in
section 7.

2 Scalar Estimation Problem Formulation

Consider the discrete-time scalar linear dynamic system

xk+1 = Φxk + Γuk + wk (1)

zk = Hxk + vk (2)
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where xk is the scalar state, zk is the measurement, Φ, Γ, H are know parameters,
uk is the scalar control, wk is the process noise and vk is the measurement noise.
The system uncertainties are assumed to be characterized by Cauchy pdfs

fX1

(
x1

)
=

α/π(
x1 − x̄1

)2
+ α2

, (3)

fWk

(
wk

)
=

β/π

w2
k + β2 , fVk

(
vk
)
=

γ/π

v2k + γ2 , (4)

where the parameters x1, α, β, γ are given.
To compare Cauchy and Gaussian pdfs a least square fit is made between

Cauchy and Gaussian,

fG
X (x) =

1√
2πσ

e−
x2

2σ2 , fC
X (x) =

γ/π

x2 + γ2
(5)

with the result that the parameters are related as σ ≈ 1.4γ. The least square
fit is shown in Fig. 1 where the heavy tail of the Cauchy pdf is to be contrasted
with the light tail of the Gaussian pdf.
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Fig. 1. Least square fit between Cauchy and Gaussian pdfs

Our objective is to find the conditional mean of the system state given the
measurement history yk = {z1, z2, · · · , zk} or equivalently, the minimum
conditional-variance estimator

x̂(k) = E[xk|yk ] , (6)

where E[·] denotes the expectation operator.
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3 One Step Measurement and Time Update

First the pdf conditioned on a single measurement is obtained. Then, this condi-
tional pdf is propagated to the next time step. It is then observed that a similar
structure can be associated with these pdfs. This notion is used to generate the
pdf conditioned on the measurement history at any time step k.

3.1 Measurement Update

From the measurement equation at k = 1

z1 = Hx1 + v1 (7)

the conditional mean x̂1 = E
[
x1|z1

]
is to be determined. The conditional pdf is

obtained by Bayes’ rule as

fX1|Z1

(
x1|z1

)
=

fX1,Z1

(
x1, z1

)
fZ1

(
z1
) . (8)

Since z1 is known, fZ1

(
z1
)
is also known and the joint pdf, referred to as the

un-normalized conditional pdf, is

fX1,Z1

(
x1, z1

)
= fX1

(
x1

)
fV1

(
z1 −Hx1

)
. (9)

By integrating over x1, the marginal pdf is computed analytically to be

fZ1

(
z1
)
=

(|H |α+ γ) /π(
z1 −Hx̄1

)2
+
(|H |α+ γ

)2 . (10)

Then, the conditional pdf becomes

fX1|Z1

(
x1|z1

)
=

αγ/π

|H |α+ γ

(
z1 −Hx̄1

)2
+
(|H |α+ γ

)2
[(
x1 − x̄1

)2
+ α2

] [(
z1 −Hx1

)2
+ γ2

] , (11)

where the denominator is a quartic in x1. Therefore, even though the a priori
densities have infinite moments, this conditional pdf has two computable mo-
ments, E

[
x1|z1

]
and E

[
x2
1|z1

]
. After some manipulations, the conditional mean

is found to be a linear function of the measurement as

x̂1 = E [x1|z1] = x̄1 +
α sign(H)

|H |α+ γ

(
z1 −Hx̄1

)
. (12)

The conditional error variance is found to be a quadratic function of the mea-
surement as

E
[
x̃2
1|z1

]
=

αγ

|H |

[(
z1 −Hx̄1

)2
(|H |α+ γ

)2 + 1

]
, (13)
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where x̃1 = x1 − x̂1. The conditional variance being measurement dependant
should be contrasted with the conditional variance for Gaussian pdf, which does
not depend on the measurement and is known a priori.

For numerical values α = 3, x̄1 = 5, H = 2, γ = 5, and z1 = −3, the initial
state, measurement noise, and measurement updated pdfs are depicted in Fig.
2. Shown also are the the estimate, x̂1 = 1.45, and the estimation error standard
deviation,

√
E[x̃2

1|z1] = 4.24. It is interesting to note that unlike in the Gaussian,
the conditional pdf is non-symmetric and may even become bimodal when the
difference between z1 and Hx̄1 is large.

−20 −15 −10 −5 0 5 10 15 20
0

0.02

0.04

0.06

0.08

0.1

0.12
x

bar
 = 5

α = 3
γ = 5
H = 2
z = −3
σ = 4.2

f
X

f
V

f
X|Z

x
bar

z/H
x

hat

± σ

Fig. 2. Conditional pdf for one step measurement update

3.2 Time Update

Starting with fX1|Z1

(
x1|z1

)
and the system dynamics

x2 = Φx1 + Γu1 + w1 (14)

the time updated density fX2|Z1

(
x2|z1

)
is computed using the Chapman-Kol-

mogorov equation

fX2|Z1

(
x2|z1

)
=

∞∫
−∞

fX2|X1

(
x2|x1

)
fX1|Z1

(
x1|z1

)
dx, (15)

where the transition pdf is

fX2|X1

(
x2|x1

)
= fW1

(
x2 − Φx1 − Γu1

)
.

The resulting time propagated conditional pdf is

fX2|Z1

(
x2|z1

)
=

A
(
x2 −B

)2
+ C2[(

x2 − x̄21

)2
+ α2

1

] [(
x2 − x̄22

)2
+ α2

2

] . (16)
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A, B and C are complicated functions of the various system parameters and the
signals z1 and u1. Since the exact expressions do not provide valuable information
or insight, they are not made explicit. Note that this conditional pdf, which is
referred to as the a priori conditional pdf, has no computable moments [2].

3.3 Conditional pdf Factorization

The conditional pdf for the one step measurement update (11) and time prop-
agation process (16) can be put into factored form by using partial fractions
as

fX1|Z1

(
x1|z1

)
=

a1,1x1 + b1,1(
x1 − x̄1

)2
+ α2

+
a1,2x1 + b1,2(

z1 −Hx1

)2
+ γ2

(17)

fX2|Z1

(
x2|z1

)
=

a2,1x2 + b2,1(
x2 − x̄21

)2
+ α2

1

+
a2,2x2 + b2,2(

x2 − x̄22

)2
+ α2

2

. (18)

where

x̄21 = Φx̄1 + Γu1 α1 = |Φ|α+ β (19a)

x̄22 =
Φ

H
z1 + Γu1 α2 =

∣∣∣∣ ΦH
∣∣∣∣ γ + β (19b)

The parameters aj,i, bj,i, j = 1, 2, i = 1, 2 can be determined from (11) and (16).
Motivated by the structure of these rational pdfs, we propose to represent the
conditional pdf of x at any time step k in a factored form given by

fX(x) =
N∑
i=1

aix+ bi(
x− σi

)2
+ ω2

i

, (20)

where N is to be explicitly determined in the sequel. Here, for presentation
simplicity, in the above we have suppressed the dependance of the state x on the
time index k and the fact that this pdf may be a conditional one. The conditions
for fX(x) in (20) to be a valid pdf are

N∑
i=1

ai = 0, π

N∑
i=1

aiσi + bi
ωi

= 1. (21)

For the pdf to have a well defined first moment, the condition is

N∑
i=1

(2aiσi + bi) = 0. (22)

The pdf will have a well defined second moment if

N∑
i=1

[
ai
(
3σ2

i − ω2
i

)
+ 2biσi

]
= 0. (23)

For details see [2]. Note, it is immediate to verify that these conditions hold for
the initial pdf, for which N = 1, a1 = 0, b1 = α/π, σ1 = x̄0, and ω1 = α.
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4 The General Form of the Cauchy Estimator

Based on the form of (20) motivated by the partial fraction decomposition of
(17) and (18), we propose to represent the conditional pdf of xk given past data
yk−1, i.e., before the zk measurement is processed, in a factored form given by
the propagated conditional pdf

fXk|Yk−1

(
xk|yk−1

)
=

k+1∑
i=1

ai(k|k−1)xk + bi(k|k−1)(
xk − σi(k|k−1)

)2
+ ω2

i (k|k−1)
(24)

where yk−1 =
{
z1 · · · zk−1

}
. The linear update formulas for ai(k|k−1) and

bi(k|k−1) are given in [2]. Similarly, for the measurement update, the conditional
pdf of xk given the measurement history yk as

fXk|Yk

(
xk|yk

)
=

k+2∑
i=1

ai(k|k)xk + bi(k|k)(
xk − σi(k|k)

)2
+ ω2

i (k|k)
. (25)

Note that the number of terms in the sum increases by one during a measurement
update. The updates for the parameters is σi(k|k) = σi(k|k−1), ωi(k|k) =
ωi(k|k−1), i = 1, . . . , k + 1, σk+2(k|k) = zk/H, ωk+2(k|k) = γ/|H |. Simple,
linear expressions for ai(k|k), bi(k|k), i = 1, . . . , k + 2 are given in [2]. The
dynamic properties of ai(k|k), bi(k|k), i = 1, . . . , k + 2 are used to show the
decay of these parameters, and are thereby used to prune terms from the sum.

Using the conditional pdf of xk given in (25), the conditional mean, conditional
second moment and conditional error variance can be calculated as

E (xk|yk) = x̂(k|k) = π
k+2∑
i=1

ai
(
σ2
i − ω2

i

)
+ biσi

ωi
, (26)

E
(
x2
k|yk

)
= π

k+2∑
i=1

(
aiσi + bi

) (
σ2
i − ω2

i

)− 2aiσiω
2
i

ωi
, (27)

E
(
x̃2
k|yk

)
= E

(
x2
k|yk

)− x̂2(k|k). (28)

4.1 Numerical Example

A numerical example is given with the system data x̄1=5, α=0.5, Φ=0.9, Γuk=1,
β=0.02,H=2, γ=0.1. The Cauchy conditional estimator is first compared with a
Kalman filter when the simulation uses Cauchy noise, as shown in Fig. 3(a). The
least square fit of the Gaussian densities with the Cauchy densities produces the
Kalman filter design, i.e., σx1=1.4α, σw=1.4β, σv=1.4γ. In the Cauchy simula-
tion the Cauchy estimator is the exact minimum variance estimator. Even though
both filters react to impulsive noise, the Cauchy estimation error reduces very
rapidly compared to the Gaussian estimator. Note that the Cauchy standard
deviation reacts to impulsive noise, whereas the Gaussian error variance is a
priori known.
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Fig. 3. Performance of the Cauchy and Gausian estimators

The Cauchy conditional estimator is compared with a Kalman filter when the
simulation uses Gaussian noise, as shown in Fig. 3(b). Both estimators perform
in a very similar manner. Furthermore, even though the standard deviation for
the cauchy estimator is a bit ragged in response to the measurement and process
noise sequence, it closely upper bounds the Gaussian standard deviation, which
is optimum for the Gaussian simulation.

As was shown in section 4, the number of terms representing the conditional
pdf of interest is constantly growing. This may cause numerical difficulties. It
is shown in [2] that the linear update formulas for ai(k|k−1) and bi(k|k−1) are
exponentially convergent in k for a constant i. When ai(k|k−1) and bi(k|k−1)
become sufficiently small, their associate term can be removed from the sum in
(25), thus enabling a low order approximation of the conditional pdf representa-
tion. Simulation results carried out with such truncation are practically identical
to those presented earlier. The number of terms used in the truncated sum for
the conditional pdf is plotted in Fig. 4, showing that they are fluctuating slightly
around the values of 18 and 10 for the two truncation cases examined. Most im-
portantly it was demonstrated that the difference between the estimation results
attained with the non-truncated and truncated pdfs, i.e., numerical truncation
errors, do not increase with time. Hence, using such truncations allows propa-
gating the Cauchy estimator for any number of steps while keeping the number
of terms in the pdf sum nearly constant.

5 Stochastic Control Problem for Cauchy Uncertainties

In this section a stochastic control problem is formulated and a controller de-
veloped for a scalar linear system with additive Cauchy noise. The performance
index is chosen so that the unconditional expectation remains finite so it can be
determined a priori. Since expectation and minimization can be interchanged,
the conditional expectation of the performance index is minimized. This expec-
tation is found in closed-form using the conditional pdf of (25). However, the
conditional expectation of the performance index is a complicated function of
the control and does not lend itself to a dynamic programming solution. There-
fore, a model predictive controller (MPC) is proposed which has sub-optimal
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performance. For zero mean noises and initial uncertainty, the performance of
this controller is similar to the linear-exponential-Gaussian MPC when the mea-
surements are small and dramatically different when the measurements are large.

5.1 Deterministic-Stochastic Decomposition of the State Dynamics

For the control problem, we consider the dynamic scalar stochastic system

xk = Φxk−1 + uk−1 + wk−1 (29)

zk = Hxk + vk (30)

with measurement history
yk = {z1, . . . , zk}. (31)

To simplify the subsequent derivations, the system dynamics is decomposed into
a dynamic system forced by the control and a dynamic system forced by the
underlying random variables. Given this decomposition, we show that the control
has to be adaptive to only the σ-algebra generated by the measurement history
associated with the stochastic part of the state decomposition.

Consider the linear, discrete-time, scalar stochastic system of (29) with the
measurement history given by (31). Let uk be adaptive to the filtration σ-algebra
σk generated by the measurement history zk. Filtration implies that the collec-
tion of σ-algebras σk have the property that if j ≤ k, then σj ⊆ σk [1]. Therefore,
filtration is the evolution of the σ-algebra generated by measurement history
through time. Adaptation means that the control is a measurable function of
events on this σ-algebra, i.e., this ensures that the control sequence is causal.
Now consider the decomposition xk = x̃k + x̄k where

x̃k = Φx̃k−1 + wk−1, z̃k = Hx̃k + vk, (32a)

x̄k = Φx̄k−1 + uk−1, z̄k = Hx̄k. (32b)
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Here, x̃k and z̃k are the state and the measurement of the subsystem containing
all the underlying random variables, i.e., wk, vk, with pdfs given in (4), and the
initial condition x̃0 that is Cauchy distributed with zero median, i.e.,

fX1

(
x̃1

)
=

α/π

x̃2
1 + α2 . (33)

Similarly, x̄k and z̄k are the state and measurement of a dynamic system driven
by uk with initial condition x̄1.

The measurement history can be decomposed as yk = ỹk + ȳk where

ỹk = {z̃1, · · · , z̃k}, ȳk = {z̄1, · · · , z̄k}. (34)

In the following it is shown that the control is measurable on events generated
by ỹk only.

Theorem 1. Consider the filtration σ − algebra σ̃k generated by ỹk, with the
decomposition yk = ỹk + ȳk. For ỹk ∈ σ̃k and σ̃k−1 ⊂ σ̃k, ȳk is adapted to σ̃k−1

and uk is adapted to σ̃k.

Proof. Start with k = 1. The initial state is decomposed as x1 = x̃1+x̄1, where x̄1

is a given non-random parameter. The measurement decomposes as z1 = z̃1+ z̄1,
where z̄1 = Hx̄1 is a given non-random parameter and z̃1 = ỹ1 ∈ σ̃1. Then, u1,
which is determined by z1, is adapted to σ̃1. At k = 2, both x̄2 = Φx̄1 + u1 and
z̄2 = Hx̄2 are adapted to σ̃1, and thus ȳ2 is adapted to σ̃1. For the measurement
at k = 2, z̃2 ∈ σ̃2, ỹ2 ∈ σ̃2, and σ̃1 ⊂ σ̃2. Hence, since u2 is determined by
y2 = ỹ2 + ȳ2, it is adapted to σ̃2. Recursively to any k, ȳk is adapted to σ̃k−1.
With ỹk ∈ σ̃k, and σ̃k−1 ⊂ σ̃k, uk that is determined by yk = ỹk + ȳk is adapted
to σ̃k.

5.2 Performance Index

Assuming the expectation is finite, the optimal value of the performance index
is stated as

J∗ = max
Up−1

k ∈F
E
[
ψ
(
X p

k+1,Up−1
k

)]
= E

[
max

Up−1
k ∈F

E
[
ψ
(
X p

k+1,Up−1
k

)∣∣∣ ỹk
]]

(35)

where F is the class of feedback open-loop control functions of ỹk adapted to
σ̃k. The state history X p

k+1 and control history Up−1
k are defined as

X p
k+1 := {xk+1, . . . , xpk}, (36)

Up−1
k := {uk, . . . , up−1}, Up−1

k ∈ F , (37)

where k is the current time, and p = k + m so that m is the size of a moving
horizon. In (35) the expectation and maximization operations are interchanged
due to the Fundamental Lemma [6].



Stochastic Estimation and Control for Linear Systems with Cauchy Noise 105

Since the expectation is taken over all underlying random variables, for a
viable performance index this expectation must remain finite in the presence of
the heavy tailed Cauchy densities. Hence, the cost function ψ(·) in (35) is chosen
to have the form

ψ
(
X p

k+1,Up−1
k

)
=

p−1∏
i=k

[
η2i+1

x2
i+1 + η2i+1

· ζ2i
u2
i + ζ2i

]
. (38)

When the expectation is taken over Gaussian underlying random variables, the
cost function is assumed to be of an exponential form

ψ
(
X p

k+1,Up−1
k

)
=

p−1∏
i=k

[
e − 1

2qi+1x
2
i+1 · e − 1

2riu
2
i

]
. (39)

The resulting controller is referred to as Linear Exponential Gaussian (LEG)
MPC [7].

The expectation E
[
ψ
(
X p

k+1,Up−1
k

)∣∣∣ ỹk
]
in (35) is taken with respect to the

conditional joint pdf fX̃p···X̃k+1|Ỹk

(
x̃p, . . . , x̃k+1|ỹk

)
, which is the extension of

the conditional density of (24). It includes the projected states influenced by the
process noise as [8]

fX̃p···X̃k+1|Ỹk

(
x̃p, . . . , x̃k+1|Ỹk

)

= fX̃p|X̃p−1

(
x̃p|x̃p−1

)
fX̃p−1|X̃p−2

(
x̃p−1|x̃p−2

) · · ·
fX̃k+2|X̃k+1

(
x̃k+2|x̃k+1

)
fX̃k+1|Ỹk

(
x̃k+1|ỹk

)
. (40)

In the above, the transition pdf is given by

fX̃j+1|X̃j

(
x̃j+1|x̃j

)
=

β/π

(x̃j+1 − Φx̃j)2 + β2
. (41)

5.3 Cauchy Model Predictive Controller

The m-step optimal multi-step predictive controller is formed by determining
the optimal open-loop control sequence over the interval k to p − 1 given the
measurement history ỹk and using only the optimal control value at time stage k.
This process is repeated at each time stage. To do this, the optimal performance
index J∗

ỹk
is evaluated as

J∗
ỹk

= max
Up−1

k ∈F
E
[
ψ
(
X p

k+1,Up−1
k

)∣∣∣ ỹk
]
= max

Up−1
k ∈F

E

[
p−1∏
i=k

Mx(xi+1)Mu(ui)

∣∣∣∣∣ ỹk
]

= max
Up−1

k ∈F

∞∫
−∞

· · ·
∞∫

−∞

p−1∏
i=k

Mx(xi+1)Mu(ui)

× fX̃p···X̃k+1|Ỹk

(
x̃p, . . . , x̃k+1|ỹk

)
dx̃p, . . . , dx̃k+1, (42)
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where fX̃p···X̃k+1|Ỹk

(
x̃p, . . . , x̃k+1|ỹk

)
is given by (40). Currently, results are given

for the case where only the terminal state is weighted in the performance index,
i.e.

J∗
ỹk

= max
Up−1

k ∈F

p−1∏
i=k

ζ2i
u2
i + ζ2i

∞∫
−∞

η2p
x2
p + η2p

fX̃p|Ỹk

(
x̃p|ỹk

)
dx̃p

= max
Up−1

k ∈F

p−1∏
i=k

ζ2i
u2
i + ζ2i

· ηpπ
k+2∑
i=1

1

ωi

ai(x̄p + σi)ηp + (bi − aix̄p)(ηp + ωi)

(x̄p + σi)2 + (ηp + ωi)2
, (43)

where

x̄p = Φmx̄k +

m∑
i=1

Φm−1Γuk+i−1. (44)

The maximum value of the performance index in (43) uses explicitly the condi-
tional pdf in the expectation operation. The optimization of the analytic function
in (43), which is not concave, must be done numerically.

5.4 LEG Model Predictive Control

To compare the common Gaussian controller approach with the results of the
Cauchy controller, the LEG controller is presented [6]. The objective is to max-
imize the expected value of an exponential cost

J∗
G = E

[
max

Up−1
k ∈F

E
[
e−

1
2 (qpx

2
p+

∑p−1
i=k riu

2
i )
∣∣∣ ỹk

]]
, (45)

where the expectation is taken with respect to the Gaussian conditional density
with conditional mean and variance

x̂k = x̄k + PkH/V (zk −Hx̄k), Pk =
VMk

V +H2Mk
. (46)

and propagated to time p from time k using

x̄k+1 = Φx̂k + uk, Mk+1 = Φ2Pk +W. (47)

The LEG controller from [6] is

u∗
k = − Sk+1Φ

Sk+1 + rk + Sk+1rkMk+1
x̂k, Si =

Si+1riΦ
2

Si+1 + ri + Si+1riW
, Sp = qp.

(48)
As stated earlier, the least square fit of the Gaussian and the Cauchy pdf yield
a linear relation between the standard deviation of the Gaussian and the scale
parameter of the Cauchy. This linear relation relates also the parameters in the
cost function.
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5.5 Numerical Examples

To obtain insight into the properties of the Cauchy stochastic controller, the
one-step one-measurement example is first analyzed. Then the multi-step nu-
merical simulation results are given, which illustrate the behavior of the Cauchy
controllers in the presence of dominate Cauchy measurement noise and then
dominant Cauchy process noise.

One-Step One-Measurement Example. The value of the optimal control
signal at k = 1, i.e., u∗

1, as a function of the first measurement z1, is determined.
Specifically, we examine the value of the optimal control signal at k = 1, i.e.,
u∗
1(z1), as a function of the first measurement z̃1, that varies due to the mea-

surement noise v1 [7], while considering the one step horizon, i.e., m = 1. The
parameters for the system and Cauchy signals are first chosen as

Φ = 1, H = 1, α = 0.1, β = 0.02, γ = 0.5, x̄1 = 0. (49)

Initially, no penalty is introduced on the control signal, i.e., the term ζ21/(u
2
1+ζ21 )

is removed from the objective function in (43), i.e. ζ1 → ∞ while the state at
k = 2 is weighted with η2 = 0.7. Substituting these parameters into (43), the
performance index becomes

J∗
ỹ1

=
0.1148(4.1667z21 − 1.0163u1z1 + 1)

(z21 + 0.16)(u2
1 + 0.6724)

+
0.03416(7.5820z21 + 3.4153u1z1 − 1)

(z21 + 0.16) ((u1 + z1)2 + 1.22)
(50)

The optimal controller can be obtained by minimizing (50) with respect to u1.
The necessary optimality condition, ∂J∗

ỹ1
/∂u1 = 0, reduces to finding the roots

of the fifth-order polynomial

l5u
5
1 + l4u

4
1 + l3u

3
1 + l2u

2
1 + l1u1 + l0 = 0, (51)

where

l5 = 1, l4 = 3.5z1, l3 = (5.2315z21 + 3.6681), l2 = (3.6806z21 + 6.6305)z1,

l1 = (0.9491z41 + 3.2124z21 + 2.9623), l0 = (0.07782z21 + 0.3992)z1. (52)

This polynomial always has at least one real root. If three roots are real, then
there are two local maximum values and the larger of the two gives the optimal
control.

Solving the polynomial numerically, the optimal control signal is plotted
versus the measurement z̃1 in Fig. 5(a) for ζ1 = ∞ as well with weighting
ζ1 = 1, 2, 3 and γ > α. Also included is the LEG controller where u∗

1 = −x̂1,
i.e., it is linear in z̃1 (see [7] for details of the LEG model predictive controller).
The Cauchy controller in Fig. 5(a) for large z̃1 goes toward zero. This is in sharp
contrast with the LEG controller, which remains linear in the measurement. This
is a significant difference in behavior between the Cauchy and Gaussian optimal
controllers that can be deduced analytically from (51). If u∗

1(z̃1) is finite, the
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dominant term in (51) as |z̃1| → ∞ is l1u
∗
1(∞), or lim|z̃1|→∞ u∗

1(z̃1) → 0. There-
fore, the problem of handling outliers, which occur for the Cauchy pdf, appears
to be resolved by the Cauchy controller explicitly, and not in some filter as has
been done traditionally. Note that the controller design process explicitly uses
the parameters γ and α, and thus their relative size γ > α, i.e., it should expect
more impulsive measurement uncertainty than process uncertainty. If γ < α,
the Cauchy controller behaves approximately like the LEG linear controller in
Fig. 5(b), i.e., it expects more impulsive process uncertainty than measurement
uncertainty. The effect of reducing ζ1 from ∞ to 2 has a small effect on the
control strategy, as is clearly seen in Figs. 5.
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Fig. 5. Scalar Cauchy (solid line) and Gaussian (dashed line) one-step controllers with
parameters variations in ζ1

5.6 Multi-step Numerical Examples

The dynamic characteristics of the Cauchy optimal controller, obtained by max-
imizing the performance index in (43), are explored through several multi-step
numerical examples. The Cauchy optimal control results are compared against
the least-squares equivalent LEG controller, obtained from (48), and the Kalman
filter from (46). The example that is discussed in this section is a stable system
with Φ = 0.95, H = 1, and a horizon length of m = 2. The state weight pa-
rameter is chosen as ηp = ηk+2 = 0.7, while the control weights are chosen as
ζi = 8, i = k, k+1. The noise parameter values β and γ are interchanged to see
how the controller performance changes when it is designed for a large measure-
ment noise impulse in contrast to when it is designed for a large process noise
impulse. The values used are β = 0.1, γ = 0.02 or β = 0.02, γ = 0.1, while the
initial condition parameters are α = 0.5 and x̄1 = 0. Substituting these param-
eters into (43), the performance index is maximized numerically with respect to
the control at each time using a homotopy optimization method.

The simulations results are depicted in Figs. 6. First, for γ = 0.1 and β =
.02, depicted in Fig. 6(a) when the noises are small, the Cauchy and the LEG
controllers exhibit similar performance. However, they behave rather differently
when a large measurement pulse occurs. A measurement noise pulse does not
represent a state deviation and thus, for proper regulation, the controller should
ignore that measurement. The Cauchy predictive controller, designed for γ > β,
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is able to make this distinction, whereas the LEG predictive controller reacts
linearly to all the pulses and does not differentiate as shown in Fig. 6(a). At time
steps k = 2 and k = 13 process noise pulses occur, and although both controllers
react to them and are able to overcome this deviation, the Cauchy controller does
so much quicker than the LEG by applying a much larger control effort. The
Cauchy applies a larger control because its gain for small measurement values are
higher than that of the LEG. Conversely, when a large measurement pulse occurs
at k = 51, the Cauchy controller ignores it, applying almost zero control, whereas
the LEG controller applies a very large control input that causes the state to
deviate away from zero, which then required additional control effort to correct.
This way the Cauchy controller manages to avoid unnecessary actuation and thus
maintains the system performance. When γ < β, the behavior of the Cauchy
and LEG controllers are similar, as is shown in Fig. 6(b). This demonstrates the
same linear behavior as was seen in Fig. 5(b).
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Fig. 6. 2-step Cauchy and Gaussian controllers with β and γ parameters interchanged

6 Vector-State Cauchy Estimation

So far we have only considered scalar dynamic systems. When addressing mul-
tivariable systems, the pdf method cannot be used, mainly because the partial
fraction expansions utilized in the scalar case do not apply here. To overcome this
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difficulty, for the multivariable system case we recursively generate the charac-
teristic function of the unnormalized conditional pdf, from which the conditional
mean and conditional error variance can be recovered. In this section we sum-
marize our current efforts in vector-state cauchy estimation.

6.1 Formulation

The single-input single output multivariable linear dynamic system is

xk+1 = Φxk + Γwk, zk = Hxk + vk, (53)

where the state vector xk ∈ R
n, scalar measurement zk, and known matrices

Φ ∈ R
n×n, Γ ∈ R

n×1, and H ∈ R
1×n. The noise inputs are assumed to be

independent with know Cauchy pdf given in (4). The characteristic functions of
these scalar noises are assumed to be time independent and given by

φW

(
ν̄
)
= e−β|ν̄|, φV

(
ν̄
)
= e−γ|ν̄|, (54)

where these characteristic functions have a scalar argument ν̄. The initial con-
ditions at k = 1 are also assumed to be independent and Cauchy distributed.
Specifically, each i-th element x1i of the initial state vector x1 has a Cauchy pdf
with a zero median and a scaling parameter αi > 0, i = 1, . . . , n. The charac-
teristic function of the joint pdf of the initial conditions, which is a function of
a n-dimensional spectral variable ν ∈ R

n, is given by

φX1

(
ν
)
=

n∏
i=1

e−αi|νi| = exp

(
−

n∑
i=1

αi|νi|
)

� exp

[(
−

n∑
i=1

p1i |〈a1i , ν〉|
)

+ j〈b11, ν〉
]
. (55)

The last form was introduced for notational convenience to be used in the sequel.
We used the definitions

p1i = αi, a1i = ei, i = 1, . . . , n, b11 = {0}n, (56)

where ei is a n-dimensional i-th unity vector and {0}n is n-dimensional vector
of zeros.

6.2 Characteristic Function for the Un-normalized Conditional pdf

Our goal is to compute the minimum variance estimate of xk given the measure-
ment measurement history or yk =

{
z1 z2 · · · zk

}
[4]. We begin by determining

the characteristic function for the un-normalized conditional pdf at k = 1, where
the conditional pdf at k = 1 is

fX1|Z1

(
x1|z1

)
=

fX1Z1

(
x1, z1

)
fZ1

(
z1
)

=
fZ1|X1

(
z1|x1

)
fX1

(
x1

)
fZ1

(
z1
) =

fV
(
z1 −Hx1

)
fX1

(
x1

)
fZ1

(
z1
) . (57)
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The unnormalized conditional pdf (ucpdf) at k = 1 is simply the joint pdf of
the vector state and scalar measurement as

fX1Z1(x1, z1) = fZ1|X1
(z1|x1)fX1(x1) = fV (z1 −Hx1)fX1(x1). (58)

The characteristic function of the ucpdf is obtained as

φ̄X1|Z1
(ν) =

∫ ∞

−∞
· · ·

∫ ∞

−∞
fX1(x1)fV (z1 −Hx1)e

jxT
1 νdx1

=
1

(2π)n

∫ ∞

−∞
· · ·

∫ ∞

−∞
φX1(ν − η)φ̂V (η)dη. (59)

The first integral is a Fourier transform of a product of two functions. Using the
dual convolution property, the second integral is a convolution in the ν domain
between the associated characteristic functions φX1 (ν) given in (55) and φ̂V (η),
the characteristic function of fZ1|X1

(z1|x1) = fV (z1 −Hx1) determined as [4]

φ̂V (ν) =

∫ ∞

−∞
· · ·

∫ ∞

−∞
fV (z1 −Hx1)e

jxT
1 νdx1

= K(ν)φV (− eTnν

Hen
)

n−1∏
i=1

2πδ(eiPnν), (60)

where Hen �= 0, Pn = I − HT eTn
Hen

, K(ν) = exp

(
jz1e

T
nν

Hen

)
, and φV

(
− eTnν
Hen

)
=

exp

(
−γ

∣∣∣∣ e
T
nν

Hen

∣∣∣∣
)
. Substitution of the n − 1 delta functions of (60) into (59)

reduces the n integrals to one as

φ̄X1|Z1
(ν) =

1

2π

∫ ∞

−∞
φX1 (ν −HTσ)φV (−σ)ejz1σdσ

=
1

2π

∫ ∞

−∞
φX1(ν −HTσ)φV (−σ)ejz1σdσ, (61)

where φV (−σ) = e−γ|σ|.
The convolution integral in (61) is solved in closed form. Here we assume that

each element in H is non-zero, i. e., Hei �= 0, i = {1, . . . , n}. (See [4] regarding
relaxing this condition.) To compute the integral, we define ρi = αi|Hei|, μi =
eTi ν/Hei, i = {1, . . . , n}, ρn+1 = γ, μn+1 = 0. The convolution integral
becomes

φ̄X1|Z1
(ν) =

1

2π

∫ ∞

−∞
e−

∑n+1
i=1 ρi|μi−σ|+jz1σdσ. (62)

To carry out the integration, assume that there exists an arbitrary ν for which
the μis are ordered as μ�(ν) ≤ μi(ν) for all � ≤ i with (�, i) ∈ {1, . . . , n+1}. The
convolution integral (62) can be decomposed into a sum as
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φ̄X1|Z1
(ν) =

1

2π

n∑
�=0

∫ μ�+1

μ�

e−
∑n+1

i=1 ρi|μi−σ|+jz1σdσ

=
1

2π

n∑
�=0

∫ μ�+1

μ�

e−
∑n+1

i=1 ρi(μi−σ) sign(μi−σ)+jz1σdσ

where μ0 = −∞ and μn+1 = ∞. Note that sign(μ� − σ) is constant over the
interval σ ∈ (μi, μi+1), ∀i. Therefore, we can define the sign function as

sign(μ� − σ) � s�i =

{
sign(μ� − μi) if i �= �

−1 if i = �

For a given i, the discrete, two-indexed function s�i is constant for all � except
for one switch at � = i, i.e., s�i = −1 ∀ � ≤ i and s�i = 1 ∀ � > i. Since μi can
be ordered for any value of ν, the solution to the integral is independent of the
value assumed for ν.

The closed-form solution to the convolution integral for the characteristic
function of the unnormalized conditional density function, φ̄X1/Z1

(ν), is

φ̄X1/Z1
(ν) =

1

2π

n+1∑
�=1

g
1|1
i (y

1|1
gi (ν))e

y
1|1
ei (ν), (63)

where

g
1|1
i (y

1|1
gi (ν)) =

[
1

jz1 + ρ� + y
1|1
gi (ν)

− 1

jz1 − ρ� + y
1|1
gi (ν)

]
(64)

and

y
1|1
gi (ν) =

n+1∑
i=1
i�=�

ρi sign(μi − μ�), y
1|1
ei (ν) = −

n+1∑
i=1
i�=�

ρi|μi − μ�|+ jz1μ�. (65)

The first two derivatives of φ̄X1/Z1
(ν) can be shown to be continuous. For conti-

nuity of the first derivative of φ̄X1|Z1
(ν) in (61), a piecewise continuous function

is convolved with a continuous function. For continuity of the second derivative
of φ̄X1|Z1

(ν) in (61), two piecewise continuous functions are convolved.

6.3 Conditional Mean and Variance

The conditional mean and variance are computed by evaluating φ̄X1/Z1
(ν) and

its first two derivatives at ν = {0}n or alternatively as ν → {0}n. Since φ̄X1/Z1
(ν)

and its first two derivatives are continuous, they can be evaluated along a fixed
direction ν = εν̂ while letting ε → 0. The pdf of the measurement variable

fZ1(z1) = φ̄X1|Z1
(εν̂)

∣∣∣
ε=0

=
1

π

n∑
�=1

α�|h�|+ γ

z21 +

(
n∑

�=1

α�|h�|+ γ

)2 .
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The minimum conditional-variance estimate is given by

x̂1(z1) =
1

j fZ1(z1)

(
∂φ̄X1|Z1

(εν̂)

εν̂

)T
∣∣∣∣∣
ε=0

= z1
[α1 sign(h1) · · ·αn sign(hn)]

T

n∑
�=1

α�|hi|+ γ
,

The conditional variance is (x̃1 = x1 − x̂1)

E[x̃1x̃
T
1 |z1] =

[
1 +

z21

(
∑n

i=1 αi|hi|+ γ)
2

]

×

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

α1

|h1|

(
n∑

i=2

αi|hi|+ γ

)
. . .−α1αn sign(h1) sign(hn)

...
...

−α1αn sign(h1) sign(hn) · · · αn

|hn|

(
n−1∑
i=1

αi|hi|+ γ

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
. (66)

Note that with one measurement, the n×n conditional variance is bounded and
positive definite. Furthermore, the conditional variance is an explicit function of
the measurement.

6.4 Propagation to k = 2 and the Second Measurement Update

The time propagated characteristic function to k = 2 is found in [4] as

φ̄X2|Z1
(ν) = φ̄X1|Z1

(ΦT ν)e−β|ΓT ν|. (67)

The convolution integral for the second measurement update is

φ̄X2|Y2
(ν) =

1

2π

∞∫
−∞

φ̄X2|Z1
(ν −HTσ)e−γ|σ|+jz2σdσ

where y2 = {z1, z2}. Since φ̄X1|Z1
(ν) is twice differentiable, then for the linear

transformation Φ φ̄X1|Z1
(ΦTν) is also continuous. By assuming HΓ �= 0, it can

be shown that the first two derivatives of φ̄X2|Y2
(ν) are continuous. If HΓ = 0,

then e−β|ΓT(ν−HTσ)| comes out of the convolution integral and φ̄X2|Y2
(ν) does

not have a continuous derivative since the derivative of e−β|ΓT ν| is piecewise
continuous and there is no estimate of x.

6.5 General Form of φ̄Xk|Yk
(ν)

In general, the convolution integral for the kth measurement update is

φ̄Xk|Yk
(ν) =

1

2π

∞∫
−∞

φ̄Xk|Yk−1
(ν −HTσ)e−γ|σ|+jzkσdσ
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where the measurement history is yk = {z1, . . . , zk}. It is assumed that HΓ �= 0
at each time stage and by induction φ̄Xk−1|Yk−1

(ν) is twice differentiable. There-

fore, φ̄Xk|Yk
(ν) is twice continuously differentiable.

The twice differentiable φ̄Xk|Yk
(ν) has a closed form [4] as

φ̄Xk |Yk

(
ν
)
=

n
k|k
t∑

i=1

g
k|k
i

(
y
k|k
gi (ν)

)
exp

(
y
k|k
ei (ν)

)

where

y
k|k
gi (ν) =

n
k|k
ei∑

�=1

q
k|k
i� sign(〈ak|ki� , ν〉) ∈ R

k

y
k|k
ei (ν) = −

n
k|k
ei∑

�=1

p
k|k
i� |〈ak|ki� , ν〉|+ j〈bk|ki , ν〉

where q
k|k
i� ∈ R

k, p
k|k
i� , a

k|k
i� ∈ R

n, and b
k|k
i ∈ R

n are all parameters computed
recursively up to time k. The form given in (55) is consistant with this notation.

6.6 The pdf of the Measurement History, the Conditional Mean,
and the Conditional Variance

To construct the conditional mean and variance, choose ν = εν̂ where ε > 0 and

ν̂ is a fixed direction. Assuming the condition that 〈ak|ki� , ν̂〉 �= 0 ∀ (i, �), then

sign(〈ak|ki� , εν̂〉) = sign(〈ak|ki� , ν̂〉) � si�,

y
k|k
gi (εν̂) =

n
k|k
ei∑

�=1

q
k|k
i� si� = y

k|k
gi (ν̂), y

k|k
ei (εν̂) = ε〈ȳk|kei (ν̂), ν̂〉

where si� is a piecewise constant and 〈ȳk|kei (ν̂), ν̂〉 is a constant. The pdf of the
measurement history is

fYk

(
yk
)
= φ̄Xk|Yk

(
εν̂
)∣∣∣

ε=0
=

n
k|k
t∑

i=1

g
k|k
i

(
y
k|k
gi (ν̂)

)
.

The conditional mean of the state xk is

x̂k = E[xk|yk] = 1

j fYk

(
yk
)
(
∂φ̄Xk|Yk

(
εν̂
)

∂(εν̂)

)T
∣∣∣∣∣∣
ε=0

=
1

j fYk

(
yk
)

n
k|k
t∑

i=1

g
k|k
i

(
y
k|k
gi (ν̂)

)
ȳ
k|k
ei (ν̂).
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The second moment

E[xkx
T
k |yk] =

1

j2 fYk

(
yk
) ∂2φ̄Xk|Yk

(
εν̂
)

∂(εν̂)∂(εν̂)T

∣∣∣∣∣
ε=0

=
1

j2 fYk

(
yk
)

n
k|k
t∑

i=1

g
k|k
i

(
y
k|k
gi (ν̂)

)(
ȳ
k|k
ei (ν̂)

)(
ȳ
k|k
ei (ν̂)

)T

.

The error x̃k = xk − x̂k variance can be evaluated as

E[x̃kx̃
T
k |yk] = E[xkx

T
k |yk]− x̂kx̂

T
k .

6.7 The Two State Estimator

There are some simplifications that occur in the two-state estimation problem
[9]. A recursion in the terms in the argument of the exponential can be made
explicit. A basis Bk for each term in the sum is recursive as

Bk =

⎡
⎣Bk−1Φ

T

ΓT

HA

⎤
⎦ , B1 =

⎡
⎣ ε1
ε2
HA

⎤
⎦ , A =

[
0 1
−1 0

]

This basis is related to a
k|k
i� ∈ R

n in the general solution in that every a
k|k
i,l vector

is coaligned with a row in Bk.. The number of terms in the sum Nk is reduced by
combining terms with the same argument in the exponential. For the two-state

estimator with no process noise, Nk = (k+2)(k+1)
2 . For the two-state estimator

with process noise,

Nk =
[
1 0 0 0

] ·
⎡
⎢⎢⎣
2 1 1 0
0 1 0 2
1 0 1 −1
0 0 0 1

⎤
⎥⎥⎦
k − 1

·

⎡
⎢⎢⎣
3
3
0
1

⎤
⎥⎥⎦ .

where for k = 1 the identity matrix is used.

6.8 Numerical Examples of the Vector-State Cauchy Estimator

First, the no process noise case is generated for an unstable system so that the
estimator conditional variance remains finite. Simulation results for 50 steps are
given in Figs. 7(a) and Fig. 7(b). In Figs. 7(a) we can clearly see how the im-
pulsive nature of the data increases the estimation inaccuracy of the Kalman
filter. However, contrary to the Kalman filter, the Cauchy estimator’s standard
deviation of the error increases in the presence of impulses in the measurement



116 J.L. Speyer, M. Idan, and J. Fernández

noise. The conditional standard deviation of the error for the Cauchy filter, also
plotted in Fig. 7(a), is minimal. However, the standard deviation of the error
plotted for the Kalman filter is calculated assuming Gaussian noise variances
and thus is neither related to the actual estimation errors nor it is minimal.

Figure 7(b) presents the estimation errors together with the computed estima-
tion error standard deviations for the Cauchy and Kalman estimators when the
process and measurement noise sequences are Gaussian. The error variance for
the Kalman filter is now the minimal, since the process and measurement noise
sequence are Gaussian. It is remarkable how close the standard deviation of the
estimation error generated from the Cauchy cpdf approximates that computed
from the Kalman filter, demonstrating the robustness of the former.
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Fig. 7. Cauchy and Kalman Estimators for an unstable system. Simulation parameters
are: α1 = 0.5, α2 = 0.6, γ = 0.1, H = [1 2], ΓT = [1 − 1], and the eigenvalues of Φ are
1.3 and 1.15.

The two-state system with both measurement and process noise is shown in
Figs. 8(a) and Fig. 8(b). Again we see in Figs. 8(a) that the Gaussian filter
estimate error deviates from the Cauchy conditional mean error in the Cauchy
simulation Fig. 8(a). Also, note that the standard deviation fluctuates dramat-
ically with the Cauchy noises. For the Gaussian simulation Fig. 8(b) both the
Cauchy and the Gaussian perform almost identically.
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Fig. 8. Cauchy and Kalman Estimators for a stable system. Simulation parameters
are: α1 = 0.9, α2 = 1, γ = 0.7, β = 0.3, H = [1 2], and the eigenvalues of Φ are 0.98
and 0.97.

7 Conclusions: Vector Cauchy Estimation and Control

For scalar stochastic dynamics, developed a Cauchy estimator by generating
the conditional pdf. Based on this conditional pdf a m-step optimal MPC for
Cauchy noises was developed. This Cauchy optimal MPC can differentiate be-
tween process and measurement noise spikes and thereby is a formal method
for handling outliers. For the n-vector stochastic dynamics, a Cauchy estimator
was developed by propagating and updating the characteristic function of the
unnormalized conditional pdf. Numerical results were given for a two state re-
cursive estimator. However, the scheme produces many terms. This issue is being
addressed by analyzing the coefficient terms of the exponential to prune away
small elements. In addition we are developing schemes for parallel processing.
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Abstract. In this study, a novel filtering method called Randomized Sigma 
Point Kalman Filter (RSPKF) is introduced for feature based 3D Simultaneous 
Localization and Mapping (SLAM). Conventional SLAM methods are mostly 
based on Extended Kalman Filters (EKF) for ‘mild’ nonlinear processes and 
Unscented KF (UKF) or Cubature KF (CKF) for ‘aggressive’ nonlinear 
processes. A critical problem of the existing filtering methods is that they lead 
to biased estimates of the state and measurement statistics. The main purpose of 
this study is to propose a new local filter, RSPKF, based on stochastic integra-
tion rules providing an unbiased estimate of an integral for feature based 
SLAM. The simulation based on point features in 2D and experimental results 
based on planar features in 3D show that the RSPKF based SLAM method pro-
vides more accurate results than the traditional methods.  

Keywords: SLAM, feature extraction, randomized sigma point filters. 

1 Introduction 

Simultaneous Localization and Mapping plays a central role for fully autonomous 
system when the Global Navigation Satellite System is not available or denied. 
SLAM is an active research area of the last decade and its solution is considered as 
the “holy grail” by the robotics researchers [1]. Feature based SLAM (Fb-SLAM) 
methods requires sophisticated feature extraction methods. These features are princi-
pally considered as rotation and translation independent and can be distinguished 
when they are exists in the two consecutive observations. The aim of the feature based 
SLAM methods is to estimate the robot pose and landmark locations combined in a 
state vector.  

A traditional representation in SLAM is to use state space model with additive 
Gaussian noise, which leads to the local filters such as EKF, UKF, and CKF. EKF is 
the well-known filtering method using the first order approximation of the nonlinear 
functions [2]. Therefore, it is appropriate for ‘mild’ nonlinear processes and mea-
surement models. In order to overcome the linearization problem of ‘aggressive’ non-
linearities, Julier and Uhlman [3] proposed Unscented Kalman Filter (UKF) known as 
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derivative-free approach. The UKF, instead of linearization of the nonlinear functions, 
estimate the mean values and covariance matrices with sigma points, which are ob-
tained by a deterministic sampling approach. Cubature Kalman Filters (CKF) is  
proposed as a more accurate filtering method and a more mathematically principled 
method than UKF for nonlinear state estimation by Arasaratnam and Haykin [4]. CKF 
is also more stable filter than the UKF and has a square root solution providing nu-
merical advantages and maintains the positive definiteness the of covariance matrix.  

The UKF and CKF methods can be jointly considered as sigma point or derivative-
free Kalman filters. The difference between these local filter is originated from the 
approximation used in computation of the integrals. The approximations based on the 
Taylor expansion, unscented transform, and cubature transform has a significant 
weakness which is the systematic error emerged by the approximate solution to the 
integrals [5]. To solve this problem, a randomized unscented Kalman filter (RUKF) 
has been proposed for solving the integrals without systematic errors  very recently 
[5]. RUKF is based on the stochastic integration rule for infinite regions proposed by 
the Genz and Monohan [6]. 

In this paper, Randomized Sigma Point Kalman Filters (RSPKF) are used in simul-
taneous localization and mapping problem. To test the method in a more challenging 
SLAM problem, we introduce a novel landmark extraction method based on plane 
detection. Unlike the conventional methods, the 4D infinite plane parameters are en-
coded into the state vector and they are estimated with the latest 6D robot pose. The 
proposed observation model consists of dense trigonometric functions and cannot be 
considered as a mild nonlinear function; therefore, the RSPKF is obviously suitable 
for this type of problem. The appropriateness of the proposed SLAM method is vali-
dated through both simulations and experimental datasets in 2D and 3D, respectively. 
In 2D, point features are used as landmarks, and in 3D planes are used as landmarks 
in the SLAM state vector representation. 

In Section 2, the Sigma Point Kalman Filter is introduced. Then the Randomized 
Sigma Point Kalman Filter (RSPKF) based on stochastic integration rule and RSPKF 
based SLAM method is presented in Section 3. Finally, the simulation and experi-
mental results are given in Section 4 and a conclusion is drawn in Section 5. 

2 Sigma Point Kalman Filter 

The Sigma Point Kalman Filters (SPKFs) based on the unscented transform (UT) or 
cubature transform (CT) is introduced in this section. 

2.1 Unscented Transformation  

The aim of the unscented transformation is to calculate first two moments of a known 
nonlinear function y=g(x) where x and y are the random vector variables. The mean 
vector y , the covariance matrix Py, and the cross-covariance matrix Pxy are described 

by  
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The solution to the problem with UT is based on the approximation of the random 

variable x by using a deterministically chosen set of sigma points, iχ ,  and their 

corresponding weights iw . 
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where i=1,2, … n, and n is the dimension of the state vector. The term (•)i  represents 
the ith column of the matrix. The covariance matrix satisfy the definition of P=SST 
where S is the square root of P. Then sigma points are propagated based on the nonli-
near function g(x) as  

( ),   .i iy iχ= ∀g             (3) 

Then the mean and covariance values are approximated as follows 
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The variable κ  is the scaling parameter and suggested setting is the 3 nκ = −  [3]. 
However, the positive semi-definiteness is lost for multi-dimensional variable x, 
which is the indispensable occasion of SLAM methods, because of negative κ (n > 3, 
κ < 0). For that reason, a possible practical solution is to choose 0κ =  for the multi-
dimensional case although there is no mathematical justification. Moreover, the adap-
tive setting of the scaling parameters may improve the estimation accuracy of the  
UT [7]. 

2.2 Cubature Transformation  

Cubature transformation, a more accurate and mathematically principled transforma-
tion than the UT, is proposed by Arasaratnam and Haykin [4]. The cubature transfor-
mation is based on the cubature theory and it is summarized as follows. 
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The key point of the Cubature theory [8] is to find multi-dimensional integrals us-
ing cubature rules since its integrands are in the form of,  

 
non-linear function × Gaussian. 

 
Thus, the Bayesian filter solution is approximated by the help of cubature theory. 

Cubature Rules  
The cubature rule is used to approximate an n-dimensional Gaussian weighted 
integral as 
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where N is the normal distribution of x  with mean x  and covariance matrix P . The 

relation for covariance matrix
T

=P P P is satisfied. The 2n set of cubature array set 
is defined by ζ , and iζ  the ith element of the set ζ , 
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2.3 Sigma Point Kalman Filters: UKF and CKF 

The UKF and CKF are jointly called as Sigma Point Kalman filters (SPKF). The 
SPKF methods are based on either the unscented or the cubature transformations. 
Consider the following discrete time process and observation models. 
 

1 1 1( , )k k k kf w− − −= +x x u        (7) 

 
where 1kw −  denotes the zero mean Gaussian distribution noise vector with covariance 

matrix Q, and uk-1 the control signal or odometry data. The two fundamental steps of 
the Kalman filters are explained as follows. 

Time Update 
In the time update step, SPKFs computes the predicted mean −x and covariance ma-

trix −P depending on the transformation. 
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1 1 1 1[ ( , ) | ]k k k k kE f w D−
− − − −= +x x u                 (8) 

 
where 1kD − denotes the history of the input and measurement pairs up to k-1. Since 

1kw −  is assumed to be zero mean and independent of the measurement sequence, one 

can write 
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The corresponding error covariance matrix can be written as 
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Measurement Update. The predicted measurement vector, the corresponding cova-
riance and cross covariance matrices are given by 
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After new zk measurements are obtained, the sigma point Kalman filter updates the 

state vector and covariance matrix as 
 

,
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T
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                                (12) 

 
where the Kk is the Kalman gain given by 
 

1
, ,k xz k zz kK = P P−                                            (13) 

 
The main difference between the UKF and CKF is the approximations used to 

solve the given integrals. While the UKF filters uses unscented transform, CKF uses 
the cubature transform for solving the integrals. In the next subsection, we state the 
problem of the systematic error caused by approximations.  
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2.4 Problem Statement 

The sigma point filters provides an approximate solutions to the nonlinear functions. 
However, these approximations are biased and generate systematic errors. To keep the 
equations more certain, we elucidate this situation on the UT. The error utε  is ex-
pressed by means of the Taylor expansion of the actual mean and the approximate 
mean [3].  
 

4 6

4 6
2

1

...
4! 6!

1
...

2( ) 4! 6!
p p

ut x x

n
p p

p

D D
E

D D

n

ε ε

ε

χ χ
κ

Δ Δ

=

⎡ ⎤
= + +⎢ ⎥

⎣ ⎦
⎛ ⎞
⎜ ⎟− + +
⎜ ⎟+ ⎝ ⎠

∑

g(x) g(x)

g( ) g( )
     (14) 

 
where 

1

1
( ) ) ( ) |

! ! ( )
p

p

kk
n

p i p xi
p

D
i

k k i

ε
χχ χ

χ ==

⎛ ⎞∂= −⎜ ⎟⎜ ⎟∂⎝ ⎠
∑

g(x)
( x g     (15) 

 
is the kth term of the Taylor series expansion of the pth sigma point pχg( )  and ( )p iχ  

is the ith element of pχ . The error utε  is different from zero if the function g is not a 

polynomial of degree 2n. This systematic error is also appears in the computations of 
the covariance matrices in a similar fashion.  

In the next section, the randomized sigma point Kalman filter is presented to elimi-
nate the mentioned systematic error. 

3 Randomized SPKF Based Slam 

Randomized Sigma Point Kalman Filter (RSPKF) proposed by Dunik et al. [5] uses 
the stochastic integration rule (SIR) introduced by Genz and Monohan [6]. SIR is 
explained as follows. 

3.1 Stochastic Integration Rule (SIR) 

SIR is appropriate for solving the integral of the form 
 

/2 1
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π
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x x
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This relation can be considered as a computation of the expected value of the func-

tion g where x is a random variable with ( ) ( )p = N ; ,x x x P . The algorithm to solve 

the integral (16) based on SIR is given by the Algorithm 1 in Table 1. 
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Table 1. Algorithm 1. Stochastic Integration Rule 

 

Algorithm 1. μ = SI(x,P,g(x))   
 
1:   Define Nmax 
2:   Set μ = 0  and compute )χ =0 g(x  

3:   for i=1 to Nmax do 
4:         Generate a uniformly random orthogonal matrix nxnR∈Q  and generate a    
            random number ρ form Chi-distribution with n+2 degrees of freedom.  

5:        Compute a set of points iχ  and corresponding  

            weights iw  according to  

i iPρ= − Qeχ  

n i iPρ+ = Qeχ  

0 2
1

n

ρ
= −w , 

2

1

2ρ
= =i n+iw w  

             where i=1,2…n and ei is the ith column of the  
             identity matrix.  
6:        Compute the value S of the integral at current iteration 

( )0 0
0

( ) ( )
x

x

n

i i n i
i

ω ω+
=

= − + +∑S g gχ χ χ  

             and use it to update the approximate mean μ  

) / iμ = μ + μ( −S  

7:   end for 
8:   return μ  

 
 
The matrix Q can be generated using a product of appropriately chosen random 

reflections [6].  

3.2 Randomized Sigma Point Kalman Filter 

The time update and the measurement update steps of the filter are given as follows. 

Time Update 
The relations of the time update step is previously given by the equations (8) and (10). 
Here the integrals are solved by the SIR algorithm.  
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Measurement Update 
The relations of the measurement update step is previously given by the equations 
(11) and the integral obtained by the SIR as 
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Finally, the estimated state vector and covariance matrix is computed as in (12).   

3.3 SLAM Based on RSPKF   

The conventional Fb-SLAM representation consists of three models, which are ve-
hicle model f, observation model h, and the augmentation model g. These representa-
tions are expressed as follows. 

Vehicle Model 
The vehicle model is given by f 
 

1
1 1( , )

k k
v v k kf w

− − −= +x x u             (19) 

 
where 1kw −  denotes the zero mean Gaussian distribution noise vector with the cova-

riance matrix Q, and the control signal u. 

Landmark Model 
The landmarks are assumed as stationary

1k km m +
=x x  and represented in world (W) 

frame. The SLAM map is augmented with the following state vector representation, 
 

1

6+4
1

NR .
k k

a
k v m ++ ⎡ ⎤= ∈⎣ ⎦x x x                     (20) 

Observation Model 
Measurement or observation model parameters, kz  are provided by the feature extrac-

tion method and stated as  
 

1 1( )k kk vz h − −= +x,u                              (21) 

 
where h is the measurement model and 1kv − is the zero mean observation noise with R 

error covariance matrix.  
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Motion Update 
Motion update step is based on the vehicle model (19). The state and covariance ma-
trix is augmented as  
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where kx  is the state vector in the kth time step and ku  is the applied control signal at 

this time. kP denotes the state covariance matrix and augmented as in (22). The square 

root, S, of the covariance matrix, kP , is obtained by the Cholesky decomposition 

S=chol( kP ). Then the time prediction step of the RSPKF algorithm is applied to the 

augmented vectors (22). The error covariance matrix of the motion is shown by kQ .  
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Measurement Update 
 The measurement update step is based on the observation model (21) and the state 
and covariance estimations are obtained using the SIR as in (18) 
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where the Kk is the Kalman gain given by 
 

1
, ,k xz k zz kK = P P−                                         (25) 

State Augmentation 
The state augmentation is based on the augmentation given by (20) and operated in 
every new landmark observations. The state augmentation is applied in two steps. 
Firstly, the state vector and covariance matrix is augmented with the new observations 
as follows. 
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where kR is the error covariance matrix of the measurement.  
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The augmented state model [ ]a
xv mg = x  is constructed, and then the augmented 

state vector and covariance matrix are computed by following the same procedure in 
motion update step with (22) and (23) which are restated here to save space. 

4 Performance Evaluatıons 

RSPKF based SLAM performance is compared to the SPKF based SLAM in both 
simulations and experimental in 2D and 3D respectively.  

4.1 Simulation Results in 2D 

In this section, an artificial environment containing landmark position in 2D is gener-
ated and the robot way points are defined. The aim of the SLAM algorithm is to esti-
mate the landmark positions and last robot pose information using the range and bear-
ing observation model.  

Vehicle Model 
The explicit vehicle model (19) is given by  
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where V  and γ  are the control input representing the constant velocity and steering 

angle with zero mean Gaussian noise w, respectively, and 
kvφ  denotes the vehicle 

heading angle at time k. 

Observation Model  
The range and bearing observation model (21) is  
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where r is the range and b represents the bearing measurements, and the measure-
ments are with zero mean Gaussian noise ν .  
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State Augmentation Model 
The state augmentation model 

kmx  is given by  
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k k k
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The Monte Carlo simulations are carried out and the average position and orienta-

tion error norms for UKF and RSPKF SLAM methods are shown in Fig. 1. The con-
trol noise is 1 m/s in speed and 1 degree in steering angle. Similarly, the measurement 
noise in range and bearing is assumed as 1 meter and 1 degree, respectively. There-
fore, the process covariance matrix Q=R=diag(1, π/180). The vehicle speed is taken 
as 2 m/s and time interval between two control signals is set by 0.05 seconds. The 
time interval between the two observations is assumed as 2.5 seconds. 
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Fig. 1. Average position error norm 
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Fig. 2. The feature map and the estimated robot path 
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The feature map and the estimated paths based on the filtering methods are shown 
in Fig. 2. 

4.2 Experimental Results in 3D 

In this section, an experimental data set provided by Oliver Wulf  is used [9]. This 
data set was recorded at the Leibniz University Campus and contains 468 3D scans, 
each with approximately 20,000 data points. A scan is given by three columns in x, y, 
and z-axes. The initial pose estimates are given by xv, yv as position, and θv as orienta-
tion in 3D. The ground truth pose data is available in 6D, [ ]

p ov v vx x x= , and the size 

of the map is about 30 meter by 60 meter. The proposed RPSKF-SLAM method re-
quires the Gaussian noise; however, the relative Odometry error variation is neither 
zero-mean nor Gaussian as shown in Fig. 3. Therefore, the problem becomes more 
challenging with respect to the Gaussian case. The vehicle model, observation model, 
and the augmentation models are expressed below. 

Vehicle Model 
The vehicle model function given by f, and it can be disclosed explicitly as in (30) for 
the odometry data having the relative rigid body transformation parameters. The 
odometry data is provided by the relations of         [ ]x y zδ δ δ δα δβ δγ=u . The vehicle 

state vector is represented by [ ]
p ov v v=x x x  where    [ ] 

pv x y z=x  and 

   [ ] 
ov α β γ=x  denote the robot position and the orientation, respectively. In the vec-

tor representations, the transpose T symbol is dropped for convenience. 
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Fig. 3. Odometry error variation for the first 100 scans in Hannover dataset [9]. Translation 
errors are in cm and rotation error is in radian. 
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                (30) 

 
where Rot matrix represent the three successive rotations defined by the Euler angles 
in x, y, and z-axes. 

Observation Model 
The observation model is based on the feature extraction method proposed by Ulas 
and Temeltas [10]. The plane features are used as landmarks and are encoded in the 
state vector with their infinite plane representations. The observation model h is given 
by  
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where 

k

L
Fn  is the plane normal vector represented in the local (L) frame, and 

k

L
Fd  is 

the plane minimum distance to the robot location 
,p kvx provided by the feature extrac-

tion method. The reader is referred to [10] for more information about the feature 
extraction method.  Based on the robot orientation 

,o kvx and location 
,p kvx the plane 

patch parameters are transformed to the world (W) frame for state augmentation. 

State Augmentation Model 
The state augmentation model is given by   
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= −
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The infinite plane representations in local and world frame are shown in Fig. 4. 

For the data association purpose, the other plane properties such as center of gravi-
ty of the planes L

FG , the covariance matrix L
FC  of the plane points and convex hull 

points ,
L

XYZ FΔ  are also transferred to the world frame by using the estimated robot 

position.  
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Fig. 4. Infinite Plane representation in local and world frame 

 

 
Fig. 5. Estimated planar map of the environment. The estimated robot position with uncertainty 
ellipsoids and ground truth path (orange) are shown. 
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In Fig. 5, the planar map constructed form the SLAM and the actual robot path is 
shown. In addition, the error uncertainty ellipsoids of the robot 3D position with their 
mean are shown on the map. Here, the point cloud is registered based on the ground 
truth as the reference.  
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Fig. 7. Average rotation error norm 

The results show that UKF and CKF based SLAM satisfy the similar results with a 
maximum position error around 6.5 meters (in the 35 time index). On the other hand, 
the RSPKF based SLAM has a maximum of 4 meter position error norm and more 
accurate than the conventional sigma point approaches. The rotation error norm looks 
similar for all filter types. 
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5 Conclusion 

In this study, a new filtering method based on randomized sigma point sampling is 
introduced for localization mapping problem. The advantage of the proposed method 
is that the estimations are unbiased and does not yield the systematic error which is 
always the case of the classical filtering approaches. The performance evaluations are 
given for both simulations and experimental data. The proposed method is more accu-
rate than the traditional sigma point Kalman filters like UKF and CKF which have 
similar performances. Although this approximation takes more computational time, it 
can be used accurately in SLAM problems without any systematic error. 
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Abstract. This paper proposes a novel methodology to fuse delayed
measurements in a distributed sensor network. The algorithm derives
from the linear minimum mean square error estimator and yields a linear,
unbiased estimator that fuses the delayed measurements. Its performance
regarding the estimation accuracy, computational workload and memory
storage needs is compared to the classical Kalman filter reiteration that
achieves the minimum mean square error in linear and Gaussian systems.
The comparison is carried out using a simulated distributed sensor net-
work that consists of a UAV fleet in formation flight in which the GPS
measurements and relative positions are exchanged among neighboring
network nodes. The novel technique yields similar performance to the re-
iterated Kalman filtering, which is the optimal linear Gaussian solution,
while demanding less storage capacity and computational throughput in
the problems of interest.

Keywords: Delayed measurements, measurement transportation, dis-
tributed Kalman filter, sensors network, UAV fleet.

Notation and Abbreviations

DCM Direction Cossine Matrix.
MMSE Minimum Mean Square Error.
y Scalar.
y Vector.
A Matrix.
In Identity matrix of size n.
[y]×x Matrix representation of the cross product y × x.
Da

b DCM that rotates from the a coordinate frame to the b coordinate
frame.

ρl Transport rate represented in the local horizontal frame.
Ωe,l Earth’s angular rate represented in the local horizontal frame.
Aspl Specific force represented in the local horizontal frame.
ΔRl INS position error represented in the local horizontal frame.
ΔVl INS velocity error represented in the local horizontal frame.
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Ψ Misalignment from the computed coordinate frame to the platform
coordinate frame.

∇ Accelerometer triad bias.
ε Rate-gyro triad drift.
Re Earth radius at the latitude of the vehicle.
ge Gravitation at the latitude of the vehicle.
Ωk−1,i Set of all measurements received by the i-th node up to instant k− 1.
x̂k|k−1,i Estimate of the vector xk,i using all measurement up to instant k− 1.
Pk|k−1,i Estimation error covariance of the vector xk,i using all measurement

up to instant k − 1.

1 Introduction

A network consisting of spatially distributed sensor nodes with local process-
ing units for acquiring local measurements and estimating the state vector of a
dynamic system can produce more accurate estimates when information is ex-
changed among the nodes. Such distributed estimation approach is less suscepti-
ble to a single point failure that can cripple centralized estimation schemes [1, 2].

The processing unit at each sensing node iterates a Kalman filter. Two distinct
possibilities were evaluated in literature: exchanging sensor measurements among
nodes [3–5] and exchanging state vector estimates produced by the local Kalman
filters [1, 2].

Distributed filtering has been widely investigated when network nodes share
the dynamic model [1–4]. However, interesting problems call for algorithms that
can perform the distributed estimation when the nodes do not share the state-
model, e.g. an UAV fleet [6], a set of satellites in orbit [7, 8], and spacecrafts
flying into the deep space [9–11]. To the best knowledge of the authors, the
first approach to information fusion in such a network was [12]. A very similar
algorithm was proposed in [13]. In both investigations the nodes’ states should
be related by a linear transformation. Here, the subject is probed further to
deal with delayed measurements in a distributed network wherein a particular
dynamic model is embedded in each node. It is shown here that in such a sce-
nario the exchanged measurements can only be fused if additional information
is gathered to relate measurements from neighboring nodes with a node’s state.

It is expected that the required information will arrive with delays. The ac-
curacy of the distributed estimation by the network could be severely degraded
had the delayed measurements been processed without adequate caution. There
is a myriad of techniques in the literature to fuse delayed measurements in a
non-distributed estimation. Reference [14] compared many methods regarding
performance, storage necessity, and computational workload. Among the tech-
niques discussed, references [15–17] need the knowledge that a delayed mea-
surement has not been received at a node so that parallel computations can
be started to optimally fuse the delayed measurement when it arrives. On the
other hand, the algorithms in [18, 19] have not been extended to handle multiple
delays. These inconveniences preclude the use of such algorithms in distributed
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estimation problems. Reference [20] compared algorithms to fuse out-of-sequence
measurements in sensor networks, which can be used in the distributed filtering
problem addressed here. These algorithms were developed to achieve the mini-
mum mean square error (MMSE) optimality in linear and Gaussian systems and
thus require recursions that yield a heavy computational burden.

In the problems of interest, it is expected that measurements may be received
with a delay on the order of thousands of the sampling step. Thus, algorithms
that call for recursions will be time consuming. Here, a novel approach, thereafter
called measurement transportation, has been developed based on the delayed-
state Kalman filter [21] and on the suboptimal technique in [22]. This novel
algorithm has been compared with a classical methodology for delayed measure-
ment fusion: the reiterated Kalman filter [23]. This technique assures MMSE
optimality if the system is linear and Gaussian.

A simulated UAV fleet in formation flight is the sensor network scenario in
which GPS measurements and relative positions are exchanged among the air-
craft. It turns out that this novel technique needs less storage capacity than
any algorithm in [20], the computational workload is lighter in comparison with
the reiterated Kalman filter, and a good overall performance is achieved for the
problems of interest.

Section 2 presents the coordinate frames. The distributed estimation problem
when the nodes do not share the same state dynamics model is presented in
section 3. The two algorithms to fuse the delayed measurements are described
in section 4. The distributed filtering in a UAV fleet is described in section 5.
Simulations and results are presented in section 6. Finally, the conclusions are
written in section 7.

2 Coordinate Frames

The true local horizontal frame is used to represent the INS errors. In the
true vehicle position, its X-axis points towards north, its Y-axis points towards
east, and its Z-axis points down. This coordinate system is thereafter indicated
with the l subscript.

The computed coordinate frame is defined as the local horizontal frame
at the position computed by the INS.

The platform coordinate frame is defined as the local horizontal frame
computed by the INS.

The body coordinate frame is defined as the inertial sensors coordinate
frame. It is usually assumed to be aligned with the vehicle coordinate frame in
strapdown IMUs or aligned with the platform coordinate frame in IMUs mounted
on a stabilized platform. This coordinate frame is thereafter indicated with the
b subscript.

The Earth-Centered-Earth-Fixed coordinate frame has its origin at the
center of the Earth, its X axis lies on the equatorial plane and points to the
Greenwich meridian, its Z axis is aligned with the Earth’s rotation axis, and its
Y axis completes the right-hand coordinate frame. It is thereafter indicated with
the e subscript.
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TheWGS-84 ellipsoid Earth-fixed coordinate frame is used to represent
the GPS data.

3 Distributed Estimation

Distributed estimation has been widely studied in the literature using a set
of sensors that measure states components from a common process dynamics
[1–4]. Many algorithms have been developed to fuse the network data to im-
prove the overall estimation accuracy and to provide robustness. The exchanged
information can be the state vector estimates from the neighboring nodes or
the measurements from the corresponding sensors. However, many interesting
problems call for algorithms that can perform distributed estimation when each
node observes a different process, e.g. an UAV fleet. This scenario is modeled as
follows for the i-th node:

xk+1,i = Fk,ixk,i +Bk,iuk,i +Gk,iwk,i

yk,i = Hk,ixk,i + vk,i ,
(1)

where Fk,i is a Mi ×Mi state-transition matrix, Bk,iuk,i is a deterministic and
known control vector, Gk,iwk,i is the model noise assumed to be a zero-mean,
white Gaussian random vector with Qk,i covariance matrix, Hk,i is a Ni ×Mi

measurement matrix, and vk,i is the measurement noise modeled as a zero-mean,
white Gaussian random vector with Rk,i covariance matrix. The initial state x0,i

is a Gaussian random vector with mean m0,i and covariance P0,i. Additionally
it is assumed that all measurement and model noises through the network are
independent to each other and are also independent to the initial state x0,i at
every node.

As mentioned before, the nodes does not share the same dynamics, thus the
j -th node measurement cannot be directly used by the i-th node. If the latter
receives, in the instant k, a measurement from the former, then the posterior
probability density function is

p(xk,i|yk,i,yk,j ,Ωk−1,i) , (2)

where Ωk−1,i is the set of all fused measurements up to instant k − 1 at node i.
Using Bayes rules, one can verify that

p(xk,i|yk,i,yk,j ,Ωk−1,i) =

Ckp(yk,j |xk,i,yk,i,Ωk−1,i)p(yk,i|xk,i)p(xk,i|Ωk−1,i) ,
(3)

with Ck being a normalizing constant that yields∫
R

Mi

p(xk,i|yk,i,yk,j ,Ωk−1,i)dxk,i = 1 .

The computation of the p.d.f. p(yk,j |xk,i,yk,i,Ωk−1,i) will eventually need
some sort of additional information to relate the j -th neighboring node mea-
surement to the i-th node states as in the following function:

yk,j = hi,j
k (xk,i) . (4)
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If such function can be constructed, then the j -th node measurement can be
fused at the i-th node as if it was actually produced by a sensor that is local
to the i-th node. This methodology was used in [24] in which the exchanging
of position measurements from robots was proposed. The authors verified that
it could only be possible if the relative position vectors had to be available.
Additionally, in case function hi,j

k (·) is nonlinear, then it should be linearized
about x̂k|k−1,i as in the extended Kalman filter algorithm.

4 Delayed Measurements

In a distributed sensor network, it is expected that the exchanged measurements
will spread across the network and reach distinct nodes with varying time delays.
Here, the sample step is small enough such that the node dynamics has been
assumed constant between two consecutive sample steps. Thus a delay smaller
than the sampling step is negligible [25]. Additionally, if a measurement is re-
ceived at instant tl in which tk−n ≤ tl ≤ tk−n+1, then it has been considered
as delayed by n sample steps. Under these assumptions, a measurement with a
delay lower than one sample step can be fused as usual. However if a measure-
ment happens to reach a node with a delay higher than the sampling interval,
then the local estimate could be severally degraded had the measurement been
näıvely fused.

It should be noticed that all previous methodologies need to store information
to accomplish the delayed measurement fusion [14, 20, 23]. Thus one must define
a maximum allowed delay, thereafter called max. If any measurement with a
delay higher than max is received, then it will be discarded.

4.1 Measurement Grouping

Let νi
k be the set of all measurements that the i-th node received in the instant

k. It has been considered that these measurements from the neighboring nodes
as described in eq. 4 depend on a function hi,j

k (xk,i) that is either linear or has

been linearized about x̂k|k−1,i, thus yk,j = Hi,j
k xk,i + vk,j . The aforementioned

set can be partitioned into subsets according to the measurement delay, hereafter
called νi

k,Δn
. Thus the subset νi

k,Δn
is composed of all measurements received

by the i-th node in the instant k delayed by Δn sample steps, where 0 ≤ Δ0 <
Δ1 < · · · < ΔL ≤ max.

The measurements in the same subset νi
k,Δn

can be fused into one single
vector to reduce the computational burden. In case the sensors do not share
the same measurement matrix, the measurements vectors are projected into the
state-space as follows [1]:
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yf
k,Δn,i =

∑
j∈νi

k,Δn

Hi,j,T
k−Δn

R−1
k−Δn,j

yk−Δn,j =

=

⎛
⎝ ∑

j∈νi
k,Δn

Hi,j,T
k−Δn

R−1
k−Δn,jH

i,j
k−Δn

⎞
⎠xk−Δn,i+

+
∑

j∈νi
k,Δn

Hi,j,T
k−Δn

R−1
k−Δn,j

vk−Δn,j =

= Hf
k,Δn,i

xk−Δn,i + vf
k,Δn,i ,

(5a)

Rf
k,Δn,i

= cov{yf
k,Δn,iy

f,T
k,Δn,i} =

=

⎛
⎝ ∑

j∈νi
k,Δn

Hi,j,T
k−Δn

R−1
k−Δn,j

Hi,j
k−Δn

⎞
⎠ = Hf

k,Δn,i
,

(5b)

in which the information form of the Kalman filter should be used. On the other
hand, if all measurements in the set share the same measurement matrix, then
measurement fusion can be carried out by [26]

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Rf,−1
k,Δn,i

=
∑

j∈νi
k,Δn

R−1
k−Δn,j

yf
k,Δn,i = Rf

k,Δn,i

⎡
⎣ ∑
j∈νi

k,Δn

R−1
k−Δn,j

yk−Δn,j

⎤
⎦ .

(6)

Finally, the problem is reduced to fuse the measurements yf
k,Δn,i, where n ∈

[0, 1, 2, · · · , L], and to compute (or to approximate) the p.d.f.

p(xk,i|yf
k,Δ0,i

,yf
k,Δ1,i

, · · · ,yf
k,ΔL,i,Ωk−1,i) = p(xk,i|Ωk,i) .

One should note that a consensus over the network is not pursued here as
in [1] or [2]. The nodes send to the neighbors the local measurements by the
time they are acquired. Additionally, a node can retransmit the information
received to permit that a measurement reach, even if delayed, nodes outside
its neighborhood. The idea is to fuse all available information (delayed or not)
without waiting for the communication steps to achieve the network consensus.

4.2 The Reiterated Kalman Filter

When node of a distributed sensor network receives a delayed measurement, then
the optimal fusion is accomplished if the posterior estimate is exactly the same as
it would be if the measurement had been received at the time of its production,
without the delay. The most direct way to accomplish that is to reiterate the
Kalman filter from the instant when the measurement was produced until the
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present time [23]. However, one should notice that the MMSE optimality is
assured only in linear and Gaussian systems.

The aforementioned methodology can be only used if the updated estimates
and covariance matrices together with the fused measurements and respective
statistics are stored from instant k − max up to instant k − 1. Let yu

k−n,i and
Ru

k−n,i be, respectively, the measurement vector and its covariance that was used
in the Kalman filter update step at instant k − n by the i-th node. Thus the
algorithm can be written as follows:

– j = ΔL, n = L
– WHILE j ≥ 0

• IF j = Δn THEN

∗ n = n− 1
∗ Fuse the measurement vectors yu

k−j,i and yf
k,j,i into yd

k,j,i.

∗ Fuse the statistics of the measurement vectors Ru
k−j,i and Rf

k,j,i into

Rd
k,j,i.

• ELSE

∗ yd
k,j,i = yu

k−j,i

∗ Rd
k,j,i = Ru

k−j,i

• ENDIF
• Using yd

k,j,i, R
d
k,j,i, x̂k−j|k−j−1,i, and Pk−j|k−j−1,i apply the update step

of the Kalman filter and overwrite x̂k−j|k−j,i and Pk−j|k−j,i.
• Apply the propagation step of the Kalman filter and overwrite
x̂k−j+1|k−j,i and Pk−j+1|k−j,i.

• yu
k−j,i = yd

k,j,i

• Ru
k−j,i = Rd

k,j,i

• j = j - 1

– ENDWHILE

If the node does not receive any measurements delayed more than max sam-
pling steps, then the posterior estimate will be optimal in the MMSE sense in
a linear and Gaussian system. However the computational workload is huge. If
the most delayed measurement was produced n sampling steps in the past, then
this algorithm will iterate the Kalman filter n+ 1 times.

4.3 Measurement Transportation [27]

A novel approach to the fusion of delayed measurements in the Kalman filter is
proposed here: the measurement transportation. The algorithm, though subop-
timal in the MMSE sense, has achieved a good performance in the situations of
interest with lighter computational load and less storage necessity than the reit-
erated Kalman filter. The approach is based on the technique in [22] and on the
delayed-state Kalman filter [21], which was constructed to fuse a measurement
composed of two consecutive states, xk−1 and xk.
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Using the model in eq. 1, the state xk−n,i can be related to xk,i as follows

xk−n,i =

[
n−1∏
l=0

F−1
k−(n−l),i

]
xk,i −

n∑
j=1

([
n−j∏
l=0

F−1
k−(n−l),i

]
Gk−j,iwk−j,i

)
−

−
n∑

j=1

([
n−j∏
l=0

F−1
k−(n−l),i

]
Bk−j,iuk−j,i

)
.

(7)

Thus the fused delayed measurement in each subset νi
k,Δn

can be transported
to the present instant by

yf
k,Δn,i = Hp

k,Δn,ixk + up
k,Δn,i

+ vp
k,Δn,i = yp

k,Δn,i , (8)

where

Hp
k,Δn,i

= Hf
k,Δn,i

[
Δn−1∏
l=0

F−1
k−(Δn−l),i

]
, (9)

up
k,Δn,i = Hf

k,Δn,i

Δn∑
j=1

([
Δn−j∏
l=0

F−1
k−(Δn−l),i

]
Bk−j,iuk−j,i

)
, (10)

vp
k,Δn,i = vf

k,Δn,i −Hf
k,Δn,i

Δn∑
j=1

([
Δn−j∏
l=0

F−1
k−(Δn−l),i

]
Gk−j,iwk−j,i

)

︸ ︷︷ ︸
�

.(11)

Notice that the fused delayed measurement noise vp
k,Δn,i has a covariance

ellipsoid larger than that of the original measurement due to the summation
of the model noise samples from instants k − Δn up to k − 1 (�). Thus, the
fused delayed measurement signal-to-noise ratio degrades with respect to the
instantaneous measurement.

By stacking the measurements in each subset νi
k,Δn

, n ∈ [0, 1, 2, · · · , L], the
measurement vector to be fused at instant k by the i-th node is

ye,p
k,i = He,p

k,ixk,i + ve,p
k,i , (12)

where

ye,p
k,i =

[
yp,T
k,Δ0,i

yp,T
k,Δ1,i

· · · yp,T
k,ΔL,i

]T
− ue,p

k,i , (13)

ue,p
k,i =

[
up,T
k,Δ0,i

up,T
k,Δ1,i

· · · up,T
k,ΔL,i

]T
, (14)

He,p
k,i =

[
Hp,T

k,Δ0,i
Hp,T

k,Δ1,i
· · · Hp,T

k,ΔL,i

]T
, (15)

ve,p
k,i =

[
vp,T
k,Δ0,i

vp,T
k,Δ1,i

· · · vp,T
k,ΔL,i

]T
. (16)
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Under the foregoing assumptions, it is clear that ve,p
k,i has zero mean. Thus its

covariance matrix is

Re,p
k,i = E{ve,p

k,iv
e,p,T
k,i } =

⎡
⎢⎣
E{vp

k,Δ0,i
vp,T
k,Δ0,i

} · · · E{vp
k,Δ0,i

vp,T
k,ΔL,i}

...
. . .

...

E{vp
k,ΔL,iv

p,T
k,Δ0,i

} · · · E{vp
k,ΔL,iv

p,T
k,ΔL,i}

⎤
⎥⎦ , (17)

where the expectations E{vp
k,Δn,iv

p,T
k,Δm ,i}, n,m ∈ [0, 1, 2, · · · , L], can be com-

puted as follows

E{vp
k,n,iv

p,T
k,m,i} =

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Rf
k,n,i · δ(n−m)+

+Hf
k,n,i ·

min(n,m)∑
j=1

⎛
⎝
[
n−j∏
i=0

F−1
k−(n−i)

]
Qk−j

[
m−j∏
i=0

F−1
k−(m−i)

]T⎞
⎠HT,f

k,m,i,

n > 0,m > 0,

Rf
k,0,i · δ(n) · δ(m), m = 0 or n = 0 ,

(18)
where δ(n) is the Kronecker’s delta.

The usual Kalman filter algorithm cannot be used with the measurement in
eq. 12, because the measurement noise ve,p

k,i is correlated with the model noise.
Thus, the linear MMSE estimate produced by the Kalman filter update step,
defined as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

x̂k|k,i = E{xk,i|ye,p
k,i ,Ωk−1,i} =

= E{xk,i|Ωk−1,i}+Cxy
k,iC

yy,−1
k,i (ye,p

k,i − E{ye,p
k,i |Ωk−1,i})

Cxy
k,i = E{(xk,i − E{xk,i|Ωk−1,i}) · (ye,p

k,i − E{ye,p
k,i |Ωk−1,i})T |Ωk−1,i}

Cyy
k,i = E{(yu

k,i − E{ye,p
k,i |Ωk−1,i}) · (ye,p

k,i − E{ye,p
k,i |Ωk−1,i})T |Ωk−1,i}

Pk|k,i = Pk|k−1,i −Cxy
k,iC

yy,−1
k,i Cxy,T

k,i ,

(19)
needs to be rewritten [28].

One can see that [28, 29]

E{ye,p
k,i |Ωk−1,i} = He,p

k,iE{xk,i|Ωk−1,i} = He,p
k,i x̂k|k−1,i , (20)

Cxy
k,i = Pk|k−1,iH

e,p,T
k,i + Sk,i , (21)

Cyy
k,i = He,p

k,iPk|k−1,iH
e,p,T
k,i +Re,p

k,i +He,p
k,iSk,i + ST

k,iH
e,p,T
k,i , (22)

where Sk,i = E{(xk,i − x̂k|k−1,i)v
e,p,T
k,i |Ωi

k−1}. In the usual Kalman filter al-
gorithm, Sk,i is zero due to the assumption that the model and measurement
noise vectors are uncorrelated. However, the transported measurement, defined
in eq. 12, carries the model noises from the instant it was produced up to the
instant k − 1.
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The Sk,i matrix can be rewritten as

Sk,i = E{(xk,i − E{xk,i})ve,p,T
k,i |Ωk−1,i}−

− E{(x̂k|k−1,i − E{xk,i})ve,p,T
k,i |Ωk−1,i} .

(23)

It can be verified that x̂k|k−1,i is a random vector that depends just on all
the measurement vectors fused up to instant k − 1 at the i-th node and on the
random vector x0,i. The latter has been assumed to be independent with respect
to all measurements and model noise sequences throughout the network. Thus,
conditioned on Ωk−1,i, x̂k|k−1,i and ve,p

k,i are independent, which leads to

E{(x̂k|k−1,i − E{xk,i})ve,p,T
k,i |Ωk−1,i} =

= E{x̂k|k−1,iv
e,p,T
k,i |Ωk−1,i} − E{E{xk,i}ve,p,T

k,i |Ωk−1,i}} =

= E{x̂k|k−1,i|Ωk−1,i}E{ve,p,T
k,i |Ωk−1,i} − E{xk,i}E{ve,p,T

k,i |Ωk−1,i} .

(24)

It can be concluded that E{ve,p
k,i} = 0(L+1)Mi×1 using eqs. 11 and 16 and the

assumptions regarding the model and measurement noises. However, since ve,p
k,i

and the fused measurements in Ωk−1,i depend on the model noise sequence, then
E{ve,p

k,i |Ωk−1,i} �= 0(L+1)Mi×1 in general. To compute this vector, the algorithm
needs to store all fused measurements from instant k−max up to instant k− 1.
Thus, to decrease the computational burden and the memory needs, the following
approximation is used

E{ve,p
k,i |Ωk−1,i} ≈ 0(L+1)Mi×1 , (25)

which together with eq. 24 leads to

E{(x̂k|k−1,i − E{xk,i})ve,p,T
k,i |Ωk−1,i} ≈ 0Mi×(L+1)Mi

. (26)

The approximation in eq. 25 neglects the effect of the model noise sequence
on the fused measurements in the set Ωk−1,i. Notice that if the model noise is
absent, then ve,p

k,i and the vectors in Ωk−1,i are independent and the approx-
imation in eq. 25 is exact. Thus, if the effect of the model noise sequence on
the state vector is negligible compared to that of the system dynamics and the
initial state, then the approximation in eq. 25 is accurate. Hence, the accuracy of
the proposed approximation requires a sufficiently small model noise covariance
matrix, which is assumed to be valid in the proposed scenario of a UAV fleet to
be simulated later on.

Additionally it can be shown by induction that

xk,i =

[
n∏

t=1

Fk−t,i

]
xk−n,i +Gk−1,iwk−1,i +Bk−1,iuk−1,i+

+
n∑

j=2

([
j−1∏
t=1

Fk−t,i

]
Gk−j,iwk−j,i

)
+

n∑
j=2

([
j−1∏
t=1

Fk−t,i

]
Bk−j,iuk−j,i

)

(27)
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and setting n = k, one can see that

xk,i − E{xk,i} =

[
k∏

t=1

Fk−t,i

]
(x0,i −m0,i)+

+Gk−1,iwk−1,i +

k∑
j=2

([
j−1∏
t=1

Fk−t,i

]
Gk−j,iwk−j,i

)
.

(28)

A white sequence has been assumed as the model noise Gkwk, k ∈ N. Thus

E{Gnwnw
T
mGT

m} = Qn · δ(n−m) . (29)

This result together with the assumption that x0 is independent with respect to
all model and measurement noise sequences leads to

E{(xk,i − E{xk,i})vp,T
k,Δn,i

|Ωk−1,i} =

⎧⎨
⎩−Qk−1

[
Δn−1∏
l=0

F−1
k−(Δn−l),i

]T

−
Δn∑
j=2

⎛
⎝
[
j−1∏
t=1

Fk−t,i

]
·Qk−j

[
Δn−j∏
l=0

F−1
k−(Δn−l),i

]T⎞
⎠
⎫⎬
⎭ ·Hf,T

k,Δn,i
,

(30)

for n ∈ [0, 1, 2, · · · , L] and Δn �= 0. If Δ0 = 0, then

E{(xk,i − E{xk,i})vp,T
k,Δ0,i

|Ωk−1,i} = 0Mi×Ni . (31)

The results in eqs. 26, 30 and 31 allow the computation of the matrix Sk,i as
follows

Sk,i =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

(
E{(xk,i − E{xk,i})vp,T

k,Δ0,i
|Ωk−1,i}

)T

(
E{(xk,i − E{xk,i})vp,T

k,Δ1,i
|Ωk−1,i}

)T

...(
E{(xk,i − E{xk,i})vp,T

k,ΔL,i|Ωk−1,i}
)T

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

T

. (32)

Finally the Kalman filter update step can be performed using the linear
MMSE estimate in eq. 19, which can be computed using eqs. 20, 21, and 22.

This method needs the product of the inverse of consecutive state-transition
matrices, which imposes a heavy computational load. However, the state-tran-
sition matrix inverses from instant k −max up to instant k − 1 can be stored
to decrease the computational burden of computing these products. One should
notice that the state-transition matrix is always invertible for discretized con-
tinuous linear systems [30].

If it is assumed that the local nodes have access to the state-transition matrix
and model noise covariance matrices from instant k−max up to instant k−1 [20],
then the measurement transportation must store:
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– The control signals from instant k−max up to instant k−1: that is, max·Mi

elements;
– (OPTIONAL) The state-transition matrix inverses from instant k−max up

to instant k − 1 to decrease the computational burden: that is, max · M2
i

elements.

Thus the proposed algorithm needs to store max · (Mi +M2
i ) elements. Hence

it can verified from Table 2 in [20], which shows the memory needs for nine
algorithms that can fuse delayed measurements in a multisensor network, that
the measurement transportation is the method with the lowest memory needs
among all those analyzed in [20].

The MMSE estimate could be achieved in a linear and Gaussian system if all
the measurements fused with Kalman filtering were not delayed, which is not the
case of the investigated scenarios. No claim of optimality is made regarding the
use of either the reiterated Kalman filtering or the measurement transportation
approach in the investigated scenarios where error dynamics are linearized, noise
sequences are non-Gaussian, and delayed measurements transit throughout the
network. However, since the equations have been derived based on linear MMSE
estimation, it can be claimed that the measurement transportation approach is
an unbiased estimator for the fusion of delayed measurements [28].

5 UAV Fleet Problem Formulation

If a fleet of UAVs is modeled as nodes of a distributed sensor network with links
to exchange information, then it has been indicated by eq. 4 and its further de-
velopment that GPS measurements from one UAV can be used by another UAV
if their relative positions are available measurements as well. This information
sharing can be used to increase the robustness of the fleet formation flight, e.g.
if a UAV loses GPS signal lock, then INS solution errors can be limited if the
neighboring nodes’ GPS measurements are correctly fused. However, it is likely
that these network data will arrive with varying, possibly high delays across
the network nodes. Thus, the scenario motivates the use of the algorithms in the
last section to properly fuse the delayed information in transit throughout the
network.

Omitting model noise, the continuous-time INS error model dynamics for the
i-th UAV is described as follows [31, 32]

ẋi(t) = Ai(t) · xi(t)

Ai =

⎡
⎢⎢⎢⎢⎣

[ρl,i]× I3×3 03×3 03×3 03×3

ge,i αi Γi Db
l,i 03×3

03×3 03×3 βi 03×3 −Db
l,i

03×3 03×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3 03×3

⎤
⎥⎥⎥⎥⎦

xi =
[
ΔRT

l,i ΔVT
l,i ψ

T
i ∇T

b,i ε
T
b,i

]T
,

(33)
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where

• αi = [ρl,i + 2Ωe,l,i]×,
• βi = [ρl,i +Ωe,l,i]×,
• Γi = [Aspl,i]×,
• ge,i = diag(−ge,i/Re,i − ge,i/Re,i 2ge,i/Re,i),

and diag(·) is a diagonal matrix. Thus the discrete form of this model can be
written as

xk+1,i = Fk,ixk,i + uk,i +Gk,iwk,i , (34)

where xk,i = xi(tk), Fk,i = eA(tk−1)·Δ, Δ is the sample step, Gk,iwk,i is the
model noise as described in eq. 1, and uk,i is a virtual control vector used to
remove the mean of xk,i when the Kalman filter estimates are fed back to correct
the INS.

The GPS measurement is assumed to directly provide UAV position and ve-
locity in the WGS-84 ellipsoid Earth-fixed coordinate frame. Thus, these data
are compared to the INS solution to produce a measurement vector of the state-
error. Receiver clock errors have not been involved in this investigation. Under
these considerations, the discrete GPS measurement equation for the INS error
model is

yGPS
k,i =

[
De

l,k,i(p
GPS
k,e,i − pINS

k,e,i )

De
l,k,i(v

GPS
k,e,i − vINS

k,e,i )

]

yGPS
k,i =

[
I3 03 03 03 03

03 I3 03 03 03

]
xk,i +

[
De

l,k,i 03

03 De
l,k,i

]
vGPS
k,i ,

(35)

where pGPS
k,e,i and vGPS

k,e,i are, respectively, the position and velocity of the vehicle
given by the GPS receiver on board and represented in the Earth-Centered-
Earth-Fixed coordinate frame; pINS

k,e,i and vINS
k,e,i are, respectively, the position and

velocity of the vehicle given by the INS and represented in the Earth-Centered-
Earth-Fixed coordinate frame; and vGPS

k,i is assumed to be a white Gaussian

noise sequence with covariance RGPS
k,i . The DCM De

l,k,i can be computed using
either the GPS data or the INS solution. One should notice that the computation
of De

l,k,i is approximated, since navigation errors have been neglected.

If the i-th UAV receives the GPS position from the j -th UAV (pGPS
k,e,j ), then

the former can use this information if the measurement of the relative position
between the two UAVs (pk,e,j→i) is available as follows

pGPS
k,e,j + pk,e,j→i = pGPS,i

k,e,j , (36)

where pGPS,i
k,e,j is a position measurement of the i-th UAV using the GPS mea-

surement data from j -th UAV and the measurement of the relative position
between the UAVs. The latter cannot be constructed using the GPS information
from both UAVs, since then no additional information would be available. The
relative position can be obtained, for example, from an imaging pod and proper
image processing, or by a RF range measurement as studied in [33]. Finally,
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the state-error measurement using the information from the j -th UAV can be
constructed as follows

yGPS,i
k,j = De

l,k,i(p
GPS,i
k,e,j − pINS

k,e,i )

yGPS,i
k,j =

[
I3 03 03 03 03

]
xk,i +De

l,k,iv
GPS,i
k,j ,

(37)

where vGPS,i
k,j is assumed to be a white Gaussian noise sequence with RGPS,i

k,j

covariance matrix.
If the measurement from the j -th UAV arrives with delay, then the algorithms

showed previously can be used to correctly fuse it into the i-th UAV Kalman
filter. One should notice that the relative positions and the GPS data does not
need to be transmitted at the same time. However, the UAVs must store the
relative positions received from instant k − max up to instant k to properly
convert the neighboring nodes’ GPS measurements as described in eq. 36 when
needed.

6 Simulations and Results

The simulations have been carried out using a swarm of 5 UAVs. The INS so-
lution was given by the algorithm in [34]. Additionally, a magnetometer as de-
scribed in [35] has been added to each UAV to limit the misalignment due to
the low-quality inertial sensors. The communication links are shown in fig. 1, the
simulations parameters are presented in Table 1, and the UAVs velocities and
angular rates are described in the Appendix.

1

2

34

5

Fig. 1. UAV fleet communication links

The UAVs do not share any information before t = 151 s. Additionally, all
the measurements reach the neighboring nodes at a fixed 60 s (6, 000 sampling
steps) after measurement transmission, which is the maximum allowed delay.
This is assumed to be the worst scenario possible, and provides a tough test for
the algorithms. Furthermore, UAV 5 loses its GPS lock after t = 190 s, and thus
the embarked magnetometer data and the delayed measurements vectors from
neighboring UAVs 1 and 4 are the only information available to UAV 5. The
RMS error of each component of UAV 5’s state vector has been used to com-
pare the performance of both the reiterated Kalman filter and the measurement
transportation approach.
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Table 1. Simulation parameters

Sensors

∇ [
3 3 3

]T
mg

ε
[
1000 1000 1000

]T ◦ /h
Accelerometers
covariance (R∇)

diag
(
1 1 1

)
(mg)2

Rate-gyros covari-
ance (Rε)

diag
(
500 500 500

)
(◦/h)2

RGPS diag
(
81 81 81 0.1 0.1 0.1

)
SI units2

Rmagnetometer diag
(
(2 · 10−5)2 (2 · 10−5)2 (2 · 10−5)2

)
Gauss2

Covariance of rela-
tive position mea-
surement

5 · diag ( 81 81 81
)
m2

GPS and mag-
netometer data
frequency

1 Hz

INS

Initial position Latitude: (23◦12′ S+0.05·G1), Longitude: (45
◦52′ W+0.05·G2),

where G1 and G2 are zero-mean Gaussian variables with standard
deviation of 1”.

Initial altitude 700 m+H where H is a zero-mean Gaussian variable with stan-
dard deviation of 1 m.

Initial velocity
[
0 0 0

]T
m/s

Initial alignment TRIAD algorithm [36]

INS solution sam-
pling rate (tins)

0.01 s

Kalman filter

Feedback start 95 s

Q, t < 95 s 1/50 · tins ·

⎡

⎢
⎢
⎣

03 03

Db
l 03

03 −Db
l

06

⎤

⎥
⎥
⎦ ·

[
R∇ 03

03 Rε

]
·

⎡

⎢
⎢
⎣

03 03

Db
l 03

03 −Db
l

06

⎤

⎥
⎥
⎦

T

SI Units2

Q, t ≥ 95 s 1/150 · tins ·

⎡

⎢
⎢
⎣

03 03

Db
l 03

03 −Db
l

06

⎤

⎥
⎥
⎦ ·

[
R∇ 03

03 Rε

]
·

⎡

⎢
⎢
⎣

03 03

Db
l 03

03 −Db
l

06

⎤

⎥
⎥
⎦

T

SI Units2

Initial covariance diag(502 502 502 22 22 22 0.05 0.05 0.05 0.09 0.09 0.09
0.015 0.015 0.015) SI Units2

Initial estimate 015×1 SI units
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Fig. 2. Scenario 01: Delayed measurements näıvely fused - RMS errors of the position
error components from 100 realizations

In the first scenario, all the measurements were fused neglecting the measure-
ment delay. The RMS errors of the position error components computed via a
Monte Carlo simulation with 100 realizations are presented in fig. 2. The es-
timate diverges after the local GPS fault when the delayed measurements are
näıvely fused.

In the second scenario, the measurements were fused using the algorithms
presented previously. The RMS errors of the state vector components computed
via a Monte Carlo simulation with 100 realizations are presented in figs. 3 to 7.
The computational load of the reiterated Kalman filter was 3.42 times that of
the measurement transportation approach.

6.1 Results Analysis

Firstly, fig. 2 clearly shows that the fusion of delayed measurements without ad-
equate processing yields estimation divergence. On the other hand, the results
obtained with scenario 02 and displayed in figs. 3 to 7 show that the algorithms
described here correctly fuse the delayed measurements and provide limited nav-
igation errors.

The fusion of neighboring nodes’ measurements received by UAV 5 when its
GPS observables were available did not provide any noticeable improvement
in estimation accuracy (151s < t < 190s) because the simulated scenario had
the relative position measurement covariance with much larger eigenvalues than
those of the GPS measurement covariance. On the other hand, adequate pro-
cessing of delayed network data from neighboring nodes successfully eliminated
estimation divergence when the GPS signal was denied to UAV 5.
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Fig. 3. Scenario 02: Delayed measurements correctly fused - RMS errors of the position
error components from 100 realizations
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Fig. 4. Scenario 02: Delayed measurements correctly fused - RMS errors of the velocity
error components from 100 realizations

Figures 3 to 7 also show that the Kalman filter reiteration, which is optimal
in the linear Gaussian case, most times achieved better performance than that
of the measurement transportation approach. The cost-benefit ratio of the latter
is far more attractive, however, due to its reduced computational workload and
statistically similar estimation performance.
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Fig. 5. Scenario 02: Delayed measurements correctly fused - RMS errors of the mis-
alignment error components from 100 realizations
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Fig. 6. Scenario 02: Delayed measurements correctly fused - RMS errors of the ac-
celerometer bias components from 100 realizations
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Fig. 7. Scenario 02: Delayed measurements correctly fused - RMS errors of the rate-
gryo drift components from 100 realizations

7 Conclusions

This paper presented a novel suboptimal approach, called measurement trans-
portation, to fuse delayed measurements in distributed sensor networks. This
new technique has less memory needs than the usual algorithms investigated
in [20] and a good overall performance is achieved for the problems of interest.

The novel algorithm was compared with the classical approach to fuse delayed
measurements in distributed sensor networks: the reiterated Kalman filter. The
comparison was carried out using a simulated distributed sensor network that
consists of a UAV fleet in formation flight in which the GPS measurements and
relative positions are exchanged among neighboring network nodes.

The results shows that both algorithms could correctly fuse the delayed mea-
surements in the proposed scenario and produced similar estimation accuracies.
The measurement transportation approach demands a much lower computa-
tional load and requires less memory.

One must notice that the distributed estimation problem tackled here is nei-
ther Gaussian nor linear. Thus, one should expect that other estimators may
yield improved accuracy with respect to that of the reiterated Kalman filter in
the scenario simulated here. For example, enhanced accuracy is expected if the
INS algorithm is reiterated together with the Kalman filter and the linearization
of the error dynamics model about the reiterated INS solution is also carried out
at every step. However, the computational load of such estimator algorithm has
shown to be prohibitive even to computationally resourceful desktop PCs.
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Appendix: UAVs Trajectory and Angular Movement

The UAV trajectory is composed of several segments with a distinct, constant
specific force during each one. They are described in Table 2 in which A1 and
A2 are uniformly distributed random variables on the interval [−3, 3] m/s

2
that

have been sampled at the beginning of each realization for each UAV.
The IMU attitude evolves in terms of the Euler angles that rotate the local

coordinate frame into alignment with the body coordinate frame (yaw, pitch,
and roll rotation sequence) as follows

ψ = 0.1 sin

(
2π

t

300

)
+ 0.05 sin

(
2π

t

1.7

)
+ 0.2 rad

θ = 0.1 sin

(
2π

t

300

)
+ 0.05 sin

(
2π

t

1.7

)
− 0.4 rad

φ = 0.1 sin

(
2π

t

300

)
+ 0.05 sin

(
2π

t

0.85

)
+ 0.5 rad .

(38)

One should notice that this trajectory and angular movement yield a fully
observable system [35, 37, 38].

Table 2. UAVs trajectory

Specific forces

Start (s) End (s) N (m/s2) E (m/s2) D (m/s2)

0 30 0 0 -g

30 70 A1 0 -g

70 110 0 A1 -g

110 150 A1 A1 -g

150 190 0 0 -g-A1

190 240 0 0 -g

240 280 -A1 0 -g

280 320 0 -A1 -g

320 360 0 A2 -g

360 500 0 0 -g+A2

500 520 0 A2 -g

520 540 -A2 0 -g

540 560 -A2 A2 -g

560 600 0 -A2 -g

600 660 0 0 -g-A2

660 720 0 A2 -g

720 800 -A2 0 -g
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Abstract. Three different second order and one fourth order sliding
mode controllers are considered in this chapter. An adaptive gain is im-
plemented which adjusts the level of scalar control action on-line based
on direct measurements of the equivalent control obtained by a low-pass
filter. It is shown that the adaptive algorithm converge in finite time,
thus the chattering is reduced in amplitude and the amount of energy
demanded by the controller is reduced too. The results of a real im-
plementation of the adaptive sliding mode controllers in a spring-mass-
damper system are presented. Also a comparison between the adaptation
methodology and augmented order methodology is presented.

Keywords: Higher Order Sliding Mode Controllers, Adaptive Gain,
Variable Structure.

1 Introduction

The concept of adaptation in the context of control engineering refers to the
variation of certain parameters with respect to a certain signal based on uti-
lization of current information. It involves modifying the control law used by
the controller in order to cope with the fact the parameters of the system being
controlled are uncertain, or, to improve the performance of the controller and
its effectiveness exhibiting the same dynamics properties under uncertainty con-
ditions. Even more, adaptive control implies improving dynamic characteristics
while properties of a controlled plant or environment are varying [3, 4].

1.1 Motivation

The main obstacle of Sliding mode Control (SMC) application is the chattering
which is an oscillatory phenomenon inherent in sliding motions (see, for exam-
ple, [5–7]). The chattering phenomenon is caused due to the high frequency
switching nature of the controller. The phenomenon is well-known from litera-
ture on power converters and referred as ”ripple” [8].

c© Springer-Verlag Berlin Heidelberg 2015 159
D. Choukroun et al. (eds.), Advances in Estimation, Navigation, and Spacecraft Control,
DOI: 10.1007/978-3-662-44785-7_9



160 D.Y. Negrete-Chavez and L.M. Fridman

The amplitude of the chattering is proportional to the gain of the controller.
In classical SMC the gain of the control should be a constant value greater than
the bound of the uncertainty/perturbation. Thus the controller demands a con-
stant amount of energy that may not be needed to maintain the system in sliding
mode. Also the chattering presents a constant amplitude that can be harmful
for the actuator and the plant.

1.2 Objective

The objective of this paper is to implement an adaptive gain with higher order
SMCs, in order to reduce both the chattering amplitude and the amount of en-
ergy demanded by the controller.

2 Main Result

2.1 System Description

Consider the following system

ż(t) = h(z(t)) + g(z(t))ut(z(t)), (1)

where

z ∈ R
n

h : R
n → R

n,

ut : R
n → R,

g : R
n → R

n

g, h, ut are continuous functions.

For the system (1) the following assumptions hold

– A1 A diffeomorphism T (z(t)) exist, such that the system (1) can be ex-
pressed as

ẋi = xi+1

ẋn = f(t, x) + u(k(t), x)

i = 1, 2..., n− 1 (2)

where

f : R+ × R
n → R,

u : Rn → R,

x ∈ R
n (3)

a, f, ut are continuous functions.
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– A2 The control
u(k(t), x) = −k(t)w(x) (4)

with adaptive gain
0 < kmin ≤ k(t) ≤ kmax (5)

is a sliding mode controller. Therefore it enforce the system into some sliding
surface σ(x) = 0 (σ(x) ∈ C1) in finite time, where x is the state vector. The
structure of the sliding surface depends on the design of the controller.

The upper bound of k(t) is related with the maximum power of the ac-
tuator. The lower bound is chosen in order to maintain the actuator active
with a minimum value of the gain.

– A3 For the unknown, smooth and bounded function f(t, x) the following
conditions hold:

|f(t, x)| < A < kmax (6)

∣∣∣∣d|f(t, x)|dt

∣∣∣∣ < L (7)

– A4 The equivalent control ueq(t, x) is available and can be obtained by
filtering the high frequency component of the discontinuos function u(k(t), x)
by means of the low-pass filter

τu̇eq(t, x) + ueq(t, x) = u(k(t), x), ueq(0) = 0 (8)

with a small constant τ > 0 and the function ueq(t, x) as an output.

Remark 1. The objective of sliding mode controllers is to design a control law
such that the constraint σ(x) = 0 holds, where x is the state vector and σ(x)
is called the sliding surface. Some choices of this constraint are discussed in [10]
[11] [12]. In this paper, it is assumed that the sliding surface has been previously
design. It is assumed in (A2) that the controller has been design to enforce the
trajectories of the system into the sliding surface.

2.2 Description of the Adaptive Algorithm

In [9] an adaptive methodology is presented for the super-twisting algorithm. A
similar methodology is presented here for second order and higher order sliding
mode controllers.

Consider the system (2). The adaptation law for the gain of control (4) is
described as
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k̇(t) =

{
γkmax +M(k(t)), if σ(x) �= 0

γk(t)sign(δ) +M(k(t)), if σ(x) = 0

M(k(t)) =

⎧⎪⎨
⎪⎩
−γρk(t), if k(t) > kmax

γρk(t), if k(t) < kmin

0, if kmin ≤ k(t) ≤ kmax

(9)

δ(t, k) =
|ueq(t, xi, xn)|

k(t)
− α (10)

ρ > 1, γ > 0 and α ∈ (0, 1) is the desired proportion between the magnitude of
the unknown function f(t, x) and the gain k(t). The function M(k(t)) is needed
to ensure that the gain k(t) remains bounded.

The idea of the algorithm is to increase the gain k(t), during the reaching
phase, i.e. when σ(x) �= 0. Once the sliding mode is established, i.e. σ(x) = 0,
the dynamics of the gain depends on the proportion α between the unknown
function f(t, x) and the gain k(t). The gain decreases if |ueq/k(t)| < α and
increases if |ueq/k(t)| > α until |ueq/k(t)| = α → δ(t, k) = 0.

The equivalent control can be thought as an equivalent signal of the perturba-
tion, thus when δ(t, k) = 0 the proportion between the unknown function f(t, x)
and the gain k(t) is α.

Remark 2. Sliding mode controllers, theoretically, has to switch infinitely to
reach exactly the constraint σ(x) = 0. Practically, it is impossible to achieve an
infinite switching, thus the sliding mode is detected when σ(x) switches about
zero with |σ(x)| < ε for a sufficiently small constant ε > 0. Moreover ε is the
amplitude of the chattering phenomenon. The objective of adapting the gain is
to reduce ε.

Remark 3. The adaptation law is based on the measurement of the equivalent
control that is obtained by filtering out the control signal when the sliding mode
is established. In fact it is an estimation of the control signal. This estimation is
good enough for the adaptation law to work. The disadvantage of using a filtered
signal to adapt the gain is that there is a delay on the equivalent control signal
that is discussed on the results section.

2.3 δ(t, k(t)) Stability Proof

The adaptation process is over when the desired proportion between the magni-
tude of the perturbation and the magnitude of the gain is achieve, i.e. δ(t, k) = 0.

Before the sliding mode is established, the adaptive gain will grow until it
reaches a value which leads the system into sliding mode. For the following
proof it is assumed that the system is already in sliding mode.
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To show that the variable δ(t, k) converge to zero in finite time, when the
system is in sliding mode, the following Lyapunov function is considered

V (δ(t, k(t))) =
δ2(t, k(t))

2
(11)

and its time derivative

V̇ (δ(t, k(t))) = δ(t, k(t))δ̇(t, k(t)) = δ(t, k(t))

(
d|ueq(t, x)|

dt

1

k
− k̇

k2
|ueq(t, x)|

)

(12)
The function ueq(t, x) is an approximation of f(t, x), as mentioned on remark

3. It can be stated that when the system is in sliding mode, ueq(t, x) = f(t, x).
Therefore

V̇ (δ(t, k(t))) = δ(t, k(t))

(
d|f(t, x)|

dt

1

k(t)
− γk(t)sign(δ(t, k(t)))

k2(t)
|f(t, x)|

)

=
δ(t, k(t))

k(t)

(
d|f(t, x)|

dt
− γsign(δ(t, k(t)))|f(t, x)|

)

= −|δ(t, k(t))|
k(t)

(
γ|f(t, x)| − d|f(t, x)|

dt
sign(δ(t, k(t)))

)

≤ −|δ(t, k(t))|
k(t)

(
γ|f(t, x)| − d|f(t, x)|

dt

)

<
−|δ(t, k(t))|

k(t)
(γ|f(t, x)| − L)

The adaptation of the gain is only required when the magnitude of the pertur-
bation is greater than αkmin, thus adaptation will exists when|f(t, x)| > αkmin,
therefore

V̇ (δ(t, k(t))) < −|δ(t, k(t))|
k(t)

(γαkmin − L) (13)

if

γ >
L

αkmin
(14)

δ(t, k(t)) converge to zero and the proportion between the magnitude of the

perturbation and the gain is α, i.e. |f(t,x)|
k(t) = α. Also if (14) holds, then

V̇ (δ(t, k(t))) ≤ −
√
2
γαkmin − L

αkmin

√
V (δ(t, k(t))) (15)

0 ≤
√
V (δ(t, k(t))) ≤

√
V (δ(0, k(t))− γαkmin − L√

2αkmin

t (16)
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Is evident from the solution of the differential inequality (15) that√
V (δ(t, k(t))) = 0 at least after

tf =
kmax

γαkmin − L

√
2V (δ(0, k(t))) =

αkmin

γαkmin − L
|δ(0, k(t))| (17)

and, as a result, δ(t, k(t)) is zero in time less or equal than tf .

2.4 Higher Order Adaptive Sliding Mode Controller

Consider the arbitrary order system (2), where the controller is given by

u(k(t), x) = k(t)w(x). (18)

Let the function w(x) be a sliding mode control algorithm with arbitrary order n
defined as the following recursive procedure called nested n-sliding controller [1]

w(x) = ψn−1,n(x)

ψ0,n = sign(x1)

ψi,n = sign (xi + βiNi,nψi−1,n)

Ni,n =
(
|x1|p/n + |x2|p/(n−1) + ...+ |xi−1|p/(n−i+1)

)n−i
p

i = 1, 2, ..., n− 1 (19)

where p is the least common multiple of 1,2,...,n. The dynamics of the gain k(t)
are defined by (9).

It is has been proven in [1] that if values of gains β1, β2, ..., βi are properly
chosen and are sufficiently large, then the system (2) converges to sliding mode.

The adaptive gain k(t) will grow until it gets a value sufficiently large to
ensure that the set of gains β1, β2, ..., βi and the adaptive gain k(t) will be large
enough to establish the sliding mode. Once it is established the gain k(t) will be
adapted by the law (9).

Adding the adaptive gain to the nested algorithm it is obtained a higher
order sliding mode controller with adaptation. This controller with the adaptive
mechanism is the main result of this paper. It can be applied to n order systems
that can be or are expressed in the form (2). By adapting the gain the chattering
amplitude, that is the main disadvantage of sliding mode controller, is decrease.

3 Experimental Results

In this section the results of the implementation of three sliding mode con-
trollers with adaptive gain in a spring-mass-damper system are presented. It
is shown in figure (1) the spring-mass-damper system where the controllers
were implemented. The system consist on one spring one mass and one damper.
The video of each controller implemented is available at the following address
www.negrete.webs.com.
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Fig. 1. Spring-mass-damper system

Consider the following second order system as a model of the spring-mass-
damper system

ẋ = y

ẏ = a(t) + b(t)u2(t, x, y)

u2 = −k(t)w(x, y), 0 < kmin ≤ k ≤ kmax (20)

where kmin and kmax are preselected minimum and maximum values of gain
k, respectively. The functions a(t) and b(t) are unknown smooth bounded func-
tions that include the parameters of the spring-mass-damper system which are
assumed unknown. The state x represents the position of the mass measured
in centimeters and the state y represents the derivative of the position of the
mass measured in centimeter per hour. Suppose that assumptions A1, A2 and
A3 holds.

3.1 Adaptive Twisting Control (ATWC)

Consider the system (20), where

w(x, y) = sign(x) + βsign(y), β ∈ (0, 1) (21)

is a version of the so-called twisting algorithm.

The parameters used in the implementation are γ = 4π,kmin = 1,kmax = 15,
τ =

√
.001, β = 0.5, α = 0.45.

3.2 Adaptive Terminal Control (ATEC)

Consider the system (20) where

w(x, y) = sign
(
y + λ|x|1/2sign(x)

)
, λ > 0 (22)
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Fig. 2. a) Position of the mass (state x)-ATWC and b) Velocity of the mass (state
y)-ATWC
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Fig. 3. Gain k(t) and perturbation-ATWC

is a version of the so called terminal algorithm. The values of the implementation
are α = 0.95, kmin = 1, kmax = 15, λ = 1, τ =

√
.001

3.3 Adaptive Sub-optimal Control (ASC)

Consider the system (20) where

w(x, y) = η(t)sign(x− βxm(t)) (23)

were

η(t) =

{
1, ifxm(x− ηxm ≥ 0

η∗, ifxm(t)(x − ηxm) < 0
(24)

where xm(t) is a piece-wise function representing the value of the last singular
point of x, i.e. the most recent value of x where y = 0.
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Fig. 4. a) Position of the mass (state x)-ATEC and b) Velocity of the mass (state
y)-ATEC
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Fig. 5. Gain k(t) and perturbation-ATEC

The algorithm was implemented with the following values of parameters η∗ =
3, kmin = 0.5, kmax = 8, α = .9 and γ = 5

2π.

3.4 Adaptive Fourth Order Sliding Mode Controller (AFOSMC)

Consider the system (2) and the control (4), where w(x) is defined by (19) with
n = 4

w(x) = sign(x4 + β1(x
6
3 + x4

2 + |x1|3)1/12
sign[x3 + β2(x

4
2 + |x1|3)1/6

sign(x2 + β3|x1|3/4sign(x1))])

in [2] the value of gains are proposed as β1 = 3, β2 = 1, β3 = 0.5.
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Fig. 6. a) Position of the mass (state x)-ASC and b) Velocity of the mass (state y)-ASC
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Fig. 7. Gain k(t) and perturbation-ASC

3.5 Discussion of Results

It is observed in figures (2, 4, 6, 8, 9) that the system converge to sliding mode
in finite time. It is clear from the same figures that the chattering amplitude
is at most of the order of micrometers and is proportional to the amplitude of
the perturbation, thus the objective to reduce the amplitude chattering to a
minimum level is achieve.

The dynamics of the gain of the three controllers is observed in figures (3,
5, 3.3, 10). It is clear that the amplitude of the gain varies with respect to the
amplitude of the perturbation. As a consequence of the adaptation of the gain,
the energy demanded by the controllers is only the amount needed to compensate
the perturbation saving energy unlike the classical sliding mode controllers where
the gain is constant and the controllers demands a fixed amount of energy the
may not be needed for the control objective.
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A delay on the gain signal with respect to the perturbation is observed in
figures (3, 5, 3.3, 10) due to the implementation of the filter that is needed to
obtain the equivalent control (ueq). The delay leads to a loss of the sliding mode
that is observed in figures (2, 4, 6, 8, 9). For example in figure (3) between second
4 and 5 the amplitude of the perturbation is greater than the amplitude of the
gain leading to a destruction of the sliding mode that is observed in figure (2).
This is the main disadvantage of this adaptation method.

4 A Comparison between Adaptive SMC and Augmented
Order SMC (AOSMC)

Consider the following second order system

ẋa = ya

ẏa = d(t) + ua(xa, ya) (25)

where |d(t)| < D is a bounded perturbation and ua(t, xa, ya) is the control. To
drive the system into sliding mode the order of the system is increased in order
to smoothen the control signal applying an integrated control signal. Introducing
the virtual state za the system can be expressed as

ẋa = ya

ẏa = za

ża =
d

dt
d(t) + va(t, xa, ya, za) (26)

where

va(t, xa, ya, za) =

= −g[za + 2
(|ya|3 + |xa|2

)1/6
sign(ya + |xa|2/3sign(xa))]

is a third order control signal defined by (19) with n = 3 that enforces the system
into sliding mode. Driving the variable za into sliding mode the integral of the
control u(xa, ya) equal to the perturbation d(t). Therefore the perturbation d(t)
is compensated by a smooth control signal reducing the chattering amplitude.

Consider the system(25) where the following ATEC is implemented

ua(xa, ya) = −k(t)sign
(
y + |x|1/2sign(x)

)
. (27)

The dynamics of the adaptive gain k(t) are defined by the algorithm (9).
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Fig. 8. a) Position of mass 1 (state x1)-AFOSMC and b) Velocity of mass 1 (state
x2)-AFOSMC
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Fig. 9. a) Position of the mass 2 (state x3)-AFOSMC and b) Velocity of the mass 2
(state x4)-AFOSMC
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Fig. 11. a) State xa-AOSMC and b) State ya-AOSMC

0 2 4 6 8 10
−4

−3

−2

−1

0

1

2

3

4

seconds

S
ta

te
 z

a

0 2 4 6 8 10
−5

−4

−3

−2

−1

0

1

2

3

4

5

seconds

co
nt

ro
l s

ig
na

l

(a) (b)

Fig. 12. a) Virtual state za-AOSMC and b) Control signal u(xa, ya)-AOSMC
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Fig. 15. Procedure to reduce the chattering amplitude

Both systems (25) and (26) are simulated with the controllers mentioned. The
parameters for system (25) are kmin = 1, kmax = 15, α = 0.95, γ = 4π, τ =

√
.001

and the initial conditions xa(0) = 3, ya(0) = 1, k(0) = 7. The value of the gain
of the system (26) is g = 25 and the initial conditions are xa(0) = 3, ya(0) =
1, za(0) = 2. For both systems the perturbation signal applied is d(t) = 2 sinπt.

By comparing figures (11)and (13)it can be observed that both the adaptive
SMC and the augmented order SMC reduce the chattering amplitude. Also in
both cases the control signal is similar to the perturbation (figures (12(b),)(14)).
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It is clear that the augmented order SMC reduce the amplitude of the chattering
better than the adaptive SMC and the amount of energy demanded by the
augmented order SMC is less than the energy demanded by the adaptive SMC.

It it clear that both methodologies are based on the identification of the
perturbation. This identification can be achieved if the bound of the derivative of
the perturbation is known. Then if the identification is possible two approaches
can be used. The first approach is the one that is presented in this work. Its
advantage is that an ideal-sliding mode is achieve theoretically, also the gain is
always greater, in a proportion, than the magnitude of the perturbation. The
disadvantages are that a filter time constant is needed, also, in application, the
equivalent control is delayed because it is a filtered signal.

The second approach that can be used when the identification of the pertur-
bation is possible, is to use higher order sliding mode to compensate directly the
perturbation. Also with the estimated signal can be used as a SMC gain. This
approach is presented in ( [14]). The advantage is that the perturbation can be
compensated, theoretically, exactly. The disadvantage is that with some noise in
the input, the precision of estimation is lost.

The two approaches mentioned required the knowledge of the derivative of the
perturbation. If the derivative of the perturbation is unknown, only adaptation
of the controller gain can be used to compensate the perturbation. For example,
in ( [13]), the gain of the controller is increased until the sliding mode is achieve,
then the gain is decreased until the sliding mode is lost. The advantage of this
approach is that the bound of the derivative of the perturbation is not required.
The disadvantage is that only a real-sliding mode is achieved.

The question now, is when to adapt the controller gain? The proposed answer
is illustrated in the following diagram. The aim is to reduce the chattering effect.

The adaptation is required only when there is no information about the deriva-
tive of the perturbation. The proposed method is to identify the perturbation
as many times as the information of the derivatives of perturbation available,
and compensate the perturbation or adapt based on the estimation. Once the
information is not available, then adaptation is required.

5 Conclusions

The implementation of an adaptive gain increases the efficiency of sliding mode
controller. With the adaptive gain, the controller demands a minimum amount of
energy necessary to compensate the perturbation. Also the chattering amplitude
is reduce to a minimum value and its proportional to the amplitude of the
perturbation.

The use of a low-pass filter to obtain the equivalent control produce a delay
on the dynamics of the gain. The delay could produce a momentary loss of the
sliding mode. This is the main disadvantage of this method. In order to decrease
the effect of the delay, a data acquisition system with a smaller sampling time
is required to reduce constant of the low-pass filter, improving the accuracy of
the adaptive algorithm for the gain. The smaller the filter constant, the greater
the accuracy of the adaptive algorithm.
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The adaptive SMC is compared to an augmented order SMC. It is concluded
that the performance of the augmented order SMC is better than the adaptive
SMC, not only because the augmented order SMC presents a better reduction
of the chattering amplitude and in the amount of energy demanded by the con-
troller, but also because the control signal does not present a delay like the
adaptive SMC does. In both cases the knowledge of the bound of the derivative
of the perturbation is required.

The main conclusion of this work is that if the bound of the derivative of
the perturbation is known it is reasonable to identify the perturbation and then
compensate it or adapt based on the estimation. The adaptation is required
when the bound of the derivative of the perturbation is not known. In this work
it is proposed to identify as many times as possible and then adapt the gain
when the identification is not possible.
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Abstract. In the late seventies and early eighties, Rafael devolved a very ad-
vanced (at the time) transfer alignment algorithm. This required the develop-
ment of an entire infrastructure for navigation work: strapdown navigation  
equations, navigation error model, Kalman filter implementation, system level 
error model, inertial measurement unit, real-time, floating-point computer, test 
design, implementation and analysis. This paper tells the story of this enter-
prise, from the preliminary studies to successful operational deployment, by 
pointing out the different phases and lessons learned.  

1 Introduction  

This paper is about the development of a navigation system, and touches on a very 
wide range of engineering topics related to navigation systems. The main goal of the 
paper is to describe the people, decisions, challenges, problems, and solutions during 
this project. The dilemma was deciding on the extent to which the underlying engi-
neering and mathematical topics should be detailed. The decision was ultimately 
made to write a paper without equations, mainly because the subject is so broad that 
once I started writing equations, I would not know where to stop. Moreover, the main 
objective of the paper is to provide the reader, who is not necessarily a navigation 
expert, a history background of the technical achievements. Those who are missing 
the equations are directed to references in which the relevant ones are described. Of 
course, the best descriptions are in Itzhack Bar-Itzhack's technical documents.  

Itzhack Bar-Itzhack is one of the key individuals in this story. Like many others, I 
learned a lot from Bar-Itzhack: I took his course at the Technion and read his bro-
chures, which were always on his desk. We knew each other pretty well: Bar-Itzhack 
worked as a consultant at Rafael; we even played volleyball together. Nevertheless, 
although the paper is being published in the Itzhack Y. Bar-Itzhack Memorial Sympo-
sium, it is not a dedicated memorial to the man. Its main purpose is to depict a picture 
of engineering challenges and the progress in their achievements.     

To maintain a continuous flow in the paper, we present here, for non-experts,  
a short description of the technical terms used in the sequel (see [14] for more  
details). 
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Accelerometer – an instrument that measures a specific force (acceleration com-
bined with gravity effect). 

Gyro – an instrument that measures angular rates. 
IMU (Inertial Measurement Unit) – a unit composed of accelerometers and gyros 

to measure specific forces and angular rates in three orthogonal axes. 
Inertial Navigation – a method to calculate position, velocity and angular position 

from initial conditions and accelerometer and gyro outputs. 
Stabilized Platform Navigation System – an inertial system with accelerometers in-

stalled on a stabilized gimbal.  
SD (Strapdown) Navigation System – an inertial system without any stabilizing 

gimbals. It is stiff with respect to the body to which it is attached.  
SD Navigation Algorithm – an algorithm that integrates the IMU outputs to provide 

position, velocity and angular position where the IMU is installed rigidly with the 
body to be navigated.  

Transfer Alignment – a method of finding attitude (orientation) of a navigation sys-
tem from a velocity (or position) reference. To achieve this, the reference data are 
provided for a certain time and some maneuver during this phase is required. The 
standard implementation is based on Kalman filtering (see [2] for further description). 

Quaternion representation – a method to describe attitude by four normalized 
numbers. 

ARU (Attitude Reference Unit) – a method to calculate orientation from direct mea-
surements of gyros and accelerometers, with the underlying assumption that the mean 
value of acceleration is zero, and therefore the accelerometer's mean value is related 
to a gravity vector. These units are usually integrated with heading gyro and optional 
magnetometer.  

Captive Flight – the phase in the missile's mission when it is operating but con-
nected to the aircraft.  

Free Flight – the phase in the missile's mission when it flies without any connec-
tion to the aircraft. 

Inertial Mid-Course – the part of free flight when the missile is steered by its navi-
gation system.  

2 The Early Years (1974–1980): From Conceptual Study to 
Design and Implementation  

Our story begins in 1974, the year that saw the creation of a missile model with its 
6DOF simulation for a medium-range precise air-to-surface missile, later called Po-
peye. The relatively long range was due to the requirement for a standoff. By standoff 
we mean that the missile should be dropped beyond the range of most air-defense 
ammunition..  At that time, Rafael had already gained some experience with precise 
TV-guided weapons. Their principle of operation was to present a pilot with an image 
from the target vicinity; the pilot's task was to recognize the target on this image  
and correct the missile's course until it hits the target. Implementation of such a  
system required a seeker, a high-quality TV camera mounted on gimbals to provide 
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stabilization and movement capability, and two-way communication links. Having 
mastered the concept of terminal guidance, the open question was the midcourse—
how to guide the missile with such accuracy that indeed the seeker would point close 
to the target, and the pilot could recognize it with high confidence. The new chal-
lenges were related to the several tens of kilometers range and relatively long flight 
time. Many guidance concepts, based on the classical ARU approach, that combined 
accelerometers, gyros, and perhaps an additional sensor to calculate the attitude di-
rectly, were analyzed. It took until mid-1975 to understand that for this type of range 
and for the required electro-optical performance, inertial mid-course was absolute 
necessary. Moreover, as an outcome of this work, the goal of 200-m accuracy (2–2.5 
sigma) was stated as a primary requirement for the navigation subsystem.  

No one knows who proposed the strapdown (SD) implementation for such a prob-
lem—it could have been Itzhack Bar-Itzhack, or someone influenced by him.  

In any case, before the end of 1976, two navigation pioneers went to the United 
States to visit companies that had made some progress in SD technology. Of course, 
travel preparations were much more involved back then, without the benefit of 
Google and Internet searches. They needed to read a lot of professional literature and 
to consult with every available expert.  

They visited three companies (names are withheld for private reasons), and the res-
ponses and impressions were diverse:  

• At one company, the vendor representatives refused to discuss the implementation 
issue with guests from Israel. Their assertion was that no business could come of 
this meeting and they were not interested in teaching the team from Israel how to 
implement the SD system.  

• At the second company, the team found a system that was over 10 times less pre-
cise than required. Although the company was interested in cooperation, the low 
performance did not justify the effort.   

• At the third company, the team found a nice prototype of an inertial system that 
closely matched the Popeye's requirements. They found an engineering and man-
agement team that was willing to cooperate. The Israeli team understood that this 
company would provide good support for the entire navigation system composed 
of hardware (IMU), navigation software and a Kalman filter for transfer alignment.  

Nevertheless, the Israeli Department of Defense decided to develop the Popeye's 
navigation system in Israel. The Tamam division of Israel Aircraft Industries, Ltd. 
proposed to use a stabilized platform which they were producing at the time, but the 
cost ($1M) and size were prohibitive. After a long discussion between all involved 
parties, three important decisions were made:  

• The Popeye navigation system would be of the SD type. 
• The hardware (IMU) would be developed by Tamam. 
• The navigation algorithms would be developed at Rafael.  

So the task of implementing a SD IMU with a price of around $100K, weighing 
less than 6 kg with errors of 1 deg/h for gyro drift and 1 mg bias for the accelerometer 
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was assigned to Tamam. The assigned project manager just completed M.Sc. degree 
under the supervision of Itzhack Bar-Itzhack. It was an important project with enorm-
ous challenges: sensor development, accompanying electronics, mechanical design, 
all to be the first of their kind. I am sure that Taman engineers would add the relation-
ships with Rafael's people as one additional and demanding challenge. Eventually the 
IMU was ready, on time and with outstanding performance. I am certain that the his-
tory of this development would provide an excellent foundation for a dedicated paper.  

The first man that started to develop navigation algorithms  at Rafael tells: "We got 
the main idea from Itzhack Bar-Itzhack; he presented us with differential equations 
and explained all of the details. For example, it was his recommendation to use qua-
ternion integration. We performed the detailed work, but every time we progressed, 
Itzhack Bar-Itzhack was already ahead of us; as we got into a problem or dilemma, he 
had already studied the issue and came prepared with an analysis, explanations and 
recommendations."  

The task was quite demanding: to design an algorithm that discretizes the naviga-
tion differential equations in a way that can be implemented in the proposed Rafael-
homemade computer, the µ-Remez. Every multiplication and load was counted and 
optimized. Eventually a very effective navigation algorithm that fit well into the con-
straints was developed. The resulting procedure was a multi-rate integration with very 
carefully selected and optimized discrete integration methods. One interesting exam-
ple was the quaternion normalization, which was required at quite a high rate. The 
optimization result was to use a linear approximation for normalization instead of the 
"standard" deviation by square root of the sum of squares. The testing of the naviga-
tion algorithm was combined with 6DOF simulation. From the very beginning, their 
models matched each one; the same person was in charge of both, 6 DOF simulation 
and navigation algorithms, so the differences were only because of numerical errors 
(integration rate and computer resource-saving navigation algorithm). In addition, this 
platform (6DOF simulation and navigation algorithm) served for an analysis of sensor 
error effect. One important remark is needed here: the approach then, and during the 
entire development phase, was not to use "blind" simulation for analysis but to asso-
ciate it to an analytical (usually simplified) analysis. One could not simply present a 
result and state: "these are the results that I got from the simulation." Everyone was 
expected to explain why these results appeared to be reasonable. This work ended 
with a well-known report describing the proposed algorithm, the main trade-offs, 
sensitivities and tests. This document is well known in Rafael and is still in use for 
training the younger generations. The algorithm proposed then has remained basically 
unchanged, and every navigation system developed at Rafael is based on it.   

The challenge of transfer alignment was even more daunting: the differential equa-
tions describing the inertial navigation error models were not yet available and it was 
clear that the discrete time and efficient implementation issues were very demanding. 
This task was combined with M.Sc. degree dissertation under the supervision of Itz-
hack Bar-Itzhack. During 1977 to 1979, the navigation error model was developed 
and formulated it into the framework of in-flight transfer alignment.  In particular, the 
attitude error model required special attention. This study led to a SD version of psi 
model, which was already known for platform navigation. It was somewhat intriguing 
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that they developed the same equation as in the case of a platform, but with the oppo-
site sign of the drift term. In addition, they proposed an extended sensor error model 
and integrated it into one combined system. Special effort was dedicated to the ran-
dom noise integration formula required by the Kalman filter. The analysis distin-
guished direct sampling from integral sampling, and he provided rigorous analyses for 
both cases. One of the conclusions was the need for integral sampling, and Tamam 
developed a mechanism called V/F to provide angular and velocity increments instead 
of angular rate and accelerations. This dissertation was very extensive, several hun-
dred pages long, with some of the equations written in A3 format, it could in effect be 
considered a Transfer Alignment Handbook, as it completely covered all models re-
quired to develop the transfer alignment algorithm. Unfortunately, this work was de-
fined as classified and was never published. The reason for this was that part of the 
work dealt directly with the Popeye transfer alignment algorithm. It was based on a 
Kalman filter with a 12-state vector: velocity error, attitude error, gyro drift and acce-
lerometer bias (all of them in three axes). The velocity error measurement was cho-
sen, based on a comparison between aircraft and SD velocities, with 1-sec intervals 
between measurements. Those critical decisions were based on common sense and 
good engineering insight into the dominating phenomena, and were later justified by 
simulations. For example, acceleration measurements were rejected due to the high 
flexibility of the wing that Popeye missile was installed underneath and the long time 
between measurements, related to computer-resource limitations. The states for gyro 
drift and accelerometer bias were added to allow tracking and compensating for these 
slow-changing error terms. The time between measurements, 1 sec, was set as the 
longest time (to save on computer resources) that would presumably allow the re-
quired tracking quality. The performance analysis was based on S-shape maneuver 
during in-flight alignment. The Kalman filter calculations were very computationally 
expensive and required working with a floating point machine, which was not availa-
ble in feasible sizes.  

The project manager was dedicated to meeting the time schedule for a series of 
system tests. His message was that the navigation system's development, after 4 years 
of effort, was still fraught with huge uncertainties; therefore, in the event of a delay or 
critical problem, he would replace the proposed SD navigation system with a backup 
one, based on a simple ARU that had already been developed for airframe configura-
tion tests. In this atmosphere, the need to reduce development risks and efforts was 
vital.  

The next task was to build a simulation that would combine SD navigation and in-
flight alignment. During this task, an important achievement was found. The observa-
tion was that at the cost of a minor approximation in the stochastic part of the model, 
but without sacrificing the accuracy of its deterministic part, the algorithm's com-
plexity can be reduced. The key observation was that the simplified system transition 
matrix is nilpotent. The precise calculation of the discrete transition matrix in a time-
varying system is related to matrix multiplication, which is computationally heavy. 
The nilpotent property states that those multiplications come to zero. This observation 
opened the possibility of calculating the transition matrix by simple integrations 
(summations). The term nilpotent, that may create negative connotations, was very 
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attractive in the eyes of the project leaders, because it eliminated the need of a spe-
cial-purpose computer; the new Intel 8086 processor with floating point 8087 copro-
cessor was able (when working at almost 100% capacity) to carry out the calculations 
required for all of the navigation algorithms.  

3 Years 1980–1985: It Works! Integrations, Tests and First 
Improvements 

The Project Test Plan consisted of several phases, each phase dedicated to testing one 
of the major subsystems, while the subsystems tested in the previous phases served as 
the infrastructure for those tests. Table 1 describes the main test plan from the pers-
pective of navigation subsystems  

All navigation test analyses were based on the principle of data recording and off-
line reconstruction. The idea of recording was to store the entire stream of IMU out-
puts (6 numbers at 60 Hz) and aircraft navigation blocks (9 numbers at 20 Hz). The 
requirements for data rate and storage volume were high, but the most demanding 
requirement was with respect to data quality. To successfully calculate the navigation 
data, the stream of IMU data had to be close to perfect. Because the navigation algo-
rithm was based on integration, lack of even a single IMU block (for example during 
maneuvering) could harm the entire task.   

Table 1. The project test plan 

Test 
name 

Type 
Goal 

Configuration 

B Captive 
navigation con-

cept  

Big commercial aircraft, alternative 
IMU hardware, alternative aircraft 
navigation system, recording system 

104/2 Captive 
navigation algo-
rithm  + hard-

ware 

Dedicated aircraft with its navigation 
system, dedicated IMU (from Tamam), 
recording system 

104/3 Captive 
navigation im-
plementation  

Dedicated aircraft with its navigation 
system, Popeye electronic box (naviga-
tion and all other operational comput-
ers, IMU) installed in the missile 
envelope, recording system 

107 Captive   seeker tests  As above + seeker 

109 Captive 
  communication 

tests  
As above + communication pod 

1004 Free 
     inertial mid-

course    

As above but missile with its motor, 
control and guidance subsystems. 
Telemetry. 

1007 Free final system test The complete system 
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The proposed solution was quite complex, but presumably the best available given 
early days hardware and software limitations. The recording medium was analog 
video; dedicated hardware to convert digital data into video stream (and vice versa) 
was designed and built. To increase data quality, two parallel video recorders were 
installed. The process of preparing the digital stream data was difficult and long: the 
first phase was to play the video data and convert it into a digital stream of blocks, 
and sometimes some reiteration was required. A dedicated mini-computer was in-
volved in this process. The second phase was to merge the blocks from two video 
recorders; the third was manual corrections of some blocks that were erroneous after 
the merge. In retrospect, this effort was critical to acquiring essential knowledge and 
an understanding of navigation system performance and sensitivities. 

The analysis of the first navigation test B was difficult; the data-reduction process 
was very lengthy and then it turned out that the sensor calibration was inconsistent. It 
took several weeks to find the reason for the problem encountered in this test: bad 
time synchronization. The surprise was twofold: indeed the temporal synchronization 
between IMU data and aircraft data was worse than expected, but the system sensi-
tivity to these phenomena was much higher than one might have intuitively expected. 
Since then, synchronization has become one of the most important integration issues, 
the topic of many discussions and much testing. We can clarify this theme with a 
simple example. Assume that we make a 0.5 g (5 m/sec^2) turn with 3 cm/sec veloci-
ty noise and we are willing to estimate bias up to 0.5 mg (0.5 cm/sec^2). For accelera-
tion of 0.5 g = 5 m/sec2, 1 msec of synchronization error will produce a measurement 
error of 0.5 cm/sec, significantly less than the velocity error of 3 cm/sec. However, 
after 1 sec, the bias error of 0.5 mg will cause a velocity error of 0.5 cm/sec, so the 
same as the error due to miss-synchronization   The observation was that the compari-
son of error due to miss-synchronization with velocity noise is misleading. The cor-
rect comparison is between the synchronization error and the error caused by bias that 
we are willing to estimate. Indeed, these errors appear with similar correlation to the 
trajectory. In this case, since we would like to keep the synchronization error well 
below the error due to the estimated bias, the allowed synchronization error should be 
on the order of 0.1 msec.  

Test series 104/2 was less problematic; integration with the real IMU went smooth-
ly, and the performances and sensor calibration behaved well. This was a great oppor-
tunity to optimize the transfer alignment maneuver. The starting point was relatively 
long S-shaped maneuver, required for a good estimation of the heading error and  
z-axis drift. It turned out that in a Popeye-type missile, the sensitivity to heading error 
is relatively low; the simple (albeit non-intuitive) explanation was as follows: if a 
missile is launched and does not perform any maneuvers, than at the end of the mis-
sion its position error will be zero, even if the heading error was large (in this case all 
other errors are assumed to be zero). In other words, heading error influences system 
error only if there is acceleration. The most significant acceleration (due to the rocket 
motor) was at the beginning of the mission. This observation allowed to relax the 
requirements for z-axis drift estimation and significantly reduced the need to estimate 
heading error. As a result, a shorter maneuver was proposed which was much easier 
from an operational point of view. It was based on a single, relatively small turn and 
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the time of captive flight was reduced significanly. An additional result of the 104/2 
series was the tuning of the Kalman filter.   

On Itzhack Bar-Itzhack, the first navigation group leader relates the following: "In 
those days, Itzhack Bar-Itzhack was coming in to Rafael once a week to work with us. 
For me, he was one of the team members, perhaps younger than many of the others. 
He was always smiling, in a good mood and ready to tell new jokes, some of them not 
necessary politically correct by today's standards. Nevertheless, from a professional 
point of view, he was always serious, well-organized and very precise. He was always 
ready to carry out new assignments, whatever was needed, once he had studied the 
details of aircraft navigation systems in depth; on one occasion, for example, he pro-
posed a missile trajectory generator algorithm. We always discussed the current is-
sues, problems and plans with him."   

The 104/3 tests, performed with the actual navigation system (hardware and soft-
ware), were relatively extensive; they aimed to cover the entire operational envelope. 
The software integration was very successful; it worked well from the first flight test. 
The most important lesson learnt here was the system's sensitivity to flight conditions: 
for quiet flights very good results were obtained, whereas for low-level, fast flights, 
the results were worse but still within requirements. The long-flight 104/3 test series, 
followed by the even longer 107 series, was used to create a huge library of naviga-
tion data: real-life trajectories, sensor performance together with post-processing 
analysis, and error sensitivities for a very broad family of error sources. This library, 
which was continuously updated with new tests, served as an excellent platform to 
learn navigation systems and develop new algorithms.  

The seeker test series 107 showed a problem that appeared to be related to the na-
vigation system. The seeker pointing errors were too large. Rafael people claimed that 
this phenomenon was due to aircraft navigation errors, whereas the air force claimed 
that after position update the aircraft navigation error was about 50 m, and such large 
pointing errors must therefore be related to the missile. The first task was to plan a 
test that would separate the error sources. The idea was to keep the seeker tracking a 
target at known positions, so the system pointing errors could be measured conti-
nuously for several tens of seconds. A Kalman filter would be designed with mea-
surements of pointing errors and states of position error, attitude error (in an inertial 
reference frame) and misalignment between the seeker and the navigation system 
(related to the body reference system). The Kalman filter implementation was off-line 
and based on the already existing reconstruction infrastructure.  This test showed with 
high confidence that the pointing errors were due to position errors. Later analysis 
showed that although the position updates were quite accurate, they did not properly 
correct for the velocity error and therefore, after 1 min or more, the aircraft accuracy 
was significantly worse than the specified 50 m. This fact endangered the entire 
project, but a solution was proposed almost immediately. The initiative was to make 
auxiliary target updates. The idea was to find, close to the actual target, an auxiliary 
target with good visibility and known location. Then, from pointing to this target, the 
system could estimate the pointing errors and correct them (assuming that they came 
from horizontal position errors). This algorithm was accepted and applied in the sys-
tem. Years later, pilots still use this procedure with every aircraft working with GPS, 
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claiming that it improves performance; the reason for this is unknown, but my im-
pression is that this procedure survived the GPS era mainly because it makes the mis-
sion less boring. In any case, the lessons learned in line-of-sight analyses and the 
integration with navigation errors were later used to propose installation of the navi-
gation system inside the seeker gimbal [10]. A well-known application of this ap-
proach is Rafael's Litening Airborne Navigation and Targeting Pod.     

The preparation for the first free flight test, test 1004, went according to plan, but 
one day before the test, during the final captive flight test, a new feature was tested. 
During the airframe configuration test, immediately after the launch, strong roll 
movement was observed. Therefore, the pilot performed a strong roll movement (as 
fast as he could) to simulate the release roll movement. As a result, in this route, large 
navigation error appeared. It happened only once and there was a big debate whether 
to stop the test launch or not. Rafael people (at least the senior ones) wanted to con-
tinue; it was the test pilot who persuaded the project managers (from the Ministry of 
Defense) to postpone the test and require, from the Rafael team, a solid analysis of the 
phenomena.  

The result of the analysis was surprising: it was essentially a system/hardware 
problem. It turned out that the actual maximal angular acceleration is much higher 
than the one specified. Eventually the spec was changed, Tamam made the necessary 
changes in their design and after several months of intensive work, test 1004 was 
ready to restart. At the very end of the last test before the launch, an IMU error mes-
sage appeared. Again, long discussions, collection of all available data, consultations 
with experts, lasted till late-night hours.   

This time the decision was to continue the testing. On the following day, early in 
the morning, the missile was launched. Before the successful happy ending, the  
missile was almost terminated by safety personnel due to a lengthy lack of communi-
cation with the operations room, first due to telemetry problems, then due to a tape-
recorder, that someone had put in the room and created acoustic noise oscillations. At 
the very last moment the problems were fixed, and everyone in the operations room, 
including the safety personnel, were able to witness the missile's precision in follow-
ing its designated route. 

4 Post 1985: Still a Lot to Do  

After the success of test 1004, the navigation group's involvement in the project has 
gradually reduced. Then, in 1986, great excitement spread from the Popeye project 
management: we were going to demonstrate the system in the United States. Project 
management's view was that since the missile's development had been completed, in 
order to reduce our costs and time schedule, the aircraft to be demonstrated in the US 
should mimic the interface that was already integrated in the Popeye missile. At this 
stage, schedule was very tight and intensive work was required: a few months for 
implementations and integrations, then a few captive flights for testing and operation-
al training and finally, a full operational launch. In the course of the meetings and 
tests, we understood that our system had excellent characteristics: the quality of the 
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seeker, the navigation accuracy and the very short and easy transfer alignment proce-
dure were world-class outstanding. From a technical point of view, the process ran 
very smoothly with no critical failures. One improvement of note was the use of the 
aircraft simulator to create dynamic trajectories, in order to record the blocks sent to 
the Popeye and analyze them. In this way we were able to fix some problems well 
ahead of the flight tests.   

During the integration in the US, we understood that changing an aircraft's inter-
face to simulate another interface was an once-in-a-lifetime scenario and that the next 
time we would need to change our interface. Then we understood that our design 
lacks the flexibility to support such changes. The problem was related to Kalman 
filter propagation and the time window for measurements. The first implementation 
(due to a lack of spare computer resources) was very rigid; the covariance matrix was 
propagated to a known a-priori measurement time, creating a narrow time window in 
which the measurement should appear; if it didn't, the measurement was discarded 
and the system was moved to the next second.  In the next version of the transfer 
alignment algorithms, due to the change in the covariance propagation scheme, the 
system was ready to receive asynchronous measurements, with the only limitation 
being the minimal time between measurements.   

Another great challenge faced the team when it started work on the inertial naviga-
tion system for air-to-air missiles. It was clear that a dedicated maneuver for transfer 
alignment was out of the question. The approach was to perform a continuous transfer 
alignment, namely to turn on the missile navigation system before takeoff and keep it 
working continuously such that the missile would be ready to launch all the time. 
Since in every aircraft flight there are always periods of some acceleration, sensor 
errors and pitch and roll angles can be estimated and kept accurate during the flight—
after intensive work for proper Kalman filter tuning of course. The only problem is 
that for long flight periods with no accelerations, the heading error can grow. In an 
air-to-air missile, due to its huge acceleration, the sensitivity to heading error is much 
more severe than that in air-to-surface missiles. The solution came from a very inter-
esting direction: the reason that we could not perform a direct alignment (i.e. simply 
copy aircraft orientation onto that of the missile) was that the missile had been in-
stalled under the wing, and its relative orientation was changing during the flight. 
Indeed this was true, but only for pitch and roll; the heading misalignment (the differ-
ence between the aircraft and missile orientations) was almost fixed during the flight. 
This observation led to adding another state to the Kalman filter, the new state being 
the heading misalignment, and the resulting 13-state Kalman filter provided excellent 
continuous transfer alignment. This 13-state Kalman filter has become a standard 
solution that is implemented in all relevant airborne systems. 

The stringent requirement for time synchronization between the aircraft and missile 
has always been a key issue in aircraft integrations. The number of types of aircrafts 
which needed to be integrated was constantly increasing, as was the number of Rafael 
airborne systems that included navigation units. As a result, more and more cases of 
an aircraft navigation system not providing the required synchronization accuracy 
began to appear. The obvious consequence was performance degradation, until an 
important observation was made. It was clear that precise synchronization is required 
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to accurately interpret the system errors during maneuvers. However, one could omit 
the measurements during the maneuvers and estimate the system errors after a ma-
neuver had been completed. This non-trivial observation claimed that due to the 
integral nature of the system, there is no significant harm to performance when no 
measurements are performed during the maneuver itself (but with enough measure-
ments after the maneuver) compared to the case in which all measurements are taken. 

At this point our paper is complete; the basic solution for transfer alignment and its 
essential improvements have been described. During those years, Rafael provided 
state-of-the-art systems, with a constant line of improvements. Of course the real 
story never ends, and the navigation group at Rafael continues to develop navigation 
systems, based on the foundations described here, facing new challenges and produc-
ing new achievements.  

In my opinion, the secret to accomplishment lies in following these three guide-
lines, as well illustrated in the story described herein:  

• Recruit capable people  
• Provide a challenge  
• Build an infrastructure and culture to analyze integrations and tests properly and in 

depth 
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Abstract. This paper describes a new method for error model construction. In-
stead of the standard local slope analysis of the Allan variance, two major mod-
ifications are proposed: (1) the Direct Bound principle, i.e. finding an entire  
error model that generates analyzing tool values that tightly bound the analyz-
ing tool values generated by the real data; (2) instead of using Allan variance as 
a unique analyzing tool, a variety of analyzing tools termed Direct Predictor 
(DP) types 0, 1, 2, and 3 are introduced. In the paper, a uniform structure of 
DPs is developed and their parameterization is extended. For a nominal model 
that consists of a Markov process with additive white noise, the analytical func-
tions for DPs are presented (for infinite data length). The errors due to the final 
data length are analyzed. Using these results, a reliable optimization problem is 
presented to implement the Direct Bound approach. The flexibility of working 
with hard and soft bounds is introduced. The presented simulation results show 
that the proposed method is indeed efficient and provides satisfactory results for 
model parameter estimations. The paper concludes with a description of an  
entire engineering process to cover test design and its analysis. 

1 Introduction 

This paper is a part of ongoing research on inertial sensor calibration under changing 
temperature. In it, we address the question of how to find a model (time invariant) that 
can be used to bound the performance of the underlying navigation system, even if at 
the sensor level, the random (residual after calibration) errors may follow time-variant 
dynamics. This is the precise reason why system identification models are not popular 
in the navigation community. The standard approach is to use Allan variance (AVAR) 
analysis and construct the error model from different local slopes of the Allan plot. A 
survey of the literature on inertial sensor calibration and error model analysis reveals 
many papers on the subject (see for example [1-3]). In this context, the IEEE Standard 
group's attempt to create a common terminology and framework for gyro modeling is 
very promising. The standard approach [4] divides the error sources into two groups: 
stochastic and environmental. For stochastic errors, significant effort has been in-
vested in creating a suitable stochastic model, using the AVAR and related  
power spectral densities (PSDs). The attempt to present methodologies for the devel-
opment of models for post-calibration residual errors [5] marks important progress.  
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The models related to PSD, for example flicker noise—termed bias instability, are 
well adapted for time-invariant, stationary systems and work well at room tempera-
ture, but they are not well-suited to dealing with environmental (mainly thermal) sen-
sitivity. Our goal is to propose an efficient method of constructing an error model 
under environmental sensitivity, with relatively short data-collection time and satis-
factory accuracy. This new approach [6, 7] is based on two principles:  

• Instead of looking for local slopes of AVAR (or other analyzing functions), we 
propose finding an entire model that generates analyzing tool values that tightly 
bound those generated by the real data. This is called the Direct Bound approach.   

• Instead of using AVAR as a unique analyzing tool, a variety of analyzing tools, 
termed Direct Predictor (DP) types 0, 1, 2, and 3, are proposed.  

The applicability of the proposed approach was verified with real-life data taken from 
MEM's gyro calibration. For further details see [6].  

The main drawback in the proposed approach [6] was that the analysis and applica-
tion were carried out using simulations and trial and error search. The purpose of this 
paper is to convert the ideas presented and verified in [6] into a concrete engineering 
procedure that can be easily implemented by the navigation community.  

The paper is structured as follows. In section 2, the DPs are defined as linear op-
erators acting on the data. It is shown that all DPs have the same unified structure 
with different parameters for types 0, 1, 2, and 3. The nominal model in this paper is a 
first-order Gaussian Markov process with additive white noise. In Section 3, a unified 
analytical function to describe the DP values for the nominal model and infinite data 
length is developed. In section 4, an approximation for DP errors due to finite length 
is proposed and verified for a wide range of cases. Section 5 presents an optimization 
problem that implements the Direct Bound approach. It turns out that in order to get 
reliable solutions from optimization algorithms; one must carefully define the under-
lying optimization problem, with proper scaling and normalization. After doing so, 
we present the error model accuracy for instrumental gyro model, and for all four 
types of DPs. In this case, the DP type 3 outperforms the Allan Variance. Although 
the Direct Bound approach defines only hard bounds over the test data, in this section 
hard bound and soft bound applications are discussed and presented. Section 6 is de-
voted to a discussion of the entire engineering procedure, error model construction, 
evaluation of its accuracy, and the selection of design parameters—mainly duration of 
data collection.  

2 The General Structure of Direct Predictors 

The AVAR 
2( )yσ τ  for infinite data length is defined as follows:  

 ( )22 1
( ) ( , )

2y E yσ τ τ= Δ                                           (1) 
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Where E  is the expectation operator and ( , )yτΔ is defined as  

 ( )
2

1 1

1 1
, ( ) ( )

n n

i n i

y y i y i n
n n dt

ττ
= + =

Δ = − =∑ ∑                         (2) 

dt  is the sampling time. The Allan deviation (ADEV) is the square root of 
AVAR and is denoted ( )yσ τ .   

The first interpretation for ( , )yτΔ   is the difference between successive 
mean values over two sampling periods. We will provide an additional inter-
pretation for ( , )yτΔ  in the context of mean prediction error. Refer to i n=   

as the current time; then
1

1
( )

n
E

i

D y i
n =

= ∑  is the estimated mean data value 

(drift in gyro nomenclature) over the past. We can interpret ( , )yτΔ  using the 
following observation:  
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y y i D
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1
( )
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i n
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− is the sequence of prediction errors for "future" indices 

1, , 2i n n= + .  

So ( , )yτΔ  is the mean prediction error (over the sampling period with lengthτ ) 

and AVAR (for infinite data length) is half the covariance of the mean prediction 
error. The DPs introduced in [6] are generalizations of this structure; all of them are 
half the covariance of the mean prediction error over the sampling interval, but they 
are distinct in terms of estimation and prediction methods.  

DP type 0 is simply the AVAR, for which the estimator is given by: 

 0
1

1
( )

n
E

i

D y i
n =

= ∑                                                  (4) 

and the mean prediction error is denoted by:  

 ( )
2

1 1

1 1
, ,0 ( ) ( )

n n

i n i

y y i y i
n n

τ
= + =

Δ = −∑ ∑                                (5) 

The third argument in Δ  is the predictor type.   
DP type 1 is based on estimations calculated over a fixed interval (independent  

ofτ ). 

 1
1
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DP type 2 is based on the Kalman filter estimation; this calculation requires defini-
tion of a nominal model. The nominal model assumed in this paper is a first-order 

Gaussian Markov process with additive white noise. To describe 2
ED as a function of 

data samples, some analysis is needed.  For Kalman filter implementation, the mea-
surement is defined by ( ) ( ) ( )y i x i v i= + ; ( )x i is the first-order Gaussian Markov 

process, given by ( ) ( 1) ( 1)fx i x i w iα= − + − , and ( ), ( )v i w i are measurement 

and process random noise processes, respectively. The Kalman filter iterations (see 
[8] for notations) are: 

                  (8) 

( )ex i  is the estimate, k  is the Kalman gain. 

Combining them: 

( )( ) 1 ( 1) ( ) ( 1) ( )e f e ex i k x i ky i x i ky iα μ= − − + = − +    (9) 

with ( )1 fkμ α= − . In the context of this paper, the Kalman filter gain k is 

taken as its steady-state value. See the Appendix for the steady-state Kalman 
filter gain calculation in this case. By inserting the above iteration for 

1, 2,..i m= , using (0) 0ex = ,  we get:  
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and therefore  
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DP type 3 applies both the optimal estimator and the optimal predictor (for a no-

minal model). Consider again the prediction error series{ }
1

( )
m nE

i m
y i D

+

= +
− . For an 

optimal predictor that applies the underlying system model (first-order Gaussian Mar-
kov process with additive white noise), we can calculate the prediction error series as 

{ }
1

( )
m ni m E

f i m
y i Dα

+−
= +

−  (see [8] for details). In this case, DP type 3 can be calcu-

lated as:  

( )
( ) ( 1)

( ) ( ) ( ) ( )

e f e

e e e

x i a x i

x i x i k y i x i

−

− −
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After describing the four types of predictors, we can deduce that all of them obey 
the same general structure:  
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with the following parameter settings:  

DP type 0: , 1, 1m n μ β= = =  

DP type 1:  1,
n

m
μ β= =  

DP type 2:  ( )1 ,fk nkμ α β= − =  

DP type 3:  ( )
1

1 ,
1

n
f

f f
f

k k
α

μ α β α
α

−
= − =

−
 

Note that since all DPs satisfy the same structure, they are equivalent in terms of 
computational complexity.  

3 Direct Predictor Analysis 

In this section we take the general structure of the mean prediction error described in 
Eq. (14) and insert the structure of the signal generated by the nominal system model 
that consists of the first-order Gaussian Markov process with additive white noise:  

 
( ) ( ) ( )

( ) ( 1) ( 1)

y i x i v i

x i x i w iα
= +
= − + −

                               (15) 

where the sensor additive ( )v i  is white noise (which after integration causes random 

walk) and ( )w i is process noise related to the Markov process.  First we will develop 

an equation for the mean prediction error ( , )yτΔ for this particular signal. Then its 

covariance will be calculated to provide DP values (for infinite data length).  
Since the predictor is a linear operator and our signal ( )y i can be considered the 

sum of two signals ( ), ( )x i v i , we can analyze them separately. We start with the 

Markov process.  
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One can solve the recursion defined in Eq. (15) to get:  

1 2 3( ) (1) (1) (2) ... ( 2) ( 1)i i ix i x w w w i w iα α α α− − −= + + + + − + −
    

(16) 

Subjecting Eq. (16) to a straightforward but relatively long and involved algebraic 
manipulation, the following expression is obtained:  
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⎝ ⎠ ⎝ ⎠

∑ ∑    (17) 

where ( , )S q n is a sum of geometric series with ratio q , n elements and 1 as the first 

element. 

1 1
( , ) 1

1

n
n q

S q n q q
q

− −= + + + =
−

                          (18) 

Note that ( ,1) 1S q = . 

Similarly, one can show that  

( ) ( )
1

1 1

( ) , ( 1) , ( )
m n m n

i m i m

x i S n x m S m n i w iα α
+ + −

= + = +
= + + + −∑ ∑          (19) 

Now we need to find a substitution for ( 1)x m + , which is  

 

1
1

1

( 1) (1) ( ) ( )
m

m m i

i

x m x w m w iα α
−

− −

=
+ = + +∑                (20) 

Finally, after omitting some details which are straightforward but quite involved, 
we get the following general structure for the mean prediction error of the Markov 
process for all types of DPs: 
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αα α βμ
μ

α
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−
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=
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=
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⎝ ⎠⎩ ⎭

⎡ ⎤⎛ ⎞+ − − − +⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

+ + −

∑

∑

  (21) 

From Eq. (21), we can calculate half the variation of the mean prediction error; its 
root square is the DP value for infinite data length, and in particular, for type 0 we 
will have the exact AVAR expression for the Markov process.  

Recall that (1), ( ) 1, 2, , 1x w i i m n= + −  are independent. (1)x  has variance
2

mS and ( ) 1, 2,...,w i i N= has covariance 2 2 2(1 )w mS S α= − . Using this in-

formation, the covariance calculation is direct. 
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(22) 

 
Using ( )2 2 21w mS S α= − we get the general formula for DP values (for infinite 

data length) for the first-order Gaussian Markov process:  
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(23) 

To complete the calculation for our process, we need to calculate the DP for v, the 
white noise component. We start with Eq. (14) for this case: 

 

1 1

1
( , ) ( ) ( )

m n m
m i

i m i

v v i v i
n

τ β μ
+

−

= + =
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⎝ ⎠
∑ ∑                    (24) 

Recall that ( )v i is independent with variance 2
vS ; the square of the DP values 

(half covariance) for white noise is given as:  

( ) ( )
2 2

22 2 2 2
2 2

1 1

( ) 1 ( , )
2 2

m n m
m iv v

v
i m i

S S
n S m

n n
σ τ β μ β μ

+
−

= + =

⎛ ⎞
= + = +⎜ ⎟

⎝ ⎠
∑ ∑     (25) 

Now, since the Markov process and white noise components are independent, we 
can combine Eqs. (23) and (25) to obtain:  

2 2( ) ( ) ( )y x vσ τ σ τ σ τ= +                                      (26) 

Eq. (26), together with Eqs. (23) and (25), provide  a closed-form solution for 

( )yσ τ  of the first-order Gaussian Markov process with additive white noise. The 

model parameters are ,m vS S - the standard deviations of the Markov process and 
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white noise components, respectively; the third model parameter is α , related to the 

Markov process time constant mt by ( )exp / mdt tα = − , where dt  is sampling 

time. The other parameters, . ,m μ β , are related to DP structure (type and parame-

ters). The parameter n  is related to the argument τ  by /n dtτ= .   

Note that the notation ( ,...)yσ τ  is used in this paper for DPs calculated for infi-

nite data length by Eqs. (26), (23), and (24).  The DP value calculated for final data 
length will be denoted ( ,...)DP τ  . 

4 Direct Predictor Errors Due to Finite Data Length 

We begin by describing how the DP for finite data length is calculated, using a  

non-overlapping approach. The total number of samples is denoted by N ; for any  

τ  we divide the data sample into Nτ  groups (windows), every window with  

m n+  elements, and every group starting with the index kn , such that 

1 2 31, 1, 2( ) 1,... ( 1)( ) 1Nn n m n n m n n N m n
τ τ= = + + = + + = − + − . The 

mean prediction error, calculated for window k , is defined by: 

 

1 11
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k k

k k

n m n n m
m i

i n m i n

y k y i y i
n

τ β μ
+ + − + −

−

= + =

⎛ ⎞
Δ = −⎜ ⎟

⎜ ⎟
⎝ ⎠
∑ ∑                  (27) 

The square of , denoted DQ , is estimated as follows: 

2 2

1

1
( , , ) ( , , ) ( , , )

2

N

k

DQ y N DP y N y k
N

τ

τ
τ τ τ

=
= = Δ∑   (28) 

To compare DQ with a Chi-square distribution, we make the following  

normalization  
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∑                               (29) 

If  ( , , ) 1,2,...,y k k NττΔ =  is independent, 

2

1

( , , )

2 ( )

N

yk

y kτ τ
σ τ=

⎛ ⎞Δ
⎜ ⎟⎜ ⎟
⎝ ⎠

∑ has a Chi-

squared distribution with degrees of freedom. In this case, the mean is Nτ  and 

variation is 2Nτ  (see [9]). Therefore, the mean of ( , , )DQ y Nτ is 
2( )yσ τ and its 

DP

Nτ
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variance is

42 ( )y

Nτ

σ τ
. Moreover, for large Nτ , a Gaussian distribution for 

( , , )DQ N yτ can be assumed.  

Similarly DP , which is the square root of DQ , can be described using the Chi 

distribution of 

2

1

( , , )

2 ( )

N

k y

y kτ τ
σ τ=

⎛ ⎞Δ
⎜ ⎟
⎜ ⎟
⎝ ⎠

∑ with mean 
( )( )

( )
0.5 1

2
0.5p

N
m

N
τ

τ

Γ +
=

Γ
and 

variance  
2 2

p pN mτσ = − . 

( )xΓ denotes the gamma function. For the purpose of the analysis required here, 

we will avoid the use of gamma functions, mainly because we found a that linear 
approximation provides a simpler and satisfactory result.  The following analysis is 
then performed.  

 0 0 0 0
0

1
,

2
y x y y x x

x
δ δ= + ≈ +                            (30) 

In our case 
2

0 0( ) , ( )y yx yσ τ σ τ= = are the mean values of ,DQ DP , and 

,x yδ δ are the standard deviations of ,DQ DP , respectively. To conclude the above 

discussion: 

 ( )( ), , ( )ymean DP y Nτ σ τ=                                       (31) 

 ( )( ) 1
, , ( )

2
ystd DP y N

Nτ
τ σ τ=                                 (32) 

Eqs. (31) and (32) provide us with the error analysis due to the final data length 
that we were looking for. However, before we can accept these results we need to 
examine our assumptions: 

The sequence ( , , )y kτΔ is assumed to be independent, due to the underlying 

Markov process; in general, this is not true. However, the mean dependence is ex-
pected to be weak because the dependence exists only for adjacent windows and the 
number of windows is large. 

The linear approximation for square root should be valid; this means that the stan-

dard deviation of DQ should be much smaller than its mean value, and indeed, it is 

valid for large Nτ .  
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The final verification of this assumption was carried out by simulation. We consi-
dered a variety of systems and our conclusion was that for a collection time of one 
hour, 1,1 300dt τ= ≤ ≤ , this approximation provides poor results. If the collection 

time is on the order of two hours or more and the quality of the sensors is in the range 
of 0.1 100 / h÷ °  , Eqs. (31) and (32) are certainly valid. The following plot  

compares the values calculated by Eqs. (31) and (32) (precise) with the results of 500 
Monte Carlo runs, each describing a two-hour data collection. The presented case is 

for DP type 3, and instrument model 100 / , 1 / , 25secm v mS h S h t= ° = ° =   

 

Fig. 1. Errors due to finite length: instrumental system 

Figure 2 describes the same results for tactical level system

1 / , 0.05 / , 100 secm v mS h S h t= ° = ° = . 
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Fig. 2. Errors due to finite length: tactical system 

5 Optimization Techniques for Direct Bound Implementation 

Given DP values calculated from the real data, ( )DP τ  (arguments of the signal y

and data length N are omitted), we are looking for parameters ,,m v mS S t  such that 

the model ( , , )D m v mM S S t will generate ( ), ,DM Tσ τ to be a tight bound for

( )DP τ . Observe that the notation for ( )yσ τ was modified to ( ), ,DM Tσ τ , with 

T  representing the DP type (with its parameters). Where the DP type is not impor-

tant, the notation ( ), DMσ τ  will be used as well.  

Let us write the formal problem definition. We consider a discrete sequence of

{ } min min min max1
, , 2 , ...,

K
i i

d dττ τ τ τ τ τ τ= = + + . ( )iDP τ and we need to solve 

the following optimization problem: 

 ( )( )( )2

, , 1

min , , , ( )
m v m

K

i D m v m i
S S t i

M S S t DP
τ

σ τ τ
=

⎧ ⎫⎪ ⎪−⎨ ⎬
⎪ ⎪⎩ ⎭
∑             (33) 
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 ( )( ), , , ( ) 1,2,...,i D m v m isubject to M S S t DP i Kτσ τ τ≥ =   (34) 

For this problem, we were surprised to get poor, unstable results with a significant 
number of outlier solutions, even with different optimization methods. We thus un-
derstood that some modifications in the above definition are required. In the following 
we describe the modification required to get stable solutions. 

The physical values of ,m vS S are very small. To get a reliable optimization me-

thod we need to introduce proper scaling. The choice is to work with a vector of engi-

neering units: / , / ,sech h° ° and to introduce the following notation:    

( )( , , ) S
D m v m DM S S t M X= with 1 2(1) , (2) , (3)m v mX s S X s S X t= = =  

such that 1 2
180 180

3600, 3600s s
π π

= = .  

Now observe that the minimization defined in Eq. (33) is related to the norm of re-
siduals for the following equation:  

 ( )( )*( ) , ( )S
i y i D iDP M X vτ σ τ τ= +                          (35) 

where *X represents the true model parameters and ( )iv τ  is the error due to finite 
data length. We know that standard deviation of this error is given by 

( )( ) 1
( )

2
ystd DP

Nτ
τ σ τ= . Therefore, to deal with normalized residuals we 

need to consider  

 ( )2

, , 1

min
m v m

K

i
S S t i

r
τ

=

⎧ ⎫⎪ ⎪
⎨ ⎬
⎪ ⎪⎩ ⎭
∑                                              (36) 

 
( )( )

( )( )
, ( )

2
,

S
y i D i

i S
y i D

M X DP
r N

M X
τ

σ τ τ

σ τ

−
=                              (37) 

We can define a penalty factor ρ  and combine the constraints defined in Eq. (34) 

into the minimization defined in Eq. (36) by replacing ir  by its bounded version B
ir :  

 
0i iB

i
i

r if r
r

r elseρ
>⎧⎪= ⎨

⎪⎩
                                              (38) 

The penalty factor ρ is selected to ensure the condition:   

 ( )( )*, ( )S
y i D iM X DPσ τ τ≥                              (39) 
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Moreover, ρ  can provide flexibility from hard bound (high ρ ), via soft bound 

(moderate ρ ) to best match (standard least square: 1ρ = ). The optimization prob-

lem defined by the cost function described in Eqs. (36–39) was tested for a variety of 
cases and reliable, stable results were obtained.  

Having developed a robust optimization method, we approached the  
problem of DP selection and the accuracy of the estimated model  
parameters. Our first test was for the instrumental system, with parameters:

 
100 / , 1 / , 25secm v mS h S h t= ° = ° = . The test duration was two hours, sam-

pling time 1secdt =  and the range of prediction time τ  was 1 300τ≤ ≤ , termed 
in the sequel tau range. The following plot provides insight into how the optimization 
works. We present four plots:  

• DP – a sample of DPs calculated from sample data—actual 

• ( )*,y DMσ τ – DP calculation based on the true model—precise 

•  – DP calculated using the model found by hard bound optimiza-

tion, 100ρ =  —hard bound. 

• ( ), ES
y DMσ τ – DP calculated using the model found by soft bound optimiza-

tion, 10ρ =  —soft bound. 

 

Fig. 3. DPs found by the optimization algorithm 
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The following table summarizes the results of 100 Monte Carlo runs. For every 
run, we calculated the estimated parameters for all four types of DP. After all runs, 
mean value and standard deviation (std) were calculated for each type. The value 
"total rel" is rss (root sum square) of the mean and standard deviation, divided by the 
nominal parameter. Using this table we can evaluate performance and compare the 
accuracy of each DP type.  

Table 1. The errors of estimated model parameters: instrumental system 

The estimated model parame-
ters errors 

DP type 
0 1 2 3 

H 

A 

R 

D 

 

B 

O 

U 

N 

D 

  
mean 22 27.8 45.2 12.6 
std 6.1 8.7 51.0 4.8 
total rel 22% 29% 68% 13% 

  
mean 0.02 0.34 0.10 0.07 
std 0.04 0.4 0.2 0.1 
total rel 4% 52% 22% 12% 

 sec 
mean 10.3 22.5 30.8 5.7 
Std 5.7 12.8 36.5 5.6 
total rel 47% 103% 191% 32% 

S 

O 

F 

T 

 

B 

O 

N 

U 

D 

  
mean 15.1 17.1 23.4 8.7 
std 5.2 6.6 6.7 4.2 
total rel 16% 18% 24% 9.6% 

  
mean 0.01 0.21 0.08 0.05 
std 0.03 0.24 0.08 0.08 
total rel 3% 31% 11% 9% 

 sec 
mean 6.8 12.5 14.4 3.6 
std 4.6 8.0 6.8 4.8 
total rel 33% 59% 63% 24% 

 
 
The following observations can be made from the table:  

• The mean of estimated errors shows that the estimators are strongly biased. After 
some consideration, this should not be a surprise. The nature of bounding is that it 
provides higher DP plots than the actual one. The bias estimator is the price for our 
attempt to bound the performance of a system that is not necessarily time-invariant. 
Of course, we can reduce this price by allowing some crossing of the actual DP 
(soft bound).  

• In principle, we have three different quality criteria: the accuracies of , ,m v mS S t . 

The best DP in one category is not necessarily the best one in another. 

mS / h°

vS / h°

mt

mS / h°

vS / h°

mt
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• In the case presented here, DP type 3 is the best for the Markov process. Its errors 
for Markov process parameters are about 50% better than the second-best DP, 
which is type 0, the AVAR. For white noise the AVAR is better, but DP type 3 can 
be considered satisfactory with 10% accuracy. 

• DP types 1 and 2 show relatively poor performance in this case.  
• In general, for soft bound optimization, two hours of data collection to get 10% 

accuracy in ,m vS S and 25% in the time constants seems to be a very efficient and 

precise approach to error model construction.   

6 Recommendations for Practical Applications and Summary 

Good engineering practice requires answering the following questions:  

1.  How should the error model parameters be calculated?  
2.  How should the test be designed to obtain satisfactory accuracy of these parame-

ters?  
3.  How should the test be monitored and sensor malfunctions detected?  

In this paper, tools to deal with all of these questions were developed and  
presented.  

With respect to #1, our position is clear: never use local slopes, use matching tech-
niques, such as Eqs. (36–38). The decision of whether to use hard bound, soft bound 
or even best matching depends on the application tradeoff between the estimation 
accuracy and sensitivity to detecting outliers with respect to the time-invariant model. 
In the preparation phase, one can analyze what kind of accuracy degradation is related 
to higher outlier detection. The preparation phase, which is based on simulations, only 
provides the right answers for #2. In this phase, we need to select the proper collec-
tion time, range of tau, kind of matching used by the estimation (hard bound, soft 
bound, best matching), and type of DP to be used for real data. Our recommendation 
is to select the minimum collection time, the maximum tau range, and the hardest 
bound that provides satisfactory estimation accuracy. The minimum collection time 
saves costs, the maximum tau range and hardest bound provide good detectability for 
outliers. Of course we will select the best DP for the case. Recall that beside freedom 
of selection from four different types, there also exists freedom in DP parameter se-
lection. Figure 4 describes the flow of the simulation, applied for test design.  

After defining the test parameters, the real-data test appears straightforward; it is 
such in the path of model parameter estimations. An additional path of quality of 
matching, which measures the residuals of the optimization function and compares 
them with the statistics of errors due to finite length (Eq. 32) provides some, perhaps 
partial, answers to problem #3.  
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Fig. 4. Diagram block for simulation phase 

 
Fig. 5. Block diagram for real-data test 
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Appendix 

Calculation of the Steady-State Kalman Gain. The Development Here is Based on 
Notations and the Equation Presented in [8].  

The measurement matrix is scalar equal to 1:  

 ( ) ( ) ( ) 1z i y i v i H= + ⇒ =                                 (40) 

The propagation system matrix is scalar equal to α  

 ( ) ( 1) ( 1)y i y i w i aα= − + − ⇒ Φ =                      (41) 

The covariance of measurement noise error ( )v i  is r and the covariance of process 

noise ( )w i is q .  

 ( ) 1T T k
k k k k

k

p
K P H HP H R k

p r

−−− −
−= + ⇒ =

+
                   (42) 

 ( ) (1 )k k k k k kP I K H P p k p+ − + −= − ⇒ = −                  (43) 

 2
1 1

T
k k k kP P Q p p qα− + − +

+ += Φ Φ + ⇒ = +                    (44) 

The steady-state gain is denoted by k. Under steady-state conditions  

1k kp p p− −
+ = = .  

 ( )2 1p k p qα= − +                                                 (45) 

Using  

 ( )1
p r

k k
p r p r

= ⇒ − =
+ +

                                            (46) 

one gets  

 ( )2 2 0p r r q p qrα+ − − − =                                              (47) 

The positive solution of Eq. (47) is given by 

 
( )222

*

2 4

r r qr r q
p qr

αα
⎛ ⎞− −− − ⎜ ⎟= + +⎜ ⎟
⎜ ⎟
⎝ ⎠

                           (48) 

The final solution is obtained by inserting Eq. (48) into Eq. (46) 

 

*

*

p
k

p r
=

+
                                                         (49) 
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Abstract. This paper describes a multi-vehicle motion control frame-
work for time-critical cooperative missions and evaluates its performance
by considering two case studies: a simultaneous arrival mission scenario
and a sequential auto-landing of a fleet of UAVs. In the adopted setup,
the UAVs are assigned nominal spatial paths and speed profiles along
those paths; the vehicles are then tasked to execute cooperative path
following, rather than “open-loop” trajectory tracking. This cooperative
strategy yields robust behavior against external disturbances by allow-
ing the UAVs to negotiate their speeds along the paths in response to
information exchanged over a supporting communications network.

1 Introduction

Unmanned Aerial Vehicles (UAVs) are ubiquitous in military reconnaissance
and strike operations, border patrol missions, forest fire detection, and recovery
operations. In simple missions, a single vehicle can be managed by a crew using
a ground station provided by the vehicle manufacturer. The execution of more
challenging missions, however, requires the use of multiple vehicles working in
cooperation to achieve a common objective. Such missions require vehicles to
execute maneuvers in close proximity to each other, and to effectively exchange
information so as to meet desired spatial and temporal constraints. The flow
of information among vehicles is often severely restricted, either for security
reasons or because of tight bandwidth limitations. A key enabling element for the
execution of such missions is thus the availability of cooperative motion control
strategies that can yield robust performance in the face of external disturbances
and communications limitations, while ensuring collision-free maneuvers.
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The range of relevant, related topics addressed in literature includes parallel
computing [1], synchronization of oscillators [2], study of collective behavior and
flocking [3], multi-system consensus mechanisms [4], multi-vehicle system forma-
tions [5–8], coordinated motion control [9–11], cooperative path and trajectory
planning [12–15], asynchronous protocols [16], dynamic graphs [17], stochastic
graphs [17–19], and graph-related theory [20,21]. Especially relevant are the ap-
plications of the theory developed in the area of multi-vehicle control: spacecraft
formation flying [22], UAV control [23,24], coordinated control of land robots [9],
and control of multiple autonomous marine vehicles [25–30]. In spite of signifi-
cant progress in the field, much work remains to be done to develop strategies
capable of providing guaranteed levels of performance in the presence of complex
vehicle dynamics, communications constraints, and partial vehicle failures.

In [31], we addressed the problem of steering a fleet of UAVs along desired spa-
tial paths while meeting relative temporal constraints. Representative examples
of such missions are sequential auto-landing and coordinated ground target sup-
pression; in both cases, only relative –rather than absolute– temporal constraints
are given a priori. In the proposed framework, the vehicles are assigned nominal
paths and speed profiles along those, obtained from an appropriately formulated
optimization problem. The paths are judiciously parameterized, and the vehicles
are requested to execute cooperative path following, rather than “open-loop”
trajectory-tracking maneuvers. The reader is referred to [31–35] for a general
perspective of key ideas that are at the root of this distributed cooperative ap-
proach. In the present paper, we present simulation results of two multi-vehicle
time-critical missions that exploit the cooperative control framework developed
in [31]. In the first mission, three UAVs must follow spatially-deconflicted paths
and arrive at predefined locations at the same time. The second mission consid-
ers the case of sequential auto-landing, in which three UAVs must arrive at the
glide path separated by prespecified safe-guarding time-intervals and maintain
this separation as they fly along the glide slope.

The paper is organized as follows. Section 2 formulates the time-critical coop-
erative path-following problem and introduces a set of assumptions on the sup-
porting network. Section 3 presents a path-following control algorithm for UAVs
in 3D space. Section 4 derives a strategy for time-critical cooperative path fol-
lowing of multiple UAVs that relies on the adjustment of the speed profile of each
vehicle. Section 5 presents simulation results that demonstrate the effectiveness
of the algorithms. Finally, Section 6 summarizes concluding remarks.

The following notation is used throughout the paper. Uppercase calligraphic
letters are used to denote reference frames, e.g.F ; {v}F is used to denote vector v
resolved in frame F ; {ê}F represents versor ê resolved in frame F ; ωF1/F2

denotes the angular velocity of frame F1 with respect to frame F2; the rotation
matrix from frame F1 to frame F2 is represented by RF2

F1 ; v̇ ]F indicates that
the time-derivative of vector v is taken in frame F . The notation ‖·‖ is used for
the 2-norm of a vector. Finally, SO(3) denotes the Special Orthogonal group of
all rotations about the origin of three-dimensional Euclidean space IR3, while
so(3) represents the set of 3× 3 skew-symmetric matrices over IR.
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2 Problem Formulation

This section formulates in a concise manner the problem of time-critical coop-
erative path-following control of multiple UAVs in 3D space, in which a fleet of
UAVs is tasked to converge to and follow a set of desired feasible paths so as
to meet spatial and temporal constraints. The section also introduces a set of
assumptions and constraints on the supporting communications network.

We note that the problem of cooperative trajectory generation is not addressed
in this paper. In fact, it is assumed that a set of desired 3D time-trajectories
pd,i(td) : [0, t

∗
d] → IR3, i = 1, . . . , n, conveniently parameterized by a single time-

variable td, is known for all the n UAVs involved in the mission. The variable td
represents a desired mission time (distinct from the actual mission time that
evolves as the mission unfolds), with t∗d being the desired mission duration. For
a given td, pd,i(td) defines the desired position of the ith UAV td seconds after the
initiation of the mission. These time-trajectories can be reparameterized in terms
of arc length to obtain spatial paths pd,i(τ�,i) : [0, �fi] → IR3 –with no temporal
specifications– and the corresponding desired speed profiles vd,i(td) : [0, t

∗
d] → IR.

For convenience, each spatial path is parameterized by its arc length τ�,i, with
�fi denoting the total length of the ith path, whereas the desired speed profiles
are parameterized by the desired mission time td. It is assumed that both the
paths and the speed profiles satisfy collision-avoidance constraints as well as
appropriate boundary and feasibility conditions, such as those imposed by the
physical limitations of the UAVs. The problem of generating feasible time-critical
trajectories for multiple vehicles is described in [36, 37].

2.1 Path Following for a Single UAV

The solution to the path-following problem described in this paper extends the
algorithm in [38] to the 3D case, and relies on the insight that a UAV can follow
a given path using only its attitude, thus leaving its linear speed as a degree of
freedom to be used at the coordination level. Following the approach developed
in [38], this section introduces a virtual target vehicle running along the 3D path,
defines a frame attached to this virtual target, and characterizes a generalized
error vector between this moving coordinate system and a frame attached to the
actual UAV. With this setup, the path-following problem is reduced to driving
this generalized error vector to zero by using only the UAV’s attitude control
effectors, while following an arbitrary feasible speed profile.

Figure 1 captures the geometry of the problem at hand. The symbol I denotes
an inertial reference frame {ê1, ê2, ê3} and pd(·) is the desired path assigned to
one of the vehicles, with �f being its total path length. Vector pI(t) denotes the
position of the center of mass Q of the vehicle in this inertial frame. Further, we
let P be an arbitrary point on the desired path that plays the role of the virtual
target, and denote by pd(�) its position in the inertial frame. Here � ∈ [0, �f ] is
a free length variable that defines the position of the virtual target vehicle along
the path. In the setup adopted, the total rate of progression of the virtual target
along the path, �̇(t), is an additional design parameter. Endowing point P with
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Fig. 1. Following a virtual target vehicle; problem geometry

an extra degree of freedom is the key to the path-following algorithm presented
in [38] and its extension to the 3D case described in this paper.

For our purposes, it is convenient to define a parallel transport frame F [39]
attached to point P on the path and characterized by vectors {t̂(�), n̂1(�), n̂2(�)}.
These vectors define an orthonormal basis for F , in which the unit vector t̂(�)
defines the tangent direction to the path at the point determined by �, while n̂1(�)
and n̂2(�) define the normal plane perpendicular to t̂(�). Unlike the Frenet-Serret
frame, parallel transport frames are well defined when the path has a vanishing
second derivative. Moreover, let pF (t) be the position of the vehicle’s center of
mass Q in this moving frame, and let xF (t), yF (t), and zF (t) be the components
of vector pF (t) with respect to the basis {t̂, n̂1, n̂2}.

Let W denote a vehicle-carried velocity frame {ŵ1, ŵ2, ŵ3} with its origin
at the UAV center of mass and its x-axis aligned with the velocity vector of
the UAV. The z-axis is chosen to lie in the plane of symmetry of the UAV, and
the y-axis is determined by completing the right-hand system. In this paper,
q(t) and r(t) are the y-axis and z-axis components, respectively, of the vehicle’s
rotational velocity resolved in the W frame. With a slight abuse of notation, q(t)
and r(t) will be referred to as pitch rate and yaw rate, respectively.

We also introduce an auxiliary frame D defined by {b̂1D, b̂2D, b̂3D}, which is
used to shape the approach attitude to the path as a function of the cross-track
error components yF and zF . Frame D has its origin at the UAV center of mass
and vectors b̂1D(t), b̂2D(t), and b̂3D(t) are defined as

b̂1D := d t̂−yF n̂1−zF n̂2

(d2+y2
F+z2

F )
1
2

, b̂2D := yF t̂+d n̂1

(d2+y2
F )

1
2

, b̂3D := b̂1D × b̂2D ,

with d > 0 being a constant characteristic distance that plays the role of a de-
sign parameter. The basis vector b̂1D(t) defines the desired direction of the
UAV’s velocity vector. Clearly, when the vehicle is far from the desired path,
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vector b̂1D(t) becomes perpendicular to t̂(�). As the vehicle comes closer to the
path and the cross-track error becomes smaller, vector b̂1D(t) tends to t̂(�).

Finally, let R̃(t) ∈ SO(3) be the rotation matrix from W to D, that is,

R̃ := RD
W = RD

F RF
W = (RF

D)� RF
W ,

and define the real-valued attitude error function on SO(3)

Ψ(R̃) := 1
2 tr

[(
I3 −Π�

RΠR

)(
I3 − R̃

)]
, (1)

where ΠR is defined as ΠR := [ 0 1 0
0 0 1 ]. The function Ψ(R̃) in (1) can be ex-

pressed in terms of the entries of R̃(t) as Ψ(R̃) = (1/2)(1− R̃11), where R̃11(t)
denotes the (1, 1) entry of R̃(t). Therefore, Ψ(R̃) is a positive-definite function
about R̃11 = 1. Note that R̃11 = 1 corresponds to the situation where the veloc-
ity vector of the UAV is aligned with the basis vector b̂1D(t).

With the above notation, as shown in [31], the path-following kinematic-error
dynamics between the UAV and its virtual target vehicle can be written as

ṗF ]F = − �̇ t̂ − ωF/I × pF + v ŵ1 , (2a)

Ψ̇(R̃) = eR̃ ·
([

q
r

]
−ΠRR̃� (

RD
F {ωF/I}F + {ωD/F }D

))
, (2b)

where v(t) denotes the magnitude of the UAV’s ground velocity vector and eR̃(t)
is the attitude kinematic-error vector defined as

eR̃ := 1
2ΠR

((
I3 −Π�

RΠR

)
R̃− R̃� (

I3 −Π�
RΠR

))∨
,

where (·)∨ : so(3) → IR3 denotes the vee map (see Appendix). In the kinematic-
error model (2), q(t) and r(t) play the role of control inputs, while the rate
of progression �̇(t) of point P along the path becomes an extra variable that
can be manipulated at will. At this point, the path-following generalized error
vector xpf (t) can be formally defined as

xpf :=
[
p�
F , e�

R̃

]�
.

Notice that, within the region where Ψ(R̃) < 1, if xpf = 0, then both the path-
following position error and the path-following attitude error are equal to zero,
that is, pF = 0 and Ψ(R̃) = 0.

Using the above formulation, and given a spatially defined feasible path pd(·),
the problem of path following for a single vehicle can now be defined accordingly.

Definition 1 (Path-Following Problem). For a given UAV, design feedback
control laws for pitch rate q(t), yaw rate r(t), and rate of progression �̇(t) of
the virtual target along the path such that the path-following generalized error
vector xpf (t) converges to a neighborhood of the origin with a guaranteed rate of
convergence, regardless of the (feasible) temporal assignments of the mission.
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2.2 Time-Critical Coordination and Network Model

To enforce the temporal constraints of the mission, we formulate a consensus
problem, in which the objective of the fleet of vehicles is to reach agreement on
some distributed variables of interest. Appropriate coordination variables need
thus to be defined that capture the temporal assignments of the mission.

For this purpose, let �′d,i(td) be the desired normalized curvilinear abscissa of
the ith UAV along its path at the desired mission time td, which is given by

�′d,i(td) :=
1
�fi

∫ td
0 vd,i(τ) dτ .

The trajectory-generation algorithm ensures that the desired speed profiles vd,i(·)
satisfy feasibility conditions, which implies that the following bounds hold:

0 < vmin ≤ vd,i(·) ≤ vmax , i = 1, . . . , n , (3)

where vmin and vmax denote, respectively, minimum and maximum operating
speeds of the UAVs involved in the mission. From the definition of �′d,i(td) and the
bounds in (3), it follows that �′d,i(td) is a strictly increasing continuous function
of td mapping [0, t∗d] onto [0, 1]. Let ηi : [0, 1] → [0, t∗d] be the inverse function
of �′d,i(td). Clearly, ηi(·) is also a strictly increasing continuous function of its
argument. Then, letting �′i(t) := �i(t)/�fi, we introduce the time-variables

ξi(t) := ηi(�
′
i(t)) , i = 1, . . . , n .

Note that, for any two vehicles i and j, if ξi(t) = ξj(t) = t′d at a given time t,
then �′i(t) = �′d,i(t

′
d) and �′j(t) = �′d,j(t

′
d), which implies that at time t the target

vehicles corresponding to UAVs i and j have the desired relative position at the
desired mission time t′d. Moreover, if ξ̇i(t) = 1, then at time t the ith virtual tar-

get travels at the desired speed, �̇i(t) = vd,i(ξi(t)). The variables ξi(t) represent
thus an appropriate measure of vehicle coordination and will be referred to as
coordination states, while the functions ηi(·) will be called coordination maps.

To reach agreement on these coordination states, the UAVs need to exchange
information over the supporting communications network. Next, tools and facts
from algebraic graph theory [40] are used to model the information exchange over
the network as well as the constraints imposed by the communications topology.

First, it is assumed that the ith UAV can only exchange information with a
neighboring set of vehicles, denoted by Ni(t). It is also assumed that communi-
cations are bidirectional and, for simplicity, that information is transmitted con-
tinuously with no delays. Moreover, each vehicle is only allowed to exchange its
coordination state ξi(t) with its neighbors. Finally, we assume that the connec-
tivity of the graph Γ (t) that captures the underlying communications topology
of the fleet at time t satisfies the persistency of excitation (PE)-like condition [41]

1

n

1

T

∫ t+T

t

QL(τ)Q�dτ ≥ μ In−1 , for all t ≥ 0 , (4)

where L(t) ∈ IRn×n is the Laplacian of the graph Γ (t), and Q is an (n− 1)× n
matrix such that Q1n = 0 and QQ� = In−1, with 1n being the vector in IRn
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whose components are all 1. Parameters T > 0 and μ ∈ (0, 1] characterize the
quality of service (QoS) of the communications network, which in the context
of this paper represents a measure of the level of connectivity of the communi-
cations graph. Note that the PE-like condition (4) requires the communications
graph Γ (t) to be connected only in an integral sense, not pointwise in time. In
fact, the graph may be disconnected during some interval of time or may even
fail to be connected at all times.

Using the formulation above, one can now define the problem of time-critical
cooperative path following for a fleet of n UAVs.

Definition 2 (Time-Critical Cooperative Path-Following Problem). Gi-
ven a fleet of n vehicles supported by an inter-vehicle communications network
and a set of desired 3D time trajectories pd,i(td), design feedback control laws
for pitch rate qi(t), yaw rate ri(t), and speed vi(t) for all vehicles such that

1. for each vehicle i, i = 1, . . . , n, the path-following error vector xpf ,i(t) con-
verges to a neighborhood of the origin; and

2. for each pair of vehicles i and j, i, j = 1, . . . , n, the coordination errors
(ξi(t)− ξj(t)) and (ξ̇i(t)− 1) converge to a neighborhood of the origin.

3 3D Path Following Control law

To solve the path-following problem described in Sect. 2.2.1, we first let the rate
of progression of point P along the path be governed by

�̇ = (v ŵ1 + k�pF ) · t̂ , k� > 0 . (5)

Then, the rate commands qc(t) and rc(t) given by

[
qc
rc

]
:= ΠRR̃� (

RD
F {ωF/I}F + {ωD/F }D

) − 2kR̃eR̃ , kR̃ > 0 , (6)

drive the path-following generalized error vector xpf (t) to a neighborhood of
zero with a guaranteed rate of convergence. More precisely, it can be shown that
if the speed of the vehicle satisfies 0 < vmin ≤ v(t) ≤ vmax, then the origin of the
kinematic-error dynamics (2) with the controllers qc(t) and rc(t) in (6) is locally
exponentially stable. A formal statement of this result can be found in [31], while
insights into this path-following algorithm can be found in [36].

The use of the Special Orthogonal group SO(3) in the formulation of the
attitude control problem avoids the geometric singularities and complexities that
appear when dealing with local parameterizations of the vehicle’s attitude. See,
for example, the path-following control algorithm reported in [35].

Finally, we notice that the path-following control laws qc(t) and rc(t) represent
outer-loop guidance commands to be tracked by the UAV. In this sense, the
proposed solution departs from standard backstepping techniques in that the
final path-following control laws can be seamlessly tailored to vehicles that are
equipped with commercial autopilots.
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4 Time-Critical Coordination

We now address the problem of time-critical cooperative path-following control
of multiple vehicles. To this effect, the speeds of the UAVs are adjusted based on
coordination information exchanged among the vehicles over the supporting com-
munications network. The distributed coordination control law described next is
intended to provide a correction to the desired speed profile vd,i(·) obtained in
the trajectory-generation step, and to generate a speed command vc,i(t). This
speed command is then to be tracked by the ith vehicle to achieve coordination.

4.1 Distributed Coordination Law

We start by noting that the evolution of the ith coordination state is given by

ξ̇i =
�̇i

vd,i(ξi)
.

Recalling from the solution to the path-following problem that the evolution of
the ith virtual target vehicle is described by �̇i = (vi ŵ1,i + k� pF,i) · t̂i , where for
simplicity we have kept k� without indexing, the dynamics of the ith coordination
state can be rewritten as

ξ̇i =
(vi ŵ1,i + k� pF,i) · t̂i

vd,i(ξi)
.

Then, to solve the time-coordination problem we use dynamic inversion and
define the speed command for the ith vehicle as

vc,i :=
ucoord,i vd,i(ξi)− k� pF,i · t̂i

ŵ1,i · t̂i
, (7)

where ucoord,i(t) is a coordination control law to be defined later. With this speed
command, the coordination dynamics for the ith target vehicle become

ξ̇i = ucoord,i +
ev,i

vd,i(ξi)
ŵ1,i · t̂i ,

where ev,i(t) := vi(t)− vc,i(t) denotes the speed tracking error for the ith UAV.
Recall now that each UAV is allowed to exchange its coordination state ξi(t)

only with its neighborsNi(t), which are defined by the communications topology.
To observe this constraint, the following distributed coordination control law is
proposed:

ucoord,1(t) = −kP
∑

j∈N1
(ξ1(t)− ξj(t)) + 1 , (8a)

ucoord,i(t) = −kP
∑

j∈Ni
(ξi(t)− ξj(t)) + χI,i(t) , i = 2, . . . , n , (8b)

χ̇I,i(t) = −kI
∑

j∈Ni
(ξi(t)− ξj(t)) , χI,i(0) = 1 , i = 2, . . . , n , (8c)

where vehicle 1 is elected as the formation leader (which can be a virtual vehicle),
and kP and kI are positive coordination control gains. Note that the coordination
control law has a proportional-integral structure, which provides disturbance
rejection capabilities at the coordination level [42].
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4.2 Overall Time-Critical Cooperative Path-Following System

Figure 2 shows the overall cooperative path-following control architecture for
the ith vehicle. With the approach adopted, the control architecture exhibits
a multiloop control structure in which an inner-loop controller stabilizes the
vehicle dynamics, while guidance outer-loop controllers are designed to control
the vehicle kinematics, providing path-following and coordination capabilities.

UAVAutopilot

Closed-loop UAV with its Autopilot

Path-Following

Kinematics

Path-Following

Control

Algorithm

Coordination

Control

Algorithm
ξj ; j ∈ Ni

vc,i

[qi, ri, vi]

[qc,i, rc,i]

(pF,i, R̃i)

Fig. 2. Coordinated path-following closed-loop for the ith vehicle

It is proven in [31] that, if the connectivity of the communications graph
verifies the PE-like condition (4) and the initial conditions are within a given
domain of attraction, then there exist control gains for the path-following control
law (5)-(6) and the coordination control law (7)-(8) that solve the time-critical
cooperative path-following problem with guaranteed rates of exponential con-
vergence, while ensuring at the same time that the speed of each UAV satisfies
vmin ≤ vi(t) ≤ vmax for all t ≥ 0.

Additionally, it is shown in [31] that the QoS of the network, character-
ized by parameters T and μ, limits the guaranteed rate of convergence of the
coordination-error dynamics. The results in this paper also imply that, as the
communications graph becomes connected pointwise in time, the convergence
rate of the coordination-error dynamics can be set arbitrarily high by increasing
the coordination control gains. This fact is consistent with results obtained in
previous work; see [43, Lemma 2].

Finally, we notice that similar results have been derived for the case of a
coordination control law with multiple leaders [42]; in this case, the convergence
rate of the coordination dynamics depends not only on the QoS of the network,
but also on the number of leaders. The work reported in [42] also analyzes the
convergence properties of control law (8) when the vehicles exchange quantized
information, and proves the existence of undesirable “zero-speed” attractors in
the presence of coarse quantization.
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5 Simulation Results

This section presents simulation results of two cooperative multi-vehicle mission
scenarios that show the efficacy of the cooperative framework in this paper. In
the first mission, three UAVs must execute a coordinated maneuver to arrive
at predefined positions at the same time. We then consider a second mission
in which three UAVs must execute sequential auto-landing while maintaining
a prespecified safe-guarding separation along the glide slope. Both missions are
designed to be executed by small tactical UAVs equipped with an autopilot
providing angular-rate and speed tracking capabilities; see Fig. 3.

Fig. 3. SIG Rascal 110 research aircraft operated by the Naval Postgraduate School for
time-critical cooperative missions. Onboard avionics include the Piccolo Plus autopilot,
two PC-104 industrial embedded computers, and a wireless MANET link for air-to-
air and air-to-ground communications. (See [36] for a detailed description of these
avionics.)

5.1 Path-Following with Simultaneous Arrival

In this mission scenario, three UAVs are tasked to converge to and follow three
spatially-deconflicted paths and arrive at their final destinations at the same
time. A representative example of such mission is simultaneous suppression of
multiple targets located at different positions. Note that this mission imposes
only relative temporal constraints on the arrival of the UAVs.

Figure 4 shows the three paths with the parallel transport frames as well as
the corresponding desired speed profiles, which assume a final desired speed of
20 m/s for all UAVs. The beginning of each path is indicated in this figure with
a circle. The figure also shows the coordination maps ηi relating the desired
normalized curvilinear abscissa �′d,i to the desired mission time td. The paths
have lengths �f1 = 2, 084.8 m, �f2 = 1, 806.4 m, and �f3 = 2, 221.0 m, and the
desired time of arrival is t∗d = 85.0 s. Figure 5 presents the path separations,
which show a minimum spatial clearance of 125 m, and the desired inter-vehicle
separations for this particular mission.
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Fig. 4. Path-following with simultaneous arrival. Framed 3D spatial paths along with
the corresponding desired speed profiles and coordination maps.

The cooperative motion-control algorithms described in this paper are used to
solve this multi-vehicle simultaneous-arrival path-following problem. In order to
achieve coordination, the UAVs rely on a supporting communications network.
The information flow is assumed to be time-varying and, at any given time t, is
characterized by one of the graphs in Fig. 6.

Simulation results for this particular mission are presented next. Figure 7
illustrates the evolution of the UAVs (black) as well as the virtual targets (mid
gray) moving along the paths (light gray). This figure also includes the W frame
attached to each UAV (black) as well as the F frame attached to the virtual
targets (mid gray). The UAVs start the mission with an initial offset in both
position and attitude with respect to the beginning of the framed paths. As
can be seen in the figure, the path-following algorithm eliminates this initial
offset and steers the UAVs along the corresponding paths, while the coordination
algorithm ensures simultaneous arrival at the end of the path at t = 84.2 s.
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Fig. 5. Path-following with simultaneous arrival. Path separation and desired inter-
vehicle separation; the three paths are spatially deconflicted with a minimum clearance
of 125 m.
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Fig. 7. Path-following with simultaneous arrival. The three UAVs achieve simultaneous
arrival at their final destinations at t = 84.2 s.
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Fig. 8. Path-following with simultaneous arrival. The path-following algorithm drives
the path-following position and attitude errors to a neighborhood of zero.

Details about the performance of the path-following algorithm are shown in
Fig. 8; the path-following position and attitude errors, pF,i and Ψ(R̃i), converge
to a neighborhood of zero within 30 s. The figure also presents the angular-rate
commands, qc,i and rc,i, as well as the rate of progression �̇i of the virtual targets
along the path.

The evolution of both the coordination errors (ξi − ξj) and the rate of change

of the coordination states ξ̇i are illustrated in Fig. 9, along with the resulting
UAV speeds and the integral states implemented on the follower vehicles. The
figure shows that the coordination errors converge to a neighborhood of zero,
while the rate of change of the coordination states converges to the desired
rate ξ̇ref = 1. In particular, Figure 9b illustrates how the vehicles adjust their
speeds (with respect to the desired speed profile) to achieve coordination. Finally,
Figure 10 describes the evolution of the information flow as the mission unfolds,
and presents an estimate of the QoS of the network, computed as

μ̂(t) := λmin

(
1

3

1

T

∫ t

t−T

Q3L(τ)Q�
3 dτ

)
, t ≥ T , (9)

with T = 10 s.
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Fig. 9. Path-following with simultaneous arrival. The coordination control law ensures
that the coordination errors converge to a neighborhood of zero and also that the rate
of change of the coordination states evolves at about the desired rate ξ̇ref = 1.
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Fig. 10. Path-following with simultaneous arrival. At a given time instant, the infor-
mation flow is characterized by one of the topologies in Fig. 6. The resulting graph is
only connected in an integral sense, and not pointwise in time.
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5.2 Sequential Auto-Landing

Here, three UAVs must arrive at the assigned glide slope separated by prespec-
ified safe-guarding time-intervals, and then follow the glide path at a constant
approach speed while maintaining the safe-guarding separation. To this end,
time-deconflicted transition trajectories are generated from prespecified initial
conditions to the beginning of the glide path, satisfying the desired inter-vehicle
arrival schedule and taking the UAVs to the desired approach speed. Again, this
mission imposes only relative temporal constraints on the arrival of the UAVs.

Figure 11 shows the three transition paths with the parallel transport frames
as well as the framed 3-deg glide path. The beginning of each transition path
is indicated with a circle, while the beginning of the glide path is indicated
with a triangle. The figure also presents the desired speed profiles for the initial
transition phase that ensure a desired safe-guarding arrival separation of 30 s,
trajectory deconfliction, as well as a final approach speed of 20 m/s. The transi-
tion coordination maps are shown in Fig. 11c. Finally, the figure also includes the
desired speed profile for the approach along the glide slope as well as the corre-
sponding coordination map. The transition paths have lengths �f1 = 1, 609.0 m,
�f2 = 1, 962.7 m, and �f3 = 2, 836.7 m, and the desired times of arrival at the
glide slope are t∗d1 = 65.0 s, t∗d2 = 95.0 s, and t∗d3 = 125.0 s. Figure 12 presents
the path separations, which show that the three transition paths meet at their
end positions (beginning of the glide slope), whereas the desired inter-vehicle
separations for this particular mission are never less than 350 m.

The cooperative motion-control algorithms described in this paper can be used
to solve this sequential auto-landing problem. In this case, however, since the
UAVs are required to maintain a safe-guarding separation during the approach
along the glide path, the coordination states have to be redefined as the vehicles
reach the glide slope. Hence, while the ith UAV is flying along its transition
path, its coordination state is defined as

ξi(t) = ηi(�
′
i(t)) , i = 1, 2, 3 ,

where �′i(t) is the normalized curvilinear abscissa of the ith virtual target along
the corresponding transition path. When the UAV reaches the beginning of the
glide path, then its coordination state is (re)defined as

ξi(t) = ηgs(�
′
i(t)) + t∗di , i = 1, 2, 3 ,

where �′i(t) is now the normalized curvilinear abscissa of the ith virtual tar-
get along the glide path, and t∗di is the desired time of arrival of the ith UAV
at the beginning of the glide slope. Note that, with the above definitions, the
coordination states ξi(t) are continuous, as ηi(1) = t∗di and ηgs(0) = 0.

Next, we present simulation results for this mission scenario. Figure 13 il-
lustrates the evolution of the UAVs (black) as well as the virtual targets (mid
gray) moving along the paths (light gray). Similar to the previous scenario, the
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Fig. 11. Sequential auto-landing. Framed 3D spatial paths along with the correspond-
ing desired speed profiles and coordination maps for both the transition trajectories
and the glide slope.
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Fig. 12. Sequential auto-landing. Path separation and desired inter-vehicle separation
during the transition phase; the speed profiles ensure deconfliction of the three desired
trajectories with a minimum clearance of 350 m.

UAVs start the mission with an initial offset in both position and attitude with
respect to the beginning of the transition paths. As can be seen in the figure,
the path-following algorithm eliminates this initial offset and steers the UAVs
along the corresponding transition paths, while the coordination algorithm en-
sures that the UAVs reach the glide slope separated by a desired time-interval.
The UAVs reach the glide slope at t = 67.0 s, t = 97.0 s, and t = 127.0 s, meet-
ing the desired 30 s inter-vehicle separation. After reaching the glide slope, the
path-following algorithm ensures that the UAVs stay on the glide path as the
coordination algorithm maintains the safe-guarding separation. The simulation
is stopped when the first UAV reaches the end of the glide path.

Figure 14 shows the path-following position and attitude errors, pF,i and

Ψ(R̃i), as well as the angular-rate commands, qc,i and rc,i, and the rate of

progression of the virtual targets along the path �̇i. The path-following errors
converge to a neighborhood of zero within 40 s.
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Fig. 13. Sequential auto-landing. The three UAVs arrive at the beginning of the glide
path separated by approximately 30 s and maintain this safe-guarding separation as
they fly along the glide slope.
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Fig. 14. Sequential auto-landing. The path-following algorithm drives the path-
following position and attitude errors to a neighborhood of zero.

The coordination errors (ξi − ξj) also converge to a neighborhood of zero,

while the rate of change of the coordination states ξ̇i converges to neighborhood
of the desired rate ξ̇ref = 1; see Fig. 15. This figure also shows the UAV speeds
and the integral states implemented on the follower vehicles. In particular, Fig-
ure 15b shows that, after a transient caused by the initial path-following errors
as well as the speed corrections introduced by the coordination control law, the
speed of each UAV converges to its desired speed and, as the vehicles enter the
glide path, their speeds converge to the desired approach speed of 20 m/s. Fi-
nally, Figure 16 shows the evolution of the time-varying network topology along
with an estimate of the QoS of the network, computed as in (9).
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Fig. 15. Sequential auto-landing. The coordination control law ensures that the coordi-
nation errors converge to a neighborhood of zero, thus ensuring trajectory deconfliction,
and also that the rate of change of the coordination states evolves at about the desired
rate ξ̇ref = 1.
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Fig. 16. Sequential auto-landing. At a given time instant, the information flow is char-
acterized by one of the topologies in Fig. 6. The resulting graph is only connected in
an integral sense, and not pointwise in time.
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6 Conclusions

The paper presented simulation results of two multi-vehicle time-critical missions
that exploit a distributed cooperative control framework proposed by the authors
in [31]. The simulation study illustrated the efficacy of the algorithms developed
and verified the main theoretical claims. Our current research efforts go well
beyond concept; in fact, the framework described in this paper has already been
tested in a cooperative road-search mission involving two small tactical UAVs
equipped with commercial off-the-shelf autopilots. These preliminary flight-test
results, which have been reported in [31,36], demonstrate the effectiveness of the
proposed theoretical framework in a specific realistic application as well as the
feasibility of the onboard implementation of the algorithms.

Acknowledgments. Research was supported in part by Office of Naval Re-
search, Air Force Office of Scientific Research, Army Research Office, European
Commission under the FP7 MORPH Project (grant agreement No. 288704), and
Fundação para a Ciência e a Tecnologia under the CONAV project
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Appendix: The hat and vee Maps

The hat map (·)∧ : IR3 → so(3) is defined as

(x)∧ =
[ 0 −x3 x2

x3 0 −x1−x2 x1 0

]

for x = [x1, x2, x3]
� ∈ IR3. The inverse of the hat map is referred to as the vee

map (·)∨ : so(3) → IR3. The reader is referred to [44] for details on these maps.
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Abstract. A commercial inertial navigation system (INS) yields time-
diverging solutions due to errors in the inertial sensors, which can inhibit
long term navigation. To circumvent this issue, a set of non-inertial sen-
sors is used to limit these errors. The fusion between additional data
and INS solution is often done by means of an extended Kalman filter
using a state-error model. However, the Kalman filter estimates should
be used when full observability produces small estimation uncertainty.
This paper has analyzed conditions to achieve full observability using
as non-inertial sensors a GPS receiver and an uncalibrated magnetome-
ter combined with either a locally horizontal-stabilized IMU or with a
strapdown IMU. The magnetometer bias was considered constant and
augmented the error-state space. Observability analysis based on con-
cepts of linear algebra provided a geometric insight on the requirements
for attaining full observability when assuming piece-wise constant system
dynamics. The novel analysis has been validated by covariance analysis
of simulation results. Also, simulation results indicate that fusion with
uncalibrated magnetometer data without proper processing gives rise to
estimation divergence.

Keywords: Observability analysis, INS error model, GPS,
magnetometer.

Notation and Abbreviations

R Set of real numbers.
DCM Direction Cossine Matrix.
PWC Piece-wise constant.
y Scalar.
y Vector.
A Matrix.
diag(A B) Block-diagonal matrix constructed by the matrices A and B.
In Identity matrix of size n.
[y]×x Matrix representation of the cross product y × x.
Da

b DCM that rotates from the a coordinate frame to the b coordinate
frame.
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ωab
c Angular rate of the a coordinate frame with respect to the b

coordinate frame represented in the c coordinate frame.
ρl Transport rate represented in the local horizontal frame.
Ωe,l Earth’s angular rate represented in the local horizontal frame.
Aspl Specific force represented in the local horizontal frame.
ΔRl INS position error represented in the local horizontal frame.
ΔVl INS velocity error represented in the local horizontal frame.
Ψ Misalignment from the computed coordinate frame to the plat-

form coordinate frame.
∇ Accelerometer bias.
ε Rate-gyro drift.
δ Magnetometer bias.
RN North-south radius of curvature of the Earth.
RE East-west radius of curvature of the Earth.
Re Earth radius at the latitude of the vehicle.
ge Gravitation at the latitude of the vehicle.
λ Latitude of the vehicle.
h Altitude of the vehicle.
ωli

l Angular rate of the local horizontal frame with respect to the in-
ertial coordinate frame represented in the local horizontal frame,
which is equal to Ωe,l + ρl.

1 Introduction

A commercial, stand-alone inertial navigation system (INS) quickly yields a
diverging solutions due to errors in the low-quality inertial measurement unit
(IMU) sensors [1]. In myriad applications, such errors can preclude the use of
the navigation solution in the long term. Thus, a set of non-inertial sensors often
aid the INS by means of a state-error model embedded in an extended Kalman
filter [1]. The state-error model employs a state vector that comprises position
and velocity errors, misalignment angles with respect to the locally horizontal
coordinate frame, accelerometer biases, and rate-gyro drifts [1]. Consequently,
observability analysis is called for to ensure that the filter estimates are accurate.
Full observability yields the estimation error covariance attaining the minimum
in all state-error space directions [2], and then Kalman filter estimates can be
used to correct the INS errors and calibrate the inertial sensors.

Navigation becomes unfeasible when the aiding sensors are lacking with re-
spect to limiting the misalignment error. These errors can be bounded by a
magnetometer or a camera. The latter requires a pointing apparatus and calls
for image processing. Hence, for low cost systems, the magnetometer is the usual
choice of aiding sensor, along with a pressure altimeter, and embedded in many
commercially available IMUs [3, 4].

A previous observability analysis and validation by simulation of the INS error
model with GPS/magnetometer aiding in [5] have shown that useful measure-
ments of position and misalignment errors result from comparing the calibrated
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magnetometer readings to an embedded geomagnetic field model. However, in-
correct magnetometer calibration impairs the estimation performance reported
in [5]. The errors in the magnetometer readings should be estimated to prevent
the degradation of estimation accuracy as shown later in the simulation results.

For the sake of modeling simplicity, it has been assumed that the magnetome-
ter measurement error can be modeled as a constant bias. The magnetometer
bias is appended to the state-error and the observability analysis is then carried
out for an IMU mounted on a stabilized platform and for a strapdown IMU.
In both cases, piece-wise constant dynamics for the INS error model have been
assumed as in [6, 7]. The theoretical results have been validated by covariance
analysis of a simulated aided INS with an ideal IMU. Also, to cover more realistic
situations, two simulations have considered a non-ideal IMU and a time-varying
magnetometer bias. In the first, the magnetometer bias has been neglected and,
in the second, it has been estimated by the extended Kalman filter.

Section 2 presents the coordinate frames. The INS error model and the sensors
model are presented in sections 3 and 4, respectively. The observability analysis
is shown in section 5 . Simulations and results are presented in section 6. Finally,
the conclusions are reported in section 7.

2 Coordinate Frames

The true local horizontal frame is used to represent the INS errors. In the
true vehicle position, its X-axis points towards North, its Y-axis points towards
East, and its Z-axis points down. This coordinate system is thereafter indicated
with the l subscript.

The computed coordinate frame is defined as the local horizontal frame at
the position computed by the INS. It is thereafter indicated with the c subscript.

The platform coordinate frame is defined as the local horizontal frame
computed by the INS. It is thereafter indicated with the p subscript.

The body coordinate frame is defined as the inertial sensors coordinate
frame. It is usually assumed to be aligned with the vehicle coordinate frame in
strapdown IMUs or aligned with the platform coordinate frame in IMUs mounted
on a stabilized platform. This coordinate frame is thereafter indicated with the
b subscript.

3 INS Error Model

INS errors are increasing and unbounded, thus navigation can be seriously com-
promised in a long-term mission even with high-quality inertial sensors [1, 5, 8].
Non-inertial sensors provide additional information that can limit such errors.
The fusion between the non-inertial sensors and the INS solution is often ac-
complished by an extended Kalman filter using a state-error model. The usual
state vector for the INS error model is composed of position and velocity errors,
misalignment from the computed coordinate frame to the platform coordinate
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frame, accelerometers triad bias, and rate-gyros triad drift [1, 8]. The magne-
tometer bias is appended to the state-error in section 4.

For the sake of completeness, the standard state-error model for an IMU
mounted on a stabilized platform and for a strapdown IMU are presented in
eqs. 1 and 2, respectively:

ẋ =

⎡
⎢⎢⎢⎢⎣

[ρl]× I3×3 03×3 03×3 03×3

ge α Γ I3×3 03×3

03×3 03×3 β 03×3 −I3×3

03×3 03×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3 03×3

⎤
⎥⎥⎥⎥⎦x

x =
[
ΔRT

l ΔVT
l ψT ∇T

l εTl
]T

,

(1)

ẋ =

⎡
⎢⎢⎢⎢⎣

[ρl]× I3×3 03×3 03×3 03×3

ge α Γ Db
l 03×3

03×3 03×3 β 03×3 −Db
l

03×3 03×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3 03×3

⎤
⎥⎥⎥⎥⎦x

x =
[
ΔRT

l ΔVT
l ψT ∇T

b εTb
]T

,

(2)

where ge = diag
(−ge/Re −ge/Re 2ge/Re

)
, α = [ρl + 2Ωe,l]×, β=[ρl +Ωe,l]×,

and Γ = [Aspl]×.

4 Sensors Model

This investigation concentrates on INS error-state observability analysis when a
GPS receiver and an uncalibrated magnetometer aid the INS, which extends a
previous investigation [5]. A measurement model for each non-inertial sensor is
described next.

The GPS solution is assumed to directly provide position and velocity er-
rors. In practice, GPS raw data can be post-processed to yield vehicle position
and velocity in the WGS84 ellipsoid coordinate frame as in a loosely-coupled
implementation. Alternatively, the raw data composed of, for example, pseudo-
ranges and Doppler shift from the receiver to each satellite are employed in a
tightly-coupled implementation [8]. The GPS solution is then compared to the
INS solution to produce a measurement vector of the state-error. Receiver clock
errors have not been involved in this investigation.

The GPS measurement equation under the aforementioned assumption and
neglecting measurement noise is

yGPS =

[
I3 03 03 03 03

03 I3 03 03 03

]
x . (3)

The magnetic pseudomeasurement is composed of the difference between the
magnetometer raw data and the prediction from the geomagnetic field model.
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Considering Pinson’s model [10], the DCM from the body coordinate frame to
the true local horizontal frame can be approximated by neglecting second order
terms as

Dl
b = Dp

b ·Dc
p·Dl

c ≈ Dp
b ·(I3×3−[ψ]×)·(I3×3−[Δθ]×) ≈ Dp

b ·(I3×3−[ψ]×−[Δθ]×) ,
(4)

where Δθ is the misalignment from the true coordinate frame to the computed
coordinate frame and ψ is misalignment from the computed coordinate frame to
the platform coordinate frame. Thus, the calibrated magnetometer measurement
neglecting noise can be approximated by [5]

Bmag ≈ Dp
b · (I3×3 − [ψ]× − [Δθ]×) ·Bl

Db
pBmag −Bl ≈ −[ψ]×Bl − [Δθ]×Bl

ycal
mag = [Bl]×ψ + [Bl]×Δθ ,

(5)

where Bmag is the calibrated magnetometer measurement and Bl is the local
geomagnetic field vector represented in the true local horizontal frame, which is
not accessible. Hence the use of the geomagnetic field model using the position
solution computed by either the GPS or the INS. Dp

b = I3 if the IMU and the
magnetometer are mounted on a stabilized platform. Moreover, vector Δθ can
be related to the position error represented in the local horizontal frame as

Δθ =

⎡
⎢⎢⎢⎢⎢⎣

0
1

RE + h
0

− 1

RN + h
0 0

0 − tanλ

RE + h
0

⎤
⎥⎥⎥⎥⎥⎦
·ΔRl = C ·ΔRl . (6)

Finally, the calibrated magnetic pseudo-measurement can be approximated
by

ycal
mag =

[
[Bl]× ·C 03 [Bl]× 03 03

]
x = Hcal

magx . (7)

If the geomagnetic field model Bl is not accurate enough or the magne-
tometer calibration has not been executed correctly, then the magnetic pseudo-
measurement ycal

mag in eq. 7 will be in error. Thus, the uncalibrated magnetometer
raw measurement can be approximated as follows

Bmag ≈ Dp
b · (I3×3 − [ψ]× − [Δθ]×) ·Bl + δb , (8)

where δb is the magnetometer bias that comprises the uncalibrated magnetic
pseudo-measurement errors.

For the sake of modeling simplicity, δb has been modeled as a constant be-
cause it is expected to undergo a slow change when represented in the body
coordinate frame. However, later in the simulations, this restriction is relaxed
and the measurement error δb is simulated using a time-varying function. Hence,
the magnetometer bias dynamics neglecting modeling uncertainty can be written
as

δ̇b = 03×1 . (9)
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The magnetometer bias is appended to the state-error vector to produce the
augmented INS error model presented in eqs. 10 and 11 for an IMU mounted on
a stabilized platform and for a strapdown IMU, respectively:

ẋe =

⎡
⎢⎢⎢⎢⎢⎢⎣

[ρl]× I3×3 03×3 03×3 03×3 03×3

ge α Γ I3×3 03×3 03×3

03×3 03×3 β 03×3 −I3×3 03×3

03×3 03×3 03×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3 03×3 03×3

⎤
⎥⎥⎥⎥⎥⎥⎦
xe

xe =
[
ΔRT

l ΔVT
l ψT ∇T

l εTl δTl
]T

,

(10)

ẋe =

⎡
⎢⎢⎢⎢⎢⎢⎣

[ρl]× I3×3 03×3 03×3 03×3 03×3

ge α Γ Db
l 03×3 03×3

03×3 03×3 β 03×3 −Db
l 03×3

03×3 03×3 03×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3 03×3 03×3

⎤
⎥⎥⎥⎥⎥⎥⎦
xe

xe =
[
ΔRT

l ΔVT
l ψT ∇T

b εTb δTb
]T

.

(11)

Thus, the uncalibrated magnetic pseudo-measurement equation can be writ-
ten as follows

yuncal
mag = Hcal

magx+Db
pδb

yuncal
mag =

[
Hcal

mag Db
p

]
xe .

(12)

If the position and velocity errors are directly measured, then, by definition,
those state vector components are observable. The position error is dynamically
coupled only with the velocity error, which shows that the position error dy-
namics fails to bring any unmeasured component into the observable subspace.
Hence, for the sake of simplicity of the observability analysis, the position error
component can be neglected [9].

For the purpose of observability analysis, one calls models 1 and 2 the contents
of eqs. 10 and 11 without the position errors, respectively, and the measurement
equations 3, and either 7 or 12. The analysis had those measurement equations
properly changed to match the reduced error-state vector wherein position errors
have been neglected.

5 Observability Analysis

The INS error dynamics in eqs. 10 and 11 is a time-varying, linear system.
The most general way to check observability is to compute the observability
Grammian [11]. However, it leads to a complicated mathematical treatment.

In the literature, observability has been verified by three main methods. The
first is to analyze conditions that turn the model into a time-invariant system,
e. g. the vehicle is stationary on the Earth’s surface, or to find an adequate Lya-
punov transformation that also leads to a time-invariant system [12]. Thus the
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observability can be checked by means of rank computation of the observability
matrix [11]. This approach was used in [1, 12].

The second method is applicable to piece-wise constant (PWC) systems. The
observability analysis is still done by rank computation, but it turns out that
it can be greatly simplified when a certain condition holds as is presented in
Theorem 1 [9]. For the INS error model 1, the system can be considered PWC if
the specific force is piece-wise constant [6]. For the INS error model 2, the system
can be approximated by a PWC system if the specific force and attitude with
respect to the local horizontal frame are piece-wise constant [7]. In this case,
it is also expected that the DCM Db

p will be PWC, since, during a maneuver
segment, it will vary only due to numerical errors and imperfections of the inertial
sensors. Thus, for sufficiently short segments, the uncalibrated magnetic pseudo-
measurement matrix in eq. 12 can be approximated as a PWC matrix.

The third method has tried to investigate observability without assuming
piece-wise constant dynamics [12–16]. Since the observability analysis of time-
varying systems is not easily applied under general conditions, several restrictions
can be considered, for example, constant specific forces and angular velocities,
or a C-shaped path.

For the sake of simplicity, the second method based on assuming piece-wise
constant dynamics has been preferred here. It can be shown that under this con-
straint, an observability analysis with linear algebra concepts provides sufficient
conditions for full observability that hold for practically all situations of inter-
est [5]. Additionally, the approach yields a geometrical insight of the kinematics
involved in the observability analysis [5]. Let a vehicle move at constant altitude
according to three consecutive trajectory segments: 1) towards North; 2) in a
C-shaped trajectory; and 3) towards East. The composed movement leads to a
time-varying INS error model. However, if segment 2 is neglected, then the above
INS error models turn into PWC systems. Thus, if full observability by the end
of segment 3 can be proved, then, by definition, the time-varying system com-
posed of the three segments is also fully observable. However, if full observability
cannot be claimed from the analysis of the first and the third PWC segments,
then further analysis including the second segment is needed. Fortunately, the
vehicle can move in such a manner that the INS error model will remain constant
during certain time intervals in all the situations of interest. Thus the analysis of
just the PWC segments using the aforementioned method can provide sufficient
conditions for full observability [5].

5.1 Observability Analysis of Piece-Wise Constant Systems

A PWC system is defined as

ẋ = Ajx+Bju

y = Cjx ,
(13)
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where j ∈ [0, 1, 2, · · · ] and matrices Aj , Bj , and Cj are constants for all j.
Observability can be checked by rank analysis of the total observability matrix
(TOM), defined for the first r + 1 segments as [9]

Q̄(r) =

⎡
⎢⎢⎢⎣

Q̄0

Q̄1 · eA0Δ0

...
Q̄r · eAr−1Δr−1 · . . . · eA1Δ1 · eA0Δ0

⎤
⎥⎥⎥⎦ , (14)

with matrix Qi defined as

Q̄i =
[

CT
i [CiAi]

T · · · [
CiA

n−1
i

]T ]T
, (15)

where n is the state vector dimension.
The computation of the exponential matrices leads to tedious and complicated

algebraic calculations, but it can be avoided if the following theorem holds [9].

Theorem 1. If

NULL(Qj) ∈ NULL(Aj), ∀ j ∈ [0, 1, 2, · · · , r] ,

then the following holds:

NULL(Q̄(r)) = NULL(Q̄s(r))

RANK(Q̄(r)) = RANK(Q̄s(r)) ,

where Q̄s(r) is the stripped observability matrix (SOM) defined as follows

Q̄s(r) =
[

Q̄T
0 Q̄T

1 · · · Q̄T
r

]T
. (16)

Thus the computation of the exponential matrices can be avoided in the ob-
servability analysis.

Proof. See [9]. ��

References [7, 9] stated that the Theorem 1 holds for both models in eqs. 1
and 2 when the INS state-error model neglects the position error dynamics and
terrestrial velocity measurements are available from GPS solution. On the other
hand, [5] showed that this theorem only holds for these models if the specific
force Aspl is not aligned with the angular rate of the local horizontal frame with
respect to the inertial coordinate frame ωli

l at any segment. However, to the best
knowledge of the authors, the validity of Theorem 1 has not been checked for the
models 1 and 2, in which the magnetometer bias is appended to the state-error
vector.
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Regarding model 2, the observability matrix for the j -th segment can be
written, after elementary row operations, as

Q̄j =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

I3 03 03 03 03

GPS
03 Γj Db

l,j 03 03

03 Γjβ 03 −ΓjD
b
l,j 03

03 Γjβ
2 03 −ΓjβD

b
l,j 03

...
...

...
...

...

03 [Bl]× 03 03 Db
p,j

Mag.
03 [Bl]×β 03 −[Bl]×Db

l,j 03

03 [Bl]×β2 03 −[Bl]×βDb
l,j 03

...
...

...
...

...

, (17)

where the subscript j indicates a matrix at the j -th segment. Notice that β,
which is the cross product matrix representation of the angular rate vector ωli

l ,
and [Bl]× are time-varying matrices. However, they can be approximated as
constants for a short term analysis when the terrestrial velocity is small enough.

A vector x ∈ NULL(Q̄j) must satisfy the following conditions:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(1) x1 = 03×1

(2) Γjx2 +Db
l,jx3 = 03×1

(3) Γjβ
n(βx2 −Db

l,jx4) = 03×1 n ∈ [0, 1, 2, · · · ]
(4) [Bl]×βn(βx2 −Db

l,jx4) = 03×1 n ∈ [0, 1, 2, · · · ]
(5) [Bl]×x2 +Db

p,jx5 = 03×1 .

(18)

If Aspl,j is not aligned with ωli
l , then condition (3) and Theorem 5 (see

Appendix) lead to βx2 −Db
l,jx4 = 03×1.

Furthermore, the following conditions must be satisfied if the vector x also
lies in the null space of the j -th segment dynamics matrix Aj :

αjx1 + Γjx2 +Db
l,jx3 = 03×1

βjx2 −Db
l,jx4 = 03×1 .

(19)

It is straightforward to check that if x ∈ NULL(Q̄j) and Aspl,j is not aligned

with ωli
l , then x also lies in the Aj null space. Hence, if this is valid for all j ≥ 0,

then Theorem 1 holds. One should notice that this proof can be extended to
model 1 by substituting Db

l = I3 and Db
p = I3.

Hereafter, the assumption that Aspl,j is not aligned with ωli
l for all j ≥ 0

is called assumption �. Thus, if assumption � holds, the observability analysis
for the models 1 and 2 with GPS solution and uncalibrated magnetic pseudo-
measurements can be carried out by means of rank analysis of the SOM.
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5.2 Observability Analysis for an IMU Mounted on a Stabilized
Platform

The observability analysis is now presented for the model 1 when GPS and
uncalibrated magnetic pseudo-measurements as in eqs. 3 and 12, respectively,
are available. The SOM for the first three segments can be assembled after
elementary row and column operations as follows

Q̄
′
s(2) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I3×3 03×3 03×3 03×3 03×3

03×3 03×3 I3×3 03×3 03×3

03×3 03×3 03×3 −Γ0 03×3

...
...

...
...

...
03×3 03×3 03×3 −Γ0β

n−1 03×3

...
...

...
...

...
03×3 03×3 03×3 03×3 I3×3

03×3 03×3 03×3 −[Bl]× 03×3

...
...

...
...

...
03×3 03×3 03×3 −[Bl]×βn−1 03×3

...
...

...
...

...
A1

A2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (20)

where

Ai =

⎡
⎢⎢⎢⎢⎢⎢⎣

03×3 Γi − Γ0 03×3 03×3 03×3

03×3 03×3 03×3 −Γi 03×3

...
...

...
...

...
03×3 03×3 03×3 −Γiβ

n−1 03×3

...
...

...
...

...

⎤
⎥⎥⎥⎥⎥⎥⎦

. (21)

Thus, if x ∈ NULL(Q̄
′
s(2)), then the following must hold:

(1) x1 = 03×1

(2) x3 = 03×1

(3) Γiβ
nx4 = 03×1, n ∈ [0, 1, 2, · · · ], i ∈ [0, 1, 2]

(4) [Bl]×βnx4 = 03×1, n ∈ [0, 1, 2, · · · ]
(5) (Γ1 − Γ0)x2 = 03×1

(6) (Γ2 − Γ0)x2 = 03×1 .

(22)

Since this analysis is only valid if the assumption � holds, thus condition (3)
and Theorem 5 (see Appendix) lead to x4 = 03×1. Additionally, condition (5) re-
stricts x2 to be aligned withAspl,1−Aspl,0. Likewise, condition (6) also restricts
x2 andAspl,2−Aspl,0 to be linearly dependent vectors. Thus, if Aspl,1−Aspl,0

is not aligned with Aspl,2 −Aspl,0, then the conditions (5) and (6) can only be
valid with x2 = 03×1, which leads to a fully observable system.



Observability Analysis, INS Error Model, GPS/Uncalibrated Magnetometer 245

Finally, the full observability of the piece-wise constant INS error model for an
IMU mounted on a stabilized platform with GPS/uncalibrated magnetometer
aiding is achieved when:

– The specific force Aspl,j is not aligned with the angular rate of the local

horizontal frame with respect to the inertial coordinate frame ωli
l at any

segment j, j ∈ [0, 1, 2, 3, · · · ];
– There are at least three segments in which the specific force difference from

segment 0 to segment 1 Aspl,1−Aspl,0 is not aligned with the specific force
difference from segment 0 to segment 2 Aspl,2 −Aspl,0.

One should notice that these are the same conditions to achieve full observabil-
ity when the GPS is the only aiding sensor [9]. If the magnetometer is calibrated
and its residual bias can be neglected, then the full observability can be achieved
with just two specific force segments [5]. Hence, an uncalibrated magnetometer
does not help to improve observability, but the magnetometer bias can be made
observable by means of specific force changes if the IMU is mounted on a stabi-
lized platform.

5.3 Observability Analysis for a Strapdown IMU

The observability analysis is hereafter presented for the model 2 when GPS and
uncalibrated magnetic pseudo-measurements as in eqs. 3 and 12, respectively,
are available. If the strapdown IMU angular rate with respect to the local coor-
dinate frame, when represented in this same frame, is zero, then the observability
analysis can be carried out as in the previous section [5]. Moreover, the dynamics
of the INS error model of a strapdown IMU can be also stimulated by rotational
motion. Thus additional excitation signals are available to increase the dimen-
sion of the observable subspace. The analysis when the IMU undergoes PWC
attitude is presented next.

The SOM for the first two segments can be assembled after elementary row
and column operations as follows

Q̄
′
s(1) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A0

09×3

...
03×3

...

A1

09×3

...
03×3

...

03×3 [Bl]× 03×3 03×3 Db
p,0

03×3 [Bl]× 03×3 03×3 Db
p,1

...
...

...
...

...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (23)
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where

A0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

I3×3 03×3 03×3 03×3

03×3 Γ Db
l,0 03×3

03×3 Γβ 03×3 −ΓDb
l,0

...
...

...
...

03×3 Γβn 03×3 −Γβn−1Db
l,0

...
...

...
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (24)

A1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

03×3 03×3 Db
l,1 −Db

l,0 03×3

03×3 03×3 03×3 −Γ (Db
l,1 −Db

l,0)
...

...
...

03×3 03×3 03×3 −Γβn−1(Db
l,1 −Db

l,0)
...

...
...

⎤
⎥⎥⎥⎥⎥⎥⎦

. (25)

Thus if x ∈ NULL(Q̄
′
s(1)), then the following must hold:

(1) x1 = 03×1

(2) Γx2 +Db
l,0x3 = 03×1

(3) Γβn(βx2 −Db
l,0x4) = 03×1, n ∈ [0, 1, 2, · · · ]

(4) (Db
l,1 −Db

l,0)x3 = 03×1

(5) Γβn(Db
l,1 −Db

l,0)x4 = 03×1, n ∈ [0, 1, 2, · · · ]
(6) [Bl]×x2 +Db

p,0x5 = 03×1

(7) [Bl]×x2 +Db
p,1x5 = 03×1 .

(26)

Conditions (3) and (5), assumption �, and Theorem 5 (see Appendix) lead to
(A) βx2 − Db

l,0x4 = 03×1 and (B) (Db
l,1 −Db

l,0)x4 = 03×1. Condition (B) and
Theorem 6 (see Appendix) claim that x4 must lie in the Euler axis in which
a single rotation aligns the body coordinate frame in segment 0 (b0 ) with the
body coordinate frame in segment 1 (b1 ) [5]. This axis is thereafter called eb0�b1.
Likewise, x3 must also lie in the same axis due to condition (4) [5]. Then condition
(2) leads to Γx2 = −Db

l,0x3, which constrains x2 and the specific force Aspl

to lie in a plane perpendicular to the Euler axis eb0�b1 if x3 is not 03×1 [5]. In
the same way, if x4 is not 03×1, then condition (A) above constrains x2 and the
angular rate of the local horizontal frame with respect to the inertial coordinate
frame ωli

l to also lie in a plane perpendicular to the same Euler axis eb0�b1 [5].
Hence, if either the specific force Aspl or the angular rate of the local horizontal
frame with respect to the inertial coordinate frame ωli

l is not perpendicular to
the Euler axis eb0�b1, then the components x2, x3, and x4 must all be 03×1 [5].
If it holds, then it is straightforward to check that x5 must also be 03×1, since
both Db

p,0 and Db
p,1 are full rank matrices. In such case, the INS error model

with GPS and uncalibrated magnetometer aiding is fully observable.
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Finally, the full observability of the INS error model for a strapdown IMU
with constant specific force undergoing PWC attitude with GPS/uncalibrated
magnetometer aiding is achieved when:

– The specific force Aspl is not aligned with the angular rate of the local
horizontal frame with respect to the inertial coordinate frame ωli

l ;
– The specific forceAspl or the angular rate of the local horizontal frame with

respect to the inertial coordinate frame ωli
l is not perpendicular to the Euler

axis in which a single rotation aligns the body coordinate frame in segment
0 (b0 ) with the body coordinate frame in segment 1 (b1 ) eb0�b1.

6 Simulation and Results

The five scenarios for validation of foregoing theoretical results are presented as
follows. All numerical simulations were obtained with a simulated INS coded in
Matlab.

The three first scenarios validated the INS error model observability by co-
variance analysis. In these cases, the accelerometers and rate-gyros have been
considered ideal and thus the model noise covariance has been set to zero. The
initial EKF covariance and GPS and magnetometer measurement noise covari-
ance matrices are presented, respectively, in eqs. 27, 28, and 29 [5]:

P0 = diag
(
10−6 10−6 10−6 10−4 10−4 10−4 10−6 10−6 10−6

10−10 10−10 10−10 10−3 10−3 10−3
)
,

(27)

RGPS = diag
(
10−10 10−10 10−10

)
, (28)

RMAG = diag
(
10−20 10−20 10−20

)
, (29)

where the units are:

– (m/s)2 for the velocity-related components;
– (rad)2 for the misalignment components;
– (m/s2)2 for the accelerometer bias components;
– (rad/s)2 for the rate-gyro drift components;
– (Gauss)2 for the magnetometer bias components.

For the sake of simplicity, the local geomagnetic field vector has been assumed
to point towards north with 230.60 mGauss of intensity, which is the geomagnetic
field intensity at the city of São José dos Campos, Brazil. Additionally, the actual
magnetometer bias has been assumed constant as follows

δb = [10 10 10]T mGauss . (30)

The first scenario simulates an IMU mounted on a locally horizontal-stabilized
platform in a GPS/Magnetometer-aided INS subjected to the trajectory in Ta-
ble 1. The standard deviations of the state-error estimation error are presented
component-wise in fig. 1.
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Table 1. IMU trajectory for scenario 01

Specific forces

Start (s) End (s) N (m/s2) E (m/s2) D (m/s2)

0 20 0 0 -g

20 40 0 0.5 -g

40 60 0.5 0 -g+0.5

60 80 0 0.5 -g+0.5

The second and third scenarios simulate a position-stationary strapdown IMU
aided by GPS and magnetometer. The IMU has been subjected to piece-wise
attitude changes in which the Euler angles that rotate the local coordinate frame
into alignment with the body coordinate frame (yaw, pitch, and roll rotation
sequence) are described in the figs. 2a and 2b, respectively. In both cases, the
angles undergo a 0.5 s of rise time to avoid the discontinuities of an instantaneous
rate of change. Additionally, the standard deviations of the state-error estimation
error are presented component-wise in fig. 3 for the second scenario and in fig. 4
for the third scenario.

The fourth and fifth scenarios consider a more realistic situation. The position
error is appended to the EKF state-error and the various simulation parameters
are presented in Table 2. UAV ground velocity and angular rate are described
in the Appendix. Magnetometer bias for these both scenarios was simulated
according to fig. 2c. In the fourth scenario, eq. 7 was used as the calibrated
magnetic pseudo-measurement equation, thus the magnetometer data were fused
neglecting the magnetometer bias. On the other hand, in the fifth scenario,
the pseudo-measurement equation used magnetometer data as in eq. 12 and the
magnetometer bias was estimated by the EKF. The estimation errors of the
position and velocity error components for the fourth scenario are presented
in fig. 5, and the estimation errors for each state-error component for the fifth
scenario are presented in figs. 6 and 7.

6.1 Results Analysis

In scenario 01 (fig. 1), when an IMU mounted on a stabilized platform is aided
by GPS and uncalibrated magnetometer, the INS error model achieves full ob-
servability only in the third segment (t > 40s).

In scenarios 02 (fig. 3) and 03 (fig. 4), in which a strapdown IMU aided by
GPS and uncalibrated magnetometer was simulated, it can be seen that the full
observability is achieved for scenario 02 at the third segment (t > 40s) and for
scenario 03 at the second segment (t > 20s). In scenario 02, the Euler axis that
rotates the body coordinate frame at the first segment to the body coordinate
frame at the second segment points towards East. Since the IMU is stationary,
both the specific force and the angular rate of the local coordinate frame with
respect to the inertial coordinate frame lie in the XZ plane of the local coordinate
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Fig. 1. Scenario 01 - Standard deviations for observability analysis with an IMU
mounted on a stabilized platform

frame. Thus, these two vectors are perpendicular to the Euler axis. Hence, as the
theoretical analysis predicted, this rotation does not bring all state components
to the observable subspace. Thus, another rotation maneuver with a different
Euler axis is required to attain full observability. On the other hand, the first
rotation in scenario 03 has its Euler axis aligned with the vertical axis of the
local horizontal frame. Thus, the Euler axis is not simultaneously perpendicular
to the specific force and to the angular rate of the local coordinate frame with
respect to the inertial coordinate frame, which brings all state components to
the observable subspace after the first rotation.

The fourth scenario shows that use of magnetometer data without proper pro-
cessing yields estimation divergence when the magnetometer bias is relevant. On
the other hand, even assuming a constant magnetometer bias, the fifth scenario
shows that the technique described here successfully estimated a slowly varying
magnetometer bias and prevented the estimation divergence seen in scenario 04.
Therefore, figs. 1 to 7 confirm the theoretical results of the observability analysis.
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Fig. 2. Euler angles for scenarios 02 and 03 and magnetometer bias for scenario 04
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Fig. 3. Scenario 02 - Standard deviations for observability analysis with a strapdown
IMU subjected to piece-wise constant rotations about Y-Z-X axes
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Fig. 4. Scenario 03 - Standard deviations for observability analysis with a strapdown
IMU subjected to piece-wise constant rotations about Z-Y-X axes
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Fig. 5. Scenario 04 - Estimation errors of the position and velocity error components
when the magnetometer bias is neglected
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Table 2. Simulation parameters for scenarios 04 and 05

Sensors

∇ [
3 3 3

]T
mg

ε
[
1000 1000 1000

]T ◦ /h
Accelerometers
covariance (R∇)

diag
(
1 1 1

)
(mg)2

Rate-gyros covari-
ance (Rε)

diag
(
500 500 500

)
(◦/h)2

RGPS diag
(
81 81 81 0.1 0.1 0.1

)
SI units2

Rmagnetometer diag
(
(2 · 10−5)2 (2 · 10−5)2 (2 · 10−5)2

)
Gauss2

GPS and mag-
netometer data
frequency

1 Hz

INS

Initial position 23◦12′ S 45◦52′ W
Initial altitude 700 m

Initial velocity
[
0 0 0

]T
m/s

Initial alignment TRIAD algorithm

INS solution sam-
pling rate (tins)

0.01 s

Kalman filter

Feedback start 95 s

Q, t < 95 s diag( Q∗
t<95 s 4 · 10−10 4 · 10−10 4 · 10−10 ) SI Units2

Q, t ≥ 95 s diag( Q∗
t≥95 s 4 · 10−10 4 · 10−10 4 · 10−10 ) SI Units2

Q∗
t<95 s 1/50 · tins ·

⎡

⎢
⎢
⎣

03 03

Db
l 03

03 −Db
l

06

⎤

⎥
⎥
⎦ ·

[
R∇ 03

03 Rε

]
·

⎡

⎢
⎢
⎣

03 03

Db
l 03

03 −Db
l

06

⎤

⎥
⎥
⎦

T

SI Units2

Q∗
t≥95 s 1/150 · tins ·

⎡

⎢
⎢
⎣

03 03

Db
l 03

03 −Db
l

06

⎤

⎥
⎥
⎦ ·

[
R∇ 03

03 Rε

]
·

⎡

⎢
⎢
⎣

03 03

Db
l 03

03 −Db
l

06

⎤

⎥
⎥
⎦

T

SI Units2

Initial covariance diag(502 502 502 22 22 22 0.05 0.05 0.05 0.09 0.09 0.09
0.015 0.015 0.015 1 1 1) SI Units2

Initial estimate 018×1 SI units
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Fig. 6. Scenario 05 - Estimation errors and EKF standard deviation of the position
and velocity errors and misalignment components when the magnetometer bias is con-
sidered
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Fig. 7. Scenario 05 - Estimation errors and EKF standard deviation of the accelerom-
eter bias, rate-gyro drift, and magnetometer bias components
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7 Conclusions

The observability of a linear INS error model has been analyzed with aiding sen-
sors that involved the use of the GPS solution and an uncalibrated magnetome-
ter when the vehicle trajectory yielded piece-wise constant error dynamics. The
analysis has dealt with both a gyro-stabilized platform undergoing piece-wise
constant specific force segments and a strapdown IMU that was also subjected
to piece-wise constant rotation segments.

The magnetometer errors have been modeled as a random constant bias vec-
tor appended to the INS error model. Thus, the theoretical analysis provided
the sufficient conditions to achieve full observability from IMU maneuvers. All
theoretical results have been validated by simulations.

The simulations revealed that the estimation accuracy was severely degraded
when a relevant magnetometer bias was ignored. On the other hand, the ex-
tended Kalman filter properly estimated the state-error vector augmented with
a random constant model of magnetometer bias even when the latter showed
slow dynamics.
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Appendix: Theorems

The theorems on this appendix were already stated in [5], but they are also
presented here for the sake of completeness.

Theorem 2. Let x ∈ R
3 �= 03×1 and y ∈ R

3 �= 03×1. If [x]×y = 03×1, then x
and y must be aligned.

Proof. The proof is trivial considering that [x]×y = x× y. ��
Theorem 3. Let x ∈ R

3 �= 03×1 and y ∈ R
3 �= 03×1. Thus NULL([y]×[x]×

n
) =

NULL([x]×), n ∈ [1, 2, 3, 4, · · · ], iff x and y are not orthogonal.

Proof. Left to the reader due to lack of space. ��
Theorem 4. Let x ∈ R

3 �= 03×1 and y ∈ R
3 �= 03×1 be two orthogonal vectors,

then the set of vectors [x,x × y] spans NULL([y]×[x]×).

Proof. Left to the reader due to lack of space. ��
Theorem 5. Let x ∈ R

3 �= 03×1 and y ∈ R
3 �= 03×1 be two non-collinear

vectors. If [y]×[x]×
n
v = 03×1 holds for all n ∈ [0, 1, 2, · · · , L], L ≥ 1, then

v = 03×1 is the only possible solution.
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Proof. The proof is trivial considering Theorems 2, 3, and 4. ��
Theorem 6. Let x ∈ R

3 and Da
b and Da

c be the DCMs from the a coordinate
frame to, respectively, the b coordinate frame and c coordinate frame. If (Db

a −
Dc

a)x = 03×1 holds, then x lies in the Euler axis in which a single rotation aligns
the b coordinate frame to the c coordinate frame.

Proof. The condition can be rewritten as x = Da
bD

c
ax = Dc

bx. Thus x is a vector
that has the same representation in the b and c coordinate frames, then x must
lie in the Euler axis in which a single rotation rotates the b coordinate frame
into alignment with the c coordinate frame. ��

Appendix: IMU Trajectory and Angular Movement for
Scenarios 04 and 05

The UAV motion is such that the IMU trajectory is composed of several segments
with a distinct, constant specific force during each one. They are described in
Table 3.

Table 3. IMU trajectory

Specific forces

Start (s) End (s) N (m/s2) E (m/s2) D (m/s2)

0 30 0 0 -g

30 70 +3 0 -g

70 110 0 +3 -g

110 150 +3 +3 -g

150 190 0 0 -g-3

190 240 0 0 -g

240 280 -3 0 -g

280 320 0 -3 -g

320 360 0 +2 -g

360 500 0 0 -g

500 520 0 +2 -g

520 540 -2 0 -g

540 560 -2 -2 -g

560 600 0 -2 -g

600 660 0 0 -g

660 720 0 2 -g

720 800 -2 0 -g
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The IMU attitude evolves in terms of the Euler angles that rotate the local
coordinate frame into alignment with the body coordinate frame (yaw, pitch,
and roll rotation sequence) as follows:

ψ = 0.1 sin

(
2π

t

300

)
+ 0.05 sin

(
2π

t

1.7

)
rad

θ = 0.1 sin

(
2π

t

300

)
+ 0.05 sin

(
2π

t

1.7

)
rad

φ = 0.1 sin

(
2π

t

300

)
+ 0.05 sin

(
2π

t

0.85

)
rad .

(31)

One should notice that this trajectory and angular movement are in agreement
with the sufficient conditions for full observability according to the theoretical
results derived in this paper.

References

1. Bar-Itzhack, I.Y., Berman, N.: Control Theoretic Approach to Inertial Navigation
Systems. Journal of Guidance, Control, and Dynamics 11, 237–247 (1988)

2. Brammer, K., Siffling, G.: Kalman-Bucy Filters. Artech House Publishers, Boston
(1989)

3. Xsens Technologies B.V., Pantheon 6a, P.O. Box 559, 7500 AN Enschede, The
Netherlands: MTi-G User Manual and Technical Documentation (2008)

4. Analog Devices, Inc., One Technology Way, P.O. Box 9106, Norwood, MA 02062-
9106, U.S.A.: ADIS16400/ADIS16405: Triaxial Inertial Sensor with Magnetometer
(2009)

5. Chagas, R.A.J., Waldmann, J.: Geometric Inference-Based Observability Anal-
ysis Digest of INS Error Model with GPS/Magnetometer/Camera Aiding. In:
19th Saint Petersburg International Conference on Integrated Navigation Systems.
CSRI Elektropribor, JSC, Saint Petersburg, Russia (2012)

6. Goshen-Meskin, D., Bar-Itzhack, I.Y.: Observability Analysis of Piece-Wise Con-
stant Systems - Part II: Application to Inertial Navigation In-Flight Alignment.
IEEE Transactions on Aerospace and Electronic Systems 28(4), 1068–1075 (1992)

7. Lee, J., Park, C.G., Park, H.W.: Multiposition Alignment of Strapdown Inertial
Navigation System. IEEE Transactions on Aerospace and Electronic Systems 29(4),
1323–1328 (1993)

8. Salychev, O.: Applied Inertial Navigation: Problems and Solutions. BMSTU Press,
Moscow (2004)

9. Goshen-Meskin, D., Bar-Itzhack, I.Y.: Observability Analysis of Piece-Wise Con-
stant Systems - Part I: Theory. IEEE Transactions on Aerospace and Electronic
Systems 28(4), 1056–1067 (1992)

10. Pinson, J.C.: Inertial Guidance for Cruise Vehicles. In: Leondes, C.T. (ed.) Guid-
ance and Control of Aerospace Vehicles. McGraw-Hill, New York (1963)

11. Chen, C.-T.: Linear System Theory and Design. CBS College Publishing, New
York (1984)

12. Chung, D., Park, C.G., Lee, J.G.: Observability Analysis of Strapdown Inertial
Navigation System using Lyapunov Transformation. In: 35th IEEE Conference on
Decision and Control, pp. 23–28. IEEE Press, New York (1995)



Observability Analysis, INS Error Model, GPS/Uncalibrated Magnetometer 257

13. Rhee, I., Abdel-Hafez, M.F., Speyer, J.L.: Observability of an Integrated GPS/INS
during Maneuvers. IEEE Transactions on Aerospace and Electronic Systems 40(2),
526–535 (2004)

14. Hong, S., Lee, M.H., Chun, H.-H., Kwon, S.-H., Speyer, J.L.: Observability of
Errors States in GPS/INS Integration. IEEE Transactions on Vehicular Technol-
ogy 54(2), 731–743 (2005)

15. Lee, M.K., Hong, S., Lee, M.H., Kwon, S., Chun, H.-H.: Observability Analysis of
Alignment Erros in GPS/INS. Journal of Mechanical Science and Technology 19(6),
1253–1267 (2005)

16. Tang, Y., Wu, Y., Wu, M., Wu, W., Hu, X., Shen, L.: INS/GPS Integration: Global
Observability Analysis. IEEE Transactions on Vehicular Technology 58(3), 1129–
1142 (2009)



Leveling Loop Design and State Multiplicative

Noise Kalman Filtering

Isaac Yaesh1 and Adrian-Mihail Stoica2

1 IMI Advanced Systems Division, Ramat Hasharon 47100, Israel
iyaesh@imi-israel.com

2 Faculty of Aerospace Engineering, University “Politehnica” of Bucharest,
Ro-011061, Romania

adrian.stoica@upb.ro

Abstract. A leveling loop for initialization of an inertial navigation sys-
tem mounted on a moving platform is considered. The leveling loop is
designed by exact modeling of the sensors errors as state-multiplicative
noise processes. Such modeling allows application of a State Multiplica-
tive Kalman Filter and is shown to outperform the standard Kalman
filter based on ad-hoc analysis ignoring the state-multiplicative noise.
The design considerations include both estimation error covariance min-
imization and error decay rate. Both design goals are integrated into a
single design, using a trade-off parameter. A couple of numerical exam-
ples illustrate the benefits of the State Multiplicative Kalman Filter with
and without the decay rate requirement. The first example which deals
with a leveling loop focuses on the decay rate parameter effect, whereas
the second example deals with a more standard inertial navigation and
demonstrates the benefits of incorporating the state-multiplicative noise
effect, rather than neglecting it.

1 Introduction

Strap Down Inertial Navigation Systems (SDINS) require initialization of posi-
tion, velocity and attitude. When the platform on which the SDINS is stationary
the roll and pitch of the SDINS may be measured directly from the accelerom-
eters readings. When the platform moves and there is another board (e.g. on
a marine application) accurate INS which is already aligned, one may apply
transfer alignment. However, if the platform is moving and no transfer align-
ment is possible, one may resort to the leveling loop approach where the roll
and pitch angles are estimated using the Inertial Measurement Unit (IMU) mea-
surements aided with a speed log sensor. By applying the combination of speed
and acceleration measurements, the platform motions are eliminated, and cor-
rected accelerations are then applied to produce the roll and pitch estimates.
These ideas are not new and have been pursued in [1] and [2] and the references
therein. Specifically in [2] it has been argued that if the sensors errors effect is
modeled as white noise, the direction cosines turn out to be modeled as a Wiener
process, which diverges in time. Therefore, a finite-energy modeling of the sen-
sors errors effect has been suggested in [2], which led to an H∞ filtering approach

c© Springer-Verlag Berlin Heidelberg 2015 259
D. Choukroun et al. (eds.), Advances in Estimation, Navigation, and Spacecraft Control,
DOI: 10.1007/978-3-662-44785-7_14
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which had also the benefit of designing a filter with a prescribed bandwidth (i.e.
leading to adequate time response) by using an appropriate dynamic weighting
of the estimation error.

In the present paper, the design problem of leveling loops is revisited first
by re modeling the sensors errors. We show that when the gyros are modeled
as having white noise, the leveling loop state equations are subject to a state
multiplicative noise (e.g. [3]). Under this model, a variety of exact filters can
be designed for the leveling loop. One can either design a (discrete-time) state-
multiplicative Kalman filter (MKF) first suggested in [4] and [5], design a State-
Multiplicative Noise (see e.g. [3]) H∞ Filter (SMH), with or without dynamic
error weighting to achieve a prescribed bandwidth, or consider solutions which
are ’in between’ these extreme cases of H2 and H∞ filters (see e.g. [6]). The
present paper is aimed at suggesting exact modeling of the leveling loop design
problem, by explicitly taking into account the effect of the state-multiplicative
noise. We note that in contrast to [3] which focuses only on the pitch leveling loop
design, both pitch and roll loops are considered here. As described above, the
solution of the leveling problem requires the MKF. However, since the estimation
error decay rate is of practical importance, the MKF design equations are re-
derived to comply with such decay rate specifications. It is worth mentioning
that state-multiplicative noise appears is other navigation related estimation
problems as well, as was recognized in [7] where the special filtering problem
encountered in the quaternion estimation problems was solved in the presence
of state-multiplicative noise in the model.

The paper is organized as follows: the leveling loop design problem is presented
in Section 2 in continuous-time, and in Section 3 in discrete-time. Section 4
formulates the general estimation problem which may be used to design the
leveling loop, and Section 5 presents the solution of this problem. Sections 6 and
7 include numerical examples illustrating the benefits of incorporating a decay-
rate requirement in the design and of using MKF, and Section 8 summarizes and
concludes the paper.

2 Leveling Loop Problem

The leveling loop utilizes as in [1] the speed log sensor output v, two of the
three IMU acceleration measurements of ax and ay and the three gyros outputs
p, q, r (namely the x, y, z gyros respectively). Taking into account the platform
movement, the x and y components of total sensed acceleration in the body fixed
frame of reference are given by:

ax = gsin(θ) +Ax

ay = −gcos(θ)sin(φ) +Ay

and

az = −gcos(θ)cos(φ) +Az
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where Ax, Ay, Az are the platform inertial accelerations along its x, y, z axes re-
spectively and ax, ay, az are the corresponding sensed accelerations. The speed
along the x axis is measured by the log speed sensor, namely

v̇ = Ax + εx

where εx is the error in the log speed derivative resulting from the misalignment
between the platform x axis and the speed log measurement axis. Combining
these equations, and defining the direction cosines to be:

c1 = −sin (θ) , c2 = cos (θ) sin (φ) and c3 = cos (θ) cos (φ)

we readily obtain by differentiating the latter equations with respect to time
(see e.g. also [1]) the following state-space description of the leveling loop design
problem:

dc1
dt = c2r − c3q
dc2
dt = c3p− c1r
dc3
dt = c1q − c2p
dv
dt = gc1 + ax + εx

We are now in the position of selecting state-vector components. If we include
the body rates p, q, r in the state-vector, we need to include the corresponding
differential equations to which they obey in the state equations, and to have
state-equation dynamics nonlinearity stemming from the products c2r, c3q, c3p
and c1r . On the other hand, we can choose (following also [3]) to assume:

p = pm + εp

q = qm + εq

r = rm + εr

where pm, qm, rm are the measured roll pitch and roll rates respectively, and
εp, εq and εr are the corresponding measurement errors. In such a case, we
summarize the resulting state equations as follows:

dc1
dt = c2rm + c2εr − c3qm − c3εq
dc2
dt = c3pm + c3εp − c1rm − c1εr
dc3
dt = c1qm + c1εq − c2pm − c2εp
dv
dt = gc1 + ax,m + εx + nx

where ax,m and nx are the measured x acceleration and the corresponding mea-
surement error. We note now that the measurement errors εp, εq, εr, nx may
include both bias and white noise. We, however, focus on the white noise com-
ponents of the sensors errors, assuming some calibration of the sensors has been
performed to remove the bias errors. Obviously, any calibration cannot possibly
remove the noise errors.

We define the state-vector for the estimation problem to be:

x = [v, c1, c2, c3]
T
. (1)
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Having formed the state vector and equations, the estimation problem definition
requires also the following measurement equations:

y1 = v + v1
y2 = gc2 + εy + v2
y3 = gc3 + εz + v3

where v1 is the error in the speed log measurement and where v2 and v3 are the
y, z acceleration measurement errors respectively. The additional error sources εy
and εz express the residual unmodelled accelerations in the y, z directions. One
could add additional velocity measurement in these axes to eliminate these errors
(e.g. GPS receiver) but we prefer maintaining first the original setup of [1] which
suits to marine applications. Another setup which utilizes such measurements
will be discussed on Section 7.

We note again that due to the pre-calibration assumption, the errors εp, εq, εr,
nx are white noise signals. So are also v1 and v2. However, εx, εy,εz are usually
non white processes which may be modeled by the output of some low pass
filter driven by a white noise process. Namely, εx, εy, εz are Markov processes.
To complete the problem definition, one may e.g. assume that εx, εy, εz are first
order processes with a given or uncertain bandwidth and prescribed covariance.
Another option is to assume, in contrast to the underlying physical model, that
εx, εy, εz are white noise processes with covariances that can serve as tuning
parameters so as to achieve the required filter agility. This approach is in fact
inspired by the common practice in target tracking literature [8] of modeling
target maneuvers or jerks as white noise (in spite the fact they are not such)
and treat their covariance matrices as tuning parameters. Since, however, such
a tuning involves a try and error procedure, we will include in the filter design
algorithm, filter agility (i.e. estimation error decay-rate) considerations. We next
define:

ξ1 = εp, ξ2 = εq, ξ3 = εr

and notice that the filtering problem is a special case of the estimation problem
defined in the next section. Before we re-state the estimation problem, we have
one more decision to make. We can either choose to solve the estimation problems
for c1, c2, c3 in the three different ’decoupled’ channels or to solve it as a fully
coupled problem. In either of these cases, we define the useful inputs

u1 := c2rm − c3qm
u2 := ax,m
u3 := c3pm − c1rm
u4 := c1qm − c2pm .

For the decoupled estimation case we define the exogenous disturbance signal
components

w1 := c2εr − c3εq
w2 := εx + nx

w3 := c3εp − c1εr
w4 := c1εq − c2εp
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whereas for the coupled estimation problem we just define

w := εx + nx

2.1 The Uncoupled Estimation

The three uncoupled estimation problems are defined by:

Estimation of c1 [2]:

dc1
dt = u1 + w1
dv
dt = gc1 + u2 + w2

y1 = v + v1

Estimation of c2:

dc2
dt = u3 + w3

y2 = gc2 + v2

Estimation of c3 :

dc3
dt = u4 + w4

y3 = gc3 + v3 .

Each of the three estimation problems is solved as if they are decoupled from
the two others. This implementation, however, ignores the fact that the overall
estimation problem includes the augmented state vector x off all the three ’de-
coupled’ problems, and, therefore, neglects the effect of the state-multiplicative
noise.

2.2 Coupled Estimation

The alternative approach, explored in the present paper, treats all three problems
together, and does not ignore the multiplicative noise effect. The state-equations
for the latter approach are as follows :

dv
dt = gc1 + u2 + w
dc1
dt = c2ξ3 − c3ξ2 + u1
dc2
dt = c3ξ1 − c1ξ3 + u3
dc3
dt = c1ξ2 − c2ξ1 + u4

whereas the measurement equations are

y1 = v + w1

y2 = gc2 + v2
y3 = gc3 + v3.
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3 The Discrete–Time Model

Consider the continuous-time model of Section 2.2. Note that it can be brought
to the form of the stochastic Itô type differential equation

dx(t) = Acx(t)dt +

N∑
i=1

Hc,ix(t)dνi(t) +Bcdω(t)

where νi(t), ωi(t) and ηi(t) are zero mean real valued Wiener processes, so that
E{dν2i } = dt, E{dω2

i } = dt. The discrete time counter part of this stochastic
differential equation, which describes its evolution at times kh, k = 1, 2, ... for
small enough 0 < h << 1 can be written defining x(k) := x(kh) and using the
result of Appendix A.9 in [3] as follows:

x(k + 1) = (I +Ach)x(k) +

N∑
i=1

Hc,ix(t)ξk
√
h+Bcwk

√
h

where wk and ξk are zero mean unit variance sequences. Defining A := I +Ach,
Hi := Hc,i

√
h, B := Bc

√
h we obtain the discrete-time state equation of the

next section. The continuous-time measurement equation

dy(t) = Ccx(t)dt+Dcdω(t)

similarly yields the discrete-time model:

y(k) = Cchx(k) +Dcwk/
√
h.

4 The General Estimation Problem

Consider the following system with state multiplicative noise:

xk+1 =

(
A+

N∑
i=1

Hiξi,k

)
xk +Bwk + Γuk (2)

and the measurements

yk = Cxk +Dwk (3)

where xk ∈ Rn is the state vector, wk ∈ Rm is a white noise sequences of
unity covariance and ξk ∈ R1 is another white noise sequence independent of
wk. The matrix Γ = I4 is the driver of the useful signal uk := u(kh) where
u := col{u2, u1, u3, u4}. The matrices A,B,C,D,H are constant matrices of
appropriate dimensions defined in the sequel.
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In the coupled estimation problem of Section 2 B, these matrices are given by

A =

⎡
⎢⎢⎣
1 + gh 0 0 0

0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ , B = σw

⎡
⎢⎢⎣
1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ , C =

⎡
⎣1 0 0 0
0 0 g 0
0 0 0 g

⎤
⎦ ,

H1 = σ
√
h

⎡
⎢⎢⎣
0 0 0 0
0 0 0 0
0 0 0 1
0 0 −1 0

⎤
⎥⎥⎦ , H2 = σ

√
h

⎡
⎢⎢⎣
0 0 0 0
0 0 0 −1
0 0 0 0
0 1 0 0

⎤
⎥⎥⎦ , H3 = σ

√
h

⎡
⎢⎢⎣
0 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 0

⎤
⎥⎥⎦

where σ is the gyros random walk value in rad/
√
sec. We note that for the sake

of filters development, we will take just nonzero H := H1 and will assume zero
Hi, i > 1. The general result will be later deduced. We also note that

C =

⎡
⎣1 0 0 0
0 0 g 0
0 0 0 g

⎤
⎦ and D =

⎡
⎣0 σv 0 0
0 0 σa 0
0 0 0 σa

⎤
⎦

where σv is the velocity error standard deviation and σa is the accelerometer
noise standard deviation.

We wish to estimate xk utilizing the measurements set Yk−1 = {yj , j ≤ k − 1}
using the following filter

x̂k+1 = Ax̂k +K (yk − Cx̂k)

where K should be designed. We also note that having multiple
state-multiplicative uncertainties H1ξ1,k+H2ξ2,k + H3ξ3,k as needed to solve
the leveling problem of the previous section, can be made by simple adaptation
of the solution given in the next section.
Our aim is to design the filter gain matrix K which will the minimize

Pk := E
{
eke

T
k

}
where ek is the estimation error

ek = xk − x̂k .

The following preliminary result which proof may be found in [4] will be used in
the sequel regarding the mean square stability and the covariance of χk which
satisfies:

χk+1 = (α+ ηξk)χk + βwk . (4)

Lemma 1. The above system is exponentially stable in mean square iff the fol-
lowing Lyapunov algebraic equation has a positive definite solution

αXαT −X + ηXηT + ββT = 0 . (5)

Note that the covariance Xk = E{χkχ
T
k } satisfies

Xk+1 = αXkα
T + ηXkη

T + ββT . (6)
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Remark 1. The relation between the recursion for Xk and the equation for X
was explored in [3]. It is shown there, applying monotonicity properties of the
solutions of discrete-time Lyapunov equations, that solving (5) while minimizing
Tr{X} leads to to the steady-state value of Xk.

5 Estimation Problem Solution

The above estimation problem has already been solved in [4] using a completing
the square argument for D = 0. A version of this result but in the case D = I is
derived in [5]. For the sake of completeness we will nevertheless provide a slightly
modified of the results of [4] and [5] for the nonzero general D case.

Lemma 2. The optimal filter gain K for which the estimation error is mean
square stable and Pk is minimized, is given by:

K =
(
APCT +BDT

) (
DDT + CPCT

)−1

where

P = APAT +HYHT +BBT − (
APCT +BDT

)
×(

DDT + CPCT
)−1 (

CPAT +DBT
) (7)

and where

Y = AY AT +HYHT +BBT . (8)

Proof. The proof is obtained following the lines of [4] and [5], by substituting

α :=

[
A−KC 0

0 A

]
, η :=

[
0 H
0 H

]
, β :=

[
B −KD

B

]
,

partitioning X according the dimensions of χk := col{ek, xk}, completing the
square and invoking monotonicity properties of the stabilizing solutions of the
resulting Riccati equations.

Remark 2. It is easily shown that in the time varying case, the filter is to be
implemented as

x̂k+1 = Akx̂k +Kk (yk − Cx̂k) , x̂0 = 0

Pk+1 = AkP kA
T
k +HYkH

T +BBT

− (
AkPkC

T +BDT
) (

DDT + CPkC
T
)−1

× (
CPkA

T
k +DBT

)
and

Yk+1 = AkYkA
T
k +HYkH

T +BBT

where P0 = Y0 = E
{
x0x

T
0

}
.
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We next integrate into the design, agility considerations. To do so, we recon-
sider the system of (4) and Xk = E{χkχ

T
k }. We note that the requirement

Xk+1 < ρ2Xk, |ρ| < 1

for exponential decay of the estimation error covariance, is satisfied iff

αXkα
T + ηXkη

T + ββT − ρ2Xk < 0 . (9)

We obtain the following result.

Lemma 3. The optimal filter gain K for which the estimation error is mean
square stable and its covariance decays as |ρ|k, is given by:

K =
(
APCT +BDT

) (
DDT + CPCT

)−1

where

ρ2P = APAT +HYHT +BBT

− (
APCT +BDT

) (
DDT + CPCT

)−1 (
CPAT +DBT

)
and where

ρ2Y = AY AT +HYHT +BBT .

Proof. The proof is obtained following the lines of the proof of Lemma 2, by
replacing (5) with (9), to get the necessary and sufficient condition for mean
square stability and exponential decay as:

−ρ2P +APAT +HYHT +BBT − (
APCT +BDT

)
×(

DDT + CPCT
)−1 (

CPAT +DBT
)
< 0

and
−ρ2Y +AY AT +HYHT +BBT < 0

where the mean square stability follows from the fact that −ρ2X + αXαT +
ηXηT + ββT < 0 implies, when |ρ| < 1 that −X + αXαT + ηXηT + ββT < 0.

Noting that the equations of Lemma 3 that replace the inequalities for P and
Y are then obtained as sufficient conditions, using the monotonicity properties
(see e.g. [1]) of the stabilizing solutions of the algebraic Riccati equations.

Remark 3. We observe that the design equations of Lemma 2 are obtained from
those of Lemma 3, when ρ = 1. Naturally, when |ρ| < 1 the estimation error
covariance will be no longer minimal. Therefore, |ρ| ≤ 1 can be utilized as a
design parameter to trade off between the decay rate and the error covariance.

Remark 4. We note that the Lyapunov equation for Y is very conservative when
the system is marginally stable in the mean square. Note also that when ρ = 1,
Y is just E{xkx

T
k }. To allow filter design also in mean square marginally stable

cases with ρ < 1 we modify (9) to be

αXkα
T + ηXkη

T + ββT − ΓXkΓ
T < 0. (10)
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We then re-derive the result of Lemma 3 by choosing Γ = diag{√ρI, I} and
obtain the following design equations

K =
(
APCT +BDT

) (
DDT + CPCT

)−1

where

ρ2P = APAT +HYHT +BBT

− (
APCT +BDT

) (
DDT + CPCT

)−1 (
CPAT +DBT

)
and where

Y = AY AT +HYHT +BBT .

6 Example–Coupled Leveling

We next consider the problem of coupled leveling which was described in the
previous sections. The state equations are given by

xk+1 =

(
A+

N∑
i=1

Hiξi,k

)
xk +Bwk +Buk

and the measurements are given by

yk = Cxk +Dwk

where the matrices A,B,C,D,H are given in Section 4 above,

uk = col{u1(k), u2(k), u3(k), u4(k)}

and where

u1(k) := c2(k)rm(k)− c3(k)qm(k)
u2(k) := ax,m(k)
u3(k) := c3(k)pm(k)− c1(k)rm(k)
u4(k) := c1(k)qm(k)− c2(k)pm(k) .

The estimator is described by

x̂k+1 = Ax̂k +K(yk − Cx̂k) +Bûk

where ûk = col{û1(k), û2(k), û3(k), û4(k)} and where

û1(k) := ĉ2(k)rm(k)− ĉ3(k)qm(k)
û2(k) := ax,m(k)
û3(k) := ĉ3(k)pm(k)− ĉ1(k)rm(k)
û4(k) := ĉ1(k)qm(k)− ĉ2(k)pm(k) .
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Remark 5. We are obliged to replace uk by ûk in the estimator implementation,
since ci are not available. Only their estimates ĉi are available. Therefore, un-
fortunately, the estimation problem we have in this coupled problem can not be
purely modelled by the simple time invariant state-multiplicative noise model,
unless pm, qm and rm are near zero. This is however, nearly the case when the
platform is in steady state (i.e. the angles θ and φ remain constant). To obtain
true description of the coupled estimation problem, a time varying model (but
still with multiplicative noise) should be invoked, where the Amatrix depends on
pm, qm and rm. In such a case, one can use the time-varying version of Lemma 2
above, where the algebraic equations for P and Y are replaced by recursive equa-
tions where in the LHS P is replaced by P (k+1) and in the RHS P is replaced
by P (k), and where similar modifications are applied to the Y equation.

For the numerical simulations we took h = 0.01sec and σ = 0.001rad/
√
sec.

The sensed acceleration noise was taken as 0.01m/sec2, whereas the velocity
error was taken, for design purposes, as a zero mean white noise with standard
deviation of 1m/sec. Since the velocity noise is usually much smaller (i.e. the
main error is a bias), it was not applied in the simulations, but just affected the
estimator gains. The estimator gain was designed for ρ = 1 and ρ = 10−h/τ for
decay time constant τ = 1sec. We note that with the above system parameters
the merit of using MKF rather than KF is not very significant, and we just study
here the effect of ρ which is seen when comparing in Fig. 1 the convergence of
θ̂ to θ for the above couple of cases. In Fig. 2 we see the estimation errors and
in Fig. 3 we see the roll angle φ which apparently, is not affected by ρ since the
estimator is fast and does not need tuning to be faster. The latter fact stems
from the low noise in the sensed accelerations measurements. The next example
focuses on ρ = 1 and explores the benefits of using MKF rather than KF in a
closely related leveling problem.

7 Example–Leveling by Inertial Navigation

We next consider a numerical example that demonstrates the advantages of us-
ing the new estimator derived in the present paper, for a simplified navigation
problem where a vehicle’s attitude is estimated from its noisy position and ve-
locity measurements (e.g. from GPS) utilizing inaccurate inertial sensors. The
example is a modified version of the three-axis simplified navigation model of
[9].

The three axis model of [9] is given by

ẍ = βx − g(−φy), −φ̇y = ẋ/Re + (ωx + εx)φz − εy
ÿ = βy − gφx, φ̇x = ẏ/Re + (ωy + εy)φz + εz

z̈ = βz, φ̇z = εz

(11)

where x, y, z are the components of the vehicle position error, φx, φy, φz are the
tilt errors and ωx, ωy, ωz are the angular rates. In [9] it was assumed that the
constant bias and drifts of the accelerometers and rate sensors have been com-
pensated via calibration and, therefore, the driving terms βx, βy, βz and εx, εy, εz
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Fig. 5. State-Multiplicative Kalman Filter - 50 Monte-Carlo Runs

are white noise processes. In our case, we assume low cost noisy measurement
devices for the angular rates (e.g. by differentiation of angles computed from
magnetometers) and we have, therefore,added the noise terms εx to ωx and εy to

ωy. Defining the state–vector to be x =
[
x ẋ −φy y ẏ φx z ẋ φz

]T
and the mea-

surements to be y =
[
x y z ẋ ẏ ż

]T
and considering the discrete-time version of

the above system with a sampling time of h = 0.1sec we obtain the system of
form (2), (3) where
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A ≈ I + h

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0 0 0 0
0 0 −g 0 0 0 0 0 0
0 1/Re 0 0 0 0 0 0 ωx

0 0 0 0 1 0 0 0 0
0 0 0 0 0 −g 0 0 0
0 0 0 0 1/Re 0 0 0 ωy

0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Bβk =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0
1 0 0 0 0 0
0 0 0 0 −εd 0
0 0 0 0 0 0
0 1 0 0 0 0
0 0 0 εd 0 0
0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 εd

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

βx

βy

βz

εx
εy
εz

⎤
⎥⎥⎥⎥⎥⎥⎦
,

uk ≡ 0.

We also define the terms with state–dependent noise:

H1xkεx =

⎡
⎣02×8 02×1

01×8 εd
06×8 06×1

⎤
⎦xkεx, H2xkεy =

⎡
⎣05×8 05×1

01×8 εd
03×8 03×1

⎤
⎦xkεy

The covariance of the measurement noise is taken as

DDT = diag{100, 100, 100, 0.01, 0.01, 0.01}.

We took εd = 0.0483 rad/
√
sec. Although this level of random walk is very

high and beyond commonly encountered practical values, it may represent cases
where angular rates are obtained with very cheap and noisy components or under
severe environmental conditions.

The performances of two estimators have been compared. One is the KF which
ignores the state-multiplicative noise and is derived by solving the discrete-time
recursive Riccati equation obtained from Lemma 2 above by nulling H and Y
and by replacing P in the left-hand-side of (7) by P (k+1) and by replacing Y in
the left-hand-side of (8) by Y (k+1). All values in the right-hand-sides of (7) and
(8) correspond to time index k. Similarly, the new filter of the present paper,
which we refer to as the state-multiplicative Kalman Filter (MKF) is obtained
by taking the above non-zero value for H . The vehicle maneuvers are assumed to
behave according ωx = ωy = ωz = 0.5sin(0.5kh). The results of 50 Monte-Carlo
simulation runs depicting the standard deviations of the tilt errors φx, φy, φz for
the KF and MKF are are given in Fig. 4-5 respectively. The solid (blue) lines are
the actual ensemble based standard deviations whereas the dashed (red) lines are
the standard deviations predicted by the filter - namely

√
P3,3,

√
P6,6,

√
P9,9.

Clearly the prediction by the MKF is considerably more accurate and tighter.
Moreover, the standard deviations of the tilt errors are smaller with the MKF,
where the benefit of using MKF over using KF is best observed in the estimation
of φz where the errors are smaller by a factor of 2 with the MKF with respect to
the KF. Note also that with both filters, the errors in φz are larger than those in
φx and φy due to the weaker observability in φz due to lack of the direct relation
between φz and the measured velocities that exists, in contrast, between ẍ and
φy and ÿ and φx.
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8 Conclusions

Design considerations for a three axis leveling loop have been presented. The
apparent effect of state-multiplicative noise which couple the three channels can
be either ignored from, or kept in the filter design equations. The latter case,
has motivated development of a new version of the Kalman filter which takes
into account the state-multiplicative noise and complies with a decay rate re-
quirement for the filtering errors. The performance of the new filter has been
demonstrated in a couple of examples where one is of leveling loop design and
the other of leveling using standard inertial navigation. In these examples, the
superiority of the new filter, with respect to the Kalman filter, in the aspects of
decay rate and response to the state-multiplicative noise has been illustrated.
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Abstract. It is well-known that stand-alone inertial navigation systems
(INS) have their errors diverging with time. The traditional approach for
solving such incovenience is to resort to position and velocity aiding such
as global navigation satellite systems (GNSS) signals. However, misalign-
ment errors in such fusion architecture are not observable in the absence
of maneuvers. This investigation develops a novel sighting device (SD)
model for vision-aided inertial navigation for use in psi-angle error based
extended Kalman filtering by means of observations of a priori mapped
landmarks. Additionally, the psi-angle error model is revisited and an
extended Kalman filter datasheet-based tuning is explained. Results are
obtained by computer simulation, where an unmanned aerial vehicle flies
a known trajectory with inertial sensor measurements corrupted by a
random constant model. Position and velocity errors, misalignment, ac-
celerometer bias, rate-gyro drift and GNSS clock errors with respect to
ground-truth are estimated by means of INS/GNSS/SD fusion and tested
for statistical consistency.

Keywords: inertial navigation, vision, Kalman filter, unmanned aerial
vehicles.

1 Introduction

Advances in microelectromechanical inertial sensors (MEMs) made low-cost in-
ertial navigation systems (INS) commercially available. On the other hand, their
errors quickly diverge with time and set an upper bound on the duration of au-
tonomous operations and thus such systems become improper for use in low-cost
unmanned aerial vehicle (UAV) missions. The traditional approach for solving
such inconvenience is to resort to a global navigation satellite system (GNSS)
receiver as position and velocity aiding device. Hence, INS/GNSS fusion yields
bounded navigation errors. However, misalignment errors in such fusion archi-
tecture are not observable in the absence of maneuvers [1,2]. In the light of such
restriction, the present study develops a novel model for INS/GNSS and sighting
device (SD) integration for use in outdoor navigation with known landmarks. In
general, outdoor navigation in structured environments requires some sort of
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road-following. Herein, a priori mapped landmarks are imaged by a camera and
tracked in the image plane to aid the INS.

An initial study on the matter was conducted in [3], which developed two
distinct strategies for INS/SD fusion by means of psi-angle error model [4] based
extended Kalman filtering (EKF). One of them is the inspiration for this paper
and explores a relationship between the INS errors and the position of a landmark
in the field of view relative to the line of sight (LOS) of the SD, after the latter
is aimed at the assumed position of the landmark. The shortcoming of such
procedure is the restriction to have the camera maintaining LOS pointing to the
landmark. Such restriction has been recently overcome by means of resorting to
a generalized SD model in which the difference between measured and estimated
positions of the tracked landmark in the plane of image are correlated with INS
errors [5].

However, the psi-angle error framework has received only a modicum of at-
tention in INS/SD integration [6] since [3]. The present investigation revisits
such scheme, which has proven sucessful for INS/GNSS fusion [7], by means of
developing an INS/SD fusion formulation within the psi-angle error based EKF
framework.

Initially, the INS psi-angle error model is revisited, and a datasheet-based
nominal EKF tuning is explored alongside. Ultimately, an INS/GNSS/SD EKF-
based fusion strategy is proposed for the estimation of navigation and sensors
errors, and evaluated by means of Monte Carlo simulation and statistical con-
sistency tests [8].

2 Reference Frames and Earth Model

Reference frames and the Earth model are here briefly discussed. The WGS-84
ellipsoid has been used due to its accuracy and simplicity [9]. The local reference
frames at the true and computed positions differ [4], and are respectively denoted
by T = {t̂1, t̂2, t̂3} and C = {ĉ1, ĉ2, ĉ3} (see figure 1).

Additionally, equally important frames are I, E, B and P , respectively, in-
ertial, Earth-fixed, vehicle body and platform coordinate systems. The latter
is the local reference frame computed by the inertial navigation system at its
estimated position and affected by attitude estimation errors [4].

3 Mathematical Notation

The chosen notation [10] is illustrated by table 1.
Furthermore, the decomposition of a vector v ∈ R

3 into its components in a
R coordinate system is denoted by means of the right subscript position, e.g.

vR =
(
vr1 vr2 vr3

)T
. (1)
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Fig. 1. Illustration of true (P) and computed (C) positions; and platform (P), computed
(C) and true (T) reference frames

4 Kalman Filter Formulation

For the purpose of EKF-based INS/GNSS/SD fusion, the INS psi-angle error,
GNSS receiver and camera linear models are outlined, i.e., linear state and co-
variance propagation and update are formulated.

4.1 INS Psi-Angle Error Model Revisited

Consider strapdown accelerometers and rate-gyros measurements corrupted, re-
spectively, by unknown constant bias ∇ and drift ε, modelled as random normal
variables with σ∇ and σε standard deviations. Additionally, additive zero-mean
white additive noise ωaccel and ωgyro are considered with σaccel and σgyro stan-
dard deviations. The measured specific force Asp,m is given [4] by a rotation of
Asp by the misalignment vector ψ (see figure 1) from C to P reference frame,
and biased by ∇ according to

Asp,m = ∇+Asp −ψ ×Asp + ωaccel (2)

whereas [4]

Asp =
ii

R −g(R) −Ω × (Ω ×R) (3)

and

Asp,m =
ii

R̂INS −g(R̂INS)−Ω × (Ω × R̂INS) (4)
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Table 1. Kinematics Notation

Notation Meaning

pX/Y Position of point X w.r.t. point Y
R INS position with respect to Earth centre

R̂INS INS-computed position with respect to Earth centre
e

R= v Terrestrial velocity
e

R̂INS= v̂INS INS-computed terrestrial velocity
ss

R Acceleration w.r.t. S reference frame
ωxy Angular velocity of X coordinate

frame w.r.t. Y frame
Asp Specific force
g(·) Earth gravity at designated point

DA
B Direction cosine matrix: rotates from A

coordinate frame into alignment with B frame

where ψ, g(R), g(R̂INS), Ω, R, R̂INS denote, respectively, the misalignment
rotation vector from the computed to the platform reference frame, Earth grav-
ity at the true and computed positions, Earth angular velocity, and true and
computed positions with respect to the Earth centre.

If δp and δv are defined as INS computed errors in position and velocity, i.e.,

{
δp = R̂INS −R

δv = v̂INS − v
(5)

then equations 2, 3 and 4 imply

∇−ψ ×Asp + ωaccel =
ii

δp − [g(
ii

R̂INS)− g(R)]︸ ︷︷ ︸
δg

−Ω × (Ω × δp) (6)

which can be rewritten as

∇−ψ ×Asp + ωaccel =

(
ie

δp +Ω×
i

δp

)
− δg −Ω × (Ω × δp) =

=
i

δv +Ω×
i

δp −δg −Ω × (Ω × δp) =
c

δv +ωci × δv +Ω × δv − δg . (7)

Ultimately,

c

δv= δg − (2Ω + ωce)× δv +Asp ×ψ +∇+ ωaccel . (8)

On the other hand, the derivative of δp with respect to frame C yields

c

δp=
e

δp −ωce × δp = δv − ωce × δp . (9)
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Additionally, it can be shown that [4]

ε = −
i

ψ −ωgyro (10)

hence
c

ψ=
i

ψ −ωci ×ψ = −ε− (Ω + ωce)×ψ − ωgyro . (11)

Finally, according to [4], assuming ∇B and εB are random constants, repre-
senting vector equations 8, 9 and 11 in the C coordinate frame, and then em-
ploying the DB

P estimated by the INS, the psi-angle-based INS error dynamics
model is formulated as

δṗC = δvC − [ωce
C ×]δpC (12)

δv̇C = δgC − [(2ΩC + ωce
C )×]δvC + [DB

PAsp,m,B×]ψC +DB
P∇B +DB

Pωaccel,B

(13)

ψ̇C = −[(ΩC + ωce
C )×]ψC −DB

P εB −DB
Pωgyro,B (14)

∇̇B = 03×1 (15)

ε̇B = 03×1 (16)

where the notation [ζR×] means

[ζR×] =

⎡
⎣ 0 −ζr3 ζr2

ζr3 0 −ζr1
−ζr2 ζr1 0

⎤
⎦ (17)

and δgC is approximated by [11]

δgC =
geR

2
e

(Re + hc)3

⎛
⎝−1
−1
2

⎞
⎠ (18)

with ge and Re denoting, respectively, the gravity and the radius of the Earth
as computed with the WGS-84 Earth model, at the geographic location of the
INS sensors, according to [11]

Re = R0(1− esin2λc) (19)

and
ge = (1 + 0.0053sin2λc)g0 (20)

where R0, e, g0 and λc denote, respectively, the Earth equatorial radius, eccen-
tricity and equatorial gravity, and the INS-computed latitude. The Earth model
parameters are found in [9].
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In the light of the foregoing development, it is convenient to define the EKF
state vector as

xEKF =
(
δpT

C δvT
C ψT

C ∇T
B εTB cΔt

)T
(21)

where cΔt denotes the random constant GNSS clock error model with σcΔt stan-
dard deviation, whose compensation is fundamental in INS/GNSS integration
[11].

The zero-order hold (ZOH) discretization of equations 12, 13, 14, 15 and 16
yields the error-state transition matrix Fk and process noise covariance Qk for
the EKF. In practice, the discretization which yields Qk is [12]

Qk = Gk

[
σ2
accelI3×3 03×3

03×3 σ2
gyroI3×3

]
ΔtGT

k (22)

where

Gk =

⎡
⎢⎢⎣
03×3 03×3

DB
P 03×3

03×3 −DB
P

07×3 07×3

⎤
⎥⎥⎦ (23)

and Δt denotes the discretization sample time. Finally, EKF tuning is addressed
with inertial sensors’ datasheet specifications.

4.2 GNSS Tightly Coupled Integration

GNSS integration equations are listed in the following without further expla-
nations due to the broad extension of available literature on the matter [7].
Integration is performed in a tightly coupled architecture involving pseudorange
and deltarange measurements. For each satellite Si, pseudorange and deltarange
innovations are incorporated by means of equations 24 and 25, where ûi denotes
the estimated line-of-sight (LOS) unit vector from the user’s receiver antenna
to satellite Si. Pseudorange and deltarange measurements are corrupted by ad-
ditive Gaussian noise ωSi,p ∼ N(0, σp) and ωSi,v∼N(0, σv). The antenna lever
arm has been considered as exactly compensated. Furthermore, GNSS clock er-
ror dynamics is modelled according to equation 26. In practice, a more complex
model that accounts for clock drift should be implemented [7]. However, for the
sake of simplicity, the present work implements a simpler model and focuses on
camera integration.

pSi/P − pSi/C = ûi · δp+ cΔt+ ωSi,p (24)

e
p
Si/P − e

p
Si/C

= ûi · δv + ωSi,v (25)

d

dt
cΔt = 0 . (26)
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4.3 Sighting Device

As previously stated, the basic idea of the proposed INS/SD fusion architecture
is based upon tracking mapped landmarks Li ∈ L, i = 1..Nl, each one with a
priori known LLA coordinates (latitude, longitude, altitude). For each Li, its
position with respect to the camera V , pLi/V , (see figure 2) is described in the
V coordinate frame as [5]

p
Li/V
V = DB

V [DT
BD

E
T (p

Li

E − pP
E)− p

V/P
B ] . (27)

Fig. 2. Perspective projection geometry in the plane of image. Adapted from [5].

The camera V is assumed installed next to the inertial sensors’ position P
and has its axes aligned according to figure 3, thus

p
Li/V
V = DB

V D
T
BD

E
T (p

Li

E − pP
E) . (28)

Hence the adimensional normalized measurement1 zLi = (wi, hi) provided by
the camera is given by

zLi = Π
p
Li/V
V[

1 0 0
] · pLi/V

V

+ ωcam (29)

where ωcam ∈ M(R)2×1 is white gaussian noise with standard deviation σcam,
and Π is defined by

Π =

[
0 1 0
0 0 1

]
. (30)

1 It is assumed, without loss of generality, camera focal length f = 1.
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Fig. 3. Definition of camera coordinate system (top view)

ωcam shall be modelled to account for uncertainties in target tracking algo-
rithms, servomechanism control and misalignment between camera and vehicle
body.2 The estimated normalized measurement vector is estimated by means
of the navigation algorithm [13] computed variables (i.e., position, velocity and
attitude) by

ẑLi = Π
p
Li/C
Vc[

1 0 0
] · pLi/C

Vc

(31)

where Vc is the computed camera reference frame. Similarly to equation 28,

p
Li/C
Vc

is expressed as

p
Li/C
Vc

= DBc

Vc
DC

Bc
DE

C (p
Li

E − pC
E) . (32)

The orientation of the camera V in relation to the vehicle body B is assumed
known with great accuracy, thus DVc

Bc
= DV

B . In addition, notice that INS atti-

tude estimates are employed and thus follows the approximation DBc

C ≈ DB
P . In

this scope, equation 32 can be rewritten as

p
Li/C
Vc

= DB
V D

P
BD

E
C (p

Li

E − pC
E) . (33)

Notice that all terms in the right-hand side of equation 33 are available from
INS navigation algorithm and ẑLi can be readily computed. For use in the EKF,
the difference rLi = zLi−ẑLi , and how it relates to navigation errors, is explored
in the following.

It has been assumed that rLi is function solely of δp and ψ, disregarding

electrooptical distortions in the sighting device. Hence, the Jacobian J =
∂rLi

∂x
is in the sparse form

J = −
[
∂ẑLi

∂δpC
02×3

∂ẑLi

∂ψC
02×7

]
. (34)

2 Servomechanism control and misalignment between camera and vehicle body errors
usually cannot be accurately modelled as white gaussian noise hence inflation in
Kalman filter noise covariance statistics should take place in practice



A Novel Imaging Measurement Model 283

First,
∂ẑLi

∂δpC
is calculated noticing that equation 33 can be rewritten as

p
Li/C
VC

= DB
V D

P
BD

E
C (p

Li

E − pC
E) = DB

V (DT
BD

C
T D

P
C)(D

T
CD

E
T )(p

Li

E − pC
E) ≈

≈ DB
V D

T
B(I3×3 + [ψC×])DE

T (p
Li

E − pC
E) =

= DB
V D

T
B(I3×3 + [ψC×])DE

T (p
Li

E − pP
E − δpE) =

= DB
V DT

BD
E
T (p

Li

E − pP
E) +DB

V D
T
B[ψC×]DE

T (p
Li

E − pP
E) + · · ·

· · · −DB
V D

T
B(I3×3 + [ψC×])DE

T D
C
EδpC ≈

≈ p
Li/V
V +DB

V DT
B[ψC×]DE

T (p
Li

E − pP
E)−DB

V DT
B(I3×3 + [δθC×])δpC ≈

≈ p
Li/V
V +DB

V D
T
B[ψC×]DE

T (p
Li

E − pP
E)−DB

V D
T
BδpC . (35)

Therefore, considering the partial derivative
∂ẑLi

∂δpC
at point ψC = 0, above

equations deliver

p
Li/C
VC

= p
Li/V
V −DB

V D
T
BδpC . (36)

For the computation of
∂ẑLi

∂pC
, ẑLi is rewritten as

ẑLi =

(
z1
z2

)
, z1 =

z1,num
zden

,
z2,num
zden

(37)

z1,num =
[
0 1 0

]
(p

Li/V
V −DB

V D
T
BδpC) (38)

z2,num =
[
0 0 1

]
(p

Li/V
V −DB

V D
T
BδpC) (39)

zden =
[
1 0 0

]
(p

Li/V
V −DB

V D
T
BδpC) . (40)

Hence,

∂ẑLi

∂δpC
=

[
∂z1

∂δpc1

∂z1
∂δpc2

∂z1
∂δpc3

∂z2
∂δpc1

∂z2
∂δpc2

∂z2
∂δpc3

]
(41)

where
∂zk
∂δpcj

=
1

z2den

(
zden

∂zk,num
∂δpcj

− zk,num
∂zden
∂δpcj

)
,

k = 1..2
j = 1..3

(42)

and ⎛
⎜⎝

∂z1,num
∂δpc1

∂z2,num
∂δpc1
∂zden
∂δpc1

⎞
⎟⎠ = −

⎡
⎣0 1 0
0 0 1
1 0 0

⎤
⎦DB

V D
T
B

⎡
⎣10
0

⎤
⎦ (43)

⎛
⎜⎝

∂z1,num
∂δpc2

∂z2,num
∂δpc2
∂zden
∂δpc2

⎞
⎟⎠ = −

⎡
⎣0 1 0
0 0 1
1 0 0

⎤
⎦DB

V D
T
B

⎡
⎣01
0

⎤
⎦ (44)
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⎛
⎜⎝

∂z1,num
∂δpc3

∂z2,num
∂δpc3
∂zden
∂δpc3

⎞
⎟⎠ = −

⎡
⎣0 1 0
0 0 1
1 0 0

⎤
⎦DB

V D
T
B

⎡
⎣00
1

⎤
⎦ . (45)

Above computations deliver the first 2× 3 block of the Jacobian in equation
34. Similarly, for the computation of the remaining nonzero block, notice that
the ψ misalignment affects the camera measurement (for small angles) according
to

p
Li/C
VC

= p
Li/V
V +DB

V D
T
B[ψC×]DE

T (p
Li

E − pP
E) . (46)

By means of equation 46 and the same strategy used for the computation of
the Jacobian with respect to position, follows

ẑLi =

(
γ1
γ2

)
, γ1 =

γ1,num
γden

, γ2 =
γ2,num
γden

(47)

γ1,num =
[
0 1 0

]
(p

Li/V
V +DB

V DT
B[ψC×]DE

T (p
Li

E − pP
E)) (48)

γ2,num =
[
0 0 1

]
(p

Li/V
V +DB

V DT
B[ψC×]DE

T (p
Li

E − pP
E)) (49)

γden =
[
1 0 0

]
(p

Li/V
V +DB

V DT
B[ψC×]DE

T (p
Li

E − pP
E)) (50)

∂ẑLi

∂ψC
=

[
∂γ1

∂ψc1

∂γ1

∂ψc2

∂γ1

∂ψc3
∂γ2

∂ψc1

∂γ2

∂ψc2

∂γ2

∂ψc3

]
(51)

∂γk
∂ψcj

=
1

γ2
den

(
γden

∂γk,num
∂ψcj

− γk,num
∂γden
∂ψcj

)
,

k = 1..2
j = 1..3

(52)

⎛
⎜⎝

∂γ1,num

∂ψc1
∂γ2,num

∂ψc1
∂γden

∂ψc1

⎞
⎟⎠ =

⎡
⎣0 1 0
0 0 1
1 0 0

⎤
⎦DB

V D
P
B

⎡
⎣0 0 0
0 0 −1
0 1 0

⎤
⎦DE

Cp
Li/C
E (53)

⎛
⎜⎝

∂γ1,num

∂ψc2
∂γ2,num

∂ψc2
∂γden

∂ψc2

⎞
⎟⎠ =

⎡
⎣0 1 0
0 0 1
1 0 0

⎤
⎦DB

V D
P
B

⎡
⎣ 0 0 1

0 0 0
−1 0 0

⎤
⎦DE

Cp
Li/C
E (54)

⎛
⎜⎝

∂γ1,num

∂ψc3
∂γ2,num

∂ψc3
∂γden

∂ψc3

⎞
⎟⎠ =

⎡
⎣0 1 0
0 0 1
1 0 0

⎤
⎦DB

V DP
B

⎡
⎣0 −1 0
1 0 0
0 0 0

⎤
⎦DE

Cp
Li/C
E . (55)

Above computations deliver the Jacobian J which quantitatively describes
how navigation errors affect camera pointing and is used as sensor model in the
extended Kalman filter.

rLi = JxEKF + ωcam . (56)
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5 Simulation Results

Consider a simulated scenario where an unmanned aerial vehicle (UAV), ini-
tially positioned at LLA = (0, 0, 100m), equipped with 3-axis sensitive triads of
strapdown rate-gyros and accelerometers, a GNSS receiver and a camera flies a
trajectory with cruising speed 300m/s toward North and altitude 100m. Sensors
specifications are illustrated by table 2.

Table 2. Sensors Imperfections

INS σaccel σ∇ σgyro σε

1mg 25mg 1o/h 25o/h

GNSS/SD σcΔt σv σp σcam

300m 0.01m/s 15m 0.01

GNSS/SD updates were made at 100ms intervals. After the instant t = 5sec,
EKF estimated navigation variables and sensors errors are used for in-flight
correction of the INS computed position, velocity and attitude and to calibrate
the inertial sensors and GNSS receiver clock error. INS correction is of utmost
importance in such systems due to the linearization of the INS error dynamics
at the computed INS navigation solution.

With respect to the INS navigation algorithm, [13] and [14] provide cost-
effective multiple-rate integration methods to compute position and velocity,
and attitude, respectively. However, such algorithms incur in errors in position,
velocity and attitude, commonly known in the literature as scrolling, sculling
[16] and coning [15]. Scrolling errors added to the position channel process noise
(see equation 22) precludes EKF optimality, and hence ad-hoc Qk inflation takes
place in the following manner

Qk ← Qk + 10−1Δt

[
I3×3 03×13

013×3 013×13

]
. (57)

On top of that, the initial extended Kalman filter covariance matrix P (0|0)
is also inflated. Such procedure is commonplace in real applications since initial
errors are often not known. This practice yields a non-optimal pessimist filter
initiation which can be detected by substantial differences in root mean squared
(RMS) estimation and EKF computed covariance during the KF’s early working
stages as can be seen later on.

The impact of the number of available landmarks on INS/GNSS/SD system
performance will be evaluated by comparing single-sided and double-sided ob-
servation scenarios. Only one landmark update is made at each updating step
of the EKF. In the case of single-sided observations, only landmark L1 is con-
sidered in the filter update. In the double-sided observation mode, L1 and L2

are alternately available for the update stage. Landmarks are defined in table 3.
The vehicle’s trajectory and the observed landmarks are illustrated in figure 4.
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Table 3. Landmarks Position Coordinates

Landmark Latitude (deg) Longitude (deg) Altitude (m)

1 10−2 50× 10−1 10
2 50× 10−1 10−2 10

Fig. 4. Vehicle trajectory and landmark positions (top view)

For the sake of simplicity, constant visibility to 4 GNSS satellites is assumed,
each with a fixed position with respect to Earth during the simulation time
interval. LLA satellite coordinates are given in table 4.

Table 4. GNSS Satellites Position Coordinates

Satellite Latitude (deg) Longitude (deg) Altitude (km)

1 20 −20 20, 000
2 40 −20 20, 000
3 −30 40 20, 000
4 −25 30 20, 000

The evaluation of INS/GNSS/SD fusion algorithm performance with single
or double-sided observations is based on a Monte Carlo simulation [8] with 50
realizations and two statistical tests. These are the normalized estimation error
squared (NEES) and normalized innovation squared (NIS), which are described
in [8] and used hereafter with a 5% alarm rate. The number of realizations
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Fig. 5. EKF computed covariances, RMS estimation errors and consistency tests for
INS/GNSS/SD single-sided observations

is chosen so that a balance between reliable statistical study and practicable
simulation time is obtained.

5.1 Single-Sided Observations

Figure 5 displays INS/GNSS/SD fusion with single-sided observations EKF com-
puted covariances and root mean squared (RMS) estimation errors (denoted by
δp̃, δṽ, ψ̃, ∇̃, ε̃ and cΔt̃) for each component of xEKF. Additionally, NEES and
NIS consistency tests are shown with the corresponding alarm limits.

Notice, in sharp contrast with INS/GNSS fusion, the observability of ψc1 and
ψc3 without resorting to maneuvers. Notwithstanding, ψc2 is weakly observable
due to landmark L1 location East of the vehicle. It is, indeed, intuitive to expect
the inadequacy of sighting devices to yield attitude information about the LOS
axis due to the assumed punctual nature of the landmark projection on the
image plane. Similarly, ∇b1 is weakly observable.

5.2 Double-Sided Observations

Figure 6 displays INS/GNSS/SD fusion with double-sided observations EKF
computed covariances and RMS estimation errors for each component of xEKF.
Additionally, NEES and NIS consistency tests are shown with the corresponding
alarm limits.

The addition of a geometrically favorable landmark, namely L2, positioned
North of the vehicle, enhances ψc2 and ∇b1 observability. Thus, the RMS error
quickly diminishes and filter tuning is accomplished as far as the NEES and NIS
tests can evaluate.

Furthermore, this work suggests as future work further investigation on the
impact of number and geometry of landmarks on Kalman filter observability,
which can be analytically performed in a fashion similar to [1,2].
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As a last remark, the EKF process noise in the position channel must be
inflated according to equation 57 to accomplish NEES and NIS statistical con-
sistency. Otherwise, the resulting small EKF computed covariance and the cor-
responding RMS error become statistically inconsistent, which may render the
estimation process unreliable. The tuning of the position channel noise to reach
statistical consistency in the NEES test can be addressed by self-tuning algo-
rithms [17,18].
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Fig. 6. EKF computed covariances, RMS estimation errors and consistency tests for
INS/GNSS/SD double-sided observations

6 Conclusions

An imaging measurement model is formulated for use in a psi-angle error based
extended Kalman filter (EKF) that yields the fusion of global navigation satel-
lite observables with vision-aided inertial navigation. At first, the EKF uses
datasheet-based nominal tuning and the estimation performance is evaluated
by means of Monte Carlo simulation. The resulting performance motivates the
use of a process noise inflation scheme to attain statistical consistency. Position
and velocity errors, misalignment, accelerometer bias, rate-gyro drift and GNSS
clock errors with respect to ground-truth are then effectively estimated and pass
the tests for statistical consistency. Ultimately, in-flight INS correction and the
calibration of inertial sensors and GNSS receiver clock error are successfully
accomplished.
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Abstract. This paper describes a loosely coupled approach for the improvement 
of state estimation in autonomous inertial navigation, using image-based rela-
tive motion estimation for augmentation. The augmentation system uses a  
recently proposed pose estimation technique based on a Entropy-Like cost func-
tion, which was proven to be robust to the presence of noise and outliers in the 
visual features. Experimental evidence of its performance is given and com-
pared to a state-of-the-art algorithm. Vision-inertial integrated navigation is 
achieved using an Indirect Kalman Navigation Filter in the framework of sto-
chastic cloning, and the proposed robust relative pose estimation technique is 
used to feed a relative position fix to the navigation filter. Simulation and Expe-
rimental results are presented and compared with the results obtained via the 
classical RANSAC – based Direct Linear Transform approach.  

1 Introduction 

Inertial navigation suffers from drifts due to several factors, in particular inertial sen-
sor errors. As a matter of fact, usually additional sensors like GPS, air data sensors or 
Doppler speedometers are employed to provide corrections to the navigation system. 
A viable augmentation alternative is the adoption of a vision system; these were em-
ployed in the past for air and land vehicle automation, like car driving [1], obstacle 
avoidance ( [2], [3]) or formation flight ([4], [5], [6], [7]). More recently, mainly due 
to the increased computational power available, they are receiving more interest in the 
field of navigation. The use of vision for navigation is often referred to as visual 
odometry, which core tool is the estimation of the pose of the vision system with re-
spect to the observed scene. Pose estimation is often the concluding step in a sequence 
of different phases including: detection of significant features in the scene from cam-
era images, and tracking of them between successive frames. The presence of noise 
and outliers in the acquired data represents the main, in the sense of most challenging, 
issue in solving the Pose Estimation problem. The presence of outliers depends main-
ly on inaccurate key points matching and/or tracking between left and right images, in 
the stereo vision case, and in successive time instants. The outliers rejection problem 
is often solved via linear/nonlinear minimization techniques ( 2,L L∞ , etc) ([8])  

or via iterative refinements ([9], [10], [11]), that is via images pre/post-processing 
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techniques. Well-known robust approaches in estimating camera pose are RANSAC-
type algorithms [9], [10], which have no guarantee of optimality. Almost all outlier 
rejection schemes proposed in the literature act in a pre/post-processing phase, and 
most of them perform the pose estimation algorithm by minimizing a squared norm of 
the estimation error. 

The concept of Entropy is not new in the field of estimation; it  has already been 
applied in the last decade in the field of autonomous navigation and robotics, and the 
most well-known and recent works in such direction can be found in [12], where the 
concept of alignment via maximization of the Mutual Information is used to perform 
robust visual servoing and autonomous guidance tasks, in a previously visited scena-
rio. Recently, integrated vision-inertial navigation systems are appearing in the litera-
ture; they differ mainly in the adopted coupling approach between vision and inertial 
measurements. Two large family exists: in the tightly coupled approach [13], [14], 
[15], each collected key point is added to the navigation filter state, its position is 
refined over time and cooperates to the estimation phase. The second large family is 
the loosely coupled approach [16] [17], in which the navigation filter is provided with 
position fixes computed by the vision system, used in this case as an external aiding 
sensor like it happens with GPS or altimeters. In [16] the stochastic cloning approach 
is introduced and used and the relative pose estimation is computed via a classical 
Least Square minimization. [17] uses a similar approach, but the filter is provided 
with relative pose measurements, which are obtained via a robust 2-norm minimiza-
tion, using the Huber cost function [18], in a framework of M-estimation. The work in 
[19] instead, reverses the point of view and uses the stereo vision system as the main 
navigation sensor, while the processed IMU measurements are used to feed attitude 
corrections to an EKF.  

In the present paper, we propose a loosely coupled approach, which uses a Stereo 
Vision system and an Inertial Measurement Unit. The relative pose estimations given 
by the vision system are computed using an Entropy-Like cost function, which is ro-
bust by nature with respect to the outliers in the data. The estimated pose is then used 
to give relative position fixes to the Indirect Kalman Navigation Filter in the frame-
work of the stochastic cloning [20] [16]. The main contribution of the paper is show-
ing that the adoption of the proposed robust pose estimation algorithm, which is  
robust to a large class of disturbances, provides a net improvement to the navigation 
accuracy and that there is still room for further improvements that better exploit the 
peculiar characteristics of the proposed pose estimation algorithm. 

The paper is organized as follows: Section 2 introduces the adopted notation and 
the necessary perturbed inertial navigation background; Section 3 describes the appli-
cation of the proposed Entropy-based cost function to pose estimation and Section 4 
presents a static comparison of performance with a state-of- the-art pose estimation 
algorithm. Section 5 describes an error-state Extended Kalman Filter for integration 
of the proposed pose estimation algorithm with inertial navigation; finally Section 6 
presents experimental results performed with a ground vehicle.  
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2 Background on Perturbed Inertial Navigation Dynamics 

This paper proposes a vision-inertial integrated navigation system that, as common in 
precise inertial navigation, makes use of an error-state formulation where navigation 
errors, rather than navigation states are estimated by the filter[21]. The adopted nota-
tion is very common in the Inertial Navigation Literature: define χ as generic mo-
tion/sensitivity variable, then χ indicates the estimated value of the true value , and   indicates the measured value. Thus, the relationship between true values and their 
measurements is defined as follows: 

 
,̂  (1) 

where  is the actual navigation error, and  is the measurement error. In this work, 
the measurement errors is modeled as a zero-mean Gaussian process with variance E . With the above notation, it is possible to write a set of perturbed navigation 
equations for attitude (represented here by the direction cosine matrix ), velocity in 
some navigation frame (we used the NED reference frame for filter implementation 
but any geodetic frame may be used)  , and position in ECEF frame  as: 

 

 ̂ ,,
 (2) 

where  denotes the skew symmetric matrix whose elements are the components 
of the errors vector , which are functions of the attitude error [21]. Moreover, ,  and ,  are the bias terms in the measurements of gyroscopes and accelero-
meters, while  and  are gyroscope and accelerometer noises, represented here as 
zero-mean Gaussian processes with variances  and . 
Finally  and  are velocity and (global) position errors respectively. 

Given the definition above of the navigation error variables, the continuous time e 
error dynamics of the navigation equations resolved in the navigation frame [21] can 
be locally approximated by a compact Linear Parameter Varying (LPV) system, as in 
Eq. (3) : 

  (3) 

The state vector  and the input vector  are defined respectively as (we 
dropped the function of time for compactness of notation): 

 δ , ,  (4) 

  (5) 
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The system matrices  and  in Equation  (3) come from linearization of the 
error dynamics, thus they change with the selected navigation frame, and locally re-
late the evolution of the state  to the current estimation of the state . The reader in-
terested in the derivation of the above equations can find all the details in [21]. The 
IMU biases dynamics in Eq. 3 were modeled as Brownian motions, with trivial dy-
namics: 

 
,,  (6) 

where E  and E . The covariance matrix of the Gaussian 
process noise , considering the sensors' noises uncorrelated and having the same 
noise characteristics, is given by: 

 E 0 0 00 0 00 0 00 0 0  (7) 

In order to implement the filter dynamics in real-time, it is necessary to discretize the 
continuous time dynamics; in the remainder we will consider a time-discretized ver-
sion of the above dynamics using the Euler integration method, with sample time . 
The final discrete-time form of the LPV perturbed system of Equation (3) can then be 
written as: 

 ,  (8) 

where: 

   (9) 

3 Least-Entropy Like Pose Estimation  

Loosely coupled vision-aided inertial navigation with relative measurements requires 
the estimation of the camera motion in between successive frames. This section 
presents first a general framework for pose estimation, then cast this problem into the 
framework of Least-Entropy Like (LEL) estimation[22][23], finally presents an anal-
ysis of performance using static images.  

3.1 Stereo Vision and Pose Estimation 

In a stereo vision system, each camera acquires an image, relevant 2-dimensional 
features (points in the image plane) ,  are automatically extracted from the images 
(for the purpose of this work we used the SIFT algorithm), identical features, that is 
image points belonging to the same object in the observed scene, are searched for in 
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the right and left images, and finally a cloud of N 3D keypoints ,  is obtained by 
triangulation of the two corresponding sets (one for the left and one for the right im-
ages) of N 2D features , . Several techniques exist for selection and tracking of 
image features[5][4]; the feature selection and tracking approach used in the later 
simulations use stereo vision and the Scale Invariant Feature Transform (SIFT) algo-
rithm[24][3], that easily allows both to detect, and to match features for successive 
triangulation. The stereo matching of features between left and right images is per-
formed by comparing the squared distance between the SIFT descriptors of each fea-
ture in the two images, and selecting the couple with the lowest distance. Only those 
features that are both in the left and right images are considered valid for triangulation 
and tracking. With the same distance-based approach it is possible to track the fea-
tures that are present in the current and past images; this makes the selection of 3D 
keypoints P ,  and ,  possible. Figure 1 shows a sample of two images with 
matched features (red circles), unmatched features (blue circles) and green lines 
representing left-right matches. 

Tracking of 2D features in two successive time instants  and  produces two 
clouds of 3D keypoints ,  and ,  that are related by a rigid motion relationship. 
This relationship represents, essentially, the camera motion, in terms of translation 

 and rotation , between times  and . Thus the following relationship 
holds: 

 , , ,  (10) 

where ,   3  is the transformation mapping the pose of the 
camera at the time  in the pose of the camera at the time . The notation ,  is not actually a vector or matrix multiplication but denotes the application 
of the translation and rotation transformations ,    to the point , , as de-
scribed in Eq. (10). Given any 3 dimensional parameterization of the rotation matrix, 
the transformation matrix in Eq. (10) can be written as: , , 
being  the set of all possible motion parameters (angular displacements and transla-
tions). The Pose Estimation problem then becomes the estimation of the unknown 
motion parameters vector , given two clouds of N features at the time  and . 
The solution of the problem can be found by using a minimization approach (either 
linear or non-linear) over the estimation residuals , : 

 , , ,  (11) 

that is: 

 arg , ,  (12) 

where  is a suitable cost function built upon the pose estimation residual; common 
choices for   are the 2-norm or the infinity-norm. Due to triangulation and calibra-
tion errors a number 4 of non-aligned points, tracked along the camera motion, 
are necessary for the problem to have a solution. 
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3.2 Robust Camera Pose Estimation Using LEL 

A very relevant and desirable behavior for any feature detector and tracker is its abili-
ty to recognize features in different images even if they were taken from viewpoints 
distant one from the other (this means the capability to track features during camera 
motion for long time). When the camera moves and rotates, the same objects of the 
pictured scene produce different images on the camera plane: deformations and warp-
ing happens due to camera motion, change of the point of view, and perspective pro-
jection. Thus a good feature detector and tracker must be able to  recognize exactly 
the same warped image regions. In order to achieve this property, covariant feature 
detectors, such as SIFT, are designed to mod-out the effects of transformations be-
longing to some group [25]. Such characteristic induces a certain amount of loss of 
information in the detected features, thus some ambiguities could raise. Figure 1 
shows one example where this information loss leads to a mismatch. As a result, the 
whole set of features collected during the acquisition, matching and tracking phases 
may be affected by a certain amount of outliers. In the following, a technique which is 
able to give a measure of the degree of dispersion of the data will be used to design a 
robust pose estimator. 

 

Fig. 1. Example of left-right matched features (red circles connected by the green lines) and an 
example of a possible matching ambiguity that may happen with the use of co-variant feature 
detectors (e.g. with SIFT). The matching ambiguity contaminates the data used for pose estima-
tion with outliers (the large red dots).  

A robust nonlinear alternative to Least-Square estimation was recently proposed 
[22]. The aim of such estimator is to give a representation of the dispersion of the 
residuals; such function is built on the concept of Gibbs' entropy ([26]): this is the 
reason why such estimator was named Least-Entropy Like (LEL) estimator. Given a 
reference model, which allows to match given inputs with measured outputs, mini-
mizing the LEL metric of the residuals means to drive the solution toward such direc-
tions in which such residuals are in one configuration where not all the points have 
the same probability to belong to the chosen model. In [22], [27] and [23] it is shown 
that this selectivity turns out to be very important in such cases in which data are 
(heavily) corrupted by noise and outliers. All the implementation considerations  
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regarding the parameterization and minimization of the Entropy-Like cost function are 
described in detail in the references cited above. 

The robust solution  to the problem of the stereo camera pose estimation be-
tween two consecutive acquisitions can be solved by minimizing the Normalized En-
tropy-Like function: 

 arg ∑  (13) 

where:  

  ∑  (14) 

 ,  proj ,  (15) 

Notice that this approach uses the re-projected pose estimation residuals  in 2D, 
instead of the pose estimation residual in 3D as in the most general form of equation 
(11). The re-projection error  involves image coordinates only that are invariant to 
changes in depth [28]; this leads to a better estimation accuracy. The adopted pin-hole 
camera model is represented, as common in computer vision, by the calibration ma-
trix  and the perspective projection operator proj : given a generic 3D point  
with coordinates , , , the perspective projection operator is defined as: 

    proj

1
 (16) 

In addition, this formulation of the Entropy-Like function employs the  Huber-like 
[18] function   to reduce the risk of incurring into a local minimum during solu-
tion of Eq. (13).  

 
,  , otherwise

 (17) 

The employment of the Huber-like function allows avoiding bad conditionings of the 
Entropy-Like cost function by limiting the upper bound of the denominator in (14),  
and thus by avoiding the uncontrolled growth of the sum of the residuals norm due to 
numerical sensitivities. 

Numerical solution of the optimization problem in Eq. (13) can be done in several 
ways. The simulations and experiments presented in this paper adopted the Leven-
berg-Marquardt as in [23][28]. As explained in [22] and [27], the Entropy-Like penal-
ty function is nonlinear and multiple local minima may exist. Thus, the minimization 
must be computed with particular attention to the initial conditions. The scope of this 
work is such that we expect to have an acceptable local estimate of the motion given 
by inertial mechanization alone performed over a short period of time (between two 
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successive frames). Therefore, it is possible to initialize the nonlinear estimation with 
the parameter ,  that can be extracted by the best available estimate of the relative 
transformation: 

 ,  (18) 

where  is the best (corrected by the filter in the past) estimate of the navigation at 
time ,  is the navigation prediction at the current time . The arrow symbol 
in Eq. (18) means that the value of ,  is extracted by the transformation . 

3.3 Experimental Results for Pose Estimation Only 

LEL has already been shown to perform better than ICP [27], and a Monte Carlo 
Analysis have shown that it can outperform the RANSAC-based Direct Linear Trans-
form (DLT) [29], with nonlinear refinement via Bundle Adjustment [30]. The main 
results are summarized here for completeness. Tests were performed both with simu-
lated features and various level of image noise, and with real imagery; experiments 
were performed outdoor with a hand-held fire wire stereo camera system at a resolu-
tion of 516 388 pixels (a good trade-off between speed of image processing and 
accuracy of features selection and matching). An industrial 1.6 GHz PC with 1 GB 
RAM was used to collect the test videos; then, the video frames were processed off – 
line, together with the estimation algorithm.  

Figure 2 show a sample image pair from an outdoor experiment; the green dots are 
the matched SIFT features, the red circles are the re-projected features by using the 
LEL pose estimation result. Figure 3 shows the sorted 2-norm of the re-projection 
residuals: 

 , ,  proj , ,  (19) 

computed using the motion parameters  estimated by the two methods, LEL and 
robust DLT. The camera calibration matrix K  was determined experimentally, P ,  
are the 3D keypoints triangulated in the first position of the camera (at time t ), and p ,  are the image-space coordinates of the corresponding features on the image plane 
of the image acquired in the final position of the camera (at time t ). The measure-
ment unit of points p ,  is pixels. The features re-projections (red circle in Fig. 3) were 
computed as:  

 ̂ ,  proj ,  (20) 

In addition, Figure 3 highlights the mismatching between the measured and estimated 
projection, once the optimal transformation is applied to an outlier (marked with two 
red ‘x’ connected via the red line). It should be noticed that the robust DLT algorithm 
tries to exclude the outliers and the noisiest points from the dataset before solving the 
pose estimation problem, while LEL performs both pose estimation and outlier rejec-
tion in one step. Furthermore, it can be stated that LEL (which is run on the whole 
dataset) is able to perform as good as a 2-norm approach like DLT (that needs the 
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dataset to be purged by outliers and ambiguous points) [22]. Although no analytical 
guarantee is available yet, the LEL algorithm performs in general as good as the ro-
bust DLT algorithm with nonlinear refinement (tuned with our best efforts), which 
was used as benchmark. In some particular experiments the accuracy of the methods 
cannot be stated in an absolute fashion, since no ground truth was available in order to 
compare algorithms.  

Finally, a Monte Carlo analysis was performed to assess the robustness of the pro-
posed algorithm to outliers; LEL provided less re-projection error then DLT for all the 
tested percentage of presence of outliers [28]. 

 

Fig. 2. Outdoor experiment. Image pair with points correspondences and estimation results. The 
green dots are the matched SIFT features. The red circles are the re-projected features by using 
the LEL pose estimation result. 

 

Fig. 3. Outdoor experiment. Sorted re-projection errors. 

4 Navigation and Kalman Filtering with Relative Pose 
Measurements 

Usually all aiding sensors produce absolute measures (with respect to a known and 
fixed reference) of the estimated variables (e.g. GPS measures ̃  and ) while, in the 
case of visual odometry, the motion measurements are relative only (i.e. only the 
relative displacement between two successive images is measured). This section 
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summarizes the equations used for the fusion of the relative motion measurements, 
given from the pose estimation algorithm, and the inertial data. 

4.1 Definition of the Relative Pose Pseudo-Measurement Error 

The camera pose at time can be related, with respect to initial position (at time ),  
to the inertial mechanization states (position and attitude) as: 

 ,    (21) 

where ,  and  represents the position of the origin of the Naviga-
tion/Body frame at time  seen from the initial Navigation frame (at time ). For the 
purposes of this paper, we assumed that the relative displacement (latitude and longi-
tude) between successive images is small enough so that the navigation frame (NED) 
can be considered orientation-invariant (with respect to the ECEF frame); thus a sim-
ple planar projection can be used (approximation of flat surface), to approximate mo-
tion in the neighborhood of starting point. Thus the camera position can be obtained 
with Eq. (22): 

  (22) 

where 0 0  represents the vector of coordinates in the ECEF frame 
(latitude, longitude, altitude) corresponding to the initial position of the vehicle, when 
the navigation task began its execution (at time ).  is the radius of curvature nor-
mal to the ellipsoid surface at the point of tangency at the given latitude  [21]. 

Given two pairs of successive images at time  and , the relative motion, 
that must be computed by the vision system,  is related to the absolute poses at 
time  and  by: 

 

 ,  ,  (23) 

 
It is now necessary to define a filter output that can be used to construct a measure-
ment residual with the vision system output. Thus, first we construct a navigation 
position error estimate using the planar projection operator ξ  and an attitude error: 

   (24) 

where: 

 

0 0 , ̂ 0 0
, 0 0 0 ,, , , , ,

 (25) 
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It is worth to highlight that ̂   is the Jacobian of the function  with respect to 

the estimated position in ECEF frame around r . Then we can estimate the relative 
navigation error  between time  and  as: 

  (26) 

Note that  takes the same form of  except that it is computed with respect to 
the state at time . Δδy  is the estimate of the navigation error of the value T  computed by the inertial mechanization. 

Since the vision system actually measures , , it is possible to 
compute a pseudo-measure of the relative pose error from the measured relative pose g  and its estimation g  reconstructed from the navigation equations, as a func-
tion of the filter state.  In our case, such error can be written as: 

 

 ,,  (27) 

 

We aim at writing the pseudo-measure of relative pose error  as a function of 
the filter state. 

The estimated relative translation is: 

   (28) 

while, the measured relative translation is, by definition, equal to the actual data cor-
rupted by noise ν : 
 

 

, , ,  ,  

(29) 

 

The pseudo-measure of the relative translation error can be rewritten as a function of 
the states (current and of the past) of the indirect Kalman Filter only: 

 

,   ,   ,  

(30) 
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where  is the attitude error at the time step . The previous equation was 
obtained by neglecting the cross products between error terms and by using the fact 
that the attitude error  is defined for the matrix , via Equation (2). Thus, by 
taking the transpose, we have: 

  (31) 

It is not straightforward to obtain in the same manner, i.e. algebraically, the pseudo-
measure of the relative rotation error ,  as a function of the filter state. It is 
convenient to derive the equation relative to  ,  via partial derivatives instead, 
that is: 

 , , , ,  (32) 

The relative pose measurement error do depend on the motion variables correspond-
ing to the current time (via ̂  and ) and to some steps in the past (via ̂  and 

). Thus it is necessary to augment the filter state with a memory of the past; this 
allow to keep track of the cross covariance of estimated navigation between the two 
time instants [20][23]. 

The state of the error navigation filter is augmented with one exact copy  of it-
self when a reference frame is acquired. Suppose a new reference frame arrives at 
time , the state of the Kalman Filter will be set to: 

  (33) 

and the state covariance matrix is set to: 

   (34) 

being . The state copy  is initialized to  and is kept constant 
during the filter propagation, whereas the state vector  is propagated according to 
error dynamics.  

4.2 Kalman Filter Prediction Step  

At each time step inertial mechanization is performed to obtain a new estimate of the 
vehicle state (position, velocity and accelerometer biases): 

 ,   (35) 

where  represents the discretized version of the standard INS mechanization [21], 
which maps corrected navigation states on the states at the next time step; variable  
 



 Combined Vision – Inertial Navigation with Improved Outlier Robustness 303 

 is the estimation of the vehicle position and velocity (at the time ), before 
the corrections, if any, produced by Kalman Filter are applied (i.e. the a priori  
estimate). 

According to the above discussion, the indirect Kalman Filter prediction step is 
performed using:  

 
00 0

 (36) 

The propagation equation for the covariance matrix is, like for standard Kalman fil-
tering: 

   (37) 

where Q is the process noise covariance matrix. After h steps (the time span needed to 
obtain the second image) the covariance matrix becomes: 

 
∏∏  (38) 

Note the off-diagonal blocks that represent the cross-correlation between the navi-
gation errors at the time t  and t . 

4.3 Kalman Filter Correction Step  

When the vision system provides a new relative pose measurement, the update step is 
performed, as follows: 

 

    δx δx K | Δδy Δδy  x x  δx  P P K H H P  

  

(39) 

where  is the measurement noise covariance matrix. Variable  is the estimation 
of the vehicle position and velocity (at the time ), given the corrections produced 
by Kalman Filter (i.e. the a posteriori estimate). 

5 Experimental Results 

Simulation results with a comparison of the proposed navigation filter with the 
RANSAC-based Direct Linear Transform, with nonlinear refinement via Bundle  
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Adjustment demonstrated already the viability of the LEL approach [28] where an  
inertial grade gyroscope unit was assumed available, and only vision-estimated trans-
lational motion was used to correct filter state. The simulations were performed by 
generating sample (noisy) accelerations and clean angular velocities. The result was a 
sample camera trajectory in 6DOF. The accelerations and angular velocities move-
ments were generated by using a VTOL quad rotor aircraft simulator, and, in order to 
emulate the presence of outliers in the data, random numbers were added to the im-
age-space 2D coordinates. Both algorithms produced small errors (few centimeters) 
but the DLT visual odometry solution resulted to be noisier. 

This section presents a sample experiment performed outdoor in the Univ. of Pisa 
Faculty of Engineering parking lot using a wheeled ground vehicle. The cameras and 
hardware used was the same of the static experiments. A snapshot of about 80 
seconds, where recognition of the actual travelled path was easier, was extracted from 
a longer recording. The filter state was initially coarse aligned with gravity to estimate 
initial roll and pitch angles of the camera-IMU system; then motion began and the 
vehicle was driven along a straight path, followed by a 180 degrees turn, and a suc-
cessive almost straight path that brought the vehicle back to its initial position. 

Figure 4 shows the time histories of the estimated position, velocity and attitude 
angles during the motion of the vehicle. It appears clearly that the navigation filter 
produces smooth estimation with minimal drift. The expected drift in pure inertial 
navigation (i.e. without any aiding), according to the characteristics of the low-cost 
inertial sensor suite used, would be of several tens of meters in the same time range.  
Figure 5 shows the estimated vehicle trajectory in the local geodetic frame. Three 
trajectories are shown: the output of the integrated vision-inertial system, the result of 
running the visual odometry algorithm (integration of relative position fixes only, and 
no inertial data) on the pose estimation results provided by DLT and LEL. By know-
ing the actual path followed by the vehicle, it appears clearly that the best estimate in 
terms of navigation accuracy is given by the integrated visual-inertial navigation: the 
path starts and returns to the same point. The result of visual odometry for both DLT 
and LEL show instead a relevant drift in the position estimation. Nevertheless the 
integrated navigation filter succeeds in filtering out these drifts.   

Figure 6 shows a comparison of the estimates of relative camera motion performed 
by: DLT algorithm using visual features only, LEL algorithm using visual features 
only, inertial mechanization. The latter represents the translation and rotation parame-
ters that are actually estimated by the filter just before a new image is acquired, and 
that are used to initialize the solver for the LEL minimization problem. The figure 
proposes selections of the time range where the differences between the three are 
large. It appears that LEL and DLT pose estimation solutions are often very near to 
each other, even if LEL is often less noisy then DLT. In addition, the smoothing ef-
fect performed by the Kalman filter on the noisy visual measurements is noticeable 
throughout the entire time range of the experiment.  
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Fig. 4. Time histories of vehicle position (meters from a geodetic fixed reference frame), atti-
tude and velocity in NED 

 

Fig. 5. Trajectories in the local geodetic frame. Comparison of the output of the vision-inertial 
navigation filter, with visual odometry (VO) performed integrating only the LEL and DLT 
relative position fixes.  
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Fig. 6. Comparison of Inertial, DLT, and LEL estimates of relative camera motion 

6 Conclusions  

A robust loose-coupling approach to vision-augmented inertial navigation, which 
makes use of a novel cost function, the Entropy of relative squared residuals, was 
proposed. The LEL algorithm was shown with simulations and experimental tests to 
be robust to the presence of noise and outliers in the visual features. An error-state 
Kalman filter was designed and experimental results were presented; these show that 
using the LEL approach for pose estimation, although may produce noisy estimates, 
allows to reduce the navigation drift, with respect to a robust technique based on 2-
norm minimization plus nonlinear refinement via Bundle Adjustment. 

Acknowledgments. Support for the work of the first author was provided by North-
rop Grumman Italia Spa.  
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Abstract. Inertial Navigation System (INS) aiding using bearing mea-
surements taken over time of stationary ground features is investigated.
A vertical munition drop is considered. The objective is to quantify the
temporal development of the uncertainty in the navigation states pro-
vided by a munition’s INS which is aided by taking bearing measurements
of ground objects which have been geolocated using ownship position.
It is shown that a munition in “free fall,” by tracking its geolocated
ground features, will have the benefit of a considerable reduction in the
uncertainty in the INS-provided navigation state.1

Keywords: navigation, estimation, Kalman Filtering.

1 Introduction

Vision, that is, optical measurements, has been extensively used in navigation in
the past [5], but with the necessity of possibly operating in a Global Positioning
System (GPS) denied environments looming, research in vision aided navigation
has surged in popularity. In previous work [6], the location of the tracked ground
objects used for Inertial Navigation System (INS) aiding had been assumed
known and the degree of observability of the optical measurement arrangement
was quantified. In [2] INS aiding using optical tracking of a ground feature while
orbiting the ground feature was experimentally demonstrated. In the same vein,
in [1], an algorithm called MonoSLAM was developed that used a single camera
to perform Simultaneous Localization and Mapping (SLAM) which was aided
by a 3-axes gyroscope. It was determined that positioning error growth was
stopped once the system returned to a previously tracked feature and therefore
a stationary robot could repeat a task indefinitely without any degradation in
localization accuracy.

This paper addresses the use of bearing measurements of unknown ground
objects to aid the INS of a munition in “free fall”. In [6] it was shown that

1 The views expressed in this paper are those of the authors and do not reflect the
official policy or position of the United States Air Force, Department of Defense, or
the United States Government.
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tracking two known ground objects allows for full observability of the navigation
state and hence strong INS aiding action. In [8] it was shown that an aircraft,
flying at a constant altitude and wings-level in the vertical plane, can use its
own position, in a forward looking way, to geolocate ground objects as they
come into view à la SLAM, and then, while flying towards and overflying these
objects, track them to aid its own navigation state estimate. This vision-based
navigation method which is akin to “bootstrapping” was mechanized through
the use of a linearized Kalman filter (KF), with the states coming from the INS
serving as the nominal values in the entries of the time-dependent measurement
matrix used in the KF. When flying in the vertical plane cross country, this
INS aiding scheme greatly decreased the uncertainty of the navigation state’s
estimate. This work was extended in [7] to show that the results of [8] apply in
three dimensional space for a wings-level cross country flight. This paper extends
that work to apply during free fall.

In this paper the focus is on INS aiding using SLAM, but not on SLAM per se;
issues of image processing, to include autonomous, without human assistance,
feature detection and feature correspondence, are not addressed. It is assumed
that autonomous feature detection and tracking are possible-think of the SIFT
image processing algorithm [3] or by the stochastic process set forth in [10]. This
paper focuses exclusively on gauging the performance of INS during a vertical
drop when the munition is using its own position to geolocate stationary ground
objects near the target for the purpose of using said features to aid the muni-
tion’s INS, and thus improve the munition’s guidance and accuracy using passive
means.

2 Development

The following three dimensional scenario is considered

– A vertical drop is considered and the munition has an initial velocity vector
v(0) = 0.

– The Earth is flat and nonrotating.
– The munition’s initial INS alignment is perfect.
– The ground objects’ elevations are known (assumed zero).

2.1 Dynamics

The navigation frame is the “inertial” (Xn, Yn, Zn) frame and the munition’s
body axes are (Xb, Yb, Zb). The munition’s position is (x, y, z), and ψ, θ and φ
are the munition’s Euler angles. A strapdown [9] INS arrangement is considered.
When falling towards a non-rotating and flat Earth as shown in Figure 1, the
dynamics of the INS errors, also known as the error equations, are shown in
state space notation as δẋ = Aδx+ Γδu, where the navigation state’s position,
velocity and angles error

δx = [ δp δv δψ ]T (1)
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Fig. 1. The munition in 3-D space. The munition’s longitudinal body axis is −Zb.

and the disturbances are the three acceleromters’ and the three rate gyroscopes’
biases

δu = [ δf
(b)
x δf

(b)
y δf

(b)
z δω

(b)
x δω

(b)
y δω

(b)
z ]T (2)

Concerning the angular errors vector δψ:

δΨ = −δCn
bC

b
n (3)

and
δΨ = δψ× (4)

where δΨ is the skew symmetric matrix formed from the vector δψ according to
Eq. (4).

For small Euler angles ψ, θ, φ, the Directions Cosine Matrix (DCM) is approx-
imated as:

Cn
b (ψ, θ, φ) =

⎡
⎣ 1 −ψ θ

ψ 1 −φ
−θ φ 1

⎤
⎦ (5)

and therefore its perturbation

δCn
b =

⎡
⎣ 0 −δψ δθ

δψ 0 −δφ
−δθ δφ 0

⎤
⎦ (6)

During the vertical drop along the Zn axis, the nominal Cb
n = I3. Thus, using

Eq. (3) we calculate

δΨ =

⎡
⎣ 0 δψ −δθ
−δψ 0 δφ
δθ −δφ 0

⎤
⎦ (7)
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and since δΨ = δψ× we recover the errors in the A/C Euler angles

δψ = [−δφ −δθ −δψ ]T (8)

Hence, the navigation state’s error vector is

δx = [ δx δy δz δvx δvy δvz −δφ −δθ −δψ ]T (9)

The INS error state equations are

δẋ =

⎡
⎣03×3 I3×3 03×3

03×3 03×3 F
(n)
3×3

03×3 03×3 03×3

⎤
⎦ δx+

⎡
⎣03×3 03×3

Cb
n 03×3

03×3 −Cb
n

⎤
⎦ δu (10)

where F(n) = f (n)× is the skew symmetric matrix form of the specific force
vector. The nominal specific force components during a perfect vertical drop
will be time varying. Since f = a − g, where g is the gravity vector sensed by
the accelerometer cluster, until the munition reaches terminal velocity all of the
nominal specific forces are zero because the munition is accelerating at a rate g
in the vertical direction. Therefore

f (n) =

⎡
⎢⎣
f
(n)
x

f
(n)
y

f
(n)
z

⎤
⎥⎦ =

⎡
⎣0
0
0

⎤
⎦ ∀ 0 ≤ t < tterm (11)

Once the munition reaches terminal velocity, at t = tterm, the accelerometers will

detect nominal specific forces such that f
(n)
x = ax, f

(n)
y = ay, and f

(n)
z = g where

g is the acceleration of gravity and ax and ay are the acceleration components of
the munition along its Xb and Yb axes. Since a purely vertical drop is considered,
ax = ay = 0. Therefore,

f (n) =

⎡
⎢⎣
f
(n)
x

f
(n)
y

f
(n)
z

⎤
⎥⎦ =

⎡
⎣0
0
g

⎤
⎦ ∀ tterm ≤ t ≤ T (12)

Eqs. (10) - (12) represents the time-varying dynamics of navigation state’s error,
(δp, δv, δψ), under the assumption that the Earth is flat and non-rotating. The
meaning of the angular errors’ vector δψ, that is, its relationship to the Euler
angles’ errors, is determined by the munition’s trajectory, that is, the nominal
DCM, Cn

b.
Having negative angle error states is unorthodox. In order for the navigation

state error to be

δx = [ δx δy δz δvx δvy δvz δφ δθ δψ ]T (13)

the dynamics model from Eq. (10) is modified as follows

δẋ =

⎡
⎣03×3 I3×3 03×3

03×3 03×3 −F
(n)
3×3

03×3 03×3 03×3

⎤
⎦ δx+

⎡
⎣03×3 03×3

Cb
n 03×3

03×3 Cb
n

⎤
⎦ δu (14)
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and with perfect INS alignment and initialization

Ċn
b = 0, 0 ≤ t ≤ T

δx(0) = 0

where T is the duration of the flight.
Since this is a vertical drop and the nominal trajectory is such that the body

axes are aligned with the navigation axes, the time history of the nominal navi-
gation variables is
x = 0, y = 0, and

z(t) =

{
hrel − g

2 t
2 ∀ 0 ≤ t < tterm

hterm + vterm(tterm − t) ∀ tterm ≤ t ≤ T

}

φ = θ = ψ = 0, where hrel is the release altitude, and hterm and vterm are
the altitude and velocity of the munition when the munition reaches terminal
velocity. These variables are non-dimensionalized as follows

x → x

h
, y → y

h
, z → z

h
,

vx → vx
v
, vx → vx

v
, vz → vz

v
,

δfx → δfx
g

, δfy → δfy
g

, δfz → δfz
g

,

δω(b)
x → h

δω
(b)
x

v
, δω(b)

y → h
δω

(b)
y

v
, δω(b)

z → h
δω

(b)
z

v
,

t → t
v

h
, T → T

v

h

hterm → hterm

h
vterm → vterm

v
,

where h and v are a typical altitude and velocity when flying wings-level, t is
the current time, and T = 7 is the nondimensional fall duration.

The non-dimensional parameters are

g � hg

v2
and ax � hax

v2
, ay � hay

v2

Choosing the reference altitude and reference velocity

h = 1000[m], v = 100
[ m

sec

]
,

and taking g = 10
[

m
sec2

]
, the non-dimensional parameter

g = 1.
It is assumed that the sensor errors consist only of random biases that are

Gaussian distributed, and that the biases are constant over time. This allows
the state error vector to be augmened with the vector δu; the augmented state
vector is

δxa =

⎡
⎣ δx
. . .
δu

⎤
⎦
15×1

(15)
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and the dynamics matrix is augmented by the Γ matrix, as shown

Aa =

[
A Γ

06×9 06×6

]
15×15

(16)

One obtains a dynamic system in “free fall”. When converted to discrete time,
Aa → Aad = eAaΔt, where Δt is the sampling interval. The augmented discrete
time state dynamics become

δxa(l + 1) = Aadδxa(l), l = 0, . . . , N − 1 (17)

where l is the discrete time step counter and the non-dimensional time step
is ΔT = T

N := ΔT v
h . The discrete-time dynamics matrix can be analytically

derived.
This dynamics equation applies as long as the ground objects’ positions are

known. Assuming the ground objects are stationary, but their position is not
known, two additional states, the x and y horizontal coordinates of the tracked
ground objects, must be added for each tracked ground object whose position
will be estimated on the fly. If the number of unknown ground features being
tracked is n, then the augmented navigation state is

δxa :=

⎡
⎢⎢⎢⎢⎢⎣

δxa

. . .
δxp1

...
δypn

⎤
⎥⎥⎥⎥⎥⎦
(15+2n)×1

(18)

and

Aad :=

[
Aad 015×2n

02n×15 I2n×2n

]
(15+2n)×(15+2n)

(19)

If, for example, one unknown ground feature is being tracked, then the dimen-
sion of the augmented navigation state’s error is 17 and if two ground features
are being tracked during, then the dimension of the navigation state’s error is
19. On one hand, state augmentation reduces the degree of observability, which
decreases the strength of INS aiding action. On the other hand, however, the in-
clusion of additional features to be tracked increases the number of measurement
equations, which helps wash out the measurement error.

2.2 Modeling/Calibrating the Free INS

With the dynamics from Subsection 2.1, the values for σa and σg, the uncertainty
in the bias of the accelerometers and gyroscopes, respectively, are set such that
during wings level horizontal flight the munition’s free INS is a 100km

hr class
navigation system; note that a non-dimensional hour is 360 units long. Since
the dynamics are not forced, that is, there is no process noise since the latter
has been relegated to the uncertainty in the initial state by augmenting the
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dynamics, the calibration is performed by using the solution to the Lyapunov
difference equation

P(l + 1) = AadP(l)AT
ad, 0 ≤ l ≤ 360N − 1 (20)

with

P(0) =

⎡
⎣09×9 0 0

0 diag(σ2
a, σ

2
a, σ

2
a) 0

0 0 diag(σ2
g , σ

2
g , σ

2
g)

⎤
⎦
15×15

(21)

The Lyapunov difference equation is linear and therefore there is a linear relation-
ship between the uncertainty in the sensors’ biases and the ensuing uncertainty
in the munition’s x position:

P1,1(360N) = ασ2
a + βσ2

g (22)

where the coefficients α and β are constants. Therefore, Eq. (20) was solved for
one non-dimensional hour twice to calculate the values of the constants α and
β. The first time, σa was set to 1 and σg was set to 0. The second time, σa was
set to 0 and σg was set to 1. Then assigning the errors in the accelerometers and
gyroscopes an equal role/“guilt” in the uncertainty of the munition’s position at
time 360, the values for the variances of the sensors’ biases are calculated as

σa =
1√
2α

= 1.0912× 10−3 (23)

σg =
1√
2β

= 9.0935× 10−6 (24)

2.3 Measurement Equation

From the geometry in Figure 1 the relationship of the inertial position of the
munition to that of the ground object P is

⎡
⎣x
y
z

⎤
⎦ =

⎡
⎣xp

yp
zp

⎤
⎦− |RLOS |√

x2
f + y2f + f2

Cn
b

⎡
⎣ xf

yf
−f

⎤
⎦ (25)

where xf and yf are the projections of the ground feature’s respective x and y
coordinates onto the focal plane of the camera and f is the camera’s focal length.
For the case when the munition falls wings level with its longitudinal axis aligned
with the Xn axis, that is to say that the angle of attack is −π

2 , the Euler angles
are small. As such the DCM for relating the body frame to the navigation frame
is given in Eq. (5). The first two equations in the relationship given by Eq. (25)
are non-linearly dependent on the third. Now, the third equation yields

zp − z =
|RLOS |√

x2
f + y2f + f2

[
0 0 1

]
Cn

b

⎡
⎣ xf

yf
−f

⎤
⎦
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and thus

|RLOS |√
x2
f + y2f + f2

=
zp − z

[
0 0 1

]
Cn

b

⎡
⎣ xf

yf
−f

⎤
⎦ (26)

Substituting Eq. (26) into Eq. (25) yields the two measurement equations for
the three dimensional case:

[
x
y

]
=

[
xp

yp

]
− zp − z

[
0 0 1

]
Cn

b

⎡
⎣ xf

yf
−f

⎤
⎦

[
1 0 0
0 1 0

]
Cn

b

⎡
⎣ xf

yf
−f

⎤
⎦

Multiplying out the matrices yields
[
x
y

]
=

[
xp

yp

]
− (zp − z)

1

−f − θxf + φyf

[
xf − ψyf − fθ
yf + xfψ + fφ

]

and nondimensionalizing such that

xf → xf

f
yf → yf

f

yields [
x
y

]
=

[
xp

yp

]
− (zp − z)

1

−1− θxf + φyf

[
xf − ψyf − θ
yf + xfψ + φ

]

We obtain two separate measurement equations

xp − x = −(zp − z)
xf − ψyf − θ

1 + θxf − φyf
(27)

yp − y = −(zp − z)
yf + xfψ + φ

1 + θxf − φyf
(28)

Due to the small angles assumption, the denominator in Eqs. (27) and (28) can
be moved up such that

xp − x ≈ −(zp − z)(xf − ψyf − θ)(1 − θxf + φyf ) (29)

yp − y ≈ −(zp − z)(yf + xfψ + φ)(1 − θxf + φyf ) (30)

Since the munition is using ground objects to aid its INS, it can be assumed,
without loss of generality, that zp = 0. Due to the small values of the angles, when
the former fraction is distributed out, the products of the angles are negligible,
yielding

xp − x = z[xf − θ(1 + x2
f ) + φxfyf − ψyf ] (31)

yp − y = z[yf − θxfyf + φ(1 + y2f ) + ψxf ] (32)
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Next, perturb the states and the measurements

x = xc − δx y = yc − δy z = zc − δz

θ = θc − δθ φ = φc − δφ ψ = ψc − δψ

xp = xpc − δxp yp = ypc − δyp

xf = (xfm−δxf ) yf = (yfm−δyf )

where the subscript c indicates the navigation states components provided by the
INS and the subcript m indicates measured quantities. Inserting the perturbation
equations into Eq. (31)(32) yields

xpc−xc + δx− δxp = (zc − δz)

(
(xfm−δxf )− (θc − δθ)(1 + (xfm−δxf )

2)

+ (φc − δφ)(xfm−δxf )(yfm−δyf )− (ψc − δψ)(yfm−δyf )

)

Again, due to the small error in the measurements, the products of these terms
can be neglected.

xpc−xc + δx− δxp = (zc − δz)

(
(xfm−δxf )− (θc − δθ)(1 + x2

fm − 2xfmδxf )

+ (φc − δφ)(xfmyfm − yfmδxf − xfmδyf)− (ψc − δψ)(yfm − δyf)

)

= (zc − δz)

(
xfm − θc(1 + x2

fm) + φcxfmyfm − ψcyfm + (1 + x2
fm)δθ

− xfmyfmδφ+ yfmδψ + (2θcxfm − φcyfm − 1)δxf + (ψc − φcxfm)δyf

)

Similarly, inserting the perturbations in the second measurement equation, Eq.-
(32), yields

ypc−yc + δy − δyp = (zc − δz)

(
(yfm−δyf )− (θc − δθ)(xfm−δxf )(yfm−δyf )

+ (φc − δφ)(1 + (yfm−δyf )
2) + (ψc − δψ)(xfm−δxf )

)

= (zc − δz)

(
(yfm−δyf )− (θc − δθ)(xfmyfm − yfmδxf − xfmδyf )

+ (φc − δφ)(1 + y2fm − 2yfmδyf) + (ψc − δψ)(xfm−δxf )

)

= (zc − δz)

(
yfm − θcxfmyfm + φc(1 + y2fm) + ψcxfm + xfmyfmδθ

− (1 + y2fm)δφ− xfmδψ + (θcyfm − ψc)δxf + (θcxfm − 2φcyfm − 1)δyf

)
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Moving all the error terms to the Right Hand Side (RHS) of the equation and
all the non-error terms to the Left Hand Side (LHS) yields

xpc−xc − zc(xfm − θc(1 + x2
fm) + φcxfmyfm − ψcyfm) = −δx+ δxp

− δz(xfm − θc(1 + x2
fm) + φcxfmyfm − ψcyfm)− zcxfmyfmδφ+ zcyfmδψ

+ zc(1 + x2
fm)δθ + zc(2θcxfm − φcyfm − 1)δxf + zc(ψc − φcxfm)δyf

(33)

and

ypc−yc − zc(yfm − θcxfmyfm + φc(1 + y2fm) + ψcxfm) = −δy + δyp

− δz(yfm − θcxfmyfm + φc(1 + y2fm) + ψcxfm) + zcxfmyfmδθ − zcxfmδψ

− zc(1 + y2fm)δφ + zc(θcyfm − ψc)δxf + zc(θcxfm − 2φcyfm − 1)δyf
(34)

Finally, nondimensionalizing such that

xp → xp

h
yp → yp

h
zp → zp

h
,

the nondimensional altitude is zc = zl. In addition, for the purpose of covari-
ance analysis, set all of the calculated values on the RHS equal to the nominal
values. This causes all of the angles to go to zero, simplifying the measurement
Eqs. (33) and (34). Also, on the RHS set xfm := xf and yfm := yf .

xpc−xc − zc(xfm − θc(1 + x2
fm) + φcxfmyfm − ψcyfm) =

− δx− δzxf + δθ(1 + x2
f )zl − δφxfyfzl + δψyfzl + δxp − δxf zl

(35)

and

ypc−yc − zc(yfm − θcxfmyfm + φc(1 + y2fm) + ψcxfm) =

− δy − δzyf + δθxfyfzl − δφ(1 + y2f )zl − δψxfzl + δyp − δyfzl
(36)

Now the measurement equation can be written in state space form,

δZ = Hu(l)δx (37)

where δZ is the difference between the expected measurement and the actual
measurement, and the time dependent observation matrix H(l) for one unknown
ground feature is
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Hu(l) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 0
0 −1

−xf −yf
0 0
0 0
0 0

−xfyfzl −(1 + y2f )zl
(1 + x2

f )zl xfyfzl
yfzl −xfzl
0 0
0 0
0 0
0 0
0 0
0 0
1 0
0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

(38)

where the subscript u indicates that the position of the ground object being
tracked is unknown. The nondimensional measurement error is [δxf , δyf ]

T .
For the sake of observability [6] two ground objects will be tracked. The

observation matrix for tracking two unknown ground features

Huu(l)=⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 0 −1 0
0 −1 0 −1

−xf1 −yf1 −xf2 −yf2
0 0 0 0
0 0 0 0
0 0 0 0

−xf1yf1zl −(1+y2f1)zl −xf2yf2zl −(1+y2f2)zl
(1+x2

f1)zl xf1yf1zl (1+x2
f2)zl xf2yf2zl

yf1zl −xf1zl yf2zl −xf2zl
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

(39)
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Fig. 2. The locations of the tracked ground features in the first geometry

3 Performance of Aided INS

The munition is in a free fall, that is, vz(0) = 0 and its acceleration is −g along
the Zn axis until it reaches terminal velocity. The nominal vertical drop is such
that hrel = 7500 [m]. The terminal vterm = 100

[
m
s

]
so that the free fall is

10 seconds and the total duration of the vertical drop is T = 80 seconds. The
nominal trajectory is x(t) = 0, y(t) = 0 and

z(t) =

{
7500− 5t2 ∀ 0 ≤ t < tterm

7000− 100(t− tterm) ∀ tterm ≤ t ≤ T

}

Once the terminal velocity has been reached there is no further acceleration
and the vertical speed is constant. Two ground feature geometries were con-
sidered. The first is shown in Figure 2. For this geometry, in the observation
matrix

xf1(l) =
xp1

zl
=

.025

zl

xf2(l) =
xp2

zl
=

−.025

zl
yf1(l) = yf2(l) = 0, l = 0, . . . , N
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Fig. 3. The locations of the tracked ground features in the second geometry

The second geometry is shown in Figure 3. For this geometry, in the observa-
tion matrix

xf1(l) =
xp1

zl
=

.025

zl

xf2(l) = yf1(l) = 0

yf2(l) =
yp2
zl

=
.025

zl
, l = 0, . . . , N

3.1 Initialization

It is stipulated that initially, the INS has zero error in the navigation states,
that is, the INS alignment was perfect, and the states representing the biases in
the sensors are

δf (b)
x ∼ N(0, σ2

a) δf (b)
y ∼ N(0, σ2

a) δf (b)
z ∼ N(0, σ2

a)

δω(b)
x ∼ N(0, σ2

g) δω(b)
y ∼ N(0, σ2

g) δω(b)
z ∼ N(0, σ2

g)

The x, y and z accelerometers are of the same quality, and also the x, y and z
gyroscopes are of the same quality. Thus

δx(0) ∼ N(0,P(0)) (40)

with the initial covariance matrix P(0) given by Eq. (21).
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3.2 Transitioning between Measurement Epochs

In the pure free fall case, there are three measurement epochs. The first is while
the munition is accelerating toward the earth. The duration of the first epoch is
one nondimensional second. There is N = 100 discrete steps per nondimensional
second.

Therefore, in epoch 1 the observation matrixHuu(l), and the dynamics matrix
Aad19×19 based on the nominal accelerometer values from Eq. (11) were used.
In the first epoch, the uncertainty of the states were propagated for one hundred
steps using the covariance propagate and update equations of the Kalman filter
[4]

P(l + 1)− = AadP(l)+Ad (41)

K = P(l + 1)−Huu(l)
T [Huu(l)P(l + 1)−Huu(l)

T +R]−1 (42)

P(l + 1)+ = (I19 −KHuu(l))P(l + 1)− (43)

where R is the measurement uncertainty caused by one pixel in the camera’s
focal plane ⎡

⎢⎢⎣
δxf1

δyf1
δxf2

δyf2

⎤
⎥⎥⎦ ∼ N(0,R)

We assume a 9 Megapixel camera with an aspect ratio of 1. However, recall from
Eqs. (35) and (36) that the measurement error terms on the RHS are multiplied
by the time-varying altitude zl. Therefore, the nondimensional

R = z2l

⎡
⎢⎢⎣

1
9 0 0 0
0 1

9 0 0
0 0 1

9 0
0 0 0 1

9

⎤
⎥⎥⎦× 10−6 (44)

where zl is squared to match R. If R was standard deviation of the noise instead
of the variance then zl would not need to be squared.

At the conclusion of the first one hundred steps/the first measurement epoch
the munition reached terminal velocity. Thus the next time block required the
use of the dynamics matrix Aad19×19 to be based on the nominal accelerometer
values from Eq. (12). The second measurement epoch was 6 nondimensional
seconds long. Without any further transitions, Eqs. (41)-(43) were repeated for
101 ≤ l ≤ 700, using the updated dynamics matrix.

We assumed a camera Field of View (FOV) of 50 milliradians. Based on the
geometry set forth in Figure 2, the ground features leave the camera FOV when
the munition is 1000 meters above the ground, hfinal. Thus the third and final
measurement epoch started when the munition reached hfinal in 70 seconds.
In the final 10 seconds of its flight the INS was not aided, and we reverted to
a free INS. As such the calculations using the KF equations, (41)-(43), were
terminated and the calculation for the free INS, Eq. (20), was used for the last
10 seconds.
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Fig. 4. The development of the standard deviation of the position errors in the unaided,
free, INS

This process was completed for both geometries listed at the beginning of
Section 3.

4 Calculations

Initially the standard deviations of the navigation states of the unaided INS
were plotted as a baseline in Figures 4-6. The standard deviations of the x, y
and z positions were almost 27 meters after 70 dimensional seconds. There was
a large degree of aiding achieved with the optical tracking scheme, shown in
Figures 7-9. After falling for 70 seconds the standard deviations in the x and y
positions are 10 and 12 centimeters, respectively, with an uncertainty in the z
position of about 3.5 meters. But the position states were not the only navigation
states that were aided. Four of the other six navigation states showed significant
reduction in uncertainty as well. What is truly remarkable is how much removing
the symmetry of the feature location geometry reduced the uncertainty, shown in
Figures 10-12. The most significant reductions had to do with the z states. The
z position uncertainty peaked at .13 millimeters, without degrading the other
two position states. The same happened with the velocity states. The φ angular
state’s peak uncertainty was cut almost in half from the max uncertainty in the
first geometry.
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Fig. 5. The development of the standard deviation of the velocity errors in the unaided,
free, INS
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Fig. 6. The development of the standard deviation of the angle errors in the unaided,
free, INS
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Fig. 7. The development of the standard deviation of the position errors in the aided
INS for geometry 1
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Fig. 8. The development of the standard deviation of the velocity errors in the aided
INS for geometry 1
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Fig. 9. The development of the standard deviation of the angle errors in the aided INS
for geometry 1
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Fig. 10. The development of the standard deviation of the position errors in the aided
INS for geometry 2
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Fig. 11. The development of the standard deviation of the velocity errors in the aided
INS for geometry 2
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Fig. 12. The development of the standard deviation of the angle errors in the aided
INS for geometry 2

5 Conclusion

It is clearly shown that using visual bearings-only measurements greatly reduces
the uncertainty in the INS provided navigation state estimate during a vertical
drop. This improvement will allow for more accurate guidance of the munition,
and therefore a greater chance of the munition hitting its target. This is achieved
using a passive means and autonomous guidance.
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Abstract. In this work a dynamical model for MEMS vibrational gy-
roscopes is developed that generalizes a previous work, allows for sim-
pler but accurate qualitative and quantitative analysis of several sources
of angular velocity measurement errors, and opens avenues for future
developments in MEMS vibrational gyroscopes designs. The proposed
model equations govern the dynamics of the amplitudes rather than the
dynamics of the rapid oscillatory processes. The characteristics of this
approximate model are significantly slower than the driving frequency. It
allows a linear time-invariant analysis of the angular velocity measure-
ment errors. These may be direct like a bias caused by the structural
damping, or indirect, due e.g. to the unmatched frequencies between the
drive and the sense channels. The approximate model was validated on a
particular numerical example by examination and comparison of the fre-
quency responses. A simple proportional feedback control was designed
for both the drive and the quadrature loops, showing the potential im-
pact of the feedback gains on the low-frequencies error. Being a linear
time-invariant model, this model will easily lend itself to the development
of more advanced control strategies.

1 Introduction

For over three decades, microelectromechanical system (MEMS) gyroscopes have
been a growing focus of research and development in science and technology (see
a review in [1]), many have been developed [2], and a few are on the market.
In the aerospace engineering field, their scope essentially focus on tactical sys-
tems. They find very successful applications, such as attitude determination
on-board spacecraft with complementary sensors like star-trackers (see e.g.[3]).
This work is concerned with the derivation of a dynamical model for MEMS vi-
brational gyroscopes that generalizes a previous work[4], allows for simpler but
accurate qualitative and quantitative analysis of several sources of angular ve-
locity measurement errors, and opens avenues for future developments in MEMS
vibrational gyroscopes designs.
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The paper presents an extended model of the vibrational gyroscope where
coupling in the damping and stiffness properties of the drive and sense axes
are allowed. Following an alternative technique to “stochastic averaging”[5], a
simpler model is developed for the dynamics of the in-phase and quadrature
sense vibration amplitudes, which keeps the slow dynamics essential character-
istics. This simple but accurate model permits straightforward qualitative and
quantitative analysis of systematic errors, such as a bias related to the coupling
damping coefficient, or of issues in operational mode, such as a narrow band-
width in open-loop operations. The current results illustrate how the proposed
model lends itself to a linear analysis of the impact of electronic sensing noise
on the gyro performances. Preliminary results on the noise to angular error fre-
quency response emphasize the need for a careful design of the quadrature loop.
The proposed model clearly provides a promising platform for future develop-
ments of filtering and control strategies allowing e.g. mitigation of the gyro drift
error.

2 Mathematical Model

The operation principle of vibrational gyroscopes relies, in essence, on the sensing
of a Coriolis force. This force, which is acting on a mass driven in a controlled
vibration along an axis (the drive axis) perpendicular to the angular velocity
vector, is directed, and can thus be sensed, along an axis perpendicular to both
directions (the sense axis). The Coriolis force, which can be sensed by measuring
the vibration amplitude along the sense axis, is proportional to the angular
velocity. The observation of the amplitude of the sense axis vibration may thus
provide a measurement of the angular velocity.

2.1 Full Gyroscope Model

Let x(t) and y(t) denote the drive axis and the sense axis vibration signals,
respectively. The dynamics of x(t) and y(t) are governed by the following generic
system of equations:

m

[
ẍ
ÿ

]
+

[
c11 c12
c12 c22

] [
ẋ
ẏ

]
+

[
k11 k12
k12 k22

] [
x
y

]
+ 4AgmΩ

[
0 −1
1 0

] [
ẋ
ẏ

]
=

[
fx
fy

]
(1)

where fx(t) denotes the control force used to maintain the drive axis vibration at
a specified amplitude (called also the drive force), fy(t) denotes the sense force,
which is zero in the open-loop operation and is used to keep the sensing signal y(t)
at zero in a closed-loop operational mode [4], m is the mass, cij and kij are the
damping and stiffness coefficients, Ω(t) is the rotation rate and Ag is a geometry
term taking e.g. the value of 0.5 for a suspended mass [4] and approximately 0.4
for a vibrating ring. As opposed to [4], where the coupling between the drive
and sense axes only occurs as a result of the Coriolis force, we assume that
additional coupling happens as a result of the off-diagonal damping and stiffness
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coefficients. However, resulting from the symmetry of the vibrational structure,
the following assumptions are made:

|k11 − k22| � k11, |k12| � k11 (2)

|c11 − c22| � c11, |c12| � c11 (3)

2.2 Approximate Gyroscope Model

Following the usual approach [2,4], the drive force is assumed to excite the
dynamics of the drive axis at the resonance frequency, i.e.

fx(t) = Fx(t) sin(ωx
t) (4)

where

ω
x

�
=

√
k11
m

(5)

and the drive axis vibration is assumed to perfectly track a desired pattern
thanks to a phase-locked loop and an automatic gain control that adjust Fx(t)
until the desired amplitude is reached (an example of such an excitation scheme
can be found in [7]). Thus, it will be assumed that the drive axis vibration is
expressed as follows:

x(t) = X0 cos(ωx
t) (6)

Notice that the amplitudes reached by x(t) are typically orders of magnitude
greater than those of y(t). This allows neglecting the influence of y(t) on the
dynamics of x(t), and facilitates the phase-locked loop regulation task. An ap-
proximate gyroscope model is here developed for the dynamics of the sense axis
vibration, y(t). This analysis will assume the following expressions for the sense
force fy(t) and for the vibration y(t):

fy(t) = FYs(t) sin(ωxt) + FYc(t) cos(ωxt) (7)

y(t) = Ys(t) sin(ωx
t) + Yc(t) cos(ωx

t) (8)

The term Yc(t) cos(ωx
t) is called the “in-phase” part of the y-signal, which is in

phase with x(t) (see Eq. (6)), while the term Ys(t) sin(ωxt) is called the “quadra-
ture” part of the y-signal, since it has a 90 deg phase difference with x(t). Using
Eqs. (6)-(8), expressing the time differentials of y(t) as given in Eq. (8), and
substituting the resulted expressions into the sense axis equations in Eq. (1)
yields the following two ordinary differential equations for the amplitudes Ys(t)
and Yc(t):

m(Ÿs − 2Ẏc ωx − Ys ω
2
x
) + c22(Ẏs − Yc ωx) + k22Ys−

− ω
x
(c12 + 4AgmΩ)X0 = FYs (9)

m(Ÿc + 2Ẏs ωx − Yc ω
2
x
) + c22(Ẏc + Ys ωx) + k22Yc + k12X0 = FYc (10)
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Because of the symmetry assumption (yielding Eqs. (2)(3)), it can be shown
that the characteristic frequency of the amplitude signals Ys(t) and Yc(t) is very
slow compared to the vibration frequency ωx . This is sometimes called the slow
envelope approximation [6, p. 114]. As a consequence, it can be assumed that
the following relations hold:

|Ẏ | � |Y |ω
x

(11)

|Ÿ | � |Ẏ |ω
x

(12)

where Y might denote Ys or Yc. Using Eqs. (11)(12) in Eqs. (9)(10) yields the
following approximate model for the dynamics of Yc(t) and Ys(t):

m(−2Ẏc ωx
− Ys ω

2
x
) + c22(−Yc ωx

) + k22Ys − ω
x
(c12 + 4AgmΩ)X0 = FYs (13)

m(2Ẏs ωx
− Yc ω

2
x
) + c22(Ys ωx

) + k22Yc + k12X0 = FYc (14)

Finally, defining the resonance frequency in the sense axis, ω
y
, and the “quality

factor”, Qy, as follows:

ω
y

�
=

√
k22
m

(15)

Qy
�
=

ω
y

(c22/m)
(16)

Equations (13)(14) are rewritten as follows

Ẏs +
ω

y

2Qy
Ys +

(
ω2

y
− ω2

x

2ω
x

)
Yc = − k12

2mω
x

X0 +
1

2mω
x

FYc (17)

Ẏc +
ω

y

2Qy
Yc −

(
ω2

y
− ω2

x

2ω
x

)
Ys = −

( c12
2m

+ 2AgΩ
)
X0 − 1

2mω
x

FYs (18)

Equations (17)(18) provide a simple approximate model governing the dynamics
of Yc and Ys, i.e., the in-phase and quadrature amplitudes of the sense signal,
respectively. The inputs to this simple model are FYc, which denotes the in-
phase signal control force, and FYs, which is the quadrature signal control force.
It is noticed that the angular velocity Ω (that we want to measure) enters the
in-phase amplitude dynamics. It is also noticed that the coefficient c12 enters
the in-phase amplitude dynamics in such a way that it can not be distinguished
from the angular velocity. On the other hand, the coefficient k12 perturbs the
dynamics of the quadrature signal. The proposed model features the following
advantages over the model introduced in [4]: the stiffness and damping coupling
between the drive and the sense axes is not neglected (k12 �= 0, c12 �= 0), and the
quadrature signal can be controlled (via FYc(t)). A more compact expression for
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Eqs. (15)(18) is provided below:

[
Ẏs

Ẏc

]
=

[−α −β
β −α

] [
Ys
Yc

]
+

[
0 −γX0 0 0 γ

−2AgX0 0 −X0

2m −γ 0

]
⎡
⎢⎢⎢⎢⎣

Ω
k12
c12
FYs

FYc

⎤
⎥⎥⎥⎥⎦ (19)

where

α
�
=

ωy

2Qy
(20)

β
�
=

ω2
y
− ω2

x

2ωx

(21)

γ
�
=

1

2mω
x

(22)

Notice that the coefficient β can be approximated as follows:

β =
(ω2

y
− ω2

x
)

2ωx

≈ ω
y
− ω

x
(23)

In the above model, the parameters X0 and ω
x
are in direct control of the

designer. The parameters α (which depends on the mass and the damping co-
efficient c22), Ag, and γ can be relatively accurately determined, and are thus
considered known to the gyroscope designer. On the other hand, parameters
like the frequency mismatch, β, and coupling coefficients like k12 and c12 should
be considered uncertain, possibly time-varying, e.g. under the influence of the
temperature. In Eq. (19), the parameters k12 and c12 appear as inputs. Indeed,
these signals being time invariant or time varying, one objective consists in in-
vestigating the response of the system and to check how well the approximate
model can predict the full model behavior. For that purpose the various single-
input-single-output transfer functions are required. They are provided next in
the form of a 2× 5 transfer matrix.

1

dc(s)

[
2AgX0β −γX0(s+ α) X0β

2m βγ γ(s+ α)

−2AgX0(s+ α) −γX0β −X0

2m (s+ α) −γ(s+ α) βγ

]
(24)

where

dc(s) = (s+ α)2 + β2 (25)

The appealing simplicity of this approximate model will help in analyzing the
effect of these uncertain terms on the gyroscope’s performances.

2.3 Mode of Operation for Angular Velocity Measurement

There are two modes of operations: an open-loop mode and a closed-loop mode.
In the open-loop mode no control forces are applied, i.e. FYs = FYc = 0, and the



334 I. Rapoport and D. Choukroun

angular velocity results from the observation of the in-phase signal in steady-
state. In the ideal case, where k12 = c12 = 0 and ω

y
= ω

x
, and for a step Ω0

in Ω, the approximate model allows for an easy development of the steady-state
equation for Yc:

Yc(∞) = −4Ag
Qy

ω
x

X0 Ω0 (26)

Inspection of Eq. (26) suggests a usual approach of extracting the angular ve-
locity from the observed Yc(t)[4]:

Ω̂(t) = − ω
x

4AgQyX0
Yc(t) (27)

which is done at any time t. Notice from Eq. (27) that the quality factor, i.e. the
damping coefficient, needs to be known in the open-loop operational mode. The
resulting open-loop transfer functions are provided in Table 1. In the closed-loop
mode, the objective is to bring the in-phase and quadrature signals to zero via
feedback. A simple manipulation of the approximate model, in the ideal case
(k12 = c12 = 0 and ωy = ωx) for a step Ω0 yields the following steady state
relationship:

0 = 2AgΩ0X0 − 1

2mω
x

FYs(∞) (28)

Solving Eq. (28) for Ω0 provides the measurement equation for the closed-loop
mode of operation:

Ω̂(t) =
1

4Ag ωxmX0
FYs(t) (29)

at anytime t. Any deviation from this ideal case, i.e. c12 �= 0, or k12 �= 0, or
ω

x
�= ω

y
is expected to yield an error in the gyro angular velocity measurement.

Table 1. Open-loop transfer functions with output Ω̂

Input HOL(s) = Ω̂(s)
·

Ω [rad/sec]
ωx

2Qy

(s+α)

(s+α)2+β2

k12 [N/m] 1
8mAgQy

β
(s+α)2+β2

c12 [Ns/m] − ωx
8mAgQy

(s+α)

(s+α)2+β2

FY s [N ] 1
8mAgX0Qy

(s+α)

(s+α)2+β2

FY c [N ] 1
8mAgX0Qy

β
(s+α)2+β2
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3 Numerical Study

The objective of this section is to compare the full and the approximate models
via their dynamical and frequency responses for the signals Ys(t), Yc(t) (equiv-
alently the measured angular velocity), to inputs in Ω, FY s, FY c, k12, and c12.
The following performance measures are used:

eC = max
[0,T ]

(|Y F
c (t)− Yc(t)|) (30)

eS = max
[0,T ]

(|Y F
s (t)− Ys(t)|) (31)

eΩ = max
[0,T ]

(|Ω̂F (t)− Ω̂(t)|) (32)

The superscript F denotes variables that are computed via the full model equa-
tions, Ω̂ denotes the measured angular velocity, and T is the simulation time,
which is larger than the characteristic times of the simulated signals.

Full Model Simulation. The computation of the angular velocity from the
sense signal, y(t), requires computing the in-phase and quadrature amplitudes,
Y F
c and Y F

s . These amplitudes are computed following standard steps of de-
modulation and low-pass filtering [4], which are detailed next for the sake of
clarity.

ÿ +
ω

y

Qy
ẏ + ω2

y
y =

1

m
[FY s + (c12 + 4AgmΩ)X0 ωx

] sin(ω
x
t)+ (33)

+
1

m
(FY c − k12X0) cos(ωxt) (34)

zC(t) = y(t) cos(ω
x
t) (35)

zS(t) = y(t) sin(ω
x
t) (36)

Ÿ F
c + 2ζlωlẎ

F
c + ω2

l Y
F
c = Al ω

2
l zC (37)

Ÿ F
s + 2ζlωlẎ

F
s + ω2

l Y
F
s = Al ω

2
l zS (38)

where Eq. (34) results from Eq. (6) inserted in Eq. (1). The purpose of the de-
modulation steps is to extract the in-phase and quadrature amplitudes from the
sense signal y(t). Equation (37) provides the output of the in-phase loop, while
Eq. (38) provides the output of the quadrature loop. The second-order low-pass
filter parameters, ωl, ζl, and Al, are chosen in order to filter out the high fre-
quencies [i.e. (ω

x
+ ω

y
) and (2ω

x
)] components that arise from the demodulation

steps, Eqs. (35)(36), to maintain a cut-off frequency that is high enough (not to
interfere with the slow dynamics components), and to provide a zero dB Bode
gain. The computation of the angular velocity is then performed as if we were in
the ideal case, i.e. c12 = k12 = ω

y
− ω

x
= 0, by applying the same scaling gains

to Y F
c (t) and FF

Ys(t), as is done in Eqs. (27)) and Eq. (29) for the open-loop and
closed-loop modes respectively. Therefore, in open-loop:
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Ω̂F (t) = − ωx

4AgQyX0
Y F
c (t) (39)

and in closed-loop,

Ω̂F (t) =
1

4Ag ωx
mX0

FF
Ys(t) (40)

The numerical values for the simulation parameters appear in Table 2.

Table 2. Simulation parameters values

m Ag k11 k22 k12 c11, c22 c12 X0 ωl ζl Al

[kg] [-] [N/m] [N/m] [N/m] [Ns/m] [Ns/m] [m] [rad/sec] [-] [-]

5 · 10−90.4 177.65 177.67 4 · 10−7 2 · 10−7 2 · 10−12 10−5 6280 0.707 2

3.1 Open-Loop Response

Step Response. Several step responses were simulated for various values of the
input angular velocity, Ω0, in the ideal case where c12 = k12 = ω

y
− ω

x
= 0. The

results are summarized in Table 3 and Fig. 1. Table 3 shows that the adequation
of the in-phase and quadrature signals in the full and approximate models is
excellent. Figure 1 depicts a typical response to a step of 1 [deg/sec] in the input
angular velocity. Both the responses of the full and of the approximate models are
fitting very well, up to an error due to remaining high frequency oscillations in
the full model variables that are not totally filtered out by the second-order low
pass filter. The lack of coupling between the in-phase and quadrature signals
yields the (expected) exponential dynamics shown on Fig. 1. This is a clear
illustration of the “slow envelope approximation” mentioned earlier. For this
particular choice of parameters, the resulting steady state error is of the order
of 0.1 [deg/hr].

Table 3. Deviations between Full and Approximate models for responses to steps in
the angular velocity. Ideal case. c12 = k12 = ωx − ωy = 0.

Ω0 [deg/sec] eC [m] eS [m] eΩ [rad/sec]

10 3× 10−12 2× 10−12 6× 10−6

3 2× 10−12 1× 10−12 6× 10−6

0 2× 10−10 1× 10−12 6× 10−6

−3 2× 10−10 1× 10−12 6× 10−6

−10 3× 10−10 2× 10−12 6× 10−6
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Frequency Response. The frequency response of the gyroscope in open-loop
was investigated for each transfer function between the five inputs Ω, k12, c12,
FY s, and FY c, and the two outputs Ω̂ and Ys. Figure 2 shows the Bode plots
of the magnitude and phase introduced by the full model and the approximate
model between the input angular velocity and the measured angular velocity for
the ideal case α = 23 and β = 0. There is a very good fit between the curves
over all frequencies, except for the phase in the higher frequencies domain. There
seems to be an additional lag around 1000 [rad/sec], which might stem from the
demodulator low-pass filter, whose crossover frequency is 6280 [rad/sec]. Using
the approximate model, the transfer function from the input to the measured
angular velocity can easily be determined as the following function:

HOL
Ω (s) =

Ω̂(s)

Ω(s)
=

1

1 + s
α

(41)

which nicely explains the first-order shape of the frequency response of the full
model. The next Bode plots correspond to the case of a coupled system where β =
10 [rad/sec]. Figures 3 and 4 depict the plots of the transfer functions from Ω to
Ω̂ and Ys. Here also, the approximate model is fitting the full model plots, except
for the phase in the high frequencies. We notice, on the magnitude plot in Fig. 3,
that the low frequency gain differs from 1 because of the discrepancy between ω

x

and ω
y
. Figures 5 and 6 depict the Bode plots of the transfer functions from k12.

Figures 7 and 8 depict the Bode plots of the transfer functions from c12. Figures
9 and 10 depict the Bode plots of the transfer functions from FY s. The Bode
plots of the transfer functions related to FY c were omitted for the sake of brevity.
They are very similar to the plots of the input FY s. As a concluding remark,
the open-loop transfer functions of the open-loop system are in a very good
adequation with the full model frequency response, as testified via numerical
simulations.

4 Insight on Non-ideal Cases, Open-Loop Issues,
and Improvement Directions

4.1 Bias

As opposed to the stiffness coefficient k12, which can be canceled to a large extent
by proper feedback control in the quadrature loop, the damping coefficient c12
is traditionally not well known. Assume for simplicity that the angular velocity
is zero and that the gyroscope works in closed-loop. If it works successfully,
then the vibrations are canceled, i.e., Ys = Yc = 0, and the approximate model
provides the following relationship between the control force FYs and c12:

FYs = −c12 ωx
X0 (42)

Using Eq. (42) in Eq. (29) yields a non-zero measurement value for the angular
velocity and, thus, a bias:

Ωbias =
c12

4mAg
(43)
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This result, originally presented in [6, p.117], indicates the relation between the
gyroscope bias and the unbalance in the structural damping. This term may
vary with the temperature. As a result, the bias value might vary during the
gyro operation time. Simulations show that the performance measures eC , eS , eΩ
hardly changed, as compared with the ideal case (see Table 3), meaning that the
approximate and the full model remain very close. Hence, the approximate model
can easily demonstrate the effect of c12 on the gyro bias, while such an analysis
would not be as straightforward using the full model.

4.2 Bandwidth

The approximate model for the in-phase amplitude, Yc(t), is rewritten here for
convenience, assuming no frequency mismatch (β = 0), no damping unbalance
(c12 = 0), and no feedback forces. In this special case originally presented in [6,
p.114] the resulting dynamical system is

Ẏc + αYc = −2Ag X0 Ω (44)

The resulting dynamical system is a 1st order low-pass filter with the following
bandwidth:

BWOL =
ωy

2Qy
(45)

Typical values for the drive frequency ωx and the quality factor vary around
2× 105 [rad/sec] and 4× 104, respectively. Hence, a typical bandwidth in open-
loop is around the value of 2 [rad/sec]. The open-loop dynamics is thus expected
to have a narrow band. The associated long settling time results in unpractical
gyro output time response characteristics during quick dynamics. In order to aug-
ment the gyroscope bandwidth a closed loop architecture with a proper feedback
control design is usually exploited.

4.3 Importance of the Quadrature Loop Control

When there is no frequency mismatch (ω
x
= ω

y
), there is no coupling between

the in-phase and the quadrature signals dynamics, the latter is thus not excited,
and there is no need to cancel it. But when the coupling exists, Yc will not only
react to the “correct” signal in Ω, but also to the disturbance

β Ys =
(ω2

y
− ω2

x
)

2ω
x

Ys � (ω
y
− ω

x
)Ys (46)

For even a small frequency mismatch of a few Hertz, the contribution of the above
coupling term can be stronger than that of Yc on itself. Excited by the permanent
input due to X0, the vibration Ys will enter, via the coupling term, the dynamics
of Yc and act as a perturbation. It is thus essential to properly address the
quadrature effect. Controlling the quadrature term might be achieved by either
canceling the value of Ys or by creating a decoupling between the dynamics of
Ys and Yc.
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4.4 Closed-Loop Design and Response to Noisy Inputs

In this section we show how the approximate model can be conveniently ap-
plied to investigate the impact of the disturbances and noises on the response.
Let ms(t) and mc(t) denote input perturbations that are added to the control
forces FYs(t) and FYc(t), respectively. They are essentially mechanical-thermal
noises, modeled as white noise. Let ns(t) and nc(t) denote output noises, which
are added to the signals coming from the in-phase and from the quadrature
loops. They essentially consist of electronic noise from measurement electronics
and are modeled as white noise. The approximate model is re-written here for
convenience:

Ẏs + αYs + βYc = − γk12X0 + γFYc +ms(t) (47)

Ẏc + αYc − βYs = −
[ c12
2m

+ 2AgΩ(t)
]
X0 − γFYs +mc(t) (48)

Ys,m(t) = Ys(t) + ns(t) (49)

Yc,m(t) = Yc(t) + nc(t) (50)

Since the influence of the mechanical-thermal noise has been studied in previous
works [1], we focus our discussion on the investigation of the measurement elec-
tronic noise impact. A conventional feedback loop architecture consists in closing
separately the loops for the in-phase and for the quadrature signals. Thus, the
dynamics of Ys and Yc will be controlled via the input signals FYc and FYs, re-
spectively. The transfer functions from the noises ns(t) and nc(t) to the gyro
output, i.e. the measured angular velocity, Ω̂ will be investigated next. Assume
for simplicity that proportional feedbacks are applied in both loops, with gains
Ks and Kc, i.e.

FYs = Kc2ωx
mYc,m = Kc2ωx

m(Yc + nc) (51)

FYc = Ks2ωx
mYs,m = Ks2ωx

m(Ys + ns) (52)

and assume that the thermal-mechanical noises are zero. Then the measured
angular velocity is expressed as follows:

Ω̂(s) =
−Kc

2AgX0

(s+ α+Ks)(s+ α) + β2

(s+ α+Ks)(s+ α+Kc) + β2
Nc(s) (53)

+
KsKcβ

2AgX0

1

(s+ α+Ks)(s+ α+Kc) + β2
Ns(s) (54)

+
(s+ α+Ks)Kc

(s+ α+Ks)(s+ α+Kc) + β2
Ω(s) (55)

In order to understand the impact of the input noises, a numerical investigation
of the corresponding frequency response gains is presented next. The follow-
ing values were chosen: α = 3, β = 10 (corresponding to a frequency mismatch
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of 10 [rad/sec]). The feedback gain for the in-phase loop, Kc, is chosen equal
to 628. This ensures that the closed-loop bandwidth increase to approximately
628 [rad/sec]. The following values of Ks were investigated: 0, 1, 10, 100, 1000.
The noises nc(t) and ns(t) are assumed white, identically distributed, uncorre-
lated one another. Figure 11 shows the gyroscope closed-loop Bode plots, i.e., it
shows the transfer function

Ω̂(s)

Ω(s)
= 628

(s+ 3 +Ks)

(s+ 3 +Ks)(s+ 631) + 100
(56)

Figure 11 shows that the Bode gain is positively impacted by the increase in the
quadrature control gain. The higher is the value of Ks, the closer is the Bode
gain to 1 (0 dB). Figure 12 depicts several Bode plots of the transfer function
from Nc(s) to Ω̂(s), which is expressed as

(
− 1

7.5
10−7

)
Ω̂(s)

Nc(s)
= 628

(s+ 3 +Ks)(s+ 3) + 100

(s+ 3 +Ks)(s+ 631) + 100
(57)

for each Ks. For high values of Ks, the behavior is satisfactory with relatively
low values of the Bode gain. On the other hand, lower values in the gain Ks

yield high values in the Bode gain at low frequencies, resulting in a poor gy-
roscope drift performance. Notice that this phenomenon was observed in [10],
together with the idea that the level of the low frequencies gain is related to the
difference between ω

x
and ω

y
. This phenomenon clearly emphasizes the need

to design efficient quadrature loop control. In addition, Fig. 11 illustrates the
known phenomenon of noise amplification due to feedback. The magnitude Bode
plot features a lead compensation effect above the open-loop crossover frequency
and until the closed-loop crossover frequency. When applied to the measurement
white noise, after being integrated, this element re-creates a white noise, which
becomes a gyro measurement error. Above the closed-loop crossover frequency,
it is common practice to add a low-pass filter in order to avoid unnecessary noise
amplification. Figure 13 presents the same type of plots but for the quadrature
component of the measurement error, ns(t). Its transfer function is

(
− 1

7.5
10−8

)
Ω̂(s)

Ns(s)
= 628

Ks

(s+ 3 +Ks)(s+ 631) + 100
(58)

Figure 13 illustrates the limitation attached to the increase of the control gain
Ks: the measured angular velocity will include more high frequencies (noise)
since an increase of Ks increases the bandwidth. Figure 14 presents the Bode
plots for the equivalent total transfer function from the measurement noises,
nc(t) and ns(t). Since these noises are assumed independent and identically
distributed, the resulting Bode plot was obtained as the root-sum-of-squares of
the two previous Bode plots.
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Fig. 1. Comparison of the Full and Approximate models. Time histories of the in-phase
amplitudes, Yc, and of the angular velocity measurement errors. Ideal case: c12 = k12 =
ωx − ωy = 0. The signals present the same transient, stay very close to each other, and
the measurement errors converge to small values.

10
−1

10
0

10
1

10
2

10
3

−35

−30

−25

−20

−15

−10

−5

0

Frequency [rad/sec]

M
ag

ni
tu

de
 [d

B]

 

 

Approximate Model
Full Model

10
−1

10
0

10
1

10
2

10
3

−100

−80

−60

−40

−20

0

Frequency [rad/sec]

Ph
as

e 
[d

eg
]

 

 

Approximate Model
Full Model

Fig. 2. Comparison of the full and approximate models. Bode plots of the open-loop
transfer function from the input angular velocity Ω to the measured angular velocity
Ω̂. Ideal case: c12 = k12 = ωx − ωy = 0.
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Fig. 3. Comparison of the full and approximate models. Bode plots of the open-loop
transfer function from the input angular velocity Ω to the measured angular velocity
Ω̂. ωx − ωy = 10 [rad/sec].
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Fig. 4. Comparison of the full and approximate models. Bode plots of the open-loop
transfer function from the input angular velocity Ω to the quadrature amplitude Ys.
ωx − ωy = 10 [rad/sec].
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Fig. 5. Comparison of the full and approximate models. Bode plots of the open-loop
transfer function from the parameter k12 to the measured angular velocity Ω̂. ωx− ωy =
10 [rad/sec].
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Fig. 6. Comparison of the full and approximate models. Bode plots of the open-loop
transfer function from the parameter k12 to the quadrature amplitude Ys. ωx − ωy =
10 [rad/sec].
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Fig. 7. Comparison of the full and approximate models. Bode plots of the open-loop
transfer function from the parameter c12 to the measured angular velocity Ω̂. ωx− ωy =
10 [rad/sec].
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Fig. 8. Comparison of the full and approximate models. Bode plots of the open-loop
transfer function from the parameter c12 to the quadrature amplitude Ys. ωx − ωy =
10 [rad/sec].
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Fig. 9. Comparison of the full and approximate models. Bode plots of the open-loop
transfer function from the force quadrature amplitude FY s to the measured angular
velocity Ω̂. ωx − ωy = 10 [rad/sec].
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5 Conclusion

This work presented an approximate dynamic model for vibratory gyros. The
model has the merits of simplicity and accuracy. The simplicity allows a relatively
easy analysis of imperfection effects in the gyro measurement output. It provides
a clear insight on fundamental known phenomenons like the presence of a drift,
which originates in the combined action of structural damping and unmatched
frequencies between the drive and the sense channels. The accuracy of the model
was thoroughly illustrated vis simulations of the frequency responses of the full
and the approximate models. It is suggested that this model will prove useful
in the development of a control strategy for gyro performance improvement, in
particular for drift mitigation. A future work will tackle the problem of control
synthesis for this type of systems, including a sensitivity analysis with respect
to the measurement noise.
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Abstract. During orbital proximity operations, research has shown that
angles-only navigation during coasting flight suffers from a lack of range
observability. To circumvent this deficiency, previous research has re-
quired a prior information on the target geometry or the implementa-
tion of special translational maneuvers. This paper shows that the range
observability problem during coasting flight can be solved by properly
including the offset of the camera from the vehicle center-of-mass in
the problem formulation, and by applying appropriate vehicle rotations.
Range observability without translational maneuvers (zero Δv) or a pri-
ori knowledge of the target geometry is clearly demonstrated using a
pseudo 6 degree-of-freedom simulation. Results for v-bar station-keeping,
flyby orbits, and circumnavigation (football) orbits are presented.

Keywords: Angle Only Navigation.

1 Introduction

Many past space programs have required relative navigation for rendezvous and
proximity operations including Gemini, Apollo, Soyuz and the Space Shuttle[13],
[20], [26]. In all of these programs, radar systems were used as the primary rel-
ative navigation device. Soyuz used multiple radar systems to determine range,
range rate and relative attitude [4]. The Space Shuttle used radar as well as a
laser ranging device and a centerline camera for close-in proximity operations
[14]. In all cases, these radar-based systems are too heavy and power intensive for
smaller spacecraft. Recently, a growing interest in autonomous rendezvous and
docking[10], [25],[9],[7],[8],[24],[15] has produced a series of experimental space-
craft in an attempt to develop rendezvous and proximity operations technology
that would be more appropriate for smaller unmanned spacecraft [6].
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The eXperimental Satellite System -11 (XSS-11) was a micro-satellite used
to successfully demonstrate rendezvous and proximity operations relying pri-
marily on a Light Detection and Ranging (LIDAR) sensor for relative position
measurements [1].

The Demonstration of Autonomous Rendezvous Technology (DART) space-
craft [17] was equipped with a camera and a laser to illuminate reflectors placed
on the target. Unfortunately software errors caused DART to collide with the
target satellite before it could accomplish its mission objectives.

Another vehicle, Orbital Express [22], was equipped with three cameras, the
same laser based sensor used on DART, and a laser range finder. Orbital Express
was able to successfully complete several proximity and docking operations [3].

A more recent example includes the European Space Agency (ESA) Auto-
mated Transfer Vehicle (ATV) [16]. The ATV program is designed to perform
automated phasing, approach, rendezvous and docking to the ISS, followed by
departure and deorbit maneuverings [11]. Recently, three ATVs successfully com-
pleted their missions and several more ATVs are planned to be launched in the
near future.

Using a camera is one of the simplest and useful sensors to perform relative
navigation. It is a simple low-cost, low power, and low mass/volume solution to
the relative orbital navigation problem. Such an approach is known as angles-
only relative navigation for rendezvous and proximity operations.

Angles-only navigation relies on the ability of a sensor to measure the azimuth
and elevation angles to an object of interest relative to the sensor location. By
measuring these angles under the right circumstances, the relative position and
velocity of the object may be estimated [21,18]. However, angles-only navigation
generally lacks the ability to determine the range between the sensor and the
object of interest. This drawback has been well demonstrated [23]. By measur-
ing the azimuth and elevation angles to the target, the LOS from the camera to
the target satellite can be determined, but it is generally not possible to deter-
mine where the chaser is located along the LOS, even when accounting for the
dynamics of the problem.

In the recent past, two approaches have been suggested to overcome this range
observability problem. In the first approach, a nominal or special translational
maneuver is executed to help determine the unknown range parameter [19,5].
Such translational maneuvers however require additional propellant and increase
satelliteΔv requirements. In the second approach, knowledge of target spacecraft
size, shape, or location of known features is used to determine the unknown
range parameter. This however requires a priori information about the target
spacecraft [24].

In this paper, a solution to the range observability problem that does not
require translational maneuvers nor a priori knowledge of target spacecraft ge-
ometry is demonstrated. The proposed solution includes small vehicle rotational
maneuvers and a camera center-of-mass offset in the formulation of the estima-
tion problem. To date, all angles-only navigation results have assumed that the
camera is either located at the vehicle center-of-mass or that the chaser/target



Zero Δv Solution to the Angles-Only Range Observability Problem 353

separation distances are sufficiently large that the center-of-mass to camera offset
is of no significance. This paper will show that by properly including the camera
offset in the problem formulation, the range observability problem is solved with
small vehicle rotations.

In [19] it is shown how range observability is achieved in terrestrial hiking
applications. Hikers obtain a bearing measurement to a distant landmark and
draw a line on a map emanating from the landmark representing all possible hiker
positions. When a second landmark is available, a second line is drawn, and the
hiker location is determined by the intersection of the two lines. In the absence
of a second landmark (as is the case in rendezvous and proximity operations),
the hikers can use a pedometer or knowledge of the length of their stride to
walk for a known distance normal to the line-of-sight of the first landmark. By
taking a second bearing measurement, only one position will satisfy the known
distance they walked. In this way, the hiker can estimate position, using a single
landmark.

This hiker analogy is also valid for rotational maneuvers where the distance
traveled by the camera between bearing measurements is determined by the
camera offset and a known vehicle rotational maneuver. In this way, it will be
shown that when the vehicle separation distances are small (e.g., < 100 m), very
accurate estimates of the range can be achieved. Results of pseudo 6-degree-of-
freedom simulations are presented for v-bar station-keeping, flyby orbits, and
circumnavigation orbits, and the sensitivity of the navigation error to key prob-
lem parameters is determined.

2 Problem Formulation

2.1 The Hill Clohessy Wiltshire Equations

The Hill Clohessy Wiltshire (HCW) equations [2] represent the chaser satellite
dynamics relative to a target satellite in a near-circular orbit:

ẍ = −2ωż + ax
ÿ = −ω2y + ay

z̈ = 3ω2z + 2ωẋ+ az

(1)

where [ax ay az ]T is the chaser thrust vector, and ω is the target orbital angular
rate given by

ω =

√
μ

a3
(2)

μ = 398601[km3/s2] is the Earth gravitational parameter, and a is the semi-
major axis. The coordinate system associated with the HCW equations is the
Local Vertical Local Horizontal (LVLH) coordinate frame depicted in Figure 1.
The origin is located at the center-of-mass of the target satellite, the x-axis is the
downrange or local horizontal direction, the y-axis is the cross-track direction,
and the z-axis is the altitude or local vertical direction.
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Fig. 1. LVLH coordinate frame

The HCW equations (1) can also be written in state-space form where the
state vector X = [x y z ẋ ẏ ż ]T consist of the relative position and velocity
vectors. Thus, the state-space model is

Ẋ = AX +Bu (3)

where

A =

[
03 I3
A21 A22

]
, A21 =

⎡
⎣0 0 0
0 −ω2 0
0 0 3ω2

⎤
⎦ A22 =

⎡
⎣ 0 0 −2ω

0 0 0
2ω 0 0

⎤
⎦ (4)

B =

[
03
I3

]
u =

[
ax ay az

]T
(5)

In the absence of thrust, the HCW equations have an analytic closed form solu-
tion [23]

X = ΦX0 (6)

where Φ is the associated state transition matrix and X0 is the initial conditions
vector.

2.2 Angles-Only Navigation

For angles-only navigation problems, the relative azimuth α and elevation ε
angles are commonly modeled by assuming that the camera is mounted at the
chaser center-of-mass as shown in Figure 2. In this case, α and ε are defined by
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tan (α) =
y

x
tan (ε) =

z√
y2 + x2

(7)

where x, y, and z are the components of the relative position between the target
center-of-mass and the chaser satellite center-of-mass in the LVLH frame as given
in Eq. (1).

Fig. 2. Azimuth and elevation angles in LVLH coordinate frame

3 The Range Observability Problem

3.1 Range Observability without a Camera Offset

When the camera is assumed to be mounted at the the chaser center-of-mass,
the azimuth and elevation angles defined in Figure 2 can be recast in the form
of a line-of-sight (LOS) unit vector measurement ir,

ir =

⎡
⎣ cos (ε) cos (α)
cos (ε) sin (α)

sin (ε)

⎤
⎦ (8)

Similarly, the time-varying azimuth α (τ) and elevation ε (τ) measurements, over
an observation time, will produce a LOS time-history ir (τ),

ir (τ) =

⎡
⎣ cos [ε (τ)] cos [α (τ)]
cos [ε (τ)] sin [α (τ)]

sin [ε (τ)]

⎤
⎦ (9)

The time-history of the LOS unit vector is simply the relative position vector
divided by the range separating the two spacecraft

ir(τ) =
r (τ)

‖r (τ)‖ (10)
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Since the solution to the linear HCW equations given in Eq. (6) can be written
in the form [

r (τ)
v (τ)

]
=

[
Φrr (τ) Φrv (τ)
Φvr (τ) Φvv (τ)

] [
r0
v0

]
(11)

the time-history of the LOS unit vector in Eq. (10) can be written as

ir (τ) =
Φrr (τ) r0 + Φrv (τ) v0
‖Φrr (τ) r0 + Φrv (τ) v0‖ (12)

The observability problem asks whether or not the initial position and velocity
of the chaser can be uniquely determined from the time-history of the LOS unit
vector, i.e. from angle measurements alone. To answer this question, Woffinden
and Geller [23] show that if the initial conditions are scaled by an arbitrary
value, ρ, the resulting LOS time-history, iρr (τ), is no different than the LOS
time-history ir (τ) produced by the unscaled initial conditions

iρr (τ) =
Φrr (τ) ρr0 + Φrv (τ) ρv0

‖Φrr (τ) ρr0 + Φrv (τ) ρv0‖ =
Φrr (τ) r0 + Φrv (τ) v0
‖Φrr (τ) r0 + Φrv (τ) v0‖ = ir (τ) (13)

Thus, the initial position and velocity of the chaser cannot be uniquely de-
termined from the time-history of the LOS unit vector, and, in particular, the
range to the target is unobservable.

3.2 Range Observability with a Camera Offset

The purpose of this paper is to show that the state vector, including the range,
is observable when the camera is offset from the chaser center-of-mass. Thus, the
key to demonstrating observability is to first properly model the position of the
camera with respect to the center-of-mass of the chaser.

If the camera is located at the center-of-mass of the chaser, the position vector
of the camera with respect to the target in the camera frame rCamera

c is defined
by

rCamera
c = TBody→CameraTLV LH→BodyrLV LH (14)

where rLV LH denotes the relative position of the chaser center-of-mass with
respect to the target satellite center-of-mass in the LVLH frame, TLVLH→Body

is the transformation matrix from the LVLH frame to the body frame, and
TBody→Camera is the transformation matrix from the body frame to the camera
frame.

Now, let the position of the camera with respect to the chaser center-of-mass
in the chaser body frame be defined as

dBody =
[
dx dy dz

]T
(15)

With a camera offset, Eq. (14) becomes

rCamera
c = TBody→CameraTLVLH→BodyrLV LH + TBody→CameradBody (16)
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Without loss of generality, it is assumed that

TBody→Camera = I (17)

and Eq. (16) reduces to

rCamera
c = rBody

c = TLVLH→BodyrLV LH + dBody (18)

Denoting the position of the camera with respect to the target in the LVLH
frame simply as rc, we have

rc = rLV LH
c = rLV LH + TBody→LVLHdBody (19)

The corresponding azimuth and elevation relative angles are then given by

tan (αc) =
[rc]y
[rc]x

tan (εc) =
[rc]z√

[rc]
2
y + [rc]

2
x

(20)

Notice that when the camera offset vector is zero, the angles in Eq.(20) reduce
to those without the camera offset as defined in Eq.(7).

Additionally, the time varying azimuth αc (τ) and elevation εc (τ) measure-
ments, over an observation time, will produce a LOS time-history irc (τ),

irc (τ) =

⎡
⎣ cos [εc (τ)] cos [αc (τ)]
cos [εc (τ)] sin [αc (τ)]

sin [εc (τ)]

⎤
⎦ (21)

Since the time-history of the LOS unit vector is

irc(τ) =
rc (τ)

‖rc (τ)‖ (22)

Eq. (11) can again be utilized to produce

irc (τ) =
Φrr (τ) r0 + Φrv (τ) v0 + TBody→LVLHdBody

‖Φrr (τ) r0 + Φrv (τ) v0 + TBody→LVLHdBody‖ (23)

The aim of this paper is to show that the position/velocity state vector, in-
cluding the range, is observable when the camera offset dBody is non-zero, i.e.,
that there exists only one set of initial conditions, r0, v0, that will produce the
observed LOS time-history, irc (τ).

4 Extended Kalman Filter

Based on the dynamics model and measurement model in Section 2, an extended
Kalman filter is developed for this problem. The dynamic model of the filter is
based upon the HCW equations in Eq. (3), hence it is a linear model. However,
the measurement model is based on the nonlinear angle measurements as given
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in Eq.(20). The first step in the Kalman filter is the prediction of the state and
its associated covariance as given by [27]:

The state and state error covariance propagation equations are

x̂−
k+1 = Φx̂+

k (24)

P−
k+1 = ΦP+

k ΦT +Qk (25)

where Pk is the state error covariance matrix, Φ is the state transition matrix,
and Qk is the power-spectral density of the process noise. The state and state
error covariance update equations are given by

x̂+
k+1 = x̂−

k+1 +Kk+1

[
zk+1 − h(x̂−

k+1)
]

(26)

P+
k+1 = (I −Kk+1Hk+1)P

−
k+1 (27)

where the measurement zk+1 consist of the angles αc and εc, and the estimated
measurements h(x̂−

k+1) are given by Eq. (20).
The Kalman gain is given by

Kk+1 = P−
k+1H

T
k+1

(
Hk+1P

−
k+1H

T
k+1 +Rk+1

)−1
(28)

where the superscript (·)− represents the predicted quantity (before measure-
ment update), the superscript (·)+ represents the updated quantity (after mea-
surement update). The covariance of the measurement noise is denoted by Rk+1.

The process noise covariance matrix Qk can be obtained by

Qk =

ˆ
Φ(τ)BQaB

TΦT (τ)dτ (29)

A trapezoidal integration of the above equation yields [12]:

Qk ≈ 1

2

[
ΦkBQaB

TΦT
k +BQaB

T
]
Δt (30)

where

Qa = qaI3×3 (31)

The corresponding measurement sensitivity matrix is obtained by differenti-
ating the relative azimuth and elevation angles given Eq. (20) with respect to
the relative position vector

H =

[ ∂α
∂rc
∂ε
∂rc

]
=

⎡
⎢⎣

− [rc]y
[rc]

2
xy

[rc]x
[rc]

2
xy

0 03x3

− [rc]x[rc]z
‖rc‖2

√
[rc]

2
xy

− [rc]y [rc]z

‖rc‖2
√

[rc]
2
xy

√
[rc]

2
xy

‖rc‖2 03x3

⎤
⎥⎦ (32)

where [rc]
2
xy = [rc]

2
x + [rc]

2
y.
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The initial state error covariance, P0, will be defined in the next section. The
corresponding initial state of the true orbit is

X0 = xOrbit
0 + δx0 (33)

where xOrbit
0 is the exact initial condition of the desired orbit, and δx0 is a

random initial condition with zero mean and covariance P0.
To explore the observability of angles-only navigation, with and without cam-

era offset, we examine the observability Gramian of the linearized system and
both the variance of the estimated range error and the variance of the position
error perpendicular to the LOS.

The observability Gramian is defined as[12]:

M =

N∑
i=1

ΦT (i, 0)HT (i)H(i)Φ(i, 0) (34)

The variance of the estimated range error, i.e., the LOS position error variance
is given by

σ2
los = HlosPHT

los, Hlos =
[
rTc / ‖rc‖ 01x3

]
(35)

and the variance of the position error perpendicular to the LOS

Pperp = HperpPHT
perp, Hperp =

[
I3×3 − (rc) (rc)

T
/ ‖rc‖2 03×3

]
(36)

σ2
perp = Tr (Pperp) (37)

5 Relative Orbit Types

In orbital relative motion there are natural relative trajectories that are very
useful for rendezvous and inspection. In this research we employ three of them:
1) v-bar, 2) flyby and 3) football orbits.

5.1 V-bar Station-Keeping

V-bar station-keeping refers to the case where the chaser is station-keeping on the
target local-horizontal in the direction of the inertial velocity vector at a position
forward or behind the target. Figure 3 presents a v-var approach scenario from
step 1 to 4, while v-bar station-keeping may be observed when the chaser is fixed
in one of the points relative to the target

The initial position/velocity state vector for this scenario is:

Xvbar
0 =

[
x0 0 0 0 0 0

]T
, x0 = 1m, 10m (38)
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Fig. 3. V-bar approach scenario for rendezvous and docking

5.2 Flyby Orbit

In the flyby trajectory, the chaser approaches or moves away from the target
along a linear trajectory above or below the target as observed in the LVLH
frame. This trajectory requires the chaser to be in a co-elliptic inertial orbit
with the target as shown in Figure 4. The initial state vector for this scenario is:

Xflyby
0 =

[
x0 0 z0

3
2h0ω 0 0

]T
, z0 = 1m, or 10m (39)

where x0 is the initial required downrange position.

2

Inertial LVLH
1

3

4

3 24 1

Altitude

Downrange

z0

z0

Fig. 4. Flyby, co-elliptic approach scenario

5.3 Circumnavigating (Football) Orbit

When the target and chaser have the same orbital periods, a repeating relative
motion of the chaser near the target occurs. This is also known as a football or-
bit. In the football orbit, the chaser is placed on the v-bar at a given downrange
distance from the target with an initial velocity required for a football orbit
trajectory as shown in Figure 5. This unique elliptical relative motion is often
employed to keep the chaser in a holding pattern downrange from the target for
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station keeping, or in a circumnavigation orbit for target inspections. The initial
position/velocity state vector for this scenario is:

Xfootball
0 =

[
x0 0 0 0 0 1

2x0ω
]T

, x0 = 1m, or 10m (40)

�v

�v

2

Inertial
LVLH

1

3

4

3

2

4

1

Downrange

Altitude

Target

Chaser

Target

Chaser

Fig. 5. Circumnavigation football orbit scenario

5.4 Initial Relative Position Errors

The variances of the initial relative state errors are the same for all of the above
orbits and depend only on the initial relative distance of target. When the initial
chaser location is 1m away from the target, the initial state error covariance is

P0,1m = Diag
[
(0.1m)2 (0.1m)2 (0.1m)2 (10−4m/s)2 (10−4m/s)2 (10−4m/s)2

]
(41)

When the initial chaser location is 10m away from the target, the initial state
error covariance is

P0,10m = Diag
[
(1m)2 (1m)2 (1m)2 (10−3m/s)2 (10−3m/s)2 (10−3m/s)2

]
(42)

While these initial state errors are not associated with any particular mission
or navigation system, they are reasonable and primarily used to demonstrate
range observability. Values for the initial true trajectory errors are obtained by
sampling the above covariance matrices.

6 Range Observability under Vehicle Rotation

The observability problem was examined for three types of relative motion or-
bits – v-bar station-keeping, flyby orbits, and football orbits (also known as a
circumnavigation orbits). In each case, the chaser was commanded to rotate per-
pendicular to the LOS, back and forth, through a prescribed angle for a period
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of 10 minutes, a time period sufficient to determine whether or not the range is
observable.

For each type of orbit, a sensitivity analysis was conducted for a range of
several key problem parameters. The parameters and their assigned values are
summarized in Table 1. The chaser distance is the initial range between the
chaser center-of-mass and the target center-of-mass. The measurement noise,
σNoise, is the 1-σ value of the camera angle measurement noise. The camera offset
is the distance of the camera from the chaser center-of-mass . The maximum
chaser rotation angle, Crotation, is the maximum chaser rotation angle. The time
to rotate, Ctime, is the time it takes for the camera to complete its maximum
turn. These last two parameters define the angular rotation rate of the chaser.
In all cases, the power-spectral density of the acceleration process noise is given
by qa = 10−10km2/sec3. This value of qa produces approximately 6m meters of
position error in LEO during the 10 minutes rotation period.

Table 1. Sensitivity analysis parameters

Type Values

Orbit type v-bar, flyby, football

Chaser distance [m] 1, 10

Measurement noise [rad], 1σ 0.001, 0.0001

Camera offset [m] 0.1, 0.2, 0.5

Maximum chaser rotation angle [deg] 10, 45

Time to rotate [sec] 30, 60

To quantify navigation performance, the LOS position error variance and the
variance of the position error perpendicular to the LOS are employed as measures
of range observability. When the camera is located at the chaser center-of-mass,
the range is not observable and the LOS position error variance is constant or
diverging. When the camera is offset from the chaser center-of-mass, the LOS
position error variance approaches zero indicating range observability. This is
verified by examining the condition number of the observability Gramian..

To show this, 10 minute simulations were run. Perfect initial conditions were
used as defined for each orbit in Eqs. (38)-(40). Additionally, the measurement
noise covariance in the Kalman filter was assigned, but the actual measurements
were perfect measurements. The chaser rotation sequence is composed of four
rotations: a positive rotation about the body y-axis, , a positive rotation about
the body z-axis, and equal but opposite rotation about the body y-axis, and a
final equal but opposite rotation about the body z-axis.

6.1 V-bar Station-Keeping

For this first scenario,Crotation = 10 deg,Ctime = 30 sec, and σNoise = 0.001 rad.
The chaser is initial located on the v-bar at a distance 1m from the target or 10m
from the target. Figure 6 shows the 3-σ LOS position estimation errors (left),
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the 3-σ position estimation errors perpendicular to the LOS (middle) and log of
the condition number of the observability Gramian matrix (right). The results
for the 1m v-bar position are shown on the top and the results for the 10m v-bar
position are shown on the bottom. When the camera offset is zero (dark blue
curves) the LOS position error diverges regardless of the chaser distance from
the target. On the other hand, when the camera offset relative to the chaser
center-of-mass is non-zero, the LOS position error convergences as the chaser
rotations are employed, regardless of the distance from the target. That is, the
range becomes observable. As the camera offset is increased, the LOS position
error decreases further providing improved range estimation. A small penalty
for obtaining range observability is reflected in a slightly increased variance of
the position error perpendicular to the LOS compared with the zero offset case.
The results of the Gramian condition number support the observed behavior of
the LOS position error (range) variance, and the conclusion that the range is
observable.
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Fig. 6. V-bar station-keeping position estimation performance. LOS 3 − σ position
estimation errors (left), the 3 − σ position estimation errors perpendicular to LOS
(middle) and log of the condition number of the observability Gramian matrix (right)
are shown as a function of the v-bar position, 1m (top), and 10m (bottom), and the
camera offset.

Next, the effect of the rotation angle and the rotation rate on navigation per-
formance was examined. In all cases, the camera measurement noise is σNoise =
0.001rad and the chaser is on the v-bar, 1m from the target. In addition, three
different values for the camera offset are selected. The results in Figure 7 show
that larger chaser rotation angles improve the range observability. This is due
to the fact that the larger rotation angles provide a larger camera displacement
and a better baseline for the (pseudo-stereo) angle measurements. Figure 7 also



364 I. Klein and D.K. Geller

shows that faster rotation rates improve performance. In this case, the faster
rotation rates merely provide more useful measurements at large angles. The
effect of the rotation angle and the rotation rate on the perpendicular error is
opposite their effect on the LOS position error, i.e., larger rotations and faster
rotation rates produces slightly larger errors. Finally, it can also be seen that as
camera offset is increased, the LOS position variance decreases, while the error
perpendicular to the LOS variance increases slightly. The above analysis was
repeated with the chaser on the v-bar at a position 10m from the target, and
the same trends were observed.
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Fig. 7. 3− σ LOS position estimation errors (left) and log of the condition number of
the observability Gramian matrix (right) at the end of the 10 min simulation with the
chaser on the v-bar, 1m from the target

6.2 Monte Carlo Results

A subset of the scenarios examined above were re-examined with 800 sample
Monte-Carlo runs to validate the single run analysis. At the beginning of each
run, the initial position and velocity errors were randomly sampled from the
covariance matrices given in Eqs. (41)-(42) based on the initial chaser-target
separation. The Monte-Carlo results indeed confirmed that range observability
is achieved with a camera offset and also provided confirmation of the above
single-run analysis.

V-bar Station-Keeping. For example, consider the case where the chaser is
on the v-bar, 1m from the target, and the camera measurement noise is σNoise =
0.001rad. Figure 8 shows the final position estimation errors as determined by
the the Monte Carlo analysis. These results can be compared to the single-run
results in Figure 6 . The Monte Carlo LOS position errors match the single run
results very nicely. The Monte Carlo perpendicular position errors are slightly
different, but nonetheless very small.
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Fig. 8. Monte-Carlo results for the v-bar station keeping trajectory. 3−σ LOS position
errors (left) and 3 − σ position errors perpendicular to LOS (right) at the end of the
10 min simulation with the chaser on the v-bar, 1m from the target.

Figure 9 shows the final 3 − σ position errors as a function of rotation angle
(10deg/45deg), camera offset (0.1m/0.5m), initial separation (1m/10m), and
measurement noise (0.001rad / 0.0001rad), where the bottom plot is an ex-
panded view of the upper plot. In all cases, a fast rotation rate is being used.
The observed trends are the same observed in the single runs: 1) larger rotation
angles produce smaller LOS position errors; 2) larger the camera offset produces
smaller LOS position errors; 3) smaller measurement noise reduces position and
velocity errors, and 4) smaller separation distances produces smaller position
and velocity errors.

Figure 10 presents 3− σ LOS position errors for eight different cases at the
end of the 10 min simulation. It is observed that the log of the Gramian matrix
condition number trends are the same as the 3 − σ LOS position errors and
mentioned earlier.

Flyby Orbit. Figure 11 shows the final 3 − σ position errors as a function
of rotation angle (10deg/45deg), camera offset (0.1m/0.5m), and measurement
noise (0.001rad/0.0001rad) for a 1m flyby orbit above the target. The trends
are identical to the results of the single-runs and identical to the results of the
v-bar Monte Carlo analysis, and the numerical values of the final position errors
are comparable to previous results.

Circumnavigating (Football) Orbit. Figure 12 shows the final 3−σ position
errors as a function of rotation angle (10deg/45deg), camera offset (0.1m/0.5m),
and measurement noise (0.001rad/0.0001rad) for a 1m football orbit as the
chaser passes in front of the target. The trends are again identical to the re-
sults of the single-runs and identical to the results of the v-bar Monte Carlo
analysis, and the numerical values of the final position errors are comparable to
previous results.
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Fig. 9. Monte-Carlo results for the v-bar station keeping trajectory. 3−σ LOS position
errors at the end of the 10 min simulation with the chaser on the v-bar. Bottom plot
zooms into the lower part of theis an expanded view of the upper plot.
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Fig. 10.Monte-Carlo results for the v-bar station keeping trajectory. 3−σ LOS position
errors at the end of the 10 min simulation with the chaser on the v-bar.

 10deg  45deg 
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

3 
σ

LO
S
 [m

]

0.1m Offset, σNoise
=0.001rad

0.1m Offset, σNoise
=0.0001rad

0.5m Offset, σNoise
=0.001rad

0.5m Offset, σNoise
=0.0001rad

Fig. 11. Monte-Carlo results for flyby orbit. 3 − σ LOS position errors at the end of
the 10 min simulation with the chaser on a flyby orbit above the target.



Zero Δv Solution to the Angles-Only Range Observability Problem 367

 10deg  45deg 
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

3 
σ

LO
S
 [m

]

0.1m Offset, σNoise
=0.001rad

0.1m Offset, σNoise
=0.0001rad

0.5m Offset, σNoise
=0.001rad

0.5m Offset, σNoise
=0.0001rad

Fig. 12. Monte-Carlo results for a football orbit. 3− σ LOS position errors at the end
of the 10 min simulation with the chaser on a football orbit moving upward in the
radial direction from the v-bar.

0.5m Offset, Fast 0.5m Offset,Fast
0

0.005

0.01

0.015

0.02

0.025

0.03

3 
σ

LO
S
 [m

]

Football
Flyby
V-bar

Fig. 13. Monte-Carlo results for v-bar station-keeping, flyby orbit, and football orbit.
3− σ LOS position errors at the end of the 10 min simulation are shown.

Performance Comparison. Figure 13 shows a comparison of the final LOS
position errors for the v-bar, flyby, and football orbits. For the specified rotation
sequence, the v-bar trajectory produced the best performance. The flyby and
football orbit results can undoubtedly be improved by considering other rotation
sequences.

7 Conclusions

During orbital proximity operations, past research has shown that angles-only
navigation during coasting flight suffers from a lack of range observability. This
paper has shown that the angles-only range observability problem during coast-
ing flight is solved by properly including the offset of the camera from the chaser
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center-of-mass in the problem formulation, and by applying appropriate vehi-
cle rotations. Although this result is significant, it is limited, since the ability
to estimate range diminishes with chaser-target separation distance. It has also
been shown that the ability to estimate range improves with larger camera offset
distances, larger maneuvers, and faster maneuvers. In all cases examined, the po-
sition estimation error perpendicular to the line-of-sight remains approximately
unchanged.
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Abstract. Navigation plays a major role in space missions. For a cis-
lunar space mission, such as Chandrayaan-2, deep space radar, inertial
navigation system and optical navigation system are used to determine
the position and velocity of the spacecraft.

In the present work, a mathematical model of Chandrayaan-2 mo-
tion is developed which includes J2 effect of the Earth and the Moon,
solar gravitational perturbation and solar radiation pressure. Based on
this model a nominal lunar transfer trajectory is simulated. Models for
ground-based measurements (azimuth, elevation, range and range rate)
are described. Time delays due to finite speed of electromagnetic waves
are considered in the measurement. Effects of tropospheric and iono-
spheric refraction on measurements are incorporated in the simulation.
Tropospheric errors are corrected using Saastamoinen zenith range cor-
rection model and ionospheric range errors are corrected using dual-
frequency measurements. MATLAB codes are developed to simulate the
observations from four ground station facilities, viz. Indian Deep Space
Network, (IDSN) Byalalu, Karnataka, India as well as Deep Space Com-
munication Complex, Goldstone, California, USA, Deep Space Com-
munication Complex, Madrid, Spain and Deep Space Communication
Complex, Canberra, Australia.

The polar measurements are used in Extended Kalman Filter (EKF)
algorithm to estimate position and velocity of Chandrayaan-2 in the iner-
tial Cartesian frame. To compensate for the time delay in measurements,
the states are propagated till the time corresponding to the delayed mea-
surements and then updated. These updated states are then propagated
further till the current time to obtain the current estimates. This tech-
nique results in 11.79 km of range uncertainty (1σ) and 6.93 m/s of speed
uncertainty (1σ) at the time of arrival at the insertion point to the lunar
parking orbit of Chandrayaan-2.
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1 Introduction

Navigation is the process of monitoring position and velocity of a vehicle moving
from one place to another. Navigational techniques involve locating the position
of a vehicle of interest with respect to a suitable reference frame. For missions
like Chandrayaan-2, position and velocity are measured using ground tracking
system. These quantities along with acceleration due to thrust are also measured
by on board accelerometer, gyroscope and celestial navigation. Dynamic model
of the spacecraft motion is well established in literature. Highly accurate gravity
models of the Earth and the Moon have been developed [5]. Several nonconser-
vative forces like solar radiation pressure, atmospheric drag have been modeled
very accurately [5]. The uncertainties in position and velocity of spacecraft are
the result of the uncertainties in injection position and velocity, measurement
errors and guidance corrections. Another significant factor contributing to the
uncertainty in the translunar trajectory is the translational noise, which is the
result of imperfectly coupled rotational maneuvers, venting, etc. This may be
modeled as process noise [2]. For all these reasons, propagation of initial condi-
tions results in huge uncertainties in final position and velocity. To reduce the
uncertainties, various estimation techniques are used. The estimation process
involves collecting tracking data (azimuth, elevation, range and range rate) from
ground stations and using them batch-wise in least square estimation algorithm
or sequentially in Extended Kalman Filter algorithm. For on board navigation,
spacecraft position is measured using optical navigation system and Inertial Nav-
igation System (INS) and then Kalman filter is used to estimate position and
velocity.

The field of cislunar navigation is researched extensively since sixties. Recent
notable works are Chandrayaan-1 precise orbit determination and investigation
of on board navigation errors of lunar trajectory of Orion space vehicle [2]. Clark
et al have documented design and analysis of navigation system for the Orion
translunar and transearth phases of the mission [2]. They have shown that, with
infrequent ground station measurement updates, the on board navigation system
is capable of estimating the position and velocity with 3 km and 0.06 m/s of
uncertainty (1σ) respectively at the end of the lunar transfer trajectory. Lightsey
et al have demonstrated autonomous cislunar navigation simulation in [6].

Vighnesam et al [8] have documented precise orbit computation technique
used in Chandrayaan-1 mission. For orbit propagation in ground based naviga-
tion system, EGM-96 Earth gravitational model and LP100K lunar gravitational
model were used. The trajectory was generated by integrating the equation of
motion using Gauss-Jackson-Merson’s 8th order method. Least square estima-
tion technique was used to estimate position and velocity of Chandrayaan-1.

In the present work gravitational harmonics of the Earth and the Moon higher
than J2 are not considered in the mathematical model of spacecraft motion.
Additionally solar gravitational perturbation and solar radiation pressure have
been considered. For integration, Runge-Kutta 4th order method is used. For
estimation of Chandrayaan-2 state vector, Extended Kalman Filter is used.
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2 Dynamic Model of Spacecraft Motion in Lunar
Transfer Trajectory

The motion of the spacecraft is influenced by the Sun, the Earth and the Moon
during the flight along a lunar transfer trajectory. Nonetheless, for high navi-
gation accuracy in a real application, the influence of the Sun’s gravity, solar
radiation pressure, nonuniform gravitational fields of the Earth and the Moon
have to be considered. the principle aim of the project is to study the navigational
aspects of Chandrayaan-2 and not trajectory generation, so simpler equation of
motion is discussed neglecting higher order gravitational harmonics of the Earth
and the Moon to generate nominal trajectory.

2.1 Acceleration of the Spacecraft due to the Gravitational Fields
of the Earth, the Moon and the Sun

If it is assumed that, the spacecraft moves entirely under the Earth’s gravita-
tional influence, then according to Newton’s Law of Gravitation the equation of
motion of the spacecraft will be,

r̈+
GM⊕
r3

r = 0 (1)

where, r is the position vector of the spacecraft with respect to center of the
Earth and G is universal gravitational constant. To incorporate gravitational
effect of the Moon in the equation of motion Cowell’s perturbation technique is
used. In Cowell’s perturbation technique the Earth and the spacecraft are treated
as a single system and the acceleration due to the other bodies (the Sun and the
Moon in this case) are considered as a disturbance [1]. The main acceleration
due to the central body Earth is given by the equation 1. The perturbation due
to external mass M (the Sun or the Moon) is [5]

r̈ = GM

(
s− r

|s − r|3 − s

s3

)
(2)

Here s is the position vector of mass M . Using this equation, solar gravitational
perturbation and lunar gravitational perturbation is calculated separately and
are added with to the right side of the equation 1 and then integrated numerically
to obtain the trajectory.

2.2 Gravitational Harmonics

The acceleration due to nonuniform shape and density of the Earth is [5],

ẍ =
∑
n,m

ẍnm ÿ =
∑
n,m

ÿnm z̈ =
∑
n,m

z̈nm (3)
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where

ẍnm =
GM

R⊕2 (−Cn0Vn+1,1) ,m = 0

=
GM

R⊕2

1

2
(−CnmVn+1,m+1 − SnmWn+1,m+1)

+
(n−m+ 2)!

(n−m)!
(+CnmVn+1,m−1 + SnmWn+1,m−1), m > 0

ÿnm =
GM

R⊕2 (Cn0Wn+1,1), m = 0

=
GM

R⊕2

1

2
(−CnmWn+1,m+1 + SnmVn+1,m+1)

+
(n−m+ 2)!

(n−m)!
(−CnmWn+1,m−1 + SnmVn+1,m−1), m > 0

z̈nm =
GM

R⊕2 (n−m+ 1).(−CnmVn+1,m − SnmWn+1,m)

Here Cnm terms are gravitational coefficient terms, V nm and Wnm terms are
calculated using the recursive relations given in [5]. These acceleration terms are
given in the earth fixed frame. The same formulation can be used to calculate
acceleration due to nonuniform shape of the Moon. In trajectory simulation of
Chandrayaan-2 C20 terms of the Earth and the Moon (which are the Earth and
the Moon J2 terms) are considered. Higher order terms are neglected in our
simulation.

2.3 Solar Radiation Pressure

Acceleration due to solar radiation pressure is given by [5]

r̈ = −P�CR
A

m

r�
r�3

AU2 (4)

where P� =Solar radiation pressure
CR =Solar radiation pressure coefficient of the spacecraft
r� =Position of the spacecraft with respect to the Sun in ECI frame
This formulation is used in the present work to simulate acceleration due to solar
radiation pressure.

2.4 Lunar Transfer Trajectory Simulation

Cowell’s perturbation technique is used to simulate the nominal trajectory of
Chandrayaan-2. In this simulation, solar gravitational perturbation, solar radi-
ation pressure, lunar gravitational perturbation, J2 effect of the Earth and J2
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Fig. 1. Trajectory of Chandrayaan-2 using Cowell’s perturbation technique

effect of the moon are considered. The gravitational coefficient of the Earth is
taken from JGM-3 gravity model [5] and the graviational coefficient of the moon
is taken from LP150Q lunar gravity model [7].

Figure 1 shows the transfer trajectory of Chandrayaan-2 in the ECI frame.
This trajectory is generated by intigrating the equations mentioned in section
2.1. For the simulation of tracking data and estimation, this trajectory is used.

3 Ground Tracking Station Measurement Model

3.1 Azimuth and Elevation Measurement

If r and R be the position vectors of the spacecraft and the ground tracking
station respectively in ECI frame then, the angle measurements can be modeled
using the vector d = r − R from the ground station to the spacecraft. Due
to the finite velocity of electromagnetic wave, the geometric relative position
d0 = r(t)−R(t) at the time of signal reception is different from the true signal
path, which can be expressed as the vector

d = r(t− τ) −R(t) (5)

Here R(t) is the ground station position at the reception time, r(t − τ) is the
position of the spacecraft at the transmission time, τ is the signal travel time
and c is the speed of electromagnetic wave. For the simulation purpose τ can be
calculated by solving the implicit light-time equation [5]

cτ = |r(t− τ)−R(t)| (6)

This equation can be solved iteratively and the solution gives the true signal
path in the inertial frame which is different from the apparent direction to the
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spacecraft for a moving ground station. Neglecting the special relativistic effects,
the observed direction is given by the vector [5]

d′ = d+ τdV (7)

where V is the inertial velocity of the ground station relative to the geocenter.
Thus the apparent position [5]

d′ ≈ r(t− τd)−R(t− τd) (8)

From this vector d′ the elevation and azimuth are measured. For simulation
perpuse, we will consider azimuth and elevation calculated from d′ vector as the
angle measurments.

3.2 Range Measurement and Associated Time Delay

In classical two-way ranging technique, signal is radiated from the ground station
to the spacecraft. The spacecraft transponder receives the signal and transmits
back to the ground station. The ground station receives the transponded signal
and determines the signal travel time τ . The signal travel time consists of up-link
light time τu and down-link light time τd. The down-link light time equation is
governed by equation 6. The up-link light time equation is expressed as [5]

cτu = |r(t− τd)−R(t− τd − τu)| (9)

This equation has to be solved iteratively after solving down-link light time
equation. The two-way range measurement ρ can be modeled as [5]

ρ =
1

2
(ρu + ρd)

=
c

2
(τu + τd) (10)

Here ρu is the up-link range ρ(t − τ) and ρd is the down-link range ρ(t). Using
Taylor series expansion, we can write

ρ(t− τ) = ρ(t− τ

2
− τ

2
)

= ρ(t− τ

2
)− τ

2
ρ̇+

(τ
2

)2

ρ̈− ....∞ (11)

and

ρ(t) = ρ(t− τ

2
+

τ

2
)

= ρ(t− τ

2
) +

tau

2
ρ̇+

(τ
2

)2

ρ̈+ ....∞ (12)

From the equations 11 and 12 neglecting higher order terms one can write,

ρ
(
t− τ

2

)
≈ 1

2
[ρ(t− τ) + ρ(t)]

=
1

2
(ρu + ρd) (13)
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This equation shows that, average two-way range at time t is nearly equal to the
geometric range between the spacecraft and the ground station at time

(
t− τ

2

)
.

From this observation, one can conclude that the range measurement is delayed
by τ

2 second.

3.3 Range Rate Measurement and Associated Time Delay

Doppler frequency shift is utilized to measure the range rate of the spacecraft.
Two-way Doppler measurements are obtained by integrating Doppler counts over
a count-time interval tc. The measured range rate is modeled as the difference
of the two-way ranges at the end and at the beginning of the count-time interval
[4]. It can be shown that the average range rate measurement can be modeled
as [5]

˙̄ρ(t) =
c

2

(τ2u + τ2d)− (τ1u + τ1d)

tc
(14)

It has been shown in [4] that, the average range rate at time t2 can be approxi-
mated as

˙̄ρ(t2) ≈ ρ̇

(
t1 +

ti
2
− 1

2
(τ2d + τ1d)

)

= ρ̇

(
t2 − 1

2
(ti + τ2d + τ1d)

)
(15)

This equation shows that, the Doppler measurement is delayed by 1
2 (tc+τ2d+τ1d)

second.

4 Tracking Data from Ground Station

Simulation of tracking data generated with the ground station radars is done as-
suming Chandrayaan-2 is following the trajectory generate simulation described
in section 2.1. The simulation results are obtained using the equations and pro-
cedure described in section 3.1 and section 3. The tracking data, time delay and
approximation errors are generated for four ground tracking stations: Byalalu,
Goldstone, Madrid and Canberra. Tracking data simulation program was verified
by generating tracking data of a polar satellite and the data were compared with
the tracking data provided in [5]. The following figures show the tracking data of
Chandrayaan-2 for IDSN Byalalu. Results for Goldstone, Madrid and Canberra
are included in the Appendix. In figures 2 and 3 the azimuths and elevations
calculated from true and apparent position vectors (section 3.1) are compared to
study the effect of light-time. From the figures 2 and 3 it can be concluded that
the errors due to the finite speed of electromagnetic wave (section 3) in azimuth
and elevation measurements are negligible. Here zero azimuth in the figure 2
corresponds to zero elevation in figure 3. For zero elevation the spacecraft is out
of view of the ground station, so at that time no measurements are available.
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Fig. 2. Azimuth measurement from IDSN, Byalalu and error in measurement due to
finite speed of electromagnetic wave

Fig. 3. Elevation measurement from IDSN, Byalalu and error in measurement due to
finite speed of electromagnetic wave

during this time the spacecraft is tracked by other ground stations. Here mea-
surements corresponding to elevation less than 15o are rejected because, lower
elevation angle associates with higher error due to troposphere and ionosphere.
Average range and range rate are calculated using equations 10 and 14 respec-
tively. These range and range rates are compared with the instantaneous range
and range rate at time (t− τ

2 ) and
(
t2 − 1

2 (ti + τ2d + τ1d)
)
respectively. Figures

5 and 6 indicate that range rate delay is always higher than range delay because
of the Doppler integration time tc.Figures 8 and 10 show that the error due to
Taylor series approximation is small as expected.
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Fig. 4. Up-link and down-link light time delay from IDSN, Byalalu

5 Sources of Error in Ground Station Measurements

The main sources of error in ground station measurements are tropospheric and
ionospheric interaction with electromagnetic wave and electronic noise. Elec-
tronic noise can be treated as white noise and can be accounted for using filter
or estimation algorithms. But the errors in the range and elevation caused by
troposphere and ionosphere has to be accounted for with rigorous modeling of
the errors as done below.

5.1 Tropospheric Refraction

Tropospheric refraction introduces range and elevation measurement errors. Goad
et al modified a general and accurate Hopfield tropospheric refraction model, to
use Saastamoinen zenith range correction [5]. According to Hopfield model, the
dry troposphere height h1 is determined from

h1[m] =
0.011385

N1 · 10−6
p[hPa] (16)

and the wet tropospheric height h2 is expressed as

h2[m] =
0.011385

N2 · 10−6

[
1255

T [K] + 0.05

]
e[hPa] (17)

Here N1 and N2 are the dry and wet tropospheric refractivity, respectively, T is
average temperature of the troposphere in Kelvin, p is the atmospheric pressure
and e is the partial pressure of water vapor. The tropospheric range correction
Δρ is given by [5]

Δρ = Cρ

2∑
j=1

Nj

106

9∑
i=1

αijr
i
j

i
(18)
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Fig. 5. Delay in range measurement

Fig. 6. Delay in range rate measurement

where Cρ=0.99841 for radio frequencies, and for measured elevation angle E, rj
is defined as

rj =
√
(R⊕ + hj)2 − (R⊕cosE)2 −R⊕sinE (19)

The coefficients of the polynomial (18) are defined in [5] The tropospheric cor-
rection of the elevation angle ΔE is given by [5]

ΔE = CE
4cosE

ρ

⎡
⎣ 2∑
j=1

Nj

106hj

(
7∑

i=1

(
βijr

i+1
j

i(i+ 1)
+

βijr
i
j

i
(ρ− rj)

))⎤
⎦ (20)
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Fig. 7. Range measurement from IDSN, Byalalu

Fig. 8. Range error due to the Taylor series approximation

where, CE=0.99841 for radio frequencies. The elevation correction coefficients
are defined in [5].

5.2 Ionospheric Refraction

Range error due to ionospheric refraction can be calculated from the following
equation [3]

Δρ =
40.3

f2
TECslant (21)
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Fig. 9. Range rate measurement from IDSN, Byalalu

Fig. 10. Range rate error due to Taylor series approximation, Byalalu

where, TECslant =
TEC
cosi and TEC is the total electron count along the signal

path. i is defined as [3]

i = sin−1 R⊕
R⊕ + h

cosE (22)

h is the mean ionospheric height and E is the measured elevation. Ionospheric
error correction can also be done using two signal frequencies [3]. Let the range
measurements for the two frequencies f1 and f2 be

ρf1 = ρtrue +
40.3

f2
1

TECslant (23)
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ρf2 = ρtrue +
40.3

f2
2

TECslant (24)

Here ρtrue is the true range. Subtracting 24 from 23,

ρf1 − ρf2 = 40.3TECslant

(
1

f2
1

− 1

f2
2

)
(25)

and

TECslant = (ρf1 − ρf2)
f2
1f

2
2

40.3(f2
1 − f2

2 )
(26)

After calculating TECslant one can use equation 21 to determine the range error,
or calculate ρtrue directly from either equation 23 or 24. But we have assumed
in our work here that the ground station have the facility for dual frequency
measurements.

5.3 Tropospheric Error Correction

Let the errors due to troposphere in range and elevation be Δρ and ΔE, respec-
tively. If the true range and elevation be ρt and Et, then from section 5.1 we can
write

Δρ = f1(Et +ΔE) (27)

ΔE = f2(Et +ΔE) (28)

The functions f1 and f2 are described in section 5.1. The above equations can
be solved iteratively to calculate the range and elevation error from the true
range and elevation measurement. Now the actual measurement from the ground
station is (ρ = ρt + Δρ + Δρion) and E = Et + ΔE. Δρion is the range error
due to ionosphere. We can use these as measurements in the range and elevation
correction model to calculate range and elevation error. The results are shown
in the subsequent figures. Here the error after correction corresponding to the
elevation greater than 15o.

5.4 Ionospheric Error Correction

For ionospheric error simulation, electron density data are collected from NASA
website for IDSN Byalalu, DSN Goldstone, Madrid and Canberra on September,
20, 2011 for 24 hours with 1 hour interval. We assume that for the next 2-3 days
the daily variation of electron density will be same. Electron density is integrated
to calculate TEC, and using the formulations described in 5.2 range error is
calculated for two frequencies (2GHz and 2.1GHz) assuming all the four ground
stations have this facility. Using the range measurements for the two frequencies,
the ionospheric error is corrected (section 5.2). The TEC, electron density plot
and the errors in range shown here corresponds to Byalalu tracking station.
The figures 14 and 15 are not continuous because the electron density data are
collected with one hour interval. Nonetheless, simulation using low resolution
data demonstrates that using dual frequency correction the ionospheric range
error can be corrected significantly (fig. 16).
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Fig. 11. Error in range and elevation measurement due to troposphere

Fig. 12. Error in elevation measurement after correction

6 Spacecraft Position and Velocity Estimation

After correction of the ground station observations using the procedure described
in 5 estimation algorithm is used in practice to determine the position and
velocity of the spacecraft. This is because the atmospheric corrections may not
eliminate the errors perfectly and electronic white noise always contaminate the
observations. Generally least square estimation or Kalman Filter algorithm is
used for estimation. In the current study, Extended Kalman Filter Algortihm
(EKF) is used to estimate the position and velocity of Chandrayaan-2.
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Fig. 13. Electron density variation with height for 20th September 2011

Fig. 14. Variation of TEC during lunar transfer at Byalalu

6.1 Extended Kalman Filter with Delay in Measurements

To compensate for the time delay in the measurements in the current study, the
states are propagated till the time corresponding to the measurement and then
states are updated. After that, the updated states are propagated till the current
time. A block diagram of this scheme is shown in 17. In the block diagram ZRR

and ZRAE are the range rate measurement and azimuth, elevation and range
measurement vector respectively. τrr and τr are the delay in range rate and
range respectively. The range rate delay τrr is greater than range delay τr due
to the count time interval tc (section 3.3). For this reason, states are updated
using range rate measurement at (t−τrr) and the updated states are propagated
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Fig. 15. Range error due to ionosphere for two frequencies

Fig. 16. Range error after tropospheric and ionospheric correction

till (t− τr). The range, azimuth and elevation measurements are associated with
the time (t− τr) (section 3.2). The states are updated using these measurements
at (t− τrr) and propagated till the time t.

6.2 Estimation of Position and Velocity

The correction for tropospheric and ionospheric errors are done to each set of
measurements sequentially and used for estimation of position and velocity of
the spacecraft. The algorithm used for estimation is explained in section 6.1. The
uncertainties in tracking data are given in the following table [5]. The initial po-
sition and velocity vector estimates are based on the first set of measurements.
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Fig. 17. Block diagarm of Kalman Filter algorithm for delay compensation

Table 1. Measurement uncertainties

Measured quantity 1σ of noise

Range 10m

Range rate 0.1 cm/s

Angles 0.01o

Fig. 18. Position estimation error in the ECI frame

Measurements from Byalalu and other tracking stations are used in the esti-
mation simulation. Simulation results of the estimation process are illustrated
and discussed below. Figures 18 and 19 show that the estimation errors are
confined within 3σ limit but the accuracy of the filter deteriorates with time.
This is because the azimuth and elevation noise. At the arrival to the Moon,
the position uncertainty due to azimuth and elevation noise is roughly 76 km.
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Fig. 19. Velocity estimation error in the ECI frame

Fig. 20. Magnitude of position and velocity estimation errors in the ECI frame

Table 2. Estimation errors and uncertainties at the time of arrival at the Moon

Axis Position 1σ of Velocity 1σ of
error (km) uncertainty (km) error (m/s) uncertainty (m/s)

X -28.77 6.54 1.29 4.36

Y -14.25 4.22 0.55 2.41

Z -0.22 9.57 0.83 5.01

Using the Kalman filter this uncertainty is contained within 10 km (fig. 20). The
errors and uncertainties at the time of arrival to the vicinity of the Moon after
estimation are shown in the table 2.
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7 Conclusion

The aim of this project is to understand navigational aspects of Chandrayaan-2
mission, simulate tracking data generated by ground tracking stations consider-
ing practical measurement and error models, and estimate position and velocity
of Chandrayaan-2 from these data. Lunar transfer trajectory is simulated con-
sidering J2 effect of the Earth and the Moon, solar gravitational perturbation
and solar radiation pressure. Range, range rate, azimuth and elevation Measure-
ment models for ground tracking station are developed, and time delays due to
the finite speed of electromagnetic wave, tropospheric and ionospheric errors are
included in the measurement simulation. Correction procedure for tropospheric
and ionospheric errors is discussed. It is shown that, as known, using dual fre-
quency measurements, ionospheric range error can be corrected satisfactorily for
higher elevation angles. An estimation algorithm is proposed to compensate for
the delay in measurements. Final position uncertainty of the spacecraft is 11.79
km and velocity uncertainty is 6.93 m/s. The accuracy of the estimation pro-
cess is not as per the practical requirements. More advanced filter algorithm is
required to improve the accuracy. In this present study the error in elevation
due to the ionosphere is not considered and the range noise uncertainty is as-
sumed to be constant. For L-band and S-band signals, this error is comparable
to the elevation noise. Further study is required to incorporate the ionospheric
error in elevation and range noise characteristics. In recent years, research on
autonomous navigation of spacecraft has become very important. Lightsey et al
have shown the performance of autonomous navigation system in case of com-
munication failure with ground station [6]. Extensive research has to be done on
on-board autonomous navigation system. Injection error in transfer trajectory
deviates the spacecraft from the desired trajectory. Several mid-course correc-
tions are performed to keep the spacecraft in the desired trajectory. There is a
scope of research on mid-course correction and guidance of the interplanetary
spacecraft in transfer trajectory.
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Abstract. In case of normal operational conditions for a satellite, a convention-
al Kalman Filter gives sufficiently good attitude estimation results. On the other 
hand, when there is a fault in the measurements then the Kalman filter fails 
about providing the required accuracy and may even collapse by time. In this 
paper, a Robust Kalman filtering method is proposed for the attitude estimation 
problem. By using the proposed method both the Extended Kalman Filter and 
Unscented Kalman Filter are modified and the new algorithms, which are ro-
bust against the measurement malfunctions, are called as the Robust Extended 
Kalman Filter (REKF) and Robust Unscented Kalman Filter (RUKF), respec-
tively. The adaptation is performed following both single and multiple scale 
factor based schemes. As an application example the proposed algorithms are 
applied for attitude estimation of a small satellite and the performance of the 
robust Kalman filters are compared in case of different measurement faults. 

Keywords: robust Kalman filtering, REKF, RUKF, measurement fault, attitude 
estimation, small satellite. 

1 Introduction 

The Kalman Filter (KF) plays an important role in the attitude estimation procedure of 
the spacecrafts [1, 2]. Regarding the obstacles met during the development process of 
the attitude estimation systems, various types of KFs have been developed. One of 
these difficulties is the inherent nonlinear dynamics and kinematics of the satellites 
similarly to the many real world systems. The Extended Kalman Filter (EKF) was 
proposed so as to overcome this problem and since then it has been used instead of 
the linear Kalman filter for estimating the attitude of the satellite [2]. 

Even though still being a popular spacecraft attitude estimator, the EKF has some 
disadvantages, especially in case of high nonlinearity, which appears to be a common 
problem in the attitude determination applications [2]. On the other hand, the Un-
scented Kalman Filter (UKF) algorithm is a new filtering method which has become 
popular after the millennium especially because of its advantages over the well known 
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EKF. The essence of the UKF is the fact that; the approximation of a nonlinear distri-
bution is easier than the approximation of a nonlinear function or transformation [3]. 
The UKF introduces sigma points to catch higher order statistic of the system and 
avoid the linearization step of the EKF. As a result it satisfies both better estimation 
accuracy and convergence characteristic [4]. Moreover, the UKF is more robust 
against the initial attitude estimation errors than the EKF [5]. 

One of the main problems for the attitude estimation via both the EKF and UKF is 
having an algorithm which does not have capability of the adaptation to the changing 
conditions of the measurement system. As known, space is a severe environment so 
malfunctions such as abnormal measurements, increase in the background noise etc. 
are always a potential threat for the onboard sensors. The main issue is such faults in 
the measurements affect the instantaneous filter outputs and may cause the attitude 
estimator diverge in long term. Hence the KF algorithm that is used as the attitude 
estimator must be built robust via using an adaptive approach [6].  

In literature there are several methods to adapt the linear KF. Unquestionably, the 
pioneering methods in this area have been proposed by Mehra [7, 8]. Specifically the 
covariance matching technique discussed in [8] may be considered as the fundamental 
of the algorithm proposed in this paper. The main drawback of these studies, and as 
well their successors that examine the adaptation of the KF [9-13], they are generally 
appropriate for discrete-time linear systems and cannot be used as a method for the 
adaptation of the EKF or UKF without any correction of modification. 

In this sense, researches on the Adaptive Extended Kalman Filter (AEKF) or 
Adaptive Unscented Kalman Filter (AUKF), which can be used for nonlinear systems, 
should be examined. In [14] basically the method proposed in [11] is generalized for 
nonlinear systems and a two-stage AEKF is presented for a loosely coupled INS/GPS 
systems. The main drawback of this AEKF approach is using a single fading factor 
for the adaptation procedure. This is not a healthy procedure since each term of the 
innovation sequence has a different effect on the filter performance, especially in a 
case where one of the sensors is faulty but the others are working properly. In [15], 
two distinct methods are described as the AUKF algorithms. In the first method, the 
MIT rule is used to derive the adaptive law and a cost function is defined in order to 
minimize the difference between the filter computed covariance and the actual inno-
vation covariance. The algorithm is used for the Q-adaptation (process noise cova-
riance adaptation) but it is stated that a similar approach may be followed for the  
R-adaptation (measurement noise covariance adaptation). As a deficiency, the pre-
sented algorithm requires calculation of the partial derivatives and that introduces a 
relatively large computational burden as it is also stated by authors themselves. In the 
second method, two UKFs are run in parallel within master and slave filter manner. 
Its computational demand is lower than the first method but as it is known [5], despite 
being free of the Jacobian calculations, the computational burden of the UKF is not 
low because of the sigma point calculations. Therefore, using two UKF algorithms in 
a parallel manner still increases the required computation burden significantly. Hence 
the main problem for both of the methods presented in [15] is high computational 
load. Nonetheless in [16, 17] Saga-Husa noise statistics estimator is integrated with 
the UKF in order to build an AUKF. Although it may be possible to have satisfactory 



 Robust Kalman Filtering with Single and Multiple Scale Factors 393 

 

results for the target tracking problem, this method has an unstability issue; when the 
noise covariance loses its semi-positive definiteness the filter diverges.  

The EKF and UKF may be also built adaptive by using the fuzzy logic techniques 
[18-20]. However, although it is possible to get satisfactory results for some specific 
cases, the essence of this kind of fuzzy methods is human experience and heuristic 
information; in out of experience cases they may not work. 

In this paper, a Robust Kalman filtering method is proposed for the attitude estima-
tion problem. The proposed method is applied for both the EKF and UKF and the new 
algorithms, which have an extension for the adaptation against measurement malfunc-
tions, are called as the Robust Extended Kalman Filter (REKF) and Robust Unscented 
Kalman Filter (RUKF), respectively. The applied adaptation scheme is similar to the 
one given in [6]. However, in this paper the attitude estimation problem is generalized 
and instead of the Euler angles the quaternions are used as the attitude representation 
method. As well, the robust Kalman filters are examined for different measurement 
system failure cases. As introduced, there are some application examples for the UKF 
process noise adaptation in literature and similar complex procedures are suggested 
for the measurement noise adaptation. In contrast with these existing studies, this 
paper introduces a simple method for the measurement noise covariance matrix scal-
ing. Moreover in order to show the clear effects of disregarding only the data of the 
faulty sensor we performed the adaptation by using both single and multiple scale 
factors which are two different approaches for the same problem. The algorithms are 
tested for the attitude and attitude rate estimation problem of a small satellite which 
has only three magnetometers as the attitude reference source.  Using only magneto-
meters is a common preference for the small satellite applications (especially for the 
cubic pico satellites); and having only a limited number of sensors onboard increases 
the significance of the given robust Kalman filtering methods. Throughout the study, 
results of these proposed algorithms are compared and discussed for different types of 
measurement malfunctions. 

2 Satellite Equations of Motion and the Sensor Model 

2.1 Satellite Equations of Motion 

The kinematics equation of motion of the satellite via the quaternion attitude repre-
sentation can be given as [21], 

1
( ) ( ( )) ( )

2 BRt t t= Ωq ω q  .                                            (1)     

Here q  is the quaternion vector formed of four attitude parameters, 

[ ]1 2 3 4

T
q q q q=q  and ( )BRΩ ω is the skew symmetric matrix as; 
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0
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0

0
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r q p

r p q

q p r

p q r

−⎡ ⎤
⎢ ⎥−⎢ ⎥Ω =
⎢ ⎥−
⎢ ⎥− − −⎣ ⎦

ω ,                                          (2) 

 

where, p , q and r are the components of BRω  vector which indicates the angular 

velocity of the body frame with respect to the reference frame. On the other hand, the 
body angular rate vector with respect to the inertial axis frame should be stated sepa-

rately as; .
T

BI x y zω ω ω⎡ ⎤= ⎣ ⎦ω   BIω and BRω can be related via, 

[ ]00 0 .
T

BR BI A ω= + −ω ω                                            (3) 

Here 0ω  denotes the angular velocity of the orbit with respect to the inertial frame, 

found as ( )1/ 23
0 0/ rω μ= ; μ is the gravitational constant, 0r  is the distance between 

the centre of mass of the satellite and the Earth. Moreover A is the attitude matrix 
which is related to the quaternions by; 

 

2 2 2 2
1 2 3 4 1 2 3 4 1 3 2 4

2 2 2 2
1 2 3 4 1 2 3 4 2 3 1 4

2 2 2 2
1 3 2 4 2 3 1 4 1 2 3 4

2( ) 2( )

2( ) 2( ) .

2( ) 2( )

q q q q q q q q q q q q

A q q q q q q q q q q q q

q q q q q q q q q q q q

⎡ ⎤− − + + −
⎢ ⎥= − − + − + +⎢ ⎥
⎢ ⎥+ − − − + +⎣ ⎦

               (4) 

In case of using quaternions for the kinematic modeling of the satellite’s motion, 
the UKF in standard format cannot be implemented straightforwardly. The reason of 
such drawback is the constraint of quaternion unity given by 1T =q q . If the kinemat-

ics equation (Eq.1) is used in the filter directly, than there is no guarantee that the 
predicted quaternion mean of the UKF will satisfy this constraint. 

One of the documented methods to overcome this problem is to use an uncon-
strained three component vector in order to represent an attitude-error quaternion 
instead of using all four components of the quaternion vector.  In this paper we pre-
ferred to use the vector of Generalized Rodrigues Parameters (GRP) for representing 
the local error-quaternion. For details readers may refer to [5]. 

First let us rewrite the quaternion vector by 4

TT q⎡ ⎤= ⎣ ⎦q g , so [ ]1 2 3

T
= q q qg . 

After that when the local error-quaternion is denoted by 4

TT qδ δ δ⎡ ⎤= ⎣ ⎦q g  , the 

vector of GRP may be given as [5], 

[ ]4/ ( )f a qδ δ δ= +p g .                                               (5) 

Here a is a parameter from 0 to1 and f is the scale factor. When 0a =  and 1f =  then 

Eq. (5) gives the Gibbs vector and when 1a =  and 1f =  then Eq. (5) gives the  
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standard vector of modified Rodrigues parameters. In [5] - as well as in this paper -   f  
is chosen as 2( 1)f a= + . The inverse transformation from δ p to δ q is given by 

2 22 2

4 22

(1 )a f f a
q

f

δ δ
δ

δ

− + + −
=

+

p p

p
  ,                                     (6a) 

1
4( )f a qδ δ δ−= +g p  .                                                (6b) 

For a full-state attitude estimator where attitude and attitude rates are estimated 
jointly, we also need dynamic knowledge. The dynamic equations of the satellite can 
be derived based on the Euler’s equations;  

           ( ) ,BI
d BI BIJ J

dt
= − ×N

ω ω ω                                            (7) 

where J  is the inertia matrix consists of   principal moments of inertia as 

( ), ,x y zJ diag J J J=  and dN is the vector of disturbance torque affecting the satellite 

which can be given as a sum of 

              d gg ad sp md= + + +N N N N N  .                                       (8) 

Here ggN  is the gravity gradient torque, adN is the aerodynamic disturbance torque, 

spN  is the solar pressure disturbance torque and  mdN  is the residual magnetic torque 

which is caused by the interaction of the satellite’s residual dipole and the Earth’s 
magnetic field [21].   

2.2 Sensor Models 

Magnetometer is a favorite sensor type for attitude estimation especially in small 
satellite applications. The model for the magnetometer measurements is given by (let 
us assume that magnetometers are already calibrated with one of the in-orbit or on-
ground estimation methods [4,22]), 

( )
( )
( )

( )
( )
( )

1

2 1

3

,

,

,

x

y

z

B t B t

B t A B t

B t B t

η
⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= +⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

q

q

q

,                                         (9) 

where ( )1B t , ( )2B t and ( )3B t  represent the Earth magnetic field vector components 

in the orbit frame as a function of time and can be modeled as given in [23]. 
Therefore, ( ),xB tq , ( ),yB tq  and ( ),zB tq  show the measured Earth magnetic 

field vector components in the body frame as a function of time and varying quater-
nion vector. Furthermore, concerning the Eq.(7), 1η  is the zero mean Gaussian white 

noise with the characteristic of  
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2
1 1 3 3

T
k j x m kjE Iη η σ δ⎡ ⎤ =⎣ ⎦ .                                             (10) 

3 3xI is the identity matrix with the dimension of  3 3×  , mσ is the standard deviation 

of each magnetometer error and kjδ  is the Kronecker symbol. 

3 Robust Kalman Filtering for Satellite Attitude Estimation 

The EKF and UKF work accurately when there is no fault in the measurement system. 
On the contrary, in case of a fault such as abnormal measurements, step-like changes 
or sudden shifts in the measurement channel etc. the filter deteriorates and the estima-
tion outputs become faulty. 

Therefore, a robust algorithm must be introduced such that the filter is insensitive 
to the measurements in case of malfunctions and the estimation process is corrected 
without affecting the remaining good estimation behavior.   

The robustness of the filter is secured by scaling the measurement noise covariance 
matrix in case of fault. In this sense two different approaches may be used: Scaling by 
a single scale factor or scaling by a scale matrix built of multiple scale factors. In 
general, despite its relative simplicity, using single scale factor is not a healthy proce-
dure since the filter should be insensitive just to the measurements of the faulty sen-
sor, not to the all sensors including the ones working properly [6]. In contrast a matrix 
built of multiple scale factors might be preferred since in this method the relevant 
terms of the measurement noise covariance are fixed, individually.  

The robust algorithm affects characteristic of the filter only when the condition of 
the measurement system does not correspond to the model used in the synthesis of the 
filter. Otherwise the UKF or EKF work with the regular algorithm.  

This section gives the detailed discussion about the adaptation procedures of the 
EKF and UKF which makes them robust against any kind of measurement malfunc-
tion. The conventional algorithms for the UKF and EKF are not presented here for 
brevity and for details reader may refer to [2,5,24].  

3.1 Robust Unscented Kalman Filter 

It is known that the UKF innovation sequence can be determined by,  

( ) ( ) ( )ˆ1 1 1 ,k k k k+ = + − +e y y                                         (11) 

where, ( )1k +y is the measurements vector and ( )ˆ 1k k+y  is the predicted observa-

tion vector.  
The essence of the adaptation procedure against the measurement malfunctions is 

to compare the real and theoretical values of the innovation covariance matrix. When 
there is a sensor fault in the system, the real error will exceed the theoretical one. In 
this case we may ensure the robustness of the filter against the sensor fault by adapt-
ing the R matrix, which is a diagonal matrix, formed of the measurement process 
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noise covariances. The adaptation procedure basically aims at finding an appropriate 
multiplier for the R, such that the real and theoretical values of the innovation cova-
riance match. As discussed, this multiplier might be either as a single factor or a ma-
trix formed of multiple factors. In case we use a single factor, matching the real and 
theoretical values of the innovation covariance means that we basically increase all 
the terms of the R matrix and impose to the UKF that the measurements are faulty. 
However we do not isolate which sensor is malfunctioning. On the contrary when we 
use multiple scale factors we correct the necessary term of the R matrix (the term 
which corresponds to the sensor with the faulty measurement). In other word we 
make UKF disregard just the measurements of this sensor which is not reliable at that 
sampling time.  

Single Scale Factor. As stated the essence of the adaptation is the covariance match-
ing. For single scale factor approach we match the trace of the covariances such that 

( ) ( ) ( ) ( ) ( )1 1 1 1T
yytr e k e k tr P k k S k R k⎡ ⎤⎡ ⎤+ + = + + +⎣ ⎦ ⎣ ⎦  ,                 (12) 

where ( )1yyP k k+ is the observation covariance,  ( )1R k + is the measurement noise 

covariance and ( )S k is the introduced single scale factor. [ ]tr ⋅ is the trace of the re-

lated matrix. We may rewrite the equation as 

( ) ( ) ( ) ( ) ( )1 1 1 1T
yytr e k e k tr P k k S k tr R k⎡ ⎤⎡ ⎤+ + = + + +⎡ ⎤⎣ ⎦⎣ ⎦ ⎣ ⎦ .               (13) 

Then, regarding  ( ) ( ) ( ) ( )1 1 1 1T Ttr e k e k e k e k⎡ ⎤+ + = + +⎣ ⎦   the single scale factor can 

be obtained  

( )
( ) ( ) ( )

( )
1 1 1

.
1

T
yye k e k tr P k k

S k
tr R k

⎡ ⎤+ + − +⎣ ⎦=
+⎡ ⎤⎣ ⎦

                             (14) 

The scale factor affects the Kalman gain as; 

( ) ( ) ( ) ( ) ( ) 1
1 1 1 1xy yyK k P k k P k k S k R k

−
⎡ ⎤+ = + + + +⎣ ⎦ .                     (15) 

Here ( )1K k + is the Kalman gain and ( )1xyP k k+ is the cross correlation matrix. 

In case of sensor fault the scalar scale factor will take a larger value and that will 
increase all terms of the innovation covariance. Eventually the Kalman gain will de-
crease and the measurements will be disregarded in the state update process (or taken 
into consideration with lesser weight than the regular case). In such approach the 
information about the faulty sensor isolation does not have any significance; all of the 
current information from the measurements is left out and the UKF relies mostly on 
the propagation information during the estimation.   
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Multiple Scale Factor. Firstly, we add a matrix built of multiple scale factors, ( )S k , 

into the algorithm in order to tune the measurement noise covariance matrix and 
match the real and theoretical innovation covariances, 

( ) ( ) ( ) ( ) ( )
1

1
1 1 1 1 .

k
T

yy
j k

j j P k k S k R k
ξξ = − +

+ + = + + +∑ e e                  (16) 

Here, ξ is the width of the moving window. Left hand side of the equation represents 

the real innovation covariance while the right hand side stands for the theoretical in-
novation covariance. Then, if we re-arrange the equation, it is clear that we can get 
the scale matrix by [25], 

( ) ( ) ( ) ( ) ( )1

1

1
1 1 1 1 .

k
T

yy
j k

S k j j P k k R k
ξξ

−

= − +

⎧ ⎫
= + + − + +⎨ ⎬
⎩ ⎭

∑ e e                   (17) 

In case of a measurement fault for one of the sensors then the corresponding term of 
the scale matrix will be a relatively larger term and that will increase the measurement 
noise covariance of this sensor in the R matrix. Eventually this faulty measurement 
will be disregarded (or regarded with a lower gain) by the filter. On the other hand, 
the scale matrix affects the estimation procedure only when the measurements are 
faulty. Otherwise, in case of normal operation, the scale matrix will be a unit matrix 

as ( ) z zS k I ×= , where z is the size of the innovation vector.  

Nonetheless, as ξ is a limited number because of the number of the measurements 

and the computations performed with the computer implies errors such as the approx-

imation and round off errors;  ( )S k  matrix  that is calculated by the use of Eq. (17) 

may not be diagonal and may have diagonal elements which are “negative” or lesser 

than “one”. ( )S k matrix should be diagonal because only its diagonal terms have 

significance on the adaptation since each diagonal term corresponds to the noise cova-

riance of each measurement (for the adaptation procedure ( )S k  matrix is multiplied 

with the diagonal R matrix). Besides the measurement noise covariance matrix must 

be positive definite (that is why the multiplier ( )S k  matrix cannot have negative 

terms) and also any term of this matrix cannot decrease in time for this specific prob-
lem since there is no possibility for increasing the performance of the onboard sensor 

(that is why the multiplier ( )S k  matrix cannot have terms less than one). 

Therefore, in order to avoid such situations, composing the scale matrix by the fol-
lowing rule is suggested: 

( )1 2, , , zS diag s s s∗ ∗ ∗ ∗= …                                             (18) 

{ }max 1, 1,i iis S i z∗ = = .                                           (19)  
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Here, iiS  represents the ith diagonal element of the matrix ( )S k . Apart from that 

point, if the measurements are faulty, ( )S k∗ will change and so affect the Kalman 

gain as; 

( ) ( ) ( ) ( ) ( ) 1
1 1 1 1xy yyK k P k k P k k S k R k

−∗⎡ ⎤+ = + + + +⎣ ⎦ .                     (20) 

In case of any kind of malfunction, the element(s) of the scale matrix, which cor-
responds to the faulty component(s) of the innovation vector, increases and so the 
terms in the related column(s) of the Kalman gain decreases. As a consequence, the 
effect of the faulty innovation term on the state update process reduces and accurate 
estimation results can be obtained even in case of measurement malfunctions. 

3.2 Robust Extended Kalman Filter 

The adaptation procedure of the EKF is not different from the one for the UKF. Basi-
cally this time we apply the same method by using the EKF equations.  

Firstly we can easily show that the single scale factor for the EKF is calculated as 
 

( )
( ) ( )

( )
1 1 ( 1) ( 1 ) ( 1)

.
1

T Te k e k tr H k P k k H k
S k

tr R k

⎡ ⎤+ + − + + +⎣ ⎦=
+⎡ ⎤⎣ ⎦

                 (21) 

 

Here ( 1 )P k k+ is the predicted covariance matrix and ( 1)H k + is the measurement 

matrix constituted of the partial derivatives. 
Nonetheless in order to derive the equation for the multiple scale factor, similarly 

with the UKF, we compare the real and theoretical values of the innovation covari-

ance matrix and add a scale matrix, ( )S k , into the algorithm as, 

( ) ( ) ( ) ( )
1

1
1 1 ( 1) ( 1 ) ( 1) 1

k
T T

j k

j j H k P k k H k S k R k
ξξ = − +

+ + = + + + + +∑ e e  .     (22) 

Then, the definition for the scale matrix is, 

( ) ( ) ( ) ( )1

1

1
1 1 ( 1) ( 1 ) ( 1) 1

k
T T

j k

S k j j H k P k k H k R k
ξξ

−

= − +

⎧ ⎫
= + + − + + + +⎨ ⎬
⎩ ⎭

∑ e e .    (23) 

After that we use the Eq. (18, 19) to correct and diagonalize the scale matrix. Finally 
the Kalman gain is tuned as; 

( ) ( ) ( ) 1
1 ( 1 ) ( 1) ( 1) ( 1 ) ( 1) 1T TK k P k k H k H k P k k H k S k R k

−∗⎡ ⎤+ = + + + + + + +⎣ ⎦ (24) 
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3.3 Fault Detection Procedure 

As aforementioned, we use the robust Kalman filters only in case of the fault and in 
all other cases, the filters run following their regular algorithms. The fault detection is 
realized via a kind of statistical information. In order to achieve that, following two 
hypotheses may be proposed: 

• oγ ; the system is normally operating 

• 1γ ; there is a malfunction in the estimation system. 

Then we may introduce the following statistical functions for the RUKF and REKF 
respectively, 

( ) ( ) ( ) ( )1
( ) 1 1 1 1 ,T

yyk k P k k R k kβ
−

⎡ ⎤= + + + + +⎣ ⎦e e                    (25) 

( ) ( ) ( )1
( ) 1 ( 1) ( 1 ) ( 1) 1 1 .T Tk k H k P k k H k R k kβ

−
⎡ ⎤= + + + + + + +⎣ ⎦e e       (26) 

These functions have 2χ distribution with z degree of freedom, where z  is the 

dimension of the innovation vector. 
If the level of significance, ,α  is selected as, 

{ }2 2
, ;zP αχ χ α> =           0 1α< < ,                                   (27) 

the threshold value, 2
,zαχ

 
can be determined. Hence, when the hypothesis 1γ  is cor-

rect, the statistical value of ( )kβ  will be greater than the threshold value 2
,sαχ , i.e.: 

( ) 2
0 ,: sk αγ β χ≤             k∀  

                ( ) 2
1 ,: sk αγ β χ>               k∃   .                                     (28) 

4 Robust Kalman Filtering for Satellite Attitude Estimation 

In this section, the proposed robust Kalman filtering algorithms are tested via simula-
tions for a small satellite model. Besides, the same simulation scenarios are repeated 
by using the conventional UKF or EKF algorithms and the results are compared. 

The simulations are realized for 7000 seconds with a sampling time of 
0.1sec.tΔ =  This period coincides with approximately 1 orbit of the satellite. None-

theless the orbit of the satellite is assumed as circular. Other orbit parameters are; the 
magnetic dipole moment of the Earth, 157.943 10 . ;eM x Wb m=  the Earth Gravita-

tional constant, 14 3 23.98601 10 / ;x m sμ =  the orbit inclination, 31 ;i =  the spin 

rate of the Earth, 57.29 10 / ;e x rad sω −=  the magnetic dipole tilt, 11.7 ;ε =  the 
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distance between the centre of mass of the satellite and the Earth, 0 7450 .r km=  The 

inertia matrix for the used small satellite model is 2(310 180 180) . .J diag kg m=  

For the magnetometer measurements, the sensor noise is characterized by zero 
mean Gaussian white noise with a standard deviation of 300m nTσ = . As the filter 

parameters for the UKF and RUKF, κ is selected as 2κ = − , where 2( 1)f a= + and

1a = .  For the REKF and RUKF the size of the moving window is taken as 30ξ = .  

The initial attitude errors in the simulations are set to 50 degrees for all three axes. 
Besides, the initial value of the covariance matrix is taken as 

4 4 4
0 0.5 0.5 0.5 10 10 10P diag − − −⎡ ⎤= ⎣ ⎦ while the process noise covariance 

matrix is selected as 7 7 7 12 12 1210 10 10 10 10 10Q diag − − − − − −⎡ ⎤= ⎣ ⎦ .  

Nonetheless, for the fault detection procedure, 2
,zαχ  is taken as 7.81 and this value 

comes from chi-square distribution when the degree of freedom is 3 and the reliability 
level is 95%.  

Three different scenarios are taken into consideration for simulating the fault in the 
measurements; the continuous bias, fault of zero output and measurement-noise in-
crement. For each scenario a series of simulations are run by the REKF, RUKF and as 
well the conventional EKF and UKF algorithms. 

4.1 Continuous Bias Failure 

In this scenario, a constant value is added to the measurements of the magnetometer 
aligned in the x axis between the 3000th and 3200th seconds for a period of 200 sec-
onds such that; 

                      ( ) ( ), , 20000x xB t B t nT= +q q       3000 3200sect = …   

The constant term, selected as 20000nT , almost doubles the magnetometer output. 
In Fig.1 the attitude estimation error of the UKF and RUKF are given for the pitch 

angle. The RUKF that uses single scale factor is plotted with dotted line and labeled 
as RUKFs while the RUKF with multiple scale factors is plotted with dashed line and 
labeled as RUKFm. Apparently, in case of fault the estimation accuracy for the con-
ventional UKF algorithm deteriorates. The RUKF with single scale factor lessens the 
effect of the fault but still the filter is not fully recovered and after the measurement 
fault ends at 3200th sec. the RUKFs estimations show a fluctuating behavior. The rea-
son for a filter that is not fully recovered is disregarding the measurements of all three 
magnetometers as a result of increasing all terms of the R matrix via multiplication 
with a single large scale factor (see Fig.2 for the variation of the single scale factor). 
Instead of isolating the faulty sensor and leaving out just its measurements, the 
RUKFs considers all of the measurement as faulty and throughout this period it most-
ly relies on the propagation values. In this case especially for a filter with relatively 
higher process noise covariance, Q, the estimation errors accumulate and the filter 
starts to diverge from the actual values. The Table 1, which  gives the  absolute values  
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Table 1. Absolute Estimation Errors in case of continuous bias: Regular UKF, RUKF with 
single scale factor (SSF) and RUKF with multiple scale factor (MSF) 

 
 
 
Parameter 

Abs. Err. Values 
for Regular 

UKF 

Abs. Err. Values 
for RUKF with 

SSF 

Abs. Err. Values 
for RUKF with 

MSF 
3050 s. 3150 s. 3050 s. 3150 s. 3050 s. 3150 s. 

(deg)ϕ  10,580 10,835 0,1901 0,4936 0,0207 0,0430 

(deg)θ  0,6945 5,1327 0,1116 1,8268 0,0033 0,0178 

(deg)ψ  0,6131 0,8453 0,0862 2,6225 0,0041 0,0030 

Table 2. Absolute Estimation Errors in case of continuous bias: Regular EKF, REKF with 
single scale factor (SSF) and REKF with multiple scale factor (MSF) 

 
 
 
Parameter 

Abs. Err. Values 
for Regular 

EKF 

Abs. Err. Values 
for REKF with 

SSF 

Abs. Err. Values 
for REKF with 

MSF 
3050 s. 3150 s. 3050 s. 3150 s. 3050 s. 3150 s. 

 7,1599 5,9440 3,7358 2,2637 0,5298 0,6140 

 2,2395 2,2887 0,1460 1,8108 0,1000 0,2523 

 1,9778 2,1547 1,4322 5,5227 0,1291 0,0056 

 
 

of error at 3050th and 3150th seconds, supports this interpretation. Clearly the estima-
tion error for the RUKFs at the 3150th sec is higher than the one at the 3050th sec. 
Hence the single scale factor approach may be useful only for faults which lasts a 
short period. On the contrary the RUKF with the multiple scale factors does not have 
such limitation and keeps its estimation accuracy without being affected from the 
fault. An examination on the scale matrix at an instant between the 3000th and 3200th 
seconds of the simulation shows that the algorithm works properly; 

(4427 1 1.59).S diag∗ = Since the fault is in the measurements of the magnetome-

ter aligned in the x axis, the correction must be applied to the first term of the R ma-
trix as in this case. The large first diagonal term of the scale matrix decreases the 
terms in the first column of the Kalman gain and so the faulty innovation term (the 
first term of the innovation vector) is disregarded in the state update process. 

In Fig.3 the estimation results for the REKF and EKF are given. Likewise the 
RUKFm, the REKFm is not affected from the measurement fault and sustains reliable 
estimation results for the whole period. Although the REKF with single scale gives 
satisfactory results for a short period starting from 3000th sec. it deteriorates later on 
because of disregarding even the healthy measurements.  Table 2 may be seen for 
more detailed investigation. 

Nonetheless, a comparison between the performances of the UKF and EKF (or 
RUKF vs. REKF) shows that the UKF algorithms outperform the EKF algorithms in 

(deg)ϕ
(deg)θ
(deg)ψ
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Fig. 4. Pitch angle estimation error for the UKF and RUKF in case of measurement noise  
increment 

 

Fig. 5. Variation of the single scale factor for the RUKF in case of measurement noise  
increment 
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fault period; it only does when the 2
,zαχ threshold is exceeded and the magnitude of 

the noise is high such that the scale factor takes large values. Variation of the single 
scale factor confirms that (Fig. 5). Hence specifically for this fault scenario the 
RUKFs and RUKFm do not have any significant difference in the sense of estimation 
accuracy (Table 3).  

Table 3. Absolute Estimation Errors in case of measurement noise increment: Regular UKF, 
RUKF with single scale factor (SSF) and RUKF with multiple scale factor (MSF) 

 
 
 

Parameter 

Abs. Err. Val-
ues for Regular 

UKF 

Abs. Err. Values 
for RUKF with 

SSF 

Abs. Err. Val-
ues for RUKF 

with MSF 
3050 s. 3150 s. 3050 s. 3150 s. 3050 s. 3150 s. 

(deg)ϕ  3,4186 4,3199 0,0010 0,0242 0,0269 0,0412 

(deg)θ  0,2853 1,3830 0,0134 0,0048 0,0062 0,0174 

(deg)ψ  0,9533 0,9003 0,0026 0,0049 0,0017 0,0015 

 
The performed simulations have proved that the REKF is also capable of overcom-

ing the deteriorating effect of the measurement noise increment. For the simulation 
with the REKF, the REKFm gives slight more accurate estimations than the REKFs 
(Fig. 6 and Table 4). 

 
Fig. 6. Pitch angle estimation error for the EKF and REKF in case of measurement noise  
increment 
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Table 4. Absolute Estimation Errors in case of measurement noise increment: Regular EKF, 
REKF with single scale factor (SSF) and REKF with multiple scale factor (MSF) 

 
 
 
Parameter 

Abs. Err. Values 
for Regular 

EKF 

Abs. Err. Values 
for REKF with 

SSF 

Abs. Err. Values 
for REKF with 

MSF 
3050 s. 3150 s. 3050 s. 3150 s. 3050 s. 3150 s. 

(deg)ϕ  0,1332 0,2110 2,7516 2,3680 0,7954 0,9315 

(deg)θ  1,1840 0,1027 0,1554 0,6464 0,1114 0,3182 

(deg)ψ  1,5309 0,7592 0,6777 0,3859 0,2131 0,0266 

4.3 Zero Output Failure 

The third failure case, which is fault of zero output, is simulated by simply making the 
measurement output of one of the magnetometers zero so it measures 0nT for 200 
seconds between the 3000th and 3200th seconds.  In order to test the algorithm this 
time the fault is implemented to the magnetometer aligned in the z axis:    

( ) 1, 0z zB t η= +q           3000 3200sect = …  

In Fig.7 the estimation results for the UKF and RUKF are given. Obviously, same 
as the first simulation scenario, the UKF cannot achieve accurate estimation whereas 
the RUKF with the single scale factor can overcome the fault only for a short period. 
Because of taking none of the measurements into consideration the RUKFs estima-
tions get worse when the robust algorithm runs longer than 50 seconds. The single 
scale factor behaves in a similar manner with its trend for the continuous bias fault 
scenario (Fig. 8). Moreover, the results show us when the filter is not robust the zero 
output failure has a high detractive impact on the estimation accuracy that lasts for a 
very long period. Even though the filter’s response may vary when it is designed with 
different parameters (such as the Q matrix) simulations show that a fault may affect 
the filter for a longer period than its length. Therefore if the magnetometer measures 0 
even for just few seconds, it is not possible to compensate that with a filter other than 
the robust ones. In this sense the estimation results for the RUKFm clearly signify the 
importance of using the proposed algorithm. The RUKFm is not affected from the 
fault and can perform accurate estimation even when the fault lasts long by simply 
disregarding the measurements of the faulty magnetometer and working on the basis 
of the measurements from two properly operating magnetometers (Table 5 may be 
seen for further examination).  The sample for the multiple scale factors in case of 
fault validates that the RUKFm disregards the measurements of the magnetometer 
aligned in the z axis as it supposed to be (1.44 1 4024).S diag∗ =   

In Fig.9 and Table 6 the estimation results for the EKF and REKF are given. Same 
as the UKF, the EKF fails at giving accurate estimation results for a longer period 
than the fault itself whereas the REKFm is superior to REKFs regarding the estimation 
accuracy.   
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Table 5. Absolute Estimation 
single scale factor (SSF) and R

 
 

 
Parameter 

Abs. E
for 

U
3050 s

(deg)ϕ  9,7561

(deg)θ  7,0059

(deg)ψ  9,6897

 

Fig. 9. Pitch angle estimati

Table 6. Absolute Estimation 
single scale factor (SSF) and R

 
 

 
Parameter 

Abs. E
for 

E
3050 s

(deg)ϕ  53,686

(deg)θ  5,2576

(deg)ψ  30,024

Kalman Filtering with Single and Multiple Scale Factors 

Errors in case of zero output failure: Regular UKF, RUKF w
RUKF with multiple scale factor (MSF) 

Err. Values 
Regular 
UKF 

Abs. Err. Values 
for RUKF with 

SSF 

Abs. Err. Values 
for RUKF with 

MSF 
. 3150 s. 3050 s. 3150 s. 3050 s. 3150 s. 

1 42,492 0,0321 0,2176 0,0892 0,0567 

9 8,1779 0,0293 0,3733 0,0521 0,0576 

7 41,673 0,0114 0,1908 0,0163 0,0191 

ion error for the EKF and REKF in case of zero output failure

 Errors in case of zero output failure: Regular EKF, REKF w
REKF with multiple scale factor (MSF) 

Err. Values 
Regular 
EKF 

Abs. Err. Values 
for REKF with 

SSF 

Abs. Err. Values 
for REKF with 

MSF 
. 3150 s. 3050 s. 3150 s. 3050 s. 3150 s. 

6 148,50 2,8558 1,8026 1,5884 1,2380 

6 0,8919 0,0760 2,2197 0,2049 0,4120 

4 45,173 0,9518 3,6684 0,3210 0,0242 

409 
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5 Conclusion 

In this paper, a covariance scaling based Robust Kalman filtering method is proposed 
for the attitude estimation problem and applied to the both EKF and UKF. The simu-
lation results show that both the RUKF and REKF perform well when a specific mea-
surement fault is the point at issue. On the other hand, the conventional filters (the 
UKF and EKF) fails at giving accurate estimation results for the period of the fault 
and as well for some additional time that is necessary for filter to converge again. 
Moreover, the RUKF outperforms all other filters including the REKF for all simula-
tion cases when the initial attitude error is high as in case.  
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Abstract. Attitude determination, along with attitude control, is crit-
ical to functioning of every space mission. In this paper, we investigate
and compare, through simulation, the application of two autonomous se-
quential attitude estimation algorithms, adopted from the literature, for
attitude determination using attitude sensors (sun sensor and horizon
sensors) and rate-integrating gyros. The two algorithms are: the direc-
tion cosine matrix (DCM) based steady-state Kalman Filter, and the
classic quaternion-based Extended Kalman Filter. To make the analy-
sis realistic, as well as to improve the attitude determination accuracies,
detailed sensor measurement models are developed. Modifications in the
attitude determination algorithms for estimation of additional states to
account for sensor biases and misalignments are presented. A modular
six degree-of-freedom closed-loop simulation, developed in house, is used
to observe and compare the performances of the attitude determination
algorithms.

Keywords: Attitude Determination, Kalman Filter, Horizon Sensors.

1 Introduction

Maintaining a desired orientation in space, with a specified level of accuracy, is
a mission requirement for every spacecraft. Attitude determination along with
attitude control is responsible for satisfying this requirement. Based on the func-
tion of the spacecraft the level of pointing accuracy required varies. During the
past four decades, extensive research has been done in the area of spacecraft
attitude determination. Various algorithms exist in the literature, with varied
level of complexity and applicability [1]. The choice of algorithm for a mission
depends on pointing accuracy requirements, the type of sensors available and
capability of the on-board computer.

Here, we consider analysis of the attitude determination subsystem for Low
Earth Orbit satellites using sun sensors, horizon sensors and fiber optic gyros
to achieve three-axis pointing accuracy requirement of 0.1 deg. To make the
analysis of these algorithms realistic, as well as to improve the accuracy of the
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attitude determination algorithms, detailed models of measurements with sun
sensor, horizon sensor and gyros are utilized. Instead of treating measurement
errors as white noise, an effort is made to develop realistic systemic errors and
noise models. For instance, horizon sensor modeling includes errors arising from
Earth’s oblateness, atmospheric radiance and sensor electronics.

Further, a modular six degree-of-freedom closed-loop MATLAB-Simulink R©

simulation is developed, which comprises true attitude kinematics and dynam-
ics, sensor models, orbit propagation, attitude determination and control. This
simulation setup is used to compare the performances of the attitude determi-
nation algorithms developed. The modular design of simulation allows a straight
forward approach to include or exclude sensors and to test different attitude
estimators and controllers.

Two attitude estimation algorithms are considered, which mainly vary with
respect to their attitude representations and computational requirements. First,
a steady-state Kalman Filter, adopted from [2], is analyzed and simulated to
obtain estimates of satellite attitude and gyro drift rate bias. Direction cosine
matrix and Euler angles are used to represent the attitude, for ease of physical
interpretation. The steady-state formulation does away with expensive matrix
covariance computations, but if dictated by mission requirements the formula-
tion can be easily modified to its recursive gain counterpart. This is followed
up with the analysis and simulation of the classic quaternion-based Extended
Kalman Filter of Lefferts, Markley and Shuster [3] for the on-board sensor suite
considered . The classic EKF is modified to estimate exponentially-correlated
radiance error in horizon sensor measurements. Lastly, the effect of sensor mis-
alignments on attitude estimation performance is assessed through simulations,
and Pittelkau’s remedy to mitigate the performance degradation due to the mis-
alignments, i.e., alignment Kalman filter [4], is presented.

Reference Frames

We consider three frames of reference. The Earth-centered Inertial (ECI) frame is
an inertial frame with origin at the Earth’s center. The coordinate axes xI and zI
point towards the direction of the vernal equinox and the north pole, respectively,
and yI completes the right-handed coordinate system. The Local Vertical Local
Horizontal (LVLH) frame describes the current orbit frame of the satellite, and
has its origin at the center of mass of the satellite. The coordinate axis zL points
towards the center of the earth (direction of the nadir), yL points opposite to
the satellite’s angular momentum, and xL completes the right-handed triad. The
instantaneous LVLH frame is used as reference to measure the local attitude of
the satellite. Body frame is an orthogonal coordinate system fixed to the satellite
body with origin at its center of mass.

The symbols x̂ and x× denote the estimate and the cross-product matrix
associated with x, respectively.
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2 Sensor Models

This section briefly describes the sensor models for the sensor suite considered.
As these sensors have been used in various space missions, sufficient technical
research exists regarding their characteristics and performance [5,6]. However,
in spite of the literature, usually additional analysis is required to arrive at
customized and realistic model of these sensors (especially so for the attitude
sensors) based on the sensor configuration of a particular spacecraft.

2.1 Rate-Integrating Gyros

Gyros are inertial sensors which measure change in attitude as opposed to the
absolute attitude. Gyros are of various types, such as, mechanical gyros, ring
laser gyros, fiber optic gyros, and can be classified based on their accuracy,
mechanisms and form of output. Rate gyros measure angular rate directly, while
the rate-integrating gyros (RIG) measure integrated angular rate [1]. In our atti-
tude determination study, we consider application of fiber optic rate-integrating
gyros, which provide incremental angle vector.

The measurement equation which, essentially, corresponds to the inertial rate
of the body expressed in body frame ωB

BI corrupted by various noise sources is
given as,

ωm = Amalgnω
B
BI + b+ ηg (1)

ḃ = ηu (2)

where, the subscript ‘m’ denotes the measured rate, b denotes the gyro drift-rate
bias, Amalgn denotes the misalignment and scale factor matrix matrix, and ηg

(random-walk rate vector) and ηu (drift acceleration) are two continuous time
white noise vectors. These equations when converted to discrete time yield [7],

Δϕ = Δθ + Tgyrobk + βk + νq,k (3)

where ωin = Amalgnω
B
BI (4)

Δθ =

∫ (k+1)Tgyro

kTgyro

ωin(t)dt (5)

The term Δθ expresses the true change in the spacecraft attitude, whereas the
Δϕ denotes the rate-integrating gyro output during one gyro sample period
(Tgyro). The zero-mean noise due to ηg(t) and ηu(t) is expressed by βk. The
variance of βk is a 3 × 3 diagonal matrix for which the diagonal element is
σ2
β = σ2

vTgyro+σ2
uT

3
gyro/3, where σ

2
v (rad2/s) and σ2

u (rad2/s3) are power spectral
densities of the scalar elements of ηg and ηu, respectively. The gyro drift-rate
bias evolves in discrete-time as,

bk = bk−1 +αk (6)

where, αk is a zero-mean discrete random-rate noise vector, with variance of each
element being σ2

α = σ2
uTgyro [2]. The term νq,k, a discrete-time white noise with
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variance σ2
e , represents the quantization error of the gyro. Lastly, scale factor

and misalignment errors occur due to mounting errors of the system, or due to
intrinsic sensor errors. We use the notation of Pittelkau [4] to define the scale
factor and misalignment matrix, where λj denotes the scale factor error, while
δij denotes the axis misalignment,

Amalign =

⎡
⎣(1 + λx) −δyz δzy

δxz (1 + λy) −δzx
−δxy δyx (1 + λz)

⎤
⎦ (7)

For simulations presented later, we have used parameters of a fiber optic gyro
(Table 1). Initial value of gyro drift rate bias is taken as 0.05 deg/hr.

Table 1. Gyro Parameters

Parameter Value Units

σv 7.27 μrad/s1/2

σu 3× 10−4 μrad/s3/2

σe 15 μrad

2.2 Sun Sensors

Sun sensors measure the direction of the sun relative to the spacecraft, and pro-
vide an attitude reference. These sensors measure the impinging solar energy
on their surface and determine the angle made by the sun with respect to the
sensor, which in turn is used to arrive at the sun vector. The sun vector, along
with a sun model, can also be used to determine the yaw attitude of the space-
craft. However, as the sun sensors measure the radiation from the sun they can
function only in the sun-lit phase of the orbit.

The model of sun sensor being used for a particular satellite depends on the
type of the sensor, its positioning and error characteristics. For our analysis, we
assume six solar cells (represented by blue circles in Fig. 1) placed on each side
of the satellite. This configuration and the sun vector construction algorithm is
adapted from that of the Pratham student-satellite [8], and has the advantage

Fig. 1. Sun Sensor Configuration
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that in the sun-lit phase the sun is usually visible to three of the sun sensors.
Each of the individual cell measures, with some noise, the cosine of the angle
made between the Sun vector (s) and the solar cell vector (ci). The measurement
model for one individual solar cell is given by

ui = ciB · sB + νc, ∀i = 1 : 6 (8)

The noise in the measurement arises due to the sensor mechanism, electron-
ics, and quantization, the strength of which depends on the type of the sensor.
Lastly, each of the cell has a limited field-of-view, hence the measurement model
equation (Eq. 8) is valid only within the FOV of each sensor. The sensor param-
eters for simulation have been taken corresponding to that of a single-axis solar
cell [6], as listed in Table 2.

Table 2. Sun Sensor Parameters

Parameter Value Units Remark

σc 0.05 deg Standard Deviation of νc
FOV 80 deg Field-of-View (conical)

Tc 1 s Sample Time

These measurements are then used to determine the Sun vector through el-
ementary linear transformation [8], which is then used in the attitude determi-
nation formulations. The measured Sun vector can be represented as,

sm,B = sB + s̃m,B (9)

where, s̃m,B is a random zero-mean Gaussian variable, with noise covariance,
Rc = σ2

c I3×3.

2.3 Horizon Sensors

Horizon sensors, essentially, measure the direction of Earth (nadir) by observing
the shape of the Earth’s limb as seen from the spacecraft and comparing it with
a modeled shape, to arrive at the spacecraft attitude. These can be classified
into two types - scanning and static - which differ in their mechanism to sense
the Earth’s horizon, error characteristics and field-of-view. The horizon sensors
measure roll and pitch angles. Thus, in the sun-lit phase, along with the sun
sensor the horizon sensor provide complete attitude information. We consider
scanning-type horizon sensors, and follow the work presented in [9,10,11] for
their analysis and error characteristics.
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Scanning type horizon sensors consist of moving optical scanners mounted on
the spacecraft, which scan and detect the Earth’s limb. The sensor electronics
converts the radiation information to scan width of Earth’s limb. This mea-
surements of scan width are then processed to obtain measurements of roll and
pitch. The scanning type sensors though relatively less accurate have a much
larger field-of-view than the static horizon sensors.

Mathematical Model. The horizon sensor configuration considered involves
two optical scanners mounted on opposite sides of the spacecraft in the pitch-
yaw plane. These two scanners measure four semi-scan angles - (θω0R,θω1R,θω0L,
and θω1L) - corresponding to the space-to-earth and earth-to-space transition
of left and right scanners. For a detailed description of the sensor configuration
the reader is directed to [11]. In order to generate the scan width measurements
based on the semi-scan angles due to an oblate earth model, we use the equations
specified in [11] and [12], along with the model of oblate earth by Liu [5], with
appropriate modifications to suit our coordinate convention. Once the four semi-
scan angles are obtained, the roll and pitch angles are obtained as follows [11],

φ =
1

4
K (θω0R + θω1R − θω0L − θω1L) (10)

θ =
1

4
cos ξ (θω0R − θω1R + θω0L − θω1L) (11)

where, K and ξ are known parameters which depend on spacecraft’s altitude
and sensor hardware parameters.

The horizon sensor measurements are affected both by the noises in elec-
tronics and the errors arising from the limitation in accurately modeling the
Earth’s limb. The major sources of horizon sensor errors are Earth’s oblate-
ness, variation of Earth’s radiation, electronic noise, quantization error, and
sensor bias and misalignment [9]. Errors due to Earth’s oblateness are systemic
and highly predictable. Thus, by using an appropriate model of Earth’s shape
these errors can be largely eliminated. We follow the approach described in
[11] to account for errors due to oblateness. Earth’s radiation suffers from sea-
sonal and latitudinal variations, which are partly systemic and partly stochastic
[13]. The systemic variations can be largely corrected based on modeling of sen-
sor optics and Earth’s radiation. The available horizon sensor hardware largely
compensates for these systemic variations internally; however, stochastic errors
of the order of 0.06 deg still persist post corrections [9]. Sensor bias, misalign-
ment and electronic noise are inherent sensor errors that arise due to the sensor
hardware.

For simulation, the roll and pitch angles obtained from Eq. (10-11) are cor-
rupted with bias, white noise (to simulate the electronic noise) and noise due to
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radiance. Radiance models exist in literature based on analytical modeling of the
Earth’s atmosphere and data observed from various space missions [10,14]. In
order to obtain the radiance errors in roll and pitch, these radiance models are
then used along with the model of sensor optics, signal processing and electronics.
However, this procedure involves detailed knowledge of the sensor hardware.
Hence, we approximate the noise due to radiance as an exponentially correlated
noise in both the roll and pitch axes [15]. This model, though approximate,
models the radiance errors as varying with time with a specified steady-state
RMS value. The discrete time equation for horizon sensor noise due to radiance
variation (wφ and wθ) is thus given as,

wφ,k+1 = awφ,k + l
√
1− a2νk (12a)

wθ,k+1 = awθ,k + l
√
1− a2νk (12b)

where l denotes the steady-state RMS value of radiance variation error and is
taken as 0.06 deg [9], νk is the discrete time white noise with variance equal
to unity, and the parameter a is defined in terms of the horizon sensor sample
period (Ths) and the correlation time of exponentially auto-correlated noise (τw),

a = exp

[−Ths

τw

]
(13)

To account for the cyclic variation with latitude occuring every orbit, the
parameter τw is selected as one-eighth of the orbital period. Sensor noise due
to radiance variation for a sample simulation run is illustrated in Fig. 2. Errors
due to sensor bias and static misalignment errors are added as constant bias (bφ
and bθ) of magnitude 0.02 deg in each axis. Other random errors arising from the
sensor hardware are modeled as discrete white (νφ and νθ) noise with its 3σ value
as 0.042 deg. The measurements are sampled every 1 s. The values of parameters
describing sensor bias and random errors are chosen based on brochure of Sodern
Horizon Sensors [16].

Fig. 2. Horizon sensor noise due to Radiance Variation



420 V.V. Unhelkar and H.B. Hablani

Horizon sensor measurement equations containing error from all the sources
considered above can be written as,

φm,hs =

[
1

4
K (θω0R + θω1R − θω0L − θω1L)

]
+ wφ + bφ + νφ (14)

θm,hs =

[
1

4
cos ξ (θω0R − θω1R + θω0L − θω1L)

]
+ wθ + bθ + νθ (15)

Oblateness Corrections. The horizon sensor errors described above contain
both systemic as well as stochastic terms. To improve the accuracy of mea-
surements, the systemic errors are predicted through analytical models, and
subtracted from the measurements to mitigate the systemic errors. Earth’s
oblateness is one of the major systemic error which can be largely eliminated
by proper modeling. Following the formulation of [11] oblateness corrections are
calculated.

Fig. 3. Horizon Sensor : Oblateness Corrections

These oblateness corrections are added to the sensor measurements to remove
the noise due to the Earth’s oblateness. The variation of oblateness correction for
orbit considered in our simulation is illustrated in Fig. 3. Corrections for other
systemic errors, such as bias and residual noise due to radiance variation, can be
done through on-board estimation techniques [17] or through post-processing of
measurement residuals [9].

Horizon Sensor Parameters. A horizon sensor with clockwise scanning pat-
tern is considered with realistic sensor parameters based on [9,16]. Table 3 lists
the sensor parameters used during the simulation of the scanning type horizon
sensors. Note that the sensor field-of-view is limited.
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Table 3. Scanning Horizon Sensor Parameters

Parameter Value Units Remark

ξ 20 deg Canting Angle

δc 45 deg Semi-cone Angle

FOV 25 deg Field-of-View

l 0.06 deg Radiance noise RMS (each axis)

bhs 0.02 deg Bias (each axis)

3σhs 0.042 deg White noise (each axis)

Ths 1 s Sample Time

3 Development of Simulation

In order to validate and compare the attitude determination formulations, a
six degree-of-freedom closed-loop simulation setup (Fig. 4), similar to that of
Pratham student-satellite [8], is developed using MATLAB�-Simulink. A con-
troller is included to observe the pointing accuracy obtained by the attitude
determination and control sub-system.

Fig. 4. Overview of Simulation

The design of the simulation is kept modular, so that it can be utilized to
test different sets of sensors and attitude determination algorithms. The overall
simulation sample rate is selected as 20 Hz, as it is sufficient to capture the
system dynamics in simulation. Further, various sub-systems are simulated at
different sample rates in order to account for their different sample times (see
Table 4).

Standard equations for various simulation blocks as shown in Fig. 4 have been
used [5]. Environmental torques due to gravity-gradient, solar radiation pressure
and aerodynamic disturbance are considered. A sun-synchronous circular orbit
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Table 4. Simulation rates of different sub-systems

Sub-system Simulation Rate

True Attitude Dynamics 20 Hz

True Orbit Propagation 20 Hz

Sensors (Gyro) 10 Hz
Sensors (SS & HS) 1 Hz

On-board Models 10 Hz

Attitude Estimator 10 Hz

Controller 10 Hz

with altitude of 720 km and 98.28 deg inclination is considered, which is similar
to that of the Oceansat-2 satellite [18]. Earth’s gravity model which incorporates
terms due to the Earth’s oblateness upto J2 zonal harmonics is used for orbit
propagation [6]. The complete simulation setup has been validated with the
help of conservation of angular momentum check in absence of external torques.
Other models being standard, we here describe briefly the controller and rate
estimation filter employed in our simulation.

3.1 Controller

A controller is required for the purpose of simulation, in order to observe the
closed-loop performance of the attitude estimator. Here, we use a basic PID con-
troller for our simulations. The gains of the PID controller are selected to obtain
the desired damping ratio (ζ) of 0.707, and natural frequency (ωn) correspond-
ing to a time period of half minute, i.e., (0.5)(60)s. The parameter δ influences
the integral gain, and helps to eliminate the steady-state error of the controller.
The values of the normalized controller gains, for the listed specifications, are
listed in Table 6.

Table 5. Controller Parameters

δ 0.7

ζ 0.707

ωn
2π

(0.5)(60)
= 0.2094

Table 6. Normalized Controller Gains

ad (2 + δ)ζωn 0.3998

ap ω2
n(1 + 2δζ2) 0.0746

ai δζω3
n 0.0045

Based on the values of controller gains the control torque vector is determined
using the attitude and rate error, and satellite’s moment of inertia, I.

gcon = I

(
apθerr + ai

∫
θerrdt+ adωerr

)
(16)

θerr = θcom − θ̂ (17)

ωerr = ωcom − ω̂ (18)

Lastly, for all the simulation results presented the commanded attitude and
angular rates align the spacecraft body frame with the LVLH frame.
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3.2 Rate Filter

Estimate of inertial angular velocity of the spacecraft is required for control of
the satellite. However, in the attitude estimation algorithms presented next, we
only estimate the gyro drift rate bias and satellite attitude. Using the estimates
of gyro drift rate bias the gyro measurement can be corrected for bias error;
however, the measurements still include the random noise. The rate integrating
gyros along with the above Kalman filter provide incremental attitude vector.
Since the gyros work at a very high rate the incremental angles are related to ω
as follows

Δθ̂k = Δϕk − Tgyrob̂k (19)

ω̂kf ≈ Δθ̂k

Tgyro
(20)

In order to remove the high frequency noise associated with above calculation
of ω, a discrete low pass filter with bandwidth (ωc) is used,

ω̂k,lpf =
Tgyroωc

Tgyroωc + 2
ω̂k,kf +

Tgyroωc

Tgyroωc + 2
ω̂k−1,kf − Tgyroωc − 2

Tgyroωc + 2
ω̂k−1,lpf (21)

This filtered estimate is used to arrive at the control torque, which results in
a relatively smoother control action which is beneficial for actuator hardware. In
our simulation the filter bandwidth is chosen as ten times that of the controller
bandwidth.

4 Steady-State Kalman Filter

A steady-state three-axis Kalman Filter [2,7] is first presented for attitude de-
termination. The filter provides the estimate of the spacecraft attitude and the
gyro drift-rate bias. The gyro measurements, which are available at a very high
rate, are used as the process model for the filter. The attitude sensors are used
for correction of the attitude estimate and gyro drift-rate bias, and represent the
measurement model. The prediction step using the rate integrating gyro mea-
surements takes place at a higher rate, while the correction step is used only
after a predetermined update interval (Tup).

Propagation equations, as they occur at a different rate, are described by us-
ing the subscript k. At the n-th gyro interval correction step is applied using
the attitude sensors. In the following analysis, the indices (−) and (+) indicate
the estimates prior to and post measurement updates from attitude sensors,
respectively. The choice of update interval depends on the sensor error charac-
teristics, sensor sampling rate and required pointing accuracy, and is discussed
subsequently.
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4.1 Prediction

Based on the gyro measurement model (Eq. 3) the propagation equations for
the filter, which utilize the gyro measurements Δϕ, are given as:

Δθ̂k = Δϕk − Tgyrob̂k (22)

b̂k = b̂k−1 (23)

In order to obtain incremental inertial attitude from the attitude estimates,
following propagation equations for the direction cosine matrix are used [19],

Ĉk,I = Ĉk,k−1Ĉk−1,I (24)

Ĉk,k−1 = I3×3 −Δ[θ̂
×
] +

Δθ̂kΔθ̂T
k − ‖Δθ̂k‖2I3×3

2
(25)

4.2 Steady-State Kalman Gains

To obtain the correction equations, we first need to determine the Kalman Filter
gains. The gains depend on innovation covariance, error covariance of the process
and measurement noise. Following the steady-state analysis of [2], the Kalman
Gains for each axis are represented using three non-dimensional parameters -
dependent on the sensor errors σu, σv, σn and the correction update interval Tup

- characterizing the readout noise (Se =
σe

σn
), random-walk noise (Su =

T 3/2
up σu

σn
),

and drift angle Sv =
T 1/2
up σv

σn
. Based on the steady-state covariance analysis, the

steady-state Kalman Filter gains are,

Khs = (ζσn)
−2

⎡
⎣Pθθ(−)
Pθb(−)
Pθϕ(−)

⎤
⎦ =

⎡
⎣ 1− ζ−2

(ζTup)
−1Su

(Se/ζ)
2

⎤
⎦ (26)

where,

γ = (1 + S2
e +

1

4
S2
v +

1

48
S2
u)

1
2 (27)

ζ = γ +
1

4
Su +

1

2
(2γSu + S2

v +
1

3
S2
u)

1
2 (28)

4.3 Correction

In order to utilize the attitude sensors (sun and horizon sensors) the measure-
ments of roll, pitch, and yaw, are transformed and represented as,

Ĉn.att,I =
(
I3×3 − [νatt

×]
)
Ĉn,I (29)

wherein the subscript ‘att’ refers to both the horizon and sun sensors and νatt

quantifies the total noise in the attitude measurements. In order to obtain a
three-axis equivalent of the small angle error residual, we observe that
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θatt − θ̂0 (−) ⇔ Ĉn.att,IĈI,n.gyro (30a)

≈ I3×3 − [νatt − ν̂n.gyro]
× (30b)

= I3×3 − [νatt/gyro
×] (30c)

Hence, νatt/gyro characterizes the required difference, and can be obtained in

terms of the available matrices Ĉn.att,I (from measurement) and ĈI,n.gyro (from
estimator),

ν×
att/gyro = I3×3 − Ĉn.att,IĈI,n.gyro (31)

The correction equation in terms of νatt/gyro for attitude and bias are given
as,

νatt/update =

⎡
⎣(1− ζ−2

x )νatt/gyro,x
(1− ζ−2

y )νatt/gyro,y
(1− ζ−2

z )νatt/gyro,z

⎤
⎦ (32)

Ĉ0.gyro,I(+) = (I3×3 − [νatt/update]
×)Ĉn.gyro,I (33)

b̂0(+) = b̂0(−)−
⎡
⎣Su,x(ζxTup)

−1νatt/gyro,x
Su,y(ζyTup)

−1νatt/gyro,y
Su,z(ζzTup)

−1νatt/gyro,z

⎤
⎦ (34)

The filter thus provides estimates of inertial attitude which can be transformed
to other frames as per the requirement of the attitude control sub-system. The
estimates of bias are used to correct the gyro measurement. Note that since the
KF gains in the three axes are independent of each other, asynchronous sun and
horizon sensor measurements can also be used by the steady-state Kalman filter.
Next, we discuss the initialization of the filter, selection of the update parameter
and the filter’s simulated performance.

4.4 Initialization

To reduce the filter transients, the filter should be initialized with the best at-
titude estimate available. This a priori estimate can be obtained from the Sun
and horizon sensor measurements. These measurements are used to initialize the
attitude states of the filter. The drift bias states of the filter should be initial-
ized with the drift bias value specified in the specification sheet or as obtained
through ground testing of the gyro.

4.5 Update Interval

In the above formulation, all but one variables influencing Kalman gains are de-
pendent on the sensor characteristic. The parameter Tup also influences Kalman
Gains, and can be chosen by the designer. The achievable values of Tup will be
limited due to the sample time of attitude sensors (Ths and Tc), and compu-
tational capability of the on-board computer. Based on steady-state covariance
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analysis, variation of achievable estimate covariance with respect to Tup is ob-
tained, as shown in Figs. 5-6. Both pre- and post-update covariance estimates
at steady-state and corresponding standard deviation of attitude sensor errors
are shown. Using the plots, the parameter Tup is chosen as 2s, since it provides
estimation accuracy of ∼ 0.01 deg at steady-state.

Fig. 5. Tup anlaysis : Attitude Fig. 6. Tup anlaysis : Gyro Bias

4.6 Estimator Performance

The results of the three-axes attitude determination algorithm developed above
are now presented. The filter is propagated at a rate of 10 Hz and the attitude
sensor measurement corrections are effected every 2s. The rate low-pass filter
with cut-off frequency ωc = 0.32 Hz is used. Horizon sensor measurements are
corrected for oblateness prior to being used in the filter and no gyro misalign-
ments are considered. Initial estimation errors, tabulated in Table 7, have been
included as per section 4.4.

Table 7. Initial Estimation Errors

Attitude Estimation Error(deg)

φ θ ψ

0.1 0.1 0.1

Drift Bias Estimation Error (deg/hr)

bx by bz
0.03 0.03 0.03

Test Case: As a theoretical test case, we observe the performance of the filter
in presence of white noise in attitude sensors, where the model in the Kalman
filter completely matches with the measurements. The estimation performance
is within the predicted bounds (Figs. 7-8); however, long duration transients
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(up to 20% of the orbit period) persist before the steady-state is arrived at. Due
to the coupling between the roll and yaw axis, and propagation due to the gyro
measurements, performance in the eclipse region is also satisfactory.

Fig. 7. Steady-state KF with white
measurement noise : Attitude

Fig. 8. Steady-state KF with white
measurement noise : Gyro Bias

Performance with Realistic Measurement Errors: Next, using the estima-
tor parameters specified earlier, we obtain the performance of the steady-state
KF in presence of all sensor errors except gyro misalignments. As observed in
Figs. 9-10, the estimation performance has degraded considerably as compared
to the theoretical test case. However, this is expected as the bias and radiance
variations in horizon sensor measurements are not being compensated for in the
estimation algorithm.

Fig. 9. Steady-state KF : Attitude Fig. 10. Steady-state KF : Gyro bias
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5 Extended Kalman Filter

This section briefly describes the quaternion-based extended Kalman filter (EKF)
of Lefferts, Markley and Shuster [3] for satellite attitude determination. As with
the steady-state KF, this filter too estimates the satellite attitude and gyro drift
rate bias.

5.1 Formulation

The quaternion-based EKF estimates the attitude quaternion (qBI , 4 elements)
and gyro bias (b, 3 elements) resulting in seven states. However, the covariance
propagation is achieved through error state to avoid the quaternion singularity.
The error states for quaternion (δq = q⊗ q̂−1) and bias (Δb = b− b̂) result in
a six-element state vector: Δx = [δq,Δb]′. Process model for error state is then
given as Δẋ = FΔx+Gw, where,

F =

[−[ω×] −1/2I3×3

03×3 03×3

]
(35)

G =

[−1/2I3×3 03×3

03×3 I3×3

]
(36)

w =
[
ηv ηu

]′
(37)

The development of the quaternion EKF in [3] provides freedom while using
the attitude sensors, in the sense that the measurements can be used either as
scalar angles or reference vectors. Through simulation it was observed that use
of either approaches produces similar performance; hence, here we present only
one of them. Sensor models presented earlier represent the measurement models.
Here, we list the measurement noise covariance (R) and sensitivity (H) matrices
corresponding to the two attitude sensors,

Sun Sensor

Rk = E[v′
kvk] = σ2

c (I3×3) (38)

Hk =

⎡
⎣2(r1 × ẑk)

′ 01×3

2(r2 × ẑk)
′ 01×3

2(r3 × ẑk)
′ 01×3

⎤
⎦ (39)

where, ri = [δi1, δi2, δi3]
′, the symbol δij representing the Kronecker delta; and

ẑk(= ŝB = [C(q̂)]sI) corresponds to the modeled sun vector in the body frame.
The sensitivity matrix Hk is derived through application of the corresponding
general expressions provided in (Eq. 151-157) of [3].

Horizon Sensor

Rk =

[
σ2
θ 0
0 σ2

φ

]
(40)

Hk =

[
2(r1 × ẑk)

′ 01×3

2(r2 × ẑk)
′ 01×3

]
(41)
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where ẑk corresponds to the modeled value of the nadir vector in the body frame;
and horizon sensor measurement is represented as [−θm, φm]′ to correspond to
the definition of the nadir vector. As expected these measurements depend only
on the attitude and not on the gyro bias. For further details of this filter and
the standard Kalman Filter equations the reader is directed to reference [3].

5.2 Estimator Performance

We present the performance of the quaternion-based EKF using similar measure-
ment models and parameters as to that for the steady-state KF. As the mea-
surements from different sensors need not be synchronous, each measurement
update is applied independently, using Murell’s approach [20]. While calculating
filter gains we need to specify P0. When the sun and horizon sensors are used
to provide the initial estimates, value of P0 corresponding to the accuracy of
these sensors is used. The initial drift bias state covariances can be obtained
from ground testing of the gyro.

Test Case: The Kalman filter is optimal in presence of measurement errors
being white noise. Hence, similar to the case of steady-state KF, as a theoretical
test case, we first observe the performance of the EKF in presence of only white
noise in attitude sensors. The absence of yaw (sun sensor) measurements, during
the eclipse phase, results in increased state covariance in yaw estimates. Due to
the exact correspondence between the measurement noise and its model being
white, the assumptions of EKF are satisfied, resulting in the expected estimation
performance, shown in Figs. 11-12.

Fig. 11. EKF (white noise) : Attitude Fig. 12. EKF : Gyro bias

Performance with Realistic Measurement Errors: Having verified the fil-
ter through a simplified measurement model, we observe its performance in pres-
ence of the complete measurement models except for misalignments. Similar to
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the case of steady-state KF, the performance of the filter deteriorates. The ob-
served estimation accuracy in presence of colored noise and bias in measurement
is given as seen in Figs. 13-14.

Fig. 13. EKF : Attitude Fig. 14. EKF : Gyro bias

6 Estimation of Additional States

The horizon sensor measurements used in both the steady-state KF and quater-
nion-based EKF described earlier contain errors such as biases and radiance
variations, which are not just white noise. These filters, however, work under
the assumption that the errors entering the measurement model are white - re-
sulting therefore in sub-optimal estimation performance. Better estimates of the
attitude requires augmentation of the state vector, albeit without any additional
measurements. This may result in the system becoming unobservable, degrading
the attitude performance. Attempts to estimate biases of attitude sensors [17]
and the noise due to radiance variation [21] have been reported earlier in the
literature, and mixed results have been obtained. Hence, the augmented state
vector filter should be implemented only after verifying the performance of the
estimator through analysis and simulation. We proceed with the state vector
augmentation for the quaternion-based EKF instead of the steady- state KF,
due to its relatively straight-forward formulation and ease of implementation.
A similar approach of state vector augmentation for estimation of misalignment
and scale factor errors has been developed by Pittelkau.

6.1 Horizon Sensor Error Estimation

The state vector is augmented with the noise terms corresponding to the horizon
sensor radiance error (wφ, wθ) : x(t) = [qBI ,Δbg, wφ, wθ]

′. The discrete-time
model for radiance errors in roll and pitch is given by Eq. (12a-12b). This can
be represented as a differential equation,
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ẇφ(t) = −βwφ + ηφ,w (42)

ẇθ(t) = −βwθ + ηθ,w (43)

where the parameter β and the PSD of η are obtained by comparing the con-
tinuous model with the discrete-time equation: β = 1

τw
, PSD of ηφ,wand ηθ,w =

l2(1−a2)
Ths

. The evolution of these error parameters is independent of the attitude
and gyro bias, and the same is reflected in the modified process model,

d

dt

⎡
⎢⎢⎣
qBI

Δbg
wφ

wθ

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
−[ω×] −1/2I3×3 03×1 03×1

03×3 03×3 03×1 03×1

01×3 01×3 −β 0
01×3 01×3 0 −β

⎤
⎥⎥⎦

⎡
⎢⎢⎣
qBI

Δbg
wφ

wθ

⎤
⎥⎥⎦+

⎡
⎢⎢⎣
−1/2ηv

ηu

ηφ,w
ηθ,w

⎤
⎥⎥⎦ (44)

Propagation equation for the quaternion and bias is the same as for the filter
described earlier. The propagation for the radiance variation is done using the
discrete counterpart of the process model described above. Sun sensor measure-
ment equations and corresponding noise covariance (Eq. 38) remains the same.
Horizon sensor measurements are corrected for noise due to oblateness. In the
current formulation, an estimate of the horizon sensor noise due to radiance vari-
ation is developed so as to subtract it from the horizon sensor measurements.
The corresponding sensitivity matrix is given as,

Hk =

[
2(r1 × ẑk)

′ 01×3 0 −1
2(r2 × ẑk)

′ 01×3 1 0

]
(45)

Radiance Noise Estimation. The initial estimate of the attitude and gyro
bias are specified to be the same as before, whereas since no estimate of residual
error due to radiance variation is available its initial value is taken as zero. The
steady-state RMS value of radiance noise is used to define P0, the initial state
covariance. As seen in Figs. 15-16, the estimation error of the radiance noise is
within the covariance bounds. However, the predicted bounds for the most part
of the orbit are the same as l, the steady-state RMS of the radiance noise.

Although the radiance noise is estimated to certain accuracy, the improve-
ments in attitude estimation are not significant even with the application of this
modified filter (Fig. 6.1). Similar results were reported in [21] wherein with real
attitude data a similar augmented filter was able to estimate the radiance noise
but improved the attitude estimation performance only marginally.

Bias Estimation. Apart from radiance noise, the horizon sensor measurements
also have a constant bias which may arise due to sensor electronics or static
misalignment. Since our filter currently does not estimate the bias, the attitude
estimate might improve with estimation of this bias, even though the magnitude
of this bias is relatively smaller than the radiance noise. Hence, we try to estimate
the horizon sensor bias using the augmented filter, instead of the radiance noise.
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Fig. 15. Horizon Sensor Radiance
Noise : Estimation Error

Fig. 16. Horizon Sensor Radiance
Noise : True v/s Estimate

Fig. 17. Effect of Radiance Estimation : Attitude

The formulation to estimate radiance noise can be adapted to estimate horizon
sensor bias, by choosing the parameter β in the process model of the filter as zero.
The filter is initialized similar to the case of radiance estimation. The horizon
sensor bias estimation performance is portrayed in Figs. 18-19.

Fig. 18. Horizon Sensor Bias :
Estimation Error

Fig. 19. Horizon Sensor Bias : True v/s
Estimate
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Improvements in attitude estimation accuracy are obtained due to estimation
of the horizon sensor bias. As seen in Fig. 20, the attitude estimation accuracy
is generally within the predicted covariance, and yaw estimates do not degrade
much during eclipse.

Fig. 20. Effect of Bias Estimation : Attitude

6.2 Misaligned Sensors

In the simulation discussed till now, no sensor misalignments were considered.
Presence of misalignment in either the gyro or the attitude sensors may result
in incorrect estimates of both the attitude and gyro drift rate bias. Both batch
and sequential misalignment estimation method exist in the literature. Here, we
consider application of the misalignment estimation Kalman filter developed by
Pittelkau [4], which is called the Alignment Kalman Filter (AKF). This filter is
suited for on-board real time estimation of sensor misalignments and scale factor
errors.

The AKF, too, is an augmentation of the quaternion-based EKF. The aug-
mented state vector is given as x = [δqv,Δbg, δg,bHS ]

′, where, the parameter
δg (= [λx, δyz, δzy, δxz, λy, δzx, δxy, δyx, λz ]

′) denotes the gyro misalignments and
scale factor terms, and bHS (= [bφ, bθ]

′) denotes the two components of hori-
zon sensor bias . The alignment Kalman filter, thus, attempts to estimate ad-
ditional states - misalignment of sensors - along with the attitude and sensor
biases. However, the number of measurements used for correction of the state
vector still remain the same. Naturally, this causes concerns of observability of
the state vector and potential degradation of the estimate. In order to make
the system observable, and prevent ill effects of state augmentation, in-flight
attitude maneuvers are performed. These maneuvers are of higher frequency
then the spacecraft dynamics, and for on-board implementation require capa-
ble actuators. The system is made observable by subjecting the spacecraft to
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non-harmonic sinusoidal angular rates. Hence, the rate command for the attitude
controller is modified to be as,

ωB
BO = (0.05 deg / sec)

⎡
⎣sin[2π(0.0100)]sin[2π(0.0085)]
sin[2π(0.0080)]

⎤
⎦ (46)

The process model for the above state vector is given as,

d

dt

⎡
⎢⎢⎣
qBI

Δbg
δg
bHS

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
−[ω×] −1/2I3×3 1/2Ωg 03×2

03×3 03×3 03×9 03×2

09×3 09×3 09×9 09×2

02×3 02×3 02×9 02×2

⎤
⎥⎥⎦

⎡
⎢⎢⎣
qBI

Δbg
δg
bHS

⎤
⎥⎥⎦+

⎡
⎢⎢⎣
−1/2(I3×3 +M)ηv

ηu

ηg

ηb

⎤
⎥⎥⎦
(47)

where, M denotes the gyro misalignment and scale factor matrix,

M =

⎡
⎣ λx −δyz δzy

δxz λy −δzx
−δxy δyx λz

⎤
⎦ (48)

and Ωg is defined in terms of the inertial rates,

Ωg =

⎡
⎣ωx −ωy ωz 0 0 0 0 0 0
0 0 0 ωx ωy −ωz 0 0 0
0 0 0 0 0 0 −ωx ωy ωz

⎤
⎦ (49)

The propagation equations for δg and bHS is the same as that of the Δbg due
to analogous continuous time equations. The propagation of the full quaternion
is also done similar to that of the 6-state EKF, except that rate-integrating gyro
measurements are compensated not just for drift rate bias but also misalignments
and scale factors using available estimates. The measurement sensitivity matrix
is expanded to account for the additional states; for instance, for horizon sensor
the sensitivity matrix is given as,

Hk =

[
2(r1 × ẑk)

′ 01×3 01×9 0 −1
2(r2 × ẑk)

′ 01×3 01×9 1 0

]
(50)

When the spacecraft is subjected to sinusoidal rate maneuvers, as specified
in Eq. 46, the misalignment states are expected to become observable, resulting
in improvement in attitude estimation performance. Further, the attitude and
gyro drift rate bias performance is within the Kalman filter covariance bounds
(Figs. 21-22).

The estimation of scale factors and misalignment in all the three axes is pos-
sible. Within two orbits the scale factor and miaslignment estimation errors
achieve steady-state (Figs. 23-24), after which the maneuvers are terminated
and normal spacecraft operation is resumed.



S/C Attitude Determination with Sun Sensors, Horizon Sensors and Gyros 435

Fig. 21. AKF : Attitude Fig. 22. AKF : Gyro Bias

Fig. 23. Gyro Scale Factors :
Estimation Error

Fig. 24. Gyro Misalignment (x-axis) :
Estimation Error

7 Conclusions and Comments

Sequential on-board attitude estimation algorithms for the sensor suite - sun
sensor, horizon sensor and gyros - are studied, analyzed and simulated. As the
attitude estimation algorithms are tested through simulation, an effort is made
to consider detailed models of sensors and to test the algorithms in presence
of realistic sensor errors. A standard, realistic model of rate-integrating gyro is
used which includes time varying drift-rate bias, static misalignment, scale fac-
tor errors and quantization noise. Horizon sensor modeling includes effects of
Earth’s oblateness, atmospheric radiance, bias and electronic noise. An approxi-
mate model of noise due to atmospheric radiance, treating it as an exponentially
auto-correlated noise, is considered. A modular six degree-of-freedom closed-
loop simulation has been developed, and performance of the attitude estimation
algorithms using this simulation is presented.
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Two attitude estimation algorithms - the DCM-based steady-state KF and
quaternion-based EKF - are simulated. Modifications in the standard algorithms
have been made, to customize them for the sensors under consideration. The
steady-state filter is observed to work for the current sensor suite if only white
noise is present in the attitude sensors. Hence, the steady-state KF, which is
computationally efficient, may be a preferred choice in the case of the sensors
primarily exhibiting such noise characteristics, such as the star trackers [7]. Fur-
ther, depending on sensor error characteristics and required estimation accuracy,
the steady-state KF may not be suitable during the eclipse phase of the orbit.

The quaternion-based EKF, too, in its original form works only for attitude
sensors with white noise. Hence, there is a need to estimate other errors in the
attitude sensors through augmentation of the state vector. The quaternion-based
EKF offers a natural framework for estimation of additional states. Through es-
timation of horizon sensor bias, but not that of radiance noise, improvement
in estimator performance is observed. Even during the eclipse phase of the or-
bit, when the sun sensor measurements are not available, the filter performance
is satisfactory. The performance of steady-state KF may also be improved by
estimation of horizon sensor bias; however, the quaternion-based EKF offers a
simpler way of augmenting the state vector and can better handle asynchronous
measurements. Hence, we recommend the use of the quaternion-based EKF with
augmented state vector. Lastly, to account for sensor misalignment and scale fac-
tor errors, the alignment Kalman filter is studied and simulated. Due to satellite
maneuvers, the AKF is able to estimate the misalignment parameters, resulting
in desired attitude estimation performance.
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Abstract. A numerical method for solving a class of constrained min-
imization problems encountered in quaternion data fusion is presented.
The quaternion constraints are handled by the method of Lagrange mul-
tipliers. The number of the stationary points of the minimization problem
is finite and all of them are found by solving via homotopy continuation
a system of polynomial equations. The global minimizer is the stationary
point that minimizes the loss function of the minimization problem. A
numerical example of two-quaternion data fusion is given to illustrate the
viability of the method as a global minimization method for quaternion
data fusion.

Keywords: quaternion, data fusion, homotopy continuation.

1 Introduction

Attitude quaternion [7] is the attitude parameterization of choice for spacecraft
attitude estimation for several reasons: 1) it is free of singularities, 2) the atti-
tude matrix is quadratic in the quaternion components, and 3) the kinematics
equations is bilinear and an analytic solution exists for the propagation. How-
ever, the components of the attitude quaternion are not independent of each
other and the norm of the attitude quaternion must be unity. This unity-norm
constraint leads to problems for data fusion involving quaternions. The objective
of data fusion is to find the optimal estimate from data of various sources.

Reference [5] addresses the problem of fusing or averaging a set of quaternions.
The fused or averaged quaternion is defined as the optimal solution to a con-
strained minimization problem subject to one equality constraint (the quater-
nion constraint). The method of Lagrange multipliers is used to convert the
constrained minimization problem to an unconstrained minimization problem.
The Lagrange multiplier is the maximum eigenvalue of a 4×4 symmetric matrix
composed from the quaternions and weights [3]. The optimal average quaternion
is the eigenvector corresponding to the maximum eigenvalue [3].

Reference [3] addresses a more general data fusion problem in which the state
vector of interest consists of one quaternion and a set of unconstrained param-
eters, for example, gyro biases. The data fusion problem is also formulated as a
constrained minimization problem subject to one equality constraint. The La-
grange multiplier is now the maximum eigenvalue of an 8×8 asymmetric matrix
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or the maximum root of the 8th-degree secular equation [3]. Given the Lagrange
multiplier, the optimal state estimate is obtained by solving a linear system of
equations [3].

This paper addresses an even more general data fusion problem in which the
state vector includes two or more quaternions as well as a set of unconstrained
parameters. Such a problem appears in formation flying involving multiple ve-
hicles in which two or more relative attitudes need to be determined or fused[1].
The data fusion problem is again defined as a constrained minimization problem,
but now subject to two or more equality constraints. The multiple quaternion
constraints significantly increase the difficulty of the minimization problem. To
our knowledge, no closed form solution exists for the minimization problem and
few properties of the Lagrange multipliers are known. The latter makes it dif-
ficult to choose the initial guess of the Lagrange multipliers when solving the
problem using an iterative method.

In this paper, a numerical method is presented for the constrained minimiza-
tion problem subject to multiple quaternion constraints based on the solution
of polynomial systems. Unlike the iterative gradient-based methods, which can
only find a local minimum of the minimization problem, this method first finds
all the stationary points and then selects the global minimum from them. In
addition, the method provides insights to the properties, the number of local
minima in particular, of the minimization problem.

The organization of the remainder of this paper is as follows. First, one-
quaternion data fusion is reviewed. Next, the problem statement and formal
solution of the multi-quaternion data fusion problem are given. Then, the nu-
merical solution of the polynomial system is presented. Finally, a numerical
example is given, followed by the conclusions.

2 One-Quaternion Data Fusion

The objective of data fusion is to fuse n estimates xi of a state vector x to yield a
single (better) estimate of the state vector. Throughout this paper, it is assumed
that quaternion is part of the state vector and that the optimal estimate is the
solution to a constrained minimization problem of which the loss function is
quadratic in the state vector. While the solution to one-quaternion data fusion
problem has been studied in [5,3], the problems and solutions of one-quaternion
data fusion are reviewed in this section for sake of completeness.

The vector and scalar parts of a quaternion are defined by q �
[
�T q4

]T
,

which are assumed to satisfy the unity-norm constraint ||�||2 + q24 = qTq = 1.
The attitude matrix is related to the quaternion by

A(q) = ΞT (q)Ψ(q) =
(
q24 − ||�||2) I3×3 + 2��T − 2 q4[�×] (1)

where I3×3 is a 3×3 identity matrix and [�×] is the cross-product matrix defined
by

[�×] �

⎡
⎣ 0 −q3 q2

q3 0 −q1
−q2 q1 0

⎤
⎦ (2)
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Ξ(q) �
[
q4I3×3 + [�×]

−�T

]
, Ψ(q) �

[
q4I3×3 − [�×]

−�T

]
(3)

The simplest case of one-quaternion data fusion is now reviewed, where the
ith state estimate xi = qi. The loss function is chosen as [5]

J(q) =
1

2

n∑
i=1

qTΞ(qi)WqqiΞ
T (qi)q (4)

where Wqqi is a 3× 3 positive definite weighting matrix. The three-dimensional
vector ΞT (qi)q has been widely to measure the attitude error in spacecraft atti-
tude estimation and the magnitude of ΞT (qi)q is the absolute value of the sine
of the half-error angle [5]. The quaternion constraint qTq = 1 is handled using
the method of Lagrange multipliers, which gives the augmented loss function as

J(q) =
1

2

n∑
i=1

qTΞ(qi)WqqiΞ
T (qi)q+

λ

2
(qTq− 1) (5)

where λ is the Lagrange multiplier. The necessary conditions for minimization
of Eq. (5) are

(F + λI4×4)q = 0 (6a)

qTq = 1 (6b)

where

F �
n∑

i=1

Ξ(qi)WqqiΞ
T (qi) (7)

A vector satisfying the the necessary conditions is called a stationary point.
Equation (6a) indicates that q and λ are the eigenvector and eigenvalue of F ,
respectively. Since the loss function for the quaternion satisfying Eq. (6) equals
−λ/2, the optimal average quaternion is the eigenvector corresponding to the
maximum eigenvalue of −F .

When the ith state estimate xi is composed of a quaternion qi, which is
subject to the constraint qT

i qi = 1, and other quantities bi, which are free of
constraints, the loss function is given by

J(x) =
1

2

n∑
i=1

ΔxT
i WiΔxi (8)
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with

x �
[
q
b

]
(9a)

Δxi �

⎡
⎣Ξ

T (qi)q

b− bi

⎤
⎦ (9b)

Wi �

⎡
⎣Wqqi Wqbi

WT
qbi

Wbbi

⎤
⎦ (9c)

where Wi is positive definite. The vector b can be of any dimension, denoted by
nb, and the same attitude error vector expression ΞT (qi)q has been used as in
the previous case. Note that although q and−q represent the same attitude, they
give attitude error vectors in opposite directions. For nonzero Wqbi , [q

T , bT ]T

and [−qT , bT ]T yield different values of the loss function. Only when Wqbi = 0
or x = q (b is empty), ±q or ±ΞT (qi)q yield the same loss function.

The augmented loss function is now

J(x) =
1

2

n∑
i=1

ΔxT
i WiΔxi +

λ

2
(qTq− 1) (10)

The necessary conditions for minimization of Eq. (10) are⎡
⎣Bqq + λI4×4 Bqb

BT
qb Bbb

⎤
⎦
⎡
⎣q
b

⎤
⎦ =

⎡
⎣c
d

⎤
⎦ (11a)

qTq = 1 (11b)

where

B =

⎡
⎣Bqq Bqb

BT
qb Bbb

⎤
⎦ �

⎡
⎣
∑n

i=1 Ξ(qi)WqqiΞ
T (qi)

∑n
i=1 Ξ(qi)Wqbi

∑n
i=1 WT

qbi
ΞT (qi)

∑n
i=1 Wbbi

⎤
⎦ (12a)

c �
n∑

i=1

Ξ(qi)Wqbibi (12b)

d �
n∑

i=1

Wbbibi (12c)

Solving the second subequation of Eq. (11a) leads to

b = B−1
bb (d− BT

qbq) (13)

With b eliminated using Eq. (13), Eq. (11) reduces to

(G + λI4×4)q = g (14a)

qTq = 1 (14b)
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where

G � Bqq − BqbB−1
bb BT

qb (15a)

g � c− BqbB−1
bb d (15b)

Equation (14) is the key equation to solve in one-quaternion data fusion. Given
xi and Wi, the one-quaternion data fusion procedure is as follows:

1. Compute Bqq, Bqb, Bbb, c, d using Eq. (12)
2. Compute G and g using Eq. (15)
3. Solve Eq. (14) for the optimal q∗ and λ∗
4. Compute the optimal b∗ using Eq. (13)

Note that for nonzero g, q∗ and −q∗ cannot both be solutions of Eq. (14). The
Lagrange multiplier λ∗ is known to be the maximum real eigenvalue of an 8× 8
asymmetric matrix or the maximum root of the 8th-degree secular equation [3].
Given λ∗, the optimal q∗ can be obtained by solving (G + λ∗I4×4)q

∗ = g [3].

3 Multi-quaternion Data Fusion

In multi-quaternion data fusion, the state vector is assumed to consist of m
quaternions q(j), j = 1, . . . ,m, with q(j)Tq(j) = 1, and a set of unconstrained
quantities b. Define

x �

⎡
⎣Q
b

⎤
⎦ (16a)

xi �

⎡
⎣Qi

bi

⎤
⎦ (16b)

Q �

⎡
⎢⎣
q(1)

...

q(m)

⎤
⎥⎦ (16c)

Qi �

⎡
⎢⎢⎣
q
(1)
i
...

q
(m)
i

⎤
⎥⎥⎦ (16d)

Σ(Qi) �

⎡
⎢⎢⎢⎣
Ξ
(
q
(1)
i

)
. . .

Ξ
(
q
(m)
i

)

⎤
⎥⎥⎥⎦ (16e)

Note that Σ(Qi) is a block-diagonal matrix. The loss function is of the form of
Eq. (8), repeated here:

J(x) =
1

2

n∑
i=1

ΔxT
i WiΔxi (17)
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where

Δxi �

⎡
⎣Σ

T (Qi)Q

b− bi

⎤
⎦ (18a)

Wi �

⎡
⎣WQQi WQbi

WT
Qbi

Wbbi

⎤
⎦ (18b)

Augmenting the constraint function with the m quaternion constraints gives

J(x) =
1

2

n∑
i=1

ΔxT
i WiΔxi +

1

2

m∑
j=1

λj

(
q(j)Tq(j) − 1

)
(19)

with λj , j = 1, . . . ,m, the Lagrange multipliers.
The necessary conditions for minimization of Eq. (19) are

⎡
⎣BQQ + Λ BQb

BT
Qb Bbb

⎤
⎦
⎡
⎣Q
b

⎤
⎦ =

⎡
⎣C
d

⎤
⎦ (20a)

q(j)Tq(j) = 1, j = 1, . . . ,m (20b)

where

Λ =

⎡
⎢⎣
λ1I4×4

. . .

λmI4×4

⎤
⎥⎦ (21)

BQQ �
n∑

i=1

Σ(Qi)WQQiΣ
T (Qi) (22a)

BQb �
n∑

i=1

Σ(Qi)WQbi (22b)

Bbb �
n∑

i=1

Wbbi (22c)

C �
n∑

i=1

Σ(Qi)WQbibi (22d)

d �
n∑

i=1

Wbbibi (22e)

Solving the second subequation of Eq. (20a) leads to

b = B−1
bb (d− BT

QbQ) (23)
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With b eliminated using Eq. (23), Eq. (20a) reduces to

(H+ Λ)Q = h (24a)

q(j)Tq(j) = 1, j = 1, . . . ,m (24b)

where

H � BQQ − BQbB−1
bb BT

Qb (25a)

h � C− BQbB−1
bb d (25b)

Equation (24) is the key equation to solve in multi-quaternion data fusion. Given
xi and Wi, the multi-quaternion data fusion procedure is as follows:

1. Compute BQQ, BQb, Bbb, C, d using Eq. (22)
2. Compute H and h using Eq. (25)
3. Solve Eq. (24) for the optimal Q∗ and λ∗

j , j = 1, . . . ,m
4. Compute the optimal b∗ using Eq. (23)

Note that for nonzero h, if Q∗ is the solution of Eq. (24), its “conjugate” with
one or more q(j)∗ replaced by −q(j)∗ is not a solution of Eq. (24) because the
attitude error vectors in the loss function given by Eq. (17) are dependent on
the signs of the quaternions.

Equation (24) or the equivalent of it may be solved using an iterative gradient-
based algorithm, but it cannot guarantee that Q∗ and λ∗

j are globally optimal.
Since little is known about λ∗

j , choosing an appropriate initial guess for the
gradient-based algorithm is not easy.

Noting that Eq. (24) is a system of polynomial equations in Q and λj , we
are motived to solve Eq. (24) using the homotopy continuation method [2,4],
which is capable of finding all the isolated solutions, real and complex, of the
polynomial system. The globally optimal Q∗ and λ∗ are then given by the real
solution that minimizes J(x). The advantage of the method is that it guarantees
that the globally optimal solution is one of the isolated solutions as long as it
exists and is unique. The detail of the numerical solution is given in the next
section.

4 Numerical Solution for Multi-quaternion Data Fusion

Define the 5m-dimensional vector

y �
[
Q
λ

]
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

q(1)

...

q(m)

λ1

...
λm

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(26)
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where m is the number of quaternions in the state vector. The 5m-dimensional
vector y is required to satisfy the following 5m polynomial equations (also
Eq. (24)):

(H+ Λ)Q = h (27a)

q(j)Tq(j) = 1, j = 1, . . . ,m (27b)

For a well-posed data fusion problem, this polynomial system has a finite
number of isolated solutions, which can be found via homotopy continuation
[2,4]. The idea of homotopy continuation is to cast the target polynomial system
in a parameterized family of systems, one of which (the start system) has known
or easily found solutions[6,8]. After choosing this family, one chooses a path from
the start system to the target system, constructs a homotopy between the two,
and tracks the solution paths. The homotopy continuation method finds all the
real and complex solutions to a polynomial system. Since only real solutions of
the polynomial system are of interest, the complex solutions found by the solver
are discarded.

For illustration purposes, an example of homotopy continuation of one equa-
tion in one unknown is given[6]. To solve

f(x) = x5 + ax+ b = 0 (28)

where a and b are two constants, one may construct the continuation equation
as

h(x, t) = x5 + atx+ [tb− (1− t)q5], 0 ≤ t ≤ 1 (29)

where q is a complex constant. The target system (the original equation) corre-
sponds to t = 1 and the start system corresponds to t = 0, given by

h(x, 0) = x5 − q5 (30)

The five complex solutions to the start system are obvious. The solution of h(x, t)
can be viewed as a function of t, denoted by x(t), 0 ≤ t ≤ 1. Geometrically, x(t)
are paths originating from x(0) and ending at x(1). With x(0) given, x(Δt),
where Δt is a small step size, can be found using the Euler or Newton method.
Step by step, the paths are tracked until t = 1.

Although the idea of homotopy continuation is simple, several important is-
sues need to be handled with care. These include but are not limited to deter-
mination of the number of paths, path crossing, path divergence to infinity, and
singular solutions[6]. A singular solution has a singular Jacobian matrix, defined
as the derivatives of the equations with respect to the unknowns[6]. Thanks to ho-
motopy continuation based solvers such as HOM4PS[4], Bertini[2], PHCpack[9],
and HomLab[8], solving a system of polynomial equations via homotopy con-
tinuation is easy for a user, who only needs to provide a model description of
the polynomial system that can be processed by the solver but does not need to
provide a starter system.

By definition, the real solutions of the polynomial system in Eq. (27) are
the stationary points of the constrained minimization problem. The globally
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optimal solution is the one that minimizes the loss function. The local minimizers
of the minimization problem are the stationary points with positive definite
Hessian. Because the loss function is quadratic in the attitude quaternions, the
Hessian without considering the m quaternion constraints is (H + Λ∗), where
Λ∗ is evaluated at the λ∗ in y∗. The dimension of (H + Λ∗) is (4m) × (4m).
Since one attitude only has three degrees of freedom and m attitudes only have
3m degrees of freedom, this Hessian should not be used. Instead, a (3m)× (3m)
Hessian is defined as

H∗ = P∗T (H+ Λ∗)P∗ (31)

with the (3m)× (4m) P∗ satisfying

P∗TP∗ = I(3m)×(3m) (32)

P∗TC∗ = 0(3m)×m (33)

where

C∗ =

⎡
⎢⎣
q∗(1) · · · 04×1

...
. . .

...

04×1 · · · q∗(m)

⎤
⎥⎦ (34)

The columns of the (4m) × m matrix C∗ correspond to the gradients of the
quaternion constraints. The matrix P∗ can be found using the QR decomposition
of C∗. A stationary point is a local minimizer if H∗ is positive definite.

A stationary point or local minimizer is the global minimizer if gives the
global minimum of the loss function of multi-quaternion data fusion, whose data-
dependent part is equivalent to

Jeq(Q) =
1

2
QTHQ− hTQ (35)

The loss functions J and Jeq have the same stationary points and minima, but
they are not equal to each other in general. Evaluating the equivalent loss func-
tion at a local minimum and substituting Eq. (27) gives

Jeq(Q
∗) =

1

2
Q∗THQ∗ − hTQ∗

=
1

2
Q∗THQ∗ −Q∗T (H + Λ∗)Q∗

= −1

2
Q∗THQ∗ −

m∑
j=1

λ∗
j

(36)

An alternative form of Jeq is given by

Jeq = −1

2
Q∗Th− 1

2

m∑
j=1

λ∗
j (37)

It follows that if h = 0, Jeq = −1/2
∑m

j=1 λ
∗
j , completely determined by the

optimal Lagrange multipliers λ∗
j . In this case, the globally optimal solution has

the maximum sum of the associated Lagrange multiplers.
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To find the globally optimal Q∗ and λ∗
j , j = 1, . . . ,m, the following procedure

is used:

1. Find all real solutions y∗ of the polynomial system given by Eq. (27)
2. Extract Q∗ and λ∗

j , j = 1, . . . ,m, from y∗

3. For j = 1, . . . ,m, find the set of Q∗ and λ∗
j with the minimum value of the

equivalent loss function given by Eq. (35)

5 Numerical Example

An example of fusing two estimates of a 11-dimensional state vector is presented.
The 11-dimensional state vector consists of two four-dimensional quaternions and
a three-dimensional bias vector (in deg/hr). The optimal quaternions and gyro
bias vector minimizes the loss function given by Eq. (17).

The numerical result of a typical run is given, in which the numerical values
of x1 and x2 are

x1 =

⎡
⎢⎣
q
(1)
1

q
(2)
1

b1

⎤
⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.000277382573244
−0.000204231576920
0.000192024591025
0.999999922237461
−0.000351386991909
0.000409974757656
0.500076203448043
0.865981234896502
2.498888167313556
1.419147803026932
1.515444247510682

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,x2 =

⎡
⎢⎣
q
(1)
2

q
(2)
2

b2

⎤
⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.000460180571557
−0.000137458850112
0.000082907410592
0.999999881232627
0.000201400729929
0.000114725959778
0.499722080513250
0.866185770215148
4.262501700209700
2.678350976663482
−0.290141003402079

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(38)
The individual blocks of the weighting matrices for the two estimates as defined
by Eq. (18b) are given by

WQQ1 =⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2.6028 −1.1934 −0.0338 0.0005 −0.2992 0.4473 −0.4107 0.2368
−1.1934 2.6220 0.0618 0.0002 0.3700 −0.3078 0.4449 −0.2566
−0.0338 0.0618 1.6481 −0.0003 0.0046 −0.0102 0.0071 −0.0041
0.0005 0.0002 −0.0003 0.0000 −0.0000 0.0001 −0.0000 0.0000
−0.2992 0.3700 0.0046 −0.0000 1.8740 0.3170 0.0723 −0.0412
0.4473 −0.3078 −0.0102 0.0001 0.3170 1.4845 −0.1206 0.0691
−0.4107 0.4449 0.0071 −0.0000 0.0723 −0.1206 1.0865 −0.6273
0.2368 −0.2566 −0.0041 0.0000 −0.0412 0.0691 −0.6273 0.3622

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
× 107

(39)
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WQQ2 =⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2.6470 0.2882 −0.1381 −0.0012 0.7717 0.0829 1.4650 −0.8454
0.2882 1.7538 −0.0554 0.0001 0.3028 0.0258 0.3218 −0.1858
−0.1381 −0.0554 1.2859 −0.0001 −0.1252 −0.0097 −0.0964 0.0556
−0.0012 0.0001 −0.0001 0.0000 −0.0003 −0.0000 −0.0006 0.0004
0.7717 0.3028 −0.1252 −0.0003 1.8273 −0.0658 0.4699 −0.2715
0.0829 0.0258 −0.0097 −0.0000 −0.0658 1.2899 −0.0125 0.0071
1.4650 0.3218 −0.0964 −0.0006 0.4699 −0.0125 2.8015 −1.6164
−0.8454 −0.1858 0.0556 0.0004 −0.2715 0.0071 −1.6164 0.9326

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
× 107

(40)

WQb1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−87.1316 718.0253 −7.1995
0.1239 −17.8754 −34.1459
−8.9145 5.1567 −718.6707
−405.9057 29.0107 −0.2878
189.8244 −194.0680 237.5290
−136.9964 −141.7521 135.0680
2.7172 −0.0123 25.9761

−41.2554 36.2763 −20.9183

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(41)

WQb2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

40.2161 52.0082 −26.7553
−0.0091 151.4475 18.2024
360.3686 −207.9424 −460.4823
−178.0111 73.2052 0.1814
−394.2257 −29.2972 −255.2308
147.3439 −663.7105 −257.5989
106.0858 0.2612 −571.5016
−42.6669 −377.3766 217.8556

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(42)

Wbb1 =

⎡
⎣0.2034 0.0278 0.0002
0.0278 5.4026 0.0075
0.0002 0.0075 0.1230

⎤
⎦ (43)

Wbb2 =

⎡
⎣ 0.2462 −0.0091 −0.0131
−0.0091 0.1299 0.0334
−0.0131 0.0334 0.1574

⎤
⎦ (44)

From the estimates and weighting matrices, the corresponding polynomial sys-
tem in Eq. (27) is formed, where H and h are given by
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H =⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4.9966 −0.9375 −0.1396 −0.0006 0.3153 0.5017 0.9629 −0.5558
−0.9375 4.2338 0.0170 0.0003 0.6291 −0.2846 0.6949 −0.4009
−0.1396 0.0170 2.9294 −0.0004 −0.0986 −0.0165 −0.0739 0.0426
−0.0006 0.0003 −0.0004 0.0000 −0.0003 0.0000 −0.0006 0.0004
0.3153 0.6291 −0.0986 −0.0003 3.5923 0.2349 0.4678 −0.2697
0.5017 −0.2846 −0.0165 0.0000 0.2349 2.7710 −0.1418 0.0812
0.9629 0.6949 −0.0739 −0.0006 0.4678 −0.1418 3.8214 −2.2053
−0.5558 −0.4009 0.0426 0.0004 −0.2697 0.0812 −2.2053 1.2726

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
× 107

(45)

h =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

28.9572
−510.8195
−17.3103
−0.1430
184.0905
16.0382
347.8748
−200.7379

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(46)

Given H and h, Eq. (27) is solved using the polyhedral homotopy continuation
method of HOM4PS 2.0 [4], which is chosen for its high speed relative to the other
homotopy continuation based solvers. On a Macintosh computer with a 3 GHz
Intel Core 2 Duo processor, the real and complex solutions of the equations are
found in less then 0.5 seconds.

For this specific run, 52 solutions are real and 12 solutions are complex. Note
that because h is nonzero, [q(1)T ,q(2)T ]T , [−q(1)T ,q(2)T ]T , [q(1)T ,−q(2)T ]T , and
[−q(1)T ,−q(2)T ]T are not equivalent. Recall that they yield different attitude
error vectors in the loss function. If one of them solves Eq. (27), the other three
do not.

It should be pointed out that the number of real solutions depends on both
H and h. For different values of H and h, the observed number of real solutions
varies from 48 to 64 but is always even. The observed total number of real and
complex solutions is always 64, however.

The local minimizers are found by checking the positive definiteness of the
Hessians given by Eq. (31) at the stationary points. The number of local mini-
mizers (including the global minimizer) is four in all runs and does not depend
on the values of H and h. The global minimizer as well as the other three local
minimizers for this specific run are given in Table 1. The data of the global
minimizer are given in column 1. The data of the three local minimizers are in
columns 2-4.

The 8×8 matrices (H+Λ∗) corresponding to the four local minimizers have six
large positive eigenvalues and two small eigenvalues. The two small eigenvalues of
(H+Λ∗) are seven orders of magnitude less than the six large eigenvalues. Both
small eigenvalues are positive for the global minimizer. For the other three local
minimizers, one or two of the small eigenvalues are negative. The eigenvalues of
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Table 1. Global and Local Minimizers

Q∗

−0.000082243849
0.000070491751
−0.000131920776
−0.999999985432
0.000017062159
−0.000187251357
−0.499941870375
−0.866058941927

0.000071570723
−0.000103146338
0.000131512371
0.999999983471
−0.000003434267
0.000187114822
0.499960737563
0.866048050556

−0.000086071033
0.000077016986
−0.000143351102
−0.999999983055
−0.000141582193
0.000255151458
0.499730976390
0.866180619784

0.000075397906
−0.000109671573
0.000142942697
0.999999980927
0.000155210084
−0.000255287992
−0.499712105367
−0.866191504511

λ∗ −4.953412878868
−4.015817997239

−5.016727156338
−4.006374995955

−5.452070929468
−4.505033071226

−5.515385202667
−4.514476066556

b∗
3.776978219338
1.417500286987
1.442498556379

3.184611496826
1.453817987354
−0.205862220233

3.660908235836
1.394096956034
0.712077571903

3.300681480455
1.477221318092
0.524558761517

Jeq 4.464238890976 4.518110168723 4.953453955162 5.026211225024
J 4.815951252845 4.869822531936 5.305166316980 5.377923588248

the 6× 6 Hessians are positive for all four local minimizers (including the global
minimizer).

6 Conclusions

In quaternion data fusion, the optimal quaternion estimate is usually obtained as
the solution to a minimization problem subject to one or more quaternion norm
constraints. The necessary condition for the local minima of the minimization
problem is a system of polynomial equations with a finite number of isolated
real and complex solutions, which can be all found via homotopy continuation.
The global minimizer is then chosen from them as the one that minimizes the
loss function of the minimization problem. The homotopy continuation based
quaternion data fusion method does not depend on the initial guess of the state
or Lagrange multipliers and is guaranteed to find the globally optimal solution of
the minimization problem. The method is appropriate for small-scale quaternion
data fusion problems.
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Abstract. During the 2011-2012 winter semester, graduate students in
the Department of Aerospace Engineering, Technion were asked to repro-
duce the results of an attitude estimation paper by Prof. Itzhack Bar-
Itzhack, “True Covariance Simulation of the EUVE Update Filter”, as
a homework assignment for a special topics course on linear covariance
analysis. The students reproduced both the expected filter errors and
the true filter errors as reported by Bar-Itzhack using covariance analy-
sis. Bar Itzhack’s work was then extended to determine the closed-loop
pointing/control errors, again using linear covariance techniques. The
control problem included star-tracker and gyro errors, magnetic torquer
actuation errors, random disturbance moments, a suboptimal Kalman
filter with model replacement, and a simple proportional-derivative con-
trol law. Using an augmented state formulation, covariance techniques
were used to determine the variances of the expected and true attitude
estimation errors, the variances of the true pointing errors of the closed-
loop system, and the variance of the required control effort. Results were
verified by nonlinear Monte Carlo analysis. The linear covariance analy-
sis proved to be a very useful and fast analysis tool for the preliminary
design of attitude determination and control systems.

Keywords: Linear Covariance Techniques, Attitude Control.

1 Introduction

In 1989, Bar-Itzhack andHarman presented a paper,“True Covariance Simulation
of the EUVE Update Filter”, at the Flight Mechanics/Estimation Symposium at
the NASA Goddard Space Flight Center[2]. The Extreme Ultra-Violet Explorer
(EUVE) attitude estimation problem involved 24 true states - attitude (3), mis-
alignment states (12) of four sensors (two star-trackers, one sun sensor, and one
gyro package), gyro bias (3), gyro scale-factor (3), and gyro non-orthogonal mis-
alignment (3) - as well as gyro noise and gyro bias noise. The proposed suboptimal
6 state attitude estimation filter consisted of 6 states - attitude (3) and gyro bias

� Graduate Student, Department of Aerospace Engineering.
�� Visiting Professor, Technion’s Department of Aerospace Engineering.
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(3). The Bar-Itzhack paper clearly demonstrated the usefulness of true covariance
analysis in determining the difference between the suboptimal filter covariance
and the true estimation error covariance.

These results are extended in this paper by adding a closed-loop control sys-
tem to the problem, formulating the associated closed-loop covariance analysis
equations, and determining the covariance of the closed-loop control/pointing
errors and the covariance of the control effort. The closed-loop control prob-
lem included magnetic torquers, a proportional-derivative (PD) control law, and
nine new true states - attitude rate (3), control torque misalignment (3), and
control torque biases (3). Random torque disturbances and control torque ac-
tuation noise were also incorporated. The original 6-state suboptimal filter was
not modified.

Historically, linear covariance theory has been applied to general estima-
tion problems [8,5,16], design and analysis of orbit determination algorithms
[24,12,18,7], inertial navigation systems[23,14,6,13], and attitude determination
systems[2,15,10]. The covariance analysis approaches are more commonly known
as true covariance analysis [2], consider analysis [27,1,24], or generalized covari-
ance analysis [15,4]. In all cases however, the effects of closed-loop control on the
overall performance of the system is not considered.

Recent developments in linear covariance theory have combined the develop-
ments of Battin [3] and Maybeck [16] with continuous feedback control and model
replacement[19] (e.g., state propagation using gyro measurements) to produce
linear covariance tools that can be applied to many different types of closed-
loop GN&C problems[9]. Specific applications include autonomous rendezvous
[9,25], powered lunar descent[17], and launch vehicle ascent trajectory analysis
[20]. While linear covariance theory for closed-loop GN&C systems has been
successfully applied to these applications, a clear demonstration of its value and
usefulness in the context of a closed-loop spacecraft attitude control problem is
warranted.

The objectives of this paper are to demonstrate the usefulness of linear covari-
ance analysis in closed-loop attitude control system design and analysis, and to
demonstrate the accuracy and efficiency of linear covariance analysis by direct
comparison to nonlinear Monte Carlo analysis. The variance of the expected and
true attitude estimation errors as reported in Bar Itzhack’s original paper [2] will
be reproduced, and the variances of the true attitude control errors and required
control effort will be presented.

To develop a linear covariance simulation, the truth models for the dynamics,
sensors, and actuators must first be defined. This is accomplished in Section 2.
Biases, scale-factors, misalignment, etc., and other colored noise processes are
incorporated into the truth models as additional true states. Next, the naviga-
tion state vector, and the associated navigation algorithms are defined in Section
3. The navigation algorithms are derived from a filter design model that is dis-
carded after the navigation algorithms are developed. Note that the navigation
design model and the truth models are generally similar, but not identical. Next,
the control laws are defined and presented in Section 3. Here again, the guidance
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and control algorithms are derived from a design model that is discarded once the
algorithms are developed. The output of the guidance and control algorithms,
along with potential compensation for actuator modeling errors, represents the
actuator command defined in the truth model. All models and algorithms are lin-
earized about the mean or nominal state time-history. Since the dynamics of the
true states and the dynamics of the navigation states are coupled, an augmented
state vector is created by appending the navigation state vector to the true state
vector. This is described in Section 4 and results is a dimensionally large linear
time-varying model of the entire closed-loop system. The mathematical details
of this process are provided in [9]. The linear covariance analysis and non-linear
Monte Carlo analysis of a closed-loop attitude determination and control system
are presented in Section 5 followed by conclusions in Section 6.

2 The EUVE Attitude Model1

The EUVE was a NASA satellite launched to a low Earth orbit on June 7
1992, operating till January 31 2001. The EUVE was designed to perform two
missions: 1) an all-sky survey of extreme ultraviolet sources, and 2) spectroscopy
of particular ultraviolet sources.

In this study we examine the overall closed-loop performance of the navigation
and control system during the all-sky survey. The EUVE payload for the all-sky
survey consists of three telescopes pointing perpendicular to the body x-axis.
During the survey the satellite is spin stabilized about the x-axis and is nominally
aligned with the Earth-Sun vector, requiring a precession of approximately 1 [deg]
per day. In the analysis that follows, the system is examined over a 600 [sec] time
period, therefore the precession is negligible and the Earth-Sun vector is assumed
constant.

2.1 EUVE Attitude Control Dynamics Model

The actual EUVE attitude control system includes two magneto-torquers, aligned
with the x-body and z-body axes, two wobble control actuators and one passive
x-axis nutation damper. Assuming rigid body motion, the angular dynamics are
given by

Jω̇ = Tmag +Tnutation +Twobb +Tdist − [ω×]Jω

where J = J0 + δJ is the inertia tensor of the EUVE in x-y-z body frame [26]:

J0 =

⎡
⎣850 0 0

0 700 0
0 0 700

⎤
⎦ [

kg ·m2
]
, δJ = −10 ·

⎡
⎣0 0 1
0 0 0
1 0 0

⎤
⎦ [

kg ·m2
]

1 The model described is not the model of the final EUVE mission. We have tried to
reproduce the mission model as known to Bar-Itzhack 3 years before the launch.
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Tnutation is the torque applied by the passive nutation damper with a damping
time constant of 10 [hr][26]. This torque is dominant in stabilizing the spin x-
axis when the Earth-Sun vector alignment is initially acquired, or during the
spectroscopy mission when large magnitude attitude changes between targets are
necessary. This torque is however negligible for the spin axis/x-axis regulation
problem over the 600 [sec] time period of interest in this paper. Twobb is the
torque applied by the two wobble control actuators, which consist of two movable
masses. The position of the masses is adjusted to suppress the wobble effect of
the cross product moment of inertia [26].

Twobb
∼= [ω×] δJω − δJω̇

Therefore the attitude dynamics examined in this study are

ω̇ = J−1
0 (Tmag +Tdist − [ω×] J0ω) (1)

where Tdist is a zero mean continuous Gaussian white noise random disturbance
moment

Tdist = ζd, E
[
ζd (t) ζ

T
d (t′)

]
= Sd · δ (t− t′) . (2)

and Tmag is a torque applied by the magneto-torquers

Tmag = d×B = TN + δTmag

where B is Earth magnetic field and d is the magnetic dipole vector in the x-y-z
body frame.

The nominal angular velocity of the EUVE in the survey mission is

ωN =
[
ΩN 0 0

]T
and the nominal attitude dynamics are

ω̇N = 0 = J−1
0 (TN − [ωN×]J0ωN ) = J−1

0 TN .

Therefore the nominal control torque TN is zero. The remaining perturbation
dynamics are given by

δω ≡ ω − ωN (3)

δω̇ = J−1
0 (δTmag + ζd − [ω×]J0ω) (4)

and the perturbing torque is

δTmag = (I − [εact×]) δu+ bact + ζact (5)

where ζact is zero mean continuous Gaussian white noise with the variance

E
[
ζact (t) ζ

T
act (t

′)
]
= Sact · δ (t− t′) , (6)

δu is the desired control torque, and bact and εact are the control bias and
misalignment, initially random and constant thereafter, i.e., ḃact = ε̇act = 0.
The linearized attitude dynamics are then given by

δω̇ = J−1
0 ([J0ωN×]− [ωN×]J0) δω + J−1

0 (δu+ bact + ζact + ζd) (7)
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and the attitude kinematics are governed according to the following differential
equation[21]

q̇θ =
1

2
qω ⊗ qθ

where qθ is the attitude (unit) quaternion

qθ =

[
q0
q

]
=

[
cos θ

2

sin θ
2 · n̂

]
, q∗θ ⊗ qθ =

[
1
0

]
(8)

n̂ is the axis of rotation and qω is the angular velocity quaternion:

qω =

[
0
ω

]
(9)

The linearized attitude kinematics are given by

δθ ≡ θ − θN = [δθx, δθy, δθz]
T

(10)

δθ̇ = δω − [ωN×] δθ (11)

where δθ is a small angle rotation from the nominal vehicle attitude to the
true vehicle attitude.

2.2 Star-Trackers Measurement Model

The EUVE is equipped with two star-trackers aligned with the body y-axis and
z-axis, producing four measurements equivalent to the pixel locations of a single
star in each star-tracker focal plane plus random noise νi. If the unit vectors to
a single star in each of the two star-tracker frames are denoted by sst1z and sst2y ,
the four star-tracker measurements are given by projections of the star-vectors
onto the star-trackers focal planes plus random noise 2.

z̃1 = iTxst1
sst1z + ν1 , z̃2 = iTyst1

sst1z + ν2

z̃3 = iTxst2
sst2y + ν3 , z̃4 = iTzst2 s

st2
y + ν4

(12)

The star-vector in the star-tracker coordinate frame can be related to the known
star location in the inertial frame via the transformation

sst = Ts̄t2stTB2s̄tTB̄2BTI2B̄s
I (13)

Ts̄t2st is the transformation from the nominal star-tracker frame to the actual
tracker frame

Ts̄t2st
∼= I − [φ×] (14)

2 It is assumed that at any given time a known star is acquired in the boresight of
both trackers.
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where φ is a small unknown orthogonal tracker misalignment:

φ = [φx, φy , φz]
T
. (15)

For both star-trackers the nominal misalignment is zero and the misalignment
is initially random and constant thereafter, i.e., φ̇1 = φ̇2 = 0.

TB2s̄t is a known constant transformation from the body frame to the nominal
star-tracker frame, TI2B̄ is a known transformation from the inertial frame to
the nominal body frame, and TB̄2B is the transformation from nominal body
frame to the actual body frame

TB̄2B
∼= I − [δθ×] (16)

The linearized star-tracker measurement equations [2] are then given

δz1 =
([

ixst1
×]

sB̄z

)T

δθ +
([

ixst1
×]

sB̄z

)T

φ1 + ν1 (17)

δz2 =
([

iyst1
×]

sB̄z

)T

δθ +
([

iyst1
×]

sB̄z

)T

φ1 + ν2 (18)

δz3 =
([

ixst2
×]

sB̄y

)T

δθ +
([

ixst2
×]

sB̄y

)T

φ2 + ν3 (19)

δz4 =
([

izst2×
]
sB̄y

)T

δθ +
([

izst2×
]
sB̄y

)T

φ2 + ν4 (20)

sB̄z = TI2B̄s
I
1 , sB̄y = TI2B̄s

I
2 (21)

where sI1 and sI2 are the known locations of two stars in the field of view of
the z- and y-star-trackers, respectively.

2.3 Gyro Measurement Model

The gyro measurement is given by:

ω̃ = (I − [εω×] + U (αω))ω (22)

where εω is a small orthogonal misalignment

εω = [εx, εy, εz]
T (23)

and αω is a small non-orthogonal misalignment:

αω = [αx, αy, αz]
T , U (αω) =

⎡
⎣0 αz αy

0 0 αx

0 0 0

⎤
⎦ . (24)

Adding bias, noise and scale factors produces

ω̃ = (I +D (fω)) (I − [εω×] + U (αω))ω + bω + ζω (25)
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where fω is the scale factor vector

fω = [fx, fy, fz]
T
, D (fω) = diag (fx, fy, fz) (26)

and ζω is zero mean continuous Gaussian white noise with the variance

E
[
ζω (t) ζω

T (t′)
]
= Sω · δ (t− t′) . (27)

The gyro bias is a random process driven by zero mean continuous Gaussian
white noise

ḃω = ζb, E
[
ζb (t) ζ

T
b (t′)

]
= Sb · δ (t− t′) . (28)

All misalignment and scale factors are initially random and constant thereafter

ε̇ω = α̇ω = ḟω = 0 (29)

If we define the measurement perturbation relative to the nominal state as

δω̃ ≡ ω̃ − ωN (30)

the linearized gyro measurement equation is

δω̃ ∼= δω + bω + ζω +D (ωN ) fω + [ωN×] εω +W (ωN )αω (31)

where

D (ω) ≡ diag (ω) , W (ω) ≡
⎡
⎣ 0 ωz ωy

ωz 0 0
0 0 0

⎤
⎦ (32)

2.4 State Space Representation

The state space of the true perturbations from the nominal state is:

δx ≡ x− xN =
[
δθT δωT bT

act ε
T
act b

T
ω εTω αT

ω fTω φT
1 φT

2

]T
(33)

The linearized dynamics are given by

δẋ = A · δx+G · δu+B · ζ (34)

where ζ is continuous white process noise

ζ =
[
ζT
ω ζT

b ζT
act ζ

T
d

]T
, E

[
ζ (t) ζT (t′)

]
= Sη · δ (t− t′) . (35)

The linearized star-tracker measurement equation is

δz̃ = H · δx+ v (36)

where the measurement noise is given by

v = [ν1, ν2, ν3, ν4]
T
, E [v (ti)v (tj)] = R · δij . (37)

and the linearized gyro measurement equation is

δω̃ = Hgyro · δx+ ζω

A, G, B, H and Hgyro are provided in the appendix.
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3 EUVE Navigation and Control Design

3.1 Reduced Order Filter Algorithm

The filter design model assumes that the true misalignments, scale factors and
control bias are zero.

bactf = εactf = εωf
= αωf

= fωf
= φ1f = φ2f = 0 (38)

Thus, the design model is a reduction of the full EUVE model with only 9 states,
δθf . δωf , and bωf

. The dynamics of the linearized filter design model are

δθ̇f
∼= δωf − [ωN×] δθf (39)

δω̇f
∼= J−1

0 ([J0ωN×]− [ωN×] J0) δωf + J−1
0

(
δu+ ζactf + ζdf

)
(40)

ḃωf
= ζbf (41)

where δθf ≡ θf − θN , and δωf ≡ ωf − ωN . The linearized star-tracker mea-
surement equations are

δzf1 =
([

ixst1
×]

sB̄z

)T

δθf + νf1 , δzf2 =
([

iyst1
×]

sB̄z

)T

δθf + νf2

δzf3 =
([

ixst2
×]

sB̄y

)T

δθf + νf3 , δzf4 =
([

izst2×
]
sB̄y

)T

δθf + νf4

(42)

and the linearized gyro measurements are

δω̃f ≡ ω̃f − ωN
∼= δωf + bωf

+ ζωf
(43)

A standard linearized Kalman filter algorithm can be developed to estimate
δθ̂f , δω̂f , and b̂ωf

from the reduced order linearized dynamics in Eqs. 39-41
and the linearized measurement equations in Eqs. 42-43; however, we postpone
the develop of the Kalman filter until later when model replacement [19] will be
used to replace the rotational dynamics model with the gyro measurements.

3.2 The Control Law

For this study, a simple continuous regulator is used for the attitude control
law3.

δu = −Kθ

(
θ̂f − θN

)
−Kω (ω̂f − ωN ) = −Kθδθ̂f −Kωδω̂f (44)

where Kθ and Kω are constant gain matrices derived from the controller fre-
quency ωc, damping ratio ξ, and vehicle inertia tensor J0:

Kθ = ω2
c · J0 , Kω = 2 · ξ · ωc · J0 (45)

3 This is not the control method used for the actual EUVE mission.
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3.3 Reduced Order Filter Algorithm and Model Replacement

When the uncertainties in the rotational dynamics model (Eq. 40) are significant
(e.g., spacecraft inertia and external disturbances), it is often prudent to replace
the rotational dyanmics model with gyro data. In this situation, the dynamical
model for the filter design becomes

δθ̇f
∼= δωf − [ωN×] δθf (46)

ḃωf
= ζbf (47)

where
δωf = δω̃f − bωf

− ζωf
(48)

and the estimate of the spacecraft angular velocity is simply

δω̂f = δω̃f − b̂ωf
(49)

When this estimate for the angular velocity is substituted into the control law
in Eq. 44, the desired control moment is slightly modified and becomes

δu = −Kθδθ̂f +Kωb̂ωf
−Kωδω̃f (50)

where δω̃f are the actual gyro measurements given by Eq. 31.
Using this model replacement, the state space and state dynamics for the filter

design become

δxf =
[
δθT

f bT
ωf

]T
(51)

δẋf = Af · δxf +Gω · δω̃f +Bf · ζf (52)

where Af , Gω, and Bf are provided in the appendix, and ζf is zero mean con-
tinuous white noise

ζf =

[
ζωf

ζbf

]
, E

[
ζf (t) ζ

T
f (t′)

]
= Sf · δ (t− t′) (53)

The filter design model for the star-tracker measurements remains unchanged
and repeated here for convenience

δz̃f = Hf · δxf + vf (54)

where Hf is provided in the appendix, and vf is zero mean discrete white noise

vf = [ν1, ν2, ν3, ν4]
T
, E [vf (ti)vf (tj)] = Rfδij (55)

Using this new design model, a Kalman filter algorithm can be developed.
First, the state propagation equations are given by

δ ˙̂xf = Af · δx̂f +Gω · δω̃ (56)
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Since the estimated filter navigation error is given by

ε̂f ≡ x̂f − xf = δx̂f − δxf (57)

˙̂εf = Af · ε̂f −Bf · ζf (58)

the navigation error is expected to have zero mean and covariance given by

Pf = E
[
ε̂f · ε̂Tf

]
. (59)

Thus, the filter state error covariance propagation is given by

Ṗf = AfPf + PfA
T
f +BfSfB

T
f (60)

The Kalman filter update equations for the post measurement state and co-
variance corrections are

Kf = PfH
T
f

(
HfPfH

T
f +Rf

)−1
(61)

δx̂+
f = δx̂f +Kf (δz̃− δẑf ) (62)

P+
f = (I −KfHf )Pf (I −KfHf )

T
+KfRfK

T
f (63)

where
δẑf = Hf · δx̂f (64)

This filter is no longer optimal because the covariance propagation and gain
calculation are now based on a reduced model [22] with model replacement [11].
One of the objectives of linear covariance analysis is to determine the effects of
these suboptimal schemes on the true navigation error. This will be measured
by comparing the filter covariance Pf to the true covariance Ptrue of the true
filter state error

δx̂f ≡ x̂f −MxN (65)

whereM is a mapping from the entire true state to the true values of the reduced
filter states. M is also provided in the appendix.

4 Linear Covariance Analysis

4.1 EUVE Linear Covariance Model

For linear covariance analysis, the linearized navigation state vector δx̂f (65) is
appended to the true state vector δx (33) to form the augmented state vector
X ∈ R

n+n̂.

X ≡
[
δx
δx̂f

]
(66)



Linear Covariance Techniques for Closed-Loop Attitude Determination 463

Thus we have δx = MxX and δx̂f = MfX where Mx and Mf are appropriate
mappings from the augmenented state to the true state and navigation state,
respectively. The dynamics for the augmented state vector are defined as

Ẋ = AX+ Bζ (67)

ζ =
[
ζT
ω ζT

b ζT
act ζ

T
d

]T
(68)

where

A =

[
A+GGx GGf

AfX Af

]
, B =

[
B +GBu

BfX

]
(69)

and where Gf , Gx, Bu, BfX and AfX are provided in the appendix. Note that
because

E [δx] = E [x− xN ] = 0 (70)

E [δx̂f ] = E [x̂f −MxN ] = 0 (71)

the mean of the augmented state vector is E [X] = 0 and the covariance of the
augmented system can be calculated as

CA = E
[
X (t)XT (t)

]
(72)

Thus, the entire closed-loop system is represented by the linear time-varying
differential equation in Eq. (67). A variety of linear system analysis can now be
applied to this system. For covariance analysis, the following propagation and
update equations will be utilized:

ĊA = ACA + CAAT + BSηBT (73)

C+
A = (I +KH)CA (I +KH)T +KRfKT (74)

K =

[
0
Kf

]
, H =

[
H ,−Hf

]

The initial conditions are defined as4:

CA0 =

[
Pdisp0 0Nx×Nf

0Nf×Nx 0Nf×Nf

]
, Pdisp0 = E

[
δx0δx0

T
]

4 The filter state is initiated with the state nominal values and zero variance.
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4.2 Performance Evaluation

The overall closed-loop performance of the GN&C system is evaluated by exam-
ining the covariance matrix of the augmented state with the appropriate linear
mappings. The true state dispersions δx = MxX are extracted from the aug-
mented state covariance matrix as follows

Dtrue = E
[
δx (t) δxT (t)

]
= MxCAM

T
x (75)

The covariance of the true state dispersion accounts for navigation errors,
guidance/control execution errors, and all external disturbances/noise sources.
In a similar manner, the covariance matrix of the navigation state dispersion
δx̂f = MfX can be extracted from the augmented covariance matrix.

Dnav = E
[
δx̂f (t) δx̂

T
f (t)

]
= MfCAM

T
f (76)

Since the true filter estimation error is the difference between the navigation
state vector and the corresponding true state vector,

etrue ≡ x̂f −Mx = ˆδxf −Mδx = MtrueX (77)

the covariance matrix of the true filter estimation error is given by

Ptrue = E
[
etruee

T
true

]
= MtrueCAM

T
true (78)

where Mtrue = Mf −MMx.
Finally, the control effort can be determined by substituting Eqs. 49 and 31

into Eq. 44 to obtain, δu = Mu · δX+Bu ·ζ. The covariance of the control effort
is then given by:

Pu = E
[
δuδuT

]
= MuCAMu

T +BuSζB
T
u (79)

where Mu = Gx ·Mx +Gf ·Mf .

5 Results

5.1 Setup

The nominal value of the initial true state is given by m0 with the only non-zero
values being θx (0) = θ0 and θ̇x (0) = ΩN . The initial filter state is xf (0) =
Mm0. The initial covariance of the true state, Pdisp0 , is a 30 X 30 diagonal
matrix, and the initial navigation filter covariance is Pf0 = MPdisp0M

T . Pdisp0

is provided in the appendix. The power-spectral-density of the true model process
noise is

Sη =

⎡
⎢⎢⎣
qω · I3×3 03×3 03×3 03×3

03×3 qb · I3×3 03×3 03×3

03×3 03×3 qact · I3×3 03×3

03×3 03×3 03×3 qd · I3×3

⎤
⎥⎥⎦
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and the power-spectral density of the filter model process noise is:

Sf =

[
qω · I3×3 03×3

03×3 qb · I3×3

]

The variance of the measurement noise is

R = Rf = σ2
st · I4×4

Star-tracker measurements are produced every 10 [sec]. All initial non-zero
nominal values, initial uncertainties, process noise power-spectral densities and
other system parameters are given in Table 1.

Table 1. Setup Values

Symbol Value Units Description

θ0 −60 deg Initial nominal x-angle

ΩN 0.2 deg/sec Nominal x-angular velocity

σθ 5 · 10−2 deg Initial attitude 1− σ

σω 10−3 deg/sec Initial angular velocity 1− σ

σbact 10−4 N ·m Initial actuator bias 1− σ

σεact 1 arcsec Initial actuator misalignment 1− σ

σbω 1 arcsec/sec Initial gyro bias 1− σ

σεω 8 arcsec Initial gyro (orthogonal) misalignment 1− σ

σαω 8 arcsec Initial gyro (non-orthogonal) misalignment 1− σ

σfω 10−3 Initial gyro scale factor 1− σ

σφ 24 arcsec Initial star-tracker misalignment 1− σ

qω
(
4.25 · 10−2

)2
arcsec2/sec Gyro drift noise strength

qb
(
4.44 · 10−5

)2
arcsec2/sec3 Gyro bias noise strength

qact 10−4 N2 ·m2 · sec Actuator noise strength

qd 10−4 N2 ·m2 · sec Disturbance noise strength

σst
14

3600
π

180
rad Measurement noise 1− σ

ωc
2π
100

rad
sec

Controller frequency

ξ
√
2/2 Controller damping ratio

5.2 Linear Covariance Results

Attitude Navigation Errors. The linear covariance attitude navigation errors
are examined in Fig.1. The θx steady state filter 1− σ error is 2.9 [arcsec] while
the true navigation 1− σ error is 17.2 [arcsec]. The θy and θz steady-state filter
1 − σ error is 3.9 [arcsec] while the true navigation 1 − σ error is 24.3 [arcsec].
Since both star-trackers measure θx and provide only one measurement of θy
and θz each, there are effectively twice as many measurements of θx. Thus the
steady-state errors for θx are reduced by a factor of

√
2. In all cases, it is clear

that the suboptimal, reduced order filter is underestimating the true navigation
error.
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Fig. 1. Attitude navigation error based on linear covariance analysis. The dotted red
curve shows the filter 1− σ error, and the solid blue curve shows the true 1− σ error.

A comparison of the above pitch angle navigation error variance σθy with Bar-
Itzhack and Harman’s true covariance results is shown in Fig. 2. Although the
Bar-Itzhack and Harman’s work included a fine sun sensor that was not included
in this study, the results are remarkably similar.

Attitude Dispersions. Although the above results for the attitude navigation
errors are important, the ultimate goal is to limit the attitude control system
pointing errors, i.e., the attitude dispersions from their desired nominal values.
The true and filter state 1 − σ attitude dispersions are shown in Fig. 3. These
results should be compared to the 180 arcsec pointing accuracy requirement
for the all-sky survey. Since the attitude navigation errors are relatively small
compared to the pointing errors, it is concluded that the pointing errors are
primarily due to actuator errors and random disturbances.

Gyro Bias Errors. The variance of the gyro bias errors are examined in Fig.4.
The 1−σ filter x-axis steady-state gyro bias estimation error is 0.01 [arcsec/sec],
significantly less than the true 1 − σ bias estimation error of 0.72 [arcsec/sec].
This is a consequence of the reduced filter state. Since the x-axis gyro scale-factor
is not included in the filter design model, and since the spacecraft is rotating
primarily about the x-axis, the error in the gyro measurement produced by the
true scale-factor, fxΩN , incorrectly appears in the filter as an x-axis gyro bias.
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(a) Bar Itzhack’s true covariance analysis results for the filter and true
1− σ pitch error

0 100 200 300 400 500 600
0

5

10

15

20

25

30

35

40

45

50

Time (sec)

P
itc

h 
E

rr
or

 (
ar

cs
ec

)

(b) The authors linear covariance analysis results for the filter and true
1− σ error

Fig. 2. Pitch error comparison - true error (solid), filter error (dashed)
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Fig. 3. True attitude dispersions. The dotted red curve shows the filter 1−σ dispersion,
and the solid blue curve shows the true 1− σ dispersion.

This dramatic difference is not seen in the true and filter steady-state y-axis and
z-axis gyro errors.

The above pitch gyro drift estimation errors
(
bωy

)
are also in good agreement

with Bar-Itzhack and Harman’s true covariance results.

Control Effort and Magnetic Dipole Demand. The variance of the 1 −
σ control effort is shown in Fig.5. After an initial transient, the steady-state
variance in each of the 3 axes is approximatety 0.0038 [N ·m]. In this example,
the steady-state control effort is primarily in repsonse to actuator errors and
random disturbances.

5.3 Nonlinear Monte Carlo Analysis

In Monte Carlo analysis, the covariance of the true dispersion and error states
are computed by simply generating N samples of each state as a function of
time, and then estimating the covariances as

Dtrue(t) ≈ 1

N − 1

N∑
i=1

δx(t)δxT (t) (80)

Dnav(t) ≈ 1

N − 1

N∑
i=1

δx̂(t)δx̂T (t) (81)
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Fig. 4. Gyro drift estimation error based on linear covariance analysis. The dotted red
curve shows the filter 1− σ error, and the solid blue curve shows the true 1− σ error.
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Ptrue(t) ≈ 1

N − 1

N∑
i=1

δe(t)δeT (t) (82)

For this application, the Monte Carlo simulation consisted of the nonlinear
dynamics given in Eq. 1 , the nonlinear gyro and star-tracker measurements given
by Eq.12 and 25, an extended Kalman filter with the same reduced filter state
and model replacement, and a PD control law based on the estimated attitude
quaternion and the estimated angular rate with gyro bias compensation.

The initial conditions for the simulation were generated by sampling the Gaus-
sian probability density function given by

x0 ∼ N (m0, Pdisp0 )

N = 1000 Monte Carlo runs were performed and system performance was eval-
uated using Eq. 80, 81 and 82. The Monte Carlo results were then used to verify
the linear covariance analysis results.

The x-axis true navigation errors of 10 Monte Carlo runs with the 3 − σ
envelope (of the 1000 runs) are illustrated in Fig.6, as well as the comparison with
the linear covariance results. The x-axis true estimation error as determined by
the linear covariance analysis matches the Monte Carlo results with a maximum
deviation εmax = 5.23 [arcsec], where εmax is the maximum difference between
the Monte Carlo and linear covariance 1− σ data.

The x-axis true dispersions of 10 Monte Carlo runs with a 3− σ envelope are
examined in Fig.7. The x-axis true dispersions from the linear covariance analysis
match the Monte Carlo results with a maximum deviation εmax = 7.88 [arcsec]

The x-axis control effort dispsersion for 10 Monte Carlo runs and the 3− σ
linear covariance data are illustrated in Fig.7. The 1− σ x-axis control effort
determined by the linear covariance analysis matches the 1− σ Monte Carlo
results with a maximum deviation εmax = 1.1 · 10−3 [N ·m]

5.4 Sensitivity Analysis

Linear covariance analysis also provides the capabilty to quickly examine the
sensitivity of the system performance to initial errors, measurement noise, and
process noise. This analysis enables a system designer to focus on the most
significant error sources. To do this, the covariance matrix of the augmented
state is presented as a sum of these three contributions

CA = C0 + CQ + CR (83)

The sensitivity dynamics can then be obtained from Eq. 73

Ċ0 = AC0 + C0AT (84)

ĊR = ACR + CRAT (85)
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Fig. 6. True attitude estimation errors. Monte Carlo results with 3−σ statistics (blue)
are shown in the top figure. A comparison of the 1−σ Monte Carlo results to the 1−σ
linear covariance analysis results is shown in the bottom figure.
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Fig. 7. True attitude dispersions. Monte Carlo results with 3 − σ statistics (blue) are
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linear covariance analysis results is shown in the bottom figure.
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Fig. 8. Control effort dispersion. Monte Carlo results with 3 − σ statistics (blue) are
shown in the top figure. A comparison of the 1 − σ Monte Carlo results to the 1 − σ
linear covariance analysis results is shown in the bottom figure.

ĊQ = ACQ + CQAT + BSηBT (86)

and the updated sensitivity equations are obtained from Eq. 74

C+
0 = (I +KH)C0 (I +KH)T (87)

C+
R = (I +KH)CR (I +KH)T +KRfKT (88)

C+
Q = (I +KH)CQ (I +KH)

T
(89)

Fig. 9 shows how each source of error contributes to the true x-axis atti-
tude estimation error. In this case, the initial errors are the main contribu-
tion to the x-axis attitude estimation error. This is a consequence of the initial
star-tracker misalignment (24 [arcsec]) being unobservable. Since there are two
tracker measurements of θx, the steady-state error due to tracker misalignment
is 24 [arcsec] /

√
2, or approximately 17 [arcsec].

Fig. 10 shows how each source of error contributes to the x-axis pointing
dispersion. In this case, the initial errors and the process noise (actuator errors
and disurbances) are the main contributions to the x-axis pointing dispersion.

Similar sensitivity results can be obtained for any performance indicator that
can be extracted from the augmented state.
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Fig. 9. True x-axis 1− σ attitude estimation error sensitivity analysis
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Fig. 10. x-axis 1− σ pointing dispersion sensitivity analysis
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6 Conclusions

It has been shown using nonlinear Monte Carlo analysis that Bar Itzhack and
Harman’s application of true covariance analysis [2] for estimating the true navi-
gation errors of a reduced order filter with model replacement produces accurate
results and can thus be used for preliminary attitude filter design. An extension
of Bar Itzhack and Harman’s true covariance analysis approach using an aug-
mented state to include true state dispersions, i.e., attitude control and pointing
errors, was also implemented. The variances of the true attitude and angular
velocity disperison errors based on the extended linear covariance analysis was
validated using nonlinear Monte Carlo analysis showing that linear covariance
analysis can be a useful tool in preliminary attitude determination and control
system design. It was also demonstrated that the extended covariance analysis
can provide useful system design sensitivity analysis.
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Appendix - Matrices
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⎡
⎣− [ωN×] I3×3 03×3 03×3 03×18

03×3 Aω J−1
0 03×3 03×18

024×3 024×3 024×3 024×3 024×18

⎤
⎦

Aω = J−1
0 [J0ωN×]− J−1

0 [ωN×]J0

G =

⎡
⎣ 03×3

J−1
0

024×3

⎤
⎦ , B =

⎡
⎢⎢⎢⎢⎣

03×3 03×3 03×3 03×3

03×3 03×3 J−1
0 J−1

0

06×3 06×3 06×3 06×3

03×3 I3×3 03×3 03×3

015×3 015×3 015×3 015×3

⎤
⎥⎥⎥⎥⎦

H =

⎡
⎢⎢⎣

[
ixST1

×]
sB̄z

[
iyST1

×]
sB̄z

[
ixST2

×]
sB̄y

[
izST2

×]
sB̄y

021×1 021×1 021×1 021×1[
ixST1

×]
sB̄z

[
iyST1

×]
sB̄z 03×1 03×1

03×1 03×1

[
ixST2

×]
sB̄y

[
izST2

×]
sB̄y

⎤
⎥⎥⎦

T

Af =

[− [ωN×] −I3×3

03×3 03×3

]
, Gω =

[
I3×3

03×3

]
, Bf =

[−I3×3 O3×3

O3×3 I3×3

]

Hf =

[ [
ixST1

×]
sB̄z

[
iyST1

×]
sB̄z

[
ixST2

×]
sB̄y

[
izST2

×]
sB̄y

03×1 03×1 03×1 03×1

]T

Gx =
[
03×3 −Kω 03×6 −Kω −Kω [ωN×] −KωW (ωN ) −KωD (ωN ) 03×6

]

Gf =
[−Kθ Kω

]
Bu =

[−Kω 03×9

]
BfX =

[
I3×3 03×9

03×3 03×9

]

AfX =

[
03×3 I3×3 03×6 I3×3 [ωN×] W (ωN ) D (ωN ) 03×6

03×3 03×3 03×6 03×3 03×3 03×3 03×3 03×6

]

Mx =
[
INx×Nx 0Nx×Nf

]
, Mf =

[
ONx×Nf

INf×Nf

]

M =

[
I3×3 03×9 03×3 03×15

03×3 03×9 I3×3 03×15

]

Pdisp0
=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

σ2
θI3×3 03×3 03×3 03×3 03×3 03×3 03×3 03×3 03×6

03×3 σ2
ωI3×3 03×3 03×3 03×3 03×3 03×3 03×3 03×6

03×3 03×3 σ2
bact

I3×3 03×3 03×3 03×3 03×3 03×3 03×6

03×3 03×3 03×3 σ2
εact

I3×3 03×3 03×3 03×3 03×3 03×6

03×3 03×3 03×3 03×3 σ2
bω

I3×3 03×3 03×3 03×3 03×6

03×3 03×3 03×3 03×3 03×3 σ2
εω

I3×3 03×3 03×3 03×6

03×3 03×3 03×3 03×3 03×3 03×3 σ2
αω

I3×3 03×3 03×6

03×3 03×3 03×3 03×3 03×3 03×3 03×3 σ2
fω

I3×3 03×6

06×3 06×3 06×3 06×3 06×3 06×3 06×3 06×3 σ2
φI6×6

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦



Reaction Wheel Parameter Identification and

Control through Receding Horizon-Based Null
Motion Excitation

Avishai Weiss1, Frederick Leve2, Ilya V. Kolmanovsky1, and Moriba Jah2

1 University of Michigan, Ann Arbor, MI, USA
{avishai,ilya}@umich.edu

2 Space Vehicles Directorate, Kirtland Air Force Base, NM, USA
AFRL.RVSV@kirtland.af.mil

Abstract. Additional actuator motion, constrained to the null-space of
the Reaction Wheel Array (RWA) of an over-actuated spacecraft, can
be exploited for learning system parameters without inducing large per-
turbations to the controlled body (e.g., spacecraft bus). In this paper
a receding horizon optimization approach is developed to generate such
a null-motion excitation (NME) that facilitates the identification of the
actuator misalignments with perturbations that are local to the nominal
trajectory and decreasing with the decrease in size of the parameter es-
timation error. The receding horizon approach minimizes an objective
function that penalizes the parameter error covariance and the null-
motion excitation. The potential of the receding horizon approach to
outperform the baseline null motion excitation algorithm proposed in an
earlier publication is demonstrated through simulations.

Keywords: Receding Horizon Control, Null-Motion, Null-Space,
Parameter Identification, Reaction Wheel Assembly.

1 Introduction

The on-orbit estimation of spacecraft parameters, such as Reaction Wheel Array
(RWA) alignments, can reduce assembly, integration, and test (AI&T) time and
efforts necessary with detailed ground-based system identification of spacecraft.
Due to a possible loss of communications, or other operational constraints, it
may not be possible to apply an arbitrary tumble to a satellite for system iden-
tification. In these situations, the conditions required by many existing adaptive
control and estimation techniques (see [1], [2], [3], [4], [5], [6], [7], [8], [9], [10]
and references therein) to achieve both asymptotic tracking and asymptotic pa-
rameter identification may not be satisfied.

An approach to enhance on-board parameter identification via null motion
excitation (NME) has been first proposed in [11]. In [11], an overactuated space-
craft with an RWA is considered, and it is shown that the spacecraft actuators
can be coordinated in such a way that the convergence of estimates of param-
eters characterizing RWA alignments is enhanced, while the disturbance to the

c© Springer-Verlag Berlin Heidelberg 2015 477
D. Choukroun et al. (eds.), Advances in Estimation, Navigation, and Spacecraft Control,
DOI: 10.1007/978-3-662-44785-7_25
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nominal spacecraft attitude maneuver is minimized. In other words, it is demon-
strated that information about parameters can be gained by adding NME to a
nominal forced trajectory relative to the case of the forced trajectory by itself
(i.e., passive system identification case). A local gradient approach was used in
[11] to optimize the NME.

In this paper, a receding horizon optimization is exploited to generate the
NME. At each time instant, the NME sequence is optimized over a finite predic-
tion horizon to minimize a cost functional that penalizes the predicted parameter
error covariance and the NME excitation. The first element of the optimized se-
quence is applied to the spacecraft. The optimization is repeated at the next time
instant using the updated error covariance matrix as an initial condition. The
proposed approach can be viewed as an on-board Design of Experiments (DoE)
procedure, used to enhance persistence of excitation conditions without causing
large disturbances. It is related to our earlier work on receding horizon opti-
mization for simultaneous tracking and parameter identification in automotive
systems [12,13].

The receding horizon approach of this paper is compared to the local gradient
approach of [11], and it is shown that the potential for faster convergence exists
at the price of higher computational cost. The differences between the receding
horizon approach proposed in this paper and the local gradient method of [11]
are in the minimization of a cost function that penalizes the total covariance
(i.e., parameter and measurement) matrix over the prediction horizon of Nc

steps ahead while the approach in [11] corresponds to minimizing the parameter
error estimated only one step ahead and by assuming perfect measurements.

Fig. 1. Four skewed RWA arrangement

2 Spacecraft Dynamics Model

We consider a rigid spacecraft bus actuated by a Reaction Wheel Array (RWA)
consisting of four axially symmetric flywheels with negligible friction. See Fig-
ure 1. The total angular momentum of the spacecraft relative to its center of
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mass with respect to an inertial frame FE and resolved in a bus-fixed principal
frame FB is given by

⇀

Hsc/c/E

∣∣∣∣
B
= Jω + h, (1)

where J is the spacecraft inertia matrix resolved in FB, ω is the angular velocity
of FB with respect to FE, resolved in FB, and h is the angular momentum of
the RWA resolved in FB. We assume zero external torque, and thus, the total
angular momentum is conserved.

The inertial time derivative of (1) yields

E•
⇀

H sc/c/E

∣∣∣∣∣∣
B

= Jω̇ + ω×Jω + ḣ+ ω×h = 0, (2)

where ω× is the skew-symmetric matrix representing the cross-product, and

ḣ =
∂h

∂ν
ν̇ = Jα(θ)ν̇, (3)

where Jα(θ) is the Jacobian matrix, which is a function of actuator alignments
parameterized by a vector θ, and ν = [ν1 ν2 ν3 ν4]

T ∈ R4 is a column vector of
four flywheel rates.

Following [11], we re-parameterize h is terms of components of RWA alignment
unit vectors as

h = Y1(ν)θ, (4)

where
Y1 = Iw

[
ν1I3 ν2I3 ν3I3 ν4I4

]
,

I3 denotes the 3× 3 identity matrix, and where θ ∈ R12 is the parameter vector
to be identified.

The NME approach is based on augmenting an excitation signal n(t) ∈ R4 to
the nominal RWA control signal, D(t) ∈ R4, so that

ν̇ = D(t)− Γ (θ̂(t))n(t), (5)

where I4 denotes the 4×4 identity matrix, Γ (θ̂(t)) =
(
I4 − J�

α(θ̂)Jα(θ̂)
)
, and J�

α

is the pseudo-inverse of Jα, Jα(θ̂)J
�
α(θ̂) = I3. Note that the implementation of

(5) is based on estimated alignments, θ̂, with the motivation that if θ̂ = θ, then
ν̇ = D(t) and the effects of NME signal are zeroed out. Thus the overactuation
capability of a 4 flywheel RWA system can be used to enhance the parameter
identifiability. The computation of the excitation signal n(t) is discussed in the
next section.

3 Receding Horizon Optimization of the Null Motion
Excitation

A discrete-time receding horizon approach is used for the optimization of NME
signal n(t) in (5). We use the notation a(t+k|t) to denote the predicted value of
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a variable a at the discrete time instant t+k when the prediction is made at the
discrete time instant t. Using this notation, and based on (5), the discrete-time
update equations for the flywheel rates have the form

ν(t+ k + 1|t) = ν(t+ k|t) +D(t)ΔT − Γ (θ̂(t))n(t + k|t)ΔT, (6)

where ΔT is the sampling period, θ̂(t) ∈ R12 is the vector of the estimated
reaction wheel alignment parameters, and n ∈ R4 is the null motion excitation
signal that we determine through the receding horizon optimization.

With the motivation of simplifying the optimization problem, and with the
justification that the nominal control law and adaptation are sufficiently slow, we
do not predict D and the parameter estimate changes over the horizon, thereby
assuming D(t + k|t) = D(t) and that θ̂(t + k|t) = θ̂(t). Thus, in our approach,
the term

Γ (θ̂(t)) =
(
I − J�

α(θ̂)Jα(θ̂)
)
,

remains constant over the prediction horizon.
The optimization of the NME sequence is performed over a receding horizon

of length Nc so that n(t+ k|t), k = 0, 1, · · · , Nc minimizes a cost functional of
the form

J =

Nc∑
k=0

[
trace(P (t+ k|t)) + ρ · nT(t+ k|t)n(t+ k|t)]. (7)

In (7), P denotes the parameter error covariance matrix and ρ is a weight pe-
nalizing the size of NME. Once the sequence is computed, the first element of it,
n(t) = n(t|t) is applied as an excitation and the process is repeated at the next
time instant, t+ 1.

By combining (1) and (4), one obtains a linear regression model for identifying
the parameter vector θ,

y = Y1(ν)θ + ε,

y =
⇀

Hsc/c/E

∣∣∣∣
B
− Jω,

(8)

where
⇀

Hsc/c/E

∣∣∣∣
B
− Jω represents the measurement, with the added measure-

ment noise, ε. The assumption of y being a measured signal is reasonable given
that ω is measured, J is known, the spacecraft orientation is measured and the

total angular momentum vector
⇀

Hsc/c/E is conserved and is known at the initial
time1. It should be noted that because both noise processes are assumed to be
Gaussian zero mean, the addition of Gaussian variables associated with the RWA
encoder and gyro noises is also a Gaussian random variable. It is assumed that
all flywheel and gyro biases are removed separately from the attitude determi-
nation system. It should also be noted that the addition of two measurements

1 In case
⇀

Hsc/c/E is unknown at the initial time, it can be estimated along with θ using
the approach developed in this paper.
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does not make use of the measurement covariance optimally in the Kalman filter
(i.e., the difference in accuracy of the two different sets of measurements is not
exploited). Differencing of the measurements rather than considering separately
was done to reduce the computation of the measurement covariance from a 7×7
matrix to a 3× 3.

To compute P (t + k|t) in (7), we use Recursive Least Squares (RLS)-based
prediction of the parameter error covariance matrix, based on the equations

K(t+ k|t) =
P (t+ k − 1|t)Y1(t+ k|t)T × (

Y1(t+ k|t)P (t+ k − 1|t)Y1(t+ k|t)T +R
)−1

,

P (t+ k|t) =
(I12 −K(t+ k|t)Y1(t+ k|t))P (t+ k − 1|t)× (I12 −K(t+ k|t)Y1(t+ k|t))T

+K(t+ k|t)RK(t+ k|t)T,
(9)

where I12 denotes the 12 × 12 identity matrix and R = E[ε(k)ε(k)T] is the
measurement noise covariance matrix. Note that Joseph’s form of the a poste-
riori error covariance matrix update is used in (9) due to its better numerical
conditioning properties.

In [11] a gradient type algorithm is used to update the parameter estimates.
Here, for consistency with the RLS approach, updates of the form

θ̂(t+ 1) = θ̂(t) +K(t+ 1|t)(y(t+ 1)− Y1(ν(t+ 1))θ̂(t)), (10)

are employed to extract parameter estimates.

4 Simulation Setup

Simulations are now presented to demonstrate the improved performance of
the new receding horizon solution for the NME. The four flywheel RWA to be
simulated has a non-orthogonal skew arrangement shown in Figure 1.

The spacecraft and simulated maneuver parameters are

J = diag(10, 20, 60) [kgm2],
Iw = 0.001 [kgm2],

ν(0) = [0 0 0 0]T [rad/sec],
ω(0) = [0 0 0]T [rad/sec],

D(t) = [0 sin(0.05t+ π
2 ) sin(0.01t+ π

4 ) 0]
T [rad/sec].

Note that based on the initial conditions of the simulation,
⇀

Hsc/c/E

∣∣∣∣
B
= 0.

The initial parameter estimates and true RWA alignment parameters are given,
respectively, by
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θ̂(0) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.7121
0.0928
0.6959
0.0928
0.7121
0.6959
0.6845
0.7290

0
0.9916
0.1292

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, θ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.7037
0.0693
0.7071
0.0693
0.7037
0.7071
0.9952
0.0980

0
0

−0.7071
0.7071

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (11)

The initial parameter error covariance matrix is assumed to be of the form,

P (0|0) = 1

3
I12,

where I12 is the 12×12 identity matrix. The covariance of the measurement noise
ε in (8) has been estimated assuming 0.0005 rad/sec independent error standard
deviations in measuring the components of the angular velocity vector ω, and 2
rad/sec independent error standard deviations in measuring the components of
ν so that

R = 10−3 × diag(0.0290, 0.1040, 0.9040).

4.1 Case 1: Baseline Adaptation Algorithm with no NME

The first case to be simulated is the baseline adaptation algorithm of reference
[11] which is specified, in continuous-time as,

˙̂
θ = γY1(ν)

T [−Jω − Y1(ν)θ̂], (12)

and where we choose γ = 10I12. In this case, there is no excitation in the null-
space, and n(t) = 0.

Results. The angular velocity of the spacecraft and RWA flywheel rates are
shown in Figures 2 and 3. The parameter error, shown in Figure 4, does not
converge to zero. This is because the forced trajectory followed by the spacecraft
does not ensure persistency of excitation. The angular momentum error of the
spacecraft-RWA array system in Figure 5 asymptotically approaches zero.
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Fig. 2. The time histories of the spacecraft angular velocity components with an adap-
tation algorithm (12) and no NME
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Fig. 3. The time histories of the RWA flywheel rates with an adaptation algorithm
(12) and no NME
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Fig. 4. The time histories of the parameter estimation errors with an adaptation algo-
rithm (12) and no NME
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Fig. 5. The time history of the angular momentum error with an adaptation algorithm
(12) and no NME
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4.2 Case 2: Baseline Adaptation Algorithm and Local
Gradient-Based NME Solution

Following [11], the local gradient-based NME signal is now augmented to enhance
excitation and facilitate parameter identification. The parameters are estimated
by (12), and NME signal, n(t), is generated in the direction of the gradient with
respect to ν(t) of the objective function

f =

3na∑
i=1

3na∑
j=1

qTi (t)qj(t), (13)

where na = 4 is the number of RWA actuators, and qi(t) and qj(t) are, respec-
tively, the ith and jth columns of the matrix

Q(t) =

(
Y T
1 (t)Y1(t) +

Nb−1∑
i=1

Y T
1 (t− i)Y1(t− i)

)
. (14)

Here Nb designates the past time window over which Q(t) is computed, and
Y1(t) depends on ν(t). The NME from this algorithm adds excitation to the
system along the trajectory thereby providing more information and making it
possible to identify the parameters of the system without considerably degrading
commanded torque tracking performance. The objective function in (13) differs
from that of the proposed receding horizon approach. Specifically, (13) does not
exploit prediction and minimization with respect to an NME sequence defined
over the multi-step prediction horizon. Furthermore, (13) assumes perfect mea-
surements and does not penalize explicitly null space actuation.

Results. The angular velocity of the spacecraft and RWA flywheel rates are
shown in Figures 6 and 7. The parameter error using this method is shown in
Figure 8. Note that unlike the case without NME, the parameter error converges
to zero, however, it has not converged sufficiently over the time interval of 5000
sec. The angular momentum error converges with oscillations at the steady state
as shown in Figure 9. The flywheel actuation is shown in Figures 7 and the
additional null motion added is shown in Figure 10. More details and discussion
of the convergence of the parameters and the trajectory can be found in reference
[11].
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Fig. 6. The time histories of the spacecraft angular velocity components with the
baseline NME algorithm and adaptation algorithm given by (12)
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Fig. 7. The time histories of the RWA rates with the baseline NME algorithm and
adaptation algorithm given by (12)
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Fig. 8. The time histories of the parameter estimation errors with the baseline NME
algorithm and adaptation algorithm given by (12)
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Fig. 9. The time history of the angular momentum error with the baseline NME algo-
rithm and adaptation algorithm given by (12)
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Fig. 10. The time history of the excitation signal n with the baseline NME algorithm
and adaptation algorithm given by (12)

4.3 Case 3: RLS Adaptation Algorithm and Receding Horizon
NME Solution

The final case in simulation is that of the NME solution found from a receding
horizon optimization. Given that the method of choosing NME here is local
but based off a larger than a single time-step horizon and that its objective
function balances the NME actuation and error covariance, we expect that the
receding horizon approach may perform superior to the local-gradient method
in Section 4.2. Note also that in the receding horizon case, the noise in the
measurements is accounted for in the covariance prediction.

Results. To ensure that the excitation is maintained over time, the weight ρ
in (7) is made time-varying and decreased at a linear rate to a constant value.
See Figure 11. See also reference [13] for additional remarks. We set ΔT = 1
sec and we use the horizon Nc = 10 in (7). While shorter horizons can reduce
the computational time and effort, for the assumed levels of measurement noise
shorter horizons produce slower parameter error convergence.

The angular velocity of the spacecraft and RWA flywheel rates are shown in
Figures 12 and 13. The parameter error for the receding horizon method of NME
exhibits faster parameter error convergence over 5000 sec time interval versus the
local gradient approach, compare Figures 14 and 8. In addition, the angular mo-
mentum error is smaller than with the local-gradient method, compare Figures
15 and 9. Finally, the additional actuation is an order of magnitude less with
the receding horizon approach than with the local gradient method, which is
evident by comparing the null motion added in Figure 16 and Figure 10. Figure
17 demonstrates that the error covariance matrix is decreasing through plotting
of the maximum 1-σ bounds on the covariance matrix. We emphasize that these
results are not due to the difference between the parameter update laws (10)
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and (12); For instance, by setting n(t) = 0 and executing (10), the parameter
estimates do not converge to zero, as shown in Figure 18.

Even though the results are dependent on the choices of each algorithm pa-
rameters, they do indicate that the receding horizon approach has a potential
to induce null motion excitation that facilitates fast parameter adaptation and
smaller perturbations to the spacecraft albeit at a higher computational cost.

The analysis of observability has been left out in this paper. For a detailed
treatment of the observability of redundant/over-actuated systems see reference
[14].
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Fig. 11. The time history of the weight ρ
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Fig. 12. The time histories of the spacecraft angular velocity components with the
receding horizon NME algorithm
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Fig. 13. The time histories of the RWA rates with the receding horizon NME algorithm
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Fig. 14. The time histories of the parameter estimation errors with the receding horizon
NME algorithm
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ĥ

Fig. 15. The time history of the angular momentum error with the receding horizon
NME algorithm
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Fig. 16. The time history of the signal n with the receding horizon NME algorithm
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Fig. 17. The time history of the maximum 1σ standard deviation with the receding
horizon NME algorithm
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Fig. 18. The time histories of the parameter estimation errors without NME algorithm
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5 Conclusion

The Null Motion Excitation (NME) takes advantage of the spacecraft actua-
tion redundancy (over-actuation) to provide excitation for parameter estimation
while minimizing the disturbance to the nominal spacecraft maneuver. A spe-
cific approach to NME is proposed in this paper. This approach is based on
the receding horizon optimization of the excitation input to minimize the pre-
dicted estimation error covariance. Simulation results for the case of identifying
alignments in the Reaction Wheel Assembly demonstrate that the receding hori-
zon approach ensures faster parameter convergence versus zero excitation case,
and that it has a potential to outperform a previously proposed algorithm in
[11], albeit at a higher on-board computational cost. We note that the proposed
approach may be viewed a variant of Design of Experiments (DoE) technique
wherein nominal control signals are augmented with bounded excitation signals
that improve parameter identifiability while satisfying the imposed constraints
and minimizing the impact on the nominal spacecraft motion. The receding
horizon framework is beneficial as it facilitates re-optimizing the excitation tra-
jectory every time the error covariance matrix estimate and parameter estimates
are updated from the actual measurements. Our simulation results for the case
of a spacecraft actuated by a reaction wheel array demonstrate clearly that the
approach is effective even though the current parameter estimates are used in
determining the null space and in minimizing the spacecraft disturbance. While
we consider the application of this null motion excitation strategy over finite
intervals of time only, we note that more general receding horizon controllers
can be applied over an infinite time interval and can incorporate the penalty
on tracking error in addition to the estimation error in the cost function. The
analysis of closed-loop properties of such ’dual adaptive’ controllers is beyond
the scope of the present paper and is left to future research.

Several assumptions were made to simplify the treatment of the problem,
that will be relaxed in future publications. Various enhancements will be pur-
sued. In particular, an approach which uses a Gaussian sum in place of the pre-
dicted covariance for an objective function will be investigated. This is needed for
accommodating certain sensors such as electro-optical sensors for which the mea-
surement noise has a Poisson rather than a Gaussian distribution. Other devel-
opments will be concerned with applying this type of solution that incorporates
NME to a slew of different problems (e.g., CMG gimbal axis alignments). In
addition, future work will compare the energy, power, and time associated with
separate identification maneuvers versus that of this approach.

Acknowledgments. The authors gratefully acknowledge the contribution from
the Air Force Office of Scientific Research under the lab task (LRIR11RV15COR)
to support this research.
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Abstract. The paper considers spacecraft motion planning based on
the use of safe positively invariant sets. In this approach, a connectivity
graph is constructed between a set of forced equilibria, forming a virtual
net that is centered around a nominal orbital position. The connectivity
between two equilibria is determined based on safe positively invariant
sets in order to guarantee that transitions between equilibria can be
effected while spacecraft actuator limits are adhered to and debris colli-
sions are avoided. A graph search algorithm is implemented to find the
shortest path around the debris. Simulation results are presented that
illustrate this approach.

1 Introduction

Orbital debris is a growing problem, with about 40% of ground-trackable ob-
jects originating from explosions that now number approximately 5 per year [1].
Spacecraft maneuver planning procedures thus have to address debris avoidance
requirements. While obstacle avoidance is a standard problem in robotics [2,3],
the related spacecraft problems have several unique features. In particular, the
space environment is relatively uncluttered, thus permitting for a variety of ma-
neuvers. Spacecraft dynamics are quite different from those of typical robots.
Maneuver efficiency with respect to time and fuel consumption is a critical con-
sideration. The states of the spacecraft and the debris can only be estimated,
often with a significant estimation error. Finally, computational algorithms must
be fast and optimized given moving objects and the limited computing power on-
board most spacecraft. These unique features of spacecraft maneuver planning
problems provide the motivation for the development of specialized algorithms.

In [4], we have introduced an on-board maneuver planning approach based on
the use of constraint-admissible positively invariant sets to determine connectiv-
ity between a set of forced and unforced spacecraft equilibria forming a virtual
net in the vicinity of the spacecraft. Two equilibria are connected if a choice
of a Linear Quadratic (LQ) feedback gain can be made that results in a tran-
sition between the equilibria which avoids the debris collision and satisfies the
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limits on thrust. The connectivity graph for all the equilibria in the net is con-
structed and real-time graph search algorithms are used to optimize maneuver
time or fuel consumption while avoiding debris collisions. While safe positively
invariant sets around both forced and unforced equilibria are used in maneuver
construction, we note that the spacecraft does not spend any finite amount of
time at selected forced equilibria, and that the switch to the next set-point in
the sequence occurs immediately once appropriate conditions are satisfied. We
also note that fuel consumption or maneuver time optimization is performed at
the graph search stage.

Unlike the open-loop trajectory optimization approaches, we do not rely on
precise assignment of spacecraft position to the time instants along the trajec-
tory, but instead switch to the next set-point and controller gain once appropriate
conditions are satisfied. While this approach is conservative, it facilitates fault-
tolerant and disturbance-tolerant execution of the maneuvers. Furthermore, by
using disturbance-invariant sets [5] in the construction, we can assure robustness
to unmeasured (but set-bounded) disturbances and uncertainties. This extension
to handling unmeasured disturbances and uncertainties using techniques of [5]
is not pursued here but will be reported elsewhere.

To facilitate the on-board computations of the connectivity graph, a fast
growth distance computation procedure between two ellipsoidal sets has been
proposed in [4]. In this approach, using the Karush-Kuhn-Tucker conditions,
the growth distance computations are reduced to a root finding problem for
the scalar value of the Lagrange multiplier. Then a predictor-corrector dynamic
Newton-Raphson algorithm is used to update the Lagrange multiplier thereby
rapidly estimating the growth distance from different equilibria in the virtual
net to the debris.

In this paper, we incorporate limited thrust requirements into the computation
of thrust limit on the growth distance, and we simulate maneuvers that adhere
to the limited thrust constraints. Even though the computation of thrust limits
on the growth distance can be performed offline for the nominal operating con-
ditions, fast computational procedures are beneficial in case of thruster failures,
degradations, and restrictions on thrust directions (e.g., caused by the presence
of other spacecraft nearby), all of which can lead to changing constraints on
thrust during spacecraft missions. We show that in the case of polyhedral norm
bounds on thrust the problem of finding thrust limit on growth distance is easily
and explicitly solvable.

The related literature on spacecraft trajectory optimization with obsta-
cle/debris avoidance is surveyed in [4]. Previous research addresses topics in
spacecraft trajectory optimization [6], collision avoidance strategies based on
risk assessment [7], the use of artificial potential functions [8,9], and the use of
conventional and mixed integer linear programming techniques [10,11,12,13].

The paper is organized as follows. In Sections 2-6, we develop and introduce
the relative motion model, the virtual net, an LQ controller with gain switching,
positively invariant sets, and debris representation. In Section 7, we build upon
these concepts with growth distances and connectivity graphs in order to develop
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the static debris avoidance approach. Section 8 addresses cost matrices. Finally,
Section 9 presents simulations that illustrate these approaches for avoiding both
static and moving debris. The moving debris case is handled by covering its path
in the relative frame by a union of a finite number of static debris. Concluding
remarks are made in Section 10.

2 Relative Motion Model

The spacecraft relative motion model presents spacecraft dynamics in the (non-
inertial) Hill’s frame, where the origin is a target location on a nominal circular
orbit.

2.1 Nonlinear Equations of Motion

The relative position vector of the spacecraft with respect to a target location
on an orbit is expressed as

δ
⇀
r = xî+ yĵ + zk̂,

where x, y and z are the components of the position vector of the spacecraft
relative to the target location and î, ĵ, k̂ are the unit vectors of the Hill’s frame.
The Hill’s frame has its x-axis along the orbital radius, y-axis orthogonal to the
x-axis and in the orbital plane, and z-axis orthogonal to orbital plane.

The position vector of the spacecraft with respect to the center of the Earth

is given by
⇀

R =
⇀

R0 + δ
⇀
r , where

⇀

R0 is the nominal orbital position vector. The
nonlinear equation of motion for the spacecraft (relative to an inertial frame) is
given by

⇀̈

R = −μ

⇀

R

R3
+

1

mc

⇀

F , (1)

where
⇀

F is the vector of external forces applied to the spacecraft, R = |
⇀

R|, mc

is the mass of the spacecraft, and μ is the gravitational constant.

2.2 Linearized CWH Equations

For δr � R, the linearized Clohessy-Wiltshire-Hill (CWH) equations [14] ap-
proximate the relative motion of the spacecraft on a circular orbit as

ẍ− 3n2x− 2nẏ =
Fx

mc
,

ÿ + 2nẋ =
Fy

mc
,

z̈ + n2z =
Fz

mc
,

(2)

where Fx, Fy, Fz are components of the external force vector (excluding gravity)

acting on the spacecraft, n =
√

μ
R3

0
denotes the mean motion of the nominal
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orbit, and R0 is the nominal orbital radius. The linearized dynamics account for
differences in gravity between the spacecraft and nominal orbital location, and
for relative motion effects.

The spacecraft relative motion dynamics in the orbital plane (x and y) and in
the out-of-orbital plane (z) are decoupled. The in-plane dynamics are Lyapunov
unstable (2 eigenvalues at the origin and 2 eigenvalues on the imaginary axis at
±nj), while the out-of-plane dynamics are Lyapunov stable (2 eigenvalues on
the imaginary axis at ±nj). The in-plane dynamics are completely controllable
from Fy input but are not controllable from Fx input. The out-of-plane dynamics
are controllable from Fz input. These dynamics are clearly different from typical
ground robots.

Assuming a sampling period of ΔT sec, we can convert the model (2) to a
discrete-time form

X(t+ 1) = AX(t) +BU(t), (3)

where X(t) = [x(t), y(t), z(t), ẋ(t), ẏ(t), ż(t)]T is the state vector at the
time instant t ∈ Z+, U(t) = [Fx(t), Fy(t), Fz(t)]

T is the control vector
of thrust forces at the time instant t ∈ Z+, and A = exp(AcΔT ), B =∫ΔT

0
exp(Ac(ΔT − τ))dτBc are the discretized matrices obtained based on the

continuous-time system realization (Ac, Bc) in (2).

3 Virtual Net

The virtual net comprises a finite set of equilibria, Xe(r), corresponding to a
finite set of prescribed spacecraft relative positions r ∈ N = {r1, r2, . . . , rn} ⊂
R3 and constant control inputs,

Xe(rk) =
[
rk 0

]T
=

[
rx,k ry,k rz,k 0 0 0

]T
, k = 1, · · · , n. (4)

Note that for the equilibria in the virtual net velocity states are zero, and n is
the number of equilibria in the virtual net. See Figure 1. We assume that for all
r ∈ N , the corresponding values of control necessary to support the specified
equilibria in steady-state satisfy the imposed thrust limits.

4 LQ Controller with Gain Switching

A conventional Linear-Quadratic (LQ) feedback

U = K(X −Xe(r)) + Γr = KX +H(K)r, (5)

can control the spacecraft thrust to arrive at a commanded equilibrium (4),
where

Γ =

⎡
⎣−3n2mc 0 0

0 0 0
0 0 n2mc

⎤
⎦ ,
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Debris

Fig. 1. The virtual net for debris avoidance. Dots correspond to positions rk, k =
1, . . . , n, at equilibria, Xe(r), on a virtual net. The ellipsoid represents the debris po-
sition and uncertainty.

H(K) = Γ −K

[
I3
03

]
,

and where I3 denotes the 3× 3 identity matrix while 03 denotes the 3 × 3 zero
matrix. The LQ controller provides an asymptotically stable closed-loop system
but does not enforce debris avoidance constraints.

To provide greater flexibility in handling constraints, a multimode controller
architecture is employed [15]. Specifically, we assume that a finite set of LQ gains
K ∈ K = {K1, · · · ,Km} is available to control the spacecraft. By using a large
control weight in the LQ cost functional, motions with low fuel consumption
yet large excursions can be generated; using a large control weight in the LQ
cost, motions with short transition time can be generated [16]. We assume that
a preference ordering has been defined and the gains are arranged in the order of
descending preference, from K1 being the highest preference gain to Km being
the lowest preference gain.

5 Positively Invariant Sets

The ellipsoidal set

C̄(r,K) = {X ∈ R6 :
1

2
(X −Xe(r))

TP (K)(X −Xe(r)) ≤ 1} ⊂ R6, (6)

where

Ā(K)TPĀ(K)− P < 0, (7)

Ā(K) = (A + BK), and P = P (K) > 0 is positively invariant for the closed-
loop dynamics. Positive invariance implies that any trajectory of the closed-loop
system that starts in C̄(r,K) is guaranteed to stay in C̄(r,K) as long as the
same LQ gain K is used and the set-point command r is maintained. To achieve
the positive invariance, the matrix P can be obtained as the solution of the
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discrete-time Riccati equation in the LQ problem or as the solution of the above
Lyapunov equation for the closed-loop asymptotically stable system. We note
that, because the system is linear, the positive invariance of C̄(r,K) implies the
positive invariance of the scaled set

C(r,K, ρ) = {X ∈ R6 :
1

2
(X −Xe(r))

TP (K)(X −Xe(r)) ≤ ρ2}, ρ ≥ 0.

Geometrically, the set C(r,K, ρ) corresponds to an ellipsoid scaled by the value
of ρ and centered around Xe(r), r ∈ N .

6 Debris Representation

We use a set, O(z,Q), centered around the position z ∈ R3, to over-bound the
position of the debris, i.e.,

O(z,Q) = {X ∈ R6 : (SX − z)TQ(SX − z) ≤ 1}, (8)

where Q = QT > 0 and

S =

⎡
⎣1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

⎤
⎦ . (9)

The set O(z,Q) can account for the debris and spacecraft physical sizes and also
for the uncertainties in the estimation of the debris/spacecraft position. Note
that the set O(z,Q) has an ellipsoidal shape in the position directions and it
is unbounded in the velocity directions. Ellipsoidal sets, rather than polyhedral
sets, are used here to over-bound the debris, since ellipsoidal bounds are typically
produced by position estimation algorithms, such as the Extended Kalman Filter
(EKF).

7 Debris Avoidance Approach

Consider now ri ∈ N , representing a possible position on the net that the space-
craft can move to as a part of the debris avoidance maneuver. Suppose that the
current state of the spacecraft is X(t0) at the time instant t0 ∈ Z+. If there
exists a ρ ≥ 0 and Kj ∈ K such that

X(t0) ∈ C(ri,Kj, ρ) and O(z,Q) ∩ C(ri,Kj , ρ) = ∅, (10)

the spacecraft can move to the position ri ∈ N by engaging the control law
with r(t) = ri and K(t) = Kj , t ≥ t0, and without hitting the debris confined
to O(z,Q). This idea underlies our subsequent approach to debris avoidance,
where we maintain the spacecraft within a tube formed by positively invariant
sets that do not intersect with debris.
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To avoid a non-stationary debris, its path can be covered by a union of a finite
number of ellipsoidal sets,

D =

l=nd⋃
l=1

O(zl, Ql), (11)

where the center of the lth set is denoted by zl ∈ R3, and the lth set shape is
defined by Ql = QT

l > 0. Then, the debris avoidance condition for the closed-
loop trajectory that emanates from X(0) with the set-point ri and gain Kj is
given by

X(0) ∈ C(ri,Kj , ρ) and O(zl, Ql) ∩ C(ri,Kj , ρ) = ∅, for all l = 1, · · · , nd.
(12)

The same approach, with larger nd, can be used to handlemultiple non-stationary
debris. Note, however, that this approach is conservative as it does not account
for the debris progressions along their paths versus time. It is appropriate for
debris moving at high relative velocity. The case of debris moving at a low relative
velocity will be considered in other publications.

7.1 Growth Distances

The minimum value of ρ ≥ 0 for which O(z,Q)
⋂
C(r,K, ρ) 	= ∅ is referred to

as the growth distance [17]. This growth distance can also be viewed as the least
upper bound on the values of ρ for which O(z,Q) and C(r,K, ρ) do not intersect.
See Figure 2. We use the notation ρg(r,K,Q, z) to reflect the dependence of the
growth distance on the set-point r ∈ N , the control gain K ∈ K and the obstacle
parameters Q and z.

Note that the growth distance depends on the position of the debris which
may be unknown in advance. Consequently, growth distance computations have
to be performed online.

Since spacecraft have limited thrust, we additionally define a maximum value
of ρ = ρu(r,K) for which X ∈ C(r,K, ρu(r,K)) implies that the thrust U =
KX + H(K)r satisfies the imposed thrust limits. We refer to ρu as the thrust
limit on growth distance. Unlike ρg, the value of ρu does not depend on the
position or shape of the debris and can be pre-computed off-line.

Finally, we define the thrust limited growth distance

ρ∗(r,K,Q, z) = min{ρg(r,K,Q, z), ρu(r,K)}. (13)

Note that X(t0) ∈ C(ri,Kj, ρ
∗(ri,Kj, Q, z)) implies that the ensuing closed-loop

spacecraft trajectory under the control (5), where r(t) = ri and K(t) = Kj for
t ≥ t0, satisfies the thrust limits and avoids collisions with a debris confined to
O(z,Q).

The above definitions were given for the case of a single stationary debris,
O(z,Q). In the case of multiple debris, the growth distance is replaced by
the multi-growth distance, which is the minimum growth distance to each of
O(zl, Ql), l = 1, · · · , nd.
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Debris

z

O(z,Q)

ri

S C(ri ,K,���x

S�

Fig. 2. The positively invariant set is grown till touching the debris. The spacecraft
can move from any of the equilibria on the virtual net inside the positively invariant
set C(r,K, ρ) to Xe(ri) marked by ’x’ without colliding with the debris.

7.2 Growth Distance Computations

Define X̄ = X − Xe(r) and α = 2ρ2. The problem of determining the growth
distance ρg(r,K,Q, z), reduces to the constrained optimization problem

min
α,X̄

α

subject to X̄TPX̄ ≤ α
((S(X̄ +Xe(r)) − z)TQ((S(X̄ +Xe(r)) − z) ≤ 1,

(14)

where we find the minimum size invariant ellipsoid that shares a common point
with the debris. To solve this optimization problem, we use the Karush-Kuhn-
Tucker (KKT) conditions [18,19]. Note that standard linear independence con-
straint qualification conditions hold given that P > 0. We define

L = α+ λ1(X̄
TPX̄ − α) + λ2((S(X̄ +Xe(r)) − z)TQ(S(X̄ +Xe(r)) − z)− 1),

where λ1 and λ2 are Lagrange multipliers. The stationarity of the Lagrangian
(setting partial derivative equal to zero) with respect to α yields λ1 = 1. The
stationarity of the Lagrangian with respect to X̄ yields

X̄ = X̄(λ2, r, z) = −(P + λ2S
TQS)−1STQ(SXe(r) − z)λ2, (15)

where the scalar λ2 ≥ 0 is to be determined. Note that P > 0, STQS ≥ 0, λ2 ≥ 0
(as the Lagrange multiplier corresponding to an inequality constraint) imply that
(P +λ2S

TQS) is invertible. The problem reduces to finding a nonnegative scalar
λ2, which is the root of

F (λ2, r, z) = (SX − z)TQ(SX − z)− 1 = 0, (16)

where
X = X̄(λ2, r, z) +Xe(r).
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The scalar root finding problem (16) has to be solved online multiple times
for different r ∈ N , and in the case of avoiding a predicted debris path also for
different z’s. To solve this problem fast, while reusing previously found solutions
as approximations, a dynamic Newton-Raphson’s algorithm is used [20,19,21].
This algorithm uses predictor-corrector updates to track the root as a function
of z and r, and is given by

λk+1,+
2 = λk

2 + { ∂F
∂λ2

(λk
2 , z

k, rk)}−1{−F (λk
2 , z

k, rk)− ∂F

∂z
(λk

2 , z
k, rk)(zk+1 − zk)

− ∂F

∂r
(λk

2 , z
k, rk)(rk+1 − rk)},

λk+1
2 = max{0, λk+1,+

2 }.

To implement the algorithm, we take advantage of the known functional form
for F and explicitly compute the partial derivatives,

∂X̄

∂λ2
= (P + λ2S

TQS)−1
{−STQ(SXe(r) − z)− STQSX̄

}
,

∂F

∂λ2
= 2(SX − z)TQ(S

∂X̄

∂λ2
),

∂X̄

∂r
= (P + λ2S

TQS)−1
{−STQSΩ

}
λ2,

∂F

∂r
= 2(SX̄ − z + r)TQ(S

∂X̄

∂r
+ I3),

∂X̄

∂z
= (P + λ2S

TQS)−1STQSΩλ2,

∂F

∂z
= 2(SX̄ − z + r)TQ(S

∂X̄

∂z
− I3), (17)

where, Xe(r) = Ωr,

Ω =

[
I3
0

]
,

and I3 denotes the 3× 3 identity matrix. Note that SΩ = I3.
Figure 3 illustrates growth distance tracking. For the first 20 iterations, rk

is held constant to enable initial convergence of the algorithm. Then, rk varies
through the virtual net. One iteration of the Newton-Raphson algorithm per
value of rk is used to update the root, λk+1

2 . Figure 3b demonstrates that the
growth distance tracking is accurate. The growth distance is occasionally zero
indicating an overlap between several rk and the debris. Figure 3c illustrates the
trajectory of rk in three dimensions.

7.3 Thrust Limit on Growth Distance Computations

Suppose that the thrust limits are expressed in the form ||LU || ≤ 1 for an ap-
propriately defined matrix L and norm || · ||. The computational procedures
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Fig. 3. (a) Components of r, rx, ry and rz varying versus the iteration number. (b)
Growth distance versus iteration number computed by dynamic Newton-Raphson al-
gorithm. (c) The trajectory of r and the debris.

to determine ρu(r,K) involve solving a bilevel optimization problem where
||L(KX + H(K)r)|| is maximized subject to the constraint X ∈ C(r,K, α),
and bisections are performed on the value of α so that the maximum value is
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driven to 1. As we demonstrate in this section, in special cases this computation
can be greatly simplified.

Suppose that the thrust constraints are prescribed in terms of polyhedral
norm bounds, specifically

eTi (KX +Hr) ≤ umax, i = 1, 2, · · · ,m, (18)

where ei are the vertices of the unit norm polytope, and umax is the norm bound.
The infinity norm, for instance, has m = 6, and

e1 =

⎡
⎣ 1

0
0

⎤
⎦ e2 =

⎡
⎣−1

0
0

⎤
⎦ e3 =

⎡
⎣ 0

1
0

⎤
⎦

e4 =

⎡
⎣ 0
−1
0

⎤
⎦ e5 =

⎡
⎣ 0

0
1

⎤
⎦ e6 =

⎡
⎣ 0

0
−1

⎤
⎦ . (19)

In the case of non-polyhedral norm bounds, such as the 2-norm, an approxima-
tion by a polyhedral norm bound may be employed.

The thrust limit on the growth distance is then determined based on solving,
for i = 1, · · · , n, the optimization problems

maximize eTi (KX +Hr)
subject to 1

2 (X −Xe(r))
TP (X −Xe(r)) ≤ c.

(20)

If the value of c is found for which the solutions X∗
i of (20) satisfy

maxi{eTi (KX∗
i +Hr)} = umax, then ρu(r,K) =

√
c.

The problem (20) can be solved by diagonalizing P , using an orthogonal
matrix, V ,

P = V TΛV, Λ = diag[λ2
1, · · · , λ2

6], λi > 0.

By defining, z = X −Xe(r), and ζ so that

z = V TΛ− 1
2 ζ,

it follows that

zTPz = ζTΛ− 1
2V PV TΛ− 1

2 ζ

= ζTζ.

The problem (20) can now be re-written as

maximize hT
i ζ + eTi Γr

subject to 1
2ζ

Tζ ≤ c,
(21)

where

hT
i = eTi KV TΛ− 1

2 .
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The solution to the constrained maximization problem (21) of maximizing the
inner-product of two vectors over a unit 2-norm ball is given by

ζi =
hi

||hi||
√
2c, (22)

where || · || denotes the vector 2-norm. The maximum value of the objective
function in (20) is given by

||hi||
√
2c+ eTi Γr.

Consequently, to satisfy (18), we let

c =

⎧⎨
⎩

0, if ∃ i : umax ≤ eTi Γr,

min
i

1

2

(
umax − eTi Γr

||hi||
)2

, otherwise.
(23)

Thus, the problem of finding the thrust limit on the growth distance for
polyhedral norm bounds has an explicit solution given by (23). Even though the
computation of thrust limits on the growth distance can be performed offline for
the nominal operating conditions, fast computational procedures are beneficial
in case of thruster failures, degradations, and restrictions on thrust directions
(e.g., caused by the presence of other spacecraft nearby), all of which can lead
to changing constraints on thrust during spacecraft missions.

We note that the condition umax ≥ maxi{eTi Γr} is satisfied if the available
thrust can maintain the equilibrium Xe(r) in steady-state. We also note, that,
based on the form of Γ , c is independent of ry, the in-track component of the
equilibrium in the virtual net. Hence the computations of ρu(r,K) need only be
performed with ry = 0.

When a spacecraft does not have independent thrusters in x, y and z direc-
tions, a 2-norm thrust limit is more practical. Unfortunately, (20) is, in general,
a non-convex problem. In this case, the 2-norm bound can be approximated by
a polyhedral norm bound (18), with the vertices ei selected on the unit 2-norm
ball in R3. We note that higher accuracy of this approximation requires a higher
number of vertices in (18), which thus, complicates (23).

7.4 Connectivity Graph and Graph Search

We now introduce a notion of connectivity between two vertices of the virtual
net, ri ∈ N and rj ∈ N . The vertex ri is connected to the vertex rj if there
exists a gain K ∈ K such that

Xe(ri) ∈ intC(rj ,K, ρ∗(rj ,K,Q, z)), (24)

where int denotes the interior of a set. The connectivity implies that a spacecraft
located close to an equilibrium corresponding to ri can transition to an equilib-
rium Xe(rj) by using limited thrust and avoiding collision with the debris. We
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note that if ri is connected to rj this does not imply that, in turn, rj is connected
to ri. We also note that connectivity depends on the existence of an appropriate
control gain from the set of gains K but the condition (24) does not need to hold
for all gains.

The on-line maneuver is computed according to the following procedure (for
simplicity, described here for the case of a single debris):

Step 1: Determine the debris location and shape (i.e., z and Q).
Step 2: By using fast growth distance computations, determine the thrust

limited growth distance based on (13), with ρg computed online and
ρu precomputed offline.

Step 3: Construct a graph connectivity matrix between all ri, rj ∈ N . In
the graph connectivity matrix, if two vertices are not connected, the
corresponding matrix element is zero; if they are connected the cor-
responding matrix element is 1. In parallel, build the control gain
selectivity matrix, which identifies the index of the highest preference
gain K for which ri and rj are connected. This gain will be applied if
the edge connecting ri and rj is traversed.

Step 4: Perform graph search (using any standard graph search algorithm) to
determine a sequence of connected vertices r[k] ∈ N and control gains
K[k] ∈ K, k = 1, · · · , lp, such that r[1] satisfies the initial constraints,
r[lp] satisfies the final constraints, and a cost function (see Section 8)
is minimized.

After the path has been determined as a sequence of the set-points and the
corresponding control gains, the execution of the path proceeds by checking if
the current state, X(t) is in the safe positively invariant set corresponding to
the next reference r+ and next control gain K+ in the sequence; if it is, then
the controller switches to this reference and control gain:

X(t) ∈ C(r+,K+, ρ∗(r+,K+, Q, z)) → r(t) = r+, K(t) = K+. (25)

We note that the time and effort to execute the above procedure can be reduced
systematically by employing various heuristics.

8 Cost Matrices

As described in the previous section, the connectivity graph matrix is comprised
of ones and zeros, and thus, graph search that uses it as a cost matrix results in
a minimum length path between desired ri, rj ∈ N .

In order to produce time efficient and thrust efficient paths, offline we simulate
transitions between all ri, rj ∈ N for each K ∈ K and record the time and fuel
consumption to reach a box with side of 1m around the target vertex. The results
are merged into time and fuel matrices that store the respective minimum value,
while in parallel, the control selectivity matrix identifies which gain K produced
said minimum.
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Step 3 in the motion planning procedure is augmented so that the graph
connectivity matrix is multiplied elementwise with a desired cost matrix. Vertices
that are not connected retain a corresponding matrix element of zero, while
vertices that are connected now contain a matrix element of time or fuel cost.

9 Simulation Results

Simulations are now provided that illustrate the debris avoidance approach.
We consider a nominal circular orbit of 850 km and discretize the HCW
equations with a sampling period, ΔT , of 30 seconds. We construct an ap-
proximately 2 km cubed virtual net. We let K = {K1,K2,K3}, where
K1,K2,K3 are the LQ gains associated with state and control weight matri-
ces Q = diag(100, 100, 100, 107, 107, 107), and R1 = 2 × 105I3, R2 = 2 × 107I3,
and R3 = 2 × 109I3. These gains are chosen to represent preferences for fuel
considerations, maneuver time considerations, and a compromise between them.
We impose a maximum thrust constraint of 10 N in each axis. In all simulations,
Dijkstra’s algorithm is used to find the shortest cost path from initial node to
final node.

We consider an ellipsoidal set O(z1, Q1) over-bounding a debris centered at
z1 = [0.3 0.4 0.5]T km, where Q1 = 100I3. The spacecraft’s initial condition is
X(0) = Xe(r0), where r0 = [0.32 0 1.61]T km. The target equilibrium node is
Xe(0).

Figure 4 shows the path the spacecraft takes under closed-loop control in order
to avoid the debris and the time history of thrust magnitude. The spacecraft is
able to complete the desired maneuver well within maximum thrust constraints
while successfully avoiding the debris. In Figure 5 we rerun the simulation for a
grid of initial conditions. The figure clearly demonstrates the initial conditions
for which the maneuver path is perturbed from that which the spacecraft would
have taken had there been no debris.

Next, we add a second debris O(z2, Q2) centered at z2 = [0.3 − 0.4 0.5]T,
where Q2 = 100I3. In calculating the growth distance, we take the minimum
distance to each of O(zi, Qi), i = 1, 2 . Figure 6 shows the path the spacecraft
takes under closed-loop control in order to avoid both debris and the time history
of thrust magnitude.

Finally, we consider the case of a non-stationary debris where we cover its
path by the union of static debris (11). A union of ellipsoidal sets over-bounds
the debris’ motion, where the debris positions zi are generated by sampling the
relative motion of the debris with the initial condition [0 0.5 0 0 0.0006 0]T, and
where Qi = 200I3, i = 1 . . . nd. The spacecraft’s initial condition is X(0) =
Xe(r0), where r0 = [0 1 0]T km. The target equilibrium node is Xe(rd), where
rd = [0 − 1 0]T km. We use the single gain K2 and do not include fuel or
time cost matrices in the simulation, searching for a minimum length path.
Figure 7 demonstrates that the spacecraft is able to avoid the closed debris path
by ‘hopping’ under it.

In Figure 8, we repeat the simulation for time efficient and thrust efficient
paths and allow allK ∈ K. Table 1 summarizes the total time, thrust and nodes
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(a) Debris Avoidance Path.
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Fig. 4. (a) Debris avoidance path for a single debris. The green x marks the initial
node. The blue x marks the final node. The red ellipsoid represents the debris. The
blue line is the path the spacecraft takes in order to avoid the debris. The blue ellipsoids
represent the safe positively invariant sets along the path. (b) The time history of thrust
magnitude.
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Fig. 5. Debris avoidance paths for many initial conditions. Each green x marks an intial
condition. The blue x marks the final node. The red ellipsoid represents the debris. The
blue lines are the paths that the spacecraft takes from each initial condition in order
to avoid the debris. We do not show the invariant set ellipsoids for visual clarity.

traversed for the three paths. Note that the minimum length path now ‘hops’
over the debris path instead of under it, as now that it has access to K1 it finds
a shorter path. Also note that the time efficient path takes longer to complete
than the minimum length path. While the cost matrices described in Section
8 calculate time and thrust to travel between all vertices in the virtual net,
the execution of the path does not require the spacecraft to reach intermediate
vertices, rather, switching to the next reference once the current state enters
the next reference’s invariant set (25). As such, the cost matrices only provide
a heuristic for selecting efficient paths. In Figure 9 we require the paths to
travel through intermediate vertices to show that, in this case, the cost matrices
accurately determine efficient paths. The results are summarized in Table 2.

Table 1. Total Time, Thrust, and Nodes Traversed for all Maneuver Paths for a Union
of Static Debris

Total Time Total Thrust Total # of Nodes Gains used

Minimum Length Path 2611.5 s 1472.85 N·s 6 K1

Time Efficient Path 2841 s 1264.95 N·s 6 K1,K2

Thrust Efficient Path 9177 s 671.297 N·s 11 K2,K3
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(a) Debris Avoidance Path.
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Fig. 6. (a) Debris avoidance path for 2 pieces of debris. The green x marks the initial
node. The blue x marks the final node. The red ellipsoids represents the 2 pieces of
debris. The blue line is the path the spacecraft takes in order to avoid the debris.
The blue ellipsoids represent the invariant sets along the path. (b) The time history of
thrust magnitude.
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(a) Debris Avoidance Path.
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(b) Time history of thrust magnitude.
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Fig. 7. (a) Debris avoidance path for a non-stationary debris using the union method.
The green x marks the initial node. The blue x marks the final node. The red ellipsoids
represent the debris path. The blue line is the path the spacecraft takes in order to
avoid the debris. The blue ellipsoids represent the maximally grown invariant sets, C,
along the path. (b) The time history of thrust magnitude. (c) Cumulative thrust vs
time.
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(a) Debris Avoidance Path.
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(b) Time history of thrust magnitude.
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(c) Cumulative Thrust.

Fig. 8. (a) Multiple debris avoidance paths for a non-stationary debris using the union
method. (b) The time history of thrust magnitude. (c) Cumulative thrust vs time.
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(a) Debris Avoidance Path.
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(b) Time history of thrust magnitude.
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Fig. 9. (a) Multiple debris avoidance paths that travel through intermediate nodes
for a non-stationary debris using the union method. (b) The time history of thrust
magnitude. (c) Cumulative thrust vs time.

Table 2. Total Time, Thrust, and Nodes Traversed for all Maneuver Paths that Travel
Through Intermediate Nodes for a Union of Static Debris

Total Time Total Thrust Total # of Nodes Gains used

Minimum Length Path 10457.5 s 3006.13 N·s 6 K1

Time Efficient Path 9862 s 2017.11 N·s 6 K1,K2

Thrust Efficient Path 32812.5 s 1083.58 N·s 11 K2,K3
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10 Conclusion

We described a technique for spacecraft relative motion maneuvering that uses
positively-invariant sets in order to avoid collisions with debris, obstacles or
moving debris paths, while adhering to specified thrust limits. The approach is
based on maintaining the spacecraft trajectory within a tube formed by safe
positively-invariant sets around forced and unforced equilibria in an appropri-
ately constructed virtual net. The maneuver construction procedure exploits fast
growth distance computations to determine equilibria connectivity; graph search
based on optimal cost matrices is then employed to obtain a sequence of equi-
libria (essentially waypoints) to be commanded to the spacecraft. The switch to
the next commanded equilibrium occurs immediately once appropriate condi-
tions are satisfied and without waiting to settle to an equilibrium. For the case
where thrust limits can be specified as polyhedral norm bounds, we have shown
that the thrust limit on the growth distance can be easily computed; it is, in
fact, feasible to perform these computations onboard a spacecraft in order to
account for thruster failure or degradation.
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Abstract. We compare four spacecraft attitude control laws that re-
quire no prior modeling of the spacecraft mass distribution. All four
control laws are based on rotation matrices, which provide a singularity-
free attitude representation and unwinding-free operation without dis-
continuous switching. We apply these control laws to motion-to-rest
and motion-to-spin maneuvers. Simulation results are given to illustrate
the robustness of the control laws to uncertainty in the spacecraft iner-
tia. For motion-to-rest maneuvers about a principal axis with bounded
torque, we compare the settling time of the inertia-free control laws with
the time-optimal bang-bang control law operating under known inertia.
We also investigate closed-loop performance in the presence of attitude-
dependent torque disturbances, actuator nonlinearities, sensor noise, and
actuator bias.

Keywords: Attitude control, unmodeled inertia, rotation matrix,
SO(3).

1 Introduction

The development of a spacecraft attitude control system is often a labor-intensive
process due to the need for an accurate model of the spacecraft inertia. Determin-
ing and predicting the mass properties of a spacecraft may be difficult due to fuel
usage, deployment, structural articulation, and docking. To alleviate this need,
this paper focuses on spacecraft attitude control laws that require no modeling
of the spacecraft’s mass distribution. An adaptive inertia-free attitude control
law is given in [1] for minimum-time maneuvers. Inertia-free control laws for
motion-to-rest and tracking are given in [2–4].

Attitude control laws can use various parameterizations of the rotation group
SO(3). Euler angles are conceptually the simplest, but cannot represent all angu-
lar velocities due to singularities corresponding to gimbal lock. A related obstacle
arises in the use of Rodrigues parameters and modified Rodrigues parameters,
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which have singularities at 180-deg and 360-deg rotation angles, respectively.
The most common attitude representation is based on quaternions, which can
represent all attitudes and all angular velocities, but provide a double cover
of SO(3), that is, each physical attitude is represented by two elements of the
4-dimensional sphere S3. A continuous controller designed on the set of quater-
nions can thus inadvertently command the spacecraft to needlessly rotate 360
degrees to reach the commanded attitude. This is the unwinding problem [5].
The inertia-free, quaternion-based control laws in [3, 6, 7] exhibit unwinding.

There are several approaches to avoiding unwinding. The traditional approach
is to implement a logic statement that confines the quaternions to a hemisphere
of S3 [8]. This approach introduces a discontinuous control law, which can lead
to chattering in the presence of noise. This issue and associated complications
are addressed in [9].

In the present paper we avoid unwinding by representing attitude in terms
of rotation matrices, which constitute a one-to-one representation of physical
attitude without attitude or angular-velocity singularities [10]. Attitude control
on SO(3) thus provides the ability to implement continuous control laws that do
not exhibit unwinding [11–13]. Inertia-free control laws on SO(3) are developed
in [14, 15]. Lie groups are used for control in [16].

Since SO(3) is a compact manifold, every continuous vector field on it nec-
essarily possesses more than one equilibrium, in fact, at least four. This means
that global convergence on SO(3) under continuous, time-invariant control is im-
possible. Consequently, the objective of [12, 13, 15] is almost global stabilization,
where the spurious equilibria are saddle points. Although the spurious equilib-
ria can slow the rate of convergence, this approach avoids the complications of
discontinuous control laws.

Although the derivation of the inertia-free controller in [15] and the present
paper is based on rotation matrices, the attitude error given by the S-parameter
defined by (7) can be computed from any attitude parameterization, such as
quaternions or modified Rodrigues parameters, and thus these results are not
confined to rotation matrices per se.

The goal of this paper is to compare four continuous, inertia-free attitude
control laws based on rotation matrices. These control laws are called SO(3)/0,
SO(3)/3, SO(3)/6, and SO(3)/9, where the last number represents the number
of integrators in the control law. These control laws take the form of nonlinear
PD/PID control laws tailored to the nonlinear characteristics of spacecraft dy-
namics. Since linearized rigid-body dynamics comprise a double integrator about
each principal axis, we expect (as in the case of linear systems) that asymptotic
tracking of attitude ramp commands (that is, spin commands) about each prin-
cipal axis is possible without integral action. The primary role of integral control
in spacecraft attitude dynamics is thus to reject constant disturbances.

In the simplest case of PD control, the inertia-free SO(3)/0 control law is
given in [14]. In contrast, the SO(3)/9 control given in [15] is also inertia free
but employs three integrators inside the feedback loop as well as six integra-
tors for inertia estimation. The control laws SO(3)/3 and SO(3)/6 are ad hoc
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simplifications of SO(3)/9. The goal of this paper is to numerically investigate
and compare the closed-loop performance of these control laws under various
command-following and disturbance-rejection scenarios as well as under vari-
ous off-nominal conditions involving rate-sensor noise and unmodeled actuator
nonlinearities, such as saturation, on-off, and deadzone.

We consider two basic scenarios, namely, motion-to-rest (M2R) maneuvers
and motion-to-spin (M2S) maneuvers, where “rest” and “spin” refer to motion
relative to an inertial frame. If the M2R and M2S maneuvers begin from zero
angular velocity, then we use the terminology rest-to-rest (R2R) and rest-to-spin
(R2S), respectively. A M2S maneuver aims to bring the spacecraft from an arbi-
trary initial angular velocity and attitude to a specified constant angular velocity
relative to an inertial frame. In other words, the goal is to have the spacecraft
rotate at a constant rate about a body-fixed axis whose inertial direction is fixed.

Although the spacecraft inertia is unknown, and thus the directions of the
principal axes of inertia are unknown, we consider commanded spins about both
principal and non-principal axes (without knowing whether the commanded axis
of rotation is principal or non-principal) in order to demonstrate how these con-
trol laws perform in various scenarios. For example, a commanded spin about
a principal axis has the advantage that, once the spacecraft reaches the com-
manded spin, no additional torque is needed in the absence of disturbances
except possibly to stabilize a spin about the minimum and intermediate axes,
where the latter is naturally unstable and the former is unstable due to energy
dissipation, although we do not model this effect. Furthermore, as shown in [17,
p. 377], a spin about a non-principal axis with constant torque and for which all
components of the angular velocity are nonzero is unstable and thus stabiliza-
tion is required. Finally, a commanded spin about a non-principal axis requires
constant, nonzero torques and thus is more sensitive to torque saturation than a
commanded spin about a principal axis. In summary, a commanded spin about
a non-principal axis places significantly higher demands on the control law in
terms of stabilization and control authority.

Throughout this paper, all control torques are assumed to be provided by
thrusters or gas jets without onboard stored momentum.

2 Spacecraft Model

The spacecraft equations of motion are given by Euler’s and Poisson’s equations

Jω̇ = (Jω)× ω +Bu+ zdist, (1)

Ṙ = Rω×, (2)

where ω ∈ R
3 is the angular velocity of the spacecraft frame relative to the

inertial frame resolved in the spacecraft frame, ω× is the cross-product matrix
of ω, J ∈ R

3×3 is the inertia matrix of the spacecraft, the components of the
vector u ∈ R

3 represent three independent torque inputs, and the nonsingular
matrix B ∈ R

3×3 determines the applied torque about each axis of the spacecraft
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frame due to u. The rotation matrix R = OIn/SC ∈ R
3×3 is the physical rotation

matrix that transforms the inertial frame into the spacecraft frame resolved
in the spacecraft frame, and where OIn/SC is the orientation (direction cosine)
matrix that transforms components of a vector resolved in the spacecraft frame
into the components of the same vector resolved in the inertial frame. The vector
zdist ∈ R

3 represents disturbance torques, such as the gravity gradient torques
modeled by (25) below.

The objective of the attitude control problem is to determine control inputs
such that the spacecraft attitude given by R follows a commanded attitude
trajectory given by the possibly time-varying C1 rotation matrix Rd(t). For
t ≥ 0, Rd(t) is given by

Ṙd(t) = Rd(t)ωd(t)
×, Rd(0) = Rd0, (3)

where ωd is the commanded possibly time-varying angular velocity vector re-
solved in the desired body frame specified by Rd(t). The error between R(t) and

Rd(t) is given by the attitude-error rotation matrix R̃
�
= RT

dR, which satisfies

the differential equation ˙̃R = R̃ω̃×, where the angular-velocity error ω̃ is defined

by ω̃
�
= ω − R̃Tωd. We rewrite (1) in terms of ω̃ as

J ˙̃ω = J(ω̃ + R̃Tωd)× (ω̃ + R̃Tωd) + J(ω̃ × R̃Tωd − R̃Tω̇d) +Bu+ zdist. (4)

A scalar measure of attitude error is given by the eigenaxis error

e(t)
�
= cos−1(12 [tr R̃(t)− 1]).

3 Control Laws

3.1 SO(3)/9

To estimate the spacecraft inertia, we introduce the notation Jω = L(ω)γ, where
γ ∈ R

6 is defined by

γ
�
=

[
J11 J22 J33 J23 J13 J12

]T
(5)

and

L(ω)
�
=

⎡
⎣ω1 0 0 0 ω3 ω2

0 ω2 0 ω3 0 ω1

0 0 ω3 ω2 ω1 0

⎤
⎦ .

Next, let Ĵ ∈ R
3×3 denote an estimate of J , and define the inertia-estimation

error J̃
�
= J − Ĵ . Letting γ̂, γ̃ ∈ R

6 represent Ĵ , J̃ , respectively, as in (5), it
follows that γ̃ = γ − γ̂. Likewise, let ẑdist ∈ R

3 denote an estimate of zdist, and

define the disturbance-estimation error z̃dist
�
= zdist − ẑdist.
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Assuming that the disturbance is harmonic, zdist can be modeled by

ḋ = Adistd, zdist = Cdistd, (6)

where Adist ∈ R
nd×nd and Cdist ∈ R

3×nd are known matrices. In this model,
d(0) is unknown, which is equivalent to the assumption that the amplitude and
phase of all harmonic components in the disturbance are unknown; however,
the spectrum of d is assumed to be known. To provide asymptotic rejection of
harmonic disturbances, the matrix Adist is chosen to include eigenvalues of all
frequency components that may be present in zdist, where the zero eigenvalue
corresponds to a constant disturbance. Since zdist is harmonic, Adist is chosen
to be skew symmetric. Let d̂ ∈ R

nd denote an estimate of d, and define the

disturbance-state estimation error d̃
�
= d− d̂.

The role of tr(A − AR̃) in the stability analysis below is explained by the
following result.

Lemma 1. [15] Let A ∈ R
3×3 be a diagonal positive-definite matrix, and let R

be a rotation matrix. Then, the following statements hold:

i) For all i, j = 1, 2, 3, Rij ∈ [−1, 1].
ii) tr(A−AR) ≥ 0.
iii) tr(A−AR) = 0 if and only if R = I.

The attitude error S is defined by [11, 13–15]

S
�
=

3∑
i=1

ai(R̃
Tei)× ei, (7)

where a1, a2, a3 are distinct positive numbers and e1, e2, e3 ∈ R
3 are the standard

basis vectors.

Theorem 1. [15] Let Kp be a positive number, let K1 ∈ R
3×3, Q ∈ R

6×6, and
D ∈ R

nd×nd be positive definite, let A = diag(a1, a2, a3) be a diagonal positive-
definite matrix, and define the attitude error S by (7). Then the Lyapunov
candidate

V (ω̃, R̃, γ̃, d̃)
�
= 1

2 (ω̃ +K1S)
TJ(ω̃ +K1S) +Kptr (A−AR̃) + 1

2 γ̃
TQγ̃ + 1

2 d̃
TDd̃

is positive definite, that is, V is nonnegative, and V = 0 if and only if ω̃ = 0,
R̃ = I, γ̃ = 0, and d̃ = 0.

Theorem 2. [15] Let Kp be a positive number, let Kv ∈ R
3×3, K1 ∈ R

3×3,
Q ∈ R

6×6, and D ∈ R
nd×nd be positive definite, assume that AT

distD + DAdist

is negative semidefinite, let A = diag(a1, a2, a3) be a diagonal positive-definite
matrix with distinct diagonal entries, define S and V as in Theorem 1, and let
γ̂ and d̂ satisfy

˙̂γ =Q−1[LT(ω)ω× + LT(K1Ṡ + ω̃ × ω − R̃Tω̇d)](ω̃ +K1S), (8)
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where

Ṡ =

3∑
i=1

ai[(R̃
Tei)× ω̃]× ei, (9)

and

˙̂
d = Adistd̂+D−1CT

dist(ω̃ +K1S), ẑdist = Cdistd̂. (10)

Furthermore, let

u = B−1(v1 + v2 + v3), (11)

where

v1
�
= −(Ĵω)× ω − Ĵ(K1Ṡ + ω̃ × ω − R̃Tω̇d), (12)

v2
�
= −ẑdist, v3

�
= −KpS −Kv(ω̃ +K1S). (13)

Then,

V̇ (ω̃, R̃, γ̃, d̃) =− (ω̃ +K1S)
TKv(ω̃ +K1S)−KpS

TK1S

+ 1
2 d̃

T(AT
distD +DAdist)d̃ (14)

is negative semidefinite. Furthermore, the equilibrium manifold (ω̃, R̃, (γ̃, d̃)) =
(0, I,Q0) of the closed-loop system given by (4) and (8)-(13) is locally asymp-
totically stable, and the remaining equilibrium manifolds given by (0,Ri,Qi),
for i ∈ {1, 2, 3} are unstable. Finally, the set of all initial conditions converg-
ing to these equilibrium manifolds forms a lower dimensional submanifold of
R

3 × SO(3)× R
6 × R

3.
Saturation techniques for SO(3)/9 are discussed in [18].

3.2 SO(3)/6

The control law SO(3)/6 is a simplification of the SO(3)/9 control law (11)–(13)
with v2 and thus (10) omitted. In particular, this control law has the form

u = −B−1[(KpI +KvK1)S +Kvω̃ + ĴK1Ṡ + (Ĵω)× ω + Ĵ(ω̃ × ω)− ĴR̃Tω̇d].
(15)

3.3 SO(3)/3

The control law SO(3)/3 is a simplification of the SO(3)/9 control law (11)–(13)
with the inertia estimate (8) omitted and with Adist = 0. In particular, this
control law has the form

u = −B−1

[
(KpI +KvK1)S +KiCdistD

−1CT
dist

∫ t

0

[ω̃(s) +K1S(s)] ds+Kvω̃

]
,

(16)

where the integral gain Ki is a positive number.
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3.4 SO(3)/0

The SO(3)/0 control law for almost global stabilization [14, 15] is given by

u = −B−1(KpS +Kvω̃), (17)

where the positive number Kp and the positive-definite matrix Kv ∈ R
3×3 are

proportional (attitude) and derivative (angular velocity) gains, respectively.
Note that the control law (17) is inertia-free. The stabilizing effect of this

control law on the attitude of a rigid spacecraft follows from the Lyapunov
function

V (ω, R̃)
�
= 1

2ω
TJω +Kptr(A−AR̃), (18)

where A
�
= diag(a1, a2, a3) and for which V̇ (ω, R̃) = −ωTKvω. The invariant set

theorem is used in [14] to ensure almost global asymptotic stability.
By choosing Kv to be a function of ω, the control law (17) satisfies the fol-

lowing saturation bounds [15, 18].

Proposition 1. Let α and β be positive numbers, let A = diag(a1, a2, a3) have
distinct positive diagonal entries, and let Kp and Kv(ω) be given by

Kp =
α

trA
(19)

and

Kv(ω) = β

⎡
⎢⎣

1
1+|ω1| 0 0

0 1
1+|ω2| 0

0 0 1
1+|ω3|

⎤
⎥⎦ . (20)

Then, for all t ≥ 0, the control torque given by (17) satisfies

‖u(t)‖∞ ≤ α+ β

σmin(B)
. (21)

For the remainder of the paper, Kp and Kv are assumed to be given by (19)
and (20). Alternative forms of the gain Kv(ω) are given in [19].

4 Modeling Inertia Variations

If the inertia tensor is resolved in a non-principal body-fixed frame, then the
diagonal entries of the resulting inertia matrix are the moments of inertia and
the off-diagonal entries are the products of inertia. The off-diagonal entries of
the inertia matrix are thus a consequence of an unknown rotation between a
principal body-fixed frame and an arbitrarily chosen body-fixed frame.

Figure 1 shows the triangular region of feasible principal moments of inertia of
a rigid body. There are five cases that are highlighted for the principal moments
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of inertia λ1 ≥ λ2 ≥ λ3 > 0, where λ1, λ2, λ3 satisfy the triangle inequality
λ1 < λ2 + λ3. Let m denote the mass of the rigid body. The point λ1 = λ2 = λ3

corresponds to a sphere of radius r̂ =
√

5λ1

2m ; the point λ1 = λ2 = 2λ3 corresponds

to a cylinder of length l and radius r, where l = 3r and r =
√

2λ1

m ; and the

point λ1 = 6
5λ2 = 2λ3 is a brick whose side lengths are l1, l2, l2 and whose

inertia is located at the centroid of the triangular region. The remaining two
cases in Figure 1 are limiting cases. In particular, the thin disk is a cylinder
with zero length, positive radius, and infinite density, while the thin cylinder is
a cylinder with positive length, zero radius, and infinite density. Note that the
inertia matrix of the thin disk is positive definite, whereas the inertia matrix
of the thin cylinder is positive semidefinite but not positive definite. Table 1
summarizes the parameters and densities for each of these rigid bodies.

k

65

Fig. 1. Feasible region of the principal moments of inertia λ1, λ2, λ3 of a rigid body
satisfying 0 < λ3 ≤ λ2 ≤ λ1, where λ1 < λ2 + λ3. The shaded region shows all feasible
values of λ2 and λ3 in terms of the largest principal moment of inertia λ1. The open
dots and dashed line segment indicate nonphysical, limiting cases.

5 M2R Examples

For all of the examples in this section, we assume that the nominal body-fixed
frame is a principal body-fixed frame. However, the body-fixed frame is not a
principal-axis frame for the off-nominal cases considered below. The nominal
spacecraft shape is chosen to be a brick corresponding to the centroid of the
triangular region in Figure 1. For all cases considered, we choose λ1 = 10 kg-m2,
which for the centroidal brick yields the inertia J3 = diag(10, 25/3, 5). Conse-
quently, the inertias J1, J2, J4, and J5 of the sphere, cylinder, thin disk, and thin
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Table 1. Parameters and densities for the inertia matrices considered in Figure 1. Note
that the parameters for all shapes are set by the ratio λ1/m, where λ1 is the principal
moment of inertia and m is the mass.

Shape Parameters Density

Sphere r̂ =
√

5λ1

2m ρ = 4
3πm

2/5(5λ1

2 )2/5

Cylinder l = 3r, r =
√

2λ1

m ρ = 3πm2/5(2λ1)
2/5

Brick l1 =
√

2λ1

m , l2 =
√

4λ1

m , l3 =
√

8λ1

m ρ = 8m2/5λ
2/5
1

Thin disk l = 0, r =
√

2λ1

m ρ = ∞
Thin cylinder r = 0, l =

√
12λ1

m ρ = ∞

cylinder are given, respectively, by J1 = diag(10, 10, 10), J2 = diag(10, 10, 5),
J4 = diag(10, 5, 5), and J5 = diag(10, 10, 0.1), where all units are kg-m2. The
inertia matrix J3 corresponding to the centroid of the inertia region serves as
the nominal inertia matrix, while a perturbation J(α) of Ji in the direction of
Jj has the form J(α) = (1 − α)Ji + αJj , where α ∈ [0, 1] is the perturbation
parameter. To facilitate numerical integration, J5 is chosen to be a nonsingular
approximation of the inertia of a thin cylinder.

For all examples in the remainder of the paper, let α = β = 1, K1 = I3, Ki =
0.015, A = diag(1, 2, 3), B = I3, Cdist = I3, D = I3, and Q = I6. Furthermore, Kp

and Kv are defined in (19) and (20), respectively. To evaluate the performance
for R2R examples, we use the settling-time metric

k0 = min
k>100

{k : for all i ∈ {1, . . . , 100}, e((k − i)Ts) < 0.05 rad}, (22)

where k is the simulation step, Ts is the integration step size, and e(kTs) is the
eigenaxis error at the kth simulation step. This metric is thus the minimal time
such that the eigenaxis error in the 100 most recent simulation steps is less than
0.05 rad.

5.1 M2R Examples without Disturbances

To illustrate the inertia-free property of the control laws, the inertia of the
spacecraft is varied using

Jij(α) = (1− α)Ji + αJj , (23)

where α ∈ [0, 1] for i, j ∈ {(1, 5), (3, 1), (3, 5), (3, 4)}.
Next, we examine the robustness of the thrusters to misalignment relative to

the principal axes. To model this misalignment, the inertia matrix is rotated
by an angle θ about either the x-axis, y-axis, or z-axis. For each rotation, J3 is
transformed by

J ′
3 = O(θ)J3O(θ)T, (24)
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where O(θ) is a direction cosine matrix.
Figure 2 shows how the thruster misalignment angle θ affects the settling

time, where θ is varied from −180 deg to 180 deg. Figure 2 also shows how the
R2R settling time depends on α. Both inertia robustness studies are shown for
SO(3)/3 and SO(3)/9.

5.2 M2R Examples with Disturbances

Figure 3 illustrates how the control laws handle body-constant disturbance
torques about the minor axis. Note that SO(3)/0 and SO(3)/6 are not able
to reject constant torque disturbances.

Next, we consider a gravity gradient disturbance torque τg modeled by [17,
pp. 386–390]

τg = 3n2(OSC/Le3)
×J(OSC/Le3), (25)

where n
�
=

√
μ/r3 is the orbital mean motion, μ is the gravitational parameter,

r is the orbit radius, e3 is the third column of the 3 × 3 identity matrix, and
OSC/L ∈ R

3×3 is the orientation matrix of the spacecraft frame FSC relative to
the local-vertical-local-horizontal frame FL. The satellite orbit is circular with
an altitude of 300 km.

Figure 4 shows that SO(3)/3 and SO(3)/9 can reject gravity gradient dis-
turbances for a R2R maneuver. Furthermore, Figure 5 shows the closed-loop
performance of SO(3)/3 and SO(3)/9 for a commanded inertial attitude in the
presence of a gravity gradient disturbance.

Next, we consider an inertially constant disturbance torque. Figure 6 shows
the performance of all four controllers as the disturbance magnitude is increased.
The settling time is computed for the control laws that can reject the inertially
constant disturbance, whereas the steady-state error is computed for those that
bring the spacecraft to rest with an incorrect attitude.

5.3 M2R Examples with Input Nonlinearities

Next, we consider the effect of three nonlinearities, namely, torque cut-off satu-
ration, control-torque deadzone, and thrusters operating in on-off mode with the
input torque given by the on-off control law u(t) = umaxsign(v(t)), where v(t) is
the torque commanded by the SO(3) control law. Figure 7 shows the effect of in-
creasingly restrictive saturation levels for all of the control laws. Figure 8 shows
how each controller performs the same M2R maneuver using on-off actuation.
Figure 9 illustrates how the settling time changes as a function of the width of
the unknown control-torque deadzone.

We also consider the effect of sensor noise corrupting the angular-velocity
measurement. Two types of noise are considered, namely, gyro bias, that is, a
constant error in the measurement of ω, as well as zero-mean white gyro noise
with a signal-to-noise ratio of 20. Figure 10 shows the performance of all four
controllers when either gyro bias or stochastic gyro noise is present. SO(3)/3,
SO(3)/6, and SO(3)/9 are able to reduce the attitude error below 0.05 rad.
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(a) SO(3)/3. Variations in the settling time are within 7%.
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(b) SO(3)/9. Variations in the settling time are within 2%.
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(c) SO(3)/3. Variations in the settling time are within 30%.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

20

30

40

50

α

S
et

tl
in

g
T

im
e

(s
ec

)

Sphere to thin cylinder

Centroid to sphere

Centroid to thin cylinder

Centroid to thin disk

(d) SO(3)/9. Variations in the settling time are within 44%.

Fig. 2. R2R settling time with no disturbance for SO(3)/3 and SO(3)/9 as a function
of the principal-frame/body-frame rotation angle θ for misalignments about each of
the three principal axes of J3 (a), (b), and the perturbation parameter α for various
combinations of inertia matrices (c), (d). The commanded maneuver is a 40-deg ro-
tation about the body-fixed direction [1 1 1]T. Each controller is implemented with a
single tuning for all inertia cases. Convergence is achieved for all four cases.
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Fig. 3. Body-constant torque-disturbance rejection about the minor axis. The com-
manded maneuver is a 40-deg rotation about the body-fixed direction [1 1 1]T. Note that
the performance of SO(3)/6 is substantially better than the performance of SO(3)/0,
and the performance of SO(3)/3 improves relative to SO(3)/9 as the magnitude of the
torque disturbance increases.

However, SO(3)/0 is not able to achieve the commanded attitude in the presence
of either gyro bias or zero-mean white measurement noise.

6 M2S Examples

6.1 M2S Examples without Disturbances

Next, we consider M2S maneuvers. For spins about a principal axis, Euler’s equa-
tion becomes a linear second-order system, and thus integrators in the controller
are not required to stabilize spin commands. As shown in Figure 11, SO(3)/0 can
stabilize spins about a principal axis. Figure 12 shows, however, that SO(3)/0
cannot follow spin commands about a non-principal axis.

6.2 M2S Examples with Disturbances

Figure 13 shows that SO(3)/3 and SO(3)/9 can achieve spins about a non-
principal axis in the presence of constant torque disturbances.

Figure 14 shows that SO(3)/6 is able to follow spin commands about a non-
principal axis, albeit with large settling times. In the presence of a torque distur-
bance, SO(3)/6 cannot follow spin commands, and the resulting spin is about an
incorrect axis. Consistent with [17, pp. 377], Figure 14 also confirms that non-
principal-axis spins are unstable, since the spacecraft attitude diverges when the
input torque is switched off.
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(d) SO(3)/3. Gravity gradient
disturbance torque.
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Fig. 4. Gravity gradient disturbance rejection for SO(3)/3 and SO(3)/9. The com-
manded maneuver is a 90-deg rotation about the body-fixed direction [0 1 0]T. The
spacecraft is stabilized, and the disturbance torque is rejected. Note that the control
input is the mirror image of the disturbance torque once that the commanded attitude
is achieved.
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(c) SO(3)/9. Gravity gradient
disturbance torque.
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(d) SO(3)/9. Torque input.

Fig. 5. Gravity-gradient disturbance rejection for SO(3)/3 and SO(3)/9. The com-
manded motion is along a circular orbit with R(0) = I and the commanded attitude
Rd = I . Note that the inertially constant pointing command is achieved despite the
presence of an attitude-dependent sinusoidal disturbance due to gravity gradients. Note
that the control input is the mirror image of the disturbance torque.
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Fig. 6. Inertially constant disturbance-torque rejection about the inertially fixed direc-
tion [0 0 1]T. The maneuver is a 40-deg rotation about the body-fixed direction [1 1 1]T.
The control laws SO(3)/0 and SO(3)/6 bring the spacecraft to rest with an attitude
offset, whereas SO(3)/3 and SO(3)/9 bring the spacecraft to rest with the commanded
attitude. Note that SO(3)/6 and SO(3)/9 perform substantially better than SO(3)/0
and SO(3)/3.
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(b) SO(3)/3, SO(3)/6, and SO(3)/9.

Fig. 7. R2R settling time as a function of the control-torque saturation level on all
three axes. The maneuver is a 40-deg rotation about the body-fixed direction [1 1 1]T.
Note that, at low saturation levels, SO(3)/0 stabilizes the spacecraft, whereas SO(3)/3,
SO(3)/6, and SO(3)/9 fail. Saturation does not affect the performance of SO(3)/0 for
saturation levels greater than 0.3 N-m.
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Fig. 8. Performance comparison using on-off thrusters. The maneuver is a 40-deg rota-
tion about the body-fixed direction [1 1 1]T. The tuning parameters and control-torque
magnitude are the same in all four cases.
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Fig. 9. R2R settling time for all four control laws as a function of the width of an
unknown control-torque deadzone. The maneuver is a 40-deg rotation about the body-
fixed direction [1 1 1]T. Note that, for deadzones of small width, SO(3)/0 fails to
stabilize the spacecraft, whereas SO(3)/3, SO(3)/6, and SO(3)/9 can stabilize at much
higher control-torque deadzones.

7 Comparison to Classical Optimal Control

Classical optimal control laws have been applied extensively to spacecraft rota-
tional maneuvers [20–22]. These control laws are based on the minimum princi-
ple, and, unlike the inertia-free SO(3) control laws considered in this paper, they
assume exact knowledge of the inertia properties of the spacecraft. Nevertheless,
it is useful to compare the performance of these control laws to the SO(3) control
laws in order to assess the effect of inertia uncertainty modeling information.

For 3-axis maneuvers, the control laws given in [20–22] involve complicated
switching strategies. For simplicity, we therefore assume that the commanded
maneuver is about the major axis only, giving double integrator dynamics, and
with the direction and moment of inertia of the major axis assumed to be known.
Using the classical time-optimal control law

u = −umaxsign

(
θ − J

2umax
θ̇|θ̇|

)
, (26)

where umax > 0 is the control-torque magnitude and θ is the rotation angle about
the major axis, we simulate the closed-loop system and compare the settling
time to that of the SO(3) control laws operating in on-off mode with the same
magnitude as (26). Note that the inertia in (26) is the true spacecraft inertia.
To determine the performance of (26) under imperfect modeling information,
we then introduce uncertainty about both the major moment of inertia and the
direction of the major axis. Comparisons with the SO(3) control laws provide
a baseline tradeoff between settling time and modeling accuracy. The results of
these comparisons are shown in Figures 15 and 16.
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(c) SO(3)/6. Gyro bias.
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(d) SO(3)/9. Gyro bias.
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(f) SO(3)/3. Zero-mean white
gyro measurement noise.
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(g) SO(3)/6. Zero-mean white
gyro measurement noise.
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Fig. 10. (a)–(d) Controller performance in the presence of a gyro bias of [0 0 0.01]T

rad/sec. (e)–(h) Comparison of controller sensitivity to zero-mean white gyro measure-
ment noise with a signal-to-noise ratio of 20. All four controllers are able to bring the
spacecraft to rest. However, SO(3)/0 is not able to stabilize to the correct attitude with
either gyro bias or white noise. In all simulations, the maneuver is a 40-deg rotation
about the body-fixed direction [1 1 1]T. The tuning parameters and signal-to-noise
ratio are kept the same.
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(c) Torque inputs.
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(d) Torque input 2-norm.
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Fig. 11. R2S maneuver for SO(3)/0 with ωd = [0 0 0.3]T rad/sec. The spacecraft is
initially at rest with R = I and Rd(0) = I . The controller is able to follow the spin
command, which is about a principal axis.
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(a) Eigenaxis error.
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(c) Torque inputs.
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Fig. 12. R2S maneuver for SO(3)/0 with ωd = [0.2 −0.5 0.3]T rad/sec. The spacecraft
is initially at rest with R = I and Rd(0) = I . The controller spins the spacecraft with
the commanded angular rate but about an incorrect axis, as shown by the attitude
error. Thus SO(3)/0 cannot follow the spin command, which is about a non-principal
axis.
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(a) SO(3)/3. Eigenaxis error.
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(b) SO(3)/3. Angular velocity
components.
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(c) SO(3)/3. Torque inputs.
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(d) SO(3)/3. Torque input
2-norm.
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(e) SO(3)/9. Eigenaxis error.
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(f) SO(3)/9. Angular velocity
components.
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(g) SO(3)/9. Torque inputs.
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Fig. 13. R2S maneuver for ωd = [0.2 −0.5 0.3]T rad/sec with gravity gradient distur-
bance and the body-constant disturbance torque d = [0 0 0.2]T N-m for SO(3)/3 and
SO(3)/9. The spacecraft is initially at rest with R = I and Rd(0) = I . The controller
rejects the disturbances and follows the spin command.
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(a) SO(3)/6. Eigenaxis error.
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(b) SO(3)/6. Angular velocity.
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(c) SO(3)/6. Torque inputs.
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(d) SO(3)/6. Torque input norm.
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(e) SO(3)/3. Eigenaxis error.
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(f) SO(3)/3. Angular velocity.
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(g) SO(3)/3. Torque inputs.
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Fig. 14. R2S maneuver for SO(3)/6 and SO(3)/3 with ωd = [0.2 −0.5 0.3]T rad/sec.
The spacecraft is initially at rest with R = I and Rd(0) = I . The controllers follow the
spin command. In the case of SO(3)/3, the torque input is switched off at time t = 500
sec to show the instability of the commanded spin about a non-principal axis.
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(a) SO(3)/0 control law.
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(b) SO(3)/3 control law.
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(c) SO(3)/6 control law.

0 20 40 60
0

0.5

1

1.5

Time (sec)

E
ig

en
a
xi

s
A

tt
it
u
d
e

E
rr

o
r

(r
a
d
)

θ

(d) SO(3)/9 control law.

0 5 10 15 20
0

0.2

0.4

0.6

0.8

Time (sec)

E
ig

en
a
xi

s
A

tt
it
u
d
e

E
rr

o
r

(r
a
d
)

θ

(e) Bang-bang control law.

Fig. 15. Convergence-time comparison for the SO(3) control laws using on-off thrusters
and the classical optimal bang-bang control law. The maneuver is a 30-deg rotation
about the body-fixed principal-axis direction [1 0 0]T. The torque on-level umax = 0.5
N-m is the same for all controllers. The inertia used in the optimal bang-bang control
law is the true spacecraft inertia J .
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(a) Eigenaxis error.
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Fig. 16. Performance of the classical optimal bang-bang control law in the presence
of an inertia error. The actual bang-bang inertia matrix is rotated relative to the
true spacecraft inertia matrix. This inertia misalignment is a 5-deg rotation about the
body-fixed direction [0 1 0]T. The commanded maneuver is a 30-deg rotation about
the body-fixed direction [1 0 0]T. Note that a slight inertia misalignment leads to failure
of the bang-bang control law.



Inertia-Free Spacecraft Attitude Control Laws 539

Table 2. Summary of controller capabilities. Motion to rest (M2R), gravity gradient
disturbances (GG), constant torque disturbance (in body frame) (BD), constant torque
disturbance (in inertial frame) (ID), torque saturation level (SAT), unknown control-
torque deadzone (DZ), and on-off thruster actuation (ON/OFF). The notation used is,
Y, N: Yes or no; L, S: based on Lyapunov theory or based on simulation.

Maneuver SO(3)/0 SO(3)/3 SO(3)/6 SO(3)/9

M2R Y/L Y/S Y/S Y/L
M2R + ID N/S Y/S N/S Y/L
M2R + GG + BD N/S Y/S N/S Y/L
M2R + SAT Y/S Y/S Y/S Y/S
M2R + DZ Y/S Y/S Y/S Y/S
M2R + ON/OFF Y/S Y/S Y/S Y/S
M2R + GYRO BIAS N/S Y/S Y/S Y/S
M2R + WHITE NOISE N/S Y/S Y/S Y/S
M2S N/S Y/S Y/S Y/L
M2S + BD N/S Y/S N/S Y/L
M2S + SAT N/S Y/S Y/S Y/S

8 Conclusions

We compared four inertia-free PID-type spacecraft attitude control laws
(SO(3)/0, SO(3)/3, SO(3)/6, SO(3)/9) under M2R and M2S command scenarios
with various types of disturbances. All four controllers are able to achieve M2R
and M2S around a principal axis in the absence of disturbances. In addition,
SO(3)/3 and SO(3)/9 can achieve M2R and M2S in the presence of inertially
constant and body-constant disturbances, and M2R in the presence of iner-
tially time-varying disturbances around both principal and non-principal axes.
Note that SO(3)/3 needs six fewer integrators than SO(3)/9, although SO(3)/9
achieves the commanded motion in less time.

Furthermore, all four controllers achieve M2R in the presence of torque satura-
tion. For this objective, SO(3)/0 can stabilize the spacecraft with a significantly
lower level of saturation than SO(3)/3, SO(3)/6, and SO(3)/9. For M2S ma-
neuvers, SO(3)/0 is not effective, although SO(3)/3, SO(3)/6, and SO(3)/9 are
effective for arbitrary spin axes. Table 2 summarizes the cases for which each
SO(3) control law is able or not able to achieve the commanded maneuver.

For an unknown control-torque deadzone nonlinearity, we found that SO(3)/6
and SO(3)/9 are less sensitive to this nonlinearity. For on-off control torques,
SO(3)/3 is the most accommodating. We also compared performance when sen-
sor noise is present. In this case, SO(3)/3, SO(3)/6, and SO(3)/9 can stabilize
M2R maneuvers despite gyro bias or white noise.

Future research will focus on a Lyapunov foundation for SO(3)/3 as well as
extensions to spacecraft with wheels. Preliminary results are given in [19, 23].
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