
Space-Efficient Randomized Algorithms

for K-SUM

Joshua R. Wang

Stanford University, Stanford CA 94305, USA
joshua.wang@cs.stanford.edu

Abstract. Recent results by Dinur et al. (2012) on random Subset-
Sum instances and by Austrin et al. (2013) on worst-case SubsetSum
instances have improved the long-standing time-space tradeoff curve. We
analyze a family of hash functions previously introduced by Dietzfel-
binger (1996), and apply it to decompose arbitrary k-Sum instances into
smaller ones. This allows us to extend the aforementioned tradeoff curve
to the k-Sum problem, which is SubsetSum restricted to sets of size k.
Three consequences are:

– a Las Vegas algorithm solving 3-Sum in O(n2) time and Õ(
√
n)

space,

– a Monte Carlo algorithm solving k-Sum in Õ(nk−√
2k+1) time and

Õ(n) space for k ≥ 3, and
– a Monte Carlo algorithm solving k-Sum in

Õ(nk−δ(k−1) + nk−1−δ(
√

2k−2)) time and Õ(nδ) space, for δ ∈ [0, 1]
and k ≥ 3.

Keywords: k-sum, subset-sum, hashing, time-space tradeoffs.

1 Introduction

The k-Sum problem on n numbers is as follows: Given k sets S1, S2, . . . , Sk with
at most n integers each and a target t, find a1, a2, . . . , ak such that for all i,
ai ∈ Si and

∑k
i=1 ai = t. One common variant of the problem has only a sin-

gle set S from which all elements in the solution are chosen from, but the two
are easily reducible to each other. The k-Sum problem can be trivially solved
in O(nk) arithmetic operations by trying all possibilities, and a more sophisti-
cated solution runs in O(n�k/2� logn) time (this log factor can be avoided for
k odd). However, this solution also requires O(n�k/2�) space, while the trivial
solution only needed O(1) space. Is some trade-off between time and space pos-
sible? Schroeppel an Shamir [12] provide an algorithm for 4-Sum that runs in
Õ(n2) time1 and Õ(n) space. In a survey of the time and space complexity of
exact algorithms, Woeginger [13] studied the k-Sum problem and questioned
whether an algorithm similar to the Schroeppel-Shamir 4-Sum algorithm can be
constructed for 6-Sum.

1 See Section 2.1 for an explanation of Õ and O∗ notation.

A. Schulz and D. Wagner (Eds.): ESA 2014, LNCS 8737, pp. 810–829, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

Space-Efficient Randomized Algorithms for K-SUM 811

Gajentaan and Overmars [6] classified many problems from computational ge-
ometry as “3-Sum-hard” (i.e. there exists a o(n2) reduction from 3-Sum to the
problem in question) in order to indirectly demonstrate their difficulty. Finding
a subquadratic algorithm for any problem in this class of problems would im-
mediately produce a subquadratic algorithm for 3-Sum. One example of such a
problem is 3-POINTS-ON-LINE: Given a set of points in the plane, are there
three collinear points? To reduce 3-Sum to this problem, map each x ∈ S (us-
ing the single-set variation of 3-Sum) to the point (x, x3), with the idea that
a1 + a2 + a3 = 0 iff the points (a1, a

3
1), (a2, a

3
2), and (a3, a

3
3) are collinear.

k-Sum is also fundamentally connected to several NP-hard problems. For
example, Pǎtraşcu and Williams [11] show that solving k-Sum over n numbers
in no(k) time would imply that 3-Sat with n variables can be solved in 2o(n)

time. Schroeppel and Shamir [12] showed how the SubsetSum problem can be
reduced to an (exponential-sized) k-Sum problem (Recall that in SubsetSum,
we are given a set S of n integers and a target t, and want to find a subset
S′ ⊆ S such that

∑
a∈S′ a = t). Therefore, more efficient k-Sum algorithms can

be used to derive faster SubsetSum algorithms. Indeed, Schroeppel and Shamir
use their 4-Sum algorithm to produce a O∗(20.5n) time and O∗(20.25n) space
SubsetSum algorithm. They also showed that SubsetSum is solvable in time
T and space S where T · S2 = O∗(2n) for T (n) ≥ Ω∗(2n/2).

This 30-year old time-space tradeoff for SubsetSum was recently improved. In
2010, Howgrave-Graham and Joux [7] derived an algorithm for random Subset-
Sum instances that runs in time O∗(20.337n) and memory O∗(20.256n). Becker,
Coron, and Joux [3] then derived two algorithms for random instances, one run-
ning in time O∗(20.291n) and space O∗(20.291n) and one running in O∗(20.72n)
time and O∗(1) space. Dinur et al. [5]. presented a time-space tradeoff curve
that dominates the Schroeppel-Shamir curve and matches it at its endpoints,
for random instances. Austrin et al. [1] matched the Dinur curve for worst case
instances with a randomized algorithm.

1.1 Our Results

The best known algorithm for 3-Sum takes Õ(n2) time (Baran, Demaine, and
Pǎtraşcu [2] have found polylogarithmic improvements over O(n2) which were
further improved by Gronlund and Pettie [9]), but also requires Ω̃(n) space (to
hold a sorted copy of the input). Can the same running time be achieved with
significantly less space? The primary difficulty here lies in the unsortedness of
the input. What about for k-Sum in general? In his 2004 survey [13], Woeginger
asked such questions, with the hopes of encouraging further progress on solving
SubsetSum.

In this paper, we lower the space requirement for 3-Sum while maintaining
the same running time, with a zero-error randomized algorithm:

812 J.R. Wang

Theorem 1. The 3-Sum problem on n numbers can be solved by a Las Vegas 2

algorithm in time O(n2) and space 3 Õ(
√
n).

We also investigate time-space tradeoffs for the general k-Sum problem. Given
a fixed space budget S, for what T can k-Sum be solved in time T and space S?
We prove the following general self-reduction for k-Sum:

Theorem 2. Let A be a Las Vegas algorithm that solves k-Sum (k ≥ 3) on n
numbers in T (n) time and S(n) space where T (n), S(n) ∈ poly(n), and let δ ≤ 1
be an arbitrary constant. Then there is a Las Vegas algorithm A′ that solves k-
Sum on n numbers in O(nk−δ(k−1)+nk−δ(k−1)−1T (nδ)) time and O(nδ+S(nδ))
space.

When S(n) = Õ(n), the reduction of Theorem 2 optimizes its space usage.
Independently of Theorem 2, we also provide a family of Monte Carlo ran-

domized algorithms for k-Sum that use linear space.

Theorem 3. There exists a Monte Carlo algorithm that solves k-Sum on n
numbers in Õ(nk−f(k)−1) time and Õ(n) space, where f(k) is the largest integer
p such that the (p+ 1)-th triangular number is at most one less than k.

Theorem 3 provides algorithms for: 4-Sum in Õ(n2) time, 5-Sum in Õ(n3)
time, 6-Sum in Õ(n4) time, 7-Sum in Õ(n4) time, and so on, all in linear space.
Note that the 4-Sum time matches the Schroeppel-Shamir [12] 4-Sum result.

The actual savings over O(nk) time in Theorem 3 are subtle, and studied in
detail later in the paper (for now, we note that f(k) ≥ √

2k − 2). Theorem 3
strengthens the time-space tradeoff results of Dinur et al. and Austrin et al.
in the following sense. Applying the original Schroeppel-Shamir reduction from
SubsetSum to k-Sum, and running the algorithm of Theorem 3, we can recover
the endpoints of the time-space tradeoff curve previously obtained. In particular,
this occurs when k is one more than a triangular number.

Combining Theorem 2 and Theorem 3, we obtain the following time-space
tradeoff curve for k-Sum in the “sub-linear” space setting:

Corollary 1. Let δ ∈ [0, 1] be an arbitrary constant. There is a Monte Carlo
algorithm that solves k-Sum on n numbers in Õ(nk−δ(k−1) + nk−1−δf(k)) time
and Õ(nδ) space, where f(k) is the largest integer p such that the (p + 1)-th
triangular number is at most one less than k.

1.2 Intuition

To illustrate some of the ideas in this paper, let us consider 3-Sum. The naive
algorithm checks all triples of numbers to see if they sum to the target, in O(n3)

2 Recall that algorithms are Las Vegas randomized if they always give correct results,
but may take additional running time depending on the random numbers generated
(but not depending on the choice of input).

3 We consider a model of computation where the input is given in read-only memory
while the machine works in read/write memory, measuring the space usage by the
working memory size.

Space-Efficient Randomized Algorithms for K-SUM 813

time. Note that choosing two numbers in the solution determines the third. A
more careful algorithm will store the third set in a data structure so that after
choosing the first two numbers of the solution, the third can be quickly checked.
Because the last number is determined, this only requires O(n2) time.

Now consider algorithms that only use Õ(
√
n) space. One naive approach is

to partition each set into
√
n buckets of

√
n numbers and solve 3-Sum on all

triples of buckets. There are n1.5 such triples, and since solving 3-Sum on these
smaller instances will take O(n) time, the running time of this naive algorithm is
O(n2.5). However, this algorithm does redundant work checking buckets, for the
same reason that the O(n3) algorithm does redundant work checking numbers:
both check all possible triples.

We avoid this work via hashing. We apply a particular hash family H lin of
Dietzfelbinger [4] to create our buckets. We show that with this hash family,
choosing the first two buckets fixes the third bucket. Hence we now only check
O(n) triples of buckets, and the running time drops to O(n2). With H lin, we
can ensure that the sizes of the buckets also remain O(

√
n), to avoid increasing

the running time for solving a subproblem.
We can generalize this technique in two different ways. Firstly, this technique

works for general k: guessing the first (k − 1) buckets fixes the last bucket in a
general k-Sum solution. Secondly, it works for sizes other than O(

√
n), although

additional work is necessary to guarantee the bucket size. In fact, this generaliza-
tion yields a self-reduction for k-Sum problems, since the resulting subproblems
are smaller instances of k-Sum.

The running time and space usage of the final k-Sum algorithm depend on
how the subproblems from the self-reduction are solved. The space usage in the
self-reduction is optimized when a linear-space k-Sum algorithm is applied to
the resulting subproblems. Hence we take particular interest in linear-space k-
Sum algorithms and derive faster linear-space k-Sum algorithms, by adapting
SubsetSum techniques to the k-Sum setting.

1.3 Organization

In Section 2, we discuss some basic notation and several standard k-Sum algo-
rithms. In Section 3, we study a family of hash functions, introduced by Diet-
zfelbinger [4], and analyze its properties. In particular, we show the family is
“almost-affine”. In Section 4, we use this hash family to develop a self-reduction
on k-Sum problems to reduce memory usage. In Section 5, we analyze the k-Sum
time-space tradeoff curves produced by this reduction.

In Appendix A, we present the proof for our general k-Sum self-reduction
theorem. In Appendix B, we use the previously mentioned hash family to also
derive linear-space Monte Carlo algorithms for k-Sum.

814 J.R. Wang

2 Preliminaries

2.1 Randomized Algorithms and Running Time

This paper describes both Las Vegas and Monte Carlo randomized algorithms.
Las Vegas algorithms always give correct results, but their running times hold
in expectation over internal randomness (the input is still worst-case). Monte
Carlo algorithms may give incorrect results with some (small) probability, but
their running time is deterministic and worst-case. It is worth noting that a Las
Vegas algorithm can be converted into a Monte Carlo algorithm with the same
running time up to a constant factor, via a Markov bound.

We use Õ to indicate suppression of polylog factors, and O∗ to indicate sup-
pression of polynomial factors.

When determining running time, we will use the standard word RAM model,
assuming that operations on integers take constant time. Note that polylog time
operations would still fold into the Õ notation and do not affect the polynomial
exponent, which is the primary focus of this paper.

2.2 Sets and Triangular Numbers

Definition 1. [m] denotes the set {0, 1, . . . ,m− 1}.
Definition 2. Given sets S and T , the Minkowski sum of S and T , denoted
S + T , is defined as the set {s+ t | s ∈ S, t ∈ T }.
Definition 3. Given a set S and a function f that can operate on the elements
of S, the image of S under f , denoted f(S), is defined as the set {f(s) | s ∈ S}.
Definition 4. The nth triangular number, Tn, is given by

∑n
i=1 i =

(
n+1
2

)
.

2.3 Basic k-Sum Algorithms

We review standard algorithms for k-Sum on n numbers where k ∈ [2, 4].

Theorem 4. 2-Sum on n numbers can be solved in O(n log n) time and Õ(n)
space.

The key idea is to sort one set in nondecreasing order and the other in nonin-
creasing order. Starting at the beginning of each set, advance the element in the
first set if the current sum is too small and advance the element in the second
set if the current sum is too large.

Theorem 5. 3-Sum on n numbers can be solved in O(n2) time and Õ(n) space.

3-Sum proceeds similarly, sorting the first two sets as above and then brute-
force guessing the element from the third set to use.

Theorem 6 (Schroeppel Shamir ’79). 4-Sum on n numbers can be solved
in O(n2 logn) time and Õ(n) space.

Space-Efficient Randomized Algorithms for K-SUM 815

4-Sum is solved by reducing to the 2-Sum case, treating S1 + S2 as one set
and S3 + S4 as another. In order to avoid Õ(n2) space usage, Schroeppel and
Shamir [12] use a priority queue for each set sum, each holding at most a linear
number of elements.

2.4 Hash Functions

Here are some definitions concerning hash functions:

Definition 5. A family of hash functions H = {h : U → [m]} is said to be
universal if for every x, y ∈ U , if x �= y then Prh∈H [h(x) = h(y)] ≤ 1

m .

Definition 6. Given a family of hash functions H = {h : U → [m]}, and a set
S ⊆ U , let the bucket of h with value v be h−1({v}) ∩ S (i.e. all elements in S
with hash value v). Also, define Bh(x) := h−1({h(x)}) ∩ S (the bucket of h with
value h(x)).

We will be hashing the elements in our k-Sum instance. We note that we
can assume elements (and hence |U |) are at most Õ(nk), since we can take all
numbers modulo a random prime on the order of Õ(nk); there are only O(nk)
sums to consider, each with at most O(log n) prime factors (the prime number
theorem guarantees there are enough primes to choose from). Note that we can
verify solutions to guard against collisions, so our algorithms are Las Vegas
randomized.

3 Almost Affine Hashing

Hashing has long been useful in k-Sum algorithms and reductions. Baran, De-
maine, and Pǎtraşcu [2] proved a key lemma about the load balancing property
of universal families of hash functions. Baran et al. use this to show an upper-
bound for 3-Sum, Pǎtraşcu [10] uses it to reduce 3-Sum to 3-SumConvolution,
and Abboud and Lewi show a more general reduction from k-Sum to k-
SumConvolution for k ≥ 2.

Lemma 1 (Baran Demaine Pǎtraşcu ’05). Given any universal family of
hash functions H = {h : [u] → [m]}, some set S ⊂ [u] of size n, and an integer
t > 2n/m−2, the expected number of elements x ∈ S with |Bh(x)| ≥ t is at most

2n
t−2n/m+2 .

However, Jafargholi and Viola [8] recently pointed out that it appears that the
family of hash functions used by Baran et al. with this lemma is not known to be
universal. They do suggest that similar hash functions studied by Dietzfelbinger
[4] might work, but do not explore the issue further. We show that this is indeed
the case; we can use the following family of hash functions:

Definition 7. Let u, m, and k positive integers be given. For a, b ∈ [km], let the
hash function ha,b : [u] → [m] be defined as ha,b(x) = ((ax+ b) mod km) div k,
where div is integer division.

Let the family of hash functions H lin
u,m,k be defined as {ha,b | a, b ∈ [km]}.

816 J.R. Wang

Theorem 7 (Dietzfelbinger ’96). If m, u, and k are all powers of 2, and
k ≥ u/2, then H lin

u,m,k is universal. In fact, it is two-wise independent, i.e.

Prh∈Hlin
u,m,k

[h(x1) = i1 ∧ h(x2) = i2] = 1/m2 for arbitrary i1, i2 ∈ [m] and

distinct x1, x2 ∈ [u].

This family of hash functions is particularly interesting with the constraint
that all sizes are powers of two, since it can be implemented with bit shift
operations, does not require a large prime, and uses relatively few operations,
all of which were noted by Dietzfelbinger [4].

With this bound on k in mind, denote H lin
u,m,�u/2� as H lin

u,m.

Baran, Demaine, and Pǎtraşcu [2] also relied the fact that the hash function
they chose was “almost-linear”. We prove a similar property for H lin

u,m. Call a
family of hash functions H that map from [u] to [m] almost-affine if for all h ∈ H
and x, y ∈ [u], h(x+ y) ∈ {h(x) + h(y)− h(0) + z (mod m) | z ∈ {−1, 0, 1}}.
Lemma 2. The family of hash functions H lin

u,m is almost-affine.

Proof. The main idea is that dividing by k before addition can only influence
the result by at most 1 due to losing a carry. Suppose we have some integers a, b.
Then we can write a as ka1 + a2 and b as kb1 + b2, where a2, b2 ∈ [k]. Notice
that:

(a div k) + (b div k) = a1 + b1

=

{
((ka1 + kb1 + a2 + b2) div k) if a2 + b2 < k

((ka1 + kb1 + a2 + b2) div k)− 1 if a2 + b2 ≥ k

∈ {((a+ b) div k) + z | z ∈ {−1, 0}}.

Hence, we can observe that:

h(x+ y) + h(0) (mod m) = (((ax+ ay + b) mod km) div k)

+ ((b mod km) div k) (mod m)

∈ {(((ax + ay + 2b) mod km) div k)

+ z (mod m) | z ∈ {−1, 0}}
h(x) + h(y) (mod m) = (((ax+ b) mod km) div k)

+ ((ay + b mod km) div k) (mod m)

∈ {(((ax + ay + 2b) mod km) div k)

+ z (mod m) | z ∈ {−1, 0}}.

Hence, h(x+ y) ∈ {h(x) + h(y)− h(0)}+ {−1, 0, 1} (mod m), as desired. �

Lemma 2 guarantees that if (k − 1) sets have their hash buckets fixed, any

solution that uses elements from those buckets could only have its last element

Space-Efficient Randomized Algorithms for K-SUM 817

in one of 2k − 1 buckets of the last set. Hence, hashing can be used to shrink
the problem size with some limited growth in the number of cases. It is worth
noting that this hash works best on 3-Sum, since for larger values of k, applying
the hash tends to increase the running time of the algorithm.

It can be seen that for large enoughm, large buckets can be completely avoided
by simply inspecting a constant number of hashes (in expectation).

Corollary 2. Consider a universal family of hash functions
H = {h : [u] → [m]}, a set S ⊂ [u] of size n, where m ≤ √

n, and an arbitrary
constant c ≥ 1. Then:

Prh∈H

[
∀x ∈ S : |Bh(x)| ≤ (c+ 2)

n

m

]
≥ 1− 2

c2

Proof. Let t = (c + 2) n
m . Let b(h) be the number of elements x ∈ S with

|Bh(x)| ≥ t. Applying Lemma 1 yields that E[b(h)] ≤ 2n
c(n/m)+2 ≤ 2m

c . Applying

a Markov bound yields Prh[b(h) ≥ cm] ≤ 2
c2 . However, if b(h) < cm then in fact

b(h) = 0, since b(h) counts the number of elements in buckets of h with at least
(c+ 2) n

m elements (m ≤ √
n implies n

m ≥ m). Hence,

Prh

[
∀x ∈ S : |Bh(x)| ≤ (c+ 2)

n

m

]
≥ 1− 2

c2
.

This completes the proof. �

The next lemma is analogous to a result proved by Baran, Demaine, and

Pǎtraşcu [2] for 3-Sum and their hash family, but it holds for general k and our
almost-affine family. It will be used to limit the number of false positives after
hashing.

Lemma 3. Given a constant k and integers a1, a2, . . . , ak and b1, b2, . . . , bk where∑k
i=1 ai �=

∑k
i=1 bi, the probability that

∑k
i=1 h(ai) =

∑k
i=1 h(bi) after picking a

random h ∈ H lin
u,m is upper-bounded by O(1)

m .

Proof. By repeated application of Lemma 2, for all h ∈ H lin
u,m:

h(

k∑

i=1

ai) ∈
{

k∑

i=1

h(ai)− (k − 1)h(0) + z (mod m) | z ∈ {−k + 1, . . . , k − 1}
}

h(

k∑

i=1

bi) ∈
{

k∑

i=1

h(bi)− (k − 1)h(0) + z (mod m) | z ∈ {−k + 1, . . . , k − 1}
}

Suppose that
∑k

i=1 h(ai) =
∑k

i=1 h(bi). This could only occur if h
(∑k

i=1 ai

)

and h
(∑k

i=1 bi

)
are within 2k − 2 of each other.

818 J.R. Wang

However, H lin
u,m is two-wise independent by Theorem 7. There are only

m(4k−3) ways to assign the values of h
(∑k

i=1 ai

)
and h

(∑k
i=1 bi

)
because they

are within 2k− 2 of each other. This leads to an upper bound on the probability
of

∑k
i=1 h(ai) =

∑k
i=1 h(bi) of

4k−3
m . But k is constant, completing the proof. �

4 A k-Sum Self-reduction

This section uses the hashing results to derive space-efficient randomized algo-
rithms for k-Sum. Specifically, we demonstrate how to reduce the space usage of
k-Sum algorithms using Corollary 2. These reductions are Las Vegas random-
ized. It is worth noting that without Corollary 2, the same running times could
be attained, but via Monte Carlo algorithms and the universality of H lin

u,m.
We begin by illustrating the idea with the 3-Sum problem, and then present a

theorem for general k. This family of hash functions does particularly well when
applied to 3-Sum, since it does not increase the running-time cost.

Reminder of Theorem 1. The 3-Sum problem on n numbers can be solved
by a Las Vegas algorithm in time O(n2) and space Õ(

√
n).

Proof. Algorithm 1 is the desired algorithm.

Algorithm 1. SpaceEfficient3Sum(S1, S2, S3, t)

1: Set m← √n.
2: Randomly choose a hash function H lin

u,m.
3: for v ∈ [m] and i ∈ {1, 2, 3} do
4: Count the ai ∈ Si where h(ai) = v, and store the result in c.
5: if c > 5

√
n then

6: Restart the algorithm.
7: end if
8: end for
9: for sum ∈ {h(t)− 2h(0) + z (mod m) | z ∈ {−2, . . . , 2}} do
10: for v1 ∈ [m] do
11: for v2 ∈ [m] do
12: Set v3 ← sum− v1 − v2 (mod m).
13: Let S′

i = {ai ∈ Si | h(ai) = vi} for i = 1, 2, 3.
14: Run the basic 3-Sum algorithm on S′

1, S
′
2, S

′
3, t. Return any found solution.

15: end for
16: end for
17: end for
18: Report no solution.

Correctness: SinceH lin
u,m is almost-affine (Lemma 2), for any solution (a1,a2,a3):

h(a1) + h(a2) + h(a3) ∈ {h(t)− 2h(0) + z (mod m) | z ∈ {−2, . . . , 2}}.

Space-Efficient Randomized Algorithms for K-SUM 819

Hence at some point vi = h(ai) for i = 1, 2, 3 and the algorithm will find this
solution. When no solutions exist, the algorithm cannot find one.

Running Time: Since m =
√
n, applying Corollary 2 with c = 3 yields that

there is at least a 7
9 chance that all buckets for a specific set Si are at most 5

√
n

elements in any bucket. By a union bound, there is at least a 1
3 chance that

all sets Si have at most 5
√
n elements in any bucket. Hence in expectation the

algorithm picks at most three hashes before it gets past the bucket size check.
Checking bucket sizes takes O(n1.5) time, since a linear scan is done for each

of
√
n values of v. There are O(n) choices for v1, v2, v3, and each iteration runs

the basic 3-Sum algorithm on instances of size O(
√
n), taking O(n) time. The

total running time is hence O(n2). Note that Baran, Demaine, Pǎtraşcu [2] could
be used for subproblems to shave off additional log factors.

Memory Usage: Since bucket sizes are guaranteed not to be too large, storing
S′
i only requires Õ(

√
n) space. Running the basic 3-Sum algorithm on instances

of O(
√
n) elements also uses Õ(

√
n) space.

This completes the proof. �

This technique holds for general k as well as sizes other than Õ(

√
n). Theo-

rem 1 is actually an application of the following general theorem:

Reminder of Theorem 2. Let A be a Las Vegas algorithm that solves k-Sum
(k ≥ 3) on n numbers in T (n) time and S(n) space where T (n), S(n) ∈ poly(n),
and let δ ∈ [0, 1] be an arbitrary constant. Then there is a Las Vegas algorithm
A′ that solves k-Sum on n numbers in O(nk−δ(k−1) + nk−δ(k−1)−1T (nδ)) time
and O(nδ + S(nδ)) space.

The proof of this theorem is more complex and nuanced, and can be found in
Appendix A. Notice when δ = 0, we recover the brute force algorithm’s running
time and space usage. When δ = 1, we recover the input algorithm’s (given that
the input algorithm uses at least linear space).

As mentioned previously, there is a naive self-reduction that shrinks space
usage. It splits each set up into buckets of size O(nδ), and runs another algo-
rithm on each possible combination of buckets. This would result in an algorithm
that runs in Õ(nk−δkT (nδ)) time and Õ(S(nδ)) space. This naive reduction also
recovers brute-force for δ = 0 and the input algorithm for δ = 1, and in fact
interpolates the exponents of the two algorithms for values of δ in between. Our
reduction via hashing beats this naive reduction for all δ ∈ [0, 1], with equality
only at the endpoints (given that the input algorithm uses at least linear space).

5 Time-Space Tradeoffs for k-Sum

This section explores the results we get by applying Theorem 2. The following
theorem provides a family of k-Sum algorithms to use on subproblems:

Reminder of Theorem 3. There exists a Monte Carlo algorithm that solves
k-Sum on n numbers in Õ(nk−f(k)−1) time and Õ(n) space, where f(k) is the
largest integer p such that Tp+1 + 1 ≤ k.

820 J.R. Wang

The proof of Theorem 3 is in Appendix B. This theorem yields:

Reminder of Corollary 1. Let δ ∈ [0, 1] be an arbitary constant. There is
a Monte Carlo algorithm that solves k-Sum on n numbers in Õ(nk−δ(k−1) +
nk−1−δf(k)) time and Õ(nδ) space, where f(k) is the largest integer p such that
the (p+ 1)-th triangular number is at most one less than k.

Proof. This follows directly from applying the reduction from Theorem 2 to the
algorithm guaranteed by Theorem 3. �

Corollary 1 gives a tradeoff curve that consists of two linear pieces. Sup-
pose we want a k-Sum algorithm that runs in Õ(nδ) space. For the region
δ ∈ [0, 1

(k−1)−f(k)], we have an algorithm that runs in Õ(nk−δ(k−1)) time. In the

region δ ∈ [1
(k−1)−f(k) , 1], we have one that runs in Õ(nk−1−δ(f(k))) time. At the

shared point in these two intervals, the running time is Õ(nk−(k−1)/(k−1−f(k))).
We also note that f(k) has the following (coarse) lower bound:

Lemma 4. f(k) ≥ √
2k − 2

Proof. Notice that T�√2k−1� ≤
√
2k(

√
2k−1)
2 ≤ k. But f(k) is the largest integer

p for which Tp+1 + 1 ≤ k, so it must be at least �√2k − 2�. �

This immediately gives upper-bounds for Theorem 3 and Corollary 1:

Corollary 3. There exists a Monte Carlo algorithm that solves k-Sum on n

numbers in Õ(nk−√
2k+1) time and O(n) space.

Corollary 4. Let δ ∈ [0, 1] be an arbitary constant. There is a Monte Carlo
algorithm that solves k-Sum on n numbers in Õ(nk−δ(k−1) + nk−1−δf(k)) time
and Õ(nδ) space, where f(k) is the largest integer p such that the (p + 1)-th
triangular number is at most one less than k.

6 Conclusion

Our results also extend to the k-Xor problem [8], which is identical except that
the elements are vectors from F

n
2 instead of integers. For this variant there is a

simple linear universal family of hash functions (let M be a random k×n matrix
over F2, and define hM (x) = Mx). Hence the hashing properties we need easily
hold in this case, and the same techniques work.

One open problem is whether our family of linear-space Monte Carlo algo-
rithms for k-Sum can be derandomized or be made to work for real inputs. The
Schroeppel-Shamir algorithm for 4-Sum matches the Õ running-time, so it seems
plausible that this might hold for larger values of k.

An especially interesting open problem is whether the algorithms presented by
Howgrave-Graham and Joux as well as Becker, Coron, and Joux can be moved
from random-instances to worst-case instances and randomized algorithms. Giv-
ing better worst-case bounds for SubsetSum has been an open problem for more
than 30 years.

Space-Efficient Randomized Algorithms for K-SUM 821

Acknowledgements. Many thanks to Ryan Williams for providing helpful
pointers to existing literature, insightful discussions, and proofreading.

References

1. Austrin, P., Kaski, P., Koivisto, M., Määttä, J.: Space–time tradeoffs for subset
sum: An improved worst case algorithm (2013)

2. Baran, I., Demaine, E.D., Pǎtraşcu, M.: Subquadratic algorithms for 3SUM.
In: Dehne, F., López-Ortiz, A., Sack, J.-R. (eds.) WADS 2005. LNCS, vol. 3608,
pp. 409–421. Springer, Heidelberg (2005)

3. Becker, A., Coron, J.-S., Joux, A.: Improved Generic Algorithms for Hard Knap-
sacks. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 364–385.
Springer, Heidelberg (2011)

4. Dietzfelbinger, M.: Universal hashing and k-wise independent random variables via
integer arithmetic without primes. In: Puech, C., Reischuk, R. (eds.) STACS 1996.
LNCS, vol. 1046, pp. 569–580. Springer, Heidelberg (1996)

5. Dinur, I., Dunkelman, O., Keller, N., Shamir, A.: Efficient Dissection of Compos-
ite Problems, with Applications to Cryptanalysis, Knapsacks, and Combinatorial
Search Problems. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS,
vol. 7417, pp. 719–740. Springer, Heidelberg (2012)

6. Gajentaan, A., Overmars, M.H.: On a class of O(n2) problems in computational
geometry. Comput. Geom. Theory Appl. 45(4), 140–152 (2012)

7. Howgrave-Graham, N., Joux, A.: New Generic Algorithms for Hard Knapsacks.
In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 235–256. Springer,
Heidelberg (2010)

8. Jafargholi, Z., Viola, E.: 3sum, 3xor, triangles. CoRR, abs/1305.3827 (2013)
9. Jørgensen, A.G., Pettie, S.: Threesomes, degenerates, and love triangles. CoRR,

abs/1404.0799 (2014)
10. Patrascu, M.: Towards polynomial lower bounds for dynamic problems. In: STOC,

pp. 603–610 (2010)
11. Pătraşcu, M., Williams, R.: On the possibility of faster sat algorithms. In: Pro-

ceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete Algo-
rithms, SODA 2010, pp. 1065–1075. Society for Industrial and Applied Mathemat-
ics, Philadelphia (2010)

12. Schroeppel, R., Shamir, A.: A T · S2 = O(2n) Time/Space Tradeoff for Cer-
tain NP-Complete Problems. In: Proceedings of the 20th Annual Sympo-
sium on Foundations of Computer Science, SFCS 1979, Washington, DC,
USA, pp. 328–336. IEEE Computer Society Press, Los Alamitos (1979),
http://dx.doi.org/10.1109/SFCS.1979.3, doi:10.1109/SFCS.1979.3

13. Woeginger, G.J.: Space and time complexity of exact algorithms: Some open prob-
lems. In: Downey, R.G., Fellows, M.R., Dehne, F. (eds.) IWPEC 2004. LNCS,
vol. 3162, pp. 281–290. Springer, Heidelberg (2004)

A Appendix: Proof of Theorem 2

Reminder of Theorem 2. Let A be a Las Vegas algorithm that solves k-Sum
(k ≥ 3) on n numbers in T (n) time and S(n) space where T (n), S(n) ∈ poly(n),

http://dx.doi.org/10.1109/SFCS.1979.3

822 J.R. Wang

and let δ ∈ [0, 1] be an arbitrary constant. Then there is a Las Vegas algorithm
A′ that solves k-Sum on n numbers in O(nk−δ(k−1) + nk−δ(k−1)−1T (nδ)) time
and O(nδ + S(nδ)) space.

Proof. The key idea is to use hashing to reduce the size of each set by a square
root factor at each step. However, storing any of the intermediate sets of this
computation defeats the purpose of hashing any further. To avoid this, the al-
gorithm first determines all hash functions and values to shrink each set to the
desired size, and then computes the final sets in one step.

A′ will recursively construct a list L whose elements are of the form
(h, v1, v2, . . . , vk), i.e. a hash function followed by k hash values (one for each
Si). At any step, define the active set of Si to be
S̃i = {s ∈ Si | h(s) = vi∀(h, v1, v2, . . . , vk) ∈ L}. Each element appended to L
reduces the size of all active sets, so elements can be repeatedly appended until
the active sets are only O(nδ) in size, at which point it is safe to invoke A. To
handle the possibility that δ is not a perfect power of 1

2 , define the function
s(x) := max((12)

x, δ). Step i of the algorithm will reduce the size of all active

sets from O(ns(i)) to O(ns(i+1)).
The recursive helper function R will construct L and then invoke A. It has

access to all sets Si and is given a partially constructed L. Algorithm A′ simply
calls R with L = ∅.

Algorithm 2. R(L, S1, . . . , Sk)

Require: The active sets S̃1, . . . , S̃k each contain at most (k + 2)2ns(�) elements.
1: Let �← |L|.
2: if s(�) = δ then
3: Call A(S̃1, . . . , S̃k).
4: return
5: end if
6: Set m� ← (k + 2)ns(�)−s(�+1).
7: Pick a random hash function h ∈ H lin

u,m�
.

8: for v ∈ [m�] and i ∈ {1, . . . , k} do
9: Count the ai ∈ S̃i where h(ai) = v, and store the result in c.
10: if c > (k + 2)2ns(�+1) then
11: Pick another hash and try again.
12: end if
13: end for
14: for sum ∈ {h(t)− (k − 1)h(0) + z (mod k�) | z ∈ {−k + 1, . . . , k − 1}} do
15: for v1, . . . , vk−1 ∈ [m�] do
16: Set vk ← sum−∑k−1

i=1 vi (mod m�).
17: Let L′ be L appended with (h, v1, . . . , vk).
18: Call R(L′, S1, . . . , Sk).
19: end for
20: end for

Space-Efficient Randomized Algorithms for K-SUM 823

Correctness:We first prove the size guarantee made when calling R. A′ initially
calls R with � = 0 and sets of size n ≤ (k + 2)2ns(0). R ensures that the hash it
has chosen creates buckets that are no larger than (k + 2)2ns(�+1) in size, so it
may safely append an additional element to L before recursing.

We also want to show that if a solution exists, the algorithm will find it. Since
H lin

u,m is almost affine, a call to R where each element of the solution is active
will in turn make some recursive call where the solution elements are still active.
Since the top-level call to R is made with all elements active, all elements of a
solution will be found by the algorithm.
Running Time: Checking that the buckets of a randomly-selected hash func-
tion are not too large takes O(n1+s(�)−s(�+1)) time since the algorithm needs to
perform a linear scan for each hash value v ∈ [m�]. Applying Corollary 2 with
c = k, the chance of a hash failing over a specific Si is at most 2

k2 ; the chance of
it failing over any Si, by a union bound, is at most 2

k . Since k ≥ 3, the expected
number of hashes the algorithm needs to pick and check is at most three. Hence
our expected time checking for hashes during a single call to R, not including
recursive subcalls, is O(n1+s(�)−s(�+1)).

There is a single call where � = 0. Each recursive level of R makes
O(n(k−1)(s(�)−s(�+1))) calls to the level below it. Hence, there areO(n(k−1)(1−s(�)))
calls to R for a fixed �. The total expected time checking for hashes during all
calls with a given � is therefore O(n(k−1)(1−s(�))+(1+s(�)−s(�+1))). But notice that:

(k − 1)(1− s(�)) + (1 + s(�)− s(�+ 1)) = k − s(�)(k − 2)− s(�+ 1)

≤ k − s(�+ 1)(k − 1)

≤ k − δ(k − 1).

Hence, the total expected time checking for hashes during all calls with a given
� is also O(nk−δ(k−1)). Since the algorithm only searches for hash functions for
at levels up to �log2 1

δ �− 1, the total expected running time checking for hashes

overall is O(nk−δ(k−1)).
When s(�) = δ, the algorithm needs to compute all S̃i. From the previously-

derived formula, there are only O(n(k−1)(1−δ)) calls where this occurs. Comput-
ing all S̃i only requires a linear scan of each Si, so this takes time O(nk−δ(k−1)).

Finally, the algorithm invokes A O(n(k−1)(1−δ)) times on sets of size at most
(k+2)2nδ, so in total the algorithm uses O(n(k−1)(1−δ)T (nδ)) time making calls
to A.

The total time taken is O(nk−δ(k−1) + nk−δ(k−1)−1T (nδ)).
Memory Usage: Notice that L contains at most �log2 1

δ � elements of size (k+1)
each, so it takes O(1) space. The space needed to verify there are no large buckets
is also O(1), since the algorithm only computes a count for only a single hash
value at a time.

Invoking A on sets of size at most (k + 2)2nδ requires only O(nδ + S(nδ))
space (to store the inputs along with the space needed by A).

This completes the proof. �

824 J.R. Wang

B Appendix: Linear Space Algorithms for k-Sum

The two factors in the space usage of the algorithm derived from applying Theo-
rem 2 are balanced when the original algorithm requires only linear space. In this
appendix, we utilize almost affine hashing to produce a family of linear-space
algorithms for k-Sum.

Theorem 8, Theorem 9, and Corollary 5 are based on results produced by
Austrin, Kaski, Koivisto, and Määttä [1]. We shift from the SubsetSum prob-
lem to the k-Sum problem and use almost affine hashing in place of carefully
chosen moduli. The switch from chosen moduli to this family of hash functions
is justified by the fact that, as mentioned before, this hashing can be done with
bit shift operations, without the availability of large primes, and with relatively
few operations. As mentioned before, if the Schroeppel-Shamir reduction from
SubsetSum to k-Sum is used on this set of algorithms, every endpoint of their
piecewise-linear time-space tradeoff curve for SubsetSum is recovered, so this
adaptation is lossless.

The technique requires that there are only a constant number of solutions to
the k-Sum instance, which can be ensured by some standard preprocessing:

Theorem 8. There is a O(n log n) time Monte Carlo algorithm to process in-
stances of k-Sum which takes as input an instance (S1, . . . , Sk, t) of size n and
outputs O(log n) k-Sum instances of the same size. If the original instance has
a solution, then at least one of the output instances will have at least one solu-
tion and at most O(1) solutions. Otherwise, none of the instances will have any
solutions.

Proof. Consider a k-Sum instance S1, . . . , Sk with target t. Without loss of gen-
erality, all sets contain only nonnegative elements (it is safe to add a positive
constant to all elements in any particular set Si and to the target t at the same
time).

Let S be the set of all solutions. The algorithm will guess that the size of
S is in the range [2s, 2s+1) for s = 0, 1, . . . , k logn (try them all, one will be
correct). Let m = 2s, and for each Si choose uniformly at random a function
fi : Si → [m]. Also, randomly choose a u ∈ [m].

For a fixed solution (a1, . . . , ak) ∈ S, there is a 1
m probability that:

k∑

i=1

fi(ai) ≡ u (mod m) (1)

Space-Efficient Randomized Algorithms for K-SUM 825

Also, any two distinct solutions both satisfy (1) with probability 1
m2 . When

s is a correct guess,

1 ≤ |S|
m < 2. Let X be a random variable denoting the number of solutions that

satisfy (1). Then:

E[X] =
|S|
m

E[X2] = E[X] +
|S|(|S| − 1)

m2
<

|S|
m

+
|S|2
m2

.

The first and second moment methods give:

Pr(X > 10) <
E[X]

10
<

1

5

Pr(X > 0) >
E[X]2

E[X2]
>

1

1 +m/|S| >
1

2
.

By a union bound, there is at least one correct solution and at most O(1)
solutions that satisfy (1) with constant probability. If a solution satisfies (1),

then in fact
∑k

i=1 fi(ai) = u + jm for some j ∈ [k] (there are at most k − 1
carries). Guess this j by iterating over all possibilities.

Let A be the largest element in any Si. For all Si, let
S′
i = {ai + (kA + 1)fi(ai) | ai ∈ Si} and let t′ = t + (kA + 1)(u + jm). Notice

that this maps invalid solutions to invalid solutions and correct solutions that
satisfy (1) to correct solutions provided that j was guessed correctly. The k-
Sum instances S′

1, . . . , S
′
k with target t′ are output, over all choices of s and j,

for k logn = O(log n) total instances.
If the original instance has a solution, then at least one guess of s is correct,

and there is a constant probabability that there will be an output instance has at
least one solution and at most O(1) solutions. Otherwise, none of the instances
will have solutions, as desired.

The algorithm takes O(n log n) time since there are logn values of s to guess
and modifying every element takes linear time.

This completes the proof. �

We now inductively construct algorithms to solve k-Sum for increasing k,

assuming that at least one and at most O(1) solutions exist. For this proof, k
will take on values one more than a triangular number.

Theorem 9. For every integer p ≥ 0, there exists a Monte Carlo algorithm
that solves (Tp+1 + 1)-Sum on n numbers in Õ(nTp+1) time and Õ(n) space,
assuming that at least one solution and at most O(1) solutions exist.

826 J.R. Wang

Proof. It will be convenient to define a recursive function HashReduction that
takes k sets S1, . . . , Sk and a modulus m and finds up to num solutions (stopping
with fewer if not that many solutions exist) to k-Sum in the modular setting.

We wish to show that Algorithm 3 meets the desired requirements when run
with k = Tp+1 + 1, num = 1, and m large enough to avoid wrap-around (begin
with arithmetic over the integers).

Note thatHashReductionmakes calls to other functions, passing the images
of Si under some hash function h. It is assumed that these sets are implemented
as vectors, and that the results can be returned as indices, so that the original
elements can be recovered.

Algorithm 3. HashReduction(k, S1, . . . , Sk, t, num,m)

Require: k = Tj + 1 for some j ≥ 1.
1: if k = 2 then
2: Run the basic 2-Sum algorithm on S1 and S2, stopping at num solutions.
3: return
4: end if
5: Let m′ ← Θ(nj−1).
6: Randomly choose a hash function h ∈ H lin

m,m′ .
7: for v� ∈ [m′] do
8: Initialize an empty lookup table T .
9: Sort h(S1).
10: for a2 ∈ S2, . . . , aj ∈ Sj do
11: Do a binary search for v� −

∑j
i=2 h(ai) (mod m′) in h(S1).

12: If a solution (a1, . . . , aj) is found, store it in T as (
∑j

i=1 ai (mod m)) →
(a1, . . . , aj), but store Θ(n) entries at most.

13: end for
14: for sum ∈ {h(t)− (k − 1)h(0) + z (mod m′) | z ∈ {−k + 1, . . . , k − 1}} do
15: Set vr ← sum− v� (mod m′).
16: Call HashReduction(Tj−1 + 1, h(Sj+1), . . . , h(Sk), vr, Θ(nTj−2+1),m′).
17: For each solution (aj+1, . . . , ak), lookup t−∑k

i=j+1 ai (mod m) in T .

18: for entry t−∑k
i=j+1 ai (mod m)→ (a1, . . . , aj) in T do

19: Record (a1, . . . , aj , aj+1, . . . , ak) as a solution.
20: if num solutions have been found then
21: return
22: end if
23: end for
24: end for
25: end for

Correctness: We begin by proving that HashReduction would run correctly
if each call actually returned all solutions, not just the requested num at each
recursive call. We will later show that it suffices to only return the requested
number of solutions.

Space-Efficient Randomized Algorithms for K-SUM 827

HashReduction divides the sets into two groups, left and right, and guesses
the sum of a solution’s hash values for each group. It relies on the almost affine-
property of H lin in order to reduce the number of cases it needs to guess.

Suppose there is a solution to the current HashReduction call, a1, . . . , ak.
If k = 2, then basic 2-Sum algorithm is called, which is a correct algorithm by
Theorem 4. Otherwise, HashReduction chooses a hash and then runs its main
for-loop.

In some iteration, v� is a correct guess for
∑j

i=1 h(ai). In this same iteration,

(
∑j

i=1 ai) → (a1, . . . , aj) will be stored in T . By Lemma 2,
∑k

i=1 h(ai) (mod m′)
must equal some value in the set
{h(t)− (k−1)h(0)+z (mod m′) | z ∈ {k−1, . . . , k−1}}. The algorithm guesses
all possible values for this sum, and then computes what vr must be to get this
sum. Since

∑k
i=1 ai = t, this solution will be correctly recorded by the algorithm

and returned.
Next, we will show that it suffices to return only the requested number of solu-

tions. Here, we will use the assumption that at mostO(1) solutions exist in the top
level call. Fix some solution to the top level call, a1, a2, . . . , ak. Consider only the
recursive branch where all v� and vr are guessed correctly for this solution.

We claim that with probability arbitrarily close to 1, the value of num for
every call along this branch is large enough to have all solutions returned. Since
there are O(1) function calls in this branch (this number depends only on the
original value of k), it suffices to show this holds for any particular call.

At any recursive call, the current sets under consideration are a contiguous
group of the original sets, S�, . . . , Sr, transformed by randomly chosen hash
functions h1, h2, . . . , hs. We want to bound the probability of a false positive,
i.e. some b�, . . . , br such that bi ∈ Si and

r∑

i=�

(hs ◦ · · · ◦ h1)(ai) =

r∑

i=�

(hs ◦ · · · ◦ h1)(bi).

By Lemma 3, this probability has an upper bound of O(1)
values of hs

plus the
probability of the event:

r∑

i=�

(hs−1 ◦ · · · ◦ h1)(ai) =

r∑

i=�

(hs−1 ◦ · · · ◦ h1)(bi).

Repeating this s times gives an upper bound of
∑s

i=1
O(1)

values of hi
plus the

probability of the event that:

r∑

i=�

ai =
r∑

i=�

bi.

828 J.R. Wang

But any b�, . . . , br for which this holds can be combined with the other ai to
make a different solution to the original top-level call:
(a1, . . . , a�−1, b�, . . . , br, ar+1, . . . , ak). Hence there are only O(1) many b�, . . . , br
for which this event can occur. Ignoring these O(1) solutions, the probability

that any other b�, . . . , br is a false positive is just O(1)
values of hs

, since the number
of possible hash values drops by a factor of roughly n in each recursive call. But
the number of values of hs was chosen to be some m′ = Θ(nj−1). The algorithm
should pick m′ large enough to guarantee that non-solutions only have less than
a 1

nj−1 probability of a false positive. It is then possible to use a Markov bound
to pick a large enough value for Θ(n) and Θ(nTj−2+1) to guarantee that with
probability arbitrarily close to 1, the chosen value of num for any particular call
along this solution branch is large enough.

Hence this fixed solution will eventually be found by the top level call, and
the algorithm correctly finds some solution.
Running Time: We will inductively prove that for all p ≥ 0, HashReduction
takes Õ(nTp+1 + num) time when run with k = Tp+1 + 1.

For the base case p = 0, k = 2 and the algorithm simply runs the basic 2-Sum
algorithm. Theorem 4 guarantees it has the desired running time.

Assume that the inductive hypothesis holds for p = q. Consider whenHashRe-
duction is run with k = Tq+2 + 1, j = q + 2. The algorithm chooses a hash
function (O(1) time) and then runs through m′ = O(nq+1) iterations of its main
for-loop. Finding solutions to store in T takes O(nTq+1) time in all cases, since for
all q ≥ 0, q+1 ≤ Tq +1. By the inductive hypothesis, calling HashReduction

with k = Tq+1 + 1 takes Õ(nTq+1) time.
Count the time taken to find and return solutions separately. Since only num

solutions are requested, this requires O(num) time. The total time for all iter-
ations is hence Õ(nTq+1+1 + num), as desired. By induction, the hypothesis is
true for all p ≥ 0.
Memory Usage: Every recursive call uses Õ(n) space for the lookup table T .
The number of recursive calls depends only on k, not n, so the total memory
usage is Õ(n), as desired. �

Instances of the general k-Sum problem can be solved by preprocessing and
then running this algorithm.

Corollary 5. For a constant integer p ≥ 0, there exists a Monte Carlo algorithm
that solves
(Tp+1 + 1)-Sum on n numbers in Õ(nTp+1) time and Õ(n) space.

Algorithm 4. CompleteKSum(k, S1, . . . , Sk, t)

Proof. 1: Preprocess (S1, . . . , Sk, t) via the algorithm in Theorem 8.
2: for Resulting instances (S′

1, . . . , S
′
k, t

′) do
3: Run HashReduction on the instance to find a solution.
4: end for

Space-Efficient Randomized Algorithms for K-SUM 829

By Theorem 8 and Theorem 9, Algorithm 4 has the desired properties. Notice
that it has to run on O(log n) instances, but this is absorbed by the Õ notation.

�

The following lemma produces algorithms for the remaining values of k:

Lemma 5. Let A be an algorithm that solves k-Sum (k ≥ 3) on n numbers in
Õ(nd) time and Õ(n) space for some constant d. Then there is an algorithm A′

that solves (k + 1)-Sum on n numbers in Õ(nd+1) time and Õ(n) space.

Proof. The algorithm A′ is to guess one element s ∈ Sk+1 of the solution and
then to run A on S1, . . . , Sk for the remaining elements, which now need to sum
to t− s. �

Hence, for general k, we get the following Monte Carlo algorithm for k-Sum:

Reminder of Theorem 3. There exists a Monte Carlo algorithm that solves
k-Sum on n numbers in Õ(nk−f(k)−1) time and Õ(n) space, where f(k) is the
largest integer p such that Tp+1 + 1 ≤ k.

Proof. This follows directly from Corollary 5 and Lemma 5. �

	Space-Efficient Randomized Algorithms
for K-SUM

	1 Introduction
	1.1 Our Results
	1.2 Intuition
	1.3 Organization

	2 Preliminaries
	2.1 Randomized Algorithms and Running Time
	2.2 Sets and Triangular Numbers
	2.3 Basic k-Sum Algorithms

	2.4 Hash Functions

	3 Almost Affine Hashing
	4 Ak-Sum Self-reduction
	5 Time-Space Tradeoffs for k-Sum

	6 Conclusion
	References
	A Appendix: Proof of Theorem 2
	B Appendix: Linear Space Algorithms for k-Sum

