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Abstract. Recently, Mömke and Svensson presented a beautiful new
approach for the traveling salesman problem on a graph metric (graph-
TSP), which yielded a 4

3
-approximation guarantee on subcubic graphs as

well as a substantial improvement over the 3
2
-approximation guarantee

of Christofides’ algorithm on general graphs. The crux of their approach
is to compute an upper bound on the minimum cost of a circulation
in a particular network, C(G,T ), where G is the input graph and T is
a carefully chosen spanning tree. The cost of this circulation is directly
related to the number of edges in a tour output by their algorithm. Mucha
subsequently improved the analysis of the circulation cost, proving that
Mömke and Svensson’s algorithm for graph-TSP has an approximation
ratio of at most 13

9
on general graphs.

This analysis of the circulation is local, and vertices with degree four
and five can contribute the most to its cost. Thus, hypothetically, there
could exist a subquartic graph (a graph with degree at most four at each
vertex) for which Mucha’s analysis of the Mömke-Svensson algorithm is
tight. In this paper, we show that this is not the case and that Mömke
and Svensson’s algorithm for graph-TSP has an approximation guarantee
of at most 46

33
on subquartic graphs. To prove this, we present a different

method to upper bound the minimum cost of a circulation on the network
C(G,T ). Our approximation guarantee actually holds for all graphs that
have an optimal solution to a standard linear programming relaxation of
graph-TSP with subquartic support.

1 Introduction

The metric traveling salesman problem (TSP) is one of the most well-known
problems in the field of combinatorial optimization and approximation algo-
rithms. Given a complete graph, G = (V,E), with non-negative edge weights
that satisfy the triangle inequality, the goal is to compute a minimum cost tour
of G that visits each vertex exactly once. Christofides’ algorithm, dating from
almost four decades ago, yields a tour with cost no more than 3/2 times that of
an optimal tour [Chr76]. It remains a major open problem to improve upon this
approximation factor.
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Recently, there have been many exciting developments relating to graph-TSP.
In this setting, we are given an unweighted graph G = (V,E) and the goal is
to find the shortest tour that visits each vertex at least once. This problem is
equivalent to the special case of metric TSP where the shortest path distances in
G define the metric. It is also equivalent to the problem of finding a connected,
Eulerian multigraph in G with the minimum number of edges.

A promising approach to improving upon the factor of 3/2 for metric TSP
is to round a linear programming relaxation known as the Held-Karp relax-
ation [HK70]. A lower bound of 4/3 on its integrality gap can be demonstrated
using a family of graph-TSP instances. Even in this special case of metric TSP,
graph-TSP had also long resisted significant progress before the recent spate of
results.

1.1 Recent Progress on Graph-TSP

In 2005, Gamarnik et al. presented an algorithm for graph-TSP on cubic 3-edge
connected graphs with an approximation factor of 3/2 − 5/389 [GLS05], thus
proving that Christofides’ approximation factor of 3/2 is not optimal for this class
of graphs. Their approach is based on finding a cycle cover for which they can
upper bound the number of components. This general approach was also taken
by Boyd et al. who combined it with polyhedral ideas to obtain approximation
guarantees of 4/3 for cubic graphs and 7/5 for subcubic graphs, i.e. graphs
with degree at most three at each vertex [BSvdSS11]. Shortly afterwards, Oveis
Gharan et al. proved that a subtle modification of Christofides’ algorithm has
an approximation guarantee of 3/2− ε0 for graph-TSP on general graphs, where
ε0 is a fixed constant with value approximately 10−12 [GSS11].

Mömke and Svensson then presented a beautiful new approach for graph-TSP,
which resulted in a substantial improvement over the 3/2-approximation guar-
antee of Christofides [MS11]. Their approach also lead to a surprisingly simple
algorithm with an 4/3-approximation guarantee for subcubic graphs. We will
discuss their algorithm in more detail in Section 1.2, since our paper is directly
based on their approach. Ultimately, they were able to prove an approxima-
tion guarantee of 1.461 for graph-TSP. Mucha subsequently gave an improved
analysis, thereby proving that Mömke and Svensson’s algorithm for graph-TSP
actually has an approximation ratio of at most 13/9 [Muc12]. Sebő and Vygen in-
troduced an approach for graph-TSP based on ear decompositions and matroid
intersection, which incorporated the techniques of Mömke and Svensson, and
improved the approximation ratio to 7/5, where it currently stands [SV12]. For
the special case of k-regular graphs, Vishnoi gave an algorithm for graph-TSP
with an approximation guarantee that approaches 1 as k increases [Vis12].

Some of the new techniques for graph-TSP have also lead to progress on the
metric s-t-path TSP, in which the goal is to find a path between two fixed vertices
that visits every vertex at least once. Recent results improved upon the previ-
ously best-known bound of 5/3 for the s-t-path TSP due to Hoogeveen [Hoo91]
in the special case of s-t-path graph-TSP [MS11, Muc12, SV12, Gao13] as well
as in the case of general metrics [AKS12, Seb13].
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1.2 Mömke-Svensson’s Approach to Graph-TSP

Christofides’ algorithm for graph-TSP finds a spanning tree of the graph and
adds to it a J-join, where J is the set of vertices that have odd degree in the
spanning tree. Since the spanning tree is connected, the resulting subgraph is
clearly connected, and since the J-join corrects the parity of the spanning tree,
the resulting subgraph is Eulerian. In contrast, the recent approach of Mömke
and Svensson is based on removing an odd-join of the graph, which yields a
possibly disconnected Eulerian subgraph. Thus, to maintain connectivity, one
must double, rather than remove, some of the edges in the odd-join. The key
step in proving the approximation guarantee of the algorithm is to show that
many edges will actually be removed and relatively few edges will be doubled,
resulting in a connected, Eulerian subgraph with few edges. Using techniques of
Naddef and Pulleyblank [NP81], Mömke and Svensson show how to sample an
odd-join of size |E|/3, where E is the subset of edges in the support of the linear
programming relaxation for graph-TSP (see section 2.1). The number of edges
that are doubled to guarantee connectivity is directly related to the minimum
cost circulation of particular network, referred to as C(G, T ), which Mömke and
Svensson construct based on the input graph G, an optimal solution to a linear
programming relaxation for graph-TSP, and a carefully chosen spanning tree T .
Lemma 4.1 from [MS11] relates the size of the solution for their algorithm to the
minimum cost circulation of this network.

Lemma 1. [MS11] Given a 2-vertex connected graph G and a depth first search
tree T of G, let C∗ be a minimum cost circulation for C(G, T ) of cost c(C∗).
Then there is a spanning Eulerian multigraph in G with at most 4

3n + 2
3c(C

∗)
edges.

We defer a precise description of the circulation network C(G, T ) to Section
2, where we formulate it using different notation from that in [MS11]. For the
moment, we emphasize that if one can prove a better upper bound on the value
of c(C∗), then this directly implies improved upper bounds on the number of
edges in a tour output by Mömke and Svensson’s algorithm.

1.3 Our Contribution

We consider the graph-TSP problem for subquartic graphs, i.e. graphs in which
each vertex has degree at most four. As pointed out in Lemma 2.1 of [MS11],
we can assume that these graphs are 2-vertex connected. The best-known ap-
proximation guarantee for these graphs is inherited from the general case, even
when the graph is 4-regular, and is therefore 7/5 due to Sebő and Vygen. For
subquartic graphs, we give an improved upper bound on the minimum cost of a
circulation for C(G, T ). Using Lemma 1, this leads to an improved approximation
guarantee of 46/33 for graph-TSP on these graphs. Before we give an overview
of our approach, we first explain our motivation for studying graph-TSP on this
restricted class of graphs.

As mentioned in Section 1.1, graph-TSP is now known to be approximable to
within 4/3 for subcubic graphs. So, on the one hand, trying to prove the same
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guarantee for subquartic graphs is arguably a natural next step. Additionally, it
is a well-motivated problem to study the graph-TSP on sparse graphs, because
the support of an optimal solution to the standard linear programming relaxation
(reviewed in Section 2.1) has at most 2n−1 edges (see Theorem 4.9 in [CFN85]).
Thus, any graph that corresponds to the support of an optimal solution to the
standard linear program has average degree less than four.

However, our actual motivation for studying graphs with degree at most four
has more to do with understanding the Mömke-Svensson algorithm than with an
abstract interest in subquartic graphs. The basic approach to computing an up-
per bound on the minimum cost circulation in C(G, T ) used in both [MS11] and
[Muc12] is to specify flow values on the edges of C(G, T ) that are functions of
an optimal solution to the linear programming relaxation for graph-TSP on the
graph G. The cost of the circulation obtained using these values can be analyzed
in a local, vertex by vertex manner. Mucha showed that vertices with degree
four or five potentially increase the cost of the circulation the most [Muc12]. In
fact, one could hypothetically construct a tight example for Mucha’s analysis
of the Mömke-Svensson algorithm on a graph where each vertex has degree at
most four (or where each vertex has degree at most five). Thus it seems worth-
while to determine if the cost of the circulation can be improved on subquartic
graphs. Our results actually hold for a slightly more general class of graphs than
subquartic graphs: they hold for any graph that has an optimal solution to the
standard linear programming relaxation of graph-TSP with subquartic support.

1.4 Organization

In Section 2.1, we discuss the standard linear programming relaxation for
graph-TSP, and in Section 2.2, we present notation and definitions necessary
for defining the circulation network C(G, T ). In Section 3, we show that if, for
a subquartic graph, the optimal solution to the linear program has value equal
to the number of vertices in G, then the network C(G, T ) has a circulation of
cost zero, implying that the Mömke-Svensson algorithm has an approximation
ratio of 4/3. This observation provides us with some intuition as to how one may
attempt to design a better circulation for general subquartic graphs.

In Section 4, we describe two different methods to obtain feasible circulations.
In Section 4.1, we detail the method used by Mömke-Svensson and Mucha, which
becomes somewhat simpler in the special case of subquartic graphs. This method
directly uses values from the optimal solution to the linear program to obtain
flow values on edges in the network. In Section 4.2, we present a new method,
which “rounds” the values from the optimal solution to the linear program. The
latter circulation alone leads to an improved analysis over 13/9 for subquartic
graphs, but it does not improve on the best-known guarantee of 7/5. However,
as we finally show in Section 5, if we take the best of the two circulations, we can
show that at least one of the circulations will lead to an approximation guarantee
of at most 46/33.

We remark that our notation differs from that in [MS11] or [Muc12], even
though we are using exactly the same circulation network and we use their
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approach for obtaining the feasible circulation described in Section 4.1. This
different notation allows us to more easily analyze the tradeoff between the two
circulations. Due to space constraints, this extended abstract is missing many
proofs, which can be found in the full version.

2 Preliminaries: Notation and Definitions

Let G = (V,E) be an undirected graph with maximum degree four, a prop-
erty often referred to as subquartic. Throughout this paper, we make use of the
following well-studied linear programming relaxation for graph-TSP.

2.1 Linear Program for Graph-TSP

For a graph G = (V,E), the following linear program is a relaxation of graph-
TSP. We refer to Section 2 of [MS11] for a discussion of its derivation and
history.

min
∑

e∈E

ye

y(δ(S)) ≥ 2 for ∅ �= S ⊂ V,

y ≥ 0.

We denote this linear program by LP (G) and we denote the value of an optimal
solution for LP (G) by OPTLP (G). Let n be the number of vertices in V . We can
assume that G has the following two properties: (i) |E| ≤ 2n− 1, and (ii) G is
2-vertex connected. Assumption (i) is based on the fact that any extreme point
of LP (G) has at most 2n−1 edges (see Theorem 4.9 in [CFN85]), and restricting
the graph to the edges in the support of an extreme point with optimal value
does not increase the optimal value OPTLP (G). Assumption (ii) is based on
Lemma 2.1 from [MS11]. We note that the two theorems we just cited may have
to be applied multiple times to guarantee that G has the desired properties (i)
and (ii).

Lemma 2. Let G = (V,E) be a 2-edge connected graph. Then there exists x ∈
LP (G), x ≤ 1 minimizing the sum of coordinates of a vector in LP (G).

From Lemma 2, we define x ∈ R
|E| to be an optimal solution for LP (G) with

the following properties: (i) the support of x contains at most 2n− 1 edges, (ii)
the support of x is 2-vertex connected, and (iii) x ≤ 1. We will refer to the set
of values {xe} for e ∈ E as x-values. Let

∑
e∈E xe = OPTLP (G) = (1 + ε)n for

some ε, where 0 ≤ ε ≤ 1. We will eventually make use of the following definitions.

Definition 1. The excess x-value ε(v) at a vertex v is the amount by which the
total value on the adjacent edges exceeds 2, i.e ε(v) = x(δ(v)) − 2.

Definition 2. A vertex v ∈ V is called heavy if x(δ(v)) > 2.



742 A. Newman

The following fact will be useful in our analysis. If OPTLP (G) = (1 + ε)n, then,

∑

v∈V

x(δ(v)) =
∑

v∈V

(2 + ε(v)) = 2(1 + ε)n.

This implies,
∑

v∈V ε(v) = 2εn.

2.2 Spanning Trees and Circulations

Let us recall some useful definitions from the approach of Mömke and Svens-
son [MS11] that we use throughout this paper.

Definition 3. A greedy DFS tree is a spanning tree formed via a depth-first
search of G. If there is a choice as to which edge to traverse next, the edge with
the highest x-value is chosen.

For a given graph G and an optimal solution to LP (G), let T denote a greedy
DFS tree. Let B(T ) ⊂ E denote the set of back edges with respect to the tree
T . Each edge in T will be directed away from the root of the tree T and each
edge in B(T ) will be directed towards the root of T . We use the notation (i, j)
to denote an edge directed from i to j. Note that once we have fixed a tree T ,
all edges in E can be viewed as directed edges. When we wish to refer to an
undirected edge in E, we use the notation ij ∈ E. With respect to the greedy
DFS tree T , we have the following definitions.

Definition 4. An internal node in T is a vertex that is neither the root of T
nor a leaf in T . We use Tint to denote this subset of vertices.

Definition 5. An expensive vertex is a vertex in Tint with two incoming edges
that belong to B(T ). We use Texp to denote this subset of vertices.

As we will see in Lemma 4, expensive vertices are the vertices that can contribute
to the cost of C(G, T ). The root can also contribute a negligible value of either
one or two to the cost of C(G, T ). For the sake of simplicity, we ignore the
contribution of the root in most of our calculations.
Fact. The number of expensive vertices is bounded as follows: |Texp| ≤ n/2.

Definition 6. A branch vertex in T is a vertex with at least two outgoing tree
edges.

Lemma 3. A branch vertex is not expensive.

Definition 7. A tree cut is the partition of the vertices of the tree T induced
when we remove an edge (u, v) ∈ T .

For each edge (i, j) ∈ B(T ), let b(i, j) ≤ 1 be a non-negative value.

Definition 8. Consider a tree cut corresponding to edge (u, v) ∈ T and remove
all back edges (w, u) ∈ B(T ), where w belongs to the subtree of v in T . We say
that the remaining back edges that cross this tree cut cover the cut. If the total
b-value of the edges that cover the cut is at least 1, then we say that this tree cut
is satisfied by b.
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We extend this definition to the vertices of T .

Definition 9. A vertex v in T is satisfied by b if for each adjacent outgoing edge
in T , the corresponding tree cut is satisfied by b. On the other hand, if there is
at least one adjacent outgoing edge whose corresponding tree cut is not satisfied
by b, then the vertex v is unsatisfied by b.

Mömke and Svensson define a circulation network, C(G, T ) (see Section 4 of
[MS11]), and use the cost of a feasible circulation to upper bound the length of
a TSP tour in G. (See Lemma 1.)

Lemma 4. Let b : B(T ) → [0, 1]. If each internal vertex in T is satisfied by b,
then there is a feasible circulation of C(G, T ) whose cost is upper bounded by the
following function:

∑

j∈Texp

max

⎧
⎨

⎩
0,

⎛

⎝
∑

i:(i,j)∈B(T )

b(i, j)

⎞

⎠− 1

⎫
⎬

⎭
. (1)

Although finding b-values for the back edges that satisfy all the vertices is equiv-
alent to finding a feasible circulation of C(G, T ), and we could have stuck to the
notation presented in [MS11], we believe our notation results in a clearer pre-
sentation of our main theorems.

3 Subquartic Graphs: OPTLP (G) = n

We now show that in the special case when OPTLP (G) = n (i.e. ε = 0), there
is a circulation with cost zero. Note that if |E| = n, then each edge in E must
have x-value 1. Thus, G is a Hamiltonian cycle. If |E| > n, then we can show
that we can find a greedy DFS tree T for G such that each edge ij ∈ E with
x-value xij = 1 (a “1-edge”) belongs to T .

Lemma 5. When OPTLP (G) = n and |E| > n, there is a greedy DFS tree T
such that all 1-edges are in T .

For the rest of Section 3, let T denote a greedy DFS tree in which all 1-edges
are tree edges.

Lemma 6. If OPTLP (G) = n and each back edge (i, j) ∈ B(T ) is assigned
value f(i, j) = 1/2, then each vertex in Tint is satisfied by f .

Lemma 7. If OPTLP (G) = n, setting f(i, j) = 1/2 for each edge (i, j) ∈ B(T )
yields a circulation with cost zero.

Theorem 1. If OPTLP (G) = n and G is a subquartic graph, then G has a TSP
tour of length at most 4n/3.
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4 Subquartic Graphs: General Case

In this section, we consider the general case of subquartic graphs. For a graph
G = (V,E), suppose OPTLP (G) = (1 + ε)n for some ε > 0. There is a fixed
greedy DFS tree T as defined in Section 2.2. If we assign values to the edges in
B(T ), then the only vertices that can add to the cost function are the expensive
vertices, as we have defined them, since the maximum value allowed on an edge
is one. Let x(i, j) = xij for all back edges in B(T ). Recall that the {xij} values
are obtained from the solution to LP (G) in Section 2.1.

Lemma 8. A vertex v in Tint has at most one outgoing tree edge whose corre-
sponding tree cut is not satisfied by x.

Definition 10. A vertex v ∈ Tint that is satisfied by x is called LP-satisfied.

Definition 11. A vertex v ∈ Tint that is not satisfied by x is called LP-
unsatisfied.

Lemma 9. An expensive vertex is LP-satisfied.

Lemma 10. An LP-unsatisfied vertex is heavy.

The reason we emphasize that an LP-unsatisfied vertex is heavy is that we can
use the excess x-value of this vertex to increase an edge that covers the unsatisfied
tree cut corresponding to one of its adjacent outgoing edges so that this tree cut
becomes satisfied. We also wish to use the excess x-value of an expensive vertex
to pay for some of its contribution to the cost function incurred by the back edges
coming into the vertex. For each vertex v, we want to use the quantity ε(v) at
most once. This will be guaranteed by the fact that LP-unsatisfied vertices and
expensive vertices are disjoint sets.

4.1 The x-Circulation

In this section, we use the x-values to obtain an upper bound on the cost of a
circulation, essentially following the arguments of Mömke and Svensson [MS11]
and Mucha [Muc12]. We present the analysis here, since we refer to it in Section
5 when we analyze the cost of taking the best of two circulations. Also, the
arguments can be somewhat simplified due to the subquartic structure of the
graph, which is useful for our analysis.

For each back edge in B(T ), set x(i, j) = xij , where x ∈ R
|E| is an optimal

solution to LP (G). (For a vertex j /∈ Texp, we can actually set x(i, j) = 1, since
there is at most one incoming back edge to vertex j, but this does not change
the worst-case analysis.)

Definition 12. For each vertex j ∈ Texp, let xmin(j) ≤ xmax(j) denote the
x-values of the two incoming back edges to vertex j. Let cx(j) = xmin(j) +
xmax(j)− 1− ε(j).
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Lemma 11. For an expensive vertex j ∈ Texp, the following holds:

2 · xmax(j) + xmin(j) ≤ 2 + ε(j).

We will show that there is a function x′ : B(T ) → [0, 1] such that each vertex
in T is satisfied by x′ and the cost of the circulation can be bounded by:

∑

j∈Texp

max

⎧
⎨

⎩
0,

⎛

⎝
∑

i:(i,j)∈B(T )

x′(i, j)

⎞

⎠− 1

⎫
⎬

⎭
≤

∑

j∈Texp

max{0, cx(j)}+
∑

j∈T

ε(j).(2)

Lemma 12. The value cx(j) can be upper bounded as follows:

cx(j) ≤ xmin(j)

2
− ε(j)

2
≤ 1− xmin(j).

Lemma 13. For a vertex j ∈ Texp, cx(j) ≤ 1/3.

To make the circulation feasible, we need to increase the x-values of some
of the back edges in B(T ) so that all of the LP-unsatisfied vertices become
satisfied. By Lemma 10, these vertices are heavy. Thus, we will use ε(v) for an LP-
unsatisfied vertex v to “pay” for increasing the x-value on an appropriate back
edge. For ease of notation, we now set x′(u, v) = x(u, v) for all (u, v) ∈ B(T ).
We will update the x′(u, v) values so that each LP-unsatisfied vertex is satisfied
by x′.

Consider an LP-unsatisfied, non-branch vertex j ∈ T , and consider the tree
cut corresponding to the single edge (j, t2) outgoing from j in T . Let S ⊆ B(T )
denote the edges that cover this tree cut. Let (i, j), (j, k) ∈ B(T ) represent the
adjacent back edges, and let (t1, j) ∈ T denote the incoming tree edge. Recall
that in this tree cut, both edges (j, t2) and (i, j) are removed and the remaining
edges in B(T ) that cross this cut cover it. We have:

x(j, t2) + x(j, k) + x(t1, j) + x(i, j) = 2 + ε(j).

Since,

x(S) + x(j, t2) + x(i, j) ≥ 2, x(S) + x(j, k) + x(t1, j) ≥ 2,

it follows that

2 · x(S) ≥ 2− ε(j) ⇒ x(S) ≥ 1− ε(j)/2.

Let (u, v) ∈ S be an arbitrary edge in S. We will update the value of x′(u, v) as
follows:

x′(u, v) := min{1, x′(u, v) + ε(j)/2}.
We use this notation, because a back edge’s value can be increased multiple
times in the process of satisfying all LP-unsatisfied vertices.

If j is an LP-unsatisfied branch vertex, then it must have two outgoing edges
in T (call them (j, t2) and (j, t3)) and one incoming back edge (i, j) ∈ B(T ).
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Let (t1, j) denote the incoming tree edge. Suppose that vertex i is in the subtree
hanging from t2 in T . Then consider the tree cut corresponding to edge (j, t2),
i.e. remove edges (j, t2) and (i, j). Let S ⊂ B(T ) denote the back edges that
cover this tree cut. Then we have,

x(S) + x(j, t2) + x(i, j) ≥ 2, x(S) + x(j, t3) + x(t1, j) ≥ 2.

We can conclude that x(S) ≥ 1 − ε(j)/2. Thus, as we did previously, we can
increase the x′-value of some edge in S by the quantity ε(j)/2. The following
Lemma follows by the construction of the x′ values.

Lemma 14. The cost of satisfying all of the LP-unsatisfied vertices is at most∑
j∈T\Texp

ε(j)/2. In other words:

∑

(u,v)∈B(T )

(x′(u, v)− x(u, v)) ≤
∑

j∈T\Texp

ε(j)

2
.

Since all vertices in T are now satisfied by x′, the x′-values can be used to
compute an upper bound on the cost of a feasible circulation of C(G, T ).

Theorem 2. The function x′ : B(T ) → [0, 1] corresponds to a feasible circula-
tion of C(G, T ) with cost at most:

∑

j∈Texp

max{0, cx(j)}+
∑

j∈T

ε(j).

Theorem 3. When OPTLP (G) = (1 + ε)n, there is a feasible circulation for
C(G, T ) with cost at most n/6 + 2εn.

4.2 The f-Circulation

Now we describe a new method to obtain a feasible circulation, i.e. how to obtain
values f ′(i, j) for each edge (i, j) ∈ B(T ) such that each vertex in T is satisfied by
f ′. The values will be used to demonstrate an improved upper bound on the cost
of a circulation of C(G, T ) when G is a subquartic graph. In this section, we will
prove the following theorem, which implies that the Mömke-Svensson algorithm
has an approximation guarantee of 17/12 for graph-TSP on subquartic graphs.

Theorem 4. When OPTLP (G) = (1 + ε)n, there is a feasible circulation for
C(G, T ) with cost at most n/8 + 2εn.

Consider a vertex v ∈ Texp. If both incoming back edges had f -value 1/2, then
this vertex would not contribute anything to the cost of the circulation. Thus,
on a high level, our goal is to find f -values that are as close to half as possible,
while at the same time not creating any additional unsatisfied vertices. The f -
value therefore corresponds to a decreased x-value if the x-value is high, and
an increased x-value if the x-value is low. A set of f -values corresponding to
decreased x-values may pose a problem if they correspond to the set of back
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xij > 3/4 ⇒ f(i, j) = 2xij − 1,
xij < 1/4 ⇒ f(i, j) = 2xij ,

1/4 ≤ xij ≤ 3/4 ⇒ f(i, j) = 1/2.

Fig. 1. Rules for creating the f -values from the x-values

edges that cover an LP-unsatisfied vertex. However, in Section 4.1, we only used
ε(j)/2 to satisfy an LP-unsatisfied vertex j. We can actually use at least ε(j).
This observation allows us to decrease the x-values. We use the rules shown in
Figure 1 to determine the values f : B(T ) → [0, 1].

Lemma 15. If a vertex v is LP-satisfied, then it is satisfied by f .

Definition 13. For each vertex j ∈ Texp, let cf (j) =
∑

i:(i,j)∈B(T ) f(i, j)− 1−
ε(j).

For ease of notation, set f ′(u, v) = f(u, v) for all (u, v) ∈ B(T ).

Lemma 16. For an LP-unsatisfied vertex v ∈ Tint, if we increase by the amount
ε(v) the f ′-value of an edge that covers its unsatisfied tree cut, then vertex v will
be satisfied by f ′.

Lemma 17. For j ∈ Texp, if xmin(j), xmax(j) ≥ 1/2 or if xmin(j), xmax(j) ≤
3/4, then cf (j) ≤ 0.

Lemma 18. If xmax(j) ≥ 3/4 and 0 < xmin(j) ≤ 1/2, then cf (j) ≤
min{xmin(j), 1/2− xmin(j)}.

Similar to the approach taken in Section 4.1, any LP-unsatisfied vertex can
have the value of the edges covering the unsatisfied tree cut by adding ε(v) to
one of the edges covering the cut. We now have the following theorem.

Theorem 5. When OPTLP (G) = (1 + ε)n, there is a feasible circulation for
C(G, T ) with cost at most n/8 + 2εn.

5 Combining the x- and the f -circulations

We can classify each vertex in Texp according to the value of xmin(j). Intuitively,
if many vertices contribute a lot, say 1/3 to the x-circulation, then they will not
contribute a lot of the f -circulation, and vice versa.

xmin(j) cx(j) cf (j)
[0, 1/4] xmin(j)/2 xmin(j)
[1/4, 1/2] xmin(j)/2 1/2− xmin(j)
[1/2, 2/3] xmin(j)/2 0
[2/3, 1] 1− xmin(j) 0
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Theorem 6. When OPTLP (G) = (1 + ε)n, there is a feasible circulation for
C(G, T ) with cost at most n/11 + 2εn.

Theorem 7. The approximation guarantee of the Mömke-Svensson algorithm
on subquartic graphs is at most 46/33.

6 Final Remarks

We note that we can obtain a slightly better approximation ratio by allowing
an larger coefficient in front of the amount εn in Theorem 6. However, the
improvement we obtain from this is extremely small (approximately 1.393) and
not worth the technical equations.
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