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Abstract. Let P and Q be two simple polygons in the plane of total
complexity n, each of which can be decomposed into at most k convex
parts. We present an (1 − ε)-approximation algorithm, for finding the
translation of Q, which maximizes its area of overlap with P. Our algo-
rithm runs in O(cn) time, where c is a constant that depends only on k
and ε.

This suggest that for polygons that are “close” to being convex, the
problem can be solved (approximately), in near linear time.

1 Introduction

Shape matching is an important problem in databases, robotics, visualization
and many other fields. Given two shapes, we want to find how similar (or dis-
similar) they are. Typical problems include matching point sets by the Hausdorff
distance metric, or matching polygons by the Hausdorff or Fréchet distance be-
tween their boundaries. See the survey by Alt and Guibas [5].

The maximum area of overlap is one possible measure for shape matching that
is not significantly effected by noise. Mount et al. [18] studied the behavior of
the area of overlap function, when one simple polygon is translated over another
simple polygon. They showed that the function is continuous and piece-wise
polynomial of degree at most two. If the polygons P and Q have complexity m
and n, respectively, the area of overlap function can have complexity of Θ(m2n2).
Known algorithms to find the maximum of the function work by constructing
the entire overlap function. It is also known that the problem is 3SUM-Hard [8],
that is, it is believed no subquadratic time algorithm is possible for the problem.

Approximating maximum overlap of general polygons. Cheong et al. [13] gave a
(1−ε)-approximation algorithm for maximizing the area of overlap under trans-
lation of one simple polygon over the other using random sampling techniques.
However, the error associated with the algorithm is additive, and the algorithm
runs in near quadratic time. Specifically, the error is an ε fraction of the area
of the smaller of the two polygons. Under rigid motions, the running time dete-
riorates to being near cubic. More recently, Cheng and Lam [12] improved the
running times, and can also handle rigid motions, and present a near linear time
approximation algorithm if one of the polygons is convex.
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Maximum overlap in the convex case under translations. de Berg et al. [10]
showed that finding maximum overlap translation is relatively easier in case of
convex polygons. Specifically, the overlap function in this case is unimodal (as a
consequence of the Brunn-Minkowski Theorem). Using this property, they gave
a near linear time exact algorithm for computing the translation that maximizes
the area of overlap of two convex polygons. The complexity of the graph of the
overlap function is only O

(
m2 + n2 +min(m2n,mn2)

)
in this case. Alt et al. [4]

gave a constant-factor approximation for the minimum area of the symmetric
difference of two convex polygons.

Approximating maximum overlap in the convex case. As for (1−ε)-approximation,
assuming that the two polygons are provided in an appropriate form (i.e., the ver-
tices are in an array in their order along the boundary of the polygon), then one can
get a sub-linear time approximation algorithm. Specifically, Ahn et al. [3] show an
(1−ε)-approximation algorithm, with running timeO((1/ε) log(n/ε)) for the case
of translation, and O((1/ε) logn + (1/ε)2 log 1/ε)) for the case of rigid motions.
(For a result using similar ideas in higher dimensions see the work by Chazelle
et al. [11].)

Overlap of union of balls. de Berg et al. [9] considered the case where X and
Y are disjoint unions of m and n unit disks, with m ≤ n. They computed
a (1 − ε) approximation for the maximal area of overlap of X and Y under
translations in time O((nm/ε2) log(n/ε)). Cheong et al. [13] gave an additive
error ε-approximation algorithm for this case, with near linear running time.

Other relevant results. Avis et al. [6] computes the overlap of a polytope and a
translated hyperplane in linear time, if the polytope is represented by a lattice
of its faces. Vigneron [21] presented (1− ε)-approximation algorithms for maxi-
mum overlap of polyhedra (in constant dimension) that runs in polynomial time.
Ahn et al. [1] approximates the maximum overlap of two convex polytopes in
three dimensions under rigid motions. Ahn et al. [2] approximates the maximum

overlap of two polytopes in IRd under translation in O
(
n�d/2�+1 logd n

)
time.

Our Results

As the above indicates, there is a big gap between the algorithms known for the
convex and non-convex case. Our work aims to bridge this gap, showing that
for “close” to convex polygons, under translation, the problem can be solved
approximately in near linear time.

Specifically, assume we are given two polygons P and Q of total complexity
n, such that they can be decomposed into k convex parts, we show that one can
(1−ε)-approximate the translation of Q, which maximizes its area of overlap with
P, in linear time (for k and ε constants). The translation returned has overlap
area which is at least (1− ε)μmax(P,Q), where μmax(P,Q) is the maximum area
of overlap of the given polygons.
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Approach. We break the two polygons into a minimum number of convex parts.
We then approximate the overlap function for each pair of pieces (everywhere).
This is required as one cannot just approximate the two polygons (as done by
Ahn et al. [3]) since the optimal solution does not realize the maximum overlap
of each pair of parts separately, and the alignment of each pair of parts might
be arbitrary.

To this end, if the two convex parts are of completely different sizes, we
approximate the smaller part, and approximate the overlap function by taking
slices (i.e., level sets) of the overlap function. In the other case, where the two
parts are “large”, which is intuitively easier, we can approximate both convex
parts, and then the overlap function has constant complexity. Finally, we overlap
all these functions together, argue that the overlap has low complexity, and find
the maximum area of overlap.

Our approach has some overlap in ideas with the work of Ahn et al. [3].
In particular, a similar distinction between large and small overlap, as done in
Section 4.1 and Section 4.2 was already done in [3, Theorem 17].

Why the “naive” solution fails? The naive solution to our problem is to break
the two polygons into k convex polygons, and then apply to each pair of them the
approximation of Ahn et al. [3]. Now, just treat the input polygon as the union of
their respective approximations, and solve problem using brute force approach.
This fails miserably as the approximation of Ahn et al. [3] captures only the
maximum overlap of the two polygons. It does not, and can not, approximates
the overlap if two convex polygons are translated such that their overlap is “far”
from the maximum configuration, especially if the two polygons are of different
sizes. This issue is demonstrated in more detail in the beginning of Section 4.1.
A more detailed counterexample is presented in the full version of the paper [16].

Paper organization. We start in Section 2 by defining formally the problem, and
review some needed results. In Section 3, we build some necessary tools. Specifi-
cally, we start in Section 3.1 by observing that one can get O(1/ε) approximation
of a convex polygon, where the error is an ε-fraction of the width of the polygon.
In Section 3.2, we show how to compute a level set of the overlap function of two
convex polygons efficiently. In Section 3.3, we show that, surprisingly, the poly-
gon formed by the maximum overlap of two convex polygons, contains (up to
scaling by a small constant and translation) the intersection of any translation of
these two convex polygons. Among other things this implies an easy linear time
constant factor approximation for the maximum overlap (which also follows, of
course, by the result of Ahn et al. [3]). In Section 4, we present the technical
main contribution of this paper, showing how to approximate, by a compact
representation that has roughly linear complexity, the area overlap function of
two convex polygons. In Section 5 we put everything together and present our
approximation algorithm for the non-convex case.
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2 Preliminaries

For any vector t ∈ IR2 and a set Q, let t + Q denote the translation of Q by t;

formally, t+ Q =
{
t+ q

∣
∣
∣ q ∈ Q

}
. Also let μ(P,Q) = area(P ∩ Q), which is the

area of overlap of sets P and Q. We are interested in the following problem.

Problem 1. We are given two polygons X and Y in the plane, such that each
can be decomposed into at most k convex polygons. The task is to compute the
translation t of Y, which maximizes the area of overlap between X and t + Y.
Specifically our purpose is to approximate the quantity

μmax(X,Y) = max
t∈IR2

μ(X, t+ Y) .

For a polygon P, let |P| denote the number of vertices of P. For X,Y ⊆ IRd,
the set X is contained under translation in Y, denoted by X � Y, if there
exists x such that x+ X ⊆ Y.

Unimodal. A function f : IR→ IR is unimodal , if there is a value α, such that f
is monotonically increasing (formally, non-decreasing) in the range [−∞, α], and
f is monotonically decreasing (formally, non-increasing) in the interval [α,+∞].

From width to inner radius. For a convex polygon P, the width of P, denoted
by ω(P), is the minimum distance between two parallel lines that enclose P.

Lemma 1 ([14]). For a convex shape X in the plane, we have that the largest
disk enclosed inside X, has radius at least width(X) /2

√
3.

Convex Decomposition of Simple Polygons. A vertex of a polygon is a notch if
the internal angle at this vertex is reflex (i.e.> 180◦). For a non-convex polygon P
with n vertices and r notches, Keil and Snoeyink [17] solves the minimal convex
decomposition problem in O

(
n+ r2 min(r2, n)

)
time, that is, they compute a

decomposition of P into minimum number of convex polygons. Observe, that
if the number of components in the minimum convex decomposition is k, the
number of notches r is upper bounded by 2k.

Scaling similarity between polygons. For two convex polygons X and Y, let us
define their scaling similarity , denoted by ssim(X,Y), as the minimum number
α ≥ 0, such that X � αY . Using low-dimensional linear programming, one can
compute ssim(X,Y) in linear time. In particular, the work by Sharir and Toledo
[19] implies the following.

Lemma 2 (ssim). Given two convex polygons X and Y of total complexity n,
one can compute, in linear time, ssim(X,Y), and the translation that realizes it.
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3 Building Blocks

3.1 A Better Convex Approximation in the Plane

Let B be the minimum volume bounding box of some bounded convex set K ⊆
IRd. We have that v + cdB ⊆ K ⊆ B [15], for some vector v and a constant cd
which depends only on the dimension d. This approximation can be computed
in O(n) time [7], where n is the number of vertices of the convex-hull of K. The
more powerful result showing that a convex body can be approximated by an
ellipsoid (up to a scaling factor of d), is known as John’s Theorem [15].

We need the following variant of the algorithm of Barequet and Har-Peled [7].

Lemma 3. Given a convex polygon Z in the plane, with n vertices, one can
compute, in linear time, a rectangle rZ and a point z, such that z + rZ ⊆ Z ⊆
z + 5rZ.

u

rZ �z

Z

v

wProof. This is all well known, and we include the
details for the sake of completeness. Using rotating
caliper [20] compute the two vertices u and v of Z
realizing its diameter. Let w be the vertex of Z fur-
thest away from uv, Consider the rectangle r′Z having
its base on uv, having half the height of �uvw, and
contained inside this triangle. Now, let z be the cen-
ter of r′Z, and set rZ = r′Z−z, see figure on the right.
It is now easy to verify that the claim holds with rZ
and z. �
Observation 1. Given two bodies X,Y ⊆ IR2 and a non-singular affine trans-

formation M, we have
area(X)

area(Y)
=

area(M(X))

area(M(Y))
.

Since a similar construction is described by Ahn et al. [3], we delegate the
proof of this lemma to the full version of this paper [16].

Lemma 4 (approxPolygon). Given a convex polygon P, and a parameter m >
0, we can compute, in O(|P|) time, a convex polygon P′ with O(m) vertices, such
that (i) P′ ⊆ P, and (ii) for any point p ∈ P, its distance from P′ is at most
ω(P) /m, where ω(P) is the width of P.

3.2 The Level Set of the Area of Overlap Function

Definition 1. The superlevel set of a function f : IRd → IR, for a value α is

the set Lα(f) =
{
p ∈ IRd

∣∣
∣ f(p) ≥ α

}
. We will refer to it as the α-slice of f .

Lemma 5. Given two convex polygons X and Y, the slice Z = Lα(μ(X, t+ Y))
is convex, and has complexity O(m), where m = |X| |Y|. Furthermore, given a
point p ∈ Z, the convex body Z can be computed in O(m logm) time.

The proof is in the full version of the paper [16].
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3.3 The Shape of the Polygon Realizing the Maximum Area
Overlap

In the following, all the ellipses being considered are centered in the origin.

Lemma 6. Given two ellipses E1 and E2, the translation which maximizes their
area of overlap is the one in which their centers are the same points.

Proof. Translate E1 and E2 such that their centers are at the origin. Consider any
unit vector u, translate E2 along the direction of u, and consider the behavior

of the overlap function f(x) = μ
(
E1, E2 + xu

)
, where x varies from −∞ to +∞.

The function f is unimodal [10]. By symmetry, we have

f(x) = μ
(
E1, E2 + xu

)
= μ

(
−E1, −(E2 + xu)

)
= μ

(
E1, E2 − xu

)
= f(−x),

as Ei = −Ei. If the maximum is attained at x �= 0, we will get another maximum
at −x, which implies, as f unimodal, that f(0) = f(x) = f(−x), as desired. �

EG

EX

−→y + EY

Fig. 3.1.

EX

−→y + EY

EY

−−→y + EY

−−→g + EG

Fig. 3.2.

Lemma 7. Consider two ellipses EX and EY in the plane, and consider any two
vectors x and y, then there is a vector u such that u + (x+ EX) ∩ (y + EY) ⊆
2EX ∩ 2EY.

Proof. For the sake of simplicity of exposition, assume that x = 0. Now, consider
the intersection G = EX∩(y + EY), and let EG be the largest area ellipse contained
inside G. John’s theorem implies that there is a translation vector g, such that
g + EG ⊆ G ⊆ g + 2EG, see Figure 3.1.

Observe that g + EG ⊆ EX, and by the symmetry of EG and EX, we have that
−g + EG = −g − EG ⊆ −EX = EX. This by convexity implies that EG ⊆ EX. A
similar argument implies that EG ⊆ EY. As such, EG ⊆ EX ∩ EY.

Thus, we have that G ⊆ g + 2EG ⊆ g + 2EX ∩ 2EY, as desired. �
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Lemma 8 ([15, Lemma 22.5]). Any convex set K ⊆ IRd contained in a unit
square, contains a ball of radius area(K) /8

The following lemma is one of our key insights – the maximum area of inter-
section of two polygons contains any intersection of translated copies of these
polygons up to translation and a constant factor scaling.

Lemma 9. Let X and Y be two convex polygons, and let M be the polygon realiz-
ing their maximum area of intersection under translation. Let u be any vector in
the plane, and consider the polygon D = X ∩ (u+ Y), then there exists a vector
v such that, v + D ⊆ c0M, for some fixed constant c0.

Proof. Let EX (resp., EY) denote the maximum area ellipse (centered at the
origin) contained inside X (resp. Y). By John’s Theorem, we have x+ EX ⊆ X ⊆
x+2EX and y+EY ⊆ Y ⊆ y+2EY, where x,y are some vector. Let B = EX∩EY,
and let EB be the maximum area ellipse contained inside B. Observe that B is
symmetric and centered at the origin, and by John’s theorem EB ⊆ B ⊆ 2EB.

By Lemma 7, there are vectors z and −→w , such that

D = X ∩ (u+ Y) ⊆(x+ 2EX) ∩ (z + y + 2EY) ⊆ −→w + 4EX ∩ 4EY = −→w + 4B

⊆ −→w + 8EB.

Applying a similar argument, we have that M ⊆ −→m + 8EB, for some vector −→m.
Apply the linear transformation that maps EB to disk(1/16), where disk(r)

denotes the disk of radius r centered at the origin. By Observation 1, we can
continue our discussion in the transformed coordinates. This implies that M −
−→m ⊆ disk(1/2) (which is contained inside a unit square). By Lemma 8, there is
a vector x1, such that x1 + disk(area(M) /8) ⊆ M.

Observe that B = EX ∩ EY ⊆ (−x+ X) ∩ (−y + Y). As such, the area of B
must be smaller than the area of M (by the definition of M). We thus have
area(M) ≥ area(B) ≥ area(EB) = area(disk(1/16)) which is a constant bounded
away from zero. Therefore,

D ⊆ −→w + 8EB = −→w + disk

(
1

2

)
= −→w +

4

area(M)
· disk

(
area(M)

8

)

⊆ −→w +
4

area(M)
(M − x1) ,

which implies the claim. �

Constant Approximation to the Maximum Overlap

Lemma 10 (constApproxByRect). Let X and Y be two convex polygons, and
let M be the polygon realizing their maximum area intersection under translation.
Then, one can compute, in O(|X|+ |Y|) time, a rectangle r, such that r ⊆ u +
M ⊆ crr, where cr is a constant. That is, one can compute a constant factor
approximation to the maximum area overlap in linear time.

Furthermore, for any translation tY, we have that X ∩ (Y + tY) � crr.
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Proof. We are going to implement the algorithmic proof of Lemma 9. Instead of
John’s ellipsoid we use the rectangle of Lemma 3. Clearly, the proof of Lemma 9
goes through with the constants being somewhat worse. Specifically, we compute,
in linear time, vectors x,y, and rectangles rX, rY, such that x+ rX ⊆ X ⊆ x+5rX
and y + rY ⊆ Y ⊆ y + 5rY. Again, compute a rectangle rM, such that rM/5 ⊆
rX ∩ rY ⊆ rM. Arguing as in Lemma 9, and setting r = rM/c3, for some constant
c3, is the desired rectangle. �

4 Approximating the Overlap Function of Convex
Polygons

Definition 2 Given two convex polygons X and Y in the plane, of total complex-
ity n, and parameters ε ∈ (0, 1), ν, ρ, a function ψ(t) is (ε, ν, ρ)-approximation
of μ(X, t+ Y), if the following conditions hold:

(A) ∀t ∈ IR2, we have |μ(X, t+ Y)− ψ(t)| ≤ εμmax(X,Y) .
(B) There are convex polygons P1, . . . ,Pν , each of maximum complexity ρ,

such that inside every face of the arrangement A = A(P1, . . . ,Pν), the
approximation function ψ(t) is the same quadratic function.

That is, the total descriptive complexity of ψ(·) is the complexity of the arrange-
ment A.

Algorithm 3 The input is two convex polygons X and Y in the plane, of total
complexity n, and a parameter ε ∈ (0, 1). As a first step, the algorithm is going
to approximate X and Y as follows:

(A) rM ← constApproxByRect(X,Y), see Lemma 10.
(B) T ← affine transformation that maps 2crrM to [0, 1]2.
(C) X′

T ← approxPolygon(T (X) , N) and Y′
T ←

approxPolygon(T (Y) , N).
See Lemma 4, here N = �c4/ε�, and c4 is a sufficiently large constant.

(D) X′ ← T −1(X′
T ) and Y′ ← T −1(Y′

T ).

4.1 If One Polygon is Smaller than the Other

Y Y′ X
Assume, without loss of generality, that X

is smaller than Y, that is, X can be trans-
lated so that it is entirely contained inside Y
(i.e., ssim(X,Y) ≤ 1, see Lemma 2). The max-
imum area of overlap is now equal to area(X).
The challenge is, that for any approximation
of Y, we can always have a sufficiently small
X which can be placed in Y \ Y′, as shown in the figure on the right. Therefore
for all those translations for which X is placed inside Y \ Y′, our approximation
will show zero overlap, even though the actual overlap is area(X).

To get around this problem, we will first approximate the smaller polygon X,
using our approximation scheme, to get polygon X′, then we will compute level
sets of the overlap function and use them to approximate it.
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Lemma 11. Given convex polygons X and Y, such that ssim(X,Y) < 1, and pa-
rameter ε > 0, and let X′ be the approximation to X, as computed by Algorithm 3.

Then, we have, for all translations t ∈ IR2, that
∣∣
∣μ(X′, t+ Y)− μ(X, t+ Y)

∣∣
∣ ≤

εμmax(X,Y) .

Proof. Consider the overlap of XT = T (X) and YT = T (Y). Lemma 10 implies
that any intersection polygon of XT and YT can be contained (via translation)
in T (crrM) (which is a translation of the square [0, 1/2]2). Clearly, in this case,
XT and X′

T can both be translated to be contained in this square, both con-
tain a disk of constant radius, the maximum distance between XT and X′

T is
O(ε), and the total area of XT \ X′

T is O(ε), as the perimeter of XT ≤ 4. Thus,
setting c4 to be sufficiently large, implies that area(XT \ X′

T ) ≤ εμmax(XT ,YT ),

as μmax(XT ,YT ) = Ω(1). This implies that
∣
∣
∣μ(X′

T , t+ YT )− μ(XT , t+ YT )
∣
∣
∣ ≤

εμmax(XT ,YT ) , which implies the claims by applying T −1 to both sides. �
Therefore, μ(X′, t+ Y) is a good approximation for μ(X, t+ Y). However,

μ(X′, t+ Y) has complexity O
(
|X′|2 |Y|2

)
[10], in the worst case, which is still

too high.

Lemma 12 (approxLevelSet). Given two convex polygons X and Y, of total
complexity n, and a parameter ε, such that ssim(X,Y) < 1, then one can construct
in O

(
n/ε2

)
time, a

(
ε,O(1/ε2), O(n/ε2)

)
-approximation ψ(·) to μ(X, t+ Y).

Proof. There is a translation of X such that it is contained completely in Y.
Approximate X from the outside by a rectangle r, using Lemma 3. Next, spread
a grid in r by partitioning each of its edges into O(1/ε) equal length intervals.
Let S be the set of points of the grid that are in X. It is easy to verify, that for
any convex body Z and a translation t, we have

∣
∣
∣
∣μ(X, t+ Z)− |(t+ Z) ∩ S|

|S|

∣
∣
∣
∣ ≤ ε area(X)

Namely, to approximate the overlap area for t+Y, we need to count the number
of points of S that it covers. To this end, for each point p ∈ S, we generate a
180

◦
rotated and translated copy of Y, denoted by Y′

p, such that p ∈ t+Y if and
only if t ∈ Y′

p.

Clearly, the generated set of polygons is the desired
(
ε,O(1/ε2), O(n/ε2)

)
-

approximation ψ(·) to μ(X, t+ Y).
The time to build this approximation is O(n/ε2).

We next describe a slightly slower algorithm that generates a slightly better
approximation.

Lemma 13 (approxLevelSet). Given two convex polygons X and Y, of to-
tal complexity n, and a parameter ε, such that ssim(X,Y) < 1, then one can
construct in O

(
ε−2n logn

)
time, a (ε,O(1/ε), O(n/ε))-approximation ψ(·) to

μ(X, t+ Y).

The proof is in the full version of the paper [16].
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4.2 If the Two Polygons are Incomparable

The more interesting case, is when the maximum intersection of X and Y is signif-
icantly smaller than both polygons; that is, ssim(X,Y) ≥ 1 and ssim(Y,X) ≥ 1.
Surprisingly, in this case, we can approximate both polygons simultaneously.

Lemma 14. Given convex polygons X and Y, such that ssim(X,Y) ≥ 1 and
ssim(Y,X) ≥ 1, then the widths of XT = T (X) and YT = T (Y), as computed by
Algorithm 3, are bounded by 7.

The proof is in the full version of the paper [16].

Lemma 15. Given two convex polygons X and Y, of total complexity n, and a
parameter ε, such that ssim(X,Y) ≥ 1 and ssim(Y,X) ≥ 1, then one can construct
in O

(
n+ 1/ε2

)
time, a (ε,O(1/ε), O(1/ε))-approximation ψ(·) to μ(X, t+ Y).

The proof is in the full version of the paper [16].

The result. By combining Lemma 12 and Lemma 15 (deciding which one to
apply can be done by computing ssim(X,Y) and ssim(Y,X), which takes O(n)
time), we get the following.

Lemma 16. Given two convex polygons X and Y, of total complexity n, and
a parameter ε, one can construct in O

(
n/ε2

)
time, a

(
ε,O(1/ε2), O(n/ε2)

)
-

approximation ψ(·) to μ(X, t+ Y).

5 Approximating the Maximum Overlap of Polygons

The input is two polygons P and Q in the plane, of total complexity n, each of
them can be decomposed into at most k convex polygons. Our purpose is to find
the translation that maximizes the area of overlap.

The Algorithm. We decompose the polygons P and Q into minimum number
of interior disjoint convex polygons [17], in time O

(
n+ k2 min(k2, n)

)
(some of

these convex polygons can be empty). Then, for every pair Pi, Qj , we compute
an

(
ε, O(1/ε2), O(n/ε2)

)
-approximation ψij to the overlap function of Pi and Qj ,

using Lemma 16, where ε = ε/k2.
Next, as each function ψij is defined by an arrangement defined by O(1/ε2)

polygons, we overlay all these arrangements together, and compute for each face
of the arrangement the function ψ =

∑
i,j ψij . Inside such a face this function is

the same, and it is a quadratic function. We then find the global maximum of
this function, and return it as the desired approximation.

Analysis – Quality of approximation. For any translation t, we have that

∣∣
∣μ(P, t+ Q)− ψ(t)

∣∣
∣ ≤

k∑

i=1

k∑

j=1

∣∣
∣μ(Pi, t+ Qj)− ψij(t)

∣∣
∣ ≤

k∑

i=1

k∑

j=1

εμmax(Pi,Qj)

≤ εk2μmax(P,Q) ≤ εμmax(P,Q) .
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Analysis – Running time. Computing each of the k2 approximation function,
takesO

(
(k/ε)2n

)
time. Each one of them is a

(
ε/k,O(k2/ε2), O(k2n/ε2)

)
-approx-

imation, whichmeans that the final arrangement is the overlay ofO(k4/ε2) convex
polygons, each of complexity O(k2n/ε2). In particular, any pair of such polygons
can have atmostO(k2n/ε2) intersection points, and thus the overall complexity of

the arrangement of these polygons is N = O
((
k4/ε2

)2
(k2n/ε2)

)
= O

(
k10ε−6n

)
.

Computing this arrangement can be done by a standard sweeping algorithm.
Observing that every vertical line crosses only O(k4/ε2) segments, imply that
the sweeping can be done in O(log(k/ε)) time per operation, which implies that
the overall running time is

O

(
k2
k2

ε2
n+N log

k

ε

)
= O

(
k10

ε6
n log

k

ε

)
.

The result.

Theorem 4. Given two simple polygons P and Q of total complexity n, one
can compute a translation which ε-approximates the maximum area of overlap

of P and Q. The time required is O(c′n) where c′ =
k10

ε6
log

k

ε
, where k is the

minimum number of convex polygons in the decomposition of P and Q.
More specifically, one gets a data-structure, such that for any query trans-

lation t, one can compute, in O(log n) time, an approximation ψ(t), such that
|ψ(t)− μ(P,Q)| ≤ εμmax(P,Q), where μmax(P,Q) is the maximum area of over-
lap between P and Q.

Note, that our analysis is far from tight. Specifically, for the sake of simplicity
of exposition, it is loose in several places as far as the dependency on k and ε.
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