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Abstract. We design centralized local algorithms for: maximal inde-
pendent set, maximal matching, and graph coloring. The improvement
is threefold: the algorithms are deterministic, stateless, and the num-
ber of probes is O(log∗ n), where n is the number of vertices of the input
graph. Our algorithms for maximal independent set and maximal match-
ing improves over previous randomized algorithms by Alon et al. (SODA
2012) and Mansour et al. (ICALP 2012). In these previous algorithms,
the number of probes and the space required for storing the state between
queries are poly(log n).

We also design the first centralized local algorithm for graph coloring.
Our graph coloring algorithms are deterministic and stateless. Let Δ
denote the maximum degree of a graph over n vertices. Our algorithm
for coloring the vertices by Δ + 1 colors requires O(log∗ n) probes for
constant degree graphs. Surprisingly, for the case where the number of
colors is O(Δ2 logΔ), the number of probes of our algorithm is O(Δ ·
log∗ n + Δ2), that is, the number of probes is sublinear if Δ = o(

√
n),

i.e., our algorithm applies for graphs with unbounded degrees.

Keywords: Centralized Local Algorithms, Sublinear Approximation
Algorithms, Graph Algorithms.

1 Introduction

Local Computation Algorithms , as defined by Rubinfeld et al. [17], are algorithms
that answer queries regarding (global) solutions to computational problems by
performing local (sublinear time) computations on the input. The answers to all
queries must be consistent with a single solution regardless of the number of pos-
sible solutions. To make this notion concrete, consider the Maximal Independent
Set problem, which we denote by mis. Given a graph G = (V,E) as input, the
local algorithm alg gives the illusion that it “holds” a specific maximal inde-
pendent set I ⊆ V . Namely, given any vertex v as a query, alg answers whether
v belongs to I even though alg cannot read all of G, cannot store the solution
I, and cannot even remember all the answers to previous queries. In order to
answer such queries, alg can probe the graph G by asking about the neighbors
of a vertex of its choice.

A local computation algorithm may be randomized, so that the solution
according to which it answers queries may depend on its internal coin flips.
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However, the solution should not depend on the sequence of the queries (this
property is called query order obliviousness [17]). We measure the performance
of a local computation algorithm by the following criteria: the maximum num-
ber of probes it makes to the input per query, the success probability over any
sequence of queries, and the maximum space it uses between queries1 . It is de-
sired that both the probe complexity and the space complexity of the algorithm
be sublinear in the size of the graph (e.g., polylog(|V |)), and that the success
probability be 1− 1/poly(|V |). It is usually assumed that the maximum degree
of the graph is upper-bounded by a constant, but our results are useful also
for non-constant upper bounds (see also [16]). For a formal definition of local
algorithms in the context of graph problems, which is the focus of this work, see
Subsection 2.2.

The motivation for designing local computation algorithms is that local com-
putation algorithms capture difficulties with very large inputs. A few examples
include: (1) Reading the whole input is too costly if the input is very long. (2) In
certain situations one is interested in a very small part of a complete solution.
(3) Consider a setting in which different uncoordinated servers need to answer
queries about a very long input stored in the cloud. The servers do not commu-
nicate with each other, do not store answers to previous queries, and want to
minimize their accesses to the input.

Local computation algorithms have been designed for various graph (and hy-
pergraph) problems, including the abovementioned mis [17,1], hypergraph col-
oring [17,1], maximal matching [8] and (approximate) maximum matching [9].
Local computation algorithms also appear implicitly in works on sublinear ap-
proximation algorithms for various graph parameters, such as the size of a min-
imum vertex cover [14,10,19,11]. Some of these implicit results are very efficient
in terms of their probe complexity (in particular, it depends on the maximum
degree and not on |V |) but do not give the desired 1− 1/poly(|V |) success prob-
ability. We compare our results to both the explicit and implicit relevant known
results.

As can be gleaned from the definition in [17], local computation algorithms are
closely related to Local Distributed Algorithms [14]. This connection is discussed
in Section 2.3 (see also [4]).

In what follows we denote the aforementioned local computation model by
CentLocal (where the “Cent” stands for “centralized”) and the distributed
(local) model by DistLocal (for a formal definition of the latter, see Subsec-
tion 2.3). We denote the number of vertices in the input graph by n and the
maximum degree by Δ.

1.1 The Ranking Technique

The starting point for our results in the CentLocal model is the ranking tech-
nique [10,19,1,8,9]. To exemplify this, consider, once again, the mis problem.

1 In our algorithms the running time per query in the RAM model is at most poly(q) ·
log log n, where q is the maximum number of probes per query and n = |V |.
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A very simple (global “greedy”) algorithm for this problem works by selecting
an arbitrary ranking of the vertices and initializing I to be empty. The algorithm
then considers the vertices one after the other according to their ranks and adds
a vertex to I if and only if it does not neighbor any vertex already in I. Such
an algorithm can be “localized” as follows. For a fixed ranking of the vertices
(say, according to their IDs), given a query on a vertex v, the local algorithm
performs a restricted DFS starting from v. The restriction is that the search con-
tinues only on paths with monotonically decreasing ranks. The local algorithm
then simulates the global one on the subgraph induced by this restricted DFS.

The main problem with the above local algorithm is that the number of probes
it performs when running the DFS may be very large. Indeed, for some rankings
(and queried vertices), the number of probes is linear in n. In order to circumvent
this problem, random rankings were studied [10]. This brings up two questions,
which were studied in previous works, both for the mis algorithm described above
and for other ranking-based algorithms [10,19,1,8,9]. The first is to bound the
number of probes needed to answer a query with high probability. The second
is how to efficiently store a random ranking between queries.

1.2 Our Contributions

Orientations with bounded reachability. Our first conceptual contribution is a
simple but very useful observation. Rather than considering vertex rankings, we
suggest to consider acyclic orientations of the edges in the graph. Such orien-
tations induce partial orders over the vertices, and partial orders suffice for our
purposes. The probe complexity induced by a given orientation translates into a
combinatorial measure, which we refer to as the reachability of the orientation.
Reachability of an acyclic orientation is the maximum number of vertices that
can be reached from any start vertex by directed paths (induced by the orienta-
tion). This leads us to the quest for a CentLocal algorithm that computes an
orientation with bounded reachability.

Orientations and colorings. Our second conceptual contribution is that an orien-
tation algorithmwith bounded reachability can be based on aCentLocal color-
ing algorithm. Indeed, every vertex-coloring with k colors induces an orientation
with reachability O(Δk). Towards this end, we design a CentLocal coloring al-
gorithm that applies techniques fromDistLocal colorings algorithms [3,5,7,13].
Our CentLocal algorithm is deterministic, does not use any space between
queries, performs O(Δ · log∗ n + Δ2) probes per query, and computes a color-
ing with O(Δ2 logΔ) colors. (We refer to the problem of coloring a graph by
poly(Δ) colors as poly(Δ)-Color.) Our coloring algorithm yields an orienta-

tion whose reachability is ΔO(Δ2 logΔ). For constant degree graphs, this implies
O(log∗ n) probes to obtain an orientation with constant reachability. As an ap-
plication of this orientation algorithm, we also design a CentLocal algorithm
for (Δ+ 1)-coloring.
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Centralized local simulations of sequential algorithms. We apply a general trans-
formation (similarly to what was shown in [1]) from global algorithms with cer-
tain properties to local algorithms. The transformation is based on our
CentLocal orientation with bounded reachability algorithm. As a result we
get deterministic CentLocal algorithms for mis and maximal matching (mlm),
which significantly improve over previous work [17,1,8], and the firstCentLocal
algorithm for coloring with (Δ+ 1) colors (We refer to the problem of coloring
a graph by Δ + 1 colors as (Δ+ 1)-Color). Compared to previous work, for
mis and mlm the dependence on n in the probe complexity is reduced from
polylog(n) to log∗(n) and the space needed to store the state between queries is
reduced from polylog(n) to zero.

1.3 Comparison to Previous Work

Comparison to previous (explicit) CentLocal algorithms. A comparison of
our results with previous CentLocal algorithms is summarized in Table 1.
The dependence on Δ of previous algorithms is not explicit; the dependency in
Table 1 is based on our understanding of these results.

Table 1. A comparison between CentLocal algorithms under the assumption that
Δ = O(1) . Our algorithms are deterministic and stateless (i.e., the space needed to
store the state between queries is zero). mlm denotes a maximal matching, mm denotes
maximum matching.

Problem
Previous work Here (Deterministic, 0-Space)

Space # Probes success prob. # Probes

mis ΔO(Δ·log Δ) · log3 n ΔO(Δ·log Δ) · log2 n 1 − 1
poly(n)

[1] ΔO(Δ2 log Δ) · log∗ n [Coro. 6]

mlm ΔO(Δ) · log3 n ΔO(Δ) · log3 n 1 − 1
poly(n)

[8] ΔO(Δ2 log Δ) · log∗ n [Coro. 6]

poly(Δ)-Color none none none O(Δ · log∗ n + Δ2) [Thm. 3]

(Δ + 1)-Color none none none ΔO(Δ2 log Δ) · log∗ n [Coro. 6]

Comparison to previous CentLocal oracles in sublinear approximation algo-
rithms. A sublinear approximation algorithm for a certain graph parameter (e.g.,
the size of a minimum vertex cover) is given probe access to the input graph
and is required to output an approximation of the graph parameter with high
(constant) success probability. Many such algorithms work by designing an or-
acle that answers queries (e.g., a query can ask: does a given vertex belong to a
fixed small vertex cover?). The sublinear approximation algorithm estimates the
graph parameter by performing (a small number of) queries to the oracle. The
oracles are essentially CentLocal algorithms but they tend to have constant
error probability, and it is not clear how to reduce this error probability with-
out significantly increasing their probe complexity. Furthermore, the question of
bounded space needed to store the state between queries was not an issue in the
design of these oracles, since only few queries are performed by the sublinear ap-
proximation algorithm. Hence, they are not usually considered to be “bona fide”
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Table 2. A comparison between CentLocal oracles in sub-linear approximation al-
gorithms and our CentLocal (deterministic) algorithms. The former algorithms were
designed to work with constant success probability and a bound was given on their
expected probe complexity. When presenting them as CentLocal algorithms we in-
troduce a failure probability parameter, δ, and bound their probe complexity in terms
of δ. Furthermore, the approximation ratios of the sublinear approximation algorithms
were stated in additive terms, and we translate the results so as to get a multiplicative
approximation.

Problem
Previous work Here

# Probes success prob. apx. ratio # Probes apx. ratio

mis O(Δ4) · poly( 1
δ ,

1
ε ) 1 − δ 1 − ε [19] ΔO(Δ2 log Δ) · log∗ n 1

mlm O(Δ4) · poly( 1
δ ,

1
ε ) 1 − δ 1 − ε [19] ΔO(Δ2 log Δ) · log∗ n 1

poly(Δ)-Color none none - O(Δ · log∗ n + Δ2) -

(Δ + 1)-Color none none - ΔO(Δ2 log Δ) · log∗ n -

CentLocal algorithms. A comparison of our results and these oracles appears
in Table 2.

2 Preliminaries

2.1 Notations

Let G = (V,E) denote an undirected graph. Let n denote the number of vertices
and m denote the number of edges. We denote the degree of v by deg(v). Let
Δ denote the maximum degree, i.e., Δ � maxv∈V {deg(v)}. Let Γ (v) denote the
set of neighbors of v ∈ V . The length of a path equals the number of edges along
the path. We denote the length of a path p by |p|. For u, v ∈ V let dist(u, v)
denote the length of the shortest path between u and v. The ball of radius r
centered at v is defined by

Br(v) � {u ∈ V | dist(v, u) ≤ r} .
For k ∈ N

+ and n > 0, let log(k) n denote the kth iterated logarithm of n.
Note that log(0) n � n and if log(i) n = 0, we define log(j) n = 0, for every j > i.
For n ≥ 1, define log∗ n � min{i : log(i) n ≤ 1}.

2.2 The CentLocal Model

The model of centralized local computations was defined in [17]. In this section
we describe this model for problems over labeled graphs.

Labeled graphs. An undirected graph G = (V,E) is labeled if: (1) The ver-
tices have unique names. For simplicity, assume that the vertex names are in
{1, . . . , n}. We denote the vertex whose name is i by vi. (2) Each vertex v holds
a list of deg(v) pointers, called ports, that point to the neighbors of v. The
assignment of ports to neighbors is arbitrary and fixed.
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Problems over labeled graphs. Let Π denote a computational problem over la-
beled graphs (e.g., maximum matching, maximal independent set, vertex color-
ing). A solution for problem Π over a labeled graph G is a function, the domain
and range of which depend onΠ and G. For example: (1) In the Maximal Match-
ing problem, a solution is an indicator function M : E → {0, 1} of a maximal
matching in G. (2) In the problem of coloring the vertices of a graph by (Δ+1)
colors, a solution is a coloring c : V → {1, . . . , Δ+ 1}. Let sol(G,Π) denote the
set of solutions of problem Π over the labeled graph G.

Probes. In the CentLocal model, access to the labeled graph is limited to
probes. A probe is a pair (v, i) that asks “who is the ith neighbor of v?”. The
answer to a probe (v, i) is as follows. (1) If deg(v) < i, then the answer is “null”.
(2) If deg(v) ≥ i, then the answer is the (ID of) vertex u that is pointed to by
the ith port of v. For simplicity, we assume that the answer also contains the
port number j such that v is the jth neighbor of u. (This assumption reduces
the number of probes by at most a factor of Δ.)

Online algorithms in the CentLocal model. An online deterministic algorithm
alg for a problem Π over labeled graphs in the CentLocal model is defined
as follows. The input for the algorithm consists of three parts: (1) access to a
labeled graph G via probes, (2) the number of vertices n and the maximum
degree Δ of the graph G, and (3) a sequence {qi}Ni=1 of queries. Each query qi
is a request for an evaluation of f(qi) where f ∈ sol(G,Π). The algorithm is
online because it must output an evaluation of f(qi) without any knowledge of
subsequent queries.

We say that alg is consistent with (G,Π) if

∃f ∈ sol(G,Π) s.t. ∀N ∈ N ∀{qi}Ni=1 ∀i : yi = f(qi) . (1)

Consider, for example, the problem of computing a (Δ + 1) vertex coloring.
Consistency in this example means the following. The online algorithm is input
a sequence of queries, each of which is a vertex. The algorithm must output
the color of each queried vertex. If a vertex is queried twice, then the algorithm
must return the same color. Moreover, queried vertices that are neighbors must
be colored by different colors. Thus, if all vertices are queried, then the answers
constitute a legal vertex coloring that uses (Δ+1) colors. We now describe two
measures of performance that are used in the CentLocal model.

Performance measures. In the CentLocal model, two computational resources
are considered: state-space and number of probes. The state of algorithm alg
is the information that alg saves between queries. The state-space of algorithm
alg is the maximum number of bits required to encode the state of alg. The
state is used to ensure consistency. We note that the running time used to answer
a query is not counted.

Definition 1. An online algorithm is a CentLocal[q, s] algorithm for Π if
(1) it is consistent with (G,Π), (2) it performs at most q probes, and (3) the
state can be encoded by s bits.
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The goal in designing algorithms in the CentLocal model is to minimize
the number of probes and the state-space (in particular q, s = o(n)). A
CentLocal[q, s] algorithm with s = 0 is called stateless or zero-state-space.
In this case, we refer to the algorithm as a stateless CentLocal[q]-algorithm.
Stateless algorithms are useful in the case of uncoordinated distributed servers
that answer queries without communicating with each other.

Space vs. state-space. In [17] no distinction was made between the space needed
to answer a query and the space needed to store the state between queries.
Because the space needed to answer a query is freed after the query is answered,
we only count the space needed to store the state between queries.

Randomized local algorithms. If alg is a randomized algorithm, the consistency
requirement is parameterized by the failure probability δ. We say that alg is
a CentLocal[q, s, δ] algorithm for Π with probability at least 1 − δ if it is
consistent with (G,Π), performs at most q probes, and has state-space s. The
standard requirement is that δ = 1/poly(n).

Parallelizability and query order obliviousness. In [1,8,9] two requirements are
introduced: parallelizability and query order obliviousness. These requirements
are fully captured by the definition of a consistent, online, deterministic algo-
rithm with zero state-space. That is, every online algorithm that is consistent,
zero-state-space, and deterministic is both parallelizable and query order obliv-
ious.

2.3 The DistLocal Model

The model of local distributed computation is a classical model (see [7,15,18]).
The distributed computation takes place in an undirected labeled graph

G = (V,E). Each vertex models a processor, and communication is possible
between neighboring processors. All processors execute the same algorithm. Ini-
tially, every v ∈ V is input a local input. The computation is done in r ∈ N

synchronous rounds as follows. In every round: (1) every processor receives a
message from each neighbor, (2) every processor performs a computation based
on its local input and the messages received from its neighbors, (3) every pro-
cessor sends a message to each neighbor. We assume that a message sent in the
end of round i is received in the beginning of round i+ 1. After the rth round,
every processor computes a local output.

The following assumptions are made in the DistLocal model: (1) The local
input to each vertex v includes the ID of v, the degree of the vertex v, the
maximum degreeΔ, the number of vertices n, and the ports of v to its neighbors.
(2) The IDs are distinct. For simplicity, we assume that the IDs are in the set
{1, . . . , n}. (3) The length of the messages sent in each round is not bounded.

We say that a distributed algorithm is a DistLocal[r]-algorithm if the num-
ber of communication rounds is r. Strictly speaking, a distributed algorithm is
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considered local if r is bounded by a constant. We say that a DistLocal[r]-
algorithm is almost local if r = O(log∗ n). When it is obvious from the context
we refer to an almost DistLocal algorithm simply by a DistLocal algorithm.

We remark that in the DistLocalmodel, efficiency of the algorithm executed
locally by the processors is not important. Namely, one does not bound the
running time required to complete each round.

Simulation of DistLocal by CentLocal [14]: Every deterministic
DistLocal[r]-algorithm, can be simulated by a deterministic, stateless
CentLocal[O(Δr)]-algorithm. The simulation proceeds simply by probing all
vertices in the ball of radius r centered at the query.

If Δ = 2, then balls are simple paths (or cycles) and hence simulation of a
DistLocal[r]-algorithm is possible by a CentLocal[2r]-algorithm.

3 Acyclic Orientation with Bounded Reachability

In this section we introduce the problem of Acyclic Orientation with Bounded
Reachability (obr). We then design a CentLocal algorithm for obr.

Notations. Let H = (V,A) denote a directed graph, where V is the set of vertices
and A ⊆ V × V . The reachability set of v ∈ V is the set of vertices R such that
there is a path from v to every vertex in R. We denote the reachability set of
v ∈ V in digraph H by RH(v). Let rH(v) � |RH(v)| and rmax

H � maxv∈V rH(v).
We simply writeR(v), r(v), rmax when the digraphH is obvious from the context.
We say that a digraph H = (V,A) is an orientation of an undirected graph
G = (V,E) if G is an underlying graph of H .

In the problem of acyclic orientation with bounded reachability (obr), the
input is an undirected graph. The output is an orientation H of G that is acyclic.
The goal is to minimize rmax

H .
Previous works obtain an acyclic orientation by random vertex rank-

ing [10,19,1,8,9]. We propose to obtain an acyclic orientation by vertex coloring.

Proposition 1 (Orientation via Coloring). Every coloring by c colors in-
duces an acyclic orientation with

rmax ≤ Δ ·
c−2∑

i=0

(Δ− i)i ≤
{
2Δ · (Δ− 1)c−2, if Δ ≥ 3,

2c, if Δ = 2 .

Proof. Direct each edge from a high color to a low color. By monotonicity the
orientation is acyclic. Every directed path has at most c vertices, and hence the
reachability is bounded as required.

3.1 A CentLocal Algorithm for OBR

In Theorem 3, we present a deterministic, stateless CentLocal[O(Δ · log∗ n+
Δ2)]-algorithm that computes a vertex coloring that uses c = O(Δ2 logΔ) colors.
Orientation by this coloring yields an acyclic orientation with rmax ≤ Δc.
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Acyclic orientation can be also obtained by simulating DistLocal vertex
coloring algorithms. Consider, for example, the (Δ + 1) coloring using r1 =
O(Δ)+ 1

2 ·log∗ n rounds of [2] or the O(Δ2) coloring using r2 = O(log∗ n) rounds
of [7]. CentLocal simulations of these algorithms require O(Δri) probes. Thus,
in our algorithm, the number of probes grows (slightly) slower as a function of
n and is polynomial in Δ.

Our algorithm relies on techniques from two previous DistLocal coloring
algorithms.

Theorem 1 ([7, Corollary 4.1]). A 5Δ2 log c coloring can be computed from
a c coloring by a DistLocal[1]-algorithm.

Theorem 2 ([12, Section 4]). A (Δ + 1) coloring can be computed by a
DistLocal[O(Δ2 + log∗ n)]-algorithm.

Theorem 3. An O(Δ2 logΔ) coloring can be computed by a deterministic,
stateless CentLocal[O(Δ · log∗ n+Δ2)]-algorithm.

Proof. We begin by describing a two phased DistLocal[O(log∗ n)]-algorithm
D that uses O(Δ2 · logΔ) colors. Algorithm D is especially designed so that it
admits an “efficient” simulation by a CentLocal-algorithm.

Consider a graph G = (V,E) with a maximum degree Δ. In the first phase,
the edges are partitioned into Δ2 parts, so that the maximum degree in each
part is at most 2. Let pi(u) denote the neighbor of vertex u pointed to by the
ith port of u. Following Kuhn [6] we partition the edge set E as follows. Let
E{i,j} ⊆ E be defined by

E{i,j} � {{u, v} | pi(u) = v, pj(v) = u}.
Each edge belongs to exactly one part E{i,j}. For each part E{i,j} and vertex u,
at most two edges in E{i,j} are incident to u. Hence, the maximum degree in each
part is at most 2. Each vertex can determine in a single round how the edges
incident to it are partitioned among the parts. Let G{i,j} denote the undirected
graph over V with edge set E{i,j}.

By Theorem 2, we 3-color each graph G{i,j} in O(log∗ n) rounds. This induces
a vector of Δ2 colors per vertex, hence a 3(Δ

2) vertex coloring of G.
In the second phase, Algorithm D applies Theorem 1 twice to reduce the

number of colors to O(Δ2 logΔ).
We now present an efficient simulation of algorithm D by a CentLocal-

algorithm C. Given a query for the color of vertex v, Algorithm C simulates
the first phase of D in which a 3-coloring algorithm is executed in each part
E{i,j}. Since the maximum degree of each G{i,j} is two, a ball of radius r in
G{i,j} contains at most 2r edges. In fact, this ball can be recovered by at most
2r probes. It follows that a CentLocal simulation of the 3-coloring of G{i,j}
requires only O(log∗ n) probes. Observe that if vertex v is isolated in G{i,j}, then
it may be colored arbitrarily (say, by the first color). A vertex v is not isolated
in at most Δ parts. It follows that the simulation of the first phase requires
O(Δ · log∗ n) probes.
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The second phase of algorithm D requires an additional Δ2 probes, and the
theorem follows.

Corollary 4. There is a deterministic, stateless CentLocal[O(Δ · log∗ n +

Δ2)]-algorithm for obr that achieves rmax ≤ ΔO(Δ2 logΔ).

Proof. The CentLocal[Δ · log∗ n + Δ2]-algorithm for obr is given a query
(v, i). The algorithm answers whether the edge (v, pi(v)) is an incoming edge
or an outgoing edge in the orientation. The algorithm proceeds by querying the
colors of v and pi(v). The orientation of the edge (v, pi(v)) is determined by
comparing the colors of v and pi(v).

4 Deterministic Localization of Sequential Algorithms
and Applications

A common theme in online algorithms and “greedy” algorithms is that the ele-
ments are scanned in query order or in an arbitrary order, and a decision is made
for each element based on the decisions of the previous elements. Classical ex-
amples of such algorithms include the greedy algorithms for maximal matchings,
(Δ+1) vertex coloring, and maximal independent set. We present a compact and
axiomatic CentLocal deterministic simulation of this family of algorithms, for
which a randomized simulation appeared in [8]. Our deterministic simulation is
based on an acyclic orientation that induces a partial order.

For simplicity, consider a graph problem Π , the solution of which is a function
g(v) defined over the vertices of the input graph. For example, g(v) can be the
color of v or a bit indicating if v belongs to a maximal independent set. (One
can easily extend the definition to problems in which the solution is a function
over the edges, e.g., maximal matching.)

We refer to an algorithm as a sequential algorithm if it fits the scheme listed
as Algorithm 1. The algorithm alg(G, σ) is input a graph G = (V,E) and a
bijection σ : {1, . . . , n} → V of the vertices. Note that an element i in the
domain of σ is a rank of a vertex. Hence, σ(i) is the vertex whose rank is i, and
σ−1(v) is the rank of v. The algorithm scans the vertices in the order induced by
σ. It determines the value of g(σ(i)) based on the values of its neighbors whose
value has already been determined. This decision is captured by the function f
in Line 2. For example, in vertex coloring, f returns the smallest color that does
not appear in a given a subset of colors.

Lemma 1. Let G = (V,E) be a graph, let H = (V,A) be an acyclic orientation
of G and let P> ⊆ V × V denote the partial order defined by the transitive
closure of H. Namely, (u, v) ∈ P> if and only if there exists a directed path
from u to v in H. Let alg denote a sequential algorithm. For every bijection
σ : {1, . . . , n} → V that is a linear extension of P> (i.e, for every (u, v) ∈ P>

we have that σ−1(u) > σ−1(v)), the output of alg(G, σ) is the same.

Proof. Consider two linear extensions σ and τ of P>. Let gσ denote the output
of alg(G, σ) and define gτ analogously.
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Algorithm 1. The sequential algorithm scheme

Input: A graph G = (V,E) and a bijection σ : {1, . . . , n} → V .
1: for i = 1 to n do
2: g(σ(i))← f

({
g(v) : v ∈ Γ (σ(i)) & σ−1(v) < i

})
� (Decide based on

“previous” neighbors)
3: end for
4: Output: g.

Let
Aσ(u) � {v ∈ Γ (u) | σ−1(v) < σ−1(u)} .

We claim that Aσ(u) = Aτ (u) for every u. If v is a neighbor of u in G, then
(u, v) ∈ A or (v, u) ∈ A. We first consider the case (u, v) ∈ A. If (u, v) ∈ A,
then (u, v) ∈ P>. Hence σ−1(u) > σ−1(v) and τ−1(u) > τ−1(v) because σ and
τ are linear extensions of P>. We conclude that v ∈ Aσ(u) ∩ Aτ (u). Similarly,
if (v, u) ∈ A, then σ−1(u) < σ−1(v) and τ−1(u) < τ−1(v). This implies that
v �∈ Aσ(u) ∪ Aτ (u), and hence Aσ(u) = Aτ (u), as required.

We prove, by induction on i, that gσ(σ(i)) = gτ (σ(i)). The induction basis,
for i = 1, holds because σ(1) is a minimal element according to P> (a sink in
H). Hence, Aσ(u) = Aτ (u) = ∅. This implies that gσ(σ(1)) = f(∅) = gτ (σ(1)).
Turning to the induction step, we prove that the claim holds for i > 1, assuming
it holds for every 1 ≤ i′ < i. Let u = σ(i).

Hence:

gσ(u) = f
({gσ(v)}v∈Aσ(u)

)

= f
({gτ (v)}v∈Aσ(u)

)

= f
({gτ (v)}v∈Aτ (u)

)
= gτ (u) ,

where the second equality follows from the induction hypothesis. The third equal-
ity follows since Aσ(u) = Aτ (u) for every u.

Theorem 5. For every sequential algorithm alg, there exists a deterministic,
stateless CentLocal[ΔO(Δ2 logΔ) · log∗ n]-algorithm algc for which the follow-
ing holds. For every graph G, there exists a bijection σ, such that algc(G) sim-
ulates alg(G, σ). That is, for every vertex v in G, the answer of algc(G) on
query v is gσ(v), where gσ denotes the output of alg(G, σ).

Proof. Consider the acyclic orientation H of G induced by the CentLocal[Δ ·
log∗ n + Δ2]-algorithm for obr presented in Corollary 4. Let P> denote the
partial order that is induced by H , and let σ be any linear extension of P> (as
defined in Lemma 1). On query v ∈ V the value gσ(v) is computed by performing
a (directed) DFS on H that traverses the subgraph of H induced by RH(v).
The DFS uses the CentLocal algorithm for obr to determine the orientation
of each incident edge and continues only along outward-directed edges2. The

2 Given that the CentLocal algorithm for obr works by running a CentLocal
coloring algorithm, one can actually use the latter algorithm directly.
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value of gσ(v) is determined when the DFS backtracks from v. Since rmax
H =

ΔO(Δ2·logΔ), by multiplying the number of probes of the obr algorithm and
rmax
H , we obtain that ΔO(Δ2 logΔ) · log∗ n probes suffice.

Corollary 6. There are deterministic, stateless CentLocal[ΔO(Δ2 logΔ) ·
log∗ n] algorithms for (Δ + 1)-vertex coloring, maximal independent set, and
maximal matching.
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