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Abstract. Approximate random k-colouring of a graph G = (V,E), effi-
ciently, is a very well studied problem in computer science and statistical
physics. It amounts to constructing, in polynomial time, a k-colouring
of G which is distributed close to Gibbs distribution. Here, we deal with
the problem when the underlying graph is an instance of Erdős-Rényi
random graph G(n, d/n), where d is fixed.

This paper improves on the approximate sampling colouring algorithm
proposed in SODA 2012. We provide improved performance guarantees
for this efficient algorithm, as we reduce the lower bound of the num-
ber of colours required by a factor of 1/2. In particular, we show the
following statement for the accuracy of algorithm: For typical instances
of G(n, d/n) the algorithm outputs a k-colouring of G(n, d/n) which
is asymptotically uniform as long k ≥ (1 + ε)d. For the improvement
we make an extensive use of the spatial correlation decay properties of
the Gibbs distribution and the local treelike structure of the underlying
graph.

1 Introduction

Approximate random k-colouring of a graph G = (V,E), efficiently, is a very
well studied problem in computer science and statistical physics. It amounts to
constructing, in polynomial time, a k-colouring of G which is distributed close
to Gibbs distribution, i.e. the uniform distribution over all the k-colourings of
G. Here, we deal with the problem when the underlying graph is an instance of
Erdős-Rényi random graph G(n, p), where p = d/n and d is fixed. We say that
G(n, p) has a property with high probability (w.h.p.) if the probability that the
property holds tends to 1 as n → ∞.

The problem of sampling colourings when the underlying graph is G(n, d/n) is
rather interesting due to high degree effect. That is, there is a relative large fluc-
tuation on the degrees of the vertices in the random graph. E.g. it is elementary

to show that typical instances of G(n, d/n) have maximum degree Θ
(

logn
log logn

)
,

while more than 1 − e−O(d) fraction of the vertices have degree in the interval
(1 ± ε)d. Usually the bounds for sampling k-colourings w.r.t. k are expressed
it terms of the maximum degree e.g. [14,5]. However, for G(n, d/n) the natu-
ral bounds for k should be in terms of the expected degree, rather than the
maximum.
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The most powerful and most popular algorithms for this kind of problems are
based on the Markov Chain Monte Carlo (MCMC) method. There the main tech-
nical challenge is to establish that the underlying Markov chain mixes in polyno-
mial time (see [11]). The MCMC version of sampling colourings of G(n, d/n) is a
well studied problem [7,13,4]. The work in [7] shows that the well known Markov
chain Glauber block dynamics for k-colourings has polynomial time mixing for
typical instances of G(n, d/n) as long as the number of colours k ≥ 11

2 d. This is
the lowest bound for k as far as MCMC sampling is concerned.

Recently, in [8], the author of this paper suggested a novel non MCMC ap-
proach for the approximate sampling colouring problem on G(n, d/n). Roughly,
the idea is as follows: Given the input graph, first we remove sufficiently many
vertices such that the resulting graph has a “very simple” structure and it can
be randomly coloured efficiently. Once we have a random colouring of this, sim-
ple, graph we start adding one by one all the edges we have removed in the first
place. Each time we add a new edge we update the colouring so as the graph with
the new edge remains (asymptotically) randomly coloured. Once the algorithm
has rebuilt the initial graph it returns its colouring.

Let us be more specific on how we update the colouring once we add an extra
edge. Assume that we are given the fixed graphs G = (V,E) and G′ = (V,E′)
such that E′ = E ∪ {v, u} for some v, u ∈ V . Given X , a random k-colouring
of G, we want to create efficiently a random k-colouring of the slightly more
complex graph G′. It is easy to show that if the vertices v, u take different
colour assignments under X , then the colouring X is a random k-colouring of
G′. The interesting case is when X(v) = X(u). Then, the algorithm in [8] uses
an operation called “switching” so as to alter the colouring of only one of the two
vertices. E.g. using switching, from X which assigns v, u the same colour, we get
Y a colouring which assigns v, u different colours while Y is very close to being
random. Essentially, switching repermutes the colour classes of an appropriate
subgraph of G that contains v1. Of course the “switching” can be implemented
efficiently.

The approximate sampling algorithm in [8] w.h.p. over the input graph in-
stances returns, in polynomial time, a k-colouring which is asymptotically ran-
dom as long as k ≥ (2 + ε)d, for any fixed ε > 0. Until this work this was the
best bound for sampling colourings of G(n, d/n) in terms of the minimum num-
ber of colours required. In this paper we improve on this bound even further by
reducing it to k ≥ (1 + ε)d. For this improvement, we make an extensive use
of the the spatial mixing properties of the Gibbs distribution and the local tree
structure of the underlying graph.

The technical challenge for the analysis is to show that a random k-colouring
does not specify large paths in G(n, d/n) which are coloured with exactly two
colours. In particular, we have to argue about the probability of a specific path
in G(n, d/n) to be 2-coloured, under the Gibbs distribution. This is a challenging
task because of the highly complex structure that G(n, d/n), typically, has. In
[8], we deal with this problem by following a very pessimistic scenario about the

1 In different contexts this component is called Kempe chain.
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colouring around the path. I.e. we simplify the problem by making a worst case
assumptions about the colouring of the vertices which are incident to the path.

In this work, we follow a more elaborate approach. That is, we consider the
colouring of vertices at sufficiently large distance from the path and we show
that their colouring does not affect (very much) the colouring of the path. This
allows a more accurate estimation of the probability of a path being two coloured
(See Section 4).

For presenting our main result we need to use the total variation distance as
a measure of distance between distributions.

Definition 1. For the distributions νa, νb on [k]V , let ||νa − νb|| denote their
total variation distance, i.e.

||νa − νb|| = max
Ω′⊆[k]V

|νa(Ω′)− νb(Ω
′)|.

For Λ ⊆ V let ||νa − νb||Λ denote the total variation distance between the pro-
jections of νa and νb on [k]Λ.

Theorem 1. Let ε > 0 be fixed and k = (1 + ε)d. Assume that the input of our
algorithm is an instance of G(n, d/n) and we let μ be the uniform distribution
over its k-colourings. Also, we let μ′ be the distribution of the colouring that
is returned by the algorithm. With probability at least 1 − n−c over the input
instances G(n, d/n) it holds that

||μ− μ′|| = O
(
n−c

)
,

for sufficiently large c = c(ε) > 0 and any fixed d > d0(ε).

The proof of Theorem 1 appears in the full version of this paper in [6].
As far as the time complexity of the algorithm is regarded we provide Theorem

2, its proof appears in the full version of the paper in [6].

Theorem 2. With probability at least 1 − n−2/3 over the input instances
G(n, d/n), the time complexity of the random colouring algorithm is O(n2).

In this extended abstract, we are going to omit most of the technical details
which are already known from [8]. In the full version of the paper in [6] we
provide the proofs of all the results above. As a matter of fact we provide an
improved and to a large extend simplified presentation of the results and their
proofs that appeared in [8].

Structure of the paper. In Section 2 we provide a basic description of the algo-
rithm. In Section 3 we give an overview of how the analysis works. In Section 4
we give a sketch of how do we use correlation decay to bound the probability of
a path being two coloured.

Notation. We denote with small letters of the greek alphabet the colourings of a
graph G, e.g. σ, η, τ , while we use capital letters for the random variables which
take values over the colourings e.g. X,Y, Z. We denote with σv, X(v) the colour
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assignment of the vertex v under the colouring σ and X , respectively. Finally,
for an integer k > 0 let [k] = {1, . . . , k}.

2 Basic Description

First we need the notion of switching colouring. For this we define the disagree-
ment graph 2. Consider a fixed graph G and let v be a distinguished vertex in
G. Let σ be a k-colouring of G and let some colour q �= σ(v). Under the colour-
ing σ, we denote by Vσ(v), Vq the colour classes of σ(v), and q, respectively. We
call disagreement graph Qσ(v),q the maximal, connected, induced subgraph of G
which includes v and vertices only from the set Vσv ∪ Vq. In the colouring of
Figure 1, the disagreement graph QB,G is the one with the fat lines.

Definition 2 (Switching). Consider G, v, σ and q as specified above. The
“q-switching of σ” corresponds to the proper colouring of G which is derived by
exchanging the assignments in the two colour classes in Qσv ,q.

We would like to emphasize that the q-switching of any proper colouring of G is
always a proper colouring too. Figure 2 illustrates a switching of the colouring
that appears in Figure 1. Observe that the colouring in Figure 2 differs from the
colouring in Figure 1 to that we have exchanged the two colour classes of the
subgraph with the fat lines.
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Fig. 1. “Disagreement graph”
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Fig. 2. “g-switching”

We assume that the input of the algorithm is an instance of G(n, d/n) and k,
the numbers of colours. The algorithm is as follows:

Set up: We construct a sequence G0, . . . , Gr such that every Gi is a subgraph of
G(n, d/n). The graph Gr is identical to G(n, d/n). Each Gi is derived by deleting
ei = {vi, ui} from Gi+1, a random edge among those which do not belong to a
small cycle of Gi+1. We call small, any cycle of length less than (log n)/(9 log d).
G0 is the graph we get when there are no other edges to delete.

2 What we call disagreement graph here, is also known as Kempe chain e.g. see [12].
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With probability 1 − n−Ω(1), over the instances of G(n, d/n), G0 is simple
enough and we can k-colour it randomly in polynomial time3. Assuming that we
deal with such an instance, the algorithm works as follows:

Updates: Take a random colouring of G0. Colour the rest of the graph according
to the following inductive rule: Given that Gi is coloured Yi, so as to get Yi+1,
the colouring of Gi+1, we distinguish two cases

Case a: In the colouring of the graph Gi the vertices vi and ui are assigned
different colours (i.e. Yi(vi) �= Y (ui)).

Case b: In the colouring of the graph Gi the vertices vi and ui are assigned the
same colour (i.e. Yi(vi) = Y (ui)).

In the first case, we just set Yi+1 = Yi, i.e. Gi+1 gets the same colouring as Gi.
In the second case, we choose q uniformly at random among all the colours but
Yi(vi). Then we set Yi+1 equal to the q-switching of Yi. The q-switching is w.r.t.
the vertex vi.

With the above we conclude the description of the algorithm.
The reader may have observed that the switching does not necessarily provide

a k-colouring where the assignments of vi and ui are different. That is, it may
be that both vertices vi, ui belong to the disagreement graph. Then, after the
q-switching of Yi the colour assignments of vi and ui remain the same. We will
show, that such a situation is rare as long as k ≥ (1 + ε)d. Typically, after the
q-switching vi, ui get different colour assignments. The approximate nature of
the algorithm amounts exactly to the fact that on some, rare, occasions the
switching somehow fails4.

3 The Setting for the Analysis of the Algorithm

In this section we provide the setting for analyzing the algorithm.

Definition 3 (Good & Bad Colourings). Consider a graph G and let v, u
be two distinguished vertices in this graph. Let σ be a proper k-colouring of G.
We call σ a bad colouring w.r.t. the vertices v, u if σv = σu. Otherwise, we call
σ good.

The idea that underlies the algorithm, essentially, reduces the problem of
sampling to dealing with the following problem.

Problem 1. Consider the graph G and two non adjacent vertices v, u. Given a
bad random colouring of G w.r.t. v, u, turn it to a good random colouring, in
polynomial time.

3 The graph G0, typically, contains connected components of two kinds. The first one
is isolated vertices and the second one is simple cycles. Such graph can be randomly
coloured trivially. Whether the algorithm is polynomial time or not depends exactly
on whether G0 can be coloured randomly efficiently. For more details see in the full
version of this paper in [6].

4 For k ≤ d our analysis cannot guarantee that these are fails sufficiently rare.
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Consider two different colours c, q ∈ [k] and let Ωc,c and Ωq,c be the set of
colourings of G which assign the pair of vertices (v, u) colours (c, c) and (q, c),
respectively. Essentially, Problem 1 asks to find a mapping Hc,q : Ωc,c → Ωq,c,
for every pair of different colours (c, q), such that the following two hold: (A) If
Z is uniformly random in Ωc,c then Hc,q(Z) is uniformly random in Ωq,c. (B)
The computation of Hc,q(Z) can be accomplished in polynomial time.

For dealing with (A) an ideal, and to a great extent untrue, situation would
have been if Ωc,c and Ωq,c admitted a bijection and Hc,q was a bijection between
the two sets. Since, this situation is not expected to hold in general, our approach
is based on introducing an approximate bijection between Ωc,c and Ωq,c. That is,
we consider a mapping which is a bijection between two sufficiently large subsets
of Ωc,c and Ωq,c, respectively. Each of these two subsets will contain all but a
vanishing fraction of the colourings of the original sets.

To bemore specific, we assume thatHc,q represents the operation of q-switching
over the colourings inΩc,c, as we described in Section 2. Then, there are sufficiently
large sets Ω′

c,c ⊆ Ωc,c and Ω′
q,c ⊆ Ωq,c such that Hc,q is a bijection between Ω′

c,c

and Ω′
q,c. In particular, we show the following: For Z which is distributed uni-

formly at random in Ωc,c, Hc,q(Z) is distributed within total variation distance

max
{

Ωc,c\Ω′
c,c

Ωc,c
,
Ωq,c\Ω′

q,c

Ωq,c

}
from the uniform distribution over Ωq,c. That is, the

error we introduce depends on the relative size of the subset of colourings in Ωc,c

(resp. Ωq,c) for which Hc,q fails to be a bijection. The colourings in Ωc,c (resp.
Ωq,c) that cannot be included in Ω′

c,c (resp. Ω
′
q,c) are called pathological.

We estimate the accuracy of the algorithm by providing upper bounds on the
relative number of pathological colourings in Ωc,c and Ωq,c, respectively. It turns
out that the pathological colourings in Ωc,c (resp. Ωq,c) are exactly these ones
for which there is at least one path between v, u which is coloured only with c, q.
Applying a q-switching to a pathological colouring in Ωc,c we will get a new one
which assigns both v, u the colour q, i.e. the switching fails. Also, it is direct to
show that a pathological colouring in Ωq,c cannot be generated by q-switching
some colouring in Ωc,c.

3.1 Bounding the Error

The ratio
Ωc,c\Ω′

c,c

Ωc,c
,
(
resp.

Ωq,c\Ω′
q,c

Ωq,c

)
essentially expresses the probability of

getting a pathological colouring if we choose uniformly at random from Ωc,c

(resp. Ωq,c).
Assume that we choose u.a.r. from Ωc,c. For every path P that connects v, u

in the graph G, we let I{P} be the indicator variable which is one if the vertices
in the path P are coloured only with colours c, q5. It is elementary to verify that

Ωc,c\Ω′
c,c

Ωc,c
≤

∑
P

Pr
[
I{P} = 1

]
.

Of course the same holds for Ωq,c.

5 Observe that this is equivalent to having P in the disagreement graph Qq,c.
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In general, computing the probability Pr
[
I{P} = 1

]
exactly is a formidable

task. The challenging part in analyzing the performance of the algorithm is
to bound this probability as precisely as possible. In [8] we used the idea of
the so-called “Disagreement percolation” [3], illustrated in Figure 3. That is,
we consider a path P = (v, a, b, c, d, e, u). The vertices with the lines, in the
figure, are exactly these vertices which are adjacent to the path. So as to bound
the probability that P is coloured with c, q, we assume a worst case boundary
colouring for the lined vertices and fixed colouring for v, u6. That is, given the
fixed colourings we take a random colouring of the uncoloured vertices in the path
and estimate the probability that P is coloured using only c, q. Observe that the
exact probability is derived by considering an appropriate convex combination
of boundary conditions for the lined vertices.

v ua b c d e

Fig. 3. Boundary at distance 1 from the path

Considering the worst case boundary condition around P is too pessimistic.
Our improvement relies on dropping this assumption. The new approach is illus-
trated in Figure 4. Roughly speaking, we consider boundary conditions at the
vertices around P which are at graph distance r, where r is a sufficiently large
fixed number. We assume that the colouring of the vertices at the boundary is
still a worst case one. However, now we can exploit spatial mixing properties
of the Gibbs distributions. That is, the colouring of the distant vertices does
not bias the colour of the vertices in P by too much. The weak dependence
between the colourings of the vertices in the path and the boundary is achieved
by choosing sufficiently large r and k. This allows to estimate more accurately
the probability that the path P is 2-coloured.
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Fig. 4. Boundary at distance r from the path

6 The vertices v, u are coloured c
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4 Correlation Decay to Bound the Number
of Bichromatic Paths

In this section we provide a sketch of how do we use correlation decay to show
that the bichromatic paths between vi and ui are sufficiently rare. In what follows
we let k, d, ε as in the statement of Theorem 1.

To be more precise, the main task is the following one: Consider an instance
of G(n, d/n) conditional that the path P = (v0, . . . , vl) appears in the graph, for
some integer l > 0. Let X be a random k-colouring of the graph, and let DP be
the event that the path P is coloured only by the colours c, q ∈ [k] . Show that
for any positive integer l ≤ log2 n it holds that

Pr[DP ] ≤
(

1

(1 + ε/4)d

)l

. (1)

For more details of how do we use the above bound in the analysis of the algo-
rithm, see the full version in [6].

Observe that the probability term above is w.r.t. two levels of randomness.
The underlying random graph and the random colouring X . To this end, we
work as described in the following paragraphs.

Instead of revealing the whole graph, we restrict ourselves to revealing a small
area around the path P as well as the edges and vertices between this area and
the rest of the graph (outside the area). Let N denote this area around P 7 Also,
let ∂N be the set of vertices outside N which are adjacent to some vertex in N .

We consider the subgraph induced by N and ∂N . We are going to consider a
random k-colouring in this graph, conditional some worst case colouring at the
vertices in ∂N . That is, the colouring at ∂N maximizes the probability of the
event DP .

Now, essentially, we have to deal with the randomness of N and the worst
case colourings in ∂N . However, for the vast majority of the vertices in P their
neighbourhood (outside P ) will be a tree of sufficiently large height and maxi-
mum degree at most (1+ε/3)d+1. For such a good case of vertex v the boundary
colouring will be at a relatively large distance away from v and, essentially, it
won’t affect its colouring too much. For the exceptional vertices which do not
have such well behaved neighbourhood we are very pessimistic, i.e. we give the
vertex on the path the appropriate colour for free. The bad cases are expected to
be very rare. Somehow this setting reduces the randomness to considering how
many good (resp. bad) behaved neighbourhood we have along the path.

In what follows we describe in detail how do we consider the subgraph around
the path P . We use some integer parameter r > 0. Around each vertex vi ∈ P
we are going to reveal a subgraph of maximum radius r.

Area Around Path P. For each vertex vi ∈ P we need to define the sets
of vertices Ls(vi), for integer s such that 0 ≤ s ≤ r. By definition, we set
L0(vi) = {vi}. Also, we let Nr(vi) be the induced subgraph of G(n, d/n) which
contains the vertices

⋃r
s=0 Ls(vi).

7 N is a subgraph which also contains P .
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We are going to describe how do we get each Ls(vi), inductively. Given Ls(vi)
we get Ls+1(vi) by working as follows: Let Ri,s be the set that contains all the
vertices of G(n, d/n) but those which belong in the path P , those which belong
in

⋃
j≤s Lj(vi) and those which belong in Nr(vj), for j < i. The set Ls+1(vi)

contains (possibly all) neighbours that the vertices in Ls(vi) have in Ri,s.
Consider a specific (arbitrary) ordering of the vertices in Ri,s. For each vertex

u ∈ Ls(vi) we examine adjacency with the vertices in Ri,s in the predefined
order. We stop revealing once we either have revealed (1 + ε/3)d+1 neighbours
of u into Ri,s or if we have checked all the possible adjacencies of u with Ri,s

(whatever happens first). In both cases, the number of neighbours of u we reveal
is at most (1 + ε/3)d+ 1.

Once we have the sets Ls(vi), for 0 ≤ s ≤ r, it is direct to get the subgraph
Nr(vi). Ideally we would like each of these Nr(vi) to be a tree of sufficiently
small maximum degree8. Also, have would like these Nr(vi)s to not intersect
with each other. If any of these conditions is not true for some Nr(vi), then
Nr(vi) is considered Fail. To be more specific, once we the subgraphs Nr(vi),
for each 0 ≤ i ≤ l we let the following: Nr(vi) is Fail if at least one of the
following happens:

– The maximum degree in Nr(vi) is equal to (1 + ε/3)d+ 2.
– The graph Nr(vi) is not a tree.
– There is at least one integer j �= i such that some vertex w0 ∈ Nr(vj) is

adjacent to some vertex w1 ∈ Nr(vi), unless w0, w1 are consecutive vertices
in the path P .

Having specified Nr(vi) for every vi ∈ P , the sets N and ∂N are defined as
follows: The set ∂N contains the vertices vi ∈ P for which Nr(vi) is Fail and
the vertices at distance exactly r from vi for which Nr(vi) is not Fail. The set
N includes the vertices of the sets Nr(vi) which are not Fail and do not belong
to ∂N .

A vertex vi in the path is called disagreeing if the following holds: For i even,
the color of vi is c. For i odd, the colour is q . Let the event Di that “vi is
disagreeing”. Clearly it holds that

Pr [DP ] ≤ Pr
[∩l

i=1Di

]
. (2)

The proposition will follow by bounding appropriately Pr
[∩l

i=1Di

]
.

Let the event Ai, Bi, Ci be defined as follows: Ai = “Nr(xi) is Fail”. Bi =
“Nr(xi) is not Fail and xi is disagreeing”. Finally, Ci = Ai ∪ Bi. In the full
version of this work in [6] we get the following inequality

Pr
[∩l

i=1Di

] ≤ Pr
[∩l

i=1Ci

]
. (3)

The above inequality, which is easy to prove, somehow, follows from the discus-
sion at the beginning of this section. From (2) and (3) we get that

Pr [DP ] ≤
l∏

i=1

Pr
[
Ci| ∩i−1

j=1 Cj

] ≤
l∏

i=1

(
Pr

[
Ai| ∩i−1

j=1 Cj

]
+ Pr

[
Bi| ∩i−1

j=1 Cj

])
, (4)

8 Maximum degree at most (1 + ε/3)d + 1
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where the second inequality follows from a simple the union bound. Then, (1)
follows by bounding appropriately the rightmost part in (4).

For bounding the terms Pr
[
Ai| ∩i−1

j=1 Cj

]
we use the following lemma.

Lemma 1. Consider a sufficiently large fixed integer r > 0, independent of d.
Consider the set Nr(vj), for every vj ∈ P . For sufficiently large d it holds that

Pr [Nr(vi) is Fail |Nr(vj) for j �= i ] ≤ exp
(−ε2d/35

)
.

That is, it holds that

Pr
[
Ai| ∩i−1

j=1 Cj

] ≤ exp
(−ε2d/35

)
. (5)

For bounding the terms Pr
[
Bi| ∩i−1

j=1 Cj

]
we use the following spatial mixing

result.

Proposition 1. Let k, ε and d as in Theorem 1. Consider a path P = (v0, . . . , vl)
in G(n, d/n) such that Nr(vi) is not Fail. Let X be a random colouring of
G(n, d/n). Let M denote the set of vertices outside Nr(vi). For any proper
colouring σ of G(n, d/n) and any colour c ∈ [k]\{σvi−1 , σvi+1} it holds that

∣∣∣∣Pr[X(vi) = c|X(M) = σM ]− 1

k − tσ

∣∣∣∣ ≤
fε,r

k − tσ
,

where for a fixed ε > 0, fε,r > 0 is a decreasing function of r. Also, tσ is number
of different colours that σM uses for colouring vi−1 and vi+1.

Using the proposition above, we get that

Pr
[
Bi| ∩i−1

j=1 Cj

] ≤ 1

k − 2
+

fε,r
k − 2

,

where fε,r is defined in the statement of Proposition 1. Taking sufficiently large
d and r = r(ε) we bound appropriately the rightmost part of (4).
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