Andreas S. Schulz

Dorothea Wagner (Eds.)

ARCoSS

Algorithms -
ESA 2014

22nd Annual European Symposium
Wroclaw, Poland, September 8-10, 2014
Proceedings

LNCS 8737

- .- —

Lecture Notes in Computer Science 8737

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison, UK Takeo Kanade, USA

Josef Kittler, UK Jon M. Kleinberg, USA

Alfred Kobsa, USA Friedemann Mattern, Switzerland
John C. Mitchell, USA Moni Naor, Israel

Oscar Nierstrasz, Switzerland C. Pandu Rangan, India
Bernhard Steffen, Germany Doug Tygar, USA

Demetri Terzopoulos, USA
Gerhard Weikum, Germany

Advanced Research in Computing and Software Science

Subline of Lectures Notes in Computer Science

Subline Series Editors

Giorgio Ausiello, University of Rome ‘La Sapienza’, Italy

Vladimiro Sassone, University of Southampton, UK

Subline Advisory Board

Susanne Albers, University of Freiburg, Germany

Benjamin C. Pierce, University of Pennsylvania, USA
Bernhard Steffen, University of Dortmund, Germany

Deng Xiaotie, City University of Hong Kong

Jeannette M. Wing, Microsoft Research, Redmond, WA, USA

Andreas S. Schulz Dorothea Wagner (Eds.)

Algorithms —
ESA 2014

22nd Annual European Symposium
Wroclaw, Poland, September 8-10, 2014
Proceedings

@ Springer

Volume Editors

Andreas S. Schulz

Massachusetts Institute of Technology
Cambridge, MA, USA

E-mail: schulz@mit.edu

Dorothea Wagner

Karlsruhe Institute of Technology (KIT)
Karlsruhe, Germany

E-mail: dorothea.wagner @kit.edu

ISSN 0302-9743 e-ISSN 1611-3349

ISBN 978-3-662-44776-5 e-ISBN 978-3-662-44777-2
DOI 10.1007/978-3-662-44777-2

Springer Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014947982

LNCS Sublibrary: SL 1 — Theoretical Computer Science and General Issues

© Springer-Verlag Berlin Heidelberg 2014

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in ist current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

This volume contains the extended abstracts selected for presentation at ESA
2014, the 22nd European Symposium on Algorithms, held in Wroctaw, Poland,
September 8-10, 2014, as part of ALGO 2014. The ESA series of conferences
highlights recent developments in the design, analysis, engineering, and applica-
tion of algorithms and data structures. Information on past symposia, including
locations and LNCS volume numbers, is maintained at http://esa-symposium.org.

Ever since 2002, ESA has had two tracks, the Design and Analysis Track, aka
Track A, intended for papers on the design and mathematical analysis of algo-
rithms, and the Engineering and Application Track (Track B), for submissions
dealing with real-world applications, engineering, and experimental analysis of
algorithms. In response to the call for papers, the program committee for Track
A received 221 submissions, 11 of which were eventually withdrawn; the Track B
program committee got 48 submissions. With the help of more than 800 expert
reviews and more than 400 external reviewers, the two committees selected 69
papers for inclusion in the scientific program of ESA 2014, 57 in Track A and 12
in Track B.

In addition, the symposium featured invited lectures by Thomas Rothvof
(University of Washington, Seattle, USA) and Marc van Kreveld (Utrecht Uni-
versity, The Netherlands).

The European Association for Theoretical Computer Science, EATCS, spon-
sors a best student paper award and a best paper award at ESA. A submission is
eligible for the best student paper award if all authors were doctoral, master or
bachelor students at the time of submission. Joshua R. Wang received the best
student paper award for his work on “Space-Efficient Randomized Algorithms
for K-SUM”. The best paper award went to Pooya Davoodi, Jeremy T. Fine-
man, John Tacono, and Ozgiir Ozkan for their paper entitled “Cache-Oblivious
Persistence”.

We are extremely grateful to the members of our program committees, to the
external reviewers, to the local organizers, and to Cool Press Ltd., the company
that owns and runs EasyChair, for all their hard work, help and support. We
also thank Andreas Gemsa (Karlsruhe Institute of Technology, Germany) for his
assistance in putting together the proceedings.

July 2014 Andreas S. Schulz
Dorothea Wagner

Program Committee

Organization

Design and Analysis (Track A)

Ittai Abraham
Amihood Amir
Marek Cygan
Daniel Dadush
Ilias Diakonikolas
Michael Elkin
David Eppstein
Fabian Kuhn
Marc Lelarge
Maarten Loffler
Aleksander Madry
Daéniel Marx

Shay Mozes

Ofer Neiman
Arlindo Oliveira
Laura Sanita
Andreas Schulz (chair)
Anastasios Sidiropoulos
Rossano Venturini
Laszlé Végh

Jan Vondrik
David Woodruff
Rico Zenklusen

Microsoft Research Silicon Valley, USA
Bar-Ilan University, Israel
University of Warsaw, Poland

NYU, USA

University of Edinburgh, UK
Ben-Gurion University, Israel

UC Irvine, USA

University of Freiburg, Germany
Inria, France

Utrecht University, The Netherlands
EPFL, Switzerland

Hungarian Academy of Sciences, Hungary
IDC Herzliya, Israel

Ben-Gurion University, Israel
Lisbon University, Portugal
University of Waterloo, Canada
MIT, USA

Ohio State University, USA
University of Pisa, Italy

LSE, UK

IBM Research Almaden, USA

IBM Research Almaden, USA

ETH, Switzerland

Engineering and Applications (Track B)

Glencora Borradaile
Ulrik Brandes

Kevin Buchin
Markus Chimani
Edith Cohen
Giuseppe Di Battista
Dan Halperin
Andrea Lodi
Giacomo Nannicini

Oregon State University, USA

University of Konstanz, Germany

TU Eindhoven, The Netherlands

University of Osnabriick, Germany

Microsoft Research Silicon Valley, USA

Third University of Rome, Italy

Tel Aviv University, Israel

University of Bologna, Italy

Singapore University of Technology and Design,
Singapore

VIII Organization
Kirk Pruhs
Christian Sohler
Christian Sommer
Monique Teillaud
Takeaki Uno

Dorothea Wagner (chair)

Additional Reviewers

Abed, Fidaa
Adamczyk, Marek
Adjiashvili, David
Afshani, Peyman
Ahmadian, Sara
Aichholzer, Oswin
Ailon, Nir

Ajwani, Deepak
Aloupis, Greg

Amit, Mika

An, Hyung-Chan
Anagnostopoulos, Aris
Andoni, Alexandr
Angelini, Patrizio
Angelopoulos, Spyros
Antoniadis, Antonios
Anunciagao, Orlando
Araki, Tetsuya
Austrin, Per

Azar, Yossi

Ballard, Grey
Barenboim, Leonid
Bauer, Ulrich
Belovs, Aleksandrs
Ben Avraham, Rinat
Bevern, René Van
Beyer, Stephan
Bhaskar, Umang
Bhaskara, Aditya
Bhattacharya, Sayan
Bhattacharyya, Arnab
Biedl, Therese
Bienkowski, Marcin
Biro, Peter

University of Pittsburgh, USA
TU Dortmund, Germany
Cupertino, USA

Inria Sophia Antipolis, France

National Institute of Informatics Tokyo (NII),

Japan

Karlsruhe Institute of Technology (KIT),

Germany

Bliznets, Ivan
Blésius, Thomas
Bock, Adrian
Bodlaender, Hans L.
Bonichon, Nicolas
Bonnet, Frangois
Bonsma, Paul
Boria, Nicolas
Brauner, Nadia
Broutin, Nicolas
Buchin, Maike
Buriol, Luciana
Byrka, Jaroslaw
Cacchiani, Valentina
Cai, Leizhen

Cai, Yang
Calinescu, Gruia
Cao, Yixin

Carmi, Paz

Castelli Aleardi, Luca
Castro, Jorge
Cerulli, Raffaele
Chechik, Shiri
Chekuri, Chandra
Chen, Danny Z.
Chowdhury, Rezaul
Clementi, Andrea
Cohen, Ilan

Cohen, Sarel
Cohen-Steiner, David
Colin de Verdiere, Eric
Cornelsen, Sabine
Costa, Alberto
Cunial, Fabio

Da Lozzo, Giordano
Daum, Sebastian
De, Anindya

Dell, Holger

Della Vedova, Gianluca
Delling, Daniel
Demetrescu, Camil
Dereniowski, Dariusz
Devillers, Olivier

Di Bartolomeo, Marco
Di Giacomo, Emilio
Didimo, Walter
Dinitz, Michael
Dlotko, Pawel
Doerr, Benjamin
Doty, David
Driemel, Anne
Duret-Lutz, Alexandre
Edwards, John
Ehsanfar, Ebrahim
El Hallaoui, Issmail
Elbassioni, Khaled
Elkind, Edith
Englert, Matthias
Epstein, Leah
Evans, William
Even, Guy

Faenza, Yuri
Fagerberg, Rolf
Farczadi, Linda
Feldman, Michal
Feldman, Moran
Feldmann, Andreas
Fertin, Guillaume
Fischer, Johannes
Fischetti, Matteo
Fleiner, Tamas
Fleszar, Krzysztof
Francisco, Alexandre
Friedrich, Tobias
Friggstad, Zachary
Fuchs, Fabian

Fujie, Tetsuya
Fukunaga, Takuro
Gagie, Travis

Organization

Galanis, Andreas
Gasieniec, Leszek
Gaspers, Serge
Gavoille, Cyril
Georgiadis, Loukas
Gkatzelis, Vasilis
Gog, Simon
Goldberg, David
Grandoni, Fabrizio
Green Larsen, Kasper
Grossi, Roberto
Gupta, Anupam
Gutwenger, Carsten
Hackl, Thomas
Haghpanah, Nima
Hajiaghayi, Mohammadtaghi
Halldorsson, Magnus M.
Halldérsson, Magnis
Har-Peled, Sariel
Hardt, Moritz
Harks, Tobias
Hassidim, Avinatan
Hedtke, Ivo
Heeringa, Brent
Hermelin, Danny
Hoefer, Martin

Hoy, Darrell

Huang, Chien-Chung
Huang, Zhiyi

Huber, Stefan

Hohn, Wiebke
Hgyer, Peter

Tacono, John

Im, Sungjin
Imahori, Shinji
Italiano, Giuseppe F.
Ito, Takehiro

Jacob, Riko

Jaillet, Patrick
Jaklin, Norman
Jansen, Bart M.P.
Jerrum, Mark

Jez, Lukasz

Jin, Ruoming
Kamei, Sayaka

X

X Organization

Kaminski, Marcin
Kamma, Lior

Kane, Daniel
Kaplan, Haim
Kapralov, Michael
Karrenbauer, Andreas
Katoh, Naoki
Kavitha, Telikepalli
Kerber, Michael
Kern, Walter
Kesselheim, Thomas

Khandwawala, Mustafa

Khanna, Neelesh
Kierstad, Hal

Kim, Eun Jung
Kiraly, Tamas

Kiss, Sdndor

Klein, Kim-Manuel
Klein, Shmuel Tomi
Knauer, Christian
Knust, Sigrid
Kobayashi, Koji M.
Kobayashi, Yusuke
Koike, Atsushi
Komosa, Pawet
Kontogiannis, Spyros
Kopelowitz, Tsvi
Kopparty, Swastik
Kortsarz, Guy
Korula, Nitish
Koutis, Ioannis
Kowalik, Lukasz
Kowalski, Dariusz
Kral, Daniel
Kranakis, Evangelos
Krauthgamer, Robert
Kreutzer, Stephan
Kriege, Nils
Krinninger, Sebastian
Kucherov, Gregory
Kumar, Amit
Karkkéainen, Juha
Kohler, Ekkehard
Laekhanukit, Bundit
Laguna, Pablo

Lampis, Michael
Larkin, Daniel

Le, Hung

Leconte, Mathieu
Lee, Troy

Levin, Asaf

Lewi, Kevin

Li, Fei

Li, Shi

Liberti, Leo

Lim, Sejoon

Lodi, Andrea
Lokshtanov, Daniel
Lopez-Ortiz, Alejandro
Louis, Anand
Lovett, Shachar
Lucarelli, Giorgio
Ludovica, Adacher
M.S., Ramanujan
Mach, Lukas
Mahini, Hamid
Makowsky, Johann
Malec, David
Mambelli, Francesco
Maneva, Elitza
Manocha, Dinesh
Mastrolilli, Monaldo
Mathieu, Claire
Matuschke, Jannik
Mccauley, Samuel
McGregor, Andrew
Megow, Nicole
Mestre, Julian
Meyer, Ulrich
Mihaldk, Matus
Miltersen, Peter Bro
Mitani, Jun

Mittal, Shashi
Miyamoto, Yuichiro
Mnich, Matthias
Moldenhauer, Carsten
Mori¢, Filip
Mosteiro, Miguel
Mucha, Marcin
Mueller, Rudolf

Mulzer, Wolfgang
Nayyeri, Amir
Nederlof, Jesper
Nekrich, Yakov
Newport, Calvin
Nguyen, Huy
Nguyen, Thanh
Nicosia, Gaia
Niedermann, Benjamin
Nikolov, Aleksandar
Nollenburg, Martin
Okamoto, Yoshio
Olver, Neil

Orlin, James

Osipov, Vitaly
Ossona De Mendez, Patrice
Ottaviano, Giuseppe
Oveis Gharan, Shayan
Ozkan, Ozgur

Pajor, Thomas
Panagiotou, Konstantinos
Panahi, Fateneh
Panigrahi, Debmalya
Paparas, Dimitris
Parriani, Tiziano
Parter, Merav
Paschos, Vangelis
Pasqualetti, Fabio
Pathak, Vinayak
Patil, Manish
Paulusma, Daniel
Peis, Britta

Pettie, Seth

Pfetsch, Marc
Phillips, Jeff
Piliouras, Georgios
Pilipczuk, Marcin
Pilipczuk, Michal
Pilz, Alexander
Poggi, Marcus
Poloczek, Matthias
Pontarelli, Salvatore
Porat, Ely

Pszona, Pawel
Puglisi, Simon

Organization

Pérennes, Stéphane
Radhakrishnan, Jaikumar
Raj Tiwary, Hans
Raman, Rajeev
Ranade, Abhiram
Rao, Michael
Rebennack, Steffen
Reem, Daniel
Reidl, Felix

Reyzin, Lev
Roditty, Liam
Roeloftzen, Marcel
Roma, Nuno
Roselli, Vincenzo
Rote, Giinter
Russo, Luis

Rusu, Irena

Rutter, Ignaz
Roglin, Heiko

Saha, Barna

Saitoh, Toshiki
Sankowski, Piotr
Sarne, David
Sasakawa, Hirohito
Saumell, Maria
Saurabh, Saket
Schmid, Stefan
Schmidt, Daniel
Schwartz, Roy
Schwiegelshohn, Chris
Sen, Siddhartha
Shah, Rahul
Shaharabani, Doron
Shalev-Schwartz, Shai
Shannigrahi, Saswata
Shapira, Dana
Sharma, Ankit
Shioura, Akiyoshi
Silveira, Rodrigo
Singer, Yaron
Sinha, Amitabh
Sioutas, Spyros
Sitters, Rene

Sly, Allan

Smid, Michiel

XI

XII Organization

Solomon, Shay

Son, Wanbin

Soto, Jose A.
Speckmann, Bettina
Spieksma, Frits
Srivastava, Piyush
Staals, Frank
Stefankovic, Daniel
Stein, Clifford
Storandt, Sabine
Strash, Darren
Strasser, Ben
Straszak, Damian
Streib, Noah

Sun, He

Sun, Xiaorui
Svensson, Ola
Swamy, Chaitanya
Tamir, Tami
Tarnawski, Jakub
Thankachan, Sharma V.
Thomopulos, Dimitri
Thorup, Mikkel
Tokuyama, Takeshi
Torng, Eric

Tripathi, Pushkar
Tsakalidis, Konstantinos
Tsichlas, Kostas
Tsur, Dekel

Tzamos, Christos
Uetz, Marc

Uno, Takeaki

Van Den Heuvel, Jan
Van Kreveld, Marc
van Leeuwen, Erik Jan
van Stee, Rob

van Zuylen, Anke
Vardi, Shai

Vassilevska Williams, Virginia
Venkatasubramanian, Suresh

Verbeek, Kevin
Verbitsky, Oleg
Verschae, José
Vigneron, Antoine
Viola, Emanuele

Viswanathan, Krishnamurthy

von Heymann, Frederik
Wagner, Uli
Wahlstrém, Magnus
Walen, Tomasz
Wang, Haitao
Wang, Yusu

Wang, Zhenbo
Weimann, Oren
Wenk, Carola
Werneck, Renato
Wieder, Udi
Wiedermann, Jiri
Wiese, Andreas
Wilkinson, Bryan T.
Wollan, Paul
Woods, Damien
Xie, Ning
Yamashita, Masafumi
Yannakakis, Mihalis
Yasuda, Norihito
Yasui, Yuichiro

Yeo, Anders

Yin, Yitong

Young, Neal

Yun, Se-Young
Zambelli, Giacomo
Zehendner, Elisabeth
Zhang, Qin

Zheng, Baigong
Zhou, Yuan

Zhu, Pingan
Ziv-Ukelson, Michal
Zwick, Uri

Zych, Anna

Table of Contents

Losing Weight by Gaining Edges i it
Amir Abboud, Kevin Lewi, and Ryan Williams

Optimal Coordination Mechanisms for Multi-job Scheduling Games
Fidaa Abed, José R. Correa, and Chien-Chung Huang

Theory and Practice of Chunked Sequences
Umut A. Acar, Arthur Charguéraud, and Mike Rainey

Convex Hulls under Uncertainty
Pankaj K. Agarwal, Sariel Har-Peled, Subhash Suri,
Hakan Yildiz, and Wuzhou Zhang

The Space-Stretch-Time Tradeoff in Distance Oracles.................
Rachit Agarwal

Distribution-Sensitive Construction of the Greedy Spanner
Sander P.A. Alewijnse, Quirijn W. Bouts, and Alex P. ten Brink

Recognizing Shrinkable Complexes is NP-Complete...................
Dominique Attali, Olivier Devillers, Marc Glisse, and Sylvain Lazard

Improved Approximation Algorithms for Box Contact
Representations. i
Michael A. Bekos, Thomas C. van Dijk, Martin Fink,
Philipp Kindermann, Stephen Kobourov, Sergey Pupyrev,
Joachim Spoerhase, and Alexander Wolff

Minimum Partial-Matching and Hausdorff RMS-Distance under

Translation: Combinatorics and Algorithms
Rinat Ben-Avraham, Matthias Henze, Rafel Jaume, Baldzs Keszegh,
Orit E. Raz, Micha Sharir, and Igor Tubis

The Batched Predecessor Problem in External Memory
Michael A. Bender, Martin Farach-Colton, Mayank Goswami,
Dzejla Medjedovic, Pablo Montes, and Meng-Tsung Tsasi

Polynomial Decompositions in Polynomial Time
Arnab Bhattacharyya

Fault-Tolerant Approximate Shortest-Path Trees
Davide Bilo, Luciano Guala, Stefano Leucci, and Guido Proietti

13

25

37

49

61

74

87

X1V Table of Contents

Fast Witness Extraction Using a Decision Oracle..................... 149
Andreas Bjorklund, Petteri Kaski, and Lukasz Kowalik

Complexity of Higher-Degree Orthogonal Graph Embedding in the
Kandinsky Model 161
Thomas Blisius, Guido Brickner, and Ignaz Rutter

A Subexponential Parameterized Algorithm for Proper Interval

Completiont 173
Ivan Bliznets, Fedor V. Fomin, Marcin Pilipczuk, and
Michat Pilipczuk

Computing Persistent Homology with Various Coefficient Fields in a
Single Passo 185

Jean-Daniel Boissonnat and Clément Maria

De-anonymization of Heterogeneous Random Graphs in Quasilinear
e . oo e 197
Karl Bringmann, Tobias Friedrich, and Anton Krohmer

Competitive Algorithms for Restricted Caching and Matroid Caching ... 209
Niv Buchbinder, Shahar Chen, and Joseph (Seffi) Naor

Improved Algorithms for Resource Allocation under Varying

Capacity . . oo 222
Venkatesan T. Chakaravarthy, Anamitra Roy Choudhury,
Shalmoli Gupta, Sambuddha Roy, and Yogish Sabharwal

Nearly Tight Approximability Results for Minimum Biclique Cover and
Partition. 235
Parinya Chalermsook, Sandy Heydrich, Eugenia Holm, and
Andreas Karrenbauer

Succinct Indices for Path Minimum, with Applications to Path
Reportingo 247
Timothy M. Chan, Meng He, J. Ian Munro, and Gelin Zhou

Online Bipartite Matching with Decomposable Weights 260
Moses Charikar, Monika Henzinger, and Huy L. Nguyén

A Faster Algorithm for Computing Straight Skeletons 272
Siu-Wing Cheng, Liam Mencel, and Antoine Vigneron

Optimal Time-Space Tradeoff for the 2D Convex-Hull Problem 284
Omar Darwish and Amr Elmasry

Cache-Oblivious Persistence SERERE EEEEE 296
Pooya Davoodi, Jeremy T. Fineman, John Iacono, and Ozgir Ozkan

Table of Contents XV

Lightweight Approximate Selection............ 309
Brian C. Dean, Rommel Jalasutram, and Chad Waters

Robust Distance Queries on Massive Networks 321
Daniel Delling, Andrew V. Goldberg, Thomas Pajor, and
Renato F. Werneck

A Dynamic Data Structure for MSO Properties in Graphs with
Bounded Tree-Depth 334
Zdenék Dvordk, Martin Kupec, and Vojtéch Tuma

Large Independent Sets in Triangle-Free Planar Graphs 346
Zdenék Dvordak and Matthias Mnich

GRASP. Extending Graph Separators for the Single-Source
Shortest-Path Problem 358
Alexandros Efentakis and Dieter Pfoser

Switching Colouring of G(n,d/n) for Sampling up to Gibbs Uniqueness
Threshold 371
Charilaos Efthymiou

From Graph to Hypergraph Multiway Partition: Is the Single Threshold
the Only Route? F 382
Alina Ene and Huy L. Nguyén

Deterministic Stateless Centralized Local Algorithms for Bounded
Degree Graphs.ot 394
Guy Fven, Moti Medina, and Dana Ron

Bicriteria Data Compression: Efficient and Usable.................... 406
Andrea Farruggia, Paolo Ferragina, and Rossano Venturini

Amortized O(|V|)-Delay Algorithm for Listing Chordless Cycles in

Undirected Graphs e 418
Rui Ferreira, Roberto Grossi, Romeo Rizzi, Gustavo Sacomoto, and
Marie-France Sagot

LP Approaches to Improved Approximation for Clique Transversal in

Perfect Graphs 430
Samuel Fiorini, R. Krithika, N.S. Narayanaswamy, and
Venkatesh Raman

Representative Sets of Product Families............................. 443
Fedor V. Fomin, Daniel Lokshtanov, Fahad Panolan, and
Saket Saurabh

XVI Table of Contents

Weighted Ancestors in Suffix Trees
Pawel Gawrychowski, Moshe Lewenstein, and Patrick K. Nicholson

Improved Practical Matrix Sketching with Guarantees
Mina Ghashami, Amey Desai, and Jeff M. Phillips

Computing Regions Decomposable into m Stars
Matt Gibson, Kasturi Varadarajan, and Xiaodong Wu

The Parameterized Complexity of Graph Cyclability
Petr A. Golovach, Marcin Kamirniski, Spyridon Maniatis, and
Dimitrios M. Thilikos

Dimension Reduction via Colour Refinement
Martin Grohe, Kristian Kersting, Martin Mladenov, and
Erkal Selman

How Experts Can Solve LPs Online on...
Anupam Gupta and Marco Molinaro

Parameterized Complexity of the k-Arc Chinese Postman Problem
Gregory Gutin, Mark Jones, and Bin Sheng

Approximating the Maximum Overlap of Polygons under Translation . . .
Sariel Har-Peled and Subhro Roy

Ordering without Forbidden Patterns.........
Pavol Hell, Bojan Mohar, and Arash Rafiey

Halving Balls in Deterministic Linear Time..........................
Michael Hoffmann, Vincent Kusters, and Tillmann Miltzow

Turing Kernelization for Finding Long Paths and Cycles in Restricted
Graph Classesot
Bart M.P. Jansen

Optimal Parallel Quantum Query Algorithms...............
Stacey Jeffery, Frederic Magniez, and Ronald de Wolf

Sublinear Space Algorithms for the Longest Common Substring
Problem
Tomasz Kociumaka, Tatiana Starikovskaya, and Hjalte Wedel Vildhgj

Nested Set Union e e
Daniel H. Larkin and Robert E. Tarjan

Improved Explicit Data Structures in the Bitprobe Model
Moshe Lewenstein, J. Ian Munro, Patrick K. Nicholson, and
Venkatesh Raman

467

480

492

505

o917

530

542

554

566

979

592

605

618

630

Table of Contents XVII

Deeper Local Search for Better Approximation on Maximum Internal
Spanning Treest 642
Wengun Li, Jianer Chen, and Jianzin Wang

FPTAS for Counting Weighted Edge Covers 654
Jingcheng Liu, Pinyan Lu, and Chihao Zhang

Solving MULTICUT Faster than 2™......... 666
Daniel Lokshtanov, Saket Saurabh, and Ondrej Suchy

Tight Bounds for Active Self-assembly Using an Insertion Primitive 677
Caleb Malchik and Andrew Winslow

Trace Reconstruction Revisited i ... 689
Andrew McGregor, Eric Price, and Sofya Vorotnikova

PReaCH: A Fast Lightweight Reachability Index Using Pruning and
Contraction Hierarchies 701
Florian Merz and Peter Sanders

Polynomial-Time Approximation Schemes for Circle Packing

Problems 713
Flavio K. Miyazawa, Lehilton L.C. Pedrosa, Rafael C.S. Schouery,
Mazxim Sviridenko, and Yoshiko Wakabayashi

Document Retrieval on Repetitive Collections 725
Gonzalo Navarro, Stmon J. Puglisi, and Jouni Sirén

An Improved Analysis of the Momke-Svensson Algorithm for
Graph-TSP on Subquartic Graphs oo... 737
Alantha Newman

The Input/Output Complexity of Sparse Matrix Multiplication 750
Rasmus Pagh and Morten Stockel

Faster FPTASes for Counting and Random Generation of Knapsack
SOLULIONS .« .t 762
Romeo Rizzi and Alexandru I. Tomescu

Improved Guarantees for Tree Cut Sparsifiers........................ 774
Harald Ricke and Chintan Shah

Representative Families: A Unified Tradeoff-Based Approach 786
Hadas Shachnai and Meirav Zehavi

A Branch and Price Procedure for the Container Premarshalling
Problem 798
Martign van Brink and Ruben van der Zwaan

XVIII Table of Contents

Space-Efficient Randomized Algorithms for K-SUM 810
Joshua R. Wang

Equivalence between Priority Queues and Sorting in External
MEMOTY ..ottt 830
Zhewei Wei and Ke Yi

Amortized Bounds for Dynamic Orthogonal Range Reporting.......... 842
Bryan T. Wilkinson

Author Index 857

Losing Weight by Gaining Edges

Amir Abboud, Kevin Lewi, and Ryan Williams

Computer Science Department, Stanford University, Stanford, CA, USA

Abstract. We present a new way to encode weighted sums into un-

weighted pairwise constraints, obtaining the following results.

— Define the k-SUM problem to be: given n integers in [—n?* n?¥]
are there k& which sum to zero? (It is well known that the same
problem over arbitrary integers is equivalent to the above definition,
by linear-time randomized reductions.) We prove that this definition
of k-SUM remains W([1]-hard, and is in fact W[1]-complete: k-SUM
can be reduced to f(k)-n°®) instances of k-Clique.

— The maximum node-weighted k-Clique and node-weighted
k-dominating set problems can be reduced to n°*) instances of the
unweighted k-Clique and k-dominating set problems, respectively.
This implies a strong equivalence between the time complexities of
the node weighted problems and the unweighted problems: any poly-
nomial improvement on one would imply an improvement for the
other.

— A triangle of weight 0 in a node weighted graph with m edges can
be deterministically found in m**! time.

1 Introduction

One of the most basic problems over integers, studied in geometry, cryptography,
and combinatorics, is k-SUM, the parameterized version of the classical NP-
complete problem SUBSET-SUM.

Definition 1.1 (k-SUM). The (k, M)-SUM problem is to determine, given n
integers x1,...,xn € [0, M] and a target integer t € [0, M], if there exists a
subset S C [n] of size |S| = k such that Y ,cqx; = t. ' We define k-SUM £
(k,n?F)-SUM.

Our definition of k-SUM is justified via the following known proposition:

Proposition 1.2. Fvery instance S of (k, M)-SUM can be randomly reduced in
O(knlog M) time to an instance S’ of k-SUM as defined above.

That is, there is an efficient randomized reduction from k-SUM over arbitrary
integers, which we call k-SUM-Z, to our definition of k-SUM. Furthermore, we

! Without loss of generality, the range of integers can be [—M, M] and the target
integer can be zero.

A.S. Schulz and D. Wagner (Eds.): ESA 2014, LNCS 8737, pp. 1-12, 2014.
(© Springer-Verlag Berlin Heidelberg 2014

2 A. Abboud, K. Lewi, and R. Williams

show in the full version that this reduction can be made deterministic under
standard hardness assumptions.

A classical meet-in-the-middle algorithm solves k-SUM in O(n/*/21) time and
it has been a longstanding open problem to obtain an O(n[’“/ 21*5) algorithm for
any integer £ > 3 and constant € > 0. Logarithmic improvements are known
for the k = 3 case [5,18] (that is, the famous 3-SUM problem). The k-SUM
conjecture [25,1] states that k-SUM requires n/*/21=°() time and is known to
imply tight lower bounds for many problems in computational geometry [17,19,6]
(and many more) and has recently been used to show conditional lower bounds
for discrete problems as well [25,29,21,2]. A matching 2(n[*/21) lower bound for
k-SUM was shown for a restricted model of computation called k-linear decision
trees (LDTs) [15,3], although it was recently shown that depth O(n*/2\/logn)
suffices for (2k — 2)-LDTs [18]. It is also known that if there is an unbounded
function s : N — N such that for infinitely many k, k-SUM is in n*/*(®) then
the Exponential Time Hypothesis is false [26].

Despite intensive research on this simple problem, our understanding is still
lacking in many ways, one of which is from the viewpoint of parameterized
complexity. In their seminal work on parameterized intractability, Downey and
Fellows [12,13] proved that k-SUM-Z is W[1]-hard and is contained in W[P]. The
even simpler Perfect Code problem was conjectured to lie between the classes
WI(1] and WI2] [13] until Cesati proved it was W[1]-complete in 2002 [10]. Clas-
sifying k-SUM-Z within a finite level of the W-hierarchy was open until in 2007,
when Buss and Islam [8] proved that k-SUM-Z € W([3].

The primary contribution of this work is a novel and generic way to efficiently
convert problems concerning sums of numbers into problems on unweighted pair-
wise constraints. We call this technique “Losing weight by gaining edges” and
report several interesting applications of it. One application is a new parame-
terized reduction from k-SUM to k-Clique and therefore the resolution of the
parameterized complexity of k-SUM (for numbers in [—n2* n?*]). Under stan-
dard lower bound hypotheses, we also obtain a deterministic reduction from
k-SUM-Z to k-Clique as well.

Theorem 1.3. k-SUM is W[1]-complete.

The significance of showing W/[1]-hardness for a problem is well known (as
it rules out FPT algorithms). The significance of showing that a problem is in
WI(1] is less obvious, so let us provide some motivation. First, although W/[1]-
complete problems are probably not FPT, prominent problems in W[1] (such as
k-Clique) can still be solved substantially faster than exhaustive search over all
(%) subsets [23]. In contrast, analogous problems in W[2] (such as k-Dominating
Set) do not have such algorithms unless CNF Satisfiability is in 29" time for
some § < 1 [26], which is a major open problem in exact algorithms. There-
fore, understanding which parameterized problems lie in W[1] is closely related
to understanding which problems can be solved faster than exhaustive search.
Second, showing that a problem is in W[1] rather than W[3] means that it can be
expressed in an apparently weaker logic than before, with fewer quantifiers [16].

Losing Weight by Gaining Edges 3

That is, putting a problem in W[1] decreases the descriptive complexity of the
problem.

Theorem 1.3 has applications to parameterized complexity, yielding a new char-
acterization of the class W[1] as the problems FPT-reducible to k-SUM. Since
k-SUM is quite different in nature from the previously known W/[1]-complete prob-
lems, we are able to put other such “intermediate” problems in W[1], including
weighted graph problems and problems with application to coding theory such as
Weight Distribution [9] (for which the details are given in the full version).

To show that k-SUM € W([1], we prove a very tight reduction from k-SUM to
k-Clique. Given an instance of k-SUM on n numbers, we generate f(k) - n°()
instances of k-Clique on n node graphs, such that one of these graphs contains a
k-clique if and only if our k-SUM instance has a solution. This implies that any
algorithm for k-Clique running in time O(n°¢) for some ¢ > 2 yields an algorithm
for k-SUM running in time n°t°1), Hence, the k-SUM conjecture implies an
nlk/21=0(1) Jower bound for k-Clique as well.

Generalizing our ideas further, we are able to prove surprising consequences
regarding other weighted problems.

Removing Node Weights. Two fundamental graph problems are k-Clique
and k-Dominating Set. Natural extensions of these problems allow the input
graph to have weights on its nodes. The problem can then be to find a k-clique
or a k-dominating set of minimum or maximum sum of node weights (the min
and maz versions), or to find a k-clique or a k-dominating set with total weight
exactly O (the ezact version, defined below).

Definition 1.4 (The Node-Weight k-Clique-Sum Problem). For integers
k,M > 0, the (k, M)-NW-CLIQUE problem is to determine, given a graph G, a
node-weight function w : V(G) — [0, M], and a target weight t € [0, M], if there
is a set S of k nodes which form a clique such that) qw(v) =t. We define
the Node- Weight k-Clique-Sum problem as (k,n?*)-NW-CLIQUE.

Definition 1.5 (Node-Weight k-Dominating-Set-Sum). For an integer k >
0, the Node- Weight k-Dominating-Set-Sum problem is to determine, given a graph
G, a node-weight function w : V(G) — [0,n%*], and a target weight t € [0,n2k], if
there is a set S of k nodes which form a dominating set such that) g w(v) = t.

These additional node weights increase the expressibility of the problem and
allow us to capture more applications. How much harder are these node weighted
versions compared to the unweighted versions? By weight scaling arguments, one
can show that the “exact” version is harder than the max and min versions, in
the sense that any algorithm for “exact” implies an algorithm for max or min
with only a logarithmic overhead [22] (and Theorem 3.3 in [29]). But how much
harder is (for example) Node-Weight k-Clique-Sum than the case where there
are no weights at all?

For k divisible by 3, the best k-Clique algorithms reduce the problem to
3-Clique on n*/? nodes, then use an O(n*) time algorithm for triangle de-
tection [20] for a running time of O(n**/3) [23]. This reduction to the k =

4 A. Abboud, K. Lewi, and R. Williams

3 case works for the node weighted case as well; combined with the recent
n@T°() algorithms for node weighted triangle (3-clique) problems [11,29], we
obtain n**/3+°(1) running times for node weighted k-clique problems. The best
k-Dominating Set algorithms reduce the problem to a rectangular matrix mul-
tiplication of matrices of dimensions n*/2 x n and n x n*/? and run in time
pkto() [14]. These algorithms allow us to find all k-dominating sets in the graph
and therefore can also solve the node weighted versions without extra cost.

Therefore, the state of the art algorithms for k-Clique and k-Dominating Set
suggest that adding node weights does not make the problems much harder. Is
that due to our current algorithms for the unweighted problems, or is there a
deeper connection? Using the “Losing weight by gaining edges” ideas, we show
that the node weighted versions of k-Clique and k-Dominating Set (and, in fact,
any problem that allows us to implement certain “pairwise constraints”) are
essentially “equivalent” to the unweighted versions.

Theorem 1.6. If k-Cliqgue on n node and m edge graphs can be solved in time
T(n,m, k), then Node-Weight k-Clique-Sum on n node and m edge graphs can
be solved in time n°M) “T(kn, k*m, k). If k-Dominating Set on n node graphs can
be solved in time T'(n, k), then Node-Weight k-Dominating-Set on n node graphs
can be solved in time n°Y) - T(k?n, k).

Interestingly, Theorem 1.6 yields a short and simple n**t°() algorithm for
the node-weighted triangle problems, while a series of papers were required to
recently conclude the same upper bound using different techniques [28,30,11,29].
Moreover, unlike the previous techniques, our approach extends to & > 3 and
applies to more problems like k-Dominating Set.

Applying Theorem 1.6 to the O(m wzrl) triangle detection algorithm of Alon,
Yuster and Zwick [4], we obtain a deterministic algorithm for Node-Weight
Triangle-Sum in sparse graphs, improving the previous n«+°() upper bound [29]
and matching the running time of the best randomized algorithm [29].

Corollary 1.7. Node-Weight Triangle-Sum can be solved deterministically in
mlA41+0(1) time.

1.1 Overview of the Proofs

Let us give some intuition for Theorem 1.3. Both the containment in W[1] and
the hardness for WJ[1] require new technical ideas. Downey and Fellows [12,13]
proved that k-SUM-Z is W[1]-hard by a reduction requiring fairly large numbers:
they are exponential in n, but can still be generated in an FPT way. To prove
that k-SUM is W[1]-hard even when the numbers are only exponential in klogn,
we need a much more efficient encoding of k-Clique instances. We apply some
machinery from additive combinatorics, namely a construction of large sets of
integers avoiding trivial solutions to the linear equation Zi:ll x; = (k—1)xy [24].
These sets allow us to efficiently “pack” a k-Clique instance into a ((g) +k)-SUM
instance on small numbers.

Losing Weight by Gaining Edges 5

Proving that k-SUM is in W][1] takes several technical steps. We provide a
parameterized reduction from k-SUM on n numbers to only f(k)-n°™) graphs
on O(kn) nodes, such that some graph has a k-clique if and only if the orig-
inal n numbers have a k-SUM. To efficiently reduce from numbers to graphs,
we first reduce the numbers to an analogous problem on vectors. We define an
intermediate problem (k, M)-VECTOR-SUM, in which one is given a list of n vec-
tors from {—kM,...,0,...,kM}? and is asked to determine if there are k vec-
tors which sum to the all-zero vector. We give an FPT reduction from k-SUM
to (k, M)-VECTOR-SUM where M and d are “small” (such that M9 is approxi-
mately equal to the original weights of the k-SUM instance). Next, we “push”
the weights in these vectors onto the edges of a graph connecting the vectors,
where the edge weights are much smaller than the original numbers: we re-
duce from (k, M)-VECTOR-SUM to edge-weighted k-clique-sum using a polynomial
“squaring trick” which creates a graph with “small” edge weights, closely related
in size to M. Finally, we reduce from the weighted problem to the unweighted
version of the problem by brute-forcing all feasible weight combinations on the
edges; as the edge weights are small, this creates f(k) -n°M) unweighted k-Clique
instances for some function f.

Combining all these steps into one, one can view our approach as follows. We
enumerate over all (};) -tuples of numbers ¢ = (c; ;) je(x) such that 3, s a;; =0
where «; ; € [-M,M] for M = f(k) - polylogn, and for each such tuple t we
generate an instance of the unweighted problem. In this instance, two nodes are
allowed to both be a part of our final solution (e.g. there is an edge between
them in the k-clique case) if and only if some expression on the weights of the
objects v; and v; evaluates to F(w(v;),w(v;)) = @, ;. The formulas are defined,
via the “squaring trick”, in such a way that there are k£ nodes satisfying these
(g) equations for some (g)—tuple t if and only if the sum of the weights of these
k nodes is 0.

To implement our approach for k-Dominating Set we follow similar steps,
except that we cannot implement the constraints on having a certain pair of
objects in our solution by removing the edge between them anymore, since this
does not prevent them from being in a feasible k-dominating set. This can be
done, however, by adding extra nodes X to the graph such that the inclusion
of pairs of nodes v;,v; in the solution S that do not satisfy our equations,
F(w(v;), w(v;)) # o j, will prevent S from dominating all the nodes in X.

1.2 Related Work

There has been recent work in relating the complexity of k-SUM and variations
of k-Clique for the specific case of k = 3. Patragcu [25] shows a tight reduction
from 3-SUM to listing 3-cliques; a reduction from listing 3-cliques to 3-SUM is
given by Jafargholi and Viola [21]. Vassilevska and Williams [29] consider the
exact edge-weight 3-clique problem and give a tight reduction from 3-SUM. For
the case of k > 3, less is known, as the techniques used for the case of k = 3
do not seem to generalize easily. Abboud and Lewi [1] give reductions between

6 A. Abboud, K. Lewi, and R. Williams

k-SUM and various exact edge-weighted graph problems where the goal is to
find an instance of a specific subgraph whose edge weights sum to 0.

2 Preliminaries

For i < j € Z, define [i,j] = {4,...,7}. As shorthand, we define [n] £ [1,n]. For
a vector v € Z4, we denote by v[j] the value in the j*® coordinate of v. We let
0 denote the all zeros vector. The default domain and range of a function is N.

We define the k-Clique problem as follows.

Definition 2.1 (The k-Clique Problem). For integers k,n,m > 0, the k-
clique problem is to determine, given a graph G, if there is a size-k subset S C [n]
such that S is a clique in G.

The following problems are referred to in Corollary 3.8. They are simply the
unparameterized versions of k-SUM and Exact Edge-Weight k-Clique, respec-
tively.

Definition 2.2 (The Subset-SUM Problem). The Subset-SUM problem is
to determine, given a set of integers x1,...,xn,t, if there exists a subset S C [n]
such that) ,cqx; =t.

Definition 2.3 (The Exact Edge-Weight Clique Problem). For integers
n,m, M > 0, the Exact Edge- Weight k-Clique problem is to determine, given an
instance of a graph G on n vertices and m edges, a weight function w : E(G) —
[— M, M], if there exists a set of nodes which form a clique with total weight 0.

3 From Numbers to Edges

Our results begin by showing how to reduce k-SUM to k-Clique. To do this, we
first give a new reduction from k-SUM to k-Vector-Sum on n vectors in C? for a
set C which is relatively small compared to the numbers in the original instance.
From k-Vector-Sum, we give a reduction to Edge-Weight k-Clique-Sum with
small weights. Then, we can brute-force all possibilities for the (’;) edge weights
for k-SUM and reduce to the (unweighted) k-Clique problem. Altogether, we
conclude that £-SUM is in W[1].

3.1 Reducing k-SUM to k-Vector-Sum

We present a generic way to map numbers into vectors over small numbers such
that the k-sums are preserved. We define the k-Vector-Sum problem as follows.

Definition 3.1 (The k-Vector-Sum Problem). For integers k,n,M,d >
0, the k-vector-sum problem (k, M)-VECTOR-SUM is to determine, given vectors
Vi,...,Vn,t €[0,kM]?, if there is a size-k subset S C [n] such that Y ;g v; = t.

Losing Weight by Gaining Edges 7

Note that the problem was considered by Bhattacharyya et al. [7] and also by
Cattaneo and Perdrix [9].

Lemma 3.2. Let k,p,d,s, M € N satisfy k < p, p® > kM + 1, and s =
(k + 1)4=1. There is a collection of mappings fi,...,fs : [0,M] x [0,kM] —
[—kp, kp]?, each computable in time O(polylog M + k), such that for all num-
bers 1, ...,z € [0, M] and targets t € [0, kM],

k
Z%_ —¢ = 3i € [s] such that Zfi(fjat) =0.

j=1 j=1

The idea is simple: in a natural translation of numbers into vectors, to preserve
k-sums we have to keep track of the carries that may occur. These f;’s effectively
try “all possible” carries there can be among a sum of & numbers. The proof is
given in the full version.

Corollary 3.3. Let k,p,d, M,n > 0 be integers with k < p and p® > kM + 1.
k-SUM on n integers in the range [0, M] can be reduced to O(k?) instances of
(k,p — 1)-VECTOR-SUM on n vectors in [0,p — 1]<.

3.2 Reducing to k-Clique

Here, we consider a generalization of the k-SUM problem—namely, the Node-
Weight k-Clique-Sum problem. We give a reduction from Node-Weight k-Clique-
Sum to Edge-Weight k-Clique-Sum (defined below), where the new edge weights
are much smaller than the original node weights. We then show how to reduce to
many instances of the unweighted version of the problem, where each instance
corresponds to a possible setting of edge weights. Then, we give an application
of this general reduction to the Node-Weight k-Clique-Sum problem.

Definition 3.4 (The Edge-Weight k-Clique-Sum Problem). For integers
k,M > 0, the edge-weight k-clique-sum problem (k, M)-EW-CLIQUE is to deter-
mine, given a graph G, an edge-weight function w : E(G) — [0, M], and a target
weight t € [0, M|, if there is a set S of k nodes which form a clique such that
Z(u,v)esw(“v”) =t.

Lemma 3.5. Let k,p,d, M > 0 be integers such that k < p and p® > kM + 1,
and let M’ = O(k*dp?). (k, M)-NW-CLIQUE can be deterministically reduced to
O(k?) instances of (k, M')-EW-CLIQUE in time O(k? - n? - polylog M).

Thinking of p + d as “small”, but poly(p,d) ~ kM as “large”, we get a
substantial reduction in the weights of the problem by “spreading” the node
weights over the edges.

Proof. Let G = (V, E) be a graph with a node weight function w : V' — [0, M]
and a target number ¢t € [0, kM]. Recall the mappings f; : [0, M] x x[0,kM] —
[—kp, kp]¢ for i € [s] from Lemma 3.2, which maps numbers from [0, M] into a

8 A. Abboud, K. Lewi, and R. Williams

collection of s = O(k?) length-d vectors with entries in [—kp, kp]. We translate
the node-weight vector problem into an edge-weight problem via a “squaring
trick,” as follows. For each i € [s], we define an edge weight function w; : E —
[-M', M']. For (u,v) € E, let u= f;(w(u),t) and v = f;(w(v),t), and define

d
123 (u 2+ 2(k — Dulj] - v[j]) .

Jj=1

Note that for M’ = O(kdp?), w;(u,v) € [-M', M']. We show that there is a k-
clique in (G, w) of node-weight ¢ if and only if for some i € [s], the edge-weighted
graph (G, w;) contains a k-clique of edge-weight 0. First, observe that for any k
vectors vyq,..., vy € Z%,

2

k d k
.ZV’:O — Z (Zv,{j]) =0

Consider a set S = {uy,...,ur} C V that forms a k-clique in G. For any
i € [s] and ug,up € S, let u, = fi(w(ug),t) and up = fi(w(up),t). Then, the
edge-weight of S in (G, w;) is

d
Z w;(Ug, up) = (k —1 ZZUQ (k—1) Z Zua[j]

1<a<b<k a=1j=1 1<a<b<k j=1

Since the sum is evaluated over all pairs a,b € [k] where a < b, the above
quantity is equal to

d 2
-1)-> (Z fi(w(U)vt)[jO :

j=1 \uesS

Therefore, for all ¢ € [s], the edge-weight of S in (G, w;) equals 0 if and only
if the sum of the vectors) g fi(w(u),t) equals 0. And, by the properties of
the mappings f; from Lemma 3.2, the latter occurs for some ¢ € [s] if and only

if the node-weight of S in (G, w), Y_,cqw(u), is equal to ¢, as desired.

We observe that in the graphs produced by the above reduction, all k-cliques
have non-negative weight. Therefore, Lemma 3.5 can also be viewed as a reduc-
tion to the “minimum-weight” k-Clique problem with edge weights, where the
edge sum is minimized.

Finally, small weights on edges can simply be eliminated using a brute-force
step. The proof of the following lemma is given in the full version.

Lemma 3.6. For all integers k, M > 0, there is an O(M(g) -n?) time reduction

from the problem (k, M)-EW-CLIQUE to O(M(g)) instances of k-Clique on n nodes
and m - (};) edges.

Losing Weight by Gaining Edges 9

3.3 k-SUM is in W(1]

Using the above lemmas, we can efficiently reduce k-SUM to k-Clique. Consider
a k-SUM instance (S,t) where S = {x1,...,2,} C [0, M] and ¢ € [0, kM| with
M = n?*. Let G = (V, E) be a node-weighted clique on n nodes V = {v1,...,v,}
with weight function w : V' — [0, M] such that w(v;) = z; for all i € [n].
Clearly, (S,t) has a k-SUM solution if and only if the instance (G,w,t) of
(k, M)-NW-CLIQUE has a solution.

Set d = [logn/loglogn] and p = [log** n], so that p? > (n)* > kM.
Using Lemma 3.5 the instance (G, w,t) of (k, M)-NW-CLIQUE can be reduced to
O(k?) = O(nlogk/loglogn) instances of (k, M')-EW-CLIQUE, where M’ = O(k® -
8k+1 n/loglogn). Then, using Lemma 3.6, we can generate g(n, k) :O(nlolﬁoig%
8k>+k n)

log
3k log graphs on n nodes and O(n?) edges such that some graph has a
k-Clique if and only if the original k-SUM instance has a solution.

For constant k, note that g(n, k) = n°™®) and hence:

Theorem 3.7. For any ¢ > 2, if k-Clique can be solved in time O(n°), then
k-SUM can be solved in time ncto().

Furthermore, we remark that by applying the above reduction from k-SUM to
k-Clique to the respective unparameterized versions of these problems, we obtain
a reduction from Subset-SUM on arbitrary weights to Exact Edge-Weight Clique
with small edge weights.

Corollary 3.8. For any € > 0, Subset-SUM on n numbers in [—2°0() 20()]
can be reduced to 25" instances of Eract Edge-Weight Clique on n nodes with
edge weights are in [—n©(1/2) nO1/2)],

Note that Subset-SUM on n numbers in [-29(") 20(")] is as hard as the
general case of Subset-SUM, and the fastest known algorithm for Subset-SUM
on n numbers runs in time O(2"/2). The unweighted Max-Clique problem, which
asks for the largest clique in a graph on n nodes, can be solved in time 0(2”/4)
[27]. Corollary 3.8 shows that even when the edge weights are small, the edge-
weighted version of Max-Clique requires time 2(2"/2) unless Subset-SUM can
be solved faster.

An FPT Reduction. We show how to make the reduction fixed-parameter
tractable. We can modify the oracle reduction for k-Clique above to get a many-
one reduction to k-Clique if we simply take the disjoint union of the g(n, k)
k-Clique instances as a single k-Clique instance. The resulting graph has n -
g(n, k) nodes, O(n? - g(n,k)) edges, and has a k-clique if and only if one of the
original graphs has a k-Clique. Then, we make the following standard argument
to appropriately bound g(n, k) via case analysis. If k < [loglogn], then g(n, k) <
ne@) . of(k)-poly(k) 1f [> [loglogn], then since n < 22k, we have that g(n, k) <
22" +f(k)-poly(k) Therefore, g(n, k) < n°M . (k) for some computable h : N — N,
and we have shown the following:

Lemma 3.9. k-SUM is in W[1].

10 A. Abboud, K. Lewi, and R. Williams

In the full version, we show how to obtain a randomized FPT reduction from
the k-SUM problem over the integers to k-Clique, and how under plausible cir-
cuit lower bound assumptions, we can derandomize this reduction to show that
k-SUM over the integers is in W[1]. This yields the first half of Theorem 1.3 (and
we show the remainder, that k-SUM is W([1]-hard, in the next section).

3.4 Node-Weight k-Clique-Sum

The reduction of Section 3.3 shows that the Node-Weight k-Clique-Sum problem
can be reduced to n°() instances of k-Clique, when k is a fixed constant. We
observe that if the input graph has m edges, then the graphs generated by the
reduction have no more than k?m edges. Therefore, we have a tight reduction
from node-weight clique to k-Clique.

This concludes the proof of the first half of Theorem 1.6 referencing k-Clique.
We defer the proof of the second half of Theorem 1.6 concerning k-Dominating Set
to the full version.

4 From k-Clique to k-SUM

In this section, we give a new reduction from k-clique to k-SUM in which the
numbers generated are all in the interval [—-n?* n2*]. This proves that k-SUM
is in fact W[1]-hard. We can view the result as an alternate proof for the W[1]-
hardness of k-SUM without use of the Perfect Code problem, as done by Downey
and Fellows [12]. The reduction is given from k-Clique to k-Vector-Sum (recall
Definition 3.1), and then from k-Vector-Sum to k-SUM.

The proof the following lemma is given in the full version.

Lemma 4.1. For an integer k > 1, k-Clique on n nodes and m edges reduces to
an instance of (k + (}2“), k - n'+o(1)) _VECTOR-SUM deterministically in time O(n?).

The following lemma gives a simple reduction from k-Vector-Sum to k-SUM,
by the usual trick of converting from vectors to integers (via a Freiman isomor-
phism of order k). We give the proof in the full version.

Lemma 4.2. (k, M)-VECTOR-SUM can be reduced to k-SUM on n integers in the
range [0, (kM + 1)?] in O(nlog M) time.

We remark that in some cases, the proof can be changed slightly to yield
smaller numbers in the k-SUM instance produced by the reduction. In partic-
ular, when reducing k-Clique to k-Vector-Sum, only the numbers in the first &k
coordinates can be as large as k - n'+t°(1) while the numbers in the last k2 + 1
coordinates are bounded by k, and therefore, when reducing to (k + (g) , M)-SUM
on kn + (g)m numbers, the numbers generated can be bounded by M = k¢ -
(knteM)k. pF*+1 — O(k2K* . pk+o(k)) In other words, we have reduced k-Clique

to k’-SUM with numbers in the range [fn‘/k',n‘/k'}, where k' =k + (g)

Losing Weight by Gaining Edges 11

The composition of Lemma 4.1 and Lemma 4.2 yields an FPT reduction, and

we have obtained:

Lemma 4.3. k-SUM is W[1]-hard.

This concludes the proof of Theorem 1.3.

Acknowledgements. We would like to thank the anonymous reviewers for their
helpful comments. This work was supported in part by a David Morgenthaler 1T
Faculty Fellowship, and NSF CCF-1212372.

References

10.
11.

12.

13.

14.

15.

16.
17.

18.

Abboud, A., Lewi, K.: Exact Weight Subgraphs and the kSum Conjecture.
In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013,
Part I. LNCS, vol. 7965, pp. 1-12. Springer, Heidelberg (2013)

Abboud, A., Williams, V.V.: Popular conjectures imply strong lower bounds for
dynamic problems. CoRR, abs/1402.0054 (2014)

Ailon, N., Chazelle, B.: Lower bounds for linear degeneracy testing. J. ACM 52(2),
157-171 (2005)

Alon, N., Yuster, R., Zwick, U.: Finding and counting given length cycles.
Algorithmica 17(3), 209-223 (1997)

Baran, I., Demaine, E.D., Patragcu, M.: Subquadratic algorithms for 3SUM.
Algorithmica 50(4), 584-596 (2008)

Barequet, G., Har-Peled, S.: Polygon Containment and Translational Min-
Hausdorff-Distance Between Segment Sets are 3SUM-Hard. Int. J. Comput.
Geometry Appl. 11(4), 465-474 (2001)

Bhattacharyya, A., Indyk, P., Woodruff, D.P., Xie, N.: The complexity of linear
dependence problems in vector spaces. In: ICS, pp. 496-508 (2011)

Jonathan, F.: Buss and Tarique Islam. Algorithms in the W-Hierarchy. Theory
Comput. Syst. 41(3), 445-457 (2007)

Cattanéo, D., Perdrix, S.: The parameterized complexity of domination-type prob-
lems and application to linear codes. CoRR, abs/1209.5267 (2012)

Cesati, M.: Perfect Code is W[1]-complete. Inf. Process. Lett. 81(3), 163-168 (2002)
Czumaj, A., Lingas, A.: Finding a heaviest vertex-weighted triangle is not harder
than matrix multiplication. STAM J. Comput. 39(2), 431-444 (2009)

Downey, R.G., Fellows, M.R.: Fixed-parameter intractability. In: Structure in
Complexity Theory Conference, pp. 3649 (1992)

Downey, R.G., Fellows, M.R.: Fixed-parameter tractability and completeness II:
On completeness for W[1]. Theor. Comput. Sci. 141(1&2), 109-131 (1995)
Eisenbrand, F., Grandoni, F.: On the complexity of fixed parameter clique and
dominating set. Theor. Comput. Sci. 326(1-3), 57-67 (2004)

Erickson, J.: Lower bounds for linear satisfiability problems. In: SODA,
pp. 388-395 (1995)

Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer (2006)
Gajentaan, A., Overmars, M.H.: On a class of O(n2) problems in computational
geometry. Computational Geometry 5(3), 165-185 (1995)

Grgnlund, A., Pettie, S.: Threesomes, Degenerates, and Love Triangles. CoRR,
abs/1404.0799 (2014)

12

19.

20.

21.
22.

23.

24.

25.

26.

27.

28.

29.

30.

A. Abboud, K. Lewi, and R. Williams

Herndndez-Barrera, A.: Finding an O(n%logn) Algorithm Is Sometimes Hard.
In: CCCQG, pp. 289-294 (1996)

Itai, A., Rodeh, M.: Finding a minimum circuit in a graph. In: STOC 1977,
pp. 1-10. ACM, New York (1977)

Jafargholi, Z., Viola, E.: 3SUM, 3XOR, Triangles. CoRR, abs/1305.3827 (2013)
Nederlof, J., van Leeuwen, E.J., van der Zwaan, R.: Reducing a target interval to
a few exact queries. In: MFCS, pp. 718-727 (2012)

Nesettil, J., Poljak, S.: On the complexity of the subgraph problem. Commenta-
tiones Mathematicae Universitatis Carolinae 26(2), 415-419 (1985)

O’Bryant, K.: Sets of integers that do not contain long arithmetic progressions.
Electr. J. Comb. 18(1) (2011)

Patrascu, M.: Towards polynomial lower bounds for dynamic problems. In: STOC,
pp. 603-610 (2010)

Patragcu, M., Williams, R.: On the Possibility of Faster SAT Algorithms.
In: SODA, pp. 1065-1075 (2010)

Robson, J.M.: Finding a maximum independent set in time O(2%/%). Technical
report, 1251-01, LaBRI, Université de Bordeaux I (2001)

Vassilevska, V., Williams, R.: Finding a maximum weight triangle in n79e® time,
with applications. In: STOC, pp. 225-231 (2006)

Vassilevska, V., Williams, R.: Finding, minimizing, and counting weighted sub-
graphs. In: STOC, pp. 455-464 (2009)

Vassilevska, V., Williams, R., Yuster, R.: Finding the smallest H-subgraph in real
weighted graphs and related problems. In: Bugliesi, M., Preneel, B., Sassone, V.,
Wegener, 1. (eds.) ICALP 2006. LNCS, vol. 4051, pp. 262-273. Springer, Heidelberg
(2006)

Optimal Coordination Mechanisms
for Multi-job Scheduling Games*

Fidaa Abed!, José R. Correa?, and Chien-Chung Huang3

! Max-Planck-Institut fiir Informatik
fabed@mpi-inf.mpg.de
2 Departamento de Ingenieria Industrial, Universidad de Chile
correa@uchile.cl
3 Chalmers University of Technology
huangch@chalmers.se

Abstract. We consider the unrelated machine scheduling game in which
players control subsets of jobs. Each player’s objective is to minimize the
weighted sum of completion time of her jobs, while the social cost is the
sum of players’ costs. The goal is to design simple processing policies in
the machines with small coordination ratio, i.e., the implied equilibria
are within a small factor of the optimal schedule. We work with a weaker
equilibrium concept that includes that of Nash. We first prove that if ma-
chines order jobs according to their processing time to weight ratio, a.k.a.
Smith-rule, then the coordination ratio is at most 4, moreover this is best
possible among nonpreemptive policies. Then we establish our main re-
sult. We design a preemptive policy, externality, that extends Smith-rule
by adding extra delays on the jobs accounting for the negative exter-
nality they impose on other players. For this policy we prove that the
coordination ratio is 1+ ¢ ~ 2.618, and complement this result by prov-
ing that this ratio is best possible even if we allow for randomization or
full information. Finally, we establish that this externality policy induces
a potential game and that an e-equilibrium can be found in polynomial
time. An interesting consequence of our results is that an e—local optima
of R||> w;Cj for the jump (a.k.a. move) neighborhood can be found in
polynomial time and are within a factor of 2.618 of the optimal solution.
The latter constitutes the first direct application of purely game-theoretic
ideas to the analysis of a well studied local search heuristic.

1 Introduction

Machine scheduling originates in the optimization of manufacturing systems and
their formal mathematical treatment dates back to at least the pioneering work of
Smith [38]. In general, scheduling problems can be described as follows. Consider
a set J of n jobs that have to be processed on a set M of m parallel machines.
If processed on machine 7, job j requires a certain processing time p;; to be

* Research partially supported by the Millenium Nucleus Information and Coordina-
tion in Networks ICM/FIC P10-024F.

A.S. Schulz and D. Wagner (Eds.): ESA 2014, LNCS 8737, pp. 13-24, 2014.
(© Springer-Verlag Berlin Heidelberg 2014

14 F. Abed, J.R. Correa, and C.-C. Huang

completed. Job j also has a weight w; and, in addition, it may have other
characteristics such as release dates, time windows, delays when switching a
task from one machine to another, or precedence constraints. The goal is to find
an assignment of jobs to machines, and an ordering within each machine so that
a certain objective functions is minimized. Denoting, for any such assignment
and ordering, the completion time C; of job j the time at which job j completes,
we may write the two most widely studied objectives as Cinax = max;ec s C; (the
makespan) and) ; w;C; (the sum of weighted completion times). In terms
of the machine environment the most basic model is that of identical machines,
where the processing times of jobs are the same on all machines. In the related
machines environment each machine has a speed, and the processing time of a job
on a machine is inversely proportional to the speed of that machine. Finally in
unrelated machine scheduling the processing times are arbitrary, thus capturing
all the above models as special cases. This latter machine environment, with
the sum of weighted completion times objective, denoted by R||>" w;C}, is the
focus of our paper.

Since the early work of Smith for the) w;C; objective, a lot of work has
been put in designing centralized algorithms providing reasonably close to op-
timal solutions with limited computational effort for these NP-hard problems
[5,15,18,21,23,24,32,33,34,35,36,37]. The underlying assumption is that all infor-
mation is gathered by a single entity which can enforce a particular schedule.
However, as distributed environments emerge, understanding scheduling prob-
lems where jobs are managed by different selfish agents (players), who are inter-
ested in their own completion time, becomes a central question.

Coordination Mechanisms. In recent times there has been quite some effort
to understand these scheduling games in the special case in which agents control
a single job in the system, which we call single-job games. In this context, there is
a vast amount of work studying existence, uniqueness, the price of anarchy [26],
and other characteristics of equilibrium when, given some processing rules, each
agent seeks to minimize her own completion time. In the scheduling game each
job is a fully informed player wanting to minimize its individual completion time,
and its set of strategies correspond to the set of machines. Job j’s completion
time on a machine depends on the strategies chosen by other players, and on the
policy (or processing rule) of the chosen machine. While the cost of a job is its
weighted completion time, w;C;. A coordination mechanism is then a set of local
policies, one per machine, specifying how the jobs assigned to that machine are
scheduled. In a local policy the schedule on a machine depends on the full vector
(p1j,D2js - - - Pmy) and weights w; of jobs assigned to that machine. In contrast,
in a strongly local policy the schedule on machine ¢ must be a function only of the
processing times p;; and weights w; of the jobs assigned to 7. In evaluating the
efficiency of these policies, one needs a benchmark to compare this social cost
against. The definition of the price of anarchy of the induced game considers a
social optimum with respect to the costs specified by the chosen machine policies.
However, to measure the quality of a coordination mechanism we consider the
worst case ratio of the social cost at an equilibrium to the optimal social cost

Optimal Coordination Mechanisms for Multi-job Scheduling Games 15

that could be achieved by the centralized optimization approach. We refer to
this as the coordination ratio of a mechanism.

In this paper we take a step forward and study multi-job games, in which
there is a set of agents A who control arbitrary sets of jobs. Specifically the set
of jobs controlled by player o € A is denoted by J(a) C J and its cost given
a particular schedule is the sum of weighted completion times of its own jobs
> jed(a) Wi C;. As in single-job games, we concentrate on designing coordination
mechanisms leading to small coordination ratios, when the social cost is the sum
of weighted completion times of all jobs (or equivalently of all agents).

Machine Policies. Throughout we assume that policies are prompt: they do
not introduce deliberate idle time. In other words, if jobs ji,...,jr are assigned
to machine ¢, then by time 25:1 pij, all jobs have been completed and released.
Besides distinguishing between local and strongly local policies we distinguish
between nonpreemptive, preemptive, and randomized policies. In nonpreemptive
policies jobs are processed in some fixed deterministic order that may depend
arbitrarily on the set of jobs assigned to the machine (processing time, weight,
and ID), and once a job is completed it is released. On the other hand, preemp-
tive policies may suspend a job before it completes in order to execute another
job and the suspended job is resumed later. Interestingly, such policies can be
considered as nonpreemptive policies, but where jobs may be held back after
completion [11,12]. Finally, randomized policies have the additional power that
they can schedule jobs at random according to some distribution depending on
the assigned jobs’ characteristics. Another usual distinction is between policies
that are anonymous and non-anonymous. In the former jobs with the same char-
acteristics (except for IDs) must be treated equally and thus assigned the same
completion time. In the latter, jobs may be distinguished using their IDs.

For instance consider the widely used policy known as Smith-rule (SR), which
sorts jobs in nondecreasing order of their processing time to weight ratios. For-
mally SR processes jobs in nondecreasing order of p;; = p;j/w;, and breaks
ties using the job’s IDs. This policy is strongly local, nonpreemptive, and non-
anonymous.

Equilibrium Concepts. For the single-job scheduling game the underlying
concept of equilibrium is, quite naturally, that of Nash (NE)[28]. However, once
we allow players to control many jobs and endow them with the weighted com-
pletion time cost, already computing a best response to a given situation may
be NP-complete. Therefore, it is rather unlikely that such an equilibrium will be
attained. To overcome this difficulty we consider a weaker equilibrium concept,
which we call weak equilibrium (WE), namely, a schedule of all jobs is a WE if
no player a € A can find a job j € J(a) such that moving j to a different ma-
chine will strictly decrease her cost jed(a) w;Cj. We extend the WE concept
to mixed (randomized) strategies by allowing player « to keep the distribution
of all but one job j € J(«) and move job j to any machine. Observe that in the
single-job game NE and WE coincide. Throughout, we provide bounds on the
coordination ratio of policies for the weak equilibrium, and since NE are also
WE our bounds hold for NE as well.

16 F. Abed, J.R. Correa, and C.-C. Huang

As the reader may have noticed, there is a close connection between WE and
local optima of the jump (also called move) neighborhood (e.g. [39]). In a locally
optimal solution of R||> w;C; for the jump neighborhood, no single job j € J
may be moved to a different machine while decreasing the overall cost. Such
solution is exactly a WE when a single player in the scheduling game controls
all jobs and the machines use SR.

To illustrate the concept of weak equilibrium and the difference between the
single-job and the multi-job games consider the following example on 4 machines,

mai, ..., My, with the SR policy. There are 4 unit-weight jobs called a, b, ¢, d such
that Pmia = 1+ E, Pmi,b = 1a Pmab = 15a Pma,e = 23 Pmz,c = 33 Pms,d = 23
DPma,d = 2, and all other p;; = +4o00. In this situation an equilibrium for the

single-job game is that jobs a and b go to m1, job ¢ goes to ms, and job d goes
to ms, leading to a total cost of 7+¢. Consider now the multi-job game in which
one player controls a, b and another player controls ¢,d. A NE is obtained when
a goes to mq, b goes to ma, c goes to mg, and d goes to my, and this has total
cost 7.5+ . A WE is obtained from instance when a goes to my, b goes to mao,
c goes to ma, and d goes to mg, having a total cost of 8 + ¢.

Related Literature. The study of coordination mechanisms for single-job
scheduling games, taking the makespan as social cost, was initiated by
Christodoulou et al. [9]. However the implied bounds on the price of anarchy
are constant only for simple environments such as when machines are identi-
cal. Indeed, Azar et al. [2], and Fleischer and Svitkina [19] show that, even for
a restricted uniform machines environment “almost” no deterministic machine
policies can achieve a constant price of anarchy. The result was finally established
by Abed and Huang [1], who proved that no symmetric coordination mechanism
satisfying the so-called “independence of irrelevant alternatives” property, even if
preemption is allowed, can achieve a constant price of anarchy for the makespan
objective. The existence of a randomized machine policy with such a desirable
property is unknown. It is worth mentioning that there is a vast amount of
related work considering the makespan social cost [6,8,14,16,25,27].

The situation changes quite dramatically for the sum of weighted completion
times objective. In this case Correa and Queyranne show that, for restricted re-
lated machines, smith rule induces a game with price of anarchy at most 4 [13],
improving results implied by Farzad et al. [17] and Caragiannis et al [8] obtained
in different contexts. Cole et al., extend this result to unrelated machines, and
also design an improved preemptive policy, proportional sharing, achieving an
approximation bound of 2.618 and an even better randomized policy [11,12].
Further recent works include extensions and improvements by Bhattacharya
et al. [3], Cohen et al. [10] and by Rahn and Schéfer [30], Hoeksma and Uetz [22].

Finally, performance guarantee results for the) w;C}; objective using natural
local search heuristics are scarse, despite the vast amount of computational work
[7,29]. We are only aware of the results of Brueggemann et al. [4] who proved
that for identical machines local optima for the jump neighborhood are within
a factor of 3/2 of the optimal schedule.

Optimal Coordination Mechanisms for Multi-job Scheduling Games 17

Our Results. We start by considering deterministic policies and prove that the
coordination ratio of SR under WE is exactly 4. This generalizes the result for
single-job games [12] and therefore it is the best possible coordination ratio that
can be achieved nonpreemptively. We prove the upper bound of 4 for SR with
mixed WE. This is relevant since a pure strategy NE may not exist in this setting
[13]. Moreover, it is unclear whether the smoothness framework of Roughgarden
[31] can be applied here: On the one hand our results hold for the more general
framework of WE, while on the other hand having players that control multiple
jobs makes it more difficult to prove the (A, u)-smoothness.

Before designing improved policies we observe that no anonymous policy may
obtain a coordination ratio better than 4, and basically no policy, be it pre-
emptive or randomized, local or strongly local, can achieve a coordination ratio
better than 2.618. The latter is in sharp contrast with the case in which players
control just one job where better ratios can be achieved with randomized policies
[12]. Quite surprisingly we are able to design an “optimal” policy, which we call
externality (EX), that guarantees a coordination ratio of 2.618 for WE. Under
this EX policy, jobs are processed according to Smith rule but are held back (and
not released) for some additional time after completion. This additional time ba-
sically equals the negative externality that this particular job imposes over other
players. Additionally, we prove that EX defines a potential game, so that pure
WE exists, and that the convergence time is polynomial. It is worth mentioning
that in the single-job game EX coincides with the proportional-sharing (PS) pol-
icy [12], which in turn extends the EQUI policy of the unit-weight case [16]. On
the other side, when a single player controls all jobs, EX coincides with SR. The
idea of making jobs incorporate the externality they impose has also been used
by Heydenreich et al. [20]. However their goal is different; they incorporate the
externality in the form of payments to obtain truthful mechanisms rather than
to improve efficiency.

Interestingly, our result for EX in case just one player controls all jobs im-
plies a tight approximation guarantee of 2.618 for local optima under the jump
neighborhood for R| |) w;C;. This tight guarantee also holds for the swap neigh-
borhood, in which one is additionally allowed to swap jobs between machines so
long as the objective function value decreases [39]. In addition, our fast conver-
gence result for EX implies another new result, namely, that local search with
the jump neighborhood, when only maximum gain steps are taken, converges
in polynomial time. These facts appear to be quite surprising since, despite the
very large amount of work on local search heuristics for scheduling problems
[7,29], performance guarantees, or polynomial time convergence results are are
only known for identical machines [4].

Methodologically our work is based on the inner product framework of [12],
but more is needed to deal with the multi-job environment. Our main contribu-
tion is however conceptual: On the one hand, we demonstrate that the natural
economic idea of externalities leads to approximately optimal, and in a way best
possible, outcomes even in decentralized systems with only partial information
(in a full information and centralized setting one can easily design policies leading

18 F. Abed, J.R. Correa, and C.-C. Huang

to optimal outcomes). On the other hand, we provide the first direct application
of purely game-theoretic ideas to the analysis of natural and well studied local
search heuristics that lead to the currently best known results.

Preliminaries. Recall that for a player o € A, the set of job she controls is
denoted by J(«a) C J. Moreover, a(j) denotes the player controlling job j, so
that J(a(j)) is the set of jobs controlled by who is controlling j.

A pure strategy profile is a matrix x € {0, 1}*7 in which x;; = 1 if job j is
assigned to machine i. By denoting x® the columns of x corresponding to jobs
controlled by player a we say that x® is a pure strategy for this player. A mixed
strategy for player « is a probability distribution over all x* € {0, 1}M>7(e) A
set of mixed strategies for all players a € A leads to a (mixed) strategy profile
x € [0,1]M*7 where x;; is the probability of job j assigned to machine i. Note
that the distributions of the different columns of x may not be independent. We
denote by x_j, the matrix obtained by deleting the k—th column of x. Observe
that x_j results from the joint probability distribution of all jobs j' # k accord-
ing to x. More precisely x_; € [0, 1]"*7\{*} can be equivalently seen as the
mixed strategy profile obtained when players different from «(k) continue using
the same strategy, while player a(k) forgets job k and if she was playing the pure
strategy x*%) ¢ {0, 1}MXJ(°‘) with probability q, she plays the pure strategy
for her jobs different from £, X‘f(,f) € {0, 1}M*J(@*} with probability ¢ (these
probabilities add up if she was playing with positive probability two strategies
that were equal except for job k). We define x_ analogously for a set of jobs
KCJ.

Given a mechanism M € {SR,EX} and a strategy profile x, E[C}'(x)] is the
expected completion time of job j. The conditional expected completion time of
job 7 on machine i when job k is assigned to machine i is denoted E[CY¥ (x_g, k —
i)]. The expected cost of the strategy profile x is E[C™(x)] = >, ; w;E[C}(x)]

J

and the expected cost of a player o under x is E[CY (x)] = }_ ;¢ 7o) wiE[C} (x)]-

For convenience we also define E[C¥(x_x, k —)] =) wiB[CY (x—k, k —
i)]. Note that E[C™(x)] = >_,c 4 E[CY (x)].
A Nash equilibrium (NE) is therefore a strategy profile x such that for all

player a € A and all strategy profiles y* for player o we have that:

jEJ(a

E[CE ()] < E[CG(y*, X s(a))]-

Similarly, a weak equilibrium (WE) is a strategy profile x such that for all player
a € A, all jobs k € J(«), and all machines ¢ € M, we have that:

E[CR(¥)] < B[O (x—k, k — 1)].

The optimal assignement is the assignment in which the jobs are processed
non-preemptively on the machines so that the cost is minimized. Throughout the
paper, x* denotes the optimal assignment (thus x* is a pure strategy), and we
define X/ as the set of jobs assigned to machine 7 under the optimal assignment.
Given the assignment of jobs to machines, it is well-known that Smith Rule
minimizes the total cost of jobs. Therefore C**(x*) is the optimal cost.

Optimal Coordination Mechanisms for Multi-job Scheduling Games 19

2 Nonpreemptive Mechanisms

We now study nonpreemptive mechanisms (jobs have IDs, needed to break ties
between identically looking jobs) and prove that SR has a coordination ratio of 4
for mixed WE. We work with mixed strategies since SR does not guarantee that
existence of pure WE. As mentioned earlier, our result is best possible among
nonpreemptive mechanisms [12].

Recall that under SR, each machine ¢ schedules nonpreemptively its assigned
jobs j in nondecreasing order of p;; = p;j/w;, and ties are broken using the IDs.
To simplify the presentation, we say that p;, < p;; if k comes earlier than j in the
SR order of machine i. Thus, given a strategy profile x we have E[CF*(x—;,j —

i)] = pij + Zk:pik@i, XikPik S0 that,

E[C™(x Z Wy Z i BICT* (x—j,j — i)] 1)

JjeET iEM
= Z injwj(pij + Z XikDik)-
ieMjedg k:pir<pij

Extending the inner product space technique of Cole et al. [12], we let ¢ : x —
L5 ([0, 00])™, which maps every strategy profile x to a vector of functions (one for
each machine) as follows. If f = ¢(x), then for each ¢ € M, the i-th component of
f is the function f;(y) := Z]ej piy >y Xij Wi - Letting (f;, g:) = fo fily)gi(y)dy
be the standard inner product on Lo we get that (f,g) = ZzeM<fzv92>' Addl—
tionally, we let 7;(x) = >_,c 7 wjXjpij and 19(x) = > ;e vq 7i(X).

The next lemma and expressions (2) and (3) follow easily from the derivations
of Cole et al. [12]. The only difference is that here we need to prove the results
for mixed strategies. We defer the proofs of this section to the full version.

Lemma 1. For a strategy profile x and the optimal assignment x*, let f= p(x)
and f* = @(x*). Then (f;, f, > Z jeX; Zkej WjWEXik mm{ngapzk}'

Similarly to Lemma 1, and using equation (1), we may evaluate

lo(x)[[* < 2E[C**(x)] . (2)
Additionally, when x is a pure strategy we have:
1 1

R (x) = , [l (I + ,n(x)- 3)

In what follows, let x denote a mixed weak equilibrium and x* the optimal
assignment. Let f = ¢(x) and f* = p(x*).
Lemma 2. Consider Xf(a) = X} N J(«), the jobs of player o assigned to
machine i in the optimal solution. Then for each j € X} (c) we have:

E [C5*(x)] < wj(pi; + Z XikPik) + Dij Z WX
k:pir <pij keJ(a)\{7};pir>pij

Lemma 3. For a machine i € M, > o x. wiE[CS*(x)] —ni(x*) < (fi, f7)-
Theorem 1. E[C*"(x)] < 4C%*(x*).

20 F. Abed, J.R. Correa, and C.-C. Huang

3 Preemptive Mechanisms

Finding policies that beat the coordination ratio of 4 for WE is impossible if
we restrict to nonpreemptive ones. This holds even for the single-job game [12],
where WE and NE coincide. Therefore we need to consider preemptive or ran-
domized policies. We first observe that even with preemption, if we restrict to
anonymous policies, beating the ratio of 4 is not possible. Furthermore, we prove
that the absolute limit for basically any policy, be it preemptive or randomized,
using even global information, and even if different machines use different poli-
cies, is 1 + ¢ ~ 2.618, where ¢ is the golden ratio. The precise set of policies
for which this lower bound holds are those such that when machine ¢ € M is
assigned a single job, j € J, then C; = p;;.

As the performance of SR coincides in the single-job and multi-job games one
may wonder whether natural preemptive policies, that work well in the single-
job game, also do in the multi-job game. Unfortunately this is not the case.
Indeed we prove that the champion preemptive policy for the single-job game,
Proportional-sharing [12,16], has a coordination ratio of at least 5.848 for WE
and at least 2.848 for NE. It is thus rather surprising that we can actually achieve
this ratio with a fairly natural policy, externality (EX). A key ingredient of this
policy is that it heavily relies on the ownership of the jobs, a feature that policies
for the single-job game certainly do not share.

The results in this section are presented for pure strategy profiles. This is pri-
marily done for simplicity and also because, as we will show later, our preemptive
policy induces a potential game and therefore pure WE are guaranteed to exist.
Thus, given a pure strategy profile x, we may refer to x as an assignment, and
we may let X; denote the set of jobs assigned to machine ¢ under x, i.e., j € X;
if x;; = 1. Let also X;(a) = X; N J(a) be the set of jobs controlled by player «
on this machine i under x.

Recall that in the proportional sharing policy (Ps) [12], the machine processing
power is split among the assigned jobs proportionally to their weight. Given an
assignment x, if job j is assigned to machine 7, it can be observed that:

Wi
C7%(x) = pij + E Dik + Dij E w
kEX;,pik<pij keXi\{j}pir>pij

Proposition 1 ([12]). Given an assignment x, C**(x) = ||p(x)||?.

In our externality policy, EX, given an assignment X, the machine processes
the jobs according to SR but once a job is completed, it is delayed for an amount
of time accounting for the negative externality it is imposing on other players.
Thus in EX the cost for the owner of job j due to this job will be

EX
w; CF(x) = wjpi; + w; Z Pik + Dij Z Wk -
kE€Xi,pik<pij keX;\J(a(4)),pir>pij

The completion time of j is then defined by the previous equation. Observe that
in the single-job game, EX reduces to Ps, while if all jobs are controlled by a single

Optimal Coordination Mechanisms for Multi-job Scheduling Games 21

player EX reduces to SR. Also, EX induces feasible schedules since no completion
time can be smaller than that given by Smith-rule. Policy EX can be seen as a
preemptive policy in which jobs are processed as in SR, except for an infinitesimal
piece that is processed at the time defined by previous equation. Moreover EX
is strongly local and nonanonymous. A consequence of the definitions of SR, PS,
and EX is that for a fixed assignment x their costs satisfy:

C™*(x) = C™(x) + Z Z Dij Z W (4)

iIEMJEX; keXi\J(a(4)),pik>pij

= CPS(X) - Z Z Dij Z Wg .

iEMGEX; keXi(a(4)),pik>pij

In the following, let x* be an optimal assignment and x a WE. We also let
p(x) = f and p(x*) = f* be as in the previous section.
Lemma 4. Consider a job j € X} and assume j is on i’ under x. Then
wiCP(x) Swi(pyy + Y, pik)+Py D, Wk—pr; D, Wk
kEX,, kEX,, KEX; (a()),

Pik <Pij Pik>Pij Pil g >Pil

Proof. The case i’ = i is immediate. For i’ # 7, consider the cost of jobs belonging
player a(j) on machines ¢ or ¢’ under x, which is,

w; O (x) + > wr O (x). ()

ke((Xi(a)uXy (a)\ {7}

Suppose that she moves j from machine 7’ to ¢, then the total cost of the same

set of jobs is
> wrCRY (%) — pirj > wy, +

ke ((Xi(e)UX,r (a))\{7} keX; (Oé(j))’Pi’k>P7‘,'j
w; (pij + E Pik) + Pij E W + Pij E W (6)
keX;, keXi\J(x(5)), keX;(a(4)),
Pik<Pij Pik>Pij Pik>Pij

Here the second term is the saving of the cost for those jobs k& € a(j) on machine
i’ that have larger ratios p;t than p;;; the third and fourth terms are the cost
of job j on machine 7; and the fifth term is the increase of the cost of those jobs
k € a(j) on machine ¢ that have larger ratios p;, than p;;. As x is a WE, the
term (5) is upper bounded by (6). O

Lemma 5. C™(x) < n(x*) + (f. f) — Z Z Dij Z W
IEM jEX; keX;(a(4)):pir>pij

Proof. By Lemma 4 and summing over all jobs in 7, we have that the total cost
under EX, > jeg w;CF*(x) is upper bounded by

)+ D> (D w > Pkt D vy Y wk— Y pig >, wk). (7)

1EM jEXF keXy, jeXr kEX;, JEX; kEXi(a(d),
L Pik<Pij) Pik>Pij Pik>Pij

22 F. Abed, J.R. Correa, and C.-C. Huang

By Lemma 1 and the fact that x is pure, we have

(fi, f7) = Z Z wjw, min{pij, pix} = Z (w; Z Dik + Dij Z W)

JEXF kEX; JEX] keXy, keEX;,
Pik<Pij Pik>Pij

Summing over i € M and subtracting the latter from (7)

C™(x) = (F, F) <nx") = D > pij > W O
teMjeXs keXi(a(d)),pin>pij
Theorem 2. Let ¢ be the golden ratio. Then C**(x) < (14 ¢)C*(x*).
Proof. Lemma 5 and Cauchy-Schwartz inequality imply that for 8 > 1/4

™) <nb) + AR+ P -3 Sms Y w

ieEMjeX; keXi(a(4)),pik>pij

1 1
S)BT G = gD e >

ieMjeX; keXi(a(4)),pir>pij

< n(x") + 280%(x") - By(x") + O (x)

4p
1
< (B+ 1)) + 4BCEX(X)’
where the third inequality follows from equation (3), from Proposition 1 and
from equation (4). By letting 8 = 1+4‘/5 the result follows. O

As mentioned earlier, it turns out that EX is best possible. The proof of this
fact is deferred to the full version.

Theorem 3. The coordination ratio for weak equilibrium of any prompt mech-
anism is at least 1 + ¢.

4 Final Remarks

We have proved that SR is the best possible nonpreemptive policy, and to beat its
coordination ratio we have used EX, a policy that, as opposed to SR, importantly
relies on who owns which job. We conjecture that if we restrict to policies that
ignore the ownership of the jobs the ratio of 4 cannot be improved. This is indeed
the case for nonpreemptive policies, and also for fully preemptive policies. Also,
for natural policies with this property such as Ps or the RAND policy [12] the
technique in this paper only lead to larger bounds.

Our lower bound on general prompt seems to be the natural limit. Non-
prompt policies that are allowed to use global information can certainly beat
this as they can simply introduce very large delays for jobs that are not assigned
to it in an optimal schedule. By doing this, such policies can easily achieve low
coordination ratio (say optimal if they have unlimited computational power or

Optimal Coordination Mechanisms for Multi-job Scheduling Games 23

3/2 if they use the best known approximation algorithms. It would be interesting
to explore what happens with this non-prompt policies when they can only use
local information.

Another interesting question refers to the quality of the actual NE of this
game. Of course our upper bounds applies to that equilibrium concept, and
furthermore we know that the coordination ratio of EX for NE is exactly 2.618
as in the single job case it coincides with PS [12]. However it may be possible
that another deterministic policy has a better coordination ratio for NE.

Finally, we note that by mimicking the analysis in [12] we obtain a similar
2+¢ approximation algorithm for R|| " w;C}, independent of which jobs belong
to which players. It is possible that by carefully choosing the game structure this
can be beaten.

References

1. Abed, F., Huang, C.-C.: Preemptive coordination mechanisms for unrelated
machines. In: Epstein, L., Ferragina, P. (eds.) ESA 2012. LNCS, vol. 7501,
pp. 12-23. Springer, Heidelberg (2012)

2. Azar, Y., Jain, K., Mirrokni, V.S. (Almost) Optimal coordination mechanisms for
unrelated machine scheduling. In: SODA (2008)

3. Bhattacharyay, S., Imz, S., Kulkarnix, J., Munagala, K.: Coordination mechanisms
from (almost) all scheduling policies. In: ITCS (2014)

4. Brueggemann, T., Hurink, J.L., Kern, W.: Quality of move-optimal schedules for
minimizing total weighted completion time. Oper. Res. Lett. 34(5), 583-590 (2006)

5. Bruno, J., Coffman, E.G., Sethi, R.: Scheduling independent tasks to reduce mean
finishing time. Commun. ACM 17, 382-387 (1974)

6. Caragiannis, I.: Efficient coordination mechanisms for unrelated machine
scheduling. In: SODA (2009)

7. Chen, B., Potts, C.N., Woeginger, G.J.: A review of machine scheduling: Complex-
ity, algorithms and approximability. In: Handbook of Combinatorial Optimization,
vol. 3, Kluwer Academic Publishers (1998)

8. Caragiannis, 1., Flammini, M., Kaklamanis, C., Kanellopoulos, P., Moscardelli, L.:
Tight bounds for selfish and greedy load balancing. Algorithmica 61(3), 606-637
(2011)

9. Christodoulou, G., Koutsoupias, E., Nanavati, A.: Coordination mechanisms. In:
Diaz, J., Karhumaki, J., Lepist6, A., Sannella, D. (eds.) ICALP 2004. LNCS,
vol. 3142, pp. 345-357. Springer, Heidelberg (2004)

10. Cohen, J., Diirr, C., Thang, N.K.: Smooth inequalities and equilibrium ineffi-
ciency in scheduling games. In: Goldberg, P.W. (ed.) WINE 2012. LNCS, vol. 7695,
pp. 350-363. Springer, Heidelberg (2012)

11. Cole, R., Correa, J.R., Gkatzelis, V., Mirrokni, V.S., Olver Inner, N.: product
spaces for MinSum coordination mechanisms. In: STOC (2011)

12. Cole, R., Correa, J.R., Gkatzelis, V., Mirrokni, V., Olver, N.: Decentralized utili-
tarian mechanisms for scheduling games. In: Game. Econ. Behav. (to appear)

13. Correa, J.R., Queyranne, M.: Efficiency of equilibria in restricted uniform machine
scheduling with total weighted completion time as social cost. Naval Res. Logist. 59,
384-395 (2012)

14. Czumaj, A., Vocking, B.: Tight bounds for worst-case equilibria. ACM T. Algo. 3
(2007)

15. Davis, E., Jaffe, J.M.: Algorithms for scheduling tasks on unrelated processors. J.
ACM 28(4), 721-736 (1981)

24

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.
32.

33.

34.

35.

36.

37.

38.

39.

F. Abed, J.R. Correa, and C.-C. Huang

Diirr, C., Nguyen, K.T.: Non-clairvoyant scheduling games. In: Mavronicolas, M.,
Papadopoulou, V.G. (eds.) SAGT 2009. LNCS, vol. 5814, pp. 135-146. Springer,
Heidelberg (2009)

Farzad, B., Olver, N., Vetta, A.: A priority-based model of routing. Chic. J. Theor.
Comput. (2008)

Finn, G., Horowitz, E.: A linear time approximation algorithm for multiprocessor
scheduling. BIT 19, 312-320 (1979)

Fleischer, L., Svitkina, Z.: Preference-constrained oriented matching. In: ANALCO
2010

%Ieyd()enreich, B., Miiller, R., Uetz, M.: Mechanism Design for Decentralized Online
Machine Scheduling. Oper. Res. 58(2), 445457 (2010)

Hoogeveen, H., Schuurman, P., Woeginger, G.J.: Non-approximability results for
scheduling problems with minsum criteria. In: Bixby, R.E., Boyd, E.A., Rios-
Mercado, R.Z. (eds.) IPCO 1998. LNCS, vol. 1412, p. 353. Springer, Heidelberg (1998)
Hoeksma, R., Uetz, M.: The Price of Anarchy for Minsum Related Machine
Scheduling. In: Solis-Oba, R., Persiano, G. (eds.) WAOA 2011. LNCS, vol. 7164,
pp. 261-273. Springer, Heidelberg (2012)

Horn, W.A.: Minimizing average flow time with parallel machines. Oper. Res. 21(3),
846847 (1973)

Ibarra, O.H., Kim, C.E.: Heuristic algorithms for scheduling independent tasks on
nonidentical processors. J. ACM 24(2), 280-289 (1977)

Immorlica, N., Li, L., Mirrokni, V.S., Schulz, A.S.: Coordination mechanisms for
selfish scheduling. Theor. Comput. Sci. 410(17), 15891598 (2009)

Koutsoupias, E., Papadimitriou, C.: Worst-case equilibria. In: Meinel, C., Tison,
S. (eds.) STACS 1999. LNCS, vol. 1563, p. 404. Springer, Heidelberg (1999)

Lu, P., Yu, C.: Worst-Case Nash Equilibria in Restricted Routing. In: Papadim-
itriou, C., Zhang, S. (eds.) WINE 2008. LNCS, vol. 5385, pp. 231-238. Springer,
Heidelberg (2008)

Nash, J.: Equilibrium points in N-person games. PNAS 36, 48-49 (1950)

Potts, C.N., Strusevich, V.: Fifty years of scheduling: a survey of milestones. J
Oper. Res. Society 60(1), 41-68 (2009)

Rahn, M., Schéfer, G.: Bounding the inefficiency of altruism through social contri-
bution games (2013) (manuscript)

Roughgarden, T.: Intrinsic robustness of the price of anarchy. In: STOC (2009)
Sahni, S., Cho, Y.: Bounds for list schedules on uniform processors. STAM J.
Comput. 9, 91-103 (1980)

Schulz, A.S., Skutella, M.: Scheduling unrelated machines by randomized rounding.
SIAM J. Discrete Math. 15(4), 450-469 (2002)

Schuurman, P., Vredeveld, T.: Performance guarantees of local search for multipro-
cessor scheduling. In: Aardal, K., Gerards, B. (eds.) IPCO 2001. LNCS, vol. 2081,
p. 370. Springer, Heidelberg (2001)

Sethuraman, J., Squillante, M.S.: Optimal scheduling of multiclass parallel
machines. In: SODA (1999)

Skutella, M.: Convex quadratic and semidefinite programming relaxations in
scheduling. J. ACM 48(2), 206—242 (2001)

Skutella, M., Woeginger, G.J.: A ptas for minimizing the total weighted completion
time on identical parallel machines. Math. Oper. Res. 25(1), 63-75 (2000)

Smith, W.: Various optimizers for single stage production. Naval Res. Logist.
Quart. 3(1-2), 59-66 (1956)

Vredeveld, T., Hurkens, C.: Experimental comparison of approximation algorithms
for scheduling unrelated parallel machines. INFORMS J. Comput. 14, 175-189
(2002)

Theory and Practice of Chunked Sequences

Umut A. Acar’?, Arthur Charguéraud!?, and Mike Rainey!

! Inria
2 Carnegie Mellon University
3 LRI, Université Paris Sud, CNRS

Abstract. Sequence data structures, i.e., data structures that provide
operations on an ordered set of items, are heavily used by many ap-
plications. For sequence data structures to be efficient in practice, it is
important to amortize expensive data-structural operations by chunking
a relatively small, constant number of items together, and representing
them by using a simple but fast (at least in the small scale) sequence
data structure, such as an array or a ring buffer. In this paper, we present
chunking techniques, one direct and one based on bootstrapping, that can
reduce the practical overheads of sophisticated sequence data structures,
such as finger trees, making them competitive in practice with special-
purpose data structures. We prove amortized bounds showing that our
chunking techniques reduce runtime by amortizing expensive operations
over a user-defined chunk-capacity parameter. We implement our tech-
niques and show that they perform well in practice by conducting an
empirical evaluation. Our evaluation features comparisons with other
carefully engineered and optimized implementations.

1 Introduction

Sequence data structures, i.e., data structures that store an ordered set of ele-
ments and support operations on them, are fundamental in computer science.
There exist several variants of sequences, such as LIFO queues (stacks), FIFO
queues, doubly-ended queues (deques), and more general data structures, such
as finger-search trees. The common operations on sequences include push and
pop operations at one or two ends, a split operation that partitions the data
structure at a desired position, and a concatenation operation that joins two
sequences.

Many asymptotically efficient data structures for sequences have been de-
veloped. Resizable circular arrays support constant-time push, pop and ran-
dom access operations, but require linear time for concatenation and splitting.
Doubly-linked lists improve the bound for concatenation to O(1), but splitting
at a given index requires linear time. More sophisticated data structures, such
as Kaplan and Tarjan’s functional catenable sorted lists, support push and pop
operations in constant time, while also supporting splitting and concatenation
in logarithmic time [10]. Their catenable sorted list is one instance of a finger
search tree, a type of tree that has been studied extensively since the 1970s [7].

A.S. Schulz and D. Wagner (Eds.): ESA 2014, LNCS 8737, pp. 25-36, 2014.
(© Springer-Verlag Berlin Heidelberg 2014

26 U.A. Acar, A. Charguéraud, and M. Rainey

A more recent functional finger-tree data structure by Hinze and Paterson
achieves similar bounds and accepts a simple implementation [8].

Practical performance is a major concern for sequence data structures be-
cause of their widespread use in applications. While there has been much focus
on developing asymptotically efficient sequence data structures, there is rela-
tively little rigorous work on practical data structures that can guarantee small
constant factors on modern computers. To understand the significance of practi-
cal concerns we implemented in C++ an optimized version of Hinze and Paterson
finger tree data structure [8], and compared it to a resizable circular array, which
is simpler but asymptotically efficient only for a narrower set of operations in-
cluding push and pop. Our experiments show that the finger tree is over 20 times
slower for push/pop operations than with circular arrays.! This is unfortunate,
because such gaps in performance can prevent the use of these asymptotically
efficient data structures in practice. It would be nice to have the best of both
worlds by guaranteeing both theoretical and practical efficiency. We are therefore
interested in the question: can we design asymptotically and practically efficient
data structures for sequences that can support a broad range of operations, in-
cluding push/pop operations on both ends, concatenation, and split at a specified
position?

In practice, simpler data structures can out-class sophisticated, asymptotically
efficient data structures because the latter tends to perform many more expen-
sive operations, such as memory operations and manipulations of tree nodes,
than their simpler counterparts. To reduce such overheads, practitioners repre-
sent a sequence data structure as a hierarchical data structure consisting of an
underlying sequence data structure that stores chunks of items instead of indi-
vidual items. Each chunk in turn is represented as an array, which is basically
a fast sequence data structure (in small scale). The idea is to amortize the cost
of expensive memory operations on the underlying sequence over the items in
the chunks. This chunking technique can be applied to essentially any underly-
ing sequence data structure. For example, the C++ Standard Template Library
(STL) [14] includes a deque data structure represented as a resizable circular
array of chunks of 512 single-word items. Similarly, the Haskell “yi” package [2]
provides a chunked finger-tree data structure for character sequences. While
chunking can be effective in practice, all applications of this technique known
to us are merely heuristics: they provide no worst-case efficiency guarantees. In
fact, as we describe in Section 2, their time and space efficiency can degenerate
significantly on certain sequences of operations.

In this paper, we give chunking algorithms that yield tight amortized, worst-
case bounds with small constant factors. To support splits and random ac-
cesses efficiently, we consider a slightly more general interface for sequences:
we associate weights with the items and support a weighted-split operation. The
weighted-split operation takes a sequence s and a weight w, and it decomposes s
in three parts (s1,x,s2), in such a way that |s1] < w < |s1| + |z|, where |z]

! We specifically measured the time for pushing 100 million integers and then popping
them in FIFO order.

Theory and Practice of Chunked Sequences 27

denotes the weight of the item z, and |s1| denotes the sum of the weights of the
items in s7.

Given any underlying weighted sequence data structure, we show in Section 3
how to build a weighted (or unweighted) sequence data structure by using K-
capacity chunks

— that guarantees constant-time push and pop operations with excellent con-
stant factors, in particular such that every allocation operation is amortized
over at least K push or pop operations,

— that supports concatenation and split efficiently by introducing an additive
overhead proportional to K, and

— that requires approximately a factor-2 increase in space usage, thus ensuring
reasonably good space utilization.

At a high level, our techniques speed up the push and pop operations (usually
the most common operations) without significantly affecting the performance
for the other operations. We note that in this paper, we consider ephemeral (as
opposed to persistent) data structures only.

Since our techniques can be applied to any sequence data structure, including
to a chunked sequence data structure, it can be applied recursively to permit
bootstrapping. We describe such a bootstrapped data structure in Section 4,
which uses structural decomposition [6,4,3] and recursive slowdown [9].

In our proofs, in addition to considering the chunk size as a parameter, we
also differentiate between memory allocation and other operations. For memory
allocation, we introduce a parameter A to denote the cost of allocating and later
deallocating a structure of bounded-size (e.g., a chunk or a record), and reserve
the O(1) notation to account for the other (relatively cheaper) operations. We
show that all allocation operations are well amortized. As we describe briefly,
in our chunking technique, allocation correlates with other expensive memory
operations. This approach thus gives us a good indication of practical overheads.

To understand the actual practical efficiency of our proposed techniques, we
have implemented them all in C+4. We perform an empirical evaluation by
comparing our data structures to more specialized data structures that are op-
timized for a narrower set of operations such as STL deques and ropes, which
are carefully engineered and highly optimized. Our practical results confirm our
theoretical results showing that our data structures perform well in practice,
usually within 10% of the actual run time of the best known data structure,
while still supporting a broader set of operations.

The contributions of the paper include the chunking techniques that guaran-
tee worst-case bounds, their analysing and the proofs, the bootstrapped data
structure, and the implementation and its evaluation. Our implementations and
test scripts are available for download at http://deepsea.inria.fr/chunkedseq/.

2 Challenges

We consider common chunking strategies used in prior implementations such as
those employed by the Standard Template Library for C++ and identify two

http://deepsea.inria.fr/chunkedseq/

28 U.A. Acar, A. Charguéraud, and M. Rainey

limitations that can lead to significantly degraded performance and underuti-
lization of memory (space) by breaking the amortization benefits of chunking.

Push-Pop Sequences. A common chunking strategy is to create and dispose
of chunks on a need by need basis. For example, to push an item z to the front
of a sequence, we first check if there is space in the first chunk. If so, we push z
into that chunk. Otherwise, we create a new chunk, place z in it, and push this
chunk to the front. Symmetrically, to pop an item from the front, we extract the
first item stored in the first chunk. If the first chunk becomes empty as a result,
then we pop the chunk from the front and dispose of it.

This strategy can fail to amortize the cost of push/pop operations on chunks,
which are expensive. For example, starting from a sequence whose front chunk
is full, repeat the following pattern: push one item and pop it immediately. It is
not difficult to see that each operation requires pushing/popping a chunk. This
chunking strategy, employed by the C++ Standard Template Library (STL)
Deques, runs 10 times slower in the worst case. To test this, we wrote a program
that starting from an initial deque obtained by pushing a given number of items,
performs a sequence of push and pop operations on 64-bit integers. The programs
runs 10 times slower when the initial deque has a size equal to 511 modulo 512
than with a different initial deque. All chunked sequence data structures that we
have seen (and their naive variants) suffer from the same or similar problems.

Sparse Chunks. Chunking delivers efficiency improvements by amortizing the
cost of slow operations over a number of fast operations. Such amortization
works, of course, only if chunks are densely populated. When chunks are sparsely
populated, then the amortization arguments breaks and performance and mem-
ory utilization drops. For example, if chunks have capacity K but store only 1
item, then amortization fails entirely and the memory footprint of the sequence
is roughly K times bigger than necessary. It is not difficult to create sparse
chunks by using concatenation operations. Consider for example a chunked se-
quence consisting of 2 chunks each containing a single item. Such a sequence
can be obtained by pushing K + 1 items to the front, then popping K — 1 from
the back, where K is the capacity of a chunk. Once we have two sequences each
with two sparse chunks, we can create one with arbitrary number of chunks by
repeatedly concatenating them.

The “yi” package of Haskell [2] implements a refinement of this strategy: to
concatenate two sequences s; and sg, first check whether the back chunk in s; and
the front chunk in sy would fit into a single chunk; if so, merge these two chunks
before concatenating the underlying sequences. This strategy does not prevent
sparse chunks. For example, the concatenation of two sequences each made of
two chunks of size 1 produces a sequence made of three chunks of size 1, 2, and 1.
Concatenating two such sequences produces a sequence made of chunks of size
1, 2,2, 2, and 1. By iterating the process, we obtain an arbitrarily-long sequence
made of sparse chunks containing no more than 2 items each. This example
demonstrates that a provably efficient chunking strategy requires techniques to
prevent sparse chunks from being formed.

Theory and Practice of Chunked Sequences 29

3 Efficient Chunked Sequences

One of our main results is a theorem (Theorem 1 below) that shows that chunking
can be applied to any (underlying) sequence data structure. The theorem states
the bounds for the resulting chunked sequence, parametrized by the bounds of
the underlying sequence. To simplify the analysis, we combine the cost of push
and pop. More precisely, we charge all the cost of a pop operation to the push
operation associated with the corresponding item. Doing so is correct because
we consider ephemeral sequences and conduct an amortized analysis. For the
theorem, we define a chunk as a circular array of fixed capacity K and we assume
that cost function for the underlying sequence (e.g., Cspiit(n)) are nondecreasing
functions of size.

Theorem 1 (Efficiency of Chunked Sequence). Consider an underlying
weighted sequence that supports the following operations:

— Push and pop, with cost Cpyshpop- For simplicity, we assume this cost to not
depend on the number of items in the sequence.

— Concatenation, with cost Ceoncat(n), where n is the minimum of the sizes of
the two input sequences.

— Weighted split, with cost Cspir(n), where n is the minimum of the sizes of
the two output sequences.

— Space usage bounded by Cspace(n), where n is the number of single-word items
stored in the sequence.

Let K > 2 denote the capacity of a chunk, a value that may be freely chosen.
Assume that chunks are implemented with a structure that supports O(1) push
and pop operations and that requires K + 3 words to store K single-word items
—e.g., using fixed-capacity circular arrays. Recall that A denotes the cost of
allocation, including subsequent deallocation.

Then, we can implement o (weighted or unweighted) sequence that achieves
the amortized bounds shown below, where, for each operation, n is a size defined
as above, and where p, = LQ%LJ:IDJ + 1, for whatever the local definition of n > 0
1s. Intuitively, p, bounds the number of chunks stored in the underlying sequence.

— Push and pop, with cost: O(1) + Il((A + Cpushpop).

— Concatenation, with cost: Ceoncat(Pn) + O(K) + 4 - Cpushpop-

— Split, or weighted split, with cost: Csprit(pn) + O(K) + 6A.

— Space usage, bounded by: 2(1 + Kil) N+ Cspace(Pn) + 5K + O(1) words.

We present the representation and the invariants of the data structure that
satisfies Theorem 1 and describe the implementation of the operations. The proof
of the theorem can be found in the long version [1].

Representation. As discussed in Section 2, the main challenge in efficient
chunking as required by Theorem 1 is to ensure that all operations on the under-
lying sequence data structure, which stores chunks are well amortized. To ensure

30 U.A. Acar, A. Charguéraud, and M. Rainey

such amortization, we use a representation that keeps two chunks to store the
items at the front of the sequence, and two chunks to store the items at the back.
We refer to each of the special chunks stored at the two ends as a buffer. We then
represent a sequence as a quintuple made of a front-outer buffer, a front-inner
buffer, a middle sequence, which is an underlying sequence of chunks, a back-
inner buffer, and a back-outer buffer. We write, e.g., (f', f,m,b,b’) to denote
such a quintuple.

Invariants. To guarantee efficiency, we maintain the invariant that the inner
buffers are, at all time, either completely empty or completely full. Moreover,
chunks in the middle sequence are never empty, and, to prevent sparse chunks
from being formed, we ensure that any 2 consecutive chunks from the middle
sequence have an average density of more than 50%. Our invariants are summa-
rized as shown below, where |c¢| denotes the number of items stored in a chunk c.

1. The front-inner and the back-inner buffers are either empty or full.
2. If ¢ is a chunk from the middle sequence, then 0 < |¢| < K.
3. If c and ¢ are two consecutive chunks in the middle sequence, |c|+ || > K.

Operations. We implement the sequence operations as described below.
push-Front. Consider a sequence (f’, f,m,b,b') and an item x to push to the
front of this sequence. If f’ is full, we make room as follows. If f is empty, we
simply exchange f with f’, by swapping pointers. Otherwise, if f is full, we
update the sequence to (¢, f',m’,b,b"), where c is a fresh chunk and where m/
is the result of pushing the full chunk f to the front of m. At this point, the
front-outer buffer is not full, so we push z to the front of this buffer.
pop-Front. Consider a sequence (f’, f,m,b,b"). If ' is empty, we populate it
as follows. If f is not empty, in which case it must be full, we swap f with f’.
Otherwise, assume f to be empty. If m is not empty, we pop from m, obtaining a
nonempty chunk ¢ and a new middle sequence m’; we then update the sequence
to (¢, f,m’,b,b"). Otherwise, assume m to be empty. If b is not empty, in which
case it must be full, we swap b with f’. Otherwise, if b is empty, we swap b
with f’. (Alternatively, we may directly pop from the front of &’.) At this point,
the front-outer buffer is not empty, so we can pop from this buffer.
push-Buffer-Back. This auxiliary function is used to implement concat. When
applied to a middle sequence m and to a chunk ¢, the function push-buffer-back
modifies m so as to concatenate the items from c¢ at its back, proceeding as
follows. If ¢ is empty, there is nothing to do. Otherwise, we perform the following
two steps. (1) If m is nonempty and has a back chunk ¢’ such that |c|+ |¢'| < K,
then we pop ¢ out of m and merge the items from ¢’ into c. (2) We push the
chunk ¢ to the back of m.
push-back and pop-back and push-buffer-front are defined symmetrically.
concat. Consider two sequences (f1, f1,m1,b1,b}) and (f4, f2, ma, ba, b5). To
concatenate them, we start by concatenating the chunks by, b} at the back of my,
by applying twice the function push-buffer-back. Symmetrically, we concatenate
f4 and f2 to the front of mg, using push-buffer-front. If m; and mgy are both
nonempty at this point, let ¢; be the back chunk of m; and c¢o be the front

Theory and Practice of Chunked Sequences 31

chunk of mg. If |c1| + |e2] < K, then we pop ¢; and ¢z, merge the items from
¢o into ¢1, and push ¢; back into m;. (Remark: the pop and push operations on
¢1 may be factorized with the earlier calls to push-buffer-back.) At this point,
we concatenate the two underlying sequences m; and ms to get a new middle
sequence, call it mi2. The final result of the concatenation is (f7, f1, mi2, ba, b}).

split. Consider a sequence (f’, f,m,b,b’) and an index i denoting the split
position. There are five cases; we consider the first one that applies.

— Case i < |f'|. We return two sequences (f1,0,0,0,0) and (f3, f,m,b, V'),
where (f7, f4) is the result of splitting the chunk f’ at index i. More precisely,
f1 denotes f’ restricted to its items stored at index less than 4, and f4 denotes
a fresh chunk into which we move the items at index 7 or more in f’.

— Casei < |f'|+|f]- We return two sequences (f',0,0,0, f1) and (f2,?,m,b,b’),
where (f1, f2) is the result of splitting the chunk f at index i — | f’|.

— Case i < |f'|+|f|+ |m|, where |m| denotes the total number of items stored
in all the chunks of m. Let j be equal to i — | f/| — | f|. We invoke the weighted
split operation on the middle sequence to split m into a triple (mq, ¢, m2),
such that the chunk ¢ contains the item located at index j in m. Let (c1, ¢2)
is the result of splitting the chunk ¢ at index j — |mq|, where |m;| denotes
the weight of m; (i.e., the sum of the weights of the chunks in m;). We then
return the two sequences (f’, f,m1,0,¢1) and (cq, 0, mo, b, b’).

— The remaining two cases, i < |f'|+|f|+|m|+|b] and i > |f'|+|f]|+|m|+ |b|
are essentially symmetrical to the first two cases.

4 Bootstrapped Chunked Sequences

The construction presented in Section 3 shows that, we can build a chunked
sequence data structure on top of an underlying weighted sequence data struc-
ture. We can thus build a bootstrapped weighted sequence data structure by
instantiating the underlying sequence to the structure produced by the theorem.
To initiate the bootstrapping process, we can use a single chunk. The resulting
bootstrapped chunked sequence data structure is a weighted sequence that, for
a fixed value of K, achieves the asymptotic bounds as finger trees: constant time
push and pop operations at the two ends, and logarithmic time concatenation
and split. Unlike finger trees, however, our structure achieves constant factors
amortized over K for push and pop operations, without significantly increas-
ing the constant factors in concatenation and split. The precise bounds for our
bootstrapped structure are as follows.

Theorem 2 (Efficiency of Bootstrapped Chunked Sequence). A boot-
strapped chunked sequence has depth zero when n < 1, and has depth d <
[10g(k41y/2 1] + 1 otherwise. It achieves the following bounds:

— Push and pop, with cost: O(1) + Iéfl.
— Concatenation, with cost: (d+1)- (O(K) + ;°4).

32 U.A. Acar, A. Charguéraud, and M. Rainey

— Weighted split, with cost: (d+1) - (O(K) + 6A4).
— Space usage, with a bound asymptotically equivalent to: 2(1 + K4_1) -n.

At first approximation, our bootstrapped data structure implements push and
pop in O(1) + 1‘3, and concatenation and weighted split in O(K - logy /o n).
Since log /o n is a rather small value the concatenation and split operations are
competitive with the corresponding operations on finger trees, of cost O(log, n),
with small values of K.

We note that since the bootstrapped data structure stores chunks of chunks
(of chunks and so on), its nodes have high fanout, like some other data structures
such as B+ trees [11]. A benefit of large fanout is that it decreases depth. Unlike
B+ trees, however, our structure stores both ends of the sequence very close to
the root, achieving constant-time access to the ends of the sequence.

We present the representation and the invariants of the data structure that
satisfies Theorem 2 and describe the implementation of the operations. The proof
of the theorem can be found in the long version [1].

Representation. We represent a bootstrapped chunked sequence as a list of
levels. The deepest level is a shallow level that consists of a single weighted chunk.
Every other level is a deep level that consists of a weight field and of pointers to
the front-outer, front-inner, back-inner and back-outer weighted chunks. Chunks
attached at depth 0 store individual items, chunks attached at depth 1 one store
chunks of items, chunks at depth 2 store chunks of chunks of items, and so on...

We may choose different chunk capacities for different levels. However, our
goal is to minimize both the product of the chunk sizes (to reduce the depth)
and the sum of the chunk sizes (for fast split and concatenation). It therefore
makes sense to select the same chunk capacity at every level.

Invariant. We enforce that if a level stores zero or one element (which may be
items or chunks, depending on the level), then it is shallow. For all but the last
level, we enforce the same invariants as those presented previously in Section 3.

Operations. We implement the sequence operations as described below. Opera-
tions on deep levels are similar to those described in Section 3, making recursive
calls on the lower levels of the bootstrapped structure when operating on the
middle sequence. Operations on deep levels also require updating the weight
field. Below, we only focus on the treatment of shallow levels and the transitions
between shallow and deep levels.

check. The purpose of this auxiliary function is to enforce the invariant that
if a level contains zero or one element, then it is shallow. To that end, if the
sequence is deep, we execute the following two steps, in order. (1) If all four
buffers are empty and the middle sequence is nonempty, we pop a chunk from
the front of the middle sequence and set it as new front-outer buffer. (2) If the
sequence has an empty middle sequence, and all four buffers contain zero or
one item in total, then we change the representation of the sequence to shallow
(reusing one of the four buffers as chunk to represent the shallow level).

push-Front. First, if the sequence is shallow and is made of a full chunk, we
change its representation to deep, setting the chunk as back-outer buffer. Then,
we push the incoming item to the front of the (shallow or deep) level.

Theory and Practice of Chunked Sequences 33

pop-Front. We pop an item from the structure, which may be shallow or deep.
If the structure is deep, then we call check to possibly make it shallow.

concat. If both structures are deep, we call the concatenation procedure de-
scribed in Section 3, then call check on the result. Else, we pop the items of the
shortest sequence one by one and push them into the other one.

split. If the structure is shallow, we split its chunk at the appropriate position
in order to isolate the targeted item, and we produce two shallow structures. If
the structure is deep, we split it and then call check on both subsequences.

5 Benchmarks

To evaluate our chunking techniques, we wrote an implementation in C++ con-
sisting of a few generic classes and two data structures that we benchmark. The
first class is a generic C++ class that implements our chunking technique of
Section 3. This chunked-sequence class is a templated class that is parameter-
ized over the representation of its underlying sequence. Recall that we define the
underlying sequence as any underlying sequence data structure that provides
the full set of operations for maintaining a sequence of chunks. For the first data
structure we benchmarked, we used an instantiation of our chunked-sequence
class for which the underlying sequence is represented by our own ephemeral
C++ implementation of Hinze and Patterson’s finger tree. In addition, we coded
a C++ class that implements our bootstrapped chunked sequence of Section 4.
For the second data structure we benchmarked, we used an instantiation of our
chunked-sequence class for which the underlying sequence is represented by our
bootstrapped chunked sequence.

We ran all of our experiments with the same settings for K (i.e., chunk ca-
pacity) that we found to deliver good performance overall. For our chunked
finger tree, we used 512; for our bootstrapped chunked sequence, we used 512
and 32 for the chunk-capacity settings of the outer and underlying sequences,
respectively. We compiled all programs with GCC version 4.9.0, using optimiza-
tions -02 -march=native. For the measurements we report in the abstract, we
considered an Ubuntu Linux machine with kernel v3.2.0-58-generic and an
2.4GHz Intel Xeon 4870 processor with 1TB of RAM. We have obtained similar
results on an AMD machine.

Our first study is a comparison between our chunked data structures and the
STL deque, which as discussed earlier is also a chunked data structure that uses
a chunk-capacity setting of 512 items. To measure the relative efficiency of long
sequences of similar accesses to the ends of the sequence, we ran two simple
benchmarks, namely LIFO and FIFO. Our LIFO benchmark proceeds in two
steps: the first step is to fill a previously empty target sequence by pushing on
the back end n 64-bit items and the second is to empty the target sequence by
popping repeatedly from the back of the sequence. Our FIFO benchmark does
the same thing as LIFO but pops from the front instead of the back end. Table
5 shows the data from our experiments. The results in the first six rows of the
table show that our two chunked data structures are at worst a few percent
slower than the STL deque.

34 U.A. Acar, A. Charguéraud, and M. Rainey

To measure the relative efficiency of interleaved sequences of pushes and pops,
we ran experiments involving the depth-first and breadth-first search of a di-
rected graph. Our depth-first and breadth-first codes are serial implementations
of DFS and BFS that are each parameterized by C++ template parameter over
the representation of their respective frontiers (i.e., lifo stack and fifo queue
ADTs). We considered three graphs that each demonstrates key characteris-
tics of our sequence data structures. Each graph is represented in adjacency-list
format and uses 64-bit integer values to represent vertex ids. Looking at DFS
and BFS, we see that, in every case except for DFS on tree, our chunked data
structures are competitive with STL deques — sometimes slower and sometimes
faster, but never differing by more than a few percent. In the case of DFS on tree,
our chunked finger tree and bootstrapped chunked sequence are each nearly 40%
slower than STL deque. This benchmark demonstrates a weakness of our imple-
mentations: the empty check is relatively costly because of the need to frequently
check the emptiness of the two inner buffers and the middle sequence each time
around main the DFS loop. The cost of the empty check is so pronounced in
this particular case because the cost is not well amortized by sufficiently many
push operations: the peak size of the DFS frontier is just a few tens of items.
Although it affects implementations, this weakness is not inherent to our gen-
eral technique. If performance on such small sequences is important, one can
adjust the code to sacrifice a few instructions on each push and pop operation to
cache the size of the structure. We plan to experiment with such optimizations
in future work.

We ran an experiment involving single-processor executions of Leiserson and
Schardl’s parallel BFS algorithm (PBFS) [12]. The original PBFS uses a special-
purpose bag data structure to manage the frontier of the graph traversal. During
a given round, PBFS traverses its frontier in a divide-and-conquer fashion, using
push and pop in the sequentialized leaves and split and concat in the divide and
conquer stages, respectively. Their bag data structure is represented by a chun-
ked binomial tree that bears some resemblance to our chunked representations.
Despite the similarities, Leiserson and Schardl’s structure provides access only
to the front and supports only an approximate split-in-half operation. In our
experiment, we consider the same chunk capacity as in the original PBFS pa-
per, namely 128, and we applied to our data structure a few basic optimizations
exploiting the fact that sequence order needs not be maintained —in particular,
the back buffers become unnecessary. We see from the results table that our
(bag-specialized) chunked data structures perform either better, or at worst a
few percent slower, than the PBFS bag structure.

In the long version [1], we report on two additional experiments to more
thoroughly evaluate performance in scenarious that mix push, pop, split and
concatenate, comparing in particular against the STL rope data structure [13].

Theory and Practice of Chunked Sequences 35

Table 1. Measurements of benchmark runs. All measurements were taken from our
Intel machine. Each data point represents wall-clock time in seconds. For each data
point in the table, we made five runs and took the mean. The amount of noise that we
observed between runs of the same application was below 1%. All data points that are
no more than 10% slower than the best time are displayed in boldface. Our grid 2D
graph is a grid graph in two-dimensional space, where each vertex is connected to each
of its four neighbors in two dimensions. We used number of vertices n = 2 billion and
number of edges m = 4 billion. Our tree graph is a perfect binary tree of 22° nodes. Our
friendster graph is a social networking graph that has n = 65 million vertices and m =
1.8 billion edges [5]. For LIFO and DFS, we use the stack optimization and for PBFS
we use the bag optimization as described in the long version [1], while for the other
benchmarks we use the plain double-ended sequence-ordered chunk representation. For
PBFS, we use linear-time split and concat for STL deque (only).

Experiment Seq. Nb. PBFS STL Our Our
length repeat bag deque chunked bootstr.
finger tree chunked

LIFO 102 10° 5.46 6.40 6.99

108 10° 9.15 10.95 10.97

10° 10° 12.07 13.28 1347
FIFO 105 10° 5.51 6.34 6.40

10 10° 9.16 10.96 10.52

10° 10° 12.32 13.53 13.31
DFS on grid 2D 4.84 5.17 5.27
DF'S on tree 11.25 15.53 15.46
DF'S on friendster 63.43 64.67 65.28
BFS on grid 2D 39.89 36.74 36.68
BFS on tree 15.23 20.54 21.08
BFS on friendster 72.84 72.76 72.68
PBFS on grid 2D 39.87 38.17 38.71 38.67
PBFS on tree 19.00 75.53 21.53 20.46
PBF'S on friendster 117.11 137.36 117.45 117.04

Our experiments show that our chunked data structures deliver excellent per-
formance relative to the state-of-the-art data structures that we considered, even
though each of these other data structures are highly tuned for a strictly narrower
set of operations. Moreover, in contrast to the other state-of-the-art chunked data
structures, ours come along with strong guarantees against worst case behavior.
Furthermore, our benchmarks show promise for our chunked data structures
to serve in roles that were previously not filled. On the one hand, for many
sequential-programming applications, our data structures can be used in place
of STL deque, and as a bonus, offer fast logarithmic-time split and concatenate
operations. On the other, the PBFS application demonstrates potential of our
chunked data structures in multicore applications as generic sequence containers
and as splittable work-queue data structures in load-balancing algorithms.

36 U.A. Acar, A. Charguéraud, and M. Rainey

6 Conclusion and Future Work

We presented algorithmic and implementation techniques for designing practi-
cally efficient sequence data structures that amortize expensive operations over
a collection of items arranged as a chunk. We proved tight bounds by parame-
terizing our analysis by the cost of memory allocations, which, in our approach,
correlate with expensive operations, and by counting such operations separately.
We show that the proposed techniques perform well in practice. In future work,
we plan to investigate the use of stronger invariants on consecutive chunks for
increased space utilization, and consider persistent data structures.

Acknowledgements. This research is partially supported by the European
Research Council under grant number ERC-2012-StG-308246 and the National
Science Foundation under grant number CCF-1320563.

References

1. Acar, U.A., Charguéraud, A., Rainey, M.: Theory and practice of chunked
sequences, http://deepsea.inria.fr/chunkedseq (full version)

2. Bernardy, J.-P.: The Haskell yi package,
http://hackage.haskell.org/package/yi-0.6.2.3/docs/src/Data-Rope.html

3. Buchsbaum, A.L., Tarjan, R.E.: Confluently persistent deques via data-structural
bootstrapping. J. Algorithms 18(3), 513-547 (1995)

4. Buchsbaum, A.L.: Data-structural bootstrapping and catenable deques. PhD
thesis, Princeton University (1993)

5. Stanford Large Network Dataset Collection. Friendster graph,
http://snap.stanford.edu/data/com-Friendster.html

6. Dietz, P.F.: Maintaining order in a linked list. In: STOC 1982, Baltimore, USA,
pp. 122-127. ACM Press (May 1982)

7. Guibas, L.J., McCreight, E.M., Plass, M.F., Roberts, J.R.: A new representation
for linear lists. In: STOC 1977, pp. 49-60. ACM, New York (1977)

8. Hinze, R., Paterson, R.: Finger trees: a simple general-purpose data structure.
JFP 16(2), 197218 (2006)

9. Kaplan, H., Tarjan, R.E.: Persistent lists with catenation via recursive slow-down.
In: TOC 1995, pp. 93-102. ACM (1995)

10. Kaplan, H., Tarjan, R.E.: Purely functional representations of catenable sorted
lists. In: STOC 1996, pp. 202-211. ACM, New York (1996)

11. Knuth, D.E.: The Art of Computer Programming: Sorting and Searching, 2nd edn.,
vol. 3, ch. 6, pp. 481-489. Addison-Wesley (1998)

12. Leiserson, C.E., Schardl, T.B.: A work-efficient parallel breadth-first search
algorithm. In: SPAA 2010, pp. 303-314 (June 2010)

13. SGI. Stl rope, http://www.sgi.com/tech/stl/Rope.html

14. Stepanov, A., Lee, M.: The Standard Template Library, volume 1501. HP
Laboratories (1995)

http://deepsea.inria.fr/chunkedseq
http://hackage.haskell.org/package/yi-0.6.2.3/docs/src/Data-Rope.html
http://snap.stanford.edu/data/com-Friendster.html
http://www.sgi.com/tech/stl/Rope.html

Convex Hulls under Uncertainty

Pankaj K. Agarwal!, Sariel Har-Peled?, Subhash Suri®, Hakan Yildiz?,
and Wuzhou Zhang!

! Duke University, United States
2 University of Illinois, Urbana-Champaign, United States
3 University of California, Santa Barbara, United States

Abstract. We study the convex-hull problem in a probabilistic setting,
motivated by the need to handle data uncertainty inherent in many ap-
plications, including sensor databases, location-based services and com-
puter vision. In our framework, the uncertainty of each input point is
described by a probability distribution over a finite number of possible
locations including a null location to account for non-existence of the
point. Our results include both exact and approximation algorithms for
computing the probability of a query point lying inside the convex hull of
the input, time-space tradeoffs for the membership queries, a connection
between Tukey depth and membership queries, as well as a new notion
of B-hull that may be a useful representation of uncertain hulls.

1 Introduction

The convex hull of a set of points is a fundamental structure in mathematics and
computational geometry, with wide-ranging applications in computer graphics,
image processing, pattern recognition, robotics, combinatorics, and statistics.
Worst-case optimal as well as output-sensitive algorithms are known for com-
puting the convex hull; see the survey [15] for an overview of known results.

In many applications, such as sensor databases, location-based services or
computer vision, the location and sometimes even the existence of the data is
uncertain, but statistical information can be used as a probability distribution
guide for data. This raises the natural computational question: what is a robust
and useful convex hull representation for such an uncertain input, and how well
can we compute it? We explore this problem under two simple models in which
both the location and the existence (presence) of each point is described proba-
bilistically, and study basic questions such as what is the probability of a query
point lying inside the convex hull, or what does the probability distribution of
the convex hull over the space look like.

Uncertainty models. We focus on two models of uncertainty: unipoint and
multipoint. In the unipoint model, each input point has a fixed location but it
only exists probabilistically. Specifically, the input P is a set of pairs {(p1,71), . - -,
(Pn,¥n)} Where each p; is a point in R? and each +; is a real number in the range
(0,1] denoting the probability of p;’s existence. The existence probabilities of
different points are independent; P = {p1,...,p,} denotes the set of sites in P.

A.S. Schulz and D. Wagner (Eds.): ESA 2014, LNCS 8737, pp. 37-48, 2014.
(© Springer-Verlag Berlin Heidelberg 2014

38 P.K. Agarwal et al.

In the multipoint model, each point probabilistically exists at one of multiple
possible sites. Specifically, P is a set of pairs {(Py, I'1), ..., (Pm, Im)} where each
P; is a set of n; points and each I is a set of n; real values in the range (0, 1].
The set P; = {p}, ...,p;"} describes the possible sites for the ith point of P
and the set I; = {’yil, . ,’yi""} describes the associated probability distribution.
The probabilities 'yf correspond to disjoint events and therefore sum to at most
1. By allowing the sum to be less than one, this model also accounts for the
possibility of the point not existing (i.e. the null location)—thus, the multipoint
model generalizes the unipoint model. In the multipoint model, P = U£1 P;
refers to the set of all sites and n = |P)|.

Our results. The main results of our paper can be summarized as follows.

(A) We show (in Section 2) that the membership probability of a query point
q € R%, namely, the probability of ¢ being inside the convex hull of P, can be
computed in O(nlogn) time for d = 2. For d > 3, assuming the input and
the query point are in general position, the membership probability can be
computed in O(n?) time. The results hold for both unipoint and multipoint
models.

(B) Next we describe two algorithms (in Section 3) to preprocess P into a data
structure so that for a query point its membership probability in P can be
answered quickly. The first algorithm constructs a probability map M(P),
a partition of R? into convex cells, so that all points in a single cell have
the same membership probability. We show that M(%P) has size @(nd’), and
for d = 2 it can be computed in optimal O(n?) time. The second one is a
sampling-based Monte Carlo algorithm for constructing a near-linear-size
data structure that can approximate the membership probability with high
likelihood in sublinear time for any fixed dimension.

(C) We show (in Section 4) a connection between the membership probability
and the Tukey depth, which can be used to approximate cells of high mem-
bership probabilities. For d = 2, this relationship also leads to an efficient
data structure.

(D) Finally, we introduce the notion of S-hull (in Section 5) as another approx-
imate representation for uncertain convex hulls in the multipoint model: a
convex set C is called 8-dense for P, for 8 € [0,1], if C contains at least 8
fraction of each uncertain point. The S-hull of P is the intersection of all
[-dense sets for P. We show that for d = 2, the -hull of P can be computed
in O(nlog®n) time.

Because of lack of space, many technical details and proofs are omitted from

this version and can be found in the full version [3].

Related work. There is extensive and ongoing research in the database com-
munity on uncertain data; see [7] for a survey. In the computational geome-
try community, the early work relied on deterministic models for uncertainty
(see e.g. [11]), but more recently probabilistic models of uncertainty, which
are closer to the models used in statistics and machine learning, have been
explored [1,2,9, 10,14, 16]. The convex-hull problem over uncertain data has
received some attention very recently. Suri et al. [16] showed that the problem

Convex Hulls under Uncertainty 39

of computing the most likely convex hull of a point set in the multipoint model
is NP-hard. Even in the unipoint model, the problem is NP-hard for d > 3. They
also presented an O(n?®)-time algorithm for computing the most likely convex
hull under the unipoint model in R2. Zhao et al. [17] investigated the problem
of computing the probability of each uncertain point lying on the convex hull,
where they aimed to return the set of (uncertain) input points whose probabili-
ties of being on the convex hull are at least some threshold. Jorgensen et al. [§]
showed that the distribution of properties, such as areas or perimeters, of the
convex hull of P may have 2(II]"n;) complexity.

2 Computing the Membership Probability

For simplicity, we describe our algorithms under the unipoint model, and then
discuss their extension to the multipoint model. We begin with the 2D case.

2.1 The Two-Dimensional Case

Let P = {(p1,71),---, (Pn,)} be a set of n uncertain points in R? under the
unipoint model. Recall that P = {p1,...,pn} is the set of all sites of P. For
simplicity, we make the general position assumption on the input, namely, that
all coordinates are distinct and no three sites are collinear. A subset B C P is
the outcome of a probabilistic experiment with probability ~(B) = Hm e i X
Hpi ¢B Vir where ; is the complementary probability 1 — ;. By definition,
for a point g, the probability of ¢ to lie in the convex-hull of B is pu(q) =
> BcP|gecn(p) V(B), where CH(B) is the convex hull of B. This unfortunately
involves an exponential number of terms. However, observe that for a subset
B C P, the point ¢ is outside CH(B), if and only if ¢ is a vertex of the convex
hull cH(B U {q}). So, let C = cH(B U {q}), and V be the set of vertices of C.
Then pu(q) = 1 —-Pr[qeV].

If B = 0, then clearly C' = {q} and ¢ € V. Otherwise, |[V| > 2 and ¢ € V
implies that ¢ is an endpoint of exactly two edges on the boundary of C.! In this
case, the first edge following ¢ in the counter-clockwise order of C is called the
witness edge of q being in V. Thus, ¢ € V if and only if B = 0 or (exclusively)
B has a witness edge, i.e.,

Pr[q € V] :Pr[B = Q)] —&-ZPr[qpi is the witness edge of g € V' | .
i=1

The first term can be computed in linear time. To compute the ith term in the
summation, we observe that gp; is the witness edge of B if and only if p;, € B
and B contains no sites to the right of the oriented line spanned by the vector

L' If B consists of a single site p;, then C is the line segment gp;. In this case, we
consider the boundary of C to be a cycle formed by two edges: one going from ¢ to
pi, and one going from p; back to q.

40 P.K. Agarwal et al.

qp., which occurs with probability i - HpjeGi 4, where G; is the set of sites to

the right of gp;. This expression can be computed in O(n) time. It follows that
1 — u(q), and therefore (q), can be computed in O(n?) time. The computation
time can be improved to O(nlogn) as described in the following paragraph.

Improving the running time. The main idea is to compute the witness
edge probabilities in radial order around g. We sort all sites in counter-clockwise
order around q. Without loss of generality, assume that the circular sequence
D1, - .-, Pn is the resulting order. We first compute, in O(n) time, the probability
that gp; is the witness edge. Then, for increasing values of ¢ from 2 to n, we
compute, in O(1) amortized time, the probability that gp; is the witness edge
by updating the probability for ¢p;—1. In particular, let W, denote the set of
sites in the open wedge bounded by the vectors gpi_i and gp,. Notice that
G; = Gi—1 U{pi—1} \ W;. It follows that the probability for gp; can be computed

Yi=t The amortized

by multiplying the probability for gp;_1 with 774,1 % .
o i

p;EW;
cost of a single update is O(1) because the total number Jof multiplications in all
the updates is at most 4n. (Each site affects at most 4 updates.) Finally, notice
that we can easily keep track of the set W; during our radial sweep, as changes
to this set follow the same radial order.

Theorem 1. Given a set of n uncertain points in R? under the unipoint model,
the membership probability of a query point q can be computed in O(nlogn) time.

2.2 The d-Dimensional Case

The difficulty in extending the above to higher dimensions is an appropriate
generalization of witness edges, which allow us to implicitly sum over exponen-
tially many outcomes without over-counting. Our algorithm requires that all
sites, including the query point ¢, are in general position in the following sense:
for 2 < k < d, the projection of no k+ 1 points of PU{q} on a subspace spanned
by any subset of k coordinates lies on a (k — 1)-hyperplane.

Let B be an outcome, C' = CH(B U{q}) its convex hull, and V the vertices
of C. Let A\(B U {q}) denote the point with the lowest z4-coordinate in B U {q}.
Clearly, if ¢ is A(B U {q}) then g € V; otherwise, we condition the probability
based on which point among B is A(B U {q}). Therefore, we can write

Pr[qev] :Pr[q:A(BU{q})] + Y Pr[pi:A(BU{q}) A qev].

1<i<n

It is easy to compute the first term. We show below how to compute each term
of the summation in O(n%~1) time, which gives the desired bound of O(n?).

Consider an outcome B. Let p; be an arbitrary point in B. We use p; as a
reference point known to be contained in the hull C' = cH(B U {q}). Let B’, !
and ¢’ denote the projections of B, p; and ¢ respectively on the hyperplane
x4 = 0, which we identify with R4~1. Let us define C' = cu(B' U {¢'}) C R?"1,
and let V' be the vertices of C.

Convex Hulls under Uncertainty 41

Let 7(p’i, q’) denote the open ray egnating V

from ¢ in the direction of the vector pjq¢’ (that 0N~
is, this ray is moving “away” from p}). A facet f ./
of C' is a p;-escaping facet for ¢, if ¢ is a vertex

of f and the projection of f on R4~ intersects '(i %‘1/)
7)(]9’1-, q'). See the figure on the right. The follow- o\ !

ing lemma is key to our algorithm. The points
of C projected into dC’ form the silhouette of C.

Lemma 1. (4) If ¢ € V' then q is a silhouette vertex of C' and vice versa.

(B) q has at most one p;-escaping facet on C.

(C) The point q is a non-silhouette vertex of the convex-hull C if and only if
q has a (single) p;-escaping facet on C.

Given a subset of sites P, C P\ {p;} of size (d — 1), define f(P,) to be the

(d—1)-dimensional simplex CH(P, U {q}). Since p; = A(B U {q}) implies p; € B,
we can use Lemma 1 to decompose the ith term as follows:

Pr[pi —ABU{g) A qe v] :Pr[pi —MNBUI{g)) A ¢ € V’]

+ Z Pr[pi =AXBU{q}) N f(P.) is a facet of C’] .
PoCP\{pi}
| Pa|=(d—1)

f(Pa) is p;-escaping for ¢

The first term is an instance of the same problem in (d — 1) dimensions (for
the point ¢’ and the projection of P), and thus is computed recursively. For
the second term, we compute the probability that f(P,) is a facet of C as
follows. Let G; C P be the subset of sites which are on the other side of the
hyperplane supporting f(P,) with respect to p;. Let Go C P be the subset of
sites that are below p; along the zg4-axis. Clearly, f(P,) is a facet of C' (and
p; = AM(BU{q})) if and only if all points in P, and p; exist in B, and all points
in G1 U G4 are absent from B. The corresponding probability can be written as
i X HpjePa vj X Hpj c ¢ ua, V- This formula is valid only if P, N G2 = () and
p; has a lower x4-coordinate than ¢; otherwise we set the probability to zero.
This expression can be computed in linear time, and the whole summation term
can be computed in O(n?) time. Then, by induction, the computation of the
ith term takes O(n?) time. Notice that the base case of our induction requires
computing the probability Pr[pi = AMBU{qg}) A ¢?? ¢ V(d*Q)] (where (¢=2)
indicates a projection to R?). Computing this probability is essentially a two-
dimensional membership probability problem on g and P, but is conditioned on
the existence of p; and the non-existence of all sites below p; along dth axis.
Our two dimensional algorithm can be easily adapted to solve this variation in
O(nlogn) time as well. Finally, we can improve the computation time for the
ith term to O(n?~!) by considering the facets f(P,) in radial order. See the
full version of the paper [3] for details.

42 P.K. Agarwal et al.

Remark. The degeneracy of the input is easy to handle in two dimensions,
but creates some technical difficulties in higher dimensions that we are currently
investigating.

Theorem 2. Let P be an uncertain set of n points in the unipoint model in R?
and q be a point. If the input sites and q are in general position, then one can
compute the membership probability of q in O(n?) time, using linear space.

Extension to the multipoint model. The algorithm extends to the multipoint
model easily by modifying the computation of the probability for an edge or facet.
See the full version of the paper [3] for details.

Theorem 3. Given an uncertain set P of n points in the multipoint model in
R? and a point ¢ € R?, we can compute the membership probability of q in
O(nlogn) time for d = 2, and in O(n?) time for d > 3 if input sites and q are
i general position.

3 Membership Queries

We describe two algorithms — one deterministic and one Monte Carlo — for pre-
processing a set of uncertain points for efficient membership-probability queries.

Probability map. The probability map M(P) is the subdivision of R into
maximal connected regions so that u(q) is the same for all query points ¢ in a
region. The following lemma gives a tight bound on the size of M(P).

Lemma 2. The worst-cage complezity of the probability map of a set of uncer-
tain points in RY is O(n"), under both the unipoint and the multipoint model,
where n is the total number of sites in the input.

Proof. We prove the result for the unipoint model, as the extension to the mul-
tipoint model is straightforward. For the upper bound, consider the set H of
O(n?) hyperplanes formed by all d-tuples of points in P. In the arrangement
A(H) formed by these planes, each (open) cell has the same value of p(q). This
arrangement, which is a refinement of M(?), has size O((n¢)4) = O(ndz), estab-
lishing the upper bound.

For the lower bound, consider the problem in two dimen-
sions; extension to higher dimensions is straightforward. We
choose the sites to be the vertices p1,...,p, of a regular n-
gon, where each site exists with probability v, 0 < v < 1. See
the figure on the right. Consider the arrangement A formed
by the line segments p;p;, 1 <4 < j < n, and treat each face
as relatively open. If u(f) denotes the membership probability for a face f of A,
then for any two faces f1 and f2 of A, where f; bounds f> (i.e., fi C Jf2), we
have u(f1) > p(f2), and u(f1) > p(f2) if v < 1. Thus, the size of the arrange-
ment A is also a lower bound on the complexity of M(P). This proves that the
worst-case complexity of M(P) in R? is Q(ndz). O

Convex Hulls under Uncertainty 43

We can preprocess this arrangement into a point-location data structure, giv-
ing us the following result for d = 2.

Theorem 4. Let P be a set of uncertain points in R?, with a total of n sites.
P can be preprocessed in O(n*) time into a data structure of size O(n*) so that
for any point ¢ € RY, u(q) can be computed in O(logn) time.

See the full version of the paper [3] for details.

Remark. For d > 3, due to our general position assumption, we can compute
the membership probability only for d-faces of M(P), and not for the lower-
dimensional faces. In that case, by utilizing a point-location technique in [5],
one can build a structure that can report the membership probability of a (;uery
point (inside a d-face) in O(logn) time, with a preprocessing cost of O(n® +%).

Monte Carlo algorithm. The size of the probability map may be prohibitive
even for d = 2, so we describe a simple, space-efficient Monte Carlo approach for
quickly approximating the membership probability, within absolute error. Fix a
parameter s > 1, to be specified later. The preprocessing consists of s rounds,
where the algorithm creates an outcome A; of P in each round j. Each A; is
preprocessed into a data structure so that for a query point ¢ € R%, we can
determine whether ¢ € CH(A;).

For d < 3, we can build each CH(A;) explicitly and use linear-size point-
location structures with O(logn) query time. This leads to total preprocessing
time O(snlogn) and space O(sn). For d > 4, we use the data structure in [13]
for determining whether ¢ € A;, for all 1 < j < s. For a parameter ¢ such
that n < t < nl%2] and for any constant ¢ > 0, using O(st'*9) space and
preprocessing, it can compute in O(742, Jog??H! n) time whether ¢ € CH(A;)
for every j.

Given a query point ¢ € R, we check for membership in cH(A;), for every
Jj < s. If g lies in k of them, we return ji(q) = k/s as our estimate of u(q).
Thus, the query time is O(tl/tdm Jog??t! n) for d > 4, O(slogn) for d = 3, and
O(logn + s) for d = 2 (using fractional cascading).

It remains to determine the value of s so that |u(q)—7i(q) | < € for all queries g,
with probability at least 1—4. For a fixed ¢ and outcome A;, let X; be the random
indicator variable, which is 1 if ¢ € CH(A;) and 0 otherwise. Since E[X;] = u(q)
and X; € {0, 1}, using a Chernoff-Hoeffding bound on 7i(¢q) = k/s = (1/s) 3, Xi,
we observe that Pr[|fi(q) — u(q) | > ¢] < 2exp(—2¢2s) < §. By Lemma 2, we
need to consider O(n?") distinct queries. If we set 1/8' = O(n?’ /§) and s =
O((1/£?)1og(n/d)), we obtain the following theorem.

Theorem 5. Let P be a set of uncertain points in R? under the multipoint model
with a total of n sites, and let £,0 € (0,1) be parameters. For d > 4, P can be
preprocessed, for any constant o > 0, in O((t'17 /e?)log) time, into a data
structure of size O((t'17 /e?)log), so that with probability at least 1—6, for any
query point ¢ € R2, [i(q) satz’sfying lu(q)—p(q) | < e and ii(q) > 0 can be returned
m O(tl/Ld/QJEQ log ' log? d+l n) time, where t is a parameter and n <t < nld/2]

44 P.K. Agarwal et al.

< 3, the preprocessing time and space are O(loglog logn) and
), respectively. The query time is O(), log('})logn) (resp. O(log 7))

rd
”zl
d= (esp d=2).

(

4 Tukey Depth and Convex Hull

The membership probability is neither a convex nor a continuous function, as
suggested by the example in the proof of Lemma 2. In this section, we estab-
lish a helpful structural property of this function, intuitively showing that the
probability stabilizes once we go deep enough into the “region”. Specifically, we
show a connection between the Tukey depth of a point ¢ with its membership
probability; in two dimensions, this also results in an efficient data structure for
approximating £(q) quickly within a small absolute error.

Estimating 1(q). Let Q be a set of weighted points in R?. For a subset A C Q,
let w(A) be the total weight of points in A. Then the Tukey depth of a point
q € R? with respect to @, denoted by 7(g,Q), is minw(Q N H) where the
minimum is taken over all halfspaces H that contain ¢.2 If @ is obvious from the
context, we use 7(q) to denote 7(g, Q). Before bounding 1(q) in terms of 7(q, Q),
we prove the following lemma.

Lemma 3. Let Q be a finite set of points in R%. For any p € R%, there is a set
8 ={S1,...,S7} of d-simplices formed by Q such that (i) each S; contains p in
its interior; (i) no pair of them shares a vertex; and (ii) T > [T(p,Q)/d].

We now use Lemma 3 to bound u(p) in terms of 7(p, P).

Theorem 6. Let P be a set of n uncertain points in the uniform unipoint model,
that is, each point is chosen with the same probability v > 0. Let P be the set
of sites in P. There is a constant ¢ > 0 such that for any point p € R with

7(p, P) = t, we have (1 —) <1— u(p) < dexp(— Wdtz

Proof. For the first inequality, fix a closed halfspace H that contains ¢ points of
P. If none of these t points is chosen then p does not appear in the convex hull
of the outcome, so 1 — pu(p) > (1 —)%

Next, let 8 be the set of simplices of Lemma 3, and let V be its set of vertices,
where T' > [t/d]. Let ' = |V| = (d+ 1)T. Set ¢ = d+1 A random subset of V'
of size O(log _ 5) O(d?log 5) is an e-net for halfspaces, with probability at
least 1 — 5

In particular, any halfspace passing through p, contains at least T points
of V. That is, all these halfspaces are e-heavy and would be stabbed by an
e-net. Now, if we pick each point of V with probability ~, it is not hard to
argue that the resulting sample R is an e-net®. Indeed, the expected size (and

2 If the points in @Q are unweighted, then 7(g, Q) is simply the minimum number of
points that lie in a closed halfspace that contains q.

Convex Hulls under Uncertainty 45

in with sufficiently large probability) of RNV is n” = n'y = (d +)Ty > tv.
As such, for some constant ¢, we need the minimal value of § such that the
inequality ty > cd? In § 4 holds, which is equivalent to eXp() > 5 ¢ This in turn

is equivalent to § > dexp(fcdz) . Thus, we set § = deXp(*ccP)'

Now, with probability at least 1 — §, for a point p in R? with Tukey depth at
least ¢, we have that p is in the convex-hull of the sample. O

Theorem 6 can be extended to the case when each point p; of P is chosen
with different probability, say, ;. In order to apply Theorem 6, we convert P to
a multiset Q, as follows. We choose a parameter n = 10 . For each point p; € P,

In(1—~;)
In(1—n)

1. We can apply Theorem 6 to Q and show that if 7(¢,Q) > d; In(2d/6), then
(g, Q) > (1 —§/2). Omitting the further details, we conclude the following.

we make w; = [-‘ copies of p;, each of which is selected with probability

Corollary 1. Let P = {(p1,71),---, (Pn,n)} be a set of n uncertain points in

R? under the unipoint model. For 1 < i < n, set w; = (ml(?(—l&i/wfo)n)-‘ to be the

weight of point p;. If the (weighted) Tukey depth of a point ¢ € R in {p1,...,pn}
is at least 10?;2” In(2d/0), then u(q,P) >1—94.

Data structure. Let P be a set of points in the uniform unipoint model in R2,
i.e., each point appears with probability v. We now describe a data structure
to estimate u(q) for a query point ¢ € R?, within additive error 1/n. We fix a
parameter to = ° Inn for some constant ¢ > 0. Let T = {z € R* [7(z,P) > to}
be the set of all points whose Tukey depth in P is at least ty. T is a convex polygon
with O(n) vertices [12]. By Theorem 6, u(q) > 1 — 1/n? for all points q € T,
provided that the constant ¢ is chosen appropriately. We also preprocess P for
halfspace range reporting queries [6]. T can be computed in time O(n log® n) [12],
and constructing the half-plane range reporting data structure takes O(nlogn)
time [6]. So the total preprocessing time is O(nlog® n), and the size of the data
structure is linear.

A query is answered as follows. Given a query
point ¢ € R?, we first test in O(logn) time
whether ¢ € T. If the answer is yes, we simply
return 1 as p(q). If not, we compute in O(log n)
time the two tangents ¢1,¢s of T from ¢. For
i = 1,2, let & = £;N 7T, and let ¢; be the
half-plane bounded by ¢; that does not contain . Set (Pq =PnN (61 U {5) and

= |Pq4|. Let R, be the subset of P, by choosing each point with probablhty v.

By querying the half-plane range reporting data structure with each of these
two tangent lines, we compute the set P, in time O(logn + ng). Let w, =
Prlq ¢ cH(R,UT)]. We compute wy, in (nglogn,) time, by adapting the al-
gorithm for computing p(g) described in Section 2.

3 The standard argument uses slightly different sampling, but this is a minor tech-
nicality, and it is not hard to prove the e-net theorem with this modified sampling
model.

46 P.K. Agarwal et al.

The correctness and efficiency of the algorithm follow from the following
lemma, whose proof is omitted from this version.

Lemma 4. For any point ¢ ¢ T, (i) |Prlg e cH(R,UT)] —pu(q)| < 1/n;
(ii) ng < 4to = O(y~'logn).

By Lemma 4, n, = O(y~!logn), so the query takes O(y~!log(n)loglogn)
time. We thus obtain the following.

Theorem 7. Let P be a set of n uncertain points in R? in the unipoint model,
where each point appears with probability v. P can be preprocessed in O(n log® n)
time into a linear-size data structure that, for any point ¢ € R?, returns a value
i(q) in O(y~tlog(n)loglogn) time such that |fi(q) — p(q) | < 1/n.

5 B-Hull

In this section, we consider the multipoint model, i.e., P is a set of m uncertain
point defined by the pairs {(P1,I1),...,(Pmn,Im)}. A convex set C C R? is
called 3-dense with respect to P if it contains S-fraction of each (P;,I3), i.e.,
Zp; v] > f8 for all i < m. The -hull of P, denoted by CHg(P), is the intersection

of all convex B-dense sets with respect to P. Note that for m = 1, cHg(P) is
the set of points whose Tukey depth is at least 1 — 3. We first prove an O(n)
upper bound on the complexity of cHg(P) and then describe an algorithm for
computing it.

Theorem 8. Let P = {(Py, I1),...,(Pn,Im)} be a set of m uncertain points in
R? under the multipoint model with P = J;"., P; and |P| = n. For any j3 € [0,1],
CHg(P) has O(n) vertices.

Proof. We call a convex f-dense set C' minimal if there is no convex (-dense
set C’ such that ¢/ € C. A minimal convex 3-dense set C' is the convex hull
of PN C. Therefore C is a convex polygon whose vertices are a subset of P.
Obviously cHg(P) is the intersection of minimal convex (-dense sets. Therefore
each edge of cHg(P) lies on a line passing through a pair of points of P, i.e.,
CHg(P) is the intersection of a set H of halfplanes, each bounded by a line passing
through a pair of points of P. Next we argue that |H| < 2n.

Fix a point p € P. We claim that H contains at most two halfplanes whose
bounding lines pass through p. Indeed if p € int(CHg(P)), then no bounding line
of H passes through p; if p € 9(cHg(P)), then at most two bounding lines of H
pass through p; and if p ¢ cHg(P), then there are two tangents to CHg(P) from
p. Hence at most two bounding lines of H pass through p, as claimed. (I

Algorithm. We describe the algorithm for computing the upper boundary U
of cHg(P). The lower boundary of CHg(P) can be computed analogously. It will
be easier to compute U in the dual plane. Let U* denote the dual of U. We call
a line ¢ passing through a point p € P; -tangent of P; at p if one of the open

Convex Hulls under Uncertainty 47

half-planes bounded by ¢ contains less than [-fraction of points of P; but the
corresponding closed half-plane contains at least S-fraction of points.

Recall that the dual of a point p = (a,b) is the line p* : y = az — b, and
the dual of a line ¢ : y = mx + ¢ is the point ¢* = (m, —c). The point p lies
above/below/on the line £ if and only if the dual point ¢* lies above/below/on
the dual line p*. Set P} = {pf* |pl e Pi} and P* = J!", P}. For a point ¢ € R?
and for i < m, let k(q,4) = Z’yf where the summation is taken over all points
p{ € P; such that ¢ lies below the dual line pf* We define the B-level A; of
P’ to be the upper boundary of the region {q € R? | k(q,i) > 6}. A; is an -
monotone polygonal chain composed of the edges of the arrangement A(P;*); the
dual line of a point on A; is a S-tangent line of P;. Let A be the lower envelope
of Ay, ..., Ap.

Let £ be the line supporting an edge of U. It can be proved that the dual point
£* is a vertex of A. Next, let ¢ be a vertex of U, then ¢ cannot lie above any
[B-tangent line of any P;, which implies that the dual line ¢* passes through a
pair of vertices of A and does not lie below any vertex of A. Hence, each vertex
of U corresponds to an edge of the upper boundary of the convex hull of A.
This observation suggests that U* can be computed by adapting an algorithm
for computing the convex hull of a level in an arrangement of lines [4,12]. We
begin by describing a simple procedure, which will be used as a subroutine in
the overall algorithm.

Lemma 5. Given a line £, the intersection points of £ and A can be computed
in O(nlogn) time.

Proof. We sort the intersections of the lines of P* with . Let (g1, . .., qu), u < n,be
the sequence of these intersection points. For every i < m, k(q1,%) can be computed
in a total of O(n) time. Given {x(gj—1,?) | 1 <i <m}, {k(g;,7) |1 <i < m}can
be computed in O(1) time. A point g; € Aif g; € A; for some ¢ and lies below A
for all other ¢’. This completes the proof of the lemma. |

The following two procedures can be developed by plugging Lemma 5 into the
parametric-search technique [4,12].

(A) Given a point ¢, determine whether ¢ lies above U* or return the tan-
gent lines of U* from ¢. This can be done in O(nlog?n) time.

(B) Given a line ¢, compute the edges of U* that intersect £, in O(nlog® n)
time. (Procedure (B) uses (A) and parametric search.)

Given (B), we can now compute U* as follows. We fix a parameter r > 1 and
compute a (1/r)-cutting? = = {A;,..., A,}, where u = O(r?). For each 4;, we
do the following. Using (B) we compute the edges of U* that intersect 0A;. We
can then deduce whether A; contains any vertex of U*. If the answer is yes, we
solve the problem recursively in A; with the subset of lines of P* that cross 4;.
We omit the details from here and conclude the following.

* A (1/r)-cutting of P* is a triangulation = of R? such that each triangle of 5 crosses
at most n/r lines of P*.

48

P.K. Agarwal et al.

Theorem 9. Given a set P of uncertain points in R? under the multipoint model
with a total of n sites, and a parameter 5 € [0, 1], the B-hull of P can be computed
in O(nlog®n) time.

Acknowledgments. P. Agarwal and W. Zhang are supported by NSF under grants
CCF-09-40671, CCF-10-12254, and CCF-11-61359, by ARO grants W911NF-07-1-0376
and W911NF-08-1-0452, and by an ERDC contract W9132V-11-C-0003. S. Har-Peled
is supported by NSF grants CCF-09-15984 and CCF-12-17462. S. Suri and H. Yildiz
are supported by NSF grants CCF-1161495 and CNS-1035917.

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

Agarwal, P.K., Aronov, B., Har-Peled, S., Phillips, J.M., Yi, K., Zhang, W.: Nearest
neighbor searching under uncertainty II. In: Proc. 32nd ACM Sympos. Principles
Database Syst., pp. 115-126 (2013)

Agarwal, P.K., Cheng, S., Tao, Y., Yi, K.: Indexing uncertain data. In: Proc. 28th
ACM Sympos. Principles Database Syst., pp. 137-146 (2009)

Agarwal, P.K., Har-Peled, S., Suri, S., Yildiz, H., Zhang, W.: Convex hulls under
uncertainty. CoRR abs/1406.6599 (2014), http://arxiv.org/abs/1406.6599
Agarwal, P.K., Sharir, M., Welzl, E.: Algorithms for center and Tverberg points.
ACM Trans. Algo. 5(1), 5:1-5:20 (2008)

Chazelle, B.: Cutting hyperplanes for divide-and-conquer. Discrete Comput.
Geom. 9(1), 145-158 (1993)

Chazelle, B., Guibas, L.J., Lee, D.T.: The power of geometric duality. BIT 25(1),
76-90 (1985)

Dalvi, N.N.,; Ré, C., Suciu, D.: Probabilistic databases: Diamonds in the dirt.
Commun. ACM 52(7), 86-94 (2009)

Jogrgensen, A., Loffler, M., Phillips, J.: Geometric computations on indecisive
points. In: Proc. 12th Workshop Algorithms Data Struct., pp. 536-547 (2011)
Kamousi, P., Chan, T.M., Suri, S.: Closest pair and the post office problem for
stochastic points. In: Proc. 12th Workshop Algorithms Data Struct., pp. 548-559
2011

%(amo)usi, P., Chan, T., Suri, S.: Stochastic minimum spanning trees in euclidean
spaces. In: Proc. 27th Annu. Sympos. Comput. Geom., pp. 65-74 (2011)

Loffler, M.: Data Imprecision in Computational Geometry. Ph.D. thesis, Dept.
Computer Sci. (2009)

Matousek, J.: Computing the center of planar point sets. In: Goodman, J.E.,
Pollack, R., Steiger, W. (eds.) Computational Geometry: Papers from the DIMACS
Special Year, pp. 221-230. Amer. Math. Soc. (1991)

Matousek, J., Schwarzkopf, O.: Linear optimization queries. In: Proc. 8th Annu.
Sympos. Comput. Geom, pp. 16-25 (1992)

Phillips, J.: Small and Stable Descriptors of Distributions for Geometric Statistical
Problems. Ph.D. thesis, Dept. Computer Sci. (2009)

Seidel, R.: Convex hull computations. In: Goodman, J.E., O’Rourke, J. (eds.)
Handbook of Discrete and Computational Geometry, pp. 495-512. CRC Press
2004

(Suri,)S., Verbeek, K., Yildiz, H.: On the most likely convex hull of uncertain points.
In: Proc. 21st Annu. European Sympos. Algorithms, pp. 791-802 (2013)

Zhao, Z., Yan, D., Ng, W.: A probabilistic convex hull query tool. In: Proc. 15th
Int. Conf. on Ext. Database Tech., pp. 570-573 (2012)

http://arxiv.org/abs/1406.6599

The Space-Stretch-Time Tradeoff in Distance Oracles

Rachit Agarwal

University of California at Berkeley, CA, USA
ragarwal@berkeley.edu

Abstract. We present new distance oracles for computing distances of stretch
less than 2 on general weighted undirected graphs. For the realistic case of
sparse graphs and for any integer k, the new oracles return paths of stretch
1+1/k and exhibit a smooth three-way tradeoff of S x T'/* = O(n?) between
space S, stretch and query time T. This significantly improves the state-of-
the-art for each point in the space-stretch-time tradeoff space, and matches the
known space-time curve for stretch 2 and larger. We also present new oracles
for stretch 1+ 1/(k + 0.5). A particularly interesting case is of stretch 5/3,
where improving the query time of our oracles from T to T'~¢ for any £ > 0
would lead to the first purely o(mn)-time combinatorial algorithm for Boolean
Matrix Multiplication, a longstanding open problem.

1 Introduction

A distance oracle is a compact representation of all-pair shortest path matrix of
a graph. A stretch-c oracle for a weighted undirected graph G = (V,E) returns,
for any pair of vertices s,t € V at distance d(s, t), a distance estimate 5(s, t) that
satisfies d(s,t) < 6(s,t) < c-d(s,t). Let n = |V| and m = |E|. For general graphs,
Thorup and Zwick [31] showed a fundamental space-stretch tradeoff — for any
integer k > 2, they designed an oracle of size O(kn'*'/%) that returned distances of
stretch (2k — 1) in O(k) time; the construction time of their oracle was O(kmn'/*),
in expectation. The Thorup-Zwick (TZ) oracle was a significant improvement over
previous constructions that had much higher stretch and/or query time [8,15,21].

Improvements in Construction and Query Time. Much of the early research fol-
lowing the TZ result focused on improving the construction time. Roditty, Thorup
and Zwick [27] derandomized the TZ construction. Baswana and Sen [11] im-
proved the construction time to O(n?) for unweighted graphs. Their result was ex-
tended to weighted graphs by Baswana and Kavitha [10]. Finally, Wulff-Nilsen [33]
achieved subquadratic construction time for weighted graphs with m = o(n?) edges.

The query time of the TZ oracle is not constant for super-constant stretch. Wulff-
Nilsen [32] reduced the query time of the TZ oracle to O(log k) using a new query
algorithm that incorporates binary search within the TZ oracle. Mendel and Naor
[22] reduced the query time to O(1) at the expense of increasing the stretch to O(k)
and the construction time to O(n**/%). Interestingly, Chechik [13] showed that it
is possible to reduce the query time of TZ oracle to an absolute constant, without
increasing the stretch or space of the original TZ construction.

A.S. Schulz and D. Wagner (Eds.): ESA 2014, LNCS 8737, pp. 49-60, 2014.
(© Springer-Verlag Berlin Heidelberg 2014

50 R. Agarwal

Improvements in Space-Stretch Tradeoff. Thorup and Zwick showed that, assum-
ing a girth conjecture of Erdds, any oracle that returns distances of stretch less than
(2k + 1) must have size 22(n'*/¥). However, the hard instances used to prove this
lower bound are extremely dense graphs; for instance, their construction uses a
graph with m = £2(n?) edges to prove the space lower bound for stretch less than
3. For graphs with m = o(n?) edges, it may in fact be possible to get a better space-
stretch tradeoff — their result merely implies a trivial space lower bound of 2(m),
that is, compression is impossible.

However, improving the space-stretch tradeoff turned out to be a much harder
problem. Until 2010, a better tradeoff was known only for special graph classes such
as planar graphs [20,30], bounded-genus and minor-free graphs [19], power-law
graphs [14] and random graphs [17]. Patrascu and Roditty [23] achieved the first
breakthrough, constructing a stretch-2 constant-time oracle of size O(n*3m'/3).
Their result was generalized for larger stretch values by Abraham and Gavoille [1]
and by Patrascu, Roditty and Thorup [24]. The original construction of Patragcu and
Roditty was rather complex; simpler construction and analysis are now known [3].

Lower Bounds. Sommer et al. [28] proved in the cell-probe model that the size
of stretch-s time-t distance oracles is lower bounded by n'*?(/s9 That is, for
graphs with m = O(n) edges, computing distances of constant stretch in con-
stant time requires super-linear space. Conditioned on hardness of set intersec-
tion, Patrascu and Roditty [23] strengthened their result by proving an £2(n?)
space lower bound for constant-time stretch-less-than-2 oracles. Pétrascu, Roditty
and Thorup [24] proved, among other results, a conditional space lower bound of
2(m®?) for constant-time stretch-2 oracles. Due to several upper bounds match-
ing these lower bounds [23, 24], these results are believed to provide a complete
understanding of the space-stretch tradeoff for constant-time oracles.

Distance Oracles with Super-Constant Query Time. The problem of improving
the space-stretch tradeoff of the TZ oracle is wide open if one allows super-constant
query time. No non-trivial lower bounds are known for this regime and it is possible
that there exist constant-stretch oracles of size O(m) with polylog(n) query time!

Agarwal, Godfrey and Har-Peled [5, 6] constructed oracles with super-constant
query time for stretch 2 and larger. Their stretch-2 and stretch-3 oracles achieve
a space-time tradeoff of S x T = O(n?) and S x T? = 0O(n?), respectively, for
sparse graphs. For instance, stretch-2 and stretch-3 distances can be computed us-
ing O(n®/?) and O(n) space, respectively, if one allows O(+/n) query time. Even on
graphs with millions of nodes and edges, a query time of O(4/n) time can be en-
gineered to return results in less than a millisecond [2], an extremely acceptable
latency for most real-world applications [2,5,18,26].

Porat and Roditty [25] showed existence of o(n?)-size stretch-less-than-2 oracles
for unweighted graphs given super-constant query time. Agarwal and Godfrey [4]
explored a general space-stretch-time tradeoff for oracles with stretch less than 2 —
their oracle is for general weighted graphs and significantly reduces both the space
and query time of the Porat-Roditty oracle for any fixed stretch. For space, stretch,
query time and construction time bounds for these oracles, see Table 1.

The Space-Stretch-Time Tradeoff in Distance Oracles 51

Table 1. Summary of results and comparison with oracles in [25] and in [4]

Stretch Space Query time Construction time Remarks Ref.
1+, 0 (mljl(f;z)) 0 (ml/zm)) O(mn) 1<a<n [25]
O(m+n?/a) O((aw*) O(mn/a) 1<a<n [4]
O(m+n?/a) O((au)) O(mn/a) 1<a<n §3

1+ s Olmtn?/a) O(au?*) O(mn/a) l<a<n 4]
O(m+n?/a) O(a(ap)) O(mn/a) 1<a<n §4

1+2 O(m+n*/a) o((ap)®) O(mn/a) 1<a<m®/m)'? [4]
O(m+n*/a) O(ap) O(mn/a) 1<a<@m/m)"* §5

1.1 Our Contributions

This paper makes two contributions. Our first contribution is a new space-stretch-
time tradeoff for distance oracles for stretch less than 2:

Theorem 1. Let G be a non-negatively weighted undirected graph with n vertices, m
edges and average degree u = 2m/n. Then, for any fixed 1 < a < n and for any
integer k > 1, there exist distance oracles of size O(m + n%/a) that return distances
of stretch (1 + i) in O((au)*) time and of stretch (1 + k+1045) in O(a(au)*) time. For
1< a <n?Pm~'3, there also exist oracles of size O(m + n?/a) that return distances

of stretch 5/3 in O(au) time. All these oracles can be constructed in time O(mn/a).

The first oracle of Theorem 1, for sparse graphs, achieves a space-stretch-time
tradeoff of S x Tk = O(n?) for stretch (1 4+ 1/k). For any fixed space and stretch,
the oracle reduces the query time in [4] from T%~! to T* (or alternatively, reduces
space for any fixed stretch and query time). Interestingly, the space-stretch-time
tradeoff achieved by this oracle matches the known space-time tradeoff space for
stretch 2 and larger. For instance, setting k = 1, we get S x T = O(n?) for stretch 2
and setting 1/k = 2, we get S X T? = O(n?) for stretch 3, precisely as in [5].

The second oracle reduces the query time from 722 in [4] to T* for any fixed
stretch and space. Note that both the first and the second construction also enable
non-trivial constructions that were not possible using the results in [4]. For instance,
the new results make it possible to compute stretch-1.5 distances using oracles of
size O(n®/?) in sub-linear time.

The third oracle of Theorem 1 is particularly interesting. For any space S =
2(n®?), this oracle reduces the query time of the stretch-5/3 oracle of [4] from
T to +/T. In particular, this oracle achieves a space-time tradeoff of S x T = O(n?),
which is same as the stretch-2 oracle of [5]. Essentially, compared to the stretch-2
oracle of [5], this oracle reduces the stretch from 2 to 5/3 without any increase in
space or query time for the regime of § = 2(n/).

52 R. Agarwal

We argue that the query time of the second and the third oracles may be close to
optimal. Specifically, the problem of computing all-pair stretch-less-than-2 distances
in undirected graphs is equivalent to combinatorial’ boolean matrix multiplication
(BMM) over the (OR, AND) semiring [16]. Hence, for k = 1, if the query time of the
second oracle of Theorem 1 can be reduced to O((a?u)'~#) for any ¢ > 0, it would
be possible to multiply two boolean matrices in time O(mn/a + n*>(a?u)!~¢). By
setting a = o((m/n)P) for B = 2(18—3)’ we get that the time would be o(mn). Hence,

improving the query time from T to T'~¢ for any &£ > 0 would lead to a purely o(mn)
time combinatorial algorithm for BMM, a long standing open problem [9,12].

New Query Algorithms. In contrast to the elegant and compact data structures
used in constant-time oracles [1,23,24,31], the data structures for super-constant
time oracles [4,5] are usually relatively simpler — in addition to the graph, distance
from a few sampled vertices to each vertex in the graph is stored. The main tech-
nique used in super-constant time oracles is more sophisticated query algorithms
that allow exploring a tradeoff between space, stretch and query time (cf. [4]). Our
second contribution is, indeed, such new query algorithms.

Our query algorithms perform a bidirectional recursion to compute (not neces-
sarily shortest) distances to vertices in carefully defined neighborhoods of both the
source s and the destination t. Specifically, the algorithm explores recursively larger
neighborhoods of both s and t in each step, and computes distances from s and t to
vertices in the respective neighborhoods. The neighborhoods are defined in a man-
ner that once the recursion depth is reached, the explored neighborhoods either
intersect along the shortest path or we are able to prove a non-trivial lower bound
on the exact distance between s and t. Intuitively, these neighborhood definitions
ensure that two new “subpaths” of the shortest path between s and t are explored
in each recursive step (one closer to s and one closer to t). When neighborhoods do
not intersect, the length of the shortest of these subpaths times twice the recursion
depth is a lower bound on the exact distance between s and t. Moreover, the neigh-
borhood definitions also ensure that the neighborhoods explored in each recursive
step also contain at least one of the “landmark” vertices that store distances to each
vertex in the graph (computed and stored during graph preprocessing). The path
via the landmark vertex in the neighborhood containing the shortest of the subpaths
gives us a path with desired stretch.

Our new query algorithms are simpler, faster and compute paths of smaller
stretch than the ones in [4]. In contrast to the algorithm in [4] that explores the
neighborhood of only either the source or the destination in each recursive step, our
new definition of neighborhoods allow us to perform bidirectional recursion. This,
in turn, leads to significantly stronger lower bound on the exact distance between
the source and the destination without any asymptotic increase in the query time.

! Although not defined precisely, we say that an algorithm is “combinatorial” in nature if it
does not use algebraic techniques of fast matrix multiplication.

The Space-Stretch-Time Tradeoff in Distance Oracles 53
2 Preliminaries

This section sets up the notation and basic results [4,5,31] used throughout the
paper. We assume that the graph G = (V, E) is a weighted undirected graph with n
vertices and m edges with non-negative edge weights.

2.1 Reducing the Problem to Degree-Bounded Graphs

The following lemma shows that the problem of designing oracles and algorithms
for computing low stretch distances on weighted graphs with n vertices and m edges
is no harder than designing oracles for O(m/n)-degree bounded graphs.

Claim 1 ([4-6]). Let G = (V,E) be a weighted undirected graph with n vertices,
m edges with non-negative edge weights, and average degree u = 2m/n. Then, it is
possible to construct an equivalent graph with maximum degree A = [u + 2], such
that the new graph has 2n vertices, m + n edges, and has the same distances between
any pair of vertices as the distance in the original graph between the corresponding
vertices. The new graph can be computed in O(n + m) time.

2.2 Balls and Vicinities, Shortest Distances and Candidate Distances

Let d(s,t) denote the exact distance between any vertex pair s,t € V. For any
V' c V, we denote by N(V’) the set of neighbors of vertices in V’. Given G, a vertex
v and a subset of vertices L C V, we use the following definitions:

— Nearest vertex in set L — {(v): the vertex a € L that minimizes d(v,a), ties
broken arbitrarily.

Ball radius r,: the distance from v to its nearest neighbor in L, that is, d(v, £(v)).
Ball of a vertex B(v): the set of vertices w € V for which d(v,w) < d(v,£(v)).
Vicinity of a vertex B*(v): the set of vertices in B(v) UN(B(v)).

Candidate distance from v to w — d/ (w): cost of the least-cost path from v to
w such that all intermediate vertices on this path are contained in B(v); that is:

d/(w)= xeNI(E;%EB(v){d(V’X) + weight of edge(x, w)}

If N(w)NnB(v) =0, we let d/(w) = o0.

The following lemma gives an efficient way of sampling vertices for set L such that
the ball of each vertex is of bounded size (for degree-bounded graphs, we also get
a bound on the size of the vicinity of each vertex):

Lemma 1 ([7,31]). Let G = (V, E) be a weighted undirected graph with n vertices,
m edges with non-negative weights and maximum degree u = O(m/n). For any fixed
1 < a < n, there exists a subset of vertices L of size O(n/a) such that for each vertex
v € V, we have that |B(v)| = O(a) and |B*(v)| = O(au) with high probability.
Moreover, such a set L can be computed in time o(m).

54 R. Agarwal

For a u = O(m/n)-degree bounded graph, it is not very hard to construct a set L
in time O(ma) that deterministically guarantees the above bound. The following
claim, which settles a sufficient condition for the candidate distance to be equal to
the exact shortest distance, will play a crucial role in our proofs:

Claim 2. Let s,t be a vertex pair such that t ¢ B(s). Let P = (s,x7,X5,...,t) be a
shortest path between s and t. Let x;, be the first vertex from s along P that does not
lie in B(s); that is, let iy = max{i : x; € B(s)NPVj <i}. Then, d;(x;) =d(s,x;,).

3 Stretch (1 + ;) Oracle

In this section, we prove the first part of Theorem 1: for a weighted undirected
graph with n vertices, m edges with non-negative weights, and for any 1 < a < n,
there exists an oracle of size O(m + n?/a) that returns distances of stretch 1+ 1/k
in time O((au)*). We need some notation to succinctly describe the construction.

3.1 i-Balls and i-Vicinities

We will generalize the idea of balls and vicinities from §2.2. In particular, we define
the i-vicinity of a vertex v € V, denoted as I'/(v) as follows:

=ik ad ;M= |J B)

werly ,(v)

For instance, the 1-vicinity of any vertex includes all the vertices in its vicinity and
the 2-vicinity of any vertex v is the union of all the vicinities of vertices in B*(v).
Given the definition of i-vicinities, we can now define the i-ball of a vertex v:

L= and nm= J Bw) @

wery ;(v)

Note that I';(v) € I'”(v) for any vertex v. We will also need a generalization for the
definition of the candidate distance. Given a vertex v and a vertex w in the i-vicinity
of v, the candidate distance from v to w is given by the cost of the least-cost path
from v to w such that all intermediate vertices are contained in the i-ball of v. We
will slightly abuse the notation and use d/(w) to denote this candidate distance.

3.2 Oracle and Query Algorithm

Our oracle is similar to the one used in [4]. Fix some 1 < a < n. The preprocess-
ing algorithm first replaces the original graph with a degree-bounded graph using
Claim 1. The algorithm then samples a set L of vertices of size O(n/a) using the
result of Lemma 1. The oracle stores, for each v € V: (1) a hash table storing the
shortest distance to each vertex in L; and (2) the nearest neighbor £(v) and the ball
radius r,. In addition, the oracle also stores the degree-bounded graph computed
in the first step of the preprocessing algorithm.

The Space-Stretch-Time Tradeoff in Distance Oracles 55

We now describe our query algorithm (see Algorithm 1). In the first two steps, the
query algorithm computes candidate distance from s and from t to each vertex in
their respective k-vicinities; these distances are temporarily stored in a hash table.
Then, the algorithm computes three sets of paths between s and t. The first set of
paths are of the form s ~» w ~» t via vertices w in I;(s) N I';(t). The second set
of paths are of the form s ~ w ~» {(w) ~» t via vertices w € I}(s). The third set
of paths are of the form t ~ w ~» {(w) ~» s via vertices w € I}/(t). Finally, the
least-cost path among all the above three sets of paths is returned.

Algorithm 1. Query algorithm for the stretch-(1 + 1/k) oracle
: Compute candidate distance from s to each vertex in I'/(s)

: Compute candidate distance from ¢ to each vertex in I (t)

PY1 00, Y e 00, Y3 - 0

Y1 Milyernr o {d/w) + dj(w)}

Y2 = miner {d/(w) + d(w, E(w)) + d(¢(w),)}

DY e Miyer o {d/ (W) + d(w, €W)) +d(L(w),)}

: return min{y,, v, v}

3.3 Analysis

For any pair of vertices s,t € V, let P(s,t) = (s,x1,X,...,t) denote the shortest
path between s and t. Let

wi(t)=x;, where iy =max{i : x; € B(w;_;(t))NP(s,t),Vj<i}; wo(t)=t

Intuitively, wi(t) is the first vertex from w;_,(t) along P(s, t) that is not contained
in the ball of w;_,(t). Let

ri () = min{d (w;(t), ((w;(e)))}

that is, ri(t) is the smallest ball radius among all vertices W;(t) for j <i. When the
context is clear, we will denote wi(t) and r;(t) simply as w; and r;. We will need
the following claims to prove our main result:

Claim 3. Let P(s,t) = (s, X1, Xg,...,t) be the shortest path between a pair of vertices
s and t. Let iy and j, be such that w; = x; and w, = x;. Then, for all i < i,
d/(x;) = d(s,x;) and for all j > jo, d/(x;) = d(t,x;).

Claim 4. For any vertex pair s, t, we have that d(s,w?) > i-r{_j and d(t,w!) >i-rf .
Claim 5. For any pair of vertices s,t € V, if w; ¢ I(t), then we have that d(s,t) >
2kmin{r;_,,r;_;}.

Claim 6. For any pair of vertices s,t € V, the query algorithm returns a distance
estimate of at most d(s, t) +2min{r;_;,r;_;}.

56 R. Agarwal

Proof of First Oracle of Theorem 1. The oracle stores the input graph and the dis-
tance from each vertex in the graph to each vertex in a set L of size O(n/a); hence,
the size of the oracle is O(m + n?/a). Constructing the oracle requires computing a
shortest path tree from each vertex in set L, and hence, requires time O(mn/a).
Next, we bound the query time of the query algorithm. We first claim that the
size of the k-vicinity of each vertex is bounded by O((au)). This follows from the
definition of the i-vicinity and from the fact that the size of the vicinity of each
vertex is bounded by O(au). Furthermore, the candidate distance from any vertex
v to vertices in B*(v) can be computed in O(au) time. Hence, by definition of i-
vicinity, it takes time O((au)*) to compute the candidate distance from s to vertices
in I (s). Finally, lines (4),(5) and (6) of Algorithm 1 take time linear in the size of
the i-vicinities of s and t, leading to the desired bound of O((au)*) on query time.
Finally, we prove a bound on stretch. If w} € I(t), then y; < d;(w;)+d;(w}) =
d(s,wy)+d(t,w;) = d(s, t); hence, the exact distance is returned. Consider the case
when wy ¢ I77(t). Then, by Claim 5, we have that the distance between s and t is
lower bounded by d(s,t) = 2kmin{r;_,,r,_,}. On the other hand, from Claim 6,
the distance returned by the query algorithm is at most d(s, t)+2min{r;_,,r;_;} <
d(s,t)+2d(s,t)/(2k), leading to the desired bound on stretch. O

4 Stretch (1 + x +10.5) Oracle

We now prove the second part of Theorem 1: for a weighted undirected graph with
n vertices, m edges with non-negative weights, and for any 1 < a < n, there exists
an oracle of size O(m + n?/a) that returns distances of stretch 1+ 1/(k +0.5) in
time O(a(au)*). See notation in §2.2 and §3.1.

4.1 Oracle and Query Algorithm

We will use the oracle of §3.2 with the addition that the exact distance from each
vertex v to each vertex in B(v) will be stored within the oracle. The query algorithm
for this oracle (see Algorithm 2) is similar to that of Algorithm 1 with the only
difference that the k-vicinities I';’(s) and I';(t) are now replaced by (k + 1)-balls
I41(s) and T4 (t), respectively (and v, v, and y3; modified accordingly).

4.2 Analysis

The proof is facilitated by the following two claims that are used to bound the
stretch of the oracle:

Claim 7. For any vertexpairs, t, if w; & I'.1(t) then d(s,t) > (2k+1) min{r{_,,r}.

Claim 8. For any pair of vertices s, t, the query algorithm returns a distance estimate
of at most d(s,t)+ 2min{r; _,,r:}.

The above two claims directly lead to the stretch bound claimed in Theorem 1.
The proof on the size, construction time, and query time follow using straightfor-
ward changes in the proof for the first oracle.

The Space-Stretch-Time Tradeoff in Distance Oracles 57

Algorithm 2. The query algorithm for stretch-(1+ 1/(k + 0.5)) oracle

Compute candidate distance from s to each vertex in I, ,(s)
Compute candidate distance from ¢ to each vertex in I, (t)
')/1<—OO,')/2(—OO,')/3(_OO

Y1 = Mier onre o {4 W) +dj(w)}

Y2 miner o {d/ W) +d(w, (W) +d(¢((w),)}

Y3 < minwEFkJrl(f) {d;(W) + d(Wfl(W)) + d(e(W),S)}
return min{y,,y,,vs}

N D hw DD

5 Stretch (1 + 2) Oracle

Finally, we prove the third part of Theorem 1: for a weighted undirected graph with
n vertices, m edges with non-negative weights and for any 1 < a < n, an oracle of
size O(m + n?/a) that returns distances of stretch 5/3 in time O(au).

5.1 Inverse-Ball and Inverse-Vicinities

The inverse-ball of a vertex, denoted by B(v), is the set of vertices w that contain
v in their ball. Similar, the inverse-vicinity of a vertex, denoted by B*(v), is the
set of vertices w for which v € B*(w). For constructing this oracle, we will use a
different sampling technique given by the following lemma:

Lemma 2 ([29,31]). Let G = (V, E) be a weighted undirected graph with n vertices,
m edges and maximum degree y = 2m/n. For any fixed 1 < a < n, there exists a
subset of vertices L of expected size O(n/a) such that for each vertex v € V, we have
that |B(v)| = O(a), |B(v)| = O(a), |B*(v)| = O(au) and |B*(v)| = O(aw). Moreover,
such a set L can be computed in expected time O(ma).

5.2 Oracle and Query Algorithm

Fix some 1 < a < n. The preprocessing algorithm first replaces the original graph
with a degree-bounded graph using the result of Corollary 1. The algorithm then
samples a set L of vertices of size O(n/a) using the result of Lemma 2. The algo-
rithm then constructs a data structure that stores, for each v € V:

— a hash table storing the shortest distance to each vertex in L;

— the nearest neighbor £(v) and the ball radius r,;

— a hash table storing the distance d!(w) = min, cp-()npw) d;(x) +d(x,w) to each
vertex w in the set S, = {w : B*(v)NB(w) # 0}, that is, to all vertices w whose
ball intersects with the vicinity of v.

The oracle also stores the degree-bounded graph computed in the first step of the
preprocessing algorithm.

58 R. Agarwal

We now describe our query algorithm (see Algorithm 3). In the first and the
second step, the query algorithm computes candidate distances from s and t to
vertices in their respective vicinities; these distances are temporarily stored in a
hash table. The algorithm then computes three set of paths. The first set of paths is
of the form s ~» w ~» w’ ~» t for some w € B*(s) and w’ € S,NB*(t). The second set
of paths are of the form s ~» w ~ £(w) ~ t for vertices w € B*(s) and the final set
of paths are of the form t ~ w ~» £(w) ~ s for vertices w € B*(t). The least-cost
path among these paths is returned by the algorithm.

Algorithm 3. The query algorithm for the third oracle of Theorem 1

: Compute candidate distance from s to each vertex in B*(s)
: Compute candidate distance from t to each vertex in B*(t)
Y100, ¥Yp <= O0, Y3 <~ 00

Y1 < Mily,e5 npe(r) {d(S: w)+ d;(W)}

Y2 = Minep () {d/(w) +d(w, €(w)) +d(L(w),)}

DYy e Mg {dj(W) + d(w, (W) + d(E(w),s) }
: return min{yy,y,, 73}

5.3 Analysis

Claim 9. Let P = (s,xq,X,,...,t) be the shortest path between any pair of vertices s
and t. Let i = max{i|x; ¢ PNB*(t)} and w = x; 1. If w & B(s), then d(s, t) = r;+r,.

Lemma 3. Let G = (V,E) be a weighted undirected graph with n vertices, m edges
and maximum degree u = O(m/n). For any fixed 1 < a < n, let L be the set of vertices
sampled using the algorithm of Lemma 2. Then, Y, , IS,| < O(ma?®).

Claim 10. Let G = (V, E) be a weighted undirected graph with n vertices, m edges and
maximum degree u = O(m/n). For any fixed 1 < a < n, let L be the set of vertices
sampled using Lemma 2. Then, constructing a hash table that contains, for each vertex
v €V, distance to each vertex in S, can be constructed in time O(ma?).

Proof of the Third Oracle of Theorem 1. The oracle stores, in addition to the
oracle of [4], a distance from each vertex v to vertices in set S, . Using Lemma 3,
it follows that the size of the oracle if O(ma®+ m+ n?/a); for 1 < a < n?*m~1/3,
the size is O(m + n?/a) as desired. The construction of the oracle requires running
a shortest path algorithm from each vertex in L and computing distances to vertices
in set S, for each vertex v. Using Lemma 2 and Claim 10, it follows that the oracle
can be constructed in time O(ma? + n?/a). Finally, to bound the query time, recall
that the size of the vicinity of each vertex is bounded by O(au) and a candidate
distance to each vertex in the vicinity can be computed in time O(au); the bound
follows.

Let P = (s, X1, Xo,...,t) be the shortest path between s and t. Let i, = max{i|x; ¢
PN B*(t)} and w = x; 4,; note that x; ¢ B*(t) and hence, w € B*(t) \ B(¢). If
w € S;, we get that y; < d(s,w) +d;(w) = d(s,w) + d(t,w) = d(s, t), since w

The Space-Stretch-Time Tradeoff in Distance Oracles 59

lies along P; hence, the algorithm returns the exact distance. Consider the case
when w ¢ S;. In this case, using Lemma 9, we get that d(s,w) = 2min{r,,r,};
also d(t,w) > r,. Since w lies along the shortest path between s and t, we get
that d(s, t) > 2min{r,r,} + r, = 3min{r,, r,, 7. }. We now give an upper bound on
the distance returned by the query algorithm. Note that s € B*(s) and t € B*(t);
it follows that y, < d(s,£(s)) + d(£(s),t) < 2d(s,£(s)) + d(s,t) = 2r, + d(s, t).
Similarly, we get that y5; < 2r, + d(s,t). Finally, since w € B*(t), we get that
v3 < d;(w) + d(w,{(w)) + d({(w),s). Since w lies along the shortest path be-
tween s and t, we get that d/(w) = d(t,w); using this along with triangle in-
equality, we get that y5 < d(t,w) + 2d(w,{(w)) + d(w,s) = 2r,, + d(s, t). Hence,
Y3 < 2min{r,,,r.} + d(s, t). Since the algorithm returns min{y,,y5}, the returned
distance is at most 2min{r,,r,,7,} + d(s,t). The proof follows using the upper
bound established above, which says that min{r,,r.,r,} < d(s,t)/3. O

6 Open Problems

We close the discussion with some of the most interesting open problems:

— Is it possible to prove or disprove a separation between oracles with stretch-
k and stretch-less-than-k for 1 < k < 2? In particular, do stretch-4/3 oracles
require more space or time compared to stretch-3/2 oracles?

— There is an interesting problem related to improving the lower order terms in
our results. Specifically, if one can reduce the query time of our algorithm of
Theorem 1 (for k = 1, stretch-(1 + 1/(k 4+ 0.5))) by log®(n) for some large
enough ¢, we would get a combinatorial algorithm for BMM that is asymptoti-
cally faster than the state-of-the-art [12]. Is it possible?

Finally, the most interesting open problem is to prove or disprove the existence of
near-linear size oracles that compute distances of O(1) stretch in polylog(n) time.

Acknowledgments. The author would like to thank Philip Brighten Godfrey and
Mikkel Thorup for many helpful discussions.

References

1. Abraham, I., Gavoille, C.: On approximate distance labels and routing schemes with
affine stretch. In: Peleg, D. (ed.) Distributed Computing. LNCS, vol. 6950, pp. 404—415.
Springer, Heidelberg (2011)

2. Agarwal, R., Caesar, M., Godfrey, PB., Zhao, B.Y.: Shortest paths in less than a millisec-
ond. In: SIGCOMM WOSN (2012)

3. Agarwal, R., Godfrey, PB.: Brief announcement: A simple stretch 2 distance oracle.
In: PODC (2013)

4. Agarwal, R., Godfrey, PB.: Distance oracles for stretch less than 2. In: SODA (2013)

5. Agarwal, R., Godfrey, PB., Har-Peled, S.: Approximate distance queries and compact
routing in sparse graphs. In: INFOCOM (2011)

6. Agarwal, R., Godfrey, PB., Har-Peled, S.: Faster approximate distance queries and
compact routing in sparse graphs (2012)

7. Alon, N., Spencer, J.H.: The probabilistic method, vol. 57. Wiley Interscience (1992)

8. Awerbuch, B., Berger, B., Cowen, L., Peleg, D.: Near-linear time construction of sparse
neighborhood covers. SIAM Journal on Computing 28(1), 263-277 (1998)

60

10.

11.

12.

13.

14.

15.

16.
17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

R. Agarwal

. Bansal, N., Williams, R.: Regularity lemmas and combinatorial algorithms. In: FOCS

(2009)

Baswana, S., Kavitha, T.: Faster algorithms for approximate distance oracles and all-pair
small stretch paths. In: FOCS (2006)

Baswana, S., Sen, S.: Approximate distance oracles for unweighted graphs in expected
0(n?) time. ACM Transactions on Algorithms 2(4), 557-577 (2006)

Blelloch, G.E., Vassilevska, V,, Williams, R.: A new combinatorial approach for sparse
graph problems. In: Aceto, L., Damgérd, 1., Goldberg, L.A., Halldérsson, M.M., Ingdlfs-
dottir, A., Walukiewicz, 1. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 108-120.
Springer, Heidelberg (2008)

Chechik, S.: Approximate distance oracles with constant query time. In: STOC (2014)
Chen, W,, Sommer, C., Teng, S.-H., Wang, Y.: A compact routing scheme and approximate
distance oracle for power-law graphs. ACM Transactions on Algorithms 9(1), 4:1-4:26
(2012)

Cohen, E.: Fast algorithms for constructing t-spanners and paths with stretch t. SIAM
Journal on Computing 28(1), 210-236 (1998)

Dor, D., Halperin, S., Zwick, U.: All pairs almost shortest paths. In: FOCS (1996)
Enachescu, M., Wang, M., Goel, A.: Reducing maximum stretch in compact routing. In:
INFOCOM (2008)

Gubichev, A., Bedathur, S., Seufert, S., Weikum, G.: Fast and accurate estimation of short-
est paths in large graphs. In: CIKM (2010)

Kawarabayashi, K.-1., Klein, PN., Sommer, C.: Linear-space approximate distance oracles
for planar, bounded-genus and minor-free graphs. In: Aceto, L., Henzinger, M., Sgall, J.
(eds.) ICALP 2011, Part I. LNCS, vol. 6755, pp. 135-146. Springer, Heidelberg (2011)
Kawarabayashi, K.-I., Sommer, C., Thorup, M.: More compact oracles for approximate
distances in undirected planar graphs. In: SODA (2013)

Matousek, J.: On the distortion required for embedding finite metric spaces into normed
spaces. Israel Journal of Mathematics 93(1), 333-344 (1996)

Mendel, M., Naor, A.: Ramsey partitions and proximity data structures. Journal of Euro-
pean Mathematical Society 2(9), 253-275 (2007)

Patrascu, M., Roditty, L.: Distance oracles beyond the Thorup-Zwick bound. In: FOCS
(2010)

Patrascu, M., Roditty, L., Thorup, M.: A new infinity of distance oracles for sparse graphs.
In: FOCS (2012)

Porat, E., Roditty, L.: Preprocess, set, query!. In: Demetrescu, C., Halldérsson, M.M. (eds.)
ESA 2011. LNCS, vol. 6942, pp. 603-614. Springer, Heidelberg (2011)

Potamias, M., Bonchi, E, Castillo, C., Gionis, A.: Fast shortest path distance estimation in
large networks. In: CIKM (2009)

Roditty, L., Zwick, U.: Replacement paths and k simple shortest paths in unweighted
directed graphs. In: Caires, L., Italiano, G.E, Monteiro, L., Palamidessi, C., Yung, M.
(eds.) ICALP 2005. LNCS, vol. 3580, pp. 249-260. Springer, Heidelberg (2005)
Sommer, C., Verbin, E., Yu, W.: Distance oracles for sparse graphs. In: FOCS (2009)
Thorup, M., Zwick, U.: Compact routing schemes. In: SPAA (2001)

Thorup, M.: Compact oracles for reachability and approximate distances in planar
digraphs. Journal of the ACM 51(6), 993-1024 (2004)

Thorup, M., Zwick, U.: Approximate distance oracles. Journal of the ACM 52(1), 1-24
(2005)

Waulff-Nilsen, C.: Approximate distance oracles with improved query time. In: SODA
(2013)

Waulff-Nilsen, C.: Approximate distance oracles with improved preprocessing time.
In: SODA (2012)

Distribution-Sensitive Construction
of the Greedy Spanner

Sander P.A. Alewijnse, Quirijn W. Bouts*, and Alex P. Ten Brink

Eindhoven University of Technology, The Netherlands
q.w.bouts@tue.nl

Abstract. The greedy spanner is the highest quality geometric spanner
(in e.g. edge count and weight, both in theory and practice) known to
be computable in polynomial time. Unfortunately, all known algorithms
for computing it on n points take £2(n?) time, limiting its use on large
data sets.

We observe that for many point sets, the greedy spanner has many
‘short’ edges that can be determined locally and usually quickly, and
few or no ‘long’ edges that can usually be determined quickly using
local information and the well-separated pair decomposition. We give
experimental results showing large to massive performance increases over
the state-of-the-art on nearly all tests and real-life data sets. On the
theoretical side we prove a near-linear expected time bound on uniform
point sets and a near-quadratic worst-case bound.

Our bound for point sets drawn uniformly and independently at ran-
dom in a square follows from a local characterization of ¢-spanners we
give on such point sets: we give a geometric property that holds with
high probability on such point sets. This property implies that if an edge
set on these points has t-paths between pairs of points ‘close’ to each
other, then it has t-paths between all pairs of points.

This characterization gives a O(nlog®nlog®logn) expected time
bound on our greedy spanner algorithm, making it the first subquadratic
time algorithm for this problem on any interesting class of points. We
also use this characterization to give a O((n + |E|)log® nloglogn) ex-
pected time algorithm on uniformly distributed points that determines
if £ is a t-spanner, making it the first subquadratic time algorithm for
this problem that does not make assumptions on E.

1 Introduction

A FEuclidean graph on a set of n points in the Euclidean plane is a weighted graph
with geometric distances as edge weights. If a shortest route in the graph is at
most t times longer than the direct geometric distance between its endpoints,
we say these endpoints have a t-path: a FEuclidean graph is a t-spanner if all
pairs of points have t-paths. For any ¢ > 1, we can efficiently find a ¢-spanner

with O (t7—11) edges in the Euclidean plane [17]. These ‘approximations’ have

* Q.W. Bouts is supported by the Netherlands Organisation for Scientific Research
(NWO) under project no. 639.023.208

A.S. Schulz and D. Wagner (Eds.): ESA 2014, LNCS 8737, pp. 61-73, 2014.
(© Springer-Verlag Berlin Heidelberg 2014

62 S.P.A. Alewijnse, Q.W. Bouts, and A.P. Ten Brink

few edges compared to the complete graph, while approximately maintaining
distances, making them a useful tool in many areas.

Bounded degree spanners are used in wireless network design [13], where for
example points of high degree tend to have problems with interference. By using
such a bounded degree spanner the problem of interference is minimized while
the connectivity is maintained. A considerable amount of research has been
done on spanners [14,17] since they were introduced in network design [18] and
in geometry [10]. Spanners have been used as components in various geometric
and distributed algorithms.

Many different construction methods exist for ¢-spanners, where ¢ can be
parameterized to an arbitrary value greater than 1, each having different advan-
tages and disadvantages. An in-depth treatise of these spanners can be found in
the book [17]. We focus on the greedy spanner, which is defined as the graph re-
sulting from repeatedly adding the edge between the closest pair of points which
do not have a t-path yet. The result is a very sparse graph with assymptotically
optimal edge count, degree and weight. On uniform point sets and for ¢ = 2,
one of its closest well-known competitors with respect to these three properties
is the ©-graph. It has about ten times as many edges, twenty times higher total
weight and six times higher maximum degree. Figure 1 clearly shows the contrast
between these two spanners. Unfortunately, all known algorithms computing the
greedy spanner use £2(n?) time [3], making the spanner impractical to compute.

We observed that on real-
world examples, the greedy span-
ner contains mostly short edges
with at most a few longer edges.
Whether an edge is placed de-
pends only on the points and
edges in an ellipse with its end-
points as foci and with eccentric-
ity 1/¢, which is a small area for
short potential edges, hopefully
containing few points. We can
therefore find these short edges
using a bucketing scheme, giving
a speedup on such point sets.

For the ‘long’ edges, we con-
sider the ‘long’ well-separated
pairs from a Well-separated pair
decomposition (WSPD) [9]. We
first compute information from the ‘short’ edges, attempting to find witnesses
that show that certain ‘long’ well-separated pairs will not contain greedy span-
ner edges. This information is represented by path-hyperbola. We then perform a
standard algorithm [3] on the (hopefully only few) well-separated pairs for which
we cannot find such a witness.

Fig.1. The left rendering shows the greedy
spanner on 100 points distributed uniformly in
a square with ¢ = 2. The right rendering shows
the @-graph on the same points with k = 6 for
which it was recently proven it achieves a dila-
tion of 2.

Distribution-Sensitive Construction of the Greedy Spanner 63

We present experimental results showing that the above algorithm works very
well on many data sets, ranging from real-world data sets to sets which are gen-
erated according to different distributions. Speedups vary from an (apparently)
linear factor to a constant factor. In particular, on a uniformly distributed point
set with 300,000 points, our new algorithm needs 19 minutes to compute the
greedy spanner for t = 2, while the only other algorithm that can handle point
sets of this size [3] (other algorithms need quadratic space, which is prohibitive)
needs 17 hours on the same set.

We show that our algorithm has a near-quadratic worst-case time bound. We
give formal evidence for the algorithm’s good behavior observed in experiments
on realistic point sets (which are often reasonably spread out) by analyzing its
performance on point sets distributed uniformly and independently at random
in a square (or ‘uniformly distributed points’ for short).

Euclidean graphs are frequently analyzed on uniformly distributed points,
both concerning theoretical properties and experimental evaluation of struc-
tures and algorithms. One can find examples in computational geometry [8],
combinatorial optimization [21] and the analysis of ad-hoc networks [19].

Various spanner constructions have been analyzed on uniformly distributed
point sets [1,7]. Some of these constructions are a ¢-spanner for fixed ¢, others
are parameterizable with arbitrary ¢ > 1. Relatively sharp bounds have been
obtained on various qualities of these spanners. This gives insight into the be-
havior of these constructions in situations arguably closer to realistic point sets
than worst case situations.

The spanner constructions studied in these analyses have a ‘local’ character-
ization: for example, Gabriel graphs connect u,v if the circle having uv as its
diameter contains no points other than v and v. For graphs with such a local
characterization there are well-developed techniques to analyze them on uni-
formly distributed points [11]. In this paper, however, we look at the ‘global’
property t-spannerness and the greedy spanner, a graph for which the existence
of an edge may depend on all other points. Previous analysis techniques do not
directly apply on such properties. However, one of our main contributions is to
show that with high probability, greedy spanners do admit a local characteriza-
tion on uniform point sets.

We consider points distributed uniformly and independently at random in a
V1 X y/n square. We use this square so that if we have an area A, then O(A)
points lie in it in expectation. We only consider the case of the Euclidean plane
— our results may generalize to higher dimensions, but we did not explore this.
In this introduction, when stating bounds, we assume ¢ is a constant.

We prove that such point sets are, with high probability, configured in such
a way that for any edge set E, if there are t-paths between points at most
O(logn) away from each other, then there are t-paths between all points. In
particular, we show that we can construct a ‘witness’ of this configuration in
O(n log® nloglog n) expected time if it exists, thus allowing our algorithms to
always give the correct answer.

64 S.P.A. Alewijnse, Q.W. Bouts, and A.P. Ten Brink

This result easily implies that with high probability the greedy spanner has
no long edges (longer than O(logn)) and furthermore that the ‘proof’ phase of
our algorithm will find the witnesses for this if it exists. As the grid strategy
works well on uniformly distributed point sets, we obtain a O(n log? nlog? log n)
expected time bound on our algorithm. To the best of our knowledge, this algo-
rithm is the first subquadratic algorithm to compute the greedy spanner on any
interesting class of point sets.

Another application of our result is a method to test whether a Euclidean
graph G = (P,E) is a t-spanner on uniformly distributed points in O((n +
|E|)log® nloglogn) expected time. Various algorithms are known for specific
graphs on arbitrary points, but not for arbitrary graphs on specific sets of points.
For specific graph classes the minimum ¢ can be computed [2,12], and for general
graphs this ¢ can be approximated [16].

The rest of the paper is organized as follows. In Section 2 we introduce bridged-
ness and give a geometric lemma that will help us obtain our results. In Section 3
we show uniform point sets are locally-O(logn)-bridged with high probability.
In Section 4 we give several fast algorithms that use this result. Finally, in
Section 5 we present experimental results for our algorithm that computes the
greedy spanner. Full proofs and additional experimental results can be found
in [4].

2 Bridging Points

In this section we will introduce the concept of A-bridgedness for point sets. We
will later use this concept in our characterization of ¢-spanners on uniformly
distributed point sets. We prove two geometric lemmas that will help us with
the result of Section 3.

Let P be a finite set of points in R?, let n = |P|, and let ¢ € R be the intended
dilation (¢ > 1). Let G = (P, E) be a graph on P whose edges are weighted with
the Euclidean distance between its endpoints. For two points u, v € P, we denote
the Euclidean distance between u and v by |uv|, and the network distance in G
by da(u,v) (or é(u,v) if G is clear from the context). We say a pair of points
(u,v) has a t-path if 6(u,v) < t- |uv|. If all pairs of points have a t-path, the
graph is called a t-spanner.

Let a,b,p,q € P be pairwise different points. We say that the pair (p,q)
bridges the pair (a,b) if t-|ap| + |pg| +t - |¢b| < t-|ab|. Bridging points guarantee
a t-path for (a,b) if (p,q) is an edge and the pairs (a,p) and (q,b) already have
t-paths. Note that |ap|, |¢b| < |ab| as a consequence.

We say that (p, q) is mandatory if the ellipse with foci p and ¢ and eccentricity
1/t contains no points in P other than p and ¢. Any t-path between p and ¢ must
fully lie within this ellipse, so a mandatory (p,¢) will be in F for any t-spanner.

Let A € R. We say that a point a € P is A-bridged if for all b € P with |ab| > A,
there exist some mandatory pair of points (p,q), p,q € P, bridging (a,b). We
say that the point set P is A-bridged if all points in P are A-bridged. We say a
point a € P is locally-A-bridged if it is A-bridged using only mandatory bridging

Distribution-Sensitive Construction of the Greedy Spanner 65

pairs of points at with distance most A from a. A point set P is locally-A-bridged
if all points in P are locally-A-bridged. Lemma 1 shows the usefulness of this
concept. In Lemma 2 we give a sufficient geometric condition for bridging pairs
of points.

Lemma 1. Let P be a set of points that is A-bridged. For any Fuclidean graph
G = (P, E) it holds that G is a t-spanner if and only if all pairs of points (a,b),
a,b € P, with |ab] < X\ have a t-path in G.

Lemma 2. Suppose we are given points a,b € P, rectangles Ry and Rs and
t > 1, such that (as per Fig. 2): Ry and Ry lie in between a and b, have a
side parallel to ab, have their centers on line segment ab, both have width w and
height h, are separated by s > iih and Ry lies closer to a than Rs.

Then, for any p,q € P with p lying in Ry and q in Ra, (p,q) bridges (a,b).

LN
D -— A
a——" [R ||h b
R Il v

Fig. 2. (p,q) bridges (a,b)

We now use Lemma 2 to prove a stronger statement that we will use to prove
the full version of Theorem 4. Let a,p,q € P be pairwise different points and let
region A C R? with a,p,q ¢ A. We say that the pair (p,q) bridges (a, A) if for
every point b € P with b € A we have that (p, ¢) bridges (a, b).

Lemma 3. Assume we are given a € P, a line ¢ through a, an angle o < 7 /4,
a constant Cpaz, rectangles Ry and Ry and t > 1, such that (as per Fig. 3): Ry
and Rs have width w and height h, are separated by s, have a side parallel to {,
have their centers on £, Ry lies between a and Ry, Ro lies at most Cpmar away
from a, Ry lies at least h/2 away from a and s > /2!T] (2sin(a)cmas + h) + h.

For the cone with apex a, angle 2ac and bisector £, we define A as the area
that is at least Ceone = Cmax + R/2 away from a. Then for any p,q € P with p

lying in Ry and q lying in Ra, (p,q) bridges (a, A).

3 Uniform Point Sets

We will now give a sketch of the proof of the following result. The full proof can
be found in [4].

66 S.P.A. Alewijnse, Q.W. Bouts, and A.P. Ten Brink

Theorem 4. There ezists ¢; dependent only on t such that for every ¢ > 0,
if P is a set of points uniformly and independently distributed at random in a
\V/n X \/n square and n is large enough, then with probability at least 1 —n=¢, P
is locally-(c - ¢t logn)-bridged.

We need to prove that every point
in P is locally-(c - ¢; logn)-bridged si-
multaneously with high probability.
We show that every point is locally-
(c - etlogm)-bridged with sufficiently
high probability that a simple union
bound shows that it will happen to all
points simultaneously with high prob-
ability. We use Lemma 3 to achieve
this. For ease of presentation, we as-
sume ¢ is constant.

The rectangles in Lemma 3 can
be chosen to have a roughly constant
chance of containing a point, and if Fig.3. R; and R2 are covered by R; and
we can fulfill the other requirements, R, according to Lemma 2
the resulting pair of points bridges a
relatively large part of R2. In fact, we need only [7/a] cones (we will end up
picking « = O(1/logn)) to cover the area we wish to cover, as depicted in Fig. 4.
We show the likely existence of a pair of mandatory points that bridges a single
cone and use a union bound to show such pairs are likely to exist for all cones
simultaneously.

We will place O(log n) pairs of rectangles in ev-
ery cone as depicted in Fig. 4. If any pair of boxes
ends up containing a point per box, these two
points will satisfy the requirements for Lemma 3.
We just need this pair of points to be mandatory,
and therefore consider an ellipse around such a
pair of boxes (defined in terms of the boxes, not
the points, for easy analysis), such that if this el-
lipse is empty apart from these two points, these
points must be mandatory. Using a careful anal-
ysis, the chance that a pair of boxes contains one
point per box and the ellipse contains no more
points (an event we will call a ‘success’) is at least
some constant p (dependent only on). We need
only one success per cone and the events are nearly
independent (the ellipses do not overlap), so the chance that we get at least one
success is at least (roughly) 1 — p@Uoen) =1 — n=OU®) which then shows the
theorem.

Fig. 4. Covering the plane
with cones

Distribution-Sensitive Construction of the Greedy Spanner 67

4 Algorithms

We first introduce three tools used in the results below. Let ¢ and ¢; be as in

Theorem 4 throughout this section. The first is that we can divide the input
Vn vn
X

c-ct logn c-ctlogn
expectation O((c - ¢; logn)?) points.

The second tool is the ‘local’ Dijkstra algorithm. It determines for all points
at most A away from a source point s whether it has a t-path to s and if so, their
network distance. It differs from the standard Dijkstra algorithm in that it only
adds the points to the queue at most A\t away from the source s by considering
the points lying in cells at most A\t away from s, and only considers the edges
E, that have such a point as either endpoint. Using the grid this can be done in
O((A\? + | E4|) log \) expected time.

The third tool is called path-hyperbola. It is an area given by an origin point
u € P, a focus v € P and an edge set F, and is defined as PH(u,v,E) =
{a € R? | §(p,p)(u,v) +t - |va] <t |ual}. Obviously, if (p,q) bridges (a,b), then
b€ PH(a,q, E) for every edge set E with t-paths for pairs of points (u,v) with
|uv| < |abl, making path-hyperbola at least as powerful as bridging points for
guaranteeing t-paths.

If we perform a local Dijkstra on s, we find a set of network distances that
induce a set of path-hyperbola. If s is locally-A-bridged, the union of path-
hyperbola will be a superset of the area more than A away from s, guaranteeing
t-paths to all other points. This union can be computed in O(A\? log \) expected
time: using polar coordinates, the union corresponds to a lower envelope. Since
the hyperbolas pairwise intersect at most twice, this envelope has linear com-
plexity and can be computed in O(nlogn) time [5,20]. We can therefore use this
to test in O(A?log \) expected time whether s has a t-path to all other points:
if the local Dijkstra finds only ¢-paths but s is not locally-A-bridged, we can
perform a normal Dijkstra without affecting the expected running time.

into a grid in O(nlogn) time, with every cell containing in

4.1 Testing t-Spanners

The first application of Theorem 4 and our tools is a faster algorithm to test if
a Euclidean graph is a t-spanner on uniformly distributed point sets: we simply
run the procedure from the previous section on every point. To the best of our
knowledge, this leads to the first subquadratic algorithm for this problem on any
interesting class of point sets not making assumptions on E.

Theorem 5. There is an algorithm that, given a point set P whose points are
uniformly distributed in a \/n X \/n square and a Euclidean graph E on P, checks
if E is a t-spanner using O((n+|E|)(c;logn)?log(c; logn)) expected time, where
¢t 18 a constant dependent only on t.

68 S.P.A. Alewijnse, Q.W. Bouts, and A.P. Ten Brink

4.2 Greedy Spanner

Algorithm. GreedySpannerOriginal(V,t)

1. E+0

2. for every pair of distinct points (u,v) in ascending order of |uv|
3. do if 5y, gy (u,v) >t - [uv]

4 then add (u,v) to E

5. return E

Consider the original algorithm above as introduced in [15]. The graph re-
turned by this algorithm is called the greedy spanner on V for t and it is obviously
a t-spanner, but the algorithm has a O(n?logn) running time.

Lemma 6. If P is A-bridged, then the greedy spanner on P does not have edges
longer than .

We can combine Lemma 6 with Theorem 4 to quickly compute the greedy
spanner on uniform point sets. We first give a preliminary algorithm which we
then employ in two greedy spanner algorithms.

Theorem 7. For every A > 0, there is an algorithm that, given a point set
P whose points are uniformly distributed in a v/n X \/n square, computes in
O(nlogn + n\? log? A) expected time the edges of the greedy spanner on P for t
of length at most \.

Proof. We use the algorithm introduced in [3] (we omit an explanation of the
machinery introduced there), except we keep Lemma 6 in mind and use our
local Dijkstra instead of a normal Dijkstra and only consider well-separated
pairs {4;, B;} with min(4;, B;) < A.

Using the analysis in [3] and using that the greedy spanner has degree O(1), we
conclude that if m is the number of considered well-separated pairs, the running
time of our modified algorithm is O(nlogn + A?log A Y"1, min(|A4;, |B;|)). We
therefore need to bound
S min(| Ayl [Bil) < S0 (14il + 1Bil) = Yoep [{{As Bi} | a € Aiva € B}

For any [€ R, a point p can only be in O(1) well-separated pairs of length at
most a constant factor higher or lower than [[9, Lemma 4.6.1]. We can therefore
partition the well-separated pairs containing p into O(1)-sized sets of similar
length. As the minimal length per set differs by at least a constant factor, we

conclude [{{4;,B;} | a € A;Va € B;}| =0 (log E?ig&igjﬁ) This last

expression is O(log A) in expectation on uniform point sets, giving an expected
running time of O(nlogn + nA?log? \). O

Note that we could have adapted the algorithm from [6], but this algorithm
sorts all potential edges, resulting in an expected O(n log nA? log A) running time,
which is slower when filling in A = O(logn).

Distribution-Sensitive Construction of the Greedy Spanner 69

Combining Lemma 6, Theorem 4 and Theorem 7 (with A = ¢ - ¢;logn) gives:

Corollary 8. There is an algorithm that, given a point set P whose points are
uniformly distributed in a \/n X \/n square, computes in
O(n(c;logn)?log?(c;logn)) expected time a graph on P which, is with high prob-
ability the greedy t-spanner (with c; is a constant dependent only on t).

4.3 The Full Distribution-Sensitive Algorithm

The algorithm from Theorem 7 is the first phase of our distribution sensitive
algorithm. We now present the second and third phase that ensure that all long
edges are also computed.

The second phase gathers path-hyperbola as described at the start of this
section. We then consider the well-separated pairs that did not get considered
in the first stage of the algorithm and try to prove for them that they will not
produce a greedy spanner edge. For the remaining pairs, we employ the algorithm
of [3] in the third phase of our algorithm to find the remaining spanner edges.

If for a point u € A;, the bounding box B; is covered by the union of path-
hyperbola computed for u (testing this takes O(logn) time), then we say u is
discounted with respect to {4;, B;}. If all u € A; are discounted, then {4;, B;}
will not contain a greedy spanner edge and we say {4;, B;} is discounted. This
can be computed in O(logn Y"1, (|A;| + |Bi])) = O(nlognlog \) expected time
by an earlier argument.

We then perform the algorithm from [3], with small differences. We ignore
pairs that have been discounted in the previous phase, and we do not perform
a Dijkstra operation on points which have been discounted with respect to that
pair as well. By Theorem 4, all pairs are discounted with high probability and
hence this phase takes constant time in expectation on uniform point sets.

In practice, using a A lower than predicted by Theorem 4 will suffice and be
faster. From experiments we observe that A = (*/t—lfli glog ,, is the ‘right” bound
for the length of the longest edge in the greedy spanner. Using 1.1 - A the initial
phase nearly always finds all edges, with the second phase usually discounting
99.7% of the pairs and 95% of the points in undiscounted pairs, with the second
phase taking about 20% of the time of the first. Using 1.5-), all pairs are typically
discounted.

Theorem 9. There is an algorithm that, given t and a point set P whose points
are uniformly distributed in a \/n X \/n square, computes in
O(n(cylogn)?log?(cilogn)) expected time its greedy spanner, with ¢; a constant
dependent only on t. The algorithm uses O(n? log? n) time on arbitrary P.

5 Experimental Results

We have run our algorithm and WSPD-Greedy from [3] on point sets whose size
ranged from 500 to 128,000 points. The WSPD-Greedy algorithm has a running
time comparable to the other (quadratic space) algorithms. Since running these

70 S.P.A. Alewijnse, Q.W. Bouts, and A.P. Ten Brink

on more then 10,000 points quickly becomes infeasible we did not include them in
our experiments. For a detailed comparison between the major quadratic space
algorithms and WSPD-Greedy we refer to [3]. Note that we have verified that
all our implemented algorithms give the same output.

Throughout this section we will refer to our algorithm as “Bucketing” in
the graphs. We generated point sets according to several distributions. We have
recorded space usage and running time (wall clock time). The results are averages
over several runs where new point sets were generated each time. We included
graphs for the uniform point set and for a clustered point set as these represent
the best and worst cases respectively for our algorithm (with respect to our set
of tests). To generate the clustered point set we used the same method as [3],
that is, for n points, it consists of y/n uniformly distributed point sets of /n
uniformly distributed points.

5.1 Environment

The algorithms have been implemented in C++. The random generator used
was the Mersenne Twister PRNG — we have used a C++ port by J. Bedaux of
the C code by the designers of the algorithm, M. Matsumoto and T. Nishimura.
We have implemented all other necessary data structures and algorithms not
already in the std ourselves. The implementations do not use parallelism.

Our experiments have been run on a server using an Intel Xeon E5530 CPU
(2.40GHz) and 8GB (1600 MHz) RAM. It runs the Debian 7 OS and we compiled
for 64 bits using G++ 4.7.2 with the -O3 option.

5.2 Dependence on Instance Size

We have compared running time and space usage of WSPD-Greedy and our
algorithm for different values of n. We plotted the running time for ¢t = 2 on
uniform and clustered points in Fig. 5. The space usage for both algorithms is
linear but our algorithm uses a constant factor less space in practice.

The running time of our algorithm on uniformly distributed points is (nearly)
linear making it a massive improvement over WSPD-Greedy. This allows us
to calculate greedy spanners on such point sets in a matter of minutes where
WSPD-Greedy would need hours or even days for bigger instances.

The clustered point set is a bad case for our algorithm since the greedy span-
ner will contain a considerable amount of really large edges between clusters.
Nevertheless, the algorithm still outperforms WSPD-Greedy by quite a margin.
Our experiments on clustered data with smaller ¢ values (up to ¢ = 1.1) show
that the performance of the algorithms gets more similar as ¢ decreases. On point
sets drawn using a uniform or normal distribution our algorithm massively out-
performs WSPD-Greedy for both small and large ¢.

Distribution-Sensitive Construction of the Greedy Spanner 71

—&— Bucketing
== WSPD-Greedy

g |- Bucketing
3 7 WSPD-Greedy

4000 5000 6000
I

Duration (sec)
Duration (sec)
3000
I

2000
I

1000
L
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\\
\
&

o o o
o m-&ffﬁ{ — A — A o J mmse b

T T T T T T T T T T T T T T

0 20000 40000 60000 80000 100000 120000 0 20000 40000 60000 80000 100000 120000

Input size (vertices) Input size (vertices)

Fig. 5. The left plot shows the running time of our algorithm (Bucketing) and WSPD-
Greedy for ¢ = 2 on variously sized uniformly distributed instances. The right plot
shows the same for clustered instances.

5.3 Real Data

Aside from generated instances we also experimented on some real point sets
from the TSPLIB!. The performance of our algorithm on these sets seems to be
close to the uniform point sets. Figure 6 shows two point sets and their greedy
spanners. For the PCB the computation took on average about 2 seconds for
t = 2 and 11 seconds for ¢t = 1.1. The same computations using WSPD-Greedy
took 12 and 203 seconds respectively. The bigger Germany instance took 21 and
147 seconds to compute using our algorithm while WSPD-Greedy needed 274
and 7,486 seconds for ¢ = 2 and ¢ = 1.1. This is a factor 50 improvement for the
low ¢ case which reduces the computation time from hours to minutes.

Fig. 6. Real point sets from the TSPLIB and their greedy spanners using ¢ = 2. Left:
A PCB instance of 3,038 points. Right: Cities in Germany, 15,112 points.

! http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/

http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/

72 S.P.A. Alewijnse, Q.W. Bouts, and A.P. Ten Brink

6 Conclusion

We have introduced a distribution sensitive algorithm for computing the greedy
spanner. Experiments show large improvements in both time and space for most
data sets, while results are never worse than the state-of-the-art. The perfor-
mance gap in many cases becomes even larger for lower ¢. To explain these
results, we have analyzed the algorithm on uniformly distributed point sets.

To this end, we have introduced the concept of bridgedness and have shown
that point sets that are uniformly distributed in a y/n x y/n square are O(log n)-
bridged with high probability. This implies that ‘t-spannerness’ is a ‘local’ prop-
erty on these point sets: a Euclidean graph is a t-spanner if and only if all pairs
of ‘close-by’ points have t-paths. This locality shows that our algorithm is near-
linear on these point sets and yields a near-linear time algorithm for testing
whether an edge set is a t-spanner on these point sets.

We leave open several questions that may be answered in future work. First,
in our experiments, we have observed that the length of the longest edge of
the greedy spanner on uniform point sets tends towards {l/tilloiglogn, leaving
a gap with our upper bound; similarly, our bridgedness bound may also be
improvable. Secondly, it would be interesting to see if our results generalize to
higher dimensions. Lastly, there is still no general subquadratic time algorithm
for the greedy spanner. Our algorithm could be considered a divide and conquer
algorithm where the conquer step may be very slow, possibly susceptible to
improvement.

References

[1] Abam, M.A., de Berg, M., Farshi, M., Gudmundsson, J.: Region-fault tolerant
geometric spanners. Discr. Comp. Geom. 41(4), 556-582 (2009)

[2] Agarwal, P.K., Klein, R., Knauer, C., Langerman, S., Morin, P., Sharir, M., Soss,
M.: Computing the Detour and Spanning Ratio of Paths, Trees, and Cycles in 2D
and 3D. Discrete Comput. Geom. 39(1), 17-37 (2008)

[3] Alewijnse, S.P.A., Bouts, Q.W., ten Brink, A.P., Buchin, K.: Computing the
greedy spanner in linear space. In: Bodlaender, H.L., Italiano, G.F. (eds.) ESA
2013. LNCS, vol. 8125, pp. 37-48. Springer, Heidelberg (2013)

[4] Alewijnse, S.P.A., Bouts, Q.W., ten Brink, A.P., Buchin, K.: Distribution-sensitive
construction of the greedy spanner. CoRR, arXiv:1401.1085 (2014)

[5] Atallah, M.: Some dynamic computational geometry problems. Computers and
Mathematics with Applications 11, 1171-1181 (1985)

[6] Bose, P., Carmi, P., Farshi, M., Maheshwari, A., Smid, M.: Computing the greedy
spanner in near-quadratic time. Algorithmica 58(3), 711-729 (2010)

[7] Bose, P., Devroye, L., Evans, W., Kirkpatrick, D.: On the spanning ratio of Gabriel
graphs and beta-skeletons. STAM Journal on Discrete Mathematics 20(2), 412-427
(2006)

[8] Buchin, K.: Constructing Delaunay triangulations along space-filling curves.
In: Fiat, A., Sanders, P. (eds.) ESA 2009. LNCS, vol. 5757, pp. 119-130. Springer,
Heidelberg (2009)

[9]

[10]
[11]
[12]

[13]

[14]

[15]
[16]
17]
18]
[19]
[20]

[21]

Distribution-Sensitive Construction of the Greedy Spanner 73

Callahan, P.B.: Dealing with Higher Dimensions: The Well-Separated Pair Decom-
position and Its Applications. PhD thesis, Johns Hopkins University, Baltimore,
Maryland (1995)

Chew, L.P.: There are planar graphs almost as good as the complete graph. J.
Comput. System Sci. 39(2), 205-219 (1989)

Devroye, L.: On the expected size of some graphs in computational geometry.
Comput. Math. Appl. 15, 5364 (1988)

Eppstein, D., Wortman, K.A.: Minimum dilation stars. Comput. Geom. 37(1),
27-37 (2007)

Gao, J., Guibas, L.J., Hershberger, J., Zhang, L., Zhu, A.: Geometric spanners
for routing in mobile networks. IEEE J. Selected Areas in Communications 23(1),
174-185 (2005)

Gudmundsson, J., Knauer, C.: Dilation and detours in geometric networks. In:
Gonzales, T. (ed.) Handbook on Approximation Algorithms and Metaheuristics,
pp. 52-1- 52-16. Chapman and Hall/CRC, Boca Raton (2006)

Keil, J.M.: Approximating the complete Euclidean graph. In: Karlsson, R., Lingas,
A. (eds.) SWAT 1988. LNCS, vol. 318, pp. 208-213. Springer, Heidelberg (1988)
Narasimhan, G., Smid, M.: Approximating the stretch factor of Euclidean graphs.
SIAM J. Comput. 30(3), 978-989 (2000)

Narasimhan, G., Smid, M.: Geometric Spanner Networks. Cambridge University
Press, New York (2007)

Peleg, D., Schéffer, A.A.: Graph spanners. Journal of Graph Theory 13(1), 99-116
(1989)

Santi, P.: Topology control in wireless ad hoc and sensor networks. ACM
Computing Surveys (CSUR) 37(2), 164-194 (2005)

Sharir, M., Agarwal, P.: Davenport-Schinzel Sequences and their Geometric
Applications. Cambridge University Press (1995)

Steele, J.M.: Probability Theory and Combinatorial Optimization. CBMS-NSF
Regional Conference Series in Applied Mathematics, vol. 69. SIAM (1997)

Recognizing Shrinkable Complexes
Is NP-Complete*

Dominique Attali', Olivier Devillers?, Marc Glisse?, and Sylvain Lazard?

! Gipsa-lab, France
http://www.gipsa-lab.grenoble-inp.fr/~dominique.attali/
2 INRIA, France
http://www.inria.fr/sophia/members/0Olivier.Devillers,
http://geometrica.saclay.inria.fr/team/Marc.Glisse/,
http://www.loria.fr/~lazard/

Abstract. We say that a simplicial complex is shrinkable if there exists
a sequence of admissible edge contractions that reduces the complex to
a single vertex. We prove that it is NP-complete to decide whether a
(three-dimensional) simplicial complex is shrinkable. Along the way, we
describe examples of contractible complexes which are not shrinkable.

1 Introduction

Edge contraction is a useful operation for simplifying simplicial complexes. An
edge contraction consists in merging two vertices, the result being a simplicial
complex with one vertex less. By repeatedly applying edge contractions, one can
thus reduce the size of a complex and significantly accelerate many computa-
tions. For instance, edge contractions are used in computer graphics to decimate
triangulated surfaces for fast rendering [14,16]. For such an application, it may
be unimportant to modify topological details and ultimately reduce a surface to
a single point since this corresponds to what the observer is expected to see if
he is sufficiently far away from the scene [21]. However, for other applications,
it may be desirable that every edge contraction preserves the topology. This
is particularly true in the field of machine learning when simplicial complexes
are used to approximate shapes that live in high-dimensional spaces [1,6,8,10].
Such shapes cannot be visualized easily and their comprehension relies on our
ability to extract reliable topological information from their approximating com-
plexes [7,11,20].

In this paper, we are interested in edge contractions that preserve the topol-
ogy, actually the homotopy type, of simplicial complexes. It is known that con-
tracting edges that satisfy the so-called link condition preserves the homotopy
type of simplicial complexes [13] and, moreover, for triangulated surfaces and

* This work has been supported by ANR project TopData ANR-13-BS01-0008 and by
the Advanced Grant of the European Research Council GUDHI (Geometric Under-
standing in Higher Dimensions).

A.S. Schulz and D. Wagner (Eds.): ESA 2014, LNCS 8737, pp. 74-86, 2014.
(© Springer-Verlag Berlin Heidelberg 2014

http://www.gipsa-lab.grenoble-inp.fr/~dominique.attali/
http://www.inria.fr/sophia/members/Olivier.Devillers
http://geometrica.saclay.inria.fr/team/Marc.Glisse/
http://www.loria.fr/~lazard/

Recognizing Shrinkable Complexes Is NP-Complete 75

piecewise-linear manifolds, the link condition characterizes the edges whose con-
traction produces a complex that is homeomorphic to the original one (a con-
straint that is stronger than preserving the homotopy type) [12,19]. An edge ab
satisfies the link condition if the link of ab is equal to the intersection of the links
of a and b, where the link of a face f is a simplicial
complex defined as follows (see figure): consider
the smallest simplicial complex that contains all
the faces containing f, i.e. the star of f; the link
of f is the set of faces disjoint from f in that
simplicial complex [12].}

We only consider contractions of edges that sat-
isfy the link condition, which implies that the ho-
motopy type is preserved. We refer to such edge
contractions as admissible; an admissible edge
contraction is also called a shrink and the corre-
sponding edge is said to be shrinkable. After some
sequence of shrinks, the resulting complex (possibly a point) does not admit any
more shrinkable edges and the complex is called (shrink) irreducible.

We are interested in long sequences of shrinks because they produce irre-
ducible complexes of small size and it is natural to ask, in particular, whether a
simplicial complex can be reduced to a point using admissible edge contractions.
If this is the case, the simplicial complex is called shrinkable.

Barnette and Edelson [3] proved that a topological disk is always shrinkable
(by any sequence of shrinks). They use this property to prove that a compact
2-manifold (orientable or not) of fixed genus admits finitely many triangulations
that are (shrink) irreducible [3,4]. For instance, the number of irreducible trian-
gulations of the torus is 21 [17] and it is at most 396 784 for the double torus [22].
We address in this paper the problem of recognizing whether an arbitrary sim-
plicial complex is shrinkable.

Tancer [23] recently addressed a similar problem where he considered admis-
sible simplex collapses instead of admissible edge contractions. An admissible
simplex collapse (called elementary collapse in [23]) is the operation of removing
a simplex and one of its faces if this face belongs to no other simplex.? Such
collapses preserve the homotopy type. Similarly to edge contractions, collapses
are often used to simplify simplicial complexes, and a simplicial complex is said
collapsible if it can be reduced to a single vertex by a sequence of admissible
collapses. Tancer proved that it is NP-complete to decide whether a given (two-
dimensional) simplicial complex is collapsible [23]. The proof is by reduction

\/

Link(ab)
Link(a)

! In other words, in an abstract simplicial complex, the link of ¢ is the set of faces A
disjoint from o such that o U X is a face of the complex.

2 Strictly speaking, Tancer calls several of our admissible simplex collapses an elemen-
tary collapse. His elementary collapse is the removal of a nonempty non-maximal
face o and the removal of all the faces containing o if ¢ is contained in a unique max-
imal face of the simplicial complex, where maximality is considered for the inclusion
in an abstract simplicial complex [23].

76 D. Attali et al.

from 3-SAT and gadgets are obtained by altering Bing’s house [5], a space that
is contractible but whose triangulations are not collapsible.

Both questions of collapsibility and shrinkability are related to the question
of contractibility: given a simplicial complex, is it contractible? This question is
known to be undecidable for simplicial complexes of dimension 5. A proof given
in Tancer’s paper [23, Appendix] relies on a result of Novikov [24, page 169],
which says that there is no algorithm to decide whether a given 5-dimensional
triangulated manifold is the 5-sphere. We thus cannot expect shrinks and col-
lapses, even combined, to detect all contractible complexes, but they still provide
useful heuristics towards this goal (e.g. [2]) and can even be sufficient in specific
situations [13]. Actually, it is always possible to reduce a contractible simplicial
complex to a point if we allow another homotopy preserving operation: the anti-
collapse (the reverse operation of collapse) [9] but, of course, undecidability of
contractibility implies that the length of the sequence is not bounded.

Contributions. A shrinkable simplicial complex is clearly contractible and the
converse is not true because of the above undecidability result. We first present
a simple shrink-irreducible contractible simplicial complex with 7 vertices. This
simple complex is interesting in its own right and it inspired the proof of our
main result, which is that it is NP-complete to decide whether a given (three-
dimensional) simplicial complex is shrinkable. Our proof uses a reduction from
3-SAT similarly as in Tancer’s NP-completeness proof of collapsibility [23] but,
noticeably, our gadgets are much smaller than those used for collapsibility.

Our NP-completeness result on shrinkability together with Tancer’s analog
on collapsibility naturally raises the question of whether it is also NP-complete
to decide if a given simplicial complex can be reduced to a single vertex by a se-
quence combining admissible edge contractions and admissible simplex collapses.
In this direction, we present a contractible simplicial complex with 12 vertices
that is irreducible for both shrinks and collapses.

2 Preliminaries

In this paper, simplicial complexes are abstract and their elements are (abstract)
simplices, that is, finite non-empty collections of vertices. We can associate to
every abstract simplicial complex a geometric realization that maps every ab-
stract simplex to a geometric simplex of the same dimension. The union of the
geometric simplices forms the underlying space of the complex.

As mentioned in the introduction, given a simplicial complex, we are interested
in operations that preserve the homotopy type of the underlying space. One of
these operations is the shrink, which is the contraction of an admissible edge,
also called shrinkable edge. Below, we give a useful characterization of shrinkable
edges in terms of blockers. Let IC be a simplicial complex and recall that a face
of a simplex is a non-empty subset of the simplex. The face is proper if it is
distinct from the simplex.

Definition 1. A blocker of K is a simplex that does not belong to K but whose
proper faces all belong to K.

Recognizing Shrinkable Complexes Is NP-Complete 7

34 3 34 3

o
v
ot

0 I 2 0 0 1 2 0
(@) (©) (d)

Fig. 1. (a) triangulation of the torus with 7 vertices, (d) a contractible non-shrinkable
simplicial complex and (b,c) an embedding of their underlying spaces in R3. (e) high-
lights 8 blockers (015, 023, 123, 146, 246, 256, 345, 256) that suffice to cover all edges.

A blocker is also sometimes called a missing face [18], a minimal non-face [13],
or a simplicial hole [15].

Lemma 1 ([13]). An edge ab of K is shrinkable if and only if ab is not contained
in any blocker of K.

Note that one of the direction is straightforward: if ¢ is a blocker containing
ab, then o \ {a, b} € Link (a) N Link (b) but o \ {a, b} & Link (abd).

As we contract shrinkable edges, blockers may appear or disappear and there-
fore edges may become non-shrinkable or shrinkable. For instance, consider the
simplicial complex £ = {a, b, ¢, d, ab, bc, cd, da} whose edges form a 4-circuit and
the cone K on £ with apex w, that is, the set of simplices of the form {w} Uo
where o € L. The complex K does not contain any blocker and therefore all
edges are shrinkable. Note however that the contraction of edge ab creates a
blocker which disappears as we contract wa. Hence, as we simplify the complex,
an edge that used to be shrinkable (or not) may change its status several times
later on during the course of the simplification. Interestingly, the only blockers
we need to consider in the paper are triangles.

3 A Simple Non-shrinkable Contractible Simplicial
Complex

To construct a contractible simplicial complex that is shrink-irreducible, we start
with the triangulation of the torus with 7 vertices described in Fig. 1-(a,b)
(Csdszéar polyhedron). Notice that the vertices and edges of this triangulation
form a complete graph. Thus, every triple of vertices forms a cycle in this graph,
which may or may not bound a face.

We now modify the complex as follows. The idea is to add two triangles so
that every (arbitrary) cycle on the modified torus is contractible and to remove a
triangle so as to open the cavity; see Fig. 1-(c). Namely, we add triangles 012 and
035 and remove triangle 145; see Fig. 1-(d). The resulting complex is contractible

78 D. Attali et al.

because it is collapsible; indeed all edges and vertices inside the “square” and
on the boundary of the (expanding) hole can be collapsed until the hole fills
the entire square, then it only remains triangles 012 and 035, which can also be
trivially collapsed into a single vertex.

To see that the resulting complex is shrink irreducible, note that every edge
is incident to at most 3 triangles; indeed, every edge is incident to 2 triangles
in the initial triangulation of the torus, and we only added two triangles, which
do not share edges. On the other hand, every edge belongs to exactly 5 cycles of
length 3 since the graph is complete on 7 vertices. Hence, every edge belongs to
at least 2 blockers, which implies that no edge is shrinkable, by Lemma 1.

4 NP-completeness of Shrinkability

Theorem 1. Given an abstract simplicial complex of dimension 8 whose under-
lying space is contractible, it is NP-complete to decide whether the complex can
be reduced to a point by a sequence of admissible edge contractions.

The proof is given in this section by reduction from 3-SAT. We show that any
Boolean formula in 3-conjunctive normal form (3CNF) can be transformed, in
polynomial time, to a contractible 3-dimensional simplicial complex, such that
a satisfying assignment exists if and only if the complex is shrinkable.

4.1 Gadgets Design

In the following, the gadgets are defined as abstract simplicial complexes but,
for clarity, we describe geometric realizations of these gadgets in R3. Then the
gadgets are assembled by identifying one triangle of one gadget with a triangle
of another; this operation preserves the blockers and thus the unshrinkability of
edges. A shrinkable edge remains shrinkable if it does not belong to the identified
triangles or if it was shrinkable in both gadgets.

Forward Gadget

Properties. The forward gadget has a special triangle with edges A, B, C such
that A is the only shrinkable edge of the gadget and once A is contracted (thus
identifying B and C) there is a sequence of shrinks that reduces the gadget to a
single point.

Usage. By gluing the triangle ABC' to a triangle of another construction, we
enforce that A is contracted before B and C', thus preventing some sequences of
shrinks.

Realization. Refer to Fig. 2. Start with four points a, b, * and y in convex posi-
tion in R? and consider the tetrahedron abxy. Split this tetrahedron in four by
adding a point o in its interior. The result is a simplicial complex with 5 ver-
tices, 10 edges, 10 triangles and 4 tetrahedra. We then remove the 4 tetrahedra,

Recognizing Shrinkable Complexes Is NP-Complete 79

a a=0=A
X X

Fig. 2. Left: The forward gadget with triangle ABC in blue. Its 1-skeleton is the
complete graph with vertices o, a, b, z and y and its (dotted) blockers azy, oxy, oxb, ayb
are the triangles that have been collapsed. Middle: Contracting edge A produces a
complex with a unique blocker, azy. Right: Schematic representation of the gadget.

by applying four triangle collapses. The first three collapses dig a gallery start-
ing at triangle axy by successively removing the pair of simplices (axy, axyo),
(oxy, oxyb), (oxb,oxba). The fourth collapse removes the pair (ayb, oaydb). The
obtained simplicial complex has 5 vertices, 10 edges, 6 triangles: 2 triangles of
the initial tetrahedron (axb and zyb) and 4 triangles incident to o (oab, oaz, oay
and oyb). Notice that as we collapse these pairs of simplices (o, X), the triangle o
becomes a blocker. Thus, the resulting simplicial complex has a unique blocker-
free edge A = oa. Let B = ob and C = ab. If A is contracted, the resulting
complex contains the triangles axb, xyb, oyb, thus any of the edges incident to b
can be shrunk, which reduces the complex to a triangle, which is shrinkable.

Freezer Gadget

Properties. The freezer gadget has a special triangle with edges A, B, C such
that A and B are the only shrinkable edges of the gadget, and once A or B is
contracted (identifying the other with C), there is a sequence of shrinks that
reduce the gadget to a single point.

Usage. By gluing the triangle ABC to a triangle of another construction, we
enforce that C' is non-shrinkable (or frozen) until either A or B is contracted;
such a contraction identifies C' with the uncontracted remaining edge (B or A).

b

A
b /—\
B=C
C Yy
a=0=A
y
y
a X

Fig. 3. The freezer gadget. Left: realization. Middle: contraction of edge A or B. Right:
schematic representation.

80 D. Attali et al.

Fig. 4. The variable gadget: realization (left) and various edge contractions

Realization. Refer to Fig. 3. We start with the same construction as for the for-
ward gadget except that instead of collapsing the pair (oxb, oxba), we collapse
the pair (xab, oxab). The list of blockers thus created is azxy, oxy, xab, ayb, and
the resulting complex contains only 1 triangle of the initial tetrahedron (xyb)
and 5 triangles incident to o (oab, oax, oay, oyb and oxb). The result is a sim-
plicial complex with exactly two blocker-free edges, A and B. Similarly as for
the forward gadget, once edge A or B is contracted, the resulting complex is
shrinkable.

Variable Gadget

Properties. The variable gadget associated to a variable x has three special edges:
X, X and L (lock). At the beginning X and X are shrinkable edges. When X or
X has been contracted, the other one is not shrinkable before L and there is a
sequence of shrinks that reduces the gadget to a single point.

Usage. Given a truth assignment, true (resp. false), for variable z, the edge X
(resp. X) of the associated gadget is contracted before the other edge X (resp.
X). Gluing the lock edge to some key edges (see the clause gadgets), we ensure
that once an assignment is chosen for the variable, the other edge, X (resp.
X)), cannot be contracted unless all the keys needed to open the lock have been
released (i.e. all the blockers passing through L have been removed).

Realization. Refer to Figure 4. We consider the four triangles of a squared-base
pyramid. From a vertex of the base, X and X are the incident edges on the base
and L is the third incident edge on the pyramid. We glue three freezer gadgets
onto three triangles incident to the apex, as shown in Figure 4, to ensure that
the 3 edges that are incident to the apex and distinct from L are contracted after
L, and that the edges on the base remain shrinkable. Contracting any edge on
the base transforms the base into a blocker and L remains the only shrinkable
edge, ensuring that L will be shrunk before one of X or X.

Two-Clause Gadget

Properties. The two-clause gadget has three special edges: two literals V and
W and a key K. We require that the key is not contracted before one of the

Recognizing Shrinkable Complexes Is NP-Complete 81

Fig. 5. The two-clause gadget. Left: realization. Middle: various edge contractions.
Right: schematic representation.

two literals. Namely, at the beginning V and W are shrinkable edges and K is
not shrinkable. K cannot be contracted before one of V or W and there are
sequences of shrinks that contract any non-empty subset of {V, W} before K.

Usage. Gluing the key edge to a lock edge of a variable gadget ensures that the
lock will not be contracted before the key has been released (i.e. K has become
shrinkable).

Realization. Consider a horizontal triangle and a vertical edge B that pierces it.
Each of the triangle edges together with the piercing edge define a tetrahedron,
and we consider the simplicial complex defined by these three tetrahedra; see
Fig. 5. The initial triangle we considered is not part of this complex and is thus
a blocker. We place K on the blocker and take for V and W the edges incident
to an endpoint of K not in the blocker. Finally, we glue a forward gadget to the
face incident to V' but not to K and another one for W, symmetrically.

Let A (resp. A’) be the third edge of the triangle defined by edges V' (resp. W)
and K, and recall that B is the central edge. The only edges that are initially
shrinkable are A, A’, B, V, and W. Contracting A identifies V' and K, ensuring
that K will not be contracted before V. Contracting A’ is similar to contracting
A (exchanging V' and W). Contracting B identifies V' and W, and yields a
configuration where A= A’ and V = W are the only shrinkable edges; then
contracting A identifies V, W, and K ensuring that K will not be contracted
before V' nor W. Thus, K cannot be contracted (strictly) before one of V' or
W. Finally, we can contract V then K, which yields a forward gadget whose
only contractible edge is W. Hence possible ordering to shrink V', W, and K are
VWK, WVK, VKW, or WKV.

Three-Clause Gadget

Properties. The three-clause gadget has four special edges: three literals U, V,
and W and a key K. We enforce that the key is not contracted before one of

82 D. Attali et al.

the three literals. Namely, at the beginning U, V', and W are shrinkable and K
is not. K cannot be contracted before one of U, V, or W and there is a sequence
of shrinks that contracts any non-empty subset of {U, V, W} before K.

Realization. Refer to Fig. 6.
The realization is done by sim-
ple association of two two-clause
gadgets, gluing the key of one
clause on one literal of the
other, as described in Fig. 6-left.
We furthermore add the two tri-
angles defined by KV and KW
(note that the triangle KU al-

ready belongs to the gadget). Fig. 6. Left: two glued two-clause gadgets. Right:
The three-clause gadget.

These two extra triangles will be
needed when gluing gadgets together. By construction, our two glued two-clause
gadgets satisfies the properties we require for the three-clause gadgets. Adding
the two triangles KV and KW does not invalidate these properties. Indeed, let
A be the third edge of triangle K'V; the addition of A has created a blocker
(in red in Fig. 6-right). Thus A cannot be contracted and it does not block the
contraction of U, V, W, or K. Once V or K is contracted, A is identified with
K or V and this extra triangle disappears. Thus, the gadget keeps its properties
with these two additional triangles.

4.2 Wrap up

3-SAT and Shrinkability. Given a 3CNF Boolean formula, we build a three-
clause gadget per clause and a variable gadget per variable. The literal edge of
each clause gadget is glued to the relevant edge of the variable gadget, that is,
a literal = (resp. —x) is glued to the edge X (resp. X) of the variable gadget
associated to x. The lock edge of each variable gadget is glued to the key edge
of each clause it appears in. We assume that the obtained complex is connected,
otherwise the 3-SAT problem can be decomposed into independent subproblems,
which can be solved separately.

Notice that a pair of edges key/literal forms a triangle in the three-clause
gadget and that the pair of edges lock/X (or lock/X) also forms a triangle in
the variable gadget. Thus, the third edges of these triangles are also glued.
Actually, the effect of this construction is that the edges K and L of all gadgets
are identified and become a single edge in the final complex. By construction,
the complex is contractible since each gadget is contractible and we are gluing
them by triangles that all have a common edge, K.

Our construction is 3 dimensional, thus it can be embedded in R” using general
position for the vertices.

From a Truth Assignment to a Sequence of Shrinks. For every variable,
if it is assigned true (resp. false), edge X (resp. X) is contracted in the associated

Recognizing Shrinkable Complexes Is NP-Complete 83

Fig. 7. Triangulation of a torus with 9 vertices. From left to right: the torus represented
as a square with opposite edges identified and its embedding in R® as a polyhedron
with 9 trapezoidal faces; a non-shrinkable triangulation; and its embedding.

gadget. These edges are identified to literal edges of the clause gadgets, so their
contractions make edge K shrinkable from the point of view of all clause gadgets
and K can thus be contracted. All edges corresponding to the other values of
the variable gadgets become shrinkable and the complex can be contracted to a
point.

From a Sequence of Shrinks to a Truth Assignment. For every variable
gadget, if edge X (resp. X) is contracted before X (resp. X), we assign true
(resp. false) to the variable associated to the gadget. All clauses are satisfied by
this assignment since K cannot be contracted before all clause gadgets have one
of their literal edge contracted.

5 A Non-shrinkable Bing’s House

In this section, we construct a contractible simplicial complex which is irre-
ducible, both for shrinks and for collapses.® The idea is to triangulate carefully
Bing’s house, in such a way that no edge is shrinkable. Bing’s house has two
rooms, one above the other. The only access to the upper room is through an
underground tunnel that passes through the lower room and the only access to
the lower room is through a chimney that passes through the upper room; see
Fig. 9-middle.

To triangulate the lower room (and the tunnel), we start with a triangulation
of the torus with 9 vertices presented in Fig. 7. We now proceed to two successive
alterations of the complex; see Fig. 8. First, we create a room inside the torus,
by adding the two (pink hashed) triangles: 036 and 236 and removing triangle
013; the two added triangles delimit the room inside the torus and the removed
triangle provides access to the room from outside. We then build a tunnel through
the middle of the room by removing two triangles: 023 and 026 and by adding
the (blue hashed) triangle 012.

To see that the resulting complex is shrink-irreducible, notice that the trian-
gulation of the torus is shrink-irreducible to start with. During the modification,

3 You can actually build your own 3D model, see Appendix of ,,’
7 4
hal.inria.fr/hal-01015747. | =)

http://hal.inria.fr/hal-01015747

84 D. Attali et al.

Fig. 8. Triangulation of the lower room and underground tunnel using 18 triangles: 5
(blue) triangles are coplanar and form the roof, 7 triangles (5 pink and 2 hashed) bound
the tunnel under the roof and 6 (pink) triangles lie on the outer walls of the room. The
arrow indicates a passage through the tunnel from the underground entrance 678 to
the roof exit 023. The red loops indicate the 3 triangles removed from the torus.

the only way an edge may become non-shrinkable is if there are more triangles
incident to that edge that are added than the ones that are removed. The only
edges that fulfill that condition are 36 and 12 and one can check that they are
still covered by blockers at the end: 361 and 123 respectively. Similarly, one can
check that the room has only three collapsible edges, namely 02, 03 and 13, all
lying on the roof. Indeed, no edges are collapsible in the initial triangulation of
the torus and an edge is collapsible in the final complex if and only if the number
of added triangles incident to that edge is one less than the number of removed
triangles. The only edges with this property are 02, 03 and 13.

To finish our construction of Bing’s house, we consider a copy of the lower
room, which we place above the original one; see Fig. 9. Renaming vertices = by
2’ in the copy, this boils down to the following identifications: vertices 0 with 07,

0
1

6 3 0
/255 ”%ﬁ\ A
8 | | L N 4 4
i \
2 g

Fig. 9. Building the Bing’s house. Left: triangulation of the lower room and schematic
representation. Middle: the two rooms one above the other with the four arrows repre-
senting the way through the underground tunnel to the upper room and through the
chimney to the lower room. Right. Triangulation of Bing’s house.

Recognizing Shrinkable Complexes Is NP-Complete 85

1 with 2°, 2 with 1’, 3 with 3’, 4 with 5" and 5 with 4’. The result is a simplicial
complex with 12 vertices which is still shrink-irreducible but in which no edge
is collapsible anymore; see Fig. 9.

Acknowledgements. This work was initiated during the 12" INRIA-McGill-
Victoria Workshop on Computational Geometry at the Bellairs Research Insti-
tute. The authors wish to thank all the participants for creating a pleasant and
stimulating atmosphere. The authors thank Uli Wagner for fruitful discussions
and interesting references.

References

10.

11.

12.

13.

Attali, D., Lieutier, A., Salinas, D.: Vietoris-Rips complexes also provide topologi-
cally correct reconstructions of sampled shapes. Computational Geometry: Theory
and Applications 46, 448-465 (2012), doi:10.1016/j.comgeo.2012.02.009

Attali, D., Lieutier, A., Salinas, D.: Collapsing Rips complexes. In: EuroCG 2013
(2013), http://www.ibr.cs.tu-bs.de/alg/eurocgl3/booklet_eurocgl3.pdf
Barnette, D.W., Edelson, A.: All orientable 2-manifolds have finitely many
minimal triangulations. Israel Journal of Mathematics 62(1), 90-98 (1988),
doi:10.1007/BF02767355

Barnette, D.W., Edelson, A.: All 2-manifolds have finitely many mini-
mal triangulations. Israel Journal of Mathematics 67(1), 123-128 (1989),
doi:10.1007/BF02764905

Bing, R.H.: Some Aspects of the Topology of 3-Manifolds Related to the Poincaré
Conjecture. Lectures on Modern Mathematics, vol. I1. Wiley, New York (1964)
Carlsson, G., de Silva, V.: Topological approximation by small simplicial complexes.
Technical report, Mischaikow., Wanner, T. (2003),
http://math.stanford.edu/research/comptop/preprints/delaunay.pdf
Carlsson, G., Ishkhanov, T., De Silva, V., Zomorodian, A.: On the local behav-
ior of spaces of natural images. Int. J. of Computer Vision 76(1), 1-12 (2008),
doi:10.1007/s11263-007-0056-x

Chazal, F., Cohen-Steiner, D., Lieutier, A.: A sampling theory for compact sets
in Euclidean space. Discrete & Computational Geometry 41(3), 461-479 (2009),
doi:10.1007/00454-009-9144-8

Cohen, M.M.: A course in simple-homotopy theory. Graduate Texts in Mathemat-
ics, vol. 10. Springer (1973), doi:10.1007/978-1-4684-9372-6

De Silva, V.: A weak characterisation of the Delaunay triangulation. Geometriae
Dedicata 135(1), 39-64 (2008), doi:10.1007/s10711-008-9261-1

De Silva, V., Carlsson, G.: Topological estimation using witness complexes.
In: Proceedings of the First Eurographics conference on Point-Based Graphics,
pp. 157-166. Eurographics Association (2004), doi:10.2312/SPBG/SPBG04/157-
166

Dey, T K., Edelsbrunner, H., Guha, S., Nekhayev, D.V.: Topology preserving edge
contraction. Publ. Inst. Math (Beograd) (N.S.) 66, 23-45 (1999),
http://www.cs.duke.edu/ edels/Papers/
1999-J-03-TopologyPreservingContraction.pdf

Ehrenborg, R., Hetyei, G.: The topology of the independence complex. European
Journal of Combinatorics 27(6), 906-923 (2006), doi:10.1016/j.ejc.2005.04.010

http://www.ibr.cs.tu-bs.de/alg/eurocg13/booklet_eurocg13.pdf
http://math.stanford.edu/research/comptop/preprints/delaunay.pdf
http://www.cs.duke.edu/~edels/Papers/1999-J-03-TopologyPreservingContraction.pdf
http://www.cs.duke.edu/~edels/Papers/1999-J-03-TopologyPreservingContraction.pdf

86

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

D. Attali et al.

Garland, M., Heckbert, P.S.: Surface simplification using quadric error metrics.
In: SIGGRAPH 1997 Proc., pp. 209-216 (1997), doi:10.1145/258734.258849
Goaoc, X.: Transversal Helly numbers, pinning theorems and projections of sim-
plicial complexes, Habilitation thesis, Université Nancy (January 2011),
http://tel.archives-ouvertes.fr/tel-00650204

Hoppe, H.: Progressive meshes. In: SIGGRAPH 1996 Proc., pp. 99-108 (1996),
doi:10.1145/237170.237216

Lawrencenko, S.: Irreducible triangulations of the torus. Journal of Mathematical
Sciences 51, 2537-2543 (1990),
http://www.lawrencenko.ru/files/itott_en.pdf

Melikhov, S.: Combinatorics of embeddings. Research Report arXiv (2011),
http://arxiv.org/abs/1103.5457

Nevo, E.: Higher minors and Van Kampen’s obstruction. Mathematica Scandinav-
ica 101(2), 161-176 (2006),
http://ojs.statsbiblioteket.dk/index.php/math/article/view/15037
Niyogi, P., Smale, S., Weinberger, S.: Finding the Homology of Submanifolds
with High Confidence from Random Samples. Discrete & Computational Geome-
try 39(1-3), 419-441 (2008), doi:10.1007/s00454-008-9053-2

Popovié, J., Hoppe, H.: Progressive simplicial complexes. In: SIGGRAPH 1997
Proc., pp. 217-224 (1997), doi:10.1145/258734.258852

Sulanke, T.: Irreducible triangulations of low genus surfaces. Research Report arXiv
(2006), http://arxiv.org/abs/math/0606690

Tancer, M.: Recognition of collapsible complexes is NP-complete. Research Report
arXiv (2012), http://arxiv.org/abs/1211.6254

Volodin, I.A., Kuznetsov, V.E., Fomenko, A.T.: The problem of discriminating
algorithmically the standard three-dimensional sphere. Russian Mathematical
Surveys 29(5), 71 (1974), doi:10.1070/RM1974v029n05ABEH001296

http://tel.archives-ouvertes.fr/tel-00650204
http://www.lawrencenko.ru/files/itott_en.pdf
http://arxiv.org/abs/1103.5457
http://ojs.statsbiblioteket.dk/index.php/math/article/view/15037
http://arxiv.org/abs/math/0606690
http://arxiv.org/abs/1211.6254

Improved Approximation Algorithms
for Box Contact Representations™

Michael A. Bekos!, Thomas C. van Dijkz, Martin Fink??, Philipp Kindermann?,
Stephen Kobourov?, Sergey Pupyrev3#, Joachim Spoerhase?, and Alexander Wolff?**

' Wilhelm-Schickard-Institut fiir Informatik, Universitit Tiibingen, Germany
2 Lehrstuhl fiir Informatik I, Universitidt Wiirzburg, Germany
3 Department of Computer Science, University of Arizona, USA
4 TInstitute of Mathematics and Computer Science, Ural Federal University, Russia
5 Department of Computer Sicence, University of California, Santa Barbara, USA

Abstract. We study the following geometric representation problem: Given a
graph whose vertices correspond to axis-aligned rectangles with fixed dimen-
sions, arrange the rectangles without overlaps in the plane such that two rect-
angles touch if the graph contains an edge between them. This problem is called
CONTACT REPRESENTATION OF WORD NETWORKS (CROWN) since it formal-
izes the geometric problem behind drawing word clouds in which semantically
related words are close to each other. CROWN is known to be NP-hard, and there
are approximation algorithms for certain graph classes for the optimization ver-
sion, MAX-CROWN, in which realizing each desired adjacency yields a certain
profit.

We show that the problem is APX-complete on bipartite graphs of bounded
maximum degree. We present the first O(1)-approximation algorithm for the gen-
eral case, when the input is a complete weighted graph, and for the bipartite case.
Since the subgraph of realized adjacencies is necessarily planar, we consider sev-
eral planar graph classes (stars, trees, outerplanar, and planar graphs), improving
upon the known results. For some graph classes, we also describe improvements
in the unweighted case, where each adjacency yields the same profit.

1 Introduction

In the last few years, word clouds have become a standard tool for abstracting, visu-
alizing, and comparing text documents. For example, word clouds were used in 2008
to contrast the speeches of the U.S. presidential candidates. More recently, the German
media used them to visualize the newly signed coalition agreement and to compare it to
a similar agreement from 2009. A word cloud of a given document consists of the most
important (or most frequent) words in that document. Each word is printed in a given

* The work of M. A. Bekos is implemented within the framework of the Action “Supporting
Postdoctoral Researchers” of the Operational Program “Education and Lifelong Learning”
(Action’s Beneficiary: General Secretariat for Research and Technology), and is co-financed
by the European Social Fund (ESF) and the Greek State. Ph. Kindermann and A. Wolff ac-
knowledge support by the ESF EuroGIGA project GraDR. S. Kobourov and S. Pupyrev are
supported by NSF grants CCF-1115971 and DEB 1053573.

A.S. Schulz and D. Wagner (Eds.): ESA 2014, LNCS 8737, pp. 87-99, 2014.
© Springer-Verlag Berlin Heidelberg 2014

88 M.A. Bekos et al.

font and scaled by a factor roughly proportional to its importance (the same is done with
the names of towns and cities on geographic maps, for example). The printed words are
arranged without overlap and tightly packed into some shape (usually a rectangle). Tag
clouds look similar; they consist of keyword metadata (tags) that have been attributed
to resources in some collection such as web pages or photos.

Wordle [23] is a popular tool for drawing word or tag clouds. The Wordle website
allows users to upload a list of words and, for each word, its relative importance. The
user can further select font, color scheme, and decide whether all words must be placed
horizontally or whether words can also be placed vertically. The tool then computes
a placement of the words, each scaled according to its importance, such that no two
words overlap. Generally, the drawings are very compact and aesthetically appealing.

In the automated analysis of text one is usually not just interested in the most impor-
tant words and their frequencies, but also in the connections between these words. For
example, if a pair of words often appears together in a sentence, then this is often seen
as evidence that this pair of words is linked semantically [17]. In this case, it makes
sense to place the two words close to each other in the word cloud that visualizes the
given text. This is captured by an input graph G = (V,E) of desired contacts. We are
also given, for each vertex v € V, the dimensions (but not the position) of a box B,, that
is, an axis-aligned rectangle. We denote the height and width of B, by h(B,) and w(B,),
respectively, or, more briefly, by i(v) and w(v). For each edge e = (u,v) of G, we are
given a positive number p(e) = p(u,v), that corresponds to the profit of e. For ease of
notation, we set p(u,v) = 0 for any non-edge (u,v) € V>\ E of G.

Given a box B and a point ¢ in the plane, let B(g) be a placement of B with lower left
corner g. A representation of G is amap A : V — R? such that for any two vertices u # v,
it holds that B, (A (u)) and B, (A (v)) are interior-disjoint. Boxes may touch, that is, their
boundaries may intersect. If the intersection is non-degenerate, that is, a line segment
of positive length, we say that the boxes are in contact. We say that a representation A
realizes an edge (u,v) of G if boxes B, (A (u)) and B, (A(v)) are in contact.

instance GAP edges algorithm approximation
items bins set vertex™ " COrnercontacts

weight Problem yax.crown star forests mod$l

Theorem admits rap general Semantic

optimum méa)émgm supporting

solution profit total Planar biparite

ALG

Fig. 1. Semantics-preserving word cloud for the 35 most “important” words in this paper. Fol-
lowing the text processing pipeline of Barth et al. [2], these are the words ranked highest by
LexRank [11], after removal of stop words such as “the”. The edge profits are proportional to the
relative frequency with which the words occur in the same sentences. The layout algorithm of
Barth et al. [2] first extracts a heavy star forest from the weighted input graph as in Theorem 6
and then applies a force-directed post-processing.

Improved Approximation Algorithms for Box Contact Representations 89

This yields the problem Contact Representation of Word Networks (CROWN): Given
an edge-weighted graph G whose vertices correspond to boxes, find a representation
of G with the vertex boxes such that every edge of G is realized. In this paper, we study
the optimization version of CROWN, MAX-CROWN, where the aim is to maximize the
total profit (that is, the sum of the weights) of the realized edges. We also consider the
unweighted version of the problem, where all desired contacts yield a profit of 1.

Previous Work. Barth et al. [1] introduced MAX-CROWN and showed that the problem
is strongly NP-hard even for trees and weakly NP-hard even for stars. They presented an
exact algorithm for cycles and approximation algorithms for stars, trees, planar graphs,
and graphs of constant maximum degree; see the first column of Table 1. Some of
their solutions use an approximation algorithm with ratio @ = e/(e — 1) ~ 1.58 [13] for
the GENERALIZED ASSIGNMENT PROBLEM (GAP): Given a set of bins with capacity
constraints and a set of items that possibly have different sizes and values for each bin,
pack a maximum-valued subset of items into the bins. The problem is APX-hard [6].

MAX-CROWN is related to finding rectangle representations of graphs, where ver-
tices are represented by axis-aligned rectangles with non-intersecting interiors and edges
correspond to rectangles with a common boundary of non-zero length. Every graph that
can be represented this way is planar and every triangle in such a graph is a facial trian-
gle. These two conditions are also sufficient to guarantee a rectangle representation [5].
Rectangle representations play an important role in VLSI layout, cartography, and ar-
chitecture (floor planning). In a recent survey, Felsner [12] reviews many rectangulation
variants. Several interesting problems arise when the rectangles in the representation
are restricted. Eppstein et al. [10] consider rectangle representations which can realize
any given area-requirement on the rectangles, so-called area-preserving rectangular car-
tograms, which were introduced by Raisz [22] already in the 1930s. Unlike cartograms,
in our setting there is no inherent geography, and hence, words can be positioned any-
where. Moreover, each word has fixed dimensions enforced by its importance in the input
text, rather than just fixed area. Nollenburg et al. [20] recently considered a variant where
the edge weights prescribe the length of the desired contacts.

Finally, the problem of computing semantics-aware word clouds is related to classic
graph layout problems, where the goal is to draw graphs so that vertex labels are read-
able and Euclidean distances between pairs of vertices are proportional to the under-
lying graph distance between them. Typically, however, vertices are treated as points
and label overlap removal is a post-processing step [9,15]. Most tag cloud and word
cloud tools such as Wordle [23] do not show the semantic relationships between words,
but force-directed graph layout heuristics are sometimes used to add such functional-
ity [2,8,21,24].

Our Contribution. Known results and our contributions to MAX-CROWN are shown in
Table 1. Note that the results of Barth et al. [1] in column 1 are simply based on existing
decompositions of the respective graph classes into star forests or cycles.

Our results rely on a variety of algorithmic tools. First, we devise sophisticated
decompositions of the input graphs into heterogeneous classes of subgraphs, which
also requires a more general combination method than that of Barth et al. Second,
we use randomization to obtain a simple constant-factor approximation for general

90 M.A. Bekos et al.

Table 1. Previously known and new results for the unweighted and weighted versions of MAX-
CROWN (for o ~ 1.58 and any € > 0)

Weighted Unweighted
Graph class Ratio [1] Ratio [new] Ref. Ratio Ref.
cycle, path 1
star o l+¢ Thm. 1
tree 20 2+¢€ Thm. 1 2 Thm. 7
NP-hard
max-degree A [(A+1)/2]
planar max-deg. A 1+¢ Thm. 8
outerplanar 3+¢ Thm. 3
planar S5a 5+¢ Thm. 1
bipartite 160/3 (= 8.4) Thm. 4
APX-complete Thm. 2

general 320/3 (= 16.9; rand.) Thm. 5 5+160/3 Thm.9

400t/3 (= 21.1; det.) Thm. 6

weighted graphs. Previously, such a result was not even known for unweighted bipartite
graphs. Third, to obtain an improved algorithm for the unweighted case, we prove a
lower bound on the size of a matching in a planar graph of high average degree. Fourth,
we use a planar separator result of Frederickson [14] to obtain a polynomial-time ap-
proximation scheme (PTAS) for degree-bounded planar graphs.

We start our paper with basic results on simple graph classes and prove that MAX-
CROWN is APX-complete on bipartite graphs of maximum degree 9 (Section 2). Then,
we tackle weighted graphs (Section 3). We obtain improved results for several un-
weighted graph classes (Section 4). Finally, we list some open problems (Section 5).

Model. As in most work on rectangle contact representations, we do not count point
contacts, that is, we consider two boxes in contact only if their intersection is a line seg-
ment of positive length. Hence, the contact graph of the boxes is planar. Our algorithms
can easily be modified to guarantee O(1)-approximations also in the model that allows
and rewards point contacts [3]. We allow words only to be placed horizontally.

Runtimes. Most of our algorithms involve approximating a number of GAP instances
as a subroutine, using either the PTAS [4] if the number of bins is constant or the
approximation algorithm of Fleischer et al. [13] for general instances. Because of this,
the runtime of our algorithms consists mostly of approximating GAP instances. Both
algorithms to approximate GAP instances solve linear programs, so we refrain from
explicitly stating the runtime of these algorithms.

For practical purposes, one can use a purely combinatorial approach for approxi-
mating GAP [7], which utilizes an algorithm for the KNAPSACK problem as a subrou-
tine. The algorithm translates into a 3-approximation for GAP running in O(NM) time
(or a (2 + €)-approximation running in O(MNlog1/e + M/e*) time), where N is the

Improved Approximation Algorithms for Box Contact Representations 91

number of items and M is the number of bins. In our setting, the simple 3-approximation
implies a randomized 32-approximation (or a deterministic 40-approximation) algo-
rithm with running time O(|V'|?) for MAX-CROWN on general weighted graphs.

2 Some Basic Results

We first present two technical lemmas that will help us prove our main results on
weighted and unweighted MAX-CROWN. The second lemma immediately improves
the results of Barth et al. [1] for stars, trees, and planar graphs. Finally, we prove APX-
completeness of MAX-CROWN on bipartite graphs of bounded maximum degree.

2.1 A Combination Lemma

Several of our algorithms cover the input graph with subgraphs that belong to graph
classes for which the MAX-CROWN problem is known to admit good approximations.
The following lemma allows us to combine the solutions for the subgraphs. We say
that a graph G = (V,E) is covered by graphs G| = (V,E}),...,Gy = (V,Ey) if E =
E\U---UE.

Lemma 1. Let graph G = (V,E) be covered by graphs G1,Ga,...,Gy. If, for i =
1,2,....k weighted MAX-CROWN on graph G; admits an o;-approximation, then
weighted MAX-CROWN on G admits a (Z{-‘zl Oci)-approximation.

Proof. Our algorithm works as follows. Fori =1,... k, we apply the o-approximation
algorithm to G; and report the result with the largest profit as the result for G. We show
that this algorithm has the claimed performance guarantee. For the graphs G, Gy, ..., Gy,
let OPT,OPTy,...,OPT} be the optimum profits and let ALG, ALGq,...,ALGy be the
profits of the approximate solutions. By definition, ALG; > OPT; /¢; for i = 1,... k.
Moreover, OPT < Zé‘:l OPT; because the edges of G are covered by the edges of
Gy,...,Gy. Assume, w.l.o.g., that OPT; /o = max;(OPT; /¢;). Then

OPT; _ >k OPT; _ OPT

ALG = ALG; > p > .
o i1 O i1 O

2.2 Improvement on Existing Approximation Algorithms

Lemma 2 ([4]). For any € > 0, there is a (1 + €)-approximation algorithm for GAP
with a constant number of bins. The algorithm takes n?/%) time. a

Using Lemmas 1 and 2, we improve the approximation algorithms of Barth et al. [1].

Theorem 1. Weighted MAX-CROWN admits a (1 + €)-approximation algorithm on
stars, a (2 + €)-approximation algorithm on trees, and a (5 + €)-approximation algo-
rithm on planar graphs.

92 M.A. Bekos et al.

Proof. By Lemma 1, the claim for stars implies the other two claims since a tree can
be covered by two star forests and a planar graph can be covered by five star forests in
polynomial time [16]. We now show that we can use Lemma 2 to get a PTAS for stars.
Here, we give the PTAS for the model with point contacts; in the full version [3], we
show how to handle the model without point contacts.

Let u be the center vertex of the star. We create eight bins: four corner bins u{,u5,us,
and uy modeling adjacencies on the four corners of the box u, two horizontal bins u’f
and u’zl modeling adjacencies on the top and bottom side of u, and two vertical bins u}
and uj modeling adjacencies on the left and right side of u. The capacity of the corner
bins is 1, the capacity of the horizontal bins is the width w(u) of u, and the capacity
of the vertical bins is the height 4(u) of u. Next, we introduce an item i(v) for any leaf
vertex v of the star. The size of i(v) is 1 in any corner bin, w(v) in any horizontal bin,
and (v) in any vertical bin. The profit of i(v) in any bin is the profit p(u,v) of the
edge (u,v).

Note that any feasible solution to the MAX-CROWN instance can be normalized so
that any box that touches a corner of u has a point contact with u. Hence, the above is an
approximation-preserving reduction from weighted MAX-CROWN on stars (with point
contacts) to GAP. By Lemma 2, we obtain a PTAS. O

2.3 APX-Completeness
The proof for the following theorem is given in the full version [3].

Theorem 2. Weighted MAX-CROWN is APX-complete even if the input graph is bipar-
tite of maximum degree 9, each edge has profit 1, 2 or 3, and each vertex corresponds
to a square of one out of three different sizes.

3 The Weighted Case

In this section, we provide new approximation algorithms for more involved classes of
(weighted) graphs than in the previous section. Recall that o = ¢/(e — 1) ~ 1.58. First,
we give a (3 + €)-approximation for outerplanar graphs. Then, we present a 16¢¢/3-
approximation for bipartite graphs. For general graphs, we provide a simple randomized
32a/3-approximation and a deterministic 40¢t/3-approximation.

Theorem 3. Weighted MAX-CROWN on outerplanar graphs admits a (3 + €)-approx-
imation.

Proof. 1t is known that the star arboricity of an outerplanar graph is 3, that is, it can
be partitioned into at most three star forests [16]. Here we give a simple algorithm for
finding such a partitioning.

Any outerplanar graph has degeneracy at most 2, that is, it has a vertex of degree
at most 2. We prove that any outerplanar graph G can be partitioned into three star
forests such that every vertex of G is the center of only one star. Clearly, it is sufficient
to prove the claim for maximal outerplanar graphs in which all vertices have degree at
least 2. We use induction on the number of vertices of G. The base of the induction

Improved Approximation Algorithms for Box Contact Representations 93

corresponds to a 3-cycle for which the claim clearly holds. For the induction step, let v
be a degree-2 vertex of G and let (v,u) and (v,w) be its incident edges. The graph G —v
is maximal outerplanar and thus, by induction hypothesis, it can be partitioned into star
forests F, F>, and F3 such that u is the center of a star in F| and w is the center of a
star in F>. Now we can cover G with three star forests: we add (v,u) to Fj, we add (v,w)
to F>, and we create a new star centered at v in F3.

Applying Lemma 1 and Theorem 1 to the star forests completes the proof. O

Theorem 4. Weighted MAX-CROWN on bipartite graphs admits a 160/3-
approximation.

Proof. Let G = (V,E) be a bipartite input graph with V.=V, UV, and E C V| X V,.
Using G, we build an instance of GAP as follows. For each vertex u € V|, we create
eight bins u{, us, u§, ug, u’]’, ug, uY,us and set the capacities exactly as we did for the star
center in Theorem 1. Next, we add an item i(v) for every vertex v € V,. The size of i(v)
is, again, 1 in any corner bin, w(v) in any horizontal bin, and A(v) in any vertical bin.
For u € Vi, the profit of i(v) is p(u,v) in any bin of u.

It is easy to see that solutions to the GAP instance are equivalent to word cloud
solutions (with point contacts) in which the realized edges correspond to a forest of stars
with all star centers being vertices of V. Hence, we can find an approximate solution of
profit ALG} > OPT} /& where OPT] is the profit of an optimum solution (with point
contacts) consisting of a star forest with centers in Vj.

We now show how to get a solution without point contacts. If the three bins on the top
side of a vertex u (two corner bins and one horizontal bin) are not completely full, we
can slightly move the boxes in the corners so that point contacts are avoided. Otherwise,
we remove the lightest item from one of these bins. We treat the three bottommost
bins analogously. Note that in both cases we only remove an item if all three bins are
completely full. The resulting solution can be realized without point contacts. We do the
same for the three left and three right bins and choose the heavier of the two solutions. It
is easy to see that we lose at most 1 /4 of the profit for the star center u: Assume that the
heaviest solution results from removing weight w; from one of the upper and weight w,
from one of the lower bins. As we remove the lightest items only, the remaining weight
from the upper and lower bins is at least 2(w; +wy). On the other hand, the weight
in the two vertical at least w + wj; otherwise, dropping everything from these vertical
bins would be cheaper. Hence, we keep at least weight 3(w; + w»).

If we do so for all star centers, we get a solution with profit ALG; > 3/4- ALG’I >
30PT) /(4a) > 30PT; /(4ct) where OPT] is the profit of an optimum solution (with-
out point contacts) consisting of a star forest with centers in V.

Similarly, we can find a solution of profit ALG, > 30PT, /(4a) with star centers
in V,, where OPT) is the maximum profit that a star forest with centers in V; can realize.
Among the two solutions, we pick the one with larger profit ALG = max { ALG,ALG;}.

Let G* = (V,E*) be the contact graph realized by a fixed optimum solution, and let
OPT = p(E™) be its total profit. We now show that ALG > 30PT /(16x). As G* is a
planar bipartite graph, |[E*| < 2n — 4. Hence, we can decompose E* into two forests Hj
and H, using a result of Nash-Williams [18]. We can further decompose H; into two star
forests S| and S’1 in such a way that the star centers of S| are in V| and the star centers
of S’1 are in V5. Similarly, we decompose H, into a forest S, of stars with centers in V|

94 M.A. Bekos et al.

and a forest S, of stars with centers in V. As we decomposed the optimum solution
into four star forests, one of them—say S;—has profit p(S;) > OPT /4. On the other
hand, OPT; > p(S;). Summing up, we get

ALG > ALG; > 30PT, /(4a) > 3p(S1)/(4c) > 30PT/(160). O

Theorem 5. Weighted MAX-CROWN on general graphs admits a randomized 320./3-
approximation.

Proof. Let G = (V,E) be the input graph and let OPT be the weight of a fixed op-
timum solution. Our algorithm works as follows. We first randomly partition the set
of vertices into V; and V, = V' \ V|, that is, the probability that a vertex v is included
in Vi is 1/2. Now we consider the bipartite graph G’ = (V; U V5, E’) with E' =
{(vi,v2) EE |vi €V and v; € V,} that is induced by V; and V,. By applying Theo-
rem 4 on G', we can find a feasible solution for G with weight ALG > 30PT’ /(16«),
where OPT’ is the weight of an optimum solution for G'.

Any edge of the optimum solution is contained in G’ with probability 1/2. Let OPT
be the total weight of the edges of the optimum solution that are present in G'.
Then, E[OPT] = OPT /2. So, E[ALG] > 3E[OPT]/(16c) > 3E[OPT]/(16c) =
30PT/(32ax). O

Theorem 6. Weighted MAX-CROWN on general graphs admits a 400/3-
approximation.

Proof. Let G = (V,E) be the input graph. As in the proof of Theorem 4, our algorithm
constructs an instance of GAP based on G. The difference is that, for every vertexv €V,
we create both eight bins and an item i(v). Capacities and sizes remain as before. The
profit of placing item i(v) in a bin of vertex u, with u # v, is p(u,v).

Let OPT be the value of an optimum solution of MAX-CROWN in G, and let OPTgap
be the value of an optimum solution for the constructed instance of GAP. Since any op-
timum solution of MAX-CROWN, being a planar graph, can be decomposed into five
star forests [16], there exists a star forest carrying at least OPT /5 of the total profit.
Such a star forest corresponds to a solution of GAP for the constructed instance; there-
fore, OPTgap > OPT /5. Now we compute an o-approximation for the GAP instance,
which results in a solution of total profit ALGgap > OPTgap /o > OPT /(5ax). Next,
we show how our solution induces a feasible solution of MAX-CROWN where every
vertex v € V is either a bin or an item.

Consider the directed graph Ggap = (V,Egap) with (u,v) € Egap if and only if the
item corresponding to u € V is placed into a bin corresponding to v € V. A connected
component in Ggap with n’ vertices has at most n’ edges since every item can be placed
into at most one bin. If n' = 2, we arbitrarily make one of the vertices a bin and the
other an item. If n’ > 2, the connected component is a 1-tree, that is, a tree and an edge.
We partition the edges into two subgraphs: a star forest and the disjoint union of a star
forest and a cycle. Note that both subgraphs can be represented by touching boxes if we
allow point contacts because the stars correspond to a GAP solution. Hence, choosing

Improved Approximation Algorithms for Box Contact Representations 95

a subgraph with larger weight and post-processing the solution as in the proof of The-
orem 4 results in a feasible solution of MAX-CROWN with no point contacts. Initially,
we discarded at most half of the weight and the post-processing keeps at least 3/4 of
the weight, so ALG > 3 ALGgap /8. Therefore, ALG > 30PT /(40cx). O

4 The Unweighted Case

In this section, we consider the unweighted MAX-CROWN problem, that is, all de-
sired contacts have profit 1. Thus, we want to maximize the number of edges of the
input graph realized by the contact representation. We present approximation algo-
rithms for different graph classes. First, we give a 2-approximation for trees. Then, we
present a PTAS for planar graphs of bounded degree. Finally, we provide a (5+ 16c/3)-
approximation for general graphs.

Theorem 7. Unweighted MAX-CROWN on trees admits a 2-approximation.

Proof. Let T be the input tree. We first decompose T into edge-disjoint stars as follows.

If T has at most two vertices, then the decomposition is straight-forward. So, we assume

w.l.o.g. that T has at least three vertices and is rooted at a non-leaf vertex. Let u be a

vertex of T such that all its children, say v1,..., v, are leaf vertices. If u is the root of T,

then the decomposition contains only one star centered at u. Otherwise, denote by ©

the parent of u in T, create a star S, centered at u with edges (u,7), (u,v1), ..., (u,v)

and call the edge (u,7) of S, the anchor edge of S,. The removal of u,vy,...,v; from

T results in a new tree. Therefore, we can recursively apply the same procedure. The

result is a decomposition of T into edge-disjoint stars covering all edges of 7.

We next remove, for each star, its anchor edge from 7. We apply the PTAS of The-
orem 1 to the resulting star forest and claim that the result is a 2-approximation for 7.
To prove the claim, consider a star S’u of the new star forest, centered at u with edges
(u,v1),...,(u,v) and let ALG be the total number of contacts realized by the (1 + ¢€)-
approximation algorithm on S/,. We consider the following two cases.

(a) 1 <k < 4: Since it is always possible to realize four contacts of a star, ALG > k.
Note that an optimal solution may realize at most k + 1 contacts (due to the absence
of the anchor edge from S),). Hence, our algorithm has approximation ratio (k +
1)/k<2.

(b) k> 5: Since it is always possible to realize four contacts of a star, we have ALG > 4.
On the other hand, an optimal solution realizes at most (1 + &) ALG+1 contacts.
Thus, the approximation ratio is ((14+€)ALG+1)/ALG < (1+¢€)+1/4<2.

The theorem follows from the fact that all edges of T are incident to the star centers. O

Next, we develop a PTAS for bounded-degree planar graphs. Our construction needs
two lemmas, the first of which was shown by Barth et al. [1].

Lemma 3 ([1]). If the input graph G = (V,E) has maximum degree A then OPT >
2|1E|/(A+1).

The second lemma provides an exponential-time exact algorithm for MAX-CROWN.
The proof is given in the full version [3].

96 M.A. Bekos et al.

Lemma 4. There is an exact algorithm for unweighted MAX-CROWN with running
time 20(11ogn)

Theorem 8. Unweighted MAX-CROWN on planar graphs with maximum degree A ad-
mits a PTAS. More specifically, for any € > 0 there is an (1 + €)-approximation algo-
rithm with linear running time n2(8/2)°0

Proof. Let r be a parameter to be determined later. Frederickson [14] showed that we
can find a vertex set X C V (called r-division) of size O(n/+/r) such that the following
holds. The vertex set V' \ X can be partitioned into n/r vertex sets Vi,...,V, /r such that
(i) [Vi| <rfori=1,...,n/r and (ii) there is no edge running between any two distinct
vertex sets V; and V;. In what follows, we assume w.l.0.g. that G is connected, as we can
apply the PTAS to every connected component separately.

We apply the result of Frederickson to the input graph and compute an r-division X.
By removing the vertex set X from the graph, we remove O(nA/+/r) edges from G.
Now, we apply the exact algorithm of Lemma 4 to each of the induced subgraphs G[Vj]
separately. The solution is the union of the optimum solutions to G[Vj].

Since no edge runs between the distinct sets V; and V;, the subgraphs G[V;] cover
G —X. Let E* be the set of edges realized by an optimum solution to G, let OPT = |E*|,
and let OPT' = |[E*NE(G — X)|. By Lemma 3, we have that OPT > 2(n—1)/(A +
1) = Q(n/A). When we removed X from G, we removed O(nA/+/r) edges. Hence,
OPT = OPT' +0(nA/+/r) and OPT' = Q(n(1/A — A/+\/r)).

Since we solved each sub-instance G[V;] optimally and since these sub-instances
cover G — X, the solution created by our algorithm realizes at least OPT’ many edges.
Using this fact and the above bounds on OPT and OPT’, the total performance of our
algorithm can be bounded by

OPT OPT' +0(nA/+\/r) nA/\/r A?
OPT OPT' - 1+0(n(1/A—A/\/r)> - 1+0<\/r—A2)'

We want this last term to be smaller than 1+ & for some prescribed error parameter
0 < & < 1. Tt is not hard to verify that this can be achieved by letting r = ©(A*/g?).
Since each of the subgraphs G[V;] has at most r vertices, the total running time for
A/e)°M O

determining the solution is n2(

Before tackling the case of general graphs, we need a lower bound on the size of
maximum matchings in planar graphs in terms of the numbers of vertices and edges.

Lemma 5. Any planar graph with n vertices and m edges contains a matching of size
at least (m —2n)/3.

Proof. Let G be a planar graph. Our proof is by induction on n. The claim holds for
n=1.

For the inductive step assume that n > 1. If G is not connected, the claim follows
by applying the inductive hypothesis to every connected component. Now assume that
G has a vertex u of degree less than 3. Consider the graph G' = G —u withn' =n—1
vertices and m’ > m — 2 edges. By the induction hypothesis, G’ (and hence, G, too) has
a matching of size at least (m' —2n')/3 > (m—2) —2(n—1))/3= (m—2n)/3.

Improved Approximation Algorithms for Box Contact Representations 97

LN AN LXK

VAV .}G

(a) G is covered by G (bipartite, (b) maximum matching (c) optimum solution to G’
gray) and G'. The graph G’ is in- M"” (gray/black) in graph G* (black) and part
duced by the matching M (gray, G'=G -M of M (gray)

bold).

Fig. 2. Partitioning the input graph and the optimum solution in the proof of Theorem 9

It remains to tackle the case where G is connected and has minimum degree 3.
Nishizeki and Baybars [19] showed that any connected planar graph with at least n > 10
vertices and minimum degree 3 has a matching of size at least [(n+2)/3] > n/3. This
shows the claim for n > 10 since m < 3n — 6.

In the remaining cases, G has n <9 vertices. Due to planarity, we have (m —2n)/3 <
(n—6)/3 < 1. Hence, any nonempty matching is large enough. 0
Theorem 9. Unweighted MAX-CROWN on general graphs admits a (5 + 16a/3)-
approximation.

Proof. The algorithm first computes a maximal matching M in G. Let V' be the set of
vertices matched by M, let G’ be the subgraph induced by V', and let E’ be the edge
set of G'. Note that G = G — E’ is a bipartite graph with partition (V’,V \ V’). This is
because the matching M is maximal, which implies that every edge in E \ E’ is incident
to a vertex in V'’ and to a vertex not in V’; see Fig. 2a. Hence, we can compute a 16a /3-
approximation to G using the algorithm presented in Theorem 4.

Consider the graph G” = (V' E’\ M) and compute a maximum matching M” in G”;
see Fig. 2b. The edge set M UM" is a set of vertex-disjoint paths and cycles and can
therefore be completely realized [1]. The algorithm realizes this set. Below, we argue
that this realization is in fact a 5-approximation for G’, which completes the proof (due
to Lemma 1 and since G is covered by G’ and G).

Letn’ = |V'| be the number of vertices of G’. Let E* be the set of edges realized by an
optimum solution to G’, and let OPT = |E*|. Consider the subgraph G* = (V' E*\ M)
of G”; see Fig. 2c. Note that G* is planar and contains at least OPT —n’/2 many edges.
Applying Lemma 5 to G*, we conclude that the maximum matching M” of G” has size
at least (OPT —5n'/2) /3. Hence, by splitting OPT appropriately, we obtain

OPT = (OPT-5///2)+5n'/2 < 3|M"|+5|M| < 5|M"UM|. O

5 Conclusions and Open Problems

We presented approximation algorithms for the MAX-CROWN problem, which can be
used for constructing semantics-preserving word clouds. Apart from improving approx-
imation factors for various graph classes, many open problems remain. Most of our

98 M.A. Bekos et al.

algorithms are based on covering the input graph by subgraphs and packing solutions
for the individual subgraphs. Both subproblems—covering graphs with special types of
subgraphs and packing individual solutions together—are interesting problems in their
own right. Practical variants of the problem are also of interest, for example, restricting
the heights of the boxes to predefined values (determined by font sizes), or defining
more than immediate neighbors to be in contact, thus considering non-planar “contact”
graphs. Another interesting variant is when the bounding box of the representation has
a certain fixed size or aspect ratio.

Acknowledgement. We thank an anonymous reviewer for pointing out a simpler anal-
ysis for the last case in the proof of Lemma 5.

References

1. Barth, L., Fabrikant, S.I., Kobourov, S.G., Lubiw, A., Nollenburg, M., Okamoto, Y., Pupyrev,
S., Squarcella, C., Ueckerdt, T., Wolff, A.: Semantic word cloud representations: Hardness
and approximation algorithms. In: Pardo, A., Viola, A. (eds.) LATIN 2014. LNCS, vol. 8392,
pp- 514-525. Springer, Heidelberg (2014)

2. Barth, L., Kobourov, S.G., Pupyrev, S.: Experimental comparison of semantic word clouds.
In: Gudmundsson, J., Katajainen, J. (eds.) SEA 2014. LNCS, vol. 8504, pp. 247-258.
Springer, Heidelberg (2014)

3. Bekos, M., van Dijk, T., Fink, M., Kindermann, P., Kobourov, S.G., Pupyreyv, S., Spoerhase,
J., Wolfft, A.: Improved approximation algorithms for box contact representations. Arxiv re-
port (2014) arxiv.org/abs/1403.4861

4. Briest, P, Krysta, P., Vocking, B.: Approximation techniques for utilitarian mechanism de-
sign. STAM J. Comput. 40(6), 1587-1622 (2011)

5. Buchsbaum, A.L., Gansner, E.R., Procopiuc, C.M., Venkatasubramanian, S.: Rectangular
layouts and contact graphs. ACM Trans. Algorithms 4(1) (2008)

6. Chekuri, C., Khanna, S.: A PTAS for the multiple knapsack problem. In: 11th ACM-SIAM
Symp. Discrete Algorithms (SODA), pp. 213-222. SIAM (2000)

7. Cohen, R., Katzir, L., Raz, D.: An efficient approximation for the generalized assignment
problem. Inf. Process. Lett. 100(4), 162-166 (2006)

8. Cui, W., Wu, Y., Liu, S., Wei, F., Zhou, M., Qu, H.: Context-preserving dynamic word cloud
visualization. IEEE Comput. Graph. Appl. 30(6), 42-53 (2010)

9. Dwyer, T., Marriott, K., Stuckey, P.J.: Fast node overlap removal. In: Healy, P., Nikolov, N.S.
(eds.) GD 2005. LNCS, vol. 3843, pp. 153-164. Springer, Heidelberg (2006)

10. Eppstein, D., Mumford, E., Speckmann, B., Verbeek, K.: Area-universal and constrained
rectangular layouts. SIAM J. Comput. 41(3), 537-564 (2012)

11. Erkan, G., Radev, D.R.: Lexrank: graph-based lexical centrality as salience in text summa-
rization. J. Artif. Int. Res. 22(1), 457-479 (2004)

12. Felsner, S.: Rectangle and square representations of planar graphs. In: Pach, J. (ed.) Thirty
Essays on Geometric Graph Theory, pp. 213-248. Springer, Heidelberg (2013)

13. Fleischer, L., Goemans, M.X., Mirrokni, V., Sviridenko, M.: Tight approximation algorithms
for maximum separable assignment problems. Math. Oper. Res. 36(3), 416-431 (2011)

14. Frederickson, G.N.: Fast algorithms for shortest paths in planar graphs, with applications.
SIAM J. Comput. 16(6), 1004—1022 (1987)

15. Gansner, E.R., Hu, Y.: Efficient, proximity-preserving node overlap removal. J. Graph
Algortihms Appl. 14(1), 53-74 (2010)

17.

18.
19.

20.

21.

22.
23.

24.

Improved Approximation Algorithms for Box Contact Representations 99

. Hakimi, S.L., Mitchem, J., Schmeichel, E.F.: Star arboricity of graphs. Discrete Math.

149(1-3), 93-98 (1996)

Li, H.: Word clustering and disambiguation based on co-occurrence data. J. Nat. Lang.
Eng. 8(1), 25-42 (2002)

Nash-Williams, C.: Decomposition of finite graphs into forests. J. L. Math. Soc. 39, 12 (1964)
Nishizeki, T., Baybars, I.: Lower bounds on the cardinality of the maximum matchings of
planar graphs. Discrete Math. 28(3), 255-267 (1979)

Nollenburg, M., Prutkin, R., Rutter, I.: Edge-weighted contact representations of planar
graphs. J. Graph Algorithms Appl. 17(4), 441473 (2013)

Paulovich, F.V., Toledo, EM.B., Telles, G.P., Minghim, R., Nonato, L.G.: Semantic wordifi-
cation of document collections. Comput. Graph. Forum 31(3), 1145-1153 (2012)

Raisz, E.: The rectangular statistical cartogram. Geogr. Review 24(3), 292-296 (1934)
Viégas, F.B., Wattenberg, M., Feinberg, J.: Participatory visualization with Wordle. IEEE
Trans. Vis. Comput. Graph. 15(6), 1137-1144 (2009)

Wu, Y., Provan, T., Wei, F, Liu, S., Ma, K.L.: Semantic-preserving word clouds by seam
carving. Comput. Graph. Forum 30(3), 741-750 (2011)

Minimum Partial-Matching and Hausdorff
RMS-Distance under Translation:
Combinatorics and Algorithms

Rinat Ben-Avraham®*, Matthias Henze? **, Rafel Jaume?:* **,
Baldzs Keszegh®: T, Orit E. Raz"»*, Micha Sharir'-%, and Igor Tubis'

! Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel
rinatba@gmail.com, {oritraz,michas}@post.tau.ac.il, mrtubis@gmail.com
2 Institut fiir Informatik, Freie Universitét Berlin, Berlin, Germany
matthias.henze@fu-berlin.de, jaume@mi.fu-berlin.de
3 Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences,
Budapest, Hungary
keszegh@renyi.hu

Abstract. We consider the RMS-distance (sum of squared distances
between pairs of points) under translation between two point sets in the
plane. In the Hausdorff setup, each point is paired to its nearest neighbor
in the other set. We develop algorithms for finding a local minimum in
near-linear time on the line, and in nearly quadratic time in the plane.
These improve substantially the worst-case behavior of the popular ICP
heuristics for solving this problem. In the partial-matching setup, each
point in the smaller set is matched to a distinct point in the bigger
set. Although the problem is not known to be polynomial, we establish
several structural properties of the underlying subdivision of the plane
and derive improved bounds on its complexity. In addition, we show
how to compute a local minimum of the partial-matching RMS-distance
under translation, in polynomial time.

Keywords: partial matching, Hausdorff RMS-distance, polyhedral sub-
division, local minimum.

* Supported by Grant 2012/229 from the U.S.-Israel Binational Science Foundation.
** Supported by ESF EUROCORES programme EuroGIGA-VORONOI, (DFG):
RO 2338/5-1.
*** Supported by La-Caixa and the DAAD.

 Supported by Hungarian National Science Fund (OTKA), under grant PD 108406,
NN 102029 (EUROGIGA project GraDR 10-EuroGIGA-OP-003), NK 78439, by
the Jdnos Bolyai Research Scholarship of the Hungarian Academy of Sciences and
by the DAAD.

¥ Supported by Grant 892/13 from the Israel Science Foundation.

§ Supported by Grant 2012/229 from the U.S.-Israel Binational Science Foundation,
by Grant 892/13 from the Israel Science Foundation, by the Israeli Centers for
Research Excellence (I-CORE) program (center no. 4/11), and by the Hermann
Minkowski-MINERVA Center for Geometry at Tel Aviv University.

A.S. Schulz and D. Wagner (Eds.): ESA 2014, LNCS 8737, pp. 100-111, 2014.
(© Springer-Verlag Berlin Heidelberg 2014

Minimum Partial-Matching and Hausdorff RMS-Distance 101
1 Introduction

Let A and B be two finite sets of points in the plane, of respective cardinalities n
and m. We are interested in measuring the similarity between A and B, under a
suitable proximity measure. We consider two such measures where the proximity
is the sum of the squared distances between pairs of points. In the first, we assume
that n > m and we want to match all the points of B (a specific pattern that
we want to identify), in a one-to-one manner, to a subset of A (a larger picture
that “hides” the pattern) of size |B|. This is motivated by situations where we
want a one-to-one matching between A and B [9,15,16]. In the second, each
point is assigned to its nearest neighbor in the other set. See [1] for a similar
generalization of the Hausdorff distance.

We refer to the measured distance between the sets, in both versions, as the
RMS' distance. In the former setup the measure is called the partial-matching
RMS-distance, and in the latter we call it the Hausdorff RMS-distance. In both
variants the sets A and B are in general not aligned, so we seek a translation of
one of them that will minimize the appropriate RMS-distance, partial matching
or Hausdorff.

The Partial-Matching RMS-Distance Problem. Let A = {aq,...,a,} and
B = {by,...,bn} be two sets of points in the plane. Here we assume that m < n,
and we seek a minimum-weight mazimum-cardinality matching of B into A. This
is a subset M of edges of the complete bipartite graph with edge set B x A, so
that each b € B appears in exactly one edge of M, and each a € A appears in
at most one edge. The weight of an edge (b, a) is ||b — al|?, and the weight of a
matching is the sum of the weights of its edges.

A maximum-cardinality matching can be identified as an injective assignment
7 of B into A. With a slight abuse of notation, we denote by ar; the point
a; that 7 assigns to b;. In this notation, the minimum RMS partial-matching
problem (for fixed locations of the sets) is to compute

m

M(B,A) = min ZHbi—aﬂ(i)HQ.

m:B—A injective 4 1
1=

Allowing the pattern B to be translated, we obtain the problem of the minimum
partial-matching RMS-distance under translation, defined as

m

. . 2

Mr(B,A) = min M(B+tA)= teRQI,Erl:lgﬁA, Z 1bi +t — ar || -
7 injective i=1
The function F(t) := M (B +t, A) induces a subdivision of R?, where two points
t1,t2 € R? are in the same region if the minimum of F' at ¢; and at ¢, is attained
by the same assignment m : B — A. We refer to this subdivision, following
Rote [12], as the partial-matching subdivision and denote it by Dp 4. We say
that a matching is optimal if it attains F(¢) for some t € R%.

102 R. Ben-Avraham et al.

The Hausdorff RMS Distance Problem. Let N4(x) (resp., Ng(x)) denote
the nearest neighbor in A (resp., in B) of a point # € R%. The unidirectional
(Hausdorff) RMS distance between B and A is defined as

RMS(B,A) =Y |lb— Na()|>.
beB

We also consider bidirectional RMS distances, in which we also measure distances
from the points of A to their nearest neighbors in B. We consider two variants
of this notion. The first variant is the Lq-bidirectional RMS distance between A
and B, which is defined as

RMS,(B, A) = RMS(A, B) + RMS(B, A).

The second variant is the L -bidirectional RMS distance between A and B, and
is defined as

RM S (B, A) = max {RMS(A, B), RMS(B, A)}.

Allowing one of the sets (say, B) to be translated, we define the minimum uni-
directional RMS distance under translation to be

RMS$r(B, A) = min RMS(B +1, A) = min DO+t = Nab+1))]?,
beB

where B+t = {by +¢,...,by + t}. Similarly, we define the minimum Li- and
Lo-bidirectional RMS distances under translation to be

RMSTJ(B,A) =]}QI% RMSl(B+t,A) and

te

RM ST o (B, A) = tneller% RMS (B +t,A).
Background. A thorough initial study of the minimum RMS partial-matching
distance under translations is given by Rote [12]; see also [5,13] for two follow-
up studies, another study in [11], and an abstract of an earlier version of parts
of this paper [8]. The resulting subdivision Dp 4, as defined above, is shown
in [12] to be a convex subdivision. Rote’s main contribution for the analysis of
the complexity of Dp 4 was to show that a line crosses only O(mn) regions of
the subdivision (see Theorem 1 below). However, obtaining sharp bounds for the
complexity of Dp 4 is still an open issue, where the best known upper bounds
are exponential.

The problem of Hausdorff RMS minimization under translation has been con-
sidered in the literature (see, e.g., [1] and references therein), although only
scarcely so. If A and B are sets of points on the line, the complexity of the
Hausdorff RMS function, as a function of ¢, is O(mn) (and this bound is tight
in the worst case). Moreover, the function can have many local minima (up to
©(mn) in the worst case). Hence, finding a translation that minimizes the Haus-
dorff RMS distance can be done in brute force, in O(mnlog(mn)) time, but a

Minimum Partial-Matching and Hausdorff RMS-Distance 103

worst-case near linear algorithm is not known. In practice, though, there exists
a popular heuristic technique, called the ICP (Iterated Closest Pairs) algorithm,
proposed by Besl and McKay [3] and analyzed in Ezra et al. [7]. Although the
algorithm is reported to be efficient in practice, it might perform @(mn) itera-
tions in the worst case. Moreover, each iteration takes close to linear time (to
find the nearest neighbors in the present location).

The situation is worse in the plane, where the complexity of the RMS function
is O(m?n?), a bound which is worst-case tight, and the bounds for the perfor-
mance of the ICP algorithm, are similarly worse. Similar degradation shows up
in higher dimensions too; see, e.g., [7].

Our Results. In this paper we study these two fairly different variants of the
problem of minimizing the RMS distance under translation, and improve the
state of the art in both of them.

In the partial-matching variant, we first analyze the complexity of D 4. We
significantly improve the bound from the naive O(n™) to O(n?m3-°(elnm+-e)™).
A preliminary informal exposition of this analysis by a subset of the authors is
given in the (non-archival) note [8]. This paper expands the previous note, derives
additional interesting structural properties of the subdivision, and significantly
improves the complexity bound. The arguments that establish the bound can be
generalized to bound the number of regions of the analogous subdivision in R? by
O ((n*m)?*(elnm + e)™)//m). The derivation of the upper bound proceeds by
a reduction that connects partial matchings to a combinatorial question based
on a game theoretical problem, which we believe to be of independent interest.

Next we present a polynomial-time algorithm for finding a local minimum of
the partial-matching RMS-distance. This is significant, given that we do not have
a polynomial bound on the size of the subdivision. We also fill in the details of
explicitly computing the intersections of a line with Dg 4. Although Rote hinted
at such an algorithm in [12], by exploiting some new properties of Dp 4 derived
here, we manage to compute the intersections in a simple, more efficient manner.

We also note that by combining the combinatorial bound for the complexity
of Dp, 4, along with the procedures in the algorithm for finding a local minimum
of the partial-matching RMS-distance, it is possible to traverse all of Dp 4,
and compute a global minimum of the partial-matching RMS-distance in time
O(n*m™5(elnm + €)™). This is the best known bound for this problem.

For the Hausdorff variant, we provide improved algorithms for computing a
local minimum of the RMS function, in one and two dimensions. Assuming |A| =
|B| = n, in the one-dimensional case the algorithms run in time O(nlog®n),
and in the two-dimensional case they run in time O(n?logn). Our approach
thus beats the worst-case running time of the ICP algorithm (used for about
two decades to solve this problem). The approach is an efficient search through
the (large number of) critical values of the RMS function. The techniques are
reasonably standard, although their assembly is somewhat involved.

104 R. Ben-Avraham et al.
2 Properties of Dp 4

We begin by reconstructing several basic properties of Dp 4 that have been
noted in [12]. First, if we fix the translation ¢ € R? and the assignment 7, the
cost of the matching, denoted by f(m,t), is

m
Fmt) =D |lbi 4t — an||* = ex + (tde) +m], (1)
i=1

where ¢, = >, [|b; — aﬂ(i)HQ and dr = 23" (bi — ax(;)). For t fixed, the
assignment 7 that minimizes f(m,t) is the same assignment that minimizes
g(m,t) = cx + (t,dr). It follows that Dp 4 is the minimization diagram (the
xy-projection) of the graph of the function

Epal)= min (cr+(tdy), tER
7m:B— A injective
This is a lower envelope of a finite number of planes, so its graph is a convex
polyhedron, and its projection Dg 4 is a convex subdivision of the plane, whose
faces are convex polygons. The great open question regarding minimum partial-
matching RMS-distance under translation, is whether the number of regions of
Dp, 4 is polynomial in m and n. A significant, albeit small step towards settling
this question is the following result of Rote [12].

Theorem 1 (Rote [12]). A line intersects the interior of at most m(n—m)+1
different regions of the partial-matching subdivision Dp 4.

The following property, observed by Rote [12], seems to be well known [16].

Lemma 1. For any A’ C A, with |A’| = m, the optimal assignment that realizes
the minimum M (B +t, A’) is independent of the translation t € R?.

Next, we derive several additional properties of Dp 4 which show that the
diagram has, locally, low-order polynomial complexity.

Lemma 2. FEvery edge of Dp.a has a normal vector of the form a; — a; for
suitable 1,7 € {1,...,n}.

Proof. Let E be an edge of Dp 4 common to the regions associated with the
injections m,0 : B — A. By definition, g(7,t) = g(o,t) < g(0,t) for every
injection § : B — A and for any ¢t € E. By Equation (1), E is contained in the
line {(mr,0) = {t € R?: (t,dr — dy) = Co—Cr}. Let H = (m\o)U(c\ 7). It is easy
to see that H consists of a vertex-disjoint union of cycles and alternating paths.
Let v1,...,7p be these cycles and paths. It is not hard to see that every cycle
and every path can be “flipped” independently while preserving the validity of
the matching; that is, we can choose, within any of the v;’s, either all the edges
corresponding to 7 or all the ones corresponding to o, without interfering with
other cycles or paths, so that the resulting collection of edges still represents an

Minimum Partial-Matching and Hausdorff RMS-Distance 105

injection from B into A. Observe now that {(r,0) = {t € R?: <t, Py d%.> =

- Z§:1 ¢y, }» where d; is the sum of the terms in dr — d, that involve only the
a; € A contained in ; and ¢, is analogously defined for ¢; — ¢,. Note that d.,
is 0 for every cycle ~; and, therefore, at least one of the 7;’s is a path. Then, we
must have <t, d%.> = —cy, forall j =1,...,pand every t € {(m,0). Otherwise, a
flip in a path or cycle violating the equation would contradict the optimality of 7
or of o along £(m, o). Therefore, all the vectors d.,; must be orthogonal to £(m, o).
Hence, the direction of d — d, is the same as the one of d,, for every path ~;. If
a path, say 71, starts at some a; and ends at some a;, then d,, = a; — a;, which
concludes the proof. O

Remark. It follows that if A is in general position then H has exactly one
alternating path, and the pair a;, a; is unique.

Lemma 3. i) Dp 4 has at most 4m(n —m) unbounded regions.
i) Every region in Dp a has at most m(n —m) edges.
iii) Every vertex in Dp a has degree at most 2m(n —m).
iv) Any conver path can intersect at most m(n—m)+n(n—1) regions of Dp 4,
i.e., while translating B along any convex path, the optimal partial matching
can change at most m(n —m) 4+ n(n — 1) times.

Proof. i) Take a bounding box that encloses all the vertices of the diagram. By
Theorem 1, every edge of the bounding box crosses at most m(n —m)+ 1 regions
of Dp 4. The edges of the box traverse only unbounded regions, and cross every
unbounded region exactly once, except for the coincidences of the last region
traversed by an edge and the first region traversed by the next edge.

ii) By Lemma 2, the normal vector of every edge of a region corresponding to
the injection 7 is a multiple of a; — a, for some a; € 7(B) and a; ¢ w(B). There
are exactly m(n — m) such possibilities.

iii) Let v be a vertex of Dp 4. Draw two generic parallel lines close enough to
each other to enclose v and no other vertex. Each edge adjacent to v is crossed by
one of the lines, and by Theorem 1 each of these lines crosses at most m(n —m)
edges.

iv) We use the following property that was observed in Rote’s proof of Theo-
rem 1. Suppose that we translate B along a line in some direction v. Rank the
points of A by their order in the v-direction, i.e., a < a’ means that (a,v) < (a’,v)
(for simplicity, assume that v is generic so there are no ties). Let ¢ denote the
sum of the ranks of the m points of A that participate in the optimal partial
match. As Rote has shown, whenever the optimal assignment changes, & must
increase. Now follow our convex path =y, which, without loss of generality, can
be assumed to be polygonal. As we traverse an edge of v, @ obeys the above
property, increasing every time we cross into a new region of Dp 4. When we
turn (counterclockwise) at a vertex of v, the ranking of A may change, but
each such change consists of a sequence of swaps of consecutive elements in the
present ranking. At each such swap, @ can decrease by at most 1. Since 7 is
convex, each pair of points of A can be swapped at most twice, so the total

106 R. Ben-Avraham et al.

decrease in @ is at most 2(;) = n(n — 1). Hence, the accumulated increase in

&, and thus also the total number of regions of Dp 4 crossed by v, is at most
(n+(n—1)+...+(n—m—|—1)>—(1+2+...+m>+n(n—1). O

In the remainder of this section, we focus on establishing a global bound on the
complexity of the diagram Dp 4. We begin by deriving the following technical
auxiliary results.

Lemma 4. Let 7 be an optimal assignment for a fived translation t € R2.

i) There is no cyclic sequence (i1,ia,...,1ik,11) satisfying
1bi; +t = azipll < bi; +t = arq;,)l for all j €{1,...,k} (modulo k).
it) Fach point of B +t is matched to one of its m nearest neighbors in A.
iii) At least one point in B+t is matched to its nearest neighbor in A.
iv) There exists an ordering (bi,...,bm) of the elements of B, such that each
by, is assigned by 7 to one of its k nearest neighbors in A, for k=1,...,m.

Proof. i) For the sake of contradiction, we assume that there exists a cyclic
sequence that satisfies all the prescribed inequalities. Consider the assignment
o defined by (i) = T(i(j—1) moa k) for all j € {1,...,k} and o(£) = n(¢) for all
other indices ¢. Since 7 is a one-to-one matching, we have that m(i;) # (i)
for all different j,j’ € {1,...,k} and, consequently, o is one-to-one as well. Tt is
easily checked that f(o,t) < f(m,t), contradicting the optimality of 7.

ii) For contradiction, assume that for some point b € B, b+ t is not matched
by 7 to one of its m nearest neighbors in A. Then, at least one of these neighbors,
say a, cannot be matched (because these m points can be claimed only by the
remaining m — 1 points of B+t). Thus, we can reduce the cost of 7 by matching
b+t to a, a contradiction that establishes the claim.

iii) Again we assume for contradiction that 7 does not match any of the points
of B+t to its nearest neighbor in A. We construct the following cyclic sequence
in the matching 7. We start at some arbitrary point b; € B, and denote by a; its
nearest neighbor in A (to simplify the presentation, we do not explicitly mention
the translation ¢ in what follows). By assumption, b; is not matched to a;. If a;
is also not claimed in 7 by any of the points of B, then b; could have claimed
it, thereby reducing the cost of 7, which is impossible. Let then by denote the
point that claims a1 in 7. Again, by assumption, a; is not the nearest neighbor
as of by, and the preceding argument then implies that as must be claimed by
some other point by of B. We continue this process, and obtain an alternating
path (b1, a1,be, az,bs,...) such that the edges (b;, a;) are not in 7, and the edges
(bit1,a;) belong to 7, fori = 1,2, The process must terminate when we reach
a point by that either coincides with by, or is such that its nearest neighbor is
among the already encountered points a;, ¢ < k. We thus obtain a cyclic sequence
as in part i), reaching a contradiction.

iv) Start with some point b; € B such that by + ¢ goes to its nearest neighbor
ay in A in the optimal partial-matching 7; such a point exists by part iii). Delete
by from B, and a; from A. The optimal matching of B\ {b1} into A\ {a1}
(relative to t) is equal to the restriction of 7 to the points in B\ {b1}, because

Minimum Partial-Matching and Hausdorff RMS-Distance 107

otherwise we could have improved 7 itself. We apply part iii) to the reduced
sets, and obtain a second point by € B\ {b1} whose translation bs 4t is matched
to its nearest neighbor as in A\ {a;}, which is either its first or second nearest
neighbor in the original set A. We keep iterating this process until the entire set
B is exhausted. At the k-th step we obtain a point by, € B\ {b1,...,bx_1}, such
that the nearest neighbor ay in A\ {a1,...,ax—1} is matched to by by 7, so ax
is among the k nearest neighbors in A of by + ¢. O

Observe, that the geometric properties in Lemma 4 can be interpreted in
purely combinatorial terms. Indeed, for ¢ fixed, associate with each b; € B an
ordered list L;(b;), called its preference list, which consists of the points of A
sorted by their distances from b; + ¢. In general, given m such ordered lists
on n elements, an injective assignment from {1,...,m} to {1,...,n} such that
there is no cycle as in part i) is called stable or Pareto efficient. The problem
of finding a stable matching was studied, for the case m = n, in the game
theory literature under the name of the House Allocation Problem [14]. Note
also that the proofs of parts ii)—iv) can be carried out in this abstract setting,
and hold for any stable matching. Note that part iv) immediately yields an upper
bound of m! on the number of stable matchings and, in addition, implies that
only the first m elements of each L;(b;) are relevant. This bound is tight for the
combinatorial problem, since if the ordered lists all coincide there are m/! different
stable matchings. A recent article, motivated by the extended abstract [8] prior
to this work, studied this combinatorial problem and derived the following.

Lemma 5 (Asinowski et al. [2]). The number of elements that belong to some
stable matching on m ordered preference lists is at most m(lnm + 1).

The properties derived so far imply the following significantly improved upper
bound on the complexity of Dp 4.

Theorem 2. The combinatorial complexity of Dp a is O(n*m3>(elnm +e)™).

Proof. The proof has two parts. First, we identify a convex subdivision K such
that in each of its regions the first m elements of the ordered preference lists
L+(b) of neighbors of each b+, according to their distance from b+¢, are fixed for
all b € B. We show that the complexity of K is only polynomial; specifically, it
is O(n?m*). Second, we give an upper bound on how many regions of Dg 4 can
intersect a given region of K, using Lemma 5. Together, these imply an upper
bound on the complexity of Dp 4. The proof of the first part, which is based on
a somewhat non-standard application of the Clarkson-Shor technique, is omitted
in this version. We now consider all possible translations ¢ in the interior of some
fixed region 7 of K and their corresponding optimal matchings. Lemma 4(i)
ensures that all of them must be stable with respect to the fixed preference lists
L(b), for b € B, over ¢t € 7. In addition, Lemma 1 ensures that we only need
to bound the number of different image sets of such stable matchings. Using the
bound in Lemma 5, we can derive that the number of optimal matchings for

translations in 7 is then O <(m(1nnT+1))) -0 <"L""(1nm"!t+1)m) -0 ((ehl:/'i;re)"")’

108 R. Ben-Avraham et al.

where in the second step we used Stirling’s approximation. Hence, by multiplying
this bound by the number of regions in K, we conclude that the number of
assignments corresponding to optimal matchings, and thus also the complexity
of Dp. 4, is at most O(n?m35(elnm + e)™). O

The following proposition (proof omitted in this version) sets an obstruction
for the combinatorial approach alone to yield a polynomial bound for Dg 4.

Proposition 1. For every n > || + m, there exists m preference lists of

{1,...,n} with 2 <\2/7;;) different images of stable matchings.

3 Finding a Local Minimum of the Partial-Matching
RMS-Distance under Translation

The High-Level Algorithm. We now concentrate on the algorithmic problem
of computing, in polynomial time, a local minimum of the partial-matching RMS-
distance under translation.

We “home in” on a local minimum of F'(¢) by maintaining a vertical slab I
in the plane that is known to contain such a local minimum in its interior, and
by repeatedly shrinking it until we obtain a slab I* that does not contain any
vertex of Dp 4. That is, any (vertical) line contained in I'* intersects the same
sequence of regions, and, by Theorem 1, the number of these regions is O(mn).
We compute these regions, find the optimal partial matching assignment in each
region, and the corresponding explicit (quadratic) expression of F'(t), and search
for a local minimum within each region.

A major component of the algorithm is a procedure, that we call IT; (¢), which,
for a given input line ¢, constructs the intersection of Dp 4 with £, computes
the global minimum t* of F' on ¢, and determines a side of ¢, in which F' attains
strictly smaller values than F'(t*). If no such decrease is found in the neighbor-
hood of t* then it is a local minimum of F, and we stop. Using Lemma 2 and
the Hungarian algorithm [6,10], I7;(¢) runs in O(m°n?) time.

We use this “decision procedure” as follows. Suppose we have a current vertical
slab I, bounded on the left by a line £~ and on the right by a line £T. We assume
that IT; has been executed on £~ and on ¢*, and that we have determined that
F assumes smaller values than its global minimum on ¢~ to the right of ¢—,
and that it assumes smaller values than its global minimum on /% to the left
of £T. This is easily seen to imply that F' must contain a local minimum in the
interior of I. (We note that just finding a local minimum of F along ¢ or £~ is
not sufficient; see the full version for details.) Let ¢ be some vertical line passing
through 7. We run I on £. If it determines that F' attains smaller values to its
left (resp., to its right), we shrink I to the slab bounded by ¢~ and ¢ (resp., the
slab bounded by ¢ and ¢7). By what has just been argued, this ensures that the
new slab also contains a local minimum of F in its interior.

To initialize the slab I, we choose an arbitrary horizontal line A, and run IT;
on), to find the sequence S of its intersection points with the edges of D 4. We

Minimum Partial-Matching and Hausdorff RMS-Distance 109

run a binary search through S, where at each step we execute I1; on the vertical
line through the current point. When the search terminates, we have a vertical
slab Iy whose intersection with A is contained in a single region o¢ of Dp 4.

After this initialization, we find the region o; that lies directly above og
and that the final slab I* should cross. In general, there are possibly many such
regions, but fortunately, by Lemma 3(ii), their number is only at most m(n—m).

To find o1, we compute the boundary of gg; this is done similarly to the
execution of II; see the full version for details. Once we have explored the
boundary of ¢, we take the sequence of all vertices of ¢, and run a II;-guided
binary search on the vertical lines passing through them, exactly as we did with
the vertices of S, to shrink Iy into a slab I, so that oy intersects I; in a trapezoid
(or a triangle), with a single (portion of an) edge at the top and a single edge
at the bottom. This allows us to determine o7, which is the region lying on
the other (higher) side of the top edge, in O(m°n?log(mn)) time. A symmetric
variant of this procedure will find the region lying directly below o¢ in the final
slab.

We repeat the previous step to find the entire stack of O(nm) regions that I*
crosses, where each step shrinks the current slab and then crosses to the next
region in the stack. Once this is completed, we find a local minimum within I*
as explained above. Again, details are omitted in this version.

In summary, we have the following main result of this section.

Theorem 3. Given two finite point sets A, B in R?, with n = |A| > |B| = m,
and such that for every two pairs (a1, as2), (as,as) € Ax A the vectors a1 —ag and
as — ayq are non-parallel, a local minimum of the partial-matching RMS-distance
under translation can be computed in O(mSn3logn) time.

4 Finding a Local Minimum of the Hausdorff
RMS-Distance under Translation

In this section, we turn to the simpler problem involving the Hausdorff RMS-
distance, and present efficient algorithms for computing a local minimum of the
RMS function in one and two dimensions. Due to lack of space, most of the
material in this section is omitted, and we only provide here a high-level review
of our algorithms.

The One-Dimensional Unidirectional Case. Let N4(b+t) be the nearest neigh-
bor in A of b+ ¢, for b € B, and ¢t € R. The function r(t) := RMS(B+1t,A) =
> pep(b+t—Na(b+1))? is continuous and piecewise parabolic, with O(mn) non-
smooth breakpoints, which are the breakpoints of the step functions N (b + t).
For any given tg, it is easy to compute, in O(mlogn) time, the derivative r’(to),
or its left and right one-sided versions r'(¢9) ™, 7' (t9) T (when ¢, is a breakpoint).
A simple observation is that if I = [t1,t5] is an interval satisfying 7/(¢1)* < 0
and r'(t2)~ > 0 then I contains a local minimum of r. We thus start with a
large interval I that contains all breakpoints of r, and keep shrinking it, halving
the number of breakpoints in I in each step, until it contains only linearly many

110 R. Ben-Avraham et al.

breakpoints, in which case r can be constructed explicitly over I, and searched
for a local minimum, in near-linear time. Specifically, we obtain:

Theorem 4. Given two finite point sets A, B on the real line, with |A| = n and
|B| = m, a local minimum of the unidirectional RMS distance under translation
from B to A can be obtained in time O(mlog®n + nlogn).

The one-dimensional bidirectional case. Simple extensions of the procedure given
above apply to the two variants of the minimum bidirectional Hausdorff RMS-
distance, as defined in the introduction. Omitting the fairly routine details of
these extensions, we obtain:

Theorem 5. Given two finite point sets A, B on the real line, with |A] = n
and |B| = m, a local minimum under translation of the Lq-bidirectional or
Loo-bidirectional RMS distance between A and B, can be computed in time
O((nlogm + mlogn)logmin {m,n}).

Minimum Hausdorff RMS-distance under translation in two dimensions. Here
the function 7(t) := RMS(B+t, A) = Y, [lb+t—N4(b+t)|* induces a convex
subdivision of the plane, where in each of its regions o, all the m values N4 (b+t),
for b € B, are fixed for t € ¢. This subdivision is simply the overlay M of the m
shifted copies V(A — b), for b € B, of the Voronoi diagram of A. These copies
have a total of O(mn) edges, and their overlay has thus complexity O(m?n?)
(which is tight in the worst case). Over each region of M, r(t) is a quadratic
function (a paraboloid), and the explicit expression for r(¢) can be updated in
O(1) time as we cross from one region to an adjacent one.

The goal is to search for a local minimum of r without explicitly constructing
these many features of M. Similarly to the one-dimensional case, we maintain a
vertical slab I, known to contain a local minimum, and keep shrinking it until
it contains no vertices of M. In this case it overlaps only O(mn) regions of M,
vertically stacked above one another, and it is straightforward to enumerate all
of them, get the explicit expressions of r over each of them, and search for a
local minimum in each part, in a total of O(mn) time.

The shrinking of I is performed in two phases. We first enumerate all O(mn)
Voronoi vertices of the original diagrams, and run a binary search through them,
as above. The resulting intermediate slab contains no original vertices, so the
edges that cross it behave like lines. They might still intersect at O(m?n?) points
within I, but we can run a binary search through them efficiently, using the
(dual version of the) slope selection algorithm of [4], so that each step takes only
O(mnlogmn) time.

Concretely, we obtain:

Theorem 6. Given two finite point sets A, B in R?, with |A| = n and |B| = m,
a local minimum of the unidirectional Hausdorff RMS-distance from B to A
under translation can be computed in time O(mnlog® mn).

The bidirectional variants can be handled in much the same way, and, omitting
the details, we get:

Minimum Partial-Matching and Hausdorff RMS-Distance 111

Theorem 7. Given two finite point sets A, B in R?, with |A| = n and |B| = m,
a local minimum of the Ly -bidirectional or the Lo -bidirectional Hausdorff RMS-
distance between A and B under translation can be computed in O(mnlog® mn)
time.

References

10.

11.

12.

13.

14.

15.

16.

Agarwal, P.K., Har-Peled, S., Sharir, M., Wang, Y.: Hausdorff distance under trans-
lation for points, disks, and balls. ACM Trans. on Algorithms 6, 1-26 (2010)
Asinowski, A., Keszegh, B., Miltzow, T.: Counting houses of Pareto optimal match-
ings in the House Allocation Problem, arXiv:1401.5354v2

Besl, P.J., McKay, N.D.: A method for registration of 3-d shapes. IEEE Trans.
Pattern Anal. Mach. Intell. 14, 239-256 (1992)

Cole, R., Salowe, J., Steiger, W., Szemerédi, E.: An optimal-time algorithm for
slope selection. STAM J. Comput. 18, 792-810 (1989)

Dumitrescu, A., Rote, G., Téth, C.D.: Monotone paths in planar convex subdi-
visions and polytopes. In: Bezdek, K., Deza, A., Ye, Y. (eds.) Discrete Geometry
and Optimization. Fields Institute Communications, vol. 69, pp. 79-104. Springer
(2013)

Edmonds, J., Karp, R.M.: Theoretical Improvements in Algorithmic Efficiency for
Network Flow Problems. J. ACM 19(2), 248-264 (1972)

Ezra, E., Sharir, M., Efrat, A.: On the ICP Algorithm. Comput. Geom. Theory
Appl. 41, 77-93 (2008)

Henze, M., Jaume, R., Keszegh, B.: On the complexity of the partial least-squares
matching Voronoi diagram, in. In: Proc. 29th European Workshop Comput. Geom
(EuroCG 2013), pp. 193-196 (2013)

Jung, 1., Lacroix, S.: A robust interest points matching algorithm. In: Proc. ICCV
2001, vol. 2, pp. 538-543 (2001)

Kuhn, H.W.: The Hungarian method for the assignment problem. Naval Research
Logistics Quarterly 2(1-2), 83-97 (1955)

Phillips, J.M., Agarwal, P.K.: On bipartite matching under the RMS distance.
In: Proc. 18th Canadian Conf. Comput. Geom (CCCG 2006), pp. 143-146 (2006)
Rote, G.: Partial least-squares point matching under translations. In: Proc. 26th
European Workshop Comput. Geom (EuroCG 2010), pp. 249-251 (2010)

Rote, G.: Long monotone paths in convex subdivisions. In: Proc. 27th European
Workshop Comput. Geom. (EuroCG 2011), pp. 183-184 (2011)

Shapley, L.S., Scarf, H.: On cores and indivisibility. J. Math. Economics 1, 23-37
(1974)

Umeyama, S.: Least-squares estimation of transformation parameters between two
point patterns. IEEE Trans. Pattern Anal. Mach. Intell. 13(4), 376-380 (1991)
Zikan, K., Silberberg, T.M.: The Frobenius metric in image registration.
In: Shapiro, L., Rosenfeld, A. (eds.) Computer Vision and Image Processing,
pp. 385-420. Elsevier (1992)

The Batched Predecessor Problem in External Memory*

Michael A. Bender!2, Martin Farach-Colton?3, Mayank Goswami?,
Dzejla Medjedovic®, Pablo Montes', and Meng-Tsung Tsai®

1 Stony Brook University, Stony Brook NY 11794, USA
{bender, pmontes}@cs.stonybrook.edu
2 Tokutek, Inc.
3 Rutgers University, Piscataway NJ 08854, USA
{farach, mtsung.tsai}@cs.rutgers.edu
4 Max-Planck Institute for Informatics, Saarbriicken 66123, Germany
gmayank@mpi-inf.mpg.de
5 Sarajevo School of Science and Technology, Sarajevo 71000, Bosnia-Herzegovina
dzejla.medjedovic@ssst.edu.ba

Abstract. We give lower and upper bounds for the batched predecessor problem
in external memory. We study tradeoffs between the I/O budget to preprocess a
dictionary S versus the I/O requirement to find the predecessor in S of each ele-
ment in a query set). For @) polynomially smaller than .S, we give lower bounds
in three external-memory models: the I/O comparison model, the I/O pointer-
machine model, and the indexability model.

In the comparison I/O model, we show that the batched predecessor problem
needs Q(logz n) I/Os per query element (n = |S|) when the preprocessing is
bounded by a polynomial. With exponential preprocessing, the problem can be
solved faster, in ©((log, n)/B) per element. We give the tradeoff that quantifies
the minimum preprocessing required for a given searching cost.

In the pointer-machine model, we show that with (’)(n4/ 3=¢) preprocessing
for any constant € > 0, the optimal algorithm cannot perform asymptotically
faster than a B-tree. In the indexability model, we exhibit the tradeoff between
the redundancy r and access overhead « of the optimal indexing scheme, showing
that to report all query answers in o (z/B) 1/Os, logr = Q((B/a?) log(n/B)).

Our lower bounds have matching or nearly matching upper bounds.

1 Introduction

A static dictionary is a data structure that represents a set S = {s1, so, ..., s, } subject
to the following operations:

PREPROCESS(SS): Prepare a data structure to answer queries.
SEARCH(q, S): Return TRUE if ¢ € S and FALSE otherwise.
PREDECESSOR(q, S): Return max;s,es{s; < q}.

* This research was supported in part by NSF grants CCF 1114809, CCF 1114930,
CCF 1217708, 1IS 1247726, 1IS 1247750, and IIS 1251137.

A.S. Schulz and D. Wagner (Eds.): ESA 2014, LNCS 8737, pp. 112-124, 2014.
(© Springer-Verlag Berlin Heidelberg 2014

The Batched Predecessor Problem in External Memory 113

The traditional static dictionary can be extended to support batched operations. Let
Q ={q,...,qz} Then, the batched predecessor problem can be defined as follows:

BATCHEDPRED(Q®, S): Return A = {a1,...,a,}, where
a; = PREDECESSOR(g;, S).

In this paper we prove lower bounds on the batched predecessor problem in external
memory [3], that is, when the dictionary is too large to fit into main memory. We study
tradeoffs between the searching cost and the cost to preprocess the underlying set S. We
present our results in three models: the comparison-based I/O model [3], the pointer-
machine I/O model [18], and the indexability model [10, 11].

We focus on query size z < n€, for constant ¢ < 1. Thus, the query @) can be large,
but is still much smaller than the underlying set S. This query size is interesting because,
although there is abundant parallelism in the batched query, common approaches such
as linear merges and buffering [4, 6, 7] are suboptimal.

Our results show that the batched predecessor problem in external memory cannot
be solved asymptotically faster than Q2(logz n) I/Os per query element if the prepro-
cessing is bounded by a polynomial; on the other hand, the problem can be solved
asymptotically faster, in ©((log, n)/B) 1/Os, if we impose no constraints on prepro-
cessing. These bounds stand in marked contrast to single-predecessor queries, where
one search costs Q(log 5 1) even if preprocessing is unlimited.

We assume that .S and @ are sorted. Without loss of generality,) is sorted because
@’s sort time is subsumed by the query time. Without loss of generality, S is sorted, as
long as the preprocessing time is slightly superlinear. We consider sorted .S throughout
the paper. For notational convenience, we let s < so < --- < spandq; < g2 < -+ <
¢z, and therefore a; < as < --- < ag.

Given that S and @ are sorted, an alternative interpretation of this paper is as follows:
how can we optimally merge two sorted lists in external memory? Specifically, what is
the optimal algorithm for merging two sorted lists in external memory when one list is
some polynomial factor smaller than the other?

Observe that the naive linear-scan merging is suboptimal because it takes O(n/B)
I/Os, which is greater than the O(n®logz n) I/Os of a B-tree-based solution. Buffer
trees [4,6,7] also take ©(n/B) I/Os during a terminal flush phase. This paper shows
that with polynomial preprocessing, performing independent searches for each element
in @ is optimal, but it is possible to do better for higher preprocessing.

Single and Batched Predecessor Problems in RAM. In the comparison model, a
single predecessor can be found in ©(logn) time using binary search. The batched
predecessor problem is solved in O(zlog(n/z) + x) by combining merging and bi-
nary search [13, 14]. The bounds for both problems remain tight for any preprocessing
budget.

Pétragcu and Thorup [15] give tight lower bounds for single predecessor queries in
the cell-probe model. We are unaware of prior lower bounds for the batched predecessor
problem in the pointer-machine and cell-probe models.

Although batching does not help algorithms that rely on comparisons, Karpinski
and Nekrich [12] give an upper bound for this problem in the word-RAM model (bit

114 M.A. Bender et al.

operations are allowed), which achieves O(x) for all batches of size z = O(y/logn)
(O(1) per element amortized) with superpolynomial preprocessing.

Batched Predecessor Problem in External Memory. Dittrich et al. [8] consider mul-
tisearch problems where queries are simultaneously processed and satisfied by navi-
gating through large data structures on parallel computers. They give a lower bound
of Q(zlogg(n/x) + x/B) under stronger assumptions: no duplicates of nodes are al-
lowed, the ith query has to finish before the (i + 1)st query starts, and z < nl/(2+e)]
for a constant € > 0.

Buffering is a standard technique for improving the performance of external-memory
algorithms [4, 6, 7]. By buffering, partial work on a set of operations can share an 1/O,
thus reducing the per-operation I/O cost. Queries can similarly be buffered. In this pa-
per, the number of queries, x, is much smaller than the size, n, of the data structure
being queried. As a result, as the partial work on the queries progresses, the query paths
can diverge within the larger search structure, eliminating the benefit of buffering.

Goodrich et al. [9] present a general method for performing = simultaneous external
memory searches in O((n/B + z/B)log,,5(n/B)) /Os when z is large. When x
is small, this technique achieves O(x log(n/B)) I/Os with a modified version of the
parallel fractional cascading technique of Tamassia and Vitter [19].

Results

We first consider the comparison-based I/0 model [3]. In this model, the problem
cannot be solved faster than Q(log 5 n) I/Os per element if preprocessing is polynomial.
That is, batching queries is not faster than processing them one by one. With exponential
preprocessing, the problem can be solved faster, in O((log, n)/B) I/Os per element. We
generalize to show a query-preprocessing tradeoff.

Next we study the pointer-machine I/O model [18], which is less restrictive than
the comparison I/0O model in main memory, but more restrictive in external memory.'
We show that with preprocessing at most (9(n4/ 3=2) for constant ¢ > 0, the cost per
element is again 2(logz n).

Finally, we turn to the more general indexability model [10, 11]. This model is
frequently used to describe reporting problems, and it focuses on bounding the number
of disk blocks that contain the answers to the query subject to the space limit of the data
structure; the searching cost is ignored. Here, the redundancy parameter r measures
the number of times an element is stored in the data structure, and the access overhead
parameter o captures how far the reporting cost is from the optimal.

We show that to report all query answers in «(x/B) I/Os, r = (n/B)Q(B/QQ). The
lower bounds in this model also hold in the previous two models. This result shows
that it is impossible to obtain O(1/B) per element unless the space used by the data
structure is exponential, which corresponds to the situation in RAM, where exponential
preprocessing is required to achieve (O(1) amortized time per query element [12].

The rest of this section formally outlines our results.

! An algorithm can perform arbitrary computations in RAM, but a disk block can be accessed
only via a pointer that has been seen at some point in past.

The Batched Predecessor Problem in External Memory 115

Theorem 1 (Lower and Upper Bound, Unrestricted Preprocessing, /O Compari-
son Model). Let S be a set of size n and Q) a set of size x < n¢ 0 < ¢ < 1. In the I/O
comparison model, computing BATCHEDPRED(Q), S) requires

x n x
2 (!)
B BT B
1/Os in the worst-case, no matter the preprocessing. There exists a comparison-based
algorithm matching this bound.

Traditional information-theoretic techniques give tight sorting-like lower bounds for
this problem in the RAM model. In external memory, the analogous approach yields a

lower bound of €2 (; logp/ o + é) On the other hand, repeated finger searching

in a B-tree yields an upper bound of O(x logz n). Theorem 1 shows that both bounds
are weak, and that in external memory this problem has a complexity that is between
sorting and searching.

We can interpret results in the comparison model through the amount of information
that can be learned from each I/O. For searching, a block input reduces the choices for
the target position of the element by a factor of B, thus learning log B bits of informa-
tion. For sorting, a block input learns up to log (1) = ©(Blog(M/B)) bits (obtained
by counting the ways that an incoming block can intersperse with elements resident
in main memory). Theorem 1 demonstrates that in the batched predecessor problem,
the optimal, unbounded-preprocessing algorithm learns B bits per I/O, more than for
searching but less than for sorting.

The following theorem captures the tradeoff between the searching and preprocess-
ing: at one end of the spectrum lies a B-tree (j = 1) with linear construction time and
logz n searching cost per element, and on the other end is the parallel binary search
(j = B) with exponential preprocessing cost and (log, n) /B searching cost. This trade-
off shows that even to obtain a performance that is only twice as fast as that of a B-tree,
quadratic preprocessing is necessary. To learn up to jlog(B/j + 1) bits per I/O, the
algorithm needs to spend n2() in preprocessing.

Theorem 2 (Search-Preprocessing Tradeoff, I/O Comparison Model). Let S be a
set of size n and @ a set of size x < n¢ 0 < ¢ < 1. In the I/O comparison
model, computing BATCHEDPRED(Q, S) in O((zlogg ;1 1)/j) I/Os requires that

PREPROCESSING(S) use n*9) blocks of space and 1/Os.

In order to show results in the I/O pointer-machine model, we define a graph whose
nodes are the blocks on disk of the data structure and whose edges are the pointers
between blocks. Since a block has size B, it can contain at most B pointers, and thus the
graph is fairly sparse. We show that any such sparse graph has a large set of nodes that
are far apart. If the algorithm must visit those well-separated nodes, then it must perform
many I/Os. The crux of the proof is that, as the preprocessing increases, the redundancy
of the data structure increases, thus making it hard to pin down specific locations of the
data structure that must be visited. We show that if the data structure is reasonable in
size—in our case O(n*/3~¢)—then we can still find a large, well dispersed set of nodes
that must be visited, thus establishing the following lower bound:

116 M.A. Bender et al.

Theorem 3 (Lower Bound, I/0 Pointer-Machine Model). Let S be a set of size n.
In the /O pointer-machine model, if PREPROCESSING(S) uses O(n*/3=¢) blocks of
space and 1/Os, for any constant € > 0, then there exists a constant ¢ and a set Q) of size
n® such that computing BATCHEDPRED(Q, S) requires Q(zlogg(n/x) + x/B) I/Os.

We note that in this theorem, c is a function of ¢ in that, the smaller the preprocessing,
the larger the set for which the lower bound can be established.
Finally, we consider the indexability model [10, 11], where we show:

Theorem 4 (r — o« Tradeoff, Indexability Model). In the indexability model, any
indexing scheme for the batched predecessor problem with access overhead oo < /B /4
has redundancy r satisfying logr = (B log(n/B)/az).

A crucial ingredient in our proof is a well-known result from extremal set theory due
to Rodl [16]. Partly due to the techniques we use and partly due to the generality of
this model, we do not get lower bounds for query time exceeding @)/ v/ B, which was
possible in the previous two models.

2 Batched Predecessor in the I/O Comparison Model

In this section we give the lower bound for when preprocessing is unrestricted. Then
we study the tradeoff between preprocessing and the optimal number of I/Os.

2.1 Lower Bounds for Unrestricted Space/Preprocessing
We begin with the definition of a search interval.

Definition 5 (Search interval). At step t of an execution, the search interval S! =
[tL, rt] for an element q; comprises those elements in S that are still potential values
for a;, given the information that the algorithm has learned so far. When there is no

ambiguity, the superscript t is omitted.
Proof of Theorem I (Lower Bound). Consider the following problem instance:

1. For all g;, |S;| = n/x. That is, all elements in () have been given the first log z bits
of information about where they belong in S.
2. Foralliand j (1 <i#j<x),5NS5; = (). That is, search intervals are disjoint.

We do not charge the algorithm for transferring elements of () between main mem-
ory and disk. This accounting scheme is equivalent to allowing all elements of @ to
reside in main memory at all times while still having the entire memory free for other
manipulations. Storing) in main memory does not provide the algorithm with any
additional information, since the sorted order of @ is already known.

Now we only consider I/Os of elements in S. Denote a block being input as b =
(b1,...,bp). Observe that every b; (1 < i < B) belongs to at most one .S;. The element
b; acts as a pivot and helps ¢; learn at most one bit of information—by shrinking S; to
its left or its right half.

The Batched Predecessor Problem in External Memory 117

Since a single pivot gives at most one bit of information, the entire block b can supply
at most B bits, during an entire execution of BATCHEDPRED(Q, S).

We require the algorithm to identify the final block in S where each ¢; belongs.
Thus, the total number of bits that the algorithm needs to learn to solve the problem
is Q(xzlog(n/xB)). Along with the scan bound to output the answer, the minimum
number of block transfers required to solve the problem is € (plog o+ §) O

We devise a matching algorithm (assuming Blogn < M), which has O(n?) pre-
processing cost. This algorithm has huge preprocessing costs but establishes that the
lower bound from Theorem 1 is tight.

Proof of Theorem 1 (Upper Bound). The algorithm processes () in batches of size B,
one batch at a time. A single batch is processed by simultaneously performing binary
search on all elements of the batch until they find their rank within S.

In the preprocessing phase, the algorithm produces all (g) possible blocks. The al-
gorithm also constructs a perfectly balanced binary search tree 7" on S. The former
takes at most B(j3) I/Os, which is O(n®), while the latter has a linear cost. The ()
blocks are laid out in a lexicographical order in external memory, and it takes B logn
bits to address the location of any block. O

2.2 Preprocessing-Searching Tradeoffs

We give a lower bound on the space required by the batched predecessor problem when
the budget for searching is limited. We prove Theorem 2 by proving Theorem 7.

Definition 6. An I/O containing elements of S is a j-parallelization I/0 if j distinct
elements of QQ acquire bits of information during this 1/0.

Theorem 7. For x < n'~° (0 < € < 1) and a constant v > 0, any algorithm that
solves BATCHEDPRED(Q, S) in at most (yxlogn)/(jlog(B/j + 1)) + /B I/Os re-

. j/2 Lo
quires at least (ejna/z/QefyB)Ej/ K 1/Os for preprocessing in the worst case.

Proof. The proof is by a deterministic adversary argument. In the beginning, the adver-
sary partitions .S into x equal-sized chunks C1, . .., C,, and places each query element
into a separate chunk (i.e., S; = C;). Now each element knows logz < (1 —¢)logn
bits of information. Each element is additionally given half of the number of bits that re-
main to be learned. This leaves another T > (ex log n) /2 total bits yet to be discovered.
As in the proof of Theorem 1, we do not charge for the inputs of elements in (), thereby
stipulating that all remaining bits to be learned are through the inputs of elements of .S.

Lemma 8. o learn T bits in at most (yxlogn)/(jlog(B/j + 1)) I/Os, there must be
at least one I/0 in which the algorithm learns at least (jlog(B/j + 1))/a bits, where
a=2v/e.

If multiple I/Os learn at least (jlog(B/j + 1))/a bits, consider the last such I/O
during the algorithm execution. Denote the contents of the I/O as b; = (p1,...,pB).

Lemma 9. The maximum number of bits an I/O can learn while parallelizing d ele-
ments is dlog(B/d + 1).

118 M.A. Bender et al.

Lemma 10. The I/0 b; parallelizes at least j/a elements.

Proof. Given that the most bits an I/O can learn while parallelizing j/a — 1 elements
is (j/a—1)log(B/(j/a—1)+1) bits. Foralla > 1 and j > 2, ilog (? + 1) >

(fl — 1) log (j y 5o+ 1). Thus, we can conclude that with the block transfer of b;, the

algorithm must have parallelized strictly more than j/a — 1 distinct elements. O

We focus our attention on an arbitrarily chosen group of j/a elements parallelized
during the transfer of b; = {p1,...,pp}, whichwecall g1, ..., q;/q-

Lemma 11. For every q, parallelized during the transfer of b; there is at least one
pivot py, 1 < v < B, such that p, € S,.

Consider the vector V' = (51, 5, ..., 5;/,) where S, denotes the search interval of
¢y, right before the input of b;.

Each element of @ has acquired at least (1 — £/2) logn bits, (¢logn)/2 of which
were given for free after the initial (1 — €) log n. For any ¢, the total number of distinct
choices for .S; in the vector V is at least n¢/2 because the element could have been sent
to any of these n°/2-sized ranges in the initial n range. We obtain the following:

Lemma 12. The number of distinct choices for V at the time of parallelization is at
least nic/?e,

Lemma 13. For each of the n’*/?* choices of V. = (S1,..., Sj/a) (arising from the
nc/? choices for each S;), there must exist a block with pivots py,pa, . .. sDj/a> Such
that py, € Sk.

If the algorithm did not preprocess a block for each vector choice, the adversary
could scan all blocks, find a vector for which no block exists, and assign those search
intervals to q1, . . ., j/4, thus avoiding parallelization.

The same block can serve multiple vector choices, because the block has B elements
and we are parallelizing only j/a elements. The next lemma quantifies the maximum
number of vectors covered by one block.

Lemma 14. A block can cover at most (j]/ga) distinct vector choices.

As a consequence, the minimum number of blocks the algorithm needs to preprocess

is at least nje/Qa/(j]/Ba) > (nE/Z/(eaB/j))j/a. Substituting for the value of a, we get

that the minimum preprocessing is at least (gjn/2/2evy B)Ej /2 0

Algorithms. An algorithm that runs in O((zlogn)/jlog(B/j + 1) + z/B) 1/Os fol-
lows an idea similar to the optimal algorithm for unrestricted preprocessing. The dif-
ference is that we preprocess (’;) blocks, where each block correspond to a distinct
combination of some j elements. The block will contain B/j evenly spaced pivots for
each element. The searching algorithm uses batches of size j.

The Batched Predecessor Problem in External Memory 119

3 Batched Predecessor in the I/0 Pointer-Machine Model

Here we analyze the batched predecessor problem in the I/O pointer-machine model.
We show that if the preprocessing time is O(n*/3~%) for any constant ¢ > 0, then
there exists a query set) of size z such that reporting BATCHEDPRED(Q, .S) requires
Q(xz/B+xlogg n/xz) I/Os. Before proving our theorem, we briefly describe the model.

I/0 Pointer Machine Model. The I/O pointer machine model [18] is a generalization
of the pointer machine model introduced by Tarjan [21]. Many results in range reporting
have been obtained in this model [1, 2].

To answer BATCHEDPRED(Q, S), an algorithm preprocesses S and builds a data
structure comprised of n¥ blocks, where k is a constant to be determined later. We use
a directed graph G = (V, E) to represent the n* blocks and their associated directed
pointers. Every algorithm that answers BATCHEDPRED((), S) begins at the start node
vo in V and at each step picks a directed edge to follow from those seen so far. Thus,
the nodes in a computation are all reachable from vy. Furthermore, each fetched node
contains elements from 5, and the computation cannot terminate until the visited set of
elements is a superset of the answer set A. A node in V' contains at most B elements
from S and at most B pointers to other nodes.

Let £L(W) be the union of the elements contained in a node set W, and let V' (a) be
the set of nodes containing element a. We say that a node set W covers a set of elements
Aif A C L(W). An algorithm for computing A can be modeled as the union of a set
of paths from v to each node in a node set W' that covers A.

To prove a lower bound on BATCHEDPRED(Q, S), we show that there is a query
set () whose answer set A requires many I/Os. In other words, for every node set W
that covers A, a connected subgraph spanning IV contains many nodes. We achieve this
result by showing that there is a set A such that, for every pair of nodes a1,a2 € A,
the distance between A (a1) and N (az) is large, that is, all the nodes in N (aq) are far
from all the nodes in A (az). Since the elements of A can appear in more than one node,
we need to guarantee that the node set V' of G is not too large; otherwise the distance
between N (a1) and NV (az) can be very small. For example, if V| > (3), every pair of
elements can share a node, and a data structure exists whose minimum pairwise distance
between any N '(a1) and M (asg) is 0.

First, we introduce two measures of distance between nodes in any (undirected or di-
rected) graph G = (V, E). Let dg(u, v) be the length of the shortest (di-)path from node
w to node v in G. Furthermore, let A (u, v) = minygev (dg(w, u) + dg(w, v)). Thus,
Ag(u,v) = dg(u, v) for undirected graphs, but not necessarily for directed graphs.

For each W C V, define f (W) to be the minimum number of nodes in any con-
nected subgraph H such that (1) the node set of H contains WU{vg } and (2) H contains
a path from vy to each v € W. Observe that fo({u,v}) > Ag(u,v). The following
lemma gives a more general lower bound for fo (7). In other words, the size of the
graph containing nodes of W is linear in the minimum pairwise distance within .

Lemma 15. For any directed graph G = (V, E) and any W C V of size |W| > 2,
fa(W) > rw|W|/2, where ryy = miny yew,uzv Ac(u,v).

120 M.A. Bender et al.

Proof Sketch. Consider the undirected version of GG, and consider a TSP of the nodes in
W. It must have length ry/|W|. Any tree that spans W must therefore have size at least
rw |W|/2. Finally, fo(W) contains a tree that spans W. O

Our next goal is to find a query set () such that every node set W that covers the
corresponded answer set A has a large 7. The answer set A will be an independent set
of a certain kind, that we define next. For a directed graph G = (V, E') and an integer
r > 0, we say that a set of nodes I C V is r-independent if Ag(u,v) > r for all
u,v € I where u # v. The next lemma guarantees a substantial r-independent set.

Lemma 16. Given a directed graph G = (V, E), where each node has out-degree at

. . . V|2
most B > 2, there exists an r-independent set I of size at least V|4 V| BT

Proof. Construct an undirected graph H = (U, F') such that U = V and (u,v) € F
iff Ag(u,v) € [1,7]. Then, H has at most 2r|V|B" edges. By Turdn’s Theorem [20],
there exists an independent set of the desired size in H, which corresponds to an r-
independent set in G, completing the proof. a

In addition to r-independence, we want the elements in A to occur in few blocks,
in order to control the possible choices of the node set W that covers A. We define the
redundancy of an element a to be |\/(a)|. Because there are n* blocks and each block
has at most B elements, the average redundancy is O(n*~1 B). We say that an element
has low redundancy if its redundancy is at most twice the average. We show that there
exists an r-independent set [of size n° (here € depends on r) such that no two blocks
share the same low-redundancy element. We will then construct our query set () using
this set of low-redundancy elements in this r-independent set.”

Finally, we add enough edges to place all occurrences of every low-redundancy ele-
ment within p < r/2 of all other occurrences of that element. We show that we can do
this by adding few edges to each node, therefore maintaining the sparsity of G. Since
this augmented graph also contains a large r-independent set, all the nodes of this set
cannot share any low-redundancy elements.

The following lemma shows that nodes sharing low-redundancy elements can be
connected with low diameter and small degrees.

Lemma 17. For any k > 0 and m > k there exists an undirected k-regular graph H
of order m having diameter log,,_; m + o(logj,_, m).

Proof. In [5], Bollobds shows that a random k-regular graph has the desired diameter
with probability close to 1. Thus there exists some graph satisfying the constraints. O

Consider two blocks B; and Bs in the r-independent set I above, and let a and b
be two low-redundancy elements such that « € By,b ¢ By and a ¢ Bs,b € Ba.
Any other pair of blocks B; and B; that contain a and b respectively must be at least
(r — 2p) apart, since B; is at most p apart from B;. By this argument, every node set
W that covers A has ryy > (r — 2p). Now, by Lemma 15, we get a lower bound of
Q((r — 2p)|W]) on the query complexity of Q. We choose r = ¢; logg(n/x) and get

2 Qur construction does not work if the query set contains high redundancy elements, because
high redundancy elements might be placed in every block.

The Batched Predecessor Problem in External Memory 121

p = czlogg(n/x) for appropriate constants ¢; > 2¢s. This is the part where we require
the assumption that ¥ < 4/3 as shown in Theorem 3, where n* was the size of the
entire data structure. We then apply Lemma 16 to obtain that |IWW| = Q(x).

Proof of Theorem 3. We partition S into S, and S;, by the redundancy of elements
in these n* blocks and claim that there exists A C S, such that query time for the
corresponded () matches the lower bound.

Let Sy be the set of elements of redundancy no more than 2Bnk /n (i.e., twice of the
average redundancy). The rest of elements belong to S},. By the Markov inequality, we
have |S¢| = ©(n) and |S},| < n/2. Let G = (V, E) represent the connections between
the n* blocks as the above stated. We partition V' into V; and V5 such that V; is the set
of blocks containing some elements in Sy and V2 = V' \ V4. Since each block can at
most contain B elements in Sy, |Vi| = Q(n/B).

Then, we add some additional pointers to G and obtain a new graph G’ such that, for
each e € Sy, every pair u,v € N (e) has small Ag: (u,v). We achieve this by, for each
e € Sy, introducing graph H, to connect all the n* blocks containing element e such
that the diameter in H. is small and the degree for each node in H, is O(B?) for some
constant 6. By Lemma 17, the diameter of H, can be as small as

1 k—1
p< clogp |He|+ o(logp |He|) < logg n + o(logg n).

1 1

We claim that the graph G’ has a (2p + ¢)-independent set of size n°, for some
constants &, ¢ > 0. For the purpose, we construct an undirected graph H (V1, F') such
that (u,v) € F iff Ag/(u,v) < r. Since the degree of each node in G’ is bounded by
OB 5+1), by Lemma 16, there exists an r-independent set [of size

V 2 n2*k
L >
[Vi| 4+ 4r|V|O(Br(0+1)) = 4rO(Br(0+1)+2)

Then,r = ((2—k — ¢)loggn)/(d + 1) + o(logg n). To satisfy the condition made in
the claim, let r > 2p. Hence, (2 — k —¢)/(6 + 1) > 2(k — 1)/4. Then, k — 4/3 for
sufficiently large d. Observe that, for each e € Sy, e is contained in at most one node in
I; in addition, for every pair e1, eo € Sy where e1, e5 are contained in separated nodes
in I, then Ag/(u,v) > e forany u 3 e1,v 3 ez. By Lemma 15, we are done. m]

C

1| = = ne.

4 Batched Predecessor in the Indexability Model

This section analyzes the batched predecessor problem in the indexability model [10,
11]. This model is used to analyze reporting problems by focusing on the number of
blocks that an algorithm must access to report all the query results. Lower bounds on
queries are obtained solely based on how many blocks were preprocessed. The search
cost is ignored—the blocks containing the answers are given to the algorithm for free.

A workload is given by a pair W = (S, A), where S is the set of n input objects, and
A is a set of subsets of S—the output to the queries. An indexing scheme I for a given
workload W is given by a collection 5 of B-sized subsets of .S such that § = UB; each
b € B is called a block.

122 M.A. Bender et al.

An indexing scheme has two parameters associated with it. The first parameter,
called the redundancy, represents the average number of times an element is repli-
cated (i.e., an indexing scheme with redundancy r uses r[n/B] blocks). The second
parameter is called the access overhead. Given a query with answer A, the query time
is min{|B'| : B C B, A C UB'}, because this is the minimum number of blocks that
contain all the answers to the query. If the size of A is x, then the best indexing scheme
would require a query time of [2/B]. The access overhead of an indexing scheme is
the factor by which it is suboptimal. An indexing scheme with access overhead o uses
ax/B] I/Os to answer a query of size x in the worst case.

Every lower bound in this model applies to our previous two models as well. To show
the tradeoff between « and r, we use the Redundancy Theorem from [11, 17]:

Theorem 18 (Redundancy Theorem [11,17]). For a workload W = (S, A) where
A= {Ay,---, A}, let T be an indexing scheme with access overhead o < \/B/4
such that for any 1 < i,j < m, i # j, |A;| > B/2 and |A; N A;| < B/(16a?). Then
the redundancy of T is bounded by r > |5 >"7" | |A;.

Proof of Theorem 4. For the sake of the lower bound, we restrict to queries where all the
reported predecessors reported are distinct. To use the redundancy theorem, we want to
create as many queries as possible.

Call a family of k-element subsets of S 3-sparse if any two members of the family
intersect in less than S elements. The size C(n, k, 3) of a maximal S-sparse family is
crucial to our analysis. For a fixed k& and §3 this was conjectured to be asymptotically
equal to () / (2) by Erdos and Hanani and later proven by Rodl in [16]. Thus, for large

enoughn, C(n, k, §) = Q((g)/(g))
We now pick a (B/2)-element, B/(16a2)-sparse family of S, where « is the access
overhead of Z. The result in [16] gives us that

O (n 5 100) =2 (s (1600) (s o))

Thus, there are at least (2n/eB)B/(16“2) subsets of size B/2 such that any pair
intersects in at most B/(16a2) elements. The Redundancy Theorem then implies that
the redundancy 7 is greater than or equal to (n/B)(5/ ®), completing the proof. O

We describe an indexing scheme that is off from the lower bound by a factor a.

Theorem 19 (Indexing Scheme for the Batched Predecessor Problem). Given any
a < /B, there exists an indexing scheme T, for the bagched predecessor problem with
access overhead o and redundancy r = O((n/B)B/")

Proof. Call a family of k-element subsets of S §-dense if any subset of .S of size [is

contained in at least one member from this family. Let ¢(n, k, 3) denote the minimum

number of elements of such a 3-dense family. Rddl [16] proves that for a fixed &k and 3,
. k\ m\—1

Jim e(n, k,8)(g)(5) =1,

and thus, for large enough n, c¢(n, k, 8) = O((g) / (Z)).

The Batched Predecessor Problem in External Memory 123

The indexing scheme Z,, consists of all sets in a B-element, (B/a?)-dense family.

By the above, the size of Z,, is O((n/B)B/O‘2)_

Given a query answer A = {a1,--- , a5} of size x, fix 1 < ¢ < [2/B] and consider

the B-element sets C; = {a(i_l)B, <L ai} (C’[x/B] may have less than B elements).
Since Z, is an indexing scheme, we are told all the blocks in Z,, that contain the a;s. By
construction, there exists a block in Z,, that containsa 1/ o fraction of C;. In at most o?
1/Os we can output C;, by reporting B/a? elements in every I/O. The number of 1/Os
needed to answer the entire answer A is thus o[/ B], which proves the theorem. O

References

1.

10.

13.

14.

15.

16.

Afshani, P., Arge, L., Larsen, K.D.: Orthogonal range reporting: Query lower bounds,
optimal structures in 3-d, and higher-dimensional improvements. In: 26th Annual Sympo-
sium on Computational Geometry (SoCG), pp. 240-246 (2010)

. Afshani, P.,, Arge, L., Larsen, K.G.: Higher-dimensional orthogonal range reporting and rect-

angle stabbing in the pointer machine model. In: 28th Annual Symposium on Computational
Geometry (SoCG), pp. 323-332 (2012)

. Aggarwal, A., Vitter, J.S.: The input/output complexity of sorting and related problems.

Commun. ACM 31, 1116-1127 (1988)

. Arge, L.: The buffer tree: A technique for designing batched external data structures.

Algorithmica 37(1), 1-24 (2003)

. Bollobds, B., Fernandez de la Vega, W.: The diameter of random regular graphs. Combina-

torica 2(2), 125-134 (1982)

. Brodal, G.S., Fagerberg, R.: Lower bounds for external memory dictionaries. In: 14th Annual

ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 546-554 (2003)

. Buchsbaum, A.L., Goldwasser, M., Venkatasubramanian, S., Westbrook, J.R.: On external

memory graph traversal. In: 11th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pp. 859-860 (2000)

. Dittrich, W., Hutchinson, D., Maheshwari, A.: Blocking in parallel multisearch problems

(extended abstract). In: 10th Annual ACM Symposium on Parallel Algorithms and Architec-
tures (SPAA), pp. 98-107 (1998)

. Goodrich, M.T., Tsay, J.J., Cheng, N.C., Vitter, J., Vengroff, D.E., Vitter, J.S.: External-

memory computational geometry. In: 1993 IEEE 34th Annual Foundations of Computer
Science (FOCS), pp. 714-723 (1993)

Hellerstein, J.M., Koutsoupias, E., Papadimitriou, C.H.: On the analysis of indexing schemes.
In: 16th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems
(PODS), pp. 249-256 (1997)

. Hellerstein, J.M., Koutsoupias, E., Miranker, D.P., Papadimitriou, C.H., Samoladas, V.: On a

model of indexability and its bounds for range queries. J. ACM 49, 35-55 (2002)

. Karpinski, M., Nekrich, Y.: Predecessor queries in constant time? In: Brodal, G.S., Leonardi,

S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 238-248. Springer, Heidelberg (2005)

Knudsen, M., Larsen, K.: I/O-complexity of comparison and permutation problems. Master’s
thesis, DAIMI (November 1992)

Knuth, D.E.: The Art of Computer Programming: Sorting and Searching, vol. 3. Addison-
Wesley (1973)

Pétrascu, M., Thorup, M.: Time-space trade-offs for predecessor search. In: 38th Annual
ACM Symposium on Theory of Computing (STOC), pp. 232-240 (2006)

Rodl, V.: On a packing and covering problem. European Journal of Combinatorics 6(1),
69-78 (1985)

124 M.A. Bender et al.

17. Samoladas, V., Miranker, D.P.: A lower bound theorem for indexing schemes and its
application to multidimensional range queries. In: 17th ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems (PODS), pp. 44-51 (1998)

18. Subramanian, S., Ramaswamy, S.: The p-range tree: A new data structure for range searching
in secondary memory. In: Sixth Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pp. 378-387 (1995)

19. Tamassia, R., Vitter, J.S.: Optimal cooperative search in fractional cascaded data structures.
In: Algorithmica, pp. 307-316 (1990)

20. Tao, T., Vu, V.H.: Additive Combinatorics. Cambridge University Press (2009)

21. Tarjan, R.E.: A class of algorithms which require nonlinear time to maintain disjoint sets.
Journal of Computer and System Sciences 18(2), 110-127 (1979)

Polynomial Decompositions in Polynomial Time

Arnab Bhattacharyya

Indian Institute of Science, Bangalore, India
arnabb@csa.iisc.ernet.in

Abstract. Fix a prime p. Given a positive integer k, a vector of positive
integers A = (A1, Ag,...,Ax) and a function I": IF’; — Fp,, we say that
a function P : Fy — Fp is (k, A, I')-structured if there exist polynomials
P, Py, ..., P, : Fy — F, with each deg(P;) < A; such that for all z € F},,

P(z) = I'(Pi(x), Px(z),. .., Py(x)).

For instance, an n-variate polynomial over the field F,, of total degree d
factors nontrivially exactly when it is (2, (d — 1,d — 1), prod)-structured
where prod(a,b) = a - b.

We show that if p > d, then for any fixed k, A, I, we can decide
whether a given polynomial P(z1,x2,...,2zy) of degree d is (k, A, I')-
structured and if so, find a witnessing decomposition. The algorithm
takes poly(n) time. Our approach is based on higher-order Fourier anal-
ysis.

1 Introduction

(Linear) Fourier analysis over a finite field F,, studies the structure of exponen-
tials of linear functions, i.e. functions of the form w**) where ¢ : Fp — Fpisa

linear function and w = €27/ is the p’th root of unity. Fourier analysis over finite
fields has, by now, a rich history of widespread success in theoretical computer
science. Here is a sample of applications: coding theory, computational learning
theory, influence of variables in boolean functions, probabilistically checkable
proofs, cryptography, communication complexity, and quantum computing. For
more, consult the lovely survey of de Wolf [dWO08].

Higher-order Fourier analysis is a novel generalization of Fourier analysis. In
higher-order Fourier analysis over finite fields, we study the structure of exponen-
tials of low-degree polynomials, i.e. functions of the form w@®@) where Q : Fp —
[, is a polynomial! of bounded degree. The theory (although conceptually origi-
nating with the classical equidistribution results of Weyl) really got its start from
the spectacular proof by Gowers of Szemerédi’s theorem [Gow98,Gow01], where
the Gowers norm was introduced. Another significant influence was the work of
Host and Kra [HKO05] in ergodic theory. Subsequently, Green, Tao and Ziegler
through several works [GT08,GT10,GTZ11,GTZ,TZ10,TZ12] largely completed

! Throughout, our functions are of n variables over F,, where n is growing but p is
fixed.

A.S. Schulz and D. Wagner (Eds.): ESA 2014, LNCS 8737, pp. 125-136, 2014.
(© Springer-Verlag Berlin Heidelberg 2014

126 A. Bhattacharyya

the research program of understanding the relationships between different as-
pects of the theory. The book [Taol12] by Tao on the subject surveys the current
state of knowledge.

Green, Tao and Ziegler applied higher-order Fourier analysis to find asymp-
totics for various linear patterns in the prime numbers. In theoretical computer
science, low-degree polynomials over finite fields has long been under considera-
tion due to the use of arithmetization. Specifically, there is a long history of
testing whether a function is correlated with a low-degree polynomial, and
higher-order Fourier analysis can be immediately phrased in this context. In fact,
it was shown in [BCSX11,BGS10,BFL13,BFH"13] that higher-order Fourier
analysis can be used to analyze tests not only for low-degreeness but also for
any locally characterized affine-invariant property (see the cited papers for defini-
tions). Besides property testing, the Gowers norm has also been used in computer
science to show worst case to average case reductions for polynomials [KLO08] and
XOR lemmas for polynomials [VWO0S].

In this paper, we demonstrate a new algorithmic application of higher-order
Fourier analysis. Consider the following family of properties of functions over a
finite field IF,, of fixed prime order p.

Definition 1. Given a positive integer k, a vector of positive integers A =
(A1, Ag, ..., Ag) and a function I : IF"; — Fp, we say that a function P :F) —
Fy, is (k, A, I')-structured if there exist polynomials Py, Py, ..., Py : F — F,
with each deg(P;) < A; such that for all x € Fy,

P(z) =T'(Pi(x), Py(x),...,Py(x)).
The polynomials P, ..., Py are said to form a (k, A, I')-decomposition.

For instance, an n-variate polynomial over the field F,, of total degree d factors
nontrivially exactly when it is (2, (d—1, d—1), prod)-structured where prod(a, b) =
a-b. Informally, a degree-structural property refers to a property from the family
of (k, A, I')-structured properties.

Our main result is that every degree-structural property can be decided in
polynomial time:

Theorem 1. For every positive integer k, every vector of positive integers A =
(A1, Ag, ..., Ag) and every function I :]F’; — [y, there is a deterministic al-
gorithm Ay a,r that takes as input a polynomial P : ¥} — I, of degree d < p,
runs in time polynomial in n, and outputs a (k, A, I')-decomposition of P if one
exists while otherwise returning NO.

1.1 Discussion

The main result is surprisingly strong in that it holds for every k, A and I". Thus,
for instance, it immediately implies a (deterministic) poly(n)-time algorithm for
factoring an n-variate polynomial of degree d over IFp, as long as p > d and p
and d are fixed. Also, we observe (see the full version [Bhald4]) that the proof

Polynomial Decompositions in Polynomial Time 127

of Theorem 1 implies a polynomial time algorithm for deciding whether a d-
dimensional tensor over IF, has rank at most 7, where d, p and r are constants
and d < p.

We must remark that these results on factoring and tensor rank are not new,
in the sense that there were already algorithms known for stronger versions
of these two problems. Specifically, for deciding constant tensor rank, Karnin
and Shpilka [KS09] showed a polynomial time algorithm for the more general
problem of reconstructing multilinear X'ITY circuits with a constant number
of multiplication gates. And for factoring multivariate polynomials over finite
fields, it is known [vzGK85] how to factor in time poly(n,d, p) deterministically
and in time poly(n, d, log p) probabilistically.

However, Theorem 1 gives polynomial time algorithms for a whole host of
problems not known to have non-trivial solutions previously, such as whether
a polynomial of degree d can be expressed as P, - P, + P3 - Py where each
Py, Py, P3, Py are of degree d — 1 or less. Thus, these problems become useful
targets for reductions in future. Our main result can be described as a black-
box reconstruction algorithm as in [KS09], in the sense that the algorithm is
given blackbox query access to the polynomial and it runs in time linear in the
dense representation of the polynomial (i.e., input size is measured as ("gd)).
The property of having (k, A, I')-structure is also similar in spirit to a function
having a concise representation, a notion introduced by Diakonikolas et al. in
[DLM*07]. We leave open as to whether there are formal connections here.

There are two main questions raised by Theorem 1:

1. Does Theorem 1 hold when p < d? The main difficulty here seems techni-
cal and stems from the fact that the proof of the Gowers inverse theorem
for polynomials is currently very non-constructive [TZ12] when p < d, in
contrast to the case of high characteristic [GT09].

2. Is there an analogous theorem when n is fixed and d and p are growing?
Such questions are probably very difficult, because over Z,,, we do not even
know how to deterministically factorize the univariate polynomial z? — a,
for a given a € Z,. In fact, in recent work, Kopparty, Saraf and Shpilka
[KSS14] have shown an equivalence between deterministic factorization of
multivariate polynomials and derandomization of polynomial identity test-
ing, a long-standing challenge. Polynomial time randomized algorithms exist
for factorization of course but are not known to exist for arbitrary degree-
structural properties over large fields. In particular, Neeraj Kayal (personal
communication) asks whether it is possible in randomized polynomial time
to decompose a univariate polynomial P : F, — F, of degree n < p as
P = P,-P,+ P3- Py where Py, P5, P3, Py are of degree < n. Even an average-
case algorithm would be interesting, meaning P is known to be formed out
of random polynomials Py, P», P53, Py, and the task is to recover them given
access to P.

128 A. Bhattacharyya

1.2 Proof Overview

The proof of Theorem 1 is actually a straightforward combination of ideas from
[BFH'13] and [BHT13]. In [BFH"13], it was shown that any degree-structural
property is constant query testable. That is, for all k&, A, and I', one can decide
correctly, with probability at least 2/3, whether a given function is (k, A, I")-
structured or whether it is 1%-far from any (k, A, I')-structured function, by
querying the input function’s value on only a constant number of points. The
main contribution of [BFH13] is a reduction from the testability problem to
the following combinatorial problem:

Does there exist s = s(k, A, I') such that a function is (k, A, I')-structured
if and only if so is the restriction of the function to all affine subspaces
of dimension s?7

[BFHT*13] gave a positive answer to this problem (thus showing, by virtue of their
main reduction, that degree-structure is testable). One can view their answer as
a solution to the search problem of finding an s-dimensional subspace on which
the function is not degree-structural. However, their proof is non-constructive,
in the sense that no non-trivial algorithm is provided for finding the witnessing
s-dimensional subspace.

At a high level, the reason that a violation to a degree-structural decomposi-
tion can be witnessed by a finite sized subspace is the following. Let the input
polynomial be P on n variables and of degree d. Higher-order Fourier analysis
gives a way to write P as:

P(z) = G(Q1(x), Q2(2),. .., Qc(x))

where C' is a constant, 1, ..., Q¢ polynomials of degree < d and G is an arbi-
trary function on F€. Most importantly, @1, ..., Q¢ have a certain pseudoran-
domness property called high rank, which allows us to think of Q1 (x),...,Qc(x)
as C uncorrelated variables?. Thus, higher-order Fourier analysis finitizes P on
n variables into a function G on only a constant number of variables. Moreover,
G remains the same when P is restricted to a function on n — 1 variables by
setting one of the variables to zero. Thus, we can keep on setting variables to
zero until we have only a constant number of variables remaining. That is, P is
now restricted to a finite sized subspace H, with:

Pg(r) = G(Quu(),...,Qcia(r))

where Q1q, . .., Qc|q still enjoy the pseudorandom property of high rank. Now,
Py can be decomposed by brute force, and moreover, it can be decomposed in
terms of Qq)g,...,Qc|z (and perhaps other polynomials) due to their high
rank. Finally, at this point, Q1,...Q¢ can be directly substituted instead of
Q1> -+, Qc|u into the decomposition, and so the decomposition of the original

2 More precisely, the distribution of (Q1(X),...,Qc(X)) is close to uniform for uni-
form X € F".

Polynomial Decompositions in Polynomial Time 129

polynomial P is recovered. The fact that the last substitution doesn’t increase
the degree is again due to the high rank of @4,...,Q¢-

In this argument, the rank of a polynomial plays a central role in the analy-
sis, but we do not know how to compute this quantity in time polynomial in n.
Hence, the argument in [BFH'13] is non-constructive in this aspect. However,
in [BHT13], it was noticed that when the polynomial degree is smaller than the
field characteristic, instead of the rank of a polynomial, one could equally well
work with the Gowers uniformity norm (see Section 2.1) of the polynomial, and
the Gowers norm can be estimated upto constant additive error with good prob-
ability by evaluating the polynomial on a constant number of random samples.
Via this approach, [BHT13] found an algorithmic regularity lemma for degree-d
n-variate polynomials (see Section 2.2) that runs in time O(n?) when d < p.

In spirit, our algorithm is very similar to Kaltofen’s factorization algorithm
[Kal95], where the polynomial is first restricted to a random two-dimensional
subspace, then factored using bivariate factorization algorithms, and then lifted
back to the original space. From this perspective, we show that the “restrict-
solve-lift” paradigm can be used for any degree-structural decomposition prob-
lem, not just factorization (at least when the field order is a constant prime
but larger than the degree of the input polynomial). We hope that this work
brings the techniques of higher-order Fourier analysis to the attention of a wider
audience in computer science.

2 Technical Preliminaries

From a bird’s eye viewpoint, higher-order Fourier analysis is a study of how
the analytic properties of a collection of polynomial relate to the collection’s
algebraic/combinatorial structure. We make precise all the needed notions in
the subsections below.

To start off, let us define the important notion of a polynomial factor:

Definition 2. If P1,...,Pc : F) — F is a sequence of polynomials, then the
tuple B = (P1,...,Pc) is called o polynomial factor. The complexity of B,
denoted |B|, is the number of defining polynomials, C. The degree of B is the

mazimum degree among its defining polynomials Py, ..., Pc. Also, ||B|| = p© is
called the order of B; the number of nonempty atoms of B is bounded by || B||. By
an abuse of notation, we also use B to denote the map x — (Py(x),..., Po(z)).

2.1 Three Notions of Polynomial Pseudorandomness

The main results of higher-order Fourier analysis revolve around three measures
of pseudorandomness for polynomial factors. Each is a statistical test that is
perfectly met by truly random polynomial factors, and the question is how well
are they met by factors of degree d.

130 A. Bhattacharyya

Bias. The first pseudorandomness measure is the familiar notion of bias, gen-
eralizing the definition of Naor and Naor [NN93] over Fs.

Definition 3 (Unbiased). The bias of a function F : Fy — T is:

bias(F) =

E F
E (@)

Given a function 8 : ZT — (0,1) and a polynomial factor B defined by a
sequence of polynomials Pi,...,Pc : ¥y — F, the factor B is said to be (-
unbiased if for every (ai,...,ac) € {0,...,p— 1} \ {0},

c
bias (Z aiﬂ> < B(C).

The following facts are straightforward and folklore.

Lemma 1 (Equidistribution). Given 3 : ZT — (0,1), let B be a B-unbiased
polynomial factor of complexity C. For any b € FC:

1

1) P

PriB(z) =b] =
Corollary 1 (Atom Dispersal). If 8(k) = 2;1;k and B is a S-unbiased polyno-
mial factor, then all of the ||B|| atoms of B are nonempty.

The following theorem?, proved in [BFHT13] shows that a function of an
unbiased factor of degree d has the degree which one would expect from a generic
collection of polynomials of degree d.

Theorem 2 (Degree Preservation, Theorem 4.1 of [BFH'13]). For any
positive integer d < p, there is a function a‘é : 7% — (0,1) such that the following
is true. Let B be any factor defined by polynomials Py, ..., Pc : Fyy — Fp, of degree
< d. Suppose B is a%-unbiased. Let I':]Fg — Iy be an arbitrary function. Define
the polynomial F : ¥} — F), by F(z) = I'(B(x)).

Then, for any factor B' defined by polynomials Q1,...,Qc : Fy — F, with
deg(Q:) < deg(P;) for every i € [C], if G : Fy — T, is the polynomial G(x) =
I'(B'(x)), it holds that deg(G) < deg(F).

Uniformity. Biasis often a very weak measure of pseudorandomness: the bias of
any linear function is 0, even though it is clearly not a random function. We could
strengthen low bias by additionally requiring that all the Fourier coeflicients be
small, which would ensure that the function is not (correlated with) a linear
function. Continuing down this path leads us to the notion of uniformity, which
measures the correlation of a function with polynomials of bounded degree.

3 A variant of Theorem 2 is true when p < d also, as shown in [BFHT13], but in that
case, they require the stronger assumption of uniformity (see next section) instead
of unbiasedness.

Polynomial Decompositions in Polynomial Time 131

Definition 4 (Multiplicative Derivative). Given a function f : Fy — C
and an element h € T}, the multiplicative derivative of f in direction h s the

function Apf : ¥} — C satisfying Apf(x) = f(z + h)f(z) for all x € F}.

Definition 5 (Uniformity). Given a function f : Fy — C and an integer
d > 1, the Gowers uniformity norm of order d for f is given by:

1/2¢4

h1,---EdEF;‘ xEE]%‘I'; [(Ah1Ah2 ce Ahdf)(x)]

1fllya =

Given a function v : ZT — (0,1) and a polynomial factor B defined by a
sequence of polynomials Pi,...,Pc : Fy — F, the factor B is said to be ~y-
uniform if for every (a1, ...,ac) € {0,...,p—1}°\ {0},

(5

Note that bias(P) = |le (P)||yr for any P : Fj — F. Moreover, it holds that
[fllve < || fllga+r for any f:F) — Cand d > 1 [Gow98]. So:

<7(C)

Ud

where d = max; deg(a; P;).

Lemma 2 (Uniformity Implies Unbiased). If B is a polynomial factor that
is y-uniform for some function v : Z+t — (0,1), then B is also y-unbiased.

Regularity. A third measure of pseudorandomness was introduced by Green
and Tao [GT09] as a bridge between the algebraic structure of polynomials and
the analytic notions of bias and uniformity.

Definition 6 (Regularity). Given a function F' : Fy — F, and an integer
d > 1, the d-rank of F', denoted ranky(F'), is defined to be the smallest integer
7 such that there exist polynomials Q1,...,Qy : Fy — Fy of degree < d —1 and
a function I' : ¥, — F,, satisfying P(x) = ['(Q1(x),...,Qr(x)). If d =1, the
1-rank is defined to be oo if F' is non-constant and 0 otherwise.

Given a function R : Z* — Z% and a polynomial factor B defined by a
sequence of polynomials Pi,...,Pc : By — Fy, the factor B is said to be R-

regular if for every ay,...,ac € {0,1,...,p—1}¢\ {0},

c
rankg (Z%R‘) > R(C)
i=1

where d = max; deg(a; P;). Also, the rank of B is at least R(C).

Regularity and uniformity turn out to be essentially equivalent, due to the
following two remarkable theorems. The first theorem is folklore and essentially
due to (linear) Fourier analysis.

132 A. Bhattacharyya

Theorem 3 (Uniformity Implies Regularity). Suppose that p > d and let
R :7Z%t — ZT be any non-decreasing function. Then, there is a function Wg;R :
7+ — (0,1) such that the following holds. Any polynomial factor of degree d that
s ’yg,’R-uniform 1s also R-regular.

Theorem 4 (Regularity Implies Uniformity, Proposition 6.1 of [GT09]).
Suppose thatp > d, and lety : Z+ — (0,1) be any non-increasing function. Then,
there is a function RZ’W : 2T — Z7* such that the following holds. Any polynomial

factor of degree d that is RZ’W-regular 1s also y-uniform.

Remark 1. Importantly, when d < p, ’yg’R is explicitly known, given d and R. In
other words, given access to an evaluation oracle for R, 'yg’R is polynomial-time

computable. Similarly, RZ’W is explicitly known.

While unbiasedness and uniformity are analytic properties of a factor, regu-
larity is an algebraic notion and is hence more amenable to algebraic operations
on the function. For instance, we have:

Lemma 3 (Subspace Restriction, Lemma 2.13 of [BFH"13]). Suppose
P Fy — Ty is a polynomial of degree d and rank r, where r > p + 1. Let A be
a hyperplane in ¥}, and denote by P’ the restriction of P to A. Then, P’ is a
polynomial of degree d and rank > r — p, unless d =1 and P is constant on A.

2.2 Algorithmic Regularity Lemma

The celebrated Szemerédi graph regularity lemma [Sze78] permits the decompo-
sition of an arbitrary graph into bipartite subgraphs which are regular (in the
graph-theoretic sense). One can carry out an analogous type of refinement for
our notions of regularity also. First, let us specify what we mean by refinements
of a factor.

Definition 7 (Semantic and Syntactic Refinements). B’ is called a se-
mantic refinement (or simply, a refinement) if the partition induced by B’ is a
combinatorial refinement of the partition induced by B. In other words, if for
every x,y € Fy, B'(z) = B'(y) implies B(x) = B(y). B’ is called a syntactic
refinement of B if the sequence of polynomials defining B’ extends that of B. A
syntactic refinement is clearly a semantic refinement but not necessarily, vice
versa.

The algorithmic regularity lemma of [BHT13] (analogous to the algorithmic
version [ADL194] of Szemerédi’s regularity lemma) is as follows:

Theorem 5 (Uniform Refinement, Lemma 4.1 of [BHT13]). Suppose
d < p is a positive integer, p € (0,1), and v : ZT — (0,1) is a non-increasing
function. There is a function Cz.’d : ZT — Z7 and an algorithm that takes as
input a factor B of Fy; of degree d, runs in time O(n?) and with probability 1— p,
outputs a y-uniform factor B where B is a refinement of B, is of degree d, and

1B < C14(B)).

Polynomial Decompositions in Polynomial Time 133

Combining with Theorem 3 immediately implies:

Corollary 2 (Regular Refinement). Suppose d < p is a posilive integer,
p € (0,1) and R : Z* — Z* is a non-decreasing function. There is a function
C’g’d . ZT — Z% and an algorithm that takes as input a factor B of Fy of
degree d, runs in time O(n?) and with probability 1 — p, outputs a R-reqular
factor B where B is a refinement of B, is of degree d, and |B| < C’g’d(\BD.
Additionally, if B is defined by polynomials Py, Ps, ..., Py, then we can find
functions I, ..., [y, :]FL,B| — T, such that Py(x) = I';(B(x)) for every i € [m).

Moreover, if B is itself a syntactic refinement of some B’ that is of rank at
least R(|B|) + 1, then B will also be a syntactic refinement of B'.

The second-to-last sentence of Corollary 2 comes from observing that the
proof of Lemma 4.1 in [BHT13] explicitly constructs the functions I';. The last
sentence of Corollary 2 follows from Lemma 3.17 of [BFL13].

3 The Main Proof

First, we prove Theorem 1 allowing the algorithm to be randomized.

Theorem 6. If p > d, then for any fired k, A and I, there is a randomized
algorithm which given a polynomial P : ¥} — F, of degree d runs in time

O(n+1) and has the following behavior:

1. If P is (k,A,I')-structured, with probability 2/3, it finds a (k, A, TI)-
decomposition of P.
2. Otherwise, it always outputs NO.

Proof. Let R:Z" — Z* be defined as R(m) = T(C’é’d(erk:)) +C§’d(m+ k)+p
for a function r : ZT — Z% to be fixed later. First, we apply Corollary corollary 2
to the factor defined by {P} so that with probability 9/10, we find an R-regular
polynomial factor B of degree d defined by polynomials P, P, ..., Pc : Fy — F,
such that P(z) = G(B(z)) for some G : FS' — F,,. Here, C < C™4(1) = O(1).

If n < Cd, then we can decide whether f is (k, A, I')-structured by brute
force in O(1) time.

Otherwise, we are in the case n > C'd. From each P;, pick a monomial m; with
degree equal to deg(P;). Since n > Cd, there exists iy € [n] such that x;, does not
appear in any of the m;’s. Let P{, P3,..., P5 be Pils, =0, Pala;, =0, - - s PClziy =0
respectively, and let B’ be the factor defined by these polynomials. Clearly,
deg(P/) = deg(FP;) for each i € [C]. Moreover, by Subspace Restriction Lemma 3,
B’ is (R — p)-regular.

Recursively, decide (k, A, I')-structure for the polynomial P’ ef p
n — 1 variables. Note that:

mio:o on

P'(z) = G(P|(x), P3y(x),..., Po(x)).

134 A. Bhattacharyya

If P’ is not (k, A, I')-structured, then clearly P cannot be, and the algorithm
can output NO. Otherwise, suppose that:

P'(z) = I'(S1(z), Sa(x), ..., Sk(x))

where deg(S1),...,deg(Sk) are at most Ay,..., Ap respectively. We need to

show how to extract (k, A, I')-structure for P from this decomposition for P’.
Use Corollary 2 to find, with probability at least 9/10, an r-regular refinement

B’ of the factor defined by {P],...,P5,S1,...,Sk}. Note that the rank of B’

is at least r(|B’|), while the rank of the factor defined by {P[,...,P5} is at

least R(C) —p = r(C5Y(C + k) + C5*(C + k) = r(|B]) + |B'|. Because of
the last part of Corollary 2, B’ is a syntactic refinement of of {Pj,..., P5}.
That is, we obtain a polynomial factor B = {P{,...,P5,S],...,Sp} which
has degree d and rank > r(C + D), where C + D < C’;d(C’ + k) and where
Si(x) = Gi(P{(x),...,PL(x),S5](x),...,S%(x)) for some function G; : F§+P —
F,,. Thus, we have that for all x:

G(P{(2),...,Pt(x))
= F(Gl(Pl/(I)vvpé(x)vsi(x)v7S/D(I))vva(Pl/(I)v7P6(I)7Si(x)7vs/D(x))

Note that by Corollary 2, we find the functions G, ..., Gy explicitly.
Let y(m) = 21)17,1 , and suppose r(m) > Ri’”(m). Then, by Theorem 4, Lemma 2
and Corollary 1, we see that B’(z) acquires every possible value in its range. Thus,
we have the identity:

G(al,...,ac) = F(Gl(al,...,ac,bl,...,bD),...,Gk(al,...,ac,bl,...,bD))
for all a1,...,ac,b1,...,bp € Fp. In particular:

P(z) = G(Pi(z),...,Pc(x))
:F(Gl(Pl(I)7"'7PC(x)7O7"'70)7"'7Gk(P1(x)v'--7PC'(x)707"'70))

Define Q;(x) = G;(Pi(z),..., Pc(x),0,...,0) for each i € [k]. Now, suppose
d

d,a
r(m) > Ry 2(m). By Lemma 2 and Theorem 2, since deg(P;) = deg(P/), it
follows that deg(Q;) < deg(S;) < A; for each i € [k]. Then, our (k, A, TI')-
decomposition is given by:

P(z) = I(Q1(x),. .., Qu(z))

dyy d,a%
Hence, set r = max(Ry", Ry <).

In order to see the guarantees in the theorem statement, consider repeating
the above algorithm infinitely until a (k, A, I')-decomposition is discovered for
P.1If Pisnot (k, A, I')-structured, then any candidate (k, A, I')-decomposition
discovered (due to the error probability in Corollary 2) can be ruled out in O(n?)
time. Otherwise, if P is (k, A, I')-structured the expected time before a valid
(k, A, I')-decomposition is discovered will be the expected time for discovering

Polynomial Decompositions in Polynomial Time 135

a decomposition for P’ plus expected O(n?) time for finding valid regular re-
finements. Thus, the expected time to find a (k, A, I')-decomposition for P is
O(n*1). Therefore, if we stop repeating the algorithm after O(n9*1) time steps,
our desired result is true by Markov’s theorem.

Theorem 6 can be derandomized using existing pseudorandom generators for
low-degree polynomials [Vio09] to yield Theorem 1. This idea was suggested by
Shachar Lovett. Due to space constraints, we omit the proof here and refer the
reader to the full version [Bhal4].

Acknowledgments. Part of this work was done when visiting the Simons In-
stitute and MIT during December, 2013. Many thanks to Ronitt Rubinfeld for
useful discussions, to Pablo Parrilo for asking about tensor rank and to Neeraj
Kayal, Amir Shpilka and Madhu Sudan for pointers to previous work.

References

ADL'94. Alon, N., Duke, R.A., Lefmann, H., Rédl, V., Yuster, R.: The algorithmic
aspects of the regularity lemma. J. Algorithms 16(1), 80-109 (1994)

BCSX11. Bhattacharyya, A., Chen, V., Sudan, M., Xie, N.: Testing linear-invariant
non-linear properties. Theory Comput 7(1), 75-99 (2011)

BFH'13. Bhattacharyya, A., Fischer, E., Hatami, H., Hatami, P., Lovett, S.: Every
locally characterized affine-invariant property is testable. In: Proc. 45th An-
nual ACM Symposium on the Theory of Computing, pp. 429-436 (2013)

BFL13. Bhattacharyya, A., Fischer, E., Lovett, S.: Testing low complexity affine-
invariant properties. In: Proc. 24th ACM-SIAM Symposium on Discrete
Algorithms, pp. 13371355 (2013), http://arxiv.org/abs/1201.0330v2

BGS10. Bhattacharyya, A., Grigorescu, E., Shapira, A.: A unified framework for
testing linear-invariant properties. In: Proc. 51st Annual IEEE Symposium
on Foundations of Computer Science, pp. 478-487 (2010)

Bhal4. Bhattacharyya, A.: Polynomial decompositions in polynomial time. Techni-
cal report (February 2014), http://eccc.hpi-web.de/report/2014/018/

BHT13. Bhattacharyya, A., Hatami, P., Tulsiani, M.: Algorithmic regularity
for polynomials and applications. Technical report (November 2013),
http://arxiv.org/abs/1311.5090

DLMT07. Diakonikolas, I., Lee, H.K., Matulef, K., Onak, K., Rubinfeld, R., Servedio,
R.A., Wan, A.: Testing for concise representations. In: Proc. 48th Annual
IEEE Symposium on Foundations of Computer Science, pp. 549-558 (2007)

dW08. de Wolf, R.: A Brief Introduction to Fourier Analysis on the Boolean Cube.
Graduate Surveys, vol. 1. Theory of Computing Library (2008)

Gow98. Gowers, W.T.: A new proof of Szeméredi’s theorem for arithmetic progres-
sions of length four. Geom. Funct. Anal. 8(3), 529-551 (1998)

Gow0l. Gowers, W.T.: A new proof of Szeméredi’'s theorem. Geom. Funct.
Anal. 11(3), 465-588 (2001)

GTO8. Green, B., Tao, T.: An inverse theorem for the Gowers U>-norm. Proc. Edin.
Math. Soc. 51, 73-153 (2008)

GT09. Green, B., Tao, T.: The distribution of polynomials over finite fields, with
applications to the Gowers norms. Contrib. Discrete Math. 4(2) (2009)

http://arxiv.org/abs/1201.0330v2
http://eccc.hpi-web.de/report/2014/018/
http://arxiv.org/abs/1311.5090

136 A. Bhattacharyya

GT10.

GTZ.

GTZ11.

HKO5.

Kal95.

KLO8.

KS09.

KSS14.

NN93.

SzeT8.

Taol2.

TZ10.

TZ12.

Vio09.

VWO08.

vzGKS85.

Green, B., Tao, T.: Linear equations in primes. Ann. of Math. 171, 1753-1850
(2010)

Green, B., Tao, T., Ziegler, T.: An inverse theorem for the Gowers U*"!-
norm. In: Ann. of Math. (to appear)

Green, B., Tao, T., Ziegler, T.: An inverse theorem for the Gowers U*-norm.
Glasgow Math. J. 53(1), 1-50 (2011)

Host, B., Kra, B.: Nonconventional ergodic averages and nilmanifolds. Ann.
of Math. 161(1), 397488 (2005)

Kaltofen, E.: Effective Noether irreducibility forms and applications. J.
Comp. Sys. Sci. 50(2), 274-295 (1995)

Kaufman, T., Lovett, S.: Worst case to average case reductions for polyno-
mials. In: Proc. 49th Annual IEEE Symposium on Foundations of Computer
Science, pp. 166-175 (2008)

Karnin, Z.S., Shpilka, A.: Reconstruction of generalized depth-3 arithmetic
circuits with bounded top fan-in. In: Proc. 24th Annual IEEE Conference
on Computational Complexity, pp. 274-285 (2009)

Kopparty, S., Saraf, S., Shpilka, A.: Equivalence of polynomial identity test-
ing and deterministic multivariate polynomial factorization. Technical Re-
port 001, Electronic Colloquium on Computational Complexity (January
2014), http://eccc.hpi-web.de/report/2014/001/

Naor, J., Naor, M.: Small-bias probability spaces: efficient constructions and
applications. SIAM J. on Comput. (4), 838-856 (1993), Earlier version in
STOC 1990

Szemerédi, E.: Regular partitions of graphs. In: Bremond, J.C., Fournier,
J.C., Las Vergnas, M., Sotteau, D. (eds.) Proc. Colloque Internationaux
CNRS 260 — Problemes Combinatoires et Théorie des Graphes, pp. 399-401
(1978)

Tao, T.: Higher Order Fourier Analysis. Graduate Studies in Mathematics,
vol. 142. American Mathematical Society (2012)

Tao, T., Ziegler, T.: The inverse conjecture for the Gowers norm over finite
fields via the correspondence principle. Analysis & PDE 3(1), 1-20 (2010)
Tao, T., Ziegler, T.: The inverse conjecture for the Gowers norm over finite
fields in low characteristic. Ann. Comb. 16(1), 121-188 (2012)

Viola, E.: The sum of D small-bias generators fools polynomials of degree
D. Computational Complexity 18(2), 209-217 (2009)

Viola, E., Wigderson, A.: Norms, XOR lemmas, and lower bounds for poly-
nomials and protocols. Theory Comput 4(7), 137-168 (2008)

von zur Gathen, J., Kaltofen, E.: Factorization of multivariate polynomials
over finite fields. Mathematics of Computation 45(171), 251-261 (1985)

http://eccc.hpi-web.de/report/2014/001/

Fault-Tolerant Approximate
Shortest-Path Trees*

Davide Bilo!, Luciano Guala?, Stefano Leucci®, and Guido Proietti®*

! Dipartimento di Scienze Umanistiche e Sociali, Universita di Sassari, Italy
2 Dipartimento di Ingegneria dell’Tmpresa, Universita di Roma “Tor Vergata”, Italy
3 Dipartimento di Ingegneria e Scienze dell’Informazione e Matematica,
Universita degli Studi dell’Aquila, Italy
4 TIstituto di Analisi dei Sistemi ed Informatica, CNR, Roma, Italy
davide.bilo@uniss.it, guala@mat.uniroma2.it,
{stefano.leucci,guido.proietti}@univaq.it

Abstract. The resiliency of a network is its ability to remain effectively
functioning also when any of its nodes or links fails. However, to reduce
operational and set-up costs, a network should be small in size, and this
conflicts with the requirement of being resilient. In this paper we address
this trade-off for the prominent case of the broadcasting routing scheme,
and we build efficient (i.e., sparse and fast) fault-tolerant approzimate
shortest-path trees, for both the edge and vertex single-failure case. In
particular, for an n-vertex non-negatively weighted graph, and for any
constant € > 0, we design two structures of size O(™ 1;’5 ™) which guaran-
tee (1 + €)-stretched paths from the selected source also in the presence
of an edge/vertex failure. This favorably compares with the currently
best known solutions, which are for the edge-failure case of size O(n)
and stretch factor 3, and for the vertex-failure case of size O(nlog n) and
stretch factor 3. Moreover, we also focus on the unweighted case, and we
prove that an ordinary («, 3)-spanner can be slightly augmented in order
to build efficient fault-tolerant approximate breadth-first-search trees.

1 Introduction

Broadcasting a message from a source node to every other node of a network is
one of the most basic communication primitives. Since this operation should be
performed by making use of a both sparse and fast infrastructure, the natural
solution is to root at the source node a shortest-path tree (SPT) of the underlying
graph. However, the SPT, as any tree-based network topology, is highly sensitive
to a link/node malfunctioning, which will unavoidably cause the disconnection
of a subset of nodes from the source.

To be readily prepared to react to any possible (transient) failure in a SPT,
one has then to enrich the tree by adding to it a set of edges selected from the
underlying graph, so that the resulting structure will be 2-edge/vertex-connected

* This work was partially supported by the Research Grant PRIN 2010 “ARS Tech-
noMedia”, funded by the Italian Ministry of Education, University, and Research.

A.S. Schulz and D. Wagner (Eds.): ESA 2014, LNCS 8737, pp. 137-148, 2014.
(© Springer-Verlag Berlin Heidelberg 2014

138 D. Bilo et al.

w.r.t. the source. Thus, after an edge/vertex failure, these edges will be used to
build up the alternative paths emanating from the root, each one of them in
replacement of a corresponding original shortest path which was affected by the
failure. However, if these paths are constrained to be shortest, then it can be
easily seen that for a non-negatively real weighted and undirected graph G of n
nodes and m edges, this may require as much as ©(m) additional edges, also in
the case in which m = ©(n?). In other words, the set-up costs of the strengthened
network may become unaffordable. Thus, a reasonable compromise is that of
building a sparse and fault-tolerant structure which accurately approximates the
shortest paths from the source, i.e., that contains paths which are longer than
the corresponding shortest paths by at most a multiplicative stretch factor, for
any possible edge/vertex failure. The aim of this paper is to show that very
efficient structures of this sort do actually exist.

Related work. Let s denote a distinguished source vertex of a non-negatively
real weighted and undirected graph G = (V(G), E(G)). We say that a spanning
subgraph H of G is an Fdge-fault-tolerant «-Approzrimate SPT (in short, a-
EASPT), with a > 1, if it satisfies the following condition: For each edge e € E(G),
all the distances from s in the subgraph H —e = (V(H), E(H) \ {e}) are a-
stretched w.r.t. the corresponding distances in G — e. When vertez failures are
considered, then the EASPT is correspondingly called VASPT.

Our work is inspired by the paper of Parter and Peleg [13], which were con-
cerned with the same problem but on unweighted graphs (and so they were fo-
cusing on the construction of an edge-fault-tolerant a-approximate Breadth-First
Search tree (in short, a-EABFS). In that paper the authors present a 3-EABFS
having at most 4n edges.! Moreover, the authors also present a set of lower and
upper bounds to the size of («, 3)-EABFS, i.e., edge-fault-tolerant structures for
which the length of a path is stretched by at most a factor of « plus an additive
term of 5. Finally, assuming at most f = O(1) edge failures can take place, they
show the existence of a (3(f + 1), (f + 1) logn)-EABFS of size O(fn).

On the other hand, if one wants to have an ezract edge-fault-tolerant SPT
(say ESPT), then as we said before this may require ©(n?) edges. This is now
in contrast with the unweighted case, where it can be shown the existence
(see [12]) of an edge/vertex-fault-tolerant BFS (say EBFS/VBFS) of size O(n -
min{ecc(s), /n}), where ecc(s) denotes the eccentricity of s in G. In the same
paper, the authors also exhibit a corresponding lower bound of £2(n3/2) for the
size of a EBFS. Moreover, they also treat the multisource case, i.e., that in which
we look for a structure which incorporates an EBFS rooted at each vertex of a set
S C V(@). For this, they show the existence of a solution of size O(,/|S| - n%/?),
which is tight. Finally, the authors provide an O(log n)-approximation algorithm
for constructing an optimal (in terms of size) EBFS (also for the multisource case),
and they show this is tight.

! Notice that this result is obtained through a rather involved algorithm that suitably
enriches a BFS of G rooted at the source node, but, as we will point out in more
detail later, a 3-EASPT of size at most 2n (and then, a fortiori, a 3-EABFS of the same
size), can actually be obtained as a by-product of the results given in [11].

Fault-Tolerant Approximate Shortest-Path Trees 139

As far as the vertex-failure problem is concerned, in [3] the authors study
the related problem of computing distance sensitivity oracles (DSO) structures.
Designing an efficient DSO means to compute, with a low preprocessing time,
a compact data structure which is functional to quickly answer to some dis-
tance query following a component failure. Classically, DSO cope with single
edge/vertex failures, and they have to answer to a point-to-point post-failure
(approximate) distance query, or they have to report a point-to-point replace-
ment short(est) path. In particular, in [3] the vertex-failure case w.r.t. a SPT is
analyzed, and the authors compute in O(mlogn + n?logn) time a DSO of size
O(nlogn), that returns a 3-stretched replacement path in time proportional to
the path’s size. As the authors specify in the paper, this DSO can be used to
build a 3-VASPT of size O(nlogn), and a (1 + €)-VABFS of size O(; 4+ nlogn).
Actually, we point out that the latter structure can be easily sparsified so as to
obtain a (14-¢)-EABFS of size O(3): in fact, its O(nlogn) size term is associated
with an auxiliary substructure that, in the case of edge failures, can be made of
linear size. This result is of independent interest, since it qualifies itself as the
best current solution for the EABFS problem.

Our results. Our main result is the construction in polynomial time? of a (1+¢)-
VASPT of size O(" 1§2g ™), for any £ > 0. This substantially improves on the 3-VASPT
of size O(nlogn) given in [3]. To obtain our result, we perform a careful selection
of edges that will be added to an initial SPT. The somewhat surprising outcome
of our approach is that if we accept to have slightly stretched fault-tolerant
paths, then we can drastically reduce the ©(n?) size of the structure that we
would have to pay for having fault-tolerant shortest paths! Actually, the analysis
of the stretch factor and of the structure’s size induced by our algorithm is quite
involved. Thus, for clarity of presentation, we give our result in two steps: first,
we show an approach to build a (1 + ¢)-EASPT of size O(" 1§2g"), then we outline
how this approach can be extended to the vertex-failure case.

Furthermore, we also focus on the unweighted case, and we exhibit an in-
teresting connection between a fault-tolerant BFS and an («, 5)-spanner. An
(a, B)-spanner of a graph G is a spanning subgraph H of G such that all the
intra-node distances in H are stretched by at most a multiplicative factor of
and an additive term of S w.r.t. the corresponding distances in G. We show how
an ordinary (a, 8)-spanner of size 0 = o(n, m) can be used to build in polynomial
time an («, 3)-EABFS and an (a, §)-VABFS of size O(c) and O(o + nlogn), re-
spectively. As a consequence, the EABFS problem is easier than the corresponding
(non fault-tolerant) spanner problem, and we regard this as an interesting hard-
ness characterization. Notice also that for all the significant values of a and £,
the size of an («, B)-spanner is w(n log n), which essentially means that the VABFS
problem is easier than the corresponding spanner problem as well. This bridge
between the two problems is useful for building sparse (1, 3)-VABFS structures

2 We do not insist on the time efficiency in building our structures, since the focus of
our paper, consistently with the literature, is on the trade-off between their size and
their stretch factor.

140 D. Bilo et al.

by making use of the vast literature on additive (1, 3)-spanners. For instance,
the (1,4)-spanner of size O(ns polylog(n)) given in [6], and the (1, 6)-spanner of
size O(n3) given in [2], can be used to build corresponding vertex-fault-tolerant
structures. Another interesting implication arises for the multisource EABFS prob-
lem. Indeed, given a set of multiple sources S C V(G), the («, 8)-spanner of size
o can be used to build a multisource (a, 8)-EABFS of size O(n - |S| 4+ o). This
allows to improve, for |S| = w(n s polylog(n)), the multisource (1,4)-EABFS of
size O(n3 - |S|) given in [13]: indeed, it suffices to plug-in in our method the
(1,4)-spanner of size O(n polylog(n)) given in [6].

Other related results. Besides fault-tolerant (approximate) SPT and BFS, there
is a large body of literature on fault-tolerant short(est) paths in graphs. A
natural counterpart of the structures considered in this paper, as we have seen
before, are the DSO. For recent achievements on DSO, we refer the reader to [4,8],
and more in particular to [3,10], where single-source distances are considered.
Another setting which is very close in spirit to ours is that of fault-tolerant
spanners. In [7], for weighted graphs and any integer k > 1, the authors present
a (2k — 1,0)-spanner resilient to f vertex (resp., edge) failures of size O(f? -
I p 4k ogt = VR n) (resp., O(f -n'+1/%)). This was later improved through
a randomized construction in [9]. On the other hand, for the unweighted case, in
[5] the authors present a general result for building a (1, O(f - (o + 3)))-spanner
resilient to f edge failures, by unioning an ordinary (1, 8)-spanner with a fault-
tolerant (c, 0)-spanner resilient against up to f edge faults. Finally, we mention
that in [1] it was introduced the resembling concept of resilient spanners, i.e.,
spanners such that whenever any edge in G fails, then the relative distance
increases in the spanner are very close to those in G, and it was shown how to
build a resilient spanner by augmenting an ordinary spanner.

2 Notation

We start by introducing our notation. For the sake of brevity, we give it for the
case of edge failures, but it can be naturally extended to the node failure case.

Given a non-negatively real weighted, undirected, and 2-edge-connected graph
G, we will denote by wg(e) or we (u, v) the weight of the edge e = (u,v) € E(G).
We also define w(G) = > cp(q) w(e). Given an edge e = (u,v), we denote by
G —eor G — (u,v) (resp., G+ e or G+ (u,v)) the graph obtained from G by
removing (resp., adding) the edge e. Similarly, for a set F' of edges, G — F' (resp.,
G + F) will denote the graph obtained from G by removing (resp., adding) the
edges in F.

We will call mg(x,y) a shortest path between two vertices z,y € V(G),
dg(z,y) its (weighted) length, and Tg(s) a SPT of G rooted at s. Whenever
the graph G and/or the vertex s are clear from the context, we might omit
them, i.e., we will write 7(u) and d(u) instead of g (s, u) and dg(s,u), respec-
tively. When considering an edge (x,y) of an SPT we will assume x and y to be
the closest and the furthest endpoints from s, respectively.

Fault-Tolerant Approximate Shortest-Path Trees 141

Algorithm 1. Algorithm for building an (1 + €)-EASPT
Input : A graph G, s € V(G),e>0
Output: A (1 + €)-EASPT of G rooted at s

1 H + compute a 3-EASPT of size O(n) using the algorithm in Sect. 3.1.1 of [11].
2 for e € E(Tc(s)) in preorder w.r.t. Ta(s) do

3 for t € V(G) in preorder w.r.t. T;°(s) do

4 if d;°(t) > (14 ¢)ds°(t) then /* vertex t is bad for edge e */
5 Select a set of edges S C E(wg;°(t)) (see details after Lemma 1)

6 H+<H+S

7 return H

Given an edge e € E(G), we define n;%(z,y), dz°(x,y) and T;%(s) to be,
respectively, a shortest path between x and y, its length, and a SPT in the
graph G — e. Moreover, if P is a path from z to y and @ is a path from y to z,
with z,y,2 € V(G), we will denote by P o @ the path from z to z obtained by
concatenating P and Q.

Given G, a vertex s € V(G), and an edge e = (u,v) € E(T(s)), we denote
by Ug(e) and Dg(e) the partition of V(G) induced by the two connected com-
ponents of T(G) — e, such that Ug(e) contains s and u, and Dg(e) contains v.
Then, Cg(e) = {(z,y) € E(G) : z € Ug(e),y € Dg(e)} will denote the cutset
of e, i.e., the set of edges crossing the cut (Ug(e), Dg(e)).

For the sake of simplicity we consider only edge weights that are strictly posi-
tive. However our entire analysis also extends to non-negative weights. Through-
out the rest of the paper we will assume that, when multiple shortest paths exist,
ties will be broken in a consistent manner. In particular we fix a SPT T = T(s)
of G and, given a graph H C G and x,y € V(H), whenever we compute the path
my(z,y) and ties arise, we will prefer the edges in E(T"). We will also assume
that if we are considering a shortest path mpy(z,y) between z and y passing
through vertices 2’ and y’, then 7wy (a',y") C wy(x,y).

3 A (1 4+ €)-EASPT Structure

First, we give a high-level description of our algorithm for computing a (1 + £)-
EASPT (see Algorithm 1). We build our structure, say H, by starting from an
SPT T rooted at s which is suitably augmented with at most n—1 edges in order
to make it become a 3-EASPT. Then, we enrich H incrementally by considering
the tree edge failures in preorder, and by checking the disconnected vertices.
When an edge e fails and a vertex ¢t happens to be too stretched in H — e w.r.t.
its distance from s in G — e, we add a suitable subset of edges to H, selected
from the new shortest path to t. This is done so that we not only adjust the
distance of ¢, but we also improve the stretch factor of a subset of its predecessors.
This is exactly the key for the efficiency of our method, since altogether, up to a
logarithmic factor, we maintain constant in an amortized sense the ratio between
the size of the set of added edges and the overall distance improvement.

142 D. Bilo et al.

Let us now provide a detailed description of our algorithm. To build the
initial 3-EASPT, it augments T by making use of a swap algorithm devised in
[11]. More precisely, in that paper the authors were concerned with the problem
of reconnecting in a best possible way (w.r.t. to a set of distance criteria) the
two subtrees of an SPT undergoing an edge failure, through a careful selection
of a swap edge, i.e., an edge with an endvertex in each of the two subtrees. In
particular, they show that if we select as a swap edge for e = (u,v) — with u
closer to the source s than v — the edge that lies on a shortest path in G — e from
s to v, then the distances from the source towards all the disconnected vertices
is stretched at most by a factor of 3.2 Therefore, a 3-EASPT of size at most 2n
can be obtained by simply adding to a SPT rooted at s a such swap edge for
each corresponding tree edge, and interestingly this improves the 3-EASPT of size
at most 4n provided in [13].

Then, our algorithm works in n — 1 phases, where each phase considers an
edge of T w.r.t. to a fixed preorder of the edges, say e1,...,e,_1. In the h-th
phase, the algorithm considers the failure of ej, and when a vertex ¢t happens to
be too stretched in H w.r.t. d=¢»(t), then we say that ¢ is bad for ej, and we add
a suitable subset S of edges to H. These edges are selected from 7~ (¢) and
they always include the last edge of 7~°"(¢). We now show that this suffices to
prove the correctness of the algorithm:

Lemma 1. The structure H returned by the algorithm is a (1 + €)-EASPT.

Proof. Let H be the structure built by the algorithm just before a bad vertex
t for an edge ey, is considered. Assume by induction that, for every vertex z in
T (s) already considered in phase h, we have d-*"(z) < (1 +¢)d™“"(t). Let

f = (z,t) be the last edge of 7~°(t) and recall that f is always added to H.
Hence we have:

A (1) < A (6) < e (2) + w(f) < (1+€)d™* (2) + w(f)
<A+ d () +d " (z,8) = (1+e)d " (t). O

It remains to describe the edge selection process and to analyze the size of
our final structure. Let Hy be the initial 3-EASPT structure. Let us fix the failed
edge e = (u,v) and a single bad vertex ¢ for e. We call H' the structure built
by the algorithm just before ¢ is considered. Let f = (x,y) be the unique edge
in Cgq(e) N E(m;°(t)). Consider the subpath of m°(¢) going from z to ¢t and let
Zo,T1,-..,%, be its vertices, in order. We consider the set Z = {z; : (x;_1,;) &
E(Hy)}, we name its vertices z1,...,2; with k = |Z| — 1, in order and we let

Z’};Ez; It follows from the definitions and
from Lemma 1 that we have ap =1, a; < (1+¢) for 1 <j <k and a > 1+e.
Think of the edges in 77¢(¢) as being directed towards ¢ for a moment. In the

following we will describe how to select the set S of edges used by the algorithm.

zo = « (see Figure 1). We define o; =

3 Actually, in [11] it is not explicitly claimed the 3-stretch factor, but this is implicitly
obtained by the qualitative analysis of the swap procedure therein provided.

Fault-Tolerant Approximate Shortest-Path Trees 143

Fig. 1. Edge selection phase of Algorithm 1 when a bad vertex ¢ for the failing edge e
is considered. Bold edges belong to Ho while the black path is w5°(t).

In particular, we will select n > 1 edges entering into the last n vertices in Z.
This choice of S will ensure that the overall decrease of the values «; in H' 4+ S
will be at least ;nn where H,, denotes the n-th harmonic number.

We exploit the fact that, after adding the set S, each “new value” «; with
i >k —n = j, will not be larger than «; as we will show in the following.

Consider the sequence g, ...,vx where y; = 1+ qjk (Hy — Hi—s). Notice that
the sequence is monotonically increasing from v = 1toy, = 1+e. Let 0 < j < k
be the largest index such that «; < ;. Notice that j always exists as ag = o
and that oy > v5. We set n = k — j so that the set S is defined accordingly. Let
U ={2j41,...,2,} be the set of vertices for which an incoming edges has been
added in S.

For every vertex z € U we define the following path in H' + S: P(z) =
7 (zj) om(z;, 2). Notice that 7(z;, z) is entirely contained in H' 4+ S. We define
o = wP(z)

i de(a) and note that o/ is an upper bound to the stretch of z in H' + S.
Lemma 2. Fori>j, of < o < a;.
Proof. By definition of j, we have a; < 7; < v; < a;. Now we prove o < a;:

_ w(P(2)) _ dyi(z) +d(z,20) _oyd™(2) +d (2, 2) _ oyd™(z) _
d=<(z) d=<(z) - d=e(zi) Tode(z) "

a

We now lower-bound the overall decrease of the values «}’s w.r.t. the corre-
sponding «;’s by using the following inequalities:

d5(z w(P(z k) k k
2 (dH“’EZ; - d(eiz;)) =D (w—a)z) (@—ay)z) (n—)

zeU i=j+1 i=j+1 i=j+1
k
13 13 13
- Hpi —Hpi)= - (k—4)> " n
kZug ki) = o J)_Hnﬂ

144 D. Bilo et al.

where in the last but one step we used the well-known equality that for every
J<k, Z?:jJrl (He—j — He—i) =k — .

The above selection procedure is repeated by the algorithm for every failed
edge ey, and for every corresponding bad vertex. We now focus on the h-th phase
of the algorithm. Let U}, be the union of all the sets U used when considering the
bad vertices of the phase h. Moreover let V}, = U?Zl U, and notice that Vy = 0.
For a vertex z € Up, let Py(z) be the last path P(z) built by the algorithm, as
defined above. Let H}, (resp., H}) be the structure built by the algorithm at the
end (resp., start) of the phase h and let my;, be the number of new edges added
during the phase h. By summing over all the bad vertices for edge e, we have:

A" (2) w(Py(2)) €
Lemma 3. — > my, .
pof (i)
Now, let us define a function ¢, (2) for every z € V:
0 ifz¢V,
¢h(2’) = ’w(P}L(Z)) if z € Uy,

th,l(z) if z c Vh\Uh
The proofs of next three lemmas are postponed to the full version of the paper.
Lemma 4. For every z € Uy, we have dg" (2) < 2da(z).
Lemma 5. For z € Vi1, ¢p_1(2) > d;{Z"(z)

Lemma 6. For z € Uy, d;ﬁ’(z) > w(Py(2)).

We now prove the following:
¢h 1 ¢h € 6
Lemma 7. —|Up \ Vi
> Z Mgy Un \ Vi |
z€Up
Proof. By Lemmas 3-6, and since the initial structure Hy is a 3-EASPT, we have:

¢h 1(¢h(z) n-1(2) _ ¢n(2) n-1(2) _ on(2)
2 Z o 2 2 (d(z) d(z))+Z (d(z) d(z))

zeUy, zeUpNVy, _ z€UR\Vh_1

w2 ge () on(2)
> > (d(z) SRR D DI

2E€EULNV)_1 2€Up\Vp_1
A" () (P, (2)) A" () w(Py(2) Ay (2)
:EU};Vh,—l(d(2) B d(z) tEUhX\;/h,—l d(2) B d(z) ZEUhZ\:Vh—l()
dp;" (2) w(Ph(z») (drﬁ”z) w(Ph(z») 3d=°n (2)
> h - + " - -
o (d-w o) | T2 e a2)

") w(pi(2)) 324(z) : 6
> 2 (d_eh(z) Cdmen(z) -2 dz) =My, TIURAVRl oD

z€Up\Vh_1

Fault-Tolerant Approximate Shortest-Path Trees 145

We now define a global potential function &:
Z ¢h
2€Vh,
for 0 < h < n — 1. Notice that we trivially have &(h) > 0.

Theorem 1. The structure H returned by the algorithm is a (1 + €)-EASPT of
size O(”log").

Proof. The fact that H is a (1+¢)-EASPT follows from Lemma 1. Concerning the
size of H, since Hy contains O(n) edges, we only focus on bounding the number

= Zz;i my, of edges in E(H) \ E(Hy). Using Lemma 7, we can write:

ZORD SRR DR

z€V;_1\U; zeU;
_ ¢Z 1 ¢z 1 ¢z 1 sz
S ORLTIAES SLI R PoR R ol i)
zeV;_1\U; zeU; zeU; zeU;
bi-1(2) pi-1(z) bi-1(2) € 6
< - _
< Z d(z) + Z d(2) + Z d(2) thnJr\Uh\Vh 1‘6
zeV;_1\U; z€V; _1NU; 2, €U;\V;_1
. 6
<P(i—1) +O—mh7_fn + ‘Uh\vh—l‘g
Unfolding the previous recurrence relation we obtain:
6 n—1 c
()§Q5(nfl)§|Vn,1|5 th<n —an
which we finally solve for u to get pu = O(”log"). O

4 A (14 €)-VASPT Structure

In this section we extend our previous (1 + €)-EASPT structure to deal with
vertex failures. In order to do so we will build a different subgraph Hy having
suitable properties that we will describe. Then we will use the natural extension
of Algorithm 1 where we consider (in preorder) vertex failures instead of edge
failures. We now describe the construction of Hy and then argue how the previous
analysis can be adapted to show the same bound on the size of H.

The structure Hy is initially equal to T" and it is augmented by using a tech-
nique similar to the one shown in [3]: the SPT T of G is suitably decomposed
into ancestor-leaf vertex-disjoint paths. Then, for each path, an approximate
structure is built. This structure will provide approximate distances towards
any vertex of the graph when any vertex along the path fails. The union of T’
with all those structures will form Hy.

146 D. Bilo et al.

Fig. 2. Edge selection phase of the vertex-version of Algorithm 1 when a bad vertex ¢
for the failing vertex u is considered. Bold edges belong to Ho while the black path is
m"(t). Notice that all z;s belong to the down set D.

Fix a path @ of the previous decomposition starting from a vertex ¢, and let
T, be the subtree of T rooted at g. Moreover, let u € V(Q) be a failing vertex,
and let v be the next vertex in Q. We partition the vertices of the forest T — u
into three sets: (i) the up set U containing all the vertices of the tree rooted at
s, (i) the down set D containing all the vertices of the tree rooted at v, and (iii)
the others set O containing all the remaining vertices (see Figure 2).

We want to select a set of edges to add to H. In order to do so, we construct
a SPT T’ of G —wu and we imagine that its edges are directed towards the leaves.
We select all the edges of E(T”) \ E(T) that do not lead to a vertex in D, plus
the unique edge of 7~%(v) that crosses the cut induced by the sets UUO and D.
Notice that T'—u contains all the paths in 7" towards the vertices in U, and that
each vertex has at most one incoming edge in T”. This implies that the number
of selected edges is at most |O] + 1.

The above procedure is repeated for all the failing vertices of @, in order. As
the sets O associated with the different vertices are disjoint we have that, while
processing @, at most |V (Ty)| +|Q| = O(|V (T,)|) edges are selected. We use the
path decomposition described in [3] that can be recursively defined as follows:
given a tree, we select a path @ from the root to a leaf such that the removal of
Q splits the tree into a forest where the size of each subtree is at most half the
size of the original tree. We than proceed recursively on each subtree. Using this
approach, the size of the entire structure Hy can be shown to be O(nlogn) [3].

We now prove some useful properties of the structure Hy. First of all, observe
that, by construction and similarly to the edge-failure case, we immediately have:

1 W.l.o.g. we are assuming that the failing vertex u is not a leaf, as otherwise T' — u
is already a SPT of G — u.

Fault-Tolerant Approximate Shortest-Path Trees 147

Lemma 8. Consider a failed vertex w and another vertexr z # u. We have: (i)
dyi(v) = d~"(v), and (i) for z € D, it holds d(z) < 3d~"(2).

Moreover, we also have the following (proof postponed to the full version of
the paper):

Lemma 9. Consider a failed vertex w. During the execution of the vertex-version
of Algorithm 1, every bad vertex t for u will be in D.

At this point, the same analysis given for the case of edge failures can be
retraced for vertex failures as well. We point out that Lemma 9 ensures that
every bad every for u is in the same subtree as v. Also notice that all the
vertices z;’s are, by definition, in the same subtree as well (see Figure 2). The
above, combined with Lemma 8 (i), is needed by the proof of Lemma 4, while
Lemma 8 (ii) is used in the proof of Lemma 7. Hence we have:

Theorem 2. The vertex-version of Algorithm 1 computes a (1 + £)-VASPT of

size O(”lgzg").

5 Relation with («, 3)-Spanners in Unweighted Graphs

In this section we turn our attention to the unweighted case, and we provide two
polynomial-time algorithms that augment an («, 8)-spanner of G so to obtain
an («, §)-EABFS/VABFS. We present the algorithm for the vertex-failure case and
show how it can be adapted to the edge-failure case.

The algorithm first augments the structure Hy computed so as explained in
Section 4 and then adds its edges to the («, 8)-spanner of G. The structure Hy
is augmented as follows. The vertices of the BFS of G rooted at s are visited
in preorder. Let u be the vertex visited by the algorithm and let D be the
set of vertices of the tree defined so as explained in Section 4 w.r.t the path
decomposition computed for Hy. For every t € D, the algorithm checks whether
T5"(s,t) contains no vertex of D\ {t} and dg"(s,t) < dp'(s,t). If this is the
case, then the algorithm augments Hy with the edge of 7;"(s,t) incident to ¢.

The following observation is crucial to prove the algorithm correctness.

Fact 1. For every vertex u and every vertex t € V(G) \ {u} such that ©5"(t)
contains a vertex in D, let x and y be the first and last vertex of m5"(t) that
belong to D, respectively. We have dy(x) = dg"*(z) and dig(y,t) = dg5"(y,t).

We can now give the following (proof postponed to the full version of the
paper):

Theorem 3. Given an unweighted graph G with n vertices and m edges, a
source vertex s € V(G), and an («, §)-spanner for G of size 0 = o(n,m), the
algorithm computes an («, 3)-VABFS w.r.t. s of size O(O’ + nlog n)

148 D. Bilo et al.

Now, we adapt the algorithm to prove a similar result for the («, 3)-EABFS.
The algorithm first augments a BFS tree T of G rooted at s and then adds its
edges to the («, 8)-spanner of G. The tree T is augmented by visiting its edges
in preorder. Let e be the edge visited by the algorithm. For every ¢ € Dg(e),
the algorithm checks whether 7;°(s,t) contains no vertex of Dg(e) \ {t} and
dsf(s,t) < dp(s,t). If this is the case, then the algorithm augments T with the
edge of m;°(s,t) incident to t. In the full version of the paper it will be shown
that the proof of Theorem 3 can be adapted to prove the following:

Theorem 4. Given an unweighted graph G with n vertices and m edges, a
source vertex s € V(G), and an («, B)-spanner for G of size o, the algorithm
computes an (a, §)-EABFS w.r.t. s of size less than or equal to o + 3n.

References

1. Ausiello, G., Franciosa, P.G., Italiano, G.F., Ribichini, A.: On Resilient Graph
Spanners. In: Bodlaender, H.L., Italiano, G.F. (eds.) ESA 2013. LNCS, vol. 8125,
pp. 85-96. Springer, Heidelberg (2013)

2. Baswana, S., Kavitha, T., Mehlhorn, K., Pettie, S.: Additive spanners and («, /3)-
spanners. ACM Trans. on Algorithms 7, A.5 (2010)

3. Baswana, S., Khanna, N.: Approximate shortest paths avoiding a failed vertex:
near optimal data structures for undirected unweighted graphs. Algorithmica 66(1),
18-50 (2013)

4. Bernstein, A., Karger, D.R.: A nearly optimal oracle for avoiding failed vertices
and edges. In: Proc. of the 41st Symp. on the Theory of Computing (STOC 2009),
pp. 101-110. ACM Press (2009)

5. Braunschvig, G., Chechik, S., Peleg, D.: Fault Tolerant Additive Spanners. In:
Golumbic, M.C., Stern, M., Levy, A., Morgenstern, G. (eds.) WG 2012. LNCS,
vol. 7551, pp. 206-214. Springer, Heidelberg (2012)

6. Chechik, S.: New additive spanners. In: Proc. of the 24th Symp. on Discrete
Algorithms (SODA 2013), pp. 498-512. ACM Press (2013)

7. Chechik, S., Langberg, M., Peleg, D., Roditty, L.: Fault-tolerant spanners for
general graphs. In: Proc. of the 41st Symp. on the Theory of Computing (STOC
2009), pp. 435-444. ACM Press (2009)

8. Chechik, S., Langberg, M., Peleg, D., Roditty, L.: fSensitivity Distance Oracles
and Routing Schemes. In: de Berg, M., Meyer, U. (eds.) ESA 2010, Part I. LNCS,
vol. 6346, pp. 84-96. Springer, Heidelberg (2010)

9. Dinitz, M., Krauthgamer, R.: Fault-tolerant spanners: better and simpler. In:
Proc. of the 30th Symp. on Principles of Distributed Computing (PODC 2011),
pp. 169-178. ACM Press (2011)

10. Grandoni, F.; Williams, V.V.: Improved distance sensitivity oracles via fast single-
source replacement paths. In: Proc. of the 53rd Annual IEEE Symp. on Foundations
of Computer Science (FOCS 2012), pp. 748-757 (2012)

11. Nardelli, E., Proietti, G., Widmayer, P.: Swapping a failing edge of a single source
shortest paths tree is good and fast. Algorithmica 36(4), 361-374 (2003)

12. Parter, M., Peleg, D.: Sparse fault-tolerant BFS trees. In: Bodlaender, H.L.,
Italiano, G.F. (eds.) ESA 2013. LNCS, vol. 8125, pp. 779-790. Springer, Heidelberg
2013

13. %’artez, M., Peleg, D.: Fault tolerant approximate BFS structures. In: Proc. of
the 25th Symp. on Discrete Algorithms (SODA 2014), pp. 1073-1092. ACM Press
(2014)

Fast Witness Extraction Using a Decision
Oracle*

Andreas Bjorklund!, Petteri Kaski?, and Lukasz Kowalik®

! Department of Computer Science, Lund University, Sweden
2 Helsinki Institute for Information Technology HIIT, Department of Information
and Computer Science, Aalto University, Finland
3 Institute of Informatics, University of Warsaw, Poland

Abstract. The gist of many (NP-)hard combinatorial problems is to
decide whether a universe of n elements contains a witness consisting of
k elements that match some prescribed pattern. For some of these prob-
lems there are known advanced algebra-based FPT algorithms which
solve the decision problem but do not return the witness. We investigate
techniques for turning such a YES/NO-decision oracle into an algorithm
for extracting a single witness, with an objective to obtain practical scal-
ability for large values of n. By relying on techniques from combinatorial
group testing, we demonstrate that a witness may be extracted with
O(klog n) queries to either a deterministic or a randomized set inclusion
oracle with one-sided probability of error. Furthermore, we demonstrate
through implementation and experiments that the algebra-based FPT
algorithms are practical, in particular in the setting of the k-path prob-
lem. Also discussed are engineering issues such as optimizing finite field
arithmetic.

1 Introduction

The gist of many (NP-)hard combinatorial problems is to decide whether a uni-
verse of n elements contains a witness consisting of k elements that match some
prescribed pattern. In the positive case this is naturally followed by the task of
extracting the elements of one such witness.

As a result of advances in fixed-parameter tractability, many such hard prob-
lems are now known to admit algorithms that run in linear (or low-order polyno-
mial) time in the size of the universe n, and where the complexity of the problem
can be isolated to the size of the witness k. That is, the running times obtained
are of the form O(f(k) - n) for some rapidly growing function f(k) of k. This
makes such algorithms ideal candidates for practical applications that must con-
sider large inputs, that is, large values of n. For example, a recent randomized
algorithm for the k-sized graph motif problem runs in time O(28k%(logk)? - e),
where e is the number of edges in the input graph [2].

* P.K. supported by the Academy of Finland, grants 252083 and 256287.
L.K. supported by National Science Centre of Poland, grant number UMO-
2013/09/B/ST6,/03136.

A.S. Schulz and D. Wagner (Eds.): ESA 2014, LNCS 8737, pp. 149-160, 2014.
© Springer-Verlag Berlin Heidelberg 2014

150 A. Bjorklund, P. Kaski, and L. Kowalik

Despite scalability to large inputs, some such advanced parameterized algo-
rithms (like the ones for graph motif [2] or for k-path [1]) have an inherent
handicap from a concrete algorithm engineering perspective. They only solve the
decision problem. In applications, however, one needs access to the witnesses,
which puts forth the question whether one can efficiently extract a witness or
list all witnesses, using the algorithm for the decision problem as an oracle (black-
box subroutine), and without losing the scalability to large inputs.

This paper studies the question of efficiently turning a decision oracle into an
algorithm for witness extraction over the universe U = {1,2,...,n}. Let F C 2V
be the (unknown) family of witnesses. We focus on the following oracle:

Inclusion oracle. Given a query set Y C U, the oracle answers (either YES
or NO) whether there exists at least one witness W € F such that W C Y.
We can motivate this type of oracle by observing that most problems have
natural self-reducibility that we can use to narrow down the universe from
U to Y (e.g. take the subgraph induced by the set Y of vertices) and then
run the decision algorithm.

In the oracle setting there are at least two natural ways to measure the effi-
ciency of witness extraction.

Number of oracle queries. This measure has been extensively studied in the
domain of combinatorial group testing [7], where the canonical task is to
identify k defective items from a population of n items, with the objective
of minimizing the number of tests! (oracle queries) required to identify all
the defectives. While this measure does not reflect accurately the amount of
computing resources invested in our context—indeed, different oracle queries
in general do not use the same amount of resources—the group testing per-
spective enables information-theoretic lower bounds and supplies useful al-
gorithmic techniques for extraction.

Total running time. Assuming we have bounds on the running time of the
oracle as a function of n and &, we can bound the running time of extraction
of witnesses by taking the sum of the running times of the oracle queries. It
turns out that we get fair control over the total running time already if we
know that the running time of the oracle scales at least linearly in n.

The objectives of this paper are threefold. (a) First, we draw from techniques
in classical group testing to arrive at efficient witness extraction algorithms for
inclusion oracles both in deterministic and in randomized settings with one-sided
error. (b) Second, we show examples of parameterized problems which can be
solved efficiently in practice by a combination of an FPT decision oracle and a
group-testing algorithm; in particular, for the k-path problem our experimental
results show that one can find a 14-vertex witness in a 2000-vertex graph within
a minute on a typical laptop. (c) Third, we discuss some non-obvious choices we
made during the implementation: namely the choice of the GF(27) arithmetic

! In the setting of classical group testing, a single test on a set of items determines
whether the set contains at least one defective item.

Fast Witness Extraction Using a Decision Oracle 151

implementation; we believe our findings might be useful for implementations of
other algorithms applying GF(29) arithmetic.

To set up a trivial baseline for performance comparisons, it is not difficult to
see that ©(n) queries to an inclusion oracle suffice to extract a witness—simply
delete points from the universe one by one, with each deletion followed by an
oracle query on the remaining points. If the oracle answers NO, we know the
deleted point was essential and insert it back. When the process finishes the
points that remain form a witness. This, however, is not particularly efficient
since each oracle query costs at least O(f (k) - n) time, raising the total running
time to O(f(k) - n?) and making the approach impractical for large n.

Our Results on Extraction. We begin by transporting techniques from group
testing [7] to arrive at more efficient witness extraction. Our first contribution
merely amounts to observing that the so-called bisecting algorithm [6] can be
translated to work with an inclusion oracle and in the presence of one or more
witnesses. We also observe that taking into account the total running time of
the algorithm, the baseline cost of a factor O(n) in running time can be lowered
to O(k) if the running time of the oracle is at least linear in n, which is the case
in most applications. These observations are summarized in Theorem 1.1.

Let F be a nonempty family witnesses, each of size at most k, over an n-
element universe, n, k > 1. We say that a function g : N — N is at least linear if
for all ny,no € N it holds that g(n1) + g(n2) < g(n1 + ne).

Theorem 1.1 (Deterministic Extraction). There exists an algorithm that
extracts a witness in F without knowledge of k using at most

Qn, k) = 2k (1og2 Z + 2)

queries to a deterministic inclusion oracle. Moreover, suppose the oracle runs
in time T'(n,k) = O(f(k)g(n)) for a function g that is at least linear. Then,
there exists an algorithm that extracts a witness in F in time O(k - T(2n,k)) =

O(f(k) - k- g(2n)).

Currently the fastest known parameterized algorithms in many cases use ran-
domization. Thus in practice one must be able to cope with decision oracles that
may give erroneous answers, for example it is typically the case that the decision
algorithm produces false negatives with at most some small probability, but false
positives do not occur [1,2,13,12].

Let us assume that the probability of a false negative is p < 411' Beyond the
absence of false positives, a further observation to our advantage is that typically
witnesses may be checked, deterministically, and essentially at no computational
cost compared with the execution of even one oracle query. That is, we have
available a subroutine that takes a candidate witness W C U as input and
returns whether W € F. We make this assumption in what follows. Thus having
access to a randomized inclusion oracle enables deterministic extraction, but with
randomized running time. These observations are summarized in Theorem 1.2.

152 A. Bjorklund, P. Kaski, and L. Kowalik

Theorem 1.2 (Las Vegas Extraction). There exists an algorithm that extracts
awitness in F without knowledge of k using in expectation at most O(klogn) queries
to a randomized inclusion oracle that has no false positives but may output a false
negative with probability at most p < 411' Moreover, suppose the oracle runs in time
T(n,k) = O(f(k)g(n)) for a function g that is at least linear. Then, there exists an
algorithm that extracts a witness in F in time O(k - T (2n, k) + (klogk) - T'(2k, k)).

An Example Application: k-Path. The k-path problem is one of the basic
NP-complete problems, a natural parameterized version of the Hamiltonian Path
problem. In this problem we are given an undirected connected graph G = (V| E),
and a natural number k. The goal is to find a simple path on k vertices in G.
Denote by n = |V| and m = |E|. In terms of dependence on k, the currently
fastest algorithm is due to Bjorklund, Husfeldt, Kaski, and Koivisto [1] and can
be tuned to run in 1.66*k°(Mm time. It uses algebraic tools and only solves the
corresponding decision problem. We applied a simplified version of this algorithm,
slightly easier to implement, which runs in O(2¥km) time, assuming that finite
field arithmetic operations take constant time (cf. [4]). The algorithm evaluates a
certain polynomial of degree d = 2k — 1 over the finite field GF(2?), which turns
out to be a generating function of all witnesses. The algorithm is randomized,
and it may return a false negative. The failure probability is bounded by %2;1,
hence by choosing ¢ large enough we can assume it is at most i, as required by
Theorem 1.2.

Our universe U is the set of edges of the input graph and we are extracting
witnesses with exactly k — 1 edges. By Theorem 1.2 we obtain an algorithm with
expected running time O(2¥k? - m) for witness extraction.

However, when we consider actual implementation the above approach should
be refined as follows. First set the universe U to be the set of vertices and find
the set of k vertices S which contains a k-vertex path. Next, set the universe
U to be the set of edges in the induced graph G[S], and find the witness. By
Theorem 1.2, for dense graphs this can give a factor two speed-up.

Further applications in FPT algorithms will be presented in a full version of
this work.

Related and Previous Work. The relations between the time complexity
of decision problems and their search versions were studied by Fellows and
Langston [9].

Independently of our work, Hassidim, Keller, Lewenstein, and Roditty [11]
presented a randomized algorithm that extracts a witness for the (weighted) k-
path problem using O(klogn) calls to a decision oracle, in expectation. Their
approach is to discard random subsets (of size n/k) of the vertex set as long as
the resulting instance still contains the solution. The bisecting algorithm [6] that
we extend in this paper can be seen as a cleaner version of this idea. First, in the
bisecting algorithm larger sets get discarded. Second, the bisecting algorithm is
deterministic. Hassidim et al. do not analyze how the time of their algorithm
is influenced by the fact that the oracle is randomized. From an asymptotic
perspective this is not needed because one can repeat each oracle call multiple
times to reduce the error probability below an arbitrary threshold. However, in

Fast Witness Extraction Using a Decision Oracle 153

"
0 . 3n 10° - v 15min
. A —e fifo o
/" o dosn m-m HKLR L 10min
- o 10min L
e n -
& - 3min
J . 3min S /
10? 7 T il .
! . // 1min :
/ : -

/ / 1min
, . / 30s
10° A 1s

» / 10 10s
. /./ e fifo 03s
10 & divide & color]g ;¢ 5

u- & HKLR

Running time [s]
.
Running time [s]

10 12 14 16 1803 100 250 500 1000 2500 5000 10000
Path size (number of vertices) Graph size (number of vertices)

A . 3min 10°