
Andreas S. Schulz
Dorothea Wagner (Eds.)

 123

22nd Annual European Symposium
Wroclaw, Poland, September 8–10, 2014
Proceedings

Algorithms –
ESA 2014LN

CS
 8

73
7

AR
Co

SS

Lecture Notes in Computer Science 8737
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison, UK

Josef Kittler, UK

Alfred Kobsa, USA

John C. Mitchell, USA

Oscar Nierstrasz, Switzerland

Bernhard Steffen, Germany

Demetri Terzopoulos, USA

Gerhard Weikum, Germany

Takeo Kanade, USA

Jon M. Kleinberg, USA

Friedemann Mattern, Switzerland

Moni Naor, Israel

C. Pandu Rangan, India

Doug Tygar, USA

Advanced Research in Computing and Software Science

Subline of Lectures Notes in Computer Science

Subline Series Editors

Giorgio Ausiello, University of Rome ‘La Sapienza’, Italy

Vladimiro Sassone, University of Southampton, UK

Subline Advisory Board

Susanne Albers, University of Freiburg, Germany

Benjamin C. Pierce, University of Pennsylvania, USA

Bernhard Steffen, University of Dortmund, Germany

Deng Xiaotie, City University of Hong Kong

Jeannette M. Wing, Microsoft Research, Redmond, WA, USA

Andreas S. Schulz Dorothea Wagner (Eds.)

Algorithms –
ESA 2014
22nd Annual European Symposium
Wroclaw, Poland, September 8-10, 2014
Proceedings

13

Volume Editors

Andreas S. Schulz
Massachusetts Institute of Technology
Cambridge, MA, USA
E-mail: schulz@mit.edu

Dorothea Wagner
Karlsruhe Institute of Technology (KIT)
Karlsruhe, Germany
E-mail: dorothea.wagner@kit.edu

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-662-44776-5 e-ISBN 978-3-662-44777-2
DOI 10.1007/978-3-662-44777-2
Springer Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014947982

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

© Springer-Verlag Berlin Heidelberg 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in ist current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

This volume contains the extended abstracts selected for presentation at ESA
2014, the 22nd European Symposium on Algorithms, held in Wroc�law, Poland,
September 8–10, 2014, as part of ALGO 2014. The ESA series of conferences
highlights recent developments in the design, analysis, engineering, and applica-
tion of algorithms and data structures. Information on past symposia, including
locations and LNCS volume numbers, is maintained at http://esa-symposium.org.

Ever since 2002, ESA has had two tracks, the Design and Analysis Track, aka
Track A, intended for papers on the design and mathematical analysis of algo-
rithms, and the Engineering and Application Track (Track B), for submissions
dealing with real-world applications, engineering, and experimental analysis of
algorithms. In response to the call for papers, the program committee for Track
A received 221 submissions, 11 of which were eventually withdrawn; the Track B
program committee got 48 submissions. With the help of more than 800 expert
reviews and more than 400 external reviewers, the two committees selected 69
papers for inclusion in the scientific program of ESA 2014, 57 in Track A and 12
in Track B.

In addition, the symposium featured invited lectures by Thomas Rothvoß
(University of Washington, Seattle, USA) and Marc van Kreveld (Utrecht Uni-
versity, The Netherlands).

The European Association for Theoretical Computer Science, EATCS, spon-
sors a best student paper award and a best paper award at ESA. A submission is
eligible for the best student paper award if all authors were doctoral, master or
bachelor students at the time of submission. Joshua R. Wang received the best
student paper award for his work on “Space-Efficient Randomized Algorithms
for K-SUM”. The best paper award went to Pooya Davoodi, Jeremy T. Fine-
man, John Iacono, and Özgür Özkan for their paper entitled “Cache-Oblivious
Persistence”.

We are extremely grateful to the members of our program committees, to the
external reviewers, to the local organizers, and to Cool Press Ltd., the company
that owns and runs EasyChair, for all their hard work, help and support. We
also thank Andreas Gemsa (Karlsruhe Institute of Technology, Germany) for his
assistance in putting together the proceedings.

July 2014 Andreas S. Schulz
Dorothea Wagner

Organization

Program Committee

Design and Analysis (Track A)

Ittai Abraham Microsoft Research Silicon Valley, USA
Amihood Amir Bar-Ilan University, Israel
Marek Cygan University of Warsaw, Poland
Daniel Dadush NYU, USA
Ilias Diakonikolas University of Edinburgh, UK
Michael Elkin Ben-Gurion University, Israel
David Eppstein UC Irvine, USA
Fabian Kuhn University of Freiburg, Germany
Marc Lelarge Inria, France
Maarten Löffler Utrecht University, The Netherlands
Aleksander M ↪adry EPFL, Switzerland
Dániel Marx Hungarian Academy of Sciences, Hungary
Shay Mozes IDC Herzliya, Israel
Ofer Neiman Ben-Gurion University, Israel
Arlindo Oliveira Lisbon University, Portugal
Laura Sanità University of Waterloo, Canada
Andreas Schulz (chair) MIT, USA
Anastasios Sidiropoulos Ohio State University, USA
Rossano Venturini University of Pisa, Italy
László Végh LSE, UK
Jan Vondrák IBM Research Almaden, USA
David Woodruff IBM Research Almaden, USA
Rico Zenklusen ETH, Switzerland

Engineering and Applications (Track B)

Glencora Borradaile Oregon State University, USA
Ulrik Brandes University of Konstanz, Germany
Kevin Buchin TU Eindhoven, The Netherlands
Markus Chimani University of Osnabrück, Germany
Edith Cohen Microsoft Research Silicon Valley, USA
Giuseppe Di Battista Third University of Rome, Italy
Dan Halperin Tel Aviv University, Israel
Andrea Lodi University of Bologna, Italy
Giacomo Nannicini Singapore University of Technology and Design,

Singapore

VIII Organization

Kirk Pruhs University of Pittsburgh, USA
Christian Sohler TU Dortmund, Germany
Christian Sommer Cupertino, USA
Monique Teillaud Inria Sophia Antipolis, France
Takeaki Uno National Institute of Informatics Tokyo (NII),

Japan
Dorothea Wagner (chair) Karlsruhe Institute of Technology (KIT),

Germany

Additional Reviewers

Abed, Fidaa
Adamczyk, Marek
Adjiashvili, David
Afshani, Peyman
Ahmadian, Sara
Aichholzer, Oswin
Ailon, Nir
Ajwani, Deepak
Aloupis, Greg
Amit, Mika
An, Hyung-Chan
Anagnostopoulos, Aris
Andoni, Alexandr
Angelini, Patrizio
Angelopoulos, Spyros
Antoniadis, Antonios
Anunciação, Orlando
Araki, Tetsuya
Austrin, Per
Azar, Yossi
Ballard, Grey
Barenboim, Leonid
Bauer, Ulrich
Belovs, Aleksandrs
Ben Avraham, Rinat
Bevern, René Van
Beyer, Stephan
Bhaskar, Umang
Bhaskara, Aditya
Bhattacharya, Sayan
Bhattacharyya, Arnab
Biedl, Therese
Bienkowski, Marcin
Biro, Peter

Bliznets, Ivan
Bläsius, Thomas
Bock, Adrian
Bodlaender, Hans L.
Bonichon, Nicolas
Bonnet, François
Bonsma, Paul
Boria, Nicolas
Brauner, Nadia
Broutin, Nicolas
Buchin, Maike
Buriol, Luciana
Byrka, Jaroslaw
Cacchiani, Valentina
Cai, Leizhen
Cai, Yang
Calinescu, Gruia
Cao, Yixin
Carmi, Paz
Castelli Aleardi, Luca
Castro, Jorge
Cerulli, Raffaele
Chechik, Shiri
Chekuri, Chandra
Chen, Danny Z.
Chowdhury, Rezaul
Clementi, Andrea
Cohen, Ilan
Cohen, Sarel
Cohen-Steiner, David
Colin de Verdière, Éric
Cornelsen, Sabine
Costa, Alberto
Cunial, Fabio

Organization IX

Da Lozzo, Giordano
Daum, Sebastian
De, Anindya
Dell, Holger
Della Vedova, Gianluca
Delling, Daniel
Demetrescu, Camil
Dereniowski, Dariusz
Devillers, Olivier
Di Bartolomeo, Marco
Di Giacomo, Emilio
Didimo, Walter
Dinitz, Michael
Dlotko, Pawel
Doerr, Benjamin
Doty, David
Driemel, Anne
Duret-Lutz, Alexandre
Edwards, John
Ehsanfar, Ebrahim
El Hallaoui, Issmail
Elbassioni, Khaled
Elkind, Edith
Englert, Matthias
Epstein, Leah
Evans, William
Even, Guy
Faenza, Yuri
Fagerberg, Rolf
Farczadi, Linda
Feldman, Michal
Feldman, Moran
Feldmann, Andreas
Fertin, Guillaume
Fischer, Johannes
Fischetti, Matteo
Fleiner, Tamas
Fleszar, Krzysztof
Francisco, Alexandre
Friedrich, Tobias
Friggstad, Zachary
Fuchs, Fabian
Fujie, Tetsuya
Fukunaga, Takuro
Gagie, Travis

Galanis, Andreas
Gasieniec, Leszek
Gaspers, Serge
Gavoille, Cyril
Georgiadis, Loukas
Gkatzelis, Vasilis
Gog, Simon
Goldberg, David
Grandoni, Fabrizio
Green Larsen, Kasper
Grossi, Roberto
Gupta, Anupam
Gutwenger, Carsten
Hackl, Thomas
Haghpanah, Nima
Hajiaghayi, Mohammadtaghi
Halldorsson, Magnus M.
Halldórsson, Magnús
Har-Peled, Sariel
Hardt, Moritz
Harks, Tobias
Hassidim, Avinatan
Hedtke, Ivo
Heeringa, Brent
Hermelin, Danny
Hoefer, Martin
Hoy, Darrell
Huang, Chien-Chung
Huang, Zhiyi
Huber, Stefan
Höhn, Wiebke
Høyer, Peter
Iacono, John
Im, Sungjin
Imahori, Shinji
Italiano, Giuseppe F.
Ito, Takehiro
Jacob, Riko
Jaillet, Patrick
Jaklin, Norman
Jansen, Bart M.P.
Jerrum, Mark
Jeż, �Lukasz
Jin, Ruoming
Kamei, Sayaka

X Organization

Kamiński, Marcin
Kamma, Lior
Kane, Daniel
Kaplan, Haim
Kapralov, Michael
Karrenbauer, Andreas
Katoh, Naoki
Kavitha, Telikepalli
Kerber, Michael
Kern, Walter
Kesselheim, Thomas
Khandwawala, Mustafa
Khanna, Neelesh
Kierstad, Hal
Kim, Eun Jung
Kiraly, Tamas
Kiss, Sándor
Klein, Kim-Manuel
Klein, Shmuel Tomi
Knauer, Christian
Knust, Sigrid
Kobayashi, Koji M.
Kobayashi, Yusuke
Koike, Atsushi
Komosa, Pawe�l
Kontogiannis, Spyros
Kopelowitz, Tsvi
Kopparty, Swastik
Kortsarz, Guy
Korula, Nitish
Koutis, Ioannis
Kowalik, Lukasz
Kowalski, Dariusz
Kral, Daniel
Kranakis, Evangelos
Krauthgamer, Robert
Kreutzer, Stephan
Kriege, Nils
Krinninger, Sebastian
Kucherov, Gregory
Kumar, Amit
Kärkkäinen, Juha
Köhler, Ekkehard
Laekhanukit, Bundit
Laguna, Pablo

Lampis, Michael
Larkin, Daniel
Le, Hung
Leconte, Mathieu
Lee, Troy
Levin, Asaf
Lewi, Kevin
Li, Fei
Li, Shi
Liberti, Leo
Lim, Sejoon
Lodi, Andrea
Lokshtanov, Daniel
Lopez-Ortiz, Alejandro
Louis, Anand
Lovett, Shachar
Lucarelli, Giorgio
Ludovica, Adacher
M.S., Ramanujan
Mach, Lukas
Mahini, Hamid
Makowsky, Johann
Malec, David
Mambelli, Francesco
Maneva, Elitza
Manocha, Dinesh
Mastrolilli, Monaldo
Mathieu, Claire
Matuschke, Jannik
Mccauley, Samuel
McGregor, Andrew
Megow, Nicole
Mestre, Julian
Meyer, Ulrich
Mihalák, Matúš
Miltersen, Peter Bro
Mitani, Jun
Mittal, Shashi
Miyamoto, Yuichiro
Mnich, Matthias
Moldenhauer, Carsten
Morić, Filip
Mosteiro, Miguel
Mucha, Marcin
Mueller, Rudolf

Organization XI

Mulzer, Wolfgang
Nayyeri, Amir
Nederlof, Jesper
Nekrich, Yakov
Newport, Calvin
Nguyen, Huy
Nguyen, Thanh
Nicosia, Gaia
Niedermann, Benjamin
Nikolov, Aleksandar
Nöllenburg, Martin
Okamoto, Yoshio
Olver, Neil
Orlin, James
Osipov, Vitaly
Ossona De Mendez, Patrice
Ottaviano, Giuseppe
Oveis Gharan, Shayan
Ozkan, Ozgur
Pajor, Thomas
Panagiotou, Konstantinos
Panahi, Fateneh
Panigrahi, Debmalya
Paparas, Dimitris
Parriani, Tiziano
Parter, Merav
Paschos, Vangelis
Pasqualetti, Fabio
Pathak, Vinayak
Patil, Manish
Paulusma, Daniel
Peis, Britta
Pettie, Seth
Pfetsch, Marc
Phillips, Jeff
Piliouras, Georgios
Pilipczuk, Marcin
Pilipczuk, Michal
Pilz, Alexander
Poggi, Marcus
Poloczek, Matthias
Pontarelli, Salvatore
Porat, Ely
Pszona, Pawe�l
Puglisi, Simon

Pérennes, Stéphane
Radhakrishnan, Jaikumar
Raj Tiwary, Hans
Raman, Rajeev
Ranade, Abhiram
Rao, Michael
Rebennack, Steffen
Reem, Daniel
Reidl, Felix
Reyzin, Lev
Roditty, Liam
Roeloffzen, Marcel
Roma, Nuno
Roselli, Vincenzo
Rote, Günter
Russo, Lúıs
Rusu, Irena
Rutter, Ignaz
Röglin, Heiko
Saha, Barna
Saitoh, Toshiki
Sankowski, Piotr
Sarne, David
Sasakawa, Hirohito
Saumell, Maria
Saurabh, Saket
Schmid, Stefan
Schmidt, Daniel
Schwartz, Roy
Schwiegelshohn, Chris
Sen, Siddhartha
Shah, Rahul
Shaharabani, Doron
Shalev-Schwartz, Shai
Shannigrahi, Saswata
Shapira, Dana
Sharma, Ankit
Shioura, Akiyoshi
Silveira, Rodrigo
Singer, Yaron
Sinha, Amitabh
Sioutas, Spyros
Sitters, Rene
Sly, Allan
Smid, Michiel

XII Organization

Solomon, Shay
Son, Wanbin
Soto, Jose A.
Speckmann, Bettina
Spieksma, Frits
Srivastava, Piyush
Staals, Frank
Stefankovic, Daniel
Stein, Clifford
Storandt, Sabine
Strash, Darren
Strasser, Ben
Straszak, Damian
Streib, Noah
Sun, He
Sun, Xiaorui
Svensson, Ola
Swamy, Chaitanya
Tamir, Tami
Tarnawski, Jakub
Thankachan, Sharma V.
Thomopulos, Dimitri
Thorup, Mikkel
Tokuyama, Takeshi
Torng, Eric
Tripathi, Pushkar
Tsakalidis, Konstantinos
Tsichlas, Kostas
Tsur, Dekel
Tzamos, Christos
Uetz, Marc
Uno, Takeaki
Van Den Heuvel, Jan
Van Kreveld, Marc
van Leeuwen, Erik Jan
van Stee, Rob
van Zuylen, Anke
Vardi, Shai
Vassilevska Williams, Virginia
Venkatasubramanian, Suresh

Verbeek, Kevin
Verbitsky, Oleg
Verschae, José
Vigneron, Antoine
Viola, Emanuele
Viswanathan, Krishnamurthy
von Heymann, Frederik
Wagner, Uli
Wahlström, Magnus
Walen, Tomasz
Wang, Haitao
Wang, Yusu
Wang, Zhenbo
Weimann, Oren
Wenk, Carola
Werneck, Renato
Wieder, Udi
Wiedermann, Jiri
Wiese, Andreas
Wilkinson, Bryan T.
Wollan, Paul
Woods, Damien
Xie, Ning
Yamashita, Masafumi
Yannakakis, Mihalis
Yasuda, Norihito
Yasui, Yuichiro
Yeo, Anders
Yin, Yitong
Young, Neal
Yun, Se-Young
Zambelli, Giacomo
Zehendner, Elisabeth
Zhang, Qin
Zheng, Baigong
Zhou, Yuan
Zhu, Pingan
Ziv-Ukelson, Michal
Zwick, Uri
Zych, Anna

Table of Contents

Losing Weight by Gaining Edges . 1
Amir Abboud, Kevin Lewi, and Ryan Williams

Optimal Coordination Mechanisms for Multi-job Scheduling Games 13
Fidaa Abed, José R. Correa, and Chien-Chung Huang

Theory and Practice of Chunked Sequences . 25
Umut A. Acar, Arthur Charguéraud, and Mike Rainey

Convex Hulls under Uncertainty . 37
Pankaj K. Agarwal, Sariel Har-Peled, Subhash Suri,
Hakan Yıldız, and Wuzhou Zhang

The Space-Stretch-Time Tradeoff in Distance Oracles 49
Rachit Agarwal

Distribution-Sensitive Construction of the Greedy Spanner 61
Sander P.A. Alewijnse, Quirijn W. Bouts, and Alex P. ten Brink

Recognizing Shrinkable Complexes is NP-Complete 74
Dominique Attali, Olivier Devillers, Marc Glisse, and Sylvain Lazard

Improved Approximation Algorithms for Box Contact
Representations . 87

Michael A. Bekos, Thomas C. van Dijk, Martin Fink,
Philipp Kindermann, Stephen Kobourov, Sergey Pupyrev,
Joachim Spoerhase, and Alexander Wolff

Minimum Partial-Matching and Hausdorff RMS-Distance under
Translation: Combinatorics and Algorithms . 100

Rinat Ben-Avraham, Matthias Henze, Rafel Jaume, Balázs Keszegh,
Orit E. Raz, Micha Sharir, and Igor Tubis

The Batched Predecessor Problem in External Memory 112
Michael A. Bender, Mart́ın Farach-Colton, Mayank Goswami,
Dzejla Medjedovic, Pablo Montes, and Meng-Tsung Tsai

Polynomial Decompositions in Polynomial Time . 125
Arnab Bhattacharyya

Fault-Tolerant Approximate Shortest-Path Trees . 137
Davide Bilò, Luciano Gualà, Stefano Leucci, and Guido Proietti

XIV Table of Contents

Fast Witness Extraction Using a Decision Oracle . 149
Andreas Björklund, Petteri Kaski, and �Lukasz Kowalik

Complexity of Higher-Degree Orthogonal Graph Embedding in the
Kandinsky Model . 161

Thomas Bläsius, Guido Brückner, and Ignaz Rutter

A Subexponential Parameterized Algorithm for Proper Interval
Completion . 173

Ivan Bliznets, Fedor V. Fomin, Marcin Pilipczuk, and
Micha�l Pilipczuk

Computing Persistent Homology with Various Coefficient Fields in a
Single Pass . 185

Jean-Daniel Boissonnat and Clément Maria

De-anonymization of Heterogeneous Random Graphs in Quasilinear
Time . 197

Karl Bringmann, Tobias Friedrich, and Anton Krohmer

Competitive Algorithms for Restricted Caching and Matroid Caching . . . 209
Niv Buchbinder, Shahar Chen, and Joseph (Seffi) Naor

Improved Algorithms for Resource Allocation under Varying
Capacity . 222

Venkatesan T. Chakaravarthy, Anamitra Roy Choudhury,
Shalmoli Gupta, Sambuddha Roy, and Yogish Sabharwal

Nearly Tight Approximability Results for Minimum Biclique Cover and
Partition . 235

Parinya Chalermsook, Sandy Heydrich, Eugenia Holm, and
Andreas Karrenbauer

Succinct Indices for Path Minimum, with Applications to Path
Reporting . 247

Timothy M. Chan, Meng He, J. Ian Munro, and Gelin Zhou

Online Bipartite Matching with Decomposable Weights 260
Moses Charikar, Monika Henzinger, and Huy L. Nguy˜̂en

A Faster Algorithm for Computing Straight Skeletons 272
Siu-Wing Cheng, Liam Mencel, and Antoine Vigneron

Optimal Time-Space Tradeoff for the 2D Convex-Hull Problem 284
Omar Darwish and Amr Elmasry

Cache-Oblivious Persistence . 296
Pooya Davoodi, Jeremy T. Fineman, John Iacono, and Özgür Özkan

Table of Contents XV

Lightweight Approximate Selection . 309
Brian C. Dean, Rommel Jalasutram, and Chad Waters

Robust Distance Queries on Massive Networks . 321
Daniel Delling, Andrew V. Goldberg, Thomas Pajor, and
Renato F. Werneck

A Dynamic Data Structure for MSO Properties in Graphs with
Bounded Tree-Depth . 334

Zdeněk Dvořák, Martin Kupec, and Vojtěch T̊uma

Large Independent Sets in Triangle-Free Planar Graphs 346
Zdeněk Dvořák and Matthias Mnich

GRASP. Extending Graph Separators for the Single-Source
Shortest-Path Problem . 358

Alexandros Efentakis and Dieter Pfoser

Switching Colouring of G(n,d/n) for Sampling up to Gibbs Uniqueness
Threshold . 371

Charilaos Efthymiou

From Graph to Hypergraph Multiway Partition: Is the Single Threshold
the Only Route? . 382

Alina Ene and Huy L. Nguy˜̂en

Deterministic Stateless Centralized Local Algorithms for Bounded
Degree Graphs . 394

Guy Even, Moti Medina, and Dana Ron

Bicriteria Data Compression: Efficient and Usable . 406
Andrea Farruggia, Paolo Ferragina, and Rossano Venturini

Amortized Õ(|V |)-Delay Algorithm for Listing Chordless Cycles in
Undirected Graphs . 418

Rui Ferreira, Roberto Grossi, Romeo Rizzi, Gustavo Sacomoto, and
Marie-France Sagot

LP Approaches to Improved Approximation for Clique Transversal in
Perfect Graphs . 430

Samuel Fiorini, R. Krithika, N.S. Narayanaswamy, and
Venkatesh Raman

Representative Sets of Product Families . 443
Fedor V. Fomin, Daniel Lokshtanov, Fahad Panolan, and
Saket Saurabh

XVI Table of Contents

Weighted Ancestors in Suffix Trees . 455
Pawe�l Gawrychowski, Moshe Lewenstein, and Patrick K. Nicholson

Improved Practical Matrix Sketching with Guarantees 467
Mina Ghashami, Amey Desai, and Jeff M. Phillips

Computing Regions Decomposable into m Stars . 480
Matt Gibson, Kasturi Varadarajan, and Xiaodong Wu

The Parameterized Complexity of Graph Cyclability 492
Petr A. Golovach, Marcin Kamiński, Spyridon Maniatis, and
Dimitrios M. Thilikos

Dimension Reduction via Colour Refinement . 505
Martin Grohe, Kristian Kersting, Martin Mladenov, and
Erkal Selman

How Experts Can Solve LPs Online . 517
Anupam Gupta and Marco Molinaro

Parameterized Complexity of the k -Arc Chinese Postman Problem 530
Gregory Gutin, Mark Jones, and Bin Sheng

Approximating the Maximum Overlap of Polygons under Translation . . . 542
Sariel Har-Peled and Subhro Roy

Ordering without Forbidden Patterns . 554
Pavol Hell, Bojan Mohar, and Arash Rafiey

Halving Balls in Deterministic Linear Time . 566
Michael Hoffmann, Vincent Kusters, and Tillmann Miltzow

Turing Kernelization for Finding Long Paths and Cycles in Restricted
Graph Classes . 579

Bart M.P. Jansen

Optimal Parallel Quantum Query Algorithms . 592
Stacey Jeffery, Frederic Magniez, and Ronald de Wolf

Sublinear Space Algorithms for the Longest Common Substring
Problem . 605

Tomasz Kociumaka, Tatiana Starikovskaya, and Hjalte Wedel Vildhøj

Nested Set Union . 618
Daniel H. Larkin and Robert E. Tarjan

Improved Explicit Data Structures in the Bitprobe Model 630
Moshe Lewenstein, J. Ian Munro, Patrick K. Nicholson, and
Venkatesh Raman

Table of Contents XVII

Deeper Local Search for Better Approximation on Maximum Internal
Spanning Trees . 642

Wenjun Li, Jianer Chen, and Jianxin Wang

FPTAS for Counting Weighted Edge Covers . 654
Jingcheng Liu, Pinyan Lu, and Chihao Zhang

Solving Multicut Faster than 2n . 666
Daniel Lokshtanov, Saket Saurabh, and Ondřej Suchý

Tight Bounds for Active Self-assembly Using an Insertion Primitive 677
Caleb Malchik and Andrew Winslow

Trace Reconstruction Revisited . 689
Andrew McGregor, Eric Price, and Sofya Vorotnikova

PReaCH: A Fast Lightweight Reachability Index Using Pruning and
Contraction Hierarchies . 701

Florian Merz and Peter Sanders

Polynomial-Time Approximation Schemes for Circle Packing
Problems . 713

Flávio K. Miyazawa, Lehilton L.C. Pedrosa, Rafael C.S. Schouery,
Maxim Sviridenko, and Yoshiko Wakabayashi

Document Retrieval on Repetitive Collections . 725
Gonzalo Navarro, Simon J. Puglisi, and Jouni Sirén

An Improved Analysis of the Mömke-Svensson Algorithm for
Graph-TSP on Subquartic Graphs . 737

Alantha Newman

The Input/Output Complexity of Sparse Matrix Multiplication 750
Rasmus Pagh and Morten Stöckel

Faster FPTASes for Counting and Random Generation of Knapsack
Solutions . 762

Romeo Rizzi and Alexandru I. Tomescu

Improved Guarantees for Tree Cut Sparsifiers . 774
Harald Räcke and Chintan Shah

Representative Families: A Unified Tradeoff-Based Approach 786
Hadas Shachnai and Meirav Zehavi

A Branch and Price Procedure for the Container Premarshalling
Problem . 798

Martijn van Brink and Ruben van der Zwaan

XVIII Table of Contents

Space-Efficient Randomized Algorithms for K-SUM 810
Joshua R. Wang

Equivalence between Priority Queues and Sorting in External
Memory . 830

Zhewei Wei and Ke Yi

Amortized Bounds for Dynamic Orthogonal Range Reporting 842
Bryan T. Wilkinson

Author Index . 857

Losing Weight by Gaining Edges

Amir Abboud, Kevin Lewi, and Ryan Williams

Computer Science Department, Stanford University, Stanford, CA, USA

Abstract. We present a new way to encode weighted sums into un-
weighted pairwise constraints, obtaining the following results.

– Define the k-SUM problem to be: given n integers in [−n2k, n2k]
are there k which sum to zero? (It is well known that the same
problem over arbitrary integers is equivalent to the above definition,
by linear-time randomized reductions.) We prove that this definition
of k-SUM remains W[1]-hard, and is in fact W[1]-complete: k-SUM
can be reduced to f(k) · no(1) instances of k-Clique.

– The maximum node-weighted k-Clique and node-weighted
k-dominating set problems can be reduced to no(1) instances of the
unweighted k-Clique and k-dominating set problems, respectively.
This implies a strong equivalence between the time complexities of
the node weighted problems and the unweighted problems: any poly-
nomial improvement on one would imply an improvement for the
other.

– A triangle of weight 0 in a node weighted graph with m edges can
be deterministically found in m1.41 time.

1 Introduction

One of the most basic problems over integers, studied in geometry, cryptography,
and combinatorics, is k-SUM, the parameterized version of the classical NP-
complete problem SUBSET-SUM.

Definition 1.1 (k-SUM). The (k,M)-SUM problem is to determine, given n
integers x1, . . . , xn ∈ [0,M] and a target integer t ∈ [0,M], if there exists a
subset S ⊆ [n] of size |S| = k such that

∑
i∈S xi = t. 1 We define k-SUM �

(k, n2k)-SUM.

Our definition of k-SUM is justified via the following known proposition:

Proposition 1.2. Every instance S of (k,M)-SUM can be randomly reduced in
O(kn logM) time to an instance S′ of k-SUM as defined above.

That is, there is an efficient randomized reduction from k-SUM over arbitrary
integers, which we call k-SUM-Z, to our definition of k-SUM. Furthermore, we

1 Without loss of generality, the range of integers can be [−M,M] and the target
integer can be zero.

A.S. Schulz and D. Wagner (Eds.): ESA 2014, LNCS 8737, pp. 1–12, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

2 A. Abboud, K. Lewi, and R. Williams

show in the full version that this reduction can be made deterministic under
standard hardness assumptions.

A classical meet-in-the-middle algorithm solves k-SUM in Õ(n�k/2�) time and
it has been a longstanding open problem to obtain an O(n�k/2�−ε) algorithm for
any integer k ≥ 3 and constant ε > 0. Logarithmic improvements are known
for the k = 3 case [5,18] (that is, the famous 3-SUM problem). The k-SUM
conjecture [25,1] states that k-SUM requires n�k/2�−o(1) time and is known to
imply tight lower bounds for many problems in computational geometry [17,19,6]
(and many more) and has recently been used to show conditional lower bounds
for discrete problems as well [25,29,21,2]. A matching Ω(n�k/2�) lower bound for
k-SUM was shown for a restricted model of computation called k-linear decision
trees (LDTs) [15,3], although it was recently shown that depth O(nk/2

√
logn)

suffices for (2k − 2)-LDTs [18]. It is also known that if there is an unbounded
function s : N → N such that for infinitely many k, k-SUM is in nk/s(k), then
the Exponential Time Hypothesis is false [26].

Despite intensive research on this simple problem, our understanding is still
lacking in many ways, one of which is from the viewpoint of parameterized
complexity. In their seminal work on parameterized intractability, Downey and
Fellows [12,13] proved that k-SUM-Z is W[1]-hard and is contained in W[P]. The
even simpler Perfect Code problem was conjectured to lie between the classes
W[1] and W[2] [13] until Cesati proved it was W[1]-complete in 2002 [10]. Clas-
sifying k-SUM-Z within a finite level of the W-hierarchy was open until in 2007,
when Buss and Islam [8] proved that k-SUM-Z ∈ W[3].

The primary contribution of this work is a novel and generic way to efficiently
convert problems concerning sums of numbers into problems on unweighted pair-
wise constraints. We call this technique “Losing weight by gaining edges” and
report several interesting applications of it. One application is a new parame-
terized reduction from k-SUM to k-Clique and therefore the resolution of the
parameterized complexity of k-SUM (for numbers in [−n2k, n2k]). Under stan-
dard lower bound hypotheses, we also obtain a deterministic reduction from
k-SUM-Z to k-Clique as well.

Theorem 1.3. k-SUM is W[1]-complete.

The significance of showing W[1]-hardness for a problem is well known (as
it rules out FPT algorithms). The significance of showing that a problem is in
W[1] is less obvious, so let us provide some motivation. First, although W[1]-
complete problems are probably not FPT, prominent problems in W[1] (such as
k-Clique) can still be solved substantially faster than exhaustive search over all(
n
k

)
subsets [23]. In contrast, analogous problems in W[2] (such as k-Dominating

Set) do not have such algorithms unless CNF Satisfiability is in 2δn time for
some δ < 1 [26], which is a major open problem in exact algorithms. There-
fore, understanding which parameterized problems lie in W[1] is closely related
to understanding which problems can be solved faster than exhaustive search.
Second, showing that a problem is in W[1] rather than W[3] means that it can be
expressed in an apparently weaker logic than before, with fewer quantifiers [16].

Losing Weight by Gaining Edges 3

That is, putting a problem in W[1] decreases the descriptive complexity of the
problem.

Theorem 1.3 has applications to parameterized complexity, yielding a new char-
acterization of the class W[1] as the problems FPT-reducible to k-SUM. Since
k-SUM is quite different in nature from the previously known W[1]-complete prob-
lems, we are able to put other such “intermediate” problems in W[1], including
weighted graph problems and problems with application to coding theory such as
Weight Distribution [9] (for which the details are given in the full version).

To show that k-SUM ∈ W[1], we prove a very tight reduction from k-SUM to
k-Clique. Given an instance of k-SUM on n numbers, we generate f(k) · no(1)

instances of k-Clique on n node graphs, such that one of these graphs contains a
k-clique if and only if our k-SUM instance has a solution. This implies that any
algorithm for k-Clique running in time O(nc) for some c ≥ 2 yields an algorithm
for k-SUM running in time nc+o(1). Hence, the k-SUM conjecture implies an
n�k/2�−o(1) lower bound for k-Clique as well.

Generalizing our ideas further, we are able to prove surprising consequences
regarding other weighted problems.

Removing Node Weights. Two fundamental graph problems are k-Clique
and k-Dominating Set. Natural extensions of these problems allow the input
graph to have weights on its nodes. The problem can then be to find a k-clique
or a k-dominating set of minimum or maximum sum of node weights (the min
and max versions), or to find a k-clique or a k-dominating set with total weight
exactly 0 (the exact version, defined below).

Definition 1.4 (The Node-Weight k-Clique-Sum Problem). For integers
k,M > 0, the (k,M)-NW-CLIQUE problem is to determine, given a graph G, a
node-weight function w : V (G) → [0,M], and a target weight t ∈ [0,M], if there
is a set S of k nodes which form a clique such that

∑
v∈S w(v) = t. We define

the Node-Weight k-Clique-Sum problem as (k, n2k)-NW-CLIQUE.

Definition 1.5 (Node-Weight k-Dominating-Set-Sum).For an integer k >
0, the Node-Weight k-Dominating-Set-Sum problem is to determine, given a graph
G, a node-weight function w : V (G) → [0, n2k], and a target weight t ∈ [0, n2k], if
there is a set S of k nodes which form a dominating set such that

∑
v∈S w(v) = t.

These additional node weights increase the expressibility of the problem and
allow us to capture more applications. How much harder are these node weighted
versions compared to the unweighted versions? By weight scaling arguments, one
can show that the “exact” version is harder than the max and min versions, in
the sense that any algorithm for “exact” implies an algorithm for max or min
with only a logarithmic overhead [22] (and Theorem 3.3 in [29]). But how much
harder is (for example) Node-Weight k-Clique-Sum than the case where there
are no weights at all?

For k divisible by 3, the best k-Clique algorithms reduce the problem to
3-Clique on nk/3 nodes, then use an O(nω) time algorithm for triangle de-
tection [20] for a running time of O(nωk/3) [23]. This reduction to the k =

4 A. Abboud, K. Lewi, and R. Williams

3 case works for the node weighted case as well; combined with the recent
nω+o(1) algorithms for node weighted triangle (3-clique) problems [11,29], we
obtain nωk/3+o(1) running times for node weighted k-clique problems. The best
k-Dominating Set algorithms reduce the problem to a rectangular matrix mul-
tiplication of matrices of dimensions nk/2 × n and n × nk/2 and run in time
nk+o(1) [14]. These algorithms allow us to find all k-dominating sets in the graph
and therefore can also solve the node weighted versions without extra cost.

Therefore, the state of the art algorithms for k-Clique and k-Dominating Set
suggest that adding node weights does not make the problems much harder. Is
that due to our current algorithms for the unweighted problems, or is there a
deeper connection? Using the “Losing weight by gaining edges” ideas, we show
that the node weighted versions of k-Clique and k-Dominating Set (and, in fact,
any problem that allows us to implement certain “pairwise constraints”) are
essentially “equivalent” to the unweighted versions.

Theorem 1.6. If k-Clique on n node and m edge graphs can be solved in time
T (n,m, k), then Node-Weight k-Clique-Sum on n node and m edge graphs can
be solved in time no(1) ·T (kn, k2m, k). If k-Dominating Set on n node graphs can
be solved in time T (n, k), then Node-Weight k-Dominating-Set on n node graphs
can be solved in time no(1) · T (k2n, k).

Interestingly, Theorem 1.6 yields a short and simple nω+o(1) algorithm for
the node-weighted triangle problems, while a series of papers were required to
recently conclude the same upper bound using different techniques [28,30,11,29].
Moreover, unlike the previous techniques, our approach extends to k > 3 and
applies to more problems like k-Dominating Set.

Applying Theorem 1.6 to the O(m
2ω

ω+1) triangle detection algorithm of Alon,
Yuster and Zwick [4], we obtain a deterministic algorithm for Node-Weight
Triangle-Sum in sparse graphs, improving the previous nω+o(1) upper bound [29]
and matching the running time of the best randomized algorithm [29].

Corollary 1.7. Node-Weight Triangle-Sum can be solved deterministically in
m1.41+o(1) time.

1.1 Overview of the Proofs

Let us give some intuition for Theorem 1.3. Both the containment in W[1] and
the hardness for W[1] require new technical ideas. Downey and Fellows [12,13]
proved that k-SUM-Z is W[1]-hard by a reduction requiring fairly large numbers:
they are exponential in n, but can still be generated in an FPT way. To prove
that k-SUM is W[1]-hard even when the numbers are only exponential in k logn,
we need a much more efficient encoding of k-Clique instances. We apply some
machinery from additive combinatorics, namely a construction of large sets of
integers avoiding trivial solutions to the linear equation

∑k−1
i=1 xi = (k−1)xk [24].

These sets allow us to efficiently “pack” a k-Clique instance into a (
(
k
2

)
+k)-SUM

instance on small numbers.

Losing Weight by Gaining Edges 5

Proving that k-SUM is in W[1] takes several technical steps. We provide a
parameterized reduction from k-SUM on n numbers to only f(k) · no(1) graphs
on O(kn) nodes, such that some graph has a k-clique if and only if the orig-
inal n numbers have a k-SUM. To efficiently reduce from numbers to graphs,
we first reduce the numbers to an analogous problem on vectors. We define an
intermediate problem (k,M)-VECTOR-SUM, in which one is given a list of n vec-
tors from {−kM, . . . , 0, . . . , kM}d, and is asked to determine if there are k vec-
tors which sum to the all-zero vector. We give an FPT reduction from k-SUM
to (k,M)-VECTOR-SUM where M and d are “small” (such that Md is approxi-
mately equal to the original weights of the k-SUM instance). Next, we “push”
the weights in these vectors onto the edges of a graph connecting the vectors,
where the edge weights are much smaller than the original numbers: we re-
duce from (k,M)-VECTOR-SUM to edge-weighted k-clique-sum using a polynomial
“squaring trick” which creates a graph with “small” edge weights, closely related
in size to M . Finally, we reduce from the weighted problem to the unweighted
version of the problem by brute-forcing all feasible weight combinations on the
edges; as the edge weights are small, this creates f(k) ·no(1) unweighted k-Clique
instances for some function f .

Combining all these steps into one, one can view our approach as follows. We
enumerate over all

(
k
2

)
-tuples of numbers t = (αi,j)i,j∈[k] such that

∑
i,j αi,j = 0

where αi,j ∈ [−M,M] for M = f(k) · poly logn, and for each such tuple t we
generate an instance of the unweighted problem. In this instance, two nodes are
allowed to both be a part of our final solution (e.g. there is an edge between
them in the k-clique case) if and only if some expression on the weights of the
objects vi and vj evaluates to F (w(vi), w(vj)) = αi,j . The formulas are defined,
via the “squaring trick”, in such a way that there are k nodes satisfying these(
k
2

)
equations for some

(
k
2

)
-tuple t if and only if the sum of the weights of these

k nodes is 0.
To implement our approach for k-Dominating Set we follow similar steps,

except that we cannot implement the constraints on having a certain pair of
objects in our solution by removing the edge between them anymore, since this
does not prevent them from being in a feasible k-dominating set. This can be
done, however, by adding extra nodes X to the graph such that the inclusion
of pairs of nodes vi, vj in the solution S that do not satisfy our equations,
F (w(vi), w(vj)) �= αi,j , will prevent S from dominating all the nodes in X .

1.2 Related Work

There has been recent work in relating the complexity of k-SUM and variations
of k-Clique for the specific case of k = 3. Pǎtraşcu [25] shows a tight reduction
from 3-SUM to listing 3-cliques; a reduction from listing 3-cliques to 3-SUM is
given by Jafargholi and Viola [21]. Vassilevska and Williams [29] consider the
exact edge-weight 3-clique problem and give a tight reduction from 3-SUM. For
the case of k > 3, less is known, as the techniques used for the case of k = 3
do not seem to generalize easily. Abboud and Lewi [1] give reductions between

6 A. Abboud, K. Lewi, and R. Williams

k-SUM and various exact edge-weighted graph problems where the goal is to
find an instance of a specific subgraph whose edge weights sum to 0.

2 Preliminaries

For i < j ∈ Z, define [i, j] � {i, . . . , j}. As shorthand, we define [n] � [1, n]. For
a vector v ∈ Zd, we denote by v[j] the value in the jth coordinate of v. We let
0 denote the all zeros vector. The default domain and range of a function is N.

We define the k-Clique problem as follows.

Definition 2.1 (The k-Clique Problem). For integers k, n,m > 0, the k-
clique problem is to determine, given a graph G, if there is a size-k subset S ⊆ [n]
such that S is a clique in G.

The following problems are referred to in Corollary 3.8. They are simply the
unparameterized versions of k-SUM and Exact Edge-Weight k-Clique, respec-
tively.

Definition 2.2 (The Subset-SUM Problem). The Subset-SUM problem is
to determine, given a set of integers x1, . . . , xn, t, if there exists a subset S ⊆ [n]
such that

∑
i∈S xi = t.

Definition 2.3 (The Exact Edge-Weight Clique Problem). For integers
n,m,M > 0, the Exact Edge-Weight k-Clique problem is to determine, given an
instance of a graph G on n vertices and m edges, a weight function w : E(G) →
[−M,M], if there exists a set of nodes which form a clique with total weight 0.

3 From Numbers to Edges

Our results begin by showing how to reduce k-SUM to k-Clique. To do this, we
first give a new reduction from k-SUM to k-Vector-Sum on n vectors in Cd for a
set C which is relatively small compared to the numbers in the original instance.
From k-Vector-Sum, we give a reduction to Edge-Weight k-Clique-Sum with
small weights. Then, we can brute-force all possibilities for the

(
k
2

)
edge weights

for k-SUM and reduce to the (unweighted) k-Clique problem. Altogether, we
conclude that k-SUM is in W[1].

3.1 Reducing k-SUM to k-Vector-Sum

We present a generic way to map numbers into vectors over small numbers such
that the k-sums are preserved. We define the k-Vector-Sum problem as follows.

Definition 3.1 (The k-Vector-Sum Problem). For integers k, n,M, d >
0, the k-vector-sum problem (k,M)-VECTOR-SUM is to determine, given vectors
v1, . . . ,vn, t ∈ [0, kM]d, if there is a size-k subset S ⊆ [n] such that

∑
i∈S vi = t.

Losing Weight by Gaining Edges 7

Note that the problem was considered by Bhattacharyya et al. [7] and also by
Cattaneo and Perdrix [9].

Lemma 3.2. Let k, p, d, s,M ∈ N satisfy k < p, pd ≥ kM + 1, and s =
(k + 1)d−1. There is a collection of mappings f1, . . . , fs : [0,M] × [0, kM] →
[−kp, kp]d, each computable in time O(poly logM + kd), such that for all num-
bers x1, . . . , xk ∈ [0,M] and targets t ∈ [0, kM],

k∑
j=1

xj = t ⇔ ∃ i ∈ [s] such that

k∑
j=1

fi(xj , t) = 0.

The idea is simple: in a natural translation of numbers into vectors, to preserve
k-sums we have to keep track of the carries that may occur. These fi’s effectively
try “all possible” carries there can be among a sum of k numbers. The proof is
given in the full version.

Corollary 3.3. Let k, p, d,M, n > 0 be integers with k < p and pd ≥ kM + 1.
k-SUM on n integers in the range [0,M] can be reduced to O(kd) instances of
(k, p− 1)-VECTOR-SUM on n vectors in [0, p− 1]d.

3.2 Reducing to k-Clique

Here, we consider a generalization of the k-SUM problem—namely, the Node-
Weight k-Clique-Sum problem. We give a reduction from Node-Weight k-Clique-
Sum to Edge-Weight k-Clique-Sum (defined below), where the new edge weights
are much smaller than the original node weights. We then show how to reduce to
many instances of the unweighted version of the problem, where each instance
corresponds to a possible setting of edge weights. Then, we give an application
of this general reduction to the Node-Weight k-Clique-Sum problem.

Definition 3.4 (The Edge-Weight k-Clique-Sum Problem). For integers
k,M > 0, the edge-weight k-clique-sum problem (k,M)-EW-CLIQUE is to deter-
mine, given a graph G, an edge-weight function w : E(G) → [0,M], and a target
weight t ∈ [0,M], if there is a set S of k nodes which form a clique such that∑

(u,v)∈S w(u, v) = t.

Lemma 3.5. Let k, p, d,M > 0 be integers such that k < p and pd ≥ kM + 1,
and let M ′ = O(k3dp2). (k,M)-NW-CLIQUE can be deterministically reduced to
O(kd) instances of (k,M ′)-EW-CLIQUE in time O(kd · n2 · poly logM).

Thinking of p + d as “small”, but poly(p, d) ≈ kM as “large”, we get a
substantial reduction in the weights of the problem by “spreading” the node
weights over the edges.

Proof. Let G = (V,E) be a graph with a node weight function w : V → [0,M]
and a target number t ∈ [0, kM]. Recall the mappings fi : [0,M] ××[0, kM] →
[−kp, kp]d for i ∈ [s] from Lemma 3.2, which maps numbers from [0,M] into a

8 A. Abboud, K. Lewi, and R. Williams

collection of s = O(kd) length-d vectors with entries in [−kp, kp]. We translate
the node-weight vector problem into an edge-weight problem via a “squaring
trick,” as follows. For each i ∈ [s], we define an edge weight function wi : E →
[−M ′,M ′]. For (u, v) ∈ E, let u = fi(w(u), t) and v = fi(w(v), t), and define

wi(u, v) �
d∑

j=1

(
u[j]2 + v[j]2 + 2(k − 1)u[j] · v[j]

)
.

Note that for M ′ = O(kdp2), wi(u, v) ∈ [−M ′,M ′]. We show that there is a k-
clique in (G,w) of node-weight t if and only if for some i ∈ [s], the edge-weighted
graph (G,wi) contains a k-clique of edge-weight 0. First, observe that for any k
vectors v1, . . . ,vk ∈ Zd,

k∑
i=1

vi = 0 ⇐⇒
d∑

j=1

(
k∑

i=1

vi[j]

)2

= 0.

Consider a set S = {u1, . . . , uk} ⊆ V that forms a k-clique in G. For any
i ∈ [s] and ua, ub ∈ S, let ua = fi(w(ua), t) and ub = fi(w(ub), t). Then, the
edge-weight of S in (G,wi) is

∑
1≤a<b≤k

wi(ua, ub) = (k − 1)

k∑
a=1

d∑
j=1

ua[j]2 + 2(k − 1)
∑

1≤a<b≤k

d∑
j=1

ua[j] · ub[j].

Since the sum is evaluated over all pairs a, b ∈ [k] where a < b, the above
quantity is equal to

(k − 1) ·
d∑

j=1

(∑
u∈S

fi(w(u), t)[j]

)2

.

Therefore, for all i ∈ [s], the edge-weight of S in (G,wi) equals 0 if and only
if the sum of the vectors

∑
u∈S fi(w(u), t) equals 0. And, by the properties of

the mappings fi from Lemma 3.2, the latter occurs for some i ∈ [s] if and only
if the node-weight of S in (G,w),

∑
u∈S w(u), is equal to t, as desired.

We observe that in the graphs produced by the above reduction, all k-cliques
have non-negative weight. Therefore, Lemma 3.5 can also be viewed as a reduc-
tion to the “minimum-weight” k-Clique problem with edge weights, where the
edge sum is minimized.

Finally, small weights on edges can simply be eliminated using a brute-force
step. The proof of the following lemma is given in the full version.

Lemma 3.6. For all integers k,M > 0, there is an O(M(k
2) ·n2) time reduction

from the problem (k,M)-EW-CLIQUE to O(M(k
2)) instances of k-Clique on n nodes

and m ·
(
k
2

)
edges.

Losing Weight by Gaining Edges 9

3.3 k-SUM is in W[1]

Using the above lemmas, we can efficiently reduce k-SUM to k-Clique. Consider
a k-SUM instance (S, t) where S = {x1, . . . , xn} ⊆ [0,M] and t ∈ [0, kM] with
M = n2k. Let G = (V,E) be a node-weighted clique on n nodes V = {v1, . . . , vn}
with weight function w : V → [0,M] such that w(vi) = xi for all i ∈ [n].
Clearly, (S, t) has a k-SUM solution if and only if the instance (G,w, t) of
(k,M)-NW-CLIQUE has a solution.

Set d =
logn/ log logn� and p =
log4k n�, so that pd ≥ (n)4k > kM .
Using Lemma 3.5 the instance (G,w, t) of (k,M)-NW-CLIQUE can be reduced to
O(kd) = O(nlog k/ log logn) instances of (k,M ′)-EW-CLIQUE, where M ′ = O(k3 ·
log8k+1 n/ log logn). Then, using Lemma 3.6, we can generate g(n, k)=O(n

log k
log log n ·

k3k
2

log8k
2+k n) graphs on n nodes and O(n2) edges such that some graph has a

k-Clique if and only if the original k-SUM instance has a solution.
For constant k, note that g(n, k) = no(1), and hence:

Theorem 3.7. For any c > 2, if k-Clique can be solved in time O(nc), then
k-SUM can be solved in time nc+o(1).

Furthermore, we remark that by applying the above reduction from k-SUM to
k-Clique to the respective unparameterized versions of these problems, we obtain
a reduction from Subset-SUM on arbitrary weights to Exact Edge-Weight Clique
with small edge weights.

Corollary 3.8. For any ε > 0, Subset-SUM on n numbers in [−2O(n), 2O(n)]
can be reduced to 2εn instances of Exact Edge-Weight Clique on n nodes with
edge weights are in [−nO(1/ε), nO(1/ε)].

Note that Subset-SUM on n numbers in [−2O(n), 2O(n)] is as hard as the
general case of Subset-SUM, and the fastest known algorithm for Subset-SUM
on n numbers runs in time O(2n/2). The unweighted Max-Clique problem, which
asks for the largest clique in a graph on n nodes, can be solved in time O(2n/4)
[27]. Corollary 3.8 shows that even when the edge weights are small, the edge-
weighted version of Max-Clique requires time Ω(2n/2) unless Subset-SUM can
be solved faster.

An FPT Reduction. We show how to make the reduction fixed-parameter
tractable. We can modify the oracle reduction for k-Clique above to get a many-
one reduction to k-Clique if we simply take the disjoint union of the g(n, k)
k-Clique instances as a single k-Clique instance. The resulting graph has n ·
g(n, k) nodes, O(n2 · g(n, k)) edges, and has a k-clique if and only if one of the
original graphs has a k-Clique. Then, we make the following standard argument
to appropriately bound g(n, k) via case analysis. If k <
log logn�, then g(n, k) ≤
no(1) · 2f(k)·poly(k). If k ≥
log logn�, then since n ≤ 22

k

, we have that g(n, k) ≤
22

k+f(k)·poly(k). Therefore, g(n, k) ≤ no(1) ·h(k) for some computable h : N → N,
and we have shown the following:

Lemma 3.9. k-SUM is in W[1].

10 A. Abboud, K. Lewi, and R. Williams

In the full version, we show how to obtain a randomized FPT reduction from
the k-SUM problem over the integers to k-Clique, and how under plausible cir-
cuit lower bound assumptions, we can derandomize this reduction to show that
k-SUM over the integers is in W[1]. This yields the first half of Theorem 1.3 (and
we show the remainder, that k-SUM is W[1]-hard, in the next section).

3.4 Node-Weight k-Clique-Sum

The reduction of Section 3.3 shows that the Node-Weight k-Clique-Sum problem
can be reduced to no(1) instances of k-Clique, when k is a fixed constant. We
observe that if the input graph has m edges, then the graphs generated by the
reduction have no more than k2m edges. Therefore, we have a tight reduction
from node-weight clique to k-Clique.

This concludes the proof of the first half of Theorem 1.6 referencing k-Clique.
We defer the proof of the second half of Theorem 1.6 concerning k-Dominating Set
to the full version.

4 From k-Clique to k-SUM

In this section, we give a new reduction from k-clique to k-SUM in which the
numbers generated are all in the interval [−n2k, n2k]. This proves that k-SUM
is in fact W[1]-hard. We can view the result as an alternate proof for the W[1]-
hardness of k-SUM without use of the Perfect Code problem, as done by Downey
and Fellows [12]. The reduction is given from k-Clique to k-Vector-Sum (recall
Definition 3.1), and then from k-Vector-Sum to k-SUM.

The proof the following lemma is given in the full version.

Lemma 4.1. For an integer k > 1, k-Clique on n nodes and m edges reduces to
an instance of (k +

(
k
2

)
, k · n1+o(1))-VECTOR-SUM deterministically in time O(n2).

The following lemma gives a simple reduction from k-Vector-Sum to k-SUM,
by the usual trick of converting from vectors to integers (via a Freiman isomor-
phism of order k). We give the proof in the full version.

Lemma 4.2. (k,M)-VECTOR-SUM can be reduced to k-SUM on n integers in the
range [0, (kM + 1)d] in O(n logM) time.

We remark that in some cases, the proof can be changed slightly to yield
smaller numbers in the k-SUM instance produced by the reduction. In partic-
ular, when reducing k-Clique to k-Vector-Sum, only the numbers in the first k
coordinates can be as large as k · n1+o(1) while the numbers in the last k2 + 1
coordinates are bounded by k, and therefore, when reducing to (k +

(
k
2

)
,M)-SUM

on kn +
(
k
2

)
m numbers, the numbers generated can be bounded by M = kd ·

(kn1+o(1))k ·kk2+1 = O(k2k
2 ·nk+o(k)). In other words, we have reduced k-Clique

to k′-SUM with numbers in the range
[
−n

√
k′
, n

√
k′
]
, where k′ = k +

(
k
2

)
.

Losing Weight by Gaining Edges 11

The composition of Lemma 4.1 and Lemma 4.2 yields an FPT reduction, and
we have obtained:

Lemma 4.3. k-SUM is W[1]-hard.

This concludes the proof of Theorem 1.3.

Acknowledgements. We would like to thank the anonymous reviewers for their
helpful comments. This work was supported in part by a David Morgenthaler II
Faculty Fellowship, and NSF CCF-1212372.

References

1. Abboud, A., Lewi, K.: Exact Weight Subgraphs and the k-Sum Conjecture.
In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013,
Part I. LNCS, vol. 7965, pp. 1–12. Springer, Heidelberg (2013)

2. Abboud, A., Williams, V.V.: Popular conjectures imply strong lower bounds for
dynamic problems. CoRR, abs/1402.0054 (2014)

3. Ailon, N., Chazelle, B.: Lower bounds for linear degeneracy testing. J. ACM 52(2),
157–171 (2005)

4. Alon, N., Yuster, R., Zwick, U.: Finding and counting given length cycles.
Algorithmica 17(3), 209–223 (1997)

5. Baran, I., Demaine, E.D., Pǎtraşcu, M.: Subquadratic algorithms for 3SUM.
Algorithmica 50(4), 584–596 (2008)

6. Barequet, G., Har-Peled, S.: Polygon Containment and Translational Min-
Hausdorff-Distance Between Segment Sets are 3SUM-Hard. Int. J. Comput.
Geometry Appl. 11(4), 465–474 (2001)

7. Bhattacharyya, A., Indyk, P., Woodruff, D.P., Xie, N.: The complexity of linear
dependence problems in vector spaces. In: ICS, pp. 496–508 (2011)

8. Jonathan, F.: Buss and Tarique Islam. Algorithms in the W-Hierarchy. Theory
Comput. Syst. 41(3), 445–457 (2007)

9. Cattanéo, D., Perdrix, S.: The parameterized complexity of domination-type prob-
lems and application to linear codes. CoRR, abs/1209.5267 (2012)

10. Cesati, M.: Perfect Code is W[1]-complete. Inf. Process. Lett. 81(3), 163–168 (2002)
11. Czumaj, A., Lingas, A.: Finding a heaviest vertex-weighted triangle is not harder

than matrix multiplication. SIAM J. Comput. 39(2), 431–444 (2009)
12. Downey, R.G., Fellows, M.R.: Fixed-parameter intractability. In: Structure in

Complexity Theory Conference, pp. 36–49 (1992)
13. Downey, R.G., Fellows, M.R.: Fixed-parameter tractability and completeness II:

On completeness for W[1]. Theor. Comput. Sci. 141(1&2), 109–131 (1995)
14. Eisenbrand, F., Grandoni, F.: On the complexity of fixed parameter clique and

dominating set. Theor. Comput. Sci. 326(1-3), 57–67 (2004)
15. Erickson, J.: Lower bounds for linear satisfiability problems. In: SODA,

pp. 388–395 (1995)
16. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer (2006)
17. Gajentaan, A., Overmars, M.H.: On a class of O(n2) problems in computational

geometry. Computational Geometry 5(3), 165–185 (1995)
18. Grønlund, A., Pettie, S.: Threesomes, Degenerates, and Love Triangles. CoRR,

abs/1404.0799 (2014)

12 A. Abboud, K. Lewi, and R. Williams

19. Hernández-Barrera, A.: Finding an O(n2logn) Algorithm Is Sometimes Hard.
In: CCCG, pp. 289–294 (1996)

20. Itai, A., Rodeh, M.: Finding a minimum circuit in a graph. In: STOC 1977,
pp. 1–10. ACM, New York (1977)

21. Jafargholi, Z., Viola, E.: 3SUM, 3XOR, Triangles. CoRR, abs/1305.3827 (2013)
22. Nederlof, J., van Leeuwen, E.J., van der Zwaan, R.: Reducing a target interval to

a few exact queries. In: MFCS, pp. 718–727 (2012)
23. Nešetřil, J., Poljak, S.: On the complexity of the subgraph problem. Commenta-

tiones Mathematicae Universitatis Carolinae 26(2), 415–419 (1985)
24. O’Bryant, K.: Sets of integers that do not contain long arithmetic progressions.

Electr. J. Comb. 18(1) (2011)
25. Patrascu, M.: Towards polynomial lower bounds for dynamic problems. In: STOC,

pp. 603–610 (2010)
26. Pǎtraşcu, M., Williams, R.: On the Possibility of Faster SAT Algorithms.

In: SODA, pp. 1065–1075 (2010)
27. Robson, J.M.: Finding a maximum independent set in time O(2n/4). Technical

report, 1251-01, LaBRI, Université de Bordeaux I (2001)
28. Vassilevska, V., Williams, R.: Finding a maximum weight triangle in n3−delta time,

with applications. In: STOC, pp. 225–231 (2006)
29. Vassilevska, V., Williams, R.: Finding, minimizing, and counting weighted sub-

graphs. In: STOC, pp. 455–464 (2009)
30. Vassilevska, V., Williams, R., Yuster, R.: Finding the smallest H-subgraph in real

weighted graphs and related problems. In: Bugliesi, M., Preneel, B., Sassone, V.,
Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4051, pp. 262–273. Springer, Heidelberg
(2006)

Optimal Coordination Mechanisms

for Multi-job Scheduling Games�

Fidaa Abed1, José R. Correa2, and Chien-Chung Huang3

1 Max-Planck-Institut für Informatik
fabed@mpi-inf.mpg.de

2 Departamento de Ingenieria Industrial, Universidad de Chile
correa@uchile.cl

3 Chalmers University of Technology
huangch@chalmers.se

Abstract. We consider the unrelated machine scheduling game in which
players control subsets of jobs. Each player’s objective is to minimize the
weighted sum of completion time of her jobs, while the social cost is the
sum of players’ costs. The goal is to design simple processing policies in
the machines with small coordination ratio, i.e., the implied equilibria
are within a small factor of the optimal schedule. We work with a weaker
equilibrium concept that includes that of Nash. We first prove that if ma-
chines order jobs according to their processing time to weight ratio, a.k.a.
Smith-rule, then the coordination ratio is at most 4, moreover this is best
possible among nonpreemptive policies. Then we establish our main re-
sult. We design a preemptive policy, externality, that extends Smith-rule
by adding extra delays on the jobs accounting for the negative exter-
nality they impose on other players. For this policy we prove that the
coordination ratio is 1+ φ ≈ 2.618, and complement this result by prov-
ing that this ratio is best possible even if we allow for randomization or
full information. Finally, we establish that this externality policy induces
a potential game and that an ε-equilibrium can be found in polynomial
time. An interesting consequence of our results is that an ε−local optima
of R| |

∑
wjCj for the jump (a.k.a. move) neighborhood can be found in

polynomial time and are within a factor of 2.618 of the optimal solution.
The latter constitutes the first direct application of purely game-theoretic
ideas to the analysis of a well studied local search heuristic.

1 Introduction

Machine scheduling originates in the optimization of manufacturing systems and
their formal mathematical treatment dates back to at least the pioneering work of
Smith [38]. In general, scheduling problems can be described as follows. Consider
a set J of n jobs that have to be processed on a set M of m parallel machines.
If processed on machine i, job j requires a certain processing time pij to be

� Research partially supported by the Millenium Nucleus Information and Coordina-
tion in Networks ICM/FIC P10-024F.

A.S. Schulz and D. Wagner (Eds.): ESA 2014, LNCS 8737, pp. 13–24, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

14 F. Abed, J.R. Correa, and C.-C. Huang

completed. Job j also has a weight wj and, in addition, it may have other
characteristics such as release dates, time windows, delays when switching a
task from one machine to another, or precedence constraints. The goal is to find
an assignment of jobs to machines, and an ordering within each machine so that
a certain objective functions is minimized. Denoting, for any such assignment
and ordering, the completion time Cj of job j the time at which job j completes,
we may write the two most widely studied objectives as Cmax = maxj∈J Cj (the
makespan) and

∑
j∈J wjCj (the sum of weighted completion times). In terms

of the machine environment the most basic model is that of identical machines,
where the processing times of jobs are the same on all machines. In the related
machines environment each machine has a speed, and the processing time of a job
on a machine is inversely proportional to the speed of that machine. Finally in
unrelated machine scheduling the processing times are arbitrary, thus capturing
all the above models as special cases. This latter machine environment, with
the sum of weighted completion times objective, denoted by R| |

∑
wjCj , is the

focus of our paper.
Since the early work of Smith for the

∑
wjCj objective, a lot of work has

been put in designing centralized algorithms providing reasonably close to op-
timal solutions with limited computational effort for these NP-hard problems
[5,15,18,21,23,24,32,33,34,35,36,37]. The underlying assumption is that all infor-
mation is gathered by a single entity which can enforce a particular schedule.
However, as distributed environments emerge, understanding scheduling prob-
lems where jobs are managed by different selfish agents (players), who are inter-
ested in their own completion time, becomes a central question.

Coordination Mechanisms. In recent times there has been quite some effort
to understand these scheduling games in the special case in which agents control
a single job in the system, which we call single-job games. In this context, there is
a vast amount of work studying existence, uniqueness, the price of anarchy [26],
and other characteristics of equilibrium when, given some processing rules, each
agent seeks to minimize her own completion time. In the scheduling game each
job is a fully informed player wanting to minimize its individual completion time,
and its set of strategies correspond to the set of machines. Job j’s completion
time on a machine depends on the strategies chosen by other players, and on the
policy (or processing rule) of the chosen machine. While the cost of a job is its
weighted completion time, wjCj . A coordination mechanism is then a set of local
policies, one per machine, specifying how the jobs assigned to that machine are
scheduled. In a local policy the schedule on a machine depends on the full vector
(p1j , p2j , . . . , pmj) and weights wj of jobs assigned to that machine. In contrast,
in a strongly local policy the schedule on machine i must be a function only of the
processing times pij and weights wj of the jobs assigned to i. In evaluating the
efficiency of these policies, one needs a benchmark to compare this social cost
against. The definition of the price of anarchy of the induced game considers a
social optimum with respect to the costs specified by the chosen machine policies.
However, to measure the quality of a coordination mechanism we consider the
worst case ratio of the social cost at an equilibrium to the optimal social cost

Optimal Coordination Mechanisms for Multi-job Scheduling Games 15

that could be achieved by the centralized optimization approach. We refer to
this as the coordination ratio of a mechanism.

In this paper we take a step forward and study multi-job games, in which
there is a set of agents A who control arbitrary sets of jobs. Specifically the set
of jobs controlled by player α ∈ A is denoted by J(α) ⊂ J and its cost given
a particular schedule is the sum of weighted completion times of its own jobs∑

j∈J(α) wjCj . As in single-job games, we concentrate on designing coordination
mechanisms leading to small coordination ratios, when the social cost is the sum
of weighted completion times of all jobs (or equivalently of all agents).

Machine Policies. Throughout we assume that policies are prompt: they do
not introduce deliberate idle time. In other words, if jobs j1, . . . , jk are assigned
to machine i, then by time

∑k
�=1 pij� all jobs have been completed and released.

Besides distinguishing between local and strongly local policies we distinguish
between nonpreemptive, preemptive, and randomized policies. In nonpreemptive
policies jobs are processed in some fixed deterministic order that may depend
arbitrarily on the set of jobs assigned to the machine (processing time, weight,
and ID), and once a job is completed it is released. On the other hand, preemp-
tive policies may suspend a job before it completes in order to execute another
job and the suspended job is resumed later. Interestingly, such policies can be
considered as nonpreemptive policies, but where jobs may be held back after
completion [11,12]. Finally, randomized policies have the additional power that
they can schedule jobs at random according to some distribution depending on
the assigned jobs’ characteristics. Another usual distinction is between policies
that are anonymous and non-anonymous. In the former jobs with the same char-
acteristics (except for IDs) must be treated equally and thus assigned the same
completion time. In the latter, jobs may be distinguished using their IDs.

For instance consider the widely used policy known as Smith-rule (��), which
sorts jobs in nondecreasing order of their processing time to weight ratios. For-
mally �� processes jobs in nondecreasing order of ρij = pij/wj , and breaks
ties using the job’s IDs. This policy is strongly local, nonpreemptive, and non-
anonymous.

Equilibrium Concepts. For the single-job scheduling game the underlying
concept of equilibrium is, quite naturally, that of Nash (NE)[28]. However, once
we allow players to control many jobs and endow them with the weighted com-
pletion time cost, already computing a best response to a given situation may
be NP-complete. Therefore, it is rather unlikely that such an equilibrium will be
attained. To overcome this difficulty we consider a weaker equilibrium concept,
which we call weak equilibrium (WE), namely, a schedule of all jobs is a WE if
no player α ∈ A can find a job j ∈ J(α) such that moving j to a different ma-
chine will strictly decrease her cost

∑
j∈J(α) wjCj . We extend the WE concept

to mixed (randomized) strategies by allowing player α to keep the distribution
of all but one job j ∈ J (α) and move job j to any machine. Observe that in the
single-job game NE and WE coincide. Throughout, we provide bounds on the
coordination ratio of policies for the weak equilibrium, and since NE are also
WE our bounds hold for NE as well.

16 F. Abed, J.R. Correa, and C.-C. Huang

As the reader may have noticed, there is a close connection between WE and
local optima of the jump (also called move) neighborhood (e.g. [39]). In a locally
optimal solution of R| |

∑
wjCj for the jump neighborhood, no single job j ∈ J

may be moved to a different machine while decreasing the overall cost. Such
solution is exactly a WE when a single player in the scheduling game controls
all jobs and the machines use ��.

To illustrate the concept of weak equilibrium and the difference between the
single-job and the multi-job games consider the following example on 4 machines,
m1, . . . ,m4, with the �� policy. There are 4 unit-weight jobs called a, b, c, d such
that pm1,a = 1 + ε, pm1,b = 1, pm2,b = 1.5, pm2,c = 2, pm3,c = 3, pm3,d = 2,
pm4,d = 2, and all other pij = +∞. In this situation an equilibrium for the
single-job game is that jobs a and b go to m1, job c goes to m2, and job d goes
to m3, leading to a total cost of 7+ε. Consider now the multi-job game in which
one player controls a, b and another player controls c, d. A NE is obtained when
a goes to m1, b goes to m2, c goes to m3, and d goes to m4, and this has total
cost 7.5 + ε. A WE is obtained from instance when a goes to m1, b goes to m2,
c goes to m2, and d goes to m3, having a total cost of 8 + ε.

Related Literature. The study of coordination mechanisms for single-job
scheduling games, taking the makespan as social cost, was initiated by
Christodoulou et al. [9]. However the implied bounds on the price of anarchy
are constant only for simple environments such as when machines are identi-
cal. Indeed, Azar et al. [2], and Fleischer and Svitkina [19] show that, even for
a restricted uniform machines environment “almost” no deterministic machine
policies can achieve a constant price of anarchy. The result was finally established
by Abed and Huang [1], who proved that no symmetric coordination mechanism
satisfying the so-called “independence of irrelevant alternatives” property, even if
preemption is allowed, can achieve a constant price of anarchy for the makespan
objective. The existence of a randomized machine policy with such a desirable
property is unknown. It is worth mentioning that there is a vast amount of
related work considering the makespan social cost [6,8,14,16,25,27].

The situation changes quite dramatically for the sum of weighted completion
times objective. In this case Correa and Queyranne show that, for restricted re-
lated machines, smith rule induces a game with price of anarchy at most 4 [13],
improving results implied by Farzad et al. [17] and Caragiannis et al [8] obtained
in different contexts. Cole et al., extend this result to unrelated machines, and
also design an improved preemptive policy, proportional sharing, achieving an
approximation bound of 2.618 and an even better randomized policy [11,12].
Further recent works include extensions and improvements by Bhattacharya
et al. [3], Cohen et al. [10] and by Rahn and Schäfer [30], Hoeksma and Uetz [22].

Finally, performance guarantee results for the
∑

wjCj objective using natural
local search heuristics are scarse, despite the vast amount of computational work
[7,29]. We are only aware of the results of Brueggemann et al. [4] who proved
that for identical machines local optima for the jump neighborhood are within
a factor of 3/2 of the optimal schedule.

Optimal Coordination Mechanisms for Multi-job Scheduling Games 17

Our Results. We start by considering deterministic policies and prove that the
coordination ratio of �� under WE is exactly 4. This generalizes the result for
single-job games [12] and therefore it is the best possible coordination ratio that
can be achieved nonpreemptively. We prove the upper bound of 4 for �� with
mixed WE. This is relevant since a pure strategy NE may not exist in this setting
[13]. Moreover, it is unclear whether the smoothness framework of Roughgarden
[31] can be applied here: On the one hand our results hold for the more general
framework of WE, while on the other hand having players that control multiple
jobs makes it more difficult to prove the (λ, μ)-smoothness.

Before designing improved policies we observe that no anonymous policy may
obtain a coordination ratio better than 4, and basically no policy, be it pre-
emptive or randomized, local or strongly local, can achieve a coordination ratio
better than 2.618. The latter is in sharp contrast with the case in which players
control just one job where better ratios can be achieved with randomized policies
[12]. Quite surprisingly we are able to design an “optimal” policy, which we call
externality (��), that guarantees a coordination ratio of 2.618 for WE. Under
this �� policy, jobs are processed according to Smith rule but are held back (and
not released) for some additional time after completion. This additional time ba-
sically equals the negative externality that this particular job imposes over other
players. Additionally, we prove that �� defines a potential game, so that pure
WE exists, and that the convergence time is polynomial. It is worth mentioning
that in the single-job game �� coincides with the proportional-sharing (��) pol-
icy [12], which in turn extends the EQUI policy of the unit-weight case [16]. On
the other side, when a single player controls all jobs, �� coincides with ��. The
idea of making jobs incorporate the externality they impose has also been used
by Heydenreich et al. [20]. However their goal is different; they incorporate the
externality in the form of payments to obtain truthful mechanisms rather than
to improve efficiency.

Interestingly, our result for �� in case just one player controls all jobs im-
plies a tight approximation guarantee of 2.618 for local optima under the jump
neighborhood for R| |

∑
wjCj . This tight guarantee also holds for the swap neigh-

borhood, in which one is additionally allowed to swap jobs between machines so
long as the objective function value decreases [39]. In addition, our fast conver-
gence result for �� implies another new result, namely, that local search with
the jump neighborhood, when only maximum gain steps are taken, converges
in polynomial time. These facts appear to be quite surprising since, despite the
very large amount of work on local search heuristics for scheduling problems
[7,29], performance guarantees, or polynomial time convergence results are are
only known for identical machines [4].

Methodologically our work is based on the inner product framework of [12],
but more is needed to deal with the multi-job environment. Our main contribu-
tion is however conceptual: On the one hand, we demonstrate that the natural
economic idea of externalities leads to approximately optimal, and in a way best
possible, outcomes even in decentralized systems with only partial information
(in a full information and centralized setting one can easily design policies leading

18 F. Abed, J.R. Correa, and C.-C. Huang

to optimal outcomes). On the other hand, we provide the first direct application
of purely game-theoretic ideas to the analysis of natural and well studied local
search heuristics that lead to the currently best known results.

Preliminaries. Recall that for a player α ∈ A, the set of job she controls is
denoted by J(α) ⊂ J . Moreover, α(j) denotes the player controlling job j, so
that J(α(j)) is the set of jobs controlled by who is controlling j.

A pure strategy profile is a matrix x ∈ {0, 1}M×J in which xij = 1 if job j is
assigned to machine i. By denoting xα the columns of x corresponding to jobs
controlled by player α we say that xα is a pure strategy for this player. A mixed
strategy for player α is a probability distribution over all xα ∈ {0, 1}M×J(α). A
set of mixed strategies for all players α ∈ A leads to a (mixed) strategy profile
x ∈ [0, 1]M×J where xij is the probability of job j assigned to machine i. Note
that the distributions of the different columns of x may not be independent. We
denote by x−k the matrix obtained by deleting the k−th column of x. Observe
that x−k results from the joint probability distribution of all jobs j′ �= k accord-
ing to x. More precisely x−k ∈ [0, 1]M×J\{k} can be equivalently seen as the
mixed strategy profile obtained when players different from α(k) continue using
the same strategy, while player α(k) forgets job k and if she was playing the pure
strategy xα(k) ∈ {0, 1}M×J(α) with probability q, she plays the pure strategy

for her jobs different from k, x
α(k)
−k ∈ {0, 1}M×J(α)\{k} with probability q (these

probabilities add up if she was playing with positive probability two strategies
that were equal except for job k). We define x−K analogously for a set of jobs
K ⊆ J .

Given a mechanism � ∈ {��,��} and a strategy profile x, E[C�

j (x)] is the
expected completion time of job j. The conditional expected completion time of
job j on machine i when job k is assigned to machine i is denoted E[C�

j (x−k, k →
i)]. The expected cost of the strategy profile x is E[C�(x)] =

∑
j∈J wjE[C�

j (x)]
and the expected cost of a player α under x is E[C�

α (x)] =
∑

j∈J(α) wjE[C�

j (x)].

For convenience we also define E[C�

α (x−k, k → i)] =
∑

j∈J(α) wjE[C�

j (x−k, k →
i)]. Note that E[C�(x)] =

∑
α∈A E[C�

α (x)].
A Nash equilibrium (NE) is therefore a strategy profile x such that for all

player α ∈ A and all strategy profiles yα for player α we have that:

E[C�

α (x)] ≤ E[C�

α (yα,x−J(α))].

Similarly, a weak equilibrium (WE) is a strategy profile x such that for all player
α ∈ A, all jobs k ∈ J(α), and all machines i ∈ M, we have that:

E[C�

α (x)] ≤ E[C�

α (x−k, k → i)].

The optimal assignement is the assignment in which the jobs are processed
non-preemptively on the machines so that the cost is minimized. Throughout the
paper, x∗ denotes the optimal assignment (thus x∗ is a pure strategy), and we
define X∗

i as the set of jobs assigned to machine i under the optimal assignment.
Given the assignment of jobs to machines, it is well-known that Smith Rule
minimizes the total cost of jobs. Therefore C��(x∗) is the optimal cost.

Optimal Coordination Mechanisms for Multi-job Scheduling Games 19

2 Nonpreemptive Mechanisms

We now study nonpreemptive mechanisms (jobs have IDs, needed to break ties
between identically looking jobs) and prove that �� has a coordination ratio of 4
for mixed WE. We work with mixed strategies since �� does not guarantee that
existence of pure WE. As mentioned earlier, our result is best possible among
nonpreemptive mechanisms [12].

Recall that under ��, each machine i schedules nonpreemptively its assigned
jobs j in nondecreasing order of ρij = pij/wj , and ties are broken using the IDs.
To simplify the presentation, we say that ρik < ρij if k comes earlier than j in the
�� order of machine i. Thus, given a strategy profile x we have E[C��

j (x−j , j →
i)] = pij +

∑
k:ρik<ρij

xikpik so that,

E [C��(x)] =
∑
j∈J

wj

∑
i∈M

xijE[C��

j (x−j , j → i)] (1)

=
∑
i∈M

∑
j∈J

xijwj(pij +
∑

k:ρik<ρij

xikpik).

Extending the inner product space technique of Cole et al. [12], we let ϕ : x →
L2([0,∞])M, which maps every strategy profile x to a vector of functions (one for
each machine) as follows. If f = ϕ(x), then for each i ∈ M, the i-th component of
f is the function fi(y) :=

∑
j∈J ,ρij≥y xijwj . Letting 〈fi, gi〉 =

∫∞
0 fi(y)gi(y)dy

be the standard inner product on L2 we get that 〈f ,g〉 =
∑

i∈M〈fi, gi〉. Addi-
tionally, we let ηi(x) =

∑
j∈J wjxijpij and η(x) =

∑
i∈M ηi(x).

The next lemma and expressions (2) and (3) follow easily from the derivations
of Cole et al. [12]. The only difference is that here we need to prove the results
for mixed strategies. We defer the proofs of this section to the full version.

Lemma 1. For a strategy profile x and the optimal assignment x∗, let f = ϕ(x)
and f∗ = ϕ(x∗). Then 〈fi, f∗

i 〉 =
∑

j∈X∗
i

∑
k∈J wjwkxik min{ρij , ρik}.

Similarly to Lemma 1, and using equation (1), we may evaluate

||ϕ(x)||2 ≤ 2E [C��(x)] . (2)

Additionally, when x is a pure strategy we have:

C��(x) =
1

2
||ϕ(x)||2 +

1

2
η(x). (3)

In what follows, let x denote a mixed weak equilibrium and x∗ the optimal
assignment. Let f = ϕ(x) and f ∗ = ϕ(x∗).

Lemma 2. Consider X∗
i (α) = X∗

i ∩ J(α), the jobs of player α assigned to
machine i in the optimal solution. Then for each j ∈ X∗

i (α) we have:

wjE
[
C��

j (x)
]
≤ wj(pij +

∑
k:ρik<ρij

xikpik) + pij
∑

k∈J(α)\{j},ρik>ρij

wkxik.

Lemma 3. For a machine i ∈ M,
∑

j∈X∗
i
wjE[C��

j (x)] − ηi(x
∗) ≤ 〈fi, f∗

i 〉.

Theorem 1. E[C��(x)] ≤ 4C��(x∗).

20 F. Abed, J.R. Correa, and C.-C. Huang

3 Preemptive Mechanisms

Finding policies that beat the coordination ratio of 4 for WE is impossible if
we restrict to nonpreemptive ones. This holds even for the single-job game [12],
where WE and NE coincide. Therefore we need to consider preemptive or ran-
domized policies. We first observe that even with preemption, if we restrict to
anonymous policies, beating the ratio of 4 is not possible. Furthermore, we prove
that the absolute limit for basically any policy, be it preemptive or randomized,
using even global information, and even if different machines use different poli-
cies, is 1 + φ ≈ 2.618, where φ is the golden ratio. The precise set of policies
for which this lower bound holds are those such that when machine i ∈ M is
assigned a single job, j ∈ J , then Cj = pij .

As the performance of �� coincides in the single-job and multi-job games one
may wonder whether natural preemptive policies, that work well in the single-
job game, also do in the multi-job game. Unfortunately this is not the case.
Indeed we prove that the champion preemptive policy for the single-job game,
Proportional-sharing [12,16], has a coordination ratio of at least 5.848 for WE
and at least 2.848 for NE. It is thus rather surprising that we can actually achieve
this ratio with a fairly natural policy, externality (��). A key ingredient of this
policy is that it heavily relies on the ownership of the jobs, a feature that policies
for the single-job game certainly do not share.

The results in this section are presented for pure strategy profiles. This is pri-
marily done for simplicity and also because, as we will show later, our preemptive
policy induces a potential game and therefore pure WE are guaranteed to exist.
Thus, given a pure strategy profile x, we may refer to x as an assignment, and
we may let Xi denote the set of jobs assigned to machine i under x, i.e., j ∈ Xi

if xij = 1. Let also Xi(α) = Xi ∩ J(α) be the set of jobs controlled by player α
on this machine i under x.

Recall that in the proportional sharing policy (��) [12], the machine processing
power is split among the assigned jobs proportionally to their weight. Given an
assignment x, if job j is assigned to machine i, it can be observed that:

C��

j (x) = pij +
∑

k∈Xi,ρik<ρij

pik + pij
∑

k∈Xi\{j},ρik>ρij

wk

wj
.

Proposition 1 ([12]). Given an assignment x, C��(x) = ||ϕ(x)||2.

In our externality policy, ��, given an assignment x, the machine processes
the jobs according to �� but once a job is completed, it is delayed for an amount
of time accounting for the negative externality it is imposing on other players.
Thus in �� the cost for the owner of job j due to this job will be

wjC
��

j (x) = wjpij + wj

∑
k∈Xi,ρik<ρij

pik + pij
∑

k∈Xi\J(α(j)),ρik>ρij

wk.

The completion time of j is then defined by the previous equation. Observe that
in the single-job game, �� reduces to ��, while if all jobs are controlled by a single

Optimal Coordination Mechanisms for Multi-job Scheduling Games 21

player �� reduces to ��. Also, �� induces feasible schedules since no completion
time can be smaller than that given by Smith-rule. Policy �� can be seen as a
preemptive policy in which jobs are processed as in ��, except for an infinitesimal
piece that is processed at the time defined by previous equation. Moreover ��
is strongly local and nonanonymous. A consequence of the definitions of ��, ��,
and �� is that for a fixed assignment x their costs satisfy:

C��(x) = C��(x) +
∑
i∈M

∑
j∈Xi

pij
∑

k∈Xi\J(α(j)),ρik>ρij

wk (4)

= C��(x) −
∑
i∈M

∑
j∈Xi

pij
∑

k∈Xi(α(j)),ρik>ρij

wk.

In the following, let x∗ be an optimal assignment and x a WE. We also let
ϕ(x) = f and ϕ(x∗) = f ∗ be as in the previous section.

Lemma 4. Consider a job j ∈ X∗
i and assume j is on i′ under x. Then

wjC
��

j (x) ≤ wj(pij +
∑

k∈Xi,
ρik<ρij

pik) + pij
∑

k∈Xi,
ρik>ρij

wk − pi′j
∑

k∈X
i′ (α(j)),

ρ
i′k>ρ

i′j

wk.

Proof. The case i′ = i is immediate. For i′ �= i, consider the cost of jobs belonging
player α(j) on machines i or i′ under x, which is,

wjC
��

j (x) +
∑

k∈((Xi(α)∪Xi′ (α))\{j}
wkC

��

k (x). (5)

Suppose that she moves j from machine i′ to i, then the total cost of the same
set of jobs is ∑

k∈((Xi(α)∪Xi′ (α))\{j}
wkC

��

k (x) − pi′j
∑

k∈Xi′ (α(j)),ρi′k>ρi′j

wk +

wj(pij +
∑

k∈Xi,
ρik<ρij

pik) + pij
∑

k∈Xi\J(α(j)),
ρik>ρij

wk + pij
∑

k∈Xi(α(j)),
ρik>ρij

wk. (6)

Here the second term is the saving of the cost for those jobs k ∈ α(j) on machine
i′ that have larger ratios ρi′k than ρi′j ; the third and fourth terms are the cost
of job j on machine i; and the fifth term is the increase of the cost of those jobs
k ∈ α(j) on machine i that have larger ratios ρik than ρij . As x is a WE, the
term (5) is upper bounded by (6). ��

Lemma 5. C��(x) ≤ η(x∗) + 〈f, f∗〉 −
∑
i∈M

∑
j∈Xi

pij
∑

k∈Xi(α(j)),ρik>ρij

wk.

Proof. By Lemma 4 and summing over all jobs in J , we have that the total cost
under ��,

∑
j∈J wjC

��

j (x) is upper bounded by

η(x∗) +
∑
i∈M

(
∑
j∈X∗

i

wj

∑
k∈Xi,

ρik<ρij

pik+
∑
j∈X∗

i

pij
∑

k∈Xi,
ρik>ρij

wk −
∑
j∈Xi

pij
∑

k∈Xi(α(j)),
ρik>ρij

wk). (7)

22 F. Abed, J.R. Correa, and C.-C. Huang

By Lemma 1 and the fact that x is pure, we have

〈fi, f∗
i 〉 =

∑
j∈X∗

i

∑
k∈Xi

wjwk min{ρij , ρik} =
∑
j∈X∗

i

(wj

∑
k∈Xi,

ρik≤ρij

pik + pij
∑

k∈Xi,
ρik>ρij

wk).

Summing over i ∈ M and subtracting the latter from (7)

C��(x) − 〈f , f ∗〉 ≤ η(x∗) −
∑
i∈M

∑
j∈Xi

pij
∑

k∈Xi(α(j)),ρik>ρij

wk. ��

Theorem 2. Let φ be the golden ratio. Then C��(x) ≤ (1 + φ)C��(x∗).

Proof. Lemma 5 and Cauchy-Schwartz inequality imply that for β > 1/4

C��(x) ≤ η(x∗) + β||f ∗||2 +
1

4β
||f ||2 −

∑
i∈M

∑
j∈Xi

pij
∑

k∈Xi(α(j)),ρik>ρij

wk

≤ η(x∗) + β||f ∗||2 +
1

4β
||f ||2 − 1

4β

∑
i∈M

∑
j∈Xi

pij
∑

k∈Xi(α(j)),ρik>ρij

wk

≤ η(x∗) + 2βC��(x∗) − βη(x∗) +
1

4β
C��(x)

≤ (β + 1)C��(x∗) +
1

4β
C��(x),

where the third inequality follows from equation (3), from Proposition 1 and

from equation (4). By letting β = 1+
√
5

4 the result follows. ��

As mentioned earlier, it turns out that �� is best possible. The proof of this
fact is deferred to the full version.

Theorem 3. The coordination ratio for weak equilibrium of any prompt mech-
anism is at least 1 + φ.

4 Final Remarks

We have proved that �� is the best possible nonpreemptive policy, and to beat its
coordination ratio we have used ��, a policy that, as opposed to ��, importantly
relies on who owns which job. We conjecture that if we restrict to policies that
ignore the ownership of the jobs the ratio of 4 cannot be improved. This is indeed
the case for nonpreemptive policies, and also for fully preemptive policies. Also,
for natural policies with this property such as �� or the RAND policy [12] the
technique in this paper only lead to larger bounds.

Our lower bound on general prompt seems to be the natural limit. Non-
prompt policies that are allowed to use global information can certainly beat
this as they can simply introduce very large delays for jobs that are not assigned
to it in an optimal schedule. By doing this, such policies can easily achieve low
coordination ratio (say optimal if they have unlimited computational power or

Optimal Coordination Mechanisms for Multi-job Scheduling Games 23

3/2 if they use the best known approximation algorithms. It would be interesting
to explore what happens with this non-prompt policies when they can only use
local information.

Another interesting question refers to the quality of the actual NE of this
game. Of course our upper bounds applies to that equilibrium concept, and
furthermore we know that the coordination ratio of �� for NE is exactly 2.618
as in the single job case it coincides with �� [12]. However it may be possible
that another deterministic policy has a better coordination ratio for NE.

Finally, we note that by mimicking the analysis in [12] we obtain a similar
2+ε approximation algorithm for R| |

∑
wjCj , independent of which jobs belong

to which players. It is possible that by carefully choosing the game structure this
can be beaten.

References

1. Abed, F., Huang, C.-C.: Preemptive coordination mechanisms for unrelated
machines. In: Epstein, L., Ferragina, P. (eds.) ESA 2012. LNCS, vol. 7501,
pp. 12–23. Springer, Heidelberg (2012)

2. Azar, Y., Jain, K., Mirrokni, V.S. (Almost) Optimal coordination mechanisms for
unrelated machine scheduling. In: SODA (2008)

3. Bhattacharyay, S., Imz, S., Kulkarnix, J., Munagala, K.: Coordination mechanisms
from (almost) all scheduling policies. In: ITCS (2014)

4. Brueggemann, T., Hurink, J.L., Kern, W.: Quality of move-optimal schedules for
minimizing total weighted completion time. Oper. Res. Lett. 34(5), 583–590 (2006)

5. Bruno, J., Coffman, E.G., Sethi, R.: Scheduling independent tasks to reduce mean
finishing time. Commun. ACM 17, 382–387 (1974)

6. Caragiannis, I.: Efficient coordination mechanisms for unrelated machine
scheduling. In: SODA (2009)

7. Chen, B., Potts, C.N., Woeginger, G.J.: A review of machine scheduling: Complex-
ity, algorithms and approximability. In: Handbook of Combinatorial Optimization,
vol. 3, Kluwer Academic Publishers (1998)

8. Caragiannis, I., Flammini, M., Kaklamanis, C., Kanellopoulos, P., Moscardelli, L.:
Tight bounds for selfish and greedy load balancing. Algorithmica 61(3), 606–637
(2011)

9. Christodoulou, G., Koutsoupias, E., Nanavati, A.: Coordination mechanisms. In:
Dı́az, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS,
vol. 3142, pp. 345–357. Springer, Heidelberg (2004)

10. Cohen, J., Dürr, C., Thang, N.K.: Smooth inequalities and equilibrium ineffi-
ciency in scheduling games. In: Goldberg, P.W. (ed.) WINE 2012. LNCS, vol. 7695,
pp. 350–363. Springer, Heidelberg (2012)

11. Cole, R., Correa, J.R., Gkatzelis, V., Mirrokni, V.S., Olver Inner, N.: product
spaces for MinSum coordination mechanisms. In: STOC (2011)

12. Cole, R., Correa, J.R., Gkatzelis, V., Mirrokni, V., Olver, N.: Decentralized utili-
tarian mechanisms for scheduling games. In: Game. Econ. Behav. (to appear)

13. Correa, J.R., Queyranne, M.: Efficiency of equilibria in restricted uniform machine
scheduling with total weighted completion time as social cost. Naval Res. Logist. 59,
384–395 (2012)

14. Czumaj, A., Vöcking, B.: Tight bounds for worst-case equilibria. ACM T. Algo. 3
(2007)

15. Davis, E., Jaffe, J.M.: Algorithms for scheduling tasks on unrelated processors. J.
ACM 28(4), 721–736 (1981)

24 F. Abed, J.R. Correa, and C.-C. Huang

16. Dürr, C., Nguyen, K.T.: Non-clairvoyant scheduling games. In: Mavronicolas, M.,
Papadopoulou, V.G. (eds.) SAGT 2009. LNCS, vol. 5814, pp. 135–146. Springer,
Heidelberg (2009)

17. Farzad, B., Olver, N., Vetta, A.: A priority-based model of routing. Chic. J. Theor.
Comput. (2008)

18. Finn, G., Horowitz, E.: A linear time approximation algorithm for multiprocessor
scheduling. BIT 19, 312–320 (1979)

19. Fleischer, L., Svitkina, Z.: Preference-constrained oriented matching. In: ANALCO
(2010)

20. Heydenreich, B., Müller, R., Uetz, M.: Mechanism Design for Decentralized Online
Machine Scheduling. Oper. Res. 58(2), 445–457 (2010)

21. Hoogeveen, H., Schuurman, P., Woeginger, G.J.: Non-approximability results for
scheduling problems with minsum criteria. In: Bixby, R.E., Boyd, E.A., Ŕıos-
Mercado,R.Z. (eds.) IPCO1998.LNCS,vol. 1412, p. 353. Springer,Heidelberg (1998)

22. Hoeksma, R., Uetz, M.: The Price of Anarchy for Minsum Related Machine
Scheduling. In: Solis-Oba, R., Persiano, G. (eds.) WAOA 2011. LNCS, vol. 7164,
pp. 261–273. Springer, Heidelberg (2012)

23. Horn, W.A.: Minimizing average flow time with parallel machines. Oper. Res. 21(3),
846–847 (1973)

24. Ibarra, O.H., Kim, C.E.: Heuristic algorithms for scheduling independent tasks on
nonidentical processors. J. ACM 24(2), 280–289 (1977)

25. Immorlica, N., Li, L., Mirrokni, V.S., Schulz, A.S.: Coordination mechanisms for
selfish scheduling. Theor. Comput. Sci. 410(17), 1589–1598 (2009)

26. Koutsoupias, E., Papadimitriou, C.: Worst-case equilibria. In: Meinel, C., Tison,
S. (eds.) STACS 1999. LNCS, vol. 1563, p. 404. Springer, Heidelberg (1999)

27. Lu, P., Yu, C.: Worst-Case Nash Equilibria in Restricted Routing. In: Papadim-
itriou, C., Zhang, S. (eds.) WINE 2008. LNCS, vol. 5385, pp. 231–238. Springer,
Heidelberg (2008)

28. Nash, J.: Equilibrium points in N-person games. PNAS 36, 48–49 (1950)
29. Potts, C.N., Strusevich, V.: Fifty years of scheduling: a survey of milestones. J

Oper. Res. Society 60(1), 41–68 (2009)
30. Rahn, M., Schäfer, G.: Bounding the inefficiency of altruism through social contri-

bution games (2013) (manuscript)
31. Roughgarden, T.: Intrinsic robustness of the price of anarchy. In: STOC (2009)
32. Sahni, S., Cho, Y.: Bounds for list schedules on uniform processors. SIAM J.

Comput. 9, 91–103 (1980)
33. Schulz, A.S., Skutella, M.: Scheduling unrelated machines by randomized rounding.

SIAM J. Discrete Math. 15(4), 450–469 (2002)
34. Schuurman, P., Vredeveld, T.: Performance guarantees of local search for multipro-

cessor scheduling. In: Aardal, K., Gerards, B. (eds.) IPCO 2001. LNCS, vol. 2081,
p. 370. Springer, Heidelberg (2001)

35. Sethuraman, J., Squillante, M.S.: Optimal scheduling of multiclass parallel
machines. In: SODA (1999)

36. Skutella, M.: Convex quadratic and semidefinite programming relaxations in
scheduling. J. ACM 48(2), 206–242 (2001)

37. Skutella, M., Woeginger, G.J.: A ptas for minimizing the total weighted completion
time on identical parallel machines. Math. Oper. Res. 25(1), 63–75 (2000)

38. Smith, W.: Various optimizers for single stage production. Naval Res. Logist.
Quart. 3(1-2), 59–66 (1956)

39. Vredeveld, T., Hurkens, C.: Experimental comparison of approximation algorithms
for scheduling unrelated parallel machines. INFORMS J. Comput. 14, 175–189
(2002)

Theory and Practice of Chunked Sequences

Umut A. Acar1,2, Arthur Charguéraud1,3, and Mike Rainey1

1 Inria
2 Carnegie Mellon University

3 LRI, Université Paris Sud, CNRS

Abstract. Sequence data structures, i.e., data structures that provide
operations on an ordered set of items, are heavily used by many ap-
plications. For sequence data structures to be efficient in practice, it is
important to amortize expensive data-structural operations by chunking
a relatively small, constant number of items together, and representing
them by using a simple but fast (at least in the small scale) sequence
data structure, such as an array or a ring buffer. In this paper, we present
chunking techniques, one direct and one based on bootstrapping, that can
reduce the practical overheads of sophisticated sequence data structures,
such as finger trees, making them competitive in practice with special-
purpose data structures. We prove amortized bounds showing that our
chunking techniques reduce runtime by amortizing expensive operations
over a user-defined chunk-capacity parameter. We implement our tech-
niques and show that they perform well in practice by conducting an
empirical evaluation. Our evaluation features comparisons with other
carefully engineered and optimized implementations.

1 Introduction

Sequence data structures, i.e., data structures that store an ordered set of ele-
ments and support operations on them, are fundamental in computer science.
There exist several variants of sequences, such as LIFO queues (stacks), FIFO
queues, doubly-ended queues (deques), and more general data structures, such
as finger-search trees. The common operations on sequences include push and
pop operations at one or two ends, a split operation that partitions the data
structure at a desired position, and a concatenation operation that joins two
sequences.

Many asymptotically efficient data structures for sequences have been de-
veloped. Resizable circular arrays support constant-time push, pop and ran-
dom access operations, but require linear time for concatenation and splitting.
Doubly-linked lists improve the bound for concatenation to O(1), but splitting
at a given index requires linear time. More sophisticated data structures, such
as Kaplan and Tarjan’s functional catenable sorted lists, support push and pop
operations in constant time, while also supporting splitting and concatenation
in logarithmic time [10]. Their catenable sorted list is one instance of a finger
search tree, a type of tree that has been studied extensively since the 1970s [7].

A.S. Schulz and D. Wagner (Eds.): ESA 2014, LNCS 8737, pp. 25–36, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

26 U.A. Acar, A. Charguéraud, and M. Rainey

A more recent functional finger-tree data structure by Hinze and Paterson
achieves similar bounds and accepts a simple implementation [8].

Practical performance is a major concern for sequence data structures be-
cause of their widespread use in applications. While there has been much focus
on developing asymptotically efficient sequence data structures, there is rela-
tively little rigorous work on practical data structures that can guarantee small
constant factors on modern computers. To understand the significance of practi-
cal concerns we implemented in C++ an optimized version of Hinze and Paterson
finger tree data structure [8], and compared it to a resizable circular array, which
is simpler but asymptotically efficient only for a narrower set of operations in-
cluding push and pop. Our experiments show that the finger tree is over 20 times
slower for push/pop operations than with circular arrays.1 This is unfortunate,
because such gaps in performance can prevent the use of these asymptotically
efficient data structures in practice. It would be nice to have the best of both
worlds by guaranteeing both theoretical and practical efficiency. We are therefore
interested in the question: can we design asymptotically and practically efficient
data structures for sequences that can support a broad range of operations, in-
cluding push/pop operations on both ends, concatenation, and split at a specified
position?

In practice, simpler data structures can out-class sophisticated, asymptotically
efficient data structures because the latter tends to perform many more expen-
sive operations, such as memory operations and manipulations of tree nodes,
than their simpler counterparts. To reduce such overheads, practitioners repre-
sent a sequence data structure as a hierarchical data structure consisting of an
underlying sequence data structure that stores chunks of items instead of indi-
vidual items. Each chunk in turn is represented as an array, which is basically
a fast sequence data structure (in small scale). The idea is to amortize the cost
of expensive memory operations on the underlying sequence over the items in
the chunks. This chunking technique can be applied to essentially any underly-
ing sequence data structure. For example, the C++ Standard Template Library
(STL) [14] includes a deque data structure represented as a resizable circular
array of chunks of 512 single-word items. Similarly, the Haskell “yi” package [2]
provides a chunked finger-tree data structure for character sequences. While
chunking can be effective in practice, all applications of this technique known
to us are merely heuristics: they provide no worst-case efficiency guarantees. In
fact, as we describe in Section 2, their time and space efficiency can degenerate
significantly on certain sequences of operations.

In this paper, we give chunking algorithms that yield tight amortized, worst-
case bounds with small constant factors. To support splits and random ac-
cesses efficiently, we consider a slightly more general interface for sequences:
we associate weights with the items and support a weighted-split operation. The
weighted-split operation takes a sequence s and a weight w, and it decomposes s
in three parts (s1, x, s2), in such a way that |s1| ≤ w < |s1| + |x|, where |x|

1 We specifically measured the time for pushing 100 million integers and then popping
them in FIFO order.

Theory and Practice of Chunked Sequences 27

denotes the weight of the item x, and |s1| denotes the sum of the weights of the
items in s1.

Given any underlying weighted sequence data structure, we show in Section 3
how to build a weighted (or unweighted) sequence data structure by using K-
capacity chunks

– that guarantees constant-time push and pop operations with excellent con-
stant factors, in particular such that every allocation operation is amortized
over at least K push or pop operations,

– that supports concatenation and split efficiently by introducing an additive
overhead proportional to K, and

– that requires approximately a factor-2 increase in space usage, thus ensuring
reasonably good space utilization.

At a high level, our techniques speed up the push and pop operations (usually
the most common operations) without significantly affecting the performance
for the other operations. We note that in this paper, we consider ephemeral (as
opposed to persistent) data structures only.

Since our techniques can be applied to any sequence data structure, including
to a chunked sequence data structure, it can be applied recursively to permit
bootstrapping. We describe such a bootstrapped data structure in Section 4,
which uses structural decomposition [6,4,3] and recursive slowdown [9].

In our proofs, in addition to considering the chunk size as a parameter, we
also differentiate between memory allocation and other operations. For memory
allocation, we introduce a parameter A to denote the cost of allocating and later
deallocating a structure of bounded-size (e.g., a chunk or a record), and reserve
the O(1) notation to account for the other (relatively cheaper) operations. We
show that all allocation operations are well amortized. As we describe briefly,
in our chunking technique, allocation correlates with other expensive memory
operations. This approach thus gives us a good indication of practical overheads.

To understand the actual practical efficiency of our proposed techniques, we
have implemented them all in C++. We perform an empirical evaluation by
comparing our data structures to more specialized data structures that are op-
timized for a narrower set of operations such as STL deques and ropes, which
are carefully engineered and highly optimized. Our practical results confirm our
theoretical results showing that our data structures perform well in practice,
usually within 10% of the actual run time of the best known data structure,
while still supporting a broader set of operations.

The contributions of the paper include the chunking techniques that guaran-
tee worst-case bounds, their analysing and the proofs, the bootstrapped data
structure, and the implementation and its evaluation. Our implementations and
test scripts are available for download at http://deepsea.inria.fr/chunkedseq/.

2 Challenges

We consider common chunking strategies used in prior implementations such as
those employed by the Standard Template Library for C++ and identify two

http://deepsea.inria.fr/chunkedseq/

28 U.A. Acar, A. Charguéraud, and M. Rainey

limitations that can lead to significantly degraded performance and underuti-
lization of memory (space) by breaking the amortization benefits of chunking.

Push-Pop Sequences. A common chunking strategy is to create and dispose
of chunks on a need by need basis. For example, to push an item x to the front
of a sequence, we first check if there is space in the first chunk. If so, we push x
into that chunk. Otherwise, we create a new chunk, place x in it, and push this
chunk to the front. Symmetrically, to pop an item from the front, we extract the
first item stored in the first chunk. If the first chunk becomes empty as a result,
then we pop the chunk from the front and dispose of it.

This strategy can fail to amortize the cost of push/pop operations on chunks,
which are expensive. For example, starting from a sequence whose front chunk
is full, repeat the following pattern: push one item and pop it immediately. It is
not difficult to see that each operation requires pushing/popping a chunk. This
chunking strategy, employed by the C++ Standard Template Library (STL)
Deques, runs 10 times slower in the worst case. To test this, we wrote a program
that starting from an initial deque obtained by pushing a given number of items,
performs a sequence of push and pop operations on 64-bit integers. The programs
runs 10 times slower when the initial deque has a size equal to 511 modulo 512
than with a different initial deque. All chunked sequence data structures that we
have seen (and their naive variants) suffer from the same or similar problems.

Sparse Chunks. Chunking delivers efficiency improvements by amortizing the
cost of slow operations over a number of fast operations. Such amortization
works, of course, only if chunks are densely populated. When chunks are sparsely
populated, then the amortization arguments breaks and performance and mem-
ory utilization drops. For example, if chunks have capacity K but store only 1
item, then amortization fails entirely and the memory footprint of the sequence
is roughly K times bigger than necessary. It is not difficult to create sparse
chunks by using concatenation operations. Consider for example a chunked se-
quence consisting of 2 chunks each containing a single item. Such a sequence
can be obtained by pushing K + 1 items to the front, then popping K − 1 from
the back, where K is the capacity of a chunk. Once we have two sequences each
with two sparse chunks, we can create one with arbitrary number of chunks by
repeatedly concatenating them.

The “yi” package of Haskell [2] implements a refinement of this strategy: to
concatenate two sequences s1 and s2, first check whether the back chunk in s1 and
the front chunk in s2 would fit into a single chunk; if so, merge these two chunks
before concatenating the underlying sequences. This strategy does not prevent
sparse chunks. For example, the concatenation of two sequences each made of
two chunks of size 1 produces a sequence made of three chunks of size 1, 2, and 1.
Concatenating two such sequences produces a sequence made of chunks of size
1, 2, 2, 2, and 1. By iterating the process, we obtain an arbitrarily-long sequence
made of sparse chunks containing no more than 2 items each. This example
demonstrates that a provably efficient chunking strategy requires techniques to
prevent sparse chunks from being formed.

Theory and Practice of Chunked Sequences 29

3 Efficient Chunked Sequences

One of our main results is a theorem (Theorem 1 below) that shows that chunking
can be applied to any (underlying) sequence data structure. The theorem states
the bounds for the resulting chunked sequence, parametrized by the bounds of
the underlying sequence. To simplify the analysis, we combine the cost of push
and pop. More precisely, we charge all the cost of a pop operation to the push
operation associated with the corresponding item. Doing so is correct because
we consider ephemeral sequences and conduct an amortized analysis. For the
theorem, we define a chunk as a circular array of fixed capacity K and we assume
that cost function for the underlying sequence (e.g., Csplit(n)) are nondecreasing
functions of size.

Theorem 1 (Efficiency of Chunked Sequence). Consider an underlying
weighted sequence that supports the following operations:

– Push and pop, with cost Cpushpop. For simplicity, we assume this cost to not
depend on the number of items in the sequence.

– Concatenation, with cost Cconcat(n), where n is the minimum of the sizes of
the two input sequences.

– Weighted split, with cost Csplit(n), where n is the minimum of the sizes of
the two output sequences.

– Space usage bounded by Cspace(n), where n is the number of single-word items
stored in the sequence.

Let K ≥ 2 denote the capacity of a chunk, a value that may be freely chosen.
Assume that chunks are implemented with a structure that supports O(1) push
and pop operations and that requires K + 3 words to store K single-word items
—e.g., using fixed-capacity circular arrays. Recall that A denotes the cost of
allocation, including subsequent deallocation.

Then, we can implement a (weighted or unweighted) sequence that achieves
the amortized bounds shown below, where, for each operation, n is a size defined

as above, and where pn = � 2(n−1)
K+1 �+ 1, for whatever the local definition of n > 0

is. Intuitively, pn bounds the number of chunks stored in the underlying sequence.

– Push and pop, with cost: O(1) + 1
K

(
A + Cpushpop

)
.

– Concatenation, with cost: Cconcat(pn) + O(K) + 4 · Cpushpop.

– Split, or weighted split, with cost: Csplit(pn) + O(K) + 6A.

– Space usage, bounded by: 2(1 + 2
K+1) · n + Cspace(pn) + 5K + O(1) words.

We present the representation and the invariants of the data structure that
satisfies Theorem 1 and describe the implementation of the operations. The proof
of the theorem can be found in the long version [1].

Representation. As discussed in Section 2, the main challenge in efficient
chunking as required by Theorem 1 is to ensure that all operations on the under-
lying sequence data structure, which stores chunks are well amortized. To ensure

30 U.A. Acar, A. Charguéraud, and M. Rainey

such amortization, we use a representation that keeps two chunks to store the
items at the front of the sequence, and two chunks to store the items at the back.
We refer to each of the special chunks stored at the two ends as a buffer. We then
represent a sequence as a quintuple made of a front-outer buffer, a front-inner
buffer, a middle sequence, which is an underlying sequence of chunks, a back-
inner buffer, and a back-outer buffer. We write, e.g., (f ′, f,m, b, b′) to denote
such a quintuple.

Invariants. To guarantee efficiency, we maintain the invariant that the inner
buffers are, at all time, either completely empty or completely full. Moreover,
chunks in the middle sequence are never empty, and, to prevent sparse chunks
from being formed, we ensure that any 2 consecutive chunks from the middle
sequence have an average density of more than 50%. Our invariants are summa-
rized as shown below, where |c| denotes the number of items stored in a chunk c.

1. The front-inner and the back-inner buffers are either empty or full.
2. If c is a chunk from the middle sequence, then 0 < |c| ≤ K.
3. If c and c′ are two consecutive chunks in the middle sequence, |c|+ |c′| > K.

Operations. We implement the sequence operations as described below.
push-Front. Consider a sequence (f ′, f,m, b, b′) and an item x to push to the

front of this sequence. If f ′ is full, we make room as follows. If f is empty, we
simply exchange f with f ′, by swapping pointers. Otherwise, if f is full, we
update the sequence to (c, f ′,m′, b, b′), where c is a fresh chunk and where m′

is the result of pushing the full chunk f to the front of m. At this point, the
front-outer buffer is not full, so we push x to the front of this buffer.

pop-Front. Consider a sequence (f ′, f,m, b, b′). If f ′ is empty, we populate it
as follows. If f is not empty, in which case it must be full, we swap f with f ′.
Otherwise, assume f to be empty. If m is not empty, we pop from m, obtaining a
nonempty chunk c and a new middle sequence m′; we then update the sequence
to (c, f,m′, b, b′). Otherwise, assume m to be empty. If b is not empty, in which
case it must be full, we swap b with f ′. Otherwise, if b is empty, we swap b′

with f ′. (Alternatively, we may directly pop from the front of b′.) At this point,
the front-outer buffer is not empty, so we can pop from this buffer.

push-Buffer-Back. This auxiliary function is used to implement concat. When
applied to a middle sequence m and to a chunk c, the function push-buffer-back
modifies m so as to concatenate the items from c at its back, proceeding as
follows. If c is empty, there is nothing to do. Otherwise, we perform the following
two steps. (1) If m is nonempty and has a back chunk c′ such that |c|+ |c′| ≤ K,
then we pop c′ out of m and merge the items from c′ into c. (2) We push the
chunk c to the back of m.

push-back and pop-back and push-buffer-front are defined symmetrically.
concat. Consider two sequences (f ′

1, f1,m1, b1, b
′
1) and (f ′

2, f2,m2, b2, b
′
2). To

concatenate them, we start by concatenating the chunks b1, b′1 at the back of m1,
by applying twice the function push-buffer-back. Symmetrically, we concatenate
f ′
2 and f2 to the front of m2, using push-buffer-front. If m1 and m2 are both

nonempty at this point, let c1 be the back chunk of m1 and c2 be the front

Theory and Practice of Chunked Sequences 31

chunk of m2. If |c1| + |c2| ≤ K, then we pop c1 and c2, merge the items from
c2 into c1, and push c1 back into m1. (Remark: the pop and push operations on
c1 may be factorized with the earlier calls to push-buffer-back.) At this point,
we concatenate the two underlying sequences m1 and m2 to get a new middle
sequence, call it m12. The final result of the concatenation is (f ′

1, f1,m12, b2, b
′
2).

split. Consider a sequence (f ′, f,m, b, b′) and an index i denoting the split
position. There are five cases; we consider the first one that applies.

– Case i ≤ |f ′|. We return two sequences (f ′
1, ∅, ∅, ∅, ∅) and (f ′

2, f,m, b, b′),
where (f ′

1, f
′
2) is the result of splitting the chunk f ′ at index i. More precisely,

f ′
1 denotes f ′ restricted to its items stored at index less than i, and f ′

2 denotes
a fresh chunk into which we move the items at index i or more in f ′.

– Case i ≤ |f ′|+|f |. We return two sequences (f ′, ∅, ∅, ∅, f1) and (f2, ∅,m, b, b′),
where (f1, f2) is the result of splitting the chunk f at index i− |f ′|.

– Case i ≤ |f ′|+ |f |+ |m|, where |m| denotes the total number of items stored
in all the chunks of m. Let j be equal to i−|f ′|−|f |. We invoke the weighted
split operation on the middle sequence to split m into a triple (m1, c,m2),
such that the chunk c contains the item located at index j in m. Let (c1, c2)
is the result of splitting the chunk c at index j − |m1|, where |m1| denotes
the weight of m1 (i.e., the sum of the weights of the chunks in m1). We then
return the two sequences (f ′, f,m1, ∅, c1) and (c2, ∅,m2, b, b

′).
– The remaining two cases, i ≤ |f ′|+ |f |+ |m|+ |b| and i > |f ′|+ |f |+ |m|+ |b|

are essentially symmetrical to the first two cases.

4 Bootstrapped Chunked Sequences

The construction presented in Section 3 shows that, we can build a chunked
sequence data structure on top of an underlying weighted sequence data struc-
ture. We can thus build a bootstrapped weighted sequence data structure by
instantiating the underlying sequence to the structure produced by the theorem.
To initiate the bootstrapping process, we can use a single chunk. The resulting
bootstrapped chunked sequence data structure is a weighted sequence that, for
a fixed value of K, achieves the asymptotic bounds as finger trees: constant time
push and pop operations at the two ends, and logarithmic time concatenation
and split. Unlike finger trees, however, our structure achieves constant factors
amortized over K for push and pop operations, without significantly increas-
ing the constant factors in concatenation and split. The precise bounds for our
bootstrapped structure are as follows.

Theorem 2 (Efficiency of Bootstrapped Chunked Sequence). A boot-
strapped chunked sequence has depth zero when n ≤ 1, and has depth d ≤
�log(K+1)/2 n� + 1 otherwise. It achieves the following bounds:

– Push and pop, with cost: O(1) + 4A
K−1 .

– Concatenation, with cost: (d + 1) ·
(
O(K) + 16A

K−1

)
.

32 U.A. Acar, A. Charguéraud, and M. Rainey

– Weighted split, with cost: (d + 1) ·
(
O(K) + 6A

)
.

– Space usage, with a bound asymptotically equivalent to: 2(1 + 4
K−1) · n.

At first approximation, our bootstrapped data structure implements push and
pop in O(1) + A

K , and concatenation and weighted split in O(K · logK/2 n).
Since logK/2 n is a rather small value the concatenation and split operations are
competitive with the corresponding operations on finger trees, of cost O(log2 n),
with small values of K.

We note that since the bootstrapped data structure stores chunks of chunks
(of chunks and so on), its nodes have high fanout, like some other data structures
such as B+ trees [11]. A benefit of large fanout is that it decreases depth. Unlike
B+ trees, however, our structure stores both ends of the sequence very close to
the root, achieving constant-time access to the ends of the sequence.

We present the representation and the invariants of the data structure that
satisfies Theorem 2 and describe the implementation of the operations. The proof
of the theorem can be found in the long version [1].

Representation. We represent a bootstrapped chunked sequence as a list of
levels. The deepest level is a shallow level that consists of a single weighted chunk.
Every other level is a deep level that consists of a weight field and of pointers to
the front-outer, front-inner, back-inner and back-outer weighted chunks. Chunks
attached at depth 0 store individual items, chunks attached at depth 1 one store
chunks of items, chunks at depth 2 store chunks of chunks of items, and so on...

We may choose different chunk capacities for different levels. However, our
goal is to minimize both the product of the chunk sizes (to reduce the depth)
and the sum of the chunk sizes (for fast split and concatenation). It therefore
makes sense to select the same chunk capacity at every level.

Invariant. We enforce that if a level stores zero or one element (which may be
items or chunks, depending on the level), then it is shallow. For all but the last
level, we enforce the same invariants as those presented previously in Section 3.

Operations. We implement the sequence operations as described below. Opera-
tions on deep levels are similar to those described in Section 3, making recursive
calls on the lower levels of the bootstrapped structure when operating on the
middle sequence. Operations on deep levels also require updating the weight
field. Below, we only focus on the treatment of shallow levels and the transitions
between shallow and deep levels.

check. The purpose of this auxiliary function is to enforce the invariant that
if a level contains zero or one element, then it is shallow. To that end, if the
sequence is deep, we execute the following two steps, in order. (1) If all four
buffers are empty and the middle sequence is nonempty, we pop a chunk from
the front of the middle sequence and set it as new front-outer buffer. (2) If the
sequence has an empty middle sequence, and all four buffers contain zero or
one item in total, then we change the representation of the sequence to shallow
(reusing one of the four buffers as chunk to represent the shallow level).

push-Front. First, if the sequence is shallow and is made of a full chunk, we
change its representation to deep, setting the chunk as back-outer buffer. Then,
we push the incoming item to the front of the (shallow or deep) level.

Theory and Practice of Chunked Sequences 33

pop-Front. We pop an item from the structure, which may be shallow or deep.
If the structure is deep, then we call check to possibly make it shallow.

concat. If both structures are deep, we call the concatenation procedure de-
scribed in Section 3, then call check on the result. Else, we pop the items of the
shortest sequence one by one and push them into the other one.

split. If the structure is shallow, we split its chunk at the appropriate position
in order to isolate the targeted item, and we produce two shallow structures. If
the structure is deep, we split it and then call check on both subsequences.

5 Benchmarks

To evaluate our chunking techniques, we wrote an implementation in C++ con-
sisting of a few generic classes and two data structures that we benchmark. The
first class is a generic C++ class that implements our chunking technique of
Section 3. This chunked-sequence class is a templated class that is parameter-
ized over the representation of its underlying sequence. Recall that we define the
underlying sequence as any underlying sequence data structure that provides
the full set of operations for maintaining a sequence of chunks. For the first data
structure we benchmarked, we used an instantiation of our chunked-sequence
class for which the underlying sequence is represented by our own ephemeral
C++ implementation of Hinze and Patterson’s finger tree. In addition, we coded
a C++ class that implements our bootstrapped chunked sequence of Section 4.
For the second data structure we benchmarked, we used an instantiation of our
chunked-sequence class for which the underlying sequence is represented by our
bootstrapped chunked sequence.

We ran all of our experiments with the same settings for K (i.e., chunk ca-
pacity) that we found to deliver good performance overall. For our chunked
finger tree, we used 512; for our bootstrapped chunked sequence, we used 512
and 32 for the chunk-capacity settings of the outer and underlying sequences,
respectively. We compiled all programs with GCC version 4.9.0, using optimiza-
tions -O2 -march=native. For the measurements we report in the abstract, we
considered an Ubuntu Linux machine with kernel v3.2.0-58-generic and an
2.4GHz Intel Xeon 4870 processor with 1TB of RAM. We have obtained similar
results on an AMD machine.

Our first study is a comparison between our chunked data structures and the
STL deque, which as discussed earlier is also a chunked data structure that uses
a chunk-capacity setting of 512 items. To measure the relative efficiency of long
sequences of similar accesses to the ends of the sequence, we ran two simple
benchmarks, namely LIFO and FIFO. Our LIFO benchmark proceeds in two
steps: the first step is to fill a previously empty target sequence by pushing on
the back end n 64-bit items and the second is to empty the target sequence by
popping repeatedly from the back of the sequence. Our FIFO benchmark does
the same thing as LIFO but pops from the front instead of the back end. Table
5 shows the data from our experiments. The results in the first six rows of the
table show that our two chunked data structures are at worst a few percent
slower than the STL deque.

34 U.A. Acar, A. Charguéraud, and M. Rainey

To measure the relative efficiency of interleaved sequences of pushes and pops,
we ran experiments involving the depth-first and breadth-first search of a di-
rected graph. Our depth-first and breadth-first codes are serial implementations
of DFS and BFS that are each parameterized by C++ template parameter over
the representation of their respective frontiers (i.e., lifo stack and fifo queue
ADTs). We considered three graphs that each demonstrates key characteris-
tics of our sequence data structures. Each graph is represented in adjacency-list
format and uses 64-bit integer values to represent vertex ids. Looking at DFS
and BFS, we see that, in every case except for DFS on tree, our chunked data
structures are competitive with STL deques — sometimes slower and sometimes
faster, but never differing by more than a few percent. In the case of DFS on tree,
our chunked finger tree and bootstrapped chunked sequence are each nearly 40%
slower than STL deque. This benchmark demonstrates a weakness of our imple-
mentations: the empty check is relatively costly because of the need to frequently
check the emptiness of the two inner buffers and the middle sequence each time
around main the DFS loop. The cost of the empty check is so pronounced in
this particular case because the cost is not well amortized by sufficiently many
push operations: the peak size of the DFS frontier is just a few tens of items.
Although it affects implementations, this weakness is not inherent to our gen-
eral technique. If performance on such small sequences is important, one can
adjust the code to sacrifice a few instructions on each push and pop operation to
cache the size of the structure. We plan to experiment with such optimizations
in future work.

We ran an experiment involving single-processor executions of Leiserson and
Schardl’s parallel BFS algorithm (PBFS) [12]. The original PBFS uses a special-
purpose bag data structure to manage the frontier of the graph traversal. During
a given round, PBFS traverses its frontier in a divide-and-conquer fashion, using
push and pop in the sequentialized leaves and split and concat in the divide and
conquer stages, respectively. Their bag data structure is represented by a chun-
ked binomial tree that bears some resemblance to our chunked representations.
Despite the similarities, Leiserson and Schardl’s structure provides access only
to the front and supports only an approximate split-in-half operation. In our
experiment, we consider the same chunk capacity as in the original PBFS pa-
per, namely 128, and we applied to our data structure a few basic optimizations
exploiting the fact that sequence order needs not be maintained —in particular,
the back buffers become unnecessary. We see from the results table that our
(bag-specialized) chunked data structures perform either better, or at worst a
few percent slower, than the PBFS bag structure.

In the long version [1], we report on two additional experiments to more
thoroughly evaluate performance in scenarious that mix push, pop, split and
concatenate, comparing in particular against the STL rope data structure [13].

Theory and Practice of Chunked Sequences 35

Table 1. Measurements of benchmark runs. All measurements were taken from our
Intel machine. Each data point represents wall-clock time in seconds. For each data
point in the table, we made five runs and took the mean. The amount of noise that we
observed between runs of the same application was below 1%. All data points that are
no more than 10% slower than the best time are displayed in boldface. Our grid 2D
graph is a grid graph in two-dimensional space, where each vertex is connected to each
of its four neighbors in two dimensions. We used number of vertices n = 2 billion and
number of edges m = 4 billion. Our tree graph is a perfect binary tree of 229 nodes. Our
friendster graph is a social networking graph that has n = 65 million vertices and m =
1.8 billion edges [5]. For LIFO and DFS, we use the stack optimization and for PBFS
we use the bag optimization as described in the long version [1], while for the other
benchmarks we use the plain double-ended sequence-ordered chunk representation. For
PBFS, we use linear-time split and concat for STL deque (only).

Experiment Seq. Nb. PBFS STL Our Our
length repeat bag deque chunked bootstr.

finger tree chunked

LIFO 103 106 5.46 6.40 6.99
106 103 9.15 10.95 10.97
109 100 12.07 13.28 13.47

FIFO 103 106 5.51 6.34 6.40
106 103 9.16 10.96 10.52
109 100 12.32 13.53 13.31

DFS on grid 2D 4.84 5.17 5.27
DFS on tree 11.25 15.53 15.46
DFS on friendster 63.43 64.67 65.28

BFS on grid 2D 39.89 36.74 36.68
BFS on tree 15.23 20.54 21.08
BFS on friendster 72.84 72.76 72.68

PBFS on grid 2D 39.87 38.17 38.71 38.67
PBFS on tree 19.00 75.53 21.53 20.46
PBFS on friendster 117.11 137.36 117.45 117.04

Our experiments show that our chunked data structures deliver excellent per-
formance relative to the state-of-the-art data structures that we considered, even
though each of these other data structures are highly tuned for a strictly narrower
set of operations. Moreover, in contrast to the other state-of-the-art chunked data
structures, ours come along with strong guarantees against worst case behavior.
Furthermore, our benchmarks show promise for our chunked data structures
to serve in roles that were previously not filled. On the one hand, for many
sequential-programming applications, our data structures can be used in place
of STL deque, and as a bonus, offer fast logarithmic-time split and concatenate
operations. On the other, the PBFS application demonstrates potential of our
chunked data structures in multicore applications as generic sequence containers
and as splittable work-queue data structures in load-balancing algorithms.

36 U.A. Acar, A. Charguéraud, and M. Rainey

6 Conclusion and Future Work

We presented algorithmic and implementation techniques for designing practi-
cally efficient sequence data structures that amortize expensive operations over
a collection of items arranged as a chunk. We proved tight bounds by parame-
terizing our analysis by the cost of memory allocations, which, in our approach,
correlate with expensive operations, and by counting such operations separately.
We show that the proposed techniques perform well in practice. In future work,
we plan to investigate the use of stronger invariants on consecutive chunks for
increased space utilization, and consider persistent data structures.

Acknowledgements. This research is partially supported by the European
Research Council under grant number ERC-2012-StG-308246 and the National
Science Foundation under grant number CCF-1320563.

References

1. Acar, U.A., Charguéraud, A., Rainey, M.: Theory and practice of chunked
sequences, http://deepsea.inria.fr/chunkedseq (full version)

2. Bernardy, J.-P.: The Haskell yi package,
http://hackage.haskell.org/package/yi-0.6.2.3/docs/src/Data-Rope.html

3. Buchsbaum, A.L., Tarjan, R.E.: Confluently persistent deques via data-structural
bootstrapping. J. Algorithms 18(3), 513–547 (1995)

4. Buchsbaum, A.L.: Data-structural bootstrapping and catenable deques. PhD
thesis, Princeton University (1993)

5. Stanford Large Network Dataset Collection. Friendster graph,
http://snap.stanford.edu/data/com-Friendster.html

6. Dietz, P.F.: Maintaining order in a linked list. In: STOC 1982, Baltimore, USA,
pp. 122–127. ACM Press (May 1982)

7. Guibas, L.J., McCreight, E.M., Plass, M.F., Roberts, J.R.: A new representation
for linear lists. In: STOC 1977, pp. 49–60. ACM, New York (1977)

8. Hinze, R., Paterson, R.: Finger trees: a simple general-purpose data structure.
JFP 16(2), 197–218 (2006)

9. Kaplan, H., Tarjan, R.E.: Persistent lists with catenation via recursive slow-down.
In: TOC 1995, pp. 93–102. ACM (1995)

10. Kaplan, H., Tarjan, R.E.: Purely functional representations of catenable sorted
lists. In: STOC 1996, pp. 202–211. ACM, New York (1996)

11. Knuth, D.E.: The Art of Computer Programming: Sorting and Searching, 2nd edn.,
vol. 3, ch. 6, pp. 481–489. Addison-Wesley (1998)

12. Leiserson, C.E., Schardl, T.B.: A work-efficient parallel breadth-first search
algorithm. In: SPAA 2010, pp. 303–314 (June 2010)

13. SGI. Stl rope, http://www.sgi.com/tech/stl/Rope.html
14. Stepanov, A., Lee, M.: The Standard Template Library, volume 1501. HP

Laboratories (1995)

http://deepsea.inria.fr/chunkedseq
http://hackage.haskell.org/package/yi-0.6.2.3/docs/src/Data-Rope.html
http://snap.stanford.edu/data/com-Friendster.html
http://www.sgi.com/tech/stl/Rope.html

Convex Hulls under Uncertainty

Pankaj K. Agarwal1, Sariel Har-Peled2, Subhash Suri3, Hakan Yıldız3,
and Wuzhou Zhang1

1 Duke University, United States
2 University of Illinois, Urbana-Champaign, United States
3 University of California, Santa Barbara, United States

Abstract. We study the convex-hull problem in a probabilistic setting,
motivated by the need to handle data uncertainty inherent in many ap-
plications, including sensor databases, location-based services and com-
puter vision. In our framework, the uncertainty of each input point is
described by a probability distribution over a finite number of possible
locations including a null location to account for non-existence of the
point. Our results include both exact and approximation algorithms for
computing the probability of a query point lying inside the convex hull of
the input, time-space tradeoffs for the membership queries, a connection
between Tukey depth and membership queries, as well as a new notion
of β-hull that may be a useful representation of uncertain hulls.

1 Introduction

The convex hull of a set of points is a fundamental structure in mathematics and
computational geometry, with wide-ranging applications in computer graphics,
image processing, pattern recognition, robotics, combinatorics, and statistics.
Worst-case optimal as well as output-sensitive algorithms are known for com-
puting the convex hull; see the survey [15] for an overview of known results.

In many applications, such as sensor databases, location-based services or
computer vision, the location and sometimes even the existence of the data is
uncertain, but statistical information can be used as a probability distribution
guide for data. This raises the natural computational question: what is a robust
and useful convex hull representation for such an uncertain input, and how well
can we compute it? We explore this problem under two simple models in which
both the location and the existence (presence) of each point is described proba-
bilistically, and study basic questions such as what is the probability of a query
point lying inside the convex hull, or what does the probability distribution of
the convex hull over the space look like.

Uncertainty models. We focus on two models of uncertainty: unipoint and
multipoint. In the unipoint model, each input point has a fixed location but it
only exists probabilistically. Specifically, the input P is a set of pairs {(p1, γ1), . . . ,
(pn, γn)} where each pi is a point in Rd and each γi is a real number in the range
(0, 1] denoting the probability of pi’s existence. The existence probabilities of
different points are independent; P = {p1, . . . , pn} denotes the set of sites in P.

A.S. Schulz and D. Wagner (Eds.): ESA 2014, LNCS 8737, pp. 37–48, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

38 P.K. Agarwal et al.

In the multipoint model, each point probabilistically exists at one of multiple
possible sites. Specifically, P is a set of pairs {(P1, Γ1), . . . , (Pm, Γm)} where each
Pi is a set of ni points and each Γi is a set of ni real values in the range (0, 1].
The set Pi =

�
p1i , . . . , p

ni

i

�
describes the possible sites for the ith point of P

and the set Γi =
�
γ1
i , . . . , γ

ni

i

�
describes the associated probability distribution.

The probabilities γj
i correspond to disjoint events and therefore sum to at most

1. By allowing the sum to be less than one, this model also accounts for the
possibility of the point not existing (i.e. the null location)—thus, the multipoint
model generalizes the unipoint model. In the multipoint model, P =

�m
i=1 Pi

refers to the set of all sites and n = |P |.
Our results. The main results of our paper can be summarized as follows.
(A) We show (in Section 2) that the membership probability of a query point

q ∈ Rd, namely, the probability of q being inside the convex hull of P, can be
computed in O(n log n) time for d = 2. For d ≥ 3, assuming the input and
the query point are in general position, the membership probability can be
computed in O(nd) time. The results hold for both unipoint and multipoint
models.

(B) Next we describe two algorithms (in Section 3) to preprocess P into a data
structure so that for a query point its membership probability in P can be
answered quickly. The first algorithm constructs a probability map M(P),
a partition of Rd into convex cells, so that all points in a single cell have
the same membership probability. We show that M(P) has size Θ(nd2

), and
for d = 2 it can be computed in optimal O(n4) time. The second one is a
sampling-based Monte Carlo algorithm for constructing a near-linear-size
data structure that can approximate the membership probability with high
likelihood in sublinear time for any fixed dimension.

(C) We show (in Section 4) a connection between the membership probability
and the Tukey depth, which can be used to approximate cells of high mem-
bership probabilities. For d = 2, this relationship also leads to an efficient
data structure.

(D) Finally, we introduce the notion of β-hull (in Section 5) as another approx-
imate representation for uncertain convex hulls in the multipoint model: a
convex set C is called β-dense for P, for β ∈ [0, 1], if C contains at least β
fraction of each uncertain point. The β-hull of P is the intersection of all
β-dense sets for P. We show that for d = 2, the β-hull of P can be computed
in O(n log3 n) time.

Because of lack of space, many technical details and proofs are omitted from
this version and can be found in the full version [3].

Related work. There is extensive and ongoing research in the database com-
munity on uncertain data; see [7] for a survey. In the computational geome-
try community, the early work relied on deterministic models for uncertainty
(see e.g. [11]), but more recently probabilistic models of uncertainty, which
are closer to the models used in statistics and machine learning, have been
explored [1, 2, 9, 10, 14, 16]. The convex-hull problem over uncertain data has
received some attention very recently. Suri et al. [16] showed that the problem

Convex Hulls under Uncertainty 39

of computing the most likely convex hull of a point set in the multipoint model
is NP-hard. Even in the unipoint model, the problem is NP-hard for d ≥ 3. They
also presented an O(n3)-time algorithm for computing the most likely convex
hull under the unipoint model in R2. Zhao et al. [17] investigated the problem
of computing the probability of each uncertain point lying on the convex hull,
where they aimed to return the set of (uncertain) input points whose probabili-
ties of being on the convex hull are at least some threshold. Jørgensen et al. [8]
showed that the distribution of properties, such as areas or perimeters, of the
convex hull of P may have Ω(Πm

i=1ni) complexity.

2 Computing the Membership Probability

For simplicity, we describe our algorithms under the unipoint model, and then
discuss their extension to the multipoint model. We begin with the 2D case.

2.1 The Two-Dimensional Case

Let P = {(p1, γ1), . . . , (pn, γn)} be a set of n uncertain points in R2 under the
unipoint model. Recall that P = {p1, . . . , pn} is the set of all sites of P. For
simplicity, we make the general position assumption on the input, namely, that
all coordinates are distinct and no three sites are collinear. A subset B ⊆ P is
the outcome of a probabilistic experiment with probability γ(B) =

�
pi∈B γi×�

pi /∈B γi, where γi is the complementary probability 1 − γi. By definition,

for a point q, the probability of q to lie in the convex-hull of B is μ(q) =�
B⊆P | q ∈ ch(B) γ(B), where ch(B) is the convex hull of B. This unfortunately

involves an exponential number of terms. However, observe that for a subset
B ⊆ P , the point q is outside ch(B), if and only if q is a vertex of the convex
hull ch(B ∪ {q}). So, let C = ch(B ∪ {q}), and V be the set of vertices of C.
Then μ(q) = 1 − Pr[q ∈ V].

If B = ∅, then clearly C = {q} and q ∈ V . Otherwise, |V | ≥ 2 and q ∈ V
implies that q is an endpoint of exactly two edges on the boundary of C.1 In this
case, the first edge following q in the counter-clockwise order of C is called the
witness edge of q being in V . Thus, q ∈ V if and only if B = ∅ or (exclusively)
B has a witness edge, i.e.,

Pr
�
q ∈ V

�
= Pr

�
B = ∅

�
+

n�
i=1

Pr
�
qpi is the witness edge of q ∈ V

�
.

The first term can be computed in linear time. To compute the ith term in the
summation, we observe that qpi is the witness edge of B if and only if pi ∈ B
and B contains no sites to the right of the oriented line spanned by the vector

1 If B consists of a single site pi, then C is the line segment qpi. In this case, we
consider the boundary of C to be a cycle formed by two edges: one going from q to
pi, and one going from pi back to q.

40 P.K. Agarwal et al.

−→qpi, which occurs with probability γi ·
�

pj∈Gi
γj , where Gi is the set of sites to

the right of −→qpi. This expression can be computed in O(n) time. It follows that
1 − μ(q), and therefore μ(q), can be computed in O(n2) time. The computation
time can be improved to O(n log n) as described in the following paragraph.

Improving the running time. The main idea is to compute the witness
edge probabilities in radial order around q. We sort all sites in counter-clockwise
order around q. Without loss of generality, assume that the circular sequence
p1, . . . , pn is the resulting order. We first compute, in O(n) time, the probability
that qp1 is the witness edge. Then, for increasing values of i from 2 to n, we
compute, in O(1) amortized time, the probability that qpi is the witness edge
by updating the probability for qpi−1. In particular, let Wi denote the set of
sites in the open wedge bounded by the vectors −−−→qpi−1 and −→qpi. Notice that
Gi = Gi−1 ∪{pi−1} \Wi. It follows that the probability for qpi can be computed

by multiplying the probability for qpi−1 with γi

γi−1
× γi−1�

pj∈Wi
γj

. The amortized

cost of a single update is O(1) because the total number of multiplications in all
the updates is at most 4n. (Each site affects at most 4 updates.) Finally, notice
that we can easily keep track of the set Wi during our radial sweep, as changes
to this set follow the same radial order.

Theorem 1. Given a set of n uncertain points in R2 under the unipoint model,
the membership probability of a query point q can be computed in O(n log n) time.

2.2 The d-Dimensional Case

The difficulty in extending the above to higher dimensions is an appropriate
generalization of witness edges, which allow us to implicitly sum over exponen-
tially many outcomes without over-counting. Our algorithm requires that all
sites, including the query point q, are in general position in the following sense:
for 2 ≤ k ≤ d, the projection of no k+1 points of P ∪{q} on a subspace spanned
by any subset of k coordinates lies on a (k − 1)-hyperplane.

Let B be an outcome, C = ch(B ∪ {q}) its convex hull, and V the vertices
of C. Let λ(B ∪ {q}) denote the point with the lowest xd-coordinate in B ∪ {q}.
Clearly, if q is λ(B ∪ {q}) then q ∈ V ; otherwise, we condition the probability
based on which point among B is λ(B ∪ {q}). Therefore, we can write

Pr
�
q ∈ V

�
= Pr

�
q = λ(B ∪ {q})

�
+

�
1≤i≤n

Pr
�
pi = λ(B ∪ {q}) ∧ q ∈ V

�
.

It is easy to compute the first term. We show below how to compute each term
of the summation in O(nd−1) time, which gives the desired bound of O(nd).

Consider an outcome B. Let pi be an arbitrary point in B. We use pi as a
reference point known to be contained in the hull C = ch(B ∪ {q}). Let B′, p′i
and q′ denote the projections of B, pi and q respectively on the hyperplane
xd = 0, which we identify with Rd−1. Let us define C′ = ch(B′ ∪ {q′}) ⊂ Rd−1,
and let V ′ be the vertices of C′.

Convex Hulls under Uncertainty 41

p′i

C

f

C′ q′

q

−→r (p′i, q
′)

piLet −→r (p′i, q
′) denote the open ray emanating

from q′ in the direction of the vector
−−→
p′iq

′ (that
is, this ray is moving “away” from p′i). A facet f
of C is a pi-escaping facet for q, if q is a vertex
of f and the projection of f on Rd−1 intersects
−→r (p′i, q

′). See the figure on the right. The follow-
ing lemma is key to our algorithm. The points
of C projected into ∂C′ form the silhouette of C.

Lemma 1. (A) If q′ ∈ V ′ then q is a silhouette vertex of C and vice versa.
(B) q has at most one pi-escaping facet on C.
(C) The point q is a non-silhouette vertex of the convex-hull C if and only if

q has a (single) pi-escaping facet on C.

Given a subset of sites Pα ⊆ P \ {pi} of size (d − 1), define f(Pα) to be the
(d−1)-dimensional simplex ch(Pα ∪ {q}). Since pi = λ(B ∪ {q}) implies pi ∈ B,
we can use Lemma 1 to decompose the ith term as follows:

Pr
�
pi = λ(B ∪ {q}) ∧ q ∈ V

�
= Pr

�
pi = λ(B ∪ {q}) ∧ q′ ∈ V ′

�

+
�

Pα⊆P\{pi}
|Pα|=(d−1)

f(Pα) is pi-escaping for q

Pr
�
pi = λ(B ∪ {q}) ∧ f(Pα) is a facet of C

�
.

The first term is an instance of the same problem in (d − 1) dimensions (for
the point q′ and the projection of P), and thus is computed recursively. For
the second term, we compute the probability that f(Pα) is a facet of C as
follows. Let G1 ⊆ P be the subset of sites which are on the other side of the
hyperplane supporting f(Pα) with respect to pi. Let G2 ⊆ P be the subset of
sites that are below pi along the xd-axis. Clearly, f(Pα) is a facet of C (and
pi = λ(B ∪ {q})) if and only if all points in Pα and pi exist in B, and all points
in G1 ∪G2 are absent from B. The corresponding probability can be written as
γi ×

�
pj∈Pα

γj ×
�

pj ∈G1∪G2
γj . This formula is valid only if Pα ∩G2 = ∅ and

pi has a lower xd-coordinate than q; otherwise we set the probability to zero.
This expression can be computed in linear time, and the whole summation term
can be computed in O(nd) time. Then, by induction, the computation of the
ith term takes O(nd) time. Notice that the base case of our induction requires

computing the probability Pr
	
pi = λ(B ∪ {q}) ∧ q(d−2) ∈ V (d−2)

(where (d−2)

indicates a projection to R2). Computing this probability is essentially a two-
dimensional membership probability problem on q and P , but is conditioned on
the existence of pi and the non-existence of all sites below pi along dth axis.
Our two dimensional algorithm can be easily adapted to solve this variation in
O(n log n) time as well. Finally, we can improve the computation time for the
ith term to O(nd−1) by considering the facets f(Pα) in radial order. See the
full version of the paper [3] for details.

42 P.K. Agarwal et al.

Remark. The degeneracy of the input is easy to handle in two dimensions,
but creates some technical difficulties in higher dimensions that we are currently
investigating.

Theorem 2. Let P be an uncertain set of n points in the unipoint model in Rd

and q be a point. If the input sites and q are in general position, then one can
compute the membership probability of q in O(nd) time, using linear space.

Extension to the multipoint model. The algorithm extends to the multipoint
model easily by modifying the computation of the probability for an edge or facet.
See the full version of the paper [3] for details.

Theorem 3. Given an uncertain set P of n points in the multipoint model in
Rd and a point q ∈ Rd, we can compute the membership probability of q in
O(n log n) time for d = 2, and in O(nd) time for d ≥ 3 if input sites and q are
in general position.

3 Membership Queries

We describe two algorithms – one deterministic and one Monte Carlo – for pre-
processing a set of uncertain points for efficient membership-probability queries.

Probability map. The probability map M(P) is the subdivision of Rd into
maximal connected regions so that μ(q) is the same for all query points q in a
region. The following lemma gives a tight bound on the size of M(P).

Lemma 2. The worst-case complexity of the probability map of a set of uncer-
tain points in Rd is Θ(nd2

), under both the unipoint and the multipoint model,
where n is the total number of sites in the input.

Proof. We prove the result for the unipoint model, as the extension to the mul-
tipoint model is straightforward. For the upper bound, consider the set H of
O(nd) hyperplanes formed by all d-tuples of points in P. In the arrangement
A(H) formed by these planes, each (open) cell has the same value of μ(q). This

arrangement, which is a refinement of M(P), has size O((nd)d) = O(nd2

), estab-
lishing the upper bound.

For the lower bound, consider the problem in two dimen-
sions; extension to higher dimensions is straightforward. We
choose the sites to be the vertices p1, . . . , pn of a regular n-
gon, where each site exists with probability γ, 0 < γ < 1. See
the figure on the right. Consider the arrangement A formed
by the line segments pipj , 1 ≤ i < j ≤ n, and treat each face
as relatively open. If μ(f) denotes the membership probability for a face f of A,
then for any two faces f1 and f2 of A, where f1 bounds f2 (i.e., f1 ⊂ ∂f2), we
have μ(f1) ≥ μ(f2), and μ(f1) > μ(f2) if γ < 1. Thus, the size of the arrange-
ment A is also a lower bound on the complexity of M(P). This proves that the

worst-case complexity of M(P) in Rd is Θ(nd2

). �

Convex Hulls under Uncertainty 43

We can preprocess this arrangement into a point-location data structure, giv-
ing us the following result for d = 2.

Theorem 4. Let P be a set of uncertain points in R2, with a total of n sites.
P can be preprocessed in O(n4) time into a data structure of size O(n4) so that
for any point q ∈ Rd, μ(q) can be computed in O(log n) time.

See the full version of the paper [3] for details.

Remark. For d ≥ 3, due to our general position assumption, we can compute
the membership probability only for d-faces of M(P), and not for the lower-
dimensional faces. In that case, by utilizing a point-location technique in [5],
one can build a structure that can report the membership probability of a query
point (inside a d-face) in O(log n) time, with a preprocessing cost of O(nd2+d).

Monte Carlo algorithm. The size of the probability map may be prohibitive
even for d = 2, so we describe a simple, space-efficient Monte Carlo approach for
quickly approximating the membership probability, within absolute error. Fix a
parameter s > 1, to be specified later. The preprocessing consists of s rounds,
where the algorithm creates an outcome Aj of P in each round j. Each Aj is
preprocessed into a data structure so that for a query point q ∈ Rd, we can
determine whether q ∈ ch(Aj).

For d ≤ 3, we can build each ch(Aj) explicitly and use linear-size point-
location structures with O(log n) query time. This leads to total preprocessing
time O(sn log n) and space O(sn). For d ≥ 4, we use the data structure in [13]
for determining whether q ∈ Aj , for all 1 ≤ j ≤ s. For a parameter t such
that n ≤ t ≤ n�d/2� and for any constant σ > 0, using O(st1+σ) space and
preprocessing, it can compute in O(sn

t1/�d/2� log2d+1 n) time whether q ∈ ch(Aj)
for every j.

Given a query point q ∈ Rd, we check for membership in ch(Aj), for every
j ≤ s. If q lies in k of them, we return �μ(q) = k/s as our estimate of μ(q).
Thus, the query time is O(sn

t1/�d/2� log2d+1 n) for d ≥ 4, O(s log n) for d = 3, and
O(log n + s) for d = 2 (using fractional cascading).

It remains to determine the value of s so that |μ(q)−�μ(q) | ≤ ε for all queries q,
with probability at least 1−δ. For a fixed q and outcome Aj , let Xi be the random
indicator variable, which is 1 if q ∈ ch(Aj) and 0 otherwise. Since E[Xi] = μ(q)
and Xi ∈ {0, 1}, using a Chernoff-Hoeffding bound on �μ(q) = k/s = (1/s)

�
iXi,

we observe that Pr[|�μ(q) − μ(q) | ≥ ε] ≤ 2 exp(−2ε2s) ≤ δ′. By Lemma 2, we

need to consider O(nd2

) distinct queries. If we set 1/δ′ = O(nd2

/δ) and s =
O((1/ε2) log(n/δ)), we obtain the following theorem.

Theorem 5. Let P be a set of uncertain points in Rd under the multipoint model
with a total of n sites, and let ε, δ ∈ (0, 1) be parameters. For d ≥ 4, P can be
preprocessed, for any constant σ > 0, in O((t1+σ/ε2) log n

δ) time, into a data
structure of size O((t1+σ/ε2) log n

δ), so that with probability at least 1−δ, for any
query point q ∈ R2, �μ(q) satisfying |μ(q)−�μ(q) | ≤ ε and �μ(q) > 0 can be returned
in O(n

t1/�d/2�ε2 log n
δ log2d+1 n) time, where t is a parameter and n ≤ t ≤ n�d/2�.

44 P.K. Agarwal et al.

For d ≤ 3, the preprocessing time and space are O(n
ε2 log log n

δ logn) and
O(n

ε2 log n
δ), respectively. The query time is O(1

ε2 log(nδ) logn) (resp. O(1
ε2 log n

δ))
for d = 3 (resp. d = 2).

4 Tukey Depth and Convex Hull

The membership probability is neither a convex nor a continuous function, as
suggested by the example in the proof of Lemma 2. In this section, we estab-
lish a helpful structural property of this function, intuitively showing that the
probability stabilizes once we go deep enough into the “region”. Specifically, we
show a connection between the Tukey depth of a point q with its membership
probability; in two dimensions, this also results in an efficient data structure for
approximating μ(q) quickly within a small absolute error.

Estimating μ(q). Let Q be a set of weighted points in Rd. For a subset A ⊆ Q,
let w(A) be the total weight of points in A. Then the Tukey depth of a point
q ∈ Rd with respect to Q, denoted by τ(q,Q), is minw(Q ∩ H) where the
minimum is taken over all halfspaces H that contain q.2 If Q is obvious from the
context, we use τ(q) to denote τ(q,Q). Before bounding μ(q) in terms of τ(q,Q),
we prove the following lemma.

Lemma 3. Let Q be a finite set of points in Rd. For any p ∈ Rd, there is a set
S = {S1, . . . , ST } of d-simplices formed by Q such that (i) each Si contains p in
its interior; (ii) no pair of them shares a vertex; and (iii) T ≥
τ(p,Q)/d�.

We now use Lemma 3 to bound μ(p) in terms of τ(p, P).

Theorem 6. Let P be a set of n uncertain points in the uniform unipoint model,
that is, each point is chosen with the same probability γ > 0. Let P be the set
of sites in P. There is a constant c > 0 such that for any point p ∈ Rd with

τ(p, P) = t, we have (1 − γ)t ≤ 1 − μ(p) ≤ d exp
�
− γt

cd2

.

Proof. For the first inequality, fix a closed halfspace H that contains t points of
P . If none of these t points is chosen then p does not appear in the convex hull
of the outcome, so 1 − μ(p) ≥ (1 − γ)t.

Next, let S be the set of simplices of Lemma 3, and let V be its set of vertices,
where T ≥
t/d�. Let n′ = |V | = (d + 1)T . Set ε = 1

d+1 . A random subset of V

of size O(dε log 1
εδ) = O(d2 log d

δ) is an ε-net for halfspaces, with probability at
least 1 − δ.

In particular, any halfspace passing through p, contains at least T points
of V . That is, all these halfspaces are ε-heavy and would be stabbed by an
ε-net. Now, if we pick each point of V with probability γ, it is not hard to
argue that the resulting sample R is an ε-net3. Indeed, the expected size (and

2 If the points in Q are unweighted, then τ (q,Q) is simply the minimum number of
points that lie in a closed halfspace that contains q.

Convex Hulls under Uncertainty 45

in with sufficiently large probability) of R ∩ V is n′′ = n′γ = (d + 1)Tγ ≥ tγ.
As such, for some constant c, we need the minimal value of δ such that the

inequality tγ ≥ cd2 ln d
δ holds, which is equivalent to exp

�
tγ
cd2

�
≥ d

δ . This in turn

is equivalent to δ ≥ d exp
�
− tγ

cd2

�
. Thus, we set δ = d exp

�
− tγ

cd2

�
.

Now, with probability at least 1 − δ, for a point p in Rd with Tukey depth at
least t, we have that p is in the convex-hull of the sample. �

Theorem 6 can be extended to the case when each point pi of P is chosen
with different probability, say, γi. In order to apply Theorem 6, we convert P to
a multiset Q, as follows. We choose a parameter η = δ

10n . For each point pi ∈ P,

we make wi =
�
ln(1−γi)
ln(1−η)

�
copies of pi, each of which is selected with probability

η. We can apply Theorem 6 to Q and show that if τ(q,Q) ≥ d2

η ln(2d/δ), then

μ(q,Q) ≥ (1 − δ/2). Omitting the further details, we conclude the following.

Corollary 1. Let P = {(p1, γ1), . . . , (pn, γn)} be a set of n uncertain points in

Rd under the unipoint model. For 1 ≤ i ≤ n, set wi =
�

ln(1−γi)
ln(1−δ/10n)

�
to be the

weight of point pi. If the (weighted) Tukey depth of a point q ∈ Rd in {p1, . . . , pn}
is at least 10d2n

δ ln(2d/δ), then μ(q,P) ≥ 1 − δ.

Data structure. Let P be a set of points in the uniform unipoint model in R2,
i.e., each point appears with probability γ. We now describe a data structure
to estimate μ(q) for a query point q ∈ R2, within additive error 1/n. We fix a
parameter t0 = c

γ lnn for some constant c > 0. Let T =
�
x ∈ R2 | τ(x,P) ≥ t0

�
be the set of all points whose Tukey depth in P is at least t0. T is a convex polygon
with O(n) vertices [12]. By Theorem 6, μ(q) ≥ 1 − 1/n2 for all points q ∈ T,
provided that the constant c is chosen appropriately. We also preprocess P for
halfspace range reporting queries [6]. T can be computed in time O(n log3 n) [12],
and constructing the half-plane range reporting data structure takes O(n log n)
time [6]. So the total preprocessing time is O(n log3 n), and the size of the data
structure is linear.

T

�2
q

ξ1

ξ2

�1

A query is answered as follows. Given a query
point q ∈ R2, we first test in O(log n) time
whether q ∈ T. If the answer is yes, we simply
return 1 as μ(q). If not, we compute in O(log n)
time the two tangents �1, �2 of T from q. For
i = 1, 2, let ξi = �i ∩ T, and let �−i be the
half-plane bounded by �i that does not contain T. Set Pq = P ∩ (�−1 ∪ �−2) and
nq = |Pq|. Let Rq be the subset of Pq by choosing each point with probability γ.

By querying the half-plane range reporting data structure with each of these
two tangent lines, we compute the set Pq in time O(logn + nq). Let ωq =
Pr[q /∈ ch(Rq ∪ T)]. We compute ωq, in (nq lognq) time, by adapting the al-
gorithm for computing μ(q) described in Section 2.

3 The standard argument uses slightly different sampling, but this is a minor tech-
nicality, and it is not hard to prove the ε-net theorem with this modified sampling
model.

46 P.K. Agarwal et al.

The correctness and efficiency of the algorithm follow from the following
lemma, whose proof is omitted from this version.

Lemma 4. For any point q �∈ T, (i) |Pr[q ∈ ch(Rq ∪ T)] − μ(q)| ≤ 1/n;
(ii) nq ≤ 4t0 = O(γ−1 log n).

By Lemma 4, nq = O(γ−1 logn), so the query takes O(γ−1 log(n) log logn)
time. We thus obtain the following.

Theorem 7. Let P be a set of n uncertain points in R2 in the unipoint model,
where each point appears with probability γ. P can be preprocessed in O(n log3 n)
time into a linear-size data structure that, for any point q ∈ R2, returns a value�μ(q) in O(γ−1 log(n) log logn) time such that |�μ(q) − μ(q) | ≤ 1/n.

5 β-Hull

In this section, we consider the multipoint model, i.e., P is a set of m uncertain
point defined by the pairs {(P1, Γ1), . . . , (Pm, Γm)}. A convex set C ⊆ R2 is
called β-dense with respect to P if it contains β-fraction of each (Pi, Γi), i.e.,�

pj
i
γj
i ≥ β for all i ≤ m. The β-hull of P, denoted by chβ(P), is the intersection

of all convex β-dense sets with respect to P. Note that for m = 1, chβ(P) is
the set of points whose Tukey depth is at least 1 − β. We first prove an O(n)
upper bound on the complexity of chβ(P) and then describe an algorithm for
computing it.

Theorem 8. Let P = {(P1, Γ1), . . . , (Pm, Γm)} be a set of m uncertain points in
R2 under the multipoint model with P =

�m
i=1 Pi and |P | = n. For any β ∈ [0, 1],

chβ(P) has O(n) vertices.

Proof. We call a convex β-dense set C minimal if there is no convex β-dense
set C′ such that C′ ⊂ C. A minimal convex β-dense set C is the convex hull
of P ∩ C. Therefore C is a convex polygon whose vertices are a subset of P .
Obviously chβ(P) is the intersection of minimal convex β-dense sets. Therefore
each edge of chβ(P) lies on a line passing through a pair of points of P , i.e.,
chβ(P) is the intersection of a set H of halfplanes, each bounded by a line passing
through a pair of points of P . Next we argue that |H | ≤ 2n.

Fix a point p ∈ P . We claim that H contains at most two halfplanes whose
bounding lines pass through p. Indeed if p ∈ int(chβ(P)), then no bounding line
of H passes through p; if p ∈ ∂(chβ(P)), then at most two bounding lines of H
pass through p; and if p /∈ chβ(P), then there are two tangents to chβ(P) from
p. Hence at most two bounding lines of H pass through p, as claimed. �

Algorithm. We describe the algorithm for computing the upper boundary U

of chβ(P). The lower boundary of chβ(P) can be computed analogously. It will
be easier to compute U in the dual plane. Let U∗ denote the dual of U. We call
a line � passing through a point p ∈ Pi β-tangent of Pi at p if one of the open

Convex Hulls under Uncertainty 47

half-planes bounded by � contains less than β-fraction of points of Pi but the
corresponding closed half-plane contains at least β-fraction of points.

Recall that the dual of a point p = (a, b) is the line p∗ : y = ax − b, and
the dual of a line � : y = mx + c is the point �∗ = (m,−c). The point p lies
above/below/on the line � if and only if the dual point �∗ lies above/below/on

the dual line p∗. Set P ∗
i =

�
pj∗i | pji ∈ Pi

�
and P ∗ =

�m
i=1 P

∗
i . For a point q ∈ R2

and for i ≤ m, let κ(q, i) =
�

γj
i where the summation is taken over all points

pji ∈ Pi such that q lies below the dual line pj∗i . We define the β-level Λi of
P ∗
i to be the upper boundary of the region

�
q ∈ R2 | κ(q, i) ≥ β

�
. Λi is an x-

monotone polygonal chain composed of the edges of the arrangement A(P ∗
i); the

dual line of a point on Λi is a β-tangent line of Pi. Let Λ be the lower envelope
of Λ1, . . . , Λm.

Let � be the line supporting an edge of U. It can be proved that the dual point
�∗ is a vertex of Λ. Next, let q be a vertex of U, then q cannot lie above any
β-tangent line of any Pi, which implies that the dual line q∗ passes through a
pair of vertices of Λ and does not lie below any vertex of Λ. Hence, each vertex
of U corresponds to an edge of the upper boundary of the convex hull of Λ.
This observation suggests that U∗ can be computed by adapting an algorithm
for computing the convex hull of a level in an arrangement of lines [4, 12]. We
begin by describing a simple procedure, which will be used as a subroutine in
the overall algorithm.

Lemma 5. Given a line �, the intersection points of � and Λ can be computed
in O(n logn) time.

Proof. We sort the intersections of the lines ofP ∗ with �. Let 〈q1, . . . , qu〉, u ≤ n, be
the sequence of these intersection points. For every i ≤ m,κ(q1, i) can be computed
in a total of O(n) time. Given {κ(qj−1, i) | 1 ≤ i ≤ m}, {κ(qj , i) | 1 ≤ i ≤ m} can
be computed in O(1) time. A point qj ∈ Λ if qj ∈ Λi for some i and lies below Λ′

i

for all other i′. This completes the proof of the lemma. �

The following two procedures can be developed by plugging Lemma 5 into the
parametric-search technique [4, 12].

(A) Given a point q, determine whether q lies above U∗ or return the tan-
gent lines of U∗ from q. This can be done in O(n log2 n) time.

(B) Given a line �, compute the edges of U∗ that intersect �, in O(n log3 n)
time. (Procedure (B) uses (A) and parametric search.)

Given (B), we can now compute U∗ as follows. We fix a parameter r > 1 and
compute a (1/r)-cutting4 Ξ = {Δ1, . . . , Δu}, where u = O(r2). For each Δi, we
do the following. Using (B) we compute the edges of U∗ that intersect ∂Δi. We
can then deduce whether Δi contains any vertex of U∗. If the answer is yes, we
solve the problem recursively in Δi with the subset of lines of P ∗ that cross Δi.
We omit the details from here and conclude the following.

4 A (1/r)-cutting of P ∗ is a triangulation Ξ of R2 such that each triangle of Ξ crosses
at most n/r lines of P ∗.

48 P.K. Agarwal et al.

Theorem 9. Given a set P of uncertain points in R2 under the multipoint model
with a total of n sites, and a parameter β ∈ [0, 1], the β-hull of P can be computed
in O(n log3 n) time.

Acknowledgments. P. Agarwal and W. Zhang are supported by NSF under grants

CCF-09-40671, CCF-10-12254, and CCF-11-61359, by ARO grants W911NF-07-1-0376

and W911NF-08-1-0452, and by an ERDC contract W9132V-11-C-0003. S. Har-Peled

is supported by NSF grants CCF-09-15984 and CCF-12-17462. S. Suri and H. Yıldız

are supported by NSF grants CCF-1161495 and CNS-1035917.

References

1. Agarwal, P.K., Aronov, B., Har-Peled, S., Phillips, J.M., Yi, K., Zhang, W.: Nearest
neighbor searching under uncertainty II. In: Proc. 32nd ACM Sympos. Principles
Database Syst., pp. 115–126 (2013)

2. Agarwal, P.K., Cheng, S., Tao, Y., Yi, K.: Indexing uncertain data. In: Proc. 28th
ACM Sympos. Principles Database Syst., pp. 137–146 (2009)

3. Agarwal, P.K., Har-Peled, S., Suri, S., Yıldız, H., Zhang, W.: Convex hulls under
uncertainty. CoRR abs/1406.6599 (2014), http://arxiv.org/abs/1406.6599

4. Agarwal, P.K., Sharir, M., Welzl, E.: Algorithms for center and Tverberg points.
ACM Trans. Algo. 5(1), 5:1–5:20 (2008)

5. Chazelle, B.: Cutting hyperplanes for divide-and-conquer. Discrete Comput.
Geom. 9(1), 145–158 (1993)

6. Chazelle, B., Guibas, L.J., Lee, D.T.: The power of geometric duality. BIT 25(1),
76–90 (1985)

7. Dalvi, N.N., Ré, C., Suciu, D.: Probabilistic databases: Diamonds in the dirt.
Commun. ACM 52(7), 86–94 (2009)

8. Jørgensen, A., Löffler, M., Phillips, J.: Geometric computations on indecisive
points. In: Proc. 12th Workshop Algorithms Data Struct., pp. 536–547 (2011)

9. Kamousi, P., Chan, T.M., Suri, S.: Closest pair and the post office problem for
stochastic points. In: Proc. 12th Workshop Algorithms Data Struct., pp. 548–559
(2011)

10. Kamousi, P., Chan, T., Suri, S.: Stochastic minimum spanning trees in euclidean
spaces. In: Proc. 27th Annu. Sympos. Comput. Geom., pp. 65–74 (2011)

11. Löffler, M.: Data Imprecision in Computational Geometry. Ph.D. thesis, Dept.
Computer Sci. (2009)

12. Matoušek, J.: Computing the center of planar point sets. In: Goodman, J.E.,
Pollack, R., Steiger, W. (eds.) Computational Geometry: Papers from the DIMACS
Special Year, pp. 221–230. Amer. Math. Soc. (1991)

13. Matoušek, J., Schwarzkopf, O.: Linear optimization queries. In: Proc. 8th Annu.
Sympos. Comput. Geom, pp. 16–25 (1992)

14. Phillips, J.: Small and Stable Descriptors of Distributions for Geometric Statistical
Problems. Ph.D. thesis, Dept. Computer Sci. (2009)

15. Seidel, R.: Convex hull computations. In: Goodman, J.E., O’Rourke, J. (eds.)
Handbook of Discrete and Computational Geometry, pp. 495–512. CRC Press
(2004)

16. Suri, S., Verbeek, K., Yıldız, H.: On the most likely convex hull of uncertain points.
In: Proc. 21st Annu. European Sympos. Algorithms, pp. 791–802 (2013)

17. Zhao, Z., Yan, D., Ng, W.: A probabilistic convex hull query tool. In: Proc. 15th
Int. Conf. on Ext. Database Tech., pp. 570–573 (2012)

http://arxiv.org/abs/1406.6599

The Space-Stretch-Time Tradeoff in Distance Oracles

Rachit Agarwal

University of California at Berkeley, CA, USA
ragarwal@berkeley.edu

Abstract. We present new distance oracles for computing distances of stretch
less than 2 on general weighted undirected graphs. For the realistic case of
sparse graphs and for any integer k, the new oracles return paths of stretch
1+1/k and exhibit a smooth three-way tradeoff of S× T 1/k = O(n2) between
space S, stretch and query time T . This significantly improves the state-of-
the-art for each point in the space-stretch-time tradeoff space, and matches the
known space-time curve for stretch 2 and larger. We also present new oracles
for stretch 1 + 1/(k + 0.5). A particularly interesting case is of stretch 5/3,
where improving the query time of our oracles from T to T 1−ε for any ε > 0
would lead to the first purely o(mn)-time combinatorial algorithm for Boolean
Matrix Multiplication, a longstanding open problem.

1 Introduction

A distance oracle is a compact representation of all-pair shortest path matrix of
a graph. A stretch-c oracle for a weighted undirected graph G = (V, E) returns,
for any pair of vertices s, t ∈ V at distance d(s, t), a distance estimate δ(s, t) that
satisfies d(s, t) ≤ δ(s, t) ≤ c · d(s, t). Let n = |V | and m = |E|. For general graphs,
Thorup and Zwick [31] showed a fundamental space-stretch tradeoff — for any
integer k ≥ 2, they designed an oracle of size O(kn1+1/k) that returned distances of
stretch (2k− 1) in O(k) time; the construction time of their oracle was �O(kmn1/k),
in expectation. The Thorup-Zwick (TZ) oracle was a significant improvement over
previous constructions that had much higher stretch and/or query time [8,15,21].

Improvements in Construction and Query Time. Much of the early research fol-
lowing the TZ result focused on improving the construction time. Roditty, Thorup
and Zwick [27] derandomized the TZ construction. Baswana and Sen [11] im-
proved the construction time to O(n2) for unweighted graphs. Their result was ex-
tended to weighted graphs by Baswana and Kavitha [10]. Finally, Wulff-Nilsen [33]
achieved subquadratic construction time for weighted graphs with m = o(n2) edges.

The query time of the TZ oracle is not constant for super-constant stretch. Wulff-
Nilsen [32] reduced the query time of the TZ oracle to O(log k) using a new query
algorithm that incorporates binary search within the TZ oracle. Mendel and Naor
[22] reduced the query time to O(1) at the expense of increasing the stretch to O(k)
and the construction time to �O(n2+1/k). Interestingly, Chechik [13] showed that it
is possible to reduce the query time of TZ oracle to an absolute constant, without
increasing the stretch or space of the original TZ construction.

A.S. Schulz and D. Wagner (Eds.): ESA 2014, LNCS 8737, pp. 49–60, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

50 R. Agarwal

Improvements in Space-Stretch Tradeoff. Thorup and Zwick showed that, assum-
ing a girth conjecture of Erdős, any oracle that returns distances of stretch less than
(2k+ 1) must have size Ω(n1+1/k). However, the hard instances used to prove this
lower bound are extremely dense graphs; for instance, their construction uses a
graph with m = Ω(n2) edges to prove the space lower bound for stretch less than
3. For graphs with m= o(n2) edges, it may in fact be possible to get a better space-
stretch tradeoff — their result merely implies a trivial space lower bound of Ω(m),
that is, compression is impossible.

However, improving the space-stretch tradeoff turned out to be a much harder
problem. Until 2010, a better tradeoff was known only for special graph classes such
as planar graphs [20, 30], bounded-genus and minor-free graphs [19], power-law
graphs [14] and random graphs [17]. Pǎtraşcu and Roditty [23] achieved the first
breakthrough, constructing a stretch-2 constant-time oracle of size �O(n4/3m1/3).
Their result was generalized for larger stretch values by Abraham and Gavoille [1]
and by Pǎtraşcu, Roditty and Thorup [24]. The original construction of Pǎtraşcu and
Roditty was rather complex; simpler construction and analysis are now known [3].

Lower Bounds. Sommer et al. [28] proved in the cell-probe model that the size
of stretch-s time-t distance oracles is lower bounded by n1+Ω(1/st). That is, for
graphs with m = �O(n) edges, computing distances of constant stretch in con-
stant time requires super-linear space. Conditioned on hardness of set intersec-
tion, Pǎtraşcu and Roditty [23] strengthened their result by proving an Ω(n2)
space lower bound for constant-time stretch-less-than-2 oracles. Pǎtraşcu, Roditty
and Thorup [24] proved, among other results, a conditional space lower bound of
Ω(m5/3) for constant-time stretch-2 oracles. Due to several upper bounds match-
ing these lower bounds [23, 24], these results are believed to provide a complete
understanding of the space-stretch tradeoff for constant-time oracles.

Distance Oracles with Super-Constant Query Time. The problem of improving
the space-stretch tradeoff of the TZ oracle is wide open if one allows super-constant
query time. No non-trivial lower bounds are known for this regime and it is possible
that there exist constant-stretch oracles of size �O(m) with polylog(n) query time!

Agarwal, Godfrey and Har-Peled [5, 6] constructed oracles with super-constant
query time for stretch 2 and larger. Their stretch-2 and stretch-3 oracles achieve
a space-time tradeoff of S × T = O(n2) and S × T 2 = O(n2), respectively, for
sparse graphs. For instance, stretch-2 and stretch-3 distances can be computed us-
ing �O(n3/2) and �O(n) space, respectively, if one allows O(

�
n) query time. Even on

graphs with millions of nodes and edges, a query time of O(
�

n) time can be en-
gineered to return results in less than a millisecond [2], an extremely acceptable
latency for most real-world applications [2,5,18,26].

Porat and Roditty [25] showed existence of o(n2)-size stretch-less-than-2 oracles
for unweighted graphs given super-constant query time. Agarwal and Godfrey [4]
explored a general space-stretch-time tradeoff for oracles with stretch less than 2 —
their oracle is for general weighted graphs and significantly reduces both the space
and query time of the Porat-Roditty oracle for any fixed stretch. For space, stretch,
query time and construction time bounds for these oracles, see Table 1.

The Space-Stretch-Time Tradeoff in Distance Oracles 51

Table 1. Summary of results and comparison with oracles in [25] and in [4]

Stretch Space Query time Construction time Remarks Ref.

1+ 1
k
�O
� nm

m1/(4k+2)

�

O
� m

m1/(4k+2)

�

�O(mn) 1≤ α ≤ n [25]

�O(m+ n2/α) O((αμ)2k−1) �O(mn/α) 1≤ α ≤ n [4]

�O(m+ n2/α) O((αμ)k) �O(mn/α) 1≤ α ≤ n §3

1+ 1
k+0.5
�O(m+ n2/α) O((αμ)2k) �O(mn/α) 1≤ α ≤ n [4]

�O(m+ n2/α) O(α(αμ)k) �O(mn/α) 1≤ α ≤ n §4

1+ 2
3
�O(m+ n2/α) O((αμ)2) �O(mn/α) 1≤ α ≤ (n2/m)1/3 [4]

�O(m+ n2/α) O(αμ) �O(mn/α) 1≤ α ≤ (n2/m)1/3 §5

1.1 Our Contributions

This paper makes two contributions. Our first contribution is a new space-stretch-
time tradeoff for distance oracles for stretch less than 2:

Theorem 1. Let G be a non-negatively weighted undirected graph with n vertices, m
edges and average degree μ = 2m/n. Then, for any fixed 1 ≤ α ≤ n and for any
integer k ≥ 1, there exist distance oracles of size �O(m+ n2/α) that return distances
of stretch (1+ 1

k
) in O((αμ)k) time and of stretch (1+ 1

k+0.5
) in O(α(αμ)k) time. For

1 ≤ α ≤ n2/3m−1/3, there also exist oracles of size �O(m+ n2/α) that return distances
of stretch 5/3 in O(αμ) time. All these oracles can be constructed in time �O(mn/α).

The first oracle of Theorem 1, for sparse graphs, achieves a space-stretch-time
tradeoff of S × T 1/k = O(n2) for stretch (1+ 1/k). For any fixed space and stretch,
the oracle reduces the query time in [4] from T 2k−1 to T k (or alternatively, reduces
space for any fixed stretch and query time). Interestingly, the space-stretch-time
tradeoff achieved by this oracle matches the known space-time tradeoff space for
stretch 2 and larger. For instance, setting k = 1, we get S × T = O(n2) for stretch 2
and setting 1/k = 2, we get S × T 2 = O(n2) for stretch 3, precisely as in [5].

The second oracle reduces the query time from T 2k−2 in [4] to T k for any fixed
stretch and space. Note that both the first and the second construction also enable
non-trivial constructions that were not possible using the results in [4]. For instance,
the new results make it possible to compute stretch-1.5 distances using oracles of
size �O(n5/3) in sub-linear time.

The third oracle of Theorem 1 is particularly interesting. For any space S =
Ω(n5/3), this oracle reduces the query time of the stretch-5/3 oracle of [4] from
T to

�
T . In particular, this oracle achieves a space-time tradeoff of S × T = O(n2),

which is same as the stretch-2 oracle of [5]. Essentially, compared to the stretch-2
oracle of [5], this oracle reduces the stretch from 2 to 5/3 without any increase in
space or query time for the regime of S = Ω(n5/3).

52 R. Agarwal

We argue that the query time of the second and the third oracles may be close to
optimal. Specifically, the problem of computing all-pair stretch-less-than-2 distances
in undirected graphs is equivalent to combinatorial1 boolean matrix multiplication
(BMM) over the (OR, AND) semiring [16]. Hence, for k = 1, if the query time of the
second oracle of Theorem 1 can be reduced to O((α2μ)1−ε) for any ε > 0, it would
be possible to multiply two boolean matrices in time �O(mn/α + n2(α2μ)1−ε). By
setting α= o((m/n)β) for β = ε

2(1−ε) , we get that the time would be o(mn). Hence,

improving the query time from T to T 1−ε for any ε > 0 would lead to a purely o(mn)
time combinatorial algorithm for BMM, a long standing open problem [9,12].

New Query Algorithms. In contrast to the elegant and compact data structures
used in constant-time oracles [1,23,24,31], the data structures for super-constant
time oracles [4,5] are usually relatively simpler — in addition to the graph, distance
from a few sampled vertices to each vertex in the graph is stored. The main tech-
nique used in super-constant time oracles is more sophisticated query algorithms
that allow exploring a tradeoff between space, stretch and query time (cf. [4]). Our
second contribution is, indeed, such new query algorithms.

Our query algorithms perform a bidirectional recursion to compute (not neces-
sarily shortest) distances to vertices in carefully defined neighborhoods of both the
source s and the destination t. Specifically, the algorithm explores recursively larger
neighborhoods of both s and t in each step, and computes distances from s and t to
vertices in the respective neighborhoods. The neighborhoods are defined in a man-
ner that once the recursion depth is reached, the explored neighborhoods either
intersect along the shortest path or we are able to prove a non-trivial lower bound
on the exact distance between s and t. Intuitively, these neighborhood definitions
ensure that two new “subpaths” of the shortest path between s and t are explored
in each recursive step (one closer to s and one closer to t). When neighborhoods do
not intersect, the length of the shortest of these subpaths times twice the recursion
depth is a lower bound on the exact distance between s and t. Moreover, the neigh-
borhood definitions also ensure that the neighborhoods explored in each recursive
step also contain at least one of the “landmark” vertices that store distances to each
vertex in the graph (computed and stored during graph preprocessing). The path
via the landmark vertex in the neighborhood containing the shortest of the subpaths
gives us a path with desired stretch.

Our new query algorithms are simpler, faster and compute paths of smaller
stretch than the ones in [4]. In contrast to the algorithm in [4] that explores the
neighborhood of only either the source or the destination in each recursive step, our
new definition of neighborhoods allow us to perform bidirectional recursion. This,
in turn, leads to significantly stronger lower bound on the exact distance between
the source and the destination without any asymptotic increase in the query time.

1 Although not defined precisely, we say that an algorithm is “combinatorial” in nature if it
does not use algebraic techniques of fast matrix multiplication.

The Space-Stretch-Time Tradeoff in Distance Oracles 53

2 Preliminaries

This section sets up the notation and basic results [4, 5, 31] used throughout the
paper. We assume that the graph G = (V, E) is a weighted undirected graph with n
vertices and m edges with non-negative edge weights.

2.1 Reducing the Problem to Degree-Bounded Graphs

The following lemma shows that the problem of designing oracles and algorithms
for computing low stretch distances on weighted graphs with n vertices and m edges
is no harder than designing oracles for O(m/n)-degree bounded graphs.

Claim 1 ([4–6]). Let G = (V, E) be a weighted undirected graph with n vertices,
m edges with non-negative edge weights, and average degree μ = 2m/n. Then, it is
possible to construct an equivalent graph with maximum degree Δ = �μ+ 2�, such
that the new graph has 2n vertices, m+ n edges, and has the same distances between
any pair of vertices as the distance in the original graph between the corresponding
vertices. The new graph can be computed in O(n+m) time.

2.2 Balls and Vicinities, Shortest Distances and Candidate Distances

Let d(s, t) denote the exact distance between any vertex pair s, t ∈ V . For any
V ′ ⊂ V , we denote by N(V ′) the set of neighbors of vertices in V ′. Given G, a vertex
v and a subset of vertices L ⊂ V , we use the following definitions:

– Nearest vertex in set L — �(v): the vertex a ∈ L that minimizes d(v, a), ties
broken arbitrarily.

– Ball radius rv: the distance from v to its nearest neighbor in L, that is, d(v,�(v)).
– Ball of a vertex B(v): the set of vertices w ∈ V for which d(v, w)< d(v,�(v)).
– Vicinity of a vertex B	(v): the set of vertices in B(v)∪ N(B(v)).
– Candidate distance from v to w — d ′v(w): cost of the least-cost path from v to

w such that all intermediate vertices on this path are contained in B(v); that is:

d ′v(w) = min
x∈N (w)∩B(v)

{d(v, x) +weight of edge(x , w)}

If N(w)∩ B(v) =
, we let d ′v(w) =∞.

The following lemma gives an efficient way of sampling vertices for set L such that
the ball of each vertex is of bounded size (for degree-bounded graphs, we also get
a bound on the size of the vicinity of each vertex):

Lemma 1 ([7, 31]). Let G = (V, E) be a weighted undirected graph with n vertices,
m edges with non-negative weights and maximum degree μ = O(m/n). For any fixed
1 ≤ α ≤ n, there exists a subset of vertices L of size �O(n/α) such that for each vertex
v ∈ V , we have that |B(v)| = O(α) and |B	(v)| = O(αμ) with high probability.
Moreover, such a set L can be computed in time �O(m).

54 R. Agarwal

For a μ = O(m/n)-degree bounded graph, it is not very hard to construct a set L
in time �O(mα) that deterministically guarantees the above bound. The following
claim, which settles a sufficient condition for the candidate distance to be equal to
the exact shortest distance, will play a crucial role in our proofs:

Claim 2. Let s, t be a vertex pair such that t /∈ B(s). Let P = (s, x1, x2, . . . , t) be a
shortest path between s and t. Let xi0 be the first vertex from s along P that does not
lie in B(s); that is, let i0 =max{i : x j ∈ B(s)∩ P,∀ j < i}. Then, d ′s(xi0) = d(s, xi0).

3 Stretch
�

1+
1

k

�
Oracle

In this section, we prove the first part of Theorem 1: for a weighted undirected
graph with n vertices, m edges with non-negative weights, and for any 1 ≤ α ≤ n,
there exists an oracle of size �O(m+ n2/α) that returns distances of stretch 1+ 1/k
in time O((αμ)k). We need some notation to succinctly describe the construction.

3.1 i-Balls and i-Vicinities

We will generalize the idea of balls and vicinities from §2.2. In particular, we define
the i-vicinity of a vertex v ∈ V , denoted as Γ	i (v) as follows:

Γ	0 (v) = {v}; and Γ	i (v) =
⋃

w∈Γ 	i−1(v)

B	(w) (1)

For instance, the 1-vicinity of any vertex includes all the vertices in its vicinity and
the 2-vicinity of any vertex v is the union of all the vicinities of vertices in B	(v).
Given the definition of i-vicinities, we can now define the i-ball of a vertex v:

Γ0(v) =
; and Γi(v) =
⋃

w∈Γ 	i−1(v)

B(w) (2)

Note that Γi(v) ⊆ Γ	i (v) for any vertex v. We will also need a generalization for the
definition of the candidate distance. Given a vertex v and a vertex w in the i-vicinity
of v, the candidate distance from v to w is given by the cost of the least-cost path
from v to w such that all intermediate vertices are contained in the i-ball of v. We
will slightly abuse the notation and use d ′v(w) to denote this candidate distance.

3.2 Oracle and Query Algorithm

Our oracle is similar to the one used in [4]. Fix some 1 ≤ α ≤ n. The preprocess-
ing algorithm first replaces the original graph with a degree-bounded graph using
Claim 1. The algorithm then samples a set L of vertices of size �O(n/α) using the
result of Lemma 1. The oracle stores, for each v ∈ V : (1) a hash table storing the
shortest distance to each vertex in L; and (2) the nearest neighbor �(v) and the ball
radius rv . In addition, the oracle also stores the degree-bounded graph computed
in the first step of the preprocessing algorithm.

The Space-Stretch-Time Tradeoff in Distance Oracles 55

We now describe our query algorithm (see Algorithm 1). In the first two steps, the
query algorithm computes candidate distance from s and from t to each vertex in
their respective k-vicinities; these distances are temporarily stored in a hash table.
Then, the algorithm computes three sets of paths between s and t. The first set of
paths are of the form s � w � t via vertices w in Γ	k (s) ∩ Γ	k (t). The second set
of paths are of the form s � w � �(w) � t via vertices w ∈ Γ	k (s). The third set
of paths are of the form t � w � �(w) � s via vertices w ∈ Γ	k (t). Finally, the
least-cost path among all the above three sets of paths is returned.

Algorithm 1. Query algorithm for the stretch-(1+ 1/k) oracle

1: Compute candidate distance from s to each vertex in Γ 	k (s)
2: Compute candidate distance from t to each vertex in Γ 	k (t)
3: γ1 ←∞, γ2 ←∞, γ3 ←∞
4: γ1 ←minw∈Γ	k (s)∩Γ	k (t)

�

d ′s(w)+ d ′t(w)
�

5: γ2 ←minw∈Γ	k (s)
�

d ′s(w)+ d(w,�(w))+ d(�(w), t)
�

6: γ3 ←minw∈Γ	k (t)
�

d ′t(w)+ d(w,�(w))+ d(�(w), s)
�

7: return min{γ1,γ2,γ3}

3.3 Analysis

For any pair of vertices s, t ∈ V , let P(s, t) = (s, x1, x2, . . . , t) denote the shortest
path between s and t. Let

ws
i (t) = xi0 , where i0 =max{i : x j ∈ B(ws

i−1(t))∩ P(s, t),∀ j < i}; ws
0(t) = t

Intuitively, ws
i (t) is the first vertex from ws

i−1(t) along P(s, t) that is not contained
in the ball of ws

i−1(t). Let

rs
i (t) =min

j≤i
{d(ws

j(t),�(w
s
j(t)))}

that is, rs
i (t) is the smallest ball radius among all vertices ws

j(t) for j ≤ i. When the
context is clear, we will denote ws

i (t) and rs
i (t) simply as ws

i and rs
i . We will need

the following claims to prove our main result:

Claim 3. Let P(s, t) = (s, x1, x2, . . . , t) be the shortest path between a pair of vertices
s and t. Let i0 and j0 be such that ws

k = xi0 and wt
k = x j0 . Then, for all i ≤ i0,

d ′s(xi) = d(s, xi) and for all j ≥ j0, d ′t(x j) = d(t, x j).

Claim 4. For any vertex pair s, t, we have that d(s, ws
i) ≥ i·rs

i−1 and d(t, wt
i)≥ i·r t

i−1.

Claim 5. For any pair of vertices s, t ∈ V , if ws
k /∈ Γ	k (t), then we have that d(s, t) ≥

2k min{rs
k−1, r t

k−1}.
Claim 6. For any pair of vertices s, t ∈ V , the query algorithm returns a distance
estimate of at most d(s, t) + 2min{rs

k−1, r t
k−1}.

56 R. Agarwal

Proof of First Oracle of Theorem 1. The oracle stores the input graph and the dis-
tance from each vertex in the graph to each vertex in a set L of size �O(n/α); hence,
the size of the oracle is �O(m+ n2/α). Constructing the oracle requires computing a
shortest path tree from each vertex in set L, and hence, requires time �O(mn/α).

Next, we bound the query time of the query algorithm. We first claim that the
size of the k-vicinity of each vertex is bounded by O((αμ)k). This follows from the
definition of the i-vicinity and from the fact that the size of the vicinity of each
vertex is bounded by O(αμ). Furthermore, the candidate distance from any vertex
v to vertices in B	(v) can be computed in O(αμ) time. Hence, by definition of i-
vicinity, it takes time O((αμ)k) to compute the candidate distance from s to vertices
in Γ	k (s). Finally, lines (4), (5) and (6) of Algorithm 1 take time linear in the size of
the i-vicinities of s and t, leading to the desired bound of O((αμ)k) on query time.

Finally, we prove a bound on stretch. If ws
k ∈ Γ	k (t), then γ1 ≤ d ′s(ws

k)+ d ′t(ws
k) =

d(s, ws
k)+d(t, ws

k) = d(s, t); hence, the exact distance is returned. Consider the case
when ws

k /∈ Γ	k (t). Then, by Claim 5, we have that the distance between s and t is
lower bounded by d(s, t) ≥ 2k min{rs

k−1, r t
k−1}. On the other hand, from Claim 6,

the distance returned by the query algorithm is at most d(s, t)+2min{rs
k−1, r t

k−1} ≤
d(s, t) + 2d(s, t)/(2k), leading to the desired bound on stretch. �

4 Stretch
�

1+
1

k+0.5

�
Oracle

We now prove the second part of Theorem 1: for a weighted undirected graph with
n vertices, m edges with non-negative weights, and for any 1 ≤ α ≤ n, there exists
an oracle of size �O(m+ n2/α) that returns distances of stretch 1+ 1/(k + 0.5) in
time O(α(αμ)k). See notation in §2.2 and §3.1.

4.1 Oracle and Query Algorithm

We will use the oracle of §3.2 with the addition that the exact distance from each
vertex v to each vertex in B(v) will be stored within the oracle. The query algorithm
for this oracle (see Algorithm 2) is similar to that of Algorithm 1 with the only
difference that the k-vicinities Γ	k (s) and Γ	k (t) are now replaced by (k + 1)-balls
Γk+1(s) and Γk+1(t), respectively (and γ1, γ2 and γ3 modified accordingly).

4.2 Analysis

The proof is facilitated by the following two claims that are used to bound the
stretch of the oracle:

Claim 7. For any vertex pair s, t, if ws
k /∈ Γk+1(t) then d(s, t)≥ (2k+1)min{rs

k−1, r t
k}.

Claim 8. For any pair of vertices s, t, the query algorithm returns a distance estimate
of at most d(s, t) + 2min{rs

k−1, r t
k}.

The above two claims directly lead to the stretch bound claimed in Theorem 1.
The proof on the size, construction time, and query time follow using straightfor-
ward changes in the proof for the first oracle.

The Space-Stretch-Time Tradeoff in Distance Oracles 57

Algorithm 2. The query algorithm for stretch-(1+ 1/(k+ 0.5)) oracle

1: Compute candidate distance from s to each vertex in Γk+1(s)
2: Compute candidate distance from t to each vertex in Γk+1(t)
3: γ1 ←∞, γ2 ←∞, γ3 ←∞
4: γ1 ←minw∈Γk+1 (s)∩Γk+1 (t)

�

d ′s(w)+ d ′t(w)
�

5: γ2 ←minw∈Γk+1 (s)

�

d ′s(w)+ d(w,�(w))+ d(�(w), t)
�

6: γ3 ←minw∈Γk+1 (t)

�

d ′t(w)+ d(w,�(w))+ d(�(w), s)
�

7: return min{γ1,γ2,γ3}

5 Stretch
�

1+
2

3

�
Oracle

Finally, we prove the third part of Theorem 1: for a weighted undirected graph with
n vertices, m edges with non-negative weights and for any 1 ≤ α ≤ n, an oracle of
size �O(m+ n2/α) that returns distances of stretch 5/3 in time O(αμ).

5.1 Inverse-Ball and Inverse-Vicinities

The inverse-ball of a vertex, denoted by B̄(v), is the set of vertices w that contain
v in their ball. Similar, the inverse-vicinity of a vertex, denoted by B̄	(v), is the
set of vertices w for which v ∈ B	(w). For constructing this oracle, we will use a
different sampling technique given by the following lemma:

Lemma 2 ([29,31]). Let G = (V, E) be a weighted undirected graph with n vertices,
m edges and maximum degree μ = 2m/n. For any fixed 1 ≤ α ≤ n, there exists a
subset of vertices L of expected size �O(n/α) such that for each vertex v ∈ V , we have
that |B(v)| = O(α), |B̄(v)|= O(α), |B	(v)|= O(αμ) and |B̄	(v)|= O(αμ). Moreover,
such a set L can be computed in expected time �O(mα).

5.2 Oracle and Query Algorithm

Fix some 1 ≤ α ≤ n. The preprocessing algorithm first replaces the original graph
with a degree-bounded graph using the result of Corollary 1. The algorithm then
samples a set L of vertices of size �O(n/α) using the result of Lemma 2. The algo-
rithm then constructs a data structure that stores, for each v ∈ V :

– a hash table storing the shortest distance to each vertex in L;
– the nearest neighbor �(v) and the ball radius rv;
– a hash table storing the distance d ′s(w) =minx∈B	(v)∩B(w) d

′
s(x)+d(x , w) to each

vertex w in the set Sv = {w : B	(v)∩B(w) �=
}, that is, to all vertices w whose
ball intersects with the vicinity of v.

The oracle also stores the degree-bounded graph computed in the first step of the
preprocessing algorithm.

58 R. Agarwal

We now describe our query algorithm (see Algorithm 3). In the first and the
second step, the query algorithm computes candidate distances from s and t to
vertices in their respective vicinities; these distances are temporarily stored in a
hash table. The algorithm then computes three set of paths. The first set of paths is
of the form s� w� w′� t for some w ∈ B	(s) and w′ ∈ Ss∩B	(t). The second set
of paths are of the form s� w � �(w)� t for vertices w ∈ B	(s) and the final set
of paths are of the form t � w � �(w) � s for vertices w ∈ B	(t). The least-cost
path among these paths is returned by the algorithm.

Algorithm 3. The query algorithm for the third oracle of Theorem 1

1: Compute candidate distance from s to each vertex in B	(s)
2: Compute candidate distance from t to each vertex in B	(t)
3: γ1 ←∞, γ2 ←∞, γ3 ←∞
4: γ1 ←minw∈Ss∩B	(t)

�

d(s, w)+ d ′t(w)
�

5: γ2 ←minw∈B	 (s)

�

d ′s(w)+ d(w,�(w))+ d(�(w), t)
�

6: γ3 ←minw∈B	 (t)

�

d ′t(w)+ d(w,�(w))+ d(�(w), s)
�

7: return min{γ1,γ2,γ3}

5.3 Analysis

Claim 9. Let P = (s, x1, x2, . . . , t) be the shortest path between any pair of vertices s
and t. Let i0 =max{i|xi /∈ P∩B	(t)} and w = xi0+1. If w /∈ B(s), then d(s, t)≥ rs+rt .

Lemma 3. Let G = (V, E) be a weighted undirected graph with n vertices, m edges
and maximum degree μ = O(m/n). For any fixed 1≤ α ≤ n, let L be the set of vertices
sampled using the algorithm of Lemma 2. Then,

∑

v∈V |Sv | ≤ O(mα2).

Claim 10. Let G = (V, E) be a weighted undirected graph with n vertices, m edges and
maximum degree μ = O(m/n). For any fixed 1 ≤ α ≤ n, let L be the set of vertices
sampled using Lemma 2. Then, constructing a hash table that contains, for each vertex
v ∈ V , distance to each vertex in Sv can be constructed in time O(mα2).

Proof of the Third Oracle of Theorem 1. The oracle stores, in addition to the
oracle of [4], a distance from each vertex v to vertices in set Sv . Using Lemma 3,
it follows that the size of the oracle if �O(mα2 +m+ n2/α); for 1 ≤ α ≤ n2/3m−1/3,
the size is �O(m+ n2/α) as desired. The construction of the oracle requires running
a shortest path algorithm from each vertex in L and computing distances to vertices
in set Sv for each vertex v. Using Lemma 2 and Claim 10, it follows that the oracle
can be constructed in time �O(mα2 + n2/α). Finally, to bound the query time, recall
that the size of the vicinity of each vertex is bounded by O(αμ) and a candidate
distance to each vertex in the vicinity can be computed in time O(αμ); the bound
follows.

Let P = (s, x1, x2, . . . , t) be the shortest path between s and t. Let i0 =max{i|xi /∈
P ∩ B	(t)} and w = xi0+1; note that xi0 /∈ B	(t) and hence, w ∈ B	(t) \ B(t). If
w ∈ Ss, we get that γ1 ≤ d(s, w) + d ′t(w) = d(s, w) + d(t, w) = d(s, t), since w

The Space-Stretch-Time Tradeoff in Distance Oracles 59

lies along P; hence, the algorithm returns the exact distance. Consider the case
when w /∈ Ss. In this case, using Lemma 9, we get that d(s, w) ≥ 2min{rs, rw};
also d(t, w) ≥ rt . Since w lies along the shortest path between s and t, we get
that d(s, t)≥ 2min{rs, rw}+ rt ≥ 3min{rs, rw , rt}. We now give an upper bound on
the distance returned by the query algorithm. Note that s ∈ B	(s) and t ∈ B	(t);
it follows that γ2 ≤ d(s,�(s)) + d(�(s), t) ≤ 2d(s,�(s)) + d(s, t) = 2rs + d(s, t).
Similarly, we get that γ3 ≤ 2rt + d(s, t). Finally, since w ∈ B	(t), we get that
γ3 ≤ d ′t(w) + d(w,�(w)) + d(�(w), s). Since w lies along the shortest path be-
tween s and t, we get that d ′t(w) = d(t, w); using this along with triangle in-
equality, we get that γ3 ≤ d(t, w) + 2d(w,�(w)) + d(w, s) = 2rw + d(s, t). Hence,
γ3 ≤ 2min{rw , rt}+ d(s, t). Since the algorithm returns min{γ2,γ3}, the returned
distance is at most 2min{rs, rt , rw} + d(s, t). The proof follows using the upper
bound established above, which says that min{rs, rt , rw} ≤ d(s, t)/3. �

6 Open Problems

We close the discussion with some of the most interesting open problems:

– Is it possible to prove or disprove a separation between oracles with stretch-
k and stretch-less-than-k for 1 < k < 2? In particular, do stretch-4/3 oracles
require more space or time compared to stretch-3/2 oracles?

– There is an interesting problem related to improving the lower order terms in
our results. Specifically, if one can reduce the query time of our algorithm of
Theorem 1 (for k = 1, stretch-(1 + 1/(k + 0.5))) by logc(n) for some large
enough c, we would get a combinatorial algorithm for BMM that is asymptoti-
cally faster than the state-of-the-art [12]. Is it possible?

Finally, the most interesting open problem is to prove or disprove the existence of
near-linear size oracles that compute distances of O(1) stretch in polylog(n) time.

Acknowledgments. The author would like to thank Philip Brighten Godfrey and
Mikkel Thorup for many helpful discussions.

References
1. Abraham, I., Gavoille, C.: On approximate distance labels and routing schemes with

affine stretch. In: Peleg, D. (ed.) Distributed Computing. LNCS, vol. 6950, pp. 404–415.
Springer, Heidelberg (2011)

2. Agarwal, R., Caesar, M., Godfrey, P.B., Zhao, B.Y.: Shortest paths in less than a millisec-
ond. In: SIGCOMM WOSN (2012)

3. Agarwal, R., Godfrey, P.B.: Brief announcement: A simple stretch 2 distance oracle.
In: PODC (2013)

4. Agarwal, R., Godfrey, P.B.: Distance oracles for stretch less than 2. In: SODA (2013)
5. Agarwal, R., Godfrey, P.B., Har-Peled, S.: Approximate distance queries and compact

routing in sparse graphs. In: INFOCOM (2011)
6. Agarwal, R., Godfrey, P.B., Har-Peled, S.: Faster approximate distance queries and

compact routing in sparse graphs (2012)
7. Alon, N., Spencer, J.H.: The probabilistic method, vol. 57. Wiley Interscience (1992)
8. Awerbuch, B., Berger, B., Cowen, L., Peleg, D.: Near-linear time construction of sparse

neighborhood covers. SIAM Journal on Computing 28(1), 263–277 (1998)

60 R. Agarwal

9. Bansal, N., Williams, R.: Regularity lemmas and combinatorial algorithms. In: FOCS
(2009)

10. Baswana, S., Kavitha, T.: Faster algorithms for approximate distance oracles and all-pair
small stretch paths. In: FOCS (2006)

11. Baswana, S., Sen, S.: Approximate distance oracles for unweighted graphs in expected
O(n2) time. ACM Transactions on Algorithms 2(4), 557–577 (2006)

12. Blelloch, G.E., Vassilevska, V., Williams, R.: A new combinatorial approach for sparse
graph problems. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfs-
dóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 108–120.
Springer, Heidelberg (2008)

13. Chechik, S.: Approximate distance oracles with constant query time. In: STOC (2014)
14. Chen, W., Sommer, C., Teng, S.-H., Wang, Y.: A compact routing scheme and approximate

distance oracle for power-law graphs. ACM Transactions on Algorithms 9(1), 4:1–4:26
(2012)

15. Cohen, E.: Fast algorithms for constructing t-spanners and paths with stretch t. SIAM
Journal on Computing 28(1), 210–236 (1998)

16. Dor, D., Halperin, S., Zwick, U.: All pairs almost shortest paths. In: FOCS (1996)
17. Enachescu, M., Wang, M., Goel, A.: Reducing maximum stretch in compact routing. In:

INFOCOM (2008)
18. Gubichev, A., Bedathur, S., Seufert, S., Weikum, G.: Fast and accurate estimation of short-

est paths in large graphs. In: CIKM (2010)
19. Kawarabayashi, K.-I., Klein, P.N., Sommer, C.: Linear-space approximate distance oracles

for planar, bounded-genus and minor-free graphs. In: Aceto, L., Henzinger, M., Sgall, J.
(eds.) ICALP 2011, Part I. LNCS, vol. 6755, pp. 135–146. Springer, Heidelberg (2011)

20. Kawarabayashi, K.-I., Sommer, C., Thorup, M.: More compact oracles for approximate
distances in undirected planar graphs. In: SODA (2013)

21. Matoušek, J.: On the distortion required for embedding finite metric spaces into normed
spaces. Israel Journal of Mathematics 93(1), 333–344 (1996)

22. Mendel, M., Naor, A.: Ramsey partitions and proximity data structures. Journal of Euro-
pean Mathematical Society 2(9), 253–275 (2007)

23. Pǎtraşcu, M., Roditty, L.: Distance oracles beyond the Thorup-Zwick bound. In: FOCS
(2010)

24. Pǎtraşcu, M., Roditty, L., Thorup, M.: A new infinity of distance oracles for sparse graphs.
In: FOCS (2012)

25. Porat, E., Roditty, L.: Preprocess, set, query!. In: Demetrescu, C., Halldórsson, M.M. (eds.)
ESA 2011. LNCS, vol. 6942, pp. 603–614. Springer, Heidelberg (2011)

26. Potamias, M., Bonchi, F., Castillo, C., Gionis, A.: Fast shortest path distance estimation in
large networks. In: CIKM (2009)

27. Roditty, L., Zwick, U.: Replacement paths and k simple shortest paths in unweighted
directed graphs. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M.
(eds.) ICALP 2005. LNCS, vol. 3580, pp. 249–260. Springer, Heidelberg (2005)

28. Sommer, C., Verbin, E., Yu, W.: Distance oracles for sparse graphs. In: FOCS (2009)
29. Thorup, M., Zwick, U.: Compact routing schemes. In: SPAA (2001)
30. Thorup, M.: Compact oracles for reachability and approximate distances in planar

digraphs. Journal of the ACM 51(6), 993–1024 (2004)
31. Thorup, M., Zwick, U.: Approximate distance oracles. Journal of the ACM 52(1), 1–24

(2005)
32. Wulff-Nilsen, C.: Approximate distance oracles with improved query time. In: SODA

(2013)
33. Wulff-Nilsen, C.: Approximate distance oracles with improved preprocessing time.

In: SODA (2012)

Distribution-Sensitive Construction

of the Greedy Spanner

Sander P.A. Alewijnse, Quirijn W. Bouts�, and Alex P. Ten Brink

Eindhoven University of Technology, The Netherlands
q.w.bouts@tue.nl

Abstract. The greedy spanner is the highest quality geometric spanner
(in e.g. edge count and weight, both in theory and practice) known to
be computable in polynomial time. Unfortunately, all known algorithms
for computing it on n points take Ω(n2) time, limiting its use on large
data sets.

We observe that for many point sets, the greedy spanner has many
‘short’ edges that can be determined locally and usually quickly, and
few or no ‘long’ edges that can usually be determined quickly using
local information and the well-separated pair decomposition. We give
experimental results showing large to massive performance increases over
the state-of-the-art on nearly all tests and real-life data sets. On the
theoretical side we prove a near-linear expected time bound on uniform
point sets and a near-quadratic worst-case bound.

Our bound for point sets drawn uniformly and independently at ran-
dom in a square follows from a local characterization of t-spanners we
give on such point sets: we give a geometric property that holds with
high probability on such point sets. This property implies that if an edge
set on these points has t-paths between pairs of points ‘close’ to each
other, then it has t-paths between all pairs of points.

This characterization gives a O(n log2 n log2 log n) expected time
bound on our greedy spanner algorithm, making it the first subquadratic
time algorithm for this problem on any interesting class of points. We
also use this characterization to give a O((n + |E|) log2 n log log n) ex-
pected time algorithm on uniformly distributed points that determines
if E is a t-spanner, making it the first subquadratic time algorithm for
this problem that does not make assumptions on E.

1 Introduction

A Euclidean graph on a set of n points in the Euclidean plane is a weighted graph
with geometric distances as edge weights. If a shortest route in the graph is at
most t times longer than the direct geometric distance between its endpoints,
we say these endpoints have a t-path: a Euclidean graph is a t-spanner if all
pairs of points have t-paths. For any t > 1, we can efficiently find a t-spanner

with O
(

n
t−1

)
edges in the Euclidean plane [17]. These ‘approximations’ have

� Q.W. Bouts is supported by the Netherlands Organisation for Scientific Research
(NWO) under project no. 639.023.208

A.S. Schulz and D. Wagner (Eds.): ESA 2014, LNCS 8737, pp. 61–73, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

62 S.P.A. Alewijnse, Q.W. Bouts, and A.P. Ten Brink

few edges compared to the complete graph, while approximately maintaining
distances, making them a useful tool in many areas.

Bounded degree spanners are used in wireless network design [13], where for
example points of high degree tend to have problems with interference. By using
such a bounded degree spanner the problem of interference is minimized while
the connectivity is maintained. A considerable amount of research has been
done on spanners [14, 17] since they were introduced in network design [18] and
in geometry [10]. Spanners have been used as components in various geometric
and distributed algorithms.

Many different construction methods exist for t-spanners, where t can be
parameterized to an arbitrary value greater than 1, each having different advan-
tages and disadvantages. An in-depth treatise of these spanners can be found in
the book [17]. We focus on the greedy spanner, which is defined as the graph re-
sulting from repeatedly adding the edge between the closest pair of points which
do not have a t-path yet. The result is a very sparse graph with assymptotically
optimal edge count, degree and weight. On uniform point sets and for t = 2,
one of its closest well-known competitors with respect to these three properties
is the Θ-graph. It has about ten times as many edges, twenty times higher total
weight and six times higher maximum degree. Figure 1 clearly shows the contrast
between these two spanners. Unfortunately, all known algorithms computing the
greedy spanner use Ω(n2) time [3], making the spanner impractical to compute.

Fig. 1. The left rendering shows the greedy
spanner on 100 points distributed uniformly in
a square with t = 2. The right rendering shows
the Θ-graph on the same points with k = 6 for
which it was recently proven it achieves a dila-
tion of 2.

We observed that on real-
world examples, the greedy span-
ner contains mostly short edges
with at most a few longer edges.
Whether an edge is placed de-
pends only on the points and
edges in an ellipse with its end-
points as foci and with eccentric-
ity 1/t, which is a small area for
short potential edges, hopefully
containing few points. We can
therefore find these short edges
using a bucketing scheme, giving
a speedup on such point sets.

For the ‘long’ edges, we con-
sider the ‘long’ well-separated
pairs from a Well-separated pair
decomposition (WSPD) [9]. We
first compute information from the ‘short’ edges, attempting to find witnesses
that show that certain ‘long’ well-separated pairs will not contain greedy span-
ner edges. This information is represented by path-hyperbola. We then perform a
standard algorithm [3] on the (hopefully only few) well-separated pairs for which
we cannot find such a witness.

Distribution-Sensitive Construction of the Greedy Spanner 63

We present experimental results showing that the above algorithm works very
well on many data sets, ranging from real-world data sets to sets which are gen-
erated according to different distributions. Speedups vary from an (apparently)
linear factor to a constant factor. In particular, on a uniformly distributed point
set with 300,000 points, our new algorithm needs 19 minutes to compute the
greedy spanner for t = 2, while the only other algorithm that can handle point
sets of this size [3] (other algorithms need quadratic space, which is prohibitive)
needs 17 hours on the same set.

We show that our algorithm has a near-quadratic worst-case time bound. We
give formal evidence for the algorithm’s good behavior observed in experiments
on realistic point sets (which are often reasonably spread out) by analyzing its
performance on point sets distributed uniformly and independently at random
in a square (or ‘uniformly distributed points’ for short).

Euclidean graphs are frequently analyzed on uniformly distributed points,
both concerning theoretical properties and experimental evaluation of struc-
tures and algorithms. One can find examples in computational geometry [8],
combinatorial optimization [21] and the analysis of ad-hoc networks [19].

Various spanner constructions have been analyzed on uniformly distributed
point sets [1, 7]. Some of these constructions are a t-spanner for fixed t, others
are parameterizable with arbitrary t > 1. Relatively sharp bounds have been
obtained on various qualities of these spanners. This gives insight into the be-
havior of these constructions in situations arguably closer to realistic point sets
than worst case situations.

The spanner constructions studied in these analyses have a ‘local’ character-
ization: for example, Gabriel graphs connect u, v if the circle having uv as its
diameter contains no points other than u and v. For graphs with such a local
characterization there are well-developed techniques to analyze them on uni-
formly distributed points [11]. In this paper, however, we look at the ‘global’
property t-spannerness and the greedy spanner, a graph for which the existence
of an edge may depend on all other points. Previous analysis techniques do not
directly apply on such properties. However, one of our main contributions is to
show that with high probability, greedy spanners do admit a local characteriza-
tion on uniform point sets.

We consider points distributed uniformly and independently at random in a√
n ×

√
n square. We use this square so that if we have an area A, then O(A)

points lie in it in expectation. We only consider the case of the Euclidean plane
– our results may generalize to higher dimensions, but we did not explore this.
In this introduction, when stating bounds, we assume t is a constant.

We prove that such point sets are, with high probability, configured in such
a way that for any edge set E, if there are t-paths between points at most
O(log n) away from each other, then there are t-paths between all points. In
particular, we show that we can construct a ‘witness’ of this configuration in
O(n log2 n log logn) expected time if it exists, thus allowing our algorithms to
always give the correct answer.

64 S.P.A. Alewijnse, Q.W. Bouts, and A.P. Ten Brink

This result easily implies that with high probability the greedy spanner has
no long edges (longer than O(log n)) and furthermore that the ‘proof’ phase of
our algorithm will find the witnesses for this if it exists. As the grid strategy
works well on uniformly distributed point sets, we obtain a O(n log2 n log2 logn)
expected time bound on our algorithm. To the best of our knowledge, this algo-
rithm is the first subquadratic algorithm to compute the greedy spanner on any
interesting class of point sets.

Another application of our result is a method to test whether a Euclidean
graph G = (P,E) is a t-spanner on uniformly distributed points in O((n +
|E|) log2 n log logn) expected time. Various algorithms are known for specific
graphs on arbitrary points, but not for arbitrary graphs on specific sets of points.
For specific graph classes the minimum t can be computed [2,12], and for general
graphs this t can be approximated [16].

The rest of the paper is organized as follows. In Section 2 we introduce bridged-
ness and give a geometric lemma that will help us obtain our results. In Section 3
we show uniform point sets are locally-O(logn)-bridged with high probability.
In Section 4 we give several fast algorithms that use this result. Finally, in
Section 5 we present experimental results for our algorithm that computes the
greedy spanner. Full proofs and additional experimental results can be found
in [4].

2 Bridging Points

In this section we will introduce the concept of λ-bridgedness for point sets. We
will later use this concept in our characterization of t-spanners on uniformly
distributed point sets. We prove two geometric lemmas that will help us with
the result of Section 3.

Let P be a finite set of points in R2, let n = |P |, and let t ∈ R be the intended
dilation (t > 1). Let G = (P,E) be a graph on P whose edges are weighted with
the Euclidean distance between its endpoints. For two points u, v ∈ P , we denote
the Euclidean distance between u and v by |uv|, and the network distance in G
by δG(u, v) (or δ(u, v) if G is clear from the context). We say a pair of points
(u, v) has a t-path if δ(u, v) ≤ t · |uv|. If all pairs of points have a t-path, the
graph is called a t-spanner.

Let a, b, p, q ∈ P be pairwise different points. We say that the pair (p, q)
bridges the pair (a, b) if t · |ap|+ |pq|+ t · |qb| ≤ t · |ab|. Bridging points guarantee
a t-path for (a, b) if (p, q) is an edge and the pairs (a, p) and (q, b) already have
t-paths. Note that |ap|, |qb| < |ab| as a consequence.

We say that (p, q) is mandatory if the ellipse with foci p and q and eccentricity
1/t contains no points in P other than p and q. Any t-path between p and q must
fully lie within this ellipse, so a mandatory (p, q) will be in E for any t-spanner.

Let λ ∈ R. We say that a point a ∈ P is λ-bridged if for all b ∈ P with |ab| > λ,
there exist some mandatory pair of points (p, q), p, q ∈ P , bridging (a, b). We
say that the point set P is λ-bridged if all points in P are λ-bridged. We say a
point a ∈ P is locally-λ-bridged if it is λ-bridged using only mandatory bridging

Distribution-Sensitive Construction of the Greedy Spanner 65

pairs of points at with distance most λ from a. A point set P is locally-λ-bridged
if all points in P are locally-λ-bridged. Lemma 1 shows the usefulness of this
concept. In Lemma 2 we give a sufficient geometric condition for bridging pairs
of points.

Lemma 1. Let P be a set of points that is λ-bridged. For any Euclidean graph
G = (P,E) it holds that G is a t-spanner if and only if all pairs of points (a, b),
a, b ∈ P , with |ab| ≤ λ have a t-path in G.

Lemma 2. Suppose we are given points a, b ∈ P , rectangles R1 and R2 and
t > 1, such that (as per Fig. 2): R1 and R2 lie in between a and b, have a
side parallel to ab, have their centers on line segment ab, both have width w and
height h, are separated by s ≥ t+1

t−1h and R1 lies closer to a than R2.
Then, for any p, q ∈ P with p lying in R1 and q in R2, (p, q) bridges (a, b).

a

w

h
p

q

s

b

R1

R2

Fig. 2. (p, q) bridges (a, b)

We now use Lemma 2 to prove a stronger statement that we will use to prove
the full version of Theorem 4. Let a, p, q ∈ P be pairwise different points and let
region A ⊆ R2 with a, p, q �∈ A. We say that the pair (p, q) bridges (a,A) if for
every point b ∈ P with b ∈ A we have that (p, q) bridges (a, b).

Lemma 3. Assume we are given a ∈ P , a line � through a, an angle α ≤ π/4,
a constant cmax, rectangles R1 and R2 and t > 1, such that (as per Fig. 3): R1

and R2 have width w and height h, are separated by s, have a side parallel to �,
have their centers on �, R1 lies between a and R2, R2 lies at most cmax away
from a, R1 lies at least h/2 away from a and s ≥

√
2 t+1
t−1 (2 sin(α)cmax + h) + h.

For the cone with apex a, angle 2α and bisector �, we define A as the area
that is at least ccone = cmax + h/2 away from a. Then for any p, q ∈ P with p
lying in R1 and q lying in R2, (p, q) bridges (a,A).

3 Uniform Point Sets

We will now give a sketch of the proof of the following result. The full proof can
be found in [4].

66 S.P.A. Alewijnse, Q.W. Bouts, and A.P. Ten Brink

Theorem 4. There exists ct dependent only on t such that for every c > 0,
if P is a set of points uniformly and independently distributed at random in a√
n×

√
n square and n is large enough, then with probability at least 1− n−c, P

is locally-(c · ct logn)-bridged.

ccone

β
hs

w

w′
s′

h′ b

a �
α

cmax

R1 R2

R′
1

R′
2

A

Fig. 3. R1 and R2 are covered by R′
1 and

R′
2, according to Lemma 2

We need to prove that every point
in P is locally-(c · ct logn)-bridged si-
multaneously with high probability.
We show that every point is locally-
(c · ct logn)-bridged with sufficiently
high probability that a simple union
bound shows that it will happen to all
points simultaneously with high prob-
ability. We use Lemma 3 to achieve
this. For ease of presentation, we as-
sume t is constant.

The rectangles in Lemma 3 can
be chosen to have a roughly constant
chance of containing a point, and if
we can fulfill the other requirements,
the resulting pair of points bridges a
relatively large part of R2. In fact, we need only
π/α� cones (we will end up
picking α = O(1/ logn)) to cover the area we wish to cover, as depicted in Fig. 4.
We show the likely existence of a pair of mandatory points that bridges a single
cone and use a union bound to show such pairs are likely to exist for all cones
simultaneously.

a

2α
cbridge

Fig. 4. Covering the plane
with cones

We will place O(log n) pairs of rectangles in ev-
ery cone as depicted in Fig. 4. If any pair of boxes
ends up containing a point per box, these two
points will satisfy the requirements for Lemma 3.
We just need this pair of points to be mandatory,
and therefore consider an ellipse around such a
pair of boxes (defined in terms of the boxes, not
the points, for easy analysis), such that if this el-
lipse is empty apart from these two points, these
points must be mandatory. Using a careful anal-
ysis, the chance that a pair of boxes contains one
point per box and the ellipse contains no more
points (an event we will call a ‘success’) is at least
some constant p (dependent only on t). We need
only one success per cone and the events are nearly
independent (the ellipses do not overlap), so the chance that we get at least one
success is at least (roughly) 1 − pO(log n) = 1 − n−O(f(t)), which then shows the
theorem.

Distribution-Sensitive Construction of the Greedy Spanner 67

4 Algorithms

We first introduce three tools used in the results below. Let c and ct be as in
Theorem 4 throughout this section. The first is that we can divide the input

into a
√
n

c·ct log n ×
√
n

c·ct logn grid in O(n log n) time, with every cell containing in

expectation O((c · ct logn)2) points.
The second tool is the ‘local’ Dijkstra algorithm. It determines for all points

at most λ away from a source point s whether it has a t-path to s and if so, their
network distance. It differs from the standard Dijkstra algorithm in that it only
adds the points to the queue at most λt away from the source s by considering
the points lying in cells at most λt away from s, and only considers the edges
Es that have such a point as either endpoint. Using the grid this can be done in
O((λ2 + |Es|) logλ) expected time.

The third tool is called path-hyperbola. It is an area given by an origin point
u ∈ P , a focus v ∈ P and an edge set E, and is defined as PH(u, v, E) =
{a ∈ R2 | δ(P,E)(u, v) + t · |va| ≤ t · |ua|}. Obviously, if (p, q) bridges (a, b), then
b ∈ PH(a, q, E) for every edge set E with t-paths for pairs of points (u, v) with
|uv| ≤ |ab|, making path-hyperbola at least as powerful as bridging points for
guaranteeing t-paths.

If we perform a local Dijkstra on s, we find a set of network distances that
induce a set of path-hyperbola. If s is locally-λ-bridged, the union of path-
hyperbola will be a superset of the area more than λ away from s, guaranteeing
t-paths to all other points. This union can be computed in O(λ2 logλ) expected
time: using polar coordinates, the union corresponds to a lower envelope. Since
the hyperbolas pairwise intersect at most twice, this envelope has linear com-
plexity and can be computed in O(n log n) time [5,20]. We can therefore use this
to test in O(λ2 logλ) expected time whether s has a t-path to all other points:
if the local Dijkstra finds only t-paths but s is not locally-λ-bridged, we can
perform a normal Dijkstra without affecting the expected running time.

4.1 Testing t-Spanners

The first application of Theorem 4 and our tools is a faster algorithm to test if
a Euclidean graph is a t-spanner on uniformly distributed point sets: we simply
run the procedure from the previous section on every point. To the best of our
knowledge, this leads to the first subquadratic algorithm for this problem on any
interesting class of point sets not making assumptions on E.

Theorem 5. There is an algorithm that, given a point set P whose points are
uniformly distributed in a

√
n×

√
n square and a Euclidean graph E on P , checks

if E is a t-spanner using O((n+ |E|)(ct log n)2 log(ct logn)) expected time, where
ct is a constant dependent only on t.

68 S.P.A. Alewijnse, Q.W. Bouts, and A.P. Ten Brink

4.2 Greedy Spanner

Algorithm. GreedySpannerOriginal(V, t)
1. E ← ∅
2. for every pair of distinct points (u, v) in ascending order of |uv|
3. do if δ(V,E)(u, v) > t · |uv|
4. then add (u, v) to E
5. return E

Consider the original algorithm above as introduced in [15]. The graph re-
turned by this algorithm is called the greedy spanner on V for t and it is obviously
a t-spanner, but the algorithm has a O(n3 logn) running time.

Lemma 6. If P is λ-bridged, then the greedy spanner on P does not have edges
longer than λ.

We can combine Lemma 6 with Theorem 4 to quickly compute the greedy
spanner on uniform point sets. We first give a preliminary algorithm which we
then employ in two greedy spanner algorithms.

Theorem 7. For every λ > 0, there is an algorithm that, given a point set
P whose points are uniformly distributed in a

√
n ×

√
n square, computes in

O(n log n + nλ2 log2 λ) expected time the edges of the greedy spanner on P for t
of length at most λ.

Proof. We use the algorithm introduced in [3] (we omit an explanation of the
machinery introduced there), except we keep Lemma 6 in mind and use our
local Dijkstra instead of a normal Dijkstra and only consider well-separated
pairs {Ai, Bi} with min(Ai, Bi) ≤ λ.

Using the analysis in [3] and using that the greedy spanner has degree O(1), we
conclude that if m is the number of considered well-separated pairs, the running
time of our modified algorithm is O(n log n + λ2 logλ

∑m
i=1 min(|Ai|, |Bi|)). We

therefore need to bound∑m
i=1 min(|Ai|, |Bi|) ≤

∑m
i=1(|Ai|+ |Bi|) =

∑
a∈P |{{Ai, Bi} | a ∈ Ai∨a ∈ Bi}|.

For any l ∈ R, a point p can only be in O(1) well-separated pairs of length at
most a constant factor higher or lower than l [9, Lemma 4.6.1]. We can therefore
partition the well-separated pairs containing p into O(1)-sized sets of similar
length. As the minimal length per set differs by at least a constant factor, we

conclude |{{Ai, Bi} | a ∈ Ai ∨ a ∈ Bi}| = O
(

log maxi{l({Ai,Bi})}
mini{l({Ai,Bi})}

)
. This last

expression is O(log λ) in expectation on uniform point sets, giving an expected
running time of O(n logn + nλ2 log2 λ). ��

Note that we could have adapted the algorithm from [6], but this algorithm
sorts all potential edges, resulting in an expected O(n log nλ2 logλ) running time,
which is slower when filling in λ = O(log n).

Distribution-Sensitive Construction of the Greedy Spanner 69

Combining Lemma 6, Theorem 4 and Theorem 7 (with λ = c · ct logn) gives:

Corollary 8. There is an algorithm that, given a point set P whose points are
uniformly distributed in a

√
n×√

n square, computes in
O(n(ct logn)2 log2(ct logn)) expected time a graph on P which is with high prob-
ability the greedy t-spanner (with ct is a constant dependent only on t).

4.3 The Full Distribution-Sensitive Algorithm

The algorithm from Theorem 7 is the first phase of our distribution sensitive
algorithm. We now present the second and third phase that ensure that all long
edges are also computed.

The second phase gathers path-hyperbola as described at the start of this
section. We then consider the well-separated pairs that did not get considered
in the first stage of the algorithm and try to prove for them that they will not
produce a greedy spanner edge. For the remaining pairs, we employ the algorithm
of [3] in the third phase of our algorithm to find the remaining spanner edges.

If for a point u ∈ Ai, the bounding box Bi is covered by the union of path-
hyperbola computed for u (testing this takes O(log n) time), then we say u is
discounted with respect to {Ai, Bi}. If all u ∈ Ai are discounted, then {Ai, Bi}
will not contain a greedy spanner edge and we say {Ai, Bi} is discounted. This
can be computed in O(log n

∑m
i=1(|Ai| + |Bi|)) = O(n logn logλ) expected time

by an earlier argument.
We then perform the algorithm from [3], with small differences. We ignore

pairs that have been discounted in the previous phase, and we do not perform
a Dijkstra operation on points which have been discounted with respect to that
pair as well. By Theorem 4, all pairs are discounted with high probability and
hence this phase takes constant time in expectation on uniform point sets.

In practice, using a λ lower than predicted by Theorem 4 will suffice and be
faster. From experiments we observe that λ = logn

4
√
t−1 log logn

is the ‘right’ bound

for the length of the longest edge in the greedy spanner. Using 1.1 · λ the initial
phase nearly always finds all edges, with the second phase usually discounting
99.7% of the pairs and 95% of the points in undiscounted pairs, with the second
phase taking about 20% of the time of the first. Using 1.5·λ, all pairs are typically
discounted.

Theorem 9. There is an algorithm that, given t and a point set P whose points
are uniformly distributed in a

√
n×

√
n square, computes in

O(n(ct logn)2 log2(ct logn)) expected time its greedy spanner, with ct a constant
dependent only on t. The algorithm uses O(n2 log2 n) time on arbitrary P .

5 Experimental Results

We have run our algorithm and WSPD-Greedy from [3] on point sets whose size
ranged from 500 to 128,000 points. The WSPD-Greedy algorithm has a running
time comparable to the other (quadratic space) algorithms. Since running these

70 S.P.A. Alewijnse, Q.W. Bouts, and A.P. Ten Brink

on more then 10,000 points quickly becomes infeasible we did not include them in
our experiments. For a detailed comparison between the major quadratic space
algorithms and WSPD-Greedy we refer to [3]. Note that we have verified that
all our implemented algorithms give the same output.

Throughout this section we will refer to our algorithm as “Bucketing” in
the graphs. We generated point sets according to several distributions. We have
recorded space usage and running time (wall clock time). The results are averages
over several runs where new point sets were generated each time. We included
graphs for the uniform point set and for a clustered point set as these represent
the best and worst cases respectively for our algorithm (with respect to our set
of tests). To generate the clustered point set we used the same method as [3],
that is, for n points, it consists of

√
n uniformly distributed point sets of

√
n

uniformly distributed points.

5.1 Environment

The algorithms have been implemented in C++. The random generator used
was the Mersenne Twister PRNG – we have used a C++ port by J. Bedaux of
the C code by the designers of the algorithm, M. Matsumoto and T. Nishimura.
We have implemented all other necessary data structures and algorithms not
already in the std ourselves. The implementations do not use parallelism.

Our experiments have been run on a server using an Intel Xeon E5530 CPU
(2.40GHz) and 8GB (1600 MHz) RAM. It runs the Debian 7 OS and we compiled
for 64 bits using G++ 4.7.2 with the -O3 option.

5.2 Dependence on Instance Size

We have compared running time and space usage of WSPD-Greedy and our
algorithm for different values of n. We plotted the running time for t = 2 on
uniform and clustered points in Fig. 5. The space usage for both algorithms is
linear but our algorithm uses a constant factor less space in practice.

The running time of our algorithm on uniformly distributed points is (nearly)
linear making it a massive improvement over WSPD-Greedy. This allows us
to calculate greedy spanners on such point sets in a matter of minutes where
WSPD-Greedy would need hours or even days for bigger instances.

The clustered point set is a bad case for our algorithm since the greedy span-
ner will contain a considerable amount of really large edges between clusters.
Nevertheless, the algorithm still outperforms WSPD-Greedy by quite a margin.
Our experiments on clustered data with smaller t values (up to t = 1.1) show
that the performance of the algorithms gets more similar as t decreases. On point
sets drawn using a uniform or normal distribution our algorithm massively out-
performs WSPD-Greedy for both small and large t.

Distribution-Sensitive Construction of the Greedy Spanner 71

Input size (vertices)

D
u

ra
ti
o

n
 (

s
e

c
)

Bucketing

WSPD−Greedy

0 20000 40000 60000 80000 100000 120000

0
5

0
0

0
1

0
0

0
0

1
5

0
0

0

Input size (vertices)

D
u

ra
ti
o

n
 (

s
e

c
)

Bucketing

WSPD−Greedy

0 20000 40000 60000 80000 100000 120000

0
1

0
0

0
2

0
0

0
3

0
0

0
4

0
0

0
5

0
0

0
6

0
0

0

Fig. 5. The left plot shows the running time of our algorithm (Bucketing) and WSPD-
Greedy for t = 2 on variously sized uniformly distributed instances. The right plot
shows the same for clustered instances.

5.3 Real Data

Aside from generated instances we also experimented on some real point sets
from the TSPLIB1. The performance of our algorithm on these sets seems to be
close to the uniform point sets. Figure 6 shows two point sets and their greedy
spanners. For the PCB the computation took on average about 2 seconds for
t = 2 and 11 seconds for t = 1.1. The same computations using WSPD-Greedy
took 12 and 203 seconds respectively. The bigger Germany instance took 21 and
147 seconds to compute using our algorithm while WSPD-Greedy needed 274
and 7,486 seconds for t = 2 and t = 1.1. This is a factor 50 improvement for the
low t case which reduces the computation time from hours to minutes.

Fig. 6. Real point sets from the TSPLIB and their greedy spanners using t = 2. Left:
A PCB instance of 3,038 points. Right: Cities in Germany, 15,112 points.

1 http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/

http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/

72 S.P.A. Alewijnse, Q.W. Bouts, and A.P. Ten Brink

6 Conclusion

We have introduced a distribution sensitive algorithm for computing the greedy
spanner. Experiments show large improvements in both time and space for most
data sets, while results are never worse than the state-of-the-art. The perfor-
mance gap in many cases becomes even larger for lower t. To explain these
results, we have analyzed the algorithm on uniformly distributed point sets.

To this end, we have introduced the concept of bridgedness and have shown
that point sets that are uniformly distributed in a

√
n×√

n square are O(log n)-
bridged with high probability. This implies that ‘t-spannerness’ is a ‘local’ prop-
erty on these point sets: a Euclidean graph is a t-spanner if and only if all pairs
of ‘close-by’ points have t-paths. This locality shows that our algorithm is near-
linear on these point sets and yields a near-linear time algorithm for testing
whether an edge set is a t-spanner on these point sets.

We leave open several questions that may be answered in future work. First,
in our experiments, we have observed that the length of the longest edge of
the greedy spanner on uniform point sets tends towards logn

4
√
t−1 log logn

, leaving

a gap with our upper bound; similarly, our bridgedness bound may also be
improvable. Secondly, it would be interesting to see if our results generalize to
higher dimensions. Lastly, there is still no general subquadratic time algorithm
for the greedy spanner. Our algorithm could be considered a divide and conquer
algorithm where the conquer step may be very slow, possibly susceptible to
improvement.

References

[1] Abam, M.A., de Berg, M., Farshi, M., Gudmundsson, J.: Region-fault tolerant
geometric spanners. Discr. Comp. Geom. 41(4), 556–582 (2009)

[2] Agarwal, P.K., Klein, R., Knauer, C., Langerman, S., Morin, P., Sharir, M., Soss,
M.: Computing the Detour and Spanning Ratio of Paths, Trees, and Cycles in 2D
and 3D. Discrete Comput. Geom. 39(1), 17–37 (2008)

[3] Alewijnse, S.P.A., Bouts, Q.W., ten Brink, A.P., Buchin, K.: Computing the
greedy spanner in linear space. In: Bodlaender, H.L., Italiano, G.F. (eds.) ESA
2013. LNCS, vol. 8125, pp. 37–48. Springer, Heidelberg (2013)

[4] Alewijnse, S.P.A., Bouts, Q.W., ten Brink, A.P., Buchin, K.: Distribution-sensitive
construction of the greedy spanner. CoRR, arXiv:1401.1085 (2014)

[5] Atallah, M.: Some dynamic computational geometry problems. Computers and
Mathematics with Applications 11, 1171–1181 (1985)

[6] Bose, P., Carmi, P., Farshi, M., Maheshwari, A., Smid, M.: Computing the greedy
spanner in near-quadratic time. Algorithmica 58(3), 711–729 (2010)

[7] Bose, P., Devroye, L., Evans, W., Kirkpatrick, D.: On the spanning ratio of Gabriel
graphs and beta-skeletons. SIAM Journal on Discrete Mathematics 20(2), 412–427
(2006)

[8] Buchin, K.: Constructing Delaunay triangulations along space-filling curves.
In: Fiat, A., Sanders, P. (eds.) ESA 2009. LNCS, vol. 5757, pp. 119–130. Springer,
Heidelberg (2009)

Distribution-Sensitive Construction of the Greedy Spanner 73

[9] Callahan, P.B.: Dealing with Higher Dimensions: The Well-Separated Pair Decom-
position and Its Applications. PhD thesis, Johns Hopkins University, Baltimore,
Maryland (1995)

[10] Chew, L.P.: There are planar graphs almost as good as the complete graph. J.
Comput. System Sci. 39(2), 205–219 (1989)

[11] Devroye, L.: On the expected size of some graphs in computational geometry.
Comput. Math. Appl. 15, 53–64 (1988)

[12] Eppstein, D., Wortman, K.A.: Minimum dilation stars. Comput. Geom. 37(1),
27–37 (2007)

[13] Gao, J., Guibas, L.J., Hershberger, J., Zhang, L., Zhu, A.: Geometric spanners
for routing in mobile networks. IEEE J. Selected Areas in Communications 23(1),
174–185 (2005)

[14] Gudmundsson, J., Knauer, C.: Dilation and detours in geometric networks. In:
Gonzales, T. (ed.) Handbook on Approximation Algorithms and Metaheuristics,
pp. 52-1– 52-16. Chapman and Hall/CRC, Boca Raton (2006)

[15] Keil, J.M.: Approximating the complete Euclidean graph. In: Karlsson, R., Lingas,
A. (eds.) SWAT 1988. LNCS, vol. 318, pp. 208–213. Springer, Heidelberg (1988)

[16] Narasimhan, G., Smid, M.: Approximating the stretch factor of Euclidean graphs.
SIAM J. Comput. 30(3), 978–989 (2000)

[17] Narasimhan, G., Smid, M.: Geometric Spanner Networks. Cambridge University
Press, New York (2007)

[18] Peleg, D., Schäffer, A.A.: Graph spanners. Journal of Graph Theory 13(1), 99–116
(1989)

[19] Santi, P.: Topology control in wireless ad hoc and sensor networks. ACM
Computing Surveys (CSUR) 37(2), 164–194 (2005)

[20] Sharir, M., Agarwal, P.: Davenport-Schinzel Sequences and their Geometric
Applications. Cambridge University Press (1995)

[21] Steele, J.M.: Probability Theory and Combinatorial Optimization. CBMS-NSF
Regional Conference Series in Applied Mathematics, vol. 69. SIAM (1997)

Recognizing Shrinkable Complexes

Is NP-Complete�

Dominique Attali1, Olivier Devillers2, Marc Glisse2, and Sylvain Lazard2

1 Gipsa-lab, France
http://www.gipsa-lab.grenoble-inp.fr/~dominique.attali/

2 INRIA, France
http://www.inria.fr/sophia/members/Olivier.Devillers,
http://geometrica.saclay.inria.fr/team/Marc.Glisse/,

http://www.loria.fr/~lazard/

Abstract. We say that a simplicial complex is shrinkable if there exists
a sequence of admissible edge contractions that reduces the complex to
a single vertex. We prove that it is NP-complete to decide whether a
(three-dimensional) simplicial complex is shrinkable. Along the way, we
describe examples of contractible complexes which are not shrinkable.

1 Introduction

Edge contraction is a useful operation for simplifying simplicial complexes. An
edge contraction consists in merging two vertices, the result being a simplicial
complex with one vertex less. By repeatedly applying edge contractions, one can
thus reduce the size of a complex and significantly accelerate many computa-
tions. For instance, edge contractions are used in computer graphics to decimate
triangulated surfaces for fast rendering [14, 16]. For such an application, it may
be unimportant to modify topological details and ultimately reduce a surface to
a single point since this corresponds to what the observer is expected to see if
he is sufficiently far away from the scene [21]. However, for other applications,
it may be desirable that every edge contraction preserves the topology. This
is particularly true in the field of machine learning when simplicial complexes
are used to approximate shapes that live in high-dimensional spaces [1, 6, 8, 10].
Such shapes cannot be visualized easily and their comprehension relies on our
ability to extract reliable topological information from their approximating com-
plexes [7, 11, 20].

In this paper, we are interested in edge contractions that preserve the topol-
ogy, actually the homotopy type, of simplicial complexes. It is known that con-
tracting edges that satisfy the so-called link condition preserves the homotopy
type of simplicial complexes [13] and, moreover, for triangulated surfaces and

� This work has been supported by ANR project TopData ANR-13-BS01-0008 and by
the Advanced Grant of the European Research Council GUDHI (Geometric Under-
standing in Higher Dimensions).

A.S. Schulz and D. Wagner (Eds.): ESA 2014, LNCS 8737, pp. 74–86, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

http://www.gipsa-lab.grenoble-inp.fr/~dominique.attali/
http://www.inria.fr/sophia/members/Olivier.Devillers
http://geometrica.saclay.inria.fr/team/Marc.Glisse/
http://www.loria.fr/~lazard/

Recognizing Shrinkable Complexes Is NP-Complete 75

piecewise-linear manifolds, the link condition characterizes the edges whose con-
traction produces a complex that is homeomorphic to the original one (a con-
straint that is stronger than preserving the homotopy type) [12,19]. An edge ab
satisfies the link condition if the link of ab is equal to the intersection of the links

Link(a)

Link(b)

Link(ab)

a

b

of a and b, where the link of a face f is a simplicial
complex defined as follows (see figure): consider
the smallest simplicial complex that contains all
the faces containing f , i.e. the star of f ; the link
of f is the set of faces disjoint from f in that
simplicial complex [12].1

We only consider contractions of edges that sat-
isfy the link condition, which implies that the ho-
motopy type is preserved. We refer to such edge
contractions as admissible; an admissible edge
contraction is also called a shrink and the corre-
sponding edge is said to be shrinkable. After some
sequence of shrinks, the resulting complex (possibly a point) does not admit any
more shrinkable edges and the complex is called (shrink) irreducible.

We are interested in long sequences of shrinks because they produce irre-
ducible complexes of small size and it is natural to ask, in particular, whether a
simplicial complex can be reduced to a point using admissible edge contractions.
If this is the case, the simplicial complex is called shrinkable.

Barnette and Edelson [3] proved that a topological disk is always shrinkable
(by any sequence of shrinks). They use this property to prove that a compact
2-manifold (orientable or not) of fixed genus admits finitely many triangulations
that are (shrink) irreducible [3,4]. For instance, the number of irreducible trian-
gulations of the torus is 21 [17] and it is at most 396 784 for the double torus [22].
We address in this paper the problem of recognizing whether an arbitrary sim-
plicial complex is shrinkable.

Tancer [23] recently addressed a similar problem where he considered admis-
sible simplex collapses instead of admissible edge contractions. An admissible
simplex collapse (called elementary collapse in [23]) is the operation of removing
a simplex and one of its faces if this face belongs to no other simplex.2 Such
collapses preserve the homotopy type. Similarly to edge contractions, collapses
are often used to simplify simplicial complexes, and a simplicial complex is said
collapsible if it can be reduced to a single vertex by a sequence of admissible
collapses. Tancer proved that it is NP-complete to decide whether a given (two-
dimensional) simplicial complex is collapsible [23]. The proof is by reduction

1 In other words, in an abstract simplicial complex, the link of σ is the set of faces λ
disjoint from σ such that σ ∪ λ is a face of the complex.

2 Strictly speaking, Tancer calls several of our admissible simplex collapses an elemen-
tary collapse. His elementary collapse is the removal of a nonempty non-maximal
face σ and the removal of all the faces containing σ if σ is contained in a unique max-
imal face of the simplicial complex, where maximality is considered for the inclusion
in an abstract simplicial complex [23].

76 D. Attali et al.

from 3-SAT and gadgets are obtained by altering Bing’s house [5], a space that
is contractible but whose triangulations are not collapsible.

Both questions of collapsibility and shrinkability are related to the question
of contractibility: given a simplicial complex, is it contractible? This question is
known to be undecidable for simplicial complexes of dimension 5. A proof given
in Tancer’s paper [23, Appendix] relies on a result of Novikov [24, page 169],
which says that there is no algorithm to decide whether a given 5-dimensional
triangulated manifold is the 5-sphere. We thus cannot expect shrinks and col-
lapses, even combined, to detect all contractible complexes, but they still provide
useful heuristics towards this goal (e.g. [2]) and can even be sufficient in specific
situations [13]. Actually, it is always possible to reduce a contractible simplicial
complex to a point if we allow another homotopy preserving operation: the anti-
collapse (the reverse operation of collapse) [9] but, of course, undecidability of
contractibility implies that the length of the sequence is not bounded.

Contributions. A shrinkable simplicial complex is clearly contractible and the
converse is not true because of the above undecidability result. We first present
a simple shrink-irreducible contractible simplicial complex with 7 vertices. This
simple complex is interesting in its own right and it inspired the proof of our
main result, which is that it is NP-complete to decide whether a given (three-
dimensional) simplicial complex is shrinkable. Our proof uses a reduction from
3-SAT similarly as in Tancer’s NP-completeness proof of collapsibility [23] but,
noticeably, our gadgets are much smaller than those used for collapsibility.

Our NP-completeness result on shrinkability together with Tancer’s analog
on collapsibility naturally raises the question of whether it is also NP-complete
to decide if a given simplicial complex can be reduced to a single vertex by a se-
quence combining admissible edge contractions and admissible simplex collapses.
In this direction, we present a contractible simplicial complex with 12 vertices
that is irreducible for both shrinks and collapses.

2 Preliminaries

In this paper, simplicial complexes are abstract and their elements are (abstract)
simplices, that is, finite non-empty collections of vertices. We can associate to
every abstract simplicial complex a geometric realization that maps every ab-
stract simplex to a geometric simplex of the same dimension. The union of the
geometric simplices forms the underlying space of the complex.

As mentioned in the introduction, given a simplicial complex, we are interested
in operations that preserve the homotopy type of the underlying space. One of
these operations is the shrink, which is the contraction of an admissible edge,
also called shrinkable edge. Below, we give a useful characterization of shrinkable
edges in terms of blockers. Let K be a simplicial complex and recall that a face
of a simplex is a non-empty subset of the simplex. The face is proper if it is
distinct from the simplex.

Definition 1. A blocker of K is a simplex that does not belong to K but whose
proper faces all belong to K.

Recognizing Shrinkable Complexes Is NP-Complete 77

0 1 2

3 4

5
6

0

0 1 2 0

3

5

0 1 2

4

0

0 1 2 0

3

5

0 1 2

3

5
6

0

0 1 2 0

3

5

43

5
6

(a)

(b)

(c) (d) (e)

Fig. 1. (a) triangulation of the torus with 7 vertices, (d) a contractible non-shrinkable
simplicial complex and (b,c) an embedding of their underlying spaces in R3. (e) high-
lights 8 blockers (015, 023, 123, 146, 246, 256, 345, 256) that suffice to cover all edges.

A blocker is also sometimes called a missing face [18], a minimal non-face [13],
or a simplicial hole [15].

Lemma 1 ([13]). An edge ab of K is shrinkable if and only if ab is not contained
in any blocker of K.

Note that one of the direction is straightforward: if σ is a blocker containing
ab, then σ \ {a, b} ∈ Link (a) ∩ Link (b) but σ \ {a, b} �∈ Link (ab).

As we contract shrinkable edges, blockers may appear or disappear and there-
fore edges may become non-shrinkable or shrinkable. For instance, consider the
simplicial complex L = {a, b, c, d, ab, bc, cd, da} whose edges form a 4-circuit and
the cone K on L with apex w, that is, the set of simplices of the form {w} ∪ σ
where σ ∈ L. The complex K does not contain any blocker and therefore all
edges are shrinkable. Note however that the contraction of edge ab creates a
blocker which disappears as we contract wa. Hence, as we simplify the complex,
an edge that used to be shrinkable (or not) may change its status several times
later on during the course of the simplification. Interestingly, the only blockers
we need to consider in the paper are triangles.

3 A Simple Non-shrinkable Contractible Simplicial
Complex

To construct a contractible simplicial complex that is shrink-irreducible, we start
with the triangulation of the torus with 7 vertices described in Fig. 1-(a,b)
(Császár polyhedron). Notice that the vertices and edges of this triangulation
form a complete graph. Thus, every triple of vertices forms a cycle in this graph,
which may or may not bound a face.

We now modify the complex as follows. The idea is to add two triangles so
that every (arbitrary) cycle on the modified torus is contractible and to remove a
triangle so as to open the cavity; see Fig. 1-(c). Namely, we add triangles 012 and
035 and remove triangle 145; see Fig. 1-(d). The resulting complex is contractible

78 D. Attali et al.

because it is collapsible; indeed all edges and vertices inside the “square” and
on the boundary of the (expanding) hole can be collapsed until the hole fills
the entire square, then it only remains triangles 012 and 035, which can also be
trivially collapsed into a single vertex.

To see that the resulting complex is shrink irreducible, note that every edge
is incident to at most 3 triangles; indeed, every edge is incident to 2 triangles
in the initial triangulation of the torus, and we only added two triangles, which
do not share edges. On the other hand, every edge belongs to exactly 5 cycles of
length 3 since the graph is complete on 7 vertices. Hence, every edge belongs to
at least 2 blockers, which implies that no edge is shrinkable, by Lemma 1.

4 NP-completeness of Shrinkability

Theorem 1. Given an abstract simplicial complex of dimension 3 whose under-
lying space is contractible, it is NP-complete to decide whether the complex can
be reduced to a point by a sequence of admissible edge contractions.

The proof is given in this section by reduction from 3-SAT. We show that any
Boolean formula in 3-conjunctive normal form (3CNF) can be transformed, in
polynomial time, to a contractible 3-dimensional simplicial complex, such that
a satisfying assignment exists if and only if the complex is shrinkable.

4.1 Gadgets Design

In the following, the gadgets are defined as abstract simplicial complexes but,
for clarity, we describe geometric realizations of these gadgets in R3. Then the
gadgets are assembled by identifying one triangle of one gadget with a triangle
of another; this operation preserves the blockers and thus the unshrinkability of
edges. A shrinkable edge remains shrinkable if it does not belong to the identified
triangles or if it was shrinkable in both gadgets.

Forward Gadget

Properties. The forward gadget has a special triangle with edges A,B,C such
that A is the only shrinkable edge of the gadget and once A is contracted (thus
identifying B and C) there is a sequence of shrinks that reduces the gadget to a
single point.

Usage. By gluing the triangle ABC to a triangle of another construction, we
enforce that A is contracted before B and C, thus preventing some sequences of
shrinks.

Realization. Refer to Fig. 2. Start with four points a, b, x and y in convex posi-
tion in R3 and consider the tetrahedron abxy. Split this tetrahedron in four by
adding a point o in its interior. The result is a simplicial complex with 5 ver-
tices, 10 edges, 10 triangles and 4 tetrahedra. We then remove the 4 tetrahedra,

Recognizing Shrinkable Complexes Is NP-Complete 79

Fig. 2. Left: The forward gadget with triangle ABC in blue. Its 1-skeleton is the
complete graph with vertices o, a, b, x and y and its (dotted) blockers axy, oxy, oxb, ayb
are the triangles that have been collapsed. Middle: Contracting edge A produces a
complex with a unique blocker, axy. Right: Schematic representation of the gadget.

by applying four triangle collapses. The first three collapses dig a gallery start-
ing at triangle axy by successively removing the pair of simplices (axy, axyo),
(oxy, oxyb), (oxb, oxba). The fourth collapse removes the pair (ayb, oayb). The
obtained simplicial complex has 5 vertices, 10 edges, 6 triangles: 2 triangles of
the initial tetrahedron (axb and xyb) and 4 triangles incident to o (oab, oax, oay
and oyb). Notice that as we collapse these pairs of simplices (σ,Σ), the triangle σ
becomes a blocker. Thus, the resulting simplicial complex has a unique blocker-
free edge A = oa. Let B = ob and C = ab. If A is contracted, the resulting
complex contains the triangles axb, xyb, oyb, thus any of the edges incident to b
can be shrunk, which reduces the complex to a triangle, which is shrinkable.

Freezer Gadget

Properties. The freezer gadget has a special triangle with edges A,B,C such
that A and B are the only shrinkable edges of the gadget, and once A or B is
contracted (identifying the other with C), there is a sequence of shrinks that
reduce the gadget to a single point.

Usage. By gluing the triangle ABC to a triangle of another construction, we
enforce that C is non-shrinkable (or frozen) until either A or B is contracted;
such a contraction identifies C with the uncontracted remaining edge (B or A).

B

A

C

A

B

B=C

A = Ca=o=A

x

a

b

y

y

o

y
x

a

x

b

b=o=B

A

B

C

Fig. 3. The freezer gadget. Left: realization. Middle: contraction of edge A or B. Right:
schematic representation.

80 D. Attali et al.

B

A

BB

A
X

X̄

L

B

A

L

B

L

BB

A

L

BB

A

L

X
X̄

X

X̄

X

X̄
X

X̄

Fig. 4. The variable gadget: realization (left) and various edge contractions

Realization. Refer to Fig. 3. We start with the same construction as for the for-
ward gadget except that instead of collapsing the pair (oxb, oxba), we collapse
the pair (xab, oxab). The list of blockers thus created is axy, oxy, xab, ayb, and
the resulting complex contains only 1 triangle of the initial tetrahedron (xyb)
and 5 triangles incident to o (oab, oax, oay, oyb and oxb). The result is a sim-
plicial complex with exactly two blocker-free edges, A and B. Similarly as for
the forward gadget, once edge A or B is contracted, the resulting complex is
shrinkable.

Variable Gadget

Properties. The variable gadget associated to a variable x has three special edges:
X, X̄ and L (lock). At the beginning X and X̄ are shrinkable edges. When X or
X̄ has been contracted, the other one is not shrinkable before L and there is a
sequence of shrinks that reduces the gadget to a single point.

Usage. Given a truth assignment, true (resp. false), for variable x, the edge X
(resp. X̄) of the associated gadget is contracted before the other edge X̄ (resp.
X). Gluing the lock edge to some key edges (see the clause gadgets), we ensure
that once an assignment is chosen for the variable, the other edge, X̄ (resp.
X), cannot be contracted unless all the keys needed to open the lock have been
released (i.e. all the blockers passing through L have been removed).

Realization. Refer to Figure 4. We consider the four triangles of a squared-base
pyramid. From a vertex of the base, X and X̄ are the incident edges on the base
and L is the third incident edge on the pyramid. We glue three freezer gadgets
onto three triangles incident to the apex, as shown in Figure 4, to ensure that
the 3 edges that are incident to the apex and distinct from L are contracted after
L, and that the edges on the base remain shrinkable. Contracting any edge on
the base transforms the base into a blocker and L remains the only shrinkable
edge, ensuring that L will be shrunk before one of X or X̄.

Two-Clause Gadget

Properties. The two-clause gadget has three special edges: two literals V and
W and a key K. We require that the key is not contracted before one of the

Recognizing Shrinkable Complexes Is NP-Complete 81

K

V
A

K V=

K
V

W

W

W
K cannot be contracted before V

K

V

W

W

K

B

K

A
V = W

A

K =V = W

A B

A′

A′

A′

Fig. 5. The two-clause gadget. Left: realization. Middle: various edge contractions.
Right: schematic representation.

two literals. Namely, at the beginning V and W are shrinkable edges and K is
not shrinkable. K cannot be contracted before one of V or W and there are
sequences of shrinks that contract any non-empty subset of {V,W} before K.

Usage. Gluing the key edge to a lock edge of a variable gadget ensures that the
lock will not be contracted before the key has been released (i.e. K has become
shrinkable).

Realization. Consider a horizontal triangle and a vertical edge B that pierces it.
Each of the triangle edges together with the piercing edge define a tetrahedron,
and we consider the simplicial complex defined by these three tetrahedra; see
Fig. 5. The initial triangle we considered is not part of this complex and is thus
a blocker. We place K on the blocker and take for V and W the edges incident
to an endpoint of K not in the blocker. Finally, we glue a forward gadget to the
face incident to V but not to K and another one for W , symmetrically.

Let A (resp. A′) be the third edge of the triangle defined by edges V (resp. W)
and K, and recall that B is the central edge. The only edges that are initially
shrinkable are A, A′, B, V , and W . Contracting A identifies V and K, ensuring
that K will not be contracted before V . Contracting A′ is similar to contracting
A (exchanging V and W). Contracting B identifies V and W , and yields a
configuration where A= A′ and V = W are the only shrinkable edges; then
contracting A identifies V , W , and K ensuring that K will not be contracted
before V nor W . Thus, K cannot be contracted (strictly) before one of V or
W . Finally, we can contract V then K, which yields a forward gadget whose
only contractible edge is W . Hence possible ordering to shrink V , W , and K are
VWK, WVK, V KW , or WKV .

Three-Clause Gadget

Properties. The three-clause gadget has four special edges: three literals U , V ,
and W and a key K. We enforce that the key is not contracted before one of

82 D. Attali et al.

the three literals. Namely, at the beginning U , V , and W are shrinkable and K
is not. K cannot be contracted before one of U , V , or W and there is a sequence
of shrinks that contracts any non-empty subset of {U, V,W} before K.

K

V

W
U

V

W
U

A

K

Fig. 6. Left: two glued two-clause gadgets. Right:
The three-clause gadget.

Realization. Refer to Fig. 6.
The realization is done by sim-
ple association of two two-clause
gadgets, gluing the key of one
clause on one literal of the
other, as described in Fig. 6-left.
We furthermore add the two tri-
angles defined by KV and KW
(note that the triangle KU al-
ready belongs to the gadget).
These two extra triangles will be
needed when gluing gadgets together. By construction, our two glued two-clause
gadgets satisfies the properties we require for the three-clause gadgets. Adding
the two triangles KV and KW does not invalidate these properties. Indeed, let
A be the third edge of triangle KV ; the addition of A has created a blocker
(in red in Fig. 6-right). Thus A cannot be contracted and it does not block the
contraction of U , V , W , or K. Once V or K is contracted, A is identified with
K or V and this extra triangle disappears. Thus, the gadget keeps its properties
with these two additional triangles.

4.2 Wrap up

3-SAT and Shrinkability. Given a 3CNF Boolean formula, we build a three-
clause gadget per clause and a variable gadget per variable. The literal edge of
each clause gadget is glued to the relevant edge of the variable gadget, that is,
a literal x (resp. ¬x) is glued to the edge X (resp. X̄) of the variable gadget
associated to x. The lock edge of each variable gadget is glued to the key edge
of each clause it appears in. We assume that the obtained complex is connected,
otherwise the 3-SAT problem can be decomposed into independent subproblems,
which can be solved separately.

Notice that a pair of edges key/literal forms a triangle in the three-clause
gadget and that the pair of edges lock/X (or lock/X̄) also forms a triangle in
the variable gadget. Thus, the third edges of these triangles are also glued.
Actually, the effect of this construction is that the edges K and L of all gadgets
are identified and become a single edge in the final complex. By construction,
the complex is contractible since each gadget is contractible and we are gluing
them by triangles that all have a common edge, K.

Our construction is 3 dimensional, thus it can be embedded in R7 using general
position for the vertices.

From a Truth Assignment to a Sequence of Shrinks. For every variable,
if it is assigned true (resp. false), edge X (resp. X̄) is contracted in the associated

Recognizing Shrinkable Complexes Is NP-Complete 83

3 0

1

3

3

6

5

6

4

3

7 4

52 8

0

3 0

1

3

3

6

5

6

4

3

7 4

52 8

0

0

3

1

5

8

4

2

7

6

0

3

1

5

8

4

2

7

6

Fig. 7. Triangulation of a torus with 9 vertices. From left to right: the torus represented
as a square with opposite edges identified and its embedding in R3 as a polyhedron
with 9 trapezoidal faces; a non-shrinkable triangulation; and its embedding.

gadget. These edges are identified to literal edges of the clause gadgets, so their
contractions make edge K shrinkable from the point of view of all clause gadgets
and K can thus be contracted. All edges corresponding to the other values of
the variable gadgets become shrinkable and the complex can be contracted to a
point.

From a Sequence of Shrinks to a Truth Assignment. For every variable
gadget, if edge X (resp. X̄) is contracted before X̄ (resp. X), we assign true
(resp. false) to the variable associated to the gadget. All clauses are satisfied by
this assignment since K cannot be contracted before all clause gadgets have one
of their literal edge contracted.

5 A Non-shrinkable Bing’s House

In this section, we construct a contractible simplicial complex which is irre-
ducible, both for shrinks and for collapses.3 The idea is to triangulate carefully
Bing’s house, in such a way that no edge is shrinkable. Bing’s house has two
rooms, one above the other. The only access to the upper room is through an
underground tunnel that passes through the lower room and the only access to
the lower room is through a chimney that passes through the upper room; see
Fig. 9-middle.

To triangulate the lower room (and the tunnel), we start with a triangulation
of the torus with 9 vertices presented in Fig. 7. We now proceed to two successive
alterations of the complex; see Fig. 8. First, we create a room inside the torus,
by adding the two (pink hashed) triangles: 036 and 236 and removing triangle
013; the two added triangles delimit the room inside the torus and the removed
triangle provides access to the room from outside. We then build a tunnel through
the middle of the room by removing two triangles: 023 and 026 and by adding
the (blue hashed) triangle 012.

To see that the resulting complex is shrink-irreducible, notice that the trian-
gulation of the torus is shrink-irreducible to start with. During the modification,

3 You can actually build your own 3D model, see Appendix of
hal.inria.fr/hal-01015747.

http://hal.inria.fr/hal-01015747

84 D. Attali et al.

0

3

1

5

8

4

2

7

6

=
⋃ ⋃

0

3

2

8

7

6

3

5
2

11

0

3

5

4 4 7

6

8

Fig. 8. Triangulation of the lower room and underground tunnel using 18 triangles: 5
(blue) triangles are coplanar and form the roof, 7 triangles (5 pink and 2 hashed) bound
the tunnel under the roof and 6 (pink) triangles lie on the outer walls of the room. The
arrow indicates a passage through the tunnel from the underground entrance 678 to
the roof exit 023. The red loops indicate the 3 triangles removed from the torus.

the only way an edge may become non-shrinkable is if there are more triangles
incident to that edge that are added than the ones that are removed. The only
edges that fulfill that condition are 36 and 12 and one can check that they are
still covered by blockers at the end: 361 and 123 respectively. Similarly, one can
check that the room has only three collapsible edges, namely 02, 03 and 13, all
lying on the roof. Indeed, no edges are collapsible in the initial triangulation of
the torus and an edge is collapsible in the final complex if and only if the number
of added triangles incident to that edge is one less than the number of removed
triangles. The only edges with this property are 02, 03 and 13.

To finish our construction of Bing’s house, we consider a copy of the lower
room, which we place above the original one; see Fig. 9. Renaming vertices x by
x′ in the copy, this boils down to the following identifications: vertices 0 with 0’,

7 8

8

0

0

0

11

2

4

5

8’

7’

7

3 36’

6’

6

4

5 2

303

8

0

1 4

5

7

3 36

4

5 2

303

6

6

4

1

3

5

20

6

Fig. 9. Building the Bing’s house. Left: triangulation of the lower room and schematic
representation. Middle: the two rooms one above the other with the four arrows repre-
senting the way through the underground tunnel to the upper room and through the
chimney to the lower room. Right. Triangulation of Bing’s house.

Recognizing Shrinkable Complexes Is NP-Complete 85

1 with 2’, 2 with 1’, 3 with 3’, 4 with 5’ and 5 with 4’. The result is a simplicial
complex with 12 vertices which is still shrink-irreducible but in which no edge
is collapsible anymore; see Fig. 9.

Acknowledgements. This work was initiated during the 12th INRIA–McGill–
Victoria Workshop on Computational Geometry at the Bellairs Research Insti-
tute. The authors wish to thank all the participants for creating a pleasant and
stimulating atmosphere. The authors thank Uli Wagner for fruitful discussions
and interesting references.

References

1. Attali, D., Lieutier, A., Salinas, D.: Vietoris-Rips complexes also provide topologi-
cally correct reconstructions of sampled shapes. Computational Geometry: Theory
and Applications 46, 448–465 (2012), doi:10.1016/j.comgeo.2012.02.009

2. Attali, D., Lieutier, A., Salinas, D.: Collapsing Rips complexes. In: EuroCG 2013
(2013), http://www.ibr.cs.tu-bs.de/alg/eurocg13/booklet_eurocg13.pdf

3. Barnette, D.W., Edelson, A.: All orientable 2-manifolds have finitely many
minimal triangulations. Israel Journal of Mathematics 62(1), 90–98 (1988),
doi:10.1007/BF02767355

4. Barnette, D.W., Edelson, A.: All 2-manifolds have finitely many mini-
mal triangulations. Israel Journal of Mathematics 67(1), 123–128 (1989),
doi:10.1007/BF02764905

5. Bing, R.H.: Some Aspects of the Topology of 3-Manifolds Related to the Poincaré
Conjecture. Lectures on Modern Mathematics, vol. II. Wiley, New York (1964)

6. Carlsson, G., de Silva, V.: Topological approximation by small simplicial complexes.
Technical report, Mischaikow., Wanner, T. (2003),
http://math.stanford.edu/research/comptop/preprints/delaunay.pdf

7. Carlsson, G., Ishkhanov, T., De Silva, V., Zomorodian, A.: On the local behav-
ior of spaces of natural images. Int. J. of Computer Vision 76(1), 1–12 (2008),
doi:10.1007/s11263-007-0056-x

8. Chazal, F., Cohen-Steiner, D., Lieutier, A.: A sampling theory for compact sets
in Euclidean space. Discrete & Computational Geometry 41(3), 461–479 (2009),
doi:10.1007/s00454-009-9144-8

9. Cohen, M.M.: A course in simple-homotopy theory. Graduate Texts in Mathemat-
ics, vol. 10. Springer (1973), doi:10.1007/978-1-4684-9372-6

10. De Silva, V.: A weak characterisation of the Delaunay triangulation. Geometriae
Dedicata 135(1), 39–64 (2008), doi:10.1007/s10711-008-9261-1

11. De Silva, V., Carlsson, G.: Topological estimation using witness complexes.
In: Proceedings of the First Eurographics conference on Point-Based Graphics,
pp. 157–166. Eurographics Association (2004), doi:10.2312/SPBG/SPBG04/157-
166

12. Dey, T.K., Edelsbrunner, H., Guha, S., Nekhayev, D.V.: Topology preserving edge
contraction. Publ. Inst. Math (Beograd) (N.S.) 66, 23–45 (1999),
http://www.cs.duke.edu/ edels/Papers/

1999-J-03-TopologyPreservingContraction.pdf

13. Ehrenborg, R., Hetyei, G.: The topology of the independence complex. European
Journal of Combinatorics 27(6), 906–923 (2006), doi:10.1016/j.ejc.2005.04.010

http://www.ibr.cs.tu-bs.de/alg/eurocg13/booklet_eurocg13.pdf
http://math.stanford.edu/research/comptop/preprints/delaunay.pdf
http://www.cs.duke.edu/~edels/Papers/1999-J-03-TopologyPreservingContraction.pdf
http://www.cs.duke.edu/~edels/Papers/1999-J-03-TopologyPreservingContraction.pdf

86 D. Attali et al.

14. Garland, M., Heckbert, P.S.: Surface simplification using quadric error metrics.
In: SIGGRAPH 1997 Proc., pp. 209–216 (1997), doi:10.1145/258734.258849

15. Goaoc, X.: Transversal Helly numbers, pinning theorems and projections of sim-
plicial complexes, Habilitation thesis, Université Nancy (January 2011),
http://tel.archives-ouvertes.fr/tel-00650204

16. Hoppe, H.: Progressive meshes. In: SIGGRAPH 1996 Proc., pp. 99–108 (1996),
doi:10.1145/237170.237216

17. Lawrencenko, S.: Irreducible triangulations of the torus. Journal of Mathematical
Sciences 51, 2537–2543 (1990),
http://www.lawrencenko.ru/files/itott_en.pdf

18. Melikhov, S.: Combinatorics of embeddings. Research Report arXiv (2011),
http://arxiv.org/abs/1103.5457

19. Nevo, E.: Higher minors and Van Kampen’s obstruction. Mathematica Scandinav-
ica 101(2), 161–176 (2006),
http://ojs.statsbiblioteket.dk/index.php/math/article/view/15037

20. Niyogi, P., Smale, S., Weinberger, S.: Finding the Homology of Submanifolds
with High Confidence from Random Samples. Discrete & Computational Geome-
try 39(1-3), 419–441 (2008), doi:10.1007/s00454-008-9053-2

21. Popović, J., Hoppe, H.: Progressive simplicial complexes. In: SIGGRAPH 1997
Proc., pp. 217–224 (1997), doi:10.1145/258734.258852

22. Sulanke, T.: Irreducible triangulations of low genus surfaces. Research Report arXiv
(2006), http://arxiv.org/abs/math/0606690

23. Tancer, M.: Recognition of collapsible complexes is NP-complete. Research Report
arXiv (2012), http://arxiv.org/abs/1211.6254

24. Volodin, I.A., Kuznetsov, V.E., Fomenko, A.T.: The problem of discriminating
algorithmically the standard three-dimensional sphere. Russian Mathematical
Surveys 29(5), 71 (1974), doi:10.1070/RM1974v029n05ABEH001296

http://tel.archives-ouvertes.fr/tel-00650204
http://www.lawrencenko.ru/files/itott_en.pdf
http://arxiv.org/abs/1103.5457
http://ojs.statsbiblioteket.dk/index.php/math/article/view/15037
http://arxiv.org/abs/math/0606690
http://arxiv.org/abs/1211.6254

Improved Approximation Algorithms
for Box Contact Representations�

Michael A. Bekos1, Thomas C. van Dijk2, Martin Fink2,5, Philipp Kindermann2,
Stephen Kobourov3, Sergey Pupyrev3,4, Joachim Spoerhase2, and Alexander Wolff2,��

1 Wilhelm-Schickard-Institut für Informatik, Universität Tübingen, Germany
2 Lehrstuhl für Informatik I, Universität Würzburg, Germany

3 Department of Computer Science, University of Arizona, USA
4 Institute of Mathematics and Computer Science, Ural Federal University, Russia
5 Department of Computer Sicence, University of California, Santa Barbara, USA

Abstract. We study the following geometric representation problem: Given a
graph whose vertices correspond to axis-aligned rectangles with fixed dimen-
sions, arrange the rectangles without overlaps in the plane such that two rect-
angles touch if the graph contains an edge between them. This problem is called
CONTACT REPRESENTATION OF WORD NETWORKS (CROWN) since it formal-
izes the geometric problem behind drawing word clouds in which semantically
related words are close to each other. CROWN is known to be NP-hard, and there
are approximation algorithms for certain graph classes for the optimization ver-
sion, MAX-CROWN, in which realizing each desired adjacency yields a certain
profit.

We show that the problem is APX-complete on bipartite graphs of bounded
maximum degree. We present the first O(1)-approximation algorithm for the gen-
eral case, when the input is a complete weighted graph, and for the bipartite case.
Since the subgraph of realized adjacencies is necessarily planar, we consider sev-
eral planar graph classes (stars, trees, outerplanar, and planar graphs), improving
upon the known results. For some graph classes, we also describe improvements
in the unweighted case, where each adjacency yields the same profit.

1 Introduction

In the last few years, word clouds have become a standard tool for abstracting, visu-
alizing, and comparing text documents. For example, word clouds were used in 2008
to contrast the speeches of the U.S. presidential candidates. More recently, the German
media used them to visualize the newly signed coalition agreement and to compare it to
a similar agreement from 2009. A word cloud of a given document consists of the most
important (or most frequent) words in that document. Each word is printed in a given

� The work of M. A. Bekos is implemented within the framework of the Action “Supporting
Postdoctoral Researchers” of the Operational Program “Education and Lifelong Learning”
(Action’s Beneficiary: General Secretariat for Research and Technology), and is co-financed
by the European Social Fund (ESF) and the Greek State. Ph. Kindermann and A. Wolff ac-
knowledge support by the ESF EuroGIGA project GraDR. S. Kobourov and S. Pupyrev are
supported by NSF grants CCF-1115971 and DEB 1053573.

A.S. Schulz and D. Wagner (Eds.): ESA 2014, LNCS 8737, pp. 87–99, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

88 M.A. Bekos et al.

font and scaled by a factor roughly proportional to its importance (the same is done with
the names of towns and cities on geographic maps, for example). The printed words are
arranged without overlap and tightly packed into some shape (usually a rectangle). Tag
clouds look similar; they consist of keyword metadata (tags) that have been attributed
to resources in some collection such as web pages or photos.

Wordle [23] is a popular tool for drawing word or tag clouds. The Wordle website
allows users to upload a list of words and, for each word, its relative importance. The
user can further select font, color scheme, and decide whether all words must be placed
horizontally or whether words can also be placed vertically. The tool then computes
a placement of the words, each scaled according to its importance, such that no two
words overlap. Generally, the drawings are very compact and aesthetically appealing.

In the automated analysis of text one is usually not just interested in the most impor-
tant words and their frequencies, but also in the connections between these words. For
example, if a pair of words often appears together in a sentence, then this is often seen
as evidence that this pair of words is linked semantically [17]. In this case, it makes
sense to place the two words close to each other in the word cloud that visualizes the
given text. This is captured by an input graph G = (V,E) of desired contacts. We are
also given, for each vertex v ∈V , the dimensions (but not the position) of a box Bv, that
is, an axis-aligned rectangle. We denote the height and width of Bv by h(Bv) and w(Bv),
respectively, or, more briefly, by h(v) and w(v). For each edge e = (u,v) of G, we are
given a positive number p(e) = p(u,v), that corresponds to the profit of e. For ease of
notation, we set p(u,v) = 0 for any non-edge (u,v) ∈V 2 \E of G.

Given a box B and a point q in the plane, let B(q) be a placement of B with lower left
corner q. A representation of G is a map λ : V →R2 such that for any two vertices u �= v,
it holds that Bu(λ (u)) and Bv(λ (v)) are interior-disjoint. Boxes may touch, that is, their
boundaries may intersect. If the intersection is non-degenerate, that is, a line segment
of positive length, we say that the boxes are in contact. We say that a representation λ
realizes an edge (u,v) of G if boxes Bu(λ (u)) and Bv(λ (v)) are in contact.

Fig. 1. Semantics-preserving word cloud for the 35 most “important” words in this paper. Fol-
lowing the text processing pipeline of Barth et al. [2], these are the words ranked highest by
LexRank [11], after removal of stop words such as “the”. The edge profits are proportional to the
relative frequency with which the words occur in the same sentences. The layout algorithm of
Barth et al. [2] first extracts a heavy star forest from the weighted input graph as in Theorem 6
and then applies a force-directed post-processing.

Improved Approximation Algorithms for Box Contact Representations 89

This yields the problem Contact Representation of Word Networks (CROWN): Given
an edge-weighted graph G whose vertices correspond to boxes, find a representation
of G with the vertex boxes such that every edge of G is realized. In this paper, we study
the optimization version of CROWN, MAX-CROWN, where the aim is to maximize the
total profit (that is, the sum of the weights) of the realized edges. We also consider the
unweighted version of the problem, where all desired contacts yield a profit of 1.

Previous Work. Barth et al. [1] introduced MAX-CROWN and showed that the problem
is strongly NP-hard even for trees and weakly NP-hard even for stars. They presented an
exact algorithm for cycles and approximation algorithms for stars, trees, planar graphs,
and graphs of constant maximum degree; see the first column of Table 1. Some of
their solutions use an approximation algorithm with ratio α = e/(e−1)≈ 1.58 [13] for
the GENERALIZED ASSIGNMENT PROBLEM (GAP): Given a set of bins with capacity
constraints and a set of items that possibly have different sizes and values for each bin,
pack a maximum-valued subset of items into the bins. The problem is APX-hard [6].

MAX-CROWN is related to finding rectangle representations of graphs, where ver-
tices are represented by axis-aligned rectangles with non-intersecting interiors and edges
correspond to rectangles with a common boundary of non-zero length. Every graph that
can be represented this way is planar and every triangle in such a graph is a facial trian-
gle. These two conditions are also sufficient to guarantee a rectangle representation [5].
Rectangle representations play an important role in VLSI layout, cartography, and ar-
chitecture (floor planning). In a recent survey, Felsner [12] reviews many rectangulation
variants. Several interesting problems arise when the rectangles in the representation
are restricted. Eppstein et al. [10] consider rectangle representations which can realize
any given area-requirement on the rectangles, so-called area-preserving rectangular car-
tograms, which were introduced by Raisz [22] already in the 1930s. Unlike cartograms,
in our setting there is no inherent geography, and hence, words can be positioned any-
where. Moreover, each word has fixed dimensions enforced by its importance in the input
text, rather than just fixed area. Nöllenburg et al. [20] recently considered a variant where
the edge weights prescribe the length of the desired contacts.

Finally, the problem of computing semantics-aware word clouds is related to classic
graph layout problems, where the goal is to draw graphs so that vertex labels are read-
able and Euclidean distances between pairs of vertices are proportional to the under-
lying graph distance between them. Typically, however, vertices are treated as points
and label overlap removal is a post-processing step [9,15]. Most tag cloud and word
cloud tools such as Wordle [23] do not show the semantic relationships between words,
but force-directed graph layout heuristics are sometimes used to add such functional-
ity [2,8,21,24].

Our Contribution. Known results and our contributions to MAX-CROWN are shown in
Table 1. Note that the results of Barth et al. [1] in column 1 are simply based on existing
decompositions of the respective graph classes into star forests or cycles.

Our results rely on a variety of algorithmic tools. First, we devise sophisticated
decompositions of the input graphs into heterogeneous classes of subgraphs, which
also requires a more general combination method than that of Barth et al. Second,
we use randomization to obtain a simple constant-factor approximation for general

90 M.A. Bekos et al.

Table 1. Previously known and new results for the unweighted and weighted versions of MAX-
CROWN (for α ≈ 1.58 and any ε > 0)

Weighted Unweighted

Graph class Ratio [1] Ratio [new] Ref. Ratio Ref.

cycle, path 1
star α 1+ ε Thm. 1
tree 2α 2+ ε Thm. 1 2 Thm. 7

NP-hard
max-degree Δ �(Δ + 1)/2�
planar max-deg. Δ 1+ ε Thm. 8
outerplanar 3+ ε Thm. 3
planar 5α 5+ ε Thm. 1
bipartite 16α/3 (≈ 8.4) Thm. 4

APX-complete Thm. 2
general 32α/3 (≈ 16.9; rand.) Thm. 5 5+ 16α/3 Thm. 9

40α/3 (≈ 21.1; det.) Thm. 6

weighted graphs. Previously, such a result was not even known for unweighted bipartite
graphs. Third, to obtain an improved algorithm for the unweighted case, we prove a
lower bound on the size of a matching in a planar graph of high average degree. Fourth,
we use a planar separator result of Frederickson [14] to obtain a polynomial-time ap-
proximation scheme (PTAS) for degree-bounded planar graphs.

We start our paper with basic results on simple graph classes and prove that MAX-
CROWN is APX-complete on bipartite graphs of maximum degree 9 (Section 2). Then,
we tackle weighted graphs (Section 3). We obtain improved results for several un-
weighted graph classes (Section 4). Finally, we list some open problems (Section 5).

Model. As in most work on rectangle contact representations, we do not count point
contacts, that is, we consider two boxes in contact only if their intersection is a line seg-
ment of positive length. Hence, the contact graph of the boxes is planar. Our algorithms
can easily be modified to guarantee O(1)-approximations also in the model that allows
and rewards point contacts [3]. We allow words only to be placed horizontally.

Runtimes. Most of our algorithms involve approximating a number of GAP instances
as a subroutine, using either the PTAS [4] if the number of bins is constant or the
approximation algorithm of Fleischer et al. [13] for general instances. Because of this,
the runtime of our algorithms consists mostly of approximating GAP instances. Both
algorithms to approximate GAP instances solve linear programs, so we refrain from
explicitly stating the runtime of these algorithms.

For practical purposes, one can use a purely combinatorial approach for approxi-
mating GAP [7], which utilizes an algorithm for the KNAPSACK problem as a subrou-
tine. The algorithm translates into a 3-approximation for GAP running in O(NM) time
(or a (2 + ε)-approximation running in O(MN log1/ε + M/ε4) time), where N is the

Improved Approximation Algorithms for Box Contact Representations 91

number of items and M is the number of bins. In our setting, the simple 3-approximation
implies a randomized 32-approximation (or a deterministic 40-approximation) algo-
rithm with running time O(|V |2) for MAX-CROWN on general weighted graphs.

2 Some Basic Results

We first present two technical lemmas that will help us prove our main results on
weighted and unweighted MAX-CROWN. The second lemma immediately improves
the results of Barth et al. [1] for stars, trees, and planar graphs. Finally, we prove APX-
completeness of MAX-CROWN on bipartite graphs of bounded maximum degree.

2.1 A Combination Lemma

Several of our algorithms cover the input graph with subgraphs that belong to graph
classes for which the MAX-CROWN problem is known to admit good approximations.
The following lemma allows us to combine the solutions for the subgraphs. We say
that a graph G = (V,E) is covered by graphs G1 = (V,E1), . . . ,Gk = (V,Ek) if E =
E1 ∪·· ·∪Ek.

Lemma 1. Let graph G = (V,E) be covered by graphs G1,G2, . . . ,Gk. If, for i =
1,2, . . . ,k, weighted MAX-CROWN on graph Gi admits an αi-approximation, then
weighted MAX-CROWN on G admits a

(
∑k

i=1 αi
)
-approximation.

Proof. Our algorithm works as follows. For i = 1, . . . ,k, we apply the αi-approximation
algorithm to Gi and report the result with the largest profit as the result for G. We show
that this algorithm has the claimed performance guarantee. For the graphs G,G1, . . . ,Gk,
let OPT,OPT1, . . . ,OPTk be the optimum profits and let ALG,ALG1, . . . ,ALGk be the
profits of the approximate solutions. By definition, ALGi ≥ OPTi /αi for i = 1, . . . ,k.
Moreover, OPT ≤ ∑k

i=1 OPTi because the edges of G are covered by the edges of
G1, . . . ,Gk. Assume, w.l.o.g., that OPT1 /α1 = maxi(OPTi /αi). Then

ALG = ALG1 ≥ OPT1

α1
≥ ∑k

i=1 OPTi

∑k
i=1 αi

≥ OPT

∑k
i=1 αi

. ��

2.2 Improvement on Existing Approximation Algorithms

Lemma 2 ([4]). For any ε > 0, there is a (1 + ε)-approximation algorithm for GAP

with a constant number of bins. The algorithm takes nO(1/ε) time. ��

Using Lemmas 1 and 2, we improve the approximation algorithms of Barth et al. [1].

Theorem 1. Weighted MAX-CROWN admits a (1 + ε)-approximation algorithm on
stars, a (2 + ε)-approximation algorithm on trees, and a (5 + ε)-approximation algo-
rithm on planar graphs.

92 M.A. Bekos et al.

Proof. By Lemma 1, the claim for stars implies the other two claims since a tree can
be covered by two star forests and a planar graph can be covered by five star forests in
polynomial time [16]. We now show that we can use Lemma 2 to get a PTAS for stars.
Here, we give the PTAS for the model with point contacts; in the full version [3], we
show how to handle the model without point contacts.

Let u be the center vertex of the star. We create eight bins: four corner bins uc
1,u

c
2,u

c
3,

and uc
4 modeling adjacencies on the four corners of the box u, two horizontal bins uh

1
and uh

2 modeling adjacencies on the top and bottom side of u, and two vertical bins uv
1

and uv
2 modeling adjacencies on the left and right side of u. The capacity of the corner

bins is 1, the capacity of the horizontal bins is the width w(u) of u, and the capacity
of the vertical bins is the height h(u) of u. Next, we introduce an item i(v) for any leaf
vertex v of the star. The size of i(v) is 1 in any corner bin, w(v) in any horizontal bin,
and h(v) in any vertical bin. The profit of i(v) in any bin is the profit p(u,v) of the
edge (u,v).

Note that any feasible solution to the MAX-CROWN instance can be normalized so
that any box that touches a corner of u has a point contact with u. Hence, the above is an
approximation-preserving reduction from weighted MAX-CROWN on stars (with point
contacts) to GAP. By Lemma 2, we obtain a PTAS. ��

2.3 APX-Completeness

The proof for the following theorem is given in the full version [3].

Theorem 2. Weighted MAX-CROWN is APX-complete even if the input graph is bipar-
tite of maximum degree 9, each edge has profit 1, 2 or 3, and each vertex corresponds
to a square of one out of three different sizes.

3 The Weighted Case

In this section, we provide new approximation algorithms for more involved classes of
(weighted) graphs than in the previous section. Recall that α = e/(e− 1) ≈ 1.58. First,
we give a (3 + ε)-approximation for outerplanar graphs. Then, we present a 16α/3-
approximation for bipartite graphs. For general graphs, we provide a simple randomized
32α/3-approximation and a deterministic 40α/3-approximation.

Theorem 3. Weighted MAX-CROWN on outerplanar graphs admits a (3 + ε)-approx-
imation.

Proof. It is known that the star arboricity of an outerplanar graph is 3, that is, it can
be partitioned into at most three star forests [16]. Here we give a simple algorithm for
finding such a partitioning.

Any outerplanar graph has degeneracy at most 2, that is, it has a vertex of degree
at most 2. We prove that any outerplanar graph G can be partitioned into three star
forests such that every vertex of G is the center of only one star. Clearly, it is sufficient
to prove the claim for maximal outerplanar graphs in which all vertices have degree at
least 2. We use induction on the number of vertices of G. The base of the induction

Improved Approximation Algorithms for Box Contact Representations 93

corresponds to a 3-cycle for which the claim clearly holds. For the induction step, let v
be a degree-2 vertex of G and let (v,u) and (v,w) be its incident edges. The graph G− v
is maximal outerplanar and thus, by induction hypothesis, it can be partitioned into star
forests F1, F2, and F3 such that u is the center of a star in F1 and w is the center of a
star in F2. Now we can cover G with three star forests: we add (v,u) to F1, we add (v,w)
to F2, and we create a new star centered at v in F3.

Applying Lemma 1 and Theorem 1 to the star forests completes the proof. ��
Theorem 4. Weighted MAX-CROWN on bipartite graphs admits a 16α/3-
approximation.

Proof. Let G = (V,E) be a bipartite input graph with V = V1 ∪̇ V2 and E ⊆ V1 ×V2.
Using G, we build an instance of GAP as follows. For each vertex u ∈ V1, we create
eight bins uc

1,u
c
2,u

c
3,u

c
4,u

h
1,u

h
2,u

v
1,u

v
2 and set the capacities exactly as we did for the star

center in Theorem 1. Next, we add an item i(v) for every vertex v ∈V2. The size of i(v)
is, again, 1 in any corner bin, w(v) in any horizontal bin, and h(v) in any vertical bin.
For u ∈V1, the profit of i(v) is p(u,v) in any bin of u.

It is easy to see that solutions to the GAP instance are equivalent to word cloud
solutions (with point contacts) in which the realized edges correspond to a forest of stars
with all star centers being vertices of V1. Hence, we can find an approximate solution of
profit ALG′

1 ≥ OPT′
1 /α where OPT′

1 is the profit of an optimum solution (with point
contacts) consisting of a star forest with centers in V1.

We now show how to get a solution without point contacts. If the three bins on the top
side of a vertex u (two corner bins and one horizontal bin) are not completely full, we
can slightly move the boxes in the corners so that point contacts are avoided. Otherwise,
we remove the lightest item from one of these bins. We treat the three bottommost
bins analogously. Note that in both cases we only remove an item if all three bins are
completely full. The resulting solution can be realized without point contacts. We do the
same for the three left and three right bins and choose the heavier of the two solutions. It
is easy to see that we lose at most 1/4 of the profit for the star center u: Assume that the
heaviest solution results from removing weight w1 from one of the upper and weight w2

from one of the lower bins. As we remove the lightest items only, the remaining weight
from the upper and lower bins is at least 2(w1 + w2). On the other hand, the weight
in the two vertical at least w1 + w2; otherwise, dropping everything from these vertical
bins would be cheaper. Hence, we keep at least weight 3(w1 + w2).

If we do so for all star centers, we get a solution with profit ALG1 ≥ 3/4 ·ALG′
1 ≥

3OPT′
1 /(4α) ≥ 3OPT1 /(4α) where OPT1 is the profit of an optimum solution (with-

out point contacts) consisting of a star forest with centers in V1.
Similarly, we can find a solution of profit ALG2 ≥ 3OPT2 /(4α) with star centers

in V2, where OPT2 is the maximum profit that a star forest with centers in V2 can realize.
Among the two solutions, we pick the one with larger profit ALG = max{ALG1,ALG2}.

Let G� = (V,E�) be the contact graph realized by a fixed optimum solution, and let
OPT = p(E�) be its total profit. We now show that ALG ≥ 3OPT/(16α). As G� is a
planar bipartite graph, |E�| ≤ 2n−4. Hence, we can decompose E� into two forests H1

and H2 using a result of Nash-Williams [18]. We can further decompose H1 into two star
forests S1 and S′1 in such a way that the star centers of S1 are in V1 and the star centers
of S′1 are in V2. Similarly, we decompose H2 into a forest S2 of stars with centers in V1

94 M.A. Bekos et al.

and a forest S′2 of stars with centers in V2. As we decomposed the optimum solution
into four star forests, one of them—say S1—has profit p(S1) ≥ OPT/4. On the other
hand, OPT1 ≥ p(S1). Summing up, we get

ALG ≥ ALG1 ≥ 3OPT1 /(4α) ≥ 3p(S1)/(4α) ≥ 3OPT/(16α). ��

Theorem 5. Weighted MAX-CROWN on general graphs admits a randomized 32α/3-
approximation.

Proof. Let G = (V,E) be the input graph and let OPT be the weight of a fixed op-
timum solution. Our algorithm works as follows. We first randomly partition the set
of vertices into V1 and V2 = V \V1, that is, the probability that a vertex v is included
in V1 is 1/2. Now we consider the bipartite graph G′ = (V1 ∪̇ V2,E ′) with E ′ =
{(v1,v2) ∈ E | v1 ∈V1 and v2 ∈V2} that is induced by V1 and V2. By applying Theo-
rem 4 on G′, we can find a feasible solution for G with weight ALG ≥ 3OPT′ /(16α),
where OPT′ is the weight of an optimum solution for G′.

Any edge of the optimum solution is contained in G′ with probability 1/2. Let OPT
be the total weight of the edges of the optimum solution that are present in G′.
Then, E[OPT] = OPT/2. So, E[ALG] ≥ 3E[OPT′]/(16α) ≥ 3E[OPT]/(16α) =
3OPT/(32α). ��

Theorem 6. Weighted MAX-CROWN on general graphs admits a 40α/3-
approximation.

Proof. Let G = (V,E) be the input graph. As in the proof of Theorem 4, our algorithm
constructs an instance of GAP based on G. The difference is that, for every vertex v ∈V ,
we create both eight bins and an item i(v). Capacities and sizes remain as before. The
profit of placing item i(v) in a bin of vertex u, with u �= v, is p(u,v).

Let OPT be the value of an optimum solution of MAX-CROWN in G, and let OPTGAP

be the value of an optimum solution for the constructed instance of GAP. Since any op-
timum solution of MAX-CROWN, being a planar graph, can be decomposed into five
star forests [16], there exists a star forest carrying at least OPT/5 of the total profit.
Such a star forest corresponds to a solution of GAP for the constructed instance; there-
fore, OPTGAP ≥ OPT/5. Now we compute an α-approximation for the GAP instance,
which results in a solution of total profit ALGGAP ≥ OPTGAP /α ≥ OPT/(5α). Next,
we show how our solution induces a feasible solution of MAX-CROWN where every
vertex v ∈V is either a bin or an item.

Consider the directed graph GGAP = (V,EGAP) with (u,v) ∈ EGAP if and only if the
item corresponding to u ∈ V is placed into a bin corresponding to v ∈ V . A connected
component in GGAP with n′ vertices has at most n′ edges since every item can be placed
into at most one bin. If n′ = 2, we arbitrarily make one of the vertices a bin and the
other an item. If n′ > 2, the connected component is a 1-tree, that is, a tree and an edge.
We partition the edges into two subgraphs: a star forest and the disjoint union of a star
forest and a cycle. Note that both subgraphs can be represented by touching boxes if we
allow point contacts because the stars correspond to a GAP solution. Hence, choosing

Improved Approximation Algorithms for Box Contact Representations 95

a subgraph with larger weight and post-processing the solution as in the proof of The-
orem 4 results in a feasible solution of MAX-CROWN with no point contacts. Initially,
we discarded at most half of the weight and the post-processing keeps at least 3/4 of
the weight, so ALG ≥ 3ALGGAP /8. Therefore, ALG ≥ 3OPT/(40α). ��

4 The Unweighted Case

In this section, we consider the unweighted MAX-CROWN problem, that is, all de-
sired contacts have profit 1. Thus, we want to maximize the number of edges of the
input graph realized by the contact representation. We present approximation algo-
rithms for different graph classes. First, we give a 2-approximation for trees. Then, we
present a PTAS for planar graphs of bounded degree. Finally, we provide a (5+16α/3)-
approximation for general graphs.

Theorem 7. Unweighted MAX-CROWN on trees admits a 2-approximation.

Proof. Let T be the input tree. We first decompose T into edge-disjoint stars as follows.
If T has at most two vertices, then the decomposition is straight-forward. So, we assume
w.l.o.g. that T has at least three vertices and is rooted at a non-leaf vertex. Let u be a
vertex of T such that all its children, say v1, . . . ,vk, are leaf vertices. If u is the root of T ,
then the decomposition contains only one star centered at u. Otherwise, denote by π
the parent of u in T , create a star Su centered at u with edges (u,π),(u,v1), . . . ,(u,vk)
and call the edge (u,π) of Su the anchor edge of Su. The removal of u,v1, . . . ,vk from
T results in a new tree. Therefore, we can recursively apply the same procedure. The
result is a decomposition of T into edge-disjoint stars covering all edges of T .

We next remove, for each star, its anchor edge from T . We apply the PTAS of The-
orem 1 to the resulting star forest and claim that the result is a 2-approximation for T .
To prove the claim, consider a star S′u of the new star forest, centered at u with edges
(u,v1), . . . ,(u,vk) and let ALG be the total number of contacts realized by the (1 + ε)-
approximation algorithm on S′u. We consider the following two cases.
(a) 1 ≤ k ≤ 4: Since it is always possible to realize four contacts of a star, ALG ≥ k.

Note that an optimal solution may realize at most k +1 contacts (due to the absence
of the anchor edge from S′u). Hence, our algorithm has approximation ratio (k +
1)/k ≤ 2.

(b) k ≥ 5: Since it is always possible to realize four contacts of a star, we have ALG≥ 4.
On the other hand, an optimal solution realizes at most (1 + ε)ALG+1 contacts.
Thus, the approximation ratio is ((1 + ε)ALG+1)/ALG ≤ (1 + ε) + 1/4< 2.

The theorem follows from the fact that all edges of T are incident to the star centers. ��

Next, we develop a PTAS for bounded-degree planar graphs. Our construction needs
two lemmas, the first of which was shown by Barth et al. [1].

Lemma 3 ([1]). If the input graph G = (V,E) has maximum degree Δ then OPT ≥
2|E|/(Δ + 1).

The second lemma provides an exponential-time exact algorithm for MAX-CROWN.
The proof is given in the full version [3].

96 M.A. Bekos et al.

Lemma 4. There is an exact algorithm for unweighted MAX-CROWN with running
time 2O(n logn).

Theorem 8. Unweighted MAX-CROWN on planar graphs with maximum degree Δ ad-
mits a PTAS. More specifically, for any ε > 0 there is an (1 + ε)-approximation algo-

rithm with linear running time n2(Δ/ε)O(1)
.

Proof. Let r be a parameter to be determined later. Frederickson [14] showed that we
can find a vertex set X ⊆V (called r-division) of size O(n/

√
r) such that the following

holds. The vertex set V \X can be partitioned into n/r vertex sets V1, . . . ,Vn/r such that
(i) |Vi| ≤ r for i = 1, . . . ,n/r and (ii) there is no edge running between any two distinct
vertex sets Vi and Vj. In what follows, we assume w.l.o.g. that G is connected, as we can
apply the PTAS to every connected component separately.

We apply the result of Frederickson to the input graph and compute an r-division X .
By removing the vertex set X from the graph, we remove O(nΔ/

√
r) edges from G.

Now, we apply the exact algorithm of Lemma 4 to each of the induced subgraphs G[Vi]
separately. The solution is the union of the optimum solutions to G[Vi].

Since no edge runs between the distinct sets Vi and Vj, the subgraphs G[Vi] cover
G−X . Let E� be the set of edges realized by an optimum solution to G, let OPT = |E�|,
and let OPT′ = |E� ∩E(G− X)|. By Lemma 3, we have that OPT ≥ 2(n− 1)/(Δ +
1) = Ω(n/Δ). When we removed X from G, we removed O(nΔ/

√
r) edges. Hence,

OPT = OPT′+O(nΔ/
√

r) and OPT′ = Ω(n(1/Δ −Δ/
√

r)).
Since we solved each sub-instance G[Vi] optimally and since these sub-instances

cover G−X , the solution created by our algorithm realizes at least OPT′ many edges.
Using this fact and the above bounds on OPT and OPT′, the total performance of our
algorithm can be bounded by

OPT
OPT′ =

OPT′+O(nΔ/
√

r)

OPT′ = 1 + O

(
nΔ/

√
r

n(1/Δ −Δ/
√

r)

)
= 1 + O

(
Δ 2

√
r−Δ 2

)
.

We want this last term to be smaller than 1 + ε for some prescribed error parameter
0 < ε ≤ 1. It is not hard to verify that this can be achieved by letting r = Θ(Δ 4/ε2).
Since each of the subgraphs G[Vi] has at most r vertices, the total running time for

determining the solution is n2(Δ/ε)O(1)
. ��

Before tackling the case of general graphs, we need a lower bound on the size of
maximum matchings in planar graphs in terms of the numbers of vertices and edges.

Lemma 5. Any planar graph with n vertices and m edges contains a matching of size
at least (m− 2n)/3.

Proof. Let G be a planar graph. Our proof is by induction on n. The claim holds for
n = 1.

For the inductive step assume that n > 1. If G is not connected, the claim follows
by applying the inductive hypothesis to every connected component. Now assume that
G has a vertex u of degree less than 3. Consider the graph G′ = G− u with n′ = n− 1
vertices and m′ ≥ m− 2 edges. By the induction hypothesis, G′ (and hence, G, too) has
a matching of size at least (m′ − 2n′)/3 ≥ ((m− 2)− 2(n− 1))/3 = (m− 2n)/3.

Improved Approximation Algorithms for Box Contact Representations 97

V ′

V \V ′

}
Ḡ

G′

}
(a) G is covered by Ḡ (bipartite,
gray) and G′. The graph G′ is in-
duced by the matching M (gray,
bold).

(b) maximum matching
M′′ (gray/black) in
G′′ = G′ −M

(c) optimum solution to G′:
graph G∗ (black) and part
of M (gray)

Fig. 2. Partitioning the input graph and the optimum solution in the proof of Theorem 9

It remains to tackle the case where G is connected and has minimum degree 3.
Nishizeki and Baybars [19] showed that any connected planar graph with at least n≥ 10
vertices and minimum degree 3 has a matching of size at least
(n + 2)/3�≥ n/3. This
shows the claim for n ≥ 10 since m ≤ 3n− 6.

In the remaining cases, G has n ≤ 9 vertices. Due to planarity, we have (m−2n)/3≤
(n− 6)/3≤ 1. Hence, any nonempty matching is large enough. ��

Theorem 9. Unweighted MAX-CROWN on general graphs admits a (5 + 16α/3)-
approximation.

Proof. The algorithm first computes a maximal matching M in G. Let V ′ be the set of
vertices matched by M, let G′ be the subgraph induced by V ′, and let E ′ be the edge
set of G′. Note that Ḡ = G−E ′ is a bipartite graph with partition (V ′,V \V ′). This is
because the matching M is maximal, which implies that every edge in E \E ′ is incident
to a vertex in V ′ and to a vertex not in V ′; see Fig. 2a. Hence, we can compute a 16α/3-
approximation to Ḡ using the algorithm presented in Theorem 4.

Consider the graph G′′ = (V ′,E ′ \M) and compute a maximum matching M′′ in G′′;
see Fig. 2b. The edge set M ∪M′′ is a set of vertex-disjoint paths and cycles and can
therefore be completely realized [1]. The algorithm realizes this set. Below, we argue
that this realization is in fact a 5-approximation for G′, which completes the proof (due
to Lemma 1 and since G is covered by G′ and Ḡ).

Let n′ = |V ′| be the number of vertices of G′. Let E∗ be the set of edges realized by an
optimum solution to G′, and let OPT = |E∗|. Consider the subgraph G∗ = (V ′,E∗ \M)
of G′′; see Fig. 2c. Note that G∗ is planar and contains at least OPT−n′/2 many edges.
Applying Lemma 5 to G∗, we conclude that the maximum matching M′′ of G′′ has size
at least (OPT−5n′/2)/3. Hence, by splitting OPT appropriately, we obtain

OPT = (OPT−5n′/2) + 5n′/2 ≤ 3|M′′|+ 5|M| ≤ 5|M′′ ∪M| . ��

5 Conclusions and Open Problems

We presented approximation algorithms for the MAX-CROWN problem, which can be
used for constructing semantics-preserving word clouds. Apart from improving approx-
imation factors for various graph classes, many open problems remain. Most of our

98 M.A. Bekos et al.

algorithms are based on covering the input graph by subgraphs and packing solutions
for the individual subgraphs. Both subproblems—covering graphs with special types of
subgraphs and packing individual solutions together—are interesting problems in their
own right. Practical variants of the problem are also of interest, for example, restricting
the heights of the boxes to predefined values (determined by font sizes), or defining
more than immediate neighbors to be in contact, thus considering non-planar “contact”
graphs. Another interesting variant is when the bounding box of the representation has
a certain fixed size or aspect ratio.

Acknowledgement. We thank an anonymous reviewer for pointing out a simpler anal-
ysis for the last case in the proof of Lemma 5.

References

1. Barth, L., Fabrikant, S.I., Kobourov, S.G., Lubiw, A., Nöllenburg, M., Okamoto, Y., Pupyrev,
S., Squarcella, C., Ueckerdt, T., Wolff, A.: Semantic word cloud representations: Hardness
and approximation algorithms. In: Pardo, A., Viola, A. (eds.) LATIN 2014. LNCS, vol. 8392,
pp. 514–525. Springer, Heidelberg (2014)

2. Barth, L., Kobourov, S.G., Pupyrev, S.: Experimental comparison of semantic word clouds.
In: Gudmundsson, J., Katajainen, J. (eds.) SEA 2014. LNCS, vol. 8504, pp. 247–258.
Springer, Heidelberg (2014)

3. Bekos, M., van Dijk, T., Fink, M., Kindermann, P., Kobourov, S.G., Pupyrev, S., Spoerhase,
J., Wolff, A.: Improved approximation algorithms for box contact representations. Arxiv re-
port (2014) arxiv.org/abs/1403.4861

4. Briest, P., Krysta, P., Vöcking, B.: Approximation techniques for utilitarian mechanism de-
sign. SIAM J. Comput. 40(6), 1587–1622 (2011)

5. Buchsbaum, A.L., Gansner, E.R., Procopiuc, C.M., Venkatasubramanian, S.: Rectangular
layouts and contact graphs. ACM Trans. Algorithms 4(1) (2008)

6. Chekuri, C., Khanna, S.: A PTAS for the multiple knapsack problem. In: 11th ACM-SIAM
Symp. Discrete Algorithms (SODA), pp. 213–222. SIAM (2000)

7. Cohen, R., Katzir, L., Raz, D.: An efficient approximation for the generalized assignment
problem. Inf. Process. Lett. 100(4), 162–166 (2006)

8. Cui, W., Wu, Y., Liu, S., Wei, F., Zhou, M., Qu, H.: Context-preserving dynamic word cloud
visualization. IEEE Comput. Graph. Appl. 30(6), 42–53 (2010)

9. Dwyer, T., Marriott, K., Stuckey, P.J.: Fast node overlap removal. In: Healy, P., Nikolov, N.S.
(eds.) GD 2005. LNCS, vol. 3843, pp. 153–164. Springer, Heidelberg (2006)

10. Eppstein, D., Mumford, E., Speckmann, B., Verbeek, K.: Area-universal and constrained
rectangular layouts. SIAM J. Comput. 41(3), 537–564 (2012)

11. Erkan, G., Radev, D.R.: Lexrank: graph-based lexical centrality as salience in text summa-
rization. J. Artif. Int. Res. 22(1), 457–479 (2004)

12. Felsner, S.: Rectangle and square representations of planar graphs. In: Pach, J. (ed.) Thirty
Essays on Geometric Graph Theory, pp. 213–248. Springer, Heidelberg (2013)

13. Fleischer, L., Goemans, M.X., Mirrokni, V., Sviridenko, M.: Tight approximation algorithms
for maximum separable assignment problems. Math. Oper. Res. 36(3), 416–431 (2011)

14. Frederickson, G.N.: Fast algorithms for shortest paths in planar graphs, with applications.
SIAM J. Comput. 16(6), 1004–1022 (1987)

15. Gansner, E.R., Hu, Y.: Efficient, proximity-preserving node overlap removal. J. Graph
Algortihms Appl. 14(1), 53–74 (2010)

Improved Approximation Algorithms for Box Contact Representations 99

16. Hakimi, S.L., Mitchem, J., Schmeichel, E.F.: Star arboricity of graphs. Discrete Math.
149(1-3), 93–98 (1996)

17. Li, H.: Word clustering and disambiguation based on co-occurrence data. J. Nat. Lang.
Eng. 8(1), 25–42 (2002)

18. Nash-Williams, C.: Decomposition of finite graphs into forests. J. L. Math. Soc. 39, 12 (1964)
19. Nishizeki, T., Baybars, I.: Lower bounds on the cardinality of the maximum matchings of

planar graphs. Discrete Math. 28(3), 255–267 (1979)
20. Nöllenburg, M., Prutkin, R., Rutter, I.: Edge-weighted contact representations of planar

graphs. J. Graph Algorithms Appl. 17(4), 441–473 (2013)
21. Paulovich, F.V., Toledo, F.M.B., Telles, G.P., Minghim, R., Nonato, L.G.: Semantic wordifi-

cation of document collections. Comput. Graph. Forum 31(3), 1145–1153 (2012)
22. Raisz, E.: The rectangular statistical cartogram. Geogr. Review 24(3), 292–296 (1934)
23. Viégas, F.B., Wattenberg, M., Feinberg, J.: Participatory visualization with Wordle. IEEE

Trans. Vis. Comput. Graph. 15(6), 1137–1144 (2009)
24. Wu, Y., Provan, T., Wei, F., Liu, S., Ma, K.L.: Semantic-preserving word clouds by seam

carving. Comput. Graph. Forum 30(3), 741–750 (2011)

Minimum Partial-Matching and Hausdorff

RMS-Distance under Translation:
Combinatorics and Algorithms

Rinat Ben-Avraham1,�, Matthias Henze2,��, Rafel Jaume2,� � �,
Balázs Keszegh3,†, Orit E. Raz1,‡, Micha Sharir1,§, and Igor Tubis1

1 Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel
rinatba@gmail.com, {oritraz,michas}@post.tau.ac.il, mrtubis@gmail.com

2 Institut für Informatik, Freie Universität Berlin, Berlin, Germany
matthias.henze@fu-berlin.de, jaume@mi.fu-berlin.de

3 Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences,
Budapest, Hungary
keszegh@renyi.hu

Abstract. We consider the RMS-distance (sum of squared distances
between pairs of points) under translation between two point sets in the
plane. In the Hausdorff setup, each point is paired to its nearest neighbor
in the other set. We develop algorithms for finding a local minimum in
near-linear time on the line, and in nearly quadratic time in the plane.
These improve substantially the worst-case behavior of the popular ICP
heuristics for solving this problem. In the partial-matching setup, each
point in the smaller set is matched to a distinct point in the bigger
set. Although the problem is not known to be polynomial, we establish
several structural properties of the underlying subdivision of the plane
and derive improved bounds on its complexity. In addition, we show
how to compute a local minimum of the partial-matching RMS-distance
under translation, in polynomial time.

Keywords: partial matching, Hausdorff RMS-distance, polyhedral sub-
division, local minimum.

� Supported by Grant 2012/229 from the U.S.-Israel Binational Science Foundation.
�� Supported by ESF EUROCORES programme EuroGIGA-VORONOI, (DFG):

RO 2338/5-1.
� � � Supported by La-Caixa and the DAAD.

† Supported by Hungarian National Science Fund (OTKA), under grant PD 108406,
NN 102029 (EUROGIGA project GraDR 10-EuroGIGA-OP-003), NK 78439, by
the János Bolyai Research Scholarship of the Hungarian Academy of Sciences and
by the DAAD.

‡ Supported by Grant 892/13 from the Israel Science Foundation.
§ Supported by Grant 2012/229 from the U.S.-Israel Binational Science Foundation,
by Grant 892/13 from the Israel Science Foundation, by the Israeli Centers for
Research Excellence (I-CORE) program (center no. 4/11), and by the Hermann
Minkowski–MINERVA Center for Geometry at Tel Aviv University.

A.S. Schulz and D. Wagner (Eds.): ESA 2014, LNCS 8737, pp. 100–111, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

Minimum Partial-Matching and Hausdorff RMS-Distance 101

1 Introduction

Let A and B be two finite sets of points in the plane, of respective cardinalities n
and m. We are interested in measuring the similarity between A and B, under a
suitable proximity measure. We consider two such measures where the proximity
is the sum of the squared distances between pairs of points. In the first, we assume
that n > m and we want to match all the points of B (a specific pattern that
we want to identify), in a one-to-one manner, to a subset of A (a larger picture
that “hides” the pattern) of size |B|. This is motivated by situations where we
want a one-to-one matching between A and B [9,15,16]. In the second, each
point is assigned to its nearest neighbor in the other set. See [1] for a similar
generalization of the Hausdorff distance.

We refer to the measured distance between the sets, in both versions, as the
RMS distance. In the former setup the measure is called the partial-matching
RMS-distance, and in the latter we call it the Hausdorff RMS-distance. In both
variants the sets A and B are in general not aligned, so we seek a translation of
one of them that will minimize the appropriate RMS-distance, partial matching
or Hausdorff.

The Partial-Matching RMS-Distance Problem. Let A = {a1, . . . , an} and
B = {b1, . . . , bm} be two sets of points in the plane. Here we assume that m < n,
and we seek a minimum-weight maximum-cardinality matching of B into A. This
is a subset M of edges of the complete bipartite graph with edge set B × A, so
that each b ∈ B appears in exactly one edge of M , and each a ∈ A appears in
at most one edge. The weight of an edge (b, a) is ‖b − a‖2, and the weight of a
matching is the sum of the weights of its edges.

A maximum-cardinality matching can be identified as an injective assignment
π of B into A. With a slight abuse of notation, we denote by aπ(i) the point
aj that π assigns to bi. In this notation, the minimum RMS partial-matching
problem (for fixed locations of the sets) is to compute

M(B,A) = min
π:B→A injective

m∑
i=1

∥∥bi − aπ(i)
∥∥2 .

Allowing the pattern B to be translated, we obtain the problem of the minimum
partial-matching RMS-distance under translation, defined as

MT (B,A) = min
t∈R2

M(B + t, A) = min
t∈R

2,π:B→A,
π injective

m∑
i=1

∥∥bi + t− aπ(i)
∥∥2 .

The function F (t) := M(B+ t, A) induces a subdivision of R2, where two points
t1, t2 ∈ R2 are in the same region if the minimum of F at t1 and at t2 is attained
by the same assignment π : B → A. We refer to this subdivision, following
Rote [12], as the partial-matching subdivision and denote it by DB,A. We say
that a matching is optimal if it attains F (t) for some t ∈ R2.

102 R. Ben-Avraham et al.

The Hausdorff RMS Distance Problem. Let NA(x) (resp., NB(x)) denote
the nearest neighbor in A (resp., in B) of a point x ∈ R2. The unidirectional
(Hausdorff) RMS distance between B and A is defined as

RMS(B,A) =
∑
b∈B

‖b−NA(b)‖2.

We also consider bidirectional RMS distances, in which we also measure distances
from the points of A to their nearest neighbors in B. We consider two variants
of this notion. The first variant is the L1-bidirectional RMS distance between A
and B, which is defined as

RMS1(B,A) = RMS(A,B) + RMS(B,A).

The second variant is the L∞-bidirectional RMS distance between A and B, and
is defined as

RMS∞(B,A) = max {RMS(A,B), RMS(B,A)}.

Allowing one of the sets (say, B) to be translated, we define the minimum uni-
directional RMS distance under translation to be

RMST (B,A) = min
t∈R2

RMS(B + t, A) = min
t∈R2

∑
b∈B

‖b + t−NA(b + t))‖2,

where B + t = {b1 + t, . . . , bm + t}. Similarly, we define the minimum L1- and
L∞-bidirectional RMS distances under translation to be

RMST,1(B,A) = min
t∈R2

RMS1(B + t, A) and

RMST,∞(B,A) = min
t∈R2

RMS∞(B + t, A).

Background. A thorough initial study of the minimum RMS partial-matching
distance under translations is given by Rote [12]; see also [5,13] for two follow-
up studies, another study in [11], and an abstract of an earlier version of parts
of this paper [8]. The resulting subdivision DB,A, as defined above, is shown
in [12] to be a convex subdivision. Rote’s main contribution for the analysis of
the complexity of DB,A was to show that a line crosses only O(mn) regions of
the subdivision (see Theorem 1 below). However, obtaining sharp bounds for the
complexity of DB,A is still an open issue, where the best known upper bounds
are exponential.

The problem of Hausdorff RMS minimization under translation has been con-
sidered in the literature (see, e.g., [1] and references therein), although only
scarcely so. If A and B are sets of points on the line, the complexity of the
Hausdorff RMS function, as a function of t, is O(mn) (and this bound is tight
in the worst case). Moreover, the function can have many local minima (up to
Θ(mn) in the worst case). Hence, finding a translation that minimizes the Haus-
dorff RMS distance can be done in brute force, in O(mn log(mn)) time, but a

Minimum Partial-Matching and Hausdorff RMS-Distance 103

worst-case near linear algorithm is not known. In practice, though, there exists
a popular heuristic technique, called the ICP (Iterated Closest Pairs) algorithm,
proposed by Besl and McKay [3] and analyzed in Ezra et al. [7]. Although the
algorithm is reported to be efficient in practice, it might perform Θ(mn) itera-
tions in the worst case. Moreover, each iteration takes close to linear time (to
find the nearest neighbors in the present location).

The situation is worse in the plane, where the complexity of the RMS function
is O(m2n2), a bound which is worst-case tight, and the bounds for the perfor-
mance of the ICP algorithm, are similarly worse. Similar degradation shows up
in higher dimensions too; see, e.g., [7].

Our Results. In this paper we study these two fairly different variants of the
problem of minimizing the RMS distance under translation, and improve the
state of the art in both of them.

In the partial-matching variant, we first analyze the complexity of DB,A. We
significantly improve the bound from the naive O(nm) to O(n2m3.5(e lnm+e)m).
A preliminary informal exposition of this analysis by a subset of the authors is
given in the (non-archival) note [8]. This paper expands the previous note, derives
additional interesting structural properties of the subdivision, and significantly
improves the complexity bound. The arguments that establish the bound can be
generalized to bound the number of regions of the analogous subdivision in Rd by
O
(
(n2m)d(e lnm + e)m)/

√
m
)
. The derivation of the upper bound proceeds by

a reduction that connects partial matchings to a combinatorial question based
on a game theoretical problem, which we believe to be of independent interest.

Next we present a polynomial-time algorithm for finding a local minimum of
the partial-matching RMS-distance. This is significant, given that we do not have
a polynomial bound on the size of the subdivision. We also fill in the details of
explicitly computing the intersections of a line with DB,A. Although Rote hinted
at such an algorithm in [12], by exploiting some new properties of DB,A derived
here, we manage to compute the intersections in a simple, more efficient manner.

We also note that by combining the combinatorial bound for the complexity
of DB,A, along with the procedures in the algorithm for finding a local minimum
of the partial-matching RMS-distance, it is possible to traverse all of DB,A,
and compute a global minimum of the partial-matching RMS-distance in time
O(n3m7.5(e lnm + e)m). This is the best known bound for this problem.

For the Hausdorff variant, we provide improved algorithms for computing a
local minimum of the RMS function, in one and two dimensions. Assuming |A| =
|B| = n, in the one-dimensional case the algorithms run in time O(n log2 n),
and in the two-dimensional case they run in time O(n2 logn). Our approach
thus beats the worst-case running time of the ICP algorithm (used for about
two decades to solve this problem). The approach is an efficient search through
the (large number of) critical values of the RMS function. The techniques are
reasonably standard, although their assembly is somewhat involved.

104 R. Ben-Avraham et al.

2 Properties of DB,A

We begin by reconstructing several basic properties of DB,A that have been
noted in [12]. First, if we fix the translation t ∈ R2 and the assignment π, the
cost of the matching, denoted by f(π, t), is

f(π, t) =
m∑
i=1

∥∥bi + t− aπ(i)
∥∥2 = cπ + 〈t, dπ〉 + m ‖t‖2 , (1)

where cπ =
∑m

i=1

∥∥bi − aπ(i)
∥∥2 and dπ = 2

∑m
i=1(bi − aπ(i)). For t fixed, the

assignment π that minimizes f(π, t) is the same assignment that minimizes
g(π, t) := cπ + 〈t, dπ〉. It follows that DB,A is the minimization diagram (the
xy-projection) of the graph of the function

EB,A(t) = min
π:B→A injective

(cπ + 〈t, dπ〉) , t ∈ R2.

This is a lower envelope of a finite number of planes, so its graph is a convex
polyhedron, and its projection DB,A is a convex subdivision of the plane, whose
faces are convex polygons. The great open question regarding minimum partial-
matching RMS-distance under translation, is whether the number of regions of
DB,A is polynomial in m and n. A significant, albeit small step towards settling
this question is the following result of Rote [12].

Theorem 1 (Rote [12]). A line intersects the interior of at most m(n−m)+1
different regions of the partial-matching subdivision DB,A.

The following property, observed by Rote [12], seems to be well known [16].

Lemma 1. For any A′ ⊂ A, with |A′| = m, the optimal assignment that realizes
the minimum M(B + t, A′) is independent of the translation t ∈ R2.

Next, we derive several additional properties of DB,A which show that the
diagram has, locally, low-order polynomial complexity.

Lemma 2. Every edge of DB,A has a normal vector of the form aj − ai for
suitable i, j ∈ {1, . . . , n}.

Proof. Let E be an edge of DB,A common to the regions associated with the
injections π, σ : B → A. By definition, g(π, t) = g(σ, t) ≤ g(δ, t) for every
injection δ : B → A and for any t ∈ E. By Equation (1), E is contained in the
line �(π, σ) = {t ∈ R2 : 〈t, dπ − dσ〉 = cσ−cπ}. Let H = (π\σ)∪(σ\π). It is easy
to see that H consists of a vertex-disjoint union of cycles and alternating paths.
Let γ1, . . . , γp be these cycles and paths. It is not hard to see that every cycle
and every path can be “flipped” independently while preserving the validity of
the matching; that is, we can choose, within any of the γj ’s, either all the edges
corresponding to π or all the ones corresponding to σ, without interfering with
other cycles or paths, so that the resulting collection of edges still represents an

Minimum Partial-Matching and Hausdorff RMS-Distance 105

injection from B into A. Observe now that �(π, σ) = {t ∈ R2 :
〈
t,
∑p

j=1 dγj

〉
=

−
∑p

j=1 cγj}, where dγj is the sum of the terms in dπ − dσ that involve only the
ai ∈ A contained in γj and cγj is analogously defined for cπ − cσ. Note that dγj

is 0 for every cycle γj and, therefore, at least one of the γj ’s is a path. Then, we
must have

〈
t, dγj

〉
= −cγj for all j = 1, . . . , p and every t ∈ �(π, σ). Otherwise, a

flip in a path or cycle violating the equation would contradict the optimality of π
or of σ along �(π, σ). Therefore, all the vectors dγj must be orthogonal to �(π, σ).
Hence, the direction of dπ − dσ is the same as the one of dγj for every path γj. If
a path, say γ1, starts at some aj and ends at some ai, then dγ1 = aj − ai, which
concludes the proof. ��

Remark. It follows that if A is in general position then H has exactly one
alternating path, and the pair ai, aj is unique.

Lemma 3. i) DB,A has at most 4m(n−m) unbounded regions.
ii) Every region in DB,A has at most m(n−m) edges.

iii) Every vertex in DB,A has degree at most 2m(n−m).
iv) Any convex path can intersect at most m(n−m)+n(n−1) regions of DB,A,

i.e., while translating B along any convex path, the optimal partial matching
can change at most m(n−m) + n(n− 1) times.

Proof. i) Take a bounding box that encloses all the vertices of the diagram. By
Theorem 1, every edge of the bounding box crosses at most m(n−m)+1 regions
of DB,A. The edges of the box traverse only unbounded regions, and cross every
unbounded region exactly once, except for the coincidences of the last region
traversed by an edge and the first region traversed by the next edge.

ii) By Lemma 2, the normal vector of every edge of a region corresponding to
the injection π is a multiple of aj − ai for some ai ∈ π(B) and aj /∈ π(B). There
are exactly m(n−m) such possibilities.

iii) Let v be a vertex of DB,A. Draw two generic parallel lines close enough to
each other to enclose v and no other vertex. Each edge adjacent to v is crossed by
one of the lines, and by Theorem 1 each of these lines crosses at most m(n−m)
edges.

iv) We use the following property that was observed in Rote’s proof of Theo-
rem 1. Suppose that we translate B along a line in some direction v. Rank the
points of A by their order in the v-direction, i.e., a < a′ means that 〈a, v〉 < 〈a′, v〉
(for simplicity, assume that v is generic so there are no ties). Let Φ denote the
sum of the ranks of the m points of A that participate in the optimal partial
match. As Rote has shown, whenever the optimal assignment changes, Φ must
increase. Now follow our convex path γ, which, without loss of generality, can
be assumed to be polygonal. As we traverse an edge of γ, Φ obeys the above
property, increasing every time we cross into a new region of DB,A. When we
turn (counterclockwise) at a vertex of γ, the ranking of A may change, but
each such change consists of a sequence of swaps of consecutive elements in the
present ranking. At each such swap, Φ can decrease by at most 1. Since γ is
convex, each pair of points of A can be swapped at most twice, so the total

106 R. Ben-Avraham et al.

decrease in Φ is at most 2
(
n
2

)
= n(n − 1). Hence, the accumulated increase in

Φ, and thus also the total number of regions of DB,A crossed by γ, is at most(
n + (n− 1) + . . . + (n−m + 1)

)
−
(

1 + 2 + . . . + m
)

+ n(n− 1). ��

In the remainder of this section, we focus on establishing a global bound on the
complexity of the diagram DB,A. We begin by deriving the following technical
auxiliary results.

Lemma 4. Let π be an optimal assignment for a fixed translation t ∈ R2.

i) There is no cyclic sequence (i1, i2, . . . , ik, i1) satisfying
‖bij + t− aπ(ij)‖ < ‖bij + t− aπ(ij+1)‖ for all j ∈ {1, . . . , k} (modulo k).

ii) Each point of B + t is matched to one of its m nearest neighbors in A.
iii) At least one point in B + t is matched to its nearest neighbor in A.
iv) There exists an ordering 〈b1, . . . , bm〉 of the elements of B, such that each

bk is assigned by π to one of its k nearest neighbors in A, for k = 1, . . . ,m.

Proof. i) For the sake of contradiction, we assume that there exists a cyclic
sequence that satisfies all the prescribed inequalities. Consider the assignment
σ defined by σ(ij) = π(i(j−1) mod k) for all j ∈ {1, . . . , k} and σ(�) = π(�) for all
other indices �. Since π is a one-to-one matching, we have that π(ij) �= π(ij′)
for all different j, j′ ∈ {1, . . . , k} and, consequently, σ is one-to-one as well. It is
easily checked that f(σ, t) < f(π, t), contradicting the optimality of π.

ii) For contradiction, assume that for some point b ∈ B, b + t is not matched
by π to one of its m nearest neighbors in A. Then, at least one of these neighbors,
say a, cannot be matched (because these m points can be claimed only by the
remaining m−1 points of B+ t). Thus, we can reduce the cost of π by matching
b + t to a, a contradiction that establishes the claim.

iii) Again we assume for contradiction that π does not match any of the points
of B + t to its nearest neighbor in A. We construct the following cyclic sequence
in the matching π. We start at some arbitrary point b1 ∈ B, and denote by a1 its
nearest neighbor in A (to simplify the presentation, we do not explicitly mention
the translation t in what follows). By assumption, b1 is not matched to a1. If a1
is also not claimed in π by any of the points of B, then b1 could have claimed
it, thereby reducing the cost of π, which is impossible. Let then b2 denote the
point that claims a1 in π. Again, by assumption, a1 is not the nearest neighbor
a2 of b2, and the preceding argument then implies that a2 must be claimed by
some other point b3 of B. We continue this process, and obtain an alternating
path (b1, a1, b2, a2, b3, . . .) such that the edges (bi, ai) are not in π, and the edges
(bi+1, ai) belong to π, for i = 1, 2, The process must terminate when we reach
a point bk that either coincides with b1, or is such that its nearest neighbor is
among the already encountered points ai, i < k. We thus obtain a cyclic sequence
as in part i), reaching a contradiction.

iv) Start with some point b1 ∈ B such that b1 + t goes to its nearest neighbor
a1 in A in the optimal partial-matching π; such a point exists by part iii). Delete
b1 from B, and a1 from A. The optimal matching of B \ {b1} into A \ {a1}
(relative to t) is equal to the restriction of π to the points in B \ {b1}, because

Minimum Partial-Matching and Hausdorff RMS-Distance 107

otherwise we could have improved π itself. We apply part iii) to the reduced
sets, and obtain a second point b2 ∈ B \ {b1} whose translation b2+ t is matched
to its nearest neighbor a2 in A \ {a1}, which is either its first or second nearest
neighbor in the original set A. We keep iterating this process until the entire set
B is exhausted. At the k-th step we obtain a point bk ∈ B \ {b1, . . . , bk−1}, such
that the nearest neighbor ak in A \ {a1, . . . , ak−1} is matched to bk by π, so ak
is among the k nearest neighbors in A of bk + t. ��

Observe, that the geometric properties in Lemma 4 can be interpreted in
purely combinatorial terms. Indeed, for t fixed, associate with each bi ∈ B an
ordered list Lt(bi), called its preference list, which consists of the points of A
sorted by their distances from bi + t. In general, given m such ordered lists
on n elements, an injective assignment from {1, . . . ,m} to {1, . . . , n} such that
there is no cycle as in part i) is called stable or Pareto efficient. The problem
of finding a stable matching was studied, for the case m = n, in the game
theory literature under the name of the House Allocation Problem [14]. Note
also that the proofs of parts ii)–iv) can be carried out in this abstract setting,
and hold for any stable matching. Note that part iv) immediately yields an upper
bound of m! on the number of stable matchings and, in addition, implies that
only the first m elements of each Lt(bi) are relevant. This bound is tight for the
combinatorial problem, since if the ordered lists all coincide there are m! different
stable matchings. A recent article, motivated by the extended abstract [8] prior
to this work, studied this combinatorial problem and derived the following.

Lemma 5 (Asinowski et al. [2]). The number of elements that belong to some
stable matching on m ordered preference lists is at most m(lnm + 1).

The properties derived so far imply the following significantly improved upper
bound on the complexity of DB,A.

Theorem 2. The combinatorial complexity of DB,A is O(n2m3.5(e lnm+ e)m).

Proof. The proof has two parts. First, we identify a convex subdivision K such
that in each of its regions the first m elements of the ordered preference lists
Lt(b) of neighbors of each b+t, according to their distance from b+t, are fixed for
all b ∈ B. We show that the complexity of K is only polynomial; specifically, it
is O(n2m4). Second, we give an upper bound on how many regions of DB,A can
intersect a given region of K, using Lemma 5. Together, these imply an upper
bound on the complexity of DB,A. The proof of the first part, which is based on
a somewhat non-standard application of the Clarkson-Shor technique, is omitted
in this version. We now consider all possible translations t in the interior of some
fixed region τ of K and their corresponding optimal matchings. Lemma 4(i)
ensures that all of them must be stable with respect to the fixed preference lists
Lt(b), for b ∈ B, over t ∈ τ . In addition, Lemma 1 ensures that we only need
to bound the number of different image sets of such stable matchings. Using the
bound in Lemma 5, we can derive that the number of optimal matchings for

translations in τ is then O
((

m(lnm+1)
m

))
= O
(

mm(lnm+1)m

m!

)
= O
(

(e lnm+e)m√
m

)
,

108 R. Ben-Avraham et al.

where in the second step we used Stirling’s approximation. Hence, by multiplying
this bound by the number of regions in K, we conclude that the number of
assignments corresponding to optimal matchings, and thus also the complexity
of DB,A, is at most O(n2m3.5(e lnm + e)m). ��

The following proposition (proof omitted in this version) sets an obstruction
for the combinatorial approach alone to yield a polynomial bound for DB,A.

Proposition 1. For every n ≥ �m
2 � + m, there exists m preference lists of

{1, . . . , n} with Ω
(

2m√
m

)
different images of stable matchings.

3 Finding a Local Minimum of the Partial-Matching
RMS-Distance under Translation

The High-Level Algorithm. We now concentrate on the algorithmic problem
of computing, in polynomial time, a local minimum of the partial-matching RMS-
distance under translation.

We “home in” on a local minimum of F (t) by maintaining a vertical slab I
in the plane that is known to contain such a local minimum in its interior, and
by repeatedly shrinking it until we obtain a slab I∗ that does not contain any
vertex of DB,A. That is, any (vertical) line contained in I∗ intersects the same
sequence of regions, and, by Theorem 1, the number of these regions is O(mn).
We compute these regions, find the optimal partial matching assignment in each
region, and the corresponding explicit (quadratic) expression of F (t), and search
for a local minimum within each region.

A major component of the algorithm is a procedure, that we call Π1(�), which,
for a given input line �, constructs the intersection of DB,A with �, computes
the global minimum t∗ of F on �, and determines a side of �, in which F attains
strictly smaller values than F (t∗). If no such decrease is found in the neighbor-
hood of t∗ then it is a local minimum of F , and we stop. Using Lemma 2 and
the Hungarian algorithm [6,10], Π1(�) runs in O(m5n2) time.

We use this “decision procedure” as follows. Suppose we have a current vertical
slab I, bounded on the left by a line �− and on the right by a line �+. We assume
that Π1 has been executed on �− and on �+, and that we have determined that
F assumes smaller values than its global minimum on �− to the right of �−,
and that it assumes smaller values than its global minimum on �+ to the left
of �+. This is easily seen to imply that F must contain a local minimum in the
interior of I. (We note that just finding a local minimum of F along �+ or �− is
not sufficient; see the full version for details.) Let � be some vertical line passing
through I. We run Π1 on �. If it determines that F attains smaller values to its
left (resp., to its right), we shrink I to the slab bounded by �− and � (resp., the
slab bounded by � and �+). By what has just been argued, this ensures that the
new slab also contains a local minimum of F in its interior.

To initialize the slab I, we choose an arbitrary horizontal line λ, and run Π1

on λ, to find the sequence S of its intersection points with the edges of DB,A. We

Minimum Partial-Matching and Hausdorff RMS-Distance 109

run a binary search through S, where at each step we execute Π1 on the vertical
line through the current point. When the search terminates, we have a vertical
slab I0 whose intersection with λ is contained in a single region σ0 of DB,A.

After this initialization, we find the region σ1 that lies directly above σ0

and that the final slab I∗ should cross. In general, there are possibly many such
regions, but fortunately, by Lemma 3(ii), their number is only at most m(n−m).

To find σ1, we compute the boundary of σ0; this is done similarly to the
execution of Π1; see the full version for details. Once we have explored the
boundary of σ0, we take the sequence of all vertices of σ0, and run a Π1-guided
binary search on the vertical lines passing through them, exactly as we did with
the vertices of S, to shrink I0 into a slab I1, so that σ0 intersects I1 in a trapezoid
(or a triangle), with a single (portion of an) edge at the top and a single edge
at the bottom. This allows us to determine σ1, which is the region lying on
the other (higher) side of the top edge, in O(m5n2 log(mn)) time. A symmetric
variant of this procedure will find the region lying directly below σ0 in the final
slab.

We repeat the previous step to find the entire stack of O(nm) regions that I∗

crosses, where each step shrinks the current slab and then crosses to the next
region in the stack. Once this is completed, we find a local minimum within I∗

as explained above. Again, details are omitted in this version.
In summary, we have the following main result of this section.

Theorem 3. Given two finite point sets A,B in R2, with n = |A| > |B| = m,
and such that for every two pairs (a1, a2), (a3, a4) ∈ A×A the vectors a1−a2 and
a3 − a4 are non-parallel, a local minimum of the partial-matching RMS-distance
under translation can be computed in O(m6n3 logn) time.

4 Finding a Local Minimum of the Hausdorff
RMS-Distance under Translation

In this section, we turn to the simpler problem involving the Hausdorff RMS-
distance, and present efficient algorithms for computing a local minimum of the
RMS function in one and two dimensions. Due to lack of space, most of the
material in this section is omitted, and we only provide here a high-level review
of our algorithms.

The One-Dimensional Unidirectional Case. Let NA(b+ t) be the nearest neigh-
bor in A of b + t, for b ∈ B, and t ∈ R. The function r(t) := RMS(B + t, A) =∑

b∈B(b+t−NA(b+t))2 is continuous and piecewise parabolic, with O(mn) non-
smooth breakpoints, which are the breakpoints of the step functions NA(b + t).
For any given t0, it is easy to compute, in O(m log n) time, the derivative r′(t0),
or its left and right one-sided versions r′(t0)−, r′(t0)+ (when t0 is a breakpoint).
A simple observation is that if I = [t1, t2] is an interval satisfying r′(t1)+ < 0
and r′(t2)− > 0 then I contains a local minimum of r. We thus start with a
large interval I that contains all breakpoints of r, and keep shrinking it, halving
the number of breakpoints in I in each step, until it contains only linearly many

110 R. Ben-Avraham et al.

breakpoints, in which case r can be constructed explicitly over I, and searched
for a local minimum, in near-linear time. Specifically, we obtain:

Theorem 4. Given two finite point sets A, B on the real line, with |A| = n and
|B| = m, a local minimum of the unidirectional RMS distance under translation
from B to A can be obtained in time O(m log2 n + n logn).

The one-dimensional bidirectional case. Simple extensions of the procedure given
above apply to the two variants of the minimum bidirectional Hausdorff RMS-
distance, as defined in the introduction. Omitting the fairly routine details of
these extensions, we obtain:

Theorem 5. Given two finite point sets A, B on the real line, with |A| = n
and |B| = m, a local minimum under translation of the L1-bidirectional or
L∞-bidirectional RMS distance between A and B, can be computed in time
O((n logm + m logn) log min {m,n}).

Minimum Hausdorff RMS-distance under translation in two dimensions. Here
the function r(t) := RMS(B+t, A) =

∑
b∈B ‖b+t−NA(b+t)‖2 induces a convex

subdivision of the plane, where in each of its regions σ, all the m values NA(b+t),
for b ∈ B, are fixed for t ∈ σ. This subdivision is simply the overlay M of the m
shifted copies V(A − b), for b ∈ B, of the Voronoi diagram of A. These copies
have a total of O(mn) edges, and their overlay has thus complexity O(m2n2)
(which is tight in the worst case). Over each region of M , r(t) is a quadratic
function (a paraboloid), and the explicit expression for r(t) can be updated in
O(1) time as we cross from one region to an adjacent one.

The goal is to search for a local minimum of r without explicitly constructing
these many features of M . Similarly to the one-dimensional case, we maintain a
vertical slab I, known to contain a local minimum, and keep shrinking it until
it contains no vertices of M . In this case it overlaps only O(mn) regions of M ,
vertically stacked above one another, and it is straightforward to enumerate all
of them, get the explicit expressions of r over each of them, and search for a
local minimum in each part, in a total of O(mn) time.

The shrinking of I is performed in two phases. We first enumerate all O(mn)
Voronoi vertices of the original diagrams, and run a binary search through them,
as above. The resulting intermediate slab contains no original vertices, so the
edges that cross it behave like lines. They might still intersect at O(m2n2) points
within I, but we can run a binary search through them efficiently, using the
(dual version of the) slope selection algorithm of [4], so that each step takes only
O(mn logmn) time.

Concretely, we obtain:

Theorem 6. Given two finite point sets A, B in R2, with |A| = n and |B| = m,
a local minimum of the unidirectional Hausdorff RMS-distance from B to A
under translation can be computed in time O(mn log2 mn).

The bidirectional variants can be handled in much the same way, and, omitting
the details, we get:

Minimum Partial-Matching and Hausdorff RMS-Distance 111

Theorem 7. Given two finite point sets A,B in R2, with |A| = n and |B| = m,
a local minimum of the L1-bidirectional or the L∞-bidirectional Hausdorff RMS-
distance between A and B under translation can be computed in O(mn log2 mn)
time.

References

1. Agarwal, P.K., Har-Peled, S., Sharir, M., Wang, Y.: Hausdorff distance under trans-
lation for points, disks, and balls. ACM Trans. on Algorithms 6, 1–26 (2010)

2. Asinowski, A., Keszegh, B., Miltzow, T.: Counting houses of Pareto optimal match-
ings in the House Allocation Problem, arXiv:1401.5354v2

3. Besl, P.J., McKay, N.D.: A method for registration of 3-d shapes. IEEE Trans.
Pattern Anal. Mach. Intell. 14, 239–256 (1992)

4. Cole, R., Salowe, J., Steiger, W., Szemerédi, E.: An optimal-time algorithm for
slope selection. SIAM J. Comput. 18, 792–810 (1989)

5. Dumitrescu, A., Rote, G., Tóth, C.D.: Monotone paths in planar convex subdi-
visions and polytopes. In: Bezdek, K., Deza, A., Ye, Y. (eds.) Discrete Geometry
and Optimization. Fields Institute Communications, vol. 69, pp. 79–104. Springer
(2013)

6. Edmonds, J., Karp, R.M.: Theoretical Improvements in Algorithmic Efficiency for
Network Flow Problems. J. ACM 19(2), 248–264 (1972)

7. Ezra, E., Sharir, M., Efrat, A.: On the ICP Algorithm. Comput. Geom. Theory
Appl. 41, 77–93 (2008)

8. Henze, M., Jaume, R., Keszegh, B.: On the complexity of the partial least-squares
matching Voronoi diagram, in. In: Proc. 29th European Workshop Comput. Geom
(EuroCG 2013), pp. 193–196 (2013)

9. Jung, I., Lacroix, S.: A robust interest points matching algorithm. In: Proc. ICCV
2001, vol. 2, pp. 538–543 (2001)

10. Kuhn, H.W.: The Hungarian method for the assignment problem. Naval Research
Logistics Quarterly 2(1-2), 83–97 (1955)

11. Phillips, J.M., Agarwal, P.K.: On bipartite matching under the RMS distance.
In: Proc. 18th Canadian Conf. Comput. Geom (CCCG 2006), pp. 143–146 (2006)

12. Rote, G.: Partial least-squares point matching under translations. In: Proc. 26th
European Workshop Comput. Geom (EuroCG 2010), pp. 249–251 (2010)

13. Rote, G.: Long monotone paths in convex subdivisions. In: Proc. 27th European
Workshop Comput. Geom. (EuroCG 2011), pp. 183–184 (2011)

14. Shapley, L.S., Scarf, H.: On cores and indivisibility. J. Math. Economics 1, 23–37
(1974)

15. Umeyama, S.: Least-squares estimation of transformation parameters between two
point patterns. IEEE Trans. Pattern Anal. Mach. Intell. 13(4), 376–380 (1991)

16. Zikan, K., Silberberg, T.M.: The Frobenius metric in image registration.
In: Shapiro, L., Rosenfeld, A. (eds.) Computer Vision and Image Processing,
pp. 385–420. Elsevier (1992)

The Batched Predecessor Problem in External Memory�

Michael A. Bender1,2, Martı́n Farach-Colton2,3, Mayank Goswami4,
Dzejla Medjedovic5, Pablo Montes1, and Meng-Tsung Tsai3

1 Stony Brook University, Stony Brook NY 11794, USA
{bender,pmontes}@cs.stonybrook.edu

2 Tokutek, Inc.
3 Rutgers University, Piscataway NJ 08854, USA
{farach,mtsung.tsai}@cs.rutgers.edu

4 Max-Planck Institute for Informatics, Saarbrücken 66123, Germany
gmayank@mpi-inf.mpg.de

5 Sarajevo School of Science and Technology, Sarajevo 71000, Bosnia-Herzegovina
dzejla.medjedovic@ssst.edu.ba

Abstract. We give lower and upper bounds for the batched predecessor problem
in external memory. We study tradeoffs between the I/O budget to preprocess a
dictionary S versus the I/O requirement to find the predecessor in S of each ele-
ment in a query set Q. For Q polynomially smaller than S, we give lower bounds
in three external-memory models: the I/O comparison model, the I/O pointer-
machine model, and the indexability model.

In the comparison I/O model, we show that the batched predecessor problem
needs Ω(logB n) I/Os per query element (n = |S|) when the preprocessing is
bounded by a polynomial. With exponential preprocessing, the problem can be
solved faster, in Θ((log2 n)/B) per element. We give the tradeoff that quantifies
the minimum preprocessing required for a given searching cost.

In the pointer-machine model, we show that with O(n4/3−ε) preprocessing
for any constant ε > 0, the optimal algorithm cannot perform asymptotically
faster than a B-tree. In the indexability model, we exhibit the tradeoff between
the redundancy r and access overhead α of the optimal indexing scheme, showing
that to report all query answers in α(x/B) I/Os, log r = Ω((B/α2) log(n/B)).

Our lower bounds have matching or nearly matching upper bounds.

1 Introduction

A static dictionary is a data structure that represents a set S = {s1, s2, . . . , sn} subject
to the following operations:

PREPROCESS(S): Prepare a data structure to answer queries.
SEARCH(q, S): Return TRUE if q ∈ S and FALSE otherwise.
PREDECESSOR(q, S): Return maxsi∈S{si < q}.

� This research was supported in part by NSF grants CCF 1114809, CCF 1114930,
CCF 1217708, IIS 1247726, IIS 1247750, and IIS 1251137.

A.S. Schulz and D. Wagner (Eds.): ESA 2014, LNCS 8737, pp. 112–124, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

The Batched Predecessor Problem in External Memory 113

The traditional static dictionary can be extended to support batched operations. Let
Q = {q1, . . . , qx}. Then, the batched predecessor problem can be defined as follows:

BATCHEDPRED(Q,S): Return A = {a1, . . . , ax}, where
ai = PREDECESSOR(qi, S).

In this paper we prove lower bounds on the batched predecessor problem in external
memory [3], that is, when the dictionary is too large to fit into main memory. We study
tradeoffs between the searching cost and the cost to preprocess the underlying set S. We
present our results in three models: the comparison-based I/O model [3], the pointer-
machine I/O model [18], and the indexability model [10, 11].

We focus on query size x ≤ nc, for constant c < 1. Thus, the query Q can be large,
but is still much smaller than the underlying set S. This query size is interesting because,
although there is abundant parallelism in the batched query, common approaches such
as linear merges and buffering [4, 6, 7] are suboptimal.

Our results show that the batched predecessor problem in external memory cannot
be solved asymptotically faster than Ω(logB n) I/Os per query element if the prepro-
cessing is bounded by a polynomial; on the other hand, the problem can be solved
asymptotically faster, in Θ((log2 n)/B) I/Os, if we impose no constraints on prepro-
cessing. These bounds stand in marked contrast to single-predecessor queries, where
one search costs Ω(logB n) even if preprocessing is unlimited.

We assume that S and Q are sorted. Without loss of generality, Q is sorted because
Q’s sort time is subsumed by the query time. Without loss of generality, S is sorted, as
long as the preprocessing time is slightly superlinear. We consider sorted S throughout
the paper. For notational convenience, we let s1 < s2 < · · · < sn and q1 < q2 < · · · <
qx, and therefore a1 ≤ a2 ≤ · · · ≤ ax.

Given that S and Q are sorted, an alternative interpretation of this paper is as follows:
how can we optimally merge two sorted lists in external memory? Specifically, what is
the optimal algorithm for merging two sorted lists in external memory when one list is
some polynomial factor smaller than the other?

Observe that the naı̈ve linear-scan merging is suboptimal because it takes Θ(n/B)
I/Os, which is greater than the O(nc logB n) I/Os of a B-tree-based solution. Buffer
trees [4, 6, 7] also take Θ(n/B) I/Os during a terminal flush phase. This paper shows
that with polynomial preprocessing, performing independent searches for each element
in Q is optimal, but it is possible to do better for higher preprocessing.

Single and Batched Predecessor Problems in RAM. In the comparison model, a
single predecessor can be found in Θ(logn) time using binary search. The batched
predecessor problem is solved in Θ(x log(n/x) + x) by combining merging and bi-
nary search [13, 14]. The bounds for both problems remain tight for any preprocessing
budget.

Pătraşcu and Thorup [15] give tight lower bounds for single predecessor queries in
the cell-probe model. We are unaware of prior lower bounds for the batched predecessor
problem in the pointer-machine and cell-probe models.

Although batching does not help algorithms that rely on comparisons, Karpinski
and Nekrich [12] give an upper bound for this problem in the word-RAM model (bit

114 M.A. Bender et al.

operations are allowed), which achieves O(x) for all batches of size x = O(
√

logn)
(O(1) per element amortized) with superpolynomial preprocessing.

Batched Predecessor Problem in External Memory. Dittrich et al. [8] consider mul-
tisearch problems where queries are simultaneously processed and satisfied by navi-
gating through large data structures on parallel computers. They give a lower bound
of Ω(x logB(n/x) + x/B) under stronger assumptions: no duplicates of nodes are al-
lowed, the ith query has to finish before the (i + 1)st query starts, and x < n1/(2+ε),
for a constant ε > 0.

Buffering is a standard technique for improving the performance of external-memory
algorithms [4, 6, 7]. By buffering, partial work on a set of operations can share an I/O,
thus reducing the per-operation I/O cost. Queries can similarly be buffered. In this pa-
per, the number of queries, x, is much smaller than the size, n, of the data structure
being queried. As a result, as the partial work on the queries progresses, the query paths
can diverge within the larger search structure, eliminating the benefit of buffering.

Goodrich et al. [9] present a general method for performing x simultaneous external
memory searches in O((n/B + x/B) logM/B(n/B)) I/Os when x is large. When x
is small, this technique achieves O(x logB(n/B)) I/Os with a modified version of the
parallel fractional cascading technique of Tamassia and Vitter [19].

Results

We first consider the comparison-based I/O model [3]. In this model, the problem
cannot be solved faster than Ω(logB n) I/Os per element if preprocessing is polynomial.
That is, batching queries is not faster than processing them one by one. With exponential
preprocessing, the problem can be solved faster, in Θ((log2 n)/B) I/Os per element. We
generalize to show a query-preprocessing tradeoff.

Next we study the pointer-machine I/O model [18], which is less restrictive than
the comparison I/O model in main memory, but more restrictive in external memory.1

We show that with preprocessing at most O(n4/3−ε) for constant ε > 0, the cost per
element is again Ω(logB n).

Finally, we turn to the more general indexability model [10, 11]. This model is
frequently used to describe reporting problems, and it focuses on bounding the number
of disk blocks that contain the answers to the query subject to the space limit of the data
structure; the searching cost is ignored. Here, the redundancy parameter r measures
the number of times an element is stored in the data structure, and the access overhead
parameter α captures how far the reporting cost is from the optimal.

We show that to report all query answers in α(x/B) I/Os, r = (n/B)Ω(B/α2). The
lower bounds in this model also hold in the previous two models. This result shows
that it is impossible to obtain O(1/B) per element unless the space used by the data
structure is exponential, which corresponds to the situation in RAM, where exponential
preprocessing is required to achieve O(1) amortized time per query element [12].

The rest of this section formally outlines our results.

1 An algorithm can perform arbitrary computations in RAM, but a disk block can be accessed
only via a pointer that has been seen at some point in past.

The Batched Predecessor Problem in External Memory 115

Theorem 1 (Lower and Upper Bound, Unrestricted Preprocessing, I/O Compari-
son Model). Let S be a set of size n and Q a set of size x ≤ nc, 0 ≤ c < 1. In the I/O
comparison model, computing BATCHEDPRED(Q,S) requires

Ω
(x
B

log
n

xB
+

x

B

)
I/Os in the worst-case, no matter the preprocessing. There exists a comparison-based
algorithm matching this bound.

Traditional information-theoretic techniques give tight sorting-like lower bounds for
this problem in the RAM model. In external memory, the analogous approach yields a

lower bound of Ω
(

x
B logM/B

n
x + x

B

)
. On the other hand, repeated finger searching

in a B-tree yields an upper bound of O(x logB n). Theorem 1 shows that both bounds
are weak, and that in external memory this problem has a complexity that is between
sorting and searching.

We can interpret results in the comparison model through the amount of information
that can be learned from each I/O. For searching, a block input reduces the choices for
the target position of the element by a factor of B, thus learning logB bits of informa-
tion. For sorting, a block input learns up to log

(
M
B

)
= Θ(B log(M/B)) bits (obtained

by counting the ways that an incoming block can intersperse with elements resident
in main memory). Theorem 1 demonstrates that in the batched predecessor problem,
the optimal, unbounded-preprocessing algorithm learns B bits per I/O, more than for
searching but less than for sorting.

The following theorem captures the tradeoff between the searching and preprocess-
ing: at one end of the spectrum lies a B-tree (j = 1) with linear construction time and
logB n searching cost per element, and on the other end is the parallel binary search
(j = B) with exponential preprocessing cost and (log2 n)/B searching cost. This trade-
off shows that even to obtain a performance that is only twice as fast as that of a B-tree,
quadratic preprocessing is necessary. To learn up to j log(B/j + 1) bits per I/O, the
algorithm needs to spend nΩ(j) in preprocessing.

Theorem 2 (Search-Preprocessing Tradeoff, I/O Comparison Model). Let S be a
set of size n and Q a set of size x ≤ nc, 0 ≤ c < 1. In the I/O comparison
model, computing BATCHEDPRED(Q,S) in O((x logB/j+1 n)/j) I/Os requires that

PREPROCESSING(S) use nΩ(j) blocks of space and I/Os.

In order to show results in the I/O pointer-machine model, we define a graph whose
nodes are the blocks on disk of the data structure and whose edges are the pointers
between blocks. Since a block has size B, it can contain at most B pointers, and thus the
graph is fairly sparse. We show that any such sparse graph has a large set of nodes that
are far apart. If the algorithm must visit those well-separated nodes, then it must perform
many I/Os. The crux of the proof is that, as the preprocessing increases, the redundancy
of the data structure increases, thus making it hard to pin down specific locations of the
data structure that must be visited. We show that if the data structure is reasonable in
size—in our case O(n4/3−ε)—then we can still find a large, well dispersed set of nodes
that must be visited, thus establishing the following lower bound:

116 M.A. Bender et al.

Theorem 3 (Lower Bound, I/O Pointer-Machine Model). Let S be a set of size n.
In the I/O pointer-machine model, if PREPROCESSING(S) uses O(n4/3−ε) blocks of
space and I/Os, for any constant ε > 0, then there exists a constant c and a set Q of size
nc such that computing BATCHEDPRED(Q,S) requires Ω(x logB(n/x) + x/B) I/Os.

We note that in this theorem, c is a function of ε in that, the smaller the preprocessing,
the larger the set for which the lower bound can be established.

Finally, we consider the indexability model [10, 11], where we show:

Theorem 4 (r − α Tradeoff, Indexability Model). In the indexability model, any
indexing scheme for the batched predecessor problem with access overheadα ≤

√
B/4

has redundancy r satisfying log r = Ω
(
B log(n/B)/α2

)
.

A crucial ingredient in our proof is a well-known result from extremal set theory due
to Rödl [16]. Partly due to the techniques we use and partly due to the generality of
this model, we do not get lower bounds for query time exceeding Q/

√
B, which was

possible in the previous two models.

2 Batched Predecessor in the I/O Comparison Model

In this section we give the lower bound for when preprocessing is unrestricted. Then
we study the tradeoff between preprocessing and the optimal number of I/Os.

2.1 Lower Bounds for Unrestricted Space/Preprocessing

We begin with the definition of a search interval.

Definition 5 (Search interval). At step t of an execution, the search interval St
i =

[�ti, r
t
i] for an element qi comprises those elements in S that are still potential values

for ai, given the information that the algorithm has learned so far. When there is no
ambiguity, the superscript t is omitted.

Proof of Theorem 1 (Lower Bound). Consider the following problem instance:

1. For all qi, |Si| = n/x. That is, all elements in Q have been given the first log x bits
of information about where they belong in S.

2. For all i and j (1 ≤ i �= j ≤ x), Si ∩ Sj = ∅. That is, search intervals are disjoint.

We do not charge the algorithm for transferring elements of Q between main mem-
ory and disk. This accounting scheme is equivalent to allowing all elements of Q to
reside in main memory at all times while still having the entire memory free for other
manipulations. Storing Q in main memory does not provide the algorithm with any
additional information, since the sorted order of Q is already known.

Now we only consider I/Os of elements in S. Denote a block being input as b =
(b1, . . . , bB). Observe that every bi (1 ≤ i ≤ B) belongs to at most one Sj . The element
bi acts as a pivot and helps qj learn at most one bit of information—by shrinking Sj to
its left or its right half.

The Batched Predecessor Problem in External Memory 117

Since a single pivot gives at most one bit of information, the entire block b can supply
at most B bits, during an entire execution of BATCHEDPRED(Q,S).

We require the algorithm to identify the final block in S where each qi belongs.
Thus, the total number of bits that the algorithm needs to learn to solve the problem
is Ω(x log(n/xB)). Along with the scan bound to output the answer, the minimum
number of block transfers required to solve the problem is Ω

(
x
B log n

xB + x
B

)
. ��

We devise a matching algorithm (assuming B logn < M), which has O(nB) pre-
processing cost. This algorithm has huge preprocessing costs but establishes that the
lower bound from Theorem 1 is tight.
Proof of Theorem 1 (Upper Bound). The algorithm processes Q in batches of size B,
one batch at a time. A single batch is processed by simultaneously performing binary
search on all elements of the batch until they find their rank within S.

In the preprocessing phase, the algorithm produces all
(
n
B

)
possible blocks. The al-

gorithm also constructs a perfectly balanced binary search tree T on S. The former
takes at most B

(
n
B

)
I/Os, which is O(nB), while the latter has a linear cost. The

(
n
B

)
blocks are laid out in a lexicographical order in external memory, and it takes B logn
bits to address the location of any block. ��

2.2 Preprocessing-Searching Tradeoffs

We give a lower bound on the space required by the batched predecessor problem when
the budget for searching is limited. We prove Theorem 2 by proving Theorem 7.

Definition 6. An I/O containing elements of S is a j-parallelization I/O if j distinct
elements of Q acquire bits of information during this I/O.

Theorem 7. For x ≤ n1−ε (0 < ε ≤ 1) and a constant γ > 0, any algorithm that
solves BATCHEDPRED(Q,S) in at most (γx log n)/(j log(B/j + 1)) + x/B I/Os re-

quires at least
(
εjnε/2/2eγB

)εj/2γ
I/Os for preprocessing in the worst case.

Proof. The proof is by a deterministic adversary argument. In the beginning, the adver-
sary partitions S into x equal-sized chunks C1, . . . , Cx, and places each query element
into a separate chunk (i.e., Si = Ci). Now each element knows log x ≤ (1 − ε) logn
bits of information. Each element is additionally given half of the number of bits that re-
main to be learned. This leaves another T ≥ (εx log n)/2 total bits yet to be discovered.
As in the proof of Theorem 1, we do not charge for the inputs of elements in Q, thereby
stipulating that all remaining bits to be learned are through the inputs of elements of S.

Lemma 8. To learn T bits in at most (γx logn)/(j log(B/j + 1)) I/Os, there must be
at least one I/O in which the algorithm learns at least (j log(B/j + 1))/a bits, where
a = 2γ/ε.

If multiple I/Os learn at least (j log(B/j + 1))/a bits, consider the last such I/O
during the algorithm execution. Denote the contents of the I/O as bi = (p1, . . . , pB).

Lemma 9. The maximum number of bits an I/O can learn while parallelizing d ele-
ments is d log(B/d + 1).

118 M.A. Bender et al.

Lemma 10. The I/O bi parallelizes at least j/a elements.

Proof. Given that the most bits an I/O can learn while parallelizing j/a − 1 elements

is (j/a− 1) log (B/(j/a− 1) + 1) bits. For all a ≥ 1 and j ≥ 2, j
a log
(

B
j + 1

)
>(

j
a − 1

)
log
(

B
j/a−1 + 1

)
. Thus, we can conclude that with the block transfer of bi, the

algorithm must have parallelized strictly more than j/a− 1 distinct elements. ��

We focus our attention on an arbitrarily chosen group of j/a elements parallelized
during the transfer of bi = {p1, . . . , pB}, which we call q1, . . . , qj/a.

Lemma 11. For every qu parallelized during the transfer of bi there is at least one
pivot pv, 1 ≤ v ≤ B, such that pv ∈ Su.

Consider the vector V = (S1, S2, . . . , Sj/a) where Su denotes the search interval of
qu right before the input of bi.

Each element of Q has acquired at least (1 − ε/2) logn bits, (ε logn)/2 of which
were given for free after the initial (1 − ε) logn. For any i, the total number of distinct
choices for Si in the vector V is at least nε/2, because the element could have been sent
to any of these nε/2-sized ranges in the initial nε range. We obtain the following:

Lemma 12. The number of distinct choices for V at the time of parallelization is at
least njε/2a.

Lemma 13. For each of the njε/2a choices of V = (S1, . . . , Sj/a) (arising from the
nε/2 choices for each Si), there must exist a block with pivots p1, p2, . . . , pj/a, such
that pk ∈ Sk.

If the algorithm did not preprocess a block for each vector choice, the adversary
could scan all blocks, find a vector for which no block exists, and assign those search
intervals to q1, . . . , qj/a, thus avoiding parallelization.

The same block can serve multiple vector choices, because the block has B elements
and we are parallelizing only j/a elements. The next lemma quantifies the maximum
number of vectors covered by one block.

Lemma 14. A block can cover at most
(

B
j/a

)
distinct vector choices.

As a consequence, the minimum number of blocks the algorithm needs to preprocess

is at least njε/2a/
(

B
j/a

)
≥
(
nε/2/(eaB/j)

)j/a
. Substituting for the value of a, we get

that the minimum preprocessing is at least
(
εjnε/2/2eγB

)εj/2γ
. ��

Algorithms. An algorithm that runs in O((x log n)/j log(B/j + 1) + x/B) I/Os fol-
lows an idea similar to the optimal algorithm for unrestricted preprocessing. The dif-
ference is that we preprocess

(
n
j

)
blocks, where each block correspond to a distinct

combination of some j elements. The block will contain B/j evenly spaced pivots for
each element. The searching algorithm uses batches of size j.

The Batched Predecessor Problem in External Memory 119

3 Batched Predecessor in the I/O Pointer-Machine Model

Here we analyze the batched predecessor problem in the I/O pointer-machine model.
We show that if the preprocessing time is O(n4/3−ε) for any constant ε > 0, then
there exists a query set Q of size x such that reporting BATCHEDPRED(Q,S) requires
Ω(x/B+x logB n/x) I/Os. Before proving our theorem, we briefly describe the model.

I/O Pointer Machine Model. The I/O pointer machine model [18] is a generalization
of the pointer machine model introduced by Tarjan [21]. Many results in range reporting
have been obtained in this model [1, 2].

To answer BATCHEDPRED(Q,S), an algorithm preprocesses S and builds a data
structure comprised of nk blocks, where k is a constant to be determined later. We use
a directed graph G = (V,E) to represent the nk blocks and their associated directed
pointers. Every algorithm that answers BATCHEDPRED(Q,S) begins at the start node
v0 in V and at each step picks a directed edge to follow from those seen so far. Thus,
the nodes in a computation are all reachable from v0. Furthermore, each fetched node
contains elements from S, and the computation cannot terminate until the visited set of
elements is a superset of the answer set A. A node in V contains at most B elements
from S and at most B pointers to other nodes.

Let L(W) be the union of the elements contained in a node set W , and let N (a) be
the set of nodes containing element a. We say that a node set W covers a set of elements
A if A ⊆ L(W). An algorithm for computing A can be modeled as the union of a set
of paths from v0 to each node in a node set W that covers A.

To prove a lower bound on BATCHEDPRED(Q,S), we show that there is a query
set Q whose answer set A requires many I/Os. In other words, for every node set W
that covers A, a connected subgraph spanning W contains many nodes. We achieve this
result by showing that there is a set A such that, for every pair of nodes a1, a2 ∈ A,
the distance between N (a1) and N (a2) is large, that is, all the nodes in N (a1) are far
from all the nodes in N (a2). Since the elements of A can appear in more than one node,
we need to guarantee that the node set V of G is not too large; otherwise the distance
between N (a1) and N (a2) can be very small. For example, if |V | ≥

(
n
2

)
, every pair of

elements can share a node, and a data structure exists whose minimum pairwise distance
between any N (a1) and N (a2) is 0.

First, we introduce two measures of distance between nodes in any (undirected or di-
rected) graphG = (V,E). Let dG(u, v) be the length of the shortest (di-)path from node
u to node v in G. Furthermore, let ΛG(u, v) = minw∈V (dG(w, u) + dG(w, v)). Thus,
ΛG(u, v) = dG(u, v) for undirected graphs, but not necessarily for directed graphs.

For each W ⊆ V , define fG(W) to be the minimum number of nodes in any con-
nected subgraphH such that (1) the node set ofH containsW∪{v0} and (2)H contains
a path from v0 to each v ∈ W . Observe that fG({u, v}) ≥ ΛG(u, v). The following
lemma gives a more general lower bound for fG(W). In other words, the size of the
graph containing nodes of W is linear in the minimum pairwise distance within W .

Lemma 15. For any directed graph G = (V,E) and any W ⊆ V of size |W | ≥ 2,
fG(W) ≥ rW |W |/2, where rW = minu,v∈W,u�=v ΛG(u, v).

120 M.A. Bender et al.

Proof Sketch. Consider the undirected version of G, and consider a TSP of the nodes in
W . It must have length rW |W |. Any tree that spans W must therefore have size at least
rW |W |/2. Finally, fG(W) contains a tree that spans W . ��

Our next goal is to find a query set Q such that every node set W that covers the
corresponded answer set A has a large rW . The answer set A will be an independent set
of a certain kind, that we define next. For a directed graph G = (V,E) and an integer
r > 0, we say that a set of nodes I ⊆ V is r-independent if ΛG(u, v) > r for all
u, v ∈ I where u �= v. The next lemma guarantees a substantial r-independent set.

Lemma 16. Given a directed graph G = (V,E), where each node has out-degree at

most B ≥ 2, there exists an r-independent set I of size at least |V |2
|V |+4r|V |Br .

Proof. Construct an undirected graph H = (U, F) such that U = V and (u, v) ∈ F
iff ΛG(u, v) ∈ [1, r]. Then, H has at most 2r|V |Br edges. By Turán’s Theorem [20],
there exists an independent set of the desired size in H , which corresponds to an r-
independent set in G, completing the proof. ��

In addition to r-independence, we want the elements in A to occur in few blocks,
in order to control the possible choices of the node set W that covers A. We define the
redundancy of an element a to be |N (a)|. Because there are nk blocks and each block
has at most B elements, the average redundancy is O(nk−1B). We say that an element
has low redundancy if its redundancy is at most twice the average. We show that there
exists an r-independent set I of size nε (here ε depends on r) such that no two blocks
share the same low-redundancy element. We will then construct our query set Q using
this set of low-redundancy elements in this r-independent set.2

Finally, we add enough edges to place all occurrences of every low-redundancy ele-
ment within ρ < r/2 of all other occurrences of that element. We show that we can do
this by adding few edges to each node, therefore maintaining the sparsity of G. Since
this augmented graph also contains a large r-independent set, all the nodes of this set
cannot share any low-redundancy elements.

The following lemma shows that nodes sharing low-redundancy elements can be
connected with low diameter and small degrees.

Lemma 17. For any k > 0 and m > k there exists an undirected k-regular graph H
of order m having diameter logk−1 m + o(logk−1 m).

Proof. In [5], Bollobás shows that a random k-regular graph has the desired diameter
with probability close to 1. Thus there exists some graph satisfying the constraints. ��

Consider two blocks B1 and B2 in the r-independent set I above, and let a and b
be two low-redundancy elements such that a ∈ B1, b /∈ B1 and a /∈ B2, b ∈ B2.
Any other pair of blocks B

′
1 and B

′
2 that contain a and b respectively must be at least

(r − 2ρ) apart, since B
′
i is at most ρ apart from Bi. By this argument, every node set

W that covers A has rW ≥ (r − 2ρ). Now, by Lemma 15, we get a lower bound of
Ω((r − 2ρ)|W |) on the query complexity of Q. We choose r = c1 logB(n/x) and get

2 Our construction does not work if the query set contains high redundancy elements, because
high redundancy elements might be placed in every block.

The Batched Predecessor Problem in External Memory 121

ρ = c2 logB(n/x) for appropriate constants c1 > 2c2. This is the part where we require
the assumption that k < 4/3 as shown in Theorem 3, where nk was the size of the
entire data structure. We then apply Lemma 16 to obtain that |W | = Ω(x).

Proof of Theorem 3. We partition S into S� and Sh by the redundancy of elements
in these nk blocks and claim that there exists A ⊆ S� such that query time for the
corresponded Q matches the lower bound.

Let S� be the set of elements of redundancy no more than 2Bnk/n (i.e., twice of the
average redundancy). The rest of elements belong to Sh. By the Markov inequality, we
have |S�| = Θ(n) and |Sh| ≤ n/2. Let G = (V,E) represent the connections between
the nk blocks as the above stated. We partition V into V1 and V2 such that V1 is the set
of blocks containing some elements in S� and V2 = V \ V1. Since each block can at
most contain B elements in S�, |V1| = Ω(n/B).

Then, we add some additional pointers to G and obtain a new graph G′ such that, for
each e ∈ S�, every pair u, v ∈ N (e) has small ΛG′(u, v). We achieve this by, for each
e ∈ S�, introducing graph He to connect all the nk blocks containing element e such
that the diameter in He is small and the degree for each node in He is O(Bδ) for some
constant δ. By Lemma 17, the diameter of He can be as small as

ρ ≤ 1

δ
logB |He| + o(logB |He|) ≤

k − 1

δ
logB n + o(logB n).

We claim that the graph G′ has a (2ρ + ε)-independent set of size nc, for some
constants ε, c > 0. For the purpose, we construct an undirected graph H(V1, F) such
that (u, v) ∈ F iff ΛG′(u, v) ≤ r. Since the degree of each node in G′ is bounded by
O(Bδ+1), by Lemma 16, there exists an r-independent set I of size

|I| ≥ |V1|2
|V1| + 4r|V |O(Br(δ+1))

≥ n2−k

4rO(Br(δ+1)+2)
= nc.

Then, r = ((2 − k − c) logB n)/(δ + 1) + o(logB n). To satisfy the condition made in
the claim, let r > 2ρ. Hence, (2 − k − c)/(δ + 1) > 2(k − 1)/δ. Then, k → 4/3 for
sufficiently large δ. Observe that, for each e ∈ S�, e is contained in at most one node in
I; in addition, for every pair e1, e2 ∈ S� where e1, e2 are contained in separated nodes
in I , then ΛG′(u, v) ≥ ε for any u ! e1, v ! e2. By Lemma 15, we are done. ��

4 Batched Predecessor in the Indexability Model

This section analyzes the batched predecessor problem in the indexability model [10,
11]. This model is used to analyze reporting problems by focusing on the number of
blocks that an algorithm must access to report all the query results. Lower bounds on
queries are obtained solely based on how many blocks were preprocessed. The search
cost is ignored—the blocks containing the answers are given to the algorithm for free.

A workload is given by a pair W = (S,A), where S is the set of n input objects, and
A is a set of subsets of S—the output to the queries. An indexing scheme I for a given
workload W is given by a collection B of B-sized subsets of S such that S = ∪B; each
b ∈ B is called a block.

122 M.A. Bender et al.

An indexing scheme has two parameters associated with it. The first parameter,
called the redundancy, represents the average number of times an element is repli-
cated (i.e., an indexing scheme with redundancy r uses r
n/B� blocks). The second
parameter is called the access overhead. Given a query with answer A, the query time
is min{|B′| : B′ ⊆ B, A ⊆ ∪B′}, because this is the minimum number of blocks that
contain all the answers to the query. If the size of A is x, then the best indexing scheme
would require a query time of
x/B�. The access overhead of an indexing scheme is
the factor by which it is suboptimal. An indexing scheme with access overhead α uses
α
x/B� I/Os to answer a query of size x in the worst case.

Every lower bound in this model applies to our previous two models as well. To show
the tradeoff between α and r, we use the Redundancy Theorem from [11, 17]:

Theorem 18 (Redundancy Theorem [11, 17]). For a workload W = (S,A) where
A = {A1, · · · , Am}, let I be an indexing scheme with access overhead α ≤

√
B/4

such that for any 1 ≤ i, j ≤ m, i �= j, |Ai| ≥ B/2 and |Ai ∩ Aj | ≤ B/(16α2). Then
the redundancy of I is bounded by r ≥ 1

12n

∑m
i=1 |Ai|.

Proof of Theorem 4. For the sake of the lower bound, we restrict to queries where all the
reported predecessors reported are distinct. To use the redundancy theorem, we want to
create as many queries as possible.

Call a family of k-element subsets of S β-sparse if any two members of the family
intersect in less than β elements. The size C(n, k, β) of a maximal β-sparse family is
crucial to our analysis. For a fixed k and β this was conjectured to be asymptotically
equal to

(
n
β

)
/
(
k
β

)
by Erdös and Hanani and later proven by Rödl in [16]. Thus, for large

enough n, C(n, k, β) = Ω(
(
n
β

)
/
(
k
β

)
).

We now pick a (B/2)-element, B/(16α2)-sparse family of S, where α is the access
overhead of I. The result in [16] gives us that

C

(
n,

B

2
,

B

16α2

)
= Ω

((
n

B/ (16α2)

)
/

(
B/2

B/ (16α2)

))
.

Thus, there are at least (2n/eB)B/(16α2) subsets of size B/2 such that any pair
intersects in at most B/(16α2) elements. The Redundancy Theorem then implies that
the redundancy r is greater than or equal to (n/B)Ω(B/α2), completing the proof. ��

We describe an indexing scheme that is off from the lower bound by a factor α.

Theorem 19 (Indexing Scheme for the Batched Predecessor Problem). Given any
α ≤

√
B, there exists an indexing scheme Iα for the batched predecessor problem with

access overhead α2 and redundancy r = O((n/B)B/α2

)

Proof. Call a family of k-element subsets of S β-dense if any subset of S of size β is
contained in at least one member from this family. Let c(n, k, β) denote the minimum
number of elements of such a β-dense family. Rödl [16] proves that for a fixed k and β,

lim
n→∞

c(n, k, β)
(
k
β

)(
n
β

)−1
= 1,

and thus, for large enough n, c(n, k, β) = O(
(
n
β

)
/
(
k
β

)
).

The Batched Predecessor Problem in External Memory 123

The indexing scheme Iα consists of all sets in a B-element, (B/α2)-dense family.
By the above, the size of Iα is O((n/B)B/α2

).
Given a query answer A = {a1, · · · , ax} of size x, fix 1 ≤ i <
x/B� and consider

the B-element sets Ci = {a(i−1)B, · · · , aiB} (C�x/B� may have less than B elements).
Since Iα is an indexing scheme, we are told all the blocks in Iα that contain the ais. By
construction, there exists a block in Iα that contains a 1/α2 fraction of Ci. In at most α2

I/Os we can output Ci, by reporting B/α2 elements in every I/O. The number of I/Os
needed to answer the entire answer A is thus α2
x/B�, which proves the theorem. ��

References

1. Afshani, P., Arge, L., Larsen, K.D.: Orthogonal range reporting: Query lower bounds,
optimal structures in 3-d, and higher-dimensional improvements. In: 26th Annual Sympo-
sium on Computational Geometry (SoCG), pp. 240–246 (2010)

2. Afshani, P., Arge, L., Larsen, K.G.: Higher-dimensional orthogonal range reporting and rect-
angle stabbing in the pointer machine model. In: 28th Annual Symposium on Computational
Geometry (SoCG), pp. 323–332 (2012)

3. Aggarwal, A., Vitter, J.S.: The input/output complexity of sorting and related problems.
Commun. ACM 31, 1116–1127 (1988)

4. Arge, L.: The buffer tree: A technique for designing batched external data structures.
Algorithmica 37(1), 1–24 (2003)

5. Bollobás, B., Fernandez de la Vega, W.: The diameter of random regular graphs. Combina-
torica 2(2), 125–134 (1982)

6. Brodal, G.S., Fagerberg, R.: Lower bounds for external memory dictionaries. In: 14th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 546–554 (2003)

7. Buchsbaum, A.L., Goldwasser, M., Venkatasubramanian, S., Westbrook, J.R.: On external
memory graph traversal. In: 11th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pp. 859–860 (2000)

8. Dittrich, W., Hutchinson, D., Maheshwari, A.: Blocking in parallel multisearch problems
(extended abstract). In: 10th Annual ACM Symposium on Parallel Algorithms and Architec-
tures (SPAA), pp. 98–107 (1998)

9. Goodrich, M.T., Tsay, J.J., Cheng, N.C., Vitter, J., Vengroff, D.E., Vitter, J.S.: External-
memory computational geometry. In: 1993 IEEE 34th Annual Foundations of Computer
Science (FOCS), pp. 714–723 (1993)

10. Hellerstein, J.M., Koutsoupias, E., Papadimitriou, C.H.: On the analysis of indexing schemes.
In: 16th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems
(PODS), pp. 249–256 (1997)

11. Hellerstein, J.M., Koutsoupias, E., Miranker, D.P., Papadimitriou, C.H., Samoladas, V.: On a
model of indexability and its bounds for range queries. J. ACM 49, 35–55 (2002)

12. Karpinski, M., Nekrich, Y.: Predecessor queries in constant time? In: Brodal, G.S., Leonardi,
S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 238–248. Springer, Heidelberg (2005)

13. Knudsen, M., Larsen, K.: I/O-complexity of comparison and permutation problems. Master’s
thesis, DAIMI (November 1992)

14. Knuth, D.E.: The Art of Computer Programming: Sorting and Searching, vol. 3. Addison-
Wesley (1973)

15. Pătraşcu, M., Thorup, M.: Time-space trade-offs for predecessor search. In: 38th Annual
ACM Symposium on Theory of Computing (STOC), pp. 232–240 (2006)

16. Rödl, V.: On a packing and covering problem. European Journal of Combinatorics 6(1),
69–78 (1985)

124 M.A. Bender et al.

17. Samoladas, V., Miranker, D.P.: A lower bound theorem for indexing schemes and its
application to multidimensional range queries. In: 17th ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems (PODS), pp. 44–51 (1998)

18. Subramanian, S., Ramaswamy, S.: The p-range tree: A new data structure for range searching
in secondary memory. In: Sixth Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pp. 378–387 (1995)

19. Tamassia, R., Vitter, J.S.: Optimal cooperative search in fractional cascaded data structures.
In: Algorithmica, pp. 307–316 (1990)

20. Tao, T., Vu, V.H.: Additive Combinatorics. Cambridge University Press (2009)
21. Tarjan, R.E.: A class of algorithms which require nonlinear time to maintain disjoint sets.

Journal of Computer and System Sciences 18(2), 110–127 (1979)

Polynomial Decompositions in Polynomial Time

Arnab Bhattacharyya

Indian Institute of Science, Bangalore, India
arnabb@csa.iisc.ernet.in

Abstract. Fix a prime p. Given a positive integer k, a vector of positive
integers Δ = (Δ1,Δ2, . . . ,Δk) and a function Γ : Fk

p → Fp, we say that
a function P : Fn

p → Fp is (k,Δ, Γ)-structured if there exist polynomials
P1, P2, . . . , Pk : Fn

p → Fp with each deg(Pi) � Δi such that for all x ∈ Fn
p ,

P (x) = Γ (P1(x), P2(x), . . . , Pk(x)).

For instance, an n-variate polynomial over the field Fp of total degree d
factors nontrivially exactly when it is (2, (d − 1, d − 1), prod)-structured
where prod(a, b) = a · b.

We show that if p > d, then for any fixed k,Δ, Γ , we can decide
whether a given polynomial P (x1, x2, . . . , xn) of degree d is (k,Δ, Γ)-
structured and if so, find a witnessing decomposition. The algorithm
takes poly(n) time. Our approach is based on higher-order Fourier anal-
ysis.

1 Introduction

(Linear) Fourier analysis over a finite field Fp studies the structure of exponen-
tials of linear functions, i.e. functions of the form ω�(x) where � : Fn

p → Fp is a

linear function and ω = e2πi/p is the p’th root of unity. Fourier analysis over finite
fields has, by now, a rich history of widespread success in theoretical computer
science. Here is a sample of applications: coding theory, computational learning
theory, influence of variables in boolean functions, probabilistically checkable
proofs, cryptography, communication complexity, and quantum computing. For
more, consult the lovely survey of de Wolf [dW08].

Higher-order Fourier analysis is a novel generalization of Fourier analysis. In
higher-order Fourier analysis over finite fields, we study the structure of exponen-
tials of low-degree polynomials, i.e. functions of the form ωQ(x) where Q : Fn

p →
Fp is a polynomial1 of bounded degree. The theory (although conceptually origi-
nating with the classical equidistribution results of Weyl) really got its start from
the spectacular proof by Gowers of Szemerédi’s theorem [Gow98,Gow01], where
the Gowers norm was introduced. Another significant influence was the work of
Host and Kra [HK05] in ergodic theory. Subsequently, Green, Tao and Ziegler
through several works [GT08,GT10,GTZ11,GTZ,TZ10,TZ12] largely completed

1 Throughout, our functions are of n variables over Fp, where n is growing but p is
fixed.

A.S. Schulz and D. Wagner (Eds.): ESA 2014, LNCS 8737, pp. 125–136, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

126 A. Bhattacharyya

the research program of understanding the relationships between different as-
pects of the theory. The book [Tao12] by Tao on the subject surveys the current
state of knowledge.

Green, Tao and Ziegler applied higher-order Fourier analysis to find asymp-
totics for various linear patterns in the prime numbers. In theoretical computer
science, low-degree polynomials over finite fields has long been under considera-
tion due to the use of arithmetization. Specifically, there is a long history of
testing whether a function is correlated with a low-degree polynomial, and
higher-order Fourier analysis can be immediately phrased in this context. In fact,
it was shown in [BCSX11,BGS10,BFL13,BFH+13] that higher-order Fourier
analysis can be used to analyze tests not only for low-degreeness but also for
any locally characterized affine-invariant property (see the cited papers for defini-
tions). Besides property testing, the Gowers norm has also been used in computer
science to show worst case to average case reductions for polynomials [KL08] and
XOR lemmas for polynomials [VW08].

In this paper, we demonstrate a new algorithmic application of higher-order
Fourier analysis. Consider the following family of properties of functions over a
finite field Fp of fixed prime order p.

Definition 1. Given a positive integer k, a vector of positive integers Δ =
(Δ1, Δ2, . . . , Δk) and a function Γ : Fk

p → Fp, we say that a function P : Fn
p →

Fp is (k,Δ, Γ)-structured if there exist polynomials P1, P2, . . . , Pk : Fn
p → Fp

with each deg(Pi) � Δi such that for all x ∈ Fn
p ,

P (x) = Γ (P1(x), P2(x), . . . , Pk(x)).

The polynomials P1, . . . , Pk are said to form a (k,Δ, Γ)-decomposition.

For instance, an n-variate polynomial over the field Fp of total degree d factors
nontrivially exactly when it is (2, (d−1, d−1), prod)-structured where prod(a, b) =
a · b. Informally, a degree-structural property refers to a property from the family
of (k,Δ, Γ)-structured properties.

Our main result is that every degree-structural property can be decided in
polynomial time:

Theorem 1. For every positive integer k, every vector of positive integers Δ =
(Δ1, Δ2, . . . , Δk) and every function Γ : Fk

p → Fp, there is a deterministic al-
gorithm Ak,Δ,Γ that takes as input a polynomial P : Fn

p → Fp of degree d < p,
runs in time polynomial in n, and outputs a (k,Δ, Γ)-decomposition of P if one
exists while otherwise returning NO.

1.1 Discussion

The main result is surprisingly strong in that it holds for every k,Δ and Γ . Thus,
for instance, it immediately implies a (deterministic) poly(n)-time algorithm for
factoring an n-variate polynomial of degree d over Fp, as long as p > d and p
and d are fixed. Also, we observe (see the full version [Bha14]) that the proof

Polynomial Decompositions in Polynomial Time 127

of Theorem 1 implies a polynomial time algorithm for deciding whether a d-
dimensional tensor over Fp has rank at most r, where d, p and r are constants
and d < p.

We must remark that these results on factoring and tensor rank are not new,
in the sense that there were already algorithms known for stronger versions
of these two problems. Specifically, for deciding constant tensor rank, Karnin
and Shpilka [KS09] showed a polynomial time algorithm for the more general
problem of reconstructing multilinear ΣΠΣ circuits with a constant number
of multiplication gates. And for factoring multivariate polynomials over finite
fields, it is known [vzGK85] how to factor in time poly(n, d, p) deterministically
and in time poly(n, d, log p) probabilistically.

However, Theorem 1 gives polynomial time algorithms for a whole host of
problems not known to have non-trivial solutions previously, such as whether
a polynomial of degree d can be expressed as P1 · P2 + P3 · P4 where each
P1, P2, P3, P4 are of degree d − 1 or less. Thus, these problems become useful
targets for reductions in future. Our main result can be described as a black-
box reconstruction algorithm as in [KS09], in the sense that the algorithm is
given blackbox query access to the polynomial and it runs in time linear in the
dense representation of the polynomial (i.e., input size is measured as

(
n+d
d

)
).

The property of having (k,Δ, Γ)-structure is also similar in spirit to a function
having a concise representation, a notion introduced by Diakonikolas et al. in
[DLM+07]. We leave open as to whether there are formal connections here.

There are two main questions raised by Theorem 1:

1. Does Theorem 1 hold when p � d? The main difficulty here seems techni-
cal and stems from the fact that the proof of the Gowers inverse theorem
for polynomials is currently very non-constructive [TZ12] when p � d, in
contrast to the case of high characteristic [GT09].

2. Is there an analogous theorem when n is fixed and d and p are growing?
Such questions are probably very difficult, because over Zn, we do not even
know how to deterministically factorize the univariate polynomial x2 − a,
for a given a ∈ Zn. In fact, in recent work, Kopparty, Saraf and Shpilka
[KSS14] have shown an equivalence between deterministic factorization of
multivariate polynomials and derandomization of polynomial identity test-
ing, a long-standing challenge. Polynomial time randomized algorithms exist
for factorization of course but are not known to exist for arbitrary degree-
structural properties over large fields. In particular, Neeraj Kayal (personal
communication) asks whether it is possible in randomized polynomial time
to decompose a univariate polynomial P : Fp → Fp of degree n < p as
P = P1 ·P2 +P3 ·P4 where P1, P2, P3, P4 are of degree < n. Even an average-
case algorithm would be interesting, meaning P is known to be formed out
of random polynomials P1, P2, P3, P4, and the task is to recover them given
access to P .

128 A. Bhattacharyya

1.2 Proof Overview

The proof of Theorem 1 is actually a straightforward combination of ideas from
[BFH+13] and [BHT13]. In [BFH+13], it was shown that any degree-structural
property is constant query testable. That is, for all k,Δ, and Γ , one can decide
correctly, with probability at least 2/3, whether a given function is (k,Δ, Γ)-
structured or whether it is 1%-far from any (k,Δ, Γ)-structured function, by
querying the input function’s value on only a constant number of points. The
main contribution of [BFH+13] is a reduction from the testability problem to
the following combinatorial problem:

Does there exist s = s(k,Δ, Γ) such that a function is (k,Δ, Γ)-structured
if and only if so is the restriction of the function to all affine subspaces
of dimension s?

[BFH+13] gave a positive answer to this problem (thus showing, by virtue of their
main reduction, that degree-structure is testable). One can view their answer as
a solution to the search problem of finding an s-dimensional subspace on which
the function is not degree-structural. However, their proof is non-constructive,
in the sense that no non-trivial algorithm is provided for finding the witnessing
s-dimensional subspace.

At a high level, the reason that a violation to a degree-structural decomposi-
tion can be witnessed by a finite sized subspace is the following. Let the input
polynomial be P on n variables and of degree d. Higher-order Fourier analysis
gives a way to write P as:

P (x) = G(Q1(x), Q2(x), . . . , QC(x))

where C is a constant, Q1, . . . , QC polynomials of degree � d and G is an arbi-
trary function on FC . Most importantly, Q1, . . . , QC have a certain pseudoran-
domness property called high rank, which allows us to think of Q1(x), . . . , QC(x)
as C uncorrelated variables2. Thus, higher-order Fourier analysis finitizes P on
n variables into a function G on only a constant number of variables. Moreover,
G remains the same when P is restricted to a function on n − 1 variables by
setting one of the variables to zero. Thus, we can keep on setting variables to
zero until we have only a constant number of variables remaining. That is, P is
now restricted to a finite sized subspace H , with:

PH(x) = G(Q1|H(x), . . . , QC|H(x))

where Q1|H , . . . , QC|H still enjoy the pseudorandom property of high rank. Now,
PH can be decomposed by brute force, and moreover, it can be decomposed in
terms of Q1|H , . . . , QC|H (and perhaps other polynomials) due to their high
rank. Finally, at this point, Q1, . . . QC can be directly substituted instead of
Q1|H , . . . , QC|H into the decomposition, and so the decomposition of the original

2 More precisely, the distribution of (Q1(X), . . . , QC(X)) is close to uniform for uni-
form X ∈ Fn.

Polynomial Decompositions in Polynomial Time 129

polynomial P is recovered. The fact that the last substitution doesn’t increase
the degree is again due to the high rank of Q1, . . . , QC .

In this argument, the rank of a polynomial plays a central role in the analy-
sis, but we do not know how to compute this quantity in time polynomial in n.
Hence, the argument in [BFH+13] is non-constructive in this aspect. However,
in [BHT13], it was noticed that when the polynomial degree is smaller than the
field characteristic, instead of the rank of a polynomial, one could equally well
work with the Gowers uniformity norm (see Section 2.1) of the polynomial, and
the Gowers norm can be estimated upto constant additive error with good prob-
ability by evaluating the polynomial on a constant number of random samples.
Via this approach, [BHT13] found an algorithmic regularity lemma for degree-d
n-variate polynomials (see Section 2.2) that runs in time O(nd) when d < p.

In spirit, our algorithm is very similar to Kaltofen’s factorization algorithm
[Kal95], where the polynomial is first restricted to a random two-dimensional
subspace, then factored using bivariate factorization algorithms, and then lifted
back to the original space. From this perspective, we show that the “restrict-
solve-lift” paradigm can be used for any degree-structural decomposition prob-
lem, not just factorization (at least when the field order is a constant prime
but larger than the degree of the input polynomial). We hope that this work
brings the techniques of higher-order Fourier analysis to the attention of a wider
audience in computer science.

2 Technical Preliminaries

From a bird’s eye viewpoint, higher-order Fourier analysis is a study of how
the analytic properties of a collection of polynomial relate to the collection’s
algebraic/combinatorial structure. We make precise all the needed notions in
the subsections below.

To start off, let us define the important notion of a polynomial factor:

Definition 2. If P1, . . . , PC : Fn
p → F is a sequence of polynomials, then the

tuple B = (P1, . . . , PC) is called a polynomial factor. The complexity of B,
denoted |B|, is the number of defining polynomials, C. The degree of B is the
maximum degree among its defining polynomials P1, . . . , PC . Also, ‖B‖ = pC is
called the order of B; the number of nonempty atoms of B is bounded by ‖B‖. By
an abuse of notation, we also use B to denote the map x "→ (P1(x), . . . , PC(x)).

2.1 Three Notions of Polynomial Pseudorandomness

The main results of higher-order Fourier analysis revolve around three measures
of pseudorandomness for polynomial factors. Each is a statistical test that is
perfectly met by truly random polynomial factors, and the question is how well
are they met by factors of degree d.

130 A. Bhattacharyya

Bias. The first pseudorandomness measure is the familiar notion of bias, gen-
eralizing the definition of Naor and Naor [NN93] over F2.

Definition 3 (Unbiased). The bias of a function F : Fn
p → Fp is:

bias(F) =

∣∣∣∣ E
x∈Fn

p

[e (F (x))]

∣∣∣∣
Given a function β : Z+ → (0, 1) and a polynomial factor B defined by a

sequence of polynomials P1, . . . , PC : Fn
p → F, the factor B is said to be β-

unbiased if for every (a1, . . . , aC) ∈ {0, . . . , p− 1}C \ {0C},

bias

(
C∑
i=1

aiPi

)
< β(C).

The following facts are straightforward and folklore.

Lemma 1 (Equidistribution). Given β : Z+ → (0, 1), let B be a β-unbiased
polynomial factor of complexity C. For any b ∈ FC:

Pr
x

[B(x) = b] =
1

‖B‖ ± β(C).

Corollary 1 (Atom Dispersal). If β(k) = 1
2pk and B is a β-unbiased polyno-

mial factor, then all of the ‖B‖ atoms of B are nonempty.

The following theorem3, proved in [BFH+13] shows that a function of an
unbiased factor of degree d has the degree which one would expect from a generic
collection of polynomials of degree d.

Theorem 2 (Degree Preservation, Theorem 4.1 of [BFH+13]). For any
positive integer d < p, there is a function αd

2 : Z+ → (0, 1) such that the following
is true. Let B be any factor defined by polynomials P1, . . . , PC : Fn

p → Fp of degree

� d. Suppose B is αd
2-unbiased. Let Γ : FC

p → Fp be an arbitrary function. Define
the polynomial F : Fn

p → Fp by F (x) = Γ (B(x)).
Then, for any factor B′ defined by polynomials Q1, . . . , QC : Fn

p → Fp with
deg(Qi) � deg(Pi) for every i ∈ [C], if G : Fn

p → Fp is the polynomial G(x) =
Γ (B′(x)), it holds that deg(G) � deg(F).

Uniformity. Bias is often a very weak measure of pseudorandomness: the bias of
any linear function is 0, even though it is clearly not a random function. We could
strengthen low bias by additionally requiring that all the Fourier coefficients be
small, which would ensure that the function is not (correlated with) a linear
function. Continuing down this path leads us to the notion of uniformity, which
measures the correlation of a function with polynomials of bounded degree.

3 A variant of Theorem 2 is true when p � d also, as shown in [BFH+13], but in that
case, they require the stronger assumption of uniformity (see next section) instead
of unbiasedness.

Polynomial Decompositions in Polynomial Time 131

Definition 4 (Multiplicative Derivative). Given a function f : Fn
p → C

and an element h ∈ Fn
p , the multiplicative derivative of f in direction h is the

function Δhf : Fn
p → C satisfying Δhf(x) = f(x + h)f(x) for all x ∈ Fn

p .

Definition 5 (Uniformity). Given a function f : Fn
p → C and an integer

d � 1, the Gowers uniformity norm of order d for f is given by:

‖f‖Ud =

∣∣∣∣ E
h1,...,hd∈Fn

p

E
x∈Fn

p

[(Δh1Δh2 · · ·Δhd
f)(x)]

∣∣∣∣1/2d
Given a function γ : Z+ → (0, 1) and a polynomial factor B defined by a

sequence of polynomials P1, . . . , PC : Fn
p → F, the factor B is said to be γ-

uniform if for every (a1, . . . , aC) ∈ {0, . . . , p− 1}C \ {0C},∥∥∥∥∥e
(

C∑
i=1

aiPi

)∥∥∥∥∥
Ud

< γ(C)

where d = maxi deg(aiPi).

Note that bias(P) = ‖e (P)‖U1 for any P : Fn
p → F. Moreover, it holds that

‖f‖Ud � ‖f‖Ud+1 for any f : Fn
p → C and d � 1 [Gow98]. So:

Lemma 2 (Uniformity Implies Unbiased). If B is a polynomial factor that
is γ-uniform for some function γ : Z+ → (0, 1), then B is also γ-unbiased.

Regularity. A third measure of pseudorandomness was introduced by Green
and Tao [GT09] as a bridge between the algebraic structure of polynomials and
the analytic notions of bias and uniformity.

Definition 6 (Regularity). Given a function F : Fn
p → Fp and an integer

d > 1, the d-rank of F , denoted rankd(F), is defined to be the smallest integer
r such that there exist polynomials Q1, . . . , Qr : Fn

p → Fp of degree � d− 1 and
a function Γ : Fr

p → Fp satisfying P (x) = Γ (Q1(x), . . . , Qr(x)). If d = 1, the
1-rank is defined to be ∞ if F is non-constant and 0 otherwise.

Given a function R : Z+ → Z+ and a polynomial factor B defined by a
sequence of polynomials P1, . . . , PC : Fn

p → Fp, the factor B is said to be R-

regular if for every a1, . . . , aC ∈ {0, 1, . . . , p− 1}C \ {0C},

rankd

(
C∑
i=1

aiPi

)
> R(C)

where d = maxi deg(aiPi). Also, the rank of B is at least R(C).

Regularity and uniformity turn out to be essentially equivalent, due to the
following two remarkable theorems. The first theorem is folklore and essentially
due to (linear) Fourier analysis.

132 A. Bhattacharyya

Theorem 3 (Uniformity Implies Regularity). Suppose that p > d and let

R : Z+ → Z+ be any non-decreasing function. Then, there is a function γd,R

3 :

Z+ → (0, 1) such that the following holds. Any polynomial factor of degree d that

is γd,R

3 -uniform is also R-regular.

Theorem 4 (Regularity ImpliesUniformity, Proposition 6.1 of [GT09]).
Suppose that p > d, and let γ : Z+ → (0, 1) be any non-increasing function. Then,

there is a function Rd,γ

4 : Z+ → Z+ such that the following holds. Any polynomial

factor of degree d that is Rd,γ

4 -regular is also γ-uniform.

Remark 1. Importantly, when d < p, γd,R

3 is explicitly known, given d and R. In

other words, given access to an evaluation oracle for R, γd,R

3 is polynomial-time

computable. Similarly, Rd,γ

4 is explicitly known.

While unbiasedness and uniformity are analytic properties of a factor, regu-
larity is an algebraic notion and is hence more amenable to algebraic operations
on the function. For instance, we have:

Lemma 3 (Subspace Restriction, Lemma 2.13 of [BFH+13]). Suppose
P : Fn

p → Fp is a polynomial of degree d and rank r, where r > p + 1. Let A be
a hyperplane in Fn

p , and denote by P ′ the restriction of P to A. Then, P ′ is a
polynomial of degree d and rank � r − p, unless d = 1 and P is constant on A.

2.2 Algorithmic Regularity Lemma

The celebrated Szemerédi graph regularity lemma [Sze78] permits the decompo-
sition of an arbitrary graph into bipartite subgraphs which are regular (in the
graph-theoretic sense). One can carry out an analogous type of refinement for
our notions of regularity also. First, let us specify what we mean by refinements
of a factor.

Definition 7 (Semantic and Syntactic Refinements). B′ is called a se-
mantic refinement (or simply, a refinement) if the partition induced by B′ is a
combinatorial refinement of the partition induced by B. In other words, if for
every x, y ∈ Fn

p , B′(x) = B′(y) implies B(x) = B(y). B′ is called a syntactic
refinement of B if the sequence of polynomials defining B′ extends that of B. A
syntactic refinement is clearly a semantic refinement but not necessarily, vice
versa.

The algorithmic regularity lemma of [BHT13] (analogous to the algorithmic
version [ADL+94] of Szemerédi’s regularity lemma) is as follows:

Theorem 5 (Uniform Refinement, Lemma 4.1 of [BHT13]). Suppose
d < p is a positive integer, ρ ∈ (0, 1), and γ : Z+ → (0, 1) is a non-increasing

function. There is a function Cγ,d

5 : Z+ → Z+ and an algorithm that takes as

input a factor B of Fn
p of degree d, runs in time O(nd) and with probability 1−ρ,

outputs a γ-uniform factor B̃ where B̃ is a refinement of B, is of degree d, and
|B̃| � Cγ,d

5 (|B|).

Polynomial Decompositions in Polynomial Time 133

Combining with Theorem 3 immediately implies:

Corollary 2 (Regular Refinement). Suppose d < p is a positive integer,
ρ ∈ (0, 1) and R : Z+ → Z+ is a non-decreasing function. There is a function

CR,d

2 : Z+ → Z+ and an algorithm that takes as input a factor B of Fn
p of

degree d, runs in time O(nd) and with probability 1 − ρ, outputs a R-regular

factor B̃ where B̃ is a refinement of B, is of degree d, and |B̃| � CR,d

2 (|B|).
Additionally, if B is defined by polynomials P1, P2, . . . , Pm, then we can find

functions Γ1, . . . , Γm : F|B̃|
p → Fp such that Pi(x) = Γi(B̃(x)) for every i ∈ [m].

Moreover, if B is itself a syntactic refinement of some B′ that is of rank at
least R(|B|) + 1, then B̃ will also be a syntactic refinement of B′.

The second-to-last sentence of Corollary 2 comes from observing that the
proof of Lemma 4.1 in [BHT13] explicitly constructs the functions Γi. The last
sentence of Corollary 2 follows from Lemma 3.17 of [BFL13].

3 The Main Proof

First, we prove Theorem 1 allowing the algorithm to be randomized.

Theorem 6. If p > d, then for any fixed k,Δ and Γ , there is a randomized
algorithm which given a polynomial P : Fn

p → Fp of degree d runs in time

O(nd+1) and has the following behavior:

1. If P is (k,Δ, Γ)-structured, with probability 2/3, it finds a (k,Δ, Γ)-
decomposition of P .

2. Otherwise, it always outputs NO.

Proof. Let R : Z+ → Z+ be defined as R(m) = r(Cr,d

2 (m+k))+Cr,d

2 (m+k)+p

for a function r : Z+ → Z+ to be fixed later. First, we apply Corollary corollary 2
to the factor defined by {P} so that with probability 9/10, we find an R-regular
polynomial factor B of degree d defined by polynomials P1, P2, . . . , PC : Fn

p → Fp

such that P (x) = G(B(x)) for some G : FC
p → Fp. Here, C � CR,d(1) = O(1).

If n � Cd, then we can decide whether f is (k,Δ, Γ)-structured by brute
force in O(1) time.

Otherwise, we are in the case n > Cd. From each Pi, pick a monomial mi with
degree equal to deg(Pi). Since n > Cd, there exists i0 ∈ [n] such that xi0 does not
appear in any of the mi’s. Let P ′

1, P
′
2, . . . , P

′
C be P1|xi0=0, P2|xi0=0, . . . , PC |xi0=0

respectively, and let B′ be the factor defined by these polynomials. Clearly,
deg(P ′

i) = deg(Pi) for each i ∈ [C]. Moreover, by Subspace Restriction Lemma 3,
B′ is (R − p)-regular.

Recursively, decide (k,Δ, Γ)-structure for the polynomial P ′ def
= P |xi0=0 on

n− 1 variables. Note that:

P ′(x) = G(P ′
1(x), P ′

2(x), . . . , P ′
C(x)).

134 A. Bhattacharyya

If P ′ is not (k,Δ, Γ)-structured, then clearly P cannot be, and the algorithm
can output NO. Otherwise, suppose that:

P ′(x) = Γ (S1(x), S2(x), . . . , Sk(x))

where deg(S1), . . . , deg(Sk) are at most Δ1, . . . , Δk respectively. We need to
show how to extract (k,Δ, Γ)-structure for P from this decomposition for P ′.

Use Corollary 2 to find, with probability at least 9/10, an r-regular refinement
B′ of the factor defined by {P ′

1, . . . , P
′
C , S1, . . . , Sk}. Note that the rank of B′

is at least r(|B′|), while the rank of the factor defined by {P ′
1, . . . , P

′
C} is at

least R(C) − p = r(Cr,d

2 (C + k)) + Cr,d

2 (C + k) � r(|B′|) + |B′|. Because of

the last part of Corollary 2, B′ is a syntactic refinement of of {P ′
1, . . . , P

′
C}.

That is, we obtain a polynomial factor B′ = {P ′
1, . . . , P

′
C , S

′
1, . . . , S

′
D} which

has degree d and rank > r(C + D), where C + D � Cr,d

2 (C + k) and where

Si(x) = Gi(P
′
1(x), . . . , P ′

C(x), S′
1(x), . . . , S′

D(x)) for some function Gi : FC+D
p →

Fp. Thus, we have that for all x:

G(P ′
1(x), . . . , P

′
C(x))

= Γ (G1(P
′
1(x), . . . , P

′
C(x), S′

1(x), . . . , S
′
D(x)), . . . , Gk(P

′
1(x), . . . , P

′
C(x), S′

1(x), . . . , S
′
D(x))

Note that by Corollary 2, we find the functions G1, . . . , Gk explicitly.
Let γ(m) = 1

2pm , and suppose r(m) > Rd,γ

4 (m). Then, by Theorem 4, Lemma 2

and Corollary 1, we see that B′(x) acquires every possible value in its range. Thus,
we have the identity:

G(a1, . . . , aC) = Γ (G1(a1, . . . , aC , b1, . . . , bD), . . . , Gk(a1, . . . , aC , b1, . . . , bD))

for all a1, . . . , aC , b1, . . . , bD ∈ Fp. In particular:

P (x) = G(P1(x), . . . ,PC(x))

= Γ (G1(P1(x), . . . , PC(x), 0, . . . , 0), . . . , Gk(P1(x), . . . , PC(x), 0, . . . , 0))

Define Qi(x) = Gi(P1(x), . . . , PC(x), 0, . . . , 0) for each i ∈ [k]. Now, suppose

r(m) > R
d,αd

2
4 (m). By Lemma 2 and Theorem 2, since deg(Pi) = deg(P ′

i), it

follows that deg(Qi) � deg(Si) � Δi for each i ∈ [k]. Then, our (k,Δ, Γ)-
decomposition is given by:

P (x) = Γ (Q1(x), . . . , Qk(x))

Hence, set r = max(Rd,γ

4 , R
d,αd

2
4).

In order to see the guarantees in the theorem statement, consider repeating
the above algorithm infinitely until a (k,Δ, Γ)-decomposition is discovered for
P . If P is not (k,Δ, Γ)-structured, then any candidate (k,Δ, Γ)-decomposition
discovered (due to the error probability in Corollary 2) can be ruled out in O(nd)
time. Otherwise, if P is (k,Δ, Γ)-structured the expected time before a valid
(k,Δ, Γ)-decomposition is discovered will be the expected time for discovering

Polynomial Decompositions in Polynomial Time 135

a decomposition for P ′ plus expected O(nd) time for finding valid regular re-
finements. Thus, the expected time to find a (k,Δ, Γ)-decomposition for P is
O(nd+1). Therefore, if we stop repeating the algorithm after O(nd+1) time steps,
our desired result is true by Markov’s theorem.

Theorem 6 can be derandomized using existing pseudorandom generators for
low-degree polynomials [Vio09] to yield Theorem 1. This idea was suggested by
Shachar Lovett. Due to space constraints, we omit the proof here and refer the
reader to the full version [Bha14].

Acknowledgments. Part of this work was done when visiting the Simons In-
stitute and MIT during December, 2013. Many thanks to Ronitt Rubinfeld for
useful discussions, to Pablo Parrilo for asking about tensor rank and to Neeraj
Kayal, Amir Shpilka and Madhu Sudan for pointers to previous work.

References

ADL+94. Alon, N., Duke, R.A., Lefmann, H., Rödl, V., Yuster, R.: The algorithmic
aspects of the regularity lemma. J. Algorithms 16(1), 80–109 (1994)

BCSX11. Bhattacharyya, A., Chen, V., Sudan, M., Xie, N.: Testing linear-invariant
non-linear properties. Theory Comput 7(1), 75–99 (2011)

BFH+13. Bhattacharyya, A., Fischer, E., Hatami, H., Hatami, P., Lovett, S.: Every
locally characterized affine-invariant property is testable. In: Proc. 45th An-
nual ACM Symposium on the Theory of Computing, pp. 429–436 (2013)

BFL13. Bhattacharyya, A., Fischer, E., Lovett, S.: Testing low complexity affine-
invariant properties. In: Proc. 24th ACM-SIAM Symposium on Discrete
Algorithms, pp. 1337–1355 (2013), http://arxiv.org/abs/1201.0330v2

BGS10. Bhattacharyya, A., Grigorescu, E., Shapira, A.: A unified framework for
testing linear-invariant properties. In: Proc. 51st Annual IEEE Symposium
on Foundations of Computer Science, pp. 478–487 (2010)

Bha14. Bhattacharyya, A.: Polynomial decompositions in polynomial time. Techni-
cal report (February 2014), http://eccc.hpi-web.de/report/2014/018/

BHT13. Bhattacharyya, A., Hatami, P., Tulsiani, M.: Algorithmic regularity
for polynomials and applications. Technical report (November 2013),
http://arxiv.org/abs/1311.5090

DLM+07. Diakonikolas, I., Lee, H.K., Matulef, K., Onak, K., Rubinfeld, R., Servedio,
R.A., Wan, A.: Testing for concise representations. In: Proc. 48th Annual
IEEE Symposium on Foundations of Computer Science, pp. 549–558 (2007)

dW08. de Wolf, R.: A Brief Introduction to Fourier Analysis on the Boolean Cube.
Graduate Surveys, vol. 1. Theory of Computing Library (2008)

Gow98. Gowers, W.T.: A new proof of Szeméredi’s theorem for arithmetic progres-
sions of length four. Geom. Funct. Anal. 8(3), 529–551 (1998)

Gow01. Gowers, W.T.: A new proof of Szeméredi’s theorem. Geom. Funct.
Anal. 11(3), 465–588 (2001)

GT08. Green, B., Tao, T.: An inverse theorem for the Gowers U3-norm. Proc. Edin.
Math. Soc. 51, 73–153 (2008)

GT09. Green, B., Tao, T.: The distribution of polynomials over finite fields, with
applications to the Gowers norms. Contrib. Discrete Math. 4(2) (2009)

http://arxiv.org/abs/1201.0330v2
http://eccc.hpi-web.de/report/2014/018/
http://arxiv.org/abs/1311.5090

136 A. Bhattacharyya

GT10. Green, B., Tao, T.: Linear equations in primes. Ann. of Math. 171, 1753–1850
(2010)

GTZ. Green, B., Tao, T., Ziegler, T.: An inverse theorem for the Gowers Us+1-
norm. In: Ann. of Math. (to appear)

GTZ11. Green, B., Tao, T., Ziegler, T.: An inverse theorem for the Gowers U4-norm.
Glasgow Math. J. 53(1), 1–50 (2011)

HK05. Host, B., Kra, B.: Nonconventional ergodic averages and nilmanifolds. Ann.
of Math. 161(1), 397–488 (2005)

Kal95. Kaltofen, E.: Effective Noether irreducibility forms and applications. J.
Comp. Sys. Sci. 50(2), 274–295 (1995)

KL08. Kaufman, T., Lovett, S.: Worst case to average case reductions for polyno-
mials. In: Proc. 49th Annual IEEE Symposium on Foundations of Computer
Science, pp. 166–175 (2008)

KS09. Karnin, Z.S., Shpilka, A.: Reconstruction of generalized depth-3 arithmetic
circuits with bounded top fan-in. In: Proc. 24th Annual IEEE Conference
on Computational Complexity, pp. 274–285 (2009)

KSS14. Kopparty, S., Saraf, S., Shpilka, A.: Equivalence of polynomial identity test-
ing and deterministic multivariate polynomial factorization. Technical Re-
port 001, Electronic Colloquium on Computational Complexity (January
2014), http://eccc.hpi-web.de/report/2014/001/

NN93. Naor, J., Naor, M.: Small-bias probability spaces: efficient constructions and
applications. SIAM J. on Comput. (4), 838–856 (1993), Earlier version in
STOC 1990

Sze78. Szemerédi, E.: Regular partitions of graphs. In: Bremond, J.C., Fournier,
J.C., Las Vergnas, M., Sotteau, D. (eds.) Proc. Colloque Internationaux
CNRS 260 – Problèmes Combinatoires et Théorie des Graphes, pp. 399–401
(1978)

Tao12. Tao, T.: Higher Order Fourier Analysis. Graduate Studies in Mathematics,
vol. 142. American Mathematical Society (2012)

TZ10. Tao, T., Ziegler, T.: The inverse conjecture for the Gowers norm over finite
fields via the correspondence principle. Analysis & PDE 3(1), 1–20 (2010)

TZ12. Tao, T., Ziegler, T.: The inverse conjecture for the Gowers norm over finite
fields in low characteristic. Ann. Comb. 16(1), 121–188 (2012)

Vio09. Viola, E.: The sum of D small-bias generators fools polynomials of degree
D. Computational Complexity 18(2), 209–217 (2009)

VW08. Viola, E., Wigderson, A.: Norms, XOR lemmas, and lower bounds for poly-
nomials and protocols. Theory Comput 4(7), 137–168 (2008)

vzGK85. von zur Gathen, J., Kaltofen, E.: Factorization of multivariate polynomials
over finite fields. Mathematics of Computation 45(171), 251–261 (1985)

http://eccc.hpi-web.de/report/2014/001/

Fault-Tolerant Approximate

Shortest-Path Trees�

Davide Bilò1, Luciano Gualà2, Stefano Leucci3, and Guido Proietti3,4

1 Dipartimento di Scienze Umanistiche e Sociali, Università di Sassari, Italy
2 Dipartimento di Ingegneria dell’Impresa, Università di Roma “Tor Vergata”, Italy

3 Dipartimento di Ingegneria e Scienze dell’Informazione e Matematica,
Università degli Studi dell’Aquila, Italy

4 Istituto di Analisi dei Sistemi ed Informatica, CNR, Roma, Italy
davide.bilo@uniss.it, guala@mat.uniroma2.it,

{stefano.leucci,guido.proietti}@univaq.it

Abstract. The resiliency of a network is its ability to remain effectively
functioning also when any of its nodes or links fails. However, to reduce
operational and set-up costs, a network should be small in size, and this
conflicts with the requirement of being resilient. In this paper we address
this trade-off for the prominent case of the broadcasting routing scheme,
and we build efficient (i.e., sparse and fast) fault-tolerant approximate
shortest-path trees, for both the edge and vertex single-failure case. In
particular, for an n-vertex non-negatively weighted graph, and for any
constant ε > 0, we design two structures of size O(n log n

ε2
) which guaran-

tee (1 + ε)-stretched paths from the selected source also in the presence
of an edge/vertex failure. This favorably compares with the currently
best known solutions, which are for the edge-failure case of size O(n)
and stretch factor 3, and for the vertex-failure case of size O(n log n) and
stretch factor 3. Moreover, we also focus on the unweighted case, and we
prove that an ordinary (α, β)-spanner can be slightly augmented in order
to build efficient fault-tolerant approximate breadth-first-search trees.

1 Introduction

Broadcasting a message from a source node to every other node of a network is
one of the most basic communication primitives. Since this operation should be
performed by making use of a both sparse and fast infrastructure, the natural
solution is to root at the source node a shortest-path tree (SPT) of the underlying
graph. However, the SPT, as any tree-based network topology, is highly sensitive
to a link/node malfunctioning, which will unavoidably cause the disconnection
of a subset of nodes from the source.

To be readily prepared to react to any possible (transient) failure in a SPT,
one has then to enrich the tree by adding to it a set of edges selected from the
underlying graph, so that the resulting structure will be 2-edge/vertex-connected

� This work was partially supported by the Research Grant PRIN 2010 “ARS Tech-
noMedia”, funded by the Italian Ministry of Education, University, and Research.

A.S. Schulz and D. Wagner (Eds.): ESA 2014, LNCS 8737, pp. 137–148, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

138 D. Bilò et al.

w.r.t. the source. Thus, after an edge/vertex failure, these edges will be used to
build up the alternative paths emanating from the root, each one of them in
replacement of a corresponding original shortest path which was affected by the
failure. However, if these paths are constrained to be shortest, then it can be
easily seen that for a non-negatively real weighted and undirected graph G of n
nodes and m edges, this may require as much as Θ(m) additional edges, also in
the case in which m = Θ(n2). In other words, the set-up costs of the strengthened
network may become unaffordable. Thus, a reasonable compromise is that of
building a sparse and fault-tolerant structure which accurately approximates the
shortest paths from the source, i.e., that contains paths which are longer than
the corresponding shortest paths by at most a multiplicative stretch factor, for
any possible edge/vertex failure. The aim of this paper is to show that very
efficient structures of this sort do actually exist.

Related work. Let s denote a distinguished source vertex of a non-negatively
real weighted and undirected graph G = (V (G), E(G)). We say that a spanning
subgraph H of G is an Edge-fault-tolerant α-Approximate SPT (in short, α-
EASPT), with α > 1, if it satisfies the following condition: For each edge e ∈ E(G),
all the distances from s in the subgraph H − e = (V (H), E(H) \ {e}) are α-
stretched w.r.t. the corresponding distances in G − e. When vertex failures are
considered, then the EASPT is correspondingly called VASPT.

Our work is inspired by the paper of Parter and Peleg [13], which were con-
cerned with the same problem but on unweighted graphs (and so they were fo-
cusing on the construction of an edge-fault-tolerant α-approximate Breadth-First
Search tree (in short, α-EABFS). In that paper the authors present a 3-EABFS
having at most 4n edges.1 Moreover, the authors also present a set of lower and
upper bounds to the size of (α, β)-EABFS, i.e., edge-fault-tolerant structures for
which the length of a path is stretched by at most a factor of α plus an additive
term of β. Finally, assuming at most f = O(1) edge failures can take place, they
show the existence of a (3(f + 1), (f + 1) logn)-EABFS of size O(fn).

On the other hand, if one wants to have an exact edge-fault-tolerant SPT
(say ESPT), then as we said before this may require Θ(n2) edges. This is now
in contrast with the unweighted case, where it can be shown the existence
(see [12]) of an edge/vertex-fault-tolerant BFS (say EBFS/VBFS) of size O(n ·
min{ecc(s),

√
n}), where ecc(s) denotes the eccentricity of s in G. In the same

paper, the authors also exhibit a corresponding lower bound of Ω(n3/2) for the
size of a EBFS. Moreover, they also treat the multisource case, i.e., that in which
we look for a structure which incorporates an EBFS rooted at each vertex of a set
S ⊆ V (G). For this, they show the existence of a solution of size O(

√
|S| ·n3/2),

which is tight. Finally, the authors provide an O(log n)-approximation algorithm
for constructing an optimal (in terms of size) EBFS (also for the multisource case),
and they show this is tight.

1 Notice that this result is obtained through a rather involved algorithm that suitably
enriches a BFS of G rooted at the source node, but, as we will point out in more
detail later, a 3-EASPT of size at most 2n (and then, a fortiori, a 3-EABFS of the same
size), can actually be obtained as a by-product of the results given in [11].

Fault-Tolerant Approximate Shortest-Path Trees 139

As far as the vertex-failure problem is concerned, in [3] the authors study
the related problem of computing distance sensitivity oracles (DSO) structures.
Designing an efficient DSO means to compute, with a low preprocessing time,
a compact data structure which is functional to quickly answer to some dis-
tance query following a component failure. Classically, DSO cope with single
edge/vertex failures, and they have to answer to a point-to-point post-failure
(approximate) distance query, or they have to report a point-to-point replace-
ment short(est) path. In particular, in [3] the vertex-failure case w.r.t. a SPT is
analyzed, and the authors compute in O(m log n + n2 logn) time a DSO of size
O(n log n), that returns a 3-stretched replacement path in time proportional to
the path’s size. As the authors specify in the paper, this DSO can be used to
build a 3-VASPT of size O(n logn), and a (1 + ε)-VABFS of size O(n

ε3 + n logn).
Actually, we point out that the latter structure can be easily sparsified so as to
obtain a (1+ε)-EABFS of size O(n

ε3): in fact, its O(n log n) size term is associated
with an auxiliary substructure that, in the case of edge failures, can be made of
linear size. This result is of independent interest, since it qualifies itself as the
best current solution for the EABFS problem.

Our results. Our main result is the construction in polynomial time2 of a (1+ε)-
VASPT of size O(n logn

ε2), for any ε > 0. This substantially improves on the 3-VASPT
of size O(n log n) given in [3]. To obtain our result, we perform a careful selection
of edges that will be added to an initial SPT. The somewhat surprising outcome
of our approach is that if we accept to have slightly stretched fault-tolerant
paths, then we can drastically reduce the Θ(n2) size of the structure that we
would have to pay for having fault-tolerant shortest paths! Actually, the analysis
of the stretch factor and of the structure’s size induced by our algorithm is quite
involved. Thus, for clarity of presentation, we give our result in two steps: first,
we show an approach to build a (1 + ε)-EASPT of size O(n logn

ε2), then we outline
how this approach can be extended to the vertex-failure case.

Furthermore, we also focus on the unweighted case, and we exhibit an in-
teresting connection between a fault-tolerant BFS and an (α, β)-spanner. An
(α, β)-spanner of a graph G is a spanning subgraph H of G such that all the
intra-node distances in H are stretched by at most a multiplicative factor of α
and an additive term of β w.r.t. the corresponding distances in G. We show how
an ordinary (α, β)-spanner of size σ = σ(n,m) can be used to build in polynomial
time an (α, β)-EABFS and an (α, β)-VABFS of size O(σ) and O(σ + n logn), re-
spectively. As a consequence, the EABFS problem is easier than the corresponding
(non fault-tolerant) spanner problem, and we regard this as an interesting hard-
ness characterization. Notice also that for all the significant values of α and β,
the size of an (α, β)-spanner is ω(n logn), which essentially means that the VABFS
problem is easier than the corresponding spanner problem as well. This bridge
between the two problems is useful for building sparse (1, β)-VABFS structures

2 We do not insist on the time efficiency in building our structures, since the focus of
our paper, consistently with the literature, is on the trade-off between their size and
their stretch factor.

140 D. Bilò et al.

by making use of the vast literature on additive (1, β)-spanners. For instance,

the (1, 4)-spanner of size O(n
7
5 polylog(n)) given in [6], and the (1, 6)-spanner of

size O(n
4
3) given in [2], can be used to build corresponding vertex-fault-tolerant

structures. Another interesting implication arises for the multisource EABFS prob-
lem. Indeed, given a set of multiple sources S ⊆ V (G), the (α, β)-spanner of size
σ can be used to build a multisource (α, β)-EABFS of size O(n · |S| + σ). This

allows to improve, for |S| = ω(n
1
15 polylog(n)), the multisource (1, 4)-EABFS of

size O(n
4
3 · |S|) given in [13]: indeed, it suffices to plug-in in our method the

(1, 4)-spanner of size O(n
7
5 polylog(n)) given in [6].

Other related results. Besides fault-tolerant (approximate) SPT and BFS, there
is a large body of literature on fault-tolerant short(est) paths in graphs. A
natural counterpart of the structures considered in this paper, as we have seen
before, are the DSO. For recent achievements on DSO, we refer the reader to [4,8],
and more in particular to [3,10], where single-source distances are considered.
Another setting which is very close in spirit to ours is that of fault-tolerant
spanners. In [7], for weighted graphs and any integer k ≥ 1, the authors present
a (2k − 1, 0)-spanner resilient to f vertex (resp., edge) failures of size O(f2 ·
kf+1 ·n1+1/k · log1−1/k n) (resp., O(f ·n1+1/k)). This was later improved through
a randomized construction in [9]. On the other hand, for the unweighted case, in
[5] the authors present a general result for building a (1, O(f · (α+ β)))-spanner
resilient to f edge failures, by unioning an ordinary (1, β)-spanner with a fault-
tolerant (α, 0)-spanner resilient against up to f edge faults. Finally, we mention
that in [1] it was introduced the resembling concept of resilient spanners, i.e.,
spanners such that whenever any edge in G fails, then the relative distance
increases in the spanner are very close to those in G, and it was shown how to
build a resilient spanner by augmenting an ordinary spanner.

2 Notation

We start by introducing our notation. For the sake of brevity, we give it for the
case of edge failures, but it can be naturally extended to the node failure case.

Given a non-negatively real weighted, undirected, and 2-edge-connected graph
G, we will denote by wG(e) or wG(u, v) the weight of the edge e = (u, v) ∈ E(G).
We also define w(G) =

∑
e∈E(G) w(e). Given an edge e = (u, v), we denote by

G − e or G − (u, v) (resp., G + e or G + (u, v)) the graph obtained from G by
removing (resp., adding) the edge e. Similarly, for a set F of edges, G−F (resp.,
G + F) will denote the graph obtained from G by removing (resp., adding) the
edges in F .

We will call πG(x, y) a shortest path between two vertices x, y ∈ V (G),
dG(x, y) its (weighted) length, and TG(s) a SPT of G rooted at s. Whenever
the graph G and/or the vertex s are clear from the context, we might omit
them, i.e., we will write π(u) and d(u) instead of πG(s, u) and dG(s, u), respec-
tively. When considering an edge (x, y) of an SPT we will assume x and y to be
the closest and the furthest endpoints from s, respectively.

Fault-Tolerant Approximate Shortest-Path Trees 141

Algorithm 1. Algorithm for building an (1 + ε)-EASPT

Input : A graph G, s ∈ V (G), ε > 0
Output: A (1 + ε)-EASPT of G rooted at s

1 H ← compute a 3-EASPT of size O(n) using the algorithm in Sect. 3.1.1 of [11].
2 for e ∈ E(TG(s)) in preorder w.r.t. TG(s) do
3 for t ∈ V (G) in preorder w.r.t. T−e

G (s) do
4 if d−e

H (t) > (1 + ε)d−e
G (t) then /* vertex t is bad for edge e */

5 Select a set of edges S ⊆ E(π−e
G (t)) (see details after Lemma 1)

6 H ← H + S

7 return H

Given an edge e ∈ E(G), we define π−e
G (x, y), d−e

G (x, y) and T−e
G (s) to be,

respectively, a shortest path between x and y, its length, and a SPT in the
graph G− e. Moreover, if P is a path from x to y and Q is a path from y to z,
with x, y, z ∈ V (G), we will denote by P ◦Q the path from x to z obtained by
concatenating P and Q.

Given G, a vertex s ∈ V (G), and an edge e = (u, v) ∈ E(TG(s)), we denote
by UG(e) and DG(e) the partition of V (G) induced by the two connected com-
ponents of T (G) − e, such that UG(e) contains s and u, and DG(e) contains v.
Then, CG(e) = {(x, y) ∈ E(G) : x ∈ UG(e), y ∈ DG(e)} will denote the cutset
of e, i.e., the set of edges crossing the cut (UG(e), DG(e)).

For the sake of simplicity we consider only edge weights that are strictly posi-
tive. However our entire analysis also extends to non-negative weights. Through-
out the rest of the paper we will assume that, when multiple shortest paths exist,
ties will be broken in a consistent manner. In particular we fix a SPT T = TG(s)
of G and, given a graph H ⊆ G and x, y ∈ V (H), whenever we compute the path
πH(x, y) and ties arise, we will prefer the edges in E(T). We will also assume
that if we are considering a shortest path πH(x, y) between x and y passing
through vertices x′ and y′, then πH(x′, y′) ⊆ πH(x, y).

3 A (1 + ε)-EASPT Structure

First, we give a high-level description of our algorithm for computing a (1 + ε)-
EASPT (see Algorithm 1). We build our structure, say H , by starting from an
SPT T rooted at s which is suitably augmented with at most n−1 edges in order
to make it become a 3-EASPT. Then, we enrich H incrementally by considering
the tree edge failures in preorder, and by checking the disconnected vertices.
When an edge e fails and a vertex t happens to be too stretched in H − e w.r.t.
its distance from s in G − e, we add a suitable subset of edges to H , selected
from the new shortest path to t. This is done so that we not only adjust the
distance of t, but we also improve the stretch factor of a subset of its predecessors.
This is exactly the key for the efficiency of our method, since altogether, up to a
logarithmic factor, we maintain constant in an amortized sense the ratio between
the size of the set of added edges and the overall distance improvement.

142 D. Bilò et al.

Let us now provide a detailed description of our algorithm. To build the
initial 3-EASPT, it augments T by making use of a swap algorithm devised in
[11]. More precisely, in that paper the authors were concerned with the problem
of reconnecting in a best possible way (w.r.t. to a set of distance criteria) the
two subtrees of an SPT undergoing an edge failure, through a careful selection
of a swap edge, i.e., an edge with an endvertex in each of the two subtrees. In
particular, they show that if we select as a swap edge for e = (u, v) – with u
closer to the source s than v – the edge that lies on a shortest path in G−e from
s to v, then the distances from the source towards all the disconnected vertices
is stretched at most by a factor of 3.3 Therefore, a 3-EASPT of size at most 2n
can be obtained by simply adding to a SPT rooted at s a such swap edge for
each corresponding tree edge, and interestingly this improves the 3-EASPT of size
at most 4n provided in [13].

Then, our algorithm works in n − 1 phases, where each phase considers an
edge of T w.r.t. to a fixed preorder of the edges, say e1, . . . , en−1. In the h-th
phase, the algorithm considers the failure of eh, and when a vertex t happens to
be too stretched in H w.r.t. d−eh(t), then we say that t is bad for eh and we add
a suitable subset S of edges to H . These edges are selected from π−eh(t) and
they always include the last edge of π−eh (t). We now show that this suffices to
prove the correctness of the algorithm:

Lemma 1. The structure H returned by the algorithm is a (1 + ε)-EASPT.

Proof. Let H̃ be the structure built by the algorithm just before a bad vertex
t for an edge eh is considered. Assume by induction that, for every vertex z in
T−eh
G (s) already considered in phase h, we have d−eh

H̃
(z) ≤ (1 + ε)d−eh(t). Let

f = (z, t) be the last edge of π−eh(t) and recall that f is always added to H̃ .
Hence we have:

d−eh
H (t) ≤ d−eh

H̃+f
(t) ≤ d−eh

H̃
(z) + w(f) ≤ (1 + ε)d−eh(z) + w(f)

≤ (1 + ε)(d−eh (z) + d−eh (z, t)) = (1 + ε)d−eh (t). ��

It remains to describe the edge selection process and to analyze the size of
our final structure. Let H0 be the initial 3-EASPT structure. Let us fix the failed
edge e = (u, v) and a single bad vertex t for e. We call H ′ the structure built
by the algorithm just before t is considered. Let f = (x, y) be the unique edge
in CG(e) ∩E(π−e

G (t)). Consider the subpath of π−e
G (t) going from x to t and let

x0, x1, . . . , xr be its vertices, in order. We consider the set Z = {xi : (xi−1, xi) �∈
E(H0)}, we name its vertices z1, . . . , zk with k = |Z| − 1, in order and we let

z0 = x (see Figure 1). We define αi =
d−e

H′ (zi)
d−e(zi)

. It follows from the definitions and

from Lemma 1 that we have α0 = 1, αj ≤ (1 + ε) for 1 ≤ j < k and αk > 1 + ε.
Think of the edges in π−e(t) as being directed towards t for a moment. In the

following we will describe how to select the set S of edges used by the algorithm.

3 Actually, in [11] it is not explicitly claimed the 3-stretch factor, but this is implicitly
obtained by the qualitative analysis of the swap procedure therein provided.

Fault-Tolerant Approximate Shortest-Path Trees 143

e

v

u

x = z0

y = z1

s

z2
z3

zi

zk−1 zk = t

π−e
G (t)

f

CG,s(e)

Fig. 1. Edge selection phase of Algorithm 1 when a bad vertex t for the failing edge e
is considered. Bold edges belong to H0 while the black path is π−e

G (t).

In particular, we will select η ≥ 1 edges entering into the last η vertices in Z.
This choice of S will ensure that the overall decrease of the values αi in H ′ + S
will be at least ε

Hn
η where Hn denotes the n-th harmonic number.

We exploit the fact that, after adding the set S, each “new value” αi with
i > k − η = j, will not be larger than αj as we will show in the following.

Consider the sequence γ0, . . . , γk where γi = 1 + ε
Hk

(Hk −Hk−i). Notice that
the sequence is monotonically increasing from γ0 = 1 to γk = 1+ε. Let 0 ≤ j < k
be the largest index such that αj ≤ γj . Notice that j always exists as α0 = γ0
and that αk > γk. We set η = k− j so that the set S is defined accordingly. Let
U = {zj+1, . . . , zk} be the set of vertices for which an incoming edges has been
added in S.

For every vertex z ∈ U we define the following path in H ′ + S: P (z) =
π−e
H′ (zj) ◦π(zj , z). Notice that π(zj , z) is entirely contained in H ′ +S. We define

α′
i = w(P (zi))

d−e(zi)
, and note that α′

i is an upper bound to the stretch of z in H ′ + S.

Lemma 2. For i > j, α′
i ≤ αj < αi.

Proof. By definition of j, we have αj ≤ γj < γi < αi. Now we prove α′
i ≤ αj :

α′
i =

w(P (z))

d−e(zi)
=

d−e
H′ (zj) + d(zj, zi)

d−e(zi)
≤ αjd

−e(zj) + d−e(zj , zi)

d−e(zi)
≤ αjd

−e(zi)

d−e(zi)
= αj .

��

We now lower-bound the overall decrease of the values α′
i’s w.r.t. the corre-

sponding αi’s by using the following inequalities:

∑
z∈U

(
d−e
H′ (z)

d−e(z)
− w(P (z))

d−e(z)

)
=

k∑
i=j+1

(αi−α′
i) ≥

k∑
i=j+1

(αi−αj) ≥
k∑

i=j+1

(γi− γj)

=
ε

Hk

k∑
i=j+1

(Hk−j −Hk−i) =
ε

Hk
(k − j) ≥ ε

Hn
η.

144 D. Bilò et al.

where in the last but one step we used the well-known equality that for every
j ≤ k,

∑k
i=j+1 (Hk−j −Hk−i) = k − j.

The above selection procedure is repeated by the algorithm for every failed
edge eh and for every corresponding bad vertex. We now focus on the h-th phase
of the algorithm. Let Uh be the union of all the sets U used when considering the
bad vertices of the phase h. Moreover let Vh =

⋃h
i=1 Ui and notice that V0 = ∅.

For a vertex z ∈ Uh, let Ph(z) be the last path P (z) built by the algorithm, as
defined above. Let Hh (resp., H ′

h) be the structure built by the algorithm at the
end (resp., start) of the phase h and let mh be the number of new edges added
during the phase h. By summing over all the bad vertices for edge eh, we have:

Lemma 3.
∑
z∈Uh

(
d−eh
H′

h
(z)

d−eh (z)
− w(Ph(z))

d−eh (z)

)
≥ mh

ε

Hn
.

Now, let us define a function φh(z) for every z ∈ V :

φh(z) =

⎧⎪⎨⎪⎩
0 if z �∈ Vh

w(Ph(z)) if z ∈ Uh

φh−1(z) if z ∈ Vh \ Uh

The proofs of next three lemmas are postponed to the full version of the paper.

Lemma 4. For every z ∈ Uh we have d−eh
G (z) < 2

εdG(z).

Lemma 5. For z ∈ Vh−1, φh−1(z) ≥ d−eh
H′

h
(z).

Lemma 6. For z ∈ Uh, d−eh
H′

h
(z) ≥ w(Ph(z)).

We now prove the following:

Lemma 7.
∑
z∈Uh

φh−1(z)

d(z)
−
∑
z∈Uh

φh(z)

d(z)
≥ mh

ε

Hn
− |Uh \ Vh−1|

6

ε
.

Proof. By Lemmas 3–6, and since the initial structure H0 is a 3-EASPT, we have:

∑
z∈Uh

φh−1(z)

d(z)
−

∑
z∈Uh

φh(z)

d(z)
≥

∑
z∈Uh∩Vh−1

(
φh−1(z)

d(z)
− φh(z)

d(z)

)
+

∑
z∈Uh\Vh−1

(
φh−1(z)

d(z)
− φh(z)

d(z)

)

≥
∑

z∈Uh∩Vh−1

⎛
⎝d

−eh
H′

h
(z)

d(z)
− φ−e

h (z)

d(z)

⎞
⎠+

∑
z∈Uh\Vh−1

−φh(z)

d(z)

=
∑

z∈Uh∩Vh−1

⎛
⎝d

−eh
H′

h
(z)

d(z)
− w(Ph(z))

d(z)

⎞
⎠+

∑
z∈Uh\Vh−1

⎛
⎝d

−eh
H′

h
(z)

d(z)
− w(Ph(z))

d(z)

⎞
⎠−

∑
z∈Uh\Vh−1

d
−eh
H′

h
(z)

d(z)

≥
∑

z∈Uh∩Vh−1

⎛
⎝d

−eh
H′

h
(z)

d−eh (z)
− w(Ph(z))

d−eh (z)

⎞
⎠+

∑
z∈Uh\Vh−1

⎛
⎝d

−eh
H′

h
(z)

d−eh (z)
− w(Ph(z))

d−eh (z)

⎞
⎠−

∑
z∈Uh\Vh−1

3d−eh (z)

d(z)

≥
∑

z∈Uh

⎛
⎝d

−eh
H′

h
(z)

d−eh (z)
− w(Ph(z))

d−eh (z)

⎞
⎠−

∑
z∈Uh\Vh−1

3 2
ε
d(z)

d(z)
≥ mh

ε

Hn
− |Uh \ Vh−1|

6

ε
. ��

Fault-Tolerant Approximate Shortest-Path Trees 145

We now define a global potential function Φ:

Φ(h) =
∑
z∈Vh

φh(z)

d(z)

for 0 < h ≤ n− 1. Notice that we trivially have Φ(h) ≥ 0.

Theorem 1. The structure H returned by the algorithm is a (1 + ε)-EASPT of
size O(n log n

ε2).

Proof. The fact that H is a (1+ε)-EASPT follows from Lemma 1. Concerning the
size of H , since H0 contains O(n) edges, we only focus on bounding the number

μ =
∑n−1

h=1 mh of edges in E(H) \ E(H0). Using Lemma 7, we can write:

Φ(i) =
∑

z∈Vi−1\Ui

φi(z)

d(z)
+

∑
z∈Ui

φi(z)

d(z)

=
∑

z∈Vi−1\Ui

φi−1(z)

d(z)
+

∑
z∈Ui

φi−1(z)

d(z)
−

⎛⎝∑
z∈Ui

φi−1(z)

d(z)
−

∑
z∈Ui

φi(z)

d(z)

⎞⎠
≤

∑
z∈Vi−1\Ui

φi−1(z)

d(z)
+

∑
z∈Vi−1∩Ui

φi−1(z)

d(z)
+

∑
zi∈Ui\Vi−1

φi−1(z)

d(z)
−mh

ε

Hn
+ |Uh \Vh−1|

6

ε

≤ Φ(i− 1) + 0−mh
ε

Hn
+ |Uh \ Vh−1|

6

ε
.

Unfolding the previous recurrence relation we obtain:

0 ≤ Φ(n− 1) ≤ |Vn−1|
6

ε
− ε

Hn

n−1∑
h=0

mh ≤ n
6

ε
− ε

Hn
μ

which we finally solve for μ to get μ = O(n logn
ε2). ��

4 A (1 + ε)-VASPT Structure

In this section we extend our previous (1 + ε)-EASPT structure to deal with
vertex failures. In order to do so we will build a different subgraph H0 having
suitable properties that we will describe. Then we will use the natural extension
of Algorithm 1 where we consider (in preorder) vertex failures instead of edge
failures. We now describe the construction of H0 and then argue how the previous
analysis can be adapted to show the same bound on the size of H .

The structure H0 is initially equal to T and it is augmented by using a tech-
nique similar to the one shown in [3]: the SPT T of G is suitably decomposed
into ancestor-leaf vertex-disjoint paths. Then, for each path, an approximate
structure is built. This structure will provide approximate distances towards
any vertex of the graph when any vertex along the path fails. The union of T
with all those structures will form H0.

146 D. Bilò et al.

v

u

z1

s

z2
z3

zi

zk−1zk = t
zk−2

z0

π−u
G (t)

f

U

D O

Fig. 2. Edge selection phase of the vertex-version of Algorithm 1 when a bad vertex t
for the failing vertex u is considered. Bold edges belong to H0 while the black path is
π−u
G (t). Notice that all zis belong to the down set D.

Fix a path Q of the previous decomposition starting from a vertex q, and let
Tq be the subtree of T rooted at q. Moreover, let u ∈ V (Q) be a failing vertex,
and let v be the next vertex in Q.4 We partition the vertices of the forest T − u
into three sets: (i) the up set U containing all the vertices of the tree rooted at
s, (ii) the down set D containing all the vertices of the tree rooted at v, and (iii)
the others set O containing all the remaining vertices (see Figure 2).

We want to select a set of edges to add to H . In order to do so, we construct
a SPT T ′ of G−u and we imagine that its edges are directed towards the leaves.
We select all the edges of E(T ′) \ E(T) that do not lead to a vertex in D, plus
the unique edge of π−u(v) that crosses the cut induced by the sets U ∪O and D.
Notice that T −u contains all the paths in T ′ towards the vertices in U , and that
each vertex has at most one incoming edge in T ′. This implies that the number
of selected edges is at most |O| + 1.

The above procedure is repeated for all the failing vertices of Q, in order. As
the sets O associated with the different vertices are disjoint we have that, while
processing Q, at most |V (Tq)|+ |Q| = O(|V (Tq)|) edges are selected. We use the
path decomposition described in [3] that can be recursively defined as follows:
given a tree, we select a path Q from the root to a leaf such that the removal of
Q splits the tree into a forest where the size of each subtree is at most half the
size of the original tree. We than proceed recursively on each subtree. Using this
approach, the size of the entire structure H0 can be shown to be O(n log n) [3].

We now prove some useful properties of the structure H0. First of all, observe
that, by construction and similarly to the edge-failure case, we immediately have:

4 W.l.o.g. we are assuming that the failing vertex u is not a leaf, as otherwise T − u
is already a SPT of G− u.

Fault-Tolerant Approximate Shortest-Path Trees 147

Lemma 8. Consider a failed vertex u and another vertex z �= u. We have: (i)
d−u
H0

(v) = d−u(v), and (ii) for z ∈ D, it holds d−u
H0

(z) ≤ 3d−u(z).

Moreover, we also have the following (proof postponed to the full version of
the paper):

Lemma 9. Consider a failed vertex u. During the execution of the vertex-version
of Algorithm 1, every bad vertex t for u will be in D.

At this point, the same analysis given for the case of edge failures can be
retraced for vertex failures as well. We point out that Lemma 9 ensures that
every bad every for u is in the same subtree as v. Also notice that all the
vertices zi’s are, by definition, in the same subtree as well (see Figure 2). The
above, combined with Lemma 8 (i), is needed by the proof of Lemma 4, while
Lemma 8 (ii) is used in the proof of Lemma 7. Hence we have:

Theorem 2. The vertex-version of Algorithm 1 computes a (1 + ε)-VASPT of
size O(n log n

ε2).

5 Relation with (α, β)-Spanners in Unweighted Graphs

In this section we turn our attention to the unweighted case, and we provide two
polynomial-time algorithms that augment an (α, β)-spanner of G so to obtain
an (α, β)-EABFS/VABFS. We present the algorithm for the vertex-failure case and
show how it can be adapted to the edge-failure case.

The algorithm first augments the structure H0 computed so as explained in
Section 4 and then adds its edges to the (α, β)-spanner of G. The structure H0

is augmented as follows. The vertices of the BFS of G rooted at s are visited
in preorder. Let u be the vertex visited by the algorithm and let D be the
set of vertices of the tree defined so as explained in Section 4 w.r.t the path
decomposition computed for H0. For every t ∈ D, the algorithm checks whether
π−u
G (s, t) contains no vertex of D \ {t} and d−u

G (s, t) < d−u
H0

(s, t). If this is the

case, then the algorithm augments H0 with the edge of π−u
G (s, t) incident to t.

The following observation is crucial to prove the algorithm correctness.

Fact 1. For every vertex u and every vertex t ∈ V (G) \ {u} such that π−u
G (t)

contains a vertex in D, let x and y be the first and last vertex of π−u
G (t) that

belong to D, respectively. We have d−u
H0

(x) = d−u
G (x) and d−u

H0
(y, t) = d−u

G (y, t).

We can now give the following (proof postponed to the full version of the
paper):

Theorem 3. Given an unweighted graph G with n vertices and m edges, a
source vertex s ∈ V (G), and an (α, β)-spanner for G of size σ = σ(n,m), the
algorithm computes an (α, β)-VABFS w.r.t. s of size O

(
σ + n logn

)
.

148 D. Bilò et al.

Now, we adapt the algorithm to prove a similar result for the (α, β)-EABFS.
The algorithm first augments a BFS tree T of G rooted at s and then adds its
edges to the (α, β)-spanner of G. The tree T is augmented by visiting its edges
in preorder. Let e be the edge visited by the algorithm. For every t ∈ DG(e),
the algorithm checks whether π−e

G (s, t) contains no vertex of DG(e) \ {t} and
d−e
G (s, t) < d−e

T (s, t). If this is the case, then the algorithm augments T with the
edge of π−e

G (s, t) incident to t. In the full version of the paper it will be shown
that the proof of Theorem 3 can be adapted to prove the following:

Theorem 4. Given an unweighted graph G with n vertices and m edges, a
source vertex s ∈ V (G), and an (α, β)-spanner for G of size σ, the algorithm
computes an (α, β)-EABFS w.r.t. s of size less than or equal to σ + 3n.

References

1. Ausiello, G., Franciosa, P.G., Italiano, G.F., Ribichini, A.: On Resilient Graph
Spanners. In: Bodlaender, H.L., Italiano, G.F. (eds.) ESA 2013. LNCS, vol. 8125,
pp. 85–96. Springer, Heidelberg (2013)

2. Baswana, S., Kavitha, T., Mehlhorn, K., Pettie, S.: Additive spanners and (α, β)-
spanners. ACM Trans. on Algorithms 7, A.5 (2010)

3. Baswana, S., Khanna, N.: Approximate shortest paths avoiding a failed vertex:
near optimal data structures for undirected unweighted graphs. Algorithmica 66(1),
18–50 (2013)

4. Bernstein, A., Karger, D.R.: A nearly optimal oracle for avoiding failed vertices
and edges. In: Proc. of the 41st Symp. on the Theory of Computing (STOC 2009),
pp. 101–110. ACM Press (2009)

5. Braunschvig, G., Chechik, S., Peleg, D.: Fault Tolerant Additive Spanners. In:
Golumbic, M.C., Stern, M., Levy, A., Morgenstern, G. (eds.) WG 2012. LNCS,
vol. 7551, pp. 206–214. Springer, Heidelberg (2012)

6. Chechik, S.: New additive spanners. In: Proc. of the 24th Symp. on Discrete
Algorithms (SODA 2013), pp. 498–512. ACM Press (2013)

7. Chechik, S., Langberg, M., Peleg, D., Roditty, L.: Fault-tolerant spanners for
general graphs. In: Proc. of the 41st Symp. on the Theory of Computing (STOC
2009), pp. 435–444. ACM Press (2009)

8. Chechik, S., Langberg, M., Peleg, D., Roditty, L.: f-Sensitivity Distance Oracles
and Routing Schemes. In: de Berg, M., Meyer, U. (eds.) ESA 2010, Part I. LNCS,
vol. 6346, pp. 84–96. Springer, Heidelberg (2010)

9. Dinitz, M., Krauthgamer, R.: Fault-tolerant spanners: better and simpler. In:
Proc. of the 30th Symp. on Principles of Distributed Computing (PODC 2011),
pp. 169–178. ACM Press (2011)

10. Grandoni, F., Williams, V.V.: Improved distance sensitivity oracles via fast single-
source replacement paths. In: Proc. of the 53rd Annual IEEE Symp. on Foundations
of Computer Science (FOCS 2012), pp. 748–757 (2012)

11. Nardelli, E., Proietti, G., Widmayer, P.: Swapping a failing edge of a single source
shortest paths tree is good and fast. Algorithmica 36(4), 361–374 (2003)

12. Parter, M., Peleg, D.: Sparse fault-tolerant BFS trees. In: Bodlaender, H.L.,
Italiano, G.F. (eds.) ESA 2013. LNCS, vol. 8125, pp. 779–790. Springer, Heidelberg
(2013)

13. Parter, M., Peleg, D.: Fault tolerant approximate BFS structures. In: Proc. of
the 25th Symp. on Discrete Algorithms (SODA 2014), pp. 1073–1092. ACM Press
(2014)

Fast Witness Extraction Using a Decision

Oracle�

Andreas Björklund1, Petteri Kaski2, and �Lukasz Kowalik3

1 Department of Computer Science, Lund University, Sweden
2 Helsinki Institute for Information Technology HIIT, Department of Information

and Computer Science, Aalto University, Finland
3 Institute of Informatics, University of Warsaw, Poland

Abstract. The gist of many (NP-)hard combinatorial problems is to
decide whether a universe of n elements contains a witness consisting of
k elements that match some prescribed pattern. For some of these prob-
lems there are known advanced algebra-based FPT algorithms which
solve the decision problem but do not return the witness. We investigate
techniques for turning such a YES/NO-decision oracle into an algorithm
for extracting a single witness, with an objective to obtain practical scal-
ability for large values of n. By relying on techniques from combinatorial
group testing, we demonstrate that a witness may be extracted with
O(k log n) queries to either a deterministic or a randomized set inclusion
oracle with one-sided probability of error. Furthermore, we demonstrate
through implementation and experiments that the algebra-based FPT
algorithms are practical, in particular in the setting of the k-path prob-
lem. Also discussed are engineering issues such as optimizing finite field
arithmetic.

1 Introduction

The gist of many (NP-)hard combinatorial problems is to decide whether a uni-
verse of n elements contains a witness consisting of k elements that match some
prescribed pattern. In the positive case this is naturally followed by the task of
extracting the elements of one such witness.

As a result of advances in fixed-parameter tractability, many such hard prob-
lems are now known to admit algorithms that run in linear (or low-order polyno-
mial) time in the size of the universe n, and where the complexity of the problem
can be isolated to the size of the witness k. That is, the running times obtained
are of the form O(f(k) · n) for some rapidly growing function f(k) of k. This
makes such algorithms ideal candidates for practical applications that must con-
sider large inputs, that is, large values of n. For example, a recent randomized
algorithm for the k-sized graph motif problem runs in time O(2kk2(log k)2 · e),
where e is the number of edges in the input graph [2].

� P.K. supported by the Academy of Finland, grants 252083 and 256287.
�L.K. supported by National Science Centre of Poland, grant number UMO-
2013/09/B/ST6/03136.

A.S. Schulz and D. Wagner (Eds.): ESA 2014, LNCS 8737, pp. 149–160, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

150 A. Björklund, P. Kaski, and �L. Kowalik

Despite scalability to large inputs, some such advanced parameterized algo-
rithms (like the ones for graph motif [2] or for k-path [1]) have an inherent
handicap from a concrete algorithm engineering perspective. They only solve the
decision problem. In applications, however, one needs access to the witnesses,
which puts forth the question whether one can efficiently extract a witness or
list all witnesses, using the algorithm for the decision problem as an oracle (black-
box subroutine), and without losing the scalability to large inputs.

This paper studies the question of efficiently turning a decision oracle into an
algorithm for witness extraction over the universe U = {1, 2, . . . , n}. Let F ⊆ 2U

be the (unknown) family of witnesses. We focus on the following oracle:

Inclusion oracle. Given a query set Y ⊆ U , the oracle answers (either YES
or NO) whether there exists at least one witness W ∈ F such that W ⊆ Y .
We can motivate this type of oracle by observing that most problems have
natural self-reducibility that we can use to narrow down the universe from
U to Y (e.g. take the subgraph induced by the set Y of vertices) and then
run the decision algorithm.

In the oracle setting there are at least two natural ways to measure the effi-
ciency of witness extraction.

Number of oracle queries. This measure has been extensively studied in the
domain of combinatorial group testing [7], where the canonical task is to
identify k defective items from a population of n items, with the objective
of minimizing the number of tests1 (oracle queries) required to identify all
the defectives. While this measure does not reflect accurately the amount of
computing resources invested in our context—indeed, different oracle queries
in general do not use the same amount of resources—the group testing per-
spective enables information-theoretic lower bounds and supplies useful al-
gorithmic techniques for extraction.

Total running time. Assuming we have bounds on the running time of the
oracle as a function of n and k, we can bound the running time of extraction
of witnesses by taking the sum of the running times of the oracle queries. It
turns out that we get fair control over the total running time already if we
know that the running time of the oracle scales at least linearly in n.

The objectives of this paper are threefold. (a) First, we draw from techniques
in classical group testing to arrive at efficient witness extraction algorithms for
inclusion oracles both in deterministic and in randomized settings with one-sided
error. (b) Second, we show examples of parameterized problems which can be
solved efficiently in practice by a combination of an FPT decision oracle and a
group-testing algorithm; in particular, for the k-path problem our experimental
results show that one can find a 14-vertex witness in a 2000-vertex graph within
a minute on a typical laptop. (c) Third, we discuss some non-obvious choices we
made during the implementation: namely the choice of the GF(2q) arithmetic

1 In the setting of classical group testing, a single test on a set of items determines
whether the set contains at least one defective item.

Fast Witness Extraction Using a Decision Oracle 151

implementation; we believe our findings might be useful for implementations of
other algorithms applying GF(2q) arithmetic.

To set up a trivial baseline for performance comparisons, it is not difficult to
see that Θ(n) queries to an inclusion oracle suffice to extract a witness—simply
delete points from the universe one by one, with each deletion followed by an
oracle query on the remaining points. If the oracle answers NO, we know the
deleted point was essential and insert it back. When the process finishes the
points that remain form a witness. This, however, is not particularly efficient
since each oracle query costs at least O(f(k) · n) time, raising the total running
time to O(f(k) · n2) and making the approach impractical for large n.

Our Results on Extraction. We begin by transporting techniques from group
testing [7] to arrive at more efficient witness extraction. Our first contribution
merely amounts to observing that the so-called bisecting algorithm [6] can be
translated to work with an inclusion oracle and in the presence of one or more
witnesses. We also observe that taking into account the total running time of
the algorithm, the baseline cost of a factor O(n) in running time can be lowered
to O(k) if the running time of the oracle is at least linear in n, which is the case
in most applications. These observations are summarized in Theorem 1.1.

Let F be a nonempty family witnesses, each of size at most k, over an n-
element universe, n, k ≥ 1. We say that a function g : N → N is at least linear if
for all n1, n2 ∈ N it holds that g(n1) + g(n2) ≤ g(n1 + n2).

Theorem 1.1 (Deterministic Extraction). There exists an algorithm that
extracts a witness in F without knowledge of k using at most

Q(n, k) = 2k

(
log2

n

k
+ 2

)
queries to a deterministic inclusion oracle. Moreover, suppose the oracle runs
in time T (n, k) = O(f(k)g(n)) for a function g that is at least linear. Then,
there exists an algorithm that extracts a witness in F in time O(k · T (2n, k)) =
O(f(k) · k · g(2n)).

Currently the fastest known parameterized algorithms in many cases use ran-
domization. Thus in practice one must be able to cope with decision oracles that
may give erroneous answers, for example it is typically the case that the decision
algorithm produces false negatives with at most some small probability, but false
positives do not occur [1,2,13,12].

Let us assume that the probability of a false negative is p ≤ 1
4 . Beyond the

absence of false positives, a further observation to our advantage is that typically
witnesses may be checked, deterministically, and essentially at no computational
cost compared with the execution of even one oracle query. That is, we have
available a subroutine that takes a candidate witness W ⊆ U as input and
returns whether W ∈ F. We make this assumption in what follows. Thus having
access to a randomized inclusion oracle enables deterministic extraction, but with
randomized running time. These observations are summarized in Theorem 1.2.

152 A. Björklund, P. Kaski, and �L. Kowalik

Theorem 1.2 (Las Vegas Extraction). There exists an algorithm that extracts
a witness inF without knowledge of k using in expectation at mostO(k logn) queries
to a randomized inclusion oracle that has no false positives but may output a false
negative with probability at most p ≤ 1

4 . Moreover, suppose the oracle runs in time
T (n, k) = O(f(k)g(n)) for a function g that is at least linear. Then, there exists an
algorithm that extracts a witness in F in time O(k · T (2n, k) + (k log k) · T (2k, k)).

An Example Application: k-Path. The k-path problem is one of the basic
NP-complete problems, a natural parameterized version of the Hamiltonian Path
problem. In this problem we are given an undirected connected graph G = (V,E),
and a natural number k. The goal is to find a simple path on k vertices in G.
Denote by n = |V | and m = |E|. In terms of dependence on k, the currently
fastest algorithm is due to Björklund, Husfeldt, Kaski, and Koivisto [1] and can
be tuned to run in 1.66kkO(1)m time. It uses algebraic tools and only solves the
corresponding decision problem. We applied a simplified version of this algorithm,
slightly easier to implement, which runs in O(2kkm) time, assuming that finite
field arithmetic operations take constant time (cf. [4]). The algorithm evaluates a
certain polynomial of degree d = 2k− 1 over the finite field GF(2q), which turns
out to be a generating function of all witnesses. The algorithm is randomized,
and it may return a false negative. The failure probability is bounded by 2k−1

2q ,
hence by choosing q large enough we can assume it is at most 1

4 , as required by
Theorem 1.2.

Our universe U is the set of edges of the input graph and we are extracting
witnesses with exactly k−1 edges. By Theorem 1.2 we obtain an algorithm with
expected running time O(2kk2 ·m) for witness extraction.

However, when we consider actual implementation the above approach should
be refined as follows. First set the universe U to be the set of vertices and find
the set of k vertices S which contains a k-vertex path. Next, set the universe
U to be the set of edges in the induced graph G[S], and find the witness. By
Theorem 1.2, for dense graphs this can give a factor two speed-up.

Further applications in FPT algorithms will be presented in a full version of
this work.

Related and Previous Work. The relations between the time complexity
of decision problems and their search versions were studied by Fellows and
Langston [9].

Independently of our work, Hassidim, Keller, Lewenstein, and Roditty [11]
presented a randomized algorithm that extracts a witness for the (weighted) k-
path problem using O(k logn) calls to a decision oracle, in expectation. Their
approach is to discard random subsets (of size n/k) of the vertex set as long as
the resulting instance still contains the solution. The bisecting algorithm [6] that
we extend in this paper can be seen as a cleaner version of this idea. First, in the
bisecting algorithm larger sets get discarded. Second, the bisecting algorithm is
deterministic. Hassidim et al. do not analyze how the time of their algorithm
is influenced by the fact that the oracle is randomized. From an asymptotic
perspective this is not needed because one can repeat each oracle call multiple
times to reduce the error probability below an arbitrary threshold. However, in

Fast Witness Extraction Using a Decision Oracle 153

6 8 10 12 14 16 18
Path size (number of vertices)

10
-1

10
0

10
1

10
2

10
3

10
4

R
u
n
n
in

g
 t

im
e
 [

s
]

fifo

divide & color

HKLR
0.03s

0.1s

0.3s

1s

3s

10s

1min

3min

10min

0.5h

1h

3h

100 250 500 1000 2500 5000 10000
Graph size (number of vertices)

10
1

10
2

10
3

R
u
n
n
in

g
 t

im
e
 [

s
]

fifo

HKLR

3s

5s

10s

30s

1min

3min

10min

15min

8 10 12 14 16
Path size (number of vertices)

10
-2

10
-1

10
0

10
1

10
2

R
u
n
n
in

g
 t

im
e
 [

s
]

fifo

divide & color

HKLR 0.01s

0.03s

0.1s

0.3s

1s

3s

10s

1min

3min

100 250 500 1000 2500 5000 10000
Graph size (number of vertices)

10
0

10
1

10
2

10
3

R
u
n
n
in

g
 t

im
e
 [

s
]

fifo

HKLR

1s

3s

5s

10s

30s

1min

3min

10min

15min

Fig. 1. Running times of various algorithms for a graph with exactly one witness
(upper charts) and Ω(n2) witnesses (lower charts). Each running time on the graph is
the median of 5 runs for the same input instance. The left charts: a 1000-vertex graph
and k ∈ {6, 7, . . . , 18}. The right charts: k = 14 (upper) or k = 15 (lower) and the
number of vertices varies. Running times on a 2.53-GHz Intel Xeon CPU.

practice this is an unnecessary (though only constant-factor) slow-down, which
we seek to avoid in what follows.

Implementation and Experiments. We implemented in C the O(2kkm)-
time decision algorithm for the k-path problem and the algorithm from Theo-
rem 1.2, which we call ‘fifo’ on the charts. The crucial part of implementation
of the decision oracle is the finite field arithmetic. Somewhat unexpectedly, we
found that to optimize the running time, a different method should be chosen
depending on whether we use the oracle just once (e.g. check whether there is
a witness) or whether it is used in combination with the algorithm from Theo-
rem 1.2 to find a witness. Details can be found in Section 4.

We run a series of experiments on a single 2.53-GHz Intel Xeon CPU. We
compare the fifo algorithm with two other natural candidates. The first is the
witness extraction algorithm of Hassidim et al. [11] combined with the O(2kkm)-
time inclusion oracle, called ‘HKLR’ on the charts. The second is the O(4kk2.7m)-
time algorithm of Chen et al. [3] called ‘Divide-and-Color’. It is not based on
algebraic tools and finds the witness while solving the decision problem. Note
that there are many more algorithms/heuristics for k-path problem which would

154 A. Björklund, P. Kaski, and �L. Kowalik

be much faster on particular instances. A natural heuristic is computing the DFS
tree. If the tree has depth at least k the witness is found and otherwise the graph
has pathwidth at most k. On the other hand, when the pathwidth p is very small
(say, p ≤ k

2), the (2 +
√

2)pnO(1) algorithm of Cygan et al. [5] should be fast.
However, in this work we want to focus on algorithms with best guarantees in
the worst case. Disregarding the detailed memory layout of the input graph, all
the three algorithms we compare are oblivious to the topology of the graph apart
from the parameters m and k. In our experiments we use two types of trees with
m = n − 1 as the input graphs. The first type (with a unique witness) consists
of �(k− 1)/2�-vertex paths joined at a common endvertex; when k is odd two of
the paths are extended by an edge, when k is even one path is extended by two
edges and one path by one edge. The second type (with Ω(n2) witnesses) has k
odd and all paths are extended by an edge.

The results can be seen on Fig. 1. We see that both fifo and HKLR are
much faster than Divide-and-Color even for very small values of k. For 1000-
vertex graphs our algorithm fifo finds (≤ 10)-vertex patterns below 1 second
and (≤ 20)-vertex patterns below 1 hour. HKLR is considerably slower and the
difference is more visible when there are many witnesses.

2 Extracting a Witness Using a Deterministic Oracle

The objective of this section is to prove Theorem 1.1. Accordingly, we assume
we have available a deterministic inclusion oracle. Our strategy is to translate
an existing algorithm developed for group testing into the setting of witness
extraction (Algorithm 1 and Lemma 2.1), and then analyze its performance with
respect to the total running time, including the oracle queries (Lemma 2.2).

Let us first review the setting of classical group testing, and then indicate how
to translate classical algorithms to the setting of witness extraction. In group
testing, we do not have a family of witnesses, but rather a single unknown set
D ⊆ U consisting of defective items. Furthermore, instead of an inclusion oracle
(that would test whether D ⊆ Y for a query Y) we have an intersection oracle
that answers whether D∩Y �= ∅ for a query Y . That is, a query tells us whether
the query set Y has at least one defective item.

Characteristic to classical group testing algorithms is that they proceed to
shrink down the size of the universe U while maintaining the invariant D ⊆ U
until D has been identified (that is, D = U). Indeed, whenever the (intersection)
oracle answers NO, we know that the query Y is disjoint from D, and thus can
safely delete all points in Y from U without violating the invariant.

In our setting we have to work with an inclusion oracle and cope with the
possibility of the family F containing more than one witness. Fortunately, it turns
out that the setting is not substantially different from group testing. Indeed, in
analogy with group testing, we will also proceed to narrow down the universe U
but seek to maintain a slightly different invariant, namely “there exists a W ∈ F

such that W ⊆ U”. In this setting we can narrow down the universe by the
following basic procedure: for a subset A ⊆ U we query the inclusion oracle with

Fast Witness Extraction Using a Decision Oracle 155

Algorithm 1. ExtractInclusion(U)

1 Initialize an empty FIFO queue Q;
2 Let W ← ∅;
3 Insert U into Q;
4 while Q is not empty do
5 Remove the first set A from Q;
6 if |A| = 1 then
7 Let W ← W ∪A;
8 else
9 Partition A into A1 and A2 arbitrarily so that ||A1| − |A2|| ≤ 1;

10 if Includes(U \A1) then
11 Let U ← U \A1;
12 Insert A2 into Q;

13 else
14 if Includes(U \A2) then
15 Let U ← U \A2;
16 Insert A1 into Q;

17 else
18 Insert both A1 and A2 into Q;

19 return W

Y = U \ A. If the answer is YES, we know that we can safely remove A from
U while maintaining the invariant. This basic analogy enables one to transport
group testing algorithms into the setting of witness extraction.

In what follows we focus on a translation of one such algorithm, the bisecting
algorithm [6]. One of its advantages is that it does not need to know the num-
ber of defective items in advance, and hence in particular it is suitable for our
applications where we want to allow the witnesses to potentially differ in size.
Moreover, this particular algorithm is convenient in our further modifications
for the randomized oracle model (Sect. 3). We give the pseudocode of a “witness
extraction” version of the bisecting algorithm in pseudocode as Algorithm 1.

The correctness of Algorithm 1 follows from the fact that our invariant “there
exists a W ∈ F such that W ⊆ U” is always satisfied. We remark that Algo-
rithm 1 has a further minor difference with the original bisection algorithm in
that whenever it partitions a set A into A1 and A2 then A1 and A2 are almost of
the same size (||A1|−|A2|| ≤ 1), whereas the original algorithm |A1| = 2�log |A|�−1

and |A2| = |A| − |A1|. Du and Hwang [6] showed that the bisection algorithm
performs O

(
k log n

k

)
queries. Below we present a self-contained analysis.

Lemma 2.1. Algorithm 1 makes at most 2k
(
log2

n
k + 2

)
oracle queries.

Proof. We can model the execution of Algorithm 1 with a tree T whose nodes
are the subsets A that have appeared in the queue Q during execution. A node
A is a child of node B if and only if A was obtained by bisecting B. In particular

156 A. Björklund, P. Kaski, and �L. Kowalik

T is a binary tree with at most k leaves and two types of internal nodes: the
partition nodes with two children correspond to splitting a set into two halves,
and the cut nodes with one child correspond to cutting-off a half of a set. Each
internal node in T is associated with 1 or 2 queries.

Let us order T arbitrarily so that every partition node has a left child and a
right child; let us furthermore call the only child of a cut node the left child. For
every leaf v form a path Pv up in the tree by first including v into the path and
including each subsequent node into Pv as long as we arrived into the node from
the left child of the node. Such paths Pv clearly form a partition of nodes in T.

For every cut node x, letDx denote the subset of vertices that was discarded. For
a leaf v let Sv denote the union of all the sets Dx on path Pv. For any cut nodes x
and y on Pv, if x is an ancestor of y then |Dx| ≥ 2|Dy| − 1. It follows that there are
at most
log2 |Sv|� cut nodes onPv. Hence the total number of cut nodes is at most∑

v
log2 |Sv|� ≤ k
(
log2

n
k +1
)

where the sum is over the at most k leaves v in T and
the inequality follows from Jensen’s inequality (and the fact that the sets Sv form
a partition ofU \W , where W is the returned witness). Since T is a binary tree, the
number of partition nodes is at most k − 1. Thus there are at most k

(
log2

n
k + 2

)
nodes and at most 2k

(
log2

n
k + 2

)
queries. ��

A routine information-theoretic argument shows that Lemma 2.1 is optimal
up to constants, that is, at least log2

(
n
k

)
≥ k log2

n
k queries (bits of information)

are needed to identify a unique witness of size k in a universe of size n. This obser-
vation can be strengthened to the randomized setting via the Yao principle—in
expectation at least k

2 log2
n
k queries are required.

We now proceed to analyze Algorithm 1 with a more natural complexity
measure, namely the total time of the extraction procedure, taking into account
the time used by the oracle queries. Recall that a function g : N → N is at least
linear if for all n1, n2 ∈ N we have g(n1) + g(n2) ≤ g(n1 + n2).

Lemma 2.2. Suppose the time complexity of the inclusion oracle on a query set
of size n is T (n, k) = O(f(k)g(n)), where g is at most linear. Then, the running
time of Algorithm 1 is O(k · T (2n, k)).

Proof. We follow the notation introduced in the proof of Lemma 2.1. Because
there are at most k − 1 partition nodes, the total time spent at these nodes is
O(k · T (n, k)). Hence it remains to analyze the time spent at the cut nodes. It
suffices to show that for every leaf v of the tree T the total time spent at the
cut nodes in path Pv is O(T (n, k)). Observe that at every cut node the size of
the universe decreases by a factor of 2. Hence this time is at most T (n, k) +
T (n/2, k) + T (n/4, k) + . . . + T (1, k) ≤ T (2n, k) where the last inequality uses
the assumption that g is at most linear. ��

Lemma 2.1 and Lemma 2.2 now establish Theorem 1.1.

3 Extracting a Witness Using a Randomized Oracle

The objective of this section is to prove Theorem 1.2. Accordingly, we assume
we have available a randomized inclusion oracle that has no false positives but

Fast Witness Extraction Using a Decision Oracle 157

may output a false negative with probability at most p ≤ 1
4 . The outcomes of

queries are assumed to be mutually independent as random events.
We start with two simple observations regarding Algorithm 1 in the context

of a randomized oracle. First, since the oracle does not have false positives,
the set W output by Algorithm 1 is always a superset of a witness. Second,
by Theorem 1.1 we know that the algorithm makes at most Q(n, k) queries to
extract a witness in the event no false negatives occur in the first Q(n, k) queries.
By the union bound, the probability of this event is at least 1 − pQ(n, k). This
gives us a Monte Carlo algorithm that fails with probability at most pQ(n, k).

Recalling that we assume we have access to a subroutine that checks whether
a given set W ⊆ U satisfies W ∈ F, we would clearly like to transform the Monte
Carlo algorithm into a Las Vegas algorithm that always extracts a witness, and
the cost of randomization is only paid in terms of the running time.

The Las Vegas algorithm now operates in two stages. Let us call this algorithm
Algorithm 2. In the first stage, we simply run Algorithm 1 and obtain a set W
as output. In the second stage, we insert each element of W into an empty queue
Q. Next, as long as W is not a witness, we (1) remove an element e from the
head of Q, (2) if Includes(W \ {e}) returns NO then we insert e at the tail of
Q and otherwise we remove e from W . Finally, we return W .

Given that only false negatives may occur, Algorithm 2 is obviously correct
and always returns a witness. It remains to analyze the expected number of
queries and the expected running time of Algorithm 2.

Lemma 3.1. Algorithm 2 makes in expectation O(k logn) queries to the ran-
domized inclusion oracle.

Proof. First we bound the expected number of queries in the first stage. Recall
the tree model of the execution of Algorithm 1 in the proof of Lemma 2.1. Let us
study the model in the presence of false negatives. A false negative at line 10 of
Algorithm 1 causes the algorithm to view the set A1 as necessary and continue
processing it even if it could in be dropped in reality. Similarly, a false negative
at line 14 causes the algorithm to view A2 as necessary. In particular, each false
negative gets inserted into the queue Q and hence into the tree T.

Now let us study an arbitrary subtree of T rooted at a false negative node. We ob-
serve that all such nodes either remain false negative nodes, or become exhausted
as YES nodes or singleton nodes. (That is, no node in the subtree is a true neg-
ative.) Let us study the process that creates such a subtree and for convenience
ignore the possibility of singleton nodes exhausting the process. Let X be the ran-
dom variable that tracks the size of the subtree. Because the left and right child
nodes of each node are independently false negatives with probability p, we observe
that the expectation of X satisfies E[X] = 1+2pE[X]. That is, E[X] = 1/(1−2p).
Because p ≤ 1

4 , we have E[X] ≤ 2. Since each false negative has to interact with
true negative and positive nodes, the expected number of queries in the first stage
is, by linearity of expectation, at most 3Q(n, k) by Lemma 2.1.

Let W0 denote W at the beginning of the second stage. For purposes of
analysis we divide the second stage into two sub-stages. The first sub-stage

158 A. Björklund, P. Kaski, and �L. Kowalik

finishes when |W | ≤ 2k. Assume that there was at least one query in the first
sub-stage, that is, |W0| > 2k. Let Z be the total number of queries in the first
sub-stage. Then Z = Z1 + Z2 + Z3 where Z1 is the number of false negative
queries, Z2 is the number of positive queries and Z3 is the number of true
negative queries. First observe that Z1 has the negative binomial distribution,
that is, Z1 ∼ NB(|W0| − 2k, p), and hence E[Z1 | |W0|] = (|W0| − 2k) p

1−p ≤
|W0| − 2k. It follows that E[Z1] ≤ E[|W0|] − 2k ≤ 3Q(n, k). Now note that that
Z2 is bounded by |W0|, which is bounded by the number of queries in the first
stage, so E[Z2] ≤ 3Q(n, k). Call an element e of W false if W \ {e} contains
a witness and true otherwise. Since there are at most k true elements, as long
as |W | > 2k the number of true elements is bounded by the number of false
elements (if W contains more than one witness then all elements of W may be
false). If e ∈ W is a true element then the query W \ {e} always returns NO
(a true negative); if e is false then the query W \ {e} may return either YES (a
true positive) or NO (a false negative). Since elements of W are tested in queue
order, Z3 ≤ Z1 + Z2 and hence E[Z3] ≤ 6Q(n, k).

Finally consider the second sub-stage, when |W | ≤ 2k. Let t be the number
of false elements in W , t ≤ 2k. The algorithm iterates through the queue until
there is no false element in W . The number of times we iterate over the whole
queue is the maximum of t independent random variables, each of geometric
distribution with success probability 1 − p, which by p ≤ 1

4 is in expectation
at most 1 + Ht/ ln(1/p) ≤ 2H2k ≤ 3 ln 2k (cf. [8]). Since in each iteration the
algorithm performs at most 2k queries, the expected number of queries in the
second sub-stage is then at most 6k ln 2k.

The expected number of queries is thus at most 15Q(n, k) + 6k ln 2k. ��

Theorem 1.2 is now established by Lemma 3.1 and the following lemma, whose
proof is relegated to a full version of this work.

Lemma 3.2. Suppose the time complexity of the randomized inclusion oracle
on a query set of size n is T (n, k) = O(f(k)g(n)), where g is at most linear.
Then, the running time of Algorithm 2 is O(kT (2n, k) + k log kT (2k, k)).

4 Implementation of Finite Field Arithmetic

The most critical subroutines of the k-path inclusion oracle we implemented are
operations of addition and multiplication in a finite field GF(2q). The choice of
q is important: the oracle returns a false negative with probability at most 2k−1

2q .
We can assume that k ≤ 30, for otherwise the oracle runs too long. It follows that
to guarantee low error probability, say, at most 2−20, it suffices to pick q = 26.

Let us recall that elements of GF(2q) correspond to polynomials of degree
at most q − 1 with coefficients from GF(2). Such a polynomial is conveniently
represented as a q-bit binary number. The addition in GF(2q) corresponds to
addition of two polynomials, that is, the symmetric difference (xor) of the binary
representations. Multiplication is performed by (a) multiplying the polynomials
and (b) returning the remainder of the division of the result by a primitive

Fast Witness Extraction Using a Decision Oracle 159

128 256 512 1024 2048 4096 8192
Graph size (number of vertices)

0

100

200

300

400

500

600

700

800

900

1000

R
u
n
n
in

g
 t

im
e
 [

s
]

lookup, GF(2^7)

lookup x 10, GF(2^7)

naive, GF(2^26)

clmul, GF(2^64)

128 256 512 1024 2048 4096 8192
Graph size (number of vertices)

0

20

40

60

80

100

120

140

160

180

R
u
n
n
in

g
 t

im
e
 [

s
]

lookup, GF(2^7)

clmul, GF(2^64)

naive, GF(2^5)

Fig. 2. Comparison of three implementations of GF(2q) arithmetic. Left: (single run
of) k-path decision oracle for instances with no solution. Right: fifo algorithm using
k-path decision oracle for instances with exactly one solution (each running time on
the graph is the median of 5 runs for the same input instance). The pattern size is
fixed as k = 16 and the number of vertices n varies. Running times on a 2.53-GHz Intel
Xeon CPU.

degree-q polynomial; this is easily implemented in O(q) word operations. We
refer to this implementation as ‘naive’.

One can observe that step (a) above corresponds to carry-less multiplication of
two binary numbers, that is, the usual multiplication without generating carries
(011 × 011 = 101). Such multiplication of two 64-bit numbers is available as
a single instruction (PCLMULQDQ) on a number of modern Intel and AMD
architectures. Using the fact that there is an only 5-term primitive polynomial
of degree 64, step (b) can be implemented using bit shifts and xors [10]. We refer
to this implementation as ‘clmul’.

The third natural option is to precompute the whole multiplication table (us-
ing the naive algorithm) before running the oracle. This takes 4q
q/8� bytes of
memory, so can be considered only for small values of q, say q ≤ 12 (even for
q = 12 the precomputation time is negligible at substantially less than a second).
We refer to this implementation as ‘lookup’.

The left chart of Fig. 2 shows the comparison of the three implementations
of GF(2q) arithmetic used in a single run of the decision oracle. For ‘naive’ we
use q = 26 and for ‘clmul’ q = 64. For ‘lookup’ we use q = 7 because for smaller
values of q the running time is roughly the same; nevertheless since in the tests
we look for a pattern of size 16, it gives just a bound of 1

4 for error probability.
To squeeze the probability down to 2−20 one can run the oracle 10 times and
return the conjunction of the results. We see that although ‘lookup’ is faster
than ‘clmul’ when the oracle is called once, it is much slower when we repeat the
oracle call 10 times (note also that clmul provides error probability 2−59). The
‘naive’ method is worse than the other two.

Note however that, if we aim at finding a witness, by Theorem 1.2 it suffices to
guarantee that error probability is at most 1

4 , hence for k ≤ 16 we can pick q = 7.

160 A. Björklund, P. Kaski, and �L. Kowalik

The advantage of our witness extraction algorithm fifo is that even if it gets a
false answer from the oracle, it will discover the mistake in the future. Indeed,
the right chart of Fig. 2 shows that using GF(27) with ‘lookup’ outperforms
using GF(264) with ‘clmul’, roughly by a factor of four. The value q = 7 here
is carefully chosen. One one hand, we want q to be large to get small error
probability for a single query and thus small variance of the whole extraction
running time. On the other hand, at our machine the multiplication table for
q = 8 does not fit into L1 cache (of size 32K) what results in increase in the
median running time. In the table below we show statistics for 200 runs of the
extraction algorithm (n = 1000, k = 12) using ‘lookup’ for q = 5, 6, . . . , 12 and
‘clmul’ (q = 64). Clearly, for q = 8, 9, . . . , 12 we get increased number of cache
misses (the 256K L2 cache could fit the table only for q ≤ 8).

logarithm of the field size 5 6 7 8 9 10 11 12 64 (clmul)

median [sec] 4.58 4.38 4.39 4.69 6.15 7.30 9.55 15.94 15.92

maximum [sec] 12.96 8.53 7.61 7.57 9.97 11.18 9.65 18.05 16.77

standard deviation [sec] 1.16 0.68 0.61 0.22 0.30 0.34 0.50 0.43 0.25

References

1. Björklund, A., Husfeldt, T., Kaski, P., Koivisto, M.: Narrow sieves for parameter-
ized paths and packings. arXiv 1007.1161 (2010)

2. Björklund, A., Kaski, P., Kowalik, �L.: Probably optimal graph motifs. In: Proc.
STACS 2013, pp. 20–31 (2013)

3. Chen, J., Kneis, J., Lu, S., Mölle, D., Richter, S., Rossmanith, P., Sze, S.H., Zhang,
F.: Randomized divide-and-conquer: Improved path, matching, and packing algo-
rithms. SIAM Journal on Computing 38(6), 2526–2547 (2009)

4. Cygan, M., Fomin, F.V., Kowalik, L., Lokshtanov, D., Marx, D., Pilipczuk, M.,
Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer (to appear)

5. Cygan, M., Kratsch, S., Nederlof, J.: Fast hamiltonicity checking via bases of per-
fect matchings. In: Proc. STOC 2013, pp. 301–310. ACM (2013)

6. Du, D.Z., Hwang, F.K.: Competitive group testing. Discrete Appl. Math. 45(3),
221–232 (1993)

7. Du, D.Z., Hwang, F.K.: Combinatorial Group Testing and Its Applications. Series
on Applied Mathematics, vol. 12. World Scientific Publishing Co. Inc. (2000)

8. Eisenberg, B.: On the expectation of the maximum of IID geometric random
variables. Statistics & Probability Letters 78(2), 135 (2008)

9. Fellows, M.R., Langston, M.A.: On search decision and the efficiency of polynomial-
time algorithms. In: Proc. STOC 1989, pp. 501–512. ACM (1989)

10. Gueron, S., Kounavis, M.: Efficient implementation of the Galois Counter Mode
using a carry-less multiplier and a fast reduction algorithm. Information Processing
Letters 110(14), 549–553 (2010)

11. Hassidim, A., Keller, O., Lewenstein, M., Roditty, L.: Finding the minimum-
weight k-path. In: Dehne, F., Solis-Oba, R., Sack, J.-R. (eds.) WADS 2013. LNCS,
vol. 8037, pp. 390–401. Springer, Heidelberg (2013)

12. Koutis, I.: Constrained multilinear detection for faster functional motif discovery.
Inform. Process. Lett. 112(22), 889–892 (2012)

13. Williams, R.: Finding paths of length k in O∗(2k) time. Inform. Process.
Lett. 109(6), 315–318 (2009)

Complexity of Higher-Degree Orthogonal Graph
Embedding in the Kandinsky Model�

Thomas Bläsius1, Guido Brückner1, and Ignaz Rutter1,2

1 Faculty of Informatics, Karlsruhe Institute of Technology, Karlsruhe
2 Department of Applied Mathematics, Charles University, Prague

Abstract. We show that finding orthogonal grid embeddings of plane graphs
(planar with fixed combinatorial embedding) with the minimum number of bends
in the so-called Kandinsky model (allowing vertices of degree > 4) is NP-comp-
lete, thus solving a long-standing open problem. On the positive side, we give
an efficient algorithm for several restricted variants, such as graphs of bounded
branch width and a subexponential exact algorithm for general plane graphs.

1 Introduction

Orthogonal grid embeddings are a fundamental topic in computer science and the prob-
lem of finding suitable grid embeddings of planar graphs is a subproblem in many
applications, such as graph visualization [19] and VLSI design [17,21]. Aside from
the area requirement, the typical optimization goal is to minimize the number of bends
on the edges (which heuristically minimizes the area). Traditionally, grid embeddings
have been studied for 4-planar graph (max-deg 4), which is natural since it allows to
represent vertices by grid points and edges by internally disjoint chains of horizontal
and vertical segments on the grid. For plane graphs, Tamassia showed that the number
of bends can be efficiently minimized [14]; the running time was recently reduced to
O(n1.5) [7]. In contrast, if the combinatorial embedding is not fixed, it is NP-complete
to decide whether a 0-embedding (a k-embedding is a planar grid embedding with at
most k bends per edge) exists [14], thus also showing that bend minimization is NP-
complete and hard to approximate. In contrast, a 2-embedding exists for every graph
except the octahedron [2]. Recently it was shown that the existence of a 1-embedding
can be tested efficiently [4]. The problem is FPT if some subset of k edges has to have
0 bends [5]. If there are no 0-bend edges, it is even possible to minimize the number of
bends in the embedding, not counting the first bend on each edge [6].

These results only apply to graphs of maximum degree 4. There have been several
suggestions for possible generalizations to allow vertices of higher degree [16,20]. For
example, it is possible to represent higher-degree vertices by rectangles. The disadvan-
tage is that the vertices may be stretched arbitrarily in order to avoid bends. In partic-
ular, a visibility representation (existing for every planar graph) can be interpreted as a
0-embedding in this model. It is thus natural to forbid stretching of vertices.
� Partially supported by grant WA 654/21-1 of the German Research Foundation (DFG). Partly

done within GRADR – EUROGIGA project no. 10-EuroGIGA-OP-003. Ignaz Rutter was
supported by a fellowship within the Postdoc-Program of the German Academic Exchange
Service (DAAD).

A.S. Schulz and D. Wagner (Eds.): ESA 2014, LNCS 8737, pp. 161–172, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

162 T. Bläsius, G. Brückner, and I. Rutter

Fößmeier and Kaufmann [13] proposed a generalization of planar orthogonal grid
embeddings, the so-called Kandinsky model (originally called podevsnef), that over-
comes this problem and guarantees that vertices are represented by boxes of uniform
size. Essentially their model allows to map vertices to grid points on a coarse grid, while
routing the edges on a much finer grid. The vertices are then interpreted as boxes on the
finer grid, thus allowing several edges to emanate from the same side of a vertex; see
Sect. 2. Fößmeier and Kaufmann model the bend minimization in the fixed combina-
torial embedding setting by a flow network similar to the work of Tamassia [18] but
with additional constraints that limit the total amount of flow on some pairs of edges.
Fößmeier et al. [12] show that every planar graph admits a 1-embedding in this model.
Concerning bend minimization, reductions of the mentioned flow networks to ordinary
minimum cost flows have been claimed both for general bend minimization [13] and
for bend minimization when every edge may have at most one bend [12].

Eiglsperger [10] pointed out that the reductions to minimum cost flow are flawed and
gave an efficient 2-approximation. Bertolazzi et al. [1] introduced a restricted variant of
the Kandinsky model (requiring more bends), for which bend minimization can be done
in polynomial time. Although the Kandinsky model has been later vastly generalized,
e.g., to apply to the layout of UML class diagrams [11], the fundamental question about
the complexity of bend minimization in the Kandinsky model has remained open for
almost two decades.

Contribution and Outline. We show that the bend minimization problem in the Kandin-
sky model is NP-complete (no matter if we allow or forbid so-called empty faces).
This also holds if each edge may have at most one bend; see Sect. 3. As an intermedi-
ate step, we show NP-hardness of the problem ORTHOGONAL 01-EMBEDDABILITY,
which asks whether a plane graph (with maximum degree 4) admits a grid embedding
when requiring some edges to have exactly one and the remaining edges to have zero
bends. This result is interesting on its own, as it can serve as tool to show hardness of
other grid embedding problems. In particular, it gives a simpler proof for the hardness of
deciding 0-embeddability (maximum degree 4) for graphs with a variable embedding.

We then study the complexity of the problem subject to structural graph parame-
ters in Sect. 4. For graphs with branch width k, we obtain an algorithm with running
time 2O(k logn). For fixed branch width this yields a polynomial-time algorithm (O(n3)
for series-parallel graphs), for general plane graphs the result is an exact algorithm with
subexponential running time 2O(

√
n logn).

For detailed proofs, we refer to the full version of this paper [3].

2 Preliminaries

Kandinsky Embedding. Let G be a plane graph. An orthogonal embedding of G maps
vertices to grid points and edges to paths in the grid such that the resulting drawing is
planar and respects the combinatorial embedding of G; see Fig. 1a. Clearly, G admits
an orthogonal embedding if and only if it is 4-planar. The Kandinsky model [13] over-
comes this limitation. A Kandinsky embedding of G (Fig. 1b) maps each vertex to a box
of constant size centered at a grid point and each edge to a path in a finer grid such that

Complexity of Higher-Degree Orthogonal Graph Embedding in the Kandinsky Model 163

(a) (b) (c)
rot 2

e1

e2
v v v

v v

e1
e2

e1e2

e1
e2 e1e2 vu

(d)

(e)

rot 1 rot 0

rot−1 rot−2
rot 1

Fig. 1. (a) An orthogonal embedding of the K4. (b) A Kandinsky embedding of the wheel of
size 5. (c) A Kandinsky embedding with an empty face. (d–e) The rotation of a vertex (d) and an
edge (e) in a face f (shaded blue).

the resulting drawing is planar, respects the combinatorial embedding of G, and has no
empty faces. A face is empty if it does not include a grid cell of the coarser grid; see
Fig. 1c.

One can declare a bend on an edge uv to be close to v if it is the last bend on uv
(traversing uv from u to v). A bend cannot simultaneously be close to u and to v.
Kandinsky embeddings have the bend-or-end property [13], requiring that a 0◦ angle
between edges uv and vw in the face f implies that at least one of the edges uv and vw
has a bend close to v forming a 270◦ angle in f .

Kandinsky Representation. A Kandinsky embedding of a planar graph can be speci-
fied in three stages. First, its topology is fixed by choosing a combinatorial embedding.
Second, its shape in terms of angles between edges and sequences of bends on edges
is fixed. Third, the geometry is fixed by specifying coordinates for vertices and bend
points. In analogy to combinatorial embeddings as equivalence classes of planar draw-
ings with the same topology, one can define Kandinsky representations as equivalence
classes of Kandinsky embeddings with the same topology and the same shape. This ap-
proach was first introduced for orthogonal embeddings [18] and extended to Kandinsky
embeddings [13].

Let Γ be a Kandinsky embedding. Let f be a face with an edge e1 in its boundary
and let e2 be the successor of e1 in clockwise direction (counter-clockwise if f is the
outer face). Let further v be the vertex between e1 and e2 and let α be the angle at v in f .
We define the rotation rotf (e1, e2) between e1 and e2 to be rotf (e1, e2) = 2− α/90◦;
see Fig. 1d. The rotation rotf (e1, e2) can be interpreted as the number of right turns
between the edges e1 and e2 at the vertex v in the face f . We also write rotf (v) instead
of rotf (e1, e2) if the edges are clear from the context and call it the rotation of v in f .

The shape of every edge can also be described in terms of its rotation. Let e = uv
be an edge incident to a face f such that v is the clockwise successor of u along the
boundary of f (counter-clockwise if f is the outer face). The rotation rotf (e) of e in
f is the number of right bends minus the number of left bends one encounters, when
traversing e from u to v; see Fig. 1e.

Let uv, vw be a path of length 2 in the face f . If uv and vw form an angle of 0◦

(rotf (v) = 2), at least one of the edges uv or vw has a bend close to v with rotation −1
in f (bend-or-end property). We represent the information of which bends are close to
vertices as follows. If uv has a bend close to v, we define the rotation rotf (uv[v]) at
the end v of uv to be 1 (−1) if it has rotation 1 (−1) in f . If uv has no bend close to v,
we set rotf (uv[v]) = 0.

164 T. Bläsius, G. Brückner, and I. Rutter

A set of values for the rotations is a Kandinsky representation (i.e., there is a corre-
sponding embedding) if and only if it satisfies the following properties [13].
(1) The sum over all rotations in a face is 4 (−4 for the outer face).
(2) For every edge uv with incident faces f� and fr, we have rotf�(uv) + rotfr (uv) =

0, rotf�(uv[u]) + rotfr (uv[u]) = 0, and rotf�(uv[v]) + rotfr (uv[v]) = 0.
(3) The sum of rotations around a vertex v is 2 · deg(v) − 4.
(4) The rotations at vertices lie in the range [−2, 2].
(5) If rotf (uv, vw) = 2 then rotf (uv[v]) = −1 or rotf (vw[v]) = −1.

If the face is clear from the context, we often omit the subscript in rotf . One can
assume that all bends on an edge (except for bends close to vertices) have the same di-
rection. It follows that the actual number of bends of uv can be computed from rot(uv),
rot(uv[u]), and rot(uv[v]).

Let f be a face of G and let u and v be two vertices on the boundary of f . By
πf (u, v) we denote the path from u to v on the boundary of f in clockwise direction
(counter-clockwise for the outer face). The rotation rotf (π) of a path π in the face f is
the sum of all rotations of edges and inner vertices of π in f .

An orthogonal embedding is basically a Kandinsky embedding without 0◦ angles
at vertices. Thus, we can define orthogonal representations [18] (equivalence class of
orthogonal embeddings), by forbidding rotation 2 at vertices.

3 Complexity

Let S be an instance of 3-SAT. In its variable-clause graph, the variables and clauses
are represented by vertices and there is an edge xc connecting a variable x with a clause
c if and only if x ∈ c or ¬x ∈ c. The NP-hard problem PLANAR MONOTONE 3-
SAT [8] restricts the instances of 3-SAT as follows. Every clause contains only positive
or only negative literals. Moreover, the variable-clause graph admits a planar embedding
such that the edges connecting a variable x to its positive clauses appear consecutively
around x.

The problem ORTHOGONAL 01-EMBEDDABILITY is defined as follows. Let G =
(V,E) be a 4-plane graph having its edges E = E0 ·∪E1 partitioned into 0-edges (E0)
and 1-edges (E1). Decide whether G admits an orthogonal 01-representation such that
every edge in Ei has exactly i bends. In the following, we always consider the variant of
ORTHOGONAL 01-EMBEDDABILITY where we allow to fix angles at vertices. Fixing
the angles at vertices does not make the problem harder since augmenting a vertex v to
have degree 4 by adding degree-1 vertices incident to v has the same effect as fixing the
angles at v.

We first reduce PLANAR MONOTONE 3-SAT to ORTHOGONAL 01-EMBEDDABIL-
ITY, which is further reduced to KANDINSKY BEND MINIMIZATION.

3.1 Orthogonal 01-Embeddability

In the reduction from PLANAR MONOTONE 3-SAT, the decision of setting a variable
to true or false is encoded in the bend-direction of a 1-edge. We show how to
build gadgets for variables (outputting a positive and negative literal) and for clauses

Complexity of Higher-Degree Orthogonal Graph Embedding in the Kandinsky Model 165

G[0, 1] G[−2, 3]

≡

(a) (c)

(d) (e)

(b)

Fig. 2. (a) The interval gadgets G[0, 1] (≡ 01-edge) and G[−2, 3] (s and t are blue). (b–e) Edges
are color-coded; 0-edges are black; 1-edges are blue; 01-edges are green and directed such that
they may bend right but not left. The building blocks are (b) the box; (c) the bendable box; (d) the
merger; (e) the splitter.

(admitting drawings if and only if at least one input edge encodes the value true). To
carry the decision of one variable to several clauses we need gadgets that impose the
bend direction from one edge on multiple edges (literal duplicator). Finally, we build
bendable pipes to carry the information (in a flexible way) to the clause gadgets. We
first present some basic building blocks.

Building Blocks. An interval gadget G[ρ1, ρ2] is a graph with two designated degree-1
vertices (its endpoints) s and t on the outer face. It has the property that rot(π(s, t)) ∈
[ρ1, ρ2] for any orthogonal embedding. The construction is similar to the tendrils used
by Garg and Tamassia [14]; Fig. 2a shows G[0, 1] and G[−2, 3]. Note that G[0, 1] be-
haves like an edge that may have one bend, but only into a fixed direction. In the follow-
ing, we draw copies of G[0, 1] as directed green edges and refer to them as 01-edges.

All our gadgets are based on the building blocks shown in Fig. 2b–e. We require that
the angles at the vertices in the internal face f are 90◦ (rotation 1). Note that, apart
from the 0-edges, all edges of the building blocks admit precisely two possible rotation
values in each face. Thus, each edge attains its maximum rotation value in one of its
faces and the minimum rotation in the other. It can be shown that in any orthogonal 01-
representation the rotation values of some edge pairs are not independent but are linked
in the sense that exactly one of them must attain its minimum (maximum) rotation value
in f . In Fig. 2b–e such dependencies are displayed as red dashed arrows.

Gadget Constructions. Our gadgets will always have 1-edges on the outer face, whose
bend directions represent truth values (as output or as input). We again use red dashed
arrows to indicate which edges have to bend consistently. It follows that when there is
a path of such red arrows from one edge to another edge, then they are synchronized.

The variable gadget for a variable x consists of a single box. The two 1-bend edges
are called positive and negative output. The variable gadget has exactly two different
representations; see Fig. 3a. We interpret a rotation of −1 and 1 of the positive output
in the outer face as x = true and x = false, respectively.

The literal duplicator is formed by a splitter, which is glued to two mergers via its
01-edges; see Fig. 3b. It has one input edge and two output edges and transfers the state
of the input to both outputs in every orthogonal 01-representation (red dashed paths),

166 T. Bläsius, G. Brückner, and I. Rutter

(a) variable gadget

¬x = false

x = true x = false

¬x = true

positive output

negative output

(b) literal duplicator

in
pu
t

output

o
u
tp
u
t

(c) zig-zag

in
p
u
t

o
u
tp
u
t

in
p
u
t

o
u
tp
u
t

· · ·

⎧ ⎪ ⎨ ⎪ ⎩
k times

⎧⎪⎪⎨⎪⎪⎩ zig-zag(d) bendable pipe

G[−2, 3]

input

true

true

true true

false

false

false

false false

not possible

(e) clause gadget

ρ
′
=

0

ρ = 0

ρ′ = −1

ρ
=

1

ρ
′
=

1

ρ = −1

Fig. 3. The different gadgets we use in our construction

i.e., the output edges have rotation −1 (1) in the outer face if and only if the input edge
has rotation 1 (−1). The literal duplicator admits orthogonal 01-representations for both
inputs true and false; see Fig. 3b.

A zig-zag consists of the two bendable boxes glued along a pair of 1-edges; see
Fig. 3c. It has an input and an output edge, and in any valid drawing the information
encoded in the input is transmitted to the output. Moreover, the decision which of the
bendable boxes bend their 01-edges can be taken independently. Thus, the zig-zag al-
lows to choose the rotations ρ, ρ′ of the paths between the input and the output edge
with ρ = −ρ′ for each ρ ∈ {−1, 0, 1}; see the drawings in Fig. 3c. A k-bendable
pipe is obtained by concatenating k zig-zags; see Fig. 3d. It has the same properties
as a zig-zag, except that the rotation ρ can be in the interval [−k, k]. In a high-level
view, a bendable pipe looks like a flexible edge that transfers information between its
endpoints.

The clause gadget is a cycle of length 4, consisting of three 1-edges, the input edges,
and the interval gadget G[−2, 3]; see Fig. 3e. The inner face lies to the right of G[−2, 3]
(i.e., the rotation of G[−2, 3] in the inner face is in [−2, 3]) and the angles at vertices in

Complexity of Higher-Degree Orthogonal Graph Embedding in the Kandinsky Model 167

inner faces are fixed to 90◦. Interpreting a rotation of −1 (of 1) of an input edge in the
inner face as true (as false), we get a valid embedding if and only if not all inputs
are false; see Fig. 3e.

Putting Things Together. Let S be an instance of PLANAR MONOTONE 3-SAT. To
obtain the graph G(S), we create a variable gadget for every variable and a clause
gadget for every clause, duplicate the literals (using the literal duplicator) outputted by
the variable gadget as often as they occur in clauses, and connect the resulting output
edges with the corresponding input edges of the clauses using bendable pipes of suf-
ficient length. Note that G(S) is planar if we adhere to the planar embedding of the
variable-clause graph of S.

If G(S) admits an orthogonal 01-representation, the drawings of the variable gadgets
imply a truth assignment for the variables in S. Moreover, it satisfies S, since a non-
satisfied clause would imply an orthogonal 01-representation of a clause gadget with
value false on every input edge. Conversely, a satisfying truth assignment of S, com-
pletely fixes the orthogonal 01-representation of each gadget, except for the rotations
along the bendable pipes. One needs to show that these representations can be plugged
together to a representation of the whole graph G(S), which is the case if the bendable
pipes are sufficiently long.

Theorem 1. ORTHOGONAL 01-EMBEDDABILITY is NP-complete.

In fact, we even showed NP-hardness for the case where all angles at vertices incident
to 1-edges are fixed. Moreover, it can be seen that both variants remain hard if the
combinatorial embedding is fixed up to the choice of an outer face.

It can be shown that ORTHOGONAL 01-EMBEDDABILITY remains NP-hard for sub-
divisions of triconnected graphs [3], which have a unique combinatorial embedding.
Replacing in such an instance every 1-edge with a copy of the interval gadget G[1, 1]
and releasing the combinatorial embedding gives an equivalent instance of 0-EMBEDD-
ABILITY (variable embedding) where mirroring the embedding of G[1, 1] corresponds
to bending a 1-edge in different directions. This simplifies the hardness proof by Garg
and Tamassia [14].

3.2 Kandinsky Bend Minimization

The reduction from ORTHOGONAL 01-EMBEDDABILITY to KANDINSKY BEND

MINIMIZATION consists of two basic building blocks. In an orthogonal embedding,
0◦ angles between edges are forbidden. We show how to enforce this for Kandinsky
embeddings. Moreover, we construct a subgraph whose Kandinsky embeddings behave
like the embeddings of an edge with exactly one bend.

The graph B in Fig. 4a is called corner blocker. The vertex v is its attachment vertex.
Clearly,B admits a Kandinsky representation with two bends. It can be shown that there
is no representation with fewer bends and that three bends are necessary if the angle at
v is 0◦.

Let v be a vertex with incident edges e1 and e2. Assume we attach two corner block-
ers B1 and B2 and embed them as in Fig. 4b. Then the angle between e1 and e2 can-
not be 0◦ without causing B1 or B2 to have three bends. By nesting corner blockers

168 T. Bläsius, G. Brückner, and I. Rutter

v v v

v

u

v

u

(a) (b) (c) (d)
B1 B2

e1

e2

Fig. 4. (a) The corner blocker. (b) Two corner blockers enforcing at least 90◦ angles between e1
and e2 (c) Nesting corner blockers. (d) The one-bend gadget.

(Fig. 4c), one can increase this cost arbitrarily. Hence, we can force angles between
edges to be at least 90◦ by adding (nested) corner blockers.

The graph Γ in Fig. 4d with the two endvertices u and v is called one-bend gadget.
The path π from u to v (blue in Fig. 4d) is the bending path of Γ . A Kandinsky rep-
resentation of Γ blocks no corner if all three edges incident to v leave v on the same
side. Clearly, Γ admits Kandinsky representations blocking no corner with three bends
and rotation 1 and −1 on π. We can show that an optimal representation of Γ blocking
no corner requires three bends and rotation either −1 or 1 on π. Thus, Γ behaves like
a 1-edge.

Let G = (V,E = E0 ·∪E1) (with combinatorial embedding) be an instance of OR-
THOGONAL 01-EMBEDDABILITY. We assume that all angles at vertices incident to
a 1-edge in G are fixed. Starting with G, we construct a graph G′ that serves as instance
of KANDINSKY BEND MINIMIZATION. Let v be a vertex of G. If the angles at v are
not fixed, we add a nested corner blocker for every face incident to v, which forbids 0◦

angles between edges of G incident to v. If the angles are fixed, we add α/90◦ nested
corner blockers into a face with angle α, which enforces the correct angles. Then we
replace every 1-edge uv in G with a one-bend gadget Γ . As the angles around v were
fixed (v is incident to a 1-edge), Γ is forced to block no corner. Hence, Γ has at least
three bends in every Kandinsky representation of G′ and its bending path has rotation 1
or −1.

We show that G admits an orthogonal 01-representation if and only if G′ has a
Kandinsky representation with 2b + 3|E1| bends (b is the number of corner blockers).
Given an orthogonal 01-representation of G, one can add the corner blockers (two bends
each) and replace 1-edges by one-bend gadgets (three bends each). Conversely, given a
Kandinsky representation of G′ with 2b + 3|E1| bends, removing the corner blockers
and replacing the one-bend gadgets by edges with one bend gives an orthogonal 01-
representation. The construction still works when allowing empty faces or restricting
edges to have at most one bend (or both).

Theorem 2. KANDINSKY BEND MINIMIZATION is NP-complete.

4 A Subexponential Algorithm

In this section, we give a subexponential algorithm for computing optimal Kandinsky
representations of plane graphs. We use dynamic programming on sphere cut decom-
positions, which are special types of branch decompositions [9]. Assume graph G is

Complexity of Higher-Degree Orthogonal Graph Embedding in the Kandinsky Model 169

decomposed into subgraphs G1 and G2. It may be possible to merge Kandinsky rep-
resentations K1 and K2 of G1 and G2 into a representation of G. We show (Sect. 4.1)
which properties of K1 are important when trying to merge it with K2 and derive classes
of Kandinsky representations whose members behave equivalently. If we know optimal
Kandinsky representations of G1 and G2 for each of these equivalence classes, we find
an optimal representation of G by trying to merge every pair of representations of G1

and G2. We bound the number of combinations one has to consider in Sect. 4.2. Itera-
tively applying this merging step in a sphere cut decomposition results in our Algorithm
(Sect. 4.3).

4.1 Interfaces of Kandinsky Representations

Consider two edge-disjoint graphs G1 and G2 sharing a set of attachment vertices. Let
the union G of G1 and G2 be plane. We say that G1 and G2 are glueable if both graphs
are connected and there is a simple closed curve that separates G1 fromG2; see Fig. 5a–
c. We also say that G1 (G2) is a glueable subgraph of G. A sphere cut decomposition of
width k basically recursively decomposes a plane graph into glueable subgraphs with
at most k attachment vertices.

Let K be a Kandinsky representation of G with restriction K1 to G1. Let K′
1 be

another representation of G1. Replacing K1 with K′
1 in K means to set every rotation in

K involving only edges in G1 to its value in K′
1 (other values remain unchanged). The

result is not necessarily a Kandinsky representation. We say that K1 and K′
1 have the

same interface if replacingK1 with K′
1 (and vice versa) in any Kandinsky representation

of G yields a Kandinsky representation of G; see Fig. 5d. In the following we derive a
combinatorial description of an interface.

Consider two glueable subgraphs G1 and G2 of a plane graph G. Let v0, . . . , v� be
the attachment vertices in the order they appear on the simple closed curve separating
G1 from G2. Let f be the face of G1 containing G2 and let Cf be its facial cycle
(Cf contains v0, . . . , v� in that order). The vi decompose Cf into the interface paths
π01, π12, . . . , π�0 with πij = π(vi, vj). For an attachment vertex vi, denote the last
edge of the path πi−1 i by eini and the first edge of the path πi i+1 by eouti (indices are
considered modulo � + 1); see Fig. 5e.

G1

G2

G1

G2

(a) (b) (c)

G1G2
v

K1

K′
1

v1

v2 v0

π12

π20

π01

ein0

eout0ein1
eout1

ein2

eout2

(d) (e)

Fig. 5. (a) Decomposition of a graph into glueable subgraphs G1 and G2 (attachment vertices are
shaded blue). (b) A non-glueable decomposition (a closed curve separating G1 from G2 cannot
be simple as v must be visited twice). (c) Non-glueable decomposition (G2 is disconnected).
(d) Graph G with glueable subgraph G1 (yellow). Faces shared by G1 and G2 are blue. The
Kandinsky representations K1 and K′

1 are interchangeable. (e) Some notation.

170 T. Bläsius, G. Brückner, and I. Rutter

G1
G2

H −G(b)
G1

G2

(a)
v

(c)

f

f ′

f

f ′

v

Fig. 6. (a) Merging G1 and G2. Shared rotations are marked red. (b) A merging step of width 5.
(c) Two ways to choose the shared rotations.

The representations K1 and K′
1 of G1 have compatible interface paths if each πi i+1

has the same rotation in K1 and K′
1. They have the same attachment rotations if for

every attachment vertex vi, the rotation rot(eini , e
out
i) is the same. In Fig. 5e, interface

paths π01, π12, and π20 have rotations −1, 1, and 0, and the attachment rotations at v0,
v1, and v2 are −1, −1, and −2, respectively.

For an attachment vertex vi, the rotations at the end vi of the edges eini and eouti

(rot(eini [vi]) and rot(eouti [vi])) indicate whether 0◦ angles at vi are allowed. For both
rotations, we define the 0◦ flag to be true if a 0◦ angle is allowed (rotation −1) and
false otherwise (rotations 0, 1). Possible values for the 0◦ flags in Fig. 5e are true
for eout0 [v0] and for ein1 [v1] and false for all other flags.

Lemma 1. Two Kandinsky representations have the same interface iff they have com-
patible interface paths, the same attachment rotations, and the same 0◦ flags.

It follows that each interface class is uniquely described by this information. We
simply call it the interface of G1 (G2) in G.

4.2 Merging Two Kandinsky Representations

Let K1 and K2 be Kandinsky representations of G1 and G2, respectively, and let G =
G1 ∪ G2. We say that K1 and K2 can be merged if there exists a Kandinsky represen-
tation K of G whose restriction to G1 and G2 is K1 and K2, respectively. Note that
the only rotations in K that occur neither in K1 nor in K2 are rotations at attachment
vertices between an edge of G1 and an edge of G2. We call these rotations the shared
rotations; see Fig. 6a. Thus, merging K1 and K2 is the process of choosing values for
the shared rotation such that the resulting set of rotations is a Kandinsky representation
of G.

In the following, we consider the case where G itself is a glueable subgraph of a
larger graph H . We call this the merging step G = G1 � G2. Note that G1 and G2 are
also glueable subgraphs of H . Note further that the interface of G1 (G2) in G can be
deduced from the interface of G1 (G2) in H . When dealing with a merging step, we
always consider the interfaces of G1 and G2 in H . The width of a merging step is the
maximum number of attachment vertices of G1, G2, and G in H ; see Fig. 6b for an
example.

If the Kandinsky representations K1 and K2 can be merged, then every Kandinsky
representation K′

1 with the same interface as K1 can be merged in the same way (i.e.,
with the same shared rotations) with K2. Moreover, the resulting Kandinsky represen-
tations K and K′ of G have the same interface. Thus, the only choices that matter when

Complexity of Higher-Degree Orthogonal Graph Embedding in the Kandinsky Model 171

merging two representations are to choose shared rotations and interfaces for G1 and
G2. A choice of shared rotations and interfaces is compatible if these interfaces can be
merged using the chosen rotations.

We bound the number of compatible combinations, depending on the width k of the
merging step and the maximum rotation ρ. The maximum rotation of a graph H is ρ if
H admits an optimal Kandinsky representation such that the absolute rotations of the
interface paths in every glueable subgraph of H are at most ρ; the maximum rotation ρ
of a merging step refers to the maximum rotation of the whole graph H .

A simple bound can be obtained as follows. There are 2k interface paths, each admit-
ting up to (2ρ+1) possible rotations, giving (2ρ+1)2k combinations. Every attachment
vertex has its attachment rotation in [−2, 2] and two binary 0◦-flags, yielding another
202k combinations. Finally, each shared rotation (two per attachment) may be chosen
from [−2, 2], yielding again 52k combinations. That are (2ρ + 1)2k10000k combina-
tions in total. By a careful consideration which combinations are actually meaningful
this number can be reduced greatly.

Lemma 2. In a merging step G = G1 �G2 of width k with maximum rotation ρ, there
are at most (2ρ+ 1)�1.5k�−1 · 330k compatible choices for the shared rotations and the
interfaces of G1 and G2.

Let G be a glueable subgraph of H . The cost of an interface class is the minimum
cost (e.g., number of bends) of the Kandinsky representations it contains. The cost table
of G is a table containing the cost of each interface class of G.

Lemma 3. Let G = G1 � G2 be a merging step of width k with maximum rotation ρ.
Given the cost tables of G1 and G2, the cost table of G can be computed in O(k · (2ρ+
1)�1.5k�−1 · 330k) time.

4.3 The Algorithm

The previous three lemmas together with an optimal sphere cut decomposition (com-
putable in O(n3) time [15,9]) can be used to prove the following theorem.

Theorem 3. An optimal Kandinsky representation of a plane graphG can be computed
in O(n3 + n · k · (2ρ + 1)�1.5k�−1 · 330k) time, where k is the branch width and ρ the
maximum rotation of G.

To obtain the following corollaries, we bound ρ in terms of the optimal bend number
and the maximum face size and use upper bounds of 2 and O(

√
n) on the branch width

of series-parallel and planar graphs, respectively.

Corollary 1. Let G be a plane graph with maximum face-degree ΔF , and branch
width k. An optimal Kandinsky representation can be computed in O(n3 +n ·k · (2m+
2ΔF − 3)�1.5k�−1 · 330k) time. An optimal b-bend Kandinsky representation can be
computed in O(n3 + n · k · ((2b + 2) ·ΔF − 2b− 3)�1.5k�−1 · 330k) time.

Corollary 2. For series-parallel and general plane graphs an optimal Kandinsky rep-
resentation can be computed in O(n3) and 2O(

√
n logn) time, respectively.

Acknowledgments. We thank Therese Biedl for discussions.

172 T. Bläsius, G. Brückner, and I. Rutter

References

1. Bertolazzi, P., Di Battista, G., Didimo, W.: Computing orthogonal drawings with the
minimum number of bends. IEEE Trans. Comput. 49(8), 826–840 (2000)

2. Biedl, T., Kant, G.: A better heuristic for orthogonal graph drawings. Comput. Geom. Theory
Appl. 9, 159–180 (1998)

3. Bläsius, T., Brückner, G., Rutter, I.: Complexity of higher-degree orthogonal graph embed-
ding in the kandinsky model. CoRR abs/1405.2300 (2014)

4. Bläsius, T., Krug, M., Rutter, I., Wagner, D.: Orthogonal graph drawing with flexibility
constraints. Algorithmica 68(4), 859–885 (2014)

5. Bläsius, T., Lehmann, S., Rutter, I.: Orthogonal graph drawing with inflexible edges. CoRR
abs/1404.2943 (2014)

6. Bläsius, T., Rutter, I., Wagner, D.: Optimal orthogonal graph drawing with convex bend costs.
In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013, Part I. LNCS,
vol. 7965, pp. 184–195. Springer, Heidelberg (2013)

7. Cornelsen, S., Karrenbauer, A.: Accelerated bend minimization. J. Graph Algorithms
Appl. 16(3), 635–650 (2012)

8. de Berg, M., Khosravi, A.: Optimal binary space partitions for segments in the plane. Int. J.
Comput. Geometry Appl. 22(3), 187–206 (2012)

9. Dorn, F., Penninkx, E., Bodlaender, H., Fomin, F.: Efficient exact algorithms on planar
graphs: Exploiting sphere cut decompositions. Algorithmica 58(3), 790–810 (2010)

10. Eiglsperger, M.: Automatic Layout of UML Class Diagrams: A Topology-Shape-Metrics
Approach. Ph.D. thesis, Universität Tübingen (2003)

11. Eiglsperger, M., Gutwenger, C., Kaufmann, M., Kupke, J., Jünger, M., Leipert, S., Klein, K.,
Mutzel, P., Siebenhaller, M.: Automatic layout of UML class diagrams in orthogonal style.
Information Visualization 3(3), 189–208 (2004)

12. Fößmeier, U., Kant, G., Kaufmann, M.: 2-visibility drawings of planar graphs. In: North, S.
(ed.) GD 1996. LNCS, vol. 1190, pp. 155–168. Springer, Heidelberg (1997)

13. Fößmeier, U., Kaufmann, M.: Drawing high degree graphs with low bend numbers. In:
Brandenburg, F.J. (ed.) GD 1995. LNCS, vol. 1027, pp. 254–266. Springer, Heidelberg
(1996)

14. Garg, A., Tamassia, R.: On the computational complexity of upward and rectilinear planarity
testing. SIAM J. Comput. 31(2), 601–625 (2001)

15. Gu, Q.P., Tamaki, H.: Optimal branch-decomposition of planar graphs in O(n3) time. ACM
Trans. Alg. 4(3), 30:1–30:13 (2008)

16. Klau, G.W., Mutzel, P.: Quasi-orthogonal drawing of planar graphs. Research Report MPI-I-
98-1-013, Max-Planck-Institut für Informatik (1998)

17. Leiserson, C.E.: Area-efficient graph layouts (for VLSI). In: FOCS 1980, pp. 270–281 (1980)
18. Tamassia, R.: On embedding a graph in the grid with the minimum number of bends. SIAM

J. Comput. 16(3), 421–444 (1987)
19. Tamassia, R. (ed.): Handbook of Graph Drawing and Visualization. No. 81 in Discrete

Mathematics and Its Applications. Chapman and Hall/CRC (2013)
20. Tamassia, R., Battista, G.D., Batini, C.: Automatic graph drawing and readability of

diagrams. IEEE Trans. Syst., Man, Cybern., Syst. 18, 61–79 (1988)
21. Valiant, L.G.: Universality considerations in VLSI circuits. IEEE Trans. Comput. 30(2),

135–140 (1981)

A Subexponential Parameterized Algorithm

for Proper Interval Completion�

Ivan Bliznets1, Fedor V. Fomin1,2, Marcin Pilipczuk2, and Micha�l Pilipczuk2

1 St. Petersburg Department of Steklov Institute of Mathematics, Russia
2 Department of Informatics, University of Bergen, Norway
{fomin,Marcin.Pilipczuk,Michal.Pilipczuk}@ii.uib.no

Abstract. In the Proper Interval Completion problem we are given
a graph G and an integer k, and the task is to turn G using at most k
edge additions into a proper interval graph, i.e., a graph admitting an in-
tersection model of equal-length intervals on a line. The study of Proper
Interval Completion from the viewpoint of parameterized complexity
has been initiated by Kaplan, Shamir and Tarjan [FOCS 1994; SIAM
J. Comput. 1999], who showed an algorithm for the problem working in
O(16k · (n+m)) time. In this paper we present an algorithm with run-

ning time kO(k2/3) +O(nm(kn +m)), which is the first subexponential
parameterized algorithm for Proper Interval Completion.

1 Introduction

A graph G is an interval graph if it admits a model of the following form: each
vertex is associated with an interval on the real line, and two vertices are adja-
cent if and only if the associated intervals overlap. If moreover the intervals can
be assumed to be of equal length, then G is a proper interval graph; equivalently,
one may require that no associated interval is contained in another. Interval and
proper interval graphs appear naturally in molecular biology in the problem of
physical mapping, where one is given a graph with vertices modeling contiguous
intervals (called clones) in a DNA sequence, and the edges indicate which inter-
vals overlap. Based on this information one would like to reconstruct the layout
of the clones. We refer to [12] for further discussion on biological applications of
(proper) interval graphs.

The biological motivation was the starting point of the work of Kaplan et
al. [12], who initiated the study of (proper) interval graphs from the point of
view of parameterized complexity. It is namely natural to expect that some in-
formation about overlaps will be lost, and hence the model will be missing a
small number of edges. Thus we arrive at the problems of Interval Comple-

tion (IC) and Proper Interval Completion (PIC): given a graph G and an

� The research leading to these results has received funding from the European
Research Council under the European Union’s Seventh Framework Programme
(FP/2007-2013) / ERC Grant Agreement n. 267959 and the Government of the
Russian Federation (grant 14.Z50.31.0030). A full version of this paper is available
at arXiv [4].

A.S. Schulz and D. Wagner (Eds.): ESA 2014, LNCS 8737, pp. 173–184, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

174 I. Bliznets et al.

integer k, one is asked to add at most k edges to G to obtain a (proper) interval
graph. Both problems are NP-hard [17], and hence it is natural to ask for an
FPT algorithm parameterized by the number of additions. For PIC Kaplan et
al. [12] presented an algorithm with running time O(16k · (n + m)), while fixed-
parameterized tractability of IC was proved much later by Villanger et al. [16].
Recently, Liu et al. [14] obtained an O(4k +nm(n+m))-time algorithm for PIC.

The approach of Kaplan et al. [12] is based on a characterization by forbidden
induced subgraphs, also studied by Cai [5]: proper interval graphs are exactly
graphs that are chordal (do not contain any induced cycle C� for � ≥ 4) and
additionally exclude three small graphs as induced subgraphs: a claw, a tent,
and a net (see e.g. [2]). Thus, in PIC we may apply a basic branching strategy:
Whenever a forbidden induced subgraph is encountered, we branch into several
possibilities of how it is going to be destroyed in the optimal solution. A cycle
C� can be destroyed only by adding � − 3 edges to triangulate it, and there are
roughly 4�−3 different ways to do so. Since there is only a constant number of
ways of destroying a small subgraph, the whole branching procedure runs in
cknO(1) time, for some constant c.

The approach via forbidden induced subgraphs has driven the research on the
parameterized complexity of graph modification problems ever since the work
of Cai [5]. Of particular importance was the work on polynomial kernelization;
recall that a polynomial kernel for a parameterized problem is a polynomial-time
preprocessing routine that reduces the size of the instance at hand to polynomial
in the parameter. While many natural completion problems admit polynomial
kernels, there are also examples where no such kernel exists under plausible
complexity assumptions [13]. In particular, PIC admits a kernel with O(k3)
vertices which is computable in O(nm(kn+m)) time [2], while the kernelization
status of IC remains a notorious open problem.

The turning point came recently, when Fomin and Villanger [9] proposed an
algorithm for Chordal Completion (aka Fill-in), that runs in subexponen-

tial parameterized time, more precisely kO(
√
k)nO(1). As observed by Kaplan et

al. [12], the approach via forbidden induced subgraphs leads to an FPT algo-
rithm for Fill-in with running time 16knO(1). However, in order to achieve a
subexponential running time one needs to completely abandon this route, as
even branching on obstacles as small as, say, induced C4-s, leads to running
time 2knO(1). To circumvent this, Fomin and Villanger proposed the approach
of gradually building the structure of a chordal graph in a dynamic program-
ming manner. The crucial observation was that the number of ‘building blocks’
(in their case, potential maximal cliques) is subexponential in a YES-instance,
and thus the dynamic program operates on a subexponential space of states.

This research direction was continued by Ghosh et al. [10] and by Drange et
al. [7], who identified several more graph classes for which completion problems
have subexponential parameterized complexity: threshold graphs, split graphs,
pseudo-split graphs, and trivially perfect graphs. Let us remark here that prob-
lems admitting subexponential parameterized algorithms are very scarce, since
for most natural parameterized problems existence of such algorithms can be

A Subexponential Parameterized Algorithm for PIC 175

refuted under the Exponential Time Hypothesis (ETH) [11]. Up to very recently,
the only natural positive examples were problems on specifically constrained in-
puts, like H-minor free graphs [6] or tournaments [1]. Thus, completion problems
admitting subexponential parameterized algorithms can be regarded as ‘singu-
lar points on the complexity landscape’. Indeed, Drange et al. [7] complemented
their work with a number of lower bounds excluding (under ETH) subexponen-
tial parameterized algorithms for completion problems to many related graphs
classes, e.g. cographs.

Interestingly, threshold, trivially perfect and chordal graphs, which are cur-
rently our main examples, correspond to graph parameters vertex cover, treedepth,
and treewidth in the following sense: the parameter is equal to the minimum pos-
sible maximum clique size in a completion to the graph class (±1). It is therefore
natural to ask if Interval Completion and Proper Interval Completion,
which likewise correspond to pathwidth and bandwidth, also admit subexponential
parameterized algorithms.

ChordalInterval

Trivially perfect

Proper interval

Threshold ⊂
⊂

⊂

⊂
TreewidthPathwidth

Treedepth

Bandwidth

Vertex cover ≥
≥

≥

≥

Fig. 1. Graph classes and corresponding graph parameters. Inequalities on the right
side are with ±1 slackness.

Our Results. In this paper we answer the question about Proper Interval

Completion in affirmative by proving the following theorem:

Theorem 1. Proper Interval Completion is solvable in time
kO(k2/3) + O(nm(kn + m)).

In a companion paper [3] we also present an algorithm for Interval Comple-

tion with running time kO(
√
k)nO(1), which means that the completion problems

for all the classes depicted on Fig. 1 in fact do admit subexponential parame-
terized algorithms. We now describe briefly our techniques employed to prove
Theorem 1, and main differences with the work on interval graphs [3].

From a space-level perspective, both the approach of this paper and of [3]
follows the route laid out by Fomin and Villanger in [9]. That is, we enumerate a
subexponential family of potentially interesting building blocks, and then try to
arrange them into a (proper) interval model with a small number of missing edges
using dynamic programming (DP for short). In both cases, a natural candidate
for this building block is the concept of a cut: given an interval model of a
graph, imagine a vertical line placed at some position x that pins down intervals
containing x. A potential cut is then a subset of vertices that becomes a cut in
some minimal completion to a (proper) interval graph of cost at most k. The
starting point of both this work and of [3] is enumeration of potential cuts.
Using different structural insights into the classes of interval and proper interval
graphs, one can show that in both cases the number of potential cuts is at

176 I. Bliznets et al.

most nO(
√
k), and they can be enumerated efficiently. Since in the case of proper

interval graphs we can start with a cubic kernel given by Bessy and Perez [2],

this immediately gives kO(
√
k) potential cuts for the PIC problem. In the interval

case the question of existence of a polynomial kernel is widely open, and the need
of circumventing this obstacle causes severe complications in [3].

Afterwards the approaches diverge completely, as it turns out that in both
cases the potential cuts are insufficient building blocks to perform dynamic pro-
gramming, however for very different reasons. For Interval Completion the
problem is that the cut itself does not define what lies on the left and on the right
of it. Even worse, there can be an exponential number of possible left/right align-
ments when the graph contains many modules that neighbor the same clique.
To cope with this problem, the approach taken in [3] remodels the dynamic
programming routine so that, in some sense, the choice of left/right alignment
is taken care of inside the dynamic program. However, this leads to extremely
complicated definition of a DP state and its relations.

Curiously, in the proper interval setting the left/right choice can be easily
guessed along with a potential cut at basically no extra cost. Hence, the issue
causing the most severe problems in the interval case is non-existent. The prob-
lem, however, is in the ordering of intervals in the cut: while performing a natural
left-to-right DP that builds the model, we need to ensure that intervals partici-
pating in a cut begin in the same order as they end. Therefore, apart from the
cut itself and a partition of the other vertices into left and right, a state would
also need to include the ordering of the vertices of the cut; as the cut may be
large, we cannot afford constructing a state for every possible ordering.

Instead we remodel the dynamic program, this time by introducing two lay-
ers. We first observe that the troublesome ordering may be guessed expeditiously
providing that the cut in question has only a sublinear in k number of incident
edge additions. Hence, in the first layer of dynamic programming we aim at chop-
ping the optimally completed model using such cheap cuts, and to conclude the
algorithm we just need to be able to compute the best possible completed model
between two border cuts that are cheap, assuming that all the intermediate cuts
are expensive. This task is performed by the layer-two dynamic program. The
main observation is that since all the intermediate cuts are expensive, there can-
not be many disjoint such cuts and, consequently, the space between the border
cuts is in some sense ‘short’. As the border cuts can be large, it is natural to
start partitioning the space in between ‘horizontally’ instead of ‘vertically’ —
shortness of this space guarantees that the number of sensible ‘horizontal’ sep-
arations is subexponential. The horizontal partitioning method that we employ
resembles the classic O�(10n)-time exact algorithm for bandwidth of Feige [8].

2 Preliminaries

In most cases, we follow standard graph notation.
For integers a, b, we denote [a, b] = {a, a+1, . . . , b}. An ordering σ of a subset

X ⊆ V (G) is an injective function σ : X → [1, |V (G)|], and an ordering of G

A Subexponential Parameterized Algorithm for PIC 177

is simply an ordering of V (G). Note that an ordering of G is a bijection. We
sometimes treat an ordering σ of X ⊆ V (G) as an ordering of G[X] as well,
implicitly identifying σ(X) with [1, |X |] in the monotonous way.

We use n and m to denote the number of vertices and edges of the input
graph, respectively. Moreover, for an input graph G we fix some arbitrary order
% of V (G) and with every ordering σ of X = {x1 ≺ x2 ≺ . . . ≺ x|X|} ⊆ V (G) we
associate a sequence (σ(x1), σ(x2), . . . , σ(x|X|)). The lexicographically minimum
ordering from some family of orderings of a fixed set X is the ordering with
lexicographically minimum associated sequence.

A graph G is a proper interval graph if it admits an intersection model, where
each vertex is assigned a closed interval on a line such that no interval is a proper
subset of another one. In our work it is more convenient to use an equivalent
combinatorial object, called an umbrella ordering.

Definition 2 (Umbrella Ordering). Let G be a graph and σ : V (G) → [1, n]
be an ordering. We say that σ satisfies the umbrella property for a triple a, b, c ∈
V (G) if ac ∈ E(G) and σ(a) < σ(b) < σ(c) implies ab, bc ∈ E(G). Furthermore,
σ is an umbrella ordering if it fulfills the umbrella property for all a, b, c ∈ V (G).

It is known that a graph is a proper interval graph if and only if it admits
an umbrella ordering [15]. Observe that we may equivalently define an umbrella
ordering σ as such an ordering that for every ab ∈ E(G) with σ(a) < σ(b), the
vertices in [σ(a), σ(b)] in σ form a clique in G, or, alternatively, if and only if
for every a, a′, b′, b ∈ V (G) such that σ(a) ≤ σ(a′) < σ(b′) ≤ σ(b), if ab ∈ E(G),
then also a′b′ ∈ E(G).

For a graph G, a completion of G is a set F ⊆
(
V (G)

2

)
\ E(G) such that

G + F := (V (G), E(G) ∪ F) is a proper interval graph. The Proper Interval

Completion problem asks for a completion of G of size not exceeding a given
budget k. For a completion F of G and v ∈ V (G), we denote by F (v) the set of
edges of F incident with v and for X ⊆ V (G), we define F (X) =

⋃
v∈X F (v).

However, for our purposes it is more convenient to work with orderings rather
than completions. Consider an ordering σ and define F σ to be the set of these
pairs uv /∈ E(G) such that there exists an edge u′v′ ∈ E(G) with σ(u′) ≤ σ(u) <
σ(v) ≤ σ(v′). It is straightforward to verify the following.

Lemma 3. The graph Gσ := G+F σ is a proper interval graph, and σ is its um-
brella ordering. Moreover, F σ is the unique inclusion-wise minimal completion
of G among completions F for which σ is an umbrella ordering of G + F .

The canonical ordering of a graph G is the lexicographically minimum order-
ing among orderings σ with minimum possible |F σ|. For a canonical ordering
σ, the set F σ is called the canonical completion. If additionally |F σ| ≤ k, the
canonical ordering σ is also called the canonical solution.

Our starting point for the proof of Theorem 1 is the polynomial kernel for
Proper Interval Completion due to Bessy and Perez.

Theorem 4 ([2]). Proper Interval Completion admits a kernel with O(k3)
vertices computable in time O(nm(kn + m)).

178 I. Bliznets et al.

The algorithm of Theorem 1 starts with applying the kernelization algo-

rithm of Theorem 4; all further computation will take kO(k2/3) time, yielding
the promised time bound. Hence, in the rest of the paper we assume that we are
given a PIC instance (G, k) with n = |V (G)| = O(k3), and we are looking for
the canonical solution of G provided that (G, k) is a YES-instance. Moreover,
by standard arguments we may assume that G is connected.

3 Expensive Vertices

We first deal with vertices that are incident with many edges of F σ. Formally,
we set a threshold τ := (2k)1/3 and say that a vertex v is expensive with respect
to σ if it is incident with more than τ edges of F σ, and cheap otherwise. As
there are at most (2k)2/3 = τ2 expensive vertices, we may afford guessing a lot
of information about expensive vertices within the promised time bound.

More formally, we branch into kO(k/τ) = kO(k2/3) subcases corresponding to
the guesses about the expensive vertices in the canonical solution σ. We consider
all possible

– sets V$ ⊆ V (G) of size at most τ2 of expensive vertices w.r.t. σ, and
– for each V$, all possible quadruples (v, pv, p

L
v , p

R
v), where v ∈ V$, and pv, pLv ,

pRv are integers such that pv = σ(v), pLv = min{σ(w) : w ∈ NGσ [v]} and
pRv = max{σ(w) : w ∈ NGσ [v]}.

In each branch, we look for the canonical solution to the instance (G, k), assum-
ing that the aforementioned guess is the correct one. The correct branch is the
one where this assumption is indeed true.

In each branch, some consistency checks are in place. For instance, the map-
ping v "→ pv should be injective, pv1 < pv2 should imply pLv1 ≤ pLv2 and pRv1 ≤ pRv2 ,
etc. We omit the full description of these checks in this extended abstract.

Observe that, in the correct branch, a vertex v ∈ V$ has degree exactly pRv −pLv
in the graph Gσ, with its closed neighborhood placed on positions [pLv , p

R
v]. This

motivates us to define the following

F$ = {v1v2 : v1, v2 ∈ V$ ∧ v1 �= v2 ∧ v1v2 �∈ E(G) ∧ v1 ∈ [pLv2 , p
R
v2]},

c$ = −|F$| +
∑
v∈V$

(
(pRv − pLv) − degG(v)

)
.

Let us observe that F$ is the set comprising edges of F σ with both endpoints in
V$, i.e. F$ = F σ ∩

(
V$

2

)
, and that c$ is the number of edges of F σ incident with

V$, i.e. c$ = |F σ(V$)|. Both notions are meaningful for every branch.

Lemma 5. Let σ′ be an ordering of V (G) and F be a completion of G such
that (i) σ′ is an umbrella ordering of G + F , and (ii) for every v ∈ V$, we have
σ′(v) = pv and σ′(NG+F [v]) = [pLv , p

R
v]. Then F ∩

(
V$

2

)
= F$ and |F (V$)| = c$.

We infer that the guesses made so far impose a fixed cost of c$ edges and it is
tempting to consider the remaining instance (G\V$, k−c$). However, the guessed

A Subexponential Parameterized Algorithm for PIC 179

values impose some constraints on this remaining instance. First, if uv ∈ E(G)
for some expensive v and cheap u, we need to have σ(u) ∈ [pLv , p

R
v]. Second, due

to the umbrella property, for any expensive v, all vertices placed on positions
[pLv , pv] become a clique, whereas no edge of G connects a vertex placed before
position pLv and a vertex placed on or after position pv; similar constraints are
imposed for positions pv and pRv .

Luckily, all these constraints can be modelled as (i) prescribing for each cheap
u a set Σu ⊆ [1, n] of allowed positions, and (ii) prescribing some pairs of posi-
tions to be necessarily adjacent or necessarily nonadjacent in the ordering σ. It
turns out that the aforementioned additional constraints only slightly increase
the technical level of further reasonings, and none of them adds any significant
difficulty. Hence, in this extended abstract we ignore them, and assume that in
the canonical ordering σ there are no expensive vertices.

4 Sections

For any position p in the canonical ordering σ we define a section Ap = {v ∈
V (G) : σ(v) < p}, and additionally A∞ = V (G). We are now going to show
the vital combinatorial result: in the absence of expensive vertices, there is only
subexponential number of candidates for sections of σ.

Theorem 6. In kO(τ) time one can enumerate a family S of kO(τ) subsets of
V (G) such that every section of the canonical solution σ is in S.

The main idea in the proof of Theorem 6 is to investigate twin classes in
graph Gσ. Recall that two vertices x and y are true twins if N [x] = N [y]; in
particular, this implies that they are adjacent. The relation of being true twins
is an equivalence relation, and equivalence classes of this relation are called twin
classes. Observe that by the definition of the umbrella ordering, in σ the vertices
of each twin class of Gσ occupy consecutive positions. We show the following
bound on the number of candidates for twin classes.1

Theorem 7. In kO(τ) time one can enumerate a family T of kO(τ) triples
(L,Λ, σΛ), where L,Λ ⊆ V (G) and σΛ is an ordering of Λ, with the follow-
ing property. For every twin class Λ of Gσ, if L is the set of vertices of G
placed before Λ in the ordering σ, and σ|Λ is the ordering σ restricted to Λ, then
(L,Λ, σ|Λ) ∈ T .

We remark that it is easy to derive Theorem 6 from Theorem 7: We first output
the section V (G) and then, for each (L,Λ, σΛ) ∈ T and p ∈ [1, n], we output
L∪{u ∈ Λ : σΛ(u) < p}. Observe that if a section Ap �= V (G) is consistent with
σ, then Ap is output for the position p and the triple (L,Λ, σ|Λ) ∈ T where Λ is
the twin class of vertex σ−1(p).

1 We care about the order inside twin classes because inside a single twin class we
may have different restrictions imposed by the guesses on expensive vertices made
in the previous section.

180 I. Bliznets et al.

.
a

b1 b2c1 c2
Λ

Fig. 2. The guessed vertices a, b1, b2, c1 and c2 with respect to a twin class Λ. The
gray area denotes NGσ [Λ].

To prove Theorem 7, we describe a branching algorithm that produces kO(τ)

subcases and, in each subcase, produces one triple (L,Λ, σΛ). We fix one twin
class Λ of Gσ and argue that the algorithm in one of the branches produces
(L,Λ, σ|Λ), where L is defined as in Theorem 7.

The algorithm first guesses the following five vertices, see also Fig. 2.

1. a is a vertex of Λ,
2. b1 is the rightmost vertex outside NGσ [Λ] in σ that lies before Λ, or b1 = ⊥

if no such vertex exists;
3. c1 is the leftmost vertex of NGσ [Λ] in σ;
4. c2 is the rightmost vertex of NGσ [Λ] in σ;
5. b2 is the leftmost vertex outside NGσ [Λ] in σ that lies after Λ, or b2 = ⊥ if

no such vertex exists.

Moreover, for each u ∈ {a, b1, b2, c1, c2} \ {⊥} the algorithm guesses F σ(u).
This leads us to kO(τ) subcases, as all vertices of G are cheap. The crucial step
in deducing the triple (L,Λ, σΛ) is the following lemma (we take NGσ [⊥] = ∅).

Lemma 8. In the branch where the guesses are correct, for every u ∈ NGσ [a]
the following holds

1. If u ∈ NGσ [b1] or u /∈ NGσ [c2], then u /∈ Λ and u lies before Λ in σ;
2. If u ∈ NGσ [b2] or u /∈ NGσ [c1], then u /∈ Λ and u lies after Λ in σ;
3. If none of the above happens, then u ∈ Λ.

Proof. By the definition of b1, b2, c1 and c2, we have that every vertex u ∈ Λ
is in NGσ [c1] and NGσ [c2], but does not belong to NGσ [b1] and to NGσ [b2].
Consequently, all vertices of Λ fall into the third category of the statement.

We now show that every vertex of NGσ [a] \ Λ falls into one of the first two
categories, depending on its position in the ordering σ. By symmetry, we may
only consider a vertex u ∈ NGσ [a] \ Λ that lies before Λ in σ. The umbrella
property together with a /∈ NGσ [b2] imply that u /∈ NGσ [b2], and because ac1 ∈
E(Gσ), we have that uc1 ∈ E(Gσ). Consequently, u does not fall into the second
category in the statement of the lemma.

As u /∈ Λ and u ∈ NGσ [a], either NGσ(u) \NGσ [a] is not empty or NGσ(a) \
NGσ [u] is not empty. In the first case, let uw ∈ E(Gσ) but aw /∈ E(Gσ). Since
also ua ∈ E(Gσ), by the umbrella property it easily follows that w lies before u
in the ordering σ, so in particular before Λ. By the definition of b1, b1 exists and
σ(b1) ≥ σ(w). By the umbrella property, b1u ∈ E(Gσ) and hence u ∈ NGσ [b1].

A Subexponential Parameterized Algorithm for PIC 181

In the second case, assume uw /∈ E(Gσ) but aw ∈ E(Gσ). Again, since
ua ∈ E(Gσ), by the umbrella property it easily follows that w lies after Λ in
the ordering σ, so in particular after u. By the definition of c2 and the existence
of w, c2 /∈ Λ and σ(c2) ≥ σ(w). By the umbrella property, c2u /∈ E(Gσ) and
u /∈ NGσ [c2]. Hence, u falls into the first category and the lemma is proven. ��

The knowledge of a and F σ(a) allows us to compute NGσ [Λ] = NGσ [a].
Lemma 8 allows us further to partition NGσ [Λ] into Λ, the vertices of NGσ(Λ)
that lie before Λ in the ordering σ, and the ones that lie after Λ.

We are left with the vertices outside NGσ [Λ]. Let C be a connected component
of G\NGσ [Λ]. As no vertex of C is incident with Λ in Gσ, by the properties of an
umbrella ordering we infer that all vertices of NG[C] lie before Λ in the ordering
σ or all vertices of NG[C] lie after Λ. As G is assumed to be connected, NG(C)
contains a vertex of NGσ(Λ), and we can deduce whether C ⊆ L or L ∩ C = ∅.

Finally, as Λ is a twin class in Gσ, the ordering σ sorts Λ according to %.
Thus, σ|Λ depends only on the position p = minσ(Λ), which we simply guess.

We remark here that there are some slight difficulties if we have some ad-
ditional constraint imposed by the guesses of the previous section. First, for a
connected component C of G \NGσ [Λ] it may happen that NG(C) ⊆ V$. In this
case, however, we may deduce whether C ⊆ L or C ∩ L = ∅ from the guessed
positions of the expensive vertices and the position p of the first vertex of Λ.
Second, the ordering σ|Λ needs to respect the prescribed allowed positions Σu

for u ∈ Λ. Luckily, with this constraint the task of finding σ|Λ boils down to
a task of finding a lexicographically minimum perfect matching in an auxiliary
bipartite graph, which is solvable in polynomial time.

5 Dynamic Programming

Layer One: Jumps and Jump Sets. Armed with Theorem 6, we proceed to
design a dynamic programming algorithm that constructs the canonical solution
σ. We first develop a natural left-to-right DP that splits the graphs G and Gσ

‘vertically’. For each position p, we define the jump and jump set Xp as

jump(p) = min{q : q > p ∧ σ−1(p)σ−1(q) /∈ E(Gσ)},
Xp = σ−1([p, jump(p) − 1]) = Ajump(p) \Ap.

See also Fig. 3. The separation property of a jump is provided by the following
direct consequence of the property of the umbrella ordering.

Lemma 9. For each p ∈ [1, n], Xp is a clique in Gσ and no edge of Gσ connects
a vertex of Ap with a vertex of V (G) \Ajump(p).

It is tempting to define a DP state as a ‘jump set with a history’ J := (A,X),
where its value is an ordering σJ := A ∪ X → [1, |A ∪ X |] that first places
the vertices of A and then of X , with the intention that X is a jump set after
the remaining vertices are placed (i.e., X is a clique in GσJ [A∪X], but no edge

182 I. Bliznets et al.

.

p jump(p)Xp

Ap V (G) \Ajump(p)

Fig. 3. A jump at position p and a corresponding jump set. The jump set Xp, denoted
with gray, induces a clique in Gσ, and no edge of Gσ connects Ap with V (G) \Ajump(p).

connects the first vertex of X in σJ with V (G)\(A∪X)). However, this approach
fails for the following reason: the internal ordering of the vertices of X affects
both the ordering of A and the ordering of V (G) \ (A ∪ X), and hence needs
to be stored in the DP state as well. Luckily, the ordering of X can be deduced
from the knowledge of F σ(X), that is, the completion edges incident with X .

Lemma 10. For each p ∈ [1, n], if u1, u2 ∈ Xp and σ(u1) ≤ σ(u2), then

NGσ(u1) ∩ Ap ⊇ NGσ(u2) ∩ Ap and NGσ(u1) \Ajump(p) ⊆ NGσ(u2) \Ajump(p).

It is easy to observe that, after satisfying the conditions of Lemma 10, we may
proceed greedily. That is, the ordering σ sorts the vertices of X according to
Lemma 10, breaking ties using order % to preserve lexicographical minimality.

It is not clear (if possible at all) how to provide a subexponential number of
candidate orderings of X but we can do it in the case when F σ(X) is small.
More precisely, we say that a jump set X is cheap if it is incident to at most
2k/τ edges of F σ, and expensive otherwise. Consequently, we may enumerate

kO(2k/τ) = kO(k2/3) candidate triples (A,X, σX) for (Ap, Xp, σ|Xp) for each cheap
jump sets Xp. The layer one DP treats such triples as states, and finds for
each such triple (A,X, σX) the optimal ordering (A ∪ X) "→ [1, |A ∪ X |] that
is consistent with σX . However, now layer one DP needs to perform a big task
in a single step: namely, it needs to find the optimal way to arrange vertices
between two consecutive cheap jumps. We delegate this task to the layer two
DP, described in what follows.

Layer Two: Chains. Here we assume that we are given two of the layer one
states (A1, X1, σ1

X), (A2, X2, σ2
X), with no cheap jump sets between X1 and X2,

and we are to place the vertices of (A2∪X2)\A1 on positions [|A1|+1, |A2∪X2|]
respecting σ1

X and σ2
X .

We now derive a different ‘horizontal’ way of partitioning G and Gσ, based
on the following definition. For any q ∈ [1, n], consider the following sequence:
zq(0) = q and zq(i + 1) = jump(zq(i)) (taking jump(∞) = ∞). Observe that:

Lemma 11. For any q > |A1|, it holds that zq(τ) ≥ |A2|.

Proof. Observe that for each i > 0 with zq(i) < |A2|, the jump set Xzq(i) is ex-
pensive and, moreover, these jump sets are pairwise disjoint for different choices
of i. Hence, there are less than τ such jump sets. ��

A Subexponential Parameterized Algorithm for PIC 183

.

Fig. 4. The separation property provided by Lemma 12. The sequences zc(i) and zd(i)
are denoted with rectangular and hexagonal shapes, respectively. The sets Ci and Di

are denoted boxes with dots and lines, respectively.

Moreover, observe that if we pick two positions c, d with c ≤ d ≤ jump(c) we
have zc(i) ≤ zd(i) ≤ zc(i + 1) for any i ≥ 0.

The next immediate corollary of the definition of the umbrella property and the
jump gives us the crucial separation property for the layer two DP (see Fig. 4).

Lemma 12. For any positions c, d with c ≤ d ≤ jump(c), let Ci = σ−1([zc(i),
zd(i) − 1]) and Di = σ−1([zd(i), zc(i + 1) − 1]). Then

1. sets Ci, Di form a partition of V (G) \Ac;
2. for every i ≥ 0, both Ci ∪Di and Di ∪Ci+1 are cliques in Gσ;
3. for every j > i ≥ 0, there is no edge in Gσ between Ci and Dj;
4. for every i > j + 1 > 0, there is no edge in Gσ between Ci and Dj.

Lemma 12 allows us to define a layer two DP state consisting of sequences
zc(i) and zd(i), up to minimum index i that satisfies zc(i) > |A2|, together with
sections Azc(i) and Azd(i), for some choice of starting positions |A1| < c ≤ d ≤
min(jump(c), |A2 ∪X2|). In such a state, we ask for an optimal ordering of the
sets X1 ∪X2 ∪

⋃
i Ci that respects the orderings σ1

X and σ2
X , places the vertices

of each Ci into positions [zc(i), zd(i) − 1] and turns each Ci into a clique. Note

that Theorem 6, together with Lemma 11, gives us a bound kO(τ2) = kO(k2/3)

on the number of such states.
To compute the value of a layer two DP state, we guess the sequence zq(i)

‘sandwiched’ between zc(i) and zd(i) for some c < q < d, with the corresponding
sections Azq(i), and we glue the optimal values for states (c, q) and (q, d). If no
such q exists, there are two special cases. If c = d, then the DP state in fact
asks for σ1

X ∪ σ2
X . Finally, if c + 1 = d, then observe that all vertices of C1 are

adjacent to σ−1(d) and nonadjacent to σ−1(c). Hence, the vertices at positions c
and d do not impose any constraints on the ordering of C1, and, as a value for the
state (c, d), we may use the value of the state (jump(c), jump(d)) = (zc(1), zd(1)),
extended with the placement of the unique vertex of Ad \Ac at position c.

Overall, the described layer two DP allows us to perform a single step of the

layer one DP in time kO(τ2) = kO(k2/3). This concludes the proof of Theorem 1.

6 Conclusions and Open Problems

We have presented the first subexponential algorithm for Proper Interval

Completion, running in time kO(k2/3)+O(nm(kn+m)). As many algorithms for

completion problems in similar graph classes [3,7,9,10] run in time O�(kO(
√
k)),

184 I. Bliznets et al.

it is tempting to ask for such a running time also in our case. The bottleneck in
our approach is the trade-offs between the two layers of dynamic programming.

Also, observe that every O�(2o(
√
k))-time algorithm for PIC would be in fact

also a 2o(n)-time algorithm. Since existence of such an algorithm seems unlikely,

we would like to ask for a 2Ω(
√
k) lower bound, under the assumption of the

Exponential Time Hypothesis. Note that no such lower bound is known for any
other completion problem for related graph classes.

References
1. Alon, N., Lokshtanov, D., Saurabh, S.: Fast FAST. In: Albers, S.,

Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP
2009, Part I. LNCS, vol. 5555, pp. 49–58. Springer, Heidelberg (2009)

2. Bessy, S., Perez, A.: Polynomial kernels for Proper Interval Completion and related
problems. Information and Computation 231, 89 (2013)

3. Bliznets, I., Fomin, F.V., Pilipczuk, M., Pilipczuk, M.: A subexponential parame-
terized algorithm for interval completion. CoRR abs/1402.3473 (2014)

4. Bliznets, I., Fomin, F.V., Pilipczuk, M., Pilipczuk, M.: A subexponential parame-
terized algorithm for proper interval completion. CoRR abs/1402.3472 (2014)

5. Cai, L.: Fixed-parameter tractability of graph modification problems for hereditary
properties. Inf. Process. Lett. 58(4), 171–176 (1996)

6. Demaine, E.D., Fomin, F.V., Hajiaghayi, M., Thilikos, D.M.: Subexponential pa-
rameterized algorithms on graphs of bounded genus and H-minor-free graphs. J.
ACM 52(6), 866–893 (2005)

7. Drange, P.G., Fomin, F.V., Pilipczuk, M., Villanger, Y.: Exploring subexponential
parameterized complexity of completion problems. In: STACS 2014 (2014)

8. Feige, U.: Coping with the NP-hardness of the graph bandwidth problem.
In: Halldórsson, M.M. (ed.) SWAT 2000. LNCS, vol. 1851, pp. 10–19. Springer,
Heidelberg (2000)

9. Fomin, F.V., Villanger, Y.: Subexponential parameterized algorithm for minimum
fill-in. SIAM J. Comput. 42(6), 2197–2216 (2013)

10. Ghosh, E., Kolay, S., Kumar, M., Misra, P., Panolan, F., Rai, A., Ramanujan,
M.S.: Faster parameterized algorithms for deletion to split graphs. In: Fomin, F.V.,
Kaski, P. (eds.) SWAT 2012. LNCS, vol. 7357, pp. 107–118. Springer, Heidelberg
(2012)

11. Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential
complexity? J. Comput. Syst. Sci. 63(4), 512–530 (2001)

12. Kaplan, H., Shamir, R., Tarjan, R.E.: Tractability of parameterized completion
problems on chordal, strongly chordal, and proper interval graphs. SIAM J.
Comput. 28(5), 1906–1922 (1999)

13. Kratsch, S., Wahlström, M.: Two edge modification problems without polynomial
kernels. Discrete Optimization 10(3), 193–199 (2013)

14. Liu, Y., Wang, J., Xu, C., Guo, J., Chen, J.: An effective branching strategy
for some parameterized edge modification problems with multiple forbidden in-
duced subgraphs. In: Du, D.-Z., Zhang, G. (eds.) COCOON 2013. LNCS, vol. 7936,
pp. 555–566. Springer, Heidelberg (2013)

15. Looges, P.J., Olariu, S.: Optimal greedy algorithms for indifference graphs.
Computers and Mathematics with Applications 25(7), 15–25 (1993)

16. Villanger, Y., Heggernes, P., Paul, C., Telle, J.A.: Interval completion is fixed
parameter tractable. SIAM J. Comput. 38(5), 2007–2020 (2009)

17. Yannakakis, M.: Computing the minimum fill-in is NP-complete. SIAM J. Alg.
Disc. Meth. 2, 77–79 (1981)

Computing Persistent Homology with Various

Coefficient Fields in a Single Pass�

Jean-Daniel Boissonnat and Clément Maria

INRIA Sophia Antipolis-Méditerranée, France
{jean-daniel.boissonnat,clement.maria}@inria.fr

Abstract. This article introduces an algorithm to compute the persis-
tent homology of a filtered complex with various coefficient fields in a
single matrix reduction. The algorithm is output-sensitive in the total
number of distinct persistent homological features in the diagrams for
the different coefficient fields. This computation allows us to infer the
prime divisors of the torsion coefficients of the integral homology groups
of the topological space at any scale, hence furnishing a more informative
description of topology than persistence in a single coefficient field. We
provide theoretical complexity analysis as well as detailed experimental
results. The code is part of the Gudhi library, and is available at [8].

1 Introduction

Persistent homology [5,12] is an algebraic method for measuring the topolog-
ical features of the sublevel sets of a function defined on a topological space.
Its generality and stability [4] with regard to noise have made it a widely used
tool for the study of data. At the algebraic level [12], it admits a decomposition
– represented by mean of a persistence diagram – only when considered with
field coefficients (by opposition to integer coefficients). The persistence diagram
contains a rich information about the topology of the studied space and very
efficient methods exist to compute it. However, the integral homology groups of
a topological space are strictly more informative than the homology groups with
field coefficients, in particular because they convey information about ”torsion”.
Torsion can be pictured geometrically as a “twisting” of the shape and happens
frequently as global topological feature in topological data analysis where, for
example, Klein bottles appear naturally [3,9]. Algebraically, torsion is charac-
terized by cyclic subgroups of the integral homology groups. When computed
with field coefficients, these subgroups may either vanish or appear as “infinite”,
and consequently obfuscate the study of the topology of data. A simple solution
is to compute persistent homology with different coefficient fields and track the
differences in the persistence diagrams.

� This research has been partially supported by the European Research Council un-
der Advanced Grant 339025 GUDHI (Algorithmic Foundations of Geometric Under-
standing in Higher Dimensions).

A.S. Schulz and D. Wagner (Eds.): ESA 2014, LNCS 8737, pp. 185–196, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

186 J.-D. Boissonnat and C. Maria

We build on this idea and describe an algorithm to compute persistent ho-
mology with various coefficient fields Zq1 , · · · ,Zqr in a single pass of the matrix
reduction algorithm, where Zq denotes the finite field Z/qZ for a prime q. To do
so, we introduce a method we call modular reconstruction consisting in using the
Chinese Remainder Isomorphism to encode an element of Zq1 ×· · ·×Zqr with an
element of Zq1···qr . We describe algorithms to perform elementary row/column
operations in a matrix with Zq1···qr coefficients, corresponding to simultaneous
elementary row/column operations in matrices with coefficients in the fields
Zq1 , · · · ,Zqr . The method results in an algorithm with an output-sensitive com-
plexity in the total number of distinct pairs in the echelon forms of the matrices
with Zq1 , · · · ,Zqr coefficients, plus an overhead due to arithmetic operations on
big numbers in Zq1···qr . The method is generic and applies to every algorithm for
persistent homology. Finally, we describe how to infer the torsion coefficients of
the integral homology using the Universal Coefficient Theorem for Homology.

We provide detailed experimental analysis of the algorithm and show, in par-
ticular, that on practical examples our method is substancially faster than the
brute-force approach consisting in reducing separately r matrices with coeffi-
cients in Zq1 , · · · ,Zqr . It is important to note that the method does not pretend
to scale to very large r, as the arithmetic complexity of operations in Zq1···qr
becomes problematic. Experiments show, however, that for very large r (up to
100000) our approach is still substancially faster than brute-force.

Computing persistent homology with different coefficients has been mentioned
in the literature [12] in order to verify if a persisting feature was due to an actual
”hole” (or high-dimensional equivalent) or to torsion (and consequently existed
only for a certain coefficient field). However, to the best of our knowledge, this is
the first work formalizing the inference of torsion coefficients in the framework of
persistent homology and describing an efficient algorithm to compute persistence
with various coefficient fields.

2 Multi-field Persistent Homology

For simplicity, we focus in the following on simplicial homology. However, the
approach applies to any type of boundary matrix (defined below).

Background on Simplicial Homology and Persistence: A simplicial com-
plex K on a set of vertices V = {1, · · · , n} is a collection of simplices {σ},
σ ⊆ V , such that τ ⊆ σ ∈ K ⇒ τ ∈ K. The dimension d = |σ| − 1 of σ is
its number of elements minus 1. For a ring R, the group of d-chains, denoted
Cd(K,R), of K is the group of formal sums of d-simplices with R coefficients.
The boundary operator is a linear operator ∂d : Cd(K,R) → Cd−1(K,R) such

that ∂dσ = ∂d[v0, · · · , vd] =
∑d

i=0(−1)i[v0, · · · , v̂i, · · · , vd], where v̂i means vi is
deleted from the list. It will be convenient to consider later the endomorphism
∂∗ :
⊕

dCd(K,R) →
⊕

d Cd(K,R) extended by linearity to the external sum
of chain groups. Denote by Zd(K,R) and Bd−1(K,R) the kernel and the image
of ∂d respectively. Observing ∂d ◦ ∂d+1 = 0, we define the dth homology group
Hd(K,R) of K by the quotient Hd(K,R) = Zd(K,R)/Bd(K,R).

Computing Persistent Homology with Various Coefficient Fields 187

If R is the ring of integers Z, Hd(K,Z) is an abelian group and, according
to the fundamental theorem of finitely generated abelian groups [10], admits a

primary decomposition: Hd(K,Z) ∼= Zβd(Z)
⊕

q prime

(
Zqk1 ⊕ · · · ⊕ Z

q
kt(d,q)

)
for

uniquely defined integer βd(Z), called the dth integral Betti number, and integers
t(d, q) ≥ 0 and ki > 0 for every prime number q. If t(d, q) > 0, the integers
qk1 , · · · , qkt(d,q) are called torsion coefficients, and they admit q as unique prime
divisor. Intuitively, in dimension 0, 1 and 2, the integral Betti numbers count
the number of connected components, the number of holes and the number of
voids respectively. The torsion coefficients represent non-orientable twisting of
different order of the shape. If R is a field F, Hd(K,F) is a vector-space and
decomposes into Hd(K,F) ∼= Fβd(F), where βd(F) is the dth field Betti number.
The field Betti numbers (βd(F))d are entirely determined by the characteristic
of F and the inegral homology (see Section 5); hence, the integral homology is
more informative than homology in F.

A filtration of a complex is a function f : K → R satisfying f(τ) ≤ f(σ)
whenever τ ⊆ σ. The sequence [σi]i=1,··· ,m sorted according to increasing f val-
ues induces the sequence of inclusions ∅ = K0 � K1 � · · · � Km−1 � Km = K,
Ki = Ki−1 ∪ {σi}, and the sequence of d-homology groups 0 = Hd(K0,R) →
Hd(K1,R) → · · · → Hd(Km−1,R) → Hd(Km,R) = Hd(K,R) connected by
homomorphisms. When R is a field, the later sequence admits a decomposition
in terms of intervals {(i, j)}, called an indexed persistence diagram, where a pair
(i, j) is interpreted as a homology feature that is born at index i and dies at index
j. Computing persistent homology consists in computing the interval decompo-
sition and hence the persistence diagram. We refer to [10] for an introduction to
homology and to [5] for an introduction to persistent homology.

We call the algorithmic problem of computing persistent homology with vari-
ous coefficient fields multi-field persistent homology. Computing multi-field per-
sistence allows us to infer a more informative description of the topology of a
space, compared to persistence in a single field (see Section 5 for details). For
a complex of size m, we know that the persistence diagram for any coefficient
field contains at most m pairs. When computing multi-field persistent homol-
ogy for r coefficient fields, denote by m′ the total number of distinct pairs in
all persistence diagrams. In practice, the fields are Zq1 , · · · ,Zqr for the r first
prime numbers q1, · · · , qr, where qr is an upper bound on the prime divisors of
the torsion coefficients of the integral homology of the space, which are usually
small (see Section 5). The quantity m′ satisfies m′ ≤ r ×m but in practice we
observe that m′ ≈ m. We design in the following an algorithm for the multi-field
persistence problem whose complexity depends mostly on m′. It is however an
interesting open problem to exhibit a ”natural” example where m′ is must larger
than m and/or the prime divisors of the torsion coefficients are big (for a fix m).

3 Algorithm for Multi-field Persistent Homology

For clarity, we focus in this section on the persistent homology algorithm as
presented in [5], which consists in a reduction to column echelon form (defined

188 J.-D. Boissonnat and C. Maria

later) of a matrix. All other persistent homology algorithms are based on similar
reductions, and our approach adapts directly to them. In the following, Zn de-
notes the ring (Zn,+,×) for any integer n ≥ 1. and Z×

n the subset of invertible
elements for ×. If exists, we denote the inverse of x ∈ Zn by x−1.

In computer algebra, working modulo small prime numbers is usually desire-
able in order to reduce coefficient growth. Our work goes the otherway around:
we introduce tools to reduce a family of r matrices with coefficients in the fields
Zq1 , · · · ,Zqr respectively, by means of a single reduction of a matrix with coeffi-
cients in Zq1···qr . We give theoretical and experimental evidence that, for reason-
able values of r, our algorithm is significantly more efficient than the brute-force
approach consisting in reducing the r matrices separately.

Persistent Homology Algorithm: For an m × m matrix M, denote by Cj

the jth column of M, 1 ≤ j ≤ m, and Cj [k] its kth coefficient. Let low(j) denote
the row index of the lowest non-zero coefficient of Cj . If the column j is entirely
zero, low(j) is undefined. We say that M is in reduced column echelon form if
low(j) �= low(j′) for every non-zero columns Cj and Cj′ with j �= j′.

Let K = [σi]i=1···m be a filtered complex. Its boundary matrix M∂ is the m×m
matrix, with F coefficients, of the endomorphism ∂∗ in the basis {σ1, · · · , σm}
of
⊕

dCd(K,F). The basis is ordered according to the filtration. It is a matrix
with {−1, 0, 1} coefficients, where 0 and 1 are the identities for + and × in
F respectively, and −1 is the inverse of 1 in F. The persistent homology algo-
rithm consists in a left-to-right reduction to column echelon form of M∂ : we
denote by R the matrix we reduce, with columns Cj , which is initially equal
to M∂ . The algorithm returns the (indexed) persistence diagram, which is the
set of pairs {(low(j), j)} in the reduced column echelon form of the matrix.

Data: Boundary matrix R ← M∂ , persistence diagram P ← ∅
Output: Persistence diagram P = {(i, j)}

1 for j = 1, · · · ,m do
2 while there exists j′ < j with low(j′) = low(j) do
3 k ← low(j);

4 Cj ← Cj −
(
Cj [k] × Cj′ [k]−1

)
· Cj′ ;

5 end
6 if Cj �= 0 then P ← P ∪ {(low(j), j)}
7 end

The reduced form of the matrix is not unique, but the pairs (i, j) such that
i = low(j) in the column echelon form are [5]. The algorithm requires O(m3)
arithmetic operations in F.

3.1 Modular Reconstruction for Elementary Matrix Operations:

We present a particular case of the Chinese Remainder Theorem [7]: For a
family {q1, · · · , qr} of r distinct prime numbers, there exists a ring isomorphism
ψ : Zq1 × · · · ×Zqr → Zq1···qr . The isomorphisms ψ and ψ−1 can be computed in
O(r) arithmetic operations in Zq1···qr .

Computing Persistent Homology with Various Coefficient Fields 189

Let [r] refer to the set {1, · · · , r}. For a family of r distinct prime numbers
{q1, · · · , qr}, and a subset of indices S ⊆ [r], QS refers to

∏
s∈S qs, and we

write simply Q = Q[r]. We define the function ψS :
∏

s∈S Zqs → ZQS realizing
the isomorphism of the Chinese Remainder Theorem for the subset {qs}s∈S of
primes, and we write simply ψ for ψ[r]. For a family of elements us ∈ Zqs , s ∈ S,
we denote the corresponding |S|-uplet (us)s∈S ∈

∏
s∈S Zqs .

Finally, we recall Bezout’s lemma [7]: For two integers a and b, not both 0,
there exist integers v and w such that va + wb = gcd(a, b), the greatest common
divisor of a and b, with |v| < |b/ gcd(a, b)| and |w| < |a/ gcd(a, b)|. The Bezout’s
coefficients (v, w) can be computed with the extended Euclidean algorithm [7].

Elementary Column Operations: We are given a family of distinct prime
numbers {q1, · · · , qr}, and their product Q = q1 · · · qr. Let MQ be a matrix
with coefficients in the ring ZQ. Denoting ψ−1 : ZQ → Zq1 × · · · × Zqr the
isomorphism of the Chinese Remainder Theorem, and πs : Zq1 ×· · ·×Zqr → Zqs

the projection on the sth coordinate, we call projection of MQ onto Zqs , denoted
MQ(Zqs), the matrix Mqs with Zqs coefficients, obtained by applying πs ◦ ψ−1

to each coefficient of MQ. Conversely, given r (m×m)-matrices Mq1 , · · · ,Mqr

with coefficients in Zq1 , · · · ,Zqr respectively, there exists a unique matrix MQ

with ZQ coefficients such that for every s the projection of MQ onto Zqs is Mqs .
This is simply a matrix version of the Chinese remainder theorem. Elementary
column operations on Mq with Zq coefficients are of three kinds:

(i) exchange Col k and Col �
(ii) multiply Col k by −1 ∈ Zq

(iii) replace Col k by (Col k)+ x×(Col �), for x ∈ Zq.

For an elementary column operation (∗) (i.e. an operation of type (i), (ii) or
(iii) applied to columns k (and �)), we denote by (∗) ◦Mq the result of applying
(∗) to Mq. In this section, we introduce algorithms to run elementary column
operations simultaneously on the matrices (Mqs)s=1,··· ,r by performing ”partial
column operations” on MQ. Specifically, for an elementary column operation (∗)
and a subset of indices S ⊆ [r], we call partial column operation on MQ the oper-
ation transforming MQ into M′

Q such that: for every s /∈ S, the projection onto

Zqs satisfies MQ(Zqs) = M′
Q(Zqs) = Mqs and for every s ∈ S, the projection

onto Zqs satisfies M′
Q(Zqs) = (∗) ◦Mqs .

As the correspondence ψ : Zq1 × · · · × Zqr → ZQ is a ring homomorphism, it
satisfies the properties: ψ(u1, · · · , ur) +ψ(v1, · · · , vr)×ψ(w1, · · · , wr) = ψ(u1 +
v1 × w1, · · · , ur + vr × wr) and we can compute addition and multiplication
componentwise in Zq1 × · · · × Zqr using addition and multiplication in ZQ. In
order to compute partial column operations, we first introduce the set of partial
identities, which are coefficients that allow us to proceed to the partial column
operations of type (i) and (ii). Secondly, as the rings Zqs are fields, we need to
compute the multiplicative inverse of an element, that is used as multiplicative
coefficient x in elementary column operation (iii). As ZQ is not a field, inver-
sion is not possible, and we introduce the concept of partial inverse to overcome
this difficulty. In the following, the term ”arithmetic operation” refers to any

190 J.-D. Boissonnat and C. Maria

operation {+,−,×, gcd(·, ·), · mod QS ,Extended Euclidean algorithm} on inte-
ger smaller than Q. Note they do not have constant time complexity for large Q.

Partial Identity and Partial Inverse: Given a subset of indices S ⊆ [r],
we define the partial identities w.r.t. S, denoted LS , by LS = ψ(δ1,S , · · · , δr,S)
where the symbol δt,S ∈ Zqt is equal to 1 if t ∈ S and to 0 otherwise. For any
S ⊆ [r], the partial identity LS can be constructed in O(r) arithmetic operations
in ZQ by evaluating ψ on (δ1,S , · · · , δr,S). However, it is important to notice that
if S = [r], L[r] = ψ(1, · · · , 1) = 1, because ψ is a ring isomorphism, and Lr is
computed in time O(1).

Knowing the partial identities, we can implement the partial column opera-
tions (i) and (ii) for a set of indices S. Partial column operation (i) is imple-
mented by replacing column k by (Col k × L[r]\S + Col � × LS) and column �
by (Col �× L[r]\S + Col k × LS). Partial column operation (ii) is implemented
by multiplying column k by L[r] − 2 × LS.

We define now the partial inverse of an element in the ring ZQ:

Definition 1 (Partial Inverse). Given a set S ⊆ [r] of indices, the partial
inverse of x = ψ(u1, · · · , ur) with regard to S is the element xS ∈ ZQ:

xS = ψ(u1
S , · · · , ur

S), with us
S =

{
u−1
s if s ∈ S and us ∈ Z×

qs

0 otherwise

Using elementary algebra (see [2] for details) we prove:

Proposition 2 (Partial Inverse Construction). For x = ψ(u1, · · · , ur) ∈
ZQ and S ⊆ [r],

(1) gcd(x,QS) = QR for some R ⊆ S and for all s ∈ S, us is invertible in Zqs

iff s /∈ R; we denote T = S \R.
(2) The Bezout’s identity for x and QT gives vx + wQT = 1, where v satisfies

v mod QT = ψT ((u−1
s)s∈T)

(3) xS =
[
ψT ((u−1

s)s∈T) × LT mod Q
]
∈ ZQ, where LT is the partial identity

w.r.t T .

We deduce directly an algorithm to compute the partial inverse of x w.r.t S
if QS is given: compute QR = gcd(x,QS) and QT = QS/QR, then v using
the extended Euclidean algorithm and finally xS = (v mod QT) × LT mod Q.
Computing the partial identity LT requires O(r) arithmetic operations in ZQ,
but is constant if T = [r], which happens iff S = [r] and x is invertible in ZQ.
Consequently, computing xS requires O(r) arithmetic operations in general, but
only O(1) arithmetic operations in the later case.

3.2 Modular Reconstruction for Multi-field Persistent Homology

Let K be a filtered complex with m simplices. Define M∂(Zqs) to be the (m×m)
boundary matrix of K with Zqs coefficients. Define M to be the (m×m) matrix
with ZQ coefficients such that the projection of M onto Zqs is equal to M∂(Zqs),

Computing Persistent Homology with Various Coefficient Fields 191

for all s ∈ [r]. Note that the matrices M and M∂(Zqs), for any s, are ”identical”
matrices in the sense that they contain 0, 1 and −1 coefficients at the same
positions, where 0, 1 and −1 refer respectively to elements of ZQ and Zqs .

We reduce a matrix R which is initially equal to M. Denote by Cj the jth

column of R. Define low(j,QS) to be the index of the lowest element of Cj

such that Cj [low(j,QS)] mod QS �= 0. In particular, low(j, qs) is equal to the
index of the lowest non-zero element of column j in the projection R(Zqs). After
iteration j, we say that the columns C1, · · · , Cj are reduced. We maintain, for
every reduced column Cj , the collection of ”lowest indices” i as a set L(j) =
{(i, QS)} satisfying:

– For every (i, QS) ∈ L(j), i = low(j,QS)
– For every (i, QS), (i′, QS′) ∈ L(j), either i = i′ and S = S′, or i �= i′ and

S ∩ S′ = ∅
– ∪(i,QS)∈L(j)S = [r]

The algorithm returns the set of triplets P = {(i, j, QS)} such that i = low(j)
in the column echelon form of the matrix M∂(Zqs) iff s ∈ S, or, equivalently,
(i, QS) ∈ L(j) once Cj has been reduced. This is a compact encoding of the
persistence diagrams of the filtered complex in persistent homology with all
coefficient fields. We call it multi-field persistence diagram.

Data: Matrix R = M
Output: Multi-field persistence diagram P = {(i, j, QS)}

1 for j = 1, · · · ,m do
2 QS ← Q[r];
3 while low(j,QS) is defined do
4 k ← low(j,QS); QT ← QS/ gcd(Cj [k], QS) ;
5 while there exists j′ < j with (i, QT ′) ∈ L(j′) satisfying
6 [i = low(j,QS) and gcd(QT ′ , QT) > 1] do

7 Cj ← Cj −
(
Cj [k] × Cj′ [k]

T
)
· Cj′ ;

8 QT ← QT / gcd(QT ′ , QT);

9 end
10 if QT �= 1 then P ← P ∪ {(k, j,QT)}; QS ← QS/QT ;

11 end

12 end

The {L(j)}j form an index table that we maintain implicitely. At iteration
j of the for loop, we use QS for the product of all prime numbers

∏
s∈S qs for

which the column j in R(Zqs) has not yet been reduced.

Correctness: First, note that all operations processed on R correspond to left-
to-right elementary column operations in the matrices R(Zqs) for all s ∈ [r]. By
definition of the partial inverse, the column operation in line 7 can only reduce
the value of low(j,QS). Moreover, one iteration of the while loop in line 3 either
strictly reduces QS by dividing it by QT (in line 10) or set (Cj [k] mod QS) to
zero, hence reducing strictly low(j,QS). The later case happens when QT is set
to 1 in line 8. Consequently, the algorithm terminates.

192 J.-D. Boissonnat and C. Maria

We prove recursively, on the numbers of columns, that each of the matrix
R(Zqs) gets reduced to column echelon form. We fix an arbitrary field Zqs : sup-
pose that the j − 1 first columns of R(Zqs) have been reduced at the end of
iteration j − 1 of the for loop in line 1. We prove that at the end of the jth

iteration of the for loop in line 1, the j first columns of the matrix R(Zqs) are re-
duced. Consider two cases. First suppose there is a triplet (i, j, QT) ∈ P for some
i < j and QT satisfying qs | QT . This implies that the algorithm exits the while

loop in line 5 with qs | QS (because by definition of QT , in line 4, QT | QS) and
there is no j′ < j such that [low(j′, QT ′) = low(j,QS) and gcd(QT ′ , QT) > 1].
This in particular implies that there is no j′ < j such that low(j′, qs) = low(j, qs)
and column j is reduced in R(Zqs).

Secondly, suppose that there is no such pair (i, j, QT) in P , with qs dividing
QT . Consequently, during all the computation of the while loop in line 3, qs | QS .
When exiting this while loop, low(j,QS) is undefined, implying in particular
that low(j, qs) is undefined and column j of R(Zqs) is zero, and hence reduced.

4 Output-Sensitive Complexity Analysis

Arithmetic Complexity Model for Large Integers: During the reduction
algorithm we perform arithmetic operations on big integers, for which we de-
scribe a complexity model [7]. Suppose that on our architecture, a memory word
is encoded on w bits (on modern architectures, w is usually 64). Computer chips
contains Arithmetic Logic Units that allow arithmetic operations on a 1-memory
word integer in O(1) machine cycles. Let the length of an integer z be defined by:
λ(z) = �log2 z/w�+ 1, i.e. by the number of memory words necessary to encode
z. We express the arithmetic complexity as a function of the length. For any
positive integer z of length λ(z) = B, operations in Zz cost A+(z) = O(B) for
addition, A×(z) = O(M(B)) for multiplication and A÷(z) = O(M(B) logB) for
(extended) Euclidean algorithm, inversion and division, where M(n) is a mono-
tonic upper bound on the number of word operations necessary to multiply two
integers of length B. By a result of [6], M(B) = O(B logB 2O(log∗ B)), where
log∗ n is the iterated logarithm of n. In the following, we write A(z) for a bound
on the complexity of arithmetic operations on integers smaller than z.

In the case of multi-field persistent homology, we are interested in the value
of λ for an element in ZQ, Q = q1 · · · qr, in the case where {q1, · · · , qr} are the
first r prime numbers. We know [11] that lnQ < 1.01624qr and qr < r ln(r ln r)
for r ≥ 6. Consequently, λ(Q) < �1.46613r ln(r ln r)/w�+1. Note that λ(Q) * r
for r ln r * ew, which is a reasonable assumption.

Complexity of the Modular Reconstruction Algorithm: Let K be a fil-
tered complex of size m. The persistent homology algorithm described in Sec-
tion 3, applied on K with coefficients in a field F, requires O(m3) operations in
F. For a field Zq these operations take constant time and the algorithm has com-
plexity O(m3). The output of the algorithm is the persistence diagram, which
has size O(m) for any field.

Computing Persistent Homology with Various Coefficient Fields 193

For a set of prime numbers {q1, · · · , qr}, let m′ be the total number of distinct
pairs in all persistence diagrams for the persistent homology of K with coefficient
fields Zq1 , · · · ,Zqr . We express the complexity of the modular reconstruction al-
gorithm in terms of the size of its output (i.e. the multi-field persistence diagram
of size m′), the number of fields r and the arithmetic complexity A(Q). First,
note that, for a column j′ in the reduced form of R, the size of L(j′) is equal to
the number of triplets of the multi-field persistence diagram with death index
j′; denote this quantity by |L(j′)|. Hence, when reducing column j > j′, the
column Cj′ is involved in a column operation Cj ← Cj + α · Cj′ at most |L(j′)|
times. Consequently, reducing Cj requires O(

∑
j′<j |L(j′)|) = O(m′) column op-

erations. There is a total number of O(m×m′) column operations to reduce the
matrix, each of them being computed in time O(m× A(Q)).

Computing the partial inverse of an element x ∈ ZQ takes time O(r×A(Q)) in
the general case, and only O(A(Q)) if x is invertible in ZQ. The partial inverse
of an element x = Cj [k] is computed only if there is a pair (k,QT) ∈ L(j).
This element is not invertible in ZQ iff |L(j)| > 1. There are consequently
O(|m′ − m|) non-invertible elements x that are at index low(j,QT) in some
column j, for some QT . If we store the partial inverses when we compute them,
the total complexity for computing all partial inverses in the modular recon-
struction algorithm is O((m+ r× (m′ −m)×A(Q)). We conclude that the total
cost of the modular reconstruction algorithm for multi-field persistent homol-
ogy is O(

[
r × (m′ −m) + m2m′]×A(Q)) = O(

[
r × (m′ −m) + (m′)3

]
×A(Q)),

while the brute-force algorithm, consisting in computing persistence separately
for every field Zq1 , · · · ,Zqr requires O(r ×m3) operations.

Note that asymptotically in r, one arithmetic operation in ZQ[r]
becomes more

costly than r distinct arithmetic operations in Zq1 , · · · ,Zqr , in which case the
modular reconstruction approach developed in this article becomes worse than
brute-force (even when m′ and m are close). This however happens for extremely
big values of r (see Section 5) and has no incidence on practical cases.

Remark: On all datasets considered in our experiments, we have found no
example where m′ was significantly bigger than m. However, it is unclear whether
many ”short-lived torsion” might appear in general. We prove in a long version
of the paper [2] that this is not an issue, by giving a finer complexity analysis
of the algorithm in terms of index persistence |j − i| of the pairs (i, j) in the
persistence diagram.

5 Experiments

In this section, we report on the performance of the modular reconstruction
algorithm for multi-field persistent homology. Our implementation is in C++, and
we use the GMP library for storing large integers. All timings are measured on a
64 bits Linux machine with 3.00 GHz processor and 32 GB RAM. All timings
are averaged over 10 independent runs. We compute the persistent homology of
Rips complexes [5] built on a variety of both real and synthetic datasets. We
use the compressed annotation matrix implementation of persistence [1] for its

194 J.-D. Boissonnat and C. Maria

Data |P| D d r |K| T1 R1 T50 R50 T100 R100 T200 R200

Bud 49,990 3 2 0.09 127 · 106 96.3 0.51 110.3 22.2 115.9 42.3 130.7 75.0
Bro 15,000 25 ? 0.04 142 · 106 123.8 0.41 143.5 17.8 150.2 34.0 174.5 58.5
Cy8 6,040 24 2 0.8 193 · 106 121.2 0.63 134.6 28.2 139.2 54.6 148.8 102.2
Kl 90,000 5 2 0.25 114 · 106 78.6 0.52 89.3 23.0 93.0 44.1 105.2 78.0
S3 50,000 4 3 0.65 134 · 106 125.9 0.40 145.7 17.2 152.6 32.8 177.6 50.3

Fig. 1. Timings of the modular reconstruction algorithm vs brute-force

efficiency and stability. Bud is a set of points sampled from the surface of the
Stanford Buddha in R3. Bro is a set of 5 × 5 high-contrast patches derived from
natural images, interpreted as vectors in R25, from the Brown database (with
parameter k = 300 and cut 30%) [3]. Cy8 is a set of points in R24, sampled
from the space of conformations of the cyclo-octane molecule [9], which is the
union of two intersecting surfaces. Kl is a set of points sampled from the surface
of the figure eight Klein Bottle embedded in R5. Finally S3 is a set of points
distributed on the unit 3-sphere in R4. Datasets are listed in Figure 1 with the
size of points sets |P|, the ambient dimension D and intrinsinc dimension d of
the sample points (if known), the parameter r for the Rips complex and the size
of the complex |K|. The values Tr for r ∈ {1, 50, 100, 200} refers to the running
time of the modular reconstruction algorithm for the r first prime numbers,
and Rr refers to the ratio between the brute-force approach and the modular
reconstruction algorithm.

Interpretation of the Results: Surprisingly, we have observed that, on all
experiments, the number of differences between persistence diagrams with var-
ious coefficient fields was extremely small. As a consequence, m′ − m can be
considered as a very small constant in our experiments (≤ 10). We have also
observed that these differences appeared for small prime numbers qs.

Figure 1 presents the timings of the modular reconstruction approach for a
variety of simplicial complexes ranging between 114 and 193 million simplices.
We note that from r = 1 to r = 200 prime numbers, the time for computing
multi-field persistence using the modular reconstruction approach only increases
by 23 to 41%, when the brute-force approach requires about 200 times more time.
This difference appears in the speedup expressed by the ratio Rr. For r = 1,
the modular reconstruction approach is about twice slower than the standard
persistent homology algorithm in one field, because modular reconstruction is
a more complex procedure and deals, in our implementation, with GMP integers
that are slower than the classic int used in the standard persistent homology
algorithm. However, this difference fades away as soon as r > 1 and the modular
reconstruction is significantly more efficient than brute-force: it is, in particular,
between 50.3 and 102.2 times faster for r = 200.

Figures 2 and 3 present the evolution of the running time of the modular
reconstruction approach and the brute-force approach for an increasing num-
ber of fields r (using the first r prime numbers). Persistence is computed for
a Rips complex built on a set of 10000 points sampling a Klein bottle, which

Computing Persistent Homology with Various Coefficient Fields 195

0 20 40 60 80 100 120 140
0

100

200

300

number of primes r

ti
m
e
(s
.)

modular reconstruction

brute force

0

10

20

30

40

ra
ti
o

ratio

Fig. 2. Timings for the modular recon-
struction algorithm and brute force

0 30,000 60,000 90,000
0

1,000

2,000

3,000

4,000

number of primes r

ti
m
e
(s
.)

modular reconstruction

0

20

40

60

80

100

120

ra
ti
o

ratio

Fig. 3. Asymptotic behavior of modu-
lar reconstruction and brute force

contains torsion in its integral homology, resulting in a simplicial complex of 6.14
million simplices. We analyze the result in terms of the complexity analysis of
Section 4. The quantity m is fixed and m′ is fixed for r ≥ 2. The complexity of
the brute-force algorithm is O(r × m3) and we indeed observe a linear behav-
ior when r increases. The complexity of the modular reconstruction approach
is O(
[
r × (m′ −m) + m′3]A(Q[r])). The part r × (m′ −m) of the complexity is

negligeable because m′ −m is extremely small. For medium values of r (≤ 150),
like in Figure 2, the arithmetic complexity O(A(Q[r])) increases very slowly be-

cause λ(Q[r]) =
⌊
log2 Q[r]/w

⌋
+ 1 increases slowly. We consequently observe a

very slow increasing of the time complexity compare to the one of brute-force.
Figure 3 describes the asymptotic behavior of the modular approach, where

the arithmetic operations become costly. We observe that the timings for the
modular reconstruction approach follow a convex curve. The convexity comes
from the growth of λ(Q[r]), which is asymptotically Θ(r log r)) [11]. However, the
increasing of the slope is very slow: all along this experiment, we have been unable
to reach a value of r for which the modular approach is worse than the brute-
force approach. For readability, the timings for the brute-force approach are
implicetly represented through their ratio with the modular approach: all along
the experiment, for 10000 ≤ r ≤ 100000, the modular approach is between 55
and 90 times faster. Based on a linear interpolation of the timings for the brute-
force approach, and a polynomial interpolation of the modular reconstruction
timings, we expect the modular reconstruction to become worse than brute-
force for a number of primes r bigger than 4.9 million. In the case of multi-field
persistent homology however, there is no need to take r bigger than 200, because
r is related to torsion coefficients (see Section 5), which are small in practice.

Back to Topology: Inference of Torsion. For a topological space X, the
Universal Coefficient Theorem for Homology [10] establishes the relationship
between the homology groups Hd(X,Z) with Z coefficients and the homology

196 J.-D. Boissonnat and C. Maria

groups Hd(X,Zq) with coefficients in the field Zq (of characteristic q), for q
prime. We use the following corollary:

Corollary 3 (Universal Coefficient Theorem [10].) For βd(Z) and βd(Zq)
the Betti numbers of Hd(X,Z) and Hd(X,Zq) respectively, and t(j, q) the number
of Zqki summands in the primary decomposition of Hj(X,Z), we have:

βd(Zq) = βd(Z) + t(d, q) + t(d− 1, q)

Suppose {q1, · · · , qr} are the first r prime numbers and qr is a strict upper bound
on the prime divisors of the torsion coefficients of X. Consequently, according
to Corollary 3, βd(Zqr) = βd(Z) for all dimensions d. Moreover, we know [10]
that there is no torsion in 0-homology (i.e. t(0, q) = 0 for all primes q). Given
the Betti numbers of X in all fields Zqs , 1 ≤ s ≤ r, we deduce from Corollary 3
the recurrence formula t(d, qs) = βd(Zqs) − βd(Zqr) − t(d − 1, qs), from which
we compute the value of t(d, q) for every dimension d and prime q. For any
dimension d, we consequently infer the integral Betti numbers and the number
t(d, q) of Zqki summands in the primary decomposition of Hd(X,Z). We note
however that the powers ki from the decomposition remain unknown.

We describe in a long version of this article [2] a representation of multi-
field persistence diagrams with torsion coefficients. We also describe an efficient
algorithm to compute distances between them.

References

1. Boissonnat, J.-D., Dey, T.K., Maria, C.: The compressed annotation matrix: An
efficient data structure for computing persistent cohomology. In: Bodlaender, H.L.,
Italiano, G.F. (eds.) ESA 2013. LNCS, vol. 8125, pp. 695–706. Springer, Heidelberg
(2013)

2. Boissonnat, J.-D., Maria, C.: Computing persistent homology with various coeffi-
cient fields in a single pass. RR-8436, INRIA (December 2013)

3. Carlsson, G., Ishkhanov, T., Silva, V., Zomorodian, A.: On the local behavior of
spaces of natural images. Int. J. Comput. Vision, 1–12 (2008)

4. Cohen-Steiner, D., Edelsbrunner, H., Harer, J.: Stability of persistence diagrams.
Discrete & Computational Geometry 37(1), 103–120 (2007)

5. Edelsbrunner, H., Harer, J.: Computational Topology - an Introduction. American
Mathematical Society (2010)

6. Fürer, M.: Faster integer multiplication. SIAM J. Comput. (2009)
7. Von Zur Gathen, J., Gerhard, J.: Modern Computer Algebra, 2nd edn. Cambridge

University Press, New York (2003)
8. Maria, C.: Gudhi, simplex tree and persistent cohomology packages,

https://project.inria.fr/gudhi/software/

9. Martin, S., Thompson, A., Coutsias, E.A., Watson, J.: Topology of cyclo-octane
energy landscape. J. Chem. Phys. 132(23), 234115 (2010)

10. Munkres, J.R.: Elements of algebraic topology. Addison-Wesley (1984)
11. Rosser, J.B., Schoenfeld, L.: Approximate formulas for some functions of prime

numbers 6, 64–94 (1962)
12. Zomorodian, A., Carlsson, G.E.: Computing persistent homology. Discrete & Com-

putational Geometry 33(2), 249–274 (2005)

https://project.inria.fr/gudhi/software/

De-anonymization of Heterogeneous

Random Graphs in Quasilinear Time

Karl Bringmann1,�, Tobias Friedrich2, and Anton Krohmer2

1 Max Planck Institute for Informatics, Saarbrücken, Germany
2 Friedrich-Schiller-Universität Jena, Germany

Abstract. There are hundreds of online social networks with billions
of users in total. Many such networks publicly release structural infor-
mation, with all personal information removed. Empirical studies have
shown, however, that this provides a false sense of privacy — it is pos-
sible to identify almost all users that appear in two such anonymized
network as long as a few initial mappings are known.

We analyze this problem theoretically by reconciling two versions of
an artificial power-law network arising from independent subsampling
of vertices and edges. We present a new algorithm that identifies most
vertices and makes no wrong identifications with high probability. The
number of vertices matched is shown to be asymptotically optimal. For
an n-vertex graph, our algorithm uses nε seed nodes (for an arbitrarily
small ε) and runs in quasilinear time. This improves previous theoretical
results which need Θ(n) seed nodes and have runtimes of order n1+Ω(1).
Additionally, the applicability of our algorithm is studied experimentally
on different networks.

1 Introduction

Imagine owning a large social network G1 (like Facebook or Google+), and a
competitor publishes an anonymized version of its own social network G2, i.e.
the graph structure without any additional labeling. This can happen on purpose
or indirectly by APIs which are permitted to access the competitor’s network or
special access granted to advertising partners. If we identify vertices that are the
same in both networks, we effectively deanonymize G2 and gain new information,
as there are connections in G2 that do not exist in our social network G1. This is
valuable information for e.g. suggesting friends who are not yet connected in one
of the networks. In this paper, we approach this social network reconciliation
problem from an algorithm theory point of view.

Model. We model the above situation similar to [7] by assuming the existence of
an underlying “real” social network G = (V,E), which encodes whether two peo-
ple know each other in the real world. Empirical studies showed that most social

� Karl Bringmann is a recipient of the Google Europe Fellowship in Randomized Algo-
rithms, and this research is supported in part by this Google Fellowship.

A.S. Schulz and D. Wagner (Eds.): ESA 2014, LNCS 8737, pp. 197–208, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

198 K. Bringmann, T. Friedrich, and A. Krohmer

networks have a power-law degree sequence [10], which we model by an n-vertex
Chung-Lu random graph [1, 4, 5]. Then we assume the online social networks
G1 and G2 to be subsets of G: Every node of G exists in Gi independently with
probability qi, and every edge of G exists in Gi independently with probabil-
ity pi. Additionally, we randomly permute the graphs G1 and G2. We assume
that there is a set of seed nodes VI ⊆ V which are known to match between G1

and G2 because they e.g. are persons of public interest. The algorithmic problem
now is to identify as many vertices as possible from the given graphs G1 and
G2 without making any wrong identifications (with high probability). We call a
vertex identifiable if it survives in both graphs G1 and G2.

Theoretical results. We present an algorithm with the following guarantees. Here
we let δ be the (expected) average degree of the graph G. See Section 2 for the
technical assumptions about the parameters of the Chung-Lu random graph G
and the parameters of the subsampling process.

Theorem 1. Assume we are given the nε largest identifiable vertices as seed
nodes for an arbitrary constant ε > 0. There is an algorithm that with high
probability1 makes no wrong identifications and successfully matches a fraction
of 1 − exp(−Ω(p1p2q1q2δ)) of the identifiable vertices.2 The algorithm runs in
expected quasilinear runtime O(δn log(n)/min{p1, p2}O(1/ε)).

In the full version, we also show that this fraction of identified vertices is asymp-
totically optimal, since intuitively an exp(−O(p1p2q1q2δ)) fraction of the vertices
does not have any common neighbors in the two social networks. For constant
p1, p2, q1, q2, the runtime is O(δn log(n)), which is within a factor log(n) of the
expected number of edges Θ(δn) of G. Thus, our algorithm is the first with
quasilinear runtime. This is crucial for handling large graphs. The best previous
algorithms have a runtime of order O(δnΔ2) [9] or O(δnΔ log(Δ)) [7], where Δ
is the maximum degree, which is typically of size nΩ(1). Our approach also only
needs nε seed nodes — previous algorithms with proven runtime and quality use
at least Θ(n) seeds [7], although some heuristic approaches are also known to
work with few seeds [9]. We remark that our algorithm is also successful with
only O(log(n)/p1p2) seed nodes, but runs in quadratic time in this case.

Empirical results. We implemented a variant of our algorithm and applied it to
different sets of networks. We match � 89% of the vertices in Chung-Lu graphs,
preferential attachment graphs (PA), affiliation networks, and also subsampled
real-world networks (Facebook, Orkut). All runs took less than 60 minutes on
a single core, where previous results used compute clusters for an unreported
amount of time [7]. In all cases, we need � 0.03% seed nodes to bootstrap our
algorithm. This indicates that our approach translates to a wide variety of scale-
free networks, even though we formally prove it on the Chung-Lu model.

1 Throughout the paper, we say that a bound holds with high probability (w.h.p.) if it
holds with probability at least 1− n−c for some c > 0.

2 In the whole paper O(·) and Ω(·) hide any dependency on the power law exponent β
of G. We always assume 2 < β < 3.

De-anonymization of Heterogeneous Random Graphs 199

Algorithm description. Starting with the seed nodes, we identify the remaining
vertices by their signatures, an idea used in many algorithms for graph iso-
morphism. However, we have to cope with the additional complexity of the
neighborhoods of identical vertices not being equal. We identify vertices when
their signatures are strongly overlapping, and show an easy criterion for decid-
ing whether two signatures stem from identical vertices. Using this criterion we
make no errors with high probability and identify a large constant fraction of
the vertices. We achieve a quasilinear runtime by locality sensitive hashing [6],
which reduces the number of comparisons.

Applications. Anonymous copies of some social networks are available online.
Several experimental papers describe how to find mappings between two on-
line social networks [2, 9, 14, 15]. While some use the network structure alone
[9], most of them exploit metadata like browser history [14], group member-
ships [16], writing style [12], semantic features of user aliases [11], or artificially
added subgraphs [2]. The only theoretical result on this subject is by Korula and
Lattanzi [7]. They identify 97% of the nodes on subsampled (p1, p2 �

√
22/δ ,

q1 = q2 = 1) preferential attachment graphs [3], but need a linear amount of
seed nodes and substantially more computing resources.

2 Preliminaries

Graph model. The model has two adjustable parameters: the exponent of the
scale-free network β and the average degree δ. Depending on these two pa-
rameters, each node i has a weight wi. For n ∈ N and weight distribution
w = (w1, . . . , wn) ∈ Rn

�0 the Chung-Lu graph Chung-Lu(n,w) is a graph on
vertex set V = [n] that contains each edge {u, v}, u �= v ∈ V , with probability
pu,v := min{wuwv/W, 1}, where W :=

∑
v∈V wv.

In order to simplify the presentation, we use a simple explicit weight distri-
bution wi = δ(n/i)1/(β−1). Then W = (1 + o(1))β−1

β−2δn = Θ(δn), the expected

average degree is (1+o(1))2(β−1)
β−2 δ = Θ(δ), and we get a power law with exponent

β [13]. We note that most of our results generalize to other weight distributions
and even to weights drawn at random from “nice” distributions. We assume
constant 2 < β < 3, as real-world social networks have been observed to fulfill
this. Moreover, we require δ � no(1), p1, p2 � n−o(1), and q1, q2 = Θ(1). We also
assume that we know a lower bound for q1, q2, so that we know a constant factor
approximation of n. For the sake of readability we even assume that we know n
exactly. Finally, we require that p1p2q1q2δ is at least a sufficiently large constant
(depending only on β).

De-anonymization. In our problem we have an underlying graph G =
Chung-Lu(n,w) as defined above. This graph gets subsampled twice to gen-
erate two subgraphs: We put each node v ∈ V := V (G) into V1 independently
with probability q1. Then we put each edge e ∈ E ∩

(
V1

2

)
into E1 independently

with probability p1 to form a graph G1 = (V1, E1). Now we randomly permute

200 K. Bringmann, T. Friedrich, and A. Krohmer

the nodes of G1 to obtain a graph G̃1. We repeat this process with independent
choices (and probabilities q2, p2) to form G2 and G̃2.

We call two nodes ṽi in G̃i, i ∈ {1, 2} identical, if they stem from the same
node v ∈ V . The identifiable nodes are V∩ := V1 ∩ V2.

The input for the de-anonymization problem is (G̃1, G̃2) and the task is to
report pairs of vertices (“identified vertices”) such that with high probability
every identified pair is identical. We want to maximize the number of identified
pairs. Note that the algorithm gets the randomly permuted graphs G̃i, but in
the analysis we usually talk about the graphs Gi for the sake of readability. We
write degi(v) for the degree of vertex v ∈ Vi in Gi and Ni(v) for its neighborhood
in graph Gi, i ∈ {1, 2}.

3 Estimating Weights and Edge Probabilities

In this section we show how to compute upper and lower bounds for the weight wv

of any vertex v based on the degree degi(v), i ∈ {1, 2}. This also yields bounds
for the edge probabilities pu,v for any vertices u and v. These bounds hold
with high probability. Then we argue that our subsequent de-anonymization
algorithms can use these computed bounds and still assume that all edges of Gi

and G were sampled independently as if these graphs were not looked at before
(where we used Gi as a short term for both graphs Gi, i ∈ {1, 2}).

For the sake of readability we assume that the parameters n, β, p1, and p2
are known to the algorithm. However, it would be easy to also estimate these
parameters with small error, and run our subsequent algorithms with these ap-
proximations. For a sketch of this, we note that we can estimate β from the
degree distributions in Gi, similar to what we do for individual weights in this
section. Moreover, we can estimate p2 (and p1, respectively) by dividing the num-
ber of edges that appear in G1[VI] ∩ G2[VI] by the number of edges in G2[VI]
(G1[VI]).

Afterwards we can run the method presented in this section to estimate the
individual weights wv and W . Additionally, one could estimate δ (e.g. from W
and β) and q1/q2 (e.g. from |V1|/|V2|), but our algorithms do not need them.
Note that in our model it is hard to estimate the parameters q1, q2.

The degree of each vertex v in Gi is composed of a random decision for each
other node u, namely whether it is connected to v in the original graph G and a
random decision whether this edge is present in the subsampled graph. In total,

degi(v) ∼
∑

u∈V \{v}
Ber
(
piqi · min

{wvwu

W
, 1
})

,

if node v survives in Gi. By a Chernoff bound, we see that this degree is con-
centrated. This allows to compute intervals for the weights wv for all v in Gi.

Lemma 1. Let i ∈ {1, 2}. Given degi(v) (and pi and an approximation of n)
we can compute 0 � wv � wv such that w.h.p. for all v ∈ V we have

1. wv � qiwv � wv,

De-anonymization of Heterogeneous Random Graphs 201

2. wv � O
(
qiwv + 1

pi
logn
)
, and

3. wv � Ω(qiwv) −O
(

1
pi

log n
)
.

In a similar fashion, we can compute a bound on q2i ·W .

Lemma 2. Let i ∈ {1, 2}. Given Gi, we can compute W such that W � q2iW �
(1 + o(1))W holds with high probability.

The proof of Lemma 1 and most other proofs in the remainder can be found
in the full version. Plugging the estimated weights into the edge probability
formula allows us to compute bounds on the edge probabilities. It is worth noting
that although the estimations on wv and W give a result depending on qi, the
computed upper bound puv on the edge probabilities is oblivious to qi.

Corollary 1. For any u, v ∈ Vi we can compute bounds pu,v :=
min{wuwv/W, 1} such that w.h.p. we have

pu,v � pu,v � O
(
pu,v

(
1 +

logn

piqiwu

)(
1 +

logn

piqiwv

))
.

In particular, for wu, wv = Ω(1
piqi

logn) we have pu,v = O(pu,v).

Corollary 1 allows to compute estimations for all edge probabilities with cer-
tain guarantees that hold with high probability. We want to use these estimations
in the subsequent algorithms without losing the independence of the edges, i.e.,
in the subsequent algorithms we want to assume that the (edges of the) graphs
Gi were not revealed yet, although we already computed bounds on the weights
based on the degrees in Gi. In order to see that this might be a problem, assume
that throughout a proof we reveal edges of a node v. However, once we have seen
degi(v) edges, we know that there can be no other edge anymore, which violates
our intuition of having independent edges.

To solve this technical problem, we model our weight estimation method as
an adaptive adversary, which knows the parameters p1, p2, q1, q2, w1, . . . , wn, G1

and G2, and reports estimations pu,v for all u, v ∈ V that fulfill the guarantees
in Corollary 1 w.h.p. (over the randomness of the instance generation). The sub-
sequent de-anonymization algorithms are then designed such that they assume
to get edge probability estimations by our above method (or an adversary) that
fulfill the said guarantees but are otherwise arbitrary. Then they may still as-
sume that the random graphs Gi are not revealed. The details of this can be
found in the full version of this paper.

4 Matching Phase

In the matching phase we assume that we know the identity of some vertices VI ⊆
V containing the h = Ω(log(n)/p1p2) highest weight nodes (that survive in both
G1, G2), and show how to identify most of the remaining vertices based on these
initial nodes. Observe that the adaptive adversary model allows us to assume
that all edges are independently present with their respective probability pu,v.

202 K. Bringmann, T. Friedrich, and A. Krohmer

4.1 The Y -Test

Denote by VI the thus far identified vertices. Then for every unidentified ver-
tex v in Gi we consider its signature Sv

i := Ni(v) ∩ VI . Unlike in the Graph
Isomorphism problem, in our case signatures of identical vertices are not equal.
However, for identical vertices the signatures Sv

1 , Sv
2 should be similar sets, while

for non-identical vertices u �= v the signatures Su
1 , S

v
2 should have small inter-

section. One contribution of our work is the test presented in this section, which
allows to check whether two nodes are identical based on their signatures. This
test never identifies two non-identical vertices (w.h.p.) and it identifies most
vertices once sufficiently many of their neighbors are identified.

Let v1, v2 ∈ V \VI and u ∈ VI . Consider all possibilities of the edges {v1, u} ∈
E1 and {v2, u} ∈ E2 being present or not. We denote by Au the event that both
of these edges are present, by Bi

u the events that exactly one edge is present in
Gi, and by Cu the remaining case. Based on these cases we now define

Yu = Y v1,v2
u :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1

2pv1,u
, if u ∈ Sv1

1 ∩ Sv2
2 (Au)

1 − p2

2 , if u ∈ Sv1
1 and u �∈ Sv2

2 (B1
u)

1 − p1

2 , if u �∈ Sv1
1 and u ∈ Sv2

2 (B2
u)

1, otherwise (Cu).

and Y :=
∏

u∈VI
Yu. Intuitively, Yu encodes the evidence of v1 = v2 given the

connections to the identified node u; a common neighbor (Au) has a large positive
evidence, Yu > 1, while a node u connected to only one of the two (B1

u, B
2
u) has a

small negative evidence, Yu < 1. Note that when v1 = v2 we have pv1,u ≈ pv2,u,
so in the case (Au) having one of the estimates turns out to be sufficient. The
technical factor 1/2 is needed later for some tail bounds.

We claim that Y is typically small for non-identical v1 �= v2 and can be large
(if VI contains sufficiently many neighbors of v1) if v1 = v2. In particular, we
can test whether v1 = v2 by testing Y > nc for some appropriate constant
c > 0. We call this the Y -test. This intuition is proven by the following lemmas.
First we show that Y is not too large if v1 �= v2 (w.h.p.). To this end, we
verify E[Yu] � 1, then the statement follows from independence of the edges and
Markov’s inequality.

Lemma 3. For any v1 �= v2 ∈ V \ VI and t > 0 we have Pr[Y > t] � 1/t.

The next lemma can be used to show that our test allows to identify the
two copies of v if we have already identified enough low-degree neighbors of v.
We call the high-degree neighbors u “bad nodes” as they result in an estimated
connection probability of pv,u = Ω(1).

Lemma 4. Let VI be any set of identified vertices, and consider an unidentified
v ∈ V∩ \ VI . Let B ⊆ VI (“bad nodes”) be the vertices u with pu,v � b > 0, b
being a sufficiently small constant. Assume that for c > 0 we have

De-anonymization of Heterogeneous Random Graphs 203

∑
u∈VI

pu,v � Ω
(

1
p1p2

c logn + |B|
)

with a sufficiently large hidden constant. Then we have Pr[Y v,v > nc] � 1−n−c.

For a vertex v with small weight wv = no(1) the above lemma does not apply
and we have to take a closer look at Y v,v.

Lemma 5. Let c > 0 and consider an unidentified vertex v ∈ V∩ \ VI with
wv � no(1). Let T ⊆ VI be a set of identified vertices with pu,v = Θ(ε) for all
u ∈ T and some ε > 0. Assume that μ := p1p2ε|T | is at least a sufficiently large
constant (depending only on c and β). Then we have

Pr[Y v,v > nc] � 1 − n−c − exp(−Ω(μ)).

4.2 The Algorithm

We use the test developed in the last section as follows. As we build an algo-
rithm that w.h.p. never identifies non-identical vertices, we can again write this
algorithms in terms of the graphs G1, G2, but it can easily be translated to the
randomly permuted graphs G̃1, G̃2.

Our algorithm gets as input the graphs G1, G2 and an initial set VI of iden-
tified vertices containing the h highest weight vertices. Then in every round the
algorithm compares all pairs v1, v2 of unidentified vertices. One comparison con-
sists of a Y -test, i.e., we compute Y v1,v2 and test whether it is at least nc, where
c > 0 a constant. If this is the case, then we identify v1 and v2. The algorithm
terminates after the first round in which no new vertex is identified.

Note that this algorithm is oblivious to the qi’s, as it only considers edges to
nodes that are already identified, and thus survive in both subsampled graphs.

We will see that it suffices to run this algorithm for O(log n) rounds to identify
most of the vertices. As Y v1,v2 can be computed in time O(deg1(v1)+deg2(v2)),
the immediate runtime of this algorithm is O(nm logn), where m is the total
number of edges in G1 and G2, which is O(δn) with high probability. We will
see in Section 5 how to decrease this to quasilinear runtime.

Algorithm 1. De-anonymization using Y-tests

Input: graphs G1, G2, identified vertices VI ⊇ {1, . . . , h}
for r = 1, 2, . . . ,O(logn) do

for all v1, v2 ∈ V \ VI do
if Y v1,v2 > nc then

VI := VI ∪ {v1, v2}. We identified v1 = v2

Using Lemma 3 it is easy to see that Algorithm 1 never identifies any non-
identical vertices. Note that choosing c > 2 yields error probability o(1).

Lemma 6. Algorithm 1 does not identify any two non-identical vertices with
probability at least 1 −O(n2−c log n).

204 K. Bringmann, T. Friedrich, and A. Krohmer

4.3 Quality Analysis

It remains to show that the algorithm identifies most vertices. We do this by
examining the propagation of identified vertices in the graphs. For this, we define
Lj := {2j−1, . . . , 2j − 1}, j = 1, . . . , logn as the j-th layer of vertices, and let

L̃j ⊆ Lj be the set of vertices from layer j that survive in both graphs. If

|Lj| = Ω(log n), then w.h.p. by a Chernoff bound we have |L̃j | � Ω(q1q2|Lj|).
We proceed in three steps. First, we show that given the seed nodes, there will

be some layer k that gets identified with high probability. We choose k such that
the estimated edge probability pv,h of every vertex v ∈ Lk with vertex h (the h-th
highest weight vertex) is at most a sufficiently small constant, and k is minimal
with this property. We can compute that |Lk| = Ω(n3−β/ logn), meaning that
|L̃k| = Θ(q1q2|Lk|). In the first step of the analysis of our algorithm we show
that after round 1 layer L̃k is identified with high probability.

In the second step, we show that from there on we identify one more layer
each round, i.e., after round r we have identified layer L̃k+r−1. This, however,
cannot hold w.h.p. once the weights drop below O(polylog n). Instead, each
vertex v ∈ L̃j , j > k is identified after round j − k + 1 with probability at least
1−αj � 1−exp(−Ω(p1p2q1q2δ)). This holds independently of the other vertices
in Lj and of the edges from vertices above layer Lj to vertices below layer Lj or
layer Lj itself. This way we identify most of the vertices in the layers above k in
at most log(n)− k + 1 rounds. We remark that these vertices could be identified
already earlier, but we claim that they are identified at the latest after round
j − k + 1 (with the mentioned probability).

In the third step, we show that after round log(n) − k + 2 all high-degree
vertices in layers below L̃k are identified with high probability. As the number
of such vertices is small, this third step is not necessary for the conclusion that
the algorithm identifies a large fraction of all identifiable vertices — it proves,
however, the intuition that this algorithm identifies all vertices with sufficiently
high weight (logΩ(1)(n)) with high probability. We omit this third step in this
extended abstract.

First step. Initially we know the identity of a set VI of vertices containing the h
highest weight nodes that survive in both graphs. We let h = γ2 1

p1p2
logn where γ

is a sufficiently large constant. Let � := γ 1
p1p2

logn. Choose a layer Lk such that

for any v ∈ Lk we have pv,� ≈ b, where b = Θ(1) is the constant from Lemma 4, so
that we have |B| = O(�) = O(γ 1

p1p2
logn) bad nodes. For our weight distributions

one can show that pv,h = pv,� · (�/h)1/(β−1) = Θ(γ−1/(β−1)). Hence, any node
1 � u � h has pv,u � pv,h = Θ(γ−1/(β−1)). Summing up over 1 � u � h, we
have

∑
u∈VI

pv,u � Ω(γ2−1/(β−1) 1
p1p2

logn). Since γ2−1/(β−1) = γ1+Ω(1) and γ
is sufficiently large, for any arbitrarily large hidden constant we have∑

u∈VI

pv,u � Ω((γ + c) 1
p1p2

logn) = Ω(1
p1p2

c logn + |B|),

which proves that the assumption of Lemma 4 is fulfilled and we identify v in
the first round with high probability.

De-anonymization of Heterogeneous Random Graphs 205

Second step. Consider any following level k < j � logn−Ω(log logn) (with suf-
ficiently large hidden constant) and let v ∈ L̃j. We prove by induction that v is
identified in round j−k+1 with high probability. By induction hypothesis, every
vertex u ∈ L̃j−1 is identified after round j− k with high probability. The proba-
bility of v to connect to a vertex u ∈ Lj−1 is pu,v = min{wvwu/W, 1}. Plugging in
wv, wu = Θ(δ(n/2j)1/(β−1)) yields pu,v = Θ(ε) for ε := δn(3−β)/(β−1) 2−2j/(β−1)

and pu,v = O
(
pu,v + 1

δn log2 n
)
. Note that since j � logn − Ω(log logn) we

have wv � logΩ(1) n so that pu,v = O(pu,v). We can apply Lemma 4 with

|B| � O(1
p1p2

log n) (since the number of bad vertices is at most the number

of bad vertices for layer Lk). Considering only the edges to VI ∩ L̃j−1 and using

|L̃j−1| = Ω(q1q22j) we obtain∑
u∈VI

pu,v � Ω
(
q1q22jδn(3−β)/(β−1) 2−2j/(β−1)

)
= Ω
(
q1q2δ logΩ(1) n

)
,

which is larger than Ω(1
p1p2

logn) since p1p2q1q2δ is at least a sufficiently large

constant. Hence, Lemma 4 implies that we identify all vertices in L̃j with high
probability.

For logn− o(log n) � j � logn, so that wv = no(1), we instead use Lemma 5
to show that any vertex v ∈ L̃j is identified after round j−k+1 with probability
at least 1−αj � 1− exp(−Ω(p1p2q1q2δ)). We again consider the edges of v into

T := VI ∩ L̃j−1 and obtain

μ := p1p2ε|T | = Ω
(
p1p2q1q22jδn(3−β)/(β−1) 2−2j/(β−1)

)
= Ω(p1p2q1q2δ).

Hence, the assumption of Lemma 5 amounts to p1p2q1q2δ being at least a suf-
ficiently large constant, and we identify each vertex in L̃j with probability at
least 1 − αj := 1 − exp(−Ω(μ)) − n−c � 1 − exp(−Ω(p1p2q1q2δ)).

5 Quasilinear Runtime

Algorithm 1 in its pure form takes quadratic time, as we have seen in the last
section. In this section we show how to decrease its runtime to quasilinear using
locality sensitive hashing [6]. We assume to have identified the h = n2ε highest
weight vertices for any constant ε > 0.

The basic idea for speeding up the algorithm is to reduce the number of tested
pairs v1, v2. To this end, in every round we choose a random permutation π of
VI . For a vertex v ∈ V \ VI in Gi consider the vertices in VI that have a small
estimated probability to connect to v, Tv := {u ∈ VI | pv,u � n−ε}. We compute

the first C/ε vertices (u1, . . . , uC/ε) =: M i
v in Ni(v) ∩ Tv with respect to the

order π (for some constant C � 2 to be fixed later). Note that M i
v can be

computed in constant time, if we permute the graphs G1[VI] and G2[VI] with
respect to π (and store a version containing only the edges in

⋃
v Tv), so that the

first neighbor of v is simply the first entry of its adjacency list. In the analysis
we show that for a so-called good vertex v ∈ V∩ the sets M1

v , M2
v are equal

206 K. Bringmann, T. Friedrich, and A. Krohmer

Algorithm 2. Fast de-anonymization using Y-tests

Input: graphs G1, G2, identified vertices VI ⊇ {1, . . . , n2ε}
for r = 1, 2, . . . , Θ(p)−Θ(1/ε) logn do

choose a random permutation π of VI

for all v ∈ V \ VI and i ∈ {1, 2} do
if |Ni(v) ∩ Tv| � C/ε then

compute the set M i
v of the first C/ε vertices in Ni(v) ∩ Tv w.r.t. π

hash (v, i) at M i
v

for all hash collisions of the form (v1, 1) and (v2, 2) do
if Y v1,v2 > nc then

VI := VI ∪ {v1, v2}. We identified v1 = v2

with probability Θ(p1 + p2)Θ(1/ε), while for non-identical vertices v1 �= v2 these
sets are equal with probability at most 1/n. Thus, we may hash v at M i

v (with
a perfect hash function that produces collisions only if the corresponding hash
values are equal) and test vertices v1, v2 only if they form a hash collision. Then
in expectation we test O(n) pairs of vertices per round. More precisely, one can
show that these tests take expected time O(m) per round, where m is the total
number of edges in G1 and G2. Everything else we do in one round also runs in
time O(m). Note that in expectation we have m = O((p1 + p2)δn) � O(δn).

As we will see in the full version, roughly the same quality analysis
as in the last section goes through, with the necessary number of rounds
growing to Θ(min{p1, p2})−Θ(1/ε) logn. As ε > 0 is a constant, this is
O(min{p1, p2}−O(1) logn). Furthermore, by the same arguments as in the last
section, Algorithm 2 makes no wrong identifications w.h.p. (intuitively, it only
does a subset of the Y -tests of Algorithm 1, but since we let it run for a few
more rounds the error probability grows to O(n2−c min{p1, p2}−O(1) logn)). In
total we get an expected runtime of O(min{p1, p2}−O(1)δn logn).

6 Experiments

The focus of this paper lies on the theoretical algorithm analysis. To check our
theory for robustness, however, we conducted a preliminary empirical study. We
implemented a variant of the fast algorithm single threaded in C++. The source
code is available upon request. The experiments were run on a single computer
with Dual Xeon CPU E5-2670 and 128 GB RAM.

We evaluated the algorithm on Chung-Lu graphs as shown in Table 1. The
results indicate that our quality bounds hold up well in practice, as we identify
95% of the nodes with as little as 0.008% seeds (80 nodes). Similarly, the runtime
follows our asymptotic bounds which allows for deanonymizing large graphs
(2 million nodes) on a single core, whereas previous approaches would typically
require a computing cluster due to their polynomial runtime.

Finally, we investigated the robustness of our algorithm with respect to
changes to the underlying graph model. We ran it on different random graph

De-anonymization of Heterogeneous Random Graphs 207

Table 1. Performance of our de-anonymization algorithm on various graphs

Graph Model

Name n m p1 ·p2 q1 ·q2 Seeds Recall Prec. Runtime

Chung-Lu 2M 80M 0.25 0.72 80 0.95 1 29 min.
Pref. Attachment 1M 20M 0.25 1 200 0.95 1 9 min.
Affiliation Network 60K 8M – 1 50 0.83 0.99 56 sec.
Facebook 63K 1.5M 0.58 1 50 0.50 0.95 6 sec.
Orkut 3M 117M 0.56 0.81 1000 0.89 0.88 54 min.

models (Preferential Attachment [3], Affiliation Networks3 [8]) and even sub-
sampled real graphs (Facebook, Orkut)4. We point out that [7] also performed
experiments on Facebook and Affiliation Networks, achieving slightly better re-
call (0.6 and 0.9, respectively). However, they typically use 10% of the networks
as seeds; and they do not report on their runtimes and machines.

In all cases, our algorithm was able to extend the small set of identified seed
nodes to a linear fraction of the entire graph; while making comparatively few
errors. This indicates that even though our proofs rely on the topology of the
Chung-Lu model (e.g. independent edge probabilities), the algorithm performs
reasonably well in practice.

7 Conclusion

We presented a new method for de-anonymizing scale-free networks with two
crucial improvements compared to previous work: (i) faster runtime and (ii) less
required a-priori knowledge.

While all previous algorithms have a runtime of Ω(nΔ), our new algorithm
runs in quasilinear time. This improvement is not only asymptotical: Recent
experiments of Korula and Lattanzi [7] required large compute clusters, whereas
our algorithm can handle graphs with millions of vertices in less than an hour
on off-the-shelf hardware. The quasilinear runtime is achieved by a variant of
locality sensitive hashing. We believe that this technique can be used in future
work to speed up other matching and graph isomorphism algorithms.

Our second contribution is a rigorous proof that much fewer seed nodes suffice
for de-anonymizing subsamples of a common model of scale-free networks. Our
approach needs only nε seed nodes, while all previous algorithms with proven
runtime and quality use Θ(n) seed nodes. The analysis is based on a new weight
estimation scheme relative to an adaptive adversary, which appears to be use-
ful also for analyzing other algorithms on Chung-Lu graphs. Our result shows
that de-anonymization is possible with few seed nodes, which is important for
practical attacks on anonymized networks.

3 In this model, a bipartite graph of users and interests is constructed; and two users
are connected if they share an interest. To create two subsampled graphs, each
interest is deleted independently with probability 0.25 in both graphs.

4 http://snap.stanford.edu/data/

http://snap.stanford.edu/data/

208 K. Bringmann, T. Friedrich, and A. Krohmer

References

[1] Aiello, W., Chung, F., Lu, L.: A random graph model for massive graphs. In: 32nd
Annual ACM Symposium on Theory of Computing (STOC), pp. 171–180 (2000)

[2] Backstrom, L., Dwork, C., Kleinberg, J.: Wherefore art thou r3579x?: Anonymized
social networks, hidden patterns, and structural steganography. In: 16th Interna-
tional Conference on World Wide Web (WWW), pp. 181–190 (2007)

[3] Barabási, A.-L., Albert, R.: Emergence of scaling in random networks. Science 286,
509–512 (1999)

[4] Chung, F., Lu, L.: Connected components in random graphs with given expected
degree sequences. Annals of Combinatorics 6(2), 125–145 (2002)

[5] Chung, F., Lu, L.: The average distances in random graphs with given ex-
pected degrees. Proceedings of the National Academy of Sciences (PNAS) 99(25),
15879–15882 (2002)

[6] Indyk, P., Motwani, R.: Approximate nearest neighbors: towards removing the
curse of dimensionality. In: 30th Annual ACM Symposium on Theory of Comput-
ing (STOC), pp. 604–613 (1998)

[7] Korula, N., Lattanzi, S.: An efficient reconciliation algorithm for social networks.
In: 40th International Conference on Very Large Data Bases (VLDB), pp. 377–388
(2014)

[8] Lattanzi, S., Sivakumar, D.: Affiliation networks. In: 41st Annual ACM Sympo-
sium on Theory of Computing (STOC), pp. 427–434 (2009)

[9] Narayanan, A., Shmatikov, V.: De-anonymizing social networks. In: 30th IEEE
Symposium on Security and Privacy (SP), pp. 173–187 (2009)

[10] Newman, M.E.J.: The structure and function of complex networks. SIAM Re-
view 45(2), 167–256 (2003)

[11] Novak, J., Raghavan, P., Tomkins, A.: Anti-aliasing on the web. In: 13th Interna-
tional Conference on World Wide Web (WWW), pp. 30–39 (2004)

[12] Rao, J.R., Rohatgi, P.: Can pseudonymity really guarantee privacy? In: 9th
USENIX Security Symposium (USENIX), pp. 85–96 (2000)

[13] van der Hofstad, R.: Random graphs and complex networks (2009),
www.win.tue.nl/~rhofstad/NotesRGCN.pdf

[14] Wondracek, G., Holz, T., Kirda, E., Kruegel, C.: A practical attack to de-
anonymize social network users. In: IEEE Symposium on Security and Privacy
(SP), pp. 223–238 (2010)

[15] Zafarani, R., Liu, H.: Connecting corresponding identities across communities. In:
3rd International Conference on Weblogs and Social Media (ICWSM), pp. 354–357
(2009)

[16] Zheleva, E., Getoor, L.: To join or not to join: The illusion of privacy in social
networks with mixed public and private user profiles. In: 18th International Con-
ference on World Wide Web (WWW), pp. 531–540 (2009)

www.win.tue.nl/~rhofstad/NotesRGCN.pdf

Competitive Algorithms for Restricted Caching

and Matroid Caching

Niv Buchbinder1,�, Shahar Chen2, and Joseph (Seffi) Naor2,�

1 Statistics and Operations Research Dept., Tel Aviv University, Israel
niv.buchbinder@gmail.com,

2 Computer Science Dept., Technion, Haifa, Israel
{shaharch,naor}@cs.technion.ac.il

Abstract. We study the online restricted caching problem, where each
memory item can be placed in only a restricted subset of cache locations.
We solve this problem through a more general online caching problem
in which the cache is subject to matroid constraints. Our main result is
an O(min{d, log r} · log c)-competitive algorithm for the matroid caching
problem, where r and c are the rank and circumference of the matroid,
and d is the diameter of an auxiliary graph defined over it. In general, this
result guarantees an O(log2 k)-competitiveness for any restricted cache
of size k, independently of its structure. In addition, we study the special
case of the (n, �)-companion caching problem [8]. For companion caching
we prove that our algorithm achieves an optimal competitive factor of
O(log n+ log �), improving on previous results of [18].

1 Introduction

Caches are key components in modern computer and networking architectures.
Designing efficient caching (or paging) policies is a fundamental online opti-
mization problem with multiple applications. Take, for example, the classical
two-level memory system, consisting of a slow memory of infinite size and a
small fast memory (the cache). The input is a sequence of page requests which
are satisfied one by one. If a page p being requested is already in the cache, then
no action is required and no cost is incurred. Otherwise, page p must be brought
from the slow memory to the cache (a page fault), incurring some fetching cost,
and possibly requiring the eviction of another page in the cache. The objective
is to minimize the total fetching cost by wisely choosing which pages to evict.

In recent years significant progress has taken place in the areas of parallel
and distributed computing, as well as in local and web storage, giving rise to
new, more complex, cache architectures. One example is a multi-core processor,
which has become the dominant processor architecture today. In a multi-core
processor, every core has a private (and fast) cache, and in addition all the cores
share a fully associative cache. Despite extensive research on paging problems,
algorithms and performance results for common real-life models such as multi-
core processors are still not yet fully understood.

� Supported by ISF grant 954/11 and BSF grant 2010426.

A.S. Schulz and D. Wagner (Eds.): ESA 2014, LNCS 8737, pp. 209–221, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

210 N. Buchbinder, S. Chen, and J. Naor

Web storage via content distribution networks provides another example of
a non-traditional cache architecture. A content distribution network (CDN) is
a large distributed system of servers deployed in multiple data centers over the
web. The goal is to provide end-users fast and easy access to content from various
devices and locations. There are quite a few public companies that offer such ser-
vices nowadays, e.g., Akamai, Microsoft’s Azure and Amazon’s CloudFront. The
cache in this context can be a set of servers (e.g., in a data center) that main-
tains content and provides fast service to a set of end-users. Typically, placing
content on this set of servers needs to adhere to various restrictions and con-
straints, e.g., not any content can be placed on every server. Suppose an online
company wishes to hold private, possibly encrypted, content via a CDN. It may
be the case that due to digital rights management, or encryption schemes, con-
tent belonging to a particular company can only be located on certain dedicated
servers which, naturally, have limited capacity. Content which is not placed on
these servers will be fetched (upon request) from a distance, incurring a cache
miss. Given that massive amounts of information are involved, management of
content on the cache is of utmost importance for end-user experience.

We model this kind of constraints on cache architectures via the restricted
caching model, defined by Brehob et al [8]. The idea is that pages, i.e., content,
can only be placed in a restricted set of cache locations (i.e., servers). Thus, the
sets of legal cache locations for two distinct pages may not be identical, though
they may have a non-empty intersection. This is in contrast to traditional fully
associative caches, where all cache locations are identical, and pages can be
located anywhere in the cache. Restricted caches are sometimes referred to as
having arbitrary associativity. As shown by [22], various algorithms for fully
associative caching can result in very poor performance for some settings with
arbitrary associativity. One can hope to design general algorithms that can cope
with this extended family of cache architectures.

A hybrid cache architecture model that interests us in particular is companion
cache, a simple restricted caching model which includes victim caches and assist
caches as special cases. A companion cache architecture has two components: a
fully-associative shared cache of size n and m private caches of size �. The private
caches can store items corresponding to different types, e.g., users, locations,
file types, etc, while the fully associative cache can store items of any type.
Companion caching was first considered by [8] and further studied by [18,16].
A schematic description of a companion cache is presented in Fig. 1.

1.1 Our Contributions and Techniques

The starting point of our work is the key observation that the restricted caching
problem is captured by the more general problem of maintaining over time an
independent set of a matroid, with respect to an online sequence of element
requests. That is, at any point of time the online algorithm has to maintain
an independent set of elements which includes the currently requested element.
We call this problem the matroid caching problem (a formal definition of the
problem is given in Section 2). Surprisingly, although the generalization itself is

Competitive Algorithms for Restricted Caching and Matroid Caching 211

m
ul

tip
le

-s

ize
 p

riv
at

e
ca

ch
es

sh
ar

ed

-s
ize

 fu
lly

 a
ss

oc
ia

tiv
e

ca
ch

e

Fig. 1. (n, �)-companion cache

fairly simple, exploiting matroid properties turns out to be more convenient and
powerful, and enables us to both improve and generalize on previous results.

We introduce a general randomized algorithm for the online matroid caching
problem on a matroid M, consisting of two components. The first component is
a fractional online O(log c(M))-competitive algorithm, where c(M) is the cir-
cumference (largest circuit) of M. The online algorithm and its analysis exploit
the matroid properties, and obtain this improved upper bound based on primal-
dual linear programming techniques developed in competitive analysis (see the
survey of [12]). The second component is a randomized rounding scheme which
integrates two online rounding algorithms. The first algorithm maintains for ev-
ery fractional solution a distribution on integral matroid bases (see e.g. [5]). The
main difficulty is to wisely update this distribution after every change in the
fractional solution. These updates are done by reducing the problem to find-
ing shortest paths in an auxiliary graph defined on the matroid. This auxiliary
graph was first introduced by Cunningham [13] for the purpose of determining
in strongly polynomial time whether a point is inside a matroid polyhedron. By
using the fact that we maintain a feasible fractional solution, and by proving ad-
ditional properties of the auxiliary graph, we obtain a rounding algorithm which
loses a factor of dG(M), the diameter of the auxiliary graph. The second algo-
rithm is an O(log r(M))-approximate rounding, recently obtained by [19]. The
idea behind this algorithm is to maintain spanning sets of M in every iteration,
and then transform them into bases without incurring any additional loss.

Combining the two components we get our main theorem. To our knowledge,
this is the first randomized competitive algorithm for general restricted caching.

Theorem 1. There is a an O(min{dG(M), log r(M)} · log c(M))-competitive
algorithm for matroid caching, where r(M) and c(M) are the rank and circum-
ference of matroid M, and dG(M) is the diameter of an auxiliary graph of M.

We remark that c(M) ≤ r(M) + 1, and thus Theorem 1 guarantees an
O(log2 k)-approximation for any restricted cache of size k, independently of its
structure. Nevertheless, in many cases c(M) can be much smaller. For example,
in graphic matroids the longest cycle in a graph can be much smaller than the

212 N. Buchbinder, S. Chen, and J. Naor

total number of vertices. As for the diameter of the auxiliary graph, we show
an example for which dG(M) = Ω(r(M)). This is essentially a worst case ex-
ample since we prove that dG(M) ≤ r(M) + 1. However, in some interesting
cases of restricted caching the diameter can be much smaller, even a constant.
Specifically, for companion caching we show:

Theorem 2. For the companion caching matroid, c(M) = min{m,n + 1} · � +
n + 1 and dG(M) = 3. Thus, our algorithm is O(log n + log �)-competitive.

This result improves on the randomized upper bound of O(log n log �) of [18],
and is optimal as it matches their lower bound of Ω(log n + log �).

1.2 Related Work

Caching over a fully associative cache, known as the paging problem, was intro-
duced by [7]. Sleator and Tarjan [24] showed that any deterministic algorithm is
at least k-competitive, and also proved that LRU is exactly k-competitive. When
randomization is allowed, [17] showed a tight O(log k)-competitive algorithm to
this well studied problem (later improved by [21,1]). Restricted caching, defined
by [8], is a generalization of the paging problem to cache architectures which
cannot be modeled as set associative caches. There are very few results on this
generalized setting (see [22] for example), however, some specific restricted cache
architectures were studied. In particular, [8] introduced the companion caching
problem, further studied by [18,22,9,16].

Primal-dual analysis is a fundamental approach in tackling online optimiza-
tion problems ([3,12,4]), specifically used for the design of caching problems
([5,6,2]). Under a unified framework of online learning and competitive analysis,
for a matroid M = (E , I), [11] considered the online problem of maintaining ma-
troid bases over time, incurring both movement and service cost, and obtained
an O (log(|E| − r(M)))-approximation via a primal-dual approach. The work of
[11] differs from ours in two crucial respects. First, their algorithm does not
handle constraints such as forcing elements to be included in the matroid base
(as in caching);1 second, they only obtain a fractional solution to their problem.
We present a modified primal-dual algorithm which can handle element requests
and also simplify and improve on the analysis of [11]. Recently, [10] used a regu-
larization approach to generalize the matroid caching problem. Still, they could
only obtain fractional solutions to the problem (similarly to [11]).

Recently, Gupta et al [19] also studied the problem of online maintaining
matroid bases, giving an O(log |E|)-competitive fractional algorithm using a
primal-dual approach. Similarly to [11], the algorithm cannot handle constraints
such as forcing elements to be included in the matroid base. Interestingly, [19]
gives an O(log r(M))-approximation for rounding online a fractional solution.
They further generalize the rounding to the weighted version and show that

1 Note that forcing inclusion via, e.g., a series of steps that incur small costs on other
pages until the element is completely in the base, changes the objective function and
therefore cannot be performed in that manner.

Competitive Algorithms for Restricted Caching and Matroid Caching 213

their result is tight. We note that their hardness result does not hold for the un-
weighted version, and specifically in some interesting special cases, e.g., uniform
matroids, partition matroids, and some restricted cache models.

2 Definitions and Problem Formulation

In the restricted caching problem we are given a set E of n pages and a set
S of available memory slots. Every page p can be located on some subset of S.
In every time step t we are given a request for a page pt. If the page is already
in the cache, no cost is incurred. Otherwise, the page must be fetched (from
a slower memory) to one of its feasible slots incurring a cost of one unit. If
the slot is not empty the algorithm can reorganize the cache for free by either
moving pages around between feasible slots or by evicting them. We assume
that reorganization is for free, since the time required for fetching a page from
slower memory dominates by several orders of magnitude the time for moving
pages inside a cache ([8,18]). Thus, the goal is to minimize the total cost, i.e. the
number of pages that are fetched.

Companion caching [18] is a special case of restricted caching which is a hybrid
of two classic cache architectures – an �-way set-associative cache, and a fully
associative cache. There are m caches of size � and a single cache of size n.
There are m types of pages, where a page of type i can be stored either in the
ith associative cache (of size �), or in the fully associative cache (of size n).

We solve the restricted caching problem through a more general problem on
matroids. Matroids are extremely useful combinatorial objects that play an im-
portant role in combinatorial optimization since the pioneering work of Edmonds
in the 1970s [14,15]. We assume basic familiarity with matroids and only review
briefly the important properties that we need for our algorithms and analysis.

A matroid M = (E , I) is defined over a finite set E of element, and a non-
empty collection of subsets I of E , called independent sets. For S ⊆ E , a subset
B of S is called a base of S if B is a maximal independent subset of S. A well
known fact is that for any subset S of E , any two bases of S have the same
size, called the rank of S, denoted by r (S). A circuit C in a matroid M, is
defined as an inclusion-wise minimal dependent set, that is C \ {e} ∈ I, for
every e ∈ C. The circumference of a matroid M, c(M), is the cardinality of
the largest circuit in M. For example, the circumference of a graphic matroid
in a graph G = (V,E) is the length of the longest simple cycle in it. A subset
F of E is called nonseparable if every pair of elements in F lie in a common
circuit; otherwise there is a partition of F into non-empty sets F1 and F2 with
r(F) = r(F1) + r(F2) (see [20,26] for more details). Three polytopes associated
with a matroid M are the matroid polytope P(M), the matroid base polytope
B(M), and the spanning set polytope Pss(M) (see [14,23]). P(M) is the convex
hull of incidence vectors of the independent sets of M. Similarly, B(M) is the
convex hull of the incidence vectors of the bases of M, and Pss(M) is the convex
hull of the incidence vectors of the spanning sets of M.

214 N. Buchbinder, S. Chen, and J. Naor

(P) min
T∑

t=1

∞ · ypt,t +
T∑

t=1

∑
p∈E

zp,t (D) max
T∑

t=0

∑
S⊆E

(|S| − r(S))aS,t

∀p ∈ E bp,1 ≥
∑

S|p∈S
aS,0

∀t ≥ 0 and S ⊆ E
∑
p∈S

yp,t ≥ |S| − r (S) ∀t ≥ 1 and p �= pt bp,t+1 ≥ bp,t +
∑

S|p∈S
aS,t

∀t ≥ 1 and p ∈ E zp,t ≥ yp,t−1 − yp,t ∀t ≥ 1 and p ∈ E bp,t ≤ 1
∀t and p ∈ E zp,t, yp,t ≥ 0 ∀t, p ∈ E ,S ⊆ E bp,t, aS,t ≥ 0

Fig. 2. The primal and dual LP formulations for the matroid caching problem

Transversal matroids are one interesting example of matroids. Let A =
(A1, A2, . . . , An) be a family of subsets of a finite set E . A set T is called a
transversal of A if there exist distinct elements a1 ∈ A1, a2 ∈ A2, . . . , an ∈ An

such that T = {a1, a2, . . . , an}. A partial transversal is a transversal of some
subfamily (Ai1 , Ai2 , . . . , Aik) of A. Let I be the collection of all partial transver-
sals of A. Then M = (E , I) is a matroid. The bases of this matroid are the
inclusion-wise maximal partial transversals, and it follows from König’s match-
ing theorem that the rank function r of the transversal matroid induced by A is
given by r(S) = minT⊆S (|S \ T | + |{i : Ai ∩ T �= ∅}|) for S ⊆ E . It is not hard
to see that we can model restricted caching using a transversal matroid. For
every page p ∈ E there is a subset of cache slots to which it can be assigned.
Equivalently, for every cache slot si, P (si) denotes the subset of pages in E that
can be assigned to it. Let P = (P (s1), P (s2), . . . , P (Sk)) be the page subsets
for all cache slots. Then, every subset of pages T inducing a valid assignment
of pages to the cache is a partial transversal of P . Let I be the collection of all
valid cache assignments. Then, M = (E , I) is a matroid.

We thus define a general caching problem on any matroid M = (E , I). In the
matroid caching problem the online algorithm must maintain at any time t an
independent set St ∈ I (the cache) of the matroid. At any time t, upon receiving
a request for an element of the matroid (page) pt: if pt ∈ St−1 no cost is incurred;
otherwise, pt must be added to St−1 paying one unit. If St−1∪{pt} is dependent,
elements must be removed (evicted), so that St becomes independent.

We can formulate the matroid caching problem as follows. Let the variables
yp,t denote the fraction of page p ∈ E missing from the cache at time t. This
means that at any time t, (1−ypt,t) = 1 and (1−yt) ∈ P(M). The fetching cost
of page p is max{0, yp,t−1 − yp,t}. Figure 2 contains the linear relaxation of this
formulation (P), as well as the corresponding dual program (D). Both programs
play a central role in our analysis. We define D as the value of the dual program,
which is a lower bound on the value of any primal solution.

3 Main Algorithm

In this section we solve the fractional version of the matroid caching problem,
proving the following theorem.

Competitive Algorithms for Restricted Caching and Matroid Caching 215

Algorithm 1. Matroid Caching Algorithm

Initiate η = log 2.
During execution, maintain the following relation between primal and dual variables:

yp,t = f(bp,t+1) =
e
η·bp,t+1−1

eη−1
.

Start with an empty cache yp,0 = 1, and set bp,1 = 1 accordingly.
for t = 1, 2, . . . do

Let pt be the current requested page.
(Update step): Set ypt,t = bpt,t+1 = 0.
(Normalization step): As long as

∑
p∈E yp,t < |E| − r(E):

1. Let S be the set of evictable pages.
2. Update

η ← max

{
η, log

(
|S|

|S| − r(S) + 1

)}
,

update bp,t+1 to maintain yp,t unchanged.
3. For each p ∈ S , aside from pt, update bp,t+1 ← bp,t+1 + aS,t (and yp,t ac-

cordingly), where aS,t is the smallest value such that there exists p ∈ S that
becomes unevictable.

end for

Theorem 3. There is an online algorithm with competitive ratio 2 log (1 + c(M))
for the fractional matroid caching problem on a matroid M, where c(M) is the
circumference of M.

At a high level the description of the algorithm is as follows. Without loss of
generality we assume that the cache is initially full (this can be achieved by re-
questing a sequence of r(M) independent dummy pages, before the actual input
sequence). The algorithm maintains a solution yt such that (1−yt) is in the base
polytope of M. Whenever a page pt is fetched, the algorithm updates ypt,t = 0.
This generates a solution yt whose complement is in the spanning polytope of
M, i.e., (1 − yt) ∈ Pss(M). Next, the algorithm performs a sequence of steps
which gradually evict other pages from the cache making it feasible again. We
refer to each such step as a normalization step. In each normalization step we
consider the set S of all evictable pages. A page is evictable if we can increase
yp,t by an infinitely small value ε, and remain in Pss(M). It is well known that
x ∈ P(M∗) iff (1 − x) ∈ Pss(M), where M∗ is the dual matroid for M. Thus,
we can use the latter condition to compute S efficiently. Let us consider the
maximal dual tight set with respect to our current solution. A set T ⊆ E is
tight if

∑
p∈T yp,t = r∗ (T), and using submodularity of r∗, if T1 and T2 are

tight, then so are T1 ∩T2 and T1 ∪T2. In particular, there is a maximal tight set
Tmax containing all pages whose value yp,t cannot be increased without violating
the dual matroid constraints. Therefore, in each normalization step we define
the evictable set S as all pages which are not in a dual tight set, S = E \ Tmax,

216 N. Buchbinder, S. Chen, and J. Naor

and increase their value until an additional page joins a tight set. In general, the
above condition can be checked in polynomial time by a reduction to submodular
function minimization [23, Ch. 40]. For transversal matroids, S can be computed
using flow techniques. The sequence of normalization steps ends when all pages
become tight. Algorithm 1 formally describes the procedure.

We remark that the algorithm can be easily generalized to the weighted ver-
sion, where fetching page p incurs a cost of wp, by maintaining the following

primal-dual relationship between the variables: yp,t = f(bp,t+1) = eη(bp,t+1/wp)−1
eη−1 .

We prove Theorem 3 using a technical lemma on matroids whose proof is
deferred to the full version.

Lemma 1.

c(M) = max
nonseparable A ⊆ E

{
|A|

|A| − r(A)

}
.

Proof (of Theorem 3).
The analysis of the algorithm’s performance is done using the primal-dual
method.

Primal (P) is feasible: Clearly y0 is feasible. By induction on the steps, we
prove that the algorithm produces a feasible solution (i.e., (1 − yt) ∈ B(M)).
The update step sets ypt,t = 0. Then, in the normalization step the value of
each yp,t only grows. Note that as long as the primal solution is not feasible,
yt ∈ P(M∗), but yt �∈ B(M∗), hence not all pages are in a dual tight set and
S is non-empty. After at most n iterations all pages become tight, and yt is
feasible.

Dual (D) is feasible: Since initially the cache is empty, and for each p, yp,0 =
bp,1 = 1, then by setting aS,0 = 0 for all S ⊆ E , we have that the first set of dual
constraints is feasible. The primal solution is feasible, thus 0 ≤ yp,t ≤ 1, so since

we preserve the primal-dual relation we get: 0 ≤ eη·bp,t+1−1
eη−1 ≤ 1. Simplifying

we get 0 ≤ bp,t+1 ≤ 1. Finally, by construction we keep the dual constraints
with equality: bp,t+1 = bp,t +

∑
S|p∈S aS,t. The only exception is due to line

2 in the normalization step. Since f is monotonically decreasing in η and in
bp,t+1, every increase in η in line 2 also induces an increase in bp,t+1, implying
bp,t+1 ≥ bp,t +

∑
S|p∈S aS,t.

Primal-dual relation: We bound the primal cost in each iteration by the change
in the dual cost. Let dD

aS,t
be the increase rate of the dual solution at time t, when

aS,t gradually increases. Let ηt denote the current value of η, and let ηfinal denote
its value at the end of the execution. The dual increase rate is |S| − r(S). For
the primal cost, let us consider eviction costs instead of fetching costs (clearly,
this adds at most r(E) to the overall cost). That is, we bound the change in the
primal variables during the normalization step instead of the update step.

Competitive Algorithms for Restricted Caching and Matroid Caching 217

∑
p∈S\{pt}

dyp,t
daS,t

= ηt
∑

p∈S\{pt}

(
yp,t +

1

eηt − 1

)
(1)

< ηt ·
(
r∗(E) − r∗(E \ S) +

|S| − 1

eηt − 1

)
(2)

≤ 2ηt · (|S| − r(S)) = 2ηt ·
dD

daS,t
≤ 2ηfinal ·

dD

daS,t
(3)

≤ 2 log(1 + c(M))
dD

daS,t
, (4)

where (1) follows from the fact that
dyp,t

daS,t
=

dyp,t

dbp,t+1
= ηt · (yp,t + 1

eηt−1),

(2) follows as
∑

p∈E\S yp,t = r∗(E \ S), (3) follows by the dual rank function

definition and as ηt ≥ log
(

1 + |S|
|S|−r(S)

)
in the algorithm, and finally (4) follows

by Lemma 1, since ηfinal ≤ maxS{log
(

|S|
|S|−r(S) + 1

)
}. It is not hard to see

that S is nonseparable. Assume by contradiction that S can be partitioned into
S1,S2 such that r(S1) + r(S2) = r(S), and assume without loss of generality
that pt ∈ S1. Then, clearly, since every page p ∈ S2 is unevictable before pt is
fetched, it remains unevictable when ypt,t is set to 0.

4 Rounding the Fractional Solution Online

In this section we describe our rounding procedure for matroid caching. Our
goal is to map the fractional solution produced by the algorithm of Section
3 into a distribution on the bases of the matroid, and show how to maintain
the distribution while paying a small cost. Let yt−1 ∈ B(M) be the fractional
solution at time t− 1. Moving from yt−1 ∈ B(M) to yt ∈ B(M) can be divided
without loss of generality into a sequence of changes, where in each one yu,t−1 is
increased by ε, and yv,t−1 is decreased by ε, for some choice of u and v. Thus, the
change in the cost of the fractional solution is ε. Our algorithm holds at any time
a decomposition D of the current fractional solution y, such that y =

∑
B∈D λB ·

B, and
∑

B∈D λB = 1. We want to update the current distribution D so it is
consistent with the new fractional solution yt, while making as few changes as
possible. This immediately gives us an online mapping of our fractional algorithm
to a randomized integral one (see, e.g., [5] for the explicit mapping).

To update the distribution D we use an auxiliary graph which was initially
introduced by [13] to determine whether a given point is inside P(M), and if
so find a decomposition of it into independent sets. Given a decomposition D
of a fractional solution y ∈ B(M), let G(D) = (V,E) be a directed graph, with
V = E . The edges of the graph are defined as follows:

E = {(u, v) : u, v ∈ V and ∃B ∈ D, λ(B) > 0 such that B + u− v is a base} .

218 N. Buchbinder, S. Chen, and J. Naor

Proposition 1. Let y ∈ B(M) be a fractional solution and let D be a decomposi-
tion of y. Let y′ ∈ B(M) be a fractional solution such that y′u = yu+ε, y′v = yv−ε
and y′w = yw for any w �= u, v. Then, there exists a directed path in G(D) from u
to v. Furthermore, if PG(u, v) is the shortest path from u to v, D can be converted
to a decomposition of y′, D′, while paying ε · |PG(u, v)|.

Proof. Let us look at the problem considered by [13]. In this work, we are given
x0 ∈ P(M), a decomposition of x0 into independent sets, and x1 ∈ R|S|, where
x0 ≤ x1. The goal is to iteratively bring x0 closer to x1, i.e. find x′ ∈ P(M) such
that x0 ≤ x′ ≤ x1, until we either reach x1, or no such solution exists. To do so,
an auxiliary graph similar to ours is constructed and an augmenting path in it is
computed. In particular, it is shown that if x1 ∈ P(M), then such a path always
exists [13, Theorem 2.2]; we follow this path, and for every edge (e, f) on it we
add e and remove f , in some base B ∈ D in which B + e− f is also a base2, and
obtain a feasible decomposition of x′ [13, Lemma 4.3]. In fact, our setting is a
special case of the latter setting. If we set x0 = y − ε · 1v, x1 = x0 + ε · 1u = y′,
and a decomposition of x0 is defined as D after removing v from ε-measure of its
bases, then our problem satisfies the conditions of [13]. As a result, there exists a
path from u to v, and to obtain D′ all we need to do is follow the path PG(u, v)
and perform |PG(u, v)| swaps. ��

Proposition 1 suggests a way of maintaining a decomposition of the fractional
solution online. The payment of the rounding scheme depends on the length of
the path in G(D). The property that determines the worst case rounding quality
is therefore the diameter of G(D), that is, the maximum shortest-path among
all pairs u, v ∈ V for which there exists a path from u to v. For a matroid M, let
dG(M) be the maximum diameter over any two fractional solutions y, y′ ∈ B(M)
such that y′ differs from y in two coordinates, and any valid decomposition of y
into bases. We obtain the following bound on dG(M).

Lemma 2. For any matroid M, dG(M) ≤ r(M) + 1.

The above lemma immediately provides an upper bound on the performance
of our rounding algorithm. As a matter of fact, this bound is tight up to an
additive constant. We defer the proof of the lemma, and the lower bound analysis,
to the full version of the paper. In general, this bound may be quite large.
However, in Section 5 we explore several interesting special cases of the restricted
caching problems and show that the diameter in these cases is much smaller.
Moreover, for the general matroid case, we are able to guarantee a logarithmic
competitive ratio using an online rounding algorithm recently proposed by [19].
The idea behind the algorithm is to maintain spanning sets in every iteration, and
then transform them into bases without incurring any additional loss. Rounding
spanning sets is based on recent results on contention resolution schemes [25] (See
[19], Section 4 for more details). Therefore, for rounding, one can always apply
the auxiliary graph approach, and if dG(M) is greater than log r(M) switch to

2 Only an ε-measure of B is updated. That is λB ← λB − ε, and the probability of
B + e− f increases by ε.

Competitive Algorithms for Restricted Caching and Matroid Caching 219

the rounding approach of [19]. Combining Theorem 3 with Proposition 1 as well
as with the above insight, yields our main Theorem 1.

5 Special Cases of Restricted Caching

As already mentioned, although dG(M) has a tight upper bound of r(M) + 1
in general, there are several special cases in which the diameter becomes signif-
icantly smaller. We demonstrate this on two previously studied cache architec-
tures, obtaining tight performance guarantees.

Classical Paging: In the classical paging problem there is a cache of size k and
n pages. Each page may be located anywhere in the cache. It is not hard to see
that in this case c(M) = k + 1, and dG(M) = 2 (as for every u, v ε-update, the
out-degree of u is at least n− k, and the in-degree of v is at least k). Thus, our
algorithm is O(log k)-competitive which is optimal up to constants.

Companion Caching: In the companion caching problem there are m types of
pages, where page of type i can be stored either in the ith associative cache
(of size �), or in the fully associative cache (of size n). As companion cache
is a restricted cache, we can represent it via a transversal matroid, and prove
the bound in Theorem 2 (the proof is deferred to the full version). This result
matches the lower bound shown by [18]. As argued by [18], any algorithm with
free reorganization can be implemented online in the no-reorganization model
while losing at most a factor of 3. Thus, we also get tight competitiveness for
the companion caching problem without free reorganization.

6 Conclusions

We studied the restricted caching problem in which each page in memory can
only be placed in a restricted subset of cache locations. We solved this problem
through a more general problem of maintaining over time an independent set
of a matroid M, obtaining an O(min{dG(M), log r(M)} · log c(M))-competitive
algorithm, where r(M) and c(M) are the rank and circumference of M, and
dG(M) is the diameter of an auxiliary graph of M. This guarantees an O(log2 k)-
competitiveness for any restricted cache of size k, independently of its structure.

Our work suggests several future research directions and open questions. First,
we showed that dG(M) can be in some cases as large as r(M). However, we
could not come up with an example where the rounding algorithm can be forced
to use long paths repeatedly for many steps. Thus, a reasonable conjecture is
that the amortized cost of our rounding algorithm (via the auxiliary graph)
might only be a constant. Proving this conjecture will give an optimal O(log k)-
competitive algorithm for any restricted caching problem. Another open problem
is finding (and characterizing) the circumference of a transversal matroid. This
parameter is interesting since it serves as the performance bound of our fractional
algorithm. The problem of finding the circumference in a general matroid has

220 N. Buchbinder, S. Chen, and J. Naor

very poor approximation factors, as in graphic matroids it reduces to finding the
longest simple cycle. However, we do not know anything about the hardness of
the problem for transversal matroids.

Acknowledgements. We thank Roy Friedman for helpful discussions on re-
stricted caching in content distribution networks.

References

1. Achlioptas, D., Chrobak, M., Noga, J.: Competitive analysis of randomized paging
algorithms. Theoretical Computer Science 234, 203–218 (2000)

2. Adamaszek, A., Czumaj, A., Englert, M., Räcke, H.: An o(log k)-competitive algo-
rithm for generalized caching. In: Proceedings of the Twenty-third Annual ACM-
SIAM Symposium on Discrete Algorithms, pp. 1681–1689 (2012)

3. Alon, N., Awerbuch, B., Azar, Y., Buchbinder, N., Naor, J.: The online set cover
problem. SIAM Journal on Computing 39(2), 361–370 (2009)

4. Bansal, N., Buchbinder, N., Naor, J.: Towards the randomized k-server conjecture:
A primal-dual approach. In: Proceedings of the Twenty-first Annual ACM-SIAM
Symposium on Discrete Algorithms, pp. 40–55 (2010)

5. Bansal, N., Buchbinder, N., Naor, J.: A primal-dual randomized algorithm for
weighted paging. J. ACM 59(4) (2012)

6. Bansal, N., Buchbinder, N., Naor, J.: Randomized competitive algorithms for gen-
eralized caching. SIAM J. Comput. 41(2), 391–414 (2012)

7. Belady, L.: A study of replacement algorithms for a virtual-storage computer. IBM
Systems Journal 5(2), 78–101 (1966)

8. Brehob, M., Enbody, R., Torng, E., Wagner, S.: On-line restricted caching. In:
Proc. 12th Annual ACM-SIAM Symp. on Discrete Algorithms, pp. 374–383 (2001)

9. Brehob, M., Enbody, R., Wagner, S., Torng, E.: Optimal replacement is np-hard
for nonstandard caches. IEEE Transactions on Computers 53(1), 73–76 (2004)

10. Buchbinder, N., Chen, S., Naor, J.: Competitive analysis via regularization. In:
SODA, pp. 436–444 (2014)

11. Buchbinder, N., Chen, S., Naor, J., Shamir, O.: Unified algorithms for online learn-
ing and competitive analysis. In: COLT, pp. 5.1–5.18 (2012)

12. Buchbinder, N., Naor, J.: The design of competitive online algorithms via a primal-
dual approach. Foundations and Trends in Theoretical Computer Science 3(2-3),
93–263 (2009)

13. Cunningham, W.H.: Testing membership in matroid polyhedra. Journal of
Combinatorial Theory, Series B 36(2), 161–188 (1984)

14. Edmonds, J.: Submodular functions, matroids, and certain polyhedra. In: Combi-
natorial Structures and Their Applications, pp. 69–87 (1970)

15. Edmonds, J.: Matroids and the greedy algorithm. Mathematical Programming
1(1), 127–136 (1971)

16. Epstein, L., van Stee, R.: Calculating lower bounds for caching problems.
Computing 80(3), 275–285 (2007)

17. Fiat, A., Karp, R.M., Luby, M., McGeoch, L.A., Sleator, D.D., Young, N.E.:
Competitive paging algorithms. Journal of Algorithms 12(4), 685–699 (1991)

18. Fiat, A., Mendel, M., Seiden, S.S.: Online companion caching. In: Möhring, R.H.,
Raman, R. (eds.) ESA 2002. LNCS, vol. 2461, pp. 499–511. Springer, Heidelberg
(2002)

Competitive Algorithms for Restricted Caching and Matroid Caching 221

19. Gupta, A., Talwar, K., Wieder, U.: Changing bases: Multistage optimization for
matroids and matchings. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias,
E. (eds.) ICALP 2014. LNCS, vol. 8572, pp. 563–575. Springer, Heidelberg (2014)

20. Harary, F., Welsh, D.: Matroids versus graphs. In: The Many Facets of Graph
Theory. Lecture Notes in Mathematics, vol. 110, pp. 155–170 (1969)

21. McGeoch, L.A., Sleator, D.D.: A strongly competitive randomized paging
algorithm. Algorithmica 6(1-6), 816–825 (1991)

22. Peserico, E.: Online paging with arbitrary associativity. In: Proceedings of the
Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 555–564
(2003)

23. Schrijver, A.: Combinatorial Optimization: polyhedra and efficiency. Springer
(2003)

24. Sleator, D.D., Tarjan, R.E.: Amortized efficiency of list update and paging rules.
Communication of the ACM 28(2), 202–208 (1985)

25. Vondrák, J., Chekuri, C., Zenklusen, R.: Submodular function maximization via
the multilinear relaxation and contention resolution schemes. In: Proc. of the 43rd
Annual ACM Symposium on Theory of Computing, pp. 783–792 (2011)

26. Whitney, H.: On the abstract properties of linear dependence. American Journal
of Mathematics 57(3), 509–533 (1935)

Improved Algorithms for Resource Allocation

under Varying Capacity�

Venkatesan T. Chakaravarthy1, Anamitra R. Choudhury1, Shalmoli Gupta2,��,
Sambuddha Roy3,��, and Yogish Sabharwal1

1 IBM Research - India
{vechakra,anamchou,ysabharwal}@in.ibm.com

2 University of Illinois at Urbana-Champaign, USA
shalmoli@gmail.com

3 Amazon, Bangalore, India
shombuddha@gmail.com

Abstract. We consider the problem of scheduling a set of jobs on a sys-
tem that offers certain resource, wherein the amount of resource offered
varies over time. For each job, the input specifies a set of possible schedul-
ing instances, where each instance is given by starting time, ending time,
profit and resource requirement. A feasible solution selects a subset of job
instances such that at any timeslot, the total requirement by the chosen
instances does not exceed the resource available at that timeslot, and at
most one instance is chosen for each job. The above problem falls under
the well-studied framework of unsplittable flow problem (UFP) on line.
The generalized notion of scheduling possibilities captures the standard
setting concerned with release times and deadlines. We present improved
algorithms based on the primal-dual paradigm, where the improvements
are in terms of approximation ratio, running time and simplicity.

1 Introduction

We study the classical scheduling setting of unsplittable flow problem on line
(UFP). Consider a system offering a certain resource as a service for executing
jobs. The total amount of the resource offered by the system may be different at
different points of time. Each job is specified as an interval consisting of a starting
time and an ending time, and requires a particular amount of the resource for
its execution. A feasible solution selects a subset of jobs for execution such
that at any point of time, the total amount of resource requirement does not
exceed the total amount of the resource available at that time point. Each job
is associated with a profit and the objective is to maximize the aggregate profit
of the scheduled jobs.

The problem is applicable in a variety of settings based on the resource under
consideration, examples of which include computational nodes, storage, electric-
ity and network bandwidth. We refer to prior work for real-life applications of

� Full version of the paper is available as Arxiv preprint.
�� Work was done while the author was at IBM Research - India

A.S. Schulz and D. Wagner (Eds.): ESA 2014, LNCS 8737, pp. 222–234, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

Improved Algorithms for Resource Allocation under Varying Capacity 223

the above job selection problem in parallel/distributed computing and network
management [22]. The terminology “unsplittable flow” arises from a more generic
graph theoretic framework and the above scheduling problem corresponds to the
case, wherein the graph is simply a path. We refer to the survey by Kolliopoulos
[24] for a discussion on the general graph theoretic framework.

In the setting considered so far, each job is specified by a single interval where
it must be scheduled. Consider a more general scenario where each job specifies
a set of possible time intervals and the job may be scheduled in any one of
those intervals. In other words, each job can be a viewed as a set (or bag) of job
instances of which at most one can be selected for execution. We allow different
instances of the same job to have different resource requirements, processing
times (interval length) and profits. The above generalization captures a variety
of scenarios. For example, consider the standard setting where time is divided
into discrete timeslots and each job is specified by a processing time and a window
consisting of release time and deadline. A job with release time r and deadline
d, and processing time p can be modelled as a bag containing (d − r − p + 1)
instances corresponding to the integer intervals of length p lying between r and
d. Motivated by such applications, the UFP problem with bag constraints (BagUFP)
has been well-studied. The problem is formally defined next.

BagUFP - Problem Definition: We assume that time is divided into discrete
timeslots 1, 2, . . . , T and let T = {1, 2, . . . , T } denote the set of all timeslots. For
each timeslot t, the input specifies an integer c(t), which is the capacity available
at the timeslot t. The input consists of a set of jobs J . Each job a ∈ J consists
of a set of job instances of which at most one can be selected for execution. Each
job instance u is associated with a starting timeslot s(u), an ending timeslot
e(u), a demand h(u) and a profit p(u). The interval [s(u), e(u)] is called the span
of u.

Let U denote the set of all job instances (over all jobs) and let n be the
total number of job instances. Given a set of job instances X ⊆ U , let p(X)
denote the cumulative profit

∑
u∈X p(u). A job instance u ∈ U is said to be

active at a timeslot t, if t belongs to the range [s(u), e(u)]; this is denoted using
the notation u ∼ t. A feasible solution is a set of job instances S ⊆ U such
that the following two constraints are satisfied. The first constraint (called the
capacity constraint) enforces that for any timeslot t, the cumulative demand of
job instances in S active at the timeslot t is at most the capacity c(t) available
at t:

∑
u∈S : u∼t h(u) ≤ c(t). The second constraint (called the bag constraint)

requires that at most one instance is picked from each job. The problem is to
find a feasible solution S having the maximum profit p(S). ��
Remark. Using preprocessing, we can modify the input capacities suitably so
that only the timeslots wherein some job instance starts or finishes is of relevance
and the other timeslots can be ignored (see [6]). In the rest of the paper, without
loss of generality, we assume that the number of timeslots is at most 2n.

224 V.T. Chakaravarthy et al.

Special Cases of BagUFP: Prior work has addressed two important restrictions
of the BagUFP problem.

– Single job instance: In this setting, each job has exactly one job instance;
namely, the setting does not involve the bag constraint.

– No-bottleneck Assumption (NBA): In this setting, we assume that the maxi-
mum demand of any job instance is at most the minimum capacity available,
i.e., hmax ≤ cmin, where hmax = maxu∈U h(u) and cmin = mint∈T c(t).

The NBA setting is well-studied and arises in scenarios wherein the system
capacity is larger than the demand of any individual job instance.

By considering the combinations of the two restrictions, we get four different
special cases of the problem: (1) BagUFP - the most general case, where neither
restriction applies; (2) UFP - assumes that every job has only one job instance,
but does not impose NBA; (3) BagNbaUFP - requires NBA, but allows each job
to have arbitrary number of job instances; (4) NbaUFP - the most specialized case
that imposes both the restrictions.

Prior Work: Consider the simplest special case, where each job has only one
instance and furthermore, all the job instances have unit demand and all the
timeslots offer unit capacity. This is the same as the classical maximum weight
independent set problem on interval graphs, which can easily be solved optimally
via dynamic programming.

Spieksma [26] considered the above problem along with bag constraints, un-
der the name weighted job interval selection problem (WJISP). He showed that
the problem is NP-hard and APX-hard. Bar-Noy et al. [8] and independently,
Berman and Dasgupta [9] presented 2-approximation algorithms. Both these
algorithms are based on the local ratio technique. For the unweighted version
(wherein all the job instances have unit profit), Chuzhoy et al. [20] presented an
algorithm with an approximation ratio of 1.582.

Calinescu et al. [11] studied the case where each job has only one instance
and the capacity offered is uniform across all timeslots (however, the instances
can have arbitrary demands). They presented a 3-approximation algorithm via
the LP-rounding technique. For the above setting with bag constraints, Bar-Noy
et al. [7] designed a 5-approximation algorithm using the local ratio technique.

Let us now look at non-uniform capacity setting, viz NbaUFP, UFP, BagNbaUFP
and BagUFP. For the simplest case of NbaUFP, Chakrabarti et al. [16] provided
the first constant factor approximation algorithm. Subsequently, Chekuri et al.
[19] improved the ratio to 2 + ε (here and in the rest of the paper, ε would
refer to a constant ε > 0). Relaxing the NBA assumption, Chakrabarti et al. [16]
also presented an algorithm for UFP, with an approximation ratio of O(log hmax

hmin
),

where hmax and hmin are the maximum and minimum demands. For the same
problem, Bansal et al. [6] presented an O(log n)-approximation algorithm. In a
different paper, Bansal et al. [5] obtained a QPTAS. Recently Bonsma et al. [10]
gave the first constant factor polynomial time algorithm; their algorithm achieves
an approximation factor of 7 + ε. Subsequently, the ratio was improved to 2 + ε

Improved Algorithms for Resource Allocation under Varying Capacity 225

by Anagnostopoulos et al. [4]. The above algorithms are based on sophisticated
LP-rounding and dynamic programming strategies.

Chakaravarthy et al. [14] studied the notion of bag constraints and devised an
algorithm for BagUFP with an approximation ratio of O(log cmax

cmin
), where cmax and

cmin are the maximum and minimum capacities, respectively. It remains an in-
teresting open question to design a constant factor approximation algorithm for
the BagUFP problem. However, this has been achieved under the NBA assump-
tion. Chakaravarthy et al. [13] presented a 120-approximation algorithm for the
BagNbaUFP problem, via a reduction from the non-uniform capacity setting to
the uniform capacity setting. Subsequently, Elbassioni et al. [21] improved the
factor to 65 using LP-rounding techniques.

The BagUFP problem has also been studied under distributed models and
constant factor approximation algorithms are known in the uniform capacity
setting, and logarithmic factor approximations in the non-uniform capacity set-
ting [25,15,12]. These algorithms are based on the primal-dual paradigm and
they also apply to the parallel setting.

Our Results: In this paper, we present improved algorithms for the BagUFP and
its special cases. The main tool used in our work is the primal-dual paradigm
(or equivalently the local ratio method), leading to simpler algorithms which
provide improvements in terms of approximation ratio and running time. In
contrast, prior work on the non-uniform setting predominantly use sophisticated
LP rounding and dynamic programming approaches. Furthermore, prior work
[12,15,25] has shown that the primal-dual method is more suitable for the par-
allel/distributed models, and so, the procedures developed in this paper may be
adaptable for these environments. We next state the main results of the paper.

– A 17-approximation algorithm for BagNbaUFP problem.
– An O(log n)-approximation algorithm for the BagUFP problem.

Both the algorithms are based on the primal-dual method and run in time O(n2).
The previously best known approximation ratios for the above two problems are
65 [21] and O(log cmax

cmin
) [14], respectively. The second ratio can be as high as

O(n) in the worst case. Furthermore, our algorithms are also more efficient in
terms of running time; both the previous algorithms go via LP-rounding and
need to solve linear programs.

The above two main results deal with the versions having the bag constraint.
The procedures developed as part of these results also provide an interesting
improvement for the versions devoid of the constraint. Recall that for the UFP

problem, Bonsma et al. [10] presented a (7 + ε)-approximation algorithm, which
was subsequently improved to (2 + ε) by Anagnostopoulos [4]. Both these algo-
rithms run in polynomial time, but the exponent of the polynomial is very high.
Bonsma et al. addressed the issue by presenting another algorithm having a faster
running time of O(n4), but with an increased approximation ratio of (25 + ε).
The above algorithm has two components based on LP-rounding and dynamic
programming, respectively. Of these, the first component can be replaced by
one of our procedures yielding a simpler algorithm with the same running time,

226 V.T. Chakaravarthy et al.

but with a better approximation ratio of 13. We present a 13-approximation
algorithm for the UFP problem with a running time of O(n4).

Finally, consider NbaUFP, the most restricted special case. Chakrabarti et al.
[16] designed the first constant factor approximation algorithm for this prob-
lem via rounding a natural LP. In that context, they raised the question of
devising such an algorithm based on the primal-dual method. Our algorithm for
BagNbaUFP answers this question affirmatively.

2 Overview

In this section, we provide an overview of our algorithms, highlighting the main
components and place them in the context of prior work. Most prior work on
BagUFP and its variants go via classifying the job instances into two categories
based on their demands. Consider any job instance u ∈ U . Among all timeslots
in the span of u, let t be any timeslot having the minimum capacity (breaking
ties arbitrarily). The timeslot t is called the bottleneck timeslot for u (denoted
by bt(u)) and its capacity bottleneck capacity for u (denoted by bc(u)). Fix any
constant 0 < γ � 1. We say that the job instance u is γ-small, if h(u) � γbc(u);
otherwise, u is said to be γ-large. For the case where γ = 1/2, we shall drop the
prefix and simply write “small” and “large” to mean 1/2-small and 1/2-large
job instances, respectively.

Let Opt denote the optimal solution. Let Us and Ul denote the set of all small
and large job instances, respectively. Let Opts and Optl denote the optimal
solution considering only the small and large job instances, respectively. We
shall design two procedures that would produce solutions Ss and Sl such that
Ss is an f1-approximation to Opts and Sl is an f2-approximation to Optl, for
some f1, f2 � 1. The best of the two solutions is taken to be the final solution
S. It is easy to see that S is an (f1 + f2)-approximation to Opt.

Given the above aggregation result, we consider the small and the large job
instances separately. The core technical component of the paper is a simple and
fast primal-dual procedure for handling the small job instances, while guaran-
teeing a good approximation ratio.

Lemma 1 (PD-Small). Consider the BagUFP problem. There exists a procedure
that considers only the small job instances and outputs a solution S ⊆ Us such
that p(Opts) � 9 · p(S). The running time is O(n2).

The PD-Small lemma is proved in Section 3. Here we highlight certain key
aspects of the procedure given by the lemma. For the sake of clarity, we have
stated the lemma for the case of γ = 1/2. However, it can be extended for
any γ > 0, to derive an algorithm for handling γ-small job instances having
an approximation ratio of 1 + 4

1−γ . Prior work on BagNbaUFP [21] and NbaUFP

[19,18] also provide procedures for handling γ-small job instances. However, these
procedures yield a good approximation ratio only when γ is set to a small value.
In contrast, the PD-Small lemma achieves good approximation factors even for
large values of γ (such as γ = 1/2). The advantage is that the complementary

Improved Algorithms for Resource Allocation under Varying Capacity 227

problem of handling γ-large job instances can be solved more efficiently and with
better approximation ratios, leading to improved algorithms for BagUFP.

We note that the PD-Small lemma applies to the general BagUFP problem and
does not require the NBA assumption. Our next goal is to handle the large job
instances. For this purpose, we shall employ two different procedures, one for
the general case and a second one for the special case where NBA applies. The
lemma below deals with the general case.

Lemma 2. Consider the BagUFP problem. There exists a procedure that con-
siders only the large job instances and outputs a solution S ⊆ Ul such that
p(Optl) � 16
log 2n�p(S). The procedure runs in time O(n2).

The above procedure exploits a combinatorial lemma regarding large job in-
stances, due to Bonsma et al. [10], that establishes a connection to the Maximum
Weight Independent Set of Rectangles (MWISR) problem: given a set of rectan-
gles with associated profits, find the maximum profit subset of non-overlapping
rectangles [2,23,17,1]. For our purposes, we consider a generalization involving
bag constraints and present a (4
log 2n�)-approximation algorithm running in
time O(n2), which may be of independent interest. Our algorithm goes via the
notion of sequential k-independent graphs, studied by Akcoglu et al. [3], and Ye
and Borodin [27]. Lemma 2 is proved in the full version.

Combining Lemma 2 with PD-Small lemma, we can get an (9 + 16
log 2n�)-
approximation to the overall optimal solution, establishing the following result.

Theorem 1. There exists an O(log n)-approximation algorithm for the BagUFP

problem having running time of O(n2).

The above result improves the previously best known approximation ratio
of O(log cmax

cmin
) [14]. Obtaining a constant factor approximation algorithm for

BagUFP remains an open question. The main issue arises in the handling of large
job instances. However, prior work has shown that in the NBA setting, the large
job instances can be handled via a simple reduction to the WJISP problem (see
[16,19,21]). The WJISP problem can be approximated with a factor of 2 via the
primal-dual method [7,9].

Lemma 3 ([21,7]). There exists a procedure for BagNbaUFP that considers only
the γ-large job instances and outputs a solution S ⊆ Ul such that p(Optl) �
f · p(S), where f = 4

γ (1
γ − 1). The procedure runs in time O(n log n).

For the setting of γ = 1/2, the above lemma yields an 8-approximation pro-
cedure. Combining this with PD-Small lemma, we get an overall approximation
ratio of 17 for the BagNbaUFP problem, improving upon the previously best
known approximation ratio of 65 [21].

Theorem 2. There exists an algorithm for the BagNbaUFP problem having an
approximation ratio of 17. The algorithm runs in time O(n2).

228 V.T. Chakaravarthy et al.

The PD-Small lemma provides an interesting corollary for the UFP problem.
Bonsma et al. [10] devised a (7 + ε)-approximation algorithm running in polyno-
mial time, albeit with a prohibitively large exponent in the polynomial. However,
they showed that the running time can be improved to O(n4), at the cost of in-
creasing the approximation ratio to (25 + ε). Their algorithm also employs the
strategy of classifying the input into small and large job instances, of which the
small job instances are handled via a complex procedure based on randomized
rounding. For the case of large job instances, they present a procedure that
achieves an approximation ratio of 2/γ, where γ is the largeness parameter; the
procedure runs in time O(n4). We can obtain an alternative algorithm for UFP by
employing PD-Small lemma in place of the former procedure. Setting γ = 1/2,
we get an approximation ratio of 13.

Theorem 3. There exists a 13-approximation algorithm for UFP running in time
O(n4).

3 Small Job Instances

Here, we establish Lemma 1 by presenting a 9-approximation algorithm for
BagUFP on small job instances. We ignore all the large job instances and as-
sume that the input set U consists only of small job instances. The algorithm is
based on the primal-dual paradigm and builds on prior work on on distributed
algorithms for the UFP problem [25,15,12]. However, the prior algorithms either
deal with the simpler uniform capacity setting (wherein the capacity across all
the timeslots is assumed to be the same) or provide logarithmic approximation
factor. All the above primal-dual algorithms consider the job instance in a partic-
ular order and the main feature of our approach is to employ a more appropriate
ordering. Our analysis exploits the new ordering in a crucial manner leading to
constant factor approximations for the generic non-uniform setting.

The LP relaxation and its dual are presented next.

max
∑
u∈U

x(u)p(u)

(∀t ∈ T)
∑

u : u∼t

h(u)x(u) � c(t)

(∀J ∈ J)
∑
u∈J

x(u) � 1

min
∑
J∈J

α(J) +
∑
t∈T

c(t)β(t)

α(Ju) + h(u)
∑

t : u∼t

β(t) � p(u)

(∀u ∈ U)

The primal includes a variable x(u) for each job instance u ∈ U . The capacity
and the bag constraints are enforced next. The dual includes a variable α(J)
corresponding to the bag constraint of J , for each job J . Moreover, for each
timeslot t ∈ T , the dual includes variable β(t) corresponding to the capacity
constraint at t. For each job instance u, we include a constraint corresponding
to the primal variable x(u), which we call the dual constraint of u. For a job

Improved Algorithms for Resource Allocation under Varying Capacity 229

instance u, let Ju denote the job to which the instance u belongs. All the primal
and dual variables are non-negative.

3.1 Algorithm

Our primal-dual algorithm uses a two-phase framework consisting of a forward
phase and a reverse phase. The forward phase would construct a set of job
instances R ⊆ U and a dual feasible solution α(·) and β(·). The set R may not
be a feasible solution. The reverse phase would delete certain job instances from
R and construct a feasible solution S ⊆ R.

Forward Phase: We start by initializing all the dual variables to be zero and
taking R to be the empty set. The algorithm would process the job instances in
particular order and raise the dual variables in an appropriate manner. The or-
dering is cardinal to our algorithm in that it dictates the performance guarantee.
We order the job instances in the decreasing order of their bottleneck capacities
bc(u) and among the job instances having the same bottleneck capacity, the
ordering is determined in the increasing order of ending timeslots (breaking ties
arbitrarily). We denote the above ordering as σ.

The forward phase works iteratively, where the ith iteration would process
the ith job instance in the ordering σ. Consider an iteration and let u be the job
instance under processing. We check if the dual constraint of u is already satisfied
and if so, we simply proceed to the next iteration. Otherwise, we shall raise
certain dual variables suitably so that the constraint is satisfied, as described
below. We first determine the slackness of the constraint, which is the difference
between the RHS and the LHS of the constraint:

slack(u) = p(u) −
(
α(Ju) + h(u)

∑
t : u∼t

β(t)

)
. (1)

We next select two specific timeslots t� and tr from the span of u, as follows.
Consider all the timeslots in the span of u having capacity at most 2bc(u) and
let t� be the left-most timeslot among them. Similarly, let tr be the right-most
timeslot among the timeslots satisfying the above property. Intuitively the span
in between the timeslots t� and tr is the essential span of the job instance u;
beyond these timeslots, there is enough capacity. Call t� and tr as the left and
right critical timeslots of u, respectively.

We shall suitably raise the dual variables α(Ju), β(t�) and β(tr) so that the
dual constraint is satisfied. Intuitively, we would like to satisfy two goals: (a)
The dual objective value is not raised by much (since the dual is a minimization
problem); (b) All the critical timeslots contribute an equal amount of increase
in the dual objective value. With the above goals in mind, the dual variables for
the critical timeslots are raised inversely proportional to the capacities at those
timeslots, conforming to the intuition that timeslots with higher capacities are
less critical. We choose a suitable value δ(u) and raise α(Ju) by δ(u), β(t�)

by 4 δ(u)
c(t�)

and β(tr) by 4 δ(u)
c(tr)

. The amount δ(u) is calculated so that the slack

230 V.T. Chakaravarthy et al.

vanishes and the constraint becomes satisfied tightly i.e., LHS becomes equal to
RHS. Namely, compute δ(u) satisfying the following equation:

δ(u) ·
(

1 + 4h(u)

[
1

c(t�)
+

1

c(tr)

])
= slack(u). (2)

The job instance u is added to the set R. This completes an iteration of the first
phase. We say that all the job instances in R are raised.

Reverse Phase: We consider the job instances in reverse order in which they
were inserted into R and construct the solution S as follows. In any iteration
of this phase, we look at the next job instance u (in the reverse order) and add
u to S if doing so does not violate the capacity or the bag constraints. This
phase continues until all of the job instances in R have been considered. The
algorithm outputs the (feasible) solution S. This completes the description of
the algorithm. A pseudocode can be found in the full version.

3.2 Analysis

Let us calculate the objective value of the dual solution constructed by the
forward phase, denoted val(α, β) in terms of δ(·). For any job instance u ∈ R,
the dual variable α(Ju) is raised by δ(u) and this increases the dual objective
value by δ(u). Similarly, we raise the dual variables corresponding to the two

critical timeslots of u; namely, β(t�) is raised by 4δ(u)
c(t�)

and β(tr) is raised by
4δ(u)
c(tr)

. Therefore, for each job instance u ∈ R, the dual objective value raises

by an amount 9δ(u). It follows that val(α, β) = 9
∑
u∈R

δ(u) The lemma below

provides a comparable lowerbound on the profit of the output solution S.

Lemma 4. We have p(S) �
∑

u∈R δ(u).

The lemma implies that val(α, β) ≤ 9 · p(S). Coupled with the weak duality
theorem, we get that S is a 9-approximation to the optimal solution.

We proceed to Lemma 4. We shall associate a suitable quantity π(u) with
each job instance u ∈ R such that π(u) ≥ δ(u), and their overall sum satisfies∑

u∈R π(u) = p(S). Intuitively, π(u) is the contribution made by u towards p(S)
(irrespective of whether or not u got picked in the final solution S).

For two job instances u1, u2 ∈ R, we say that u1 is a predecessor of u2, if u1

appears before u2 in the ordering σ; in this case, u2 is said to be a successor
of u1. For a job instance u ∈ R, let pred(u) and succ(u) denote the set of all
predecessors and successors of u, respectively. We consider a job instance as both
predecessor and successor of itself.

Consider a job instance u ∈ S. Let LHS(u) be the variable denoting the LHS
of the dual constraint of u:

LHS(u) = α(Ju) + h(u)
∑

t : u∼t

β(t).

Improved Algorithms for Resource Allocation under Varying Capacity 231

The variable LHS(u) would be zero in the beginning of the forward phase and it
would keep increasing as the algorithm proceeds. At the end iteration in which
u is raised, LHS(u) would be equal to p(u) (since we ensured that the dual
constraint of u is satisfied tightly). Thus, by tracking the variable LHS(u), we
can derive a formula for p(u) in terms of δ(·) values of predecessors of u.

Consider a predecessor u′ ∈ pred(u). When u′ is raised, three dual variables
are increased, α(Ju′), β(t�) and β(tr), where Ju′ is the job to which u′ belongs,
and t� and tr are the left and right critical timeslots of u′. These increments will
reflect as an increase in LHS(u), if the dual constraint of u also shares one or
more of these variables. The increment in LHS(u) corresponding to the above
three types are as follows:

– Type 1: If both u′ and u belong to the same job, then the increment is δ(u′).

– Type 2: If u is active at t�, the increment is 4h(u)δ(u′)
c(t�)

.

– Type 3: If u is active at tr, the increment is 4h(u)δ(u′)
c(tr)

.

Notice that LHS(u) may increase via more than one type, in which case the total
increment would be given by corresponding sum; if none of the cases occur, then
the sum would be zero. We call the above sum as the contribution of u′ towards
u and denote it as λ(u′, u). The sum of contributions made by the predecessors
of u yields the value of LHS(u) (as it stood at the end of the iteration in which
u was raised), which is the same as p(u).

The above discussion focuses on a job instance and analyzes the contributions
made by the predecessors towards the instance. Conversely, we can fix a job
instance u and consider the aggregate contribution that u makes towards its
successors found in the solution S. We call the above aggregate quantity as
the total contribution of u and denote it as π(u): π(u) =

∑
u′∈succ(u)∩S λ(u, u′).

Notice that the profit p(S) is given by the sum
∑

u∈R π(u).
The quantity π(u) can be computed by considering the three types of contri-

butions discussed earlier. Let Ju be the job to which u belongs, and let t� and
tr be its left and right critical timeslots. Let X = S ∩ succ(u). Then,

π(u) =
∑

u′∈X : u′∈Ju

δ(u) +
∑

u′∈X : u′∼t�

4h(u′)δ(u)

c(t�)
+

∑
u′∈X : u′∼tr

4h(u′)δ(u)

c(tr)

We next establish a lowerbound on total contribution of any raised job instance.

Lemma 5. For any u ∈ R, π(u) ≥ δ(u).

The lowerbound implies Lemma 4. To prove the lowerbound, we fix a job instance
u ∈ R and analyze three cases. The first case is where u is picked in the solution
S. In this case, u would contribute δ(u) towards itself (Type 1) and hence,
π(u) ≥ δ(u). So, assume that the reverse phase did not pick u for inclusion in S.
This means that u could not be added to X , where X ⊆ S is the set of successors
of u found in S. The reason is that a bag constraint or a capacity constraint (or
both) gets violated when u is added to X . Consider the first scenario, wherein

232 V.T. Chakaravarthy et al.

X contains some job instance u′ that belongs to the same job as u. In this case,
u would contribute δ(u) towards u′ (Type 1) and hence, π(u) ≥ δ(u).

We next analyze the last and the most interesting scenario, wherein the ca-
pacity constraint is violated at some timeslot t̂ found in the span of u, i.e.,

h(u) +
∑

u′∈X : u′∼t̂

h(u′) > c(t̂). (3)

If there are multiple such timeslots, choose the one having the minimum capacity
(breaking ties arbitrarily). This is denoted by t̂ and is called the conflict timeslot.

Let C ⊆ X be the set of job instances from X active at t̂; intuitively, C is the
set of job instances that conflict with X at t̂ and prevent it from being included
in X . Let t� and tr be the left and right critical timeslots of u. We next make
an important claim regarding any job instance u′ ∈ C.

Lemma 6. Any job instance u′ ∈ C must be active at t� or tr (or both).

The lemma is proved by exploiting the properties of the ordering σ. Intuitively,
the argument is that the timeslots in the span of u outside of the range [t�, tr]
have too high a capacity to cause capacity constraint violation and hence, t̂ must
lie within the range. Moreover, the ordering also implies that any job instance
in C must start before u or end after u. The above two statements put together
would imply the lemma. The lemma is proved in the full version.

Here, we assume the lemma and complete the proof of Lemma 5. Let A and
B be the job instances in C that are active at t� and tr, respectively. The lemma
implies that every job instance in C is included in at least one of the two sets.
Let us consider the quantity π(u) and focus only on the terms corresponding to
the job instances found in the two sets:

π(u) ≥
(

4δ(u)
∑
u′∈A

h(u′)

c(t�)

)
+

(
4δ(u)

∑
u′∈B

h(u′)

c(tr)

)

The capacity at t� and tr is at most twice the bottleneck capacity bc(u). So,

π(u) ≥ 2δ(u)

bc(u)

∑
u′∈C

h(u′). (4)

Since we are dealing with small job instances, h(u) ≤ bc(u)/2, which implies
that h(u) ≤ c(t̂)/2. From (3), we get that∑

u′∈C

h(u′) ≥ c(t̂)/2 ≥ bc(u)/2.

Substituting in (4), we get that π(u) ≥ δ(u). The proof of Lemma 5 is completed.
We conclude that the algorithm achieves an approximation guarantee of 9. It

is not difficult to see that the algorithm can be implemented in time O(n2). This
completes the proof of PD-Small lemma.

Improved Algorithms for Resource Allocation under Varying Capacity 233

References

1. Adamaszek, A., Wiese, A.: Approximation schemes for maximum weight indepen-
dent set of rectangles. In: FOCS (2013)

2. Agarwal, P., Kreveld, M., Suri, S.: Label placement by maximum independent set
in rectangles. Computational Geometry 11(3-4), 209–218 (1998)

3. Akcoglu, K., Aspnes, J., Dasgupta, B., Kao, M.: Opportunity cost algorithms
for combinatorial auctions. In: Kontoghiorghes, E., Rustem, B., Siokos, S. (eds.)
Applied Optimization: Computational Methods in Decision-Making (2000)

4. Anagnostopoulos, A., Grandoni, F., Leonardi, S., Wiese, A.: A mazing 2 + ε ap-
proximation for Unsplittable Flow on a Path. In: Proceedings of the Symposium
on Discrete Algorithms, SODA 2014 (2014)

5. Bansal, N., Chakrabarti, A., Epstein, A., Schieber, B.: A quasi-PTAS for unsplit-
table flow on line graphs. In: STOC (2006)

6. Bansal, N., Friggstad, Z., Khandekar, R., Salavatipour, M.: A logarithmic approx-
imation for unsplittable flow on line graphs. In: SODA (2009)

7. Bar-Noy, A., Bar-Yehuda, R., Freund, A., Naor, J., Schieber, B.: A unified approach
to approximating resource allocation and scheduling. Journal of the ACM 48(5),
1069–1090 (2001)

8. Bar-Noy, A., Guha, S., Noar, J., Schieber, B.: Approximating the throughput of
multiple machines in real-time scheduling. SICOMP 31(2), 331–352 (2001)

9. Berman, P., Dasgupta, B.: Multi-phase algorithms for throughput maximization
for real-time scheduling. J. of Comb. Opt. 4, 307–323 (2000)

10. Bonsma, P., Schulz, J., Wiese, A.: A constant factor approximation algorithm for
unsplittable flow on paths. In: FOCS (2011)

11. Calinescu, G., Chakrabarti, A., Karloff, H., Rabani, Y.: Improved approximation
algorithms for resource allocation. In: Cook, W.J., Schulz, A.S. (eds.) IPCO 2002.
LNCS, vol. 2337, pp. 401–414. Springer, Heidelberg (2002)

12. Chakaravarthy, V., Choudhury, A., Roy, S., Sabharwal, Y.: Distributed algorithms
for scheduling on line and tree networks with non-uniform bandwidths. In: IPDPS
(2013)

13. Chakaravarthy, V., Choudhury, A.R., Sabharwal, Y.: A near-linear time con-
stant factor algorithm for unsplittable flow problem on line with bag constraints.
In: FSTTCS (2010)

14. Chakaravarthy, V., Pandit, V., Sabharwal, Y., Seetharam, D.: Varying bandwidth
resource allocation problem with bag constraints. In: IPDPS (2010)

15. Chakaravarthy, V., Roy, S., Sabharwal, Y.: Distributed algorithms for scheduling
on line and tree networks. In: PODC (2012)

16. Chakrabarti, A., Chekuri, C., Gupta, A., Kumar, A.: Approximation algorithms
for the unsplittable flow problem. Algorithmica 47(1), 53–78 (2007)

17. Chalermsook, P., Chuzhoy, J.: Maximum independent set of rectangles. In: SODA
(2009)

18. Chekuri, C., Ene, A., Korula, N.: Unsplittable flow in paths and trees and
column-restricted packing integer programs. In: Dinur, I., Jansen, K., Naor, J.,
Rolim, J. (eds.) Approximation, Randomization, and Combinatorial Optimiza-
tion. Algorithms and Techniques. LNCS, vol. 5687, pp. 42–55. Springer, Heidelberg
(2009)

19. Chekuri, C., Mydlarz, M., Shepherd, F.: Multicommodity demand flow in a tree
and packing integer programs. ACM Trans. on Algorithms 3(3) (2007)

234 V.T. Chakaravarthy et al.

20. Chuzhoy, J., Ostrovsky, R., Rabani, Y.: Approximation algorithms for the job
interval selection problem and related scheduling problems. In: FOCS (2001)

21. Elbassioni, K., Garg, N., Gupta, D., Kumar, A., Narula, V., Pal, A.: Approximation
Algorithms for the Unsplittable Flow Problem on Paths and Trees. In: FSTTCS
(2012)

22. Erlebach, T., Spieksma, F.: Interval selection: Applications, algorithms, and lower
bounds. J. Algorithms 46(1), 27–53 (2003)

23. Khanna, S., Muthukrishnan, S., Paterson, M.: On approximating rectangle tiling
and packing. In: SODA (1998)

24. Kolliopoulos, S.: Edge-disjoint paths and unsplittable flow. In: Gonzalez, T.
(ed.) Handbook of Approximation Algorithms and Metaheuristics, Chapman and
Hall/CRC (2007)

25. Panconesi, A., Sozio, M.: Fast primal-dual distributed algorithms for scheduling
and matching problems. Distributed Computing 22(4), 269–283 (2010)

26. Spieksma, F.: On the approximability of an interval scheduling problem. J. of
Scheduling 2, 215–227 (1999)

27. Ye, Y., Borodin, A.: Elimination graphs. ACM Transactions on Algorithms 8(2),
14 (2012)

Nearly Tight Approximability Results

for Minimum Biclique Cover and Partition

Parinya Chalermsook1, Sandy Heydrich1,3,
Eugenia Holm2, and Andreas Karrenbauer1,∗

1 Max Planck Institute for Informatics, Saarbrücken, Germany
2 Dept. for Computer and Information Science, University of Konstanz, Germany

3 Saarbrücken Graduate School of Computer Science
{andreas.karrenbauer,parinya.chalermsook,sandy.heydrich}@mpi-inf.mpg.de,

eugenia.holm@uni-konstanz.de

Abstract. In this paper, we consider the minimum biclique cover and
minimum biclique partition problems on bipartite graphs. In the min-
imum biclique cover problem, we are given an input bipartite graph
G = (V,E), and our goal is to compute the minimum number of complete
bipartite subgraphs that cover all edges of G. This problem, besides its
correspondence to a well-studied notion of bipartite dimension in graph
theory, has applications in many other research areas such as artificial
intelligence, computer security, automata theory, and biology. Since it is
NP-hard, past research has focused on approximation algorithms, fixed
parameter tractability, and special graph classes that admit polynomial
time exact algorithms. For the minimum biclique partition problem, we
are interested in a biclique cover that covers each edge exactly once.

We revisit the problems from approximation algorithms’ perspectives
and give nearly tight lower and upper bound results. We first show that
both problems are NP-hard to approximate to within a factor of n1−ε

(where n is the number of vertices in the input graph). Using a stronger
complexity assumption, the hardness becomes Ω̃(n), where Ω̃(·) hides
lower order terms. Then we show that approximation factors of the form
n/(log n)γ for some γ > 0 can be obtained.

Our hardness results have many consequences: (i) Ω̃(n) hardnesses
for computing the Boolean rank and non-negative integer rank of an n-
by-n matrix (ii) Ω̃(n) hardness for minimizing the number of states in
a deterministic finite automaton (DFA), given an n-state DFA as input,
and (iii) Ω̃(

√
n) hardness for computing minimum NFA from a truth

table of size n. These results settle some of the most basic problems in
the area of regular language optimization.

1 Introduction

We study the problem of covering the edges of a graph by bipartite complete sub-
graphs (or bicliques). In this problem, we are given a graph G = (V,E), and our

∗This work is partially supported by the Zukunftskolleg of the University of Kon-
stanz, the DFG-grant KA 3042/3-1, and the Max Planck Center for Visual Computing
and Communication (www.mpc-vcc.org).

A.S. Schulz and D. Wagner (Eds.): ESA 2014, LNCS 8737, pp. 235–246, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

236 P. Chalermsook et al.

objective is to compute a collection of complete bipartite subgraphs of G that to-
gether cover all edges of G, while minimizing the number of such subgraphs. The
problem is referred to as the minimum biclique cover problem (BicliqueCover)
in the optimization literature and has many applications, as well as connections,
to other areas of computer science, such as automata and language theory [15],
computer security [8], bioinformatics [24], graph drawing [9], and artificial in-
telligence. Besides these applications, computing a biclique cover of a graph is
equivalent to other important notions in mathematics: Given an m-by-n matrix
M over a Boolean algebra. The Boolean rank of M is the minimum k for which
there exist two matrices (A)m×k and (B)k×n such that M = AB. It has been
shown that computing Boolean rank of a matrix is equivalent to computing the
bipartite dimension of a bipartite graph (see [14]).

In most applications, one may assume that graph G is bipartite. This
problem has received a large amount of attention from a number of research
groups. Since the problem is NP-hard, various approaches have been used in
studying the problem: approximation algorithms [28,15], heuristics [8], fixed pa-
rameter tractability [25], and investigation of special graph classes that admit
fast, polynomial-time algorithms [3,4,22,23].

Orlin showed that the problem is NP-hard, even on bipartite graphs [26].
Later Simon showed that the problem is also NP-hard to approximate [28].
Gruber and Holzer used the construction in [28] to show that the problem is
n1/3−ε and m1/5−ε hard to approximate respectively. On an upper bound side,
no non-trivial approximation algorithm has been proposed. The problem can
be, however, solved efficiently in many cases. For instance, the fixed-parameter
tractability result is known [25], implying that the problem can be solved in time
f(k)poly(n) provided that the biclique cover of size k exists. Also, the problem
is polynomial time solvable in several graph classes, such as domino-free graphs,
C4-free graphs, and bipartite permutation graphs (see [3] and references therein).

A problem closely related to BicliqueCover (but perhaps receives less at-
tention from researchers) is called BicliquePartition where our goal is to find
a cover in which each edge is covered by exactly one biclique. In contrast to
BicliqueCover, only APX-hardness result has been shown for this problem.
This result relies on the equivalence of BicliquePartition and the normal set
basis problem shown to be NP-hard by [18], and a reduction from vertex cover.

A further related problem, called maximum edge biclique problem
(MaxBiclique), receives a lot of attention from approximation algorithms com-
munity. Dawande, Keskinocak and Tayur [21] showed that the weighted version
of the MaxBiclique in bipartite graphs is NP -complete, but they were not able
to show that the unweighted version is hard also. This was later accomplished by
Peeters [27] who proved that MaxBiclique in bipartite graphs is NP -complete.
In terms of approximation hardness, Feige [10] shows that the problem is hard
to within a factor of nε assuming average-case complexity hypothesis. Ambühl
et al. prove the same result under a more standard assumption [1].

Approximability Results for Biclique Cover and Partition 237

1.1 Our Contributions

Our main result is informally summarized in the following theorem.

Theorem 1 (Informal). BicliqueCover and BicliquePartition on bipar-
tite graphs are (almost) as hard to approximate as graph coloring.

Combining this theorem with the hardness results for graph coloring [12,20,29]
implies that these problems do not admit n1−ε and m1/2−ε approximation al-
gorithm unless P = NP. With a stronger complexity assumption of NP �⊆
BPTIME(2poly logn), this gives a stronger hardness result of n

2log
7/8+ε n

and
√
m

2log
7/8+ε m

for any ε > 0. (For the purpose of deriving our corollaries, it is im-

portant to state the bounds in terms of both m and n).
We immediately obtain the hardness of approximating the rank of a matrix

through the connections shown in [14]. Also, Amilhastre et al. and Gruber and
Holzer [2,15] discovered (nearly tight) connections between BicliqueCover,
BicliquePartition, and several minimization problems for regular languages.
Combining our result with theirs yields new hardness results (proofs will appear
in the full version). We summarize the consequences of our theorem below.

Corollary 1. Unless NP has bounded-error randomized quasi-polynomial time
algorithm, for all ε > 0, it is hard to:

– Approximate the Boolean rank and non-negative integer rank of an n-by-n
matrix to within a factor of n

2log
7/8+ε n

.

– Approximate the number of states of minimum NFA accepting a language L,

specified by an input truth table of size N , to within a factor of
√
N

2log
7/8+ε N

.

– Approximate the minimum number of states of the minimum DFA accepting
a language L, specified by an input n-state DFA of size n, to within a factor
of n

2log
7/8+ε n

.

All these results are essentially tight. These problems are some of the most
basic problems in regular language minimization (see the survey by Holzer and
Kutrib and references therein [17]). Prior to our results, similar hardness results
require (much stronger) cryptographic assumptions [13]. We remark another
interesting aspect of our results: It is noted in [17] that the lower bounds provided
by biclique edge cover technique “ ... are not always tight and can be arbitrarily
worse ...” Our results show that biclique cover techniques can in fact provide
tight lower bounds for many problems listed in the survey, hence providing an
evidence that biclique cover and partition capture the computational complexity
of regular language minimization problems.

Our proof follows the framework of graph product techniques, as introduced
and used succesfully by Chalermsook et al. [5,7,6]. Roughly speaking, this frame-
work reduces the task of proving hardness of approximation to that of proving
graph product inequalities. In our case, this amounts to bounding the quantity
bc(B[G ·H]), by some slowly growing function of bc(B[H]) and bc(B[G]) where
bc(H) denotes the size of minimum biclique cover of H , “·” is the lexicographic

238 P. Chalermsook et al.

product of graphs, and B[·] is the bipartite double cover transformation respec-
tively. The main idea of the proof is to use an optimal vertex coloring of Ḡ
together with biclique covering of B[H] to suggest the biclique cover of B[G ·H].
We note that, while we give lower bound results, the flavor of our proofs is
rather algorithmic: It illustrates how one can algorithmically utilize the coloring
of graph Ḡ in minimizing the biclique covers in B[Gk].

Our hardness results rule out approximation ratios nδ for any δ ∈ (0, 1), so
it is natural to aim at mildly sub-linear approximation factors, e.g., n

(logn)γ for

some γ > 0. We investigate this direction and obtain the following results.

Theorem 2. There is an approximation algorithm for BicliqueCover that
achieves an approximation ratio of

O
(

min
{
n/
√

log(n),m(log logm)2/(log3 m)
})

.

We remark that the upper and lower bounds match up to lower-order fac-
tors (in terms of n). The second result relies on the idea that one can reduce
BicliqueCover to MaxClique on the complement of the conflict graph.

Using a standard reduction, we furthermore obtain the following result.

Corollary 2. There is no poly-time algorithm to approximate MaxWeight-

edBiclique within factors of n1−ε and m1/2−ε, respectively, for all ε > 0

unless P = NP , or within a factor of O
(

min{n,
√
m}

2log
7/8+ε n

)
for any ε > 0 unless

NP ⊆ BPTIME(2poly logn). This holds even when edge-weights are in {0, 1}.

2 Preliminaries

We start by a formal treatment of our problem. A biclique is denoted by Ka,b

which is a complete bipartite graph (A,B, F) such that |A| = a and |B| = b.
Given a graph G = (V,E), we say that S ⊆ V is a biclique subgraph of G if and
only if the induced subgraph G[S] is a biclique Ka,b for some a, b.

A biclique cover of G is a collection of vertices S1, . . . , Sk such that each Si

is a biclique subgraph of G and each edge e ∈ E(G) appears at least once in
some G[Si]. In such case, we say that a biclique cover of size k exists for G. Let
bc(G) denote the minimum number k for which a biclique cover of size k exists
for G. In BicliqueCover, our goal is to compute bc(G) on an input graph G.
A biclique partition of G is a biclique cover such that, each edge is covered exactly
once. It follows from the definition that bc(G) ≤ bp(G) for any graph G.

A clique partition of G is a partition of vertices V (G) into V (G) = V1 ∪
V2 ∪ . . . ∪ Vk such that each induced subgraph G[Vi] is a clique. The clique
partition number of G, denoted by cp(G), is the minimum number k such that a
clique partition of V (G) into k components exist. The clique partition problem
(PartitionIntoCliques) asks for computing the value of cp(G).

Given a graph G, let χ(G) be the chromatic number of G which is the minimum
number of colors c such that there exists a proper c-coloring of G. Let IG be

Approximability Results for Biclique Cover and Partition 239

the set of all independent sets in G. A valid fractional c-coloring of G is an
assignment ψ : IG → [0, 1] with the guarantees: (i)

∑
S:v∈S ψ(S) ≥ 1 for all v

and (ii)
∑

S∈IG
ψ(S) ≤ c. A fractional chromatic number of G, χf (G), is the

minimum c such that there exists a valid fractional c-coloring for G.
Notice that for any graph G, we have χ(G) = cp(Ḡ). Similarly to the notion

of fractional chromatic number, we may define fractional clique partition number

cpf (G) as χf (Ḡ). This implies that cp(G)
log |V (G)| ≤ cpf (G) ≤ cp(G).

Feige and Kilian [12] proved the NP-hardness of approximating χ(G). Since
χ(G) = cp(Ḡ), the same hardness result holds for PartitionIntoCliques.
Their result can be summarized formally below.

Theorem 3 ([12,29]). Let ε > 0 be a constant. Given a graph G = (V,E), it
is NP-hard to approximate cp(G) to within a factor of |V (G)|1−ε.

Assuming a stronger (but still standard) complexity theoretic assumption,
Khot and Ponnuswami proved the following result [20].

Theorem 4. Let ε > 0 be a constant. It is hard to approximate cp(G) for a graph

G = (V,E) to within a factor of |V (G)|
2log

3/4+ε |V (G)| unless NP ⊆ BPTIME(2poly logn).

3 Hardness of Approximation

In this section, we prove our hardness results. We start by explaining graph
product terminologies and tools in the next subsection.

3.1 Graph Products

Let G and H be any graphs. The lexicographic product of G and H , i.e. G ·H , is
defined as follows. The vertex set of G·H is V (G·H) = V (G)×V (H) and the edge
set is E(G ·H) = {(u, a)(v, b) : uv ∈ E(G)}∪

⋃
u∈V (G) {(u, a)(u, b) : ab ∈ E(H)}.

For an integer k, the term Gk denotes a k-fold lexicographic product of G, i.e.
Gk = G ·G . . . ·G (k times). The following inequality is a standard fact.

Lemma 1. For any graphs G and H, χf (G)χ(H) ≤ χ(G ·H) ≤ χ(G)χ(H)

We show that the clique partition number satisfies similar properties with
respect to lexicographic products. The proof will appear in the full version.

Lemma 2 (Multiplicativity of cp). cpf (G)cp(H) ≤ cp(G ·H) ≤ cp(G)cp(H)

3.2 Proof of the Hardness Result

We prove the following connection between PartitionIntoCliques and
BicliqueCover, which will be used in deriving our hardness results.

240 P. Chalermsook et al.

Theorem 5. Let G be any graph and k be an integer. There is an algorithm that
runs in time |V (G)|O(k) and constructs a bipartite graph H such that |V (H)| =
Θ(|V (G)|k) and(

cp(G)

log |V (G)|

)k

≤ bc(H) ≤ bp(H) ≤ cp(G)k|V (G)|3

Before proving this theorem, we show how to use it to derive our hardness results.

Corollary 3. Let ε > 0. It is NP-hard to approximate BicliqueCover and
BicliquePartition within factors of n1−ε and m1/2−ε. Moreover, there are no
polynomial time approximation algorithms for both problems with a guarantee in

n

2log
7/8+ε n

or
√
m

2log
7/8+ε n

unless NP ⊆ BPTIME(2poly logn).

Proof. Our reduction combines the reduction that gives hardness result Parti-

tionIntoCliques with Thm. 5. Let Aclique be the algorithm (i.e. reduction)
that takes a SAT instance ϕ and produces graph G, with the following properties:

– (Yes-Instance:) If ϕ is satisfiable, then cp(G) ≤ c
– (No-Instance:) If ϕ is not satisfiable, then cp(G) ≥ s.

Let g = s/c be the gap (hardness factor) given by the reduction Aclique.
For instance, Thm. 3 gives such a reduction with c = |V (G)|ε, s = |V (G)|1−ε,
g = |V (G)|1−2ε, and |V (G)| = |ϕ|O(1). Our reduction Ak

biclique first runs the
algorithm Aclique to get the instance G and then apply Thm. 5 on graph G. The
theorem outputs graph H with N = |V (H)| = Θ(|V (G)|k).

Now analyze the gap given by our reduction Ak
biclique. Applying the lower

bound of Thm. 5, for the No-Instance, we get bc(H), bp(H) ≥ sk

(log |V (G)|)k . For

the Yes-Instance, we would get bc(H), bp(H) ≤ ck|V (G)|3. So the gap between
Yes-Instance and No-Instance of reduction Ak

biclique is

g′ =
(s
c

)k 1

|V (G)|3(log |V (G)|)k =
gk

|V (G)|3(log |V (G)|)k

This gap holds for both BicliquePartition and BicliqueCover. Roughly
speaking the gap between our Yes-Instance and No-Instance is g′ ≈ gk.
Now we plug in the appropriate values to obtain the desired hardness results.

If we start from Thm. 3, we have the starting hardness gap g = |V (G)|1−2ε.
By choosing k =
1/ε�, we obtain a gap of g′ ≥ |V (G)|(1−2ε)k/|V (G)|4 ≥
|V (G)|(1−6ε)k. Since N = |V (H)| = |V (G)|k, this gives us the hardness factor
N1−6ε, thus proving the first part of the theorem. This reduction runs in time
|V (G)|O(1/ε) = |ϕ|O(1) for constant ε > 0 (since Feige-Kilian reduction runs
in polynomial time), thus implying that the hardness result here holds under
assumption P �= NP.

Similarly, if we start from Thm. 4, we have g = n

2log
3/4+ε n

where n = |V (G)|.
We plug in the value of g into g′ = gk/n3(logn)k. By choosing k = logn,

Approximability Results for Biclique Cover and Partition 241

we have g′ ≥ gk/nΘ(log logn) ≥
(

n

2log
3/4+2ε n

)k
= N

2k log3/4+2ε n
. Since k = logn,

we have logN = O(k logn) = O(log2 n). We obtain the hardness factor g′ ≥
N

2log
7/8+O(ε) N

. The reduction here runs in time |V (G)|O(k) = |V (G)|O(log |V (G)|).

Khot-Ponnuswami reduction has |V (G)| = 2poly log |ϕ|, and it is randomized with
possibly two-sided error. This implies that the running time of the reduction
overall is 2poly log |ϕ|. Therefore, this hardness result holds under the assumption
that NP does not admit randomized quasi-polynomial time algorithm.

The statements w.r.t. the number of edges follow since |E(H)| ≤ N2. ��

The rest of this section is devoted to proving Thm. 5. We use a bipartite dou-
ble cover transformation, which transforms any graph G into a bipartite graph
B[G] as follows. The nodes of B[G] are V (B[G]) =

⋃
v∈V (G) {(v, 1), (v, 2)},

i.e. we make two copies of each vertex v ∈ V (G). The edges of B[G] are
E(B[G]) = {(u, 1)(v, 2) : uv ∈ E(G)} ∪ {(u, 1)(u, 2) : u ∈ V (G)}. Our algorithm
simply outputs H = B[Gk]. Notice that |V (H)| = 2|V (G)|k.

First let us show the lower bound, which is relatively straightforward to see.

Lemma 3. For any graph G, cp(G) ≤ bc(B[G])

Proof. Let S1, . . . , S� ⊆ V (B[G]) be the biclique subgraphs that cover B[G]. It
is sufficient to show how to use these bicliques to define the partition of G into
� cliques. We name the biclique Hj = G[Sj]. For each j, we define the vertex
set Vj ⊆ V (G) by Vj = {v : (v, 1)(v, 2) ∈ E(Hj)}. First we argue that G[Vj] is
a clique in G: Consider u, v ∈ Vj for some u �= v. Since (u, 1)(u, 2), (v, 1)(v, 2) ∈
E(Hj), it must be the case that (u, 1)(v, 2) ∈ E(Hj), implying that uv ∈ E(G).
Moreover, the collection of cliques V1, . . . , V� together cover graph G: For each
vertex v ∈ V (G), an edge (v, 1)(v, 2) must appear in some Hj′ (due to the fact
that S1, . . . , S� are biclique cover). This means that v ∈ Vj′ . From a collection of
cliques V1, . . . , V�, one can easily modify them into disjoint sets V ′

1 , . . . , V
′
� . ��

It is easy to see that this inequality implies the lower bound: consider H =

B[Gk], so we have bc(H) ≥ cp(Gk) ≥ (cpf (G))k ≥
(

cp(G)
log |V (G)|

)k
.

Now we need to prove the upper bound that bp(H) ≤ cp(G)k|V (G)|3. We
present here a “light” version of our proof, showing a weaker statement that
bc(H) ≤ cp(G)k|V (G)|3. This proof captures most of the key ideas we need. The
proof of the stronger statement will be contained in the full version.

Lemma 4. For any graphs G and G′, bc(B[G ·G′]) ≤ 2|E(G)|+ cp(G)bc(B[G′])

Now we can apply Lem. 4 iteratively to get the following, which completes
the proof of Thm. 5.

Lemma 5. For any graph G and integer k, bc(B[Gk]) ≤ k|V (G)|2cp(Gk).

Proof. We will argue by induction on r that bc(B[Gr]) ≤ r|V (G)|2cp(Gr). Notice
that this is true for the base case when r = 1, i.e. bc(B[G]) ≤ |V (G)|2cp(G),

242 P. Chalermsook et al.

because the biclique cover number of any graph is at most the number of edges
in it. Now assume that the hypothesis holds for all integers up to r. By unfolding
the term Gr+1 as G ·Gr, we can write bc(B[Gr+1]) as bc(B[Gr+1]) ≤ 2|E(G)| +
cp(G)bc(B[Gr]). Applying the induction hypothesis to the second term, we get

bc(B[Gr+1]) ≤ 2|E(G)| + cp(G)r|V (G)|2cp(G)r

≤ |V (G)|2 + r · cp(G)r+1|V (G)|2

≤ (r + 1)cp(G)r+1|V (G)|2

This implies the proof of the statement. ��

3.3 Proof of Lemma 4

Recall the statement of the lemma, that bc(B[G·G′]) ≤ 2|E(G)|+cp(G)bc(B[G′]).
Let S1, . . . , Sh ⊆ V (B[G′]) be the biclique cover of B[G′]. For each Sj , we use
G′

j to denote the induced subgraph of Sj in B[G′] (so G′
j is a clique). We will

use these graphs to “suggest” the cover for B[G ·G′]. First, we look at the edges
E(B[G ·G′]) as the union of two edge sets E1 ∪E2 where

E1 = {(u, a, 1)(v, b, 2) : u �= v, uv ∈ E(G)}
and

E2 =
⋃

u∈V (G)

{(u, a, 1)(u, b, 2) : a = b ∨ ab ∈ E(G′)} .

To cover edges in E1, we define the collection of vertices {Xuv}uv∈E(G) as Xuv =

{(u, a, 1) : a ∈ V (G′)}∪{(v, b, 2) : b ∈ V (G′)}. Notice that each Xuv is a biclique
subgraph of B[G·G′]: For each pair (u, a, 1) and (v, b, 2) in Xuv, since uv ∈ E(G),
there must be an edge (u, a, 1)(v, b, 2). Thus, the following claim holds.

Claim. The collection {Xuv}uv∈E(G) covers all edges in E1.

Now we define another collection of bicliques {Yc,j} to cover edges in E2 as
follows. Let C1, . . . , C� be the partition of vertices of G into cliques. For each
clique c = 1, . . . , �, for each j = 1, . . . , h, define a subset of vertices Yc,j ⊆ V (B[G·
G′]) where Yc,j = {(u, a, 1) : u ∈ Cc, (a, 1) ∈ Sj}∪{(u, b, 2) : u ∈ Cc, (b, 2) ∈ Sj}.
Now we verify that the induced subgraph of each Yc,j is biclique: For any pair
of vertices (u, a, 1), (v, b, 2) ∈ Yc,j ,

– If u = v, then it must hold that (a, 1)(b, 2) ∈ E(G′
j) (because both (a, 1) and

(b, 2) belong to biclique Sj). There are two cases again. If a = b, we have an
edge (u, a, 1)(u, a, 2) ∈ B[G ·G′] by definition; otherwise, if a �= b, there must
be an edge ab ∈ E(G′), implying that (u, a, 1)(u, b, 2) is an edge in B[G ·G′].

– If u �= v, the fact that both u and v belong to the same clique Cc means that
an edge uv ∈ E(G), implying that (u, a, 1)(v, b, 2) is an edge in B[G ·G′].

Claim. The collection of bicliques Yc,j covers all edges in E2.

Proof. Fix some u ∈ V (G). Consider an edge (u, a, 1)(u, b, 2) ∈ E2. Let Cc be the
clique that contains vertex u. Since ab ∈ E(G′) or a = b, we have (a, 1)(b, 2) as an
edge in B[G′]. Therefore, it is covered by some biclique G′

j , i.e. (a, 1), (b, 2) ∈ Sj .
This implies that both (u, a, 1) and (u, b, 2) belong to Yc,j , hence covered. ��

Approximability Results for Biclique Cover and Partition 243

4 Algorithmic Results

We will now give two approximation algorithms for BicliqueCover. Thereby,
we achieve two mutually non-dominating approximation guarantees in terms of
the number of nodes and edges, respectively.

4.1 An Approximation Guarantee of O(n/
√
log(n))

We first describe a simple approximation algorithm for BicliqueCover that
achieves a performance ratio of O(nU/

√
log(nU)) where nU is the number of

left vertices in the bipartite input graph G = (U ∪V,E) (we assume w.l.o.g that
the left side of the graph is the smaller one, i.e. |U | ≤ |V |). Moreover, we will
apply exactly the same scheme to solve BicliquePartition, thereby achieving
the same performance guarantee for BicliquePartition.

The main idea behind the algorithm is to split the left vertex set U in parts
of equal size r (to be fixed later) and run an α(r)-approximation algorithm
for finding a biclique cover in each of these subgraphs. The results of all nU/r
subproblems are then put together to form a biclique cover of the whole graph
G. This also works for biclique partition, as the subgraphs are edge-disjoint. The
following theorem relates the approximation guarantee for the subproblems to
the guarantee for the overall problem.

Lemma 6. Let G = (U, V,E) be a bipartite graph with nU = |U | ≤ |V |. If we
can solve BicliqueCover on a graph G′ with r left vertices with an approxima-
tion guarantee of α(r), then we can solve the problem on G with approximation
guarantee nU

r α(r). The same holds for BicliquePartition.

Proof. Partition U arbitrarily into nU/r sets U1, . . . , UnU/r of size r and run the
approximation algorithm with performance guarantee α(r) on the subgraphs in-
duced by the sets Ui and their neighborhoods. Let Gi denote the i-th subgraph
and APXi the size of the solution produced by the approximation algorithm
on Gi. Furthermore, let OPTi be the size of the optimal solution on subgraph
Gi and OPT be the size of the optimal solution for G. Notice that the union
of the biclique covers of the subgraphs gives a biclique cover for G. Therefore,

we have that the size of this combined solution is APX =
∑nU/r

i=1 APXi ≤
α(r)
∑nU/r

i=1 OPTi ≤ α(r)nU

r OPT. The last inequality follows as the optimal so-
lution of a subgraph of G is at most as large as the optimal solution of G. This
analysis also applies to BicliquePartition. ��

Theorem 6. There are O(n/
√

logn) approximation algorithms for Biclique-

Cover and BicliquePartition.

Proof. For solving the subproblems on G′ = (U ′, V ′, E′) with r = |U ′| left
vertices, we run a brute-force algorithm: Enumerate all 2r subsets of the left
vertices and enumerate all r-tuples of such subsets. Such a subset S ⊆ U ′ in-
duces a biclique together with the intersection of the neighborhoods of all ver-
tices v ∈ S. Then return the smallest tuple of vertex sets that covers all edges.

244 P. Chalermsook et al.

For BicliquePartition, additionally ensure that the bicliques are edge-disjoint.
As the optimal solution needs at most r bicliques (simply take all the bicliques
induced by one of the left vertices) and we enumerate all bicliques of the graph
by enumerating all subsets of left vertices, this will return the optimal solution.
Hence the approximation factor on the subproblems is α(r) = 1. Thus, for the
whole algorithm on G, we get a guarantee of nU

r ≤ n
r . The running time of the

brute-force algorithm is O((2r)r), hence by choosing r =
√

log(n) we get a poly-

nomial running time of the algorithm and a guarantee of O(n/
√

log(n)). ��

4.2 An Approximation Guarantee w.r.t. the Number of Edges

A different approach to obtain an approximation guarantee, which dominates
the previous one on sparse graphs, is obtained via the following construction.

Definition 1. For a given undirected graph G = (V,E), the conflict graph G =
(V , E) contains a node for each edge of G, i.e. |V| = |E|. Two nodes of G are
connected by an edge if and only if the two corresponding edges of G are not
contained in a common biclique.

A node coloring of G corresponds to an edge coloring of G such that each color-
class is contained in a common biclique. Thus, the chromatic number of G is

equal to bc(G) and we can use [16] to obtain a guarantee in O
(

m log2 logm
log3 m

)
.

Together with Thm. 6, this concludes the proof of Thm. 2.
However, we present another perspective, which not only gives algorithmic

insights but also leads to an improved hardness result for MaxWeightedBi-

clique. To this end, recall that the chromatic number of G is equal to cp(G), so
that a greedy algorithm that covers G with cliques also covers G with bicliques.

Thus, we analyze the family of greedy algorithms that pick a biclique in
each iteration containing as many uncovered edges as possible until every edge
is covered. To this end, we reexamine the relation between master and slave
problems in Johnson’s framework [19] under the premise that the approximation
guarantee α(·) is an increasing function on the number of uncovered elements.
That is, the approximation guarantee improves over iterations as the number of
uncovered edges shrinks. Hence, our master problem is BicliqueCover and its
slave problem is the problem of finding the heaviest biclique with edge-weights in
{0, 1} being 0 if an edge is already covered and 1 if not. Our result is summarized
in the following theorem, whose proof will appear in the full version of this paper.

Theorem 7. Let G = (V,E) be a bipartite graph. If there is an α-approximation
algorithm for MaxWeightedBiclique, then there is a greedy algorithm that
computes a BicliqueCover of size

O

(
α log

(
|E|
α

)
bcf (G)

)
,

where bcf (G) is the fractional biclique cover number.

Approximability Results for Biclique Cover and Partition 245

Such an α-approximation can be obtained from an approximation algorithm
for MaxClique operating on the complement of a conflict graph. By dropping
all the nodes of G that correspond to edges with weight 0 and finding an ap-
proximation of the largest clique in the remainder, we obtain a set of edges of G
that belongs to a common biclique, which has a weight of at least the maximum
weight divided by α. Using the MaxClique algorithm of Feige [11], we obtain

an approximation factor for {0, 1}-weighted biclique in O
(

m log2 logm
log3 m

)
. This is

also essentially the best one can hope for as our new hardness result shows.

Corollary 2. There is no poly-time algorithm to approximate MaxWeight-

edBiclique within factors of n1−ε and m1/2−ε, respectively, for all ε > 0

unless P = NP , or within a factor of O
(

min{n,√m}
2log

7/8+ε n

)
for any ε > 0 unless

NP ⊆ BPTIME(2poly logn). This holds even when edge-weights are in {0, 1}.

A further consequence of Thm. 7 is that bc(G) = O(log(n)bcf (G)), which
yields the following corollary.

Corollary 4. It is NP-hard to approximate the fractional biclique number within
n1−ε or m1/2−ε for all ε > 0.

References

1. Ambühl, C., Mastrolilli, M., Svensson, O.: Inapproximability results for max-
imum edge biclique, minimum linear arrangement, and sparsest cut. SIAM J.
Comput. 40(2), 567–596 (2011)

2. Amilhastre, J., Janssen, P., Vilarem, M.-C.: FA minimisation heuristics for a class
of finite languages. In: Boldt, O., Jürgensen, H. (eds.) WIA 1999. LNCS, vol. 2214,
pp. 1–12. Springer, Heidelberg (2001)

3. Amilhastre, J., Vilarem, M., Janssen, P.: Complexity of minimum biclique cover
and minimum biclique decomposition for bipartite domino-free graphs. Discrete
Applied Mathematics 86(2-3), 125–144 (1998)

4. Brandstädt, A., Le, V.B., Spinrad, J.P.: Graph Classes: A Survey. Society for
Industrial and Applied Mathematics, Philadelphia (1999)

5. Chalermsook, P., Laekhanukit, B., Nanongkai, D.: Graph products revisited:
Tight approximation hardness of induced matching, poset dimension and more.
In: Khanna, S. (ed.) SODA, pp. 1557–1576. SIAM (2013)

6. Chalermsook, P., Laekhanukit, B., Nanongkai, D.: Independent set, induced match-
ing, and pricing: Connections and tight (subexponential time) approximation hard-
nesses. In: FOCS, pp. 370–379. IEEE Computer Society (2013)

7. Chalermsook, P., Laekhanukit, B., Nanongkai, D.: Coloring graph powers: Graph
product bounds and hardness of approximation. In: Pardo, A., Viola, A. (eds.)
LATIN 2014. LNCS, vol. 8392, pp. 409–420. Springer, Heidelberg (2014)

8. Ene, A., Horne, W., Milosavljevic, N., Rao, P., Schreiber, R., Tarjan, R.E.: Fast
exact and heuristic methods for role minimization problems. In: SACMAT 2008,
pp. 1–10. ACM, New York (2008)

9. Eppstein, D., Goodrich, M.T., Meng, J.Y.: Confluent layered drawings. Algorith-
mica 47(4), 439–452 (2007)

246 P. Chalermsook et al.

10. Feige, U.: Relations between average case complexity and approximation
complexity. In: Reif, J.H. (ed.) STOC, pp. 534–543. ACM (2002)

11. Feige, U.: Approximating maximum clique by removing subgraphs. SIAM Journal
on Discrete Mathematics 18(2), 219–225 (2004)

12. Feige, U., Kilian, J.: Zero knowledge and the chromatic number. Journal of Com-
puter and System Sciences 57, 187–199 (1998)

13. Gramlich, G., Schnitger, G.: Minimizing NFA’s and regular expressions. J. Comput.
Syst. Sci. 73(6), 908–923 (2007)

14. Gregory, D.A., Pullman, N.J., Jones, K.F., Lundgren, J.R.: Biclique coverings
of regular bigraphs and minimum semiring ranks of regular matrices. J. Comb.
Theory, Ser. B 51(1), 73–89 (1991)

15. Gruber, H., Holzer, M.: Inapproximability of nondeterministic state and transition
complexity assuming P �= NP. In: Harju, T., Karhumäki, J., Lepistö, A. (eds.) DLT
2007. LNCS, vol. 4588, pp. 205–216. Springer, Heidelberg (2007)

16. Halldórsson, M.M.: A still better performance guarantee for approximate graph
coloring. Information Processing Letters 45(1), 19–23 (1993)

17. Holzer, M., Kutrib, M.: Descriptional and computational complexity of finite
automata–a survey. Information and Computation 209(3), 456–470 (2011)

18. Jiang, T., Ravikumar, B.: Minimal NFA problems are hard. In: Albert, J.L.,
Monien, B., Rodŕıguez-Artalejo, M. (eds.) ICALP 1991. LNCS, vol. 510,
pp. 629–640. Springer, Heidelberg (1991)

19. Johnson, D.S.: Approximation algorithms for combinatorial problems. Journal of
Computer and System Sciences 9(3), 256–278 (1974)

20. Khot, S., Ponnuswami, A.K.: Better inapproximability results for maxclique,
chromatic number and min-3lin-deletion. In: Bugliesi, M., Preneel, B., Sassone,
V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4051, pp. 226–237. Springer,
Heidelberg (2006)

21. Milind Dawande, P.K., Tayur, S.: On the biclique problem in bipartite graphs.
GSIA Working Paper, Carnegie Mellon University, Pittsburgh (1996)

22. Müller, H.: Alternating cycle-free matchings. Order 7(1), 11–21 (1990)
23. Müller, H.: On edge perfectness and classes of bipartite graphs. Discrete Mathe-

matics 149(1-3), 159–187 (1996)
24. Nau, D.S., Markowsky, G., Woodbury, M.A., Amos, D.B.: A mathematical analysis

of human leukocyte antigen serology. Mathematical Biosciences 40(3-4), 243–270
(1978)

25. Nor, I., Hermelin, D., Charlat, S., Engelstadter, J., Reuter, M., Duron, O., Sagot,
M.-F.: Mod/Resc parsimony inference: Theory and application. Inf. Comput. 213,
23–32 (2012)

26. Orlin, J.: Contentment in graph theory: Covering graphs with cliques. Indagationes
Mathematicae (Proceedings) 80(5), 406–424 (1977)

27. Peeters, R.: The maximum edge biclique problem is NP-complete. Discrete Applied
Mathematics 131(3), 651–654 (2003)

28. Simon, H.: On approximate solutions for combinatorial optimization problems.
SIAM Journal on Discrete Mathematics 3(2), 294–310 (1990)

29. Zuckerman, D.: Linear degree extractors and the inapproximability of max clique
and chromatic number. In: Proceedings of the Thirty-Eighth Annual ACM Sympo-
sium on Theory of Computing, STOC 2006, pp. 681–690. ACM, New York (2006)

Succinct Indices for Path Minimum,

with Applications to Path Reporting�

Timothy M. Chan1, Meng He2, J. Ian Munro1, and Gelin Zhou1

1 David R. Cheriton School of Computer Science, University of Waterloo, Canada
{tmchan,imunro,g5zhou}@uwaterloo.ca

2 Faculty of Computer Science, Dalhousie University, Canada
mhe@cs.dal.ca

Abstract. In the path minimum query problem, we preprocess a tree
on n weighted nodes, such that given an arbitrary path, we can locate the
node with the smallest weight along this path. We design novel succinct
indices for this problem; one of our index structures supports queries in
O(α(m,n)) time, and occupies O(m) bits of space in addition to the space
required for the input tree, where m is an integer greater than or equal
to n and α(m,n) is the inverse-Ackermann function. These indices give
us the first succinct data structures for the path minimum problem, and
allow us to obtain new data structures for path reporting queries, which
report the nodes along a query path whose weights are within a query
range. We achieve three different time/space tradeoffs for path reporting
by designing (a) an O(n)-word structure with O(lgε n+ occ · lgε n) query
time, where occ is the number of nodes reported; (b) an O(n lg lgn)-word
structure with O(lg lgn+ occ · lg lgn) query time; and (c) an O(n lgε n)-
word structure with O(lg lgn+occ) query time. These tradeoffs match the
state of the art of two-dimensional orthogonal range reporting queries [8]
which can be treated as a special case of path reporting queries. When the
number of distinct weights is much smaller than n, we further improve
both the query time and the space cost of these three results.

1 Introduction

As one of the most fundamental structures in computer science, trees have been
widely used in modeling and representing different types of data in numerous
computer applications. In many cases, objects are represented by nodes and
their properties are characterized by weights assigned to nodes. Researchers have
studied the problems of maintaining a weighted tree, such that various types of
path queries can be computed efficiently [1, 9, 24, 25, 23, 6, 20, 28, 22, 11]. In this
paper, we consider path minimum (maximum) queries and path reporting queries.

– Path minimum(maximum): Given nodes u and v, return the minimum (max-
imum) node along the path from u to v, i.e., the node along the path whose
weight is the minimum (maximum) one;

� This work was supported by NSERC and the Canada Research Chairs Program. Part
of the first author’s work was done during his visit to the Department of Computer
Science and Engineering, Hong Kong University of Science and Technology.

A.S. Schulz and D. Wagner (Eds.): ESA 2014, LNCS 8737, pp. 247–259, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

248 T.M. Chan et al.

– Path reporting: Given nodes u and v along with a range [p, q], report the
nodes along the path from u to v whose weights are between p and q.

When the given tree is a path, the above queries become range minimum (maxi-
mum) queries [14, 11] and two-dimensional orthogonal range reporting queries [8],
respectively. As stated in [20], the path queries we consider generalize these fun-
damental range queries to weighted trees.

In this paper, we represent the input tree as an ordinal one, i.e., a rooted tree
in which siblings are ordered. The weights of nodes are assumed to be drawn from
[1..σ]. We use lg to denote the base-2 logarithm and use ε to denote a constant
in (0, 1). Unless otherwise specified, the underlying model of computation is the
standard word RAM model with word size w = Ω(lg n).

Path Minimum. The problem of supporting path minimum queries has been
heavily studied [1, 9, 2, 29, 23, 6, 11]. Unlike our formulation, previous work con-
siders trees on weighted edges instead of weighted nodes. However, it is not hard
to see that these two formulations are equivalent.

The minimum spanning tree verification problem is a special offline case of
the path minimum problem, for which one should determine whether a given
spanning tree is minimum. This problem can be solved using O(n+m) compar-
isons and linear overhead under the word RAM model [24]. The online version
of this problem, i.e., the path minimum problem, was considered by Alon and
Schieber [1]. In the pointer machine model, they designed a structure that uses
super-linear space. Concurrently, Chazelle [9] presented a linear space data struc-
ture under word RAM. Both structures require O(α(n)) query time to sum up
weights along a given path, where α(n) is the inverse-Ackermann function, and
weights are drawn from a semigroup. Thus the online version of the path mini-
mum problem can also be supported in the same time and space. More recently,
several solutions using O(n) words, i.e., O(n lg n) bits, with O(1) query time
have been designed under word RAM [2, 23, 6, 11]. Pettie [29] studied the lower
bound in terms of comparisons of edge weights, and showed that Ω(q ·α(q, n)+n)
comparisons are necessary to serve q queries over a tree of size n.

In this paper we present lower and upper bounds for path minimum queries.
In Lemma 4 we show that Ω(n lg n) bits of space are necessary to encode the
answers to path minimum queries over a tree of size n. This distinguishes path
minimum queries from range minimum queries in terms of space cost.

We adopt the indexing model (also called the systematic model) [3, 7, 5] in
designing new data structures for path minimum queries. Applying this model to
weighted trees, we assume that weights are represented in an arbitrary given raw
form; the only requirement is that the given data support access to the weight of
a node given its preorder rank. Auxiliary data structures called indices are then
constructed, and query algorithm uses indices and the access operator provided
for the raw data. Not only is this an important theoretical model (its variants
are frequently used to prove lower bounds [12, 26, 17]), it is also of practical
importance as it addresses cases in which the (large) raw data are stored in slower
external memory or even remotely, while the (smaller) indices could be stored
in memory or locally. The space of an index is called additional space. Note that

Succinct Indices for Path Minimum, with Applications to Path Reporting 249

the lower bound in the previous paragraph is proved under the encoding model,
and thus does not apply to the indexing model.

To present our results, we assume the following definition for the Ackermann

function: A0(i) = i + 1 and A�+1(i) = A
(i+1)
� (i + 8), where A

(0)
� (i) = i and

A
(i)
� (j) = A�(A

(i−1)
� (j)) for i ≥ 1. This is faster growing than the one defined by

Cormen et al. [10]. Let α(m,n) be the smallest L such that AL(�m/n�) > n, and
α(n) be α(n, n). The following theorem presents our indices for path minimum:

Theorem 1. An ordinal tree on n weighted nodes can be indexed (a) using
O(m) bits of space to support path minimum queries in O(α(m,n)) time and
O(α(m,n)) accesses to the weights of nodes, for any m ≥ n; or (b) using 2n+o(n)
bits of space to support path minimum queries in O(α(n)) time and O(α(n)) ac-
cesses to the weights of nodes.

To better understand variant (a) of this result, we discuss the time and space
costs for the following possible values of m. When m = n, then we have an
index of O(n) bits that supports path minimum queries in O(α(n)) time. When
m = O(n(lg∗)∗n), for example, then it is well-known that α(m,n) = O(1), and
thus we have an index of O(n(lg∗)∗n) 1 bits that supports path minimum queries
in O(1) time. Previous solutions [2, 23, 6, 11] to the same problem with constant
query time occupy Ω(n lg n) bits of space in addition to the space required for the
input tree. Combining the above results with a trivial encoding of node weights,
we obtain the first succinct data structures for path minimum queries. With a
little extra work, we can even represent a weighted tree using n lg σ + 2n+ o(n)
bits only, i.e., within an o(n) additive term of the information-theoretic lower
bound, to support queries in O(α(n)) time. Considering the construction time
is O(n), this variant almost matches the lower bound of Pettie [29].

Path Reporting. Path reporting queries were proposed by He et al. [20]. They
obtained two solutions: one uses O(n) words and O(lg σ + occ · lg σ) query
time, and the other uses O(n lg lg σ) words but O(lg σ + occ · lg lg σ) query
time, where σ is the number of distinct weights and occ is output size. For
the same problem, Patil et al. [28] designed a succinct structure based on heavy
path decomposition [31, 18]. Their structure requires only n lg σ + 6n + o(n lg σ)
bits but O(lg σ lg n + occ · lg σ) time. Concurrently, He et al. [22] designed an-
other succinct structure based on a different idea. This structure, requiring
O(lg σ/ lg lgn+ occ · lg σ/ lg lg n) query time, is the best previously known linear
space solution.

In this paper, we design three new data structures for path reporting queries:

Theorem 2. An ordinal tree on n nodes whose weights are drawn from a set of
σ distinct weights can be represented using O(n lg σ ·s(σ)) bits of space, such that
path reporting queries can be supported in O(min{lg lg σ + t(σ), lg σ/ lg lg n} +
occ · min{t(σ), lg σ/ lg lgn}) time, where occ is the size of output, and s(σ) and

1 (lg∗)∗ is the number of times lg∗ must be iteratively applied before the result becomes
less than or equal to 1.

250 T.M. Chan et al.

t(σ) are: (a) s(σ) = O(1) and t(σ) = O(lgε σ); (b) s(σ) = O(lg lg σ) and
t(σ) = O(lg lg σ); or (c) s(σ) = O(lgε σ) and t(σ) = O(1).

These results completely subsume almost all previous results; the only ex-
ceptions are the succinct data structures for this problem designed in previous
work, whose query times are worse than our linear-space solution. Furthermore,
our data structures match the state of the art of 2D range reporting queries [8]
when σ = n, and have better performance when σ is much less than n.

Overview of Techniques. Unlike previous succinct tree structures [16, 28, 22,
19, 13], our approach for path minimum is based on topological partitions [15]
which transform the input tree into a binary tree and further recursively decom-
poses it into a hierarchy of clusters with constant external degrees. Our main
strategy of constructing path minimum query structures (in Section 3) is to re-
cursively divide the set of levels of decomposition into multiple subsets of levels;
with a carefully-defined version of the path minimum query problem which takes
levels in the decomposition as parameters, the query over the entire structure
can be answered by conquering the subproblems local to the subsets of levels.
Solutions to special cases of the query problem are also designed, so that we can
present the time and space costs of our solution using recursive formulas. Then,
by carefully constructing a number series and using it in the division of levels
into subsets, we can prove that our structures achieve the tradeoff presented in
Theorem 1 using the inverse-Ackermann function. This approach is novel and
exciting, and it does not directly use standard techniques for word RAM at all.

The above strategy would not achieve the desired space bound without a
succinct data structure that supports navigations in the input tree, the binary
tree that it is transformed into and the clusters in the topological partition. We
design such a structure (in Section 4) occupying only 2n + o(n) bits, which is
of independent interest. Finally, to design solutions to path reporting (in Sec-
tion 5), we follow the general framework of He et al. [22] to extract subtrees
based on the partitions of the entire weight range, and make use of a concep-
tual structure that borrows ideas from the classical range tree. One strategy of
achieving improved results is to further reduce path reporting into queries in
which the weight ranges are one-sided, which allows us to apply our succinct
index for path minimum queries to achieve the tradeoffs presented in the second
half of the abstract. We further apply a tree covering strategy to reduce the
space cost for the case in which the number of distinct weights is much smaller
than n, and hence prove Theorem 2.

2 Preliminaries

Succinct Data Structures. Bit vectors are one of the main building blocks in
many space efficient data structures. Let B[1..n] denote a bit vector of size n. For
α ∈ {0, 1}, rankα(B, i) counts α-bits in B[1..i], while selectα(B, i) finds the i-
th α-bit in B. The following lemma presents succinct bit vector representations:

Succinct Indices for Path Minimum, with Applications to Path Reporting 251

Lemma 1 ([30]). A bit vector with n−m zeros and m ones can be represented
using lg

(
n
m

)
+O(n lg lgn/ lgn) bits of space to support rankα, selectα, and the

access to each bit in constant time.

The next lemma presents succinct ordinal trees over an alphabet of size σ =
o(lg lg n), and unlabeled trees can be considered as a special case:

Lemma 2 ([16, 19, 13]). An ordinal tree T on n nodes over an alphabet of size
σ can be encoded in n(lg σ + 2) + O(σn lg lg lgn/ lg lgn) bits of space to support
the following operations in O(1) time. Here x and y, which are nodes in T , are
identified by preorder ranks. A node is its own 0-th ancestor. In addition, a node
with label α is an α-node, and an α-node is an α-ancestor of its descendants.

– depth(T, x): the depth of x (i.e., the number of ancestors of x);
– depthα(T, x): the number of α-ancestors of x;
– parent(T, x): the parent of x;
– level anc(T, x, i): the i-th lowest ancestor of x;
– level ancα(T, x, i): the i-th lowest α-ancestor of x;
– LCA(T, x, y): the lowest common ancestor of x and y.

Topological Partitions and Topology Trees. Frederickson [15] presented
topological partitions for online updating of minimum spanning trees. An input
tree T , which may have arbitrary degree, is transformed into a binary tree B;
and then B is partitioned as follows:

Lemma 3 ([15]). A binary tree B on n nodes can be partitioned into a hierarchy
of clusters with h + 1 levels for some h = O(lg n): each cluster is a connected
component of B; the only cluster at level h contains all the nodes in B, and each
cluster at level 0 contains a single node; a cluster at level i > 0 is the disjoint
union of at most 4 clusters at level i − 1; at level i, there are at most (3/4)in
clusters of size at most 4i, which form a partition of the nodes in the binary tree;
and each cluster has at most 3 nodes that are connected to the outside, which
are called its endpoints.

The hierarchy of clusters is referred to as the topology tree of T and B, which
is denoted by H. A node at level i > 0 of H represents a cluster C at level i
of the hierarchy, and its children represent the clusters at the lower level that
partition C. In particular, the leaf nodes of H, which are at level 0, represent
individual nodes of the binary tree B.

Tree Extraction. He et al. [20, 22] introduced tree extraction to support path
queries. This technique is based on the deletion operation of tree edit distance [4].
To delete a non-root node u, its children are inserted in place of u into the list
of children of its parent, preserving the original left-to-right order. Let T be an
ordinal tree and X be a subset of nodes in T . The X-extraction of T , FX , is
defined to be the ordinal forest obtained by deleting all the nodes that are not in
X from T . There is a natural one-to-one correspondence between the nodes in
X and the nodes in FX , and the ancestor-descendant and preorder relationships
among the remaining nodes are preserved. If X contains the root of T , then FX

consists of a single ordinal tree only, which is denoted by TX .

252 T.M. Chan et al.

3 Path Minimum Queries

We first give a simple lower bound for path minimum queries under the encoding
model. Due to page limitation, the proof is omitted here.

Lemma 4. In the worst case, Ω(n lg n) bits are required to encode the answers
to all possible path minimum queries over a tree on n weighted nodes.

Unlike the lower bound of Pettie [29], Lemma 4 provides a separation between
path minimum and range minimum in terms of space: Ω(n lg n) bits are required
to encode path minimum queries over a tree on n weighted nodes, while range
minimum over an array of length n can always be encoded in 2n bits [14].

Now we consider the support for path minimum queries. The space cost of
maintaining a weighted tree is dominated by storing the weights of nodes. Thus
we represent the input tree as an ordinal one, for which the nodes are identified
by their preorder ranks. This does not significantly affect the space cost.

We will assume the indexing model described in Section 1 and develop several
novel succinct indices for path minimum queries. Thus the weights of nodes are
assumed to be stored separately from the index for queries, and can be accessed
with the preorder ranks of nodes. The time cost to answer a given query is mea-
sured by the number of accesses to the index and that to node weights.

Let T be an input tree on n nodes. Here T is represented as an ordinal one,
and its nodes are identified by preorder ranks. We transform T into a binary
tree B as follows (essentially as in the usual way but with added dummy nodes):
For each node u with d > 2 children, where v1, v2, · · · , vd are children of u, we
add d− 2 dummy nodes x1, x2, · · · , xd−2. The first and the second child of u are
set to be v1 and x1, respectively. For 1 ≤ k < d − 2, the first and the second
child of xk are set to be vk+1 and xk+1, respectively. Finally, the first and the
second child of xd−2 are set to be vd−1 and vd, respectively. In this way we have
replaced u and its children with a right-leaning binary tree, where the leaf nodes
are children of u. This transformation does not change the preorder relationship
among the nodes in T . In addition, the set of non-dummy nodes along the path
between any two non-dummy nodes remain the same after transformation.

We decompose B and obtain the topology tree H using Lemma 3. For sim-
plicity, a cluster at level i is called a level-i cluster, and its endpoints are called
level-i endpoints. Since T and B are both rooted trees, each cluster contains a
node that is the ancestor of all the other nodes in the same cluster. This node
is referred to as the root of the cluster. In the topology tree H, sibling clusters
are ordered by the preorder ranks of their roots. Each cluster C is identified by
its topological rank, i.e., the preorder rank of the node in H that represents C.

To facilitate the use of topology trees, we define operations relevant to nodes,
clusters and endpoints. Here we assume that x and y are nodes in B.

– conversions between nodes in B and T ;
– level cluster(H, i, x): the level-i cluster that contains node x;
– LCC(H, x, y): the lowest-level cluster C that contains nodes x and y;
– cluster root(H, C): the root of level-i cluster C;

Succinct Indices for Path Minimum, with Applications to Path Reporting 253

– cluster endpoints(H, C): the endpoints of level-i cluster C;
– closest endpoint(H, C, x): the endpoint of C that is the closest to node x,

given that x is outside of C;
– parent(B, x): the parent node of x;
– LCA(B, x, y): the lowest common ancestor of x and y;
– endpoint rank(B, i, x): the number of level-i endpoints preceding x in pre-

order of B;
– endpoint select(B, i, j): the j-th level-i endpoint in preorder of B.

Lemma 5. Let T be an ordinal tree on n nodes. Then T , the transformed binary
tree B, and their topology tree H can be encoded in 2n + o(n) bits of space such
that the operations listed above can be supported in O(1) query time.

To present our key strategy first, we defer the proof of Lemma 5 to Section 4.
As the conversion between nodes in T and B can be performed in O(1) time,
we assume that each given query is specified by two nodes in B. Let h denote
the highest level of H. The following two query problems are defined in terms of
clusters and endpoints, for 0 ≤ i < j ≤ h:

– Pi,j(C0, C1, C2): find the minimum node along the path from an endpoint of
a level-i cluster C1 to an endpoint of another level-i cluster C2, where both
C1 and C2 are contained in the same level-j cluster C0;

– P ′
i,j(C0, C1): find the minimum node along the path from an endpoint of a

level-i cluster C1 to an endpoint of a level-j cluster C0, where C1 is in C0.

For simplicity, we drop the parameters when referring to these problems in the
rest of this section. Thus the original problem is P0,h. If Pi,j is solved, then P ′

i,j

and Pi′,j for i′ > i are also naturally solved.
Let h0 > 0 be a parameter whose value will be determined later. We will

solve P0,h0 using brute-force search, and support Ph0,h using a novel recursive
approach as described below. For each cluster C whose level is higher than or
equal to h0, we explicitly store the minimum node on the bridges of C, where
bridges are paths connecting pairs of endpoints of C (excluding the endpoints).
This requires 6i bits for a cluster at level i, as it has at most three bridges. The
overall space cost is

∑h
i=h0

(
6i · (3/4)in

)
= O(h0(3/4)h0n) bits, which is o(n)

bits when h0 = ω(1). We have the following lemmas as base cases of recursion.

Lemma 6. For i ≥ h0, Pi,i+8 can be solved in O(1) query time and 0 extra bits.

The correctness of this lemma follows from the fact that each level-(i + 8)
cluster contains a constant number of level-i clusters, which makes it possible to
split a query path into a constant number of subpaths, each being either a level-i
endpoint or a bridge of some level-i cluster which have been preprocessed.

Lemma 7. P ′
i,j can be solved using O(1) query time and O((3/4)in) extra bits.

Proof. We construct an ordinal tree Ti by extracting all level-i endpoints from
B. The size of Ti is O((3/4)in). For convenience, we denote a node in Ti by u′

iff it corresponds to a level-i endpoint u in B. The conversion between u and u′

254 T.M. Chan et al.

can be performed in O(1) time using endpoint rank and endpoint select.
Next we assign labels from alphabet {0, 1} to the nodes of Ti. We only consider

the case in which the level-j endpoint is the first one in preorder of its cluster;
the other cases can be handled similarly. Let u be any level-i endpoint and let
v be the first endpoint of C0 = level cluster(B, j, u), i.e., the level-j cluster
that contains u. Like the proof of Lemma 6, the path from u to v in B can be
split into a sequence of level-i endpoints and bridges of level-i clusters. Let x be
the next level-i endpoint on the path. We assign 1 to u′ in Ti if the minimum
node between u and v is smaller than that between x and v; otherwise we assign
0 to u′. We represent this labeled tree in O((3/4)in) bits using Lemma 2.

To find the minimum node between u and v, we need only find the closest
1-node to u′ along the path from u′ to v′ in Ti. This can be done in O(1) time
by performing level ancα and depthα operations on Ti. Let x′ be such a node.
Then the minimum node between u and v must be x or appear on some bridge
of the level-i cluster that contains x, and thus can be retrieved in O(1) time. ��

Now we turn to consider general Pi,j , for which we will develop a recursive
strategy with multiple iterations. At each iteration, we pick a sequence i = i0 <
i1 < i2 < . . . < ik = j, for which Pi0,i1 , Pi1,i2 , . . . , Pik−1,ik are assumed to be
solved at the previous iteration. By Lemma 7, we solve P ′

i,i1
, P ′

i,i2
, . . . , P ′

i,ik
using

O(k(3/4)in) bits of additional space.
Consider the support for a query of Pi,j , for which level-i endpoints u and t

are endpoints of the query path, and u and t are contained in the same level-j
cluster. W.l.o.g, we assume that t is an ancestor of u (the case in which neither
node is an ancestor of the other can be reduced to this case easily). We compute
C0 = LCC(B, u, t), which is the lowest level cluster that contains both u and
t. Let i′ be the level of C0. Then we determine s such that is < i′ ≤ is+1; s
can be computed in constant time by precomputing the result for each of the
h + 1 = O(lg n) levels. Let C1 be the level-is cluster that contains u and let x
be an endpoint of C1 that is between u and t. Similarly, let C2 be the level-is
cluster that contains t and let z be an endpoint of C2 that is between u and
t. Note that x and z can be found in constant time using level cluster and
closest endpoint. Thus the query path can be decomposed into u ∼ x ∼ z ∼ t.
The minimum node on u ∼ x and that on z ∼ t can be found by querying P ′

i,is
.

The minimum node on x ∼ z can be found by recursively querying Pis,is+1 .
Summarizing the discussion above, we have the following recurrences. Here �

is the number of iterations, and Q�(i, j) and S�(i, j) are time and space costs for
solving Pi,j at the �-th iteration.

S�+1(i, j) =
k−1∑
s=0

S�(is, is+1) + O(k(3/4)in) (1)

Q�+1(i, j) =
k−1
max
s=0

Q�(is, is+1) + O(1) (2)

Lemma 8. Given a fixed value L, there exists a recursive strategy and some
constant c such that, for 0 ≤ � ≤ L, S�(i, A�(i)) ≤ c(4/5)in and Q�(i, A�(i)) ≤ c�.

Succinct Indices for Path Minimum, with Applications to Path Reporting 255

Proof. At the 0-th iteration, we have A0(i) = i + 1. This can be used as the
base case. By Lemma 6, Pi,i+1 can be supported using constant query time at
no extra space cost. Thus the statement holds for � = 0.

At the (� + 1)-th iteration, we choose the sequence i, i+ 8, A�(i + 8), A
(2)
� (i +

8), . . . , A
(i)
� (i + 8), A

(i+1)
� (i + 8). The last term is A�+1(i). Then by Equation 1:

S�+1(i, A�+1(i)) ≤
∑

0≤j≤i

S�(A
(j)
� (i + 8), A

(j+1)
� (i + 8)) + O(i(3/4)in)

≤ O(i(3/4)in) +
∑

0≤j≤i

c(4/5)A
(j)
� (i+8)n

≤ O(i(3/4)in) + 5c(4/5)i+8n ≤ c(4/5)in

for some sufficiently large constant c. This convergence follows because 5(4/5)8 is

less than 1. Equation 2 implies Q�+1(i, A�+1(i)) ≤ O(1) + max0≤j≤i Q�(A
(j)
� (i+

8), A
(j+1)
� (i+8)) ≤ O(1)+c� ≤ c(�+1) for some sufficiently large c. The induction

thus carries through. ��

To achieve desired time-space tradeoffs, we recurse one more iteration. Given
a parameter m ≥ n, we set L = α(m,n) and h0 = 0. At the final (L + 1)-th
iteration, choose the sequence 0, 1, 2, . . . , �m/n�, AL(�m/n�). This gives

SL+1(0, AL(�m/n�)) ≤ SL(�m/n�, AL(�m/n�)) + O(�m/n�n) ≤ O(m)

and QL+1(0, AL(�m/n�)) ≤ O(L) = O(α(m,n)). Thus we have proved part (a)
of Theorem 1.

To further decrease the space cost of our index to 2n + o(n) bits, we still
recurse L levels. We choose L = α(n) and h0 =
log4 L�. Note that h0 = ω(1)
and AL(h0) ≥ h. Therefore we have SL(h0, AL(h0)) = O((4/5)h0n) = o(n), and
QL(h0, AL(h0)) = O(L) = O(α(n)). To solve P0,h0 and P ′

0,h0
, we perform brute-

force search on the query path in O(4h0) = O(α(n)) time, as a level-h0 cluster
has at most 4h0 nodes. Thus we have proved part (b) of Theorem 1.

By further constructing the preorder label sequence [22, 21] of T , we have:

Corollary 1. Let T be an ordinal tree on n nodes, each having a weight drawn
from [1..σ]. Then T can be represented (a) using n lg σ + O(m) bits of space to
support path minimum queries in O(α(m,n)) time, for any m ≥ n; or (b) using
n(lg σ+2)+o(n) bits of space to support path minimum queries in O(α(n)) time.

4 Encoding Topology Trees

Let T be an ordinal tree on n nodes. As described in Section 3, we transform
T into a binary tree B, and compute the topology tree of B as H. Let nH de-
note the number of nodes in H; clearly nH = O(n). Let i1 =
8 lg lgn� and
i2 = �(1/2) lg lg n� − 1. By Lemma 3, there are at most n1 = (3/4)i1n =

O(n/(4/3)8 lg lgn) = O(n/ lg8 lg(4/3) n) < O(n/ lg3 n) clusters at level i1, each

256 T.M. Chan et al.

being of size at most m1 = 4i1 ≤ 48 lg lgn+1 = 4 lg16 n. Similarly, there are at
most n2 = (3/4)i2n = O(n/ lg(1/2) lg(4/3) n) < O(n/(lg1/5 n)) clusters at level i2,
each being size of at most m2 = 4i2 ≤ 4(1/2) lg lgn−1 = (lgn)/4. Level-i1 clusters
are called mini-clusters, and level-i2 ones are called micro-clusters. We first store
the encodings of micro-clusters.

Lemma 9. All micro-clusters can be encoded in 2n + o(n) bits of space such
that given the topological rank of a cluster, its encoding can be retrieved in O(1)
time if it is a micro-cluster.

Proof. Note that B has at most 2n nodes. Given a micro-cluster C, we do not
store its encoding directly because it could require about 4n bits of space for
all micro-clusters. Instead, we define X to be the union of non-dummy nodes
and endpoints of C and store only CX , where CX is the X-extraction of C
as defined in Section 2. We also mark the (at most 3) dummy nodes in CX ,
which requires O(lgm2) = O(lg lg n) bits per node. Encoding CX as balanced
parentheses [27], the overall space cost of encoding C is 2nC + O(lg lg n) bits,
where nC is the number of non-dummy nodes in C. We concatenate the above
encodings of all micro-clusters ordered by topological rank and store them in
a sequence, P , of n′ = 2n + O(n lg lgn/(lg1/5 n)) bits. We construct a sparse
bit vector, P ′, of the same length, and set P ′[i] to 1 iff P [i] is the first bit
of the encoding of a micro-cluster. P ′ can be represented using Lemma 1 in

lg
(
n′
n2

)
+ O(n lg lg n/ lgn) = O(n lg lg n/(lg1/5 n)) bits to support rankα and

selectα in constant time. We construct another bit vector B0[1..nH], in which
B0[j] = 1 iff the cluster with topological rank j is a micro-cluster, which has the
same asymptotic space cost.

To retrieve the encoding of a cluster, C, whose topological rank is j, we first
use B0 to check if C is a micro-cluster. If it is, let r = rank1(B0, j). Then the
encoding of CX is P [select1(P ′, r)..select1(P ′, r + 1)− 1]. To recover C from
CX , we need only follow the procedure described at the beginning of Section 3.
This can be done in O(1) time using a lookup table F0 of o(n) bits. ��

To support operations, our main strategy is to encode global information at
levels on or above i1, information local to a mini-cluster among levels between
i2 and i1, and lookup tables for the levels contained in a micro-cluster. Extra
care is needed as the topological order of clusters is not the same as the relative
order of their roots in preorder. Details are omitted due to page limitation.

5 A Sketch of Supporting Path Reporting Queries

In this section we sketch our improved data structures for path reporting queries.
The details of supporting path reporting queries are deferred to the full version
of this paper. Our solutions present various algorithmic techniques we developed
to prove Theorem 2, as well as a simplified approach to achieve similar time-
space tradeoffs for the 2D orthogonal range reporting problem on an n× σ grid.

Succinct Indices for Path Minimum, with Applications to Path Reporting 257

Following the approach of He et al. [22], we build a conceptual range tree
on [1..σ] with branching factor f =
lgε n�. We keep splitting ranges until
the bottom level contains σ leaf ranges. This conceptual range tree has h =

logf σ� + 1 levels, among which the top level is the first level, and the bottom
level is the h-th level. For each range [a..b] in the conceptual range tree, we ob-
tain Fa,b by extracting all nodes whose weights are in [a..b] from T . Each node
x in Fa,b is assigned a label between 1 and f , which indicates the child range
at the lower level that contains the node that corresponds to x. All these Fa,b’s
are maintained in succinct representations such that path reporting queries with
respect to labels can be answered in constant time per node.

Let u and v be the endpoints of query path and [p..q] be the query range. The
algorithm of He et al. [22] traverses the conceptual range tree from top to bottom,
and splits [p..q] into O(lg σ/ lg lgn) canonical ranges, each being a single range,
or the union of consecutive sibling ranges in the conceptual range tree. Thus the
original query can be transformed into O(lg σ/ lg lgn) subqueries on different
Fa,b’s. This relatively simple algorithm requires an overhead of O(lg σ/ lg lg n)
time, in addition to O(lg σ/ lg lgn) time per node in the output, since we need
convert a node in Fa,b to that of T level by level.

Our new algorithm avoids traversing the conceptual range tree level by level.
We make use of the ball-inheritance problem, such that, given a node x in
some Fa,b, we can determine the node in T that corresponds to x much faster
than O(lg σ/ lg lgn) time. To support the given query, we first find the low-
est range [a..b] in the conceptual range tree that completely contains [p..q]. Let
[a1..b1], [a2..b2], . . . , [af ..bf] be the child ranges of [a..b] in increasing order of left
endpoints. We determine α, β ∈ [1..f], such that [aα..bβ] covers [p..q], and β−α
is minimized. The query range can thus be decomposed into [p..bα], [aα+1..bβ−1]
and [aβ ..q]. The support for the second subrange is the same as that of He et
al. [22]. For the third subrange, we employ the succinct index designed in Theo-
rem 1 with m = O(n lg∗ n), such that we can enumerate the nodes in Faβ ,q that
are on the query path in increasing order of weights. For each of them, we use
the auxiliary data structures for the ball-inheritance problem to find the corre-
sponding node in T . This procedure is terminated if the weight of the current
node is above q. The support for the first subrange is similar.

References

1. Alon, N., Schieber, B.: Optimal preprocessing for answering on-line product
queries. Tech. rep., Tel Aviv University (1987)

2. Alstrup, S., Holm, J.: Improved algorithms for finding level ancestors in dynamic
trees. In: Welzl, E., Montanari, U., Rolim, J.D.P. (eds.) ICALP 2000. LNCS,
vol. 1853, pp. 73–84. Springer, Heidelberg (2000)

3. Barbay, J., He, M., Munro, J.I., Satti, S.R.: Succinct indexes for strings, binary
relations and multilabeled trees. ACM Transactions on Algorithms 7(4), 52 (2011)

4. Bille, P.: A survey on tree edit distance and related problems. Theor. Comput.
Sci. 337(1-3), 217–239 (2005)

5. Bringmann, K., Larsen, K.G.: Succinct sampling from discrete distributions.
In: STOC, pp. 775–782 (2013)

258 T.M. Chan et al.

6. Brodal, G.S., Davoodi, P., Srinivasa Rao, S.: Path minima queries in dynamic
weighted trees. In: Dehne, F., Iacono, J., Sack, J.-R. (eds.) WADS 2011. LNCS,
vol. 6844, pp. 290–301. Springer, Heidelberg (2011)

7. Brodal, G.S., Davoodi, P., Rao, S.S.: On space efficient two dimensional range
minimum data structures. Algorithmica 63(4), 815–830 (2012)

8. Chan, T.M., Larsen, K.G., Pǎtraşcu, M.: Orthogonal range searching on the RAM,
revisited. In: Symposium on Computational Geometry, pp. 1–10 (2011)

9. Chazelle, B.: Computing on a free tree via complexity-preserving mappings. Algo-
rithmica 2, 337–361 (1987)

10. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
3rd edn. MIT Press (2009)

11. Demaine, E.D., Landau, G.M., Weimann, O.: On cartesian trees and range mini-
mum queries. Algorithmica 68(3), 610–625 (2014)

12. Demaine, E.D., López-Ortiz, A.: A linear lower bound on index size for text
retrieval. J. Algorithms 48(1), 2–15 (2003)

13. Farzan, A., Munro, J.I.: A uniform paradigm to succinctly encode various families
of trees. Algorithmica 68(1), 16–40 (2014)

14. Fischer, J., Heun, V.: Space-efficient preprocessing schemes for range minimum
queries on static arrays. SIAM J. Comput. 40(2), 465–492 (2011)

15. Frederickson, G.N.: Data structures for on-line updating of minimum spanning
trees, with applications. SIAM J. Comput. 14(4), 781–798 (1985)

16. Geary, R.F., Raman, R., Raman, V.: Succinct ordinal trees with level-ancestor
queries. ACM Transactions on Algorithms 2(4), 510–534 (2006)

17. Golynski, A.: Optimal lower bounds for rank and select indexes. Theor. Comput.
Sci. 387(3), 348–359 (2007)

18. Harel, D., Tarjan, R.E.: Fast algorithms for finding nearest common ancestors.
SIAM J. Comput. 13(2), 338–355 (1984)

19. He, M., Munro, J.I., Satti, S.R.: Succinct ordinal trees based on tree covering.
ACM Transactions on Algorithms 8(4), 42 (2012)

20. He, M., Munro, J.I., Zhou, G.: Path queries in weighted trees. In: Asano, T.,
Nakano, S.-I., Okamoto, Y., Watanabe, O. (eds.) ISAAC 2011. LNCS, vol. 7074,
pp. 140–149. Springer, Heidelberg (2011)

21. He, M., Munro, J.I., Zhou, G.: A framework for succinct labeled ordinal trees over
large alphabets. In: Chao, K.-M., Hsu, T.-S., Lee, D.-T. (eds.) ISAAC 2012. LNCS,
vol. 7676, pp. 537–547. Springer, Heidelberg (2012)

22. He, M., Munro, J.I., Zhou, G.: Succinct data structures for path queries. In: Ep-
stein, L., Ferragina, P. (eds.) ESA 2012. LNCS, vol. 7501, pp. 575–586. Springer,
Heidelberg (2012)

23. Kaplan, H., Shafrir, N.: Path minima in incremental unrooted trees. In: Halperin,
D., Mehlhorn, K. (eds.) ESA 2008. LNCS, vol. 5193, pp. 565–576. Springer,
Heidelberg (2008)

24. King, V.: A simpler minimum spanning tree verification algorithm. Algorith-
mica 18(2), 263–270 (1997)

25. Krizanc, D., Morin, P., Smid, M.H.M.: Range mode and range median queries on
lists and trees. Nord. J. Comput. 12(1), 1–17 (2005)

26. Miltersen, P.B.: Lower bounds on the size of selection and rank indexes. In: SODA,
pp. 11–12 (2005)

Succinct Indices for Path Minimum, with Applications to Path Reporting 259

27. Munro, J.I., Raman, V.: Succinct representation of balanced parentheses and static
trees. SIAM J. Comput. 31(3), 762–776 (2001)

28. Patil, M., Shah, R., Thankachan, S.V.: Succinct representations of weighted trees
supporting path queries. J. Discrete Algorithms 17, 103–108 (2012)

29. Pettie, S.: An inverse-ackermann type lower bound for online minimum spanning
tree verification. Combinatorica 26(2), 207–230 (2006)

30. Raman, R., Raman, V., Satti, S.R.: Succinct indexable dictionaries with applica-
tions to encoding k-ary trees, prefix sums and multisets. ACM Transactions on
Algorithms 3(4) (2007)

31. Sleator, D.D., Tarjan, R.E.: A data structure for dynamic trees. J. Comput. Syst.
Sci. 26(3), 362–391 (1983)

Online Bipartite Matching with Decomposable

Weights

Moses Charikar1, Monika Henzinger2, and Huy L. Nguy˜̂en1

1 Princeton University, USA
{moses,hlnguyen}@cs.princeton.edu

2 University of Vienna, Austria
monika.henzinger@univie.ac.at

Abstract. We study a weighted online bipartite matching problem:
G(V1, V2, E) is a weighted bipartite graph where V1 is known beforehand
and the vertices of V2 arrive online. The goal is to match vertices of V2

as they arrive to vertices in V1, so as to maximize the sum of weights
of edges in the matching. If assignments to V1 cannot be changed, no
bounded competitive ratio is achievable. We study the weighted online
matching problem with free disposal, where vertices in V1 can be as-
signed multiple times, but only get credit for the maximum weight edge
assigned to them over the course of the algorithm. For this problem, the
greedy algorithm is 0.5-competitive and determining whether a better
competitive ratio is achievable is a well known open problem.

We identify an interesting special case where the edge weights are de-
composable as the product of two factors, one corresponding to each end
point of the edge. This is analogous to the well studied related machines
model in the scheduling literature, although the objective functions are
different. For this case of decomposable edge weights, we design a 0.5664
competitive randomized algorithm in complete bipartite graphs. We show
that such instances with decomposable weights are non-trivial by estab-
lishing upper bounds of 0.618 for deterministic and 0.8 for randomized
algorithms.

A tight competitive ratio of 1 − 1/e ≈ 0.632 was known previously
for both the 0-1 case as well as the case where edge weights depend
on the offline vertices only, but for these cases, reassignments cannot
change the quality of the solution. Beating 0.5 for weighted matching
where reassignments are necessary has been a significant challenge. We
thus give the first online algorithm with competitive ratio strictly better
than 0.5 for a non-trivial case of weighted matching with free disposal.

1 Introduction

In recent years, online bipartite matching problems have been intensely studied.
Matching itself is a fundamental optimization problem with several applications,
such as matching medical students to residency programs, matching men and
women, matching packets to outgoing links in a router and so on. There is a
rich body of work on matching problems, yet there are basic problems we don’t

A.S. Schulz and D. Wagner (Eds.): ESA 2014, LNCS 8737, pp. 260–271, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

Online Bipartite Matching with Decomposable Weights 261

understand and we study one such question in this work. The study of the online
setting goes back to the seminal work of Karp, Vazirani and Vazirani [26] who
gave an optimal 1 − 1/e competitive algorithm for the unweighted case. Here
G(V1, V2, E) is a bipartite graph where V1 is known beforehand and the vertices
of V2 arrive online. The goal of the algorithm is to match vertices of V2 as they
arrive to vertices in V1, so as to maximize the size of the matching.

In the weighted case, edges have weights and the goal is to maximize the
sum of weights of edges in the matching. In the application of assigning ad
impressions to advertisers in display advertisement, the weights could represent
the (expected) value of an ad impression to an advertiser and the objective
function for the maximum matching problem encodes the goal of assigning ad
impressions to advertisers to as to maximize total value. If assignments to V1

cannot be changed and if edge weights depend on the online node to which they
are adjacent, it is easy to see that no competitive ratio bounded away from 0 is
achievable.

Feldman et al [18] introduced the free disposal setting for weighted matching,
where vertices in V1 can be assigned multiple times, but only get credit for
the maximum weight edge assigned to them over the course of the algorithm.
(On the other hand, a vertex in V2 can only be assigned at the time that it
arrives with no later reassignments permitted). [18] argues that this is a realistic
model for assigning ad impressions to advertisers. The greedy algorithm is 0.5
competitive for the online weighted matching problem with free disposal. They
study the weighted matching problem with capacities – here each vertex v ∈ V1 is
associated with a capacity n(v) and gets credit for the largest n(v) edge weights
from vertices in V2 assigned to v. They designed an algorithm with competitive
ratio approaching 1 − 1/e as the capacities approach infinity. Specifically, if all
capacities are at least k, their algorithm gets competitive ratio 1 − 1/ek where
ek = (1 + 1/k)k. If all capacities are 1, their algorithm is 1/2-competitive.

Aggarwal et al [1] considered the online weighted bipartite matching problem
where edge weights are only dependent on the end point in V1, i.e. each vertex
v ∈ V1 has a weight w(v) and the weight of all edges incident on v is w(v).
This is called the vertex weighted setting. They designed a 1 − 1/e competitive
algorithm. Their algorithm can be viewed as a generalization of the Ranking
algorithm of [26].

It is remarkable that some basic questions about a fundamental problem such
as matching are still open in the online setting. Our work is motivated by the
following tantalizing open problem; Is it possible to achieve a competitive ratio
better than 0.5 for weighted online matching ? Currently no upper bound better
than 1 − 1/e is known for the setting of general weights – in fact this bound
holds even for the setting of 0-1 weights. On the other hand, no algorithm with
competitive ratio better than 0.5 (achieved by the greedy algorithm) is known
for this problem. By the results of [18], the case where the capacities are all 1
seems to be the hardest case and this is what we focus on.

262 M. Charikar, M. Henzinger, and H.L. Nguy˜̂en

1.1 Our Results

We identify an interesting special case of this problem where we have a complete
graph between V1 and V2 and the edge weights are decomposable as the product
of two factors, one corresponding to each end point of the edge. This is analogous
to the well studied related machines model in the scheduling literature [5,6,9,17]
where the load of a job of size p on a machine of speed s is p/s although the
objective functions are different. Scheduling problems typically involving min-
imizing the maximum machine load (makespan) or minimizing the �p norm of
machine loads, where the load on a machine is the sum of loads of all jobs placed
on the machine. By contrast, in the problem we study, the objective (phrased
in machine scheduling terminology) is to maximize the sum of machine loads
where the load of a machine is the load of the largest job placed on the machine.
For this case of decomposable edge weights, we design a 0.5664 competitive al-
gorithm (Section 3). For display advertisement using a complete graph models
the setting of a specific market segment (such as impressions for males between
20 and 30), where every advertiser is interested in every impression. The weight
factor of the offline node u can model the value that a click has for advertiser
u, the weight factor of the online node v can model the clickthrough probability
of the user to which impression v is shown. Thus, the maximum weight match-
ing in the setting we study corresponds to maximizing the sum of the expected
values of all advertisers.

Our algorithm uses a now standard randomized doubling technique [8,20,12,23];
however the analysis is novel and non-trivial. We perform a recursive analysis
where each step proceeds as follows: We lower bound the profit that the algo-
rithm derives from the fastest machine (i.e. the load of the largest job placed on
it) relative to the difference between two optimum solutions - one corresponding
to the original instance and the other corresponding to a modified instance ob-
tained by removing this machine and all the jobs assigned to it. This is somewhat
reminiscent of, but different from the local ratio technique used to design approx-
imation algorithms. Finally, to exploit the randomness used by the algorithm we
need to establish several structural properties of the worst case sequence of jobs
– this is a departure from previous applications of this randomized doubling tech-
nique. While all previous online matching algorithms were analyzed using a local,
step-by-step analysis, we use a global technique, i.e. we reason about the entire
sequence of jobs at once. This might be useful for solving the case of online
weighted matching for general weights. The algorithm and analysis is presented
in Section 3 and an outline of the analysis is presented in Section 3.1.

A priori, it may seem that the setting of decomposable weights ought to be a
much easier case of weighted online matching since it does not capture the well
studied setting of 0-1 weights. We show that such instances with decomposable
weights are non-trivial by establishing an upper bound of (

√
5 − 1)/2 ≈ 0.618

on the competitive ratios of deterministic algorithms (Section 4) and an upper
bound of 0.8 on the competitive ratio of randomized algorithms (Section 5). The
deterministic upper bound constructs a sequence of jobs that is the solution to a
certain recurrence relation. Crucial to the success of this approach is a delicate

Online Bipartite Matching with Decomposable Weights 263

choice of parameters to ensure that the solution of the recurrence is oscillatory
(i.e. the roots are complex). In contrast to the setting with capacities, for which
a deterministic algorithm with competitive ratio approaching 1 − 1/e ≈ 0.632
exists [18], our upper bound of (

√
5−1)/2 < 1−1/e for deterministic algorithms

shows that no such competitive ratio can be achieved for the decomposable case
with unit capacities. Note that the upper bound of 1 − 1/e for the unweighted
case [26] is for randomized algorithms and does not apply to the setting of
decomposable weights that we study here.

In contrast to the vertex weighted setting (and the special case of 0-1 weights)
where reassignments to vertices in V1 cannot improve the quality of the solution,
any algorithm for the decomposable weight setting must necessarily exploit re-
assignments in order to achieve a competitive ratio bounded away from 0. For
this class of instances, we give an upper bound approaching 0.5 for the compet-
itive ratio of the greedy algorithm. This shows that for decomposable weights
greedy’s performance cannot be better than for general weights, where it is 0.5-
competitive (Section 2).

1.2 Related Work

Goel and Mehta [21] and Birnbaum and Mathieu [10] simplified the analysis of
the Ranking algorithm considerably. Devanur et al [15] recently gave an elegant
randomized primal-dual interpretation of [26]; their framework also applies to the
generalization to the vertex weighted setting by [1]. Haeupler et al [24] studied
online weighted matching in the stochastic setting where vertices from V2 are
drawn from a known distribution. The stochastic setting had been previously
studied in the context of unweighted bipartite matching in a sequence of papers
[19,28]. Recent work has also studied the random arrival model (for unweighted
matching) where the order of arrival of vertices in V2 is assumed to be a random
permutation: In this setting, Karande, at al [25] and Mahdian and Yan [27]
showed that the Ranking algorithm of [26] achieves a competitive ratio better
than 1−1/e. A couple of recent papers analyze the performance of a randomized
greedy algorithm and an analog of the Ranking algorithm for matching in general
graphs [32,22]. Another recent paper introduces a stochastic model for online
matching where the goal is to maximize the number of successful assignments
(where success is governed by a stochastic process) [30].

A related model allowing cancellation of previously accepted online nodes was
studied in [13,7,4] and optimal deterministic and randomized algorithms were
given. In their setting the weight of an edge depends only on the online node.
Additionally in their model they decide in an online fashion only which online
nodes to accept, not how to match these nodes to offline nodes. If a previously
accepted node is later rejected, a non-negative cost is incurred. Since the actual
matching is only determined after all online nodes have been seen, their model
is very different from ours: Even if the cost of rejection of a previously accepted
node is set to 0, the key difference is that they do not commit to a matching
at every step and the intended matching can change dramatically from step to
step. Thus, it does not solve the problem that we are studying.

264 M. Charikar, M. Henzinger, and H.L. Nguy˜̂en

A related problem that has been studied is online matching with preemption
[29,3,16]. Here, the edges of a graph arrive online and the algorithm is required
to maintain a subset of edges that form a matching. Previously selected edges
can be rejected (preempted) in favor of newly arrived edges. This problem differs
from the problem we study in two ways: (1) the graph is not necessarily bipartite,
and (2) edges arrive one by one. In our (classic) case, vertices arrives online and
all incident edges to a newly arrived vertex v are revealed when v arrives.

Another generalization of online bipartite matching is the Adwords problem
[31,14]. In addition, several online packing problems have been studied with
applications to the Adwords and Display Advertisement problem [11,21,2].

1.3 Notation and Preliminaries

We consider the following variant of the online bipartite matching problem. The
input is a complete bipartite graph G = (V1∪V2, V1×V2) along with two weight
functions s : V1 → R+ and w : V2 → R+. The weight of each edge e = (u, v)
is the product s(u) · w(v). At the beginning, only s is given to the algorithm.
Then, the vertices of V2 arrive one by one. When a new vertex v arrives, w(v)
is revealed and the algorithm has to match it to a vertex in V1. At the end, the
reward of each vertex u ∈ V1 is the maximum weight assigned to u times s(u).
The goal of the algorithm is to maximize the sum of the rewards. To simplify
the presentation we will call vertices of V1 machines and vertices of V2 jobs. The
s-value of a machine u will be called the speed of the machines and the w-value
of a job v is called the size of the job. Thus, the goal of the online algorithm is
to assign jobs to machines. However, we are not studying the “classic” variant
of the problem since we are using a different optimization function, motivated
by display advertisements.

2 Upper Bound for the Greedy Algorithm

We begin by addressing an obvious question, which is how well a greedy approach
would solve our problem, and using the proof to provide some intuition for
our algorithm in the next section. We analyze here the following simple greedy
algorithm: When a job v arrives, the algorithm computes for every machine u
the difference between the weight of (u, v) and the weight (u, v′), where v′ is the
job currently assigned to u. If this difference is positive for at least one machine,
the job is assigned to a machine with maximum difference.

Theorem 1. The competitive ratio of the greedy algorithm is at most 1
2−ε for

any ε > 0.

Proof. Consider the following instance. V1 consists of a vertex a with s(a) = 1
and t = 1/ε2 vertices b1, . . . , bt with s(bi) = ε/2 ∀i. V2 consists of the following
vertices arriving in the same order d1, . . . , d1+t where w(di) = (1−ε/2)−i. We will
prove by induction that all vertices di are assigned to a. When d1 arrives, nothing
is assigned so it is assigned to a. Assume that all the first t vertices are assigned

Online Bipartite Matching with Decomposable Weights 265

to a when dt+1 arrives. The gain by assigning di+1 to a is (w(di+1)−w(di))s(a) =
ε(1− ε/2)−i−1/2. The gain by assigning di+1 to some bj is w(di+1)s(bj) = ε(1−
ε/2)−i−1/2. Thus, the algorithm can assign di+1 to a. The total reward of the
algorithm is (1 − ε/2)−1−t. The optimal solution is to assign d1+t to a and the
rest to bi’s, getting (1− ε/2)−1−t + (1− ε/2)−t− 1 ≥ (2− ε)(1− ε/2)−1−t. Thus,
the competitive ratio is at most 1

2−ε . ��

The instance used in the proof above suggests some of the complications an
algorithm has to deal with in the setting of decomposable weights: in order
to have competitive ratio bounded away from 0.5, an online algorithm must
necessarily place some jobs on the slow machines. In fact it is possible to design
an algorithm with competitive ratio bounded away from 0.5 for the specific set
of machines used in this proof (for any sequence of jobs). The idea is to ensure
that a job is placed on the fast machine only if its size is larger than (1+γ) times
the size of the largest job currently on the fast machine (for an appropriately
chosen parameter γ). Such a strategy works for any set of machines consisting
of one fast machine and several slow machines of the same speed. However, we
do not know how to generalize this approach to an arbitrary set of machines.
Still, this strategy (i.e. ensuring that jobs placed on a machine increase in size
geometrically) was one of the motivations behind the design of the randomized
online algorithm to be presented next.

3 Randomized Algorithm

We now describe our randomized algorithm which uses a parameter c we will
specify later: The algorithm picks values xi ∈ (0, 1] uniformly and at random,
independently for each machine i. Each job of weight w considered by machine
i is placed in the unique interval w ∈ (ck+xi , ck+1+xi] where k ranges over all
integers. When a new job w arrives, the algorithm checks the machines in the
order of decreasing speed (with ties broken in an arbitrary but fixed way). For
machine i it first determines the unique interval into which w falls, which depends
on its choice of xi. If the machine currently does not have a job in this or a bigger
interval (with larger k), w is assigned to i and the algorithm stops, otherwise
the algorithm checks the next machine.

The following function arises in our analysis:

Definition 1. Define h(c) = 1 − 1

β
W

(
βeβ

c

)
where β = c ln(c)

c−1 − 1 and W () is the Lambert W function (i.e. inverse of f(x) =
xex).

We will prove the following theorem:

Theorem 2. For c ≥ e, the randomized algorithm has competitive ratio

min
(

c−1
c ln(c) , h(c)

)
. In particular, for c = 3.55829, the randomized algorithm has

a competitive ratio 0.5664.

266 M. Charikar, M. Henzinger, and H.L. Nguy˜̂en

3.1 Analysis Outline

We briefly outline the analysis strategy before describing the details. An instance
of the problem consists of a set of jobs and a set of machines. The (offline)
optimal solution to an instance is obtained by ordering machines from fastest
to slowest, ordering jobs from largest to smallest and assigning the ith largest
job to the ith fastest machine. Say the machines are numbered 1, 2, . . . n, from
fastest to slowest. Let OPTi denote the value of the optimal solution for the
instance seen by the machines from i onwards, i.e. the instance consisting of
machines i, i + 1, . . . n, and the set of jobs passed by the (i − 1)st machine
to the ith machine in the online algorithm. Then OPT1 = OPT , the value
of the optimal solution for the original instance. Even though we defined OPTi

to be the value of the optimal solution, we will sometimes use OPTi to denote
the optimal assignment, although the meaning will be clear from context. Define
OPTn+1 to be 0. For 2 ≤ i ≤ n, OPTi is a random variable that depends on
the random values xi′ picked by the algorithm for i′ < i. In the analysis, we will
define random variables Δi such that Δi ≥ OPTi−OPTi+1 (see Lemma 1 later).
Let Ai denote the profit of the online algorithm derived from machine i (i.e. the
size of the largest job assigned to machine i times the speed of machine i).
Let A =

∑n
i=1 Ai be the value of the solution produced by the online algorithm.

We will prove that for 1 ≤ i ≤ n,

E[Ai] ≥ αE[Δi] ≥ α(E[OPTi] − E[OPTi+1]) (1)

for a suitable choice of α > 0.5. The expectations in (1) are taken over the ran-
dom choices of machine 1, . . . i. Note that OPTi−OPTi+1 is a random variable,
but the sum of these quantities for 1 ≤ i ≤ n is OPT1 − OPTn+1 = OPT , a
deterministic quantity. Summing up (1) over i = 1, . . . n, we get E[A] ≥ α ·OPT ,
proving that the algorithm gives an α approximation.

Inequality (1) applies to a recursive application of the algorithm to the subin-
stance consisting of machines i, . . . n and the jobs passed from machine i − 1 to
machine i. The subinstance is a function of the random choices made by the first
i− 1 machines. We will prove that for any instance of the random choices made
by the first i− 1 machines,

E[Ai] ≥ αE[Δi]. (2)

Here, the expectation is taken over the random choice of machine i. (2) imme-
diately implies (1) by taking expectation over the random choices made by the
first i− 1 machines.

We need to establish (2). In fact, it suffices to do this for i = 1 and the proof
applies to all values of i since (2) is a statement about a recursive application of
the algorithm.

Wlog, we normalize so that the fastest machine has speed 1 and the largest
job is c. Note that this is done by simply multiplying all machine speeds by a
suitable factor and all job sizes by a suitable factor – both the LHS and the RHS
of (2) are scaled by the same quantity.

Online Bipartite Matching with Decomposable Weights 267

In order to compare Δ1 with the profit of the algorithm, we decompose the
instance into a convex combination of simpler threshold instances in Lemma 4.
Here, the speeds are either all the same or take only two different values, 0 and
1. It suffices to compare the profit of the algorithm to OPT on such threshold
instances.

Intuitively, if there are so few fast machines that even a relatively large job
(job of weight at least 1) got assigned to a slow machine in OPT, then the
original instance is mostly comparable to the threshold instance where only a
few machines have speed 1 and the rest have speed 0. Even if the fastest machine
gets jobs assigned to machines of speed 0 in OPT, this does not affect the profit
of the algorithm relative to OPT because OPT does not profit from these jobs
either. Thus we only care about jobs of weight at least 1. Because a single
machine can get at most two jobs of value in the range [1, c], handling this case
only requires analyzing at most two jobs. The proof for this case is contained in
Lemma 3.

On the other hand, if there are a lot of fast machines so that all large jobs are
assigned to fast machines in OPT, then the original instance is comparable to
the threshold instance where all machines have speed 1. In this case, the fastest
machine can get assigned many jobs that all contribute to OPT. However, be-
cause all speeds are the same, we can deduce the worst possible sequence of jobs:
after the first few jobs, all other jobs have weights forming a geometric sequence.
The rest of the proof is to analyze the algorithm on this specific sequence. The
detailed proof is contained in Lemma 4.

The proofs of both Lemmata 3 and 4 use the decomposable structure of the
edge weights.

3.2 Analysis Details

Recall that OPT1 is the value of the optimal solution for the instance, and
OPT2 is the value of the optimal solution for the subinstance seen by machine
2 onwards. Assume wlog that all job sizes are distinct (by perturbing job sizes
infinitesimally). For y ≤ c, let j(y) be the size of the largest job ≤ y or 0, if
no such job exists. Let s(y) be the speed of the machine in the optimal solution
that j(y) is assigned to or 0 if j(y) = 0. If there is a job of size y then s(y)
is the speed of the machine in the optimal solution that this job is assigned
to. Note that s(y) ∈ [0, 1] is monotone increasing with s(c) = 1. We refer to
the function s as the speed profile. Note that s is not a random variable. Let
the assignment sequence w = (w,w1, w2, . . .) denote the set of jobs assigned
to the fastest machine by the algorithm where w > w1 > w2 > Let max(w)
denote the maximum element in the sequence w, i.e. max(w) = w. In Lemma 3,
we bound OPT1−OPT2 by a function that depends only on w, s, and c. Such a
bound is possible because of the fact that any job can be assigned to any machine,
i.e. the graph is a complete graph. The value we take for the aforementioned
random variable Δ1 turns out to be exactly this bound.

Lemma 1. OPT1 −OPT2 ≤ c− (c− w)s(w) +
∑

k≥1 wk · s(wk)

268 M. Charikar, M. Henzinger, and H.L. Nguy˜̂en

Proof. Let I1, I2 be the instances corresponding to OPT1 and OPT2. I2 is ob-
tained from I1 by removing the fastest machine and the set of jobs that are
assigned to the fastest machine by the algorithm. Let us consider changing I1 to
I2 in two steps: (1) Remove the fastest machine and the largest job w assigned by
the algorithm to the fastest machine. (2) Remove the jobs w1, w2, For each
step, we will bound the change in the value of the optimal solution resulting in
a feasible solution for I2 and computing its value – this will be a lower bound
for OPT2.

First we analyze Step 1: OPT1 assigns the largest job c to the fastest machine,
contributing c to its value. The algorithm assigns w to the fastest machine instead
of c. In OPT1, w was assigned to a machine of speed s(w). When we remove
w and the fastest machine from I1, one possible assignment to the resulting
instance is obtained by placing c on the machine of speed s(w). The value of the
resulting solution is lower by exactly (c + w · s(w)) − c · s(w) = c− (c−w)s(w).

Next, we analyze Step 2: Jobs w1, w2, . . . were assigned to machines of speeds
s(w1), s(w2), . . . in OPT1. When we remove jobs w1, w2, . . ., one feasible assign-
ment for the resulting instance is simply not to assign any jobs to the machines
s(w1), s(w2), . . ., and keep all other assignments unchanged. The value of the
solution drops by exactly

∑
k≥1 wk · s(wk).

Thus we exhibited a feasible solution to instance I2 of value V where

OPT1 − V = c− (c− w)s(w) +
∑
k≥1

wk · s(wk).

But OPT2 ≥ V . Hence, the lemma follows. ��
We define the random variable Δ1, a function of the assignment sequence w and
the speed profile s, to be

Δ1(w, s) = c− (c− w)s(w) +
∑
k≥1

wk · s(wk).

As defined, Δ1(w, s) ≥ OPT1 − OPT2. We note that even though OPT1 and
OPT2 are functions of all the jobs in the instance, Δ1 only depends on the subset
of jobs assigned to the fastest machine by the algorithm. Our goal is to show

E[A1] = E[max(w)] ≥ αE[Δ1].
First, we argue that it suffices to restrict our analysis to a simple set of step

function speed profiles st, 0 ≤ t ≤ 1: For t ∈ (0, 1], st(y) = 1 for y ∈ [ct, c] and
st(y) = 0 for y < ct. For t = 0, s0(y) = 1 for all y ≤ c. The proof is omitted.

Lemma 2. Suppose that for t = 0 and for all t ∈ (0, 1] such that there exists a
job of weight ct, we have

E[max(w)] ≥ αE[Δ1(w, st)] (3)

Then, E[max(w)] ≥ α(E[OPT1] − E[OPT2]).

Note that since we scaled job sizes, the thresholds (i.e interval boundaries)
ck+x1 should also be scaled by the same quantity (say γ). After scaling, let
x ∈ (0, 1] be such that cx is the unique threshold from the set {γck+x1 , k integer}
in (1, c]. Since x1 is uniformly distributed in (0, 1], x is also uniformly distributed

Online Bipartite Matching with Decomposable Weights 269

in (0, 1]. Having defined x thus, the interval boundaries picked by the algorithm
for the fastest machine are cx+k for integers k.

We prove (3) for α = min
(

c−1
c ln(c) , h(c)

)
in two separate lemmata, one for the

case t > 0 (Lemma 3) and the other for the case t = 0 (Lemma 4). Recall that
the expression for Δ1 only depends on the subset of jobs assigned to the fastest
machine. We call a job a local maximum if it is larger than all jobs preceding it.
Since the algorithm assigns a new job to the fastest machine if and only if it falls
in a larger interval than the current largest job, it follows that any job assigned
to the fastest machine must be a local maximum.

Define mS(y) to be the minimum job in the sequence of all local maxima in
the range (y, cy], i.e., the first job larger than y and at most cy, if such a job
exists and 0 otherwise. We use mS(y) in two ways. (1) We define u0 = mS(1).
Note that u0 is not a random variable. We use u0 in Lemma 3 to prove the
desired statement for t > 0. Specifically, we use u0 to compute (i) a lower bound
for E[w] as a function of u0 (and not of any other jobs) and (ii) an upper bound
for E[Δ1] as a function of u0. Combining (i) and (ii) we prove that the desired
inequality holds for all u0. (2) In Lemma 4 we bound E[

∑
k≥1 wk] by a sum of

mS(y) over suitable values of y. This simplifies the analysis since the elements in
the subsequence of all local maxima are not random variables, while the values
in w are random variables.

We first prove some simple properties of u0 that we will use:

Claim. (1) u0 ≤ w and (2) u0 ≥ w1.

Proof. u0 ≤ w as u0 is the minimum element in the sequence of all local maxima
in (1, c] and w is the element from the interval (1, c] picked by the algorithm.

w1 is the minimum element in the sequence of local maxima in the range
(cx−k−1, cx−k] for x ∈ (0, 1] and k a non-negative integer. Either u0 ≥ cx−k ≥ w1,
or u0 also falls into (cx−k−1, cx−k] and u0 ≥ w1 follows from the fact that w1 is
the smallest local maximum in this range, while u0 is an arbitrary local maximum
in this range. ��

The next lemmata conclude our algorithm analysis. Proofs are omitted.

Lemma 3. For c ≥ e, t ∈ (0, 1] such that there exists a job of weight ct, and

α = min
(

c−1
c ln(c) , h(c)

)
, we have

αE[Δ1(w, st)] ≤ E[max(w)]

Lemma 4. For s0(x) ≡ 1 and α = h(c), we have E[max(w)] ≥ αE[Δ1(w, s0)].

4 Upper Bound for Deterministic Algorithms

To prove an upper bound of a, we construct an instance such that any deter-
ministic algorithm has competitive ratio at most a for some prefix of the request
sequence. The instance has one fast machine of speed r > 1 and n slow machines
of speed 1. The request sequence has non-decreasing job sizes satisfying a certain
oscillatory recurrence relation. The full proof is in the full version.

270 M. Charikar, M. Henzinger, and H.L. Nguy˜̂en

Theorem 3. The competitive ratio of any deterministic algorithm is at most
(
√

5 − 1)/2 + ε ≈ 0.618034 + ε for any ε > 0.

5 Upper Bound for Randomized Algorithms

To establish the bound for randomized algorithms, we use Yao’s principle and
show an upper bound on the expected competitive ratio of any deterministic
algorithm on a distribution of instances. The construction uses one fast machine
of speed 1 and n slow machines of speed 1/4. The request sequence has non-
decreasing sizes 2i. The prefix of this sequence ending with size 2i is presented
to the algorithm with probability c/2i, where c is a normalizing constant. We
show that the best algorithm for this sequence achieves at most cn+ 1 while the
optimal algorithm achieves roughly 5nc/4. The proof is in the full version.

Theorem 4. The competitive ratio of any randomized algorithm against an
oblivious adversary is at most 0.8 + ε for any ε > 0.

Acknowledgments. MC was supported by NSF awards CCF 0832797, AF
0916218 and a Google research award. MH’s support: The research leading to
these results has received funding from the European Research Council un-
der the European Union’s Seventh Framework Programme (FP/2007-2013) /
ERC Grant Agreement no. 340506 and the Austrian Science Fund (FWF) grant
P23499-N23. HN was supported by NSF awards CCF 0832797, AF 0916218, a
Google research award, and a Gordon Wu fellowship.

References

1. Aggarwal, G., Goel, G., Karande, C., Mehta, A.: Online vertex-weighted bipartite
matching and single-bid budgeted allocations. In: SODA, pp. 1253–1264 (2011)

2. Agrawal, S., Wang, Z., Ye, Y.: A dynamic near-optimal algorithm for online linear
programming. CoRR, abs/0911.2974 (2009)

3. Badanidiyuru Varadaraja, A.: Buyback problem-approximate matroid intersection
with cancellation costs. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011,
Part I. LNCS, vol. 6755, pp. 379–390. Springer, Heidelberg (2011)

4. Ashwinkumar, B.V., Kleinberg, R.: Randomized online algorithms for the buyback
problem. In: Leonardi, S. (ed.) WINE 2009. LNCS, vol. 5929, pp. 529–536. Springer,
Heidelberg (2009)

5. Aspnes, J., Azar, Y., Fiat, A., Plotkin, S., Waarts, O.: On-line routing of virtual
circuits with applications to load balancing and machine scheduling. Journal of the
ACM (JACM) 44(3), 486–504 (1997)

6. Azar, Y.: On-line load balancing. Online Algorithms, 178–195 (1998)
7. Babaioff, M., Hartline, J.D., Kleinberg, R.D.: Selling ad campaigns: online algo-

rithms with cancellations. In: EC, pp. 61–70 (2009)
8. Beck, A., Newman, D.: Yet more on the linear search problem. Israel journal of

mathematics 8(4), 419–429 (1970)
9. Berman, P., Charikar, M., Karpinski, M.: On-line load balancing for related ma-

chines. Journal of Algorithms 35(1), 108–121 (2000)
10. Birnbaum, B.E., Mathieu, C.: On-line bipartite matching made simple. SIGACT

News 39(1), 80–87 (2008)

Online Bipartite Matching with Decomposable Weights 271

11. Buchbinder, N., Jain, K., Naor, J(S.): Online primal-dual algorithms for maximiz-
ing ad-auctions revenue. In: Arge, L., Hoffmann, M., Welzl, E. (eds.) ESA 2007.
LNCS, vol. 4698, pp. 253–264. Springer, Heidelberg (2007)

12. Chakrabarti, S., Phillips, C., Schulz, A., Shmoys, D., Stein, C., Wein, J.: Improved
scheduling algorithms for minsum criteria. In: Meyer, F., Monien, B. (eds.) Au-
tomata, Languages and Programming. LNCS, vol. 1099, pp. 646–657. Springer,
Heidelberg (1996)

13. Constantin, F., Feldman, J., Muthukrishnan, S., Pál, M.: An online mechanism for
ad slot reservations with cancellations. In: SODA, pp. 1265–1274 (2009)

14. Devanur, N.R., Hayes, T.P.: The adwords problem: Online keyword matching with
budgeted bidders under random permutations. In: EC, pp. 71–78 (2009)

15. Devanur, N.R., Jain, K., Kleinberg, R.: Randomized primal-dual analysis of ranking
for online bipartite matching. In: SODA (2013)

16. Epstein, L., Levin, A., Segev, D., Weimann, O.: Improved bounds for online pre-
emptive matching. CoRR, abs/1207.1788 (2012)

17. Epstein, L., Sgall, J.: A lower bound for on-line scheduling on uniformly related
machines. Operations Research Letters 26(1), 17–22 (2000)

18. Feldman, J., Korula, N., Mirrokni, V., Muthukrishnan, S., Pál, M.: Online ad
assignment with free disposal. In: Leonardi, S. (ed.) WINE 2009. LNCS, vol. 5929,
pp. 374–385. Springer, Heidelberg (2009)

19. Feldman, J., Mehta, A., Mirrokni, V., Muthukrishnan, S.: Online stochastic match-
ing: Beating 1-1/e. In: 50th Annual IEEE Symposium on Foundations of Computer
Science, FOCS 2009, pp. 117–126. IEEE (2009)

20. Gal, S.: Search games. Mathematics in science and engeneering, vol. 149 (1980)
21. Goel, G., Mehta, A.: Online budgeted matching in random input models with

applications to adwords. In: SODA, pp. 982–991 (2008)
22. Goel, G., Tripathi, P.: Matching with our eyes closed. In: FOCS, pp. 718–727 (2012)
23. Goemans, M., Kleinberg, J.: An improved approximation ratio for the minimum

latency problem. Mathematical Programming 82(1), 111–124 (1998)
24. Haeupler, B., Mirrokni, V.S., Zadimoghaddam, M.: Online stochastic weighted

matching: Improved approximation algorithms. In: Chen, N., Elkind, E., Koutsou-
pias, E. (eds.) Internet and Network Economics. LNCS, vol. 7090, pp. 170–181.
Springer, Heidelberg (2011)

25. Karande, C., Mehta, A., Tripathi, P.: Online bipartite matching with unknown
distributions. In: STOC, pp. 587–596 (2011)

26. Karp, R.M., Vazirani, U.V., Vazirani, V.V.: An optimal algorithm for on-line bi-
partite matching. In: STOC, pp. 352–358 (1990)

27. Mahdian, M., Yan, Q.: Online bipartite matching with random arrivals: an ap-
proach based on strongly factor-revealing LPs. In: STOC, pp. 597–606 (2011)

28. Manshadi, V., Gharan, S., Saberi, A.: Online stochastic matching: Online actions
based on offline statistics. In: Proceedings of the Twenty-Second Annual ACM-
SIAM Symposium on Discrete Algorithms, pp. 1285–1294. SIAM (2011)

29. McGregor, A.: Finding graph matchings in data streams. In: Chekuri, C., Jansen,
K., Rolim, J.D.P., Trevisan, L. (eds.) APPROX 2005 and RANDOM 2005. LNCS,
vol. 3624, pp. 170–181. Springer, Heidelberg (2005)

30. Mehta, A., Panigrahi, D.: Online matching with stochastic rewards. In: FOCS, pp.
728–737 (2012)

31. Mehta, A., Saberi, A., Vazirani, U.V., Vazirani, V.V.: Adwords and generalized
on-line matching. In: FOCS, pp. 264–273 (2005)

32. Poloczek, M., Szegedy, M.: Randomized greedy algorithms for the maximum
matching problem with new analysis. In: FOCS, pp. 708–717 (2012)

A Faster Algorithm for Computing Straight

Skeletons

Siu-Wing Cheng1, Liam Mencel2,�, and Antoine Vigneron2

1 The Hong Kong University of Science and Technology
Clear Water Bay, Kowloon, Hong Kong

scheng@cse.ust.hk
2 King Abdullah University of Science and Technology

Thuwal 23955-6900, Saudi Arabia
{antoine.vigneron,liam.mencel}@kaust.edu.sa

Abstract. We present a new algorithm for computing the straight skele-
ton of a polygon. For a polygon with n vertices, among which r are reflex
vertices, we give a deterministic algorithm that reduces the straight skele-
ton computation to a motorcycle graph computation in O(n(log n) log r)
time. It improves on the previously best known algorithm for this reduc-
tion, which is randomized, and runs in expected O(n

√
h+ 1 log2 n) time

for a polygon with h holes. Using known motorcycle graph algorithms,
our result yields improved time bounds for computing straight skeletons.
In particular, we can compute the straight skeleton of a non-degenerate
polygon in O(n(log n) log r + r4/3+ε) time for any ε > 0. On degenerate
input, our time bound increases to O(n(log n) log r + r17/11+ε).

1 Introduction

The straight skeleton of a polygon is defined as the trace of the vertices when the
polygon shrinks, each edge moving at the same speed inwards in a perpendicular
direction to its orientation. (See Fig. 1.) It differs from the medial axis [7] in that
it is a straight line graph embedded in the original polygon, while the medial axis
may have parabolic edges. The notion was introduced by Aichholzer et al. [1]
in 1995, who gave the earliest algorithm for computing the straight skeleton.
However, the concept has been recognized as early as 1877 by von Peschka [20],
in his interpretation as projection of roof surfaces.

The straight skeleton has numerous applications in computer graphics. It al-
lows to compute offset polygons [14], which is a standard operation in CAD.
Other applications include architectural modelling [19], biomedical image pro-
cessing [8], city model reconstruction [10], computational origami [11,12,13] and
polyhedral surface reconstruction [2,9,15]. Improving the efficiency of straight
skeleton algorithms increases the speed of related tools in geometric computing.

The first algorithm by Aichholzer et al. [1] runs in O(n2 logn) time, and sim-
ulates the shrinking process discretely. Eppstein and Erickson [14] developed the

� Liam Mencel was supported by KAUST base funding. Research supported by the
Research Grants Council, Hong Kong, China (project no. 611711).

A.S. Schulz and D. Wagner (Eds.): ESA 2014, LNCS 8737, pp. 272–283, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

A Faster Algorithm for Computing Straight Skeletons 273

(a) The input polygon P (b) An offset of P (c) Straight skeleton S

Fig. 1. The straight skeleton is obtained by shrinking the input polygon P

first sub-quadratic algorithm, which runs in O(n17/11+ε) time. In their work, they
proposed motorcycle graphs as a means of encapsulating the main difficulty in
computing straight skeletons. Cheng and Vigneron [6] expanded on this notion by
reducing the straight skeleton problem in non-degenerate cases to a motorcycle
graph computation and a lower envelope computation. This reduction was later
extended to degenerate cases by Held and Huber [17]. Cheng and Vigneron gave
an algorithm for the lower envelope computation on a non-degenerate polygon
with h holes, which runs in O(n

√
h + 1 log2 n) expected time. They also pro-

vided a method for solving the motorcycle graph problem in O(n
√
n logn) time.

Putting the two together gives an algorithm which solves the straight skeleton
problem in O(n

√
h + 1 log2 n+ r

√
r log r) expected time, where r is the number

of reflex vertices.

Comparison with previous work. Recently, Vigneron and Yan [21] found a faster,
O(n4/3+ε)-time algorithm for computing motorcycle graphs. It thus removed
one bottleneck in straight skeleton computation. In this paper we remove the
second bottleneck: We give a faster reduction to the motorcycle graph problem.
Our algorithm performs this reduction in deterministic O(n(log n) log r) time,
improving on the previously best known algorithm, which is randomized and
runs in expected O(n

√
h + 1 log2 n) time [6]. Recently, Bowers independently

discovered an O(n log n)-time, deterministic algorithm to perform this reduction
in the case of simple polygons, using a very different approach [4].

Using known algorithms for computing motorcycle graphs, our reduction
yields faster algorithms for computing the straight skeleton. In particular, using
the algorithm by Vigneron and Yan [21], we can compute the straight skeleton
of a non-degenerate polygon in O(n(log n) log r + r4/3+ε) time for any ε > 0.
On degenerate input, we use Eppstein and Erickson’s algorithm, and our time
bound increases to O(n(log n) log r + r17/11+ε). For simple polygons whose co-
ordinates are O(log n)-bit rational numbers, we can compute the straight skele-
ton in O(n log2 n) time using the motorcycle graph algorithm by Vigneron and
Yan [21] (even in degenerate cases). Table 1 summarizes the previously known
results and compares with our new algorithm.

Our approach. We use the known reduction to a lower envelope of slabs in
3D [6,17]: First a motorcycle graph induced by the input polygon is computed,
and then this graph is used to define a set of slabs in 3D. The lower envelope of

274 S.-W. Cheng, L. Mencel, and A. Vigneron

Table 1. O∗ denotes the expected time bound of a randomized algorithm, and O is
for deterministic algorithms. To make the comparison easier, we replaced the number
of holes h with r, as h = O(r).

Previously best known This paper

Arbitrary polygon O(n8/11+εr9/11+ε) [14] O(n(log n) log r + r17/11+ε)

Non-degenerate polygon O∗(n
√
r log2 n) [6] O(n(log n) log r + r4/3+ε)

Simple pol., arbitrary O∗(n log2 n+ r17/11+ε) [6,14] O(n(log n) log r + r17/11+ε)

Simple pol., O(log n) bits O∗(n log2 n) [6,21] O(n log2 n)

these slabs is a terrain, whose edges vertically project to the straight skeleton
on the horizontal plane. (See Section 2.)

The difficulty is that these slabs may cross, and in general their lower envelope
is a non-convex terrain, so known algorithms for computing lower envelopes of
triangles would be too slow for our purpose. Our approach is thus to remove non-
convex features: We compute a subdivision of the input polygon into convex cells
such that, above each cell of this subdivision, the terrain is convex. Then the
portion of the terrain above each cell can be computed efficiently, as it reduces
to computing a lower envelope of planes in 3D. The subdivision is computed
recursively, using a divide and conquer approach, in two stages.

During the first stage (Section 3), we partition using vertical lines, that is,
lines parallel to the y-axis. At each step, we pick the vertical line � through the
median motorcycle vertex in the current cell. We first cut the cell using �, and
we compute the restriction of the terrain to the space above �, which forms a
polyline. It can be computed in near-linear time, as it reduces to computing a
lower envelope of line segments in the vertical plane through �. Then we cut
the cell using the steepest descent paths from the vertices of this polyline. (See
Fig. 2b.) We recurse until the current cell does not contain any vertex of the
motorcycle graph. (See Fig. 2c.)

The first step ensures that the cells of the subdivision are convex. However,
valleys (non-convex edges) may still enter the interior of the cells. So our second
stage (Section 4) recursively partitions cells using lines that split the set of
valleys of the current cell, instead of vertical lines. (See Fig. 2d.) As the first
stage results in a partition where the restriction of the motorcycle graph to any
cell is outerplanar, we can perform this subdivision efficiently by divide and
conquer.

Each time we partition a cell, we know which slabs contribute to the child
cells, as we know the terrain along the vertical plane through the cutting line.
In addition, we will argue via careful analysis that our divide and conquer ap-
proach avoids slabs being used in too many iterations, and hence the algorithm
completes in O(n(log n) log r) time.

Due to space limitation, some proofs are missing from this extended abstract.
A more detailed description of our algorithm, as well as the missing proofs, can
be found in the full version of this paper [5]. We state here our main result:

A Faster Algorithm for Computing Straight Skeletons 275

(a) Input polygon and straight skeleton
(b) Subdivision induced by the first
vertical cut

(c) Result of the vertical subdivision (d) Final subdivision

Fig. 2. Example of subdivision computed by our algorithm

Theorem 1. Given a polygon P with n vertices, r of which being reflex ver-
tices, and given the motorcycle graph induced by P, we can compute the straight
skeleton of P in O(n(log n) log r) time.

Our algorithm does not handle weighted straight skeletons [14] (where edges
move at different speeds during the shrink process), because the reduction to a
lower envelope of slabs does not hold in this case.

2 Notations and Preliminaries

The input polygon is denoted by P . A reflex vertex of a polygon is a vertex
at which the internal angle is more than π. P has n vertices, among which r
are reflex vertices. We work in R3 with P lying flat in the xy-plane. The z-axis
becomes analogous to the time dimension. We say that a line, or a line segment,
is vertical, if it is parallel to the y-axis, and we say that a plane is vertical if

276 S.-W. Cheng, L. Mencel, and A. Vigneron

it is orthogonal to the xy-plane. The boundary of a set A is denote by ∂A. We
denote by pq the line segment with endpoints p, q.

Terrain. At any time, the horizontal plane z = t contains a snapshot of P after
shrinking for t units of time. While the shrinking polygon moves vertically at
unit speed, faces are formed as the trace of the edges, and these faces make an
angle π/4 with the xy-plane. The surface formed by the traces of the edges is
the terrain T . (See Fig. 3 a.) The traces of the vertices of P form the set of edges
of T . An edge e of T is convex if there is a plane through e that is above the
two faces bounding e. The edges of T corresponding to the traces of the reflex
vertices will be referred to as valleys. Valleys are the only non-convex edges on
T . The other edges, which are convex, are called ridges. The straight skeleton S
is the graph obtained by projecting the edges and vertices of T orthogonally onto
the xy-plane. We also call valleys and ridges the edges of S that are obtained by
projecting valleys and ridges of T onto the xy-plane.

π
4

(a) (b)

T P

Fig. 3. Illustration of the two different types of slabs. (a) The terrain T , an edge slab
and motorcycle slab. This terrain has two valleys, adjacent to the two reflex vertices
of the polygon. (b) The motorcycle graph associated with P and the boundaries of the
edge slab and the motorcycle slab viewed from above.

Motorcycle graph. Our algorithm for computing the straight skeleton assumes
that a motorcycle graph induced by P is precomputed [6]. This graph is defined
as follows. A motorcycle is a point moving at a fixed velocity. We place a mo-
torcycle at each reflex vertex of P . The velocity of a motorcycle is the same as
the velocity of the corresponding reflex vertex when P is shrunk, so its direction
is the bisector of the interior angle, and its speed is 1/ sin(θ/2), where θ is the
exterior angle at the reflex vertex. (See Fig. 4a.)

The motorcycles begin moving simultaneously. They each leave behind a track
as they move. When a motorcycle collides with either another motorcycle’s track
or the boundary of P , the colliding motorcycle halts permanently. (In degenerate

A Faster Algorithm for Computing Straight Skeletons 277

θ1/ sin(θ2)

(a) (b)

Fig. 4. Motorcycle graph

cases, a motorcycle may also collide head-on with another motorcycle, but for
now we rule out this case.) After all motorcycles stop, the tracks form a planar
graph called the motorcycle graph induced by P . (see Fig. 4b.)

General position assumptions. To simplify the description and the analysis of
our algorithm, we assume that the polygon is in general position. No edge of P
or S is vertical. No two motorcycles collide with each other in the motorcycle
graph, and thus each valley is adjacent to some reflex vertex. Each vertex in the
straight skeleton graph has degree 1 or 3. Our results, however, generalize to
degenerate polygons.

Lifting map. The lifted version p̂ of a point p ∈ P is the point on T that is
vertically above p. In other words, p̂ is the point of T that projects orthogonally
to p on the xy-plane. We may also apply this transformation to a line segment
s in the xy-plane, then ŝ is a polyline in T . We will abuse notation and denote
by Ĝ a lifted version of G where the height of a point is the time at which the
corresponding motorcycle reaches it. Then the lifted version ê of an edge e of
G does not lie entirely on T , but it contains the corresponding valley, and the
remaining part of ê lies above T [6]. (See Fig. 3a.)

Given a point p̂ that lies in the interior of a face f of T , there is a unique
steepest descent path from p̂ to the boundary of P . This path consists either of
a straight line segment orthogonal to the base edge e of f , or it consists of a
segment going straight to a valley, and then follows this valley. (In degenerate
cases, the path may follow several valleys consecutively.) If p̂ is on a ridge, then
two such descent paths from p exist, and if p̂ is a convex vertex, then there are
three such paths. (See Fig. 5c.)

Reduction to a lower envelope. Following Eppstein and Erickson [14], Cheng
and Vigneron [6], and Held and Huber [17], we use a construction of the straight
skeleton based on the lower envelope of a set of three-dimensional slabs. Each
edge e of P defines an edge slab, which is a 2-dimensional half-strip at an an-
gle of π/4 to the xy-plane, bounded below by e and along the sides by rays
perpendicular to e. (See Fig. 3.) We say that e is the source of this edge slab.

For each reflex vertex v = e∩ e′, where e and e′ are edges of P , we define two
motorcycle slabs making angles of π/4 to the xy-plane. One motorcycle slab is

278 S.-W. Cheng, L. Mencel, and A. Vigneron

(a) The skeleton S (b) The skeleton S ′ (c) Descent paths

Fig. 5. The polygon P , its skeletons, and descent paths

bounded below by the edge of Ĝ incident to v and is bounded on the sides by two
rays from each end of this edge in the ascent direction of e. The other motorcycle
slab is defined similarly with e replaced by e′. The source of a motorcycle slab is
the corresponding edge of Ĝ. Cheng and Vigneron [6] proved the following result,
which was extended to degenerate cases by Huber and Held [16]:

Theorem 2. The terrain T is the restriction of the lower envelope of the edge
slabs and the motorcycle slabs to the space vertically above the polygon.

Our algorithm constructs a graph S ′, which is obtained from S by adding two
edges at each reflex vertex v of P going inwards and orthogonally to each edge of
P incident to v. (See Fig. 5b.) We also include the edges of P into S ′. It means
that each face f of S ′ corresponds to exactly one slab. More precisely, a face is
the vertical projection of T ∩ σ to the xy-plane for some slab σ. By contrast, in
the original straight skeleton S, a face incident to a reflex vertex corresponds to
one edge slab and one motorcycle slab.

3 Computing the Vertical Subdivision

In this section, we describe and we analyze the first stage of our algorithm,
where the input polygon P is recursively partitioned using vertical cuts. The
corresponding procedure is called Divide-Vertical. It results in a subdivision
of the input polygon P , such that any cell of this subdivision has the following
property: It does not contain any vertex of G in its interior, or it is contained in
the union of two faces of S ′.

3.1 Subdivision Induced by a Vertical Cut

At any step of the algorithm, we maintain a planar subdivision K(P), which is
a partition of the input polygon P into polygonal cells. Each cell is a polygon,
hence it is connected. A cell C in the current subdivision K(P) may be further
subdivided as follows.

Let � be a vertical line through a vertex of G. We assume that � intersects C,
and hence C ∩ � consists of several line segments s1, . . . , sq. These line segments

A Faster Algorithm for Computing Straight Skeletons 279

are introduced as new boundary edges in K(P); they are called the vertical edges
of K(P). They may be further subdivided during the course of the algorithm,
and we still call the resulting edges vertical edges.

We then insert non-vertical edges along steepest descent paths, as follows.
Note that we are able to efficiently compute the intersection S ′ ∩ � without
knowing S ′. To do this, we make use of an algorithm by Hershberger [18] and
compute the lower envelope of the slabs restricted to the vertical plane through
�, using O(n log n) time. The points at which this envelope changes angle are
precisely the points on T which project onto S ′ ∩ �. Each intersection point
p ∈ sj∩S ′ has a lifted version p̂ on T . By our non-degeneracy assumptions, there
are at most three steepest descent paths to ∂C from p̂. The vertical projections
of these paths onto C are also inserted as new edges in K(P). The resulting
partition of C is the subdivision induced by �. (See Fig. 2.)

We denote by C1, C2, . . . the cells of K(P) that are constructed during the
course of the algorithm. Let �−i and �+i denote the vertical lines through the
leftmost and rightmost point of Ci, respectively. When we perform one step of
the subdivision, each new cell lies entirely to the left or to the right of the
splitting line, and thus by induction, any vertical edge of a cell Ci either lies in
�−i or �+i .

An empty cell is a cell of K(P) whose interior does not overlap with S ′. (See
Fig. 6a.) Thus an empty cell is entirely contained in a face of S ′. Another type of
cell, called a wedge, will play an important role in the analysis of our algorithm.
Let pq be a ridge of S ′, and let a, b be two points in the interior of pq. Let �a and
�b be the vertical lines through a and b, respectively. Consider the subdivision of
P obtained by inserting vertical boundaries along �a and �b, and the four descent
paths from a and b. (See Fig. 6b.) The cell of this subdivision containing ab is
called the wedge corresponding to ab.

∂P

�∂f

C1

C2

C3
C4

C5

(a) The cells C1, . . . , C5 are empty. The
first cut is performed along �

�b

a
b

p q

�a

C

(b) The wedge C corresponding to ab

Fig. 6. Empty cells and a wedge

280 S.-W. Cheng, L. Mencel, and A. Vigneron

3.2 Data Structure

During the course of the algorithm, we maintain the polygon P and its subdivi-
sion K(P) in a doubly-connected edge list [3]. So each cell Ci is represented by
a circular list of edges, or several if it has holes. In the following, we show how
we augment these chains so that they record incidences between the boundary
of Ci and the faces of S ′.

For each cell Ci, let S ′
i be the subdivision of Ci induced by S ′. So the faces of

S ′
i are the connected components of Ci \ S ′. Let Q denote a circular list of edges

that form one component of ∂Ci. We subdivide each vertical edge of Q at each
intersection point with an edge of S ′. Now each edge e of Q bounds exactly one
face fj of S ′

i. We store a pointer from e to the slab σj corresponding to fj . In
addition, for each vertex of Q which is a reflex vertex of P , we store pointers to
the two corresponding motorcycle slabs. We call this data structure a face list.
So we store one face list for each connected component of ∂Ci.

We say that a vertex v of the motorcycle graph G conflicts with a cell Ci of
K(P) if either v lies in the interior of Ci, or v is a reflex vertex of ∂Ci. We also
store the list of all the vertices conflicting with each cell Ci. This list Vi is called
the vertex conflict list of Ci. The size of this list is denoted by vi. In summary,
our data structure consists of:

– A doubly-connected edge list storing K(P).
– The face lists and the vertex conflict list Vi of each cell Ci.

We say that an edge e of S ′ conflicts with the cell Ci if it intersects the interior
of Ci. So any edge of S ′

i that is not on ∂Ci is of the form e ∩ Ci for some edge e
of S ′ conflicting with Ci. We denote by ci the number of edges conflicting with
Ci. During the course of the algorithm, we do not necessarily know all the edges
conflicting with a cell Ci, and we don’t even know ci, but this quantity will be
useful for analyzing the running time. In particular, it allows to bound the size
of the data structure for Ci. (The proof is omitted due to space limitation.)

Lemma 1. If Ci is non-empty, then the total size of the face lists of Ci is O(ci).
In particular, it implies that ∂Ci has O(ci) edges, and Ci overlaps O(ci) faces of
S ′. On the other hand, if Ci is empty, then the total size is O(1), and thus ∂Ci
has O(1) edges.

3.3 Algorithm

Our algorithm partitions P recursively, using vertical cuts, as in Sect. 3.1. A cell
Ci is subdivided along a vertical cut � through its median conflicting vertex, so the
vertex conflict lists of the new cells will be at most half the size of the conflict
lists of Ci. When the vertex conflict list of Ci is empty, we call the procedure
Divide-Valley. If Ci is empty or is a wedge, then we stop subdividing Ci, and
it becomes a leaf cell.

In the induced subdivision, the descent paths cannot cross, and by construc-
tion they do not cross the vertical boundary edges. Each edge of S ′

i may create at

A Faster Algorithm for Computing Straight Skeletons 281

most three such descent paths, so we create O(ci) such new descent paths. There
are also O(ci) new vertical edges, so we can update the doubly-connected edge
list in time O(ci log ci) by plane sweep. Using an additional O(vi log ci) time, we
can update the vertex conflict lists during this plane sweep. The face lists can
be updated in overall O(ci) time. It follows that:

Lemma 2. We can compute the subdivision of a non-empty cell Ci induced by
a line through its median conflicting vertex, and update our data structure ac-
cordingly, in O((ci + vi) log ci) time.

3.4 Analysis

Due to space limitation, we only give a sketch of proof for the running time of
our algorithm. By Lemma 2, we only need to bound the total size of the conflict
lists during the course of the algorithm. As there are only 2r motorcycle vertices,
and each cell contains at most half as many as its parent, the total size of the
vertex conflict lists is O(r log r).

We also show that the sum of the sizes of the edge conflict lists is O(n log r).
We split into two cases. First, consider the cells containing vertices of S ′. At each
subdivision, a vertex of S ′ in the cell being subdivided moves to a cell whose
vertex conflict list has at most half the size of its parent’s, so each vertex of S ′ is
contained in O(log r) cells throughout the algorithm. Hence we create O(n log r)
such cells. We then consider cells that overlap S ′, but none of its vertices. We
argue that these cells must be wedges, and that each edge of S ′ yields O(log r)
wedges.

Lemma 3. The vertical subdivision procedure completes in O(n(log n) log r)
time. The cells of the resulting subdivision are either empty cells, wedges, or do
not contain any motorcycle vertex in their interior. They are simply connected,
and the only reflex vertices on their boundaries are along valleys.

4 Cutting Between Valleys

In this section, we describe the second stage of the algorithm. Let Ci be a cell of
K(P) constructed by Divide-Vertical on which we call Divide-Valley. The
first stage of our algorithm ensures that Ci is convex and does not contain any
reflex vertex in its interior. Let Ri denote the set of valleys that conflict with
Ci, and let ri denote its cardinality. The extended valley e′ corresponding to a
valley e ∈ Ri is the segment obtained by extending e until it meets the boundary
∂Ci of the cell. As Ci does not contain any motorcycle vertex in its interior, the
extended valleys of Ci do not cross. So the extended valleys form an outerplanar
graph with outer face ∂Ci. (See Fig. 7.)

If Ci conflicts with at least one valley, we first construct a balanced cut, which
is a chord s of ∂Ci such that there are at most 2ri/3 extended valleys on each side
of s. (See Fig. 7, middle.) The existence and the algorithm for computing s are
explained in the full version of this paper [5]. This balanced cut plays exactly the

282 S.-W. Cheng, L. Mencel, and A. Vigneron

CiCi

s

Ci

Fig. 7. (Left) The cell Ci and the conflicting valleys. (Middle) The extended valleys,
and a balanced cut. (Right) The triangulation and its dual graph.

same role as the vertical edges s1, . . . , sq along the cutting line that were used
in Divide-Vertical. So we insert s as a new boundary segment, we compute
its lifted version ŝ, and at each crossing between s and S ′, intersects the descent
paths as new boundary edges.

We repeat this process recursively, and we stop recursing whenever a cell
does not conflict with any valley. All the structural results in Sect. 3 still hold,
except that now a cell is sandwiched between two balanced cuts, which can have
arbitrary orientation, instead of the lines �−i and �+i .

So now we assume that we reach a leaf Ci, which does not conflict with any
valley. This cell Ci must be convex. As valleys are the only reflex edges of T , its
restriction Ĉi above Ci is convex. Hence, it is the lower envelope of the supporting
planes of its faces. These faces are obtained in O(ci) time from the face lists,
and the lower envelope can be computed in O(ci log ci) time algorithm using
any optimal 3D convex hull algorithm. We project Ĉi onto the xy-plane and we
obtain the restriction S ′

i of S ′ to Ci.
The analysis is similar as for the first stage, except that now the valleys play

the role of the vertices of the motorcycle graphs. Our balanced cuts ensure that
after each subdivision, the number of conflicting valleys drops by a factor at
least 3/2, so the depth of recursion is still O(log r). Theorem 1 follows.

Acknowledgments. We thank the anonymous referees for their helpful
comments.

References

1. Aichholzer, O., Alberts, D., Aurenhammer, F., Gärtner, B.: A novel type of skeleton
for polygons. Journal of Universal Computer Science 1(12), 752–761 (1995)

2. Barequet, G., Goodrich, M., Levi-Steiner, A., Steiner, D.: Straight-skeleton based
contour interpolation. In: Proceedings of the 14th Annual ACM-SIAM Symposium
on Discrete Algorithms, pp. 119–127 (2003)

A Faster Algorithm for Computing Straight Skeletons 283

3. Berg, M.D., Cheong, O., Kreveld, M.V., Overmars, M.: Computational Geometry:
Algorithms and Applications. Springer (2008)

4. Bowers, J.: Computing the straight skeleton of a simple polygon from its motorcycle
graph in deterministic O(n log n) time. CoRR abs/1405.6260 (2014)

5. Cheng, S.W., Mencel, L., Vigneron, A.: A faster algorithm for computing straight
skeletons. CoRR abs/1405.4691 (2014)

6. Cheng, S.W., Vigneron, A.: Motorcycle graphs and straight skeletons.
Algorithmica 47(2), 159–182 (2007)

7. Chin, F., Snoeyink, J., Wang, C.A.: Finding the medial axis of a simple polygon
in linear time. Discrete and Computational Geometry 21(3), 405–420 (1999)

8. Cloppet, F., Oliva, J., Stamon, G.: Angular bisector network, a simplified general-
ized voronoi diagram: Application to processing complex intersections in biomedi-
cal images. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(1),
120–128 (2000)

9. Coquillart, S., Oliva, J., Perrin, M.: 3d reconstruction of complex polyhedral shapes
from contours using a simplified generalized voronoi diagram. Computer Graphics
Forum 15(3), 397–408 (1996)

10. Day, A., Laycock, R.: Automatically generating large urban environments based
on the footprint data of buildings. In: Proceedings of the 8th ACM Symposium on
Solid Modeling and Applications, pp. 346–351 (2003)

11. Demaine, E.D., Demaine, M.L., Lubiw, A.: Folding and cutting paper. In: Akiyama,
J., Kano, M., Urabe, M. (eds.) JCDCG 1998. LNCS, vol. 1763, pp. 104–118.
Springer, Heidelberg (2000)

12. Demaine, E.D., Demaine, M.L., Lubiw, A.: Folding and one straight cut suffice. In:
Proceedings of the 10th Annual ACM-SIAM Symposium on Discrete Algorithms,
pp. 891–892 (1999)

13. Demaine, E.D., Demaine, M.L., Mitchell, J.S.B.: Folding flat silhouettes and wrap-
ping polyhedral packages: New results in computational origami. In: Proceedings
of the 15th Annual ACM Symposium on Computational Geometry, pp. 105–114
(1999)

14. Eppstein, D., Erickson, J.: Raising roofs, crashing cycles, and playing pool:
Applications of a data structure for finding pairwise interactions. Discrete and
Computational Geometry 22(4), 569–592 (1999)

15. Felkel, P., Obdržálek, Š.: Straight skeleton implementation. In: Proceedings of the
14th Spring Conference on Computer Graphics, pp. 210–218 (1998)

16. Held, M., Huber, S.: Theoretical and practical results on straight skeletons of planar
straight-line graphs. In: Proceedings of the 27th Symposium on Computational
Geometry, pp. 171–178 (2011)

17. Held, M., Huber, S.: A fast straight-skeleton algorithm based on generalized
motorcycle graphs. International Journal of Computational Geometry and
Applications 22(5), 471–498 (2012)

18. Hershberger, J.: Finding the upper envelope of n line segments in O(n log n) time.
Information Processing Letters 33(4), 169–174 (1989)

19. Kelly, T., Wonka, P.: Interactive architectural modeling with procedural extrusions.
ACM Transactions on Graphics 30(2), 14:1–14:15 (2011)

20. von Peschka, G.: Kotirte Ebenen: Kotirte Projektionen und deren Anwendung.
Buschak and Irrgang, Vorträge (1877)

21. Vigneron, A., Yan, L.: A faster algorithm for computing motorcycle graphs. In:
Proceedings of the 29th Symposium on Computational Geometry, pp. 17–26 (2013)

Optimal Time-Space Tradeoff for the 2D

Convex-Hull Problem

Omar Darwish1 and Amr Elmasry2

1 Max-Planck Institute for Informatics, Saarbrücken, Germany
2 Department of Computer Engineering and Systems, Alexandria University, Egypt

Abstract. We revisit the read-only random-access model, in which the
input array is read-only and a limited amount of workspace is allowed.
Given a set of N two-dimensional points in a read-only input array and
Θ(S) bits of extra workspace (where S ≥ lgN), we present an algo-
rithm that runs in O(N2/S + N lg S) time for constructing the convex
hull formed by the given points. Following a lower bound for sorting,
our algorithm is asymptotically optimal with respect to the read-only
random-access model. Of independent interest, we introduce a space-
efficient data structure that we call the augmented memory-adjustable
navigation pile. We expect this data structure to be a useful tool when
designing other space-efficient algorithms.

1 Introduction

Upon appearance of new intelligent terminals such as iPads and iPhones, we
now have new different environments for computing. Even though memory be-
came drastically cheaper than before, input data sizes are growing more rapidly.
Hence, algorithms designed for using a limited workspace are really requested.
Algorithm design with memory constraints has been studied for many years un-
der the name of log-space algorithms [13]. Although a great number of papers
have been published in this direction, main focus has been put on purely theoret-
ical computational complexity issues. Our starting point is somewhat different.

Memory constraints for log-space algorithms are too severe for practical use;
what is desirable is to design a faster algorithm for a given amount of workspace.
An important aspect that is extensively considered is the time-space tradeoff.
Munro and Paterson introduced the multi-pass streaming model [12] (called the
tape-input model in [7]). In this model, they assume that the input is stored on a
read-only sequentially-accessible media. They basically accounted for the number
of passes an algorithm makes over the input as a measure. The model that we
consider in this paper is the read-only random-access model (called the register-
input model in [7]). In this model, the input is assumed to be stored on a read-
only randomly-accessible media, and arithmetic operations on operands that fit
in a computer word are assumed to take constant time each. For this model,
it is more appropriate to account for the number of operations the algorithm
performs. For both models, we assume that the output is just reported to an
output media, and that the algorithm is allowed to use a limited amount of

A.S. Schulz and D. Wagner (Eds.): ESA 2014, LNCS 8737, pp. 284–295, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

Optimal Time-Space Tradeoff for the 2D Convex-Hull Problem 285

extra workspace. A survey of time-space tradeoffs is given by Borodin [4]. An
introduction to the area is given by Savage [17].

Pagter and Rauhe gave an asymptotically-optimal algorithm for sorting N
elements [14] in the read-only random-access model, which runs in O(N2/S +
N lg S) time using workspace of Θ(S) bits (where S ≥ lgN). A modified simpler
version of this sorting algorithm is given in [1]. Beame [3] has established a
lower bound of Ω(N2) for the time-space product for the sorting problem in the
stronger branching-program model of computation. The asymptotic complexity
of sorting is thus settled for this model.

Chan and Chen [5] gave an algorithm that runs in O((N2/S) · lgN + N lg S)
time using workspace of Θ(S) bits (where S ≥ lgN) to construct the convex
hull of N two-dimensional points stored on a read-only media. They assumed
that the coordinates of the points fit in O(lgN) bits each, and that arithmetic
operations can be performed on O(lgN)-bit words in constant time each. The
output is a list of the points on the upper/lower hull in clockwise order. The
Chan-Chen algorithm is optimal with respect to the multi-pass streaming model
[5], but not with respect to the read-only random-access model.

In this paper we revisit the read-only random-access model. We improve the
Chan-Chen bound by introducing a convex-hull algorithm that runs in O(N2/S+
N lg S) time. Beame’s lower bound for sorting [3] naturally applies to the convex-
hull problem. Since the running time of our convex-hull algorithm matches the
lower bound for sorting, we thus conclude that our algorithm is asymptotically
optimal. Obviously, using the random-access capabilities is the reason for the
possible improvement. A related distinction between the two models was given
in [6] concerning the selection problem.

We expect our techniques to be as well useful when handling other problems
in a space-efficient manner. Our basic idea is to partition the input according to
an ordering criteria into subsets of adjustable sizes, and perform the algorithm
in rounds. In each round, we produce one subset in sequence using our space-
efficient priority-queue-like structure. We maintain two filters (x-coordinate val-
ues) that enclose the members of the subset. The whole input array may be used
to decide the outcome of each round, which is produced once settled.

On a related matter, other space-efficient algorithms for constructing convex
hulls exist for the cases when:

– the input points are already sorted by their x-coordinate values [5],

– the running time is in terms of the output size (i.e. output sensitive) [5],

– the input points are in three dimensions [5], and when

– the input is a simple polygon [2].

In Section 2 we review a couple of background tools needed by our algorithm.
The main structure that we rely on is the memory-adjustable navigation pile that
was partially introduced in [1]. In Section 3 we augment the memory-adjustable
navigation pile with extra information to allow more flexibility for handling only
a selected subset of the input at a time. In Section 4 we describe the details of
our space-efficient convex-hull algorithm. The paper is concluded in Section 5.

286 O. Darwish and A. Elmasry

2 Background

In this section we describe the main ideas of the Chan-Chen convex-hull algo-
rithm [5]. We also review two of the basic tools that we use in our algorithm:
the memory-adjustable navigation piles and the rank-select data structures.

2.1 The Chan-Chen Algorithm

Assume that Θ(S) bits of workspace are available and that the input N points
are stored on a read-only media. Let Sa = Θ(S/ lgN). The number of points
that can possibly be stored in the working storage is O(Sa). The algorithm
performs
N/Sa� passes, where in each pass it handles the Sa points with the
next smallest x-coordinate values; these points form a vertical slab σ. In each
pass, the algorithm starts with a known hull vertex v and computes the part of
the upper/lower hull among the points of σ from point v up to and including
the hull edge crossing the right wall of σ.

For finding the Sa points with the next smallest x-coordinate values among
the remaining points P , the algorithm uses a space of 2Sa entries and maintains
in the first half the Sa points with the smallest x-coordinate values among the
points in P examined so far. Each time, the second half is refilled with another Sa

points from P , the median of the 2Sa x-coordinate values is found, and the 2Sa

points are partitioned around this median. This is repeated until all the points
of P are examined, leaving the Sa points with the smallest x-coordinate values.
The upper/lower convex chain of these points is then constructed using any
of the known O(Sa lg Sa) convex-hull algorithms [15]. The Chan-Chen algorithm
eliminates the points that are not on the hull by traversing the tentative chain in
reverse order, the points with the larger x-coordinate values first. This procedure
is done through finding the hull edge crossing the right wall of σ by performing
a pass over the remaining points (those to the right of σ). Suppose a point p
from the remaining points is currently being inspected, by imitating Graham-
scan algorithm [15], the point p is tentatively added to the chain if it is above
the tentative hull edge found so far crossing the right wall of σ. Also, adding p
to the chain might require removing some points from the chain in Graham-scan
fashion. After the end of the pass, the leftover points on the chain are indeed on
the convex hull and are accordingly reported.

Finding the next Sa points with the smallest values requires O(N) time,
building a convex chain for Sa points requires O(Sa lgSa) time, and pruning the
chain from points not on the hull requires O(N) time. Since there are O(N/Sa)
passes, the algorithm runs in O(N/Sa ·(N+Sa lgSa)) = O((N2/S)·lgN+N lg S)
time. More details about the Chan-Chen algorithm are given in [5].

2.2 Memory-Adjustable Navigation Piles

A (minimum) navigation pile [9] is a data structure that is a compact repre-
sentation of a tournament tree [10] that uses Θ(N) bits. Like a priority queue,

Optimal Time-Space Tradeoff for the 2D Convex-Hull Problem 287

it supports the operations: find-min, insert, and extract. Alternatively, a max-
imum navigation pile can be defined to support the operation find-max instead
of find-min. In addition to the N elements in the read-only input, the memory-
adjustable navigation pile described in [1] uses a workspace of Θ(S) bits, where
S ≥ lgN . Based on the following assumptions, it supports find-min and insert
in O(1) worst-case time and extract in O(N/S + lg S) worst-case time:

1. The elements are extracted in a monotonic (increasing) fashion. Conse-
quently, a boundary value is maintained and only larger elements are alive.
(We label an element as being alive if it inserted but has not been extracted
from the priority-queue structure.)

2. The elements are inserted into the data structure sequentially from the input
array, but insertions can be intermixed with extractions.

Structure. The input array is divided into S contiguous buckets each contain-
ing
N/S� elements, except for the last bucket that may contain less. We assume
that S is a power of 2, otherwise we can set it to 2�lgS�. A complete binary tree
is built above these buckets, where each leaf covers two buckets. A branch node
covers the buckets that are covered by the leaves in the subtree rooted at this
branch node. In other words, assuming the leaves have height 1, a node at height
h ∈ {1, 2, . . . , lg S} covers 2h buckets. For every node at height h, to specify the
index of the bucket containing the smallest alive element among the buckets
covered by this node, h bits are stored. From the perspective of the nodes at
height h, the buckets are virtually divided each into 2h partitions of contiguous
elements that are called quantiles. The quantiles of a bucket associated with a
node at height h contain
N/(S · 2h)� elements each, except for the last one
that may contain less. Another h bits are kept in every node at height h, in-
dicating the index of the quantile containing the smallest alive element among
the quantiles of the bucket that contains this element. The 2h bits stored at a
node of height h, together with the position of the node, encode the index of a
quantile within the input array. We call this quantile the active quantile corre-
sponding to the node. If 2h >
lgN�, only
lgN� bits are stored in that node.
Summing up the number of bits for all nodes, the total space complexity used
is
∑lgS

h=1(S/2h) · min(2h,
lgN�) = Θ(S) bits. More details can be found in [1].

Operations. To support the find-min operation in O(1) time, we keep a sepa-
rate pointer to the minimum alive element in the navigation pile. This minimum
pointer may be updated with every insert and extract operation.

Concerning the extract operation, we get the bucket containing the extracted
element using its array index. We find the new minimum of the element’s bucket
by scanning the bucket, then update the branch nodes covering this bucket along
the path towards the root. Every branch node will refer to the smaller of the two
elements referenced by its two child nodes. This process will require scanning
these nodes’ quantiles. During the process, the bucket and quantile bits may be
updated in every node along this path. First, we need to know how to access the
quantile of a branch node in constant time. All navigation bits are stored in a bit

288 O. Darwish and A. Elmasry

vector in breadth-first order. Hence, we can easily calculate the position where
the navigation bits of a certain node are stored. We get the index of the desired
bucket using the first h navigation bits, then use the second h bits for accessing
the index of the desired quantile of this bucket in constant time. After getting to
this position, we can access then scan the desired quantile. For a node of height
h, the size of the quantile is at most

⌈
N/(S · 2h)

⌉
. By summing on this formula

over the updating path, the time complexity of extract is O(N/S + lg S).
We skip the details of how to implement insert in O(1) time, as we do not

need the constant-time bound for our construction. We refer the reader to [1].
We show next how to possibly get rid of the two assumptions: Concerning

the first assumption—that the extractions are monotonic—the assumption is
imposed so that one can easily check whether a given element is alive or not.
To get rid of this assumption, one solution is to keep a bit vector of size N
(one bit per element) to indicate whether the corresponding element is alive or
not. However, this would increase the space complexity to Θ(N) bits instead of
Θ(S) bits. As long as we allow Θ(N) bits, we can thereby get rid of the second
assumption—that elements are inserted into the navigation pile sequentially—
allowing insertions to be from arbitrary entries of the input array. In this case, the
time complexity of the insert operation will be O(N/S + lg S) instead of O(1),
as we then have to fix the navigation bits for the nodes covering the inserted
element’s bucket up to the root (this update is needed only if the new element
turns out to be the bucket’s new minimum).

2.3 Bit Vectors with rank and select Support

Given a bit vector V , consider the following operations:

– V .access(i): Returns V [i], the bit at index i.

– V .rank(i): Returns the number of 1-bits among the bits V [0], V [1], . . . , V [i].

– V .select(j): Returns the index of the j-th 1-bit, i.e., if V .select(j) = i, this
means that V [i] = 1 and V .rank(i) = j.

The operations V .rank0(i) and V .select0(j) are similarly defined considering
the 0-bits instead of the 1-bits.

What we need is a data structure that supports the aforementioned operations
on a bit vector of size N . Our requirements here are that each operation should
have O(1) worst-case time, the extra workspace used should be O(N) bits, and
building the data structure should be done in O(N) time.

The problem of supporting the previous operations has been addressed in
several references. Most of the solutions presented for this problem rely on the
idea of dividing the bit vector into blocks then calculating the value of rank and
select for some specific positions, this would help finally in calculating the values
for other positions quickly. All solutions, in addition, rely on look-up tables. The
reader can refer to [8,11,16] for a couple of solutions to this problem.

Optimal Time-Space Tradeoff for the 2D Convex-Hull Problem 289

3 Augmenting the Navigation Pile

As stated in the previous section, getting rid of the assumption of monotonic
extractions, we would allocate one bit per array entry indicating whether the
corresponding element is alive or not. To optimize the extra workspace used, our
solution is to work with a subset of the input constituting at most S elements
at a time. In more details, within each round we shall have two filter elements,
and only elements whose values are between these filters are to be inserted or
extracted from the navigation pile. We refer to these S elements as the candidate
elements. Note that the candidates need not be contiguous in the input array.
Throughout the round, we use a vector of S bits, one bit per candidate, to indi-
cate whether each of these candidates is still alive or not. Subsequently, we need
to map the indices of the array elements to indices in the range [1· ·S]. To be
able to do that, the memory-adjustable navigation pile needs to be augmented
with additional information. We refer to the memory-adjustable navigation pile
explained in the previous section as the unaugmented navigation pile to distin-
guish it from the augmented version described below. We shall first introduce
the additional structures augmented to the navigation pile, then explain how to
update and utilize these structures by the operations. A schematic view illus-
trating the structure of an augmented navigation pile is given in Figure 1.

Additional Structures. We augment the piles with the following information.

– alive. An S-bit vector used to indicate whether each candidate is currently
alive or not. The order of the candidates in this vector is identical to their
order in the input array. The alive vector is dynamically updated by every
insert and extract operation.

– start. An S-bit vector that corresponds to the same elements, in the same
order, as alive. This vector is used to indicate whether each candidate is
the first, among other candidates, of an active quantile or not. Recall that a
quantile is active if it has the minimum element among those covered by a
node. (Note that a candidate may simultaneously be the first of more than
one active quantile.) The start vector is also dynamic, as it might change
by every insert and extract operation. Every bucket will possibly map to a
part of alive and start, which obviously has at most
N/S� entries. We refer
to the part of start corresponding to the u-th bucket as start.part(u).

– count. A static bit vector that stores the number of candidates contained
in each bucket. We encode these counts in unary, using a 0-bit to mark the
border between every two consecutive buckets. Since we are dealing with
at most S candidates, the vector contains at most S ones; and since we
have exactly S buckets, it contains S − 1 zeros. The count vector should
efficiently support rank and select queries. The vector and the accompanying
rank-select structures thus consume Θ(S) bits. The objective is to efficiently
locate the first entry of a given bucket in alive. Assume the first bucket has
index 0. Let u > 0 be the index of the bucket whose first entry in alive is to
be located. Then, t = count.select0(u) is the index of the last 0-bit preceding

290 O. Darwish and A. Elmasry

the u-th bucket in count. It follows that t−u+1 is the number of candidates
lying in the buckets 0, 1, . . . , u− 1, which precede the first entry of the u-th
bucket in alive and start. The size (number of entries) of start.part(u) is
count.select0(u + 1) − count.select0(u)− 1.

– For every node at height h, referring to bucket u and quantile q, start.part(u)
is divided into 2h subparts (or less, if its size is less than 2h). Another h
bits will be stored in every node at height h to indicate in which subpart
the first candidate of its active quantile lies. We refer to this subpart as
start.part(u, q). Since the size of start.part(u) is at most
N/S�, the size of
start.part(u, q) is upper-bounded by,

⌈
N/(S · 2h)

⌉
, the size of q.

– For every branch node at height h, referring to bucket u and quantile q,
an additional
lg h� bits will be used. These bits indicate how many candi-
dates among the first entries of active quantiles exist in the same subpart
start.part(u, q) before the first entry for a candidate from quantile q, i.e., the
number of ones in start.part(u, q) preceding the one representing the first en-
try for a candidate from q. Let us refer to this number as start.before(u, q).
The reason we need only
lg h� bits to store this information for each node
at height h is that only quantiles tied to nodes (whose heights are less than
h) on one and only one path from a leaf node to the given node can have
their starting entries before the first entry of q in start.part(u, q).

It directly follows, using simple calculations, that the space complexity of
augmenting the navigation pile is still Θ(S) bits.

To keep the time complexity for extract and insert in O(N/S+lgS), we need
to know in an efficient way if a given candidate that belongs to an active quantile
is alive or not. Starting with the index of such a candidate in the input array,
we want to find, without altering the desired time bounds, its index in the alive
vector. Given a node of the navigation pile ν, referring to bucket u and quantile
q, the index of the first entry of an element of q in alive is to be located. Using
the count vector and the bits in ν, we can easily locate start.part(u, q), where
the entry we are searching for lies. We also get the value r = start.before(u, q)
from the bits in ν. As previously stated, the size of start.part(u, q) is at most the
size of q. While navigating through ν we shall be scanning quantile q anyhow.
A scan of start.part(u, q) would then not alter the worst-case asymptotic time
complexity. We scan start.part(u, q) to find the r-th one bit, the index where we
find this bit is the index of the first candidate of q in alive.

Naturally, we always access the elements of a quantile sequentially. To locate
the corresponding elements of a quantile in alive, we start at the first entry of
the quantile in alive as illustrated in the previous paragraph. While scanning the
quantile, we repeatedly check the elements one after another. If the next element
is a candidate (lying in the range of the filters), we increment the current index
to the next entry in alive to correspond to this candidate. The same procedure
can be applied on buckets. We first get the first entry of the bucket in alive
using the count vector, and then move sequentially on the bucket and on alive,
incrementing the alive index whenever we encounter a candidate in the bucket.

Optimal Time-Space Tradeoff for the 2D Convex-Hull Problem 291

Fig. 1. A snapshot for an augmented navigation pile that has N = 64 and S = 8. Only
elements within the range of the filters are shown. The snapshot is taken considering
the given alive vector. The nodes’ bits are presented in left-to-right order as follows:
bucket index, quantile index, start.part index, and start.before. As an example, we can
see that node y refers to the candidate 11 as its alive minimum. Hence, its bucket index
is 0 indicating bucket 4. Bucket 4 is partitioned into two quantiles in the view of y,
where the candidate 11 lies in the second quantile x. So, the quantile index for y is 1.
start.part(4) in start is dedicated to bucket 4. At node y, start.part(4) is partitioned
into two parts. Since the candidate 14 represents the first entry of quantile x in start,
and as this candidate is in the first part of start.part(4), the start.part index of y is set
to 0. The part that contains this first candidate of x is referred to as start.part(4, x).

Operations. We next explain how the insert and extract operations are per-
formed in our augmented navigation pile in O(N/S + lgS) time per operation.

We first find the bucket in which the element to be inserted/extracted lies;
this can be done with simple calculations in constant time once we have the
array index of the element. Let the index of this bucket be u. Using the count
vector, we get the first entry of this bucket in alive as explained earlier, and
move sequentially on bucket u and alive. We can then get the indices of the
candidates lying in this bucket within alive, and consequently know whether
each of these candidates is currently alive or not. After knowing the index of the
element to be inserted/extracted in alive, we should set the corresponding bit to
one/zero. Also, while scanning the bucket, we would know if this element is the
minimum element in the bucket or not. If the minimum alive element in bucket
u has changed due to this operation, the following updates need to be done.

292 O. Darwish and A. Elmasry

Let us call the path from the leaf covering bucket u to the root the updating
path. As in an unaugmented navigation pile, the information in the nodes of
the updating path is to be fixed bottom up. (The update stops once we reach
a node on the updating path that covers the same minimum element after as
before the update.) The update will work as in the unaugmented navigation
pile, where we scan the quantiles referenced by the nodes lying on or hanging
from the updating path. However, here we also want to know whether each of
the candidates in these quantiles is alive or not. Before accessing a quantile, we
first get its first entry in alive; this can be done as stated previously. Then, we
simultaneously scan both the quantile and the corresponding subpart in alive.

Next, we show how to update the start vector. We explain one simple way to
perform this update, but there are other alternatives. Note that we handle the
nodes along the updating path in a bottom up manner. Suppose we are to handle
a node y, knowing that its child on the updating path has just been handled.
If the first index of a candidate in the quantile referenced by y is different from
the first index of a candidate in each of the two quantiles referenced by y’s two
children, we reset the bit for the first entry of the quantile of y in start to zero.
Note that we do not reset that bit to zero if it is the first entry of the quantile of a
child of y in start. Alternatively, this bit may be temporarily reset to zero in the
previous step and then again set to one within the upcoming step. Assume that
the child of y that refers to the quantile that has the smaller element between the
two children of y refers to quantile q′. Now the quantile referenced by y should
be either the first half or the second half of q′. If it is the first half, then the
corresponding entry in start must have been already set to one before. Else, we
move sequentially on q′ and start till we reach the first candidate in the second
half of q′, and set its corresponding entry in start to one. The above procedure
is repeated for every node on the updating path.

For the nodes along the updating path, we show next how the additional bits
in our augmented navigation pile will be updated. Consider a node y that refers
to bucket u and quantile q after the update. While handling y, as explained
earlier, we are able to know the first entry in start for a candidate in quantile q
as well as the size of start.part(u, q). Knowing these values, it is easy to update
the bits indicating start.part(u, q) in node y. Also, after getting these bits, we
loop on start.part(u, q) to count the number of ones in this subpart preceding
the first entry for a candidate from q in start, and store this count in y.

It is obvious that the update will be done on at most lgS nodes on the
updating path. Also, looping on the quantiles and the corresponding parts of
start for the nodes on the updating path would sum up to O(

∑lgS
i=1
N/(S ·2i)�).

So the time complexity for the update is in O(N/S + lg S), as claimed.
The following lemma summarizes the functionality of our data structure.

Lemma 1. Given a read-only array of N elements, and two filters that enclose
at most S of the elements of the input array between their values. After spending
O(N) time of preprocessing to build the augmented structure, and using Θ(S)
bits of workspace, insert and extract operations can be applied to any element of
the array whose value is between the filters in O(N/S + lgS) time per operation.

Optimal Time-Space Tradeoff for the 2D Convex-Hull Problem 293

4 Our Convex-Hull Algorithm

The algorithm uses three navigation piles: a maximum augmented navigation pile
that we call maxPile, and two minimum unaugmented navigation piles that we
call minPile1 and minPile2. (The algorithm can be implemented using only
two navigation piles, but it is easier for the implementation and explanation
to use three navigation piles.) Without loss of generality, we assume that the
orientation (either maximum or minimum) of the navigation piles is with respect
to the points’ x-coordinates. The algorithm works as follows:

1. Insert all the N points in both minPile1 and minPile2.
2. Let the point with the smallest x-coordinate value (leftmost) be v.
3. While v is not the rightmost point do:

(a) Extract the minimum S points one by one from minPile1 (or until the
pile is empty), and keep track of the first and last points (the points with
the smallest and largest x-coordinate values) among the S points. These
two values will be used as filters and called f1 and f2 for maxPile. The
S points will be the points considered in this iteration.

(b) Reinitialize the maximum navigation pile maxPile by rebuilding it using
the S points whose x-coordinate values are between the filters f1 and
f2, without actually inserting the points. Reinitialize the count vector
by scanning the N points bucket by bucket counting the elements whose
x-coordinate values are between the filters. Then build the rank-select
data structure for the count vector.

(c) Construct the convex chain for the current S points. This can be done
using a space-efficient implementation of Graham-scan algorithm [15],
which deploys maxPile and minPile2 as follows.

i. Extract the minimum two points from minPile2 and insert both of
them in maxPile.

ii. Repeat S − 2 times (or until minPile2 is empty):
A. Extract the next minimum point from minPile2, call it p.
B. While there are at least two points in maxPile and the maximum

two among them do not make a right turn with the point p do:
repeatedly extract the maximum point from maxPile.

C. Insert the point p in maxPile.

The alive points in maxPile form the convex chain for the S points.
(d) Loop on the points from the input array whose x-coordinate values are

greater than f2, or until one point remains in maxPile. (The objective
is to eliminate the points that are not actually on the hull from the chain
formed by the S points in maxPile.)

i. Let p′ be the first point met whose x-coordinate is greater than f2.
Extract points from maxPile until the maximum two points make
a right turn with p′, or until one point remains in maxPile.

ii. For every point p′′ whose x-coordinate value is greater than f2 do:
A. Inspect the current maximum point in maxPile and point p′,

and call the straight line formed by these two points �.

294 O. Darwish and A. Elmasry

B. If p′′ lies above �, start the usual procedure of removing points
from maxPile until one point remains in maxPile or until the
maximum and next-maximum points in it make a right turn with
the point p′′, and set p′ to p′′.

(e) If p′ is null (the current S points are the last ones in the sorted input),
extract the maximum point from maxPile and set v to this point.

(f) Otherwise, set v to p′, then extract and neglect points from minPile1
and minPile2 until we reach v as the current minimum for both.

(g) Extract all alive points from maxPile and report them as points on the
convex hull, but in reverse order.

4. Report v as the last point on the convex hull.

By inspecting our algorithm and the Chan-Chen algorithm, we can see that
similar algorithmic ideas are used. The main difference is that we are using
navigation piles in order to keep the points and deal with them.

We need to prove that our convex-hull algorithm achieves a time complexity
of O(N2/S + N lgS) and a space complexity of Θ(S) bits. As for the space
complexity, we deploy three navigation piles that are proved to be using only
Θ(S) bits. As for the time complexity, step (1) requires O(N) time to build
two unaugmented navigation piles. Obviously, steps (2) and (4) can be done in
O(1) time. Now, we are going to analyze step (3). There are
N/S� iterations
performed in the while loop of step (3). Concerning the steps in the while loop:

– In step (a), extracting S points requires O(N + S lgS) time.
– Step (b) needs O(N) time to construct the count vector and the data struc-

tures for answering rank and select queries.
– Constructing the upper hull of S points in step (c) is done in O(N + S lg S)

time. Note that S points are extracted from minPile2. Each of these points
will be inserted and may be extracted later from maxPile, but a point can
be inserted once and extracted once from maxPile, for a total of at most S
insertions and S extractions.

– The time complexity of step (d) is O(N + S lg S) too. We need O(N) to
loop on the whole input sequence. Also, we may be extracting points from
maxPile. Given that the number of alive points in maxPile is at most S,
then the extractions need at most O(N + S lgS) time.

– Step (e) requires at most one extraction that requires O(N/S + lgS) time.
– Step (f) does not affect the time complexity of the algorithm. Here we extract

points from minPile1 and minPile2. Since these piles initially contain the N
points and no more insertions are done into them, throughout the algorithm
all extractions from these piles require O(N2/S + N lgS) time.

– Given that the number of points in maxPile is at most S, step (g) will be
done in O(N + S lgS) time.

Except for step (3f), the worst-case time complexity for each iteration of step
(3) is O(N + S lgS). Multiplying this by the
N/S� while loop iterations, the
time complexity of our convex-hull algorithm is O(N2/S + N lg S) as claimed.

Optimal Time-Space Tradeoff for the 2D Convex-Hull Problem 295

5 Conclusion

We gave an algorithm for constructing the convex hull formed by a given set of
points in the plane. The time-space product for our algorithm is asymptotically
optimal. The basic tool we used is a data structure that we call the augmented
memory-adjustable navigation pile, an important construction in its own right.
We expect this data structure to be a useful ingredient in new space-efficient
algorithms for problems that employ sorting within their engine.

References

1. Asano, T., Elmasry, A., Katajainen, J.: Priority queues and sorting for read-
only data. In: Chan, T.-H.H., Lau, L.C., Trevisan, L. (eds.) TAMC 2013. LNCS,
vol. 7876, pp. 32–41. Springer, Heidelberg (2013)

2. Barba, L., Korman, M., Langerman, S., Silveira, R.I., Sadakane, K.: Space-
time trade-offs for stack-based algorithms. In: 30th International Symposium on
Theoretical Aspects of Computer Science, Schloss-Dagstuhl Leibniz International
Proceedings in Informatics, pp. 281–292 (2013)

3. Beame, P.: A general sequential time-space tradeoff for finding unique elements.
SIAM Journal on Computing 20, 270–277 (1991)

4. Borodin, A.: Time space tradeoffs (getting closer to the barrier?). In: Ng, K.W.,
Balasubramanian, N.V., Raghavan, P., Chin, F.Y.L. (eds.) ISAAC 1993. LNCS,
vol. 762, pp. 209–220. Springer, Heidelberg (1993)

5. Chan, T.M., Chen, E.Y.: Multi-pass geometric algorithms. Discrete and Compu-
tational Geometry 37(1), 79–102 (2007)

6. Elmasry, A., Juhl, D.D., Katajainen, J., Satti, S.R.: Selection from read-only mem-
ory with limited workspace. In: Du, D.-Z., Zhang, G. (eds.) COCOON 2013. LNCS,
vol. 7936, pp. 147–157. Springer, Heidelberg (2013)

7. Frederickson, G.N.: Upper and lower bounds for time-space trade-offs in sorting
and selection. Journal of Computer and System Sciences 34, 19–26 (1987)

8. Jacobson, G.: Space-efficient static trees and graphs. In: 30th IEEE Annual
Symposium on Foundations of Computer Science, pp. 549–554 (1989)

9. Katajainen, J., Vitale, F.: Navigation piles with applications to sorting, priority
queues, and priority deques. Nordic J. of Computing 10(3), 238–262 (2003)

10. Knuth, D.E.: The Art of Computer Programming: Sorting and Searching, vol, 2nd
edn., vol. 3. Addison-Wesley (1998)

11. Munro, J.I.: Tables. In: Chandru, V., Vinay, V. (eds.) FSTTCS 1996. LNCS,
vol. 1180, pp. 37–42. Springer, Heidelberg (1996)

12. Munro, J.I., Paterson, M.S.: Selection and sorting with limited storage. Theoretical
Computer Science 12, 315–323 (1980)

13. Papadimitriou, C.H.: Computational Complexity. Addison-Wesley (1994)
14. Pagter, J., Rauhe, T.: Optimal time-space trade-offs for sorting. In: 39th IEEE

Annual Symposium on Foundations of Computer Science, pp. 264–268 (1998)
15. Preparata, F.P., Shamos, M.I.: Computational Geometry: An introduction.

Springer (1985)
16. Raman, R., Raman, V., Satti, S.R.: Succinct indexable dictionaries with applica-

tions to encoding k-ary trees, prefix sums and multisets. ACM Transactions on
Algorithms 3(4) (2007)

17. Savage, J.E.: Models of Computation. Addison-Wesley (1998)

Cache-Oblivious Persistence�

Pooya Davoodi1,��, Jeremy T. Fineman2,� � �, John Iacono1,†, and Özgür Özkan1

1 New York University
2 Georgetown University

Abstract. Partial persistence is a general transformation that takes a data struc-
ture and allows queries to be executed on any past state of the structure. The
cache-oblivious model is the leading model of a modern multi-level memory hi-
erarchy. We present the first general transformation for making cache-oblivious
model data structures partially persistent.

1 Introduction

Our result is a general transformation to make a data structure partially persistent in the
cache-oblivious model. We first review both the persistence paradigm and the cache-
oblivious model before presenting our result.

Persistence. Persistence is a fundamental data structuring paradigm whereby opera-
tions are allowed not only on the current state of the data structure but also on past
states. Being able to efficiently work with the past has become a basic feature of many
real world systems, including consumer-oriented software such as Apple’s Time Ma-
chine, as well as being a fundamental tool for algorithm development. There are several
types of persistence which vary in power as to how new versions can be created from
existing ones. One can also view persistence as a transformation that extends the oper-
ations of an underlying data structure ADT. Data structures, generally speaking, have
two types of operations, queries and updates. A query is an operation that does not
change the structure, while updates do1. A version is a snapshot of the data structure
at the completion of an update, and updates generate new versions. In all variants of
persistence queries are allowed in any version, past or present. The simplest form of
persistence is partial persistence whereby updates can only be performed on the most
recently generated version, called the present. The ensuing collection of versions mod-
els a linear view of time whereby one can execute operations only in the present and
have a read-only view back into the past. A more complicated form of persistence is
known as full persistence and allows new versions to be generated by performing an

� The full version is available on the arXiv [7].
�� Research supported by NSF grant CCF-1018370 and BSF grant 2010437.

� � � Research supported by NSF grants CCF-1314633 and CCF-1218188.
† Research supported by NSF grant CCF-1018370.
1 Note that, for example, in self-adjusting structures (e.g. [11, 14, 15]) operations considered

to be queries are not queries by this definition since rotations are performed to move the
searched item to the root, thus changing the structure.

A.S. Schulz and D. Wagner (Eds.): ESA 2014, LNCS 8737, pp. 296–308, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

Cache-Oblivious Persistence 297

update operation on any of the previous versions; the new version is branched off from
the old one and the relationship among the versions form a tree. The most complicated
form of persistence is when the underlying data structure allows the combination of two
data structures into one. Such operations are called meld-type operations, and if meld-
type operations are allowed to be performed on any two versions of the data structure,
the result is said to be confluently persistent. In confluent persistence, the versions form
a DAG. In [8], the retroactive model was introduced, which differed from persistence
by allowing insertion and deletion of operations in the past, with the results propagated
to the present; this is substantially harder than forking off new versions.

Much of the work so far on persistence has been done in the pointer model. The
landmark result was when in [9, 13] it was shown that any pointer based structure with
constant in-degree can be made fully persistent with no additional asymptotic cost in
time and space; the space used was simply the total number of changes to the structure.
The first attempt at supporting confluent operations was [10], but the query runtimes
could degrade significantly as a result of their transformation. This was largely because
by merging a structure with itself, one can obtain an implicit representation of an expo-
nential sized structure in linear steps. In [6] the situation was improved by showing that
if a piece of data can only occur once in each structure, then the process of making a
structure confluently persistent becomes reasonable.

The cache-oblivious model. The Disk-Access Model (DAM) is the classic model of a
two-level memory hierarchy; there is a computer with internal memory size M , and
an external memory (typically called for historical reasons the disk), and data can be
moved back and forth between internal memory and disk in blocks of a given size B
at unit cost. The underlying premise is that since disk is so much slower than internal
memory, counting the number of disk-block transfers, while ignoring all else, is a good
model of runtime. A classic data structure in the DAM model is the B-tree [1].

However as the modern computer has evolved, it has become not just a two-level hi-
erarchy but a multi-level hierarchy, ranging from the registers to the main storage, with
several levels of cache in between. Each level has a smaller amount of faster memory
than the previous one. The most successful attempt to cope with this hierarchy to date
has been employing cache-oblivious algorithms [12], which are not parameterized by
M and B. These algorithms are still analyzed in a two-level memory hierarchy like the
DAM, but the values of M and B are used only in the analysis and not known to the
algorithm. By doing the analysis for an arbitrary two-level memory hierarchy, it applies
automatically to all the levels of a multi-level memory hierarchy.

Cache-oblivious algorithms are analyzed in the ideal-cache model [12], which is the
same as the DAM model but for one addition: the system automatically and optimally
decides which block to evict from the internal memory when loading a new block. We
use the term cache-oblivious model to encapsulate both the ideal-cache model and the
restriction that the algorithm be cache oblivious. Some DAM-model algorithms are
trivially cache oblivious, for example scanning an array of size N has cost O(N/B+1)
in both models. Other structures, such as the B-tree, are parametrized on the value of B
and thus cache-oblivious alternatives to the B-tree require completely different methods
(e.g. [3, 4]).

298 P. Davoodi et al.

Previous persistence results for memory models. In [5] a general method to make a
pointer-based DAM model algorithm fully persistent (assuming constant in-degree) was
presented where updates incur a O(logB) slowdown compared to the ephemeral ver-
sion. In [2] a partially persistent dictionary for the cache-oblivious model was presented,
with a runtime of O(logB(V + N)) for all queries and updates, where N is the size of
the dictionary and V is the number of updates. Both of these results are based on adapt-
ing the methods of the original persistence result for the memory model at hand, and
are still tied to the view of a structure as being pointer-based. In contrast, we make
no assumptions about a pointer-based structure and do not use any of the techniques
from [13].

Persistence in the cache-oblivious model. We present a general transformation to make
any cache-oblivious data structure partially persistent; this is the first such general re-
sult.

In a cache-oblivious algorithm, from the point of view of the algorithm, the only
thing that is manipulated is the lowest level of memory (the disk). The algorithm sim-
ply acts as if there is one memory array which is initially empty, and the only thing
the algorithm can do is look at and change memory cells. As the ideal cache assump-
tion states that the optimal offline paging can be approximated within a constant factor
online, the algorithm does not directly do any memory management; it just looks at
and changes the memory array. Working directly with the memory array as a whole is
a necessary feature of efficient cache-oblivious algorithms, and the overriding design
paradigm is to ensure data locality at all levels of granularity. We define the space used
by a cache-oblivious algorithm, U , to be the highest address in memory touched so
far. The runtime of any operation on a particular state of a data structure is expressed
as a function of B and M (only), which are unknown to the algorithm and in fact are
different for different levels of the memory hierarchy. In partial persistence, another
parameter of interest is the number V of updates performed. This is simply defined as
the total number of memory cells changed by the algorithm. So, the goal is to keep a
history of all previous states of the data structure, and support queries in the past for
any cache-oblivious structure while minimizing any additional space and time needed.

Our results. The most straightforward way to present our results is in the case when the
ephemeral data structure’s runtime does not assume more than a constant sized mem-
ory, and does not benefit from keeping anything in memory between operations. These
assumptions often correspond to query-based structures, where blocks that happen to
be in memory from previous queries are not of use, and are often reflected in the fact
that there is no M in the runtime of the structure. In this case our results are as follows:
queries in the present take no additional asymptotic cost; queries in the past and up-
dates incur a O(logB U)-factor time overhead over the cost if they were executed with
a polynomially smaller block size. In particular, a runtime of tq(B) in the ephemeral
structure will become O(tq(Θ(B(1−ε)/ log 3)) logB U) for any constant ε > 0. Thus,
as a simple example, a structure of size Θ(N) and runtime O(logB N) will support
queries in the present in time O(logB N), persistent queries in the past and updates in
time O(log2

B N).

Cache-Oblivious Persistence 299

Structures where memory plays a role are more involved to analyze. There are two
cases. One is where memory is needed only within an operation, but the data structure’s
runtime is not dependent on anything being left in memory from one operation to the
next operation. In this case, as in the above, queries in the present will be run as asymp-
totically fast as in the ephemeral using a memory of size a constant factor smaller. For
queries in the past and updates, our transformation will have the effect of using the run-
time of the ephemeral where the memory size is reduced by a O(B1−(1−ε)/ log 3 logB U)
and a O(B1−(1−ε)/ log 3) factor, respectively. Thus, in this case, a query of time
tq(M,B) in the ephemeral structure will take time O(tq(Θ(M), Θ(B))) for a query in
the present, O(tq(Θ(M/B1−(1−ε)/ log 3 logB U), Θ(B(1−ε)/ log 3)) logB U) for a query
in the past, and O(tq(Θ(M/B1−(1−ε)/ log 3), Θ(B(1−ε)/ log 3)) logB U) for an update.

When the runtime of a structure depends on keeping something in memory be-
tween operations, the runtimes of the previous paragraph hold for updates and queries
in the present. But, for queries in the past, this is not possible. It is impossible to
store the memory of all previous versions in memory. For queries in the past, sup-
pose that executing a sequence of queries in the ephemeral takes time tq(M,B) if
memory was initially empty. By treating the sequence as one meta query, the re-
sults of the previous paragraph apply, and our structure will execute the sequence in
O(tq(Θ(M/B1−(1−ε)/ log 3 logB U), Θ(B(1−ε)/ log 3)) logB U) time. Having tq(M,B)
represent the runtime in the ephemeral assuming memory starts off empty could cause
tq(M,B) to be higher than without this requirement. Short sequences of operations
that have zero or sub-constant cost will have the largest impact, while long or expensive
sequences will not.

Data structures often have runtimes that are a function of a single variable, commonly
denoted by N , representing the size of the structure. This letter makes no appearance
in our construction or analysis, however, as it would be too restrictive—bounds that
include multiple variables (e.g. graph algorithms) or more complicated competitive or
instance-based analysis can all be accommodated in the framework of our result. For
the same reason we treat space separately and can freely work with structures with non-
linear space or whose space usage is not neatly expressed as a function of one variable.

All of our update times are amortized, as doubling tricks are used in the construction.
The amortization cannot be removed easily with standard lazy rebuilding methods, as
in the cache-oblivious model one cannot run an algorithm for a certain amount of time
as this would imply knowledge of B.

A lower bound on the space usage is the total number V of memory changes that
the structure must remember. If the number of updates is sufficiently long compared to
ephemeral space usage (in particular, if V = Ω(U log 3)), then our construction has a
space usage of O(V logU).

Overview of methods. The basic design principle of a cache-oblivious data structure is
to try to ensure as much locality as possible in executing operations. So, our structure
tries to maintain locality. It does so directly by ensuring that the data of any consecu-
tive range of memory of size w of any past version will be stored in a constant number
of consecutive ranges of memory of size O(wlog 3). Our structure is based on viewing
changes to memory as points in two dimensions, with one dimension being the mem-
ory address, and the other the time the change in memory was made. With this view,

300 P. Davoodi et al.

our structure is a decomposition of 2-D space-time, with a particular embedding into
memory, and routines to update and query.

2 Preliminaries

First we define precisely what a cache-oblivious data structure is, and how its runtime
is formulated. A cache-oblivious data structure manipulates a contiguous array of cells
in memory by performing read and write operations on the cells of this array, which we
denote by A. The array A represents the lowest level of the memory hierarchy. By the
ideal cache assumption [12], cache-oblivious algorithms need not (and in fact must not)
manage transfers between levels of memory; they simply work with the lowest level.

Ephemeral primitives. The ephemeral data structure can be viewed as simply wishing
to interact with lowest level of memory using reads and writes:

– Read(i): returns A[i].
– Write(i, x): sets A[i] = x.

Ephemeral cache-oblivious runtime and space usage. Given a sequence of primitive
operations, we can define the runtime to execute the sequence in the cache-oblivious
model. The runtime of a single primitive operation depends on the sequence of prim-
itives executed before it, and is a function of M and B that returns either zero if the
desired element is in a block in memory or one if it is not. This is computed as follows:
for a given B, view A as being partitioned into contiguous blocks of size B. Then,
compute the most recent M/B blocks that have had a primitive operation performed in
them. If the current operation is in one of those M/B blocks, its cost is zero; if it is not,
its cost is one.

Space usage is simply defined as the largest memory address touched so far, which
we require to be upper bounded by a linear function in the number of Write operations.

Persistence. In order to support partial persistence, the notion of a version number is
needed. We let V denote the total number of versions so far, which is defined to be the
number of Write operations executed so far. Let Av denote the state of memory array
A after the vth Write operation. Then, supporting partial persistence is simply a matter
of supporting one additional primitive, in addition to Read and Write:

– Persistent-Read(v, i): returns Av[i]

3 Data Structure

We view the problem in two dimensions, where an integer grid represents space-time.
We say there is a point labeled x at (i, v) if at time v a Write(i, x) was executed, set-
ting A[i] = x. Thus the x axis represents space and the y axis represents time; we
assume the coordinates increase up and to the right. Let P refer to the set of all points
associated with all Write operations. In such a view P is sufficient to answer all Read
and Persistent-Read queries. A Read(i) simply returns the label of the highest point in

Cache-Oblivious Persistence 301

P with x-coordinate i, and Persistent-Read(v, i) returns the label of the highest point
in P at or directly below (i, v). We refer to the point (i, v) to be the value associated
with memory location i at time v, that is, Av[i]. We denote by V the number of Write
operations performed, which is the index of the most recent version.

All of the points lie in a rectangular region bounded by horizontal lines represent-
ing time zero at the bottom and the most recent version at the top, and vertical lines
representing array location zero (on the left) and the maximum space usage so far (on
the right). At a high level, we store a decomposition of this rectangular region into
vertically-separated square regions. For each of these square-shaped regions, we use a
balanced hierarchical decomposition of the square that stores the points and supports
needed queries, which we call the ST-tree. As new points are only added to the top of
the structure, only the top square’s ST-tree needs to support insertion. As such, the non-
top squares’ ST-trees are stored in a more space-efficient manner and as new squares
are created the old ones are compressed.

3.1 Space-Time Trees

We define the Space-Time Tree or ST-tree which is the primary data structure we use to
store the point set P and support fast queries on P . This tree is composed of nodes, each
of which has an associated space-time rectangle (which we simply call the rectangle of
the node). The tree has certain properties:

– Each node at height h in the tree (a leaf is defined to be at height 0) corresponds to
a rectangle of width 2h. This implies all leaves are at the same depth.

– Internal nodes have two or three children. An internal node’s rectangle is partitioned
by its children’s rectangles.

– A leaf is full if and only if it contains a point in P . An internal node is full if and
only if it has two full children. If an internal node has three children, one must be
full.

– Some rectangles may be three sided and open in the upward direction (future time);
these are called open, while four-sided rectangles are called closed. All open rect-
angles are required to be non-full.

The above conditions imply that a node’s rectangle is partitioned by the rectangles
of half the width belonging to its children which we call left, right, and if there is a third
one, upper. Each node stores:

– Pointers to the three children (left, right and upper) and parent.
– The coordinates of its rectangle.

Additionally, each leaf node (height 0 and thus width 1) stores the following
– The at most 1 point in P that intersects the rectangle of the leaf.
– The results of a Persistent-Read corresponding to the point at the bottom of the

rectangle.

Lemma 1. If a node at height h is full, then its rectangle intersects at least 2h points
in P .

Proof. Follows directly from the fact that full nodes have at least two full children, full
leaves intersect one point in P contained in their rectangle, and the rectangles of all
leaves are disjoint and at the same level. ��

302 P. Davoodi et al.

3.2 Global Data Structure

– The variableU will be stored and will represent the space usage of the data structure
rounded up to the next power of two.

– The data structure will store an array of
V
U � ST-trees. The last one is called the top

tree, and the others are called bottom trees. The tree’s root’s rectangles will partition
the grid [1..U] × [1..∞]. Bottom tree’s roots correspond to squares of size U ; the
j-th bottom root corresponds to square [1..U]× [((j−1)U +1)..jU]. The top tree’s
rectangle is the remaining three-sided rectangle [1..U] × [((
V

U � − 1)U + 1)..∞].
– An array storing a log of all V Write operations which will be used for rebuilding.
– A current memory array, call it C, which is of size U . The entry C[i] contains the

value of A[i] at the present, and a pointer to the leaf containing the highest point in
P in column i; which also contains the value of A[i] at the present.

– A pointer p to the leaf corresponding to the most recent Persistent-Read.

3.3 How the ST-Trees are Stored

The roots of all ST-trees correspond to rectangles of width U and thus have height logU ,
and structurally are subgraphs of the complete 3-ary tree of height logU .

The top tree is stored in memory in a brute force way as a complete 3-ary tree of
height logU using a biased Van Emde Boas layout [12]. This layout depends on a
constant 0 < ε < 1 and can be viewed as partitioning a tree of height h into a top tree
of height εh and 3εh bottom trees of height h(1 − ε). Each of the nodes of these trees is
then placed recursively into memory. This will waste some space as nodes and subtrees
that do not exist in the tree will have space reserved for them in memory. Thus the top
ST-tree uses space U log 3.

There will be a level of the van Emde Boas layout that includes the leaves and has
size in the range 3log3 B = B to 3(1−ε) log3 B = B1−ε nodes. Any path of length k in
an ST-tree will be stored in O(1 + k

logB) blocks. Additionally, we have the following
lemma:

Lemma 2. Any induced binary tree of height h will be stored in O(1 + 2h

B(1−ε)/ log 3)
blocks.

Proof. There is a height h′ in the range log3 B to log3 B
1−ε whereby all induced sub-

trees of nodes at that height will fit into a block. A binary tree of height h will have
2h−h′

trees of height h′, and 2h−h′ − 1 nodes of height greater than h′. Each tree of
height h′ is stored in memory in B consecutive locations and therefore intersects at
most two blocks, thus, even if each node above height h′ is in a different block, the
total number of blocks the subtree is stored in is O(2h−h′

) = O(2h−log3 B1−ε

) =

O
(

2h

2(1−ε) log3 B

)
= O
(

2h

B(1−ε) log3 2

)
= O
(

2h

B(1−ε)/ log 3

)
. ��

The bottom trees are stored in a more compressed manner; the nodes appear in the
same order as if they were in the top tree, but instead of storing all nodes in a complete
3-ary tree, only those nodes that are actually in the bottom tree are stored. Thus the size
of the bottom tree is simply the number of nodes in the tree. The facts presented for the
top trees and Lemma 2 also hold for the compressed representation.

Cache-Oblivious Persistence 303

3.4 Executing Operations

Read(i). We simply return C[i].

Persistent-Read(v, i). The answer is in the tree leaf containing (i, v), the point associ-
ated with this operation. We find this leaf by moving p in the obvious way: move the
pointer p to parent nodes until you reach a rectangle containing (i, v) or the root of a
tree. If you reach a root, set p the root of the appropriate tree, the �v/U�th one. Then
move the pointer p down until you hit a leaf. The answer is in the leaf.

Write(i, x). We call a node a top node if its rectangle is open. We will maintain the
invariant that no top node is full. Since Write modifies P by adding a point above all
others, this guarantees that the new point will intersect only non-full nodes.

The insertion begins by checking for two special cases. The first is if the memory
location i is larger than U , which is an upper bound on the highest memory location
written so far. In this case, we apply the standard doubling trick and U is doubled, all
the trees are destroyed and re-built by re-executing all Writes which are stored in the
log as mentioned in Section 3.2. The current memory array C is also doubled in size.

The other special case is when once every U operations the point associated with
the Write is on the (U + 1)-th row of the rectangle of the top tree and a new top tree
is needed. In this case, the representation of the existing top tree is compressed and
copied as a new bottom tree, removing any unused memory locations, and the top tree
is reinitialized as a binary tree where the leafs contain values stored in the corresponding
cells of C.

Then the main part of the Write operation proceeds as follows.

– Sets C[i] = x
– Increments V
– Follows the pointer to the leaf containing (i, V). Note that this is a top node. Add

the data to this leaf and mark it full. This means that the point set P now contains
the new Write, as it must. However, it is a top node and is full, which violates the
previously stated invariant. We then use the following general reconfiguration to
preserve that fact that top nodes can not be full.

Reconfiguration. When a node becomes full we mark it as such and proceed according
to one of the following two cases. 1) The parent of the node already has three children,
in which case the parent also becomes full. We recurse with the parent. 2) The parent of
the node has only two children, which implies the parent is still not full. At this point,
we close all open rectangles in the subtree of the current node and add a third child to
the parent. (These procedures are explained below in more detail.) The rectangle of the
new child is on top of the rectangle of the current node.

In other words, when a leaf node becomes full this leads to that leaf node and 0 or
more of its ancestors becoming full. We recurse until the highest such ancestor node p
and close every open rectangle in its subtree, and add as the third child to the parent of
p a sibling node whose open rectangle is on top of p’s newly closed rectangle.

304 P. Davoodi et al.

Closing rectangles. We close the open rectangles in the subtree of a node by traversing
the 2 children of each node that correspond to open rectangles and changing the top
side of each open rectangle from ∞ to V .

Adding the third child. In order to add a third child to a node at height h+1, we create a
complete binary tree of height h whose root becomes the third child. Note that the leafs
of this tree contain the answers to the Persistent-Read queries at the corresponding
points. We copy this information from C.

Lemma 3. The amortized number of times a node at height h + 1 gains a third child
following an insertion into its subtree is O(1

2h).

Proof. We use a simple potential function where adding a third child on top of a node
p at height h has cost 1, and all top nodes at height l ≤ h in the subtree of p have a
potential of 1

2h−l for each full child they have.
Observe that each step during the handling of an insert, a top node with two full

children becomes no longer a top node and it is marked as full. Thus, since the potential
difference at the level of p matches the cost, the amortized cost at any other level is zero
except for at the leaf level where the amortized cost is 1

2h . ��

4 Analysis

4.1 Space Usage

Lemma 4. The space usage of a bottom tree is O(U logU).

Proof. The proof is deferred to the full version [7]. ��

Lemma 5. The space usage of the entire structure is O(U log 3 + V logU).

Proof. The top tree uses space O(U log 3). From Lemma 4, the O(V/U) bottom ST-
trees use space O(U logU) each. The log of Write operations is size O(V). The current
memory array is size O(U). Other global information takes size O(1). ��

4.2 Comments on Memory Allocation

According to the ideal cache assumption, in the cache-oblivious model the runtime is
within a constant factor of that which has the optimal movement of blocks in and out
of cache. Thus, we can assume a particular active memory management strategy and a
runtime of using this strategy is an upper bound of the runtime in the cache-oblivious
model. In particular, we can base our assumed memory management strategy on the one
an ephemeral structure would use on the same sequence of operations, with particular
memory and block sizes.

Globally, we assume the memory M is split into three equal parts, with each part
dedicated to the execution of each of the three primitive operations.

Cache-Oblivious Persistence 305

4.3 Analysis of Read

Theorem 6. Suppose a sequence X of Read operations takes time T (M,B) to execute
ephemerally in the cache-oblivious model on a machine with memory M and block size
B and an initially empty memory. Then in our structure, the runtime is O(T (M/3, B)).

Proof. Since executingRead operations is simply done using the current memory buffer,
and there is a memory of size M/3 allocated for Reads, this gives the result. ��

4.4 Analysis of Persistent-Read

Lemma 7. Consider the leaves of the ST-tree corresponding to a subarray of ephemeral
memory of size w at a fixed time v (Av[i . . . i + w − 1] for some i). These leaves and
all of their ancestors in the ST-tree are contained in O

(
w

B(1−ε)/ log 3 + logB U
)

blocks

Proof. Let L be the set of all points corresponding to the memory locations Av[i . . . i+
w − 1]. There are two disjoint rectangles corresponding to nodes in the ST-tree with
width at most 2w such that the two rectangles contain and partition all elements of
L. Let xl and xr be the nodes corresponding to these two rectangles. Those leaves in
subtrees of xl and xr corresponding to points in L are the leaves of two binary trees
with roots xl and xr. Since the height of xl and xr are at most 1 + logw, by Lemma 2
any binary tree rooted at them will occupy at most O

(
1 + w

B(1−ε)/ log 3

)
blocks. The

nodes on the path between xl and xr are stored in O(logB U) blocks. ��

Theorem 8. Suppose a sequence X of Persistent-Read operations executed on the
same version takes time T (M,B) to execute ephemerally in the cache-oblivious model
on a machine with memory M and block size B and an initially empty memory. Then
in our structure, the runtime is

O
(
T

(
1
3M

B1− 1−ε
log 3 (1 + logB U)

, B
1−ε
log 3

)
(1 + logB U)

)

Proof. Consider executing X ephemerally with memory M

3(1+logB U)B
1− 1−ε

log 3

and block

size B
1−ε
log 3 . It keeps in memory M

3(1+logB U)B
1− 1−ε

log 3

· 1

B
1−ε
log 3

= M
3(1+logB U)B ephemeral

blocks. Each ephemeral block is stored in O
(
B

1−ε
log 3 /B

1−ε
log 3

)
= O(1) blocks; including

the ancestors of the block this becomes O(1 + logB U). Now, by Lemma 7 the mem-
ory blocks needed to keep the leaves representing M

3(1+logB U)B consecutive memory

locations of length B in the persistent structure and their ancestors is M
3(1+logB U)B ·

(1 + logB U) = M
3B . Thus they can all be stored in the third of memory allocated

to Persistent-Read operations (M
3B blocks), and thus moving p to any location in the

memory in the ephemeral structure will involve walking it entirely though locations
in memory in the persistent structure, and thus will have no cost. Now suppose the
ephemeral structure moves one block into memory at unit cost. This could require mov-

ing O
(
B

1−ε
log 3 /B

1−ε
log 3 + logB U

)
= O(1 + logB U) blocks to move the associated

306 P. Davoodi et al.

leaves and their ancestors in the persistent structure into memory by Lemma 7. Thus,
this is the slowdown factor the persistent structure will incur relative to the ephemeral.

��

4.5 Analysis of Write

We charge the cost of rebuilding to Write operations. This only increases their cost by
a multiplicative constant factor since we double U after Ω(U) Writes.

Every U Writes, we make the existing top tree a bottom tree and create a new top
tree. Three steps involved in this process are closing the rectangles of the top tree, com-
pression of the top tree to a bottom tree, and initializing a new top tree and populating
the leafs.

The following lemmas bound the cost of these steps.

Lemma 9. Copying performed to populate the leafs of a newly created subtree of
height h, or closing the open rectangles in the subtree of a node at height h costs

O
(

2h

B(1−ε)/ log 3

)
block transfers.

Proof. We only close rectangles that are open and we copy nodes from the array C to
leafs of the new subtree which only has open rectangles. If a node is closed all of its
children are closed and do not need to be traversed. Given any node, since at most 2 out
of its potentially 3 children can be open, the tree we traverse to close rectangles or copy

nodes is a binary tree. By Lemma 2, each of these tasks costs O
(

2h

B(1−ε)/ log 3

)
block

transfers. ��

Lemma 10. Compression of the top tree into a bottom tree costs O
(

U logU
B(1−ε)/ log 3

)
block

transfers.

Proof. The top tree is initially a complete binary tree and is stored in O
(

U
B(1−ε)/ log 3

)
blocks by Lemma 2. We have to account for the additional blocks used to store the
elements inserted and nodes created in the top tree after it was created.

By Lemma 3, O(U
2k) nodes are added to the top tree at height k. When a node at

height k is added to the top tree, it is the root of a complete binary search tree and its
subtree is stored in O

(
2k/B(1−ε)/ log 3

)
blocks by Lemma 2. This implies that added

nodes take an additional
∑logU

j=1
U
2j · 2j

B(1−ε)/ log 3 = O
(

U logU
B(1−ε)/ log 3

)
blocks. ��

Theorem 11. Suppose a sequence of kWrite operations takes time T (M,B) to execute
ephemerally in the cache-oblivious model on a machine with memory M and block size
B and an initially empty memory. Then in our structure, the runtime is

O
(
T

(1
3M

B1− 1−ε
log 3

, B
1−ε
log 3

)
+ k

logU

B
1−ε
log 3

)
Proof. To find the item, the analysis is similar to that of Persistent-Read, except we
can use the pointers in C to directly go to the item. This removes the logB U terms.

Cache-Oblivious Persistence 307

We need to bound the cost of operations performed to maintain the ST-tree. Recall
that after each insertion, we go up the tree until we find an ancestor p such that its
parent is not full. Then, we create a new sibling node q whose leafs are populated
with the copies of values stored in the corresponding top leaf nodes of p, and close the
rectangles in the subtree of p. Letting the height of p’s parent be h, we refer to this
sequence of operations as the expansion of a node at height h.

The creation of the new top tree occurs once every U Writes, and thus the amor-
tized cost per Write is O(logU/B(1−ε)/ log 3) by Lemma 10. Since the expansion of
a node at height h happens because there have been at least 2h insertions since the
node was created, by Lemma 9, the amortized cost of a Write operation is at most
logU

B
1−ε
log 3

+
∑logU

j=1
1
2j · 2j

B
1−ε
log 3

= O
(

logU

B
1−ε
log 3

)
. ��

We also consider the case when all Write operations are executed in unique mem-
ory cells. This is a reasonable assumption when we have update operations involving
numerous Write operations where for each memory cell we only need to remember the
last Write executed during that update operation.

Theorem 12. Suppose a sequence of Write operations performed on unique cells of A
takes time T (M,B) to execute ephemerally in the cache-oblivious model on a machine
with memory M and block size B and an initially empty memory. Then in our structure,
the runtime is

O
(
T

(
1
3M

B1− 1−ε
log 3 logB

,
B

1−ε
log 3

logB

)
logB U

)

Proof. Observe that given M ′,M ′′, B′, B′′ if B′ ≤ B′′ and M ′/B′ = M ′′/B′′, then
T (M ′, B′) ≥ T (M ′′, B′′). Thus, since no two Write operations overlap, we have in

the worst case that k ≤ T

(
1
3M

B
1− 1−ε

log 3 logB
, B

1−ε
log 3

logB

)
· B

1−ε
log 3

logB . The result then follows by

substituting k in Theorem 11. ��

References

1. Bayer, R., McCreight, E.M.: Organization and Maintenance of Large Ordered Indices. Acta
Inf. 1, 173–189 (1972)

2. Bender, M.A., Cole, R., Raman, R.: Exponential Structures for Efficient Cache-Oblivious
Algorithms. In: Widmayer, P., Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S.,
Conejo, R. (eds.) ICALP 2002. LNCS, vol. 2380, p. 195. Springer, Heidelberg (2002)

3. Michael, A., Bender, E.D.: Demaine, and Martin Farach-Colton. Cache-Oblivious B-Trees.
SIAM J. Comput. 35(2), 341–358 (2005)

4. Michael, A.: Bender, Ziyang Duan, John Iacono, and Jing Wu. A locality-preserving cache-
oblivious dynamic dictionary 53(2), 115–136 (2004)

5. Brodal, G.S., Tsakalidis, K., Sioutas, S., Tsichlas, K.: Fully persistent B-trees. In: Pro-
ceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms,
pp. 602–614 (2012)

6. Collette, S., Iacono, J., Langerman, S.: Confluent persistence revisited. In: Proceedings of the
Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 593–601 (2012)

308 P. Davoodi et al.

7. Davoodi, P., Fineman, J.T., Iacono, J., Özkan, Ö.: Cache-oblivious persistence. CoRR,
abs/1402.5492 (2014)

8. Demaine, E.D., Iacono, J., Langerman, S.: Retroactive data structures. ACM Transactions on
Algorithms 3(2) (2007)

9. Driscoll, J.R., Sarnak, N., Sleator, D.D., Tarjan, R.E.: Making data structures persistent. J.
Comput. Syst. Sci. 38(1), 86–124 (1989)

10. Fiat, A., Kaplan, H.: Making data structures confluently persistent. J. Algorithms 48(1),
16–58 (2003)

11. Fredman, M.L., Sedgewick, R., Sleator, D.D., Tarjan, R.E.: The Pairing Heap: A New Form
of Self-Adjusting Heap. Algorithmica 1(1), 111–129 (1986)

12. Frigo, M., Leiserson, C.E., Prokop, H., Ramachandran, S.: Cache-oblivious algorithms.
ACM Transactions on Algorithms 8(1), 4 (2012)

13. Sarnak, N., Tarjan, R.E.: Planar Point Location Using Persistent Search Trees. Commun.
ACM 29(7), 669–679 (1986)

14. Sleator, D.D., Tarjan, R.E.: Self-Adjusting Binary Search Trees. J. ACM 32(3), 652–686
(1985)

15. Tarjan, R.E.: Efficiency of a Good But Not Linear Set Union Algorithm. J. ACM 22(2),
215–225 (1975)

Lightweight Approximate Selection

Brian C. Dean, Rommel Jalasutram, and Chad Waters

School of Computing, Clemson University, USA

Abstract. Given a relative rank r ∈ (0, 1) (e.g., r = 1/2 refers to the
median), we show how to efficiently sample with high probability an el-
ement with rank very close to r from any probability distribution that
supports efficient sampling (e.g., elements stored in an array). A primary
feature of our methods is their elegance and ease of implementation –
they can be coded in less space than is occupied by this abstract, and
their lightweight footprint makes them ideally suited for highly resource-
constrained computing environments. We demonstrate through empirical
testing that these methods perform well in practice, and provide a com-
plete theoretical analysis for our methods that offers valuable insight into
the performance of a natural class of approximate selection algorithms
based on hierarchical random sampling.

1 Introduction

Selection of order statistics has always been a fundamental problem in algorith-
mic computer science. With recent trends in computing focusing on massive data
sets, there has been renewed interest in this problem from the perspective of “in
place” and streaming models that allow for only a small amount of auxiliary
memory. Moreover, since exact order statistics can be much more challenging to
compute in this setting, approximate order statistics are often sought. Specifi-
cally, for relative rank r ∈ [0, 1], an r-quantile of a distribution D is given by
evaluating the inverse cumulative density function of D at r (e.g., r = 1/2 for the
median). For an n-element dataset, an r-quantile is the element appearing at in-
dex rn when the dataset is sorted. An ε-approximate r-quantile is an r′-quantile
for r′ ∈ [r − ε, r + ε].

In this paper, we provide a detailed study fully describing both the theo-
retical and empirical performance of a natural class of approximate selection
algorithms. Although non-trivial to analyze mathematically, these algorithms
are intuitive and extremely easy to implement (requiring less code than even the
simple textbook “quickselect” algorithm for exact selection). Furthermore, their
lightweight memory footprint makes them ideal for highly-resource-constrained
environments (e.g., mobile sensing devices).

Our methods perform approximate selection from any probability distribution
D from which we can easily sample. For example, D could be represented explic-
itly by an array, where we sample from D by randomly sampling from the array.
A standard method for approximate selection in this context is to perform exact
selection on a small random subset of elements from D, using Chernoff bounds

A.S. Schulz and D. Wagner (Eds.): ESA 2014, LNCS 8737, pp. 309–320, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

310 B.C. Dean, R. Jalasutram, and C. Waters

to analyze the quality of approximation. However, our methods are far simpler
to code than this, and use much less memory (or equivalently, deliver a much
better approximation guarantee using the same amount of memory). We show
how to compute an n−c-approximate r-quantile with high probability for any
constant r ∈ (0, 1) in O(n) time and O(log n) space, where c is a constant that
depends on the specific implementation of our approach as well as r; for r = 1/2,
the most basic manifestation of our approach gives c ≈ 0.369. The longer we run
our algorithm (i.e., the more samples, n, we choose to examine), the better our
approximation guarantee becomes.

Our approach is not designed primarily as a “streaming” algorithm per se,
although it would still perform well on a randomly-ordered data stream, and
we show in the final section through empirical testing that it performs well on
a number of large non-random data streams found in practice. A full-fledged
streaming algorithm for approximate selection would need to contend with com-
plicating issues like adversarial stream order or unknown stream length, which
do cause problems for our methods as they do for many other streaming ap-
proaches; we briefly comment on ways to mitigate some of these issues at the
end of the paper, at the expense of added complexity. However, our approach is
best viewed as a “sampling” algorithm rather than a “streaming” algorithm.

Approximate selection has a number of useful applications in practice, such
as estimation of statistical properties of data streams (e.g., packets through a
router), database query optimization [SAC+79], computation of association rules
for data mining [SA96], load balancing [DNS91], approximating quantities that
are reducible to median computation (e.g., circular earthmover distance between
a pair of vectors [BLS12]), and construction of equi-depth histograms, which
themselves have numerous uses [Ioa03]. From a higher-level algorithmic perspec-
tive, fast approximate selection methods can lead to more effective “divide-and-
conquer” algorithms and data structures, when used to compute partitioning
points between subproblems. They also play a key role in boosting the success
probability of randomized algorithms.

1.1 Prior Results

In one of the seminal papers on streaming algorithms, Munro and Paterson
[MP78] show that Ω(n) auxiliary space is necessary for any algorithm that com-
putes the exact median of an adversarially-ordered data stream in a single pass
(much less space is necessary with multiple passes). These bounds motivate the
study of approximate selection in hopes of achieving substantially less memory
usage.

A number of authors have considered approximate selection with one pass
over a data stream: Jain and Chlamtac [JC85] and Agrawal and Swami [AS95]
provided early results without provable bounds on approximation quality. Prov-
able bounds with increasingly smaller space requirements were given by Alsabti
et al. [ARS97], Manku et al. [MRL98], and Greenwald and Khanna [GK01], who
ultimately showed that O(1ε log(εn)) space suffices to compute an ε-approximate
r-quantile in a single pass over any n-element data stream. This bound is nearly

Lightweight Approximate Selection 311

tight, since Guha and McGregor [GM09] showed that Ω(1/ε) space is neces-
sary to find an ε-approximate median in an adversarial stream in one pass. For
strong approximation guarantees of the form ε = n−c with constant c, polyloga-
rithmic space bounds (commonly sought in streaming applications) are therefore
still not possible with one pass over an adversarial data stream. Several authors
(e.g., [CKMS05,CKMS06]) have derived similar bounds for the related biased
quantiles problem, where we seek tighter approximation bounds for quantiles
closer to the min and max (for example, an ε-approximate r-quantile for r < ε
could be any element of relative rank at most r, which is undesirable).

Polylogarithmic space is possible if we impose some type of randomness as-
sumption on the input, either that we are dealing with a randomly-ordered
stream, or (as we assume in this paper) that we can produce a sequence of in-
dependent samples drawn from some probability distribution D. For one pass
over a randomly-ordered stream that is “mildly” adversarial, Guha and McGre-
gor [GM09] compute an n−1/2+ε-approximate r-quantile with high probability
in O(21/εpolylog n) space. Standard tail bound analysis shows that this approx-
imation guarantee is the best one can hope to achieve in the model where we
are drawing n random samples from a probability distribution. Compared to
this result, our methods are much simpler and achieve a stronger space bound
of O(1.2541/ε logn); however, the two results are not directly comparable since
Guha and McGregor consider a more adversarial input model.

If we consider the somewhat different model of selection from a randomly-
ordered stream, McGregor and Valiant [MV12] recently obtained an approxima-
tion guarantee of n−2/3+ε with O(1) space, which is optimal if we want only
polylogarithmic space usage, since Ω(n3ε/2) space is needed to achieve an ap-
proximation guarantee of n−2/3−ε [GM09]. However, while impressive from an
asymptotic viewpoint, their algorithm is unfortunately far from practical – mak-
ing reasonable assumptions about hidden constants in the algorithm, it would
require inputs of size n ≥ 2100 for its guarantees to hold1.

The remainder of this paper is organized as follows. We first discuss our basic
algorithm for computing an approximate median of a probability distribution
D via hierarchical sampling. Next, we show how a simple modification – using
biased hierarchical sampling – allows us to generalize this approach to com-
pute an approximate r-quantile for any constant r ∈ (0, 1). Finally, we discuss
implementation considerations that might arise in certain computational envi-
ronments (e.g., parallel environments, streaming with unknown stream length),
and provide the results of empirical testing to show that our methods can deliver
good results even when run on non-random data streams in practice.

1 The algorithm described in [MV12] breaks the length-n input stream into blocks,
the first of which has size (3/4)4tn2/3 for t = 1

6
log2 n. This first block is then further

divided into a polylogarithmic number of sub-blocks each of size O(3tn2/3polylog n).
Assuming that this expression is at least 3tn2/3 log2 n, we need n ≥ 2100 or else this
expression is larger than the size of the first block, preventing subdivision.

312 B.C. Dean, R. Jalasutram, and C. Waters

1
0

2
3

4

Fig. 1. On top, hierarchical selection along a ternary tree. The original samples from
our distribution appear in level 0, each node computes the median of its three children,
and the final estimate of the median is emitted from the root. Below, succession of
histograms showing how multiple layers of median-of-three operations converge to an
approximate median.

2 Approximating the Median

Like many other approaches for approximate selection, our work is based on hi-
erarchical sampling, an approach pioneered initially by Floyd and Rivest [FR75].
The main difference with our approach is that we only sample groups of three
elements, instead of larger sets (we show in a few pages how to extend the same
approach to odd sets larger than three as well).

Figure 1 illustrates the mechanics of our method in terms of a ternary tree:
each leaf (level 0) node computes a random sample from D, and each level
k > 0 node computes the median of its three children at level k− 1. The answer
computed by the root is our final estimate of the median of D. To visualize
how this converges, the back row (level 0) of the lower part of Figure 1 shows
a histogram of the relative ranks of 100,000 random samples taken from D
(uniformly distributed over [0, 1], as expected). The next row forward (level 1)
shows a histogram of samples that are each taken by choosing the median of
three random samples from level 0. We continue in this fashion, generating each
sample at level k by taking the median of three random samples from level k−1.
The result converges quickly to the median of D.

Lightweight Approximate Selection 313

function A(x) for(i = 1; i ≤ n or stacksize > 1; i++) {
{ push sample(D)

if x ≤ 1, return sample(D) for(j = i; j mod 3 = 0; j = j/3)
return med3(A(x/3), A(x/3), A(x/3)) push med3(pop(), pop(), pop())

} }

Fig. 2. Pseudocode for recursive (left) and iterative (right) algorithms for approximate
median computation. The recursive version is invoked by calling A(n), where O(n) is
the desired running time.

Pseudocode for a recursive variant of our algorithm appears in Figure 2 on
the left, invoked by calling A(n), where O(n) is the desired running time of the
algorithm. The larger we set n, the more accurate the final result. The function
med3(a, b, c) computes the median of its three arguments; for example, we might
implement it simply as

med3(a, b, c) = a + b + c− min(a, b, c) − max(a, b, c).

Although the recursive code for our algorithm is extremely short, our preferred
implementation in practice is the iterative variant on the right in Figure 2, since
it avoids function call overhead. The iterative variant simulates the recursive
variant by performing a post-order traversal of our tree. It also runs in O(n)
time for a specified value of n of our choosing, and its output is the sole element
remaining on the stack at termination. If we are processing a data stream whose
size is unknown or not necessarily a power of 3, we would terminate the outer
“for” loop upon reaching the end of the stream and return the element at the
bottom of the stack as our answer. The total memory usage for both variants of
our algorithm is clearly only O(log n).

2.1 Analysis

Let Fj(x) denote the cumulative distribution function for the relative rank of a
level-j sample (i.e., the probability that the relative rank of a level-j sample is
at most x). Since the median of three elements is at most x if and only if all
three are at most x or two of the three are at most x, we have

F0(x) = x

F1(x) = x3 + 3x2(1 − x)

...

Fj(x) = [Fj−1(x)]3 + 3 [Fj−1(x)]2 [1 − Fj−1(x)] .

In order to obtain a high probability guarantee that a level-j sample is an n−c-
approximation to the median, due to symmetry we must have

Fj (1/2 − 1/nc) ≤ 1/nk

314 B.C. Dean, R. Jalasutram, and C. Waters

for any constant k ≥ 1 of our choosing. Using the approximation f(x − y) ≈
f(x) − f ′(x)y, we wish to solve

Fj (1/2) − F ′
j (1/2)/nc ≈ 1/nk,

Since Fj(1/2) = 1/2 for all j, this gives

F ′
j(1/2) ≈ nc(1/2 − 1/nk) ≈ nc/2,

which becomes an equality in the limit as n → ∞. Finally,

F ′
j(x) = 6Fj−1(x) [1 − Fj−1(x)]F ′

j−1(x),

so F ′
j(1/2) = (3/2)F ′

j−1(1/2), and hence F ′
j(1/2) = (3/2)j. Plugging in j =

log3 n if we run our algorithm on n total samples, we have

nlog3
3
2 = (3/2)log3 n = F ′

j(1/2) ≈ nc/2,

so as n → ∞, our approximation guarantee is n−c with c = log3(3/2) ≈ 0.369.
By running the algorithm longer, we get more accurate results. As n → ∞,

the bound we get by running on O(ns) samples is s log3(3/2) ≈ 0.369s, obtained
by plugging in j = log3 n

s above. Hence, we can compute the true median of
a length-n array (with high probability, as n → ∞) in O(nlog3/2 3) ≈ O(n2.71)
time. A much faster way to build on our approach to get the true median with
O(log logn) expected passes over the data stream is to use divide and conquer
(e.g., see [MR96]): run our algorithm twice to compute two estimates L and H ,
repeating until we verify by counting that the true median lies in [L,H]; we then
recurse on just the elements in this smaller range.

2.2 Higher-Order Generalizations

One can improve the asymptotic approximation guarantee of our approach at
the expense of implementation complexity by aggregating along a k-ary tree for
larger odd values of k > 3. Our analysis above generalizes to these variants,
giving an approximation guarantee of

logk
F ′
j(1/2)

F ′
j−1(1/2)

,

where Fj(x) is now unfortunately somewhat more complicated. However, we can
still compute this value using a more combinatorial approach. As δ → 0, observe
that δF ′

j(1/2) is the probability that the rank of the median of k level-(j − 1)
samples lies in [1/2 − δ/2, 1/2 + δ/2]. We can compute this probability by:

– Picking a set L of (k − 1)/2 elements from our k level-(j − 1) samples that
must all end up being less than 1/2 − δ/2 in rank,

Lightweight Approximate Selection 315

– Picking a set H of (k−1)/2 elements (disjoint from L) from our k level-(j−1)
samples that must all end up being more than 1/2 + δ/2 in rank, and

– Selecting the final level-(j − 1) sample so it has rank [1/2 − δ/2, 1/2 + δ/2].

The number of ways to pick L and H is equal to twice the number of edges
in the well-studied odd graph O(k+1)/2, with nodes corresponding to all subsets

of size (k − 1)/2 from a ground set of k, and (k + 1)
(

k
(k−1)/2

)
/4 edges, each

joining a pair of nodes representing disjoint subsets [Big79]. The probability
that all elements in L are at most 1/2 − δ/2 is Fj−1(1/2 − δ/2)|L|, which is
(1/2)|L| = (1/2)(k−1)/2 in the limit as δ → 0. Likewise, the limiting probability
all elements in H are larger than 1/2 + δ/2 is (1/2)(k−1)/2. The probability our
single remaining sample lands in [1/2 − δ/2, 1/2 + δ/2] is given by δF ′

j−1(1/2).
Multiplying all of these together, we find the asymptotic approximation guaran-
tee for a k-ary tree is n−c, where

c = logk

[
k + 1

2k

(
k

(k − 1)/2

)]
.

Figure 3 shows the asymptotic approximation factors obtained by using suc-
cessively larger values of k. If we now apply the central binomial coefficient
approximation (

2x

x

)
≥ 4x√

π(x + 1/2)

we find that (
k

(k − 1)/2

)
=

2k

k + 1

(
k − 1

(k − 1)/2

)
≥ 2k

k + 1

√
2k

π
.

Setting ε = logk
√
π/2, our asymptotic approximation guarantee can be written

as

c ≥ logk

√
2k

π
= 1/2 − ε,

with space usage

O(k logk n) = O(ε
√

π/2
1/ε

logn) = O(1.2541/ε logn).

These bounds have the same form as the bounds from Guha and McGregor
[GM09], albeit with slightly smaller constants (which is reasonable, since the
result of [GM09] assumes a more complicated partially adversarial model).

One can also conceive of generalizations of our algorithm with even branching
factors k ≥ 2, but these turn out to be both more complicated and worse-
performing than their odd-k counterparts (i.e., performance for k = 6 is worse
than for k = 5), since an even-sized set has no well-defined median. We omit
these from further discussion.

316 B.C. Dean, R. Jalasutram, and C. Waters

k 3 5 7 9 11 13 15 17

c 0.369 0.391 0.402 0.410 0.415 0.420 0.422 0.426

Fig. 3. Approximation guarantees for larger branching factors k. Each column shows
the value of c in the approximation guarantee n−c for a different value of k.

3 Approximating Arbitrary Quantiles

Returning to the basic algorithm with a branching factor of 3, one of the strengths
of this method is that it generalizes in a remarkably easy fashion to handle selec-
tion at any constant relative rank r ∈ (0, 1). The only change is that each node
makes a biased random decision between its three children instead of always choos-
ing the median. Modified pseudocode for the recursive variant is shown in Figure
4; the iterative variant generalizes similarly.

To analyze this method, we first show how to derive the formulas for α and β.
Let us assume we are searching for a rank r < 1/2, so β = 0 and we are focusing
only on α (a symmetric argument works for computing β with r > 1/2). Based
on the biased random decision made by our algorithm, we can re-write the
cumulative distribution for a level-j node as

Fj(x) = [Fj−1(x)]
3

+ 3 [Fj−1(x)]
2

[1 − Fj−1(x)] + 3αFj−1(x) [1 − Fj−1(x)]
2

= Fj−1(x)
[
(3α− 2)(Fj−1(x))2 + (3 − 6α)Fj−1(x) + 3α

]
In order to converge properly, we must have Fj(x) < Fj−1(x) for all x ∈ [0, r)
and 1 − Fj(x) < 1 − Fj−1(x) (hence Fj(x) > Fj−1(x)) for all x ∈ (r, 1]. Since
F is continuous, this means Fj(r) = Fj−1(r), so Fj(r) = F0(r) = r for all j.
Our convergence conditions can now be written as: Fj(x) < Fj−1(x) for all x
such that Fj−1(x) ∈ [0, r), and 1 − Fj(x) < 1 − Fj−1(x) for all x such that
Fj−1(x) ∈ (r, 1]. Hence, the quadratic function

p(z) = (3α− 2)z2 + (3 − 6α)z + 3α

must satisfy p(z) < 1 for z ∈ [0, r) and p(z) > 1 for z ∈ (r, 1]. Since p is
continuous, this means p(r) = 1. Evaluating p(z) at z = 0, we find that α < 1/3,
so p is concave and satisfies p(z) = 1 at two points

z =
6α− 3 ±

√
(3 − 6α)2 − 4(3α− 2)(3α− 1)

6α− 4
=

6α− 3 ± 1

6α− 4
= 1,

1 − 3α

2 − 3α
.

Solving r = 1−3α
2−3α for α, we obtain the desired formula.

Now let us consider approximation guarantee, assuming again for simplicity
that r < 1/2. We can use essentially the same approach as in Section 2.1. Starting
from

Fj (r) − F ′
j (r) /nc ≈ 1/nk,

this gives
F ′
j(r) ≈ nc(Fj(r) − 1/nk) � nc(r − 1/nk) ≈ rnc.

Lightweight Approximate Selection 317

α = max
(
0, 1−2r

3−3r

)
, β = max

(
0, 2r−1

3r

)
function A(x)
{

if x ≤ 1, return sample(D)
if rand() < α then return min(A(x/3),A(x/3), A(x/3))
if rand() < β then return max(A(x/3),A(x/3), A(x/3))
return med3(A(x/3), A(x/3),A(x/3))

}

Fig. 4. Finding an element of approximate relative rank r. The rand() function returns
a random number in the range [0, 1].

On the other hand,

F ′
j(r) = F ′

j−1(r)
[
(9α− 6)(Fj(r))

2 + (6 − 12α)Fj(r) + 3α
]

= F ′
j−1(r)

[
(9α− 6)r2 + (6 − 12α)r + 3α

]
= F ′

j−1(r)[1 + r].

Combining as before, we obtain a high probability asymptotic approximation
bound of n−c with c = log3(1 + r).

We leave as an open question what should be the most natural way to gen-
eralize the variants of our algorithm with odd branching factors k > 3 so that
they compute arbitrary quantiles.

4 Implementation Considerations

Our method is cache-friendly and also parallelizes well. If we divide the total
number of samples n into n = n1 + . . .+np across p processors and run the algo-
rithm (say, the iterative version from Figure 2) on each processor independently,
then the results can be easily aggregated after collecting the stacks output by
each processor. The ternary representation of ni tells us the number of level-j
outputs on the final stack from process i, so aggregation is essentially equivalent
to base-3 addition of the ni’s, with carries corresponding to popping 3 level-j
outputs and pushing one level-(j + 1) output.

For real-world inputs that are not sufficiently randomly-ordered, one may
wish to apply a technique like the “backing sample” approach of Gibbons et
al. [GMP02] in order to effectively randomize the input order. If our input is ex-
pected to potentially exhibit a long-term trend (e.g., a linear function plus noise,
or in the worst case, a sorted sequence), then we must take special consideration
to avoid poor performance. Our algorithm generally only accepts an input size
n that is a power of three, so for example if our input is a sorted sequence of
length n = 3k − 1, then we will only process the first third of the data, leading
to an approximation bound of 1/2− 1/6 = 1/3. To improve this, we can use the

318 B.C. Dean, R. Jalasutram, and C. Waters

common idea in the streaming literature of running multiple instances of our
algorithm that each make a different guess for the fractional part of log3 n. If we
run t such instances, then instance i (i = 0 . . . t− 1) should flip a biased coin for
each element of data and only process it with probability

pi =
1

1 + 2i/t
.

It is easy to show that this reduces the approximation bound in the sorted case to
1/(3t). Recall that the lower bound from [GM09] states that this is essentially
the best any one-pass selection algorithm can do with an adversarial stream,
since one must use Ω(t) space to obtain this quality of approximation; we are
only using a logarithmic factor more.

Finally, the variant of our algorithm designed to select quantiles of arbitrary
rank r ∈ (0, 1) suffers from poor convergence as r deviates significantly from 1/2.
To alleviate this and force faster convergence at the outset, suppose r < 1/2 and
let b = �1/r�. We divide our stream into blocks of size b, taking the minimum of
each block, and the running our original algorithm on the n/b block mins using
relative rank r′ = 1−(1−r)b (for the case where r > 1/2, we use b = �1/(1−r)�,
block maxes, and relative rank r′ = rb). The main idea here is that we are shifting
the underlying distribution our algorithm samples from to one requiring a more
central relative rank r′; it is straightforward to show that r′ ∈ [1/4, 3/4].

Only trivial modifications to our pseudocode are necessary to implement these
changes. For example, let us round n and b to powers of 3. In the code shown
in Figure 4, if x ≤ b we would just set α = 1 (if r < 1/2) or β = 1 (if r > 1/2),
and otherwise we would use r′ in place of r.

5 Computational Experience

To test performance in practice, empirical testing was performed on both random
and non-random datasets. As expected, performance on random datasets (the
intended model for our algorithm) was strongest, as shown in Figure 5. Each
random dataset approximation bound in the figure was obtained by averaging
10 independent executions with different random data. For r = 0.5, performance
is quite good for large values of n, for example giving an approximation bound ε
of roughly two hundredths of a percent for n = 109. For quantiles other than the
median, we see how the blocking technique from the end of the previous section
(marked (*) in the figure) leads to dramatic improvement in approximation
quality.

To get a sense of how well our approach works when applied in a stream-
ing context to a non-random stream (recall that is not the primarily-intended
use case), we tested our algorithm on several large-scale time series datasets:
traces.(1-7) are datasets of server metrics over time (e.g., cache usage, I/O load),
and EEG is a time series dataset of 10 million samples worth of brain wave data
on a single electrode. Performance on these datasets is quite a bit more varied
than on truly random datasets, with approximation guarantees ranging from

Lightweight Approximate Selection 319

Instance ε

random, n = 103, r = 0.5 0.0273
random, n = 106, r = 0.5 0.00333
random, n = 109, r = 0.5 0.000205

traces.1, n = 1, 232, 799, 308, r = 0.5 0.00442
traces.2, n = 1, 232, 799, 308, r = 0.5 0.00878
traces.3, n = 1, 232, 799, 308, r = 0.5 0.0149
traces.4, n = 574, 354, 365, r = 0.5 0.0165
traces.5, n = 1, 232, 799, 308, r = 0.5 0.0133
traces.6, n = 1, 232, 799, 308, r = 0.5 0.0162
traces.7, n = 542, 674, 569, r = 0.5 0.0354

EEG, n = 10, 000, 000, r = 0.5 0.0330

random, n = 109, r = 0.25 0.00306
random, n = 109, r = 0.25 0.00173 (*)
random, n = 109, r = 0.1 0.0235
random, n = 109, r = 0.1 0.000715 (*)
random, n = 109, r = 0.05 0.0365
random, n = 109, r = 0.05 0.000274 (*)

Fig. 5. Approximation bounds measured from empirical testing

slightly less than 1% to 3.6% on the worst example. Of course, performance on
this data could be improved by using other straightforward heuristics. For ex-
ample, by using the blocking technique from the previous section to sample the
median of size-b blocks as a base case, we can easily bring the relative error of the
EEG dataset down to a fraction of a percent for most small values of b. Hence,
even when applied to non-random data in a streaming (versus sampling) context,
our methods produce reasonable results. When we have the ability to sample,
however, the empirical results above demonstrate very strong performance.

Acknowledgements. The authors wish to thank Ben Cousins for helpful dis-
cussions on the analysis of our methods, and Linh Ngo for help with the server
trace datasets. The first two authors received support from NSF CAREER award
CCF-0845593.

References

ARS97. Alsabti, K., Ranka, S., Singh, V.: A one-pass algorithm for accurately esti-
mating quantiles for disk-resident data. In: VLDB, pp. 346–355 (1997)

AS95. Agrawal, R., Swami, A.: A one-pass space-efficient algorithm for finding
quantiles. In: COMAD (1995)

Big79. Biggs, N.: Some odd graph theory. Annals of the New York Academy of
Sciences 319(1), 71–81 (1979)

BLS12. Brody, J., Liang, H., Sun, X.: Space-efficient approximation scheme for circu-
lar earth mover distance. In: Fernández-Baca, D. (ed.) LATIN 2012. LNCS,
vol. 7256, pp. 97–108. Springer, Heidelberg (2012)

320 B.C. Dean, R. Jalasutram, and C. Waters

CKMS05. Cormode, G., Korn, F., Muthukrishnan, S., Srivastava, D.: Space- and time-
efficient deterministic algorithms for biased quantiles over data streams.
In: IEEE International Conference on Data Engineering (2005)

CKMS06. Cormode, G., Korn, F., Muthukrishnan, S., Srivastava, D.: Space- and time-
efficient deterministic algorithms for biased quantiles over data streams.
In: PODS, pp. 263–272 (2006)

DNS91. DeWitt, D.J., Naughton, J.F., Schneider, D.A.: Parallel sorting on a shared-
nothing architecture using probabilistic splitting. In: PDIS, pp. 280–291
(1991)

FR75. Floyd, R.W., Rivest, R.L.: Expected time bounds for selection. Commun.
ACM 18(3), 165–172 (1975)

GK01. Greenwald, M., Khanna, S.: Space-efficient online computation of quantile
summaries. In: SIGMOD, pp. 58–66 (2001)

GM09. Guha, S., McGregor, A.: Approximate quantiles and the order of the stream.
SIAM J. Comput. 38(5), 2044–2059 (2009)

GMP02. Gibbons, P.B., Matias, Y., Poosala, V.: Fast incremental maintenance of
approximate histograms. ACM Trans. Database Syst. 27(3), 261–298 (2002)

Ioa03. Ioannidis, Y.E.: The history of histograms (abridged). In: VLDB, pp. 19–30
(2003)

JC85. Jain, R., Chlamtac, I.: The P2 algorithm for dynamic calculation of quan-
tiles and histograms without storing observations. Commun. ACM 28(10),
1076–1085 (1985)

MP78. Munro, I., Paterson, M.: Selection and sorting with limited storage. In:
FOCS, pp. 253–258 (1978)

MR96. Munro, I., Raman, V.: Selection from read-only memory and sorting with
minimum data movement. Theor. Comput. Sci. 165(2), 311–323 (1996)

MRL98. Manku, G.S., Rajagopalan, S., Lindsay, B.G.: Approximate medians and
other quantiles in one pass and with limited memory. In: SIGMOD,
pp. 426–435 (1998)

MV12. McGregor, A., Valiant, P.: The shifting sands algorithm. In: SODA,
pp. 453–458 (2012)

SA96. Srikant, R., Agrawal, R.: Mining quantitative association rules in large re-
lational tables. In: SIGMOD, pp. 1–12 (1996)

SAC+79. Selinger, P.G., Astrahan, M.M., Chamberlin, D.D., Lorie, R.A., Price, T.G.:
Access path selection in a relational database management system. In: SIG-
MOD, pp. 23–34 (1979)

Robust Distance Queries on Massive Networks

Daniel Delling, Andrew V. Goldberg, Thomas Pajor, and Renato F. Werneck

Microsoft Research, USA
{dadellin,goldberg,tpajor,renatow}@microsoft.com

Abstract. We present a versatile and scalable algorithm for computing
exact distances on real-world networks with tens of millions of arcs in real
time. Unlike existing approaches, preprocessing and queries are practical
on a wide variety of inputs, such as social, communication, sensor, and
road networks. We achieve this by providing a unified approach based
on the concept of 2-hop labels, improving upon existing methods. In
particular, we introduce a fast sampling-based algorithm to order vertices
by importance, as well as effective compression techniques.

1 Introduction

Answering point-to-point distance queries in graphs is a fundamental building
block for many applications [21] in social networks, search, computational biol-
ogy, computer networks, and road networks. Dijkstra’s algorithm [22] can an-
swer such queries in almost linear time, but this can take several seconds on
large graphs. This motivates two-phase algorithms, in which auxiliary data com-
puted during preprocessing is used to accelerate on-line queries. Although there
are practical exact algorithms for road networks [2, 8, 13] and some social and
communication graphs [3–5,17,18,23], none is robust on a wide range of inputs.

We propose an exact algorithm that is much more robust to network structure,
scales to large networks, and improves (or at least is competitive with) existing
specialized solutions. Our method is based on hierarchical hub labeling (HHL) [3],
a special kind of 2-hop labeling [11]. HHL preprocessing first orders vertices
by importance, then transforms this ordering into labels that enable fast exact
shortest-path distance queries (either in RAM or in external memory [1,17,20]).
Labels can be optionally compressed with no loss in correctness.

While there are fast algorithms to transform an ordering into the correspond-
ing labeling [3, 4], finding a good ordering is challenging. Heuristics that are
effective on road networks [3, 13] or on unweighted, undirected small-diameter
networks [4] are not robust on other inputs. Compression strategies are similarly
specialized to particular networks [4, 10]. We close both gaps by introducing ef-
ficient algorithms to find good orders (Section 3) and compress the resulting
labels (Section 4) on a wide variety of inputs, including some which no other
known method can handle. Our experiments (Section 5) show that our methods
are robust, scaling to graphs with tens of millions of arcs. We answer queries
to optimality within microseconds using significantly less auxiliary data than
previous approaches, effectively widening the range of inputs that can be dealt

A.S. Schulz and D. Wagner (Eds.): ESA 2014, LNCS 8737, pp. 321–333, 2014.
© Springer-Verlag Berlin Heidelberg 2014

322 D. Delling et al.

with efficiently. Details omitted from this extended abstract can be found in the
full version [9].

2 Background

The input to the distance query problem is a directed graph G = (V, A) with a
positive length function � : A → Z>0. Let n = |V | and m = |A|. We denote the
length of a shortest path (or the distance) from vertex v to vertex w by dist(v, w).
A distance query takes a pair of vertices (s, t) as input and outputs dist(s, t).

A labeling algorithm [19] preprocesses the graph to compute a label for ev-
ery vertex such that an s–t query can be answered using only the labels of s
and t. The 2-hop labeling or hub labeling (HL) algorithm [11] is a special case
with a two-part label L(v) for every vertex v: a forward label Lf (v) and a back-
ward label Lb(v). (For undirected graphs, each vertex stores a single label that
acts as both forward and backward.) The forward label Lf(v) is a sequence
of pairs (w, dist(v, w)), with w ∈ V ; similarly, Lb(v) has pairs (u, dist(u, v)).
Vertices w and u are said to be hubs of v. To simplify notation, we often in-
terpret labels as sets of hubs; v ∈ Lf (u) thus means label Lf(u) contains a
pair (v, dist(u, v)). The size |L(v)| of a forward or backward label is its number
of hubs. A labeling is the set of labels for all v ∈ V and its size is

∑
v(|Lf(v)| +

|Lb(v)|). The average label size is the size of the labeling divided by 2n. La-
bels must obey the cover property: for any s and t, the set Lf (s) ∩ Lb(t) must
contain at least one hub v that is on the shortest s–t path. We do not assume
that shortest paths are unique; to avoid confusion, we mostly refer to (ordered)
pairs [u, w] instead of paths u–w. We say that a vertex v covers (or hits) a
pair [u, w] if dist(u, v) + dist(v, w) = dist(u, w), i.e., if at least one shortest u–w
path contains v.

To find dist(s, t), an HL query finds the hub v ∈ Lf(s) ∩ Lb(t) that mini-
mizes dist(s, v) + dist(v, t). If the entries in each label are sorted by hub ID, this
takes linear time by a coordinated sweep over both labels, as in mergesort.

Our focus is on hierarchical hub labelings (HHL). Given a labeling, let v � w
if w is a hub of L(v). Abraham et al. [3] define a hub labeling as hierarchical
if � is a partial order. (Intuitively, v � w if w is “more important” than v.)
Natural heuristics for finding labelings produce hierarchical ones [3, 4, 13, 17].

Abraham et al. [3] show that one can compute the smallest HHL consistent
with a given ordering rank(·) on the vertices in polynomial time. In this canonical
labeling, vertex v belongs to Lf (u) if and only if there exists w such that v is
the highest-ranked vertex that hits [u, w]. Similarly, v belongs to Lb(w) if and
only if there exists u such that v is the highest-ranked vertex that hits [u, w].
Although canonical labelings were originally defined under the assumption that
shortest paths are unique [3], the same definition holds when they are not [14].
The algorithms by Abraham et al. [2,3] to compute a labeling from a given order
are polynomial, but impractical for most graph classes.

More recently, Akiba et al. [4] proposed the Pruned Labeling (PL) algorithm,
which efficiently computes a labeling from a given vertex order. (We will use it

Robust Distance Queries on Massive Networks 323

as a subroutine.) Starting from empty labels, PL processes vertices from most
to least important (higher to lower rank). The iteration that processes vertex v
adds v to all relevant labels. To process v, it runs two pruned versions of Dijk-
stra’s algorithm [22] from v. The first works on the forward graph (out of v) as
follows. Before scanning a vertex w (with distance label d(w) within Dijkstra’s al-
gorithm), it computes a v–w distance estimate q by performing an HL query with
the current partial labels. (If the labels do not intersect, set q = ∞.) If q ≤ d(w),
the [v, w] pair is already covered by previous hubs and the algorithm prunes the
search (ignores w). Otherwise (if q > d(w)), it adds (v, dist(v, w)) to Lb(w) and
scans w as usual. The second Dijkstra computation uses the reverse graph and
is pruned similarly; it adds (v, dist(w, v)) to Lf(w) for all scanned vertices w.
Note that the number of Dijkstra scans equals the size of the labeling. Also,
rather than assuming shortest paths are unique, PL breaks ties on-line in favor
of more important (higher-ranked) vertices. Akiba et al. show that PL is correct
and produces a minimal labeling (deleting any hub violates the cover property).
It is easy to show that it is also hierarchical, and thus canonical.

3 Computing Orderings

Knowing how to efficiently compute a hierarchical labeling from an order, we
now consider how to find orders that lead to small labelings. (Recall that any
order produces correct labels.) One can sidestep this issue by using the order
implied by vertex degrees [4, 17]; using degree as a proxy for importance works
well for some unweighted and undirected small-diameter networks, but is not
robust. Contraction Hierarchies (CH) [3] orders vertices bottom-up, using only
local information that is carefully updated as decisions are made. This often
leads to small labels [3], but can be costly because the number of updates may
be superlinear and the updates themselves may be expensive.

For better results, Abraham et al. [3] propose a greedy top-down algorithm. It
finds good labels for a wide range of graph classes, but is too expensive (in both
time and space) for large instances. In this section, we recap this basic algorithm
and then show that using on-line tie breaking leads to even better orders, but
with greater preprocessing effort. Finally, we propose a sampling technique that
makes the basic algorithm much faster while still finding good solutions.

Basic Algorithm. The basic algorithm [3] defines the order greedily: the i-th
highest ranked vertex (hub) is the one that hits the most previously uncovered
shortest paths (i.e., not covered by the i − 1 hubs already picked). To implement
this rule efficiently, the basic algorithm starts by building n full shortest path
trees, one rooted at each vertex of the graph. The tree Ts rooted at s represents
all uncovered shortest paths starting at s. This effectively makes shortest paths
unique: the algorithm assumes that only vertices on the s–t path in Ts can hit the
pair [s, t]. The number of descendants of v in Ts is thus the number of uncovered
shortest paths that start at s and contain v. The total number of descendants

324 D. Delling et al.

of v over all trees, denoted by σ(v), is the number of shortest paths that would
be hit if v were picked as the next most important hub.

Each iteration of the algorithm picks as the next hub the vertex v∗ for
which σ(v∗) is maximum. To prepare for the next iteration, it removes the sub-
tree rooted at v∗ from each tree (as the paths they represent are now covered
by v∗) and updates the σ(·) values of all descendants and ancestors of v∗. This
algorithm is path-greedy: it maximizes the number of new paths hit in each
iteration. Abraham et al. also propose a label-greedy variant, which picks the
vertex v∗ that maximizes the ratio between σ(v∗) and the number of labels to
which v∗ will be added; this leads to slightly better labels. Note that the basic
algorithm breaks ties off-line (a-priori) while computing the initial trees; the
resulting paths determine not only which hub to select next, but also to which
labels this hub is added. Our experiments thus refer to it as OffPG (path-greedy)
or OffLG (label-greedy). Both variants run in O(mn log n) time [3].

Better Tie-Breaking. When shortest paths are far from unique (as in some
unweighted small-diameter networks), the basic algorithm underestimates the
number of pairs hit by each hub it picks. Since it breaks ties a-priori, it produces
bigger labels than needed. For better results, we propose a simple hybrid algo-
rithm: first compute a vertex order using the basic algorithm, then use PL to find
the labeling. Since PL breaks ties in favor of paths with the highest maximum
vertex rank, this can lead to substantially smaller labels with little overhead. We
refer to this algorithm as HybPG (path-greedy) or HybLG (label-greedy).

We also propose an algorithm that breaks ties on-line while selecting the
order. Although impractical for large instances, it finds the smallest hierarchical
labels we are aware of (on moderate-sized inputs). It follows the same approach
as the basic algorithm, picking in each iteration the hub v∗ (not picked before)
that covers the most uncovered pairs [u, w]. The challenge is finding v∗ efficiently
in every iteration: since ties are broken on-line, we must implicitly maintain the
numbers of descendants in all shortest path DAGs, which is harder than in trees.

Thus, during initialization, we compute an n × n distance table between
all n vertices and create an n × n boolean matrix in which entry (u, w) indi-
cates whether the pair [u, w] is already covered by a previously selected hub.
All entries [u, w] with finite dist(u, w) are initially false. For each vertex v, we
maintain σ(v), the number of new pairs that would be covered if v were se-
lected as the next hub. Initially, this is the total number of pairs [u, w] hit
by v. For a fixed v, this value can be found in O(n2) time: check for each [u, w]
if dist(u, v) + dist(v, w) = dist(u, w).

Each iteration of the algorithm is as follows. First, pick a vertex v for which σ(v)
is maximum (in O(n) time). Then find the set Q of uncovered pairs hit by v (note
that |Q| = σ(v)); this takes O(n2) time using the distance table and the boolean
matrix. For each pair [u, w] ∈ Q, mark [u, w] as covered and add v to both Lf(u)
and Lb(w) (if not there already). Finally, update the other σ values: for each pair
[u, w] ∈ Q and vertex x ∈ V , decrease σ(x) by one if x hits [u, w]. This step
takes O(|Q|n) time. Since any pair appears in some Q at most once during the

Robust Distance Queries on Massive Networks 325

algorithm, the combined size of all Q lists is O(n2). Altogether, the algorithm runs
in O(n3) worst-case time and Θ(n2) space. This path-greedy algorithm can be ex-
tended to be label-greedy with the same bounds. We call these variants OnPG and
OnLG, respectively.

Finding Good Orderings Faster. All methods considered so far are imprac-
tical for large graphs, since they use Ω(n2) space and time. We thus propose
an improvement of the path-greedy hybrid algorithm (HybPG) that uses sam-
pling to compute estimates σ̃(·) on the σ(·) values. The estimates need only be
precise enough to distinguish important vertices (those for which σ(·) is large)
from unimportant ones. We can tolerate fairly large errors on the estimate of
unimportant vertices. Intuitively, if σ(v) � σ(w), we want to have σ̃(v) > σ̃(w).

A natural approach is to build k � n trees from random roots and set σ̃(v) to
be the total number of descendants of v in all trees of the sample [7]. (Sampling
paths uniformly would be ideal, but too costly.) Once a vertex v∗ is picked (from
a priority queue), we update counters as in the basic algorithm, with all descen-
dants of v∗ removed from the sampled trees. Unfortunately, when k is small (as
required for good performance), such σ̃(v) estimates are only accurate for very
important vertices (with many descendants in most trees); as sampled trees get
smaller, we have insufficient information to assess less important vertices.

We deal with this by generating more trees (from new roots) as the algorithm
progresses. We grow them using Dijkstra’s algorithm, but pruning vertices al-
ready covered by previously picked hubs (like in PL). Newly added trees thus
only contain uncovered paths and get smaller as the algorithm progresses, keep-
ing space and time under control. Since we need partial labels for pruning, we
add v∗ to all relevant labels (running one PL iteration from v∗) right after v∗

is selected as next hub. We balance the work spent growing trees and construct-
ing (adding hubs to) labels. Let ct be the total number of arcs and hubs touched
so far while building new trees (the k original trees are free); define cl simi-
larly, for operations during label construction. We generate trees from random
new roots until either ct > cl or the total number of vertices in existing trees
exceeds 10kn. To bound the space usage, we represent small trees as hash tables.

Although the total number of descendants in the sample is a natural estimator
for the total over all n trees, its variance is very high. In particular, it overes-
timates the importance of vertices that are at (or near) the root of a sampled
tree [12]. Replacing the sum (or average) by a more robust measure (such as the
median) would remedy this, but is costly to maintain as trees (and counters) are
updated. We achieve both robustness and speed as follows. Instead of keeping a
single counter σ̃(v) for each vertex v, we keep c counters σ̃1(v), σ̃2(v), . . . , σ̃c(v),
for some constant c. Counter σ̃i(v) is the total number of descendants of v over
all trees tj such that i = (j mod c). (Here tj is the j-th tree in the sample, not the
tree rooted at j.) These counters are easy to maintain and allow us to eliminate
outliers when evaluating v, for instance by discarding the counter i that maxi-
mizes σi(v) and taking as estimator the average value of the remaining counters.
(Intuitively, if v is close to the root of one tree, only one counter will be affected.)

326 D. Delling et al.

In general, increasing c improves accuracy, but can be costly because the priority
of a vertex depends on all its c counters. We found that using c = 16 and discard-
ing the two highest counters gives good results with negligible overhead. In case
of ties, we prefer vertices maximizing σ̃(v) =

∑c
i=1 σ̃i(v). Moreover, we ensure

at least c trees are live during the execution. We call this ordering algorithm
SamPG. We have no label-greedy variant of this algorithm, as it is unclear how
to obtain good estimates on the number of labels a hub is added to.

4 Compression

Representing labels compactly is crucial for large graphs. We first show how
to represent distances or IDs with fewer bits without sacrificing query times,
then propose a more elaborate technique that exploits similarities across labels,
trading higher compression for slower (but still exact and fast enough) queries.

Basic Compression. Recall that a label Lf(u) can be seen as an array of
pairs (v, dist(u, v)) sorted by hub ID v. In practice [2], it pays to first represent
all hubs, then the corresponding distances (in the same order). Since distances
are only read when hubs match, queries have fewer cache misses. We represent
distances with as few bits (8, 16, or 32) as needed for the largest distance stored
in any label. (For unweighted small-diameter networks, 8 bits are enough [4].)

Less trivially, one can use fewer bits to represent hub IDs. Abraham et al. [2]
rename the hubs so that IDs 0 to 255 are assigned to the most important (higher-
ranked) vertices, and use only 8 bits to represent them (and 32 bits otherwise).
On road networks, space is reduced by around 10% (and queries become faster),
since many hubs in each label are in this set. For greater effectiveness on more
inputs, we propose two improvements: delta representation and advanced re-
ordering.

Delta representation stores hub IDs in difference form. Let the hub IDs in
a label be h1 < h2 < h3 < . . . We store h1 explicitly, but for every i > 1 we
store Δi = hi −hi−1 −1. A label with hubs (0 16 29 189 299 446 529) is thus
represented as (0 15 12 159 109 146 82). Because queries always traverse la-
bels in order, we can retrieve hi as Δi+hi−1 +1. Since Δi < hi, this increases the
range of entries that can be represented with fewer bits. (In the example above,
8 bits suffice for all entries.) To keep queries simple, we avoid variable-length
encoding. Instead, we divide the label into two blocks: we start with 8 bits per
entry, and switch to 32 bits when needed.

Our second technique is to rename vertices to increase the number of 8-bit
hub entries. We could reorder hubs by rank (as in Abraham et al. [2]) or by
frequency, with smaller IDs assigned to hubs that appear in more labels, but
we can do even better (by about 10%) with advanced reordering. We assign
ID 0 to the most frequent vertex and allocate additional IDs (up to n − 1) to
one vertex at a time. For each vertex v that is yet unassigned, let s(v) be the
number of labels in which v could be represented with 8 bits if v were given the
smallest available ID. Initially, s(v) is the number of labels containing v, but its

Robust Distance Queries on Massive Networks 327

value may decrease as the algorithm progresses. Each iteration of our method
picks the vertex v with maximum s(v) value and assigns an ID to it. If multiple
available IDs are equally good (i.e., realize s(v)), we assign v the maximum ID
among those, saving smaller IDs for other vertices. In particular, the second most
frequent vertex could have any ID between 1 and 256 and still be represented as
8 bits, so it gets ID 256.

The main challenge for advanced reordering is efficiently updating the s(·) val-
ues. Our lazy implementation keeps a priority queue with estimated s̃(·) val-
ues. Each iteration picks the maximum such element s̃(v) and computes the
actual s(v) value. If the estimate is approximately correct, we assign an ID to v;
otherwise, we reinsert v into the queue with s̃(v) ← s(v).

Token-Based Compression. We now present a novel scheme to achieve even
higher compression. It extends hub label compression (HLC) [10], which inter-
prets each label as a tree and represents each unique subtree (which may occur
in many labels) only once. We explain HLC first, then our improvements.

HLC represents the hubs of a forward label Lf (u) as a tree rooted at u. For
canonical hierarchical labels, the parent of w ∈ Lf(u) \ {u} in the tree is the
highest-ranked vertex v ∈ Lf (u)\{w} that hits [u, w] (the tree representing Lb(u)
is defined analogously). The key insight is that the same subtree often appears
in the labels of several different vertices. HLC represents each unique subtree
as a token consisting of (1) a root vertex r; (2) the number k of child tokens;
(3) a list of k pairs (i, di) indicating that the root of the child token with ID i
is within distance di from r. A token with no children (k = 0) is a trivial token,
and is represented implicitly. Each nontrivial unique token is stored only once.
The data structure also maintains an index mapping each vertex v to its two
anchor tokens, the roots of the trees representing Lf(v) and Lb(v).

An s–t query works in two phases. The first reconstructs the labels Lf (s)
and Lb(t) by traversing the corresponding trees in BFS order and aggregating
distances appropriately. The second phase finds the vertex v ∈ Lf (s) ∩ Lb(t)
that minimizes dist(s, v) + dist(v, t). Since the label entries produced by the
first phase are not sorted by hub ID, the second phase uses hashing rather than
merging [10].

Although HLC compresses road network labelings by an order of magni-
tude [10], it is much less effective on small-diameter inputs: high-degree vertices
are costlier to represent and there are fewer exact matches between subtrees.

To make HLC effective on a wider range of inputs, we now propose mask
tokens. A mask token t represents a unique subtree, but not directly: it con-
tains the ID of another token t′ (its reference token), as well as an incidence
vector (bitmask) indicating which children of t′ should be taken as children of t.
Note that both t and t′ must have the same root. This avoids the need to repre-
sent the same children multiple times. To exploit this further, we use supertokens.
A supertoken has the same structure as a standard token (with a root and a list
of children), but represents the union of several tokens, defined as the union of
their children. For each vertex v, we create a supertoken representing the union

328 D. Delling et al.

of all standard tokens rooted at v. Subtrees that actually appear in the labeling
can be represented as mask tokens using the supertoken as reference.

Since a mask that refers to a supertoken with k children needs k bits, space
usage can be large. But most mask entries are zero (original tokens tend to
have few children), motivating the use of mask compression. We propose a two-
level approach. Conceptually, we split a k-bit mask into b =
k/8� buckets, each
representing up to 8 consecutive bits. For example, a label with k = 45 has six
8-bit buckets: bucket 0 refers to bits 0 to 7, bucket 1 to bits 8 to 15, and so on.
Only nonempty buckets are stored explicitly: an index array indicates which q
buckets (with 1 ≤ q ≤ b) are nonempty, and is followed by q 8-bit incidence
arrays representing the nonempty buckets. The index takes

k/8�/8� bytes.

In general, there will be fewer nonempty buckets if the “1” entries in each
bit mask are clustered. Since correctness does not depend on the order in which
children appear in a supertoken, we can permute them to make the “1” entries
more concentrated. Therefore, for each child x of v, we count the number cv(x)
of standard tokens rooted at v in which x appears, then sort the children of the
supertoken rooted at v in decreasing order of cv(x).

Token-based compression must transform labels into trees, which requires find-
ing parents for all vertices in the label. Delling et al. [10] compute such parents
in O(nM3) time, where M is the maximum label size. We use a much faster (and
novel) O(nM2)-time algorithm tailored to hierarchical labels. It augments PL
to maintain tentative parent pointers as it goes, using the fact that, by the time
a hub is added to a label, its final children are already present.

5 Experiments

We implemented all algorithms in C++ using Visual Studio 2013 with full op-
timization. All experiments were conducted on a machine with two Intel Xeon
E5-2690 CPUs and 384 GiB of DDR3-1066 RAM, running Windows 2008R2
Server. Each CPU has 8 cores (2.90 GHz, 8 × 64 kiB L1, 8 × 256 kiB, and 20 MiB
L3 cache), but all runs are sequential. We use at most 32 bits for distances.

We test social networks (Epinions, Slashdot, Flickr, Hollywood, WikiTalk),
computer networks (Gnutella, Skitter, MetroSec), web graphs (NotreDame, Indo,
Indochina, uk2002), road networks (ber-t, fla-t, eur-t, eur-d), and 3D triangu-
lar meshes (buddha), available from snap.stanford.edu, webgraph.di.unimi.it,
www.dis.uniroma1.it/challenge9, and socialnetworks.mpi-sws.org/datasets.html.
We also test unweighted grid graphs with holes from VLSI applications (alue7065;
steinlib.zib.de) and grids with obstacles built from computer games (FrozenSea,
AR0503SR; movingai.com). For the latter we set edge lengths to 408 for axis-
aligned moves and 577 for diagonal moves. (Note that 577/408 ≈ √

2.) We also
test synthetic inputs: square grids (gridi), Delaunay triangulations of random
points on the unit square (deli), random geometric graphs, often used to model
sensor networks (rggi) [16], random preferential attachment graphs (rbai), and
random small-world networks (rwsi) [15], with i = log n. Some instances are un-
weighted, while in others (with suffix -w) edge lengths correspond to Euclidean
distances (scaled appropriately and rounded up).

snap.stanford.edu
webgraph.di.unimi.it
www.dis.uniroma1.it/challenge9
socialnetworks.mpi-sws.org/datasets.html
steinlib.zib.de
movingai.com

Robust Distance Queries on Massive Networks 329

Table 1. Key values for inputs, ordering quality of degree and SamPG, and perfor-
mance of RXL and CRXL

instance degree SamPG RXL CRXL

type name n m/n d w prep [s] lab prep [s] lab [MiB] [µs] [MiB] [µs]

sensor rgg20 1048576 13.1 ◦ ◦ 2804 1135.7 977 220.0 806.5 2.0 167.3 23.4
rgg20-w 1048576 13.1 ◦ • 52962 5502.7 3608 588.8 3154.3 4.9 436.4 76.1

roads fla-t 1070376 2.5 ◦ • 1321 791.8 103 41.4 260.9 0.5 55.0 3.4
eur-t 18010173 2.3 • • – – 8364 82.4 17202.8 0.8 1589.3 13.3
eur-d 18010173 2.3 • • – – 18664 163.1 33059.5 1.5 2184.2 32.1

grid alue7065 34046 3.2 ◦ ◦ 1 98.2 3 55.9 6.1 0.5 2.8 3.5
grid20 1048576 4.0 ◦ ◦ 92 144.8 364 126.6 526.5 1.3 127.0 14.8

triang buddha 543524 6.0 ◦ ◦ 119 289.5 122 91.5 179.8 0.9 62.6 9.0
buddha-w 543524 6.0 ◦ • 1424 1164.7 678 336.0 952.9 2.9 176.6 41.5
del20 1048576 6.0 ◦ ◦ 241 286.8 306 117.5 452.1 1.1 134.1 13.2
del20-w 1048576 6.0 ◦ • 4606 1598.9 2449 575.3 3077.1 4.8 426.6 115.6

game FrozenSea 754304 7.6 ◦ • 160 241.4 214 92.1 429.3 0.9 133.0 10.9
web NotreDame 325729 4.5 • ◦ 4 21.1 17 11.3 25.9 0.1 19.5 0.4

Indo 1382908 12.0 • ◦ 253 171.7 241 27.4 217.5 0.4 127.9 1.3
Indochina 7414866 25.8 • ◦ 12028 539.8 14824 65.5 3916.5 0.7 1322.9 3.2
uk2002 18520486 15.8 • ◦ – – 43090 278.5 34140.5 1.8 2533.1 25.2

comp Gnutella 62586 2.4 • ◦ 37 240.9 60 157.1 39.4 0.9 17.8 7.4
Skitter 1696415 13.1 ◦ ◦ 1905 456.5 2813 273.5 1074.6 2.3 316.7 20.6
MetrocSec 2250498 19.2 ◦ ◦ 356 132.0 2276 116.5 592.8 0.8 207.7 3.6

social Epinions 75888 6.7 • ◦ 12 94.2 50 91.3 29.2 0.6 13.3 3.6
Slashdot 82168 10.6 • ◦ 40 188.3 140 190.7 65.3 1.5 31.2 7.4
rws17 131072 6.0 ◦ ◦ 5827 4264.4 9224 3597.7 901.2 27.5 1102.9 327.8
rba20 1048576 12.0 ◦ ◦ 8006 1485.6 26238 1541.6 4918.0 11.0 2517.6 131.8
Hollywood 1139905 98.9 ◦ ◦ 38412 2921.3 61411 2114.3 5934.3 13.9 2050.0 204.0
Flickr 1861232 12.2 • ◦ 3353 423.3 10332 322.4 3093.8 2.5 603.8 17.2
WikiTalk 2394385 2.1 • ◦ 281 68.0 999 60.2 625.8 0.5 127.3 2.1

Table 1 summarizes our main results. For each instance, we show its type,
average number of vertices (n), average out-degree (m/n), and whether it is di-
rected (d) and weighted (w). We then show the preprocessing time and average
number of hubs per label if we run PL with vertices ordered by degree (with ties
in the order broken at random) or if we run SamPG, our new ordering algorithm.
We then show the space and average time for random queries for the two main
label representations we propose: RXL (Robust eXact Labeling) uses delta com-
pression and CRXL (Compressed RXL) uses two-level mask compression. Both
use SamPG. The additional preprocessing time for RXL (over SamPG) is very
small (delta compression is fast), but CRXL increases the preprocessing times
by 20%–50% (due to parent pointer computation and token generation).

We confirm Akiba et al.’s observation that ordering by degree works well on
some inputs. SamPG is much more robust, however, often finding much smaller
labels (as in Indo, rgg20-w, buddha-w, or fla-t). Because both algorithms have
superlinear dependence on label size, SamPG is much faster when it finds better
labels. However, since SamPG spends about two-thirds of its time maintaining
sampled trees, it is slower when label sizes are similar.

RXL can handle instances with up to tens of millions of arcs and supports
queries in microseconds. Compared to RXL, CRXL reduces space usage by up
to an order of magnitude (as in eur-t and uk2002). Query times increase mainly
due to worse locality, but still take only microseconds. On uk2002, with almost
300 million arcs, it uses only 2.5 GiB and answers queries in 25 μs.

330 D. Delling et al.

Gn
ute

lla
del

16

del
16
-w

AR
05
03
SR

alu
e70

65
be
r-t

rgg
16

rgg
16
-w

Ep
ini
on
s

0

1

2

20.7 4.3 6.9
la
b
el

si
ze

re
l.
to

S
a
m
P
G

OnLG HybLG HybPG

OffLG OnCH DEG

Fig. 1. Label sizes of various orderings relative to SamPG

Fig. 1 shows, for the ordering algorithms discussed in Section 3, their av-
erage label sizes relative to SamPG; shorter bars are better. As expected, de-
gree is the least robust order. Differences between the other approaches are
much smaller, but still significant. When ties are numerous, OffLG [3], the label-
greedy algorithm that breaks ties in advance (off-line), is much worse than other
methods. HybLG, which uses the same order but breaks ties on-line with PL
when building the labels, is much better, as is its path-greedy variant (HybPG).
Adding sampling to HybPG yields SamPG, with almost no loss in quality. In
fact, SamPG can be better (as in the game graph AR0503SR), since tie-breaking
is partially on-line, with new trees representing only uncovered pairs. Most im-
portantly, SamPG is asymptotically faster: even on such small instances, the
median time (not shown) is less than half a minute for SamPG, about half an
hour for HybPG, HybLG, and OffLG, and days for OnLG. The median time for
the CH-based order (OnCH) is only a minute, and it is twice as fast as SamPG on
ber-t (Berlin). Although it is not robust, taking hours on Epinions and Gnutella,

210 211 212 213 214 215 216 217 218

0
20

0
40

0
60

0

instance size

la
be

ls
iz

e
fo

r
Sa

m
P

G

rws
rba
del-w
rgg-w
rgg
grid
del
road

100 1 000 10 000

1
10

10
0

preprocessing space [MiB]

qu
er

y
ti

m
e

[μ
s]

Indo
FrozenSea
del20
rgg20
Skitter
Flickr
eur-t
del20-w
rgg20-w

Fig. 2. Left: label sizes for SamPG. Right: space and time tradeoffs; from left to right,
the curves are CRXL, CRXL1, HLC, RXL, plain (CRXL and CRXL1 may coincide).

Robust Distance Queries on Massive Networks 331

Table 2. Average label size (superhubs for PLL, hubs for RXL), preprocessing time,
space, and query times for various methods.

label size preprocessing [s] space [MiB] query [µs]

instance PLL RXL PLL Tree RXL CRXL PLL Tree RXL CRXL PLL Tree RXL CRXL

Gnutella∗ 644×16 791 54 209 307 451 209 68 95.7 49.1 5.2 19.0 7.1 45.9
Epinions∗ 33×16 118 2 128 31 39 32 42 19.1 7.7 0.5 11.0 1.1 4.1
Slashdot∗ 68×16 219 6 343 85 110 48 83 37.4 17.8 0.8 12.0 1.7 8.0
NotreDame∗ 34×16 25 5 243 18 22 138 120 22.9 11.9 0.5 39.0 0.2 1.0
WikiTalk∗ 34×16 113 61 2459 1076 1278 1000 416 560.8 86.5 0.6 1.8 1.0 3.4
Skitter 123×64 273 359 – 2862 3511 2700 – 1074.6 316.7 2.3 – 2.3 20.6
Indo∗ 133×64 43 173 – 173 201 2300 – 158.6 90.2 1.6 – 0.5 1.8
MetroSec 19×64 116 108 – 2300 2573 2500 – 592.8 207.7 0.7 – 0.8 3.6
Flickr∗ 247×64 360 866 – 5888 7110 4000 – 1794.6 345.9 2.6 – 2.8 19.9
Hollywood 2098×64 2114 15164 – 61736 75539 12000 – 5934.3 2050.0 15.6 – 13.9 204.0
Indochina∗ 415×64 91 6068 – 8390 8973 22000 – 1978.8 876.8 4.1 – 0.9 3.9

it finds remarkably small labels, considering that it picks the order based only
on local information.

Fig. 2 (left) shows the asymptotic behavior of SamPG on road (square-shaped
subgraphs of eur-t) and various synthetic graph classes. Label sizes increase
relatively fast for small-world (rws) graphs, and less so for preferential attach-
ment (rba) problems. Higher-diameter inputs have much better behavior. The
degree order is asymptotically worse than SamPG for Delaunay triangulations,
random geometric graphs, and road networks.

Fig. 2 (right) analyzes the trade-off between space usage and query times
for various compression techniques (cf. Section 4). We consider five different
representations of the same (SamPG) labels; from left to right, these are CRXL,
CRXL1, HLC, RXL, and plain. The plain method represents all hub IDs as
32-bit integers and distances with as few bits as needed (8, 16, or 32) in each
case. By incorporating delta compression for hub IDs, RXL uses as little as half
as much space as the plain representation, and often has faster queries due to
better locality. HLC is Delling et al.’s hub label compression [10], but using as few
bits as needed (8, 16, or 32) for all distances; it has good compression ratio for
road and other high-diameter networks, but is less effective for small-diameter
graphs (such as Skitter). CRXL1 and CRXL use supertokens and bitmasks; while
CRXL1 uses only one level, CRXL may use two. Both are most effective on
small-diameter networks. The extra level often helps, but not always (as in Indo).
Queries take a few microseconds, fast enough for most applications.

Table 2 compares RXL and CRXL to two state-of-the-art algorithms. PLL
is a restricted variant of PL by Akiba et al. [4] tailored to unweighted and
undirected networks. This extended PL algorithm joins each new hub v in the
order with a small set S(v) of neighboring vertices, then adds all vertices in the
“superhub” {v} ∪ S(v) to all labels that would benefit from at least one vertex
in the set. It stores dist(u, v) explicitly, but for w ∈ S(v) it stores dist(u, w) −
dist(u, v), which is in {−1, 0, 1} on unweighted, undirected graphs. The resulting
labeling is not hierarchical (any two vertices u, w in S(v) will be in each other’s
labels), but uses less space and has faster preprocessing (all |{v}∪S(v)| searches
run simultaneously). The second algorithm, Tree Decomposition [5] (Tree), is not

332 D. Delling et al.

label-based. We report preprocessing time (including SamPG for our methods),
space, and average query time, as well as the average number of hubs for RXL
and superhubs for PLL (×16 and ×64 indicate superhub sizes). Tree and PLL
were run (sequentially) on a 2.93 GHz Intel Xeon X5670 [4], a machine similar
to ours. For consistency with previous work [4, 5], all inputs in Table 2 are
undirected; those obtained from directed ones are marked by asterisks.

Superhubs are quite effective in accelerating PLL preprocessing, which is
generally faster than for RXL (notably for MetroSec or WikiTalk). Even so,
RXL (which does not use superhubs and is more general) has comparable query
times and uses less space, sometimes by a large margin, as in Indo and Indochina.
In fact, RXL often has fewer hubs than PLL has superhubs, indicating that
SamPG indeed finds good orders. Tree is slower than RXL and sometimes uses
much more space. CRXL requires less space than any other method.

We conclude that our approach is quite robust. By combining a new sampling-
based order (leveraging both HHL [3] and PL [4]) and a novel label representa-
tion, RXL is competitive with any other technique, each specialized in different
graph classes (such as road networks or social graphs).

References

1. Abraham, I., Delling, D., Fiat, A., Goldberg, A.V., Werneck, R.F.: HLDB:
Location-based services in databases. In: GIS, pp. 339–348. ACM Press (2012)

2. Abraham, I., Delling, D., Goldberg, A.V., Werneck, R.F.: A hub-based labeling
algorithm for shortest paths on road networks. In: Pardalos, P.M., Rebennack, S.
(eds.) SEA 2011. LNCS, vol. 6630, pp. 230–241. Springer, Heidelberg (2011)

3. Abraham, I., Delling, D., Goldberg, A.V., Werneck, R.F.: Hierarchical hub labelings
for shortest paths. In: Epstein, L., Ferragina, P. (eds.) ESA 2012. LNCS, vol. 7501,
pp. 24–35. Springer, Heidelberg (2012)

4. Akiba, T., Iwata, Y., Yoshida, Y.: Fast exact shortest-path distance queries on
large networks by pruned landmark labeling. In: SIGMOD, pp. 349–360. ACM
(2013)

5. Akiba, T., Sommer, C., Kawarabayashi, K.-I.: Shortest-path queries for complex
networks: Exploiting low tree-width outside the core. In: EBDT, pp. 144–155 (2012)

6. Boldi, P., Rosa, M., Santini, M., Vigna, S.: Layered label propagation: A mul-
tiresolution coordinate-free ordering for compressing social networks. In: WWW,
pp. 587–596 (2011)

7. Brandes, U.: A faster algorithm for betweenness centrality. Journal of Mathematical
Sociology 25(2), 163–177 (2001)

8. Delling, D., Goldberg, A.V., Pajor, T., Werneck, R.F.: Customizable route
planning. In: Pardalos, P.M., Rebennack, S. (eds.) SEA 2011. LNCS, vol. 6630,
pp. 376–387. Springer, Heidelberg (2011)

9. Delling, D., Goldberg, A.V., Pajor, T., Werneck, R.F.: Robust Exact Distance
Queries on Massive Networks. MSR-TR-2014-12. Microsoft Research (2014)

10. Delling, D., Goldberg, A.V., Werneck, R.F.: Hub label compression. In: Bonifaci,
V., Demetrescu, C., Marchetti-Spaccamela, A. (eds.) SEA 2013. LNCS, vol. 7933,
pp. 18–29. Springer, Heidelberg (2013)

11. Gavoille, C., Peleg, D., Pérennes, S., Raz, R.: Distance Labeling in Graphs. Journal
of Algorithms 53, 85–112 (2004)

Robust Distance Queries on Massive Networks 333

12. Geisberger, R., Sanders, P., Schultes, D.: Better approximation of betweenness
centrality. In: ALENEX, pp. 90–100 (2008)

13. Geisberger, R., Sanders, P., Schultes, D., Vetter, C.: Exact Routing in Large Road
Networks Using Contraction Hierarchies. Trans. Science 46(3), 388–404 (2012)

14. Goldberg, A.V., Razenshteyn, I., Savchenko, R.: Separating hierarchical and gen-
eral hub labelings. In: Chatterjee, K., Sgall, J. (eds.) MFCS 2013. LNCS, vol. 8087,
pp. 469–479. Springer, Heidelberg (2013)

15. Hagberg, A.A., Schult, D.A., Swart, P.J.: Exploring network structure, dynamics,
and function using NetworkX. In: SciPy, pp. 11–15 (2008)

16. Holtgrewe, M., Sanders, P., Schulz, C.: Engineering a scalable high quality graph
partitioner. In: IPDPS, pp. 1–12. IEEE (2010)

17. Jiang, M., Fu, A.W.C., Wong, R.C.W., Cheng, J., Xu, Y.: Hop doubling label
indexing for point-to-point distance querying on scale-free networks, coRR (2014)

18. Jin, R., Ruan, N., Xiang, Y., Lee, V.: A highway-centric labeling approach for
answering distance queries on large sparse graphs. In: SIGMOD, pp. 445–456 (2012)

19. Peleg, D.: Proximity-preserving labeling schemes. Journal of Graph Theory 33(3),
167–176 (2000)

20. Schenkel, R., Theobald, A., Weikum, G.: HOPI: An efficient connection index for
complex XML document collections. In: Bertino, E., Christodoulakis, S., Plex-
ousakis, D., Christophides, V., Koubarakis, M., Böhm, K. (eds.) EDBT 2004.
LNCS, vol. 2992, pp. 237–255. Springer, Heidelberg (2004)

21. Sommer, C.: Shortest-path queries in static networks. ACM Computing Surveys 46,
547–560 (2014)

22. Tarjan, R.: Data Structures and Network Algorithms. SIAM (1983)
23. Wei, F.: TEDI: Efficient shortest path query answering on graphs. In: SIGMOD,

pp. 99–110. ACM (2010)

A Dynamic Data Structure for MSO Properties

in Graphs with Bounded Tree-Depth�

Zdeněk Dvořák, Martin Kupec, and Vojtěch Tůma

Computer Science Institute, Charles University
Prague, Czech Republic

{rakdver,kupec,voyta}@iuuk.mff.cuni.cz

Abstract. Tree-depth is an important graph parameter which arose in
the study of sparse graph classes. We present a dynamic data structure
for representing a graph G with tree-depth at most D. The structure
allows addition and removal of edges and vertices under assumption that
the resulting graph still has tree-depth at most D, in time bounds de-
pending only on D. A tree-depth decomposition of the graph is main-
tained explicitly.

This makes the data structure useful for dynamization of static algo-
rithms for graphs with bounded tree-depth. As an example application,
we give a dynamic data structure for MSO property testing.

1 Introduction

A dynamic data structure maintains information about some object during a
sequence of changes and can answer queries about specific properties of the ob-
ject. For example, we might want to maintain a graph during a sequence of
edge additions and removals and be able to answer queries about its connectiv-
ity [1]. Of course, we care only about solutions that are significantly faster than
recomputing the answer from scratch each time.

In addition to theoretical interest, dynamic data structures have important
practical applications when processing rapidly changing input data, such as the
web graph or graphs of transportation and social networks. Another application
is in generation of random graphs by a random process which adds edges one by
one and at each point needs to check whether some desired property is main-
tained. Further classical examples are the usage of a disjoint-find-union data
structure in minimal spanning tree algorithms [2] or link-cut trees for network
flow algorithms [3]. A more recent example along these lines is a data struc-
ture for subgraph counting [4] with applications in graph coloring and social
networking.

In all the mentioned examples, a single specific graph property is maintained.
In recent years, there has been a lot of interest in meta-algorithms, i.e., algo-
rithms which can be applied to a large class of problems described through some

� Supported by KONTAKT II LH12095 and SVV 267313.

A.S. Schulz and D. Wagner (Eds.): ESA 2014, LNCS 8737, pp. 334–345, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

Maintaining MSO Properties on Bounded Tree-Depth 335

general mechanism, thus saving the need to give an algorithm for each such prob-
lem separately. Due to their generality, the time complexity of meta-algorithms
typically involves large multiplicative constant, making them mostly interesting
from theoretical point of view (although they can give a guidance for design-
ing practical algorithms for particular problems). Let us mention two important
examples.

– Courcelle [5] proved that any property that can be expressed in Monadic
Second Order (MSO) logic is decidable in linear time for any class of graphs
with bounded tree-width.
Note that many interesting hard problems such as 3-colorability or the exis-
tence of Hamiltonian cycle can be expressed in MSO logic. Furthermore, the
choice of bounded tree-width is natural, since MSO logic is not polynomial-
time tractable on graph classes with large tree-width under further reason-
able assumptions [6,7].

– Dvořák et al. [8] proved that any property that can be expressed in First
Order (FO) logic is decidable in linear time for any class of graphs with
bounded expansion. Grohe et al. [9] extended this result to nowhere-dense
graph classes (see [10] for the definitions of bounded expansion and nowhere-
denseness).
The problems expressible in FO logic include the existence of a fixed sub-
graph, or the existence of a dominating set of bounded size. Unlike the
MSO case, all FO properties are decidable in polynomial time. However, in
this case it is natural to study Fixed-Parameter Tractability, i.e., finding
algorithms with time complexity K · nc, where only K may depend on the
problem (while c is an absolute constant). The restriction to nowhere-dense
graph classes is necessary, unless FPT = W[1], see [8].

We are interested in extending these results to dynamic setting, finding dy-
namic data structures able to preserve MSO or FO properties efficiently for the
respective classes of graphs (bounded tree-width or bounded expansion/nowhere-
dense). In this paper, we consider the special case of graphs with bounded tree-
depth, which naturally appears in both of these settings.

The depth of a rooted forest T is the maximum number of vertices of a path
from a root to a leaf of T . The closure clos(T) of the rooted forest T is the graph
obtained from T by adding all edges (x, y) such that x is an ancestor of y. For
example, the closure of a path rooted in one of its ends is a complete graph.

Definition 1. The tree-depth td(G) of a graph G is the minimum integer t ≥ 0
such that there exists a rooted forest of depth t whose closure contains G as a
subgraph.

For example, the tree-depth of a path on n vertices is
log2(n+1)�, see Figure 1.
Alternatively, the tree-depth can be defined using rank function, vertex ranking
number, minimum elimination tree or weak-coloring numbers. Tree-depth is also
related to other structural graph parameters—it is greater or equal to path-
width (and thus also tree-width), and smaller or equal to the smallest vertex

336 Z. Dvořák, M. Kupec, and V. Tůma

Fig. 1. The tree-depth of a path

cover. An n-vertex graph with tree-width t has tree-depth at most (t+ 1) log2 n.
See [11,10] for more information.

Let us remark that a subgraph-closed class of graphs has bounded tree-depth
if and only if it does not contain arbitrarily long paths. Long paths turn out
to be related to the hardness of model checking for MSO logic [12,13]. This
motivated a search for meta-theorems similar to [5] on more restricted classes of
graphs, such as the result of Lampis [14] that provides algorithms with better
dependence on the size of the formula for classes with bounded vertex cover or
bounded max-leaf number. This result was subsequently generalized by Gajarský
and Hliněný to graphs with bounded tree-depth [15].

Tree-depth also appears prominently in the sparse graph theory and particu-
larly in the theory of graph classes with bounded expansion and nowhere-dense
graph classes. Graphs in such classes have low tree-depth colorings by a bounded
number of colors, as shown by the following result (which can also be taken as
a definition of bounded expansion).

Theorem 1 (Nešetřil and Ossona de Mendez [16]). Let G be a class of
graphs with bounded expansion. For any k ≥ 1 there exists c ≥ 1 such that every
graph from G has a coloring by at most c colors in that the union of any t ≤ k
classes induces a subgraph of tree-depth at most t.

These colorings can be found in linear time, thus giving a basis of many al-
gorithmic results for classes with bounded expansion, by making it possible to
focus only on graphs with bounded tree-depth. This is also the case with the
meta-algorithm of Dvořák et al. [8] for FO properties.

Thus, giving a dynamic data structure for maintaining MSO properties on
graphs with bounded tree-depth is a necessary ingredient for an attempt to
dynamize the result of Dvořák et al. [8]. Furthermore, it is a step towards the
dynamization of Courcelle’s result on graphs with bounded tree-width [5]. The
main theorem of our paper follows.

Theorem 2. Let φ be an MSO formula and let D ≥ 1 be an integer. There
exists a data structure for representing a graph G with td(G) ≤ D supporting
the following operations:

– insert an edge e, provided that td(G + {e}) ≤ D,

– delete an edge e,

Maintaining MSO Properties on Bounded Tree-Depth 337

– add or delete an isolated vertex,
– query—determine whether G satisfies the formula φ.

The time complexity of all the operations is constant (depending only on D and
φ).

The basic idea of the data structure is to explicitly maintain a forest of small-
est depth whose closure contains G, together with its compact constant-size
(depending only on D and φ) summary obtained by identifying “equivalent”
subtrees. This summary is sufficient to decide the property expressed by φ, as
shown by Gajarský and Hliněný [15].

2 Preliminaries

In Theorem 2, we can assume that the represented graph is connected—we add
a new vertex adjacent to all the vertices of the represented graph (this increases
tree-depth by at most 1), and modify the formula φ to exclude this new universal
vertex, i.e., we consider the formula

(∃u)[(∀v)u = v ∨ edge(u, v)] ∧ φ′,

where φ′ is obtained from φ by asserting in each quantification that the quantified
vertex is not equal to u or that the quantified set does not contain u or edges
incident with u. Hence, we only consider connected graphs in the rest of the
paper.

All trees we work with are rooted. Two trees are isomorphic if there exists a
graph isomorphism between them that preserves the root. Given rooted trees T1,
. . . , Tn, let R({T1, . . . , Tn}) denote the tree whose root is a new vertex adjacent
to the roots of T1, . . . , Tn. If T is a rooted tree and a graph H is a spanning
subgraph of clos(T), we say that T is a tree-depth decomposition of H . Given
two pairs (H1, T1) and (H2, T2), where T1 is a tree-depth decomposition of H1

and T2 is a tree-depth decomposition of H2, we say that (H1, T1) is isomorphic
to (H2, T2) if there exists a common isomorphism of H1 with H2, and of T1 with
T2.

It is useful to keep the following simple observation in mind.

Lemma 1 (Nešetřil and Ossona de Mendez [11], Lemma 2.2). Let H
be a connected graph. If H is a single vertex, then td(H) = 1. Otherwise, there
exists v ∈ V (H) such that if H1, . . . , Hm are the components of H − v and
for 1 ≤ i ≤ m, Ti is a tree-depth decomposition of Hi of depth td(Hi), then
R(T1, . . . , Tm) is a tree-depth decomposition of H of depth td(H). Consequently,

td(H) = 1 + min
{

max{td(H ′) : H ′ is a component of H − v} : v ∈ V (H)
}
.

If v is a vertex of a rooted tree T , we say that the subtree of T induced by
v and all its descendants is the limb of T (rooted in v). Consider a connected
graph H and its tree-depth decomposition T . We say that T is tight for H if its

338 Z. Dvořák, M. Kupec, and V. Tůma

depth is equal to the tree-depth of H . The tree T is optimal (for H) if every limb
T0 of T is tight for the subgraph of H induced by V [T0] and additionally, this
subgraph is connected. We say that T is near-optimal if this condition holds for
all limbs other than T itself. Note that the tree-depth decomposition obtained
by recursively applying Lemma 1 is optimal.

Given a limb T0 of T rooted at v, let T0 denote the subtree of T consisting of
T0 and of the path from v to the root of T . Two limbs T1 and T2 of a tree-depth
decomposition T of a graph G are interchangeable if (G[V (T1)], T1) is isomorphic
to (G[V (T2)], T2). The following result is a reformulation of Lemma 3.1 from [15].

Lemma 2. Let φ be a formula with at most one free variable in MSO logic,
and let D ≥ 1 be an integer. There exists an integer S ≥ 1 with the following
property. Let G be a connected graph, let T be its tree-depth decomposition of
depth at most D, let v be a vertex of T such that more than S limbs of T rooted
in the sons of v are pairwise interchangeable, and let G′ be the graph obtained
from G by deleting the vertices of one of these limbs. If φ has no free variables,
then

G′ |= φ iff G |= φ.

If φ has a free variable x, then for every u ∈ V (G′), we have

G′, x := u |= φ iff G, x := u |= φ.

Let us remark that in the lemma, the subtree of T induced by V (G′) is a
tree-depth decomposition of G′. Hence, we can repeat the described reduction
until each vertex of the tree has at most S sons such that the limbs rooted in
them are pairwise interchangeable. As we will see below in Lemma 3, the size of
the resulting graph G� is bounded by a constant depending only on φ and D,
and thus we can decide whether G� (and thus also the original graph G) satisfies
φ by brute force in constant time.

We reorganize this procedure as follows. Let G be a graph and T its tree-
depth decomposition of depth D. The S-code Cv of a vertex v ∈ V (G) is a pair
(Gv, Tv), where Tv is a subtree of T with the same root as T and Gv is the
subgraph of G induced by V (Tv), defined recursively as follows.

– If v is a leaf of T , then Tv consists of the path from v to the root of T and
Gv is the subgraph of G induced by its vertices.

– Suppose that v is not a leaf and let C be the set of S-codes of the sons of v. Let
C′ be a maximal subset of C such that each element of C′ is isomorphic to less
than S other elements of C′. Let Gv =

⋃
(G′,T ′)∈C′ G′ and Tv =

⋃
(G′,T ′)∈C′ T ′.

Observe that the S-codes are defined uniquely up to isomorphism, and that if
v is the root of G, then Gv is isomorphic to G�. We can bound the size of each
S-code.

Lemma 3. For any integers D,S ≥ 1, there exists s ≥ 0 such that if G is a
graph and T is its tree-depth decomposition of depth D, then the S-code of each
vertex of G has at most s vertices.

Maintaining MSO Properties on Bounded Tree-Depth 339

Proof. Let K1 = D, N1 = 2(d
2), and for d ≥ 2, let Kd = SNd−1Kd−1 and

Nd = Nd−1 + (S + 1)Nd−1 . We let s = KD.
Let Cd be the set of all pairwise non-isomorphic S-codes of vertices w ∈ V (G)

such that the limb of T rooted in w has depth at most d. We prove by induction
on d that |Cd| ≤ Nd and that every element of Cd has at most Kd vertices. Note
that C1 contains exactly the S-codes of leaves of T , and observe that it satisfies
the claim.

Hence, suppose that d ≥ 2. Consider a vertex v ∈ V (G) such that the limb of
T rooted in v has depth exactly d, and let C′ be as in the definition of the S-code.
By induction, each element of C′ is isomorphic to an element of Cd−1, and each
of them has at most Kd−1 vertices. It follow that |C′| ≤ SNd−1 and that the
S-code of v has at most |C′|Kd−1 ≤ Kd vertices. Furthermore, the S-code of v is
determined by how many elements of CS are isomorphic to each of the elements
of Cd−1, and thus there are at most (S + 1)Nd−1 choices for the S-code of v.

We are also going to need the following observation.

Lemma 4. Let D,S ≥ 1 be fixed integers. Let G be a graph and T its tree-depth
decomposition of depth D. Let v be a vertex of T , let T ′ be the limb of T rooted
at v and let G′ = G[V (T ′)]. Let (Gv, Tv) be the S-code of v in (G, T) and let Z
be the set of vertices of G on the path from v to the root, excluding v. Then the
S-code of v in (G′, T ′) is isomorphic to the S-code of v in (Gv − X,Tv − X).
In particular, given the S-code of v in (G, T), its S-code in (G′, T ′) can be
determined in constant time.

1 2 2 2 1 2 2 3 4 1 2 2 2 1 2 4 3

5 5 6 5 5 6

7 7

7

5 6 5 6

1 2 1 2 3 4 1 2 1 2 3 4

Fig. 2. A 2-archive. Merge nodes and cabinets are drawn by squares and circles, re-
spectively. The numbers at vertices and merge nodes indicate the isomorphism classes
of 2-codes.

Let G be a graph and T its tree-depth decomposition of depth D. Let A be
obtained from T as follows (see Figure 2 for an illustration). For each non-leaf
vertex v ∈ V (T), we divide the sons of v to groups according to the isomorphism
class of their S-code. For each such group M , we remove the edges between M
and v, add a new vertex vM , add edges between vM and the vertices of M , and
add the edge vvM . We call A the S-archive of (G, T). We call the vertices of

340 Z. Dvořák, M. Kupec, and V. Tůma

A at even distance from the root (the original vertices of T) cabinets, and the
vertices of A at odd distance merge nodes. Note that each cabinet has at most
ND−1 sons, while the merge nodes may have arbitrarily large degree.

3 Data Structure

Suppose that D ≥ 1 and an MSO formula φ are fixed. Let S be the smallest
integer such that the conclusion of Lemma 2 holds for both φ and the formula
(3) below, and for graphs with tree-depth decompositions of depth at most 2D
(rather than D).

Let us now describe our data structure for representing a graph G of tree-depth
at most D. We maintain the graph G, using any standard way of representing a
graph, and the S-archive A of some optimal tree-depth decomposition T of G.
To represent the tree A, each vertex v of A records a pointer to its father and
a double-linked list of its sons. Furthermore, v records its position in the list of
sons of its father, so that given v, we can cut the edge between v and its father
in constant time. At each cabinet of A, we record the corresponding vertex of G.

For a vertex v of A, let Uv denote the set of vertices of G whose cabinets lie
on the path from v to the root of A; note that |Uv| ≤ D and that the vertices of
Uv can be enumerated in constant time.

For each cabinet, we need to be able to determine its S-code in (G, T). Hence,
for each cabinet z, we maintain a set Qz ⊆ V (G) such that

the S-code of z is isomorphic to (G[Qz ∪ Uz], T [Qz ∪ Uz]),
(1)

and

all cabinets in Qz are contained in the limb of A rooted in z.
(2)

As we observed before, if we choose S large enough (depending only on the
formula ψ and the depth D), then the S-code represented in the root cabinet of A
determines whether G |= ψ, and thus we can answer the queries in constant time.
Hence, we only need to consider the implementation of the update operations.

Note that the tree-depth decomposition T can be determined from its S-
archive A—to enumerate the sons of a vertex v ∈ V (T) in T , it suffices to
enumerate the grandsons of v in A. Since the degree of the cabinet v is bounded
by a constant, this can be done in time O(deg(v)). Similarly, the father of v in
T is equal to the grandfather of v in A. On the other hand, we cannot directly
maintain T , since our implementations of the operations with the data structure
may result in a non-constant number of changes in T (which however correspond
to only a constant number of changes in its S-archive).

4 Auxiliary Operations

First, let us describe several auxiliary operations. Let us remark that the invari-
ant that the tree-depth decomposition represented by the S-archive A is optimal

Maintaining MSO Properties on Bounded Tree-Depth 341

might not hold when these operations are applied, and we list the optimality as-
sumptions where required. However, we always maintain the invariant that the
depth of the tree-depth decomposition represented by A is at most 2D.

4.1 Correcting S-Codes

Let z1 be a cabinet of A, and let z1, z2, . . . , zk be the cabinets A in the path
from z1 to the root zk of A. Suppose that the invariants (1) and (2) hold for all
cabinets of A other than z1, . . . , zk, but they might be violated for some of z1,
. . . , zk. The operation of correcting S-codes above z1 changes A and the values
of Qz1 , . . . , Qzk to ensure that the invariants (1) and (2) hold for all vertices of
A.

First, we determine the value Qz1 as follows. If z1 is a leaf, then we set Qz1 = ∅.
Otherwise, let m1, . . . , mt be the sons of z1, and for 1 ≤ i ≤ t, let Zi be the set
containing all sons of mi if mi has at most S sons, and the first S sons of mi

otherwise. Note that mi is a merge node and the elements of Zi are cabinets.
We set Qz1 =

⋃t
i=1

⋃
z∈Zi

({z} ∪Qz).
Next, we need to ensure that z1 is the son of the correct merge node that

appears as a son of z2; i.e., we remove z1 from the list of sons of its father, find
the son m of z2 such that the S-code of the sons of m is isomorphic to the S-code
of z1 (creating a new merge node if no such son m exists), and add z1 as the son
of m.

Then, we repeat the previous two paragraphs for z2, . . . , zk in turn.

4.2 Extracting a Path

Given a cabinet v of the S-archive A, the operation of extracting v modifies A
so that each merge node on the path from v to the root of A has exactly one
son. That is, for each cabinet z on the path from v to the root of A such that
the father m0 of z in A has at least two sons, we create a new merge node m,
make m a son of the grandfather of z, remove z from the list of sons of m0,
and add z as the son of m. This violates the property of S-archives that no two
merge nodes with the common father have sons with the same S-code; in the
applications of extraction, the property is restored (by applying the operation
of correcting S-codes) immediately after performing some futher simple change.

4.3 Finding a Best Root

Consider a limb B of A rooted in a cabinet, and let TB be the corresponding
limb of the tree-depth decomposition represented by A. Assuming that TB is a
near-optimal tree-depth decomposition of a connected subgraph G[V (TB)], the
operation of finding a best root for B returns a vertex v ∈ V (TB) such that there
exists an an optimal tree-depth decomposition of G[V (TB)] rooted in v.

Let us argue that this property of v is expressible in MSO logic. Note that

γ(X) := (∀Y � X)Y �= ∅ ⇒ (∃x ∈ X \ Y)(∃y ∈ Y) edge(x, y)

342 Z. Dvořák, M. Kupec, and V. Tůma

is a formula expressing that X induces a connected subgraph. Next, we recur-
sively define a formula τd(X, r) which decides whether the connected subgraph
induced by X is contained in the closure of a tree of depth d rooted in r. We let
τ1(X, r) := X = {r}, and for any d ≥ 2, we set

τd(X, r) := (∀Y ⊆ X \ {r})(Y �= ∅ ∧ γ(Y)) ⇒ σd−1(Y),

where σd(X) := (∃r ∈ X)τd(X, r) tests whether X induces a subgraph of tree-
depth at most d. Finally, the formula

ρ(r) := τ1(V, r) ∨ (τ2(V, r) ∧ ¬σ1(V)) ∨ . . . ∨ (τD(V, r) ∧ ¬σD−1(V)) (3)

tests whether there exists an optimal tree-depth decomposition of depth at most
D rooted in r. Thus, it suffices to find a vertex of G[V (TB)] satisfying ρ.

By the choice of S, we can apply Lemma 2 to test the validity of ρ in G[V (TB)],
assuming that we know the S-code of the root of TB in (G[V (TB)], TB). By
Lemma 4, this S-code can be determined in constant time. Furthermore, observe
that since G[V (TB)] has some optimal tree-depth decomposition, ρ is satisfied for
at least one cabinet of B reachable from the root by a path which always takes
the first son in each merge node. Hence, we only need to test ρ for constantly
many vertices of G[V (TB)], and thus the time complexity of finding a best root
for B is constant.

4.4 Rerooting and Restoring Optimality

Finally, let us describe two auxiliary operations, whose implementations are
mutually recursive. Assuming that the tree-depth decomposition represented by
A is optimal and given a vertex v ∈ V (G), rerooting in v modifies the S-archive
A so that it represents a near-optimal tree-depth decomposition of G whose root
is v. Conversely, assuming that the tree-depth decomposition represented by A
is near-optimal, the operation of optimization modifies the S-archive A so that
it represents an optimal tree-depth decomposition of G.

To facilitate recursive implementation, we actually need more general versions
of these operations, specified as follows. For a cabinet v of A, let d(v) denote the
number of cabinets on the path from v to the root of A, excluding v itself.

– Let r and v be two vertices of G, such that v is a descendant of r in A, and
let dr = d(r). Let A′ be the limb of A rooted in r, let T ′ be the tree-depth
decomposition represented by A′, let G′ = G[V (T ′)] and let dT ′ be the depth
of T ′. We assume that T ′ is a near-optimal tree-depth decomposition of G′,
that G′ is connected, and that

dr + dT ′ + td(G′ − v) ≤ 2D. (4)

The generalized rerooting operation modifies the part of A contained in A′ so
that it represents a near-optimal tree-depth decomposition T ′′ of G′ rooted
in v. Note that the depth of T ′′ is at most td(G′−v)+1 ≤ 2D+1−dT ′−dr ≤
2D− dr, and thus the depth of the tree-depth decomposition represented by
A after this operation is at most 2D.

Maintaining MSO Properties on Bounded Tree-Depth 343

– Let r be a vertex of G, let A′ be the limb of A rooted in r, let T ′ be the tree-
depth decomposition represented by A′, let G′ = G[V (T ′)], and let dT ′ be the
depth of T ′. Assuming that T ′ is a near-optimal tree-depth decomposition
of G′, that G′ is connected, and that

d(r) + dT ′ + td(G′) ≤ 2D + 1, (5)

the generalized optimization operation modifies the part of A contained in
A′ so that it represents an optimal tree-depth decomposition of G′.

The generalized optimization first finds a best root v for A′ as described in
Subsection 4.3. It then uses the generalized rerooting operation to modify A′ so
that it represents a near-optimal tree-depth decomposition T ′′ of G′ rooted in
v. Since there exists an optimal tree-depth decomposition of G′ rooted in v and
G′ is connected, it follows that all components of G′−v have tree-depth at most
td(G′) − 1, and since T ′′ is near-optimal, each limb of T ′′ rooted in a son of v
has depth at most td(G′) − 1. Consequently, T ′′ has depth td(G′), and thus it
is optimal. Furthermore, we have td(G′ − v) = td(G′) − 1, and thus (5) ensures
that the assumption (4) holds in the rerooting call.

The rest of this subsection is devoted to the operation of rerooting. We assume
that v �= r, as otherwise the operation does not need to do anything.

– First, we find the son w of r in T ′ such that the limb T1 rooted in w contains
v, and recursively reroots this limb in v (thus, at this point, v is a son of r
in T ′). Let G1 = G[V (T1)] and note that td(G1 − v) ≤ td(G′ − v), while the
depth of T1 is at most dT ′ − 1. Hence, the assumption (4) is satisfied in this
recursive call.

– Now, remove the edge vr and let Tv and Tr be the components of T ′ con-
taining v and r, respectively. To perform this operation in the archive, we
first extract v as described in Subsection 4.2, then delete the edge between
the father of v and r.

– For each limb Tx of Tv rooted in a son x of v such that there exists an edge
of G′ from r to a vertex of Tx (which can be determined by examining the
S-code of x), remove the edge vx from Tv and add the edge rx to Tr, making
Tx a limb of Tr. In the S-archive, we do this at once for all limbs with the
same S-code which are grouped together in a merge node (by cutting the
edge between the merge node and v and adding the edge to r) and thus this
phase can be performed in constant time.

– Next, cut the edge between r and its father f in T , add r to Tv as a son of
v and add v as a son of f , by performing the corresponding modifications in
A. After this, we correct the S-codes above r, which also undoes the effects
of the extraction of v in the second step.

– Finally, we apply the generalized optimization operation to the limb T2

rooted in r. Note that this ensures that the tree-depth decomposition repre-
sented by the limb of A rooted in v is near-optimal, since all other limbs of
Tv are optimal tree-depth decompositions of the subgraphs that they induce
by the assumption that initially, T ′ is near-optimal. The depth of T2 is at

344 Z. Dvořák, M. Kupec, and V. Tůma

most dT ′ , td(G[V (T2)]) ≤ td(G′ − v) and that at this point, d(r) = dr + 1,
hence (4) implies that (5) holds in the optimization call.

Note that the rerooting operation may result in two recursive calls to itself—
once directly in the first step (applied to the limb rooted in w), once indirectly
through optimization in the last step (applied to the limb rooted in r). However,
at the time of the recursive calls, we have d(w) > dr and d(r) > dr, respectively.
Since both recursive calls satisfy (4), we conclude that the maximum depth of
the recursion is at most 2D, and thus the number of recursive calls to generalized
rerooting during one invocation of the non-generalized rerooting or optimization
operation is at most 22D − 1, which is a constant. Consequently, the time com-
plexity of rerooting as well as optimization is constant, bounded by a function
of D and φ.

5 Updating the Data Structure

Implementing the update operations required by Theorem 2 is now straight-
forward. Let us mention that unlike the previous section, we assume that the
tree-decomposition represented by A is optimal (and thus has depth at most D)
at he beginning of each of the operations, and this invariant also holds at the end
of each operation (while it may be temporarily violated during the operation).

5.1 Edge Insertion and Deletion

Suppose that we are inserting or deleting an edge uv of G. First, we reroot the
tree-depth decomposition in v. Next, we extract u and add or remove the edge
uv from G. Then, we correct the S-codes above u; note that this also undoes the
extraction, i.e., restores the invariant that no two merge nodes with the common
father have sons with the same S-code. Finally, we optimize all the limbs rooted
in the cabinets of path from u to the root.

The time complexity of these operations is bounded by a function of D and
S, and thus it is constant. Note that for edge deletion, one might be tempted to
skip the first rerooting. However, making v a root of the tree ensures that even
after removing the edge uv, each limb induces a connected subgraph of G, which
is required in the optimization.

5.2 Isolated Vertex Insertion or Deletion

As we mentioned in Section 2, we only work with connected graphs, and to be
able to do so, we added a dummy universal vertex u. Thus, addition or removal
of an isolated vertex in the original graph corresponds to addition or removal of
a vertex adjacent only to u in the represented graph. To do so, we first reroot
the tree-depth decomposition in u, and let T ′ be the resulting near-optimal tree-
depth decomposition. If we are removing a vertex v adjacent only to u, observe
that v is a son of u and forms a limb of T ′ by itself. Hence, we can now extract

Maintaining MSO Properties on Bounded Tree-Depth 345

v, remove v and its father merge node from A and correct the S-code of u in
constant time. If we are adding v, we can conversely add a new merge node m
as a son of u, add v as a son of m, and and correct the S-codes above v (which
also merges m with the appropriate other son of u, if there exists one).

References

1. Kapron, B.M., King, V., Mountjoy, B.: Dynamic graph connectivity in polyloga-
rithmic worst case time. In: Khanna, S. (ed.) SODA, pp. 1131–1142. SIAM (2013)

2. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to algorithms.
The MIT Press (2009)

3. Sleator, D.D., Endre Tarjan, R.: A data structure for dynamic trees. Journal of
Computer and System Sciences 26, 362–391 (1983)

4. Dvořák, Z., Tůma, V.: A dynamic data structure for counting subgraphs in sparse
graphs. In: Dehne, F., Solis-Oba, R., Sack, J.-R. (eds.) WADS 2013. LNCS,
vol. 8037, pp. 304–315. Springer, Heidelberg (2013)

5. Courcelle, B.: The monadic second-order logic of graphs. I. recognizable sets of
finite graphs. Information and Computation 85, 12–75 (1990)

6. Kreutzer, S., Tazari, S.: On brambles, grid-like minors, and parameterized in-
tractability of monadic second-order logic. In: Proceedings of the Twenty-
First Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2010,
pp. 354–364. Society for Industrial and Applied Mathematics, Philadelphia (2010)

7. Kreutzer, S., Tazari, S.: Lower bounds for the complexity of monadic second-
order logic. In: 2010 25th Annual IEEE Symposium on Logic in Computer Science
(LICS), pp. 189–198. IEEE (2010)

8. Dvořák, Z., Král’, D., Thomas, R.: Deciding first-order properties for sparse graphs.
In: FOCS, pp. 133–142. IEEE Computer Society (2010)

9. Grohe, M., Kreutzer, S., Siebertz, S.: Deciding first-order properties of nowhere
dense graphs. CoRR abs/1311.3899 (2013)

10. Nešetřil, J., Ossona de Mendez, P.: Sparsity: Graphs, Structures, and Algorithms,
vol. 28. Springer (2012)

11. Nešetřil, J., Ossona de Mendez, P.: Tree-depth, subgraph coloring and homomor-
phism bounds. European Journal of Combinatorics 27, 1022–1041 (2006)

12. Lampis, M.: Model checking lower bounds for simple graphs. CoRR abs/1302.4266
(2013)

13. Frick, M., Grohe, M.: The complexity of first-order and monadic second-order
logic revisited. In: Proceedings of the 17th Annual IEEE Symposium on Logic in
Computer Science, pp. 215–224. IEEE (2002)

14. Lampis, M.: Algorithmic meta-theorems for restrictions of treewidth.
Algorithmica 64, 19–37 (2012)

15. Gajarsky, J., Hlineny, P.: Faster Deciding MSO Properties of Trees of Fixed Height,
and Some Consequences. In: D’Souza, D., Kavitha, T., Radhakrishnan, J. (eds.)
IARCS Annual Conference on Foundations of Software Technology and Theoretical
Computer Science (FSTTCS 2012), Germany. Leibniz International Proceedings
in Informatics (LIPIcs), vol. 18, pp. 112–123. Dagstuhl, Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik (2012)

16. Nešetřil, J., Ossona de Mendez, P.: Grad and classes with bounded expansion I.
decompositions. European Journal of Combinatorics 29, 760–776 (2008)

Large Independent Sets

in Triangle-Free Planar Graphs

Zdeněk Dvořák1,� and Matthias Mnich2

1 Computer Science Institute, Charles University, Prague, Czech Republic
rakdver@iuuk.mff.cuni.cz

2 Cluster of Excellence MMCI, Campus E1-7, 66123 Saarbrücken
mmnich@mmci.uni-saarland.de

Abstract. Every triangle-free planar graph on n vertices has an inde-
pendent set of size at least (n+ 1)/3, and this lower bound is tight. We
give an algorithm that, given a triangle-free planar graph G on n vertices
and an integer k ≥ 0, decides whether G has an independent set of size

at least (n+k)/3, in time 2O(
√

k)n. Thus, the problem is fixed-parameter
tractable when parameterized by k. Furthermore, as a corollary of the
result used to prove the correctness of the algorithm, we show that there
exists ε > 0 such that every planar graph of girth at least five on n
vertices has an independent set of size at least n/(3− ε).

1 Introduction

Every planar graph is 4-colorable by the deep Four-Colour-Theorem, whose proof
was first announced by Appel and Haken in 1976 [1] and later simplified by
Robertson, Sanders, Seymour and Thomas [2]. As a corollary, every planar graph
on n vertices has an independent set of size at least n/4. The proof by Robert-
son et al. [2] comes with a quadratic-time algorithm to find a valid coloring of G
with 4 colors, which can be used to find such an independent set. Yet, deter-
mining the size of a maximum independent set is NP-complete in planar graphs
(even if they are triangle-free [3]). This motivates a search for an efficient algo-
rithm that decides, for a fixed parameter k ≥ 0 and an input n-vertex planar
graph G, whether G has an independent set of size at least (n + k)/4.

The problem—which we call Planar Independent Set Above Tight

Lower Bound, or Planar Independent Set-ATLB for short—has received
a lot of attention, although there has been essentially no progress. In fact,
the question of whether Planar Independent Set-ATLB is fixed-parameter
tractable has been raised several times: first by Niedermeier [4], later by Bod-
laender et al. [5], Mahajan et al. [6], by Sikdar [7], by Mnich [8], and by Crowston
et al. [9]. Then the problem was raised again in June 2012 as a “Though Cus-
tomer”, at WorKer 2012 [10]. We remark that until now, there is not even a
polynomial-time algorithm known for the case of k = 1, and finding such an

� Supported by the project LL1201 (Complex Structures: Regularities in Combina-
torics and Discrete Mathematics) of the Ministry of Education of Czech Republic.

A.S. Schulz and D. Wagner (Eds.): ESA 2014, LNCS 8737, pp. 346–357, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

Large Independent Sets in Triangle-Free Planar Graphs 347

algorithm has been an open problem for more than 30 years. Yet, the existence
of such an algorithm for k = 1 is certainly a necessary condition for the fixed-
parameter tractability of Planar Independent Set-ATLB. The lower bound
of n/4 on the size of a maximum independent set is tight for an infinite family of
planar graphs: for example, take a set of copies of K4 or C2

8 or the icosahedron,
and connect these copies arbitrarily in a planar way.

We consider a variant of the problem for triangle-free planar graphs. By a
theorem of Grötzsch [11], every triangle-free planar graph is 3-colorable, and thus
admits an independent set that contains at least one-third of its vertices. Such a
coloring, and thus also an independent set, can be found in linear time [12]. Later,
Steinberg and Tovey [13] showed that every triangle-free planar graph contains
a non-uniform 3-coloring, where one color class is guaranteed to contain one
vertex more than the other two color classes. Thus, any n-vertex triangle-free
planar graph contains an independent set of size at least (n+ 1)/3, when n ≥ 3.
On the other hand, Jones [14] found triangle-free planar graphs on n vertices
(for any n ≥ 2 such that n ≡ 2 (mod 3)) with maximum independent sets of size
exactly (n+1)/3; see Figure 1. This motivates a search for an efficient algorithm

...

Fig. 1. Triangle-free planar graphs on n vertices with maximum independent sets of
size exactly (n+ 1)/3

that decides, for a given n-vertex triangle-free planar graph G and integer k ≥ 0,
whether G has an independent set of size at least (n+ k)/3. In particular it was
open whether for k = 2 there is a polynomial-time algorithm. Notice that it is
non-trivial even to solve this problem in time nO(k), as a brute-force approach
does not suffice.

1.1 Our Contributions

As our main result, we show that the problem is fixed-parameter tractable when
parameterized by k.

Theorem 1. There is an algorithm that, given any n-vertex triangle-free planar

graph G and any integer k ≥ 0, in time 2O(
√
k)n decides whether G has an

independent set of size at least (n + k)/3.

348 Z. Dvořák and M. Mnich

We conveniently write (n+k)/3 rather than n/3 + 1/3 +k (since the tight lower
bound on the size of a maximum independent set is n/3 + 1/3); notice that this
change does not affect the fixed-parameter tractability of the problem.

Though many different techniques have been devised for solving optimization
problems parameterized above lower bounds in fixed-parameter time, none of
these techniques is applicable to our problem. Instead, our algorithm seems to be
the first fixed-parameter algorithm for problems parameterized above guarantee
that is based on the tree-width of a graph. The algorithm is an easy corollary of
the following result.

Theorem 2. There is a constant c > 0 such that every planar triangle-free

graph on n vertices with tree-width ≥ t has an independent set of size ≥ n+ct2

3 .

According to Theorem 2, the algorithm of Theorem 1 is extremely simple.
First, we test whether the treewidth of G is O

(√
k
)
, using the linear-time con-

stant factor approximation algorithm of Bodlaender et al. [15]. If that is the
case, we find the largest independent set in G by dynamic programming in time

2O(
√
k)n, see e.g. the book of Niedermeier [4]. Otherwise, we answer “yes”.

The situation is more complicated when we want to report the independent
set of size (n+k)/3 if it exists. An inspection of the proof of Theorem 2 (as well as
the previous results used to establish its correctness, especially Theorem 4) shows
that it is constructive and leads to a quadratic-time algorithm. The description
of the algorithm is rather involved and we omit it.

As a by-product of the proof of Theorem 2, we also obtain the following result
which is of independent interest.

Theorem 3. There exists a constant ε > 0 such that every planar graph of girth
at least 5 on n vertices has an independent set of size at least n

3−ε .

A well-known graph parameter giving a lower bound for the independence
number is the fractional chromatic number, see [16] for a definition and other
properties. The fractional chromatic number of planar graphs of girth at least 8 is
at most 5/2 (Dvořák et al. [17]), implying that for girth 8, we can set ε = 1/2. Not
much is known about fractional chromatic number of graphs of girth between 5
and 7, but Theorem 3 makes the following conjecture plausible.

Conjecture. There exists a constant ε > 0 such that every planar graph of girth
≥ 5 has fractional chromatic number at most 3 − ε.

Note that if the conjecture holds, then ε ≤ 1/4 by a construction of Pirnazar
and Ullman [18]. Furthermore, the girth assumption cannot be reduced to 4 (or
replaced by assuming odd girth at least 5) because of the construction in Fig. 1.

Let us also remark that the assumption of Theorem 3 that G is planar can be
relaxed, since every graph on n vertices embeddable in a surface of genus g can
be planarized by removing O(

√
gn) vertices [19].

Corollary 1. There exist constants ε, c > 0 such that every graph of girth ≥ 5
and genus ≤ g on n vertices has an independent set of size ≥ n

3−ε (1 − c
√
g/n).

Large Independent Sets in Triangle-Free Planar Graphs 349

Organization and proof outline. In Section 3, we review some results on classes
of graphs with bounded expansion, which we use to show that in every planar
graph, we can remove a small fraction of vertices so that the resulting graph
contains a large set of vertices that are pairwise far apart (Section 4). This
enables us to apply coloring theory developed by Dvořák, Král’ and Thomas to
obtain a 3-coloring of the graph with further constraints in the neighborhoods of
these distant vertices, which guarantee the existence of a large independent set
(Section 5). In Section 6, we combine the results and give proofs of our theorems.
Due to space constraints, the proofs of statements marked by � are omitted.

1.2 Related Work

From the combinatorial side, the study of lower bounds on the independence
number in triangle-free graphs has a long history. Every n-vertex triangle-free
graph has an independent set of size Ω(

√
n logn), and this bound is tight [20].

Staton [21] proved that every subcubic n-vertex triangle-free graph G satisfies
α(G) ≥ 5n

14 . Furthermore, Heckman and Thomas [22] showed that if G is addi-
tionally planar, then α(G) ≥ 3n

8 .
From the algorithmic side, the studying the complexity of maximization prob-

lems parameterized above polynomial-time computable lower bounds is an active
area of research. Since the influental survey by Mahajan et al. [6], research in
this area has led to development of many new algorithmic techniques for fixed-
parameter algorithms: algebraic methods [23,9], probabilistic methods [24,25],
combinatorial methods [26,27], and methods based on linear programming [28].

2 Preliminaries

Throughout, we consider graphs that are finite, undirected and loopless, and
do not have parallel edges unless explicitly stated otherwise. For a graph G,
let V (G) denote its vertex set and E(G) its set of edges. The degree of a vertex
v ∈ V (G) is the number degG(v) of edges that are incident to it. A graph is
planar if it admits an embedding in the plane such that no two edges cross; a
plane graph is an embedding of a planar graph without any edge crossings.

A tree decomposition of a graph G is a pair (T,B), where B is a set of subsets
of V (G) (called the bags of the decomposition) with V (G) =

⋃
B∈B B, and T is

a tree with vertex set B, such that for each edge uv ∈ E(G), there exists B ∈ B
containing both u and v, and for every v ∈ V (G), the set {B ∈ B : v ∈ B}
induces a connected subtree of T . The width of the decomposition is the size of
its largest bag minus one. The tree-width of a graph G, denoted by tw(G), is the
minimum width of its tree decompositions.

3 Classes of Graphs with Bounded Expansion

In this section, we survey results on classes of graphs with bounded expansion
that we need in the paper. Let G be a graph and let r ≥ 0 be an integer. Let us

350 Z. Dvořák and M. Mnich

recall that a graph H is an r-shallow minor of G if H can be obtained from a
subgraph of G by contracting vertex-disjoint subgraphs of radii at most r and
deleting the resulting loops and parallel edges. Following Nešetřil and Ossona de
Mendez [29], we denote by ∇r(G) the maximum of |E(G′)|/|V (G′)| over all r-
shallow minors G′ of G. Thus, ∇0(G) is the maximum of |E(G′)|/|V (G′)| taken
over all subgraphs G′ of G. Since every subgraph of a graph G has a vertex of
degree at most 2∇0(G), we see that G has an (acyclic) orientation with maximum
in-degree at most 2∇0(G).

A class G of graphs has bounded expansion if there exist constants c0, c1,
. . . such that ∇r(G) ≤ cr for every G ∈ G and r ≥ 0. Many natural classes
of sparse graphs have bounded expansion. Here, we only need that the class of
planar graphs has bounded expansion. See the book of Nešetřil and Ossona de
Mendez [30] for more information on the topic.

Let D be a directed graph, and let D′ be a directed graph obtained from D
by adding, for every pair of vertices x, y ∈ V (D),

– the edge xy if D has no edge from x to y and there exists a vertex z ∈ V (D)
such that D has an edge oriented from x to z and an edge oriented from z
to y (transitivity), and

– either the edge xy or the edge yx if x is not adjacent to y and there exists a
vertex z such that D has an edge oriented from x to z and an edge oriented
from y to z (fraternality).

We call D′ an oriented augmentation of D.
Let G be a graph. We construct a sequence D0, . . . , D� of directed graphs as

follows. Let D0 be an orientation of G with maximum in-degree at most 2∇0(G).
For 1 ≤ i ≤ �, let Di be an oriented augmentation of Di−1, in that the orienta-
tions of the edges added according to the fraternality rule are chosen so that the
subgraph of Di formed by these edges has maximum in-degree at most 2∇0(Gi),
where Gi is the underlying undirected graph of Di. This is possible, because Gi

itself has an orientation with maximum in-degree at most 2∇0(Gi). We say
that D� is an �-th oriented augmentation of G. We use the following important
property of classes of graphs with bounded expansion [29].

Proposition 1. Let G be a class of graphs and let � ≥ 0 be an integer. If G
has bounded expansion, then there exists an integer md ≥ 0 such that all �-th
oriented augmentations of graphs from G have maximum indegree at most md.

4 Large Scattered Sets

For an integer d ≥ 1 and a graph G, a vertex set Q ⊆ V (G) is d-scattered if the
distance between any two vertices of Q in G is greater than d. In this section
we discuss graph classes whose members admit large scattered subsets, possibly
after removal of a small number of vertices.

For integers d,m,N ≥ 1 and r ≥ 0, a graph G is (d, r,m,N)-wide if for any
set S ⊆ V (G) of size at least N , there exists a set Q ⊆ S of size at least m and

Large Independent Sets in Triangle-Free Planar Graphs 351

a set X ⊆ V (G) of size at most r such that Q is d-scattered in G − X . For
integers d ≥ 1 and r ≥ 0, a class of graphs G is (d, r)-wide if for every m, there
exists N such that every graph in G is (d, r,m,N)-wide. A class of graphs G is
uniformly quasi-wide if for every integer d ≥ 1 there exists an integer r ≥ 0 such
that G is (d, r)-wide. By results of Nešetřil and Ossona de Mendez [29], every
class of graphs with bounded expansion is uniformly quasi-wide (in fact, they
prove a stronger result concerning nowhere-dense graph classes).

We need a variant of wideness where the value of N is linear in m. Note
that there exist classes of graphs with bounded expansion which do not have
this property—for instance, consider the class containing the graphs Ha for each
integer a > 0, where Ha is the disjoint union of a stars with a rays. With
S = V (Ha), the largest possible 2-scattered set after removal of r vertices has
size ra+ (a− r) = Θ(

√
|S|). However, note that we can obtain a d-scattered set

of size a2 = |S|−a at the cost of removing a vertices, which suggests the variant
of wideness where the set of removed vertices is small relatively to the size of
the d-scattered set.

For integers d, t,K ≥ 1, a graph G is (d, t,K)-fat if for any set S ⊆ V (G)
there exists a set Q ⊆ S of size at least |S|/K and a set X ⊆ V (G) \Q of size at
most |Q|/t such that Q is d-scattered in G−X . A class of graphs G is fat if for
all integers d, t ≥ 1, there exists K such that every graph in G is (d, t,K)-fat.

We are going to show that every class of graphs with bounded expansion is
fat. However, first we need to derive the following auxiliary result.

Lemma 1. Let c, t ≥ 1 be integers, and let K0 = c2c(2c + 2)c+1tc. Let G be a
bipartite graph with parts S and Z. If all vertices in S have degree at most c,
then there exist Q ⊆ S and X ⊆ Z such that |Q| ≥ |S|/K0, |X | ≤ |Q|/t and for
all distinct u, v ∈ Q, all common neighbors of u and v belong to X.

Proof. For 0 ≤ i ≤ c, let di =
K0

c2i+1(2c + 2)i+1ti
. Let Z0 consist of vertices

in Z of degree at least d0 and for 1 ≤ i ≤ c, let Zi consist of the vertices in Z
of degree at least di, but less than di−1. Since all vertices of S have degree at
most c, for each v ∈ S there exists i ∈ {0, . . . , c} such that v has no neighbors
in Zi. By the pigeonhole principle, there exists i ∈ {0, . . . , c} and a set B ⊆ S
of size at least |S|/(c + 1) such that no vertex of B has a neigbor in Zi. We set
X = Z0 ∪ . . .∪Zi−1 and we choose Q as an inclusion-wise maximal subset of B
such that no two vertices of Q have a common neighbor in Z \X .

First, let us estimate the size of Q. For each vertex v ∈ B, its neighbors either
belong to X or have degree less than di, and thus at most cdi vertices are at
distance exactly two from v in G−X . Since Q is maximal, each vertex of B \Q
is at distance two from a vertex of Q in G−X , and thus

|Q| ≥ |S|/(c + 1)

1 + cdi
≥ |S|/(c + 1)

2cdi
≥ |S|

2c(c + 1)d0
=

|S|
K0

.

Note that we use the fact that cdi ≥ cdc = 1.

352 Z. Dvořák and M. Mnich

If i = 0, then X = ∅, and thus Q and X satisfy the conclusions of the lemma.
If i ≥ 1, then we need to estimate the size of X . Note that each vertex of X has
degree at least di−1, and thus |X |di−1 ≤ |E(G)| ≤ c|S|. Consequently,

|Q|
|X | ≥

|S|
2c(c+1)di

c|S|/di−1
=

di−1

2c2(c + 1)di
= t . ��

For a path P , let �(P) denote its length (the number of its edges). We say
that a path P with directed edges is reduced if either �(P) = 1, or �(P) = 2 and
both of its edges are directed away from the middle vertex of P .

Lemma 2. Every class of graphs with bounded expansion is fat.

Proof. Let G be a class of graphs with bounded expansion and consider fixed
integers d, t ≥ 1. Let Gd be the class of d-th oriented augmentations of graphs
in G, and let md be the smallest integer such that the maximum in-degree of
every graph in Gd is at most md, which exists by Proposition 1. Let K0 =
m2md

d (2md + 2)md+1tmd and let K = (2md + 1)K0. We will show that every
G ∈ G is (d, t,K)-fat.

Consider a set S ⊆ V (G). Let Gd be a d-th oriented augmentation of G
and let G′

d be the underlying undirected graph of Gd. Since Gd has maximum
in-degree at most md, it follows that the maximum average degree of G′

d is
at most 2md, and thus G′

d has a proper coloring by at most 2md + 1 colors.
By considering the intersections of the color classes of this coloring with S, we
conclude that there exists a set S0 ⊆ S of size at least |S|/(2md + 1) which
is independent in G′

d. Let Z be the set of in-neighbors of vertices of S0 in Gd.
Let H be the bipartite graph with parts S0 and Z such that sz is an edge
of H if and only if s ∈ S0, z ∈ Z and Gd contains an edge directed from z
to s. Let Q and X be the sets obtained by applying Lemma 1 to H . Note that
|Q| ≥ |S0|/K0 ≥ |S|/K and |X | ≤ |Q|/t as required.

It remains to show that Q is d-scattered in G−X . Suppose that there exists
a path P0 ⊆ G − X of length at most d between two vertices u, v ∈ Q. For
1 ≤ i ≤ d − 1, let Gi denote the intermediate i-th oriented augmentation of G
obtained during the construction of Gd. For 1 ≤ i ≤ d, let Pi be a path between u
and v in the underlying undirected graph of Gi such that V (Pi) ⊆ V (P0) and Pi

is as short as possible. Note that �(Pi) ≤ �(Pi−1), and if �(Pi) = �(Pi−1), then Pi

(taken with the orientation of its edges as in Gi) is reduced. Since the length of P0

is at most d, we conclude that Pd with the orientation as in Gd is reduced. Since Q
is an independent set in G′

d, it follows that �(Pd) �= 1. Therefore, �(Pd) = 2 and
the middle vertex x of Pd is a common in-neighbor of u and v in Gd. However,
this implies that x belongs to X , contrary to the assumption that P is disjoint
with X . ��

5 Colorings and Independent Sets

Let us now turn our attention back to independent sets. As we mentioned before,
if G is a 3-colorable graph on n vertices, then G has an independent set of size at

Large Independent Sets in Triangle-Free Planar Graphs 353

least n/3. This bound can be improved when some vertices in the coloring have
monochromatic neighborhood, since such vertices can be moved to two different
color classes.

Lemma 3 (�). Let G be a graph on n vertices and let Q,X ⊆ V (G) be disjoint
sets. If Q is an independent set of G and G−X has a 3-coloring ϕ such that the

neighborhood of each vertex in Q is monochromatic, then α(G) ≥ n−|X|+|Q|
3 .

For a plane graph G, let F (G) denote the set of faces of G. Consider a cycle
C ⊂ G. Removing C splits the plane into two open connected subsets, the
bounded one is called the open interior of C. The closed interior of C is the
closure of the open interior of C. The cycle C is separating if both the open
interior of C and the complement of the closed interior of C contain a vertex
of G. The following result of Dvořák, Král’ and Thomas [31] is our main tool for
obtaining colorings with monochromatic neighborhoods.

Theorem 4 ([31]). There exists an integer D0 ≥ 0 such that for any triangle-
free plane graph G without separating 4-cycles, for any sets Q1 ⊆ V (G) of ver-
tices of degree at most 4 and Q2 ⊆ F (G) of 4-faces such that the elements of
Q1 ∪ Q2 have pairwise distance at least D0, and for any 3-coloring ψ of the
boundaries of the faces in Q2, there exists a 3-coloring ϕ of G such that the
neighborhood of each vertex in Q1 is monochromatic and the pattern of the col-
oring on each face in Q2 is the same as in the coloring ψ.

In the statement, two colorings have the same pattern on a subgraph F if they
differ on F only by a permutation of colors.

We use the following result by Gimbel and Thomassen [32].

Proposition 2 ([32]). Let G be a triangle-free planar graph and let C = v1v2 . . .
be an induced cycle of length at most 6 in G. If a 3-coloring ψ of C does not
extend to a 3-coloring of G, then |C| = 6 and ψ(v1) = ψ(v4) �= ψ(v2) = ψ(v5) �=
ψ(v3) = ψ(v6) �= ψ(v1).

Corollary 2 (�). Let G be a triangle-free planar graph. For any vertex v ∈ V (G)
of degree at most 3, there exists a 3-coloring of G such that the neighborhood of v
is monochromatic.

We need a variation of Theorem 4 which allows some separating 4-cycles.
Let G be a plane graph. A subgraph G0 of G is 4-swept if G0 has no separating
4-cycles and every face of G0 which is not a face of G has length 4.

Lemma 4. There exists an integer D1 ≥ 1 such that the following holds for any
triangle-free plane graph G and any 4-swept subgraph G0 of G. Let X,Q ⊆ V (G0)
be disjoint sets such that each vertex of Q has degree at most 4 in G0. If Q is
D1-scattered in G0−X, then G−X has a 3-coloring such that at least |Q|−6|X |
vertices have monochromatic neighborhood and form an independent set.

Proof. Let D1 = D0 + 4, where D0 is the constant of Theorem 4.

354 Z. Dvořák and M. Mnich

Let R be the set of 4-faces of G0 which are not faces of G. Let Z be the
set of vertices z ∈ Q such that there exists a face x1zx2v ∈ R such that x1

and x2 belong to X . Let H be the graph (possibly with parallel edges) with
vertex set X such that two vertices x1 and x2 are adjacent if there exists a face
x1v1x2v2 ∈ R, for some v1, v2 ∈ V (G0). Since G0 has no separating 4-cycles,
we conclude that either G0 is isomorphic to K2,3 and |X | ≥ 2, or H has no
parallel edges. Since H is a planar graph, it follows that |E(H)| ≤ 3|X |. Note
that |Z| ≤ 2|E(H)| ≤ 6|X |.

Let Q0 = Q\Z. Let Q1 be the set of vertices of Q0 that are not incident with
the faces of R. For each vertex v ∈ Q0 \Q1, we choose one incident 4-face in R;
let Q′

2 be the set of these faces. By the choice of Z, each face in Q′
2 is incident

with exactly one vertex of Q0 \Q1, and thus |Q′
2| = |Q0 \Q1|. For each f ∈ Q′

2,
let Gf be the subgraph of G drawn in the closure of f . By Euler’s formula, there
exists a vertex vf ∈ V (Gf) \ V (f) whose degree in G is at most 3. Let ψf be
a 3-coloring of Gf such that the neighborhood of vf is monochromatic, which
exists by Corollary 2. Let I = {vf : f ∈ Q′

2}.
Let G1 be the graph obtained from G0 − X as follows. For each face f ∈

Q′
2 whose boundary intersects X , note that by the choice of Z, there exists a

subpath P of the boundary walk of f such that X∩V (F) are exactly the internal
vertices of P . Add to G1 a path of length |P |, with the same endvertices as P
and with new internal vertices of degree two.

Note that each face in Q′
2 corresponds to a 4-face of G1; let Q2 be the set

of such faces of G1. Observe that the distance in G1 between any two elements
of Q1 ∪ Q2 is at least D0. Furthermore, for each f ∈ Q′

2, we can naturally
interpret ψf as a coloring of the corresponding face of Q2.

By Theorem 4, there is a 3-coloring ϕ0 of G1 such that the neighborhood
of every vertex of Q1 is monochromatic and the pattern of ϕ0 on every face
f ∈ Q2 is the same as the pattern of ψf . By permuting the colors in the colorings
ψf : f ∈ Q2, we can assume that their restrictions to the boundaries of the faces
in Q2 are equal to the restriction of ϕ0. For each 4-face f ∈ R \ Q2, let ψf be
a 3-coloring of the subgraph of G drawn in the closure of f matching ϕ0 on f ,
which exists by Proposition 2.

Let ϕ be the union of ϕ0 and the colorings ψf for all 4-faces f of G0, restricted
to V (G)\X . Note that ϕ is a 3-coloring of G−X such that all vertices in Q1∪I
have monochromatic neighborhood in ϕ. The claim of this lemma holds, since
|Q1 ∪ I| = |Q0|. ��

6 Proofs

It is well known that planar triangle-free graphs have many vertices of degree at
most 4.

Lemma 5 (�). Every planar triangle-free graph G on n vertices contains at
least n/5 vertices of degree at most 4.

Large Independent Sets in Triangle-Free Planar Graphs 355

For a plane graph G, let s(G) denote the maximum number of vertices of a
4-swept subgraph of G. We can now state the result from which Theorems 2
and 3 will be derived.

Theorem 5. There exists a constant c > 0 such that every plane triangle-free

graph G on n vertices has an independent set of size at least n+cs(G)
3 .

Proof. Let D1 be the distance from Lemma 4. By Lemma 2, there exists a
constant K such that every planar graph is (D1, 14,K)-fat. Let c = 1

10K .
Let G0 be a 4-swept subgraph of G such that |V (G0)| = s(G). Let S be the

set of vertices of G0 of degree at most 4; by Lemma 5, we have |S| ≥ s(G)/5.
Since G0 is (D1, 14,K)-fat, there exist sets Q ⊆ S and X ⊆ V (G0) \ Q such

that Q is D1-scattered in G0 −X , |Q| ≥ |S|/K ≥ s(G)
5K , and |X | ≤ |Q|/14.

By Lemma 4, G − X has a proper 3-coloring and an independent set Q′

with |Q′| ≥ |Q| − 6|X | such that the neighborhood of each vertex in Q′ is
monochromatic. By Lemma 3, we have, as required,

α(G) ≥ n− |X | + |Q| − 6|X |
3

≥ n + |Q|/2

3
≥

n + s(G)
10K

3
. �

Proof (of Theorem 3). Since G has girth at least 5, we have s(G) = n. Therefore,
α(G) ≥ n+cn

3 = n
3/(1+c) by Theorem 5, and we can set ε = 3c

1+c . ��

Theorem 2 is a corollary of Theorem 5 and the following observation.

Lemma 6. Every plane graph G has tree-width at most 41
√
s(G).

Proof. We obtain a tree decomposition (T,B) of G as follows. Let C be a set
of separating 4-cycles in G that have disjoint open interiors, and such that the
union of their open interiors is maximal. Let B0 be the set of vertices of G that
are not contained in the open interiors of cycles in C. Recursively, we apply the
same procedure to each subgraph of G drawn in the closed interior of a cycle
C ∈ C, obtaining its tree decomposition (TC ,BC). We let T be the tree obtained
from the trees TC | C ∈ C by adding B0 as a neighbor of their roots, and we set
B = {B0} ∪

⋃
C∈C BC . Note that each bag B ∈ B induces a 4-swept subgraph

of G, and thus its size is at most s(G).
Consider a bag B ∈ B and let H = G[B]. Let R be the set of faces of H which

are not faces of G. Note that for every bag B′ �= B, the intersection B ∩B′ is a
subset of the vertices of some face of R. Let H ′ be obtained from H by adding,
for each face f ∈ R, a vertex vf adjacent to all vertices of f . Note that H is
triangle-free, and thus it has at most |B| faces. Consequently, |V (H ′)| ≤ 2|B|.
Since H ′ is planar, it has tree-width at most 6

√
|V (H ′)| + 1 by a result of

Robertson, Seymour and Thomas [33]. Thus, H ′ has a tree decomposition T ′
B

with all bags of size at most 6
√
|V (H ′)| + 2. Let TB be the tree decomposition

of H obtained from T ′
B by, for each bag of the decomposition and each f ∈ R,

replacing vf by V (f). The bags of the decomposition TB have size at most

24
√
|V (H ′)|+ 8 ≤ 24

√
2|B|+ 8. Furthermore, for each f ∈ R, there exists a bag

of TB containing V (f).

356 Z. Dvořák and M. Mnich

It follows that we can combine the decompositions TB , B ∈ B, to a decom-
position of G of width at most 24

√
2s(G) + 7 ≤ 41

√
s(G). ��

7 Discussion

We gave a fixed-parameter algorithm for finding an independent set of size at
least n/3+k in triangle-free planar graphs on n vertices, for every integer k ≥ 0.
Let us remark that the subexponential dependence on k in the running time of
our algorithm is optimal, under the Exponential Time Hypothesis (this follows
from a reduction by Madhavan [3]).

Several intriguing questions remain. Does the problem admit a polynomial
kernel? That is, can any triangle-free planar graph on n vertices be efficiently
(in polynomial time) compressed to an equivalent graph G′ on kO(1) vertices?
Also, while we can decide the existence of the independent set in linear time
(in n), we can only find such an independent set in quadratic time. Can this be
improved?

Unfortunately, it is unlikely our techniques could be used for Planar Inde-

pendent Set-ATLB in general planar graphs. The analogue of Proposition 4
is false for general planar graphs, and there exist n-vertex planar graphs with
largest independent set of size n/4 and arbitrarily large tree-width.

References

1. Appel, K., Haken, W.: Every planar map is four colorable. Bull. Amer. Math.
Soc. 82, 711–712 (1976)

2. Robertson, N., Sanders, D., Seymour, P., Thomas, R.: The four-colour theorem. J.
Combin. Theory Ser. B 70, 2–44 (1997)

3. Madhavan, C.: Approximation algorithm for maximum independent set in planar
traingle-free graphs. In: Joseph, M., Shyamasundar, R.K. (eds.) FSTTCS 1984.
LNCS, vol. 181, pp. 381–392. Springer, Heidelberg (1984)

4. Niedermeier, R.: Invitation to fixed-parameter algorithms. Oxford Lecture Series in
Mathematics and its Applications, vol. 31. Oxford University Press, Oxford (2006)

5. Bodlaender, H., Demaine, E., Fellows, M.R., Guo, J., Hermelin, D., Lokshtanov,
D., Müller, M., Raman, V., van Rooij, J., Rosamond, F.A.: Open problems in
parameterized and exact computation. Technical report, Utrecht University (2008)

6. Mahajan, M., Raman, V., Sikdar, S.: Parameterizing above or below guaranteed
values. J. Comput. System Sci. 75, 137–153 (2009)

7. Sikdar, S.: Parameterizing from the extremes. PhD thesis, The Institute of Math-
ematical Sciences, Chennai (2010)

8. Mnich, M.: Algorithms in Moderately Exponential Time. PhD thesis, TU
Eindhoven (2010)

9. Crowston, R., Fellows, M., Gutin, G., Jones, M., Rosamond, F., Thomassé, S.,
Yeo, A.: Simultaneously Satisfying Linear Equations Over F2: MaxLin2 and Max-
r-Lin2 Parameterized Above Average. In: Proc. FSTTCS 2011. LIPIcs, vol. 13,
pp. 229–240 (2011)

10. Fellows, M.R., Guo, J., Marx, D., Saurabh, S.: Data Reduction and Problem
Kernels (Dagstuhl Seminar 12241). Dagstuhl Reports 2, 26–50 (2012)

Large Independent Sets in Triangle-Free Planar Graphs 357

11. Grötzsch, H.: Zur Theorie der diskreten Gebilde. VII. Ein Dreifarbensatz für
dreikreisfreie Netze auf der Kugel. Wiss. Z. Martin-Luther-Univ. Halle-Wittenberg.
Math.-Nat. Reihe 8(/1959), 109–120 (1958/1959)

12. Dvořák, Z., Kawarabayashi, K.I., Thomas, R.: Three-coloring triangle-free planar
graphs in linear time. ACM Trans. Algorithms 7, Art. 41, 14 (2011)

13. Steinberg, R., Tovey, C.A.: Planar Ramsey numbers. J. Combin. Theory Ser. B 59,
288–296 (1993)

14. Jones, K.F.: Minimum independence graphs with maximum degree four. In: Graphs
and Applications, Boulder, Colo., pp. 221–230. Wiley-Intersci. Publ. (1985)

15. Bodlaender, H.L., Drange, P.G., Dregi, M.S., Fomin, F.V., Lokshtanov, D.,
Pilipczuk, M.: A O(ckn) 5-approximation algorithm for treewidth. In: Proc. FOCS
2013, pp. 499–508 (2013)

16. Scheinerman, E.R., Ullman, D.H.: Fractional graph theory. Dover Publications Inc.,
Mineola (2011)

17. Dvořák, Z., Škrekovski, R., Valla, T.: Planar graphs of odd-girth at least 9 are
homomorphic to the Petersen graph. SIAM J. Discrete Math. 22, 568–591 (2008)

18. Pirnazar, A., Ullman, D.H.: Girth and fractional chromatic number of planar
graphs. J. Graph Theory 39, 201–217 (2002)

19. Djidjev, H.N.: On some properties of nonplanar graphs. Compt. Rend. Acad. Bulg.
Sci. 37, 1183–1185 (1984)

20. Kim, J.H.: The Ramsey number R(3, t) has order of magnitude t2/ log t. Random
Structures Algorithms 7, 173–207 (1995)

21. Staton, W.: Some Ramsey-type numbers and the independence ratio. Trans. Amer.
Math. Soc. 256, 353–370 (1979)

22. Heckman, C.C., Thomas, R.: Independent sets in triangle-free cubic planar graphs.
J. Comb. Theory, Ser. B 96, 253–275 (2006)

23. Alon, N., Gutin, G., Kim, E., Szeider, S., Yeo, A.: Solving MAX-r-SAT above a
tight lower bound. Algorithmica 61, 638–655 (2011)

24. Gutin, G., Kim, E.J., Mnich, M., Yeo, A.: Betweenness parameterized above tight
lower bound. J. Comput. System Sci. 76, 872–878 (2010)

25. Gutin, G., van Iersel, L., Mnich, M., Yeo, A.: Every ternary permutation constraint
satisfaction problem parameterized above average has a kernel with a quadratic
number of variables. J. Comput. System Sci. 78, 151–163 (2012)

26. Crowston, R., Jones, M., Mnich, M.: Max-cut parameterized above the Edwards-
Erdős bound. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.)
ICALP 2012, Part I. LNCS, vol. 7391, pp. 242–253. Springer, Heidelberg (2012)

27. Mnich, M., Zenklusen, R.: Bisections above tight lower bounds. In: Golumbic,
M.C., Stern, M., Levy, A., Morgenstern, G. (eds.) WG 2012. LNCS, vol. 7551, pp.
184–193. Springer, Heidelberg (2012)

28. Cygan, M., Pilipczuk, M., Pilipczuk, M., Wojtaszczyk, J.O.: On multiway cut pa-
rameterized above lower bounds. ACM Trans. Comput. Theory 5, 3:1–3:11 (2013)

29. Nešetřil, J., Ossona de Mendez, P.: Grad and classes with bounded expansion. I.
Decompositions. European J. Combin. 29, 760–776 (2008)

30. Nešetřil, J., Ossona de Mendez, P.: Sparsity – Graphs, Structures, and Algorithms.
Springer (2012)

31. Dvořák, Z., Král’, D., Thomas, R.: Three-coloring triangle-free graphs on surfaces
V. Coloring planar graphs with distant anomalies (2013) (manuscript)

32. Gimbel, J., Thomassen, C.: Coloring graphs with fixed genus and girth. Trans.
Amer. Math. Soc. 349, 4555–4564 (1997)

33. Robertson, N., Seymour, P., Thomas, R.: Quickly excluding a planar graph. J.
Combin. Theory Ser. B 62, 323–348 (1994)

GRASP. Extending Graph Separators
for the Single-Source Shortest-Path Problem

Alexandros Efentakis1 and Dieter Pfoser2

1 Research Center “Athena”
efentakis@imis.athena-innovation.gr

2 Department of Geography and GeoInformation Science, George Mason University
dpfoser@gmu.edu

Abstract. Many existing solutions focus on point-to-point shortest-path queries
in road networks. In contrast, only few contributions address the related single-
source shortest-path problem, i.e., finding shortest-path distances from a single
source s to all other graph vertices. This work extends graph separator methods
to handle this specific problem and its one-to-many variant, i.e., calculating the
shortest path distances from a single source to a set of targets T⊆V . This novel
family of so-called GRASP algorithms provides exceptional preprocessing times,
making them suitable for dynamic travel time scenarios. GRASP algorithms also
efficiently solve range / isochrone queries not handled by previous approaches.

Keywords: Shortest-path computation, GRASP algorithm, Range queries,
Isochrones.

1 Introduction

For the single-pair shortest-path problem (SPSP) in road networks, several techniques
can be much faster than the Dijkstra algorithm by using a two-phase approach: Pre-
processing requires a few minutes (or hours) and produces auxiliary data that is subse-
quently used to accelerate shortest-path (SP) queries. The related research has been so
rapidly evolving that even recent surveys [6] had to be updated in later publications [1].

While many efficient techniques exist, an important category of SP algorithms is
based on graph separators (GS). The most prominent example of this category is Cus-
tomizable Route Planning (CRP) [4,8]. Although CRP is one order of magnitude slower
than hierarchical approaches such as Contraction Hierarchies (CH) [14] it is still fast
enough for real-time services and offers multiple advantages: (i) It offers very fast pre-
processing times of few seconds for continental road networks, making this method
suitable for dynamic road networks, (ii) it is very resilient to the metric used, including
travel distances and turning costs. This is the reason why global Mapping services such
as Bing Maps prefer to use CRP, over faster but less practical solutions such as CH.

In the case of the single-source shortest-path problem (SSSP), given a source ver-
tex s, the goal is to find SP distances from s to all other graph vertices. This problem
is also addressed by the classic Dijkstra algorithm. Quite recently, [3] introduced the
PHAST algorithm that, compared to Dijkstra, is orders of magnitude faster. Later works

A.S. Schulz and D. Wagner (Eds.): ESA 2014, LNCS 8737, pp. 358–370, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

GRASP. Extending Graph Separators for the Single-Source Shortest-Path Problem 359

[5] presented RPHAST for solving the one-to-many variant: given a set of targets T,
compute the distances between s and all vertices in T.

Since both PHAST and RPHAST are extensions of the CH algorithm, their prepro-
cessing is slow, making those methods practically unsuitable for dynamic scenarios.
Moreover, since CH is essentially a bidirectional method, when applied to the SSSP
problem, it may only be used if we know the target nodes in advance, as in the entire
road network in PHAST, or a subset T of nodes in RPHAST. Therefore, these methods
cannot be extended to range queries, i.e., find all nodes reachable from s within a given
timespan) or isochrone queries, i.e., find all nodes AND edges reachable from s within
a given timespan, since for those queries we do not know the target nodes in advance.

In this work, our goal is to create SP methods that (i) are very fast, (ii) have very
short pre-processing times and (iii) may be used for most (if not all) SSSP cases. We
achieve this by extending Graph Separators methods and create a novel set of algo-
rithms named GRASP (Graph separators, RAnge, Shortest Path) that have none of the
inherent shortcomings of previous approaches. All GRASP algorithms (i) have very
short preprocessing time of few seconds, making them suitable for dynamic road net-
works, i.e., road networks with changing edge weights due to traffic updates, (ii) are
very robust with respect to the metric used (either travel times or travel distances), and
most of all, (iii) they may efficiently solve range/isochrone queries. As recent works
have suggested (cf. [10,11]), this type of queries is very important for a spectrum of
application contexts, including fleet management, urban planning and geomarketing.

The outline of this work is as follows. Section 2 describes previous work related to
our method. Section 3 describes our family of GRASP algorithms and their implemen-
tation. Experiments establishing the benefits of our approach are provided in Section 4.
Finally, Section 5 gives conclusions and directions for future work.

2 Related work

In this work we focus on directed weighted graphs G(V, E,w), where V is a finite set of
vertices, E ⊆ VxV are the arcs of the graph and w is a positive weight function E → R+.
A partition of V is a family C = {c0, c1, . . . cL} of sets, such that each node u ∈ V is
contained in exactly one set ci. An element of a partition is called a cell. A multilevel
partition of V is a family of partitions {C0,C1, . . .CL} where � denotes the level of a
partition C�. Similar to [4], level 0 refers to the original graph, L is the highest partition
level and we use nested multilevel partitions, i.e., for each � < L and each cell c�i there
exists a unique cell c�+1

j (called the supercell of c�i) with c�i ⊆ c�+1
j . Accordingly, c�i is

a subcell of c�+1
j . According to this notation, c�(v) is the cell that contains the vertex

v on level �. Moreover, the number of cells of the partition C� will be denoted as |C�|.
A boundary arc on level � is an arc with start and end vertices located in different level �
cells; a boundary vertex on level � is a vertex which is connected with at least one
neighbor in another level-� cell. Note that for nested multilevel partitions, a boundary
vertex / arc at level � is also a boundary vertex / arc for all levels below.

Contraction Hierarchies. Contraction hierarchies (CH) [14] efficiently solve the SPSP
problem on road networks. During preprocessing, CH picks an ordering of the vertices

360 A. Efentakis and D. Pfoser

and shortcuts them according to this order, i.e., a shortcut is created between each pair
u,w of neighboring vertices of v, if the shortest path from u to w is unique and contains
v. The final output of the CH preprocessing routine is the set E+ of shortcut edges and
the position of each vertex v in the node ordering (denoted by rank(v)).

If E↑ = {(v,w)∈E∪E+ : rank(v)<rank(w)} and E↓ = {(v,w)∈E∪E+ : rank(v) >
rank(w)}, then the CH algorithm runs a bidirectional Dijkstra algorithm, in which the
forward search is restricted to G↑=(V, E↑) and the reverse search to G↓=(V, E↓). As
showed by [14], if u is the maximum-rank vertex that minimizes ds(u) + dt(u), then the
actual shortest path from s to t is given by the concatenation of s→u and u→t paths.

PHAST & RPHAST. In the single-source shortest-path problem (SSSP) or the one-
to-all problem, given a source vertex s, the goal is to find SP distances from s to all
other graph vertices. The PHAST algorithm [3] extended CH to efficiently answer SSSP
queries. The preprocessing phase of PHAST is similar to CH and outputs a set of short-
cuts E+ and a vertex ordering. A PHAST query initially sets d(v)=∞ for all v�s, and
d(s)=0. It then executes the actual SSSP query in two subphases. First, it performs a
simple forward CH search (denoted hereafter as the upward phase): it runs Dijkstra al-
gorithm from s in G↑, stopping when the priority queue becomes empty. This sets the
distance labels d(v) of all vertices visited by the search. The second (scanning) subphase
scans all vertices in G↓ in descending rank order, i.e., vertices on level � are only visited
after all vertices on levels greater than � have been processed. To scan v, the PHAST
algorithm examines each incoming arc (u, v) ∈ E↓; if d(v) > d(u)+w(u, v), PHAST sets
d(v) = d(u)+w(u, v). The main advantage of PHAST is that only the (cheap) upward
phase depends on the source s. The expensive scanning phase a) visits all vertices and
arcs in the same order regardless of the source and b) vertices belonging to the same
CH level may be processed in parallel. As a result, parallel PHAST requires merely
39-64ms for continental road networks .

Later, [5] introduced the RPHAST algorithm for solving the one-to-many variant
of finding SP distances from the source s to set of targets T ⊆ V . RPHAST uses the
exact same CH preprocessing but it has an additional target selection phase, in which
RPHAST extracts from G↓ the information necessary to compute the distances from
any source s ∈ V to all targets T , creating a restricted downward graph denoted as G↓T .
RPHAST then runs the same query phase as PHAST but using G↓T instead of G↓.
Graph Separators. In Graph Separator (GS) methods, such as CRP [4], a partition C
of the graph is computed. Then, the preprocessing stage builds a graph H containing
all boundary nodes and boundary arcs of G. It also contains a clique for each cell c:
for every pair (u, v) of boundary nodes in c, a clique arc (u, v) is created whose cost is
the same as the shortest path (restricted to the inner edges of c) between u and v. For
a SP query between s and t, Dijkstra’s algorithm must be run on the graph consisting
of the union of H, c0(s) and c0(t). To accelerate queries, multiple levels of overlay
graphs may be used. Since each clique is calculated by using only the inner edges of
c, GS preprocessing may be easily parallelized. Moreover, overlay graphs of higher
level partitions may be computed by using the overlay graphs of lower levels to further
reduce preprocessing time. By using those two optimizations, CRP is the most efficient

GRASP. Extending Graph Separators for the Single-Source Shortest-Path Problem 361

(a) A graph G.
|V |= 15, L=2, |CL|=2

(b) Level-1 overlay
graph

(c) Level-2 overlay
graph

(d) The GGS ↓ graph

Fig. 1. Overlay graphs and the GGS ↓ graph for an example graph G

SPSP algorithm in terms of preprocessing time (requiring few seconds for continental
road networks) and is thus suitable for dynamic road networks.

Recently, [7] adjusted CRP to handle one-to-many queries. Unfortunately, results
were not impressive: Even with an indexing scheme, the target selection phase of CRP is
still 32 times worse than RPHAST. Thus, CRP cannot efficiently answer SSSP queries.

3 The GRASP Algorithm

In this work we extend graph separator (GS) methods to efficiently solve all variations
of the SSSP problem. Our novel family of algorithms denoted GRASP have all the
advantages of graph separator methods: Extremely fast preprocessing times, fast SP
query performance and robustness to the metric used. But they also efficiently answer
range / isochrone queries not addressed by previous CH based methods.

In GS techniques, during preprocessing, we compute SP distances (restricted to the
inner arcs) between the border vertices of each cell, at each partition level. As shown
in [4], the SP distances between (level-�) border vertices of cell c� may be calculated
by running one Dijkstra search per border vertex, in the union of all subcells of c� at
level �−1. Since those searches use the level �−1 overlay graph, they are extremely fast.

Extending this observation, GRASP preprocessing (by using the exact same Dijkstra
searches as before) additionally computes the SP distances between all border vertices
of level � and all vertices of level �−1 within each cell c�. To differentiate between the
two kind of arcs calculated by the same search, we will denote as (i) clique arcs those
added overlay arcs that connect border vertices of the same level � and (ii) downward
arcs of level � those connecting vertices at different levels, i.e., � and �−1. Adopting
the notation of [4], the overlay graph containing border vertices, border arcs and clique
arcs will be denoted hereafter as H. For added efficiency, downward arcs are stored as
a separate graph (using a single adjacency array representation [16]), hereafter referred
to as GGS ↓. Since we use nested partitions, H and GGS ↓ do not necessarily need to have
the same number of levels. The intermediate steps for building the overlay graph H and
the GGS ↓ for a sample graph G, are shown in Fig. 1.

362 A. Efentakis and D. Pfoser

When GRASP executes a SSSP query from source s, it runs a simple Dijkstra search
in the the union of the cell c0(s) and H until the priority queue is empty. This will be
referred to as the upward phase of GRASP. The upward phase settles all border vertices
of level L, all vertices of c0(s) and some additional vertices inside cL(s). Note that, all
vertices settled by the upward phase are assigned correct SP distances from s, due to
the definition of the overlay graphs. For a random cell cL by using the level-L downward
arcs (inside cL) we may calculate correct SP distances to all level-L-1 border vertices
from s. Recursively, in descending order of GS levels, we may calculate correct SP
distances for all vertices inside cL. This process is repeated for all (level-L) cells. This
second stage is denoted as the scanning phase of GRASP (see Procedure GRASP).

GRASP(s, d(V), nsVec(V),G,H,GGS ↓)
1 Init nsVec(V) to FALSE for level − L
2 Dijkstra(s, c0(s)∪H, d(V), nsVec(V))
3 parallel for each cell in CL partition
4 for level = L − 1 to 0
5 for vertex v of level in cell
6 if nsVec[v] == FALSE
7 Scan(v, d(V), GGS ↓)
8 else nsVec[v] = FALSE

Scan(v, d(V),GGS ↓)
1 for edge in GGS ↓ incoming to v
2 tl = edge.tail
3 if d[v] > d[tl]+edge.weight
4 d[v] = d[tl]+edge.weight

Theorem 1. The GRASP algorithm is correct (Proof omitted due to space restrictions)

3.1 GRASP Tuning

Although GRASP’s simplicity and correctness is evident by its definition,we need to
take several steps to further improve its query performance. Those steps include:

Initialization. All Dijkstra based variants assume that distance labels for all vertices
are set to ∞ during initialization. This requires a linear sweep over all distance labels,
which can be slow. To improve speed and to avoid scanning a considerably percentage
of downward arcs, GRASP uses a bit vector of size |V |, termed nodeScannedVector
(cf. [5]). In the GRASP upward phase, visited vertices have their associated bit set to
true and correct distance labels assigned. During the scanning phase, GRASP avoids
scanning vertices with set bits (line 6 of procedure GRASP) and resets their associated
bit (line 8) for subsequent searches. This avoids scanning a considerably percentage of
downward arcs and saves computation time.

Number of Levels. With respect to the required levels of overlay graphs, four lev-
els of overlay graphs suffice to achieve fast SPSP query times [4]. In our case, mi-
nimizing the number of downward arcs for GGS ↓ requires as many intermediate levels
as possible. Experimentation showed that L = 16 yields best results. For the upward
phase of GRASP and overlay graph H we need to only “use” four of those levels
(namely: C4,C9,C12,C16). For point-to-point SP queries, typically performance im-
proves with a decreasing number of |CL| cells at the highest level partition. However in
our case, decreasing |CL| creates a larger number of downward arcs in GGS ↓ and limits

GRASP. Extending Graph Separators for the Single-Source Shortest-Path Problem 363

GRASP’s parallel performance. Thus, we get optimal results for medium number of
cells at the highest level partition, experimentally established to be |CL| = 128.

Nodes Reordering. To improve performance, we reorder the vertices of graph G
(cf. [2]), such that overlay vertices are assigned smaller IDs (ordered by descending
level), breaking ties with cell. Non-border vertices are ordered by their level-1 cells. In
addition, within the same cell (and level) we order vertices by a DFS layout similar to
[12]. This nodes’ reordering improves (i) spatial locality for preprocessing and (ii) both
the upward and scanning phases’ performance of GRASP.

Arc Reduction. Previous GS approaches [4,2] compute all available overlay arcs be-
tween border vertices. This would be very wasteful for GRASP, especially for the down-
ward arcs. For GRASP, we extend the arc-reduction optimization of [13], which during
preprocessing, reports only distances of boundary nodes that are direct descendants of
the root of each executed Dijkstra algorithm. This optimization preserves correct dis-
tances between boundary vertices on the overlay graph and leads to a 56-71% reduction
in the number of arcs created (depending on the cell size). Although originally used
for clique arcs, it works even better for downward arcs. This optimization has (i) no
negative impact on preprocessing time, since it is integrated in each Dijkstra search,
(ii) creates fewer arcs (both clique and downward) and therefore makes GRASP less
memory intensive, (iii) arc-reduction is achieved individually per cell (each cell com-
putation is still independent from other cells), which is especially important in cases
where traffic updates are restricted to a limited number of cells.

Parallelization. A final performance boost comes from exploiting the parallel nature
of GRASP. For a single-tree computation, PHAST requires to pause and synchronize
threads at each CH level. Since the number of CH levels is quite large, (140 in the case
of continent-size networks), parallel performance is not optimal. Contrarily, GRASP
only has 16 GS levels. This allows for better parallel scaling of GRASP. Still, we can
do even better. By definition, each level-L cell may be processed independently - see
line 3 of procedure GRASP. Thus, the parallel implementation of GRASP requires no
intermediate barriers for a single-tree computation and consequently scales much better
for a large number of cores. As will be shown in Section 4, parallel GRASP is as fast
as parallel PHAST, while requiring only a fraction of PHAST’s preprocessing time.
As a result, GRASP is the most competitive solution for answering SSSP queries for
dynamic (time-dependent) road networks.

3.2 Range and Isochrone Queries

RangeToIsoc(e, d(V), nsVec(V), esVec(E),G)

1 for vertex v = 0 to |V | − 1
2 if nsVec(V) == TRUE
3 for edge in G outgoing from v
4 if d[v] + edge.weight ≤ e
5 esVec[edge]=TRUE

Another variation of the SSSP problem, is
Range / Isochrone Queries. Range queries
identify and assign correct SP distances
to all vertices reachable from a source s
within a given range (either travel times
or distance) limit e. Isochrone queries
find all nodes and edges reachable from
s within a given limit e. They are an

364 A. Efentakis and D. Pfoser

extension of range queries, which simply requires an additional linear sweep over the
original graph adjacency array of G to discover which edges are reachable from s within
the given range. This process (described by the procedure RangeToIsoc) is very fast
and requires less than few ms for continental road networks. Unfortunately, this type of
queries cannot be handled by previous approaches, such as PHAST or RPHAST due to
the inherent bidirectional nature of CH, which requires to know the target vertices in
advance. In the following, we will describe how our novel isoGRASP algorithm (i.e.,
isochrone GRASP, an adaptation of GRASP) efficiently solves range queries.

Range queries mark and assign correct SP distances to all vertices reachable within
the limit e. To this end, isoGRASP uses the nodeScannedVector (similar to GRASP).
The isoGRASP algorithm uses the exact same preprocessing as before, i.e., building
the H and GGS ↓ graphs and also has an upward and a scanning phase. In the upward
phase, isoGRASP runs a RangeDijkstra search in the union of c0(s) and H, which is
a modified Dijkstra algorithm that only allows vertices u with SP distance d(u) ≤ e
to enter the priority queue. As a result, the upward phase of isoGRASP terminates
early and settles only those level-L border vertices and some additional vertices inside
cL(s) that are reachable from source within the specified limit e. Moreover, during the
upward phase, isoGRASP marks those level-L cells which are reachable from source.
To achieve this, we use an additional bit vector of size |CL| (128 in our experiments),
denoted hereafter as the cellScannedVector (and csVec(CL) in the pseudocode).

During isoGRASP’s scanning phase, by utilizing the cellScannedVector, we restrict
calculations to those level-L cells reachable from source within the limit e. This saves
a lot of computation time for smaller values of e. Contrary to GRASP, when we scan
a node u, we only look at downward arcs where the tail vertex v of this arc has its
associated nodeScannedVector bit set to true, i.e, the tail v of this arc is reachable
within e. If d(v)+w(v, u) ≤ e and d(v)+w(v, u) < d(u) then d(u) = d(v)+w(v, u) and
the node-ScannedVector bit of u is set to true. Thus, after isoGRASP’s scanning phase,
all vertices reachable from a source within e are assigned correct SP distances and have
their nodeScannedVector bit set to true (see procedure isoGRASP).

Lemma 1. The isoGRASP algorithm is correct (Proof omitted due to space restrictions)

isoGRASP (s, e, d(V), nsVec(V), csVec(CL),
G,H,GGS ↓)
1 Initialize nsVec(V) to FALSE
2 Initialze csVec(CL) to FALSE
3 RangeDijkstra(s, c0(s)∪H, d(V),

nsVec(V), csVec(CL))
4 parallel for each cell in CL partition
5 if csVec[cell] == TRUE
6 for level = L − 1 to 0
7 for vertex v of level in cell
8 if nsVec[v]==FALSE
9 RScan(v, e, d(V),

nsVec(V),GGS ↓)

RScan(v, e, d(V), nsVec(V),GGS ↓)
1 for edge in GGS ↓ incoming to v
2 tl = edge.tail
3 if nsVec(tl) == true
4 if d[v] > d[tl]+edge.weight

& d[tl]+edge.weight ≤ e
5 d[v] = d[tl]+edge.weight
6 nsVec[v]=TRUE

GRASP. Extending Graph Separators for the Single-Source Shortest-Path Problem 365

3.3 One-to-Many Queries

The one-to-many SSSP variant finds SP distances from a source s to a non-empty set of
targets T ⊆ V . We call the respective algorithm reGRASP (restricted GRASP). Similar
to [5], reGRASP has a target selection phase, which only depends on the targets’ set T .
During the target selection phase, reGRASP marks the vertices T ′ (T ⊆ T ′ ⊆ V) that
are necessary for computing SP distances to all vertices ∈ T .

Here, we use a new bit vector of size |V |, the restrictedVector (denoted as rVec(V)
in the pseudocode). All its bits are set to false except those referring to T vertices IDs.
Then we sweep this vector from the higher bits to the lower. When we meet a marked
vertex (true bit), by using the adjacency array representation of the GGS ↓ graph we
mark the vertices that need to be added to T ′. Since, downward arcs connect higher
level vertices (which correspond to smaller IDs, according to our nodes reordering)
with lower level vertices (with larger IDs), each vertex needs to be scanned only once.

We may further accelerate the target selection phase by using again the cellScanned-
Vector. By the definition of GGS ↓, we know that all vertices belonging to T ′ belong
to the same level-L cells as T vertices. Therefore at step 1 of the target selection pro-
cess, we mark the corresponding bits of level-L cells of vertices belonging to T to true.
Therefore during this phase, we may safely ignore level-L cells with their correspond-
ing cell bits set to false. Moreover, each such cell may be processed in parallel since
the GGS ↓ graph only connects vertices belonging to the same level-L cell. This is a ma-
jor advantage of GRASP over RPHAST, where the respective time-consuming target
selection phase cannot be parallelized. Procedure TS shows the finalized pseudocode.

reGRASP(s, T, d(V), nsVec(V),
csVec(CL), rVec(V),G,H,GGS ↓)

1 TS(T, csVec(CL), rVec(V),GGS ↓)
2 Init nsVec(V) to FALSE for level − L
3 Dijkstra(s, c0(s)∪H, d(V), nsVec(V))
4 parallel for each cell in CL partition
5 if csVec[cell] == TRUE
6 for level = L − 1 to 0
7 for vertex v of level in cell
8 if nsVec[v]= =FALSE

& rVec[v]= =TRUE
9 Scan(v, d(V),GGS ↓)

10 else
11 nsVec[v]=FALSE

TS(T, csVec(CL), rVec(V),GGS ↓)
1 Initialze rVec(V) to FALSE
2 Initialze csVec(CL) to FALSE
3 for each vertex t in T
4 rVec[t] = TRUE
5 csVec[cL(t)] = TRUE
6 parallel for each cell in CL partition
7 if csVec[cell] == TRUE

// Skip level-L
8 for level = 0 to L − 1
9 for vertex v of level in cell

10 if rVec[v] == TRUE
11 for edge in GGS ↓

incoming to v
12 tl = edge.tail
13 rVec[tl]=TRUE

After the target selection phase, reGRASP has an upward and a scanning phase. The
upward phase is exactly the same as GRASP and settles all level-L border vertices and
some additional nodes inside cL(s). Then during the scanning phase (i) we ignore cells
with their cellScannedVector bits set to false and (ii) we do not scan vertices not belong-
ing to T ′ (i.e, have their restrictedVector bits set to false). Again, during the scanning
phase each level-L cell may be processed in parallel (see Procedure reGRASP).

Lemma 2. The reGRASP algorithm is correct (Proof omitted due to space restrictions)

366 A. Efentakis and D. Pfoser

The main advantage of reGRASP over RPHAST, is that (i) we may ignore level-L
cells that do not contain T vertices and (ii) that each level-L cell may be processed in
parallel, even during the target selection phase. This way, parallel reGRASP always
exhibits excellent performance.

Conclusively, the most important aspect and outcome of our approach is not three
distinct algorithms but a unified framework that solves all variants of the SSSP problem.
The exact same preprocessing and the same data structures (the overlay graph H and
the GGS ↓ graph) suffice to solve all these different variations. In this scenario, building
a server that concurrently answers all types of queries (one-to-all, range/isochrone and
one-to-many) as they arrive from clients, is possible for the first time.

4 Experiments

The scope of our experiments is to evaluate the performance of all GRASP algorithms
for different SSSP variations. The experiments were performed on a workstation with a
4-core Intel i7-3770 processor clocked at 3.4GHz and 32 GB of RAM, running Ubuntu
12.10. Our code was written in C++ with GCC 4.7 and optimization level 3. We used
OpenMP for parallelization. We used the the European and the full USA road net-
works (18M nodes / 42M arcs and 24M nodes / 58M arcs respectively) made avail-
able from the 9th DIMACS Implementation Challenge [9]. We experimented with both
travel times and travel distances. For partitioning the graph into nested-multilevel par-
titions, similarly to [12], we used Buffoon / KaFFPa [17] in a top-down approach. For
the lowest four level partitions (C1, . . .C4), we switched to METIS [15] for faster com-
putation. For both benchmark road networks used, we used a total of 16 partitioning
levels (i.e., L = 16) and the C16 partition contains 128 cells. Each partition below that,
contains double the cells of the previous highest level partition (i.e., C15 has 256 cells,
C14 has 512 cells and so-on).

To compare the performance to existing approaches, authors of PHAST / RPHAST
have kindly conducted all experiments for the same road networks on a similar work-
station setup to ours (they could not provide direct access to source code due to IPR
claims). Their setup is a workstation with an Intel i7-3770K (almost identical to ours,
except it is clocked higher at 3.5GHz) with the same 32 GB of main memory. Their
workstation runs Windows 8.1, their code is also written in C++ (and OpenMP) and
was compiled using Visual Studio 2012. Since their processor is clocked 0.1Ghz higher
(is 2.9% faster than hours), we multiply their timing results with 1.029, similar to [12].
Still, in most cases this tweaking has minimum impact on the observed results.

Table 1. Comparison of GRASP and PHAST for both travel times and travel distances

Preprocessing Time (s) Query Time (ms)
Travel times Travel distances Travel times Travel distances
Europe USA Europe USA Europe USA Europe USA

PHAST 99 160 824 475 39 (103) 60 (169) 50 (139) 64 (179)
GRASP 8 12 10 13 43 (150) 58 (207) 46 (156) 66 (218)

GRASP. Extending Graph Separators for the Single-Source Shortest-Path Problem 367

GRASP vs. PHAST. We compare GRASP and PHAST’s preprocessing and query
times for calculating SP distances of all graph vertices from a single source. Prepro-
cessing times refer to parallel execution and for query times we report both sequential
and parallel times for a single-tree computation. Query times are averaged over 10,000
randomly selected sources. Results are presented in Table 1. The best results in each
case are highlighted in bold and the numbers in parentheses refer to sequential times.

Regarding preprocessing, GRASP is notably more efficient than PHAST. GRASP’s
preprocessing is 13 times faster than PHAST for travel times and 37-82 times faster for
travel distances. GRASP’s preprocessing takes less than 15s for both metrics and shows
little change when using travel distances, which is in stark contrast to PHAST. In terms
of memory consumption, PHAST is slightly better, but GRASP has also very modest
requirements, since it requires no more than 1Gb for storing the H and GGS ↓ graphs.

In terms of query performance, results are evenly mixed. Although sequential PHAST
is slightly faster than GRASP, the parallel implementation of GRASP scales better. As
a result, parallel GRASP is faster for the USA network for travel times and Europe
network for travel distances.

As a result of this first experiment, we observe that GRASP is a more complete
solution for solving the one-to-all variant of the SSSP problem. It requires a fraction
of PHAST’s preprocessing time, is more robust to the metric used and scales better
for multicore processors. Also, GRASP’s robustness to the metric used, indicates that
it will probably outperform PHAST when we switch to other graphs, where CH based
solutions typically perform poorly, e.g. social networks.

isoGRASP. The following experimentation evaluates isoGRASP’s performance for the
range variant of the SSSP problem, i.e., assign correct SP distances to all nodes reach-
able from a single source within a range limit e. To this end, we chose 1000 random
vertices as sources s and performed range queries for multiple values of e. Since our
benchmark Europe and USA networks have different units for travel times, we use range
limits that are fractions of the road network diameters (denoted hereafter as D(G)).
Since no other pure algorithmic methods exist for this particular problem, we com-
pare our parallel isoGRASP implementation to a sequential Dijkstra implementation.
Results are presented in Fig. 2(a) and 2(b), respectively.

Results are similar for both networks and metrics. IsoGRASP is orders of magnitude
faster than Dijkstra and exhibits stable performance for both metrics. In addition for
e < 0.2×D(G), parallel isoGRASP is at least twice as fast as parallel GRASP / PHAST.
Since in range queries we are usually interested in small ranges close to the source
vertex, isoGRASP should always be the algorithm of choice, instead of using PHAST /
GRASP for calculating all graph vertices distances and then sweep the distances vector
to determine which of those are reachable within limit.

reGRASP vs RPHAST. The final set of experiments compares reGRASP and RPHAST
for the one-to-many variant of finding SP distances from a source s to a non-empty set
of targets T ⊆ V . We adopt the methodology of [5], which picks a random vertex and
performs a Dijkstra search until reaching a fixed number of vertices. If B is the set of
vertices settled during this search, our targets T are chosen as a random subset of B.

368 A. Efentakis and D. Pfoser

Hence, our input parameters are the number of targets |T | and the size of |B|. This sim-
ulates different scenarios, with either targets close together or spread throughout the
graph. For each set of parameters, we test 100 different sets of targets, each with 100
different sources. We keep the number of targets |T | fixed at 16,384 (214) and experi-
mented with different values of |B| ranging from 214 . . . 224. We report total times (target
selection + query phase) for sequential RPHAST, sequential reGRASP and parallel re-
GRASP. Results for the Europe and USA road networks are shown in Fig. 3.

(a) Travel times

(b) Travel distances

Fig. 2. Parallel isoGRASP perfor-
mance compared to a sequential
Dijkstra for varying values of e com-
pared to total road-network diameter
D(G). Y-axis is on logarithmic scale

In terms of sequential performance, RPHAST is
faster for |B| ≤ 220 and reGRASP in all other cases.
However, RPHAST performance degrades quickly
and for random objects (i.e., |B| = 224) it takes
more than 100ms, i.e., it is even slower than paral-
lel PHAST /GRASP. In contrast, parallel reGRASP
scales well using all available cores and offers stable
performance. Even for |B| = 224 a search takes less
than 30ms for both networks and metrics, i.e., paral-
lel reGRASP is always faster than parallel PHAST
or GRASP. Thus, parallel reGRASP is the method
of choice, even for large |B| values, or with chang-
ing targets |T |. RPHAST on the other hand should
only be used for the case of a static set of points
of interest and small |B| values. When compared
to RPHAST, parallel reGRASP does not require
any additional graph structures and is 2.6 − 7 times
faster, while requiring only a fraction of RPHAST’s
preprocessing time.

Although at first, it seems unfair to com-
pare sequential RPHAST with parallel reGRASP,
RPHAST stands to benefit little from parallelization
due to its time-consuming target selection, which is
hard to parallelize. Also, RPHAST’s query phase
uses the G↓T graph and therefore it is already fast.
As a result, very minimal improvements could be

achieved through parallelization, due to the small number of edges present in G↓T .

(a) Europe (TT) (b) Europe (TD) (c) USA (TT) (d) USA (TD)

Fig. 3. Parallel and sequential reGRASP performance compared to RPHAST for travel times (TT)
and travel distances (TD). X and Y-axes are on logarithmic scale

GRASP. Extending Graph Separators for the Single-Source Shortest-Path Problem 369

Table 2. Summary of results for all variants of the SSSP problem
Type of queries Parameter Best solution

One-to-all

Preproc. time / Dynamic networks GRASP
Query time (SEQ) PHAST
Query time (PAR) GRASP / PHAST

Scales better on multicores GRASP

Range / Isochrone
Preproc. time / Dynamic networks isoGRASP / GRASP

Query time (PAR) isoGRASP

One-to-many

Preproc. time / Dynamic networks GRASP / reGRASP
No extra data structures GRASP / reGRASP / PHAST

Query time (static T , |B| ≤ 20) RPHAST
Query time (rest) reGRASP (PAR)

Summary. Table 2 summarizes our results. It is evident that all GRASP variants are
overall the most complete algorithmic solutions for solving all variations of the SSSP
problem. They have very short preprocessing times, are therefore suitable for dynamic
road networks, provide excellent parallel performance, scale better on multicore proces-
sors and offer better or comparable performance to state-of-the-art approaches. More-
over, all GRASP variants utilize the same graph structures and therefore can be used
within the same server infrastructure to concurrently answer all related queries. Thus,
it is the only approach to offer this kind of simplicity and efficiency for all SSSP cases.

5 Conclusion and Future Work

This work introduced novel graph separator methods to efficiently handle all varia-
tions of the single-source shortest-path (SSSP) problem. The three proposed algorithms,
GRASP, isoGRASP and reGRASP are each tailored to a specific SSSP problem (one-
to-all, range, and one-to-many). All GRASP algorithms rely on the same preprocessing
and graph structures and hence, they may be used as a unified framework for answering
SSSP queries of any kind. They also require minimal preprocessing time and, thus, are
the only viable solution for handling dynamic road networks, i.e., road networks with
changing edge weights due to traffic updates. Moreover, they provide excellent parallel
performance for both travel times and travel distances metrics. As a result, the GRASP
family of algorithms is the best overall solution for processing most SSSP problems.

In terms of future work, we will focus on expanding our results to other types of
graphs, for which existing approaches typically do not perform well. Moreover, we will
aim at creating a server application that showcases the efficiency of our approach. This
might result in the first public server application especially focused on SSSP queries.

Acknowledgments. The research leading to these results has received funding from the EU FP7
Projects “TALOS Mobile Guides” (http://www.tmguide.eu, GA: FP7-SME-2012-315333)
and “GEOSTREAM” (http://geocontentstream.eu , GA: FP7-SME-2012-315631). The au-
thors would also like to thank Daniel Delling for providing PHAST / RPHAST results and Chris-
tian Schulz for providing access to the Buffoon partitioning tool.

http://www.tmguide.eu
http://geocontentstream.eu

370 A. Efentakis and D. Pfoser

References

1. Bast, H., Delling, D., Goldberg, A., Müller-Hannemann, M., Pajor, T., Sanders, P., Wagner,
D., Werneck, R.: Route planning in transportation networks. Technical Report MSR-TR-
2014-4 (January 2014)

2. Baum, M., Dibbelt, J., Pajor, T., Wagner, D.: Energy-optimal routes for electric vehicles. In:
SIGSPATIAL/GIS, pp. 54–63 (2013)

3. Delling, D., Goldberg, A.V., Nowatzyk, A., Werneck, R.F.F.: Phast: Hardware-accelerated
shortest path trees. In: IPDPS, pp. 921–931 (2011)

4. Delling, D., Goldberg, A.V., Pajor, T., Werneck, R.F.: Customizable route planning.
In: Pardalos, P.M., Rebennack, S. (eds.) SEA 2011. LNCS, vol. 6630, pp. 376–387. Springer,
Heidelberg (2011)

5. Delling, D., Goldberg, A.V., Werneck, R.F.F.: Faster batched shortest paths in road networks.
In: ATMOS, pp. 52–63 (2011)

6. Delling, D., Sanders, P., Schultes, D., Wagner, D.: Engineering route planning algorithms. In:
Lerner, J., Wagner, D., Zweig, K.A. (eds.) Algorithmics of Large and Complex Networks.
LNCS, vol. 5515, pp. 117–139. Springer, Heidelberg (2009)

7. Delling, D., Werneck, R.F.: Customizable point-of-interest queries in road networks.
In: SIGSPATIAL/GIS, pp. 490–493 (2013)

8. Delling, D., Werneck, R.F.: Faster customization of road networks. In: Bonifaci, V., Deme-
trescu, C., Marchetti-Spaccamela, A. (eds.) SEA 2013. LNCS, vol. 7933, pp. 30–42.
Springer, Heidelberg (2013)

9. Demetrescu, C., Goldberg, A.V., Johnson, D.: The shortest path problem. Ninth DIMACS
implementation challenge. DIMACS Book 74. AMS (2009)

10. Efentakis, A., Brakatsoulas, S., Grivas, N., Lamprianidis, G., Patroumpas, K., Pfoser, D.:
Towards a flexible and scalable fleet management service. In: CTS@SIGSPATIAL (2013)

11. Efentakis, A., Grivas, N., Lamprianidis, G., Magenschab, G., Pfoser, D.: Isochrones, traffic
and demographics. In: SIGSPATIAL/GIS, pp. 538–541 (2013)

12. Efentakis, A., Pfoser, D.: Optimizing landmark-based routing and preprocessing. In:
CTS@SIGSPATIAL (2013)

13. Efentakis, A., Theodorakis, D., Pfoser, D.: Crowdsourcing computing resources for shortest-
path computation. In: SIGSPATIAL/GIS, pp. 434–437 (2012)

14. Geisberger, R., Sanders, P., Schultes, D., Delling, D.: Contraction hierarchies: Faster and
simpler hierarchical routing in road networks. In: McGeoch, C.C. (ed.) WEA 2008. LNCS,
vol. 5038, pp. 319–333. Springer, Heidelberg (2008)

15. Karypis, G., Kumar, V.: A fast and high quality multilevel scheme for partitioning irregular
graphs. SIAM J. Sci. Comput. 20, 359–392 (1998)

16. Mehlhorn, K., Sanders, P.: Algorithms and Data Structures: The Basic Toolbox. Springer,
Berlin (2008)

17. Sanders, P., Schulz, C.: Distributed evolutionary graph partitioning. In: ALENEX (2012)

Switching Colouring of G(n, d/n) for Sampling

up to Gibbs Uniqueness Threshold

Charilaos Efthymiou

Goethe University of Frankfurt, 60325, Germany
efthymiou@gmail.com

Abstract. Approximate random k-colouring of a graph G = (V,E), effi-
ciently, is a very well studied problem in computer science and statistical
physics. It amounts to constructing, in polynomial time, a k-colouring
of G which is distributed close to Gibbs distribution. Here, we deal with
the problem when the underlying graph is an instance of Erdős-Rényi
random graph G(n, d/n), where d is fixed.

This paper improves on the approximate sampling colouring algorithm
proposed in SODA 2012. We provide improved performance guarantees
for this efficient algorithm, as we reduce the lower bound of the num-
ber of colours required by a factor of 1/2. In particular, we show the
following statement for the accuracy of algorithm: For typical instances
of G(n, d/n) the algorithm outputs a k-colouring of G(n, d/n) which
is asymptotically uniform as long k ≥ (1 + ε)d. For the improvement
we make an extensive use of the spatial correlation decay properties of
the Gibbs distribution and the local treelike structure of the underlying
graph.

1 Introduction

Approximate random k-colouring of a graph G = (V,E), efficiently, is a very
well studied problem in computer science and statistical physics. It amounts to
constructing, in polynomial time, a k-colouring of G which is distributed close
to Gibbs distribution, i.e. the uniform distribution over all the k-colourings of
G. Here, we deal with the problem when the underlying graph is an instance of
Erdős-Rényi random graph G(n, p), where p = d/n and d is fixed. We say that
G(n, p) has a property with high probability (w.h.p.) if the probability that the
property holds tends to 1 as n → ∞.

The problem of sampling colourings when the underlying graph is G(n, d/n) is
rather interesting due to high degree effect. That is, there is a relative large fluc-
tuation on the degrees of the vertices in the random graph. E.g. it is elementary

to show that typical instances of G(n, d/n) have maximum degree Θ
(

logn
log logn

)
,

while more than 1 − e−O(d) fraction of the vertices have degree in the interval
(1 ± ε)d. Usually the bounds for sampling k-colourings w.r.t. k are expressed
it terms of the maximum degree e.g. [14,5]. However, for G(n, d/n) the natu-
ral bounds for k should be in terms of the expected degree, rather than the
maximum.

A.S. Schulz and D. Wagner (Eds.): ESA 2014, LNCS 8737, pp. 371–381, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

372 C. Efthymiou

The most powerful and most popular algorithms for this kind of problems are
based on the Markov Chain Monte Carlo (MCMC) method. There the main tech-
nical challenge is to establish that the underlying Markov chain mixes in polyno-
mial time (see [11]). The MCMC version of sampling colourings of G(n, d/n) is a
well studied problem [7,13,4]. The work in [7] shows that the well known Markov
chain Glauber block dynamics for k-colourings has polynomial time mixing for
typical instances of G(n, d/n) as long as the number of colours k ≥ 11

2 d. This is
the lowest bound for k as far as MCMC sampling is concerned.

Recently, in [8], the author of this paper suggested a novel non MCMC ap-
proach for the approximate sampling colouring problem on G(n, d/n). Roughly,
the idea is as follows: Given the input graph, first we remove sufficiently many
vertices such that the resulting graph has a “very simple” structure and it can
be randomly coloured efficiently. Once we have a random colouring of this, sim-
ple, graph we start adding one by one all the edges we have removed in the first
place. Each time we add a new edge we update the colouring so as the graph with
the new edge remains (asymptotically) randomly coloured. Once the algorithm
has rebuilt the initial graph it returns its colouring.

Let us be more specific on how we update the colouring once we add an extra
edge. Assume that we are given the fixed graphs G = (V,E) and G′ = (V,E′)
such that E′ = E ∪ {v, u} for some v, u ∈ V . Given X , a random k-colouring
of G, we want to create efficiently a random k-colouring of the slightly more
complex graph G′. It is easy to show that if the vertices v, u take different
colour assignments under X , then the colouring X is a random k-colouring of
G′. The interesting case is when X(v) = X(u). Then, the algorithm in [8] uses
an operation called “switching” so as to alter the colouring of only one of the two
vertices. E.g. using switching, from X which assigns v, u the same colour, we get
Y a colouring which assigns v, u different colours while Y is very close to being
random. Essentially, switching repermutes the colour classes of an appropriate
subgraph of G that contains v1. Of course the “switching” can be implemented
efficiently.

The approximate sampling algorithm in [8] w.h.p. over the input graph in-
stances returns, in polynomial time, a k-colouring which is asymptotically ran-
dom as long as k ≥ (2 + ε)d, for any fixed ε > 0. Until this work this was the
best bound for sampling colourings of G(n, d/n) in terms of the minimum num-
ber of colours required. In this paper we improve on this bound even further by
reducing it to k ≥ (1 + ε)d. For this improvement, we make an extensive use
of the the spatial mixing properties of the Gibbs distribution and the local tree
structure of the underlying graph.

The technical challenge for the analysis is to show that a random k-colouring
does not specify large paths in G(n, d/n) which are coloured with exactly two
colours. In particular, we have to argue about the probability of a specific path
in G(n, d/n) to be 2-coloured, under the Gibbs distribution. This is a challenging
task because of the highly complex structure that G(n, d/n), typically, has. In
[8], we deal with this problem by following a very pessimistic scenario about the

1 In different contexts this component is called Kempe chain.

Switching Colouring of G(n, d/n) for Sampling 373

colouring around the path. I.e. we simplify the problem by making a worst case
assumptions about the colouring of the vertices which are incident to the path.

In this work, we follow a more elaborate approach. That is, we consider the
colouring of vertices at sufficiently large distance from the path and we show
that their colouring does not affect (very much) the colouring of the path. This
allows a more accurate estimation of the probability of a path being two coloured
(See Section 4).

For presenting our main result we need to use the total variation distance as
a measure of distance between distributions.

Definition 1. For the distributions νa, νb on [k]V , let ||νa − νb|| denote their
total variation distance, i.e.

||νa − νb|| = max
Ω′⊆[k]V

|νa(Ω′) − νb(Ω
′)|.

For Λ ⊆ V let ||νa − νb||Λ denote the total variation distance between the pro-
jections of νa and νb on [k]Λ.

Theorem 1. Let ε > 0 be fixed and k = (1 + ε)d. Assume that the input of our
algorithm is an instance of G(n, d/n) and we let μ be the uniform distribution
over its k-colourings. Also, we let μ′ be the distribution of the colouring that
is returned by the algorithm. With probability at least 1 − n−c over the input
instances G(n, d/n) it holds that

||μ− μ′|| = O
(
n−c
)
,

for sufficiently large c = c(ε) > 0 and any fixed d > d0(ε).

The proof of Theorem 1 appears in the full version of this paper in [6].
As far as the time complexity of the algorithm is regarded we provide Theorem

2, its proof appears in the full version of the paper in [6].

Theorem 2. With probability at least 1 − n−2/3 over the input instances
G(n, d/n), the time complexity of the random colouring algorithm is O(n2).

In this extended abstract, we are going to omit most of the technical details
which are already known from [8]. In the full version of the paper in [6] we
provide the proofs of all the results above. As a matter of fact we provide an
improved and to a large extend simplified presentation of the results and their
proofs that appeared in [8].

Structure of the paper. In Section 2 we provide a basic description of the algo-
rithm. In Section 3 we give an overview of how the analysis works. In Section 4
we give a sketch of how do we use correlation decay to bound the probability of
a path being two coloured.

Notation. We denote with small letters of the greek alphabet the colourings of a
graph G, e.g. σ, η, τ , while we use capital letters for the random variables which
take values over the colourings e.g. X,Y, Z. We denote with σv, X(v) the colour

374 C. Efthymiou

assignment of the vertex v under the colouring σ and X , respectively. Finally,
for an integer k > 0 let [k] = {1, . . . , k}.

2 Basic Description

First we need the notion of switching colouring. For this we define the disagree-
ment graph 2. Consider a fixed graph G and let v be a distinguished vertex in
G. Let σ be a k-colouring of G and let some colour q �= σ(v). Under the colour-
ing σ, we denote by Vσ(v), Vq the colour classes of σ(v), and q, respectively. We
call disagreement graph Qσ(v),q the maximal, connected, induced subgraph of G
which includes v and vertices only from the set Vσv ∪ Vq. In the colouring of
Figure 1, the disagreement graph QB,G is the one with the fat lines.

Definition 2 (Switching). Consider G, v, σ and q as specified above. The
“q-switching of σ” corresponds to the proper colouring of G which is derived by
exchanging the assignments in the two colour classes in Qσv ,q.

We would like to emphasize that the q-switching of any proper colouring of G is
always a proper colouring too. Figure 2 illustrates a switching of the colouring
that appears in Figure 1. Observe that the colouring in Figure 2 differs from the
colouring in Figure 1 to that we have exchanged the two colour classes of the
subgraph with the fat lines.

v

u

R

R

R

G
G

G

G

B

B

B

B

R

R

R

Fig. 1. “Disagreement graph”

v

u

R

R

R

R

G

G G

G

B
B

B B

Fig. 2. “g-switching”

We assume that the input of the algorithm is an instance of G(n, d/n) and k,
the numbers of colours. The algorithm is as follows:

Set up: We construct a sequence G0, . . . , Gr such that every Gi is a subgraph of
G(n, d/n). The graph Gr is identical to G(n, d/n). Each Gi is derived by deleting
ei = {vi, ui} from Gi+1, a random edge among those which do not belong to a
small cycle of Gi+1. We call small, any cycle of length less than (log n)/(9 log d).
G0 is the graph we get when there are no other edges to delete.

2 What we call disagreement graph here, is also known as Kempe chain e.g. see [12].

Switching Colouring of G(n, d/n) for Sampling 375

With probability 1 − n−Ω(1), over the instances of G(n, d/n), G0 is simple
enough and we can k-colour it randomly in polynomial time3. Assuming that we
deal with such an instance, the algorithm works as follows:

Updates: Take a random colouring of G0. Colour the rest of the graph according
to the following inductive rule: Given that Gi is coloured Yi, so as to get Yi+1,
the colouring of Gi+1, we distinguish two cases

Case a: In the colouring of the graph Gi the vertices vi and ui are assigned
different colours (i.e. Yi(vi) �= Y (ui)).

Case b: In the colouring of the graph Gi the vertices vi and ui are assigned the
same colour (i.e. Yi(vi) = Y (ui)).

In the first case, we just set Yi+1 = Yi, i.e. Gi+1 gets the same colouring as Gi.
In the second case, we choose q uniformly at random among all the colours but
Yi(vi). Then we set Yi+1 equal to the q-switching of Yi. The q-switching is w.r.t.
the vertex vi.

With the above we conclude the description of the algorithm.
The reader may have observed that the switching does not necessarily provide

a k-colouring where the assignments of vi and ui are different. That is, it may
be that both vertices vi, ui belong to the disagreement graph. Then, after the
q-switching of Yi the colour assignments of vi and ui remain the same. We will
show, that such a situation is rare as long as k ≥ (1 + ε)d. Typically, after the
q-switching vi, ui get different colour assignments. The approximate nature of
the algorithm amounts exactly to the fact that on some, rare, occasions the
switching somehow fails4.

3 The Setting for the Analysis of the Algorithm

In this section we provide the setting for analyzing the algorithm.

Definition 3 (Good & Bad Colourings). Consider a graph G and let v, u
be two distinguished vertices in this graph. Let σ be a proper k-colouring of G.
We call σ a bad colouring w.r.t. the vertices v, u if σv = σu. Otherwise, we call
σ good.

The idea that underlies the algorithm, essentially, reduces the problem of
sampling to dealing with the following problem.

Problem 1. Consider the graph G and two non adjacent vertices v, u. Given a
bad random colouring of G w.r.t. v, u, turn it to a good random colouring, in
polynomial time.

3 The graph G0, typically, contains connected components of two kinds. The first one
is isolated vertices and the second one is simple cycles. Such graph can be randomly
coloured trivially. Whether the algorithm is polynomial time or not depends exactly
on whether G0 can be coloured randomly efficiently. For more details see in the full
version of this paper in [6].

4 For k ≤ d our analysis cannot guarantee that these are fails sufficiently rare.

376 C. Efthymiou

Consider two different colours c, q ∈ [k] and let Ωc,c and Ωq,c be the set of
colourings of G which assign the pair of vertices (v, u) colours (c, c) and (q, c),
respectively. Essentially, Problem 1 asks to find a mapping Hc,q : Ωc,c → Ωq,c,
for every pair of different colours (c, q), such that the following two hold: (A) If
Z is uniformly random in Ωc,c then Hc,q(Z) is uniformly random in Ωq,c. (B)
The computation of Hc,q(Z) can be accomplished in polynomial time.

For dealing with (A) an ideal, and to a great extent untrue, situation would
have been if Ωc,c and Ωq,c admitted a bijection and Hc,q was a bijection between
the two sets. Since, this situation is not expected to hold in general, our approach
is based on introducing an approximate bijection between Ωc,c and Ωq,c. That is,
we consider a mapping which is a bijection between two sufficiently large subsets
of Ωc,c and Ωq,c, respectively. Each of these two subsets will contain all but a
vanishing fraction of the colourings of the original sets.

To be more specific, we assume thatHc,q represents the operation of q-switching
over the colourings inΩc,c, as we described in Section 2. Then, there are sufficiently
large sets Ω′

c,c ⊆ Ωc,c and Ω′
q,c ⊆ Ωq,c such that Hc,q is a bijection between Ω′

c,c

and Ω′
q,c. In particular, we show the following: For Z which is distributed uni-

formly at random in Ωc,c, Hc,q(Z) is distributed within total variation distance

max
{

Ωc,c\Ω′
c,c

Ωc,c
,
Ωq,c\Ω′

q,c

Ωq,c

}
from the uniform distribution over Ωq,c. That is, the

error we introduce depends on the relative size of the subset of colourings in Ωc,c

(resp. Ωq,c) for which Hc,q fails to be a bijection. The colourings in Ωc,c (resp.
Ωq,c) that cannot be included in Ω′

c,c (resp. Ω′
q,c) are called pathological.

We estimate the accuracy of the algorithm by providing upper bounds on the
relative number of pathological colourings in Ωc,c and Ωq,c, respectively. It turns
out that the pathological colourings in Ωc,c (resp. Ωq,c) are exactly these ones
for which there is at least one path between v, u which is coloured only with c, q.
Applying a q-switching to a pathological colouring in Ωc,c we will get a new one
which assigns both v, u the colour q, i.e. the switching fails. Also, it is direct to
show that a pathological colouring in Ωq,c cannot be generated by q-switching
some colouring in Ωc,c.

3.1 Bounding the Error

The ratio
Ωc,c\Ω′

c,c

Ωc,c
,
(

resp.
Ωq,c\Ω′

q,c

Ωq,c

)
essentially expresses the probability of

getting a pathological colouring if we choose uniformly at random from Ωc,c

(resp. Ωq,c).
Assume that we choose u.a.r. from Ωc,c. For every path P that connects v, u

in the graph G, we let I{P} be the indicator variable which is one if the vertices
in the path P are coloured only with colours c, q5. It is elementary to verify that

Ωc,c\Ω′
c,c

Ωc,c
≤
∑
P

Pr
[
I{P} = 1

]
.

Of course the same holds for Ωq,c.

5 Observe that this is equivalent to having P in the disagreement graph Qq,c.

Switching Colouring of G(n, d/n) for Sampling 377

In general, computing the probability Pr
[
I{P} = 1

]
exactly is a formidable

task. The challenging part in analyzing the performance of the algorithm is
to bound this probability as precisely as possible. In [8] we used the idea of
the so-called “Disagreement percolation” [3], illustrated in Figure 3. That is,
we consider a path P = (v, a, b, c, d, e, u). The vertices with the lines, in the
figure, are exactly these vertices which are adjacent to the path. So as to bound
the probability that P is coloured with c, q, we assume a worst case boundary
colouring for the lined vertices and fixed colouring for v, u6. That is, given the
fixed colourings we take a random colouring of the uncoloured vertices in the path
and estimate the probability that P is coloured using only c, q. Observe that the
exact probability is derived by considering an appropriate convex combination
of boundary conditions for the lined vertices.

v ua b c d e

Fig. 3. Boundary at distance 1 from the path

Considering the worst case boundary condition around P is too pessimistic.
Our improvement relies on dropping this assumption. The new approach is illus-
trated in Figure 4. Roughly speaking, we consider boundary conditions at the
vertices around P which are at graph distance r, where r is a sufficiently large
fixed number. We assume that the colouring of the vertices at the boundary is
still a worst case one. However, now we can exploit spatial mixing properties
of the Gibbs distributions. That is, the colouring of the distant vertices does
not bias the colour of the vertices in P by too much. The weak dependence
between the colourings of the vertices in the path and the boundary is achieved
by choosing sufficiently large r and k. This allows to estimate more accurately
the probability that the path P is 2-coloured.

r

r

r

r

r

r

r

r

r

r

r

r

Fig. 4. Boundary at distance r from the path

6 The vertices v, u are coloured c

378 C. Efthymiou

4 Correlation Decay to Bound the Number
of Bichromatic Paths

In this section we provide a sketch of how do we use correlation decay to show
that the bichromatic paths between vi and ui are sufficiently rare. In what follows
we let k, d, ε as in the statement of Theorem 1.

To be more precise, the main task is the following one: Consider an instance
of G(n, d/n) conditional that the path P = (v0, . . . , vl) appears in the graph, for
some integer l > 0. Let X be a random k-colouring of the graph, and let DP be
the event that the path P is coloured only by the colours c, q ∈ [k] . Show that
for any positive integer l ≤ log2 n it holds that

Pr[DP] ≤
(

1

(1 + ε/4)d

)l

. (1)

For more details of how do we use the above bound in the analysis of the algo-
rithm, see the full version in [6].

Observe that the probability term above is w.r.t. two levels of randomness.
The underlying random graph and the random colouring X . To this end, we
work as described in the following paragraphs.

Instead of revealing the whole graph, we restrict ourselves to revealing a small
area around the path P as well as the edges and vertices between this area and
the rest of the graph (outside the area). Let N denote this area around P 7 Also,
let ∂N be the set of vertices outside N which are adjacent to some vertex in N .

We consider the subgraph induced by N and ∂N . We are going to consider a
random k-colouring in this graph, conditional some worst case colouring at the
vertices in ∂N . That is, the colouring at ∂N maximizes the probability of the
event DP .

Now, essentially, we have to deal with the randomness of N and the worst
case colourings in ∂N . However, for the vast majority of the vertices in P their
neighbourhood (outside P) will be a tree of sufficiently large height and maxi-
mum degree at most (1+ε/3)d+1. For such a good case of vertex v the boundary
colouring will be at a relatively large distance away from v and, essentially, it
won’t affect its colouring too much. For the exceptional vertices which do not
have such well behaved neighbourhood we are very pessimistic, i.e. we give the
vertex on the path the appropriate colour for free. The bad cases are expected to
be very rare. Somehow this setting reduces the randomness to considering how
many good (resp. bad) behaved neighbourhood we have along the path.

In what follows we describe in detail how do we consider the subgraph around
the path P . We use some integer parameter r > 0. Around each vertex vi ∈ P
we are going to reveal a subgraph of maximum radius r.

Area Around Path P. For each vertex vi ∈ P we need to define the sets
of vertices Ls(vi), for integer s such that 0 ≤ s ≤ r. By definition, we set
L0(vi) = {vi}. Also, we let Nr(vi) be the induced subgraph of G(n, d/n) which
contains the vertices

⋃r
s=0 Ls(vi).

7 N is a subgraph which also contains P .

Switching Colouring of G(n, d/n) for Sampling 379

We are going to describe how do we get each Ls(vi), inductively. Given Ls(vi)
we get Ls+1(vi) by working as follows: Let Ri,s be the set that contains all the
vertices of G(n, d/n) but those which belong in the path P , those which belong
in
⋃

j≤s Lj(vi) and those which belong in Nr(vj), for j < i. The set Ls+1(vi)
contains (possibly all) neighbours that the vertices in Ls(vi) have in Ri,s.

Consider a specific (arbitrary) ordering of the vertices in Ri,s. For each vertex
u ∈ Ls(vi) we examine adjacency with the vertices in Ri,s in the predefined
order. We stop revealing once we either have revealed (1 + ε/3)d+ 1 neighbours
of u into Ri,s or if we have checked all the possible adjacencies of u with Ri,s

(whatever happens first). In both cases, the number of neighbours of u we reveal
is at most (1 + ε/3)d + 1.

Once we have the sets Ls(vi), for 0 ≤ s ≤ r, it is direct to get the subgraph
Nr(vi). Ideally we would like each of these Nr(vi) to be a tree of sufficiently
small maximum degree8. Also, have would like these Nr(vi)s to not intersect
with each other. If any of these conditions is not true for some Nr(vi), then
Nr(vi) is considered Fail. To be more specific, once we the subgraphs Nr(vi),
for each 0 ≤ i ≤ l we let the following: Nr(vi) is Fail if at least one of the
following happens:

– The maximum degree in Nr(vi) is equal to (1 + ε/3)d + 2.
– The graph Nr(vi) is not a tree.
– There is at least one integer j �= i such that some vertex w0 ∈ Nr(vj) is

adjacent to some vertex w1 ∈ Nr(vi), unless w0, w1 are consecutive vertices
in the path P .

Having specified Nr(vi) for every vi ∈ P , the sets N and ∂N are defined as
follows: The set ∂N contains the vertices vi ∈ P for which Nr(vi) is Fail and
the vertices at distance exactly r from vi for which Nr(vi) is not Fail. The set
N includes the vertices of the sets Nr(vi) which are not Fail and do not belong
to ∂N .

A vertex vi in the path is called disagreeing if the following holds: For i even,
the color of vi is c. For i odd, the colour is q . Let the event Di that “vi is
disagreeing”. Clearly it holds that

Pr [DP] ≤ Pr
[
∩l
i=1Di

]
. (2)

The proposition will follow by bounding appropriately Pr
[
∩l
i=1Di

]
.

Let the event Ai, Bi, Ci be defined as follows: Ai = “Nr(xi) is Fail”. Bi =
“Nr(xi) is not Fail and xi is disagreeing”. Finally, Ci = Ai ∪ Bi. In the full
version of this work in [6] we get the following inequality

Pr
[
∩l
i=1Di

]
≤ Pr

[
∩l
i=1Ci

]
. (3)

The above inequality, which is easy to prove, somehow, follows from the discus-
sion at the beginning of this section. From (2) and (3) we get that

Pr [DP] ≤
l∏

i=1

Pr
[
Ci| ∩i−1

j=1 Cj

]
≤

l∏
i=1

(
Pr
[
Ai| ∩i−1

j=1 Cj

]
+ Pr

[
Bi| ∩i−1

j=1 Cj

])
, (4)

8 Maximum degree at most (1 + ε/3)d + 1

380 C. Efthymiou

where the second inequality follows from a simple the union bound. Then, (1)
follows by bounding appropriately the rightmost part in (4).

For bounding the terms Pr
[
Ai| ∩i−1

j=1 Cj

]
we use the following lemma.

Lemma 1. Consider a sufficiently large fixed integer r > 0, independent of d.
Consider the set Nr(vj), for every vj ∈ P . For sufficiently large d it holds that

Pr [Nr(vi) is Fail |Nr(vj) for j �= i] ≤ exp
(
−ε2d/35

)
.

That is, it holds that

Pr
[
Ai| ∩i−1

j=1 Cj

]
≤ exp

(
−ε2d/35

)
. (5)

For bounding the terms Pr
[
Bi| ∩i−1

j=1 Cj

]
we use the following spatial mixing

result.

Proposition 1. Let k, ε and d as in Theorem 1. Consider a path P = (v0, . . . , vl)
in G(n, d/n) such that Nr(vi) is not Fail. Let X be a random colouring of
G(n, d/n). Let M denote the set of vertices outside Nr(vi). For any proper
colouring σ of G(n, d/n) and any colour c ∈ [k]\{σvi−1 , σvi+1} it holds that∣∣∣∣Pr[X(vi) = c|X(M) = σM] − 1

k − tσ

∣∣∣∣ ≤ fε,r
k − tσ

,

where for a fixed ε > 0, fε,r > 0 is a decreasing function of r. Also, tσ is number
of different colours that σM uses for colouring vi−1 and vi+1.

Using the proposition above, we get that

Pr
[
Bi| ∩i−1

j=1 Cj

]
≤ 1

k − 2
+

fε,r
k − 2

,

where fε,r is defined in the statement of Proposition 1. Taking sufficiently large
d and r = r(ε) we bound appropriately the rightmost part of (4).

Acknowledgement. The author would like to thank the anonymous reviewers
for their very useful comments and remarks.

References

1. Achlioptas, D., Coja-Oghlan, A.: Algorithmic Barriers from Phase Transitions.
In: Proc. of FOCS 2008, pp. 793–802 (2008)

2. Aldous, D.: Random walks of finite groups and rapidly mixing Markov chains. In:
Séminaire de Probabilités XVII 1981/82, pp. 243–297. Springer, Heidelberg (1983)

3. van den Berg, J., Maes, C.: Disagreement percolation in the study of Markov fields.
Annals of Probability 22, 749–763 (1994)

4. Dyer, M., Flaxman, A., Frieze, A.M., Vigoda, E.: Random colouring sparse random
graphs with fewer colours than the maximum degree. Journal R.S.A. 29, 450–465
(2006)

Switching Colouring of G(n, d/n) for Sampling 381

5. Dyer, M., Frieze, A.M., Hayes, A., Vigoda, E.: Randomly colouring constant degree
graphs. In: Proc. of 45th FOCS, pp. 582–589 (2004)

6. Efthymiou, C.: Switching colouring of G(n,d/n) for sampling up to Gibbs Unique-
ness Threshold. Technical Report on arxiv.org

7. Efthymiou, C.: MCMC sampling colourings and independent sets of G(n, d/n) near
uniqueness threshold. In: Proc. of SODA 2014, pp. 305–316 (2014)

8. Efthymiou, C.: A simple algorithm for random colouring G(n, d/n) using (2 + ε)d
colours. In: Proc. of SODA 2012, pp. 272–280 (2012)

9. Jonasson, J.: Uniqueness of Uniform Random Colorings of Regular Trees. Statistics
& Probability Letters 57, 243–248 (2001)

10. Janson, S., Luczak, T., Ruciński, A.: Random graphs. Wiley and Sons, Inc. (2000)
11. Jerrum, M., Sinclair, A.: The Markov chain Monte Carlo method:an approach to

approximate counting and integration. In: Dorit, H. (ed.) Approximation Algo-
rithms for NP-Hard Problems. PWS (1996)

12. Molloy, M.: The freezing threshold for k-colourings of a random graph. In: Proc.
of the 44th ACM Symposium on Theory of Computing (STOC 2012), pp. 921–930
(2012)

13. Mossel, E., Sly, A.: Gibbs Rapidly Samples Colorings of Gn,d/n. Journal Probability
Theory and Related Fields 148(1-2) (2010)

14. Vigoda, E.: Improved bounds for sampling colorings. Journal of Mathematical
Physics 41(3), 1555–1569 (2000); A preliminary version appears in FOCS 1999

From Graph to Hypergraph Multiway Partition:
Is the Single Threshold the Only Route?

Alina Ene1 and Huy L. Nguyễn2

1 Center for Computational Intractability, Princeton University,
Department of Computer Science and DIMAP, University of Warwick

aene@cs.princeton.edu
2 Department of Computer Science, Princeton University

hlnguyen@princeton.edu

Abstract. We consider the Hypergraph Multiway Partition problem
(Hyper-MP). The input consists of an edge-weighted hypergraph G =
(V, E) and k vertices s1, . . . , sk called terminals. A multiway partition of
the hypergraph is a partition (or labeling) of the vertices of G into k sets
A1, . . . , Ak such that si ∈ Ai for each i ∈ [k]. The cost of a multiway parti-
tion (A1, . . . , Ak) is

∑k

i=1 w(δ(Ai)), where w(δ(·)) is the hypergraph cut
function. The Hyper-MP problem asks for a multiway partition of minimum
cost.

Our main result is a 4/3 approximation for the Hyper-MP problem on
3-uniform hypergraphs, which is the first improvement over the (1.5−1/k)
approximation of [5]. The algorithm combines the single-threshold round-
ing strategy of Calinescu et al. [3] with the rounding strategy of Kleinberg
and Tardos [8], and it parallels the recent algorithm of Buchbinder et al.
[2] for the Graph Multiway Cut problem, which is a special case.

On the negative side, we show that the KT rounding scheme [8] and
the exponential clocks rounding scheme [2] cannot break the (1.5 − 1/k)
barrier for arbitrary hypergraphs. We give a family of instances for which
both rounding schemes have an approximation ratio bounded from below
by Ω(

√
k), and thus the Graph Multiway Cut rounding schemes may not be

sufficient for the Hyper-MP problem when the maximum hyperedge size is
large. We remark that these instances have k = Θ(log n).

1 Introduction

In this paper, we consider the Hypergraph Multiway Partition problem (Hyper-
MP). The input consists of an edge-weighted hypergraph G = (V, E) and k
vertices s1, . . . , sk called terminals. A multiway partition of the hypergraph is a
partition (or labeling) of the vertices of G into k sets A1, . . . , Ak such that si ∈ Ai

for each i ∈ [k]. The cost of a multiway partition (A1, . . . , Ak) is
∑k

i=1 w(δ(Ai)),
where w(δ(·)) is the hypergraph cut function1. The Hyper-MP problem asks for
1 For each set A ⊆ V of vertices, we use δ(A) to denote the set of all hyperedges

leaving A, i.e., hyperedges e ∈ E such that A ∩ e and (V − A) ∩ e are both non-
empty. We use w(δ(A)) to denote the total weight of the edges leaving A, i.e.,
w(δ(A)) =

∑
e∈δ(A) w(e).

A.S. Schulz and D. Wagner (Eds.): ESA 2014, LNCS 8737, pp. 382–393, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

From Graph to Hyper-MP: Is the Single Threshold the Only Route? 383

a multiway partition of minimum cost. We also parameterize the problem by
the maximum cardinality of a hyperedge, denoted by c; the well-studied Graph
Multiway Cut problem is the special case for which c = 2.

The Hyper-MP problem was introduced by Lawler [9] and it has applications
in information storage and retrieval, numerical taxonomy, packaging of electric
circuits, and VLSI designs [9,1]. Alpert et al. [1] emphasize that, in the context
of VLSI design, the Hyper-MP objective function better reflects the true cost
than simply counting the number of hyperedges being cut because a net (repre-
sented by a hyperedge) spanning more clusters consumes more I/O and timing
resources.

Multiway cut and partition problems are well-studied from a theoretical point
of view as well, with the Graph Multiway Cut problem receiving the most atten-
tion. Dahlhaus et al. [6] initiated the study of the Graph Multiway Cut prob-
lem; they showed that the problem is MAX SNP-hard even for k = 3 and they
gave a combinatorial algorithm that achieves a (2 − 2/k) approximation. In a
breakthrough result, Calinescu, Karloff, and Rabani [3] obtained an (1.5 − 1/k)
approximation via a novel geometric relaxation. Since the work of [3], the ap-
proximation factor has been improved in a series of papers [7,2,10], culminating
with the 1.30217 approximation of [10]. All of these improvements use the CKR
relaxation as a starting point and they combine the single-threshold rounding
strategy of [3] with other rounding schemes.

The progress on the Hyper-MP problem has been much slower, however. It was
only recently that Chekuri and Ene [5] gave a (1.5 − 1/k) approximation for the
Hyper-MP problem, improving on a previous (2 − 2/k) approximation [11]. The
algorithm of [5] uses a single-threshold scheme to round a fractional solution to the
CKR relaxation and it achieves the best approximation known for the problem.
An interesting open question, which is the main motivation behind this work, is
whether one can improve the (1.5 − 1/k) factor by using other rounding schemes,
and in particular the strategies underpinning the Graph Multiway Cut algorithms.
Calinescu et al. [3] observed that, in the graph setting, one can assume without
loss of generality that the fractional solution has certain properties, namely that
each edge is mapped to a segment on the simplex that is arbitrarily small and it is
aligned with the simplex. These properties are crucially exploited by the analyses
of all of the rounding schemes for the graph problem. Unfortunately, it is unclear
how to extend these simplifying assumptions to the hypergraph setting (in the
graph setting, they can be easily achieved by subdividing the edges). The work
of [5] provides an analysis of the single-threshold rounding scheme without any
assumptions on the fractional solution, but this seems challenging for the other
rounding schemes even for 3-uniform2 hypergraphs.

Our Contributions. Given the obstacles mentioned above, in this paper we
focus on bridging the gap between the graph setting (c = 2) and the 3-uniform
hypergraph setting (c = 3). Our main result is a 4/3 approximation for the Hyper-
MP problem on 3-uniform hypergraphs, which is the first improvement over the

2 A hypergraph is �-uniform if every hyperedge has size �.

384 A. Ene and H.L. Nguyễn

(1.5−1/k) approximation of [5]. We remark that the result immediately extends
to the setting in which each hyperedge has at most 3 vertices (instead of exactly
3 vertices).

Theorem 1. There is a 4/3 approximation algorithm for the Hyper-MP problem
on 3-uniform hypergraphs.

The algorithm of Theorem 1 combines the single-threshold rounding strategy of
Calinescu et al. [3] with the rounding strategy of Kleinberg and Tardos [8], and
it parallels the recent algorithm of Buchbinder et al. [2] for the Graph Multiway
Cut problem. As we mentioned above, it seems to be very challenging to analyze
these rounding strategies in the absence of simplifying assumptions (such as edge
alignment in the graph case). A key ingredient in our approach is a replacement
for the alignment property that allows us to simplify the instance and the frac-
tional solution when the hypergraph is 3-uniform. This ingredient together with
some additional insights made the analysis tractable, although it remains quite
technical and it is more involved than the analysis for graphs.

On the negative side, we show that the KT rounding scheme [8] and the
exponential clocks rounding scheme [2] cannot break the (1.5 − 1/k) barrier for
arbitrary hypergraphs. More precisely, we give a family of instances with c � k
for which both rounding schemes have an approximation ratio bounded from
below by Ω(

√
k), and thus the Graph Multiway Cut rounding schemes may not

be sufficient for the Hyper-MP problem when c is large. We remark that these
instances have k = Θ(log n). Due to space constraints, we defer these results to
a longer version of this paper.

Other Related Work. As we have already mentioned, the Graph Multiway Cut
problem and its generalizations to hypergraphs and submodular functions have
been studied extensively over the past two decades. Due to space constraints,
we omit a detailed discussion of these results, and we refer the reader to [10,5,4]
for additional pointers and references.

2 LP Relaxation

We use a standard LP relaxation for the problem (see Figure 1). For each vertex
v ∈ V and each label i ∈ [k], we have a variable x(v, i) with the interpretation
that x(v, i) = 1 if vertex v receives label i. It is convenient to write the LP in the
form described in Fig. 1; although the objective function is not linear, we can
easily rewrite it so that it becomes linear. We remark that the LP relaxation is
equivalent to the relaxation of [5].

In the remainder of this section, we show that it suffices to round fractional
solutions to the above LP that have some additional properties. We start by
introducing some notation and a definition. For a vector v ∈ Rk and a set
S ⊂ [k], we denote by v|S the |S|-dimensional vector equal to the restriction of
v to the coordinates in S.

From Graph to Hyper-MP: Is the Single Threshold the Only Route? 385

(Hyper-MP LP)

min
∑
e∈E

k∑
i=1

(
max
u∈e

x(u, i) − min
v∈e

x(v, i)
)

k∑
i=1

x(v, i) = 1 ∀v ∈ V

x(si, i) = 1 ∀i ∈ [k]
x(v, i) ≥ 0 ∀v ∈ V, i ∈ [k]

Fig. 1. LP relaxation for Hyper-MP

Definition 1. Consider an instance of the Hyper-MP problem on a 3-uniform
hypergraph G = (V, E). Let x be a feasible LP solution for the instance. We
classify the hyperedges of E as follows:

(A) A hyperedge e is of type (A) if there is a permutation a, b, c of the vertices
of e such that:

– xb = xc

– xa and xb differ in only 2 coordinates
(B) A hyperedge e is of type (B) if there is a permutation a, b, c of the vertices

of e and a partition (L1, L2, L3, L4) of [k] such that:
– xa|L1 > xb|L1 = xc|L1

– xb|L2 > xc|L2 = xa|L2

– xc|L3 > xa|L3 = xb|L3

– xa|L4 = xb|L4 = xc|L4

(C) A hyperedge e is of type (C) if there is a permutation a, b, c of the vertices
of e and a partition (L1, L2, L3, L4) of [k] such that:

– xa|L1 < xb|L1 = xc|L1

– xb|L2 < xc|L2 = xa|L2

– xc|L3 < xa|L3 = xb|L3

– xa|L4 = xb|L4 = xc|L4

(D) A hyperedge e is of type (D) if it does not fall into any of the types above.

As shown in the following lemma, it suffices to consider instances of the problem
where all the hyperedges fall into one of the first three types (that is, there is no
hyperedge of type (D)). It is convenient to have the following definition.

Definition 2. A randomized rounding scheme for the Hyper-MP LP relaxation
is c-preserving if it constructs an integral solution such that, for each hyperedge
e, the expected number of parts in which e is split is at most c times the fractional
cost for e.

386 A. Ene and H.L. Nguyễn

Lemma 1. Suppose that there is a rounding scheme for the Hyper-MP LP re-
laxation that is c-preserving for instances of the problem in which all of the
hyperedges are of type (A), (B), or (C). Then there is an c-preserving rounding
scheme for arbitrary instances of the problem on 3-uniform hypergraphs. More-
over, if the former rounding scheme runs in polynomial time then the latter
rounding scheme also runs in polynomial time.
Proof: Consider an instance of Hyper-MP on a 3-uniform hypergraph G = (V, E),
and let x be a fractional solution for the instance. In the following, we modify
the instance and the fractional solution in order to ensure that there are no
hyperedges of type (D).

Let e be a hyperedge of type (D). Suppose that there exists a permuta-
tion a, b, c of the vertices of e and two labels i, j ∈ [k] such that x(a, i) >
max {x(b, i), x(c, i)} and x(a, j) < min {x(b, j), x(c, j)}. We modify the instance
and the fractional solution as follows. We add a new vertex a′ and we replace
the hyperedge {a, b, c} by two hyperedges, {a, a′} and {a′, b, c}. We define a
fractional assignment for a′ as follows. Let

ε = min {x(a, i) − max {x(b, i), x(c, i)} , min {x(b, j), x(c, j)} − x(a, j)} > 0

We set x(a′, i) = x(a, i) − ε, x(a′, j) = x(a, j) + ε, and x(a′, �) = x(a, �) for
all labels � �= i, j. Note that the fractional cost of the hyperedges {a, a′} and
{a′, b, c} is equal to the fractional cost of the hyperedge {a, b, c}. Additionally, we
can map a multiway partition of V ∪{a′} to a multiway partition of V by simply
removing a′ from the part that contains it; a straightforward case analysis shows
that this mapping does not increase the integral cost, since the total contribution
of {a′, b, c} and {a, a′} to the integral cost of the former partition is at most the
contribution of {a, b, c} to the integral cost of the latter partition.

By repeatedly applying the transformation above we may assume that, for any
permutation a, b, c of the vertices of e, there do not exist two labels i, j ∈ [k] such
that x(a, i) > max{x(b, i), x(c, i)} and x(a, j) < min{x(b, j), x(c, j)}. We now
show that, for every permutation a, b, c of the vertices of e, there is a partition
(L1, L2, L3, L4) of [k] such that:

– xa|L1 �= xb|L1 = xc|L1

– xb|L2 �= xc|L2 = xa|L2

– xc|L3 �= xa|L3 = xb|L3

– xa|L4 = xb|L4 = xc|L4

Consider a permutation a, b, c of the vertices of e. We define four sets L1, . . . , L4
as follows:

– L1 = {i ∈ [k] : x(a, i) �= x(b, i) = x(c, i)}
– L2 = {i ∈ [k] : x(b, i) �= x(c, i) = x(a, i)}
– L3 = {i ∈ [k] : x(c, i) �= x(a, i) = x(b, i)}
– L4 = {i ∈ [k] : x(a, i) = x(b, i) = x(c, i)}

We can verify that the sets L1, . . . , L4 above partition the labels as follows. The
sets are disjoint and thus it suffices to check that their union is [k]. Suppose

From Graph to Hyper-MP: Is the Single Threshold the Only Route? 387

for contradiction that there is a label i such that i /∈ L1 ∪ L2 ∪ L3 ∪ L4; thus
x(a, i) �= x(b, i) �= x(c, i). Let a′, b′, c′ be the permutation of {a, b, c} such that
x(a′, i) < x(b′, i) < x(c′, i). For any label j �= i, one of the following must hold:

– x(a′, j) ≤ min {x(b′, j), x(c′, j)}, or
– x(a′, j) > min {x(b′, j), x(c′, j)}

Suppose that x(a′, j) > min {x(b′, j), x(c′, j)}. It follows from our assumption
that x(c′, j) ≥ min {x(a′, j), x(b′, j)} and x(a′, j) = max {x(b′, j), x(c′, j)}, and
therefore x(a′, j) = x(c′, j) ≥ x(b′, j). Thus, for any label j �= i, we have
x(a′, j) ≤ x(c′, j). Since x(a′, i) < x(c′, i), we have

∑k
�=1 x(a′, �) <

∑k
�=1 x(c′, �).

But this is impossible, since
∑k

�=1 x(a′, �) =
∑k

�=1 x(c′, �) = 1.
Therefore the sets L1, . . . , L4 partition the label set [k], as claimed. Since

xa|L1 �= xb|L1 = xc|L1 , we have two cases: xa|L1 > xb|L1 = xc|L1 and xa|L1 <
xb|L1 = xc|L1 . We consider each of these cases in turn.

Suppose that xa|L1 < xb|L1 = xc|L1 . In the following, we show that xb|L2 <
xc|L2 and xc|L3 < xa|L3 . Suppose for contradiction that xb|L2 > xc|L2 . Then
x(a, j) ≤ x(b, j) for each j ∈ [k] and x(a, �) < x(b, �) for at least one label
�. Therefore

∑k
j=1 x(a, j) <

∑k
j=1 x(b, j), which is a contradiction. A similar

argument shows that we have xc|L3 < xa|L3 . Thus the hyperedge is of type (B).
Suppose that xa|L1 > xb|L1 = xc|L1 . In the following, we show that xb|L2 >

xc|L2 and xc|L3 > xa|L3 . Suppose for contradiction that xb|L2 < xc|L2 . Then
x(a, j) ≥ x(b, j) for each j ∈ [k] and x(a, �) > x(b, �) for at least one label
�. Therefore

∑k
j=1 x(a, j) >

∑k
j=1 x(b, j), which is a contradiction. A similar

argument shows that xc|L3 > xa|L3 . Thus the hyperedge is of type (C). �

3 Rounding Algorithms

In this section, we give a rounding scheme that achieves a 4/3 approximation
for the Hyper-MP problem on 3-uniform hypergraphs. In the following, we let x
be a fractional solution to the LP relaxation given in Section 2. The rounding
strategies that we use have been studied in previous work for the Graph Multiway
Cut and Uniform Metric Labeling problems [2,10,8], and they are given in Figure 2.

We devote the rest of this section to the analysis of Algorithm 3. As shown in
Lemma 1, we may assume that we have a fractional solution x such that each
hyperedge is of type (A), (B), or (C) (see Definition 1).

For any multiway partition (A1, . . . , Ak), the contribution to the integral cost
of a hyperedge e is the number of parts in which e is split, i.e., the number of
labels i such that e ∈ δ(Ai). We consider each hyperedge in turn and we upper
bound its expected contribution to the integral cost.

Theorem 2. Let e be a hyperedge and let p(e) be a random variable equal to the
number of parts in which e is split by Algorithm 3. We have

E[p(e)] ≤ 4
3

k∑
i=1

(
max
v∈e

x(v, i) − min
v∈e

x(v, i)
)

.

388 A. Ene and H.L. Nguyễn

Algorithm 1: Single threshold rounding
Pick θ ∈ (0, 1] with prob. density φ(θ)
Let Ai ← ∅ for each i ∈ [k]
Let U ← V 〈〈Unlabeled vertices〉〉
For i = 1 to k − 1

Ai ← U ∩ {v ∈ V : x(v, i) ≥ θ}
U ← U − Ai

Ak ← U
Return (A1, . . . , Ak)

Algorithm 2: Kleinberg-Tardos rounding
Let Ai ← ∅ for each i ∈ [k]
Let U ← V 〈〈Unlabeled vertices〉〉
While U is non-empty

Pick θ ∈ (0, 1] uniformly at random
Pick i ∈ [k] uniformly at random
Ai ← Ai ∪

(
U ∩ {v ∈ V : x(v, i) ≥ θ}

)
U ← U − Ai

Return (A1, . . . , Ak)

Algorithm 3: Combined rounding scheme
With probability 1/3, run Algorithm 1 with φ(t) = 2t for all t ∈ [0, 1]
With probability 2/3, run Algorithm 2

Fig. 2. The rounding algorithms

We consider the hyperedges of each type in turn. It follows from the work of
Buchbinder et al. [2] that the theorem holds of hyperedges of type (A).

Lemma 2 (Buchbinder et al. [2]). Let e be a hyperedge and let p(e) be a
random variable equal to the number of parts in which e is split by Algorithm 3.
If e is of type (A), we have

E[p(e)] ≤ 4
3

k∑
i=1

(
max
v∈e

x(v, i) − min
v∈e

x(v, i)
)

.

Now we consider hyperedges of type (B). Let e be a hyperedge of type (B). Let
a, b, c be a permutation of the vertices of e and let L1, . . . , L4 be a partition of
the labels that satisfy the conditions stated in Definition 1. Let α = ‖xa|L1 −
xb|L1‖1 = ‖xb|L2 − xa|L2 ‖1 and β = ‖xa|L4‖1. Note that the fractional cost
of e is 3α. In the following, we analyze the expected contribution of e to the
integral cost of the solutions constructed by Algorithms 1 and 2. Due to space
constraints, we defer the proof of the next lemma to a longer version of this
paper.

Lemma 3. Let p1(e) be a random variable equal to the number of parts in which
e is split in the partition constructed by Algorithm 1. We have

E[p1(e)] ≤ 2

(∑
i∈L1

(
x(a, i)2 − x(b, i)2

)
+

∑
i∈L2

(
x(b, i)2 − x(c, i)2

)
+

∑
i∈L3

(
x(c, i)2 − x(a, i)2)

)
.

Now we analyze the expected number of parts in which e is split by Algorithm
2. Recall that α = ‖xa|L1 − xb|L1‖1 = ‖xb|L2 − xa|L2‖1.

From Graph to Hyper-MP: Is the Single Threshold the Only Route? 389

Lemma 4. Let p2(e) be a random variable equal to the number of parts in which
e is split in the partition constructed by Algorithm 2. We have

E[p2(e)] = 2
1 + 2α

(
3α + 3α3

1 + α
−

∑
i∈L1

x(b, i)(x(a, i) − x(b, i))
1 + α

−
∑
i∈L2

x(c, i)(x(b, i) − x(c, i))
1 + α

−
∑
i∈L3

x(a, i)(x(c, i) − x(a, i))
1 + α

)
Proof: We have

E[p2(e)] = 2 Pr[p2(e) = 2] + 3 Pr[p2(e) = 3] = 2 Pr[p2(e) ≥ 2] + Pr[p2(e) = 3].

We analyze the two probabilities separately. We start with Pr[p2(e) ≥ 2].
Let B be the event that none of the vertices a, b, c of e are assigned at the end

of an iteration of Algorithm 2, conditioned on the event that none of the vertices
of e are assigned at the beginning of the iteration. The probability that the
vertices remain unassigned, given that the label selected in the current iteration
is i, is equal to (1 − max {x(a, i), x(b, i), x(c, i)}). Thus we have

Pr[B] = 1
k

k∑
i=1

(
1 − max {x(a, i), x(b, i), x(c, i)}

)
= 1 − 1

k

k∑
i=1

max {x(a, i), x(b, i), x(c, i)}

= 1 − 1
k

(∑
i∈L1

x(a, i) +
∑
i∈L2

x(b, i) +
∑
i∈L3

x(c, i) +
∑
i∈L4

x(c, i)

)

= 1 − 1
k

(∑
i∈L1

x(a, i) +
∑
i∈L2

x(b, i) + 1 −
∑
i∈L1

x(b, i) −
∑
i∈L2

x(a, i)

)

= 1 − 1 + 2α

k

Let (A1, . . . , Ak) be the multiway partition constructed by Algorithm 2. For each
label i, let Pi denote the probability that e ⊆ Ai. We have

Pr[p2(e) ≥ 2] = 1 −
k∑

i=1
Pi

Thus, it suffices to analyze each probability Pi. If i ∈ L1, the probability Pi

satisfies the following recurrence:

Pi = x(b, i)
k

+ x(a, i) − x(b, i)
k

· x(b, i)
1 + α

+ Pr[B]· Pi

Indeed, consider an iteration and suppose that none of the vertices of e are
assigned at the beginning of the iteration. Recall that, since i ∈ L1, we have

390 A. Ene and H.L. Nguyễn

x(b, i) = x(c, i) < x(a, i). Thus, in the current iteration, one of the following
holds: all vertices get a label; a gets a label and b and c remain unassigned;
all vertices remain unassigned. The first term of the recurrence above, x(b, i)/k,
corresponds to the event that all the vertices of e are assigned label i in the
current iteration. The third term, Pr[B]· Pi, corresponds to the event that all
the vertices are assigned label i in a future iteration. The second term, ((x(a, i)−
x(b, i))/k)· (x(b, i)/(1 + α)), corresponds to the event that a is assigned label i
and b and c are assigned label i in future iterations: (x(a, i) − x(b, i))/k is the
probability that a is assigned label i in the current iteration and b and c remain
unassigned at the end of the iteration; x(b, i)/(1 + α) is the probability that b
and c are assigned label i in future iterations (see below for a proof).

We can show that the probability that b and c are assigned label i is equal to
x(b, i)/(1+α) as follows. Let Qi denote the probability that b and c are assigned
label i ∈ L1. The probability Qi satisfies the following recurrence:

Qi = x(b, i)
k

+ 1
k

k∑
j=1

(
1 − max {x(b, j), x(c, j)}

)
· Qi

By rearranging, we get

Qi =
x(b, i)∑k

j=1 max {x(b, j), x(c, j)}
Finally, we have

k∑
j=1

max {x(b, j), x(c, j)} =
∑

j∈L2

x(b, j) +
∑

j∈L1∪L3∪L4

x(c, j)

=
∑

j∈L2

x(b, j) + 1 −
∑

j∈L2

x(a, j) = 1 + α

Therefore Qi = x(b, i)/(1 + α), as claimed. By rearranging the recurrence for Pi,
we get

For all i ∈ L1: Pi = x(b, i)
1 + 2α

(
1 + x(a, i) − x(b, i)

1 + α

)
A similar argument shows that:

For all i ∈ L2: Pi = x(c, i)
1 + 2α

(
1 + x(b, i) − x(c, i)

1 + α

)
and

For all i ∈ L3: Pi = x(a, i)
1 + 2α

(
1 + x(c, i) − x(a, i)

1 + α

)
Now consider a label i ∈ L4; recall that x(a, i) = x(b, i) = x(c, i). The probability
Pi satisfies the following recurrence:

Pi = x(a, i)
k

+ Pr[B]· Pi

From Graph to Hyper-MP: Is the Single Threshold the Only Route? 391

By rearranging, we get

For all i ∈ L4: Pi = x(a, i)
1 + 2α

Therefore

1 − Pr[p2(e) ≥ 2] =
k∑

i=1
Pi =

1 − α

1 + 2α
+

∑
i∈L1

x(b, i)(x(a, i) − x(b, i))
(1 + 2α)(1 + α)

+
∑
i∈L2

x(c, i)(x(b, i) − x(c, i))
(1 + 2α)(1 + α)

+
∑
i∈L3

x(a, i)(x(c, i) − x(a, i))
(1 + 2α)(1 + α)

Finally, we analyze Pr[p2(e) = 3]. The hyperedge e is split into 3 parts iff a
receives a label in L1, b receives a label in L2, and c receives a label in L3. For
each triple (i, j, �), where i ∈ L1, j ∈ L2, and � ∈ L3, the probability that first a
receives label i then b receives j and finally c receives label � is equal to

(x(a, i) − x(b, i))· (x(b, j) − x(c, j))· (x(c, �) − x(a, �))
(1 + 2α)(1 + α)

We prove the identity above as follows. Let Rc be the probability that c is
assigned label �, given that a and b are assigned at the beginning of the current
iteration and c is unassigned. The probability Rc satisfies the recurrence

Rc = x(c, �) − x(a, �)
k

+ 1
k

k∑
t=1

(
1 − x(c, t)

)
· Rc.

The first term is the probability that c receives label � in the current iteration
and the second term is the probability that c receives label � in a future iteration.
By rearranging, we get

Rc = x(c, �) − x(a, �)∑k
t=1 x(c, t)

= x(c, �) − x(a, �)

Let Rb,c be the probability that b is assigned label j and then c is assigned label
�, given that a is assigned at the beginning of the current iteration and b and c
are unassigned. The probability Rb,c satisfies the following recurrence:

Rb,c = x(b, j) − x(c, j)
k

· Rc + 1
k

k∑
t=1

(
1 − max {x(b, t), x(c, t)}

)
· Rb,c

The first term is the probability that b receives label j in the current iteration
and c receives label � in a future iteration. The second term is the probability
that, in future iterations, first b receives label j and then c receives label �. By
rearranging, we get

Rb,c = x(b, j) − x(c, j)∑k
t=1 max {x(b, t), x(c, t)}

· Rc = x(b, j) − x(c, j)
1 + α

· Rc

392 A. Ene and H.L. Nguyễn

Finally, let Ra,b,c be the probability that first a receives label i, then b receives
j, and then c receives label �, given that a, b, c are unassigned at the beginning
of the current iteration. The probability Ra,b,c satisfies the following recurrence:

Ra,b,c =
x(a, i) − x(b, i)

k
· Rb,c +

1
k

k∑
t=1

(
1 − max {x(a, t), x(b, t), x(c, t)}

)
· Ra,b,c

The first term is the probability that a receives label i in the current iteration
and, in future iterations, first b receives label j and then c receives label �. the
second term is the probability that, in future iterations, first a receives label i,
then b receives label j, and then c receives label �. By rearranging, we get

Ra,b,c = x(a, i) − x(b, i)∑k
t=1 max {x(a, t), x(b, t), x(c, t)}

· Rb,c = x(a, i) − x(b, i)
1 + 2α

· Rb,c

Using a similar argument, we can analyze the probability that a, b, c receive labels
i, j, � in a different order. By summing over all possible choices of the labels i, j, �
and all possible orders in which a, b, c receive labels i, j, � (respectively), we get

Pr[p2(e) = 3] =
6α3

(1 + 2α)(1 + α)

By putting everything together, we get

E[p2(e)] = 2 Pr[p2(e) ≥ 2] + Pr[p2(e) = 3]

=
2

1 + 2α

(
3α +

3α3

1 + α
−

∑
i∈L1

x(b, i)(x(a, i) − x(b, i))
1 + α

−
∑
i∈L2

x(c, i)(x(b, i) − x(c, i))
1 + α

−
∑
i∈L3

x(a, i)(x(c, i) − x(a, i))
1 + α

)

�
Using Lemma 3 and Lemma 4, we can analyze the expected integral cost of e as
follows. The proof of the lemma follows from a somewhat lengthy calculation
and we defer it to a longer version of this paper.

Lemma 5. Let e be a hyperedge of type (B). Let p(e) be a random variable
equal to the number of parts in which e is split in the partition constructed by
Algorithm 3. We have

E[p(e)] ≤ 4
3

k∑
i=1

(
max
v∈e

x(v, i) − min
v∈e

x(v, i)
)

.

Finally, we consider hyperedges of type (C). The analysis is similar as for edges
of type (B) and it is even simpler, since a hyperedge of type (C) cannot be split
into 3 parts. Due to space constraints, we defer the analysis of this case to a
longer version of this paper.

From Graph to Hyper-MP: Is the Single Threshold the Only Route? 393

Lemma 6. Let e be a hyperedge of type (C). Let p(e) be a random variable
equal to the number of parts in which e is split in the partition constructed by
Algorithm 3. We have

E[p(e)] ≤ 4
3

k∑
i=1

(
max
v∈e

x(v, i) − min
v∈e

x(v, i)
)

.

Theorem 2 follows immediately from Lemmas 2, 5, and 6. This completes the
analysis of the rounding algorithm.

References

1. Alpert, C.J., Kahng, A.B.: Recent directions in netlist partitioning: a survey. Inte-
gration, the VLSI Journal 19(1-2), 1–81 (1995)

2. Buchbinder, N., Naor, J.S., Schwartz, R.: Simplex partitioning via exponential
clocks and the multiway cut problem. In: Proceedings of the Forty-Fifth Annual
ACM Symposium on Theory of Computing, STOC 2013, pp. 535–544. ACM (2013)

3. Calinescu, G., Karloff, H.J., Rabani, Y.: An improved approximation algorithm for
multiway cut. Journal of Computer and System Sciences 60(3), 564–574 (1998);
Preliminary version in STOC 1998

4. Chekuri, C., Ene, A.: Approximation algorithms for submodular multiway
partition. In: FOCS, pp. 807–816 (2011)

5. Chekuri, C., Ene, A.: Submodular cost allocation problem and applications. In:
Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part I. LNCS, vol. 6755,
pp. 354–366. Springer, Heidelberg (2011)

6. Dahlhaus, E., Johnson, D.S., Papadimitriou, C.H., Seymour, P.D., Yannakakis, M.:
The complexity of multiterminal cuts. SIAM Journal on Computing 23(4), 864–894
(1992); Preliminary version in STOC 1992

7. Karger, D.R., Klein, P.N., Stein, C., Thorup, M., Young, N.E.: Rounding algo-
rithms for a geometric embedding of minimum multiway cut. Mathematics of Op-
erations Research 29(3), 436–461 (2004); Preliminary version in STOC 1999

8. Kleinberg, J.M., Tardos, É.: Approximation algorithms for classification problems
with pairwise relationships: Metric labeling and Markov random fields. Journal of
the ACM (JACM) 49(5), 616–639 (1999)

9. Lawler, E.L.: Cutsets and partitions of hypergraphs. Networks 3(3), 275–285 (1973)
10. Sharma, A., Vondrák, J.: Multiway cut, pairwise realizable distributions, and de-

scending thresholds. In: STOC (2014)
11. Zhao, L., Nagamochi, H., Ibaraki, T.: Greedy splitting algorithms for approxi-

mating multiway partition problems. Mathematical Programming 102(1), 167–183
(2005)

Deterministic Stateless Centralized Local

Algorithms for Bounded Degree Graphs

Guy Even, Moti Medina, and Dana Ron

School of Electrical Engineering, Tel-Aviv Univ., Tel-Aviv 69978, Israel
{guy,medinamo,danar}@eng.tau.ac.il

Abstract. We design centralized local algorithms for: maximal inde-
pendent set, maximal matching, and graph coloring. The improvement
is threefold: the algorithms are deterministic, stateless, and the num-
ber of probes is O(log∗ n), where n is the number of vertices of the input
graph. Our algorithms for maximal independent set and maximal match-
ing improves over previous randomized algorithms by Alon et al. (SODA
2012) and Mansour et al. (ICALP 2012). In these previous algorithms,
the number of probes and the space required for storing the state between
queries are poly(log n).

We also design the first centralized local algorithm for graph coloring.
Our graph coloring algorithms are deterministic and stateless. Let Δ
denote the maximum degree of a graph over n vertices. Our algorithm
for coloring the vertices by Δ + 1 colors requires O(log∗ n) probes for
constant degree graphs. Surprisingly, for the case where the number of
colors is O(Δ2 logΔ), the number of probes of our algorithm is O(Δ ·
log∗ n + Δ2), that is, the number of probes is sublinear if Δ = o(

√
n),

i.e., our algorithm applies for graphs with unbounded degrees.

Keywords: Centralized Local Algorithms, Sublinear Approximation
Algorithms, Graph Algorithms.

1 Introduction

Local Computation Algorithms , as defined by Rubinfeld et al. [17], are algorithms
that answer queries regarding (global) solutions to computational problems by
performing local (sublinear time) computations on the input. The answers to all
queries must be consistent with a single solution regardless of the number of pos-
sible solutions. To make this notion concrete, consider the Maximal Independent
Set problem, which we denote by mis. Given a graph G = (V,E) as input, the
local algorithm alg gives the illusion that it “holds” a specific maximal inde-
pendent set I ⊆ V . Namely, given any vertex v as a query, alg answers whether
v belongs to I even though alg cannot read all of G, cannot store the solution
I, and cannot even remember all the answers to previous queries. In order to
answer such queries, alg can probe the graph G by asking about the neighbors
of a vertex of its choice.

A local computation algorithm may be randomized, so that the solution
according to which it answers queries may depend on its internal coin flips.

A.S. Schulz and D. Wagner (Eds.): ESA 2014, LNCS 8737, pp. 394–405, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

Centralized local and Distributed Local Algorithms 395

However, the solution should not depend on the sequence of the queries (this
property is called query order obliviousness [17]). We measure the performance
of a local computation algorithm by the following criteria: the maximum num-
ber of probes it makes to the input per query, the success probability over any
sequence of queries, and the maximum space it uses between queries1 . It is de-
sired that both the probe complexity and the space complexity of the algorithm
be sublinear in the size of the graph (e.g., polylog(|V |)), and that the success
probability be 1 − 1/poly(|V |). It is usually assumed that the maximum degree
of the graph is upper-bounded by a constant, but our results are useful also
for non-constant upper bounds (see also [16]). For a formal definition of local
algorithms in the context of graph problems, which is the focus of this work, see
Subsection 2.2.

The motivation for designing local computation algorithms is that local com-
putation algorithms capture difficulties with very large inputs. A few examples
include: (1) Reading the whole input is too costly if the input is very long. (2) In
certain situations one is interested in a very small part of a complete solution.
(3) Consider a setting in which different uncoordinated servers need to answer
queries about a very long input stored in the cloud. The servers do not commu-
nicate with each other, do not store answers to previous queries, and want to
minimize their accesses to the input.

Local computation algorithms have been designed for various graph (and hy-
pergraph) problems, including the abovementioned mis [17,1], hypergraph col-
oring [17,1], maximal matching [8] and (approximate) maximum matching [9].
Local computation algorithms also appear implicitly in works on sublinear ap-
proximation algorithms for various graph parameters, such as the size of a min-
imum vertex cover [14,10,19,11]. Some of these implicit results are very efficient
in terms of their probe complexity (in particular, it depends on the maximum
degree and not on |V |) but do not give the desired 1− 1/poly(|V |) success prob-
ability. We compare our results to both the explicit and implicit relevant known
results.

As can be gleaned from the definition in [17], local computation algorithms are
closely related to Local Distributed Algorithms [14]. This connection is discussed
in Section 2.3 (see also [4]).

In what follows we denote the aforementioned local computation model by
CentLocal (where the “Cent” stands for “centralized”) and the distributed
(local) model by DistLocal (for a formal definition of the latter, see Subsec-
tion 2.3). We denote the number of vertices in the input graph by n and the
maximum degree by Δ.

1.1 The Ranking Technique

The starting point for our results in the CentLocal model is the ranking tech-
nique [10,19,1,8,9]. To exemplify this, consider, once again, the mis problem.

1 In our algorithms the running time per query in the RAM model is at most poly(q) ·
log log n, where q is the maximum number of probes per query and n = |V |.

396 G. Even, M. Medina, and D. Ron

A very simple (global “greedy”) algorithm for this problem works by selecting
an arbitrary ranking of the vertices and initializing I to be empty. The algorithm
then considers the vertices one after the other according to their ranks and adds
a vertex to I if and only if it does not neighbor any vertex already in I. Such
an algorithm can be “localized” as follows. For a fixed ranking of the vertices
(say, according to their IDs), given a query on a vertex v, the local algorithm
performs a restricted DFS starting from v. The restriction is that the search con-
tinues only on paths with monotonically decreasing ranks. The local algorithm
then simulates the global one on the subgraph induced by this restricted DFS.

The main problem with the above local algorithm is that the number of probes
it performs when running the DFS may be very large. Indeed, for some rankings
(and queried vertices), the number of probes is linear in n. In order to circumvent
this problem, random rankings were studied [10]. This brings up two questions,
which were studied in previous works, both for the mis algorithm described above
and for other ranking-based algorithms [10,19,1,8,9]. The first is to bound the
number of probes needed to answer a query with high probability. The second
is how to efficiently store a random ranking between queries.

1.2 Our Contributions

Orientations with bounded reachability. Our first conceptual contribution is a
simple but very useful observation. Rather than considering vertex rankings, we
suggest to consider acyclic orientations of the edges in the graph. Such orien-
tations induce partial orders over the vertices, and partial orders suffice for our
purposes. The probe complexity induced by a given orientation translates into a
combinatorial measure, which we refer to as the reachability of the orientation.
Reachability of an acyclic orientation is the maximum number of vertices that
can be reached from any start vertex by directed paths (induced by the orienta-
tion). This leads us to the quest for a CentLocal algorithm that computes an
orientation with bounded reachability.

Orientations and colorings. Our second conceptual contribution is that an orien-
tation algorithm with bounded reachability can be based on a CentLocal color-
ing algorithm. Indeed, every vertex-coloring with k colors induces an orientation
with reachability O(Δk). Towards this end, we design a CentLocal coloring al-
gorithm that applies techniques from DistLocal colorings algorithms [3,5,7,13].
Our CentLocal algorithm is deterministic, does not use any space between
queries, performs O(Δ · log∗ n + Δ2) probes per query, and computes a color-
ing with O(Δ2 logΔ) colors. (We refer to the problem of coloring a graph by
poly(Δ) colors as poly(Δ)-Color.) Our coloring algorithm yields an orienta-

tion whose reachability is ΔO(Δ2 logΔ). For constant degree graphs, this implies
O(log∗ n) probes to obtain an orientation with constant reachability. As an ap-
plication of this orientation algorithm, we also design a CentLocal algorithm
for (Δ + 1)-coloring.

Centralized local and Distributed Local Algorithms 397

Centralized local simulations of sequential algorithms. We apply a general trans-
formation (similarly to what was shown in [1]) from global algorithms with cer-
tain properties to local algorithms. The transformation is based on our
CentLocal orientation with bounded reachability algorithm. As a result we
get deterministic CentLocal algorithms for mis and maximal matching (mlm),
which significantly improve over previous work [17,1,8], and the first CentLocal

algorithm for coloring with (Δ + 1) colors (We refer to the problem of coloring
a graph by Δ + 1 colors as (Δ + 1)-Color). Compared to previous work, for
mis and mlm the dependence on n in the probe complexity is reduced from
polylog(n) to log∗(n) and the space needed to store the state between queries is
reduced from polylog(n) to zero.

1.3 Comparison to Previous Work

Comparison to previous (explicit) CentLocal algorithms. A comparison of
our results with previous CentLocal algorithms is summarized in Table 1.
The dependence on Δ of previous algorithms is not explicit; the dependency in
Table 1 is based on our understanding of these results.

Table 1. A comparison between CentLocal algorithms under the assumption that
Δ = O(1) . Our algorithms are deterministic and stateless (i.e., the space needed to
store the state between queries is zero). mlm denotes a maximal matching, mm denotes
maximum matching.

Problem
Previous work Here (Deterministic, 0-Space)

Space # Probes success prob. # Probes

mis ΔO(Δ·log Δ) · log3 n ΔO(Δ·log Δ) · log2 n 1 − 1
poly(n)

[1] ΔO(Δ2 log Δ) · log∗ n [Coro. 6]

mlm ΔO(Δ) · log3 n ΔO(Δ) · log3 n 1 − 1
poly(n)

[8] ΔO(Δ2 log Δ) · log∗ n [Coro. 6]

poly(Δ)-Color none none none O(Δ · log∗ n + Δ2) [Thm. 3]

(Δ + 1)-Color none none none ΔO(Δ2 log Δ) · log∗ n [Coro. 6]

Comparison to previous CentLocal oracles in sublinear approximation algo-
rithms. A sublinear approximation algorithm for a certain graph parameter (e.g.,
the size of a minimum vertex cover) is given probe access to the input graph
and is required to output an approximation of the graph parameter with high
(constant) success probability. Many such algorithms work by designing an or-
acle that answers queries (e.g., a query can ask: does a given vertex belong to a
fixed small vertex cover?). The sublinear approximation algorithm estimates the
graph parameter by performing (a small number of) queries to the oracle. The
oracles are essentially CentLocal algorithms but they tend to have constant
error probability, and it is not clear how to reduce this error probability with-
out significantly increasing their probe complexity. Furthermore, the question of
bounded space needed to store the state between queries was not an issue in the
design of these oracles, since only few queries are performed by the sublinear ap-
proximation algorithm. Hence, they are not usually considered to be “bona fide”

398 G. Even, M. Medina, and D. Ron

Table 2. A comparison between CentLocal oracles in sub-linear approximation al-
gorithms and our CentLocal (deterministic) algorithms. The former algorithms were
designed to work with constant success probability and a bound was given on their
expected probe complexity. When presenting them as CentLocal algorithms we in-
troduce a failure probability parameter, δ, and bound their probe complexity in terms
of δ. Furthermore, the approximation ratios of the sublinear approximation algorithms
were stated in additive terms, and we translate the results so as to get a multiplicative
approximation.

Problem
Previous work Here

Probes success prob. apx. ratio # Probes apx. ratio

mis O(Δ4) · poly(1
δ ,

1
ε) 1 − δ 1 − ε [19] ΔO(Δ2 log Δ) · log∗ n 1

mlm O(Δ4) · poly(1
δ ,

1
ε) 1 − δ 1 − ε [19] ΔO(Δ2 log Δ) · log∗ n 1

poly(Δ)-Color none none - O(Δ · log∗ n + Δ2) -

(Δ + 1)-Color none none - ΔO(Δ2 log Δ) · log∗ n -

CentLocal algorithms. A comparison of our results and these oracles appears
in Table 2.

2 Preliminaries

2.1 Notations

Let G = (V,E) denote an undirected graph. Let n denote the number of vertices
and m denote the number of edges. We denote the degree of v by deg(v). Let
Δ denote the maximum degree, i.e., Δ � maxv∈V {deg(v)}. Let Γ (v) denote the
set of neighbors of v ∈ V . The length of a path equals the number of edges along
the path. We denote the length of a path p by |p|. For u, v ∈ V let dist(u, v)
denote the length of the shortest path between u and v. The ball of radius r
centered at v is defined by

Br(v) � {u ∈ V | dist(v, u) ≤ r} .

For k ∈ N+ and n > 0, let log(k) n denote the kth iterated logarithm of n.
Note that log(0) n � n and if log(i) n = 0, we define log(j) n = 0, for every j > i.
For n ≥ 1, define log∗ n � min{i : log(i) n ≤ 1}.

2.2 The CentLocal Model

The model of centralized local computations was defined in [17]. In this section
we describe this model for problems over labeled graphs.

Labeled graphs. An undirected graph G = (V,E) is labeled if: (1) The ver-
tices have unique names. For simplicity, assume that the vertex names are in
{1, . . . , n}. We denote the vertex whose name is i by vi. (2) Each vertex v holds
a list of deg(v) pointers, called ports, that point to the neighbors of v. The
assignment of ports to neighbors is arbitrary and fixed.

Centralized local and Distributed Local Algorithms 399

Problems over labeled graphs. Let Π denote a computational problem over la-
beled graphs (e.g., maximum matching, maximal independent set, vertex color-
ing). A solution for problem Π over a labeled graph G is a function, the domain
and range of which depend on Π and G. For example: (1) In the Maximal Match-
ing problem, a solution is an indicator function M : E → {0, 1} of a maximal
matching in G. (2) In the problem of coloring the vertices of a graph by (Δ+ 1)
colors, a solution is a coloring c : V → {1, . . . , Δ + 1}. Let sol(G,Π) denote the
set of solutions of problem Π over the labeled graph G.

Probes. In the CentLocal model, access to the labeled graph is limited to
probes. A probe is a pair (v, i) that asks “who is the ith neighbor of v?”. The
answer to a probe (v, i) is as follows. (1) If deg(v) < i, then the answer is “null”.
(2) If deg(v) ≥ i, then the answer is the (ID of) vertex u that is pointed to by
the ith port of v. For simplicity, we assume that the answer also contains the
port number j such that v is the jth neighbor of u. (This assumption reduces
the number of probes by at most a factor of Δ.)

Online algorithms in the CentLocal model. An online deterministic algorithm
alg for a problem Π over labeled graphs in the CentLocal model is defined
as follows. The input for the algorithm consists of three parts: (1) access to a
labeled graph G via probes, (2) the number of vertices n and the maximum
degree Δ of the graph G, and (3) a sequence {qi}Ni=1 of queries. Each query qi
is a request for an evaluation of f(qi) where f ∈ sol(G,Π). The algorithm is
online because it must output an evaluation of f(qi) without any knowledge of
subsequent queries.

We say that alg is consistent with (G,Π) if

∃f ∈ sol(G,Π) s.t. ∀N ∈ N ∀{qi}Ni=1 ∀i : yi = f(qi) . (1)

Consider, for example, the problem of computing a (Δ + 1) vertex coloring.
Consistency in this example means the following. The online algorithm is input
a sequence of queries, each of which is a vertex. The algorithm must output
the color of each queried vertex. If a vertex is queried twice, then the algorithm
must return the same color. Moreover, queried vertices that are neighbors must
be colored by different colors. Thus, if all vertices are queried, then the answers
constitute a legal vertex coloring that uses (Δ + 1) colors. We now describe two
measures of performance that are used in the CentLocal model.

Performance measures. In the CentLocal model, two computational resources
are considered: state-space and number of probes. The state of algorithm alg

is the information that alg saves between queries. The state-space of algorithm
alg is the maximum number of bits required to encode the state of alg. The
state is used to ensure consistency. We note that the running time used to answer
a query is not counted.

Definition 1. An online algorithm is a CentLocal[q, s] algorithm for Π if
(1) it is consistent with (G,Π), (2) it performs at most q probes, and (3) the
state can be encoded by s bits.

400 G. Even, M. Medina, and D. Ron

The goal in designing algorithms in the CentLocal model is to minimize
the number of probes and the state-space (in particular q, s = o(n)). A
CentLocal[q, s] algorithm with s = 0 is called stateless or zero-state-space.
In this case, we refer to the algorithm as a stateless CentLocal[q]-algorithm.
Stateless algorithms are useful in the case of uncoordinated distributed servers
that answer queries without communicating with each other.

Space vs. state-space. In [17] no distinction was made between the space needed
to answer a query and the space needed to store the state between queries.
Because the space needed to answer a query is freed after the query is answered,
we only count the space needed to store the state between queries.

Randomized local algorithms. If alg is a randomized algorithm, the consistency
requirement is parameterized by the failure probability δ. We say that alg is
a CentLocal[q, s, δ] algorithm for Π with probability at least 1 − δ if it is
consistent with (G,Π), performs at most q probes, and has state-space s. The
standard requirement is that δ = 1/poly(n).

Parallelizability and query order obliviousness. In [1,8,9] two requirements are
introduced: parallelizability and query order obliviousness. These requirements
are fully captured by the definition of a consistent, online, deterministic algo-
rithm with zero state-space. That is, every online algorithm that is consistent,
zero-state-space, and deterministic is both parallelizable and query order obliv-
ious.

2.3 The DistLocal Model

The model of local distributed computation is a classical model (see [7,15,18]).
The distributed computation takes place in an undirected labeled graph

G = (V,E). Each vertex models a processor, and communication is possible
between neighboring processors. All processors execute the same algorithm. Ini-
tially, every v ∈ V is input a local input. The computation is done in r ∈ N
synchronous rounds as follows. In every round: (1) every processor receives a
message from each neighbor, (2) every processor performs a computation based
on its local input and the messages received from its neighbors, (3) every pro-
cessor sends a message to each neighbor. We assume that a message sent in the
end of round i is received in the beginning of round i + 1. After the rth round,
every processor computes a local output.

The following assumptions are made in the DistLocal model: (1) The local
input to each vertex v includes the ID of v, the degree of the vertex v, the
maximum degree Δ, the number of vertices n, and the ports of v to its neighbors.
(2) The IDs are distinct. For simplicity, we assume that the IDs are in the set
{1, . . . , n}. (3) The length of the messages sent in each round is not bounded.

We say that a distributed algorithm is a DistLocal[r]-algorithm if the num-
ber of communication rounds is r. Strictly speaking, a distributed algorithm is

Centralized local and Distributed Local Algorithms 401

considered local if r is bounded by a constant. We say that a DistLocal[r]-
algorithm is almost local if r = O(log∗ n). When it is obvious from the context
we refer to an almost DistLocal algorithm simply by a DistLocal algorithm.

We remark that in the DistLocal model, efficiency of the algorithm executed
locally by the processors is not important. Namely, one does not bound the
running time required to complete each round.

Simulation of DistLocal by CentLocal [14]: Every deterministic
DistLocal[r]-algorithm, can be simulated by a deterministic, stateless
CentLocal[O(Δr)]-algorithm. The simulation proceeds simply by probing all
vertices in the ball of radius r centered at the query.

If Δ = 2, then balls are simple paths (or cycles) and hence simulation of a
DistLocal[r]-algorithm is possible by a CentLocal[2r]-algorithm.

3 Acyclic Orientation with Bounded Reachability

In this section we introduce the problem of Acyclic Orientation with Bounded
Reachability (obr). We then design a CentLocal algorithm for obr.

Notations. Let H = (V,A) denote a directed graph, where V is the set of vertices
and A ⊆ V × V . The reachability set of v ∈ V is the set of vertices R such that
there is a path from v to every vertex in R. We denote the reachability set of
v ∈ V in digraph H by RH(v). Let rH(v) � |RH(v)| and rmax

H � maxv∈V rH(v).
We simply write R(v), r(v), rmax when the digraph H is obvious from the context.
We say that a digraph H = (V,A) is an orientation of an undirected graph
G = (V,E) if G is an underlying graph of H .

In the problem of acyclic orientation with bounded reachability (obr), the
input is an undirected graph. The output is an orientation H of G that is acyclic.
The goal is to minimize rmax

H .
Previous works obtain an acyclic orientation by random vertex rank-

ing [10,19,1,8,9]. We propose to obtain an acyclic orientation by vertex coloring.

Proposition 1 (Orientation via Coloring). Every coloring by c colors in-
duces an acyclic orientation with

rmax ≤ Δ ·
c−2∑
i=0

(Δ− i)i ≤
{

2Δ · (Δ− 1)c−2, if Δ ≥ 3,

2c, if Δ = 2 .

Proof. Direct each edge from a high color to a low color. By monotonicity the
orientation is acyclic. Every directed path has at most c vertices, and hence the
reachability is bounded as required.

3.1 A CentLocal Algorithm for OBR

In Theorem 3, we present a deterministic, stateless CentLocal[O(Δ · log∗ n +
Δ2)]-algorithm that computes a vertex coloring that uses c = O(Δ2 logΔ) colors.
Orientation by this coloring yields an acyclic orientation with rmax ≤ Δc.

402 G. Even, M. Medina, and D. Ron

Acyclic orientation can be also obtained by simulating DistLocal vertex
coloring algorithms. Consider, for example, the (Δ + 1) coloring using r1 =
O(Δ)+ 1

2 ·log∗ n rounds of [2] or the O(Δ2) coloring using r2 = O(log∗ n) rounds
of [7]. CentLocal simulations of these algorithms require O(Δri) probes. Thus,
in our algorithm, the number of probes grows (slightly) slower as a function of
n and is polynomial in Δ.

Our algorithm relies on techniques from two previous DistLocal coloring
algorithms.

Theorem 1 ([7, Corollary 4.1]). A 5Δ2 log c coloring can be computed from
a c coloring by a DistLocal[1]-algorithm.

Theorem 2 ([12, Section 4]). A (Δ + 1) coloring can be computed by a
DistLocal[O(Δ2 + log∗ n)]-algorithm.

Theorem 3. An O(Δ2 logΔ) coloring can be computed by a deterministic,
stateless CentLocal[O(Δ · log∗ n + Δ2)]-algorithm.

Proof. We begin by describing a two phased DistLocal[O(log∗ n)]-algorithm
D that uses O(Δ2 · logΔ) colors. Algorithm D is especially designed so that it
admits an “efficient” simulation by a CentLocal-algorithm.

Consider a graph G = (V,E) with a maximum degree Δ. In the first phase,
the edges are partitioned into Δ2 parts, so that the maximum degree in each
part is at most 2. Let pi(u) denote the neighbor of vertex u pointed to by the
ith port of u. Following Kuhn [6] we partition the edge set E as follows. Let
E{i,j} ⊆ E be defined by

E{i,j} � {{u, v} | pi(u) = v, pj(v) = u}.

Each edge belongs to exactly one part E{i,j}. For each part E{i,j} and vertex u,
at most two edges in E{i,j} are incident to u. Hence, the maximum degree in each
part is at most 2. Each vertex can determine in a single round how the edges
incident to it are partitioned among the parts. Let G{i,j} denote the undirected
graph over V with edge set E{i,j}.

By Theorem 2, we 3-color each graph G{i,j} in O(log∗ n) rounds. This induces

a vector of Δ2 colors per vertex, hence a 3(Δ
2) vertex coloring of G.

In the second phase, Algorithm D applies Theorem 1 twice to reduce the
number of colors to O(Δ2 logΔ).

We now present an efficient simulation of algorithm D by a CentLocal-
algorithm C. Given a query for the color of vertex v, Algorithm C simulates
the first phase of D in which a 3-coloring algorithm is executed in each part
E{i,j}. Since the maximum degree of each G{i,j} is two, a ball of radius r in
G{i,j} contains at most 2r edges. In fact, this ball can be recovered by at most
2r probes. It follows that a CentLocal simulation of the 3-coloring of G{i,j}
requires only O(log∗ n) probes. Observe that if vertex v is isolated in G{i,j}, then
it may be colored arbitrarily (say, by the first color). A vertex v is not isolated
in at most Δ parts. It follows that the simulation of the first phase requires
O(Δ · log∗ n) probes.

Centralized local and Distributed Local Algorithms 403

The second phase of algorithm D requires an additional Δ2 probes, and the
theorem follows.

Corollary 4. There is a deterministic, stateless CentLocal[O(Δ · log∗ n +

Δ2)]-algorithm for obr that achieves rmax ≤ ΔO(Δ2 logΔ).

Proof. The CentLocal[Δ · log∗ n + Δ2]-algorithm for obr is given a query
(v, i). The algorithm answers whether the edge (v, pi(v)) is an incoming edge
or an outgoing edge in the orientation. The algorithm proceeds by querying the
colors of v and pi(v). The orientation of the edge (v, pi(v)) is determined by
comparing the colors of v and pi(v).

4 Deterministic Localization of Sequential Algorithms
and Applications

A common theme in online algorithms and “greedy” algorithms is that the ele-
ments are scanned in query order or in an arbitrary order, and a decision is made
for each element based on the decisions of the previous elements. Classical ex-
amples of such algorithms include the greedy algorithms for maximal matchings,
(Δ+1) vertex coloring, and maximal independent set. We present a compact and
axiomatic CentLocal deterministic simulation of this family of algorithms, for
which a randomized simulation appeared in [8]. Our deterministic simulation is
based on an acyclic orientation that induces a partial order.

For simplicity, consider a graph problem Π , the solution of which is a function
g(v) defined over the vertices of the input graph. For example, g(v) can be the
color of v or a bit indicating if v belongs to a maximal independent set. (One
can easily extend the definition to problems in which the solution is a function
over the edges, e.g., maximal matching.)

We refer to an algorithm as a sequential algorithm if it fits the scheme listed
as Algorithm 1. The algorithm alg(G, σ) is input a graph G = (V,E) and a
bijection σ : {1, . . . , n} → V of the vertices. Note that an element i in the
domain of σ is a rank of a vertex. Hence, σ(i) is the vertex whose rank is i, and
σ−1(v) is the rank of v. The algorithm scans the vertices in the order induced by
σ. It determines the value of g(σ(i)) based on the values of its neighbors whose
value has already been determined. This decision is captured by the function f
in Line 2. For example, in vertex coloring, f returns the smallest color that does
not appear in a given a subset of colors.

Lemma 1. Let G = (V,E) be a graph, let H = (V,A) be an acyclic orientation
of G and let P> ⊆ V × V denote the partial order defined by the transitive
closure of H. Namely, (u, v) ∈ P> if and only if there exists a directed path
from u to v in H. Let alg denote a sequential algorithm. For every bijection
σ : {1, . . . , n} → V that is a linear extension of P> (i.e, for every (u, v) ∈ P>

we have that σ−1(u) > σ−1(v)), the output of alg(G, σ) is the same.

Proof. Consider two linear extensions σ and τ of P>. Let gσ denote the output
of alg(G, σ) and define gτ analogously.

404 G. Even, M. Medina, and D. Ron

Algorithm 1. The sequential algorithm scheme

Input: A graph G = (V,E) and a bijection σ : {1, . . . , n} → V .
1: for i = 1 to n do
2: g(σ(i)) ← f

({
g(v) : v ∈ Γ (σ(i)) & σ−1(v) < i

})
 (Decide based on

“previous” neighbors)
3: end for
4: Output: g.

Let
Aσ(u) � {v ∈ Γ (u) | σ−1(v) < σ−1(u)} .

We claim that Aσ(u) = Aτ (u) for every u. If v is a neighbor of u in G, then
(u, v) ∈ A or (v, u) ∈ A. We first consider the case (u, v) ∈ A. If (u, v) ∈ A,
then (u, v) ∈ P>. Hence σ−1(u) > σ−1(v) and τ−1(u) > τ−1(v) because σ and
τ are linear extensions of P>. We conclude that v ∈ Aσ(u) ∩ Aτ (u). Similarly,
if (v, u) ∈ A, then σ−1(u) < σ−1(v) and τ−1(u) < τ−1(v). This implies that
v �∈ Aσ(u) ∪ Aτ (u), and hence Aσ(u) = Aτ (u), as required.

We prove, by induction on i, that gσ(σ(i)) = gτ (σ(i)). The induction basis,
for i = 1, holds because σ(1) is a minimal element according to P> (a sink in
H). Hence, Aσ(u) = Aτ (u) = ∅. This implies that gσ(σ(1)) = f(∅) = gτ (σ(1)).
Turning to the induction step, we prove that the claim holds for i > 1, assuming
it holds for every 1 ≤ i′ < i. Let u = σ(i).

Hence:

gσ(u) = f
(
{gσ(v)}v∈Aσ(u)

)
= f
(
{gτ (v)}v∈Aσ(u)

)
= f
(
{gτ (v)}v∈Aτ (u)

)
= gτ (u) ,

where the second equality follows from the induction hypothesis. The third equal-
ity follows since Aσ(u) = Aτ (u) for every u.

Theorem 5. For every sequential algorithm alg, there exists a deterministic,
stateless CentLocal[ΔO(Δ2 logΔ) · log∗ n]-algorithm algc for which the follow-
ing holds. For every graph G, there exists a bijection σ, such that algc(G) sim-
ulates alg(G, σ). That is, for every vertex v in G, the answer of algc(G) on
query v is gσ(v), where gσ denotes the output of alg(G, σ).

Proof. Consider the acyclic orientation H of G induced by the CentLocal[Δ ·
log∗ n + Δ2]-algorithm for obr presented in Corollary 4. Let P> denote the
partial order that is induced by H , and let σ be any linear extension of P> (as
defined in Lemma 1). On query v ∈ V the value gσ(v) is computed by performing
a (directed) DFS on H that traverses the subgraph of H induced by RH(v).
The DFS uses the CentLocal algorithm for obr to determine the orientation
of each incident edge and continues only along outward-directed edges2. The

2 Given that the CentLocal algorithm for obr works by running a CentLocal

coloring algorithm, one can actually use the latter algorithm directly.

Centralized local and Distributed Local Algorithms 405

value of gσ(v) is determined when the DFS backtracks from v. Since rmax
H =

ΔO(Δ2·logΔ), by multiplying the number of probes of the obr algorithm and
rmax
H , we obtain that ΔO(Δ2 logΔ) · log∗ n probes suffice.

Corollary 6. There are deterministic, stateless CentLocal[ΔO(Δ2 logΔ) ·
log∗ n] algorithms for (Δ + 1)-vertex coloring, maximal independent set, and
maximal matching.

References

1. Alon, N., Rubinfeld, R., Vardi, S., Xie, N.: Space-efficient local computation
algorithms. In: SODA, pp. 1132–1139 (2012)

2. Barenboim, L., Elkin, M.: Distributed (Δ+1)-coloring in linear (in Δ) time.
In: STOC, pp. 111–120 (2009)

3. Cole, R., Vishkin, U.: Deterministic coin tossing with applications to optimal par-
allel list ranking. Inf. and Cont. 70(1), 32–53 (1986)

4. Even, G., Medina, M., Ron, D.: Best of two local models: Local centralized and
local distributed algorithms. CoRR, abs/1402.3796 (2014)

5. Goldberg, A.V., Plotkin, S.A., Shannon, G.E.: Parallel symmetry-breaking in
sparse graphs. SIDMA 1(4), 434–446 (1988)

6. Kuhn, F.: Weak graph colorings: distributed algorithms and applications.
In: SPAA, pp. 138–144. ACM (2009)

7. Linial, N.: Locality in distributed graph algorithms. SICOMP 21(1), 193–201 (1992)
8. Mansour, Y., Rubinstein, A., Vardi, S., Xie, N.: Converting online algorithms to local

computation algorithms. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R.
(eds.) ICALP2012, Part I. LNCS, vol. 7391, pp. 653–664. Springer, Heidelberg (2012)

9. Mansour, Y., Vardi, S.: A local computation approximation scheme to maximum
matching. In: Raghavendra, P., Raskhodnikova, S., Jansen, K., Rolim, J.D.P. (eds.)
RANDOM 2013 and APPROX 2013. LNCS, vol. 8096, pp. 260–273. Springer,
Heidelberg (2013)

10. H.: N Nguyen and K. Onak. Constant-time approximation algorithms via local
improvements. In: FOCS, pp. 327–336 (2008)

11. Onak, K., Ron, D., Rosen, M., Rubinfeld, R.: A near-optimal sublinear-time algo-
rithm for approximating the minimum vertex cover size. In: SODA, pp. 1123–1131
(2012)

12. Panconesi, A., Rizzi, R.: Some simple distributed algorithms for sparse networks.
Dist. Comp. 14(2), 97–100 (2001)

13. Panconesi, A., Sozio, M.: Fast primal-dual distributed algorithms for scheduling
and matching problems. Dist. Comp. 22(4), 269–283 (2010)

14. Parnas, M., Ron, D.: Approximating the minimum vertex cover in sublinear time
and a connection to distributed algorithms. Theo. Comp. Sci. 381(1), 183–196
(2007)

15. Peleg, D.: Distributed computing: a locality-sensitive approach, vol. 5. SIAM (2000)
16. Reingold, O., Vardi, S.: New techniques and tighter bounds for local computation

algorithms. CoRR, abs/1404.5398 (2014)
17. Rubinfeld, R., Tamir, G., Vardi, S., Xie, N.: Fast local computation algorithms.

In: ICS, pp. 223–238 (2011)
18. Suomela, J.: Survey of local algorithms. ACM Comput. Surv. 45(2), 24:1–24:40

(2013)
19. Yoshida, Y., Yamamoto, M., Ito, H.: Improved constant-time approximation algo-

rithms for maximum matchings and other optimization problems. SICOMP 41(4),
1074–1093 (2012)

Bicriteria Data Compression:
Efficient and Usable�

Andrea Farruggia, Paolo Ferragina, and Rossano Venturini

Dipartimento di Informatica, University of Pisa, Pisa, Italy
{farruggi,ferragina,rossano}@di.unipi.it

Abstract. Lempel-Ziv’s LZ77 algorithm is the de facto choice for com-
pressing massive datasets (see e.g., Snappy in BigTable, Lz4 in Cassan-
dra) because its algorithmic structure is flexible enough to guarantee
very fast decompression speed at reasonable compressed-space occupancy.
Recent theoretical results have shown how to design a bit-optimal LZ77-
compressor which minimizes the compress size and how to deploy it in
order to design a bicriteria data compressor, namely an LZ77-compressor
which trades compressed-space occupancy versus its decompression time
in a smoothed and principled way. Preliminary experiments were promis-
ing but raised many algorithmic and engineering questions which have to
be addressed in order to turn these algorithmic results into an effective
and practical tool. In this paper we address these issues by first designing
a novel bit-optimal LZ77-compressor which is simple, cache-aware and
asymptotically optimal. We benchmark our approach by investigating
several algorithmic and implementation issues over many dataset types
and sizes, and against an ample class of classic (LZ-based, PPM-based
and BWT-based) as well as engineered compressors (Snappy, Lz4, and
Lzma2). We conclude noticing how our novel bicriteria LZ77-compressor
improves the state-of-the-art of fast (de)compressors Snappy and Lz4.

1 Introduction

The design of high-performing distributed storage systems — such as BigTable
by Google [6], Cassandra by Facebook [3], Hadoop by Apache — requires the
design of lossless data compressors which achieve effective compression ratio and
very efficient decompression speed. The scientific literature abounds of solutions
for this problem, named “compress once, decompress many times”, but com-
pressors running behind those large-scale storage systems are highly engineered
solutions which only merely resemble the scientific results from which they are
derived. The reason relies in the fact that theoretically efficient compressors are
designed and analyzed in the RAM model, while their performance in practice
is significantly conditioned by the numerous cache/IO misses induced by their
decompression algorithms. This poor behavior is most prominent in the BWT-
based compressors, such as Bzip2 and its derivatives [1,5], and it is not negligible
in the LZ-based approaches (dating back to [19, 20]).
� This work was partially supported by MIUR of Italy under the project PRIN ARS

Technomedia.

A.S. Schulz and D. Wagner (Eds.): ESA 2014, LNCS 8737, pp. 406–417, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

Bicriteria Data Compression: Efficient and Usable 407

This motivated the software engineers to devise variants of Lempel-Ziv’s orig-
inal proposal (e.g., Snappy by Google, Lz4) which inject several software tricks
having beneficial effects on memory-access locality at the cost of, however, in-
creasing the compressed size. These compressors expanded further the known
jungle of space/time trade-offs,1 thus posing the software engineers in front of
a choice: either achieve effective compression-ratios, possibly sacrificing the de-
compression speed (as it occurs in the theory-based results [8, 10, 11]); or try to
trade compressed space by decompression time by adopting a plethora of pro-
gramming tricks, which nonetheless waive any mathematical guarantees on their
final performance (as it occurs in Snappy and Lz4).

Recently, it has been shown [7] that it is possible to design a bicriteria LZ77-
compressor which allows to trade in a smoothed and principled way both the
space occupancy (in bits) of the compressed file and the time cost of its de-
compression, by taking into account the underlying memory hierarchy. The key
result was to design an algorithm that determines efficiently an LZ77-parsing
of the input file S which minimizes the compressed-space occupancy (in bits),
provided that its decompression time is bounded by a value T (in seconds) fixed
in advance. Symmetrically, it is possible to exchange the role of the two com-
putational resources. This problem has been solved by rephrasing the bicriteria
LZ77-parsing problem into the well-known Weight-constrained shortest path prob-
lem (WCSPP) over a weighted DAG, where the goal is to search for a path whose
decompression-time is at most T and whose compressed-space is minimized. This
allowed to design an algorithm which solves the problem in O(n log2 n) time and
O(n) working space, thus improving significantly all previously known results
for the general version of WCSPP, which require Ω(n2) time.

Very preliminary experiments [7] have shown the potential of the bicriteria
LZ77-compressor (shortly, Bc-Zip) whose decompression speed is close to those
one of Snappy and Lz4 (i.e., the fastest ones) and compression ratio is close to
those of BWT-based and LZMA compressors (i.e., the most succinct ones). In this
paper we address the following issues, which prevent the bicriteria strategy to
be successful in practical settings:

– Bc-Zip deploys as a subroutine the bit-optimal LZ77-compressor devised
in [11], which finds a LZ77-parsing that minimizes the compressed output
(cfr. [12, 16]). Unfortunately the compressor implemented in [11], and used
in [7], was slow and not optimal in asymptotic sense, though it was superior
to the heuristics introduced in [2, 13, 17].

– the decompression efficiency of Bc-Zip relies heavily on the estimation of
LZ77 decompression time. This was addressed in [11] by proposing an inter-
polation approach which required a “training” dataset and deployed many
parameters, losing accuracy and generalization.

The main contributions of this paper are the following:

– we propose a novel bit-optimal LZ77-compressor which is simpler, cache-
aware and asymptotically optimal, thus resulting faster in practice

1 See e.g., http://mattmahoney.net/dc/text.html .

http://mattmahoney.net/dc/text.html

408 A. Farruggia, P. Ferragina, and R. Venturini

(see Section 3). This represents an important step in closing the compres-
sion time gap with the widely known compressors Gzip, Bzip2 and Lzma2.

– we introduce a new model for estimating the decompression time. This
model is based on few measurable parameters that depend only on the
underlying machine and, thus, result independent of the file to be com-
pressed/decompressed. Given this model we design a calibration tool which
automatically derives the model, achieving an average error of ≈ 5.6%; this
is quite satisfactory according to [14]. Due to space limitations, its technical
discussion is deferred to the journal version of this paper.

– we finally evaluate the novel bit-optimal LZ77-compressor and Bc-Zip by
investigating many algorithmic and implementation issues (see Section 4):
integer encoders, block lengths, dataset types, ample set of classic (LZ-based,
PPM-based and BWT-based) as well as engineered compressors (Snappy,
Lz4, Lzma2 and Ppmd). We perform many experiments aimed at measuring
the impact of those features, so leading to the design of a compressor that
surpasses the decompression performance of well engineered and widely used
compressor Lz4 on three out of four datasets.

The ultimate result achieved by this paper is a deep and variegate understand-
ing of the novel bicriteria compression technology both in terms of efficacy and
efficiency issues under various experimental scenarios. We will make available
to the scientific community this large implementation effort by providing the
datasets, the whole experimental setting and the C++ code of Bc-Zip.

2 Background

The bit-optimal LZ77-parsing problem asks for a LZ77 parsing of a text S[1, n−1]
whose compressed representation requires minimum space (in bits).

A LZ77-parsing of a text S is a decomposition of S in m substrings (phrases)
of the form p = S[s, s+�−1] such that either p = S[s] is a single character (hence
� = 1), or it is � > 1 and thus S[s, s+�−1] = S[s−d, s−d+�−1] is a text substring
of length � copied from d positions before in S. Clearly, many candidate copies
might occur in S, each having a different length and distance, so the possible
LZ77-parsings of S may be numerous. Each of these LZ77-parsings induces a
compressed version of S which is obtained by, first, substituting each phrase p
with the pair 〈0, S[s]〉, if p is a single character, and with 〈d, �〉, otherwise; and
then encoding each of those pairs with a pair of variable-length binary codewords
which are computed by means of two (possibly different) integer encoders encd

and enc�. For the sake of clarity, we drop the subscripts whenever the argument,
either distance or length, allows us to disambiguate the encoder in use.

An important assumption of the bit-optimal approach, as of [9, 11], is that
the integer encoders satisfy the so-called non-decreasing cost property, which is
satisfied by most encoders adopted in modern compressors. An integer encoder
enc satisfies the non-decreasing cost property if |enc(n)| ≤ |enc(n′)| for all n ≤ n′.
Moreover, these encoders must be stateless, that is, they must always encode the
same integer with the same bit-sequence.

Bicriteria Data Compression: Efficient and Usable 409

More formally, given a text S and a pair of encoders enc� and encd, the bit-
optimal LZ77-parsing problem asks thus for a LZ77 parsing of S which minimizes
the compressed size when using enc� and encd as integer encoders. Authors of [9,
11] modeled the bit-optimal LZ77-parsing problem as a single-source shortest path
problem over a graph G, consisting of n = |S| + 1 nodes (one per S’s character,
plus a sink node) labeled with the integers {1, . . . , n}. In particular, there is (i) a
node i associated to each character S[i]; (ii) an edge (i, i+1) for every i < n, and
(iii) an edge (i, j + 1) iff the substring S[i, j] occurs earlier in the text. It follows
that each edge (i, j) is in bijective correspondence with a candidate phrase of
the LZ77-parsing of S.

This graph has a number of properties: (i) it is directed and acyclic, and
(ii) there is a bijection between LZ77-parsings of S and paths from 1 to n in G.
Since each edge is associated to a phrase, it can be weighted with the length, in
bits, of its codeword. In particular, edges (i, i + 1) are assumed to have constant
weight, since they correspond to the single-character phrase 〈0, S[i]〉; while edges
(i, j +1) are weighted with the value |enc(d)|+ |enc(�)| provided that 〈d, �〉 is the
associated codeword. Given that G is a DAG, computing a shortest path from 1
to n is simple and takes O(m) time and space. But there are strings for which
m = Θ(n2), so this algorithm is not practical even for files of a few tens of MiBs.

Starting from these premises, this problem was attacked in [9, 11] by intro-
ducing two main ideas: (i) prune G to a significantly smaller subgraph which
preserves the shortest path of G from nodes 1 to n; (ii) generate on-the-fly this
subgraph, thus minimizing the working space of the shortest-path computation.

The pruning strategy consists of retaining, for each node, only the maximal
edges, that is, edges of maximum length among those with equal cost (in bits,
according to enc). It has been shown [11] that the number of maximal edges
depends on the structure of encd and enc�, but it is O(n log n) for the vast
majority of encoders. The key algorithmic issue was then to show how to generate
the maximal edges outgoing from a given node i, incrementally along with the
shortest-path computation, taking O(1) amortized time per edge and only O(n)
auxiliary space. This task is called Forward Star Generation (shortly, FSG).

The algorithm originally described in [11] involves the construction of suffix ar-
rays and compact tries of several substrings of S (possibly transformed in proper
ways) so that, although optimal asymptotically, this algorithm is not practical.
In the next section we show a new algorithm which is optimal asymptotically
and much simpler than the algorithm proposed in [11], since it is based solely
on lists and their sequential scans.

3 Bit-Optimal Compression: Faster and Practical

The Forward Star Generation task asks to compute all maximal edges spurring
from a node i only when needed, and discarded afterwards. An edge is maximal
if it is either d-maximal or �-maximal (or both). An edge spurring from vertex
i and represented by a LZ77 phrase 〈d, �〉 is d-maximal if it is the longest LZ77
phrase taking at most |enc(d)| bits for representing its distance component; �-
maximality is defined similarly. Finding �-maximal edges is easy once d-maximal

410 A. Farruggia, P. Ferragina, and R. Venturini

edges are known, since the strategy consists on “splitting” d-maximal phrases
according to the cost classes of enc�, so here we concentrate on finding those
d-maximal edges.

Let us now consider a cost class of encd, that is, the maximal sub-range [l, r]
of [1, n] such that each integer between l and r takes exactly c bits by using
encoder encd, for some c. There is one d-maximal edge for each cost class.

Let us take the d-maximal edge, say (i, i + �), for the cost class [l, r]. We can
infer that the substring S[i, i+�] is the longest substring starting at i and having
a copy at distance within [l, r] because the subsequent edge (i, i + � + 1) denotes
a longer substring whose copy-distance must therefore occur in a farther back
subrange (because of d-maximality).

Maximal edges leaving from i can be found by considering, for each cost class,
the suffix array of S restricted to positions i and [i − r, i − l], which we denote as
Rsa. In fact, the d-maximal edge can be found by looking for the lexicographic
predecessor and successor of S[i, n] in Rsa and taking the one with the longest
common prefix to S[i, n]. The selected suffix thus is the copy-reference of the
corresponding d-maximal edge. This strategy, however, is inefficient, because Rsa
cannot be computed in less than Ω(r−l) = Ω(n/ log n) time when the number of
d-maximal edges is O(log n). We overcome efficiency problems related to building
indexing data structures (like the Rsa) by computing en ensemble the d-maximal
edges of O(r − l) vertexes. To do that, we extend the simple strategy outlined
above by looking simultaneously for predecessors/successors of a set of suffixes.

More precisely, let us denote B = [i, i + r − l] as the range of positions for
which we would like to determine the d-maximal edges, and W = [i−r, i+r−2l]
the set of potential back-references. Notice that |W | = 2(r − l), so |B ∪ W | is
at most 3(r − l) (less if they overlap). Let us then denote Rsa as the suffix
array restricted to positions in B ∪ W . The main idea is to find all successors
of suffixes starting in B with a left-to-right scan of Rsa, and all predecessors
with a right-to-left scan. During the scan, we keep a queue Q of positions in B
for which we did not have found yet their matching predecessor/successor. The
queue is kept sorted in ascending order. So, let us assume the element of Rsa
currently examined is in W but not in B. This means that it may be a successor
for some of the positions in Q, and so we have to determine those positions and
remove them from the queue. We underline that not every position in Q may
apply, because the distance between the current element in W and the element
in the queue may be greater than r. However, since positions in Q are sorted
by increasing position, those can be found in optimal O(1) time per match by
examining the queue starting from the first element, and stopping whenever the
current element in the queue has distance greater than r.

Let us now consider the case when the currently examined element in Rsa is a
position j in B. This implies that we have to insert j in Q while maintaining it
sorted. This operation cannot be performed in constant time, since the element
may be inserted in the middle of Q. However, since distance between positions
in B cannot be greater than r, positions in Q greater than j can be matched
with j itself and removed from Q, so j can be appended at the bottom of the

Bicriteria Data Compression: Efficient and Usable 411

queue in constant time. It is clear that the time complexity is proportional to
the number of examined/discarded elements in/from Q, which is |B|, plus the
cost of scanning Rsa, which is at most |W |+ |B|. This implies that each maximal
edge is found in amortized O(1) time.

An important part is the efficient and on-the-fly generation of the Rsa of
suffixes starting in W ∪ B. Due to space limitations, we only sketch two optimal
solutions, which will be illustrated in the journal version of this paper. The first
one, general but less practical, is based on the Sorted Range Reporting data
structure [4]. The other solution makes some (generally satisfied) assumptions
about the integer encoders in use, and it is yet optimal but more practical
because it is based only on lists scanning. The last one is at the core of our
implementation of the Bc-Zip compressor tested in Section 4.

4 Experiments

In this section we show the effectiveness of this novel “optimization approach”
over LZ77-based compression in a throughout and conclusive way. Due to space
limitations, here we will only highlight the most important results, omitting
many figures and technical details. A more thorough illustration will be available
in the journal version of this paper.

In the first part of this section we will evaluate the advantage of the bit-optimal
parsing against Greedy, the most popular LZ77 parsing strategy, and many high-
performance compressors. We will show that the bit-optimal parsing has a clear
advantage over heuristically highly engineered compressors, thus justifying the
interest in the technology. We will also show that the novel Fast-FSG algorithm
exposed in Section 3 helps to bring down considerably the compression time,
thus making bit-optimal parsing a solid and practical technology.

In the second part we will compare bicriteria data compression against the
most common approach of trading decompression time for compression ratio. In
fact, many practical LZ77 implementations (e.g., Gzip, Snappy, Lz4 etc.) employ
the bucketing strategy (that is, splitting the file in blocks (buckets) of equal
size which are individually compressed and then concatenated to produce the
compressed output) or a moving window to (hopefully) lower decompression
time by limiting the maximum distance at which a phrase may be copied, thus
forcing spatial locality. Interestingly enough, we will show that this approach is
not the best one to speed up the file decompression because basically it takes into
account neither integer decoding time nor the length of the copied string, which
may be relevant in some cases and could amortize the cost of long but far copies.
We will validate this argument by also introducing a decompression time model
which properly infers the decompression time of a LZ77-parsing from a small set
of features (such as number of copies, distances distribution, etc). This model
will be used in order to efficiently determine proper edge-costs in the graph over
which the WCSPP is solved.

We will finally show the vast time/space trade-off achievable with the bicrite-
ria strategy, which improves simultaneously both the most succinct (like Bzip2)
and the fastest (like Lz4) compressors.

412 A. Farruggia, P. Ferragina, and R. Venturini

Experimental settings: We implemented the compressor in C++11, and we com-
piled it with Intel C++ Compiler 14 with flags -O3 -DNDEBUG -march=native.
According to the applicative scenario we have in mind, we used two machines to
carry out the experiments. The first machine, used in compression, is equipped
with AMD Opteron 6276 processors, with 128GiB of memory; the second ma-
chine, used in decompression, is equipped with an Intel Core i5-2500, with 8GiB
of DDR3 1333MHz memory. Both machines run Ubuntu 12.04.

Experiments were executed over 1GiB-long (230 bytes) datasets of differ-
ent types: (i) Census: U.S. demographic informations in tabular format (type:
database); (ii) Dna: collection of families of genomes (type: highly repetitive
biological data); (iii) Mingw: archive containing the whole mingw software distri-
bution (type: mix of source codes and binaries)2; (iv) Wikipedia: dump of English
Wikipedia (type: natural language). Each dataset have been obtained by taking
a random chunk of 1GiB from the complete files. The whole experimental setting
(datasets and C++ code) is available at http://acube.di.unipi.it/bc-zip/.

We experimented various integer encoders for the LZ77 phrases: Variable Byte
(VByte), 4-Nibble (Nibble), and Elias’ γ (Gamma) and δ (Delta) [15,18]. We also
introduce two variants of those encoders, called VByte-Fast and T-Nibble, which
perform particularly well on LZ77 phrases.

In the design of our compressor we modified the LZ77 scheme to allow the
encoding of runs of literals in just one phrase. This twist has beneficial effects on
both decompression speed and compression ratio on incompressible files when
using the bit-optimal strategy, and introduces a very effective way of controlling
the space/time trade-off when using the Bicriteria strategy.

Speed improvements over the novel bit-optimal compressor: In Figure 1 we com-
pare the running time of the bit-optimal LZ77 algorithm when employing either
the original subroutine for generating maximal edges (shortly FSG), as proposed
in [11], or our novel Fast-FSG algorithm, described in Section 3. Figure 1 shows
the results only for dataset Wikipedia, as the figures do not change significantly
on the other datasets. We compared the compression ratios produced by two
integer encoders — namely, Gamma and VByte-Fast — which are the ones that
yield the lowest and highest performance gaps.

In the plots, Fast-FSG and FSG significantly diverge in running time, reflecting
the different time complexities (constant vs O(log b) per edge, where b is the size
of the bucket). In the Gamma case, the running time for the 1 MiB bucket-size
are nearly the same for FSG and Fast-FSG, while the gap is already ≈ 4x for a
1GiB bucket-size. In the VByte-Fast case, gap ranges from ≈ 1.3x to ≈ 2.5x.

The improvements introduced by Fast-FSG make the bit-optimal LZ77-comp-
ressor much closer to the widely used and top performing compressors in compres-
sion time. In fact, our bit-optimal construction is on-par or faster than Lzma2.

Bit-optimal performance: According to our experiments, integer encoders T-
Nibble and VByte-Fast are the most interesting in terms of compression ratio
2 Thanks to Matt Mahoney – http://mattmahoney.net/dc/mingw.html.

http://acube.di.unipi.it/bc-zip/
http://mattmahoney.net/dc/mingw.html

Bicriteria Data Compression: Efficient and Usable 413

 50

 100

 150

 200

 250

 300

 350

 400

1 4 16 64 256 1024

Ti
m

e
(m

in
ut

es
)

Bucket size (MB)

(a) Gamma

 50
 51
 20
 21
 30
 31
 40
 41
 10

5 4 56 64 216 5024

Ti
m

e
(m

in
ut

es
)

Bucket size (MB)

(b) VByte-Fast

FSG Fast-FSG

Figure 1. Comparison between the novel Fast-FSG and the previously known FSG in
parsing the dataset Wikipedia by using VByte-Fast and Gamma as integer encoders. The
construction time is reported by varying the bucket size.

and decompression speed (respectively, the most succinct and the fastest). For
this reason we restrict our attention to these two encoders in the next experi-
ments. In our tests, the bit-optimal strategy produces parsing which are more
than 10% smaller on average than greedy (≈ 11.5% with VByte-Fast, ≈ 14.6%
with T-Nibble), in which the rightmost longest match is always selected, while
being ≈ 15% faster at decompression. Working space was ≈ 59GiB of main
memory.

Using bit-optimal in lieu of greedy means that we can use a faster encoder with-
out sacrificing compression ratios. Bit-optimal achieves this result by “adapting”
parsing choices to the ideal symbol probability distribution of the underlying
integer encoders.

Table 1 compares the bit-optimal strategy (called LzOpt) against the best
known compressors to date. With respect to the most space-efficient compressors
(Lzma2, Bzip2, Ppmd, and BigBzip), compression ratio is, overall, only slightly
worse: the gap with Lzma2, the most succinct compressor, ranges from 15% (Cen-
sus) to 25% (Dna), with Mingw representing a situation in which the combination
of bit-optimal parsing plus literal encodings let LzOpt be the most succinct com-
pressor. Notice that Lzma2 reports better compression ratios than LzOpt due to
its choice of a different, statistical encoder, whereas LzOpt is restricted to the
use of stateless ones (see discussion on Section 2). On the other hand, LzOpt
decompression time is order of magnitudes better than these approaches.

Comparing with the fastest compressors (Snappy and Lz4), parsings obtained
with LzOpt are way more succinct: the relative gap of those compressors in com-
pressed space ranges from ≈ 60% (Census) to over 1, 300% (Dna). Decompression
speed is already very competitive, especially if the slightly less succinct VByte-
Fast encoder is taken into account. We will close the speed gap w.r.t. Snappy and
Lz4 with the Bicriteria Data Compression scheme.

414 A. Farruggia, P. Ferragina, and R. Venturini

Table 1. Comparison between bit-optimal compressor (LzOpt), bicriteria compressor
(Bc-Zip) and state-of-the-art data compressors. For each dataset we highlight the pars-
ing having the closest decompression time to Lz4.

Dataset Compressor Compressed size Decompression time
(MBytes) (msecs)

Census

LzOpt (T-Nibble) 38.08 776
LzOpt (VByte-Fast) 40.19 572

Bc-Zip (VByte-Fast, 556 ms) 40.38 549
Bc-Zip (VByte-Fast, 494 ms) 41.63 506
Bc-Zip (VByte-Fast, 454 ms) 44.42 462

Gzip 48.23 2, 472
Lzma2 33.03 2, 652
Snappy 123.68 634
Lz4 61.82 454
Bzip2 39.96 15, 054
BigBzip 33.28 71, 000
Ppmd 38.70 38, 000

Mingw

LzOpt (T-Nibble) 179.01 1, 586
LzOpt (VByte-Fast) 192.34 954

Bc-Zip (VByte-Fast, 920 ms) 193.77 845
Bc-Zip (VByte-Fast, 726 ms) 205.56 695
Bc-Zip (VByte-Fast, 461 ms) 293.62 472

Gzip 344.47 5, 534
Lzma2 187.68 8, 323
Snappy 461.00 891
Lz4 384.67 726
Bzip2 317.96 32, 469
BigBzip 222.22 152, 000
Ppmd 245.54 414, 000

Dataset Compressor Compressed size Decompression time
(MBytes) (msecs)

Dna

LzOpt (T-Nibble) 23.78 598
LzOpt (VByte-Fast) 25.14 482

Bc-Zip (VByte-Fast, 455 ms) 27.97 468
Bc-Zip (VByte-Fast, 418 ms) 47.59 432
Bc-Zip (VByte-Fast, 381 ms) 75.08 395

Gzip 245.25 5, 815
Lzma2 17.62 1, 681
Snappy 448.67 1, 301
Lz4 333.74 1, 007
Bzip2 45.79 34, 157
BigBzip 42.02 152, 000
Ppmd 196.36 129, 000

Wikipedia

LzOpt (T-Nibble) 175.86 3, 080
LzOpt (VByte-Fast) 191.19 1, 748

Bc-Zip (VByte-Fast, 1306 ms) 205.89 1460
Bc-Zip (VByte-Fast, 973 ms) 270.35 1106
Bc-Zip (VByte-Fast, 862 ms) 316.18 986

Gzip 269.36 6, 154
Lzma2 166.16 9, 871
Snappy 422.80 1, 093
Lz4 309.51 862
Bzip2 214.65 29, 037
BigBzip 150.88 151, 000
Ppmd 148.27 283, 000

Effectiveness of the bucketing strategy: Overall, experiments confirm that com-
pression ratio does improve with a longer bucket size, but the exact improvement
does depend on the peculiarities of the data being compressed. This implies that
trading decompression time vs compression ratio via the choice of a proper bucket
size requires a deep understanding of the data being compressed. In Figure 2 we
show the decompression time when varying the bucket size. We only plot the
results for Wikipedia and Dna because they suffice to capture the range of be-
haviors shown by the bit-optimal LZ77-compressor over our four datasets. In
particular, we mention that the behavior on Census and Mingw is similar to that
on Wikipedia, with the former reaching with VByte-Fast a decompression speed
up to 2, 200 MiB/sec with 4-MiB buckets that decreases to 1, 800MiB/sec with 1-
GiB buckets, while over Mingw the decompression speed is about 1, 100MiB/sec
for any bucket size. For both datasets, the speed is roughly halved when using T-
Nibble, the reason being the word-boundary alignment of VByte-Fast’s codewords
which removes the need of bit-shifting them when reading from memory.

Figure 2 also shows that the dependency between the bucket size and the
decompression speed of the bit-optimal LZ77-output highly depends on the char-
acteristics of the data being compressed, but (possibly) in a counter-intuitive way.
In Wikipedia, it generally decreases with larger bucket sizes, with a peek some-
where near 4MiB, instead of 1MiB; in Dna the decompression speed improves
with larger bucket sizes. In Dna, which is highly repetitive, there are far back-
references which copy long portions of a genome which compensate the cache

Bicriteria Data Compression: Efficient and Usable 415

 0

 500

 1000

 1500

 2000

 2500

 3000

1 4 16 64 256 1024

Ti
m

e
(m

se
cs

)

Bucket size (MB)

(a) Dna

 1000
 1200
 1400
 1600
 1800
 2000
 2200
 2400
 2600
 2800

1 4 16 64 256 1024

Ti
m

e
(m

se
cs

)

Bucket size (MB)

(b) Wikipedia

T-Nibble VByte-Fast

T-Nibble (Predicted) VByte-Fast(Predicted)

Figure 2. Decompression time by varying the bucket size on Dna and Wikipedia. The
plot reports also the time predicted by our decompression-time model and a band
around the decompression time capturing a relative error of 10%.

miss penalty induced by the copy (fewer phrases). On the other hand, Wikipedia
is less repetitive and so far back-references added by larger windows are not
much long, save little space, and thus they do not compensate the miss penalty
incurred by their decompression. It is evident now that if we want to trade in
a principled way decoding time versus compressed space, and thus ultimately
improve the design of the bicriteria compressor Bc-Zip, we need to precisely
explain and, thus, predict these phenomena. We designed a time model (full
description in the journal version) which is capable of predicting decompression
time with an average precision of ≈ 5.6%, which is a remarkable achievement
as accurately predicting running times (that is, achieving an average precision
of 10% or better) is notoriously an hard task [14]. In Figure 2 we plotted the
predicted decompression time alongside actual decompression times. This model
takes into account the cache miss latency to access distant substrings, the phrase
decoding and the copying time. Thanks to this time model, Bc-Zip is capable
of trading decompression time for compression ratio in a smooth and consistent
way, as shown in the next paragraph.

Bicriteria compressor: Our implementation of the Bc-Zip compressor largely
follows the scheme exposed in [7], using the Fast-FSG algorithm exposed in Sec-
tion 3 and some minor algorithmic twists to accelerate compression. In our tests
we compressed each dataset several times, for both VByte-Fast and T-Nibble, with
time bounds ranging from the decompression time of the time-optimal parsing to
the decompression time of the space-optimal one. In this way we can determine
the whole range of trade-offs offered by Bc-Zip. Moreover, in order to directly
compare Bc-Zip against the state-of-the-art compressors adopted in storage sys-
tems (such as Hadoop and BigTable), we compressed each dataset by setting its
decompression-time bound (or compressed-space bound) as the decompression

416 A. Farruggia, P. Ferragina, and R. Venturini

 0
 500

 1000
 1500
 2000
 2500

 176 224 270 331 432 1024

Ti
m

e
(m

se
c)

Compressed size (MB)

Wikipedia

(a) Wikipedia

 200
 400
 600
 800

 1000
 1200
 1400

 179 227 294 385 874

Ti
m

e
(m

se
c)

Compressed size (MB)

Mingw

(b) Mingw

VByte-Fast T-Nibble Lz4

Figure 3. Space/time trade-off curve obtained with Bc-Zip, by varying the decompres-
sion time bound, and Lz4

time of the parsings generated by Lz4 (highlighted entries in Table 1). The aver-
age time model accuracy is ≈ 4.5% (VByte-Fast ≈ 5.4%, T-Nibble ≈ 3.7%).

Table 1 and Figure 3 show the large range of trade-offs obtained by Bc-Zip.
For instance, in Mingw spans from ≈ 300 msec to ≈ 1, 400 msec time-wise,
and from ≈ 976MB to ≈ 179MB space-wise. Another interesting aspect is that
T-Nibble is competitive against VByte-Fast only when maximum compression
is required, otherwise the latter delivers more succinct parsings for the same
decompression time. This is due to T-Nibble’s relatively slow decoding, which
forces the compressor to trade LZ77 copies for literals in order to meet the
decompression time budget. This is in contrast with VByte-Fast’s fast decoder,
which does not impact much on decompression time and thus the compressor
only cares about the cache behavior by substituting cache miss-inducing copies
for a sequence of miss-free ones, a more succinct time-saving strategy.

Another interesting observation is that varying the decompression time im-
pacts little on compressed size when more succinct parsings are considered, while
it may impact considerably when less space-efficient parsings are taken into ac-
count (with varying degree: more accentuate with Mingw, less with Wikipedia).
This provides a quantitative explanation of the natural question that motivated
the work in [7], namely “who cares whether the compressed file is slightly longer
if this allows to improve significantly the decompression speed?”. The present
paper shows that the space/time trade-offs do not change linearly but, instead,
a small change in one resource may induce a significant change in the other,
unpredictably.

Moreover, Bc-Zip is extremely competitive with Lz4, since it clearly dominates
it in three out of four datasets (Census, Dna, Mingw), while in Wikipedia it is very
close, being only ≈ 12% slower and ≈ 2% less succinct than Lz4. Overall, Bc-Zip
performs more consistently thanks to its well-principled design, and surpasses
the performance of well engineered, and widely used, compressor Lz4 on three out
four datasets. We therefore believe that this is a nice success case of a win-win
situation between algorithmic theory and engineering.

Bicriteria Data Compression: Efficient and Usable 417

References

1. Adjeroh, D., Bell, T., Mukherjee, A.: The Burrows-Wheeler Transform: Data
Compression, Suffix Arrays, and Pattern Matching. Springer (2008)

2. Békési, J., Galambos, G., Pferschy, U., Woeginger, G.J.: Greedy algorithms for
on-line data compression. J. Algorithms 25(2), 274–289 (1997)

3. Borthakur, D., et al.: Apache Hadoop goes realtime at Facebook. In: SIGMOD,
pp. 1071–1080 (2011)

4. Brodal, G.S., Fagerberg, R., Greve, M., López-Ortiz, A.: Online sorted range re-
porting. In: Dong, Y., Du, D.-Z., Ibarra, O. (eds.) ISAAC 2009. LNCS, vol. 5878,
pp. 173–182. Springer, Heidelberg (2009)

5. Burrows, M., Wheeler, D.J.: A block-sorting lossless data compression algorithm.
Tech. Rep. Digital (1994)

6. Chang, F., et al.: Bigtable: A distributed storage system for structured data. ACM
Transactions on Computer Systems 26(2) (2008)

7. Farruggia, A., Ferragina, P., Frangioni, A., Venturini, R.: Bicriteria data
compression. In: SODA, pp. 1582–1595 (2014)

8. Ferragina, P., Giancarlo, R., Manzini, G., Sciortino, M.: Boosting textual
compression in optimal linear time. Journal of the ACM 52, 688–713 (2005)

9. Ferragina, P., Nitto, I., Venturini, R.: On the bit-complexity of Lempel-Ziv
compression. In: SODA, pp. 768–777 (2009)

10. Ferragina, P., Nitto, I., Venturini, R.: On optimally partitioning a text to improve
its compression. Algorithmica 61(1), 51–74 (2011)

11. Ferragina, P., Nitto, I., Venturini, R.: On the bit-complexity of Lempel-Ziv com-
pression. SIAM Journal on Computing (SICOMP) 42(4), 1521–1541 (2013)

12. Katajainen, J., Raita, T.: An analysis of the longest match and the greedy heuristics
in text encoding. Journal of the ACM 39(2), 281–294 (1992)

13. Klein, S.T.: Efficient optimal recompression. Computer Journal 40(2/3), 117–126
(1997)

14. Huang, L., Jia, J., Yu, B., Chun, B., Maniatis, P., Naik, M.: Predicting execu-
tion time of computer programs using sparse polynomial regression. In: NIPS,
pp. 883–891 (2010)

15. Salomon, D.: Data Compression: the Complete Reference, 4th edn. Springer (2006)
16. Schuegraf, E.J., Heaps, H.S.: A comparison of algorithms for data base compres-

sion by use of fragments as language elements. Information Storage and Retrieval
10(9-10), 309–319 (1974)

17. Smith, M.E.G., Storer, J.A.: Parallel algorithms for data compression. Journal of
the ACM 32(2), 344–373 (1985)

18. Witten, I.H., Moffat, A., Bell, T.C.: Managing Gigabytes: Compressing and Index-
ing Documents and Images. Morgan Kaufmann Publishers (1999)

19. Ziv, J., Lempel, A.: A universal algorithm for sequential data compression. IEEE
Transaction on Information Theory 23, 337–343 (1977)

20. Ziv, J., Lempel, A.: Compression of individual sequences via variable-rate coding.
IEEE Transactions on Information Theory 24(5), 530–536 (1978)

Amortized Õ(|V |)-Delay Algorithm for Listing

Chordless Cycles in Undirected Graphs�

Rui Ferreira1, Roberto Grossi2, Romeo Rizzi3, Gustavo Sacomoto4,5,
and Marie-France Sagot4,5

1 Microsoft Bing, UK
2 Università di Pisa, Italy

3 Università di Verona, Italy
4 INRIA Grenoble Rhône-Alpes, France

5 UMR CNRS 5558 - LBBE, Université Lyon 1, France

Abstract. Chordless cycles are very natural structures in undirected
graphs, with an important history and distinguished role in graph theory.
Motivated also by previous work on the classical problem of listing cycles,
we study how to list chordless cycles. The best known solution to list
all the C chordless cycles contained in an undirected graph G = (V,E)
takes O(|E|2+|E|·C) time. In this paper we provide an algorithm taking
Õ(|E|+ |V | · C) time. We also show how to obtain the same complexity
for listing all the P chordless st-paths in G (where C is replaced by P).

1 Introduction

A chordless (induced) cycle c in an undirected graph G is a cycle such that the
subgraph induced by its vertices contains exactly the edges of c. A chordless cycle
is called a hole when its length is at least 4. Similarly, a chordless (induced) path
π in G is such that the subgraph of G induced by π contains exactly the edges
of π. Both chordless cycles and paths are very natural structures in undirected
graphs with an important history, appearing in many papers in graph theory
related to chordal graphs, perfect graphs and co-graphs (e.g. [11,6,3]), as well as
many NP-complete problems involving them (e.g. [2,7,9]).

In this paper we consider algorithms for listing chordless cycles and st-paths in
an undirected graph G = (V,E), with n = |V | vertices and m = |E| edges, moti-
vated by the algorithms for listing cycles and st-paths that have been produced
by an active area of research since the early 70s [10,13,1].

In this paper we present an algorithm for listing all the C chordless cycles in an
undirected graph G = (V,E) in Õ(m+n·C) time, hence with an amortized Õ(n)
time delay, where Õ(f(n,m)) is used as a shorthand for O(f(n,m) polylog n).
We also show that the same algorithm may be used to list all the P chordless
st-paths in Õ(m + n · P) time, hence amortized Õ(n) time delay.

� GS and MFS were partially supported by the ERC programme FP7/2007-2013 /
ERC grant agreement no. [247073]10, and the French project ANR-12-BS02-0008
(Colib’read). RG was partially supported by Italian project PRIN 2012C4E3KT
(AMANDA).

A.S. Schulz and D. Wagner (Eds.): ESA 2014, LNCS 8737, pp. 418–429, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

Amortized Õ(|V |)-Delay Algorithm 419

There are very few algorithms in the literature for listing chordless cycles
and/or paths, where some of them have no guaranteed performance [12,16].
The most notable and elegant listing algorithm is by Uno [15], with a cost of
O(m2 + m · C) time for chordless cycles and O(m2 + m · P) time for chordless
st-paths, hence amortized O(m) time delay.

2 Preliminaries

Our graphs are finite, undirected, and simple, i.e. without self-loops or parallel
edges. Given a graph G = (V,E) with n = |V | vertices and m = |E| edges,
our task is to list out fast all its chordless cycles. We hence assume that G is
connected. Given V ′ ⊆ V , we denote by E〈V ′〉 := {uv ∈ E | u, v ∈ V ′} the
set of those edges which are contained in V ′. A graph G′ = (V ′, E′) is called a
subgraph of G if V ′ ⊆ V and E′ ⊆ E. The subgraph G′ is called induced (or
chordless) if E′ = E〈V ′〉. For any V ′ ⊆ V , we denote by G[V ′] := (V ′, E〈V ′〉)
the subgraph of G induced by V ′. Given e ∈ E, we denote by G\e := (V,E \{e})
the subgraph obtained from G by deleting the edge e. Given v ∈ V , we denote
by G \ v := G[V \ {v}] the subgraph obtained from G by first deleting all the
edges incident to v, and then removing the isolated vertex v. Given a vertex
u ∈ V , we denote by NG(u) := {v ∈ V | uv ∈ E} the neighbourhood of u, the
subscript is omitted whenever the graph is clear from the context.

A cycle is a connected graph in which every vertex has degree 2. A path is
a connected graph in which every vertex has degree 2 except for two degree-1
vertices, s and t, called the endvertices of the path. This is also called an st-path
and denoted by πst. Indeed, when building a path from s to t edge after edge,
it will be most natural, and more precise, to think like we are orienting the
traversed edges. For this reason, we will also write (u, v) for an edge that, when
building a path, has been traversed from u to v.

A (chordless) path (or cycle) of G is a (chordless) subgraph of G which is
a path (or cycle). We denote by C(G) the set of all chordless cycles in G. We
denote by P(G) (by Pst(G)) the set of all chordless paths (st-paths) in G. When
s = t, we get those cycles visiting s. We refer to a path π ∈ P(G) by its natural
sequence of vertices or edges. A hole is a chordless cycle of size at least 4. Thus
C(G) comprises holes and triangles. Since there are at most mn triangles, our
algorithm can be used to list the holes of G in Õ(n) time each, with an overall
Õ(mn2) additive time cost.

Uno [15] proposed an algorithm that lists each chordless cycle in an undirected
graph G = (V,E) in O(m) time while using O(m) space. The first step is the
following reduction to the problem of enumerating the chordless st-path in a
graph G. Based on the fact that for any vertex s ∈ V the chordless cycles
in G \ s are also chordless cycles in G, the algorithm proceeds by listing all
chordless cycles passing through s; and repeating the process in G \ s, until the
graph is empty. Then, to list all chordless cycles passing through s in G′ = G, the
algorithm follows the approach of listing the chordless paths s � t in G′ \ (s, t),
for each t ∈ NG′(s); and to avoid duplications, at the end of each iteration the
graph is updated to G′ = G′ \ t.

420 R. Ferreira et al.

Given a previously computed chordless st-path π = v0v1 . . . vl, Uno’s algo-
rithm identifies the set of vertices U ⊆ V such that each u ∈ U is adjacent to
some vj ∈ π, and the edge (vj , u) is contained in a chordless st-path π′ �= π
extending the prefix πj = v0v1 . . . vj . The algorithm is kick-started by taking a
shortest st-path (as a shortest path has the property of also being a chordless
path) and employs a recursive strategy of vertex removal to avoid listing the
same chordless path multiple times. This ensures that each chordless path is
listed once. Uno’s algorithm takes O(m) time to compute U and prepare the
recursive calls before it either outputs a new path or stops. The total time is
therefore O(m2 + m · |C(G)|).

3 Our Approach and Key Ideas

We outline the main ideas which allow us to reduce the amortized cost for a
chordless cycle from O(m) to Õ(n), giving a total Õ(m + n · |C(G)|) time to
list all the chordless cycles. Our approach relies on a variant of the cleaning
operation introduced in [6] to recognize linear balanced matrices and even holes
in graphs [4,5].

3.1 Certificates for Chordless st-path

A listing algorithm usually takes the form of a recursive procedure exploring the
space of all solutions. A key idea employed since the first listing papers [10] is
to check for the existence of at least one solution before branching, i.e. before
partitioning the solution space in subspaces to be assigned to the children. This
avoids unproductive recursive calls, i.e. calls that do not list any solution and
whose overhead cost could completely dominate the cost of reporting the solu-
tions (e.g. see [14]). In a previous work [1], we stressed the notion of certificate
since, in a more refined recursive scheme, passing a certificate of existence as an
extra parameter may facilitate the work of the children which may avoid running
the existence check: if they have a single child, they could be done by just pass-
ing the certificate received as an input or a small adaptation of it. We also saw
that more structural facts around the certificate could be useful. For the case
of st-paths [1], the certificate is a DFS tree rooted in s and reaching t, which
contained an st-path and also helped in other ways. Until now, the certificate
was itself a solution or explicitely contained one.

Here we try out something new: what if our certificate guarantees the existence
of a solution but is not itself a solution? The following fact suggests that the
certificate for the existence of a chordless st-path might be just any st-path.

Fact 1. Given two vertices s, t in G, there is a chordless st-path in G iff there
is an st-path in G.

Thus we allow for certificates which are somewhat less refined than actual so-
lutions, in the same spirit that a binary heap demands a less strict and lazy
notion of order. This is a new asset of the notion of certificate and opens up new
possibilities.

Amortized Õ(|V |)-Delay Algorithm 421

3.2 From Chordless Cycles to Chordless st-paths

Uno [15] shows how to reduce listing chordless cycles in a graph to listing chord-
less st-paths for all edges (s, t) chosen in a specific order (see Section 2), which
is necessary to avoid duplications in the output. The initialization step for each
edge (s, t) takes O(m) time as it requires to find one chordless st-path. This
gives the m2 term in the total cost of O(m2 + m · |C(G)|) for chordless cycles.

We observed in Section 3.1 that any st-path will suffice as a starter, as they
are our certificates of choice. This makes a difference for the above reduction,
since using dynamic graph connectivity algorithms [8], it is possible to maintain
a spanning tree in O(polylog n) time per edge deletion, perform connectivity
queries in O(polylogn), and more importantly obtain an st-path in Õ(n). It is
worth noting that it is not known how to obtain a chordless st-path faster than
O(m). Hence, we first build the dynamic connectivity structure as preprocessing
step. Then, for each edge (s, t), in the same order as Uno’s reduction, we list the
chordless st-paths. Before calling our path listing algorithm for edge (s, t), we
test if s and t are connected (Fact 1): if so, we call our path listing algorithm,
paying Õ(n) to find one initial st-path; otherwise, we skip the edge (s, t) and
take the next in order. As a result, the total initialization cost is Õ(m + kn) for
all edges instead of O(m2), where k is the number of edges for which we find
one initial st-path. Note that k ≤ |C(G)| as each of them surely gives rise to a
chordless st-path whence to a distinct chordless cycle. We obtain in this way an
Õ(m + n · |C(G)|) time algorithm to list chordless cycles, if we can list st-paths
in amortized Õ(n) time each.

3.3 Difficulty of Cleaning st-paths

Given any st-path, as stated in Fact 1 we can clean it to obtain a chordless st-
path in a greedy fashion: start from u = s and iteratively take a neighbour of u
that is closest to t along the path. The process stops when u = t. The vertices
taken in this way form a chordless path. The problem is that the cost of such a
greedy traversal of the path is upper bounded by the sum of the degrees of the
vertices along it. Unfortunately, this sum could be Θ(m) in the worst case.

x1 p1 x2 p2 x3 p3 x4

Fig. 1. Sum of degrees on chordless path x1, p1, x2, p2, . . . , xr−1, pr−1, xr is Θ(m)

Even worse, this is still true when the initial path is already chordless, as
shown in Fig. 1. Consider the complete bipartite clique Kr,r = (V1 ∪ V2, E12),

422 R. Ferreira et al.

where V1 = {x1, x2, . . . , xr}. Build a new graph G = (V,E) where the vertex set
is V = V1 ∪ V2 ∪ {p1, . . . , pr−1} for some new vertices p1, . . . , pr−1, and the edge
set is E = E12 ∪ {(x1, p1), (p1, x2), (x2, p2), . . . , (xr−1, pr−1), (pr−1, xr)}. Now,
the path x1, p1, x2, p2, . . . , xr−1, pr−1, xr is chordless but each edge is incident to
at least one vertex in that path, so the sum of the degrees is m = |E| = Θ(r2) =
Θ(|V |2) = Θ(n2).

What we would like to do: recursively extend a given chordless path πsu into
a chordless st-path, while maintaining as a certificate an st-path. The recursive
extension can be seen as an implicit cleaning of our st-path certificate. Consider
a vertex u along a given st-path (our certificate), where initially u = s. Our
certificate guarantees that there is at least one chordless st-path going through
a neighbour of u, say a. However, exploring all of u’s neighbours would cost too
much so we need to proceed more carefully: consider any neighbour b �= a, the
following two situations may occur. (1) a and b are both good, meaning that
(u, a) and (u, b) are on two distinct chordless st-paths. In this case, the chordless
st-paths traversing (u, a) cannot go through b too, as otherwise it would not
be chordless (see Remark 1 below), so b should be removed. (2) b is not on
any chordless st-path, so it is either disconnected from t or every st-path going
through b passes through a. In this case, as it will be clear later, we need neither
to explore nor to remove b.

In other words, we can treat the neighbours of u as described above, and they
will not interfere when cleaning the st-path in the next recursive calls since their
are either removed (as in case 1) or implicitly cut out (as in case 2). We make
this statement more precise below.

3.4 Reduced Degree Property

We introduce a notion of reduced degree with a stronger property in mind.
Consider a chordless st-path πst = v0v1 . . . v� in the graph G, for some integer
� > 1, where v0 = s and v� = t. For a vertex vi, a neighbour v ∈ N(vi) is good
if there exists a chordless st-path in G with prefix v0v1 . . . viv (i.e. it extends
v0v1 . . . vi by adding the edge (vi, v) as illustrated in Fig. 2). We denote by
Ngood(vi) ⊆ N(vi) the set of good neighbours of vi, noting that vi+1 ∈ Ngood(vi).
For each vi, its reduced degree di is given by the number of non-good neighbours,
namely, di = |(N(vi) \

⋃
j≤i

Ngood(vj)) ∪ {vi+1}|.

s v1 vi−1 vi v t

Fig. 2. Good neighbours (in red) of vertex vi in Gi

Amortized Õ(|V |)-Delay Algorithm 423

The rationale is that exploring the good neighbours of vi will list further
chordless paths while examining its neighbours that are not good is a waste of
computation. The reduced degree of vi is actually an upper bound on the number
of not-good vertices examined when exploring vi to produce the chordless st-path
πst and gives an upper bound on the waste. Lemma 1 below shows that while
examining the neighbours of the vertices along a chordless path still takes O(m)
time, only O(n) neighbours are a waste while the remaining ones lead to further
chordless paths (which is a good argument for amortization).

Lemma 1. For a chordless path πst, we have
∑

vi∈πst
di ≤ 2n, where di is the

reduced degree of vi ∈ πst.

Proof. We will show that each vertex x of G is a non-good neighbour of at most
two vertices in πst. To this purpose, we prove that if x is a non-good neighbour
of both vi and vj then |i − j| ≤ 1. We choose such three vertices vi, vj and x
where the difference j − i is the largest possible and assume by contradiction
that i < j − 1. Thus vi and vj are not adjacent in πst, whence (vi, vj) is not
an edge of G since πst is chordless. Also, being non-good, x /∈ πst. Consider the
st-path π∗ = v0 . . . vixvj . . . vl. Clearly, π∗ contains no repeated vertices and we
will prove that π∗ is a chordless st-path, contradicting the fact that x is not a
good neighbour of vi. The fact that π∗ is chordless follows from the fact that
there is no vk ∈ π∗, k �= i and k �= j, such that (vk, x) is an edge of G, otherwise
j−k or k− i would be strictly larger than j− i, contradicting our choice of vi, vj
and x. ��

3.5 Cleanup of Current Vertex

Suppose we are extending the chordless path πsu, while cleaning the st-path
certificate. We identify a good vertex v ∈ N(u), which closest to t along the
st-path. Ideally, we would clean the vertex u by throwing away all its other
neighbours but this could cost Ω(m) per chordless path as illustrated in Fig. 1
and discussed in Section 3.3. We thus perform a partial cleaning, called cleanup,
which consists in identifying and removing, among all neighbours of u (i.e. |N(u)|
elements) only its set Ngood(u) of good ones.

For a given u in a chordless st-path πst = v0 . . . viu . . . vl, we let emerge the
good neighbours in Ngood(u) one by one as follows. Consider the graph G′ where
the vertices v0 . . . vi and its good neighbours were removed. If u and t are not
connected, then there cannot be further chordless paths from u and so there
cannot be further good neighbours. Otherwise, if u and t are connected, we take
any path from u to t, and select its neighbour v that appears along the path and
is closest to t, as illustrated in Fig. 3. After that, we remove v and its incident
edges, and iterate what described above until u is disconnected from t. The
vertices v thus selected form the set Ngood(u) of good neighbours.

Lemma 2. For a chordless path πst, the cleanup of vertex u ∈ πst correctly
produces the set Ngood(u) of its good neighbours.

424 R. Ferreira et al.

s v1 vi−1 vi u v t

πv,t

Fig. 3. Cleanup of the neighbours of vertex u

4 Listing Algorithm

We blend the key ideas discussed in Section 3 to get Algorithm 1, which has
four parameters as input and lists all the chordless st-paths: the first parameter
is the chordless path πsu partially built from s to the current vertex u (initially,
u = s), which is the second parameter; the third parameter is a ut-path πut that
plays the role of certificate by Fact 1; the fourth parameter is the reduced graph
G, which changes with the recursive calls.

Algorithm 1. list induced pathss,t(πsu, u, πut, G)

1 if u = t then
2 output(πsu)
3 else
4 S := ∅
5 while true do
6 v := the vertex in πut ∩N(u) that is closest to t in πut

7 πvt := the subpath of πut from v to t
8 S := S ∪ {(v, πvt)}
9 remove v and its incident edges from G

10 if u and t are not connected then break
11 πut := any path from u to t

12 end
13 foreach (v, πvt) ∈ S do
14 adds back v and its incident edges to G
15 list induced pathss,t(πsu · (u, v), v, πvt, G)

16 remove v and its incident edges from G

17 end

18 end

The algorithm outputs a chordless st-path if u = t (line 2). Otherwise, it
performs a cleanup of u (the loop at lines 5–12). After that, it explores only the
good neighbours recursively as they will surely lead to further chordless paths
(the other loop at lines 13–17). Observe that S stores the good neighbours v of u
and a vt-path for each of them: when performing the recursive call at line 15, only
one of the vertices in S appears in the reduced graph G passed as a parameter to

Amortized Õ(|V |)-Delay Algorithm 425

the recursive call (see lines 14 and 16 that guarantee this, and Remark 1 below).
Hence, the recursive call now has as parameters the chordless sv-path πsu · (u, v)
ending in v, and a vt-path that guarantees that a chordless st-path exists and
has πsu · (u, v) as a prefix. This recursive call lists all the chordless st-paths that
share this prefix.

v0

v1 v2

v3 v4

v5 v6

v0 v2 v4

v1 v3 v5

Fig. 4. Two example graphs where s = v0 and t = v4

For example, let us run Algorithm 1 on the input graph shown on the left
of Fig. 4, with u = s = v0 and the initial path πut = v0v1v2v3v4. It computes
the pairs (v, πvt) in S as follows. First, (v3, v3v4) is added to S as v3 is a good
neighbour for v0 (the neighbour closest to t in the path), and the edges incident
to v3 are removed. After this removal, s = v0 is still connected to t = v4 through
the path v0v5v6v4, which becomes the input for the next iteration of the while
loop. Next, (v6, v6v4) is added to S as v6 is another good neighbour, and the
edges incident to v6 are removed disconnecting s from t, so the while loop ends.
The recursive calls in the foreach loop give the two chordless paths v0v3v4 and
v0v6v4 contained in the graph.

Remark 1. It is important to run the recursive calls with all good neighbours in
S removed except one. If we left two or more good neighbours in the recursive
call of line 15, they could interfere with each other and we might not obtain the
chordless paths correctly. A very simple example is given in the graph shown
on the right of Fig. 4. Consider for instance the case where Algorithm 1 would
be given as input the path v0v1v3v2v4. The pair (v2, v2v4) is added to S and v2
removed. After that, the path v0v1v3v5v4 is found and the pair (v1, v1v3v5v4) is
added to S and v1 removed. Since v0 and v4 become disconnected, S contains
all the good neighbours of v0. Algorithm 1 executes the recursive calls with S.
Suppose that we keep both good neighbours v1 and v2 in G during these calls, in
particular for the call with the pair (v1, v1v3v5v4) from S. This call will extend
in a nested call the chordless path to πsu = v0v1v3 for u = v3, and will claim
that the good neighbours of v3 are v2 and v5, which is incorrect since v0v1v3v2
is not chordless. This situation does not arise if v2 is kept deleted in G when the
recursive call on v1 is performed as done in Algorithm 1.

The correctness of Algorithm 1 follows mostly from Lemma 2. Recall that, it
guarantees that for a given path prefix πsu the set S contains the good neigh-
bours of u, i.e. the neighbours of u that belong to at least one chordless st-path

426 R. Ferreira et al.

extending πsu. Clearly, we only have to recursively call the algorithm for these
neighbours, the others certainly lead to no solution. This implies that Algo-
rithm 1 tries all the possibilities to extend πsu, so all chordless st-paths are
output. Moreover, since each good neighbour of u leads to a different extension,
we have that no st-path is output more than once.

Certainly only st-paths are output by Algorithm 1, but at this point we have
no guarantees that the paths are indeed chordless. In fact, after building S, the
algorithm proceeds to recursively extend the prefix πsu · (u, v) for each v ∈ S
in the graph G′ = G \ (S \ {v}). However, since u was included in current path
none of its neighbours can be used later in the recursion. The algorithm removes
the good neighbours of u from G, but the other neighbours, NG(u) \ S, are still
present in G′. They could thus be used to extend the path later in the recursion,
resulting in a non-chordless st-path. Lemma 3 shows that this cannot happen.

Lemma 3. The st-paths output by Algorithm 1 are chordless.

The previous lemma leads to the following theorem.

Theorem 1. The algorithm correctly outputs all chordless st-paths of G.

Theorem 2. The algorithm takes O(m + |Pst(G)|(tp + ntq + ntu)) time, where
tp is the cost of choosing any path from any two given vertices, tq is the cost
of checking if any given two vertices are connected or not, and tu is the cost of
removing/adding back any given edge.

Proof. See Section 5.

There are several dynamic data structures in the literature [8] that main-
tain a spanning forest for a dynamic graph, supporting insertions and dele-
tions of edges in polylogarithmic time. Consequently, tp = O(n polylog (n)),
tq = O(polylog (n)), and tu = O(polylog (n)), thus giving the following bound.

Corollary 1. The algorithm takes Õ(m + |Pst(G)| · n) time to report all the
chordless st-paths.

5 Amortized Analysis

Before starting our analysis, we observe some simple properties of the recursion
tree generated by Algorithm 1.

Fact 2. The recursion tree R of Algorithm 1 has the following properties:

1. There is a one-to-one correspondence between paths in Pst(G) and leaves in
the recursion tree.

2. There is a one-to-one correspondence between proper prefixes of paths in
Pst(G) and internal nodes in the recursion tree.

Amortized Õ(|V |)-Delay Algorithm 427

3. The number of branching nodes is |Pst(G)| − 1.

4. The length of a root-to-leaf path is equal to the length of the chordless st-path
corresponding to the leaf. In particular, the height of the tree is ≤ n.

Fact 2 suggests us to follow the following overall strategy.

1. We analyze the cost of each type (leaf, unary and branching) of node sepa-
rately.

2. We consider all branching nodes together, and show that their amortized
cost is O(tp + tq + ntu + n) = Õ(n) per solution.

3. We consider all unary nodes together, and show that their amortized cost is
O(|πst|tq + ntu) = Õ(n) per solution.

4. We deduce that the cost of each solution is O(tp + ntq + ntu) = Õ(n).

Where the cost of a node is the time spent by the corresponding call without
including the time spent by its nested recursive calls.

Lemma 4. The cost of a leaf is O(|πst|).

Let us now analyze the cost of the unary nodes. Let r = 〈πsu, u, πut, G〉 be
a unary node. The vertex v ∈ N(u) is the only neighbour of u that can extend
the prefix πsu into a chordless st-path. Thus, removing v from G disconnects u
from t, and the algorithm performs a single iteration of the loop in line 5, not
executing line 11. In this case, the algorithm performs the following operations:
(i) one connectivity query (line 10), (ii) |N(v)| edge update operations on G
(lines 9, 14 and 16), and (iii) a scan in the intersection of N(u) and πut to find
v (line 6). The cost of (i) and (ii) is O(tq + |N(v)|tu).

A naive implementation of (iii) takes O(|N(u)|+|πut |) time, which is too large
to fit in our amortization strategy. In order to reduce this cost to O(|N(u)|) we
therefore maintain, as an extra invariant, for each vertex in the current graph its
distance to t along the path πut. In this way, we can find v simply scanning N(u).
Thus, assuming the distance information is correctly maintained, we complete
the proof of Lemma 5.

Lemma 5. The cost of a unary node is O(tq + |N(v)|tu + |N(u)|), where (u, v)
is the edge added to the chordless path.

It is not hard to maintain the distance information for 〈πsu · (u, v), v, πvt, G
′〉,

the only child of the unary node 〈πsu, u, πut, G〉. As the path πvt is a suffix of
πut, the distance of the vertices in πut does not change. On the other hand,
the only vertices that the distances can change are the ones in πvt but not
in πut. These vertices can be identified when scanning N(v) in the child node
〈πsu ·(u, v), v, πvt, G

′〉, since their distance is strictly larger than |πvt|. It remains
to show that the distance information can be maintained in the branching nodes.

Lemma 6. The cost of a branching node r ∈ R is O(β(r)(tp + tq +ntu)), where
β(r) is the number of children of r.

428 R. Ferreira et al.

Let us now show that we can maintain the distance information in branching
nodes in the same time bound of Lemma 6. This follows from the fact that
in each iteration of the loop (line 5) we are already paying O(|πut|), i.e. a full
traversal of the path πut. Before each recursive call in line 15 we can traverse
the path πut adding for each vertex the distance information, i.e. their position
in the path.

At this point we have bounds for the cost of each node in the recursion tree.
However, by directly applying them we cannot achieve our goal of Õ(n) time per
solution. For instance, consider the particular case where all internal nodes of
the recursion tree are branching. The cost of each internal node is O(β(r)(tp +

tq + ntu)) = Õ(n2), since β(r) = Ω(n) in the worst case. Then, from item 3 of
Fact 2, the number of branching nodes is |Pst(G)|−1. The total cost for the tree
is thus Õ(|Pst(G)| · n2) or Õ(n2) per solution.

In order to get a tighter bound for the total cost of the branching nodes, we
use the following amortization strategy. Let r ∈ R be a branching node. We
divide the cost O(β(r)(tp + tq + ntu)) among the closest descendents that are
branching nodes or leaves (no unary nodes), each being charged O(tp + tq +ntu).
This can always be done since r has β(r) children and the subtree of each child
contains at least one leaf, i.e. the node r has at least β(r) non-unary descendants.
In this way, the original cost of node r is completely charged to its non-unary
descendants, and the only cost that remains associated to r is the one received
from its ancestors. Finally, each branching node can only be charged once, by
its lowest non-unary ancestor. Each branching node and each leaf is therefore
charged with O(tp + tq + ntu). Thus, the total cost of the branching nodes is
O(|Pst(G)|(tp + tq + ntu)), completing the proof of Lemma 7.

Lemma 7.
∑

r:branching T (r) = O(|Pst(G)|(tp + tq + ntu)).

Let us now bound the total cost of the unary nodes. Similarly to the branching
nodes case, a straightforward use of the bound given by Lemma 5 leads to an
Õ(n2) cost per solution, since in the worst case the recursion tree can have O(n)
unary nodes for each leaf. The key idea to obtain a better amortized cost is to
consider the bound on the reduced degrees given by Lemma 1.

We first observe that each unary node is contained in some root-to-leaf path
Π(l), where l is a leaf of the recursion tree. Thus,∑

r:unary

T (r) ≤
∑
l:leaf

∑
r∈Π(l)

T (r). (1)

Fact 2 implies that there is a one-to-one correspondence between the prefixes
of paths in Pst(G) and nodes in the recursion tree. That is, each leaf corresponds
to a solution, and the root-to-leaf path Π(l) corresponds to the chordless st-
path associated to the leaf l. Moreover, the O(tq + |N(v)|tu + |N(u)|) cost of an
unary node can be amortized to O(tq + |N(v)|tu), since we can always charge
|N(u)| = O(n) to its single child. We can thus rewrite the double sum as∑

l:leaf

∑
r∈Π(l)

T (r) =
∑

π∈Pst(G)

∑
vi∈π

(tq + |N(vi)|tu). (2)

Amortized Õ(|V |)-Delay Algorithm 429

For each chordless st-path π in the internal sum of Eq. 2, we have that the
degrees are actually the reduced degrees of Section 3.4, since the good neighbours
(i.e. the set S in Algorithm 1) are always removed. Using Lemma 1 we can thus
bound the sum of the degrees by 2n. Therefore,∑

r:unary

T (r) ≤
∑

π∈Pst(G)

(|π|tq + 2ntu), (3)

completing the proof of Lemma 8.

Lemma 8.
∑

r:unary T (r) = O(
∑

π∈Pst(G) |π|tq + ntu).

As a corollary of Lemmas 8 and 7, we obtain Theorem 2.

References

1. Birmelé, E., Ferreira, R.A., Grossi, R., Marino, A., Pisanti, N., Rizzi, R., Sacomoto,
G.: Optimal listing of cycles and st-paths in undirected graphs. In: SODA 2013,
pp. 1884–1896. ACM/SIAM (2013)

2. Chen, Y., Flum, J.: On parameterized path and chordless path problems. In: IEEE
Conference on Computational Complexity, pp. 250–263 (2007)

3. Chudnovsky, M., Robertson, N., Seymour, P., Thomas, R.: The strong perfect
graph theorem. Annals of Mathematics 164, 51–229 (2006)

4. Conforti, M., Cornuéjols, G., Kapoor, A., Vuskovic, K.: Recognizing balanced 0,
+/- matrices. In: SODA 1994, pp. 103–111. ACM/SIAM (1994)

5. Conforti, M., Cornuéjols, G., Kapoor, A., Vuskovic, K.: Finding an even hole in a
graph. In: FOCS 1997, pp. 480–485. IEEE Computer Society (1997)

6. Conforti, M., Rao, M.R.: Structural properties and decomposition of linear bal-
anced matrices. Math. Program. 55, 129–168 (1992)

7. Haas, R., Hoffmann, M.: Chordless paths through three vertices. Theoretical Com-
puter Science 351(3), 360–371 (2006)

8. Kapron, B.M., King, V., Mountjoy, B.: Dynamic graph connectivity in polyloga-
rithmic worst case time. In: SODA, pp. 1131–1142 (2013)

9. Kawarabayashi, K.-I., Kobayashi, Y.: The induced disjoint paths problem. In: Lodi,
A., Panconesi, A., Rinaldi, G. (eds.) IPCO 2008. LNCS, vol. 5035, pp. 47–61.
Springer, Heidelberg (2008)

10. Read, C., Tarjan, R.E.: Bounds on backtrack algorithms for listing cycles, paths,
and spanning trees. Networks 5(3), 237–252 (1975)

11. Seinsche, D.: On a property of the class of n-colorable graphs. Journal of Combi-
natorial Theory, Series B 16(2), 191–193 (1974)

12. Sokhn, N., Baltensperger, R., Bersier, L.-F., Hennebert, J., Ultes-Nitsche, U.:
Identification of chordless cycles in ecological networks. In: Glass, K., Colbaugh,
R., Ormerod, P., Tsao, J. (eds.) Complex 2012. LNICST, vol. 126, pp. 316–324.
Springer, Heidelberg (2013)

13. Maciej, M.: Syslo. An efficient cycle vector space algorithm for listing all cycles of
a planar graph. SIAM J. Comput. 10(4), 797–808 (1981)

14. Uno, T.: Algorithms for enumerating all perfect, maximum and maximal matchings
in bipartite graphs. In: Leong, H.-V., Jain, S., Imai, H. (eds.) ISAAC 1997. LNCS,
vol. 1350, pp. 92–101. Springer, Heidelberg (1997)

15. Uno, T.: An output linear time algorithm for enumerating chordless cycles. In: 92nd
SIGAL of Information Processing Society Japan, pp. 47–53 (2003) (in Japanese)

16. Wild, M.: Generating all cycles, chordless cycles, and hamiltonian cycles with the
principle of exclusion. J. of Discrete Algorithms 6(1), 93–102 (2008)

LP Approaches to Improved Approximation
for Clique Transversal in Perfect Graphs �

Samuel Fiorini1, R. Krithika2, N.S. Narayanaswamy2, and Venkatesh Raman3

1 Département de Mathématique
Université libre de Bruxelles, Brussels, Belgium

sfiorini@ulb.ac.be
2 Department of Computer Science and Engineering

Indian Institute of Technology Madras, Chennai, India
{krithika,swamy}@cse.iitm.ac.in

3 The Institute of Mathematical Sciences, Chennai, India
vraman@imsc.res.in

Abstract. Given an undirected simple graph G, a subset T of vertices is
an r-clique transversal if it has at least one vertex from every r-clique in
G. I.e. T is an r-clique transversal if G− S is Kr-free. r-clique transversals
generalize vertex covers as a vertex cover is a set of vertices whose dele-
tion results in a graph that is K2-free. Perfect graphs are a well-studied
class of graphs on which a minimum vertex cover can be obtained in
polynomial time. However, the problem of finding a minimum r-clique
transversal is NP-hard even for r = 3. As any induced odd length cycle
in a perfect graph is a triangle, a triangle-free perfect graph is bipartite.
I.e. in perfect graphs, a 3-clique transversal is an odd cycle transversal.
In this work, we describe an (r+1

2
)-approximation algorithm for r-clique

transversal on weighted perfect graphs improving on the straightforward
r-approximation algorithm. We then show that 3-CLIQUE TRANSVERSAL

is APX-hard on perfect graphs and it is NP-hard to approximate it within
any constant factor better than 4

3
assuming the unique games conjec-

ture. We also show intractability results in the parameterized complexity
framework.

1 Introduction

Given a graph G and a weighting w : V(G) "→ Q+ of the vertices of G, r-CLIQUE
TRANSVERSAL is the problem of determining a minimum weight set of vertices
that has at least one vertex from every r-clique in G.

r-CLIQUE TRANSVERSAL
Instance: A graph G and w : V(G) "→ Q+

Output: A minimum weight set T ⊂ V(G) such that G− T is Kr-free

� Supported by the Indo-German Max Planck Centre for Computer Science Programme
in the area of Algebraic and Parameterized Complexity.

A.S. Schulz and D. Wagner (Eds.): ESA 2014, LNCS 8737, pp. 430–442, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

Clique Transversal in Perfect Graphs 431

Note that r is fixed and not a part of the input in the problem definition. For
each r ≥ 3, it is NP-hard to approximate r-CLIQUE TRANSVERSAL within a fac-
tor better than r under the unique games conjecture [10]. Further, no approxi-
mation factor better than r− 1 is possible unless NP ⊆ BPP [10]. Therefore, we
restrict our study of r-CLIQUE TRANSVERSAL to perfect graphs which is one
of the largest classes of graphs on which 2-CLIQUE TRANSVERSAL (VERTEX
COVER) is polynomial-time solvable [9].

r-CLIQUE TRANSVERSAL has been recently studied on perfect graphs in the
parameterized complexity framework [16]. In perfect graphs, a3-clique transver-
sal is an odd cycle transversal and the NP-hardness of the optimization problem
is known from [3]. The study of ODD CYCLE TRANSVERSAL (OCT) has given rise
to interesting techniques. The first fixed-parameter tractable algorithm for OCT
[21] introduced an algorithmic paradigm called ‘iterative compression’ that was
later used to prove several parameterized problems fixed-parameter tractable.
The recent improvement to this bound gave interesting reductions and use of
linear programming techniques in parameterized complexity [17]. Kernelization
for OCT resulted in non trivial applications of matroid techniques [14].

In this work, we study the approximability of r-CLIQUE TRANSVERSAL on
perfect graphs.

1.1 Results and Techniques Used

We study r-CLIQUE TRANSVERSAL on perfect graphs in two contexts.

1. We define a linear programming formulation that captures constraints for
cliques of sizes r and r + 1 and use it to describe an (r+1

2
)-approximation

algorithm. We employ the primal-dual method and an r
2

-approximation
algorithm for VERTEX COVER in r-uniform r-partite hypergraphs as a sub-
routine. As a consequence, we obtain a 2-approximation algorithm for OCT
on perfect graphs.

2. Along the lines of finding a minimum vertex cover in perfect graph, we
formulate a linear program for OCT using clique constraints. We show that
an optimum solution to this linear program can be obtained in polynomial
time for perfect graphs. Using this solution, we describe a rounding proce-
dure that leads to a 2-approximation.

We then show intractability results in the approximation and parameterized
complexity frameworks. We show that OCT on perfect graphs is APX-hard and
hence has no polynomial-time approximation scheme unless P = NP. In the pa-
rameterized setting where the interest is in determining whether the graph has
an odd cycle transversal of size at most k, we show that O∗(2o(k))1 algorithms
or O(k2−ε) kernels are unlikely under standard complexity theoretic assump-
tions. From a recent result, an O∗(2k) algorithm is known for this problem [16].
The hardness results comprise of the following.

1 O∗ notation ignores polynomial terms.

432 S. Fiorini et al.

– If there is a c-approximation algorithm for OCT on perfect graphs with c <

1.12, then P = NP.
– Assuming the unique games conjecture, if there is a c-approximation algo-

rithm for OCT on perfect graphs with c < 4
3

, then P = NP.
– No O∗(2o(k)) algorithm is likely for the problem of determining if a given

perfect graph has an odd cycle transversal of at most k vertices under the
Exponential Time Hypothesis.

– No O(k2−ε) edges kernel is possible for any ε > 0 unless the polynomial
hierarchy collapses to the third level.

Apart from giving an improved bound and showing hardness for
r-CLIQUE TRANSVERSAL on perfect graphs, this work makes three important
contributions. First, the approximation algorithms that we describe show the
applicability of VERTEX COVER algorithms in solving its generalizations (OCT
and r-CLIQUE TRANSVERSAL). They also exemplify two different techniques
for designing 2-approximation algorithms for OCT. Second, our study of a clique-
constrained odd cycle transversal polytope yields an approximation algorithm
for OCT that uses the polyhedral characterization of perfect graphs based on
the stable set polytope description. Third, our approach for showing hardness
results demonstrates a way of turning an NP-hardness proof into a proof for
hardness in the approximation and parameterized settings using linear kernel-
ization.

Road Map: In Section 2, we define the necessary preliminaries on linear pro-
gramming and perfect graphs. In Section 3, we describe a polynomial-time
(r+1

2
)-approximation algorithm for r-CLIQUE TRANSVERSAL on perfect graphs

using the primal-dual method. In Section 4, we describe a 2-approximation al-
gorithm for OCT using the Lovász theta function. In Section 5, we show hard-
ness results in the approximability and parameterized complexity frameworks.

2 Preliminaries

Let G denote a graph with vertex set V(G) = {1, · · · , n} and weighting w :
V(G) "→ Q+. Here, w denotes the vector in Qn

+ associated with V(G) where
w(i) is the weight of the vertex i. Unweighted graphs are treated as weighted
graphs with unit weight on each of its vertices. Let 1 denote a vector which
has all components equal to 1. The weight of a subset S of vertices is defined
as

∑

i∈S w(i). Following the notation used in [9], for graph G, we denote the
chromatic number by χ(G), the weighted clique number by ω(G,w) and the
weighted independence number by α(G,w). In this usage, ω(G) is ω(G, 1). Ex-
tending this notation, oct(G,w) and r-ct(G,w) denote the minimum weights
of an odd cycle transversal and an r-clique transversal, respectively, of G. Also,
oct(G) is oct(G, 1) and r-ct(G) is r-ct(G, 1). G is said to be r-colorable (or r-
partite) if χ(G) ≤ r. Graph theoretic notation and definitions not given explic-
itly here can be found in [8].

A graph G in which each induced subgraph H satisfies χ(H) = ω(H) is called
perfect. Perfect graphs were introduced by Claude Berge in the early 1960s [2].

Clique Transversal in Perfect Graphs 433

The strong perfect graph theorem establishes that a graph is perfect if and only
if neither the graph nor its complement contains an induced cycle of odd length
at least 5 as an induced subgraph [5]. For more details on the structural and
algorithmic aspects of perfect graphs, we refer the reader to the classical books
by Golumbic [8] and Grötschel, Lovász and Schrijver [9].

Linear programming (LP) notation and definitions are as defined in [9]. For
a vector x = (x(1), x(2), · · · , x(n)), the vector denoted by 1 − x is defined as
(1 − x(1), 1 − x(2), · · · , 1 − x(n)). For a set S ⊆ V(G), the incidence vector of
S is the vector χS ∈ Rn defined by χS(i) = 1 if i ∈ S and χS(i) = 0 if i /∈ S.
The convex hull of a set S ⊆ Rn is denoted by conv S. A separation oracle for a
polytope P = {x ∈ Rn : Ax ≤ b} is a procedure which given a vector y ∈ Rn,
determines if y is in P, and if not, finds a violated inequality Aiy > bi. The
optimization problem for P is to find a vector y ∈ P that maximizes/minimizes
wTx on P for a given vector w ∈ Rn, or assert that P is empty.

3 A Primal-Dual Approach to r-Clique Transversal

We describe a polynomial-time (r+1
2

)-approximation algorithm for r-CLIQUE
TRANSVERSAL on perfect graphs. We employ the primal-dual method and also
use the r

2
-approximation for VERTEX COVER in r-uniform r-partite hypergraphs

due to Lovász [18] as an oracle. We first mention the linear programming for-
mulation and the approximation results for VERTEX COVER in r-uniform r-
partite hypergraphs [18].

3.1 VERTEX COVER in r-uniform r-partite Hypergraphs

A hypergraph H is r-uniform if each edge in H is of size r and it is r-partite
if there exists a partition of V(H) into r subsets V1, · · · , Vr such that for every
edge e in E(H), |e ∩ Vi| ≤ 1 for each i ∈ {1, · · · , r}. A vertex cover S of H is a
subset of vertices such that S ∩ e �= ∅ for every e ∈ E(H). The standard linear
programming relaxation for VERTEX COVER in hypergraphs is the following.

LP Relaxation of VERTEX COVER: LP-Vc(H)

min
∑

i∈V(H)

w(i)x(i) subject to
∑

i∈e

x(i) ≥ 1 for each e ∈ E(H) and x ≥ 0

Dual of LP-Vc(H)

max
∑

e∈E(H)

y(e) subject to
∑

e∈E(H):i∈e

y(e) ≤ w(i) for each i ∈ V(H) and y ≥ 0

In [18], Lovász proved the following.

Theorem 1. Given an r-uniform r-partite hypergraph H with vertex weighting w,
there exists a polynomial-time algorithm that returns an integer solution x∗ of LP-
Vc(H) and a solution y∗ of its dual such that

∑

i∈V(H)w(i)x∗(i) ≤ r
2

∑

e∈E(H) y
∗(e).

434 S. Fiorini et al.

3.2 r-CLIQUE TRANSVERSAL on Perfect Graphs

Let G be a perfect graph with positive rational vertex weighting w. Let K(G, r)
denote the set of r-cliques in G. Let Q(G) denote K(G, r) ∪K(G, r+ 1). We now
describe a primal-dual approach for approximating r-CLIQUE TRANSVERSAL.

LP Formulation of r-CLIQUE TRANSVERSAL: LP-CT(G, r)

min
∑

i∈V(G)

w(i)x(i)

subject to
∑

i∈K

x(i) ≥ 2 for each K ∈ K(G, r + 1)

∑

i∈K

x(i) ≥ 1 for each K ∈ K(G, r)

x(i) ≥ 0 for each i ∈ {1, · · · , |V(G)|}

Dual of LP-CT(G, r): LP-CP(G, r)

max
∑

K∈K(G,r)

y(K) + 2
∑

K∈K(G,r+1)

y(K)

subject to
∑

Q∈Q(G):i∈Q

y(Q) ≤ w(i) for each i ∈ V(G)

y(Q) ≥ 0 for each Q ∈ Q(G)

The idea is to construct a greedy weighted packing of (r + 1)-cliques in poly-
nomial time and add all vertices corresponding to tight constraints in the dual
into the solution. Then, we use Theorem 1 on the residual graph with residual
weights to obtain an r-clique transversal.

Algorithm Approx-r-CT(G,w)
(1) Initialize primal solution x∗ to 0, dual solution y∗ to 0 and set T to ∅.
(2) While x∗ violates the LP-CT(G, r) constraint for an (r+ 1)-clique K,

2.1. Increase y∗(K) to the maximum value possible ensuring that no
constraint in LP-CP(G, r) is violated.

2.2. Set x∗(i) = 1 for every vertex i with
∑

K∈K(G,r+1):i∈K y∗(K) = w(i).
(3) Add {i ∈ V(G) : x∗(i) = 1} to T .
(4) Define residual weighting w ′ as w ′(i) = w(i)−

∑

K∈K(G,r+1):i∈K y∗(K).
(5) Define residual graph G ′ = G− T with vertex weighting w ′.
(6) Define the hypergraph H on the vertex set V(G ′) (with weighting w ′)
where hyperedges correspond to r-cliques in G ′. That is, V(H) = V(G ′)
and E(H) = {eK : K ∈ K(G ′, r)}.
(7) Obtain a primal integer solution x ′ and a dual solution y ′ for LP-Vc(H)
using Theorem 1.
(8) For each i ∈ V(H), set x∗(i) = x ′(i).
(9) For each eK ∈ E(H), set y∗(K) = y∗(K) + y ′(eK).
(10) Add {i ∈ V(G) : x ′(i) = 1} to T . Return T .

Clique Transversal in Perfect Graphs 435

Theorem 2. Given a perfect graph G with vertex weighting w, Algorithm Approx-r-
CT(G,w) returns an r-clique transversal T of G with w(T) ≤ (r+1

2
) · r-ct(G,w) in

polynomial time.

Proof. Let T denote the solution returned by the Algorithm Approx-r-CT(G,w).
Let V1 and V2 be the sets of vertices of G that are added to T in steps (3) and
(10), respectively. From step (5), it follows that V1 and V2 are disjoint. As χT

is x∗, it respects the LP-CT(G, r) constraints corresponding to each Q ∈ Q(G).
Thus, T is an r-clique transversal of G. We will now bound the weight of T .

w(T) =
∑

i∈V1

w(i) +
∑

i∈V2

w(i) = w(V1) +w(V2)

A vertex i is added to T in step (3) only if w(i) =
∑

K∈K(G,r+1):i∈K y∗(K). Also,
by the definition of w ′ and due to the fact that a vertex i is added to T in step
(10) only if x ′(i) = 1, we have,

w(T) =
∑

i∈V1

∑

K∈K(G,r+1):i∈K

y∗(K) +
∑

i∈V2

(w ′(i) +
∑

K∈K(G,r+1):i∈K

y∗(K))

Each clique K in the above sum is counted by at most r + 1 vertices. Since G ′

is a Kr+1-free perfect graph, the r-uniform hypergraph H defined in step (6)
is r-partite. From Theorem 1, step (7) can be performed in polynomial time.
Rearranging the terms in the sum and using

∑

i∈V2
w ′(i) =

∑

i∈V(H)w
′(i)x ′(i),

it follows that,

w(T) ≤ (r+ 1)
∑

K∈K(G,r+1)

y∗(K) +
∑

i∈V(H)

w ′(i)x ′(i)

Further, from Theorem 1,
∑

i∈V(H)w
′(i)x ′(i) ≤ r

2

∑

eK∈E(H) y
′(eK). Note that

for each K ∈ K(G, r), y∗(K) = y ′(eK).

w(T) ≤ (r + 1)

2

∑

K∈K(G,r+1)

2y∗(K) +
r

2

∑

K∈K(G,r)

y∗(K)

Now, y∗ defined in step (9) is a feasible solution for LP-CP(G, r). Consider i ∈
V(G) corresponding to a constraint in LP-CP(G, r).

∑

Q∈Q(G):i∈Q

y∗(Q) =
∑

K∈K(G,r+1):i∈K

y∗(K) +
∑

K∈K(G,r):i∈K

y∗(K)

= (w(i) −w ′(i)) +
∑

eK∈E(H):i∈eK

y ′(eK)

≤ (w(i) −w ′(i)) +w ′(i) = w(i)

436 S. Fiorini et al.

Since the value of the LP-CP(G, r) feasible solution y∗ is a lower bound for
the value of an optimal feasible solution to LP-CT(G, r) which in turn is a lower
bound for r-ct(G,w), we get the following bound on w(T).

w(T) ≤ (r + 1)

2
(

∑

K∈K(G,r+1)

2y∗(K) +
∑

K∈K(G,r)

y∗(K)) ≤ (r + 1)

2
r-ct(G,w)

��
As a 3-clique transversal is an odd cycle transversal in perfect graphs, we obtain
the following result.

Corollary 1. Given a perfect graph G with vertex weighting w, for r = 3, Algorithm
Approx-r-CT(G,w) returns an odd cycle transversal T of G with w(T) ≤ 2·oct(G,w)
in polynomial time.

Next, we present another 2-approximation algorithm for OCT using a linear
program based on clique constraints and the polyhedral characterization of per-
fect graphs using the stable set polytope description.

4 Approximating OCT Using the Lovász Theta Function

Finding a minimum vertex cover in a perfect graph G is essentially to com-
pute the Lovász theta function ϑ(G) [9]. In this section, we show that the theta
function computation can be employed to obtain a 2-approximation for OCT.
We generalize a linear programming formulation given by Grötschel, Lovász
and Schrijver for independent sets [9] to induced bipartite graphs. For perfect
graphs, we show that a fractional optimum solution to this linear program can
be obtained in polynomial time (in the number of vertices). We round this so-
lution to obtain a 2-approximation.

4.1 Perfect Graphs and the Vertex Cover Polytope

We now rephrase and state the known polyhedral characterization of perfect
graphs in terms of vertex cover polytopes. Let G be a perfect graph with pos-
itive rational vertex weighting w. The independent set polytope (or stable set
polytope) STAB(G) is defined as the convex hull of the incidence vectors of all
independent sets of G.

STAB(G) = conv {χS ∈ {0, 1}n | S ⊆ V(G) is an independent set in G}

α(G,w) is equal to the maximum value of
∑n

i=1 w(i)x(i) for x ∈ STAB(G). The
clique-constrained independent set polytope QSTAB(G) is defined as,

QSTAB(G) = {x ∈ [0, 1]n :
∑

i∈Q x(i) ≤ 1, ∀Q a clique in G}.

As a clique and an independent set can intersect in at most one vertex, it follows
that STAB(G) ⊆ QSTAB(G), for any graph G. Further, a graph G is perfect if

Clique Transversal in Perfect Graphs 437

and only if STAB(G) = QSTAB(G) [9]. In this work, we focus on the vertex
cover polytope VC(G) which is the convex hull of the incidence vectors of all
vertex covers of G. Let QVC(G) = {x ∈ [0, 1]n :

∑

i∈Q x(i) ≥ |Q| − 1, ∀Q a
clique in G}. Since VC(G) = {1 − x : x ∈ STAB(G)} and QVC(G) = {1 − x : x ∈
QSTAB(G)}, a graph G is perfect if and only if VC(G) = QVC(G). Further, on
perfect graphs, VERTEX COVER is solvable in polynomial time [9]. For a detailed
exposition on the polyhedral characterization, we refer to the article by Knuth
[13].

4.2 The OCT Polytope and Its LP Relaxation

Let OCT(G) denote the convex hull of the incidence vectors of all the odd cycle
transversals of G.

OCT(G) = conv {χS ∈ {0, 1}n | S ⊆ V(G) is an odd cycle transversal of G}

Clearly, oct(G,w) is equal to minwTx subject to x ∈ OCT(G). Define the convex
set QOCT(G), the clique-constrained odd cycle transversal polytope insisting a
lower bound on the variables sum for every clique.

QOCT(G) = {x ∈ [0, 1]n :
∑

i∈Q x(i) ≥ |Q|− 2, ∀Q a clique in G}

Now, OCT(G) ⊆ QOCT(G) and oct(G,w) is at least the weight of an optimum
point in QOCT(G). We then have the following linear programming relaxation
for OCT.

LP-Oct(G): min wTx subject to x ∈ QOCT(G)

We next show that constraints corresponding to maximal cliques suffice to de-
scribe QOCT(G) and QVC(G). We use this property crucially in the approxi-
mation algorithm.

Lemma 1. Let Q(G) denote the set of maximal cliques in G. Then, we have QVC(G)=
{x ∈ [0, 1]n :

∑

i∈Q x(i) ≥ |Q| − 1, ∀Q ∈ Q(G)} and QOCT(G) = {x ∈ [0, 1]n :
∑

i∈Q x(i) ≥ |Q|− 2, ∀Q ∈ Q(G)}.

We now show that, if G is a perfect graph, then an optimum solution to LP-
Oct(G) can be obtained in polynomial time.

Lemma 2. If G is perfect, then there exists a polynomial-time separation oracle for
QOCT(G). Thus, if G is perfect, then the optimization problem over QOCT(G) is
polynomial-time solvable.

Next, we show how to round a fractional optimum solution of LP-Oct(G) to
obtain an odd cycle transversal that is a 2-approximation.

4.3 A 2-Approximation for OCT on Perfect Graphs

We now design a polynomial-time 2-approximation algorithm for OCT on per-
fect graphs using all the properties we have proved. Consider an optimum

438 S. Fiorini et al.

point x∗ of QOCT(G). Let V(G) be partitioned into V0 = {i ∈ V(G) : x∗(i) < 1
2
}

and V1 = {i ∈ V(G) : x∗(i) ≥ 1
2
}. We include the set V1 into the odd cycle

transversal T . Then, we obtain a set S that is a 2-approximation for OCT in
G[V0]. Finally, we show that T = V1 ∪ S is a 2-approximation for OCT in G.

Algorithm Approx-Oct(G,w)
1. Solve LP-Oct(G) to get a point x∗ = (x∗(1), x∗(2), · · · , x∗(n)).
2. Let V1 = {i ∈ V(G) : x∗(i) ≥ 1

2
}. If G− V1 is bipartite, then return V1.

3. Delete V1 and edges of G− V1 that are not in any triangle.
4. Obtain a minimum vertex cover S of the resulting graph G0.
5. Return V1 ∪ S.

Lemma 3. The size of a maximum clique in G[V0] is at most 3.

Thus, it follows that G[V0] is 3-colorable as G is perfect. Note that OCT remains
NP-hard on 3-colorable perfect graphs [3]. We first delete edges that are not
a part of any triangle in G[V0]. From [22], this preprocessing guarantees the
perfectness of the resultant graph. Since the sets of triangles in both the graphs
are same, to get a minimum odd cycle transversal for G[V0], it suffices to get a
minimum odd cycle transversal of this preprocessed graph, denoted by G0. Let
n0 denote the number of vertices in G0.

Lemma 4. If x is a point in QOCT(G0) ∩ [0, 1
2
)n0 , then 2x is a point in QVC(G0).

Observe that the preprocessing rule on G0 is crucial to the proof of Lemma 4. If
G0 had an edge e = {i, j} that is not a part of any triangle, then QOCT(G0) will
have a constraint x(i) + x(j) ≥ 2− 2 = 0 corresponding to e. In such a case, the
point 2x defined above cannot be guaranteed to respect the QVC(G) constraint
2x(i) + 2x(j) ≥ 2− 1 = 1. Now, for a minimum weight vertex cover S of G0, we
have w(S) ≤ 2

∑

i∈V0
w(i)x(i). By taking x as x∗|V(G0)

, the vector x∗ restricted to
the coordinates corresponding to vertices in G0, we have the following result.

Theorem 3. Given a perfect graph G with vertex weighting w, Algorithm Approx-
Oct(G,w) returns an odd cycle transversal T of G with w(T) ≤ 2 · oct(G,w) in
polynomial time.

5 Hardness of OCT on Perfect Graphs

We show various hardness results for OCT on perfect graphs in the approxi-
mation and parameterized complexity frameworks. The following result holds
from the NP-hardness of OCT on perfect graphs shown in [3].

Lemma 5. Given a graph G on n vertices, there is a polynomial-time algorithm that
produces a perfect graph H such that G has a vertex cover of size k iff H has an odd
cycle transversal of size n + k.

Clique Transversal in Perfect Graphs 439

Consider the following linear programming relaxation for VERTEX COVER.

LP-Vc(G): minwTx subject to x ∈ {x ∈ [0, 1]n : x(i) + x(j) ≥ 1, ∀{i, j} ∈ E(G)}

Let x∗ = (x∗(1), . . . , x∗(n)) be an optimum solution to LP-Vc(G). Let vc∗(G) =
∑

i∈V(G) x
∗(i). Let 〈G, k〉 be a VERTEX COVER instance (decision version). If k <

vc∗(G), then we can declare that G has no vertex cover of size k. Thus, without
loss of generality, we can assume that k ≥ vc∗(G). The following theorem holds
from the results of [19] and [20].

Theorem 4. Given a graph G and a positive integer k, there is a polynomial-time
algorithm that produces a graph G ′ and an integer k ′ such that G has a vertex cover
of size k iff G ′ has a vertex cover of size k ′ where k ′ ≤ k. Further, (1

2
, . . . , 1

2
) is the

unique optimum solution to LP-Vc(G ′).

It follows that VERTEX COVER (decision version) remains NP-complete on in-
stances 〈G, k〉 satisfying the properties that (1

2
, . . . , 1

2
) is the optimum solution

to LP-Vc(G) and n = 2vc∗(G) ≤ 2k. Therefore, from this observation and
Lemma 5, we have the following corollary.

Corollary 2. Given a graph G, there is a polynomial-time algorithm that produces a
perfect graphH such thatG has a vertex cover of size k iff H has an odd cycle transversal
of size at most 3k.

Using Corollary 2, we show that OCT on perfect graphs is APX-hard.

Theorem 5. For any ε > 0, if VERTEX COVER has no polynomial-time (c − ε)-
approximation algorithm, then OCT on perfect graphs has no polynomial-time (c ′−ε)-
approximation algorithm where c ′ = 1

3
(c+ 2).

It is known that if there exists a c-approximation algorithm for VERTEX COVER
with c < 1.36, then P = NP [7]. Moreover, assuming the unique games con-
jecture, if VERTEX COVER has an c-approximation algorithm with c < 2, then
P = NP [12]. From these results and Lemma 5, we have the following result.

Corollary 3. If there is a c-approximation algorithm for OCT on perfect graphs with
c < 1.12, then P = NP. Further, assuming the unique games conjecture, if there is a
c-approximation algorithm for OCT on perfect graphs with c < 4

3
, then P = NP.

In the parameterized setting, OCT on perfect graphs has an O∗(2k)-time al-
gorithm where k is the size of the odd cycle transversal that we seek [16]. A
kernelization algorithm for a parameterized problem is a polynomial-time al-
gorithm that produces an equivalent instance (called a kernel) whose size is
just a function of the parameter (which in this case is k). A kernel consisting
of O(k2) vertices and O(k3) edges exists for determining whether a family of
sets of size 3 has a hitting set of size at most k [1], which can be used to obtain
kernel of the same size for OCT on perfect graphs. For the problem of determin-
ing if a graph has a vertex cover of size k, no O∗(2o(k)) time algorithm exists
under the Exponential Time Hypothesis [4] and no O(k2−ε) (edges) kernel for
any ε > 0 exists unless the polynomial hierarchy collapses to the third level [6].
Thus, from Corollary 2, we obtain the following result.

440 S. Fiorini et al.

Theorem 6. The following results hold for the problem of determining if the given
perfect graph has an odd cycle transversal of size k.

1. No O∗(2o(k)) algorithm is possible under the Exponential Time Hypothesis.
2. No O(k2−ε) (edges) kernel is possible for any ε > 0 unless the polynomial hierar-

chy collapses to the third level.

Note that the proof of subquadratic kernelization hardness in Theorem 6 uses,
apart from Lemma 5, also a size preserving reduction from OCT to VERTEX COVER
described in [17].

6 Conclusion

Our approximation algorithms not only improve the known bounds for OCT
and r-CLIQUE TRANSVERSAL on perfect graphs but also combines various
properties of perfectness. Algorithm Approx-r-CT uses the fact that a Kr+1-
free perfect graph is r-partite and that this property is hereditary. Algorithm
Approx-Oct crucially uses the polynomial-time solvability of VERTEX COVER
and the equivalence of the independent set and the clique-constrained indepen-
dent set polytopes for perfect graphs. It also exploits the edge deletion prop-
erties that preserve perfectness. It would be interesting to explore if a similar
combination of perfectness properties could improve the approximation ratio
or prove tightness.

The relationship between VERTEX COVER and OCT has been witnessed to a
significant extent in the parameterized complexity framework [11, 15–17, 23].
The first bound of O∗(3k) [21] for determining whether a given graph has an
odd cycle transversal of size at most k was recently improved to O∗(2.3146k) by
reducing OCT to a version of VERTEX COVER in polynomial time [17]. Using the
same reduction as an oracle, a simpler O∗(3k) algorithm for OCT is described
in [15]. An O∗(2k) bound was obtained for perfect graphs by transforming the
problem into 2k+1 instances of bipartite vertex cover (which is polynomial-time
solvable) [16]. In this paper, we have shown two ways of using VERTEX COVER
algorithms (in graphs and hypergraphs) to obtain an approximation for OCT.
It would be interesting to investigate whether the bounds for OCT or r-CLIQUE
TRANSVERSAL in general can be improved using the ideas in this paper.

We contrast the optimization complexities of VC(G) andQVC(G) with that of
OCT(G) and QOCT(G). From the theory of blockers/antiblockers, it is known
that a polytope, its blocker and its antiblocker have same polynomial-time opti-
mization complexities [9]. The optimization problems over VC(G) and QVC(G)
are NP-hard in general and polynomial-time solvable on perfect graphs. This
is due to the fact that STAB(G) and QSTAB(G) are antiblockers of each other.
However, on perfect graphs, optimizing over OCT(G) is known to be NP-hard
while we have shown that QOCT(G) is optimizable in polynomial time. We
also observe that the definition of QOCT(G) generalizes to provide another

Clique Transversal in Perfect Graphs 441

relaxation for the r-clique transversal polytope with similar computational re-
sults and structural properties. Exploring the relationship betweenOCT(G) and
QOCT(G) is an interesting direction of research that could lead to an under-
standing of the r-clique transversal polytope of perfect graphs.

References

1. Abu-Khzama, F.N.: A kernelization algorithm for d-hitting set. Journal of Computer
and System Sciences 76(7), 524–531 (2010)

2. Berge, C.: Färbung von graphen, deren sämtliche bzw. deren ungerade kreise starr
sind (zusammenfassung). Wissenschaftliche Zeitschrift, Martin Luther Universität
Halle-Wittenberg Mathematisch-Naturwissenschaftliche Reihe 10, 114–115 (1961)

3. Berry, L.A., Kennedy, W.S., King, A.D., Li, Z., Reed, B.A.: Finding a maximum-
weight induced k-partite subgraph of an i-triangulated graph. Discrete Applied
Mathematics 158(7), 765–770 (2010)

4. Cai, L., Juedes, D.: On the existence of subexponential parameterized algorithms.
Journal of Computer and System Sciences 67, 789–807 (2003)

5. Chudnovsky, M., Robertson, N., Seymour, P.D., Thomas, R.: The strong perfect
graph theorem. Annals of Mathematics 164(1), 51–229 (2006)

6. Dell, H., Melkebeek, D.: Satisfiability allows no nontrivial sparsification unless the
polynomial-time hierarchy collapses. In: Proceedings of the ACM Symposium on
Theory of Computing, pp. 251–260 (2010)

7. Dinur, I., Safra, S.: On the hardness of approximating minimum vertex cover. Annals
of Mathematics 162(1), 439–485 (2005)

8. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs, 2nd edn. Elsevier
Science B.V. (2004)

9. Grötschel, M., Lovász, L., Schrijver, A.: Geometric Algorithms and Combinatorial
Optimization. Springer (1988)

10. Guruswami, V., Lee, E.: Inapproximability of feedback vertex set for bounded length
cycles. Electronic Colloquium on Computational Complexity (ECCC) 21, 6 (2014)

11. Iwata, Y., Oka, K., Yuichi, Y.: Linear-time fpt algorithms via network flow. In: Pro-
ceedings of the ACM-SIAM Symposium on Discrete Algorithms, pp. 1749–1761
(2014)

12. Khot, S., Regev, O.: Vertex cover might be hard to approximate to within 2 − ε.
Journal of Computer and System Sciences 74(3), 335–349 (2008)

13. Knuth, D.: The sandwich theorem. Electronic Journal of Combinatorics 1(A1), 1–48
(1994)

14. Kratsch, S., Wahlström, M.: Compression via matroids: A randomized polynomial
kernel for odd cycle transversal. In: Proceedings of the ACM-SIAM Symposium on
Discrete Algorithms, pp. 94–103 (2012)

15. Krithika, R., Narayanaswamy, N.S.: Another disjoint compression algorithm for odd
cycle transversal. Information Processing Letters 113(22–24), 849–851 (2013)

16. Krithika, R., Narayanaswamy, N.S.: Parameterized algorithms for (r, l)-partization.
Journal of Graph Algorithms and Applications 17(2), 129–146 (2013)

17. Lokshtanov, D., Narayanaswamy, N.S., Raman, V., Ramanujan, M.S., Saurabh, S.:
Faster parameterized algorithms using linear programming. CoRR abs/1203.0833.
A preliminary version appeared in the Proceedings of STACS (2012)

18. Lovász, L.: On minimax theorems of combinatorics. Ph.D thesis, Matemathikai
Lapok 26, 209–264 (1975)

442 S. Fiorini et al.

19. Nemhauser, G.L., Trotter, L.E.: Properties of vertex packing and independence sys-
tem polyhedra. Mathematical Programming 6(1), 48–61 (1974)

20. Nemhauser, G.L., Trotter, L.E.: Vertex packings: Structural properties and algo-
rithms. Mathematical Programming 8(1), 232–248 (1975)

21. Reed, B.A., Smith, K., Vetta, A.: Finding odd cycle transversals. Operations Research
Letters 32, 299–301 (2004)

22. Wagler, A.: Critical and anticritical edges in perfect graphs. In: Brandstädt, A., Van
Le, B. (eds.) WG 2001. LNCS, vol. 2204, pp. 317–327. Springer, Heidelberg (2001)

23. Wahlström, M.: Half-integrality, lp-branching and fpt algorithms. In: Proceedings of
the ACM-SIAM Symposium on Discrete Algorithms, pp. 1762–1781 (2014)

Representative Sets of Product Families

Fedor V. Fomin1, Daniel Lokshtanov1, Fahad Panolan2, and Saket Saurabh1,2

1 University of Bergen, Norway
{fomin,daniello}@ii.uib.no

2 The Institute of Mathematical Sciences, Chennai, India
{fahad,saket}@imsc.res.in

Abstract. A subfamily F ′ of a set family F is said to q-represent F
if for every A ∈ F and B of size q such that A ∩ B = ∅ there exists
a set A′ ∈ F ′ such that A′ ∩ B = ∅. In a recent paper [SODA 2014]
three of the authors gave an algorithm that given as input a family
F of sets of size p together with an integer q, efficiently computes a
q-representative family F ′ of F of size approximately

(
p+q

p

)
, and demon-

strated several applications of this algorithm. In this paper, we consider
the efficient computation of q-representative sets for product families F .
A family F is a product family if there exist families A and B such that
F = {A ∪ B : A ∈ A, B ∈ B, A ∩ B = ∅}. Our main technical contribu-
tion is an algorithm which given A, B and q computes a q-representative
family F ′ of F . The running time of our algorithm is sublinear in |F| for
many choices of A, B and q which occur naturally in several dynamic
programming algorithms. We also give an algorithm for the computation
of q-representative sets for product families F in the more general setting
where q-representation also involves independence in a matroid in addi-
tion to disjointness. This algorithm considerably outperforms the naive
approach where one first computes F from A and B, and then computes
the q-representative family F ′ from F .

We give two applications of our new algorithms for computing q-repre-
sentative sets for product families. The first is a 3.8408knO(1) determin-
istic algorithm for the Multilinear Monomial Detection (k-MlD)
problem. The second is a significant improvement of deterministic dy-
namic programming algorithms for “connectivity problems” on graphs
of bounded treewidth.

1 Introduction

Let M = (E, I) be a matroid and let S = {S1, . . . , St} be a family of subsets
of E of size p. A subfamily Ŝ ⊆ S is q-representative for S if the following
holds. For every set Y ⊆ E of size at most q, if there is a set X ∈ S disjoint
from Y with X ∪ Y ∈ I, then there is a set X̂ ∈ Ŝ disjoint from Y with
X̂ ∪ Y ∈ I. By the classical result of Lovász [14], there exists a representative
family Ŝ ⊆q

rep S with at most
(

p+q
p

)
sets. However, it is a very non-trivial question

how to construct such a representative family efficiently. It appeared already
in the 1980’s that representative families can be extremely useful in dynamic

A.S. Schulz and D. Wagner (Eds.): ESA 2014, LNCS 8737, pp. 443–454, 2014.
© Springer-Verlag Berlin Heidelberg 2014

444 F.V. Fomin et al.

programming algorithms and that faster computation of representative families
leads to more efficient algorithms.

Recently, three of the authors in [10] showed that a q-representative family
with at most

(
p+q

p

)
sets can be found in O

((
p+q

p

)
tpω + t

(
p+q

q

)ω−1
)

operations
over the field representing the matroid. Here, ω < 2.373 is the matrix multipli-
cation exponent. For the special case of uniform matroids on n elements, a faster
algorithm computing a representative family in time O((p+q

q)q · 2o(p+q) · t · log n)
was given. The results of Fomin et al. [10] improved over previous work by
Monien [17] and Marx [15,16], and led to the fastest known deterministic param-
eterized algorithms for k-Path, k-Tree, and more generally, for k-Subgraph

Isomorphism, where the k-vertex pattern graph is of constant treewidth [10].
All currently known algorithms that use fast computation of representative

sets as a subroutine are based on dynamic programming. It is therefore very
tempting to ask whether it is possible to compute representative sets faster for
families that arise naturally in dynamic programs, than for general families. A
class of families which often arises in dynamic programs is the class of product
families; a family F is the product of A and B if F = {A ∪ B : A ∈ A, B ∈
B ∧ A ∩ B = ∅}. Product families naturally appear in dynamic programs where
sets represent partial solutions and two partial solutions can be combined if
they are disjoint. For an example, in the k-Path problem partial solutions are
vertex sets of paths starting at a particular root vertex v, and two such paths
may be combined to a longer path if and only if they are disjoint (except for
overlapping at v). Many other examples exist—essentially product families can
be thought of as a subset convolution [2,3], and the wide applicability of the fast
subset convolution technique of Bjorklund et al [4] is largely due to the frequent
demand to compute product families in dynamic programs.

Our Results. Our main technical contributions are two algorithms for the com-
putation of representative sets for product families, one for uniform, and one for
linear matroids. For uniform matroids we give an algorithm which given an in-
teger q and families A, B of sets of sizes p1 and p2 over the ground set of size n,
computes a q-representative family F ′ of F . The running time of our algorithm is
sublinear in |F| for many choices of A, B and q which occur naturally in several
dynamic programming algorithms. For example, let q, p1, p2 be integers. Let
k = q + p1 + p2 and suppose that we have families A and B, which are (k − p1)
and (k − p2)-representative families. Then the sizes of these families are roughly
|A| =

(
k
p1

)
and |B| =

(
k
p2

)
. In particular, when p1 = p2 =
k/2� both families

are of size roughly 2k, and thus the cardinality of F is approximately 4k. On the
other hand, for any choice of p1, p2, and k, our algorithm outputs a (k−p1 −p2)-
representative family of F of size roughly

(
k

p1+p2

)
in time 3.8408knO(1). For many

choices of p1, p2 and q our algorithm runs significantly faster than 3.8408knO(1).
The expression capturing the running time dependence on p1, p2 and q can be
found in Theorem 1.

Our second algorithm is for computing representative families of product fam-
ilies, when the universe is also enriched with a linear matroid. More formally,

Representative Sets of Product Families 445

let M = (E, I) be a matroid and let A, B ⊆ I. Then let F = A • B = {A ∪ B :
A ∪ B ∈ I, A ∈ A, B ∈ B and A ∩ B = ∅}. Just as for uniform matroids, a naive
approach for computing a representative family of F would be to compute the
product A • B first and then compute a representative family of the product.
The fastest currently known algorithm for computing a representative family is
by Fomin et al. [10] and has running time approximately

(
p+q

p

)ω−1|F|. We give
an algorithm that significantly outperforms the naive approach. An appealing
feature of our algorithm is that it works by reducing the computation of a rep-
resentative family for F to the computation of representative families for many
smaller families. Thus an improved algorithm for the computation of represen-
tative sets for general families will automatically accelerate our algorithm for
product families as well. The expression of the running time of our algorithm
can be found in Theorem 2.

Applications. Our first application is a deterministic algorithm for the following
parameterized version of multilinear monomial testing.

Multilinear Monomial Detection (k-MlD) Parameter: k
Input: An arithmetic circuit C over Z+ representing a polynomial P (X) over
Z+.
Question: Does P (X) construed as a sum of monomials contain a multilinear
monomial of degree k?

This is the central problem in the algebraic approach of Koutis and Williams
for designing fast parameterized algorithms [12,13,20]. The idea behind the ap-
proach is to translate a given problem into the language of algebra by reducing
it to the problem of deciding whether a constructed polynomial has a multilinear
monomial of degree k. As it is mentioned implicitly by Koutis in [12], k-MlD

can be solved in time (2e)knO(1), where n is the input length, by making use
of color coding. The color coding technique of Alon, Yuster and Zwick [1] is
a fundamental and widely used technique in the design of parameterized algo-
rithms. It appeared that most of the problems solvable by making use of color
coding can be reduced to a multilinear monomial testing. Williams [20] gave a
randomized algorithm solving k-MlD in time 2knO(1). The algorithms based on
the algebraic method of Koutis-Williams provide a dramatic improvement for a
number of fundamental problems [6,5,9,11,12,13,20].

The advantage of the algebraic approach over color coding is that for a number
of parameterized problems, the algorithms based on this approach have much
better exponential dependence on the parameter. On the other hand color cod-
ing based algorithms admit direct derandomization [1] and are able to handle
integer weights with running time overhead poly-logarithmic in the weights. Ob-
taining deterministic algorithms matching the running times of the algebraic
methods, but sharing these nice features of color coding remains a challenging
open problem. Our deterministic algorithm for k-MlD is the first non-trivial
step towards resolving this problem. In fact, our algorithm solves a weighted
version of k-MlD, where the elements of X are assigned weights and the task
is to find a k-multilinear term with minimum weight. The running time of our

446 F.V. Fomin et al.

deterministic algorithm is O(3.8408k2o(k)s(C)n log W log2 n), where s(C) is the
size of the circuit and W is the maximum weight of an element from X . We also
provide an algorithm for a more general version of multilinear monomial test-
ing, where variables of a monomial should form an independent set of a linear
matroid.

The second application of our fast computation of representative families is
for dynamic programming algorithms on graphs of bounded treewidth. It is well
known that many intractable problems can be solved efficiently when the input
graph has bounded treewidth. Moreover, many fundamental problems like Max-

imum Independent Set or Minimum Dominating Set can be solved in time
2O(t)n. On the other hand, it was believed until very recently that for some “con-
nectivity” problems such as Hamiltonian Cycle or Steiner Tree no such
algorithm exists. In their breakthrough paper, Cygan et al. [8] introduced a new
algorithmic framework called Cut&Count and used it to obtain 2O(t)nO(1) time
Monte Carlo algorithms for a number of connectivity problems. Recently, Bod-
laender et al. [7] obtained the first deterministic single-exponential algorithms
for these problems using two novel approaches. One of the approaches of Bod-
laender et al. is based on rank estimations in specific matrices and the second
based on matrix-tree theorem and computation of determinants. In [10], Fomin
et al. used efficient algorithms for computing representative families of linear
matroids to provide yet another approach for single-exponential algorithms on
graphs of bounded treewdith.

It is interestingtonotethat foranumberofconnectivityproblemssuchasSteiner

Tree or Feedback Vertex Set the “bottleneck” of treewidth based dynamic
programming algorithms is the join operation. For example, as it was shown by
Bodlaender et al. in [7], Feedback Vertex Set and Steiner Tree can be solved
in time O (

(1 + 2ω)pwpwO(1)n
)

and O
(

(1 + 2ω+1)twtwO(1)n
)

, where pw and
tw are the pathwidth and the treewidth of the input graph. The reason for the
difference in the exponents of these two algorithms is due to the cost of the join
operation, which is required for treewidth and does not occur for pathwidth. For
many computational problems on graphs of bounded treewidth in the join nodes
of the decomposition, the family of partial solutions is the product of the families
of its children, and we wish to store a representative set (for a graphic matroid)
for this product family. Here our second algorithm comes into play. By making use
of this algorithm one can obtain faster deterministic algorithms for many connec-
tivity problems. We exemplify this by providing an algorithm with running time
O

(
(1 + 2ω−1 · 3)twtwO(1)n

)
for Steiner Tree by changing the representative

sets computation in the join node in the algorithm presented in [10].

Our Methods. The engine behind our algorithm for the computation of repre-
sentative sets of product families is a new construction of pseudorandom coloring
families. A coloring of a universe U is simply a function f : U → {red, blue}. Con-
sider a pair of disjoint sets A and B, with |A| = p and |B| = q. A random coloring
which colors each element in U red with probability p

p+q and blue with probabil-
ity q

p+q will color A red and B blue with probability roughly 1
(p+q

p) . Thus a family

Representative Sets of Product Families 447

of slightly more than
(

p+q
p

)
such random colorings will contain, with high proba-

bility, for each pair of disjoint sets A and B, with |A| = p and |B| = q a function
which colors A red and B blue. The fast computation of representative sets of Fomin
et al. [10] deterministically constructs a collection of colorings which mimics this
property of random coloring families. The colorings in the family are used to witness
disjointedness, since a coloring which colors A red and B blue certifies that A and
B are disjoint. In our setting we can use such coloring families both for witnessing
disjointedness in the computation of representative sets, and in the computation
of F = A • B. After all, each set in F is the disjoint union of a set in A and a set
in B. In order to make this idea work we need to make a deterministic construc-
tion of coloring families which need to satisfy more properties of random colorings
than the construction from [10]. We believe that the new construction of coloring
families will find applications beyond our algorithm. The new construction can be
used to speed-up the deterministic algorithm for k-Path of Fomin et al. [10] from
O(2.851kn log2 n) to O(2.619kn log2 n). Shachnai and Zehavi [19] also obtained the
result for k-Path independently by giving a time-size tradeoff version of coloring
families used in [10]. However, this construction is not sufficient to give our results
on product families.

For linear matroids, our algorithm computes a representative family F ′ of
F = A • B as follows. First the family F is broken up into many smaller families
F1, . . . , Ft, then a representative family F ′

i is computed for each Fi. Finally F ′

is obtained by computing a representative family of
⋃

i F ′
i using the algorithm

of Fomin et al [10] for computing representative families. The speedup over the
naive method is due to the fact that (a)

⋃
i F ′

i is much smaller than F and (b)
that each Fi has a certain structure which ensures better upper bounds on the
size of F ′

i , and allows F ′
i to be computed faster.

2 Preliminaries

In this section we give various definitions which we make use of in the paper.
Sets, Functions and Constants. Let [n] = {0, . . . , n−1} and

([n]
i

)
= {X | X ⊆

[n], |X | = i}. Furthermore for any ground set U , we use 2U to denote the family
of all subsets of U . We call a function f : 2U → N, additive if for any subsets X
and Y of U we have that f(X) + f(Y) = f(X ∪ Y) − f(X ∩ Y).

A monomial Z = xs1
1 · · · xsn

n of a polynomial P (x1, . . . , xn) is called multilinear
if si ∈ {0, 1} for all i ∈ {1, . . . , n}. We say a monomial Z = xs1

1 · · · xsn
n is a k-

multilinear term, if Z is multilinear and
∑n

i=1 si = k. Throughout the paper we
use ω to denote the matrix multiplication exponent. The current best known
bound on ω < 2.373 [21].

Now we give definitions related to matroids and representative families. For
a broader overview on matroids we refer to [18].
Definition 1. A pair M = (E, I), where E is a ground set and I is a family of
subsets (called independent sets) of E, is a matroid if it satisfies the following
conditions: (I1) φ ∈ I, (I2) If A′ ⊆ A and A ∈ I then A′ ∈ I. (I3) If A, B ∈ I
and |A| < |B|, then ∃ e ∈ (B \ A) such that A ∪ {e} ∈ I.

448 F.V. Fomin et al.

An inclusion-wise maximal set of I is called a basis of the matroid. All bases
of a matroid M have the same size, called the rank of the matroid M , and is
denoted by rank(M). The uniform matroids are among the simplest examples of
matroids. A pair M = (E, I) over an n-element ground set E, is called a uniform
matroid if the family of independent sets is given by I = {A ⊆ E | |A| ≤ k},
where k is some constant. This matroid is also denoted as Un,k.

Let A be a matrix over an arbitrary field F and let E be the set of columns of
A. Given A we define the matroid M = (E, I) as follows. A set X ⊆ E is inde-
pendent (that is X ∈ I) if the corresponding columns are linearly independent
over F. The matroids that can be defined by such a construction are called linear
matroids, and if a matroid can be defined by a matrix A over a field F, then we
say that the matroid is representable over F. That is, a matroid M = (E, I) of
rank d is representable over a field F if there exist vectors in Fd correspond to
the elements such that linearly independent sets of vectors correspond to inde-
pendent sets of the matroid. A matroid M = (E, I) is called representable or
linear if it is representable over some field F.

Given two families of independent sets A and B of a matroid M = (E, I), we
define A • B = {A ∪ B : A ∪ B ∈ I, A ∈ A, B ∈ B and A ∩ B = ∅}.

We now define what it means for a family to be a q-representative family of
a given family.

Definition 2 (Min/Max q-Representative Family [10,16]). Given a ma-
troid M = (E, I), a family S of subsets of E and a non-negative weight function
w : S → N we say that a subfamily Ŝ ⊆ S is min q-representative (max q-
representative) for S if the following holds: for every set Y ⊆ E of size at most q,
if there is a set X ∈ S disjoint from Y with X ∪Y ∈ I, then there is a set X̂ ∈ Ŝ
disjoint from Y with (a) X̂ ∪ Y ∈ I; and (b) w(X̂) ≤ w(X) (w(X̂) ≥ w(X)).
We use Ŝ ⊆q

minrep S (Ŝ ⊆q
maxrep S) to denote a min q-representative (max

q-representative) family for S.

3 Representative Set Computation for Product Families

In this section we design a faster algorithm to find q-representative family for
product families. Our main technical tool is a generalization of n-p-q-separating
collections defined in [10] to compute q-representative families of an arbitrary
family. In fact we design a family of n-p-q-separating collections of various sizes
governed by a parameter 0 < x < 1. The construction of generalized n-p-q-
separating collection goes along the lines of the proof given in [10] with a few non-
trivial differences. Finally, we combine two n-p-q-separating collections obtained
with different parameters to obtain the desired algorithm for product families.

3.1 Generalized n-p-q-Separating Collections

We start with the formal definition of a generalized n-p-q-separating collection.

Representative Sets of Product Families 449

Definition 3. A generalized n-p-q-separating collection C is a tuple (F , χ, χ′),
where F is a family of sets over a universe U of size n, χ is a function from⋃

p′≤p

(
U
p′

)
to 2F and χ′ is a function from

⋃
q′≤q

(
U
q′

)
to 2F such that the following

properties are satisfied

1. for every A ∈ ⋃
p′≤p

(
U
p′

)
and F ∈ χ(A), A ⊆ F ,

2. for every B ∈ ⋃
q′≤q

(
U
q′

)
and F ∈ χ′(B), F ∩ B = ∅,

3. for every pairwise disjoint sets A1 ∈ (
U
p1

)
, A2 ∈ (

U
p2

)
, . . . , Ar ∈ (

U
pr

)
and

B ∈ (
U
q

)
such that p1 + . . . + pr = p, ∃F ∈ χ(A1) ∩ χ(A2) . . . χ(Ar) ∩ χ′(B).

The size of (F , χ, χ′) is |F|, the (χ, p′)-degree of (F , χ, χ′) for p′ ≤ p
is maxA∈(U

p′) |χ(A)|, and the (χ′, q′)-degree of (F , χ, χ′) for q′ ≤ q is
maxB∈(U

q′) |χ′(B)|.

A construction of generalized separating collections is a data structure, that
given n, p and q initializes and outputs a family F of sets over the universe
U of size n. After the initialization one can query the data structure by giving
it a set A ∈ ⋃

p′≤p

(
U
p′

)
or B ∈ ⋃

q′≤q

(
U
q′

)
, the data structure then outputs a

family χ(A) ⊆ 2F or χ′(B) ⊆ 2F respectively. Together the tuple C = (F , χ, χ′)
computed by the data structure should form a generalized n-p-q-separating col-
lection.

We call the time the data structure takes to initialize and output F the initial-
ization time. The (χ, p′)-query time, p′ ≤ p, of the data structure is the maximum
time the data structure uses to compute χ(A) over all A ∈ (

U
p′

)
. Similarly, the

(χ′, q′)-query time, q′ ≤ q, of the data structure is the maximum time the data
structure uses to compute χ′(B) over all B ∈ (

U
q′

)
. The initialization time of the

data structure and the size of C are functions of n, p and q. The initialization
time is denoted by τI(n, p, q), size of C is denoted by ζ(n, p, q). The (χ, p′)-query
time and (χ, p′)-degree of C, p′ ≤ p, are functions of n, p′, p, q and is denoted
by Q(χ,p′)(n, p, q) and Δ(χ,p′)(n, p, q) respectively. Similarly, the (χ′, q′)-query
time and (χ′, q′)-degree of C, q′ ≤ q, are functions of n, q′, p, q and are denoted
by Q(χ′,q′)(n, p, q) and Δ(χ′,q′)(n, p, q) respectively. We are now ready to state
a lemma regarding the computation of generalized n-p-q- separating collection
and its proof is deferred to the full version of the paper.

Lemma 1 (�). 1 Given a constant x such that 0 < x < 1, there is a construction
of generalized n-p-q- separating collection with the following parameters

– size, ζ(n, p, q) ≤ 2O(p+q
log log log(p+q)) · 1

xp(1−x)q · (p + q)O(1) · log n

– initialization time, τI(n, p, q) ≤ 2O(p+q
log log log(p+q)) · 1

xp(1−x)q · (p+ q)O(1) ·n log n

– (χ, p′)-degree, Δ(χ,p′)(n, p, q) ≤ 2O(p+q
log log log(p+q)) · 1

xp−p′(1−x)q ·(p+q)O(1) · log n

– (χ, p′)-query time, Q(χ,p′)(n, p, q) ≤ 2O(p+q
log log log(p+q)) · 1

xp−p′(1−x)q · (p+ q)O(1) ·
log n

1 Proofs of results labelled with � will be provided in the full version.

450 F.V. Fomin et al.

– (χ′, q′)-degree, Δ(χ′,q′)(n, p, q) ≤ 2O(p+q
log log log(p+q)) · 1

xp(1−x)q−q′ ·(p+q)O(1)·log n

– (χ′, q′)-query time, Q(χ′,q′)(n, p, q) ≤ 2O(p+q
log log log(p+q)) · 1

xp(1−x)q−q′ ·(p+q)O(1) ·
log n

3.2 Representative Sets for Product Families

We are ready to give the main theorem about product families using the con-
structions of generalized n-p-q-separating collections.

Theorem 1 (�). Let L1 be a p1-family of sets and L2 be a p2-family of sets over
a universe U of size n. Let w : 2U → N be an additive weight function. Let
L = L1 • L2 and p = p1 + p2. For any 0 < x1, x2 < 1, there exist L̂ ⊆k−p1−p2

minrep

L of size 2O(k
log log log(k)) · 1

xp
1(1−x1)k−p · kO(1) log n and it can be computed in time

O
(

z(n, k, W) ·
(

1
xp

1(1−x1)q + 1
x

p1
2 (1−x2)p2 + |L1|

x
p2
1 (1−x1)q(1−x2)p2 + |L2|

x
p1
1 (1−x1)qx

p1
2

))
.

Here z(n, k, W) = 2O(k
log log log(k))kO(1)n log n log W and W is the maximum weight

defined by w.

Proof. We set p = p1 + p2 and q = k − p. To obtain the desired construction we
first define an auxiliary graph and then use it to obtain the q-representative for
the product family L. We first obtain two families of separating collections.

– Apply Lemma 1 for 0 < x1 < 1 and construct a n-p-q-separating collection
(F , χF , χ′

F) of size 2O(p+q
log log log(p+q)) · 1

xp
1(1−x1)q · (p+ q)O(1) log n in time linear

in the size of F .
– Apply Lemma 1 for 0 < x2 < 1 and construct a n-p1-p2-separating collection

(H, χH, χ′
H) of size 2O(p1+p2

log log log(p1+p2)) · 1
x

p1
2 (1−x2)p2 · (p1 + p2)O(1) log n in time

linear in the size of H.

Now we construct a graph G = (V, E) where the vertex set V contains a vertex
each for sets in F � H � L1 � L2. For clarity of presentation we name the vertices
by the corresponding set. Thus, the vertex set V = F �H�L1 �L2. The edge set
E = E1 �E2 �E3 �E4, where each Ei for i ∈ {1, 2, 3, 4} is defined as follows (see
Figure 1). E1 =

{
(A, F)

∣∣∣ A ∈ L1, F ∈ χF (A)
}

, E2 =
{

(B, F)
∣∣∣ B ∈ L2, F ∈

χF(B)
}

, E3 =
{

(A, H)
∣∣∣ A ∈ L1, H ∈ χH(A)

}
and E4 =

{
(B, F)

∣∣∣ B ∈
L2, F ∈ χ′

H(B)
}

. Thus G is essentially a 4-partite graph.

Algorithm. The construction of L̂ is as follows. For a set F ∈ F , we call a pair of
sets (A, B) cyclic, if A ∈ L1, B ∈ L2 and there exists H ∈ H such that FAHB
forms a cycle of length four in G. Let J (F) denote the family of cyclic pairs for
a set F ∈ F and wF = min(A,B)∈J (F) w(A) + w(B).

We obtain the family L̂ by adding A ∪ B for every set F ∈ F such that (A, B) ∈
J (F) and w(A) + w(B) = wF . Indeed, if the family J (F) is empty then we do

Representative Sets of Product Families 451

F F1 · · · Fr · · ·

L1

A1 · · · Ai · · ·

L2

B1 · · · Bj · · ·

HH1 · · · H� · · ·

Fr
∈ χF(Ai) F

r ∈ χF (B
j)

H
� ∈ χH(A

i)
H�

∈ χ
′ H(Bj)

Fig. 1. Graph constructed from L1, L2, F and H

not add any set to L̂ corresponding to F . The procedure to find the smallest weight
A∪B for any F is as follows. We first mark the vertices of NG(F) (the neighbors of
F). Now we mark the neighbors of P = (NG(F)∩L1) in H. For every marked vertex
H ∈ H, we associate a set A of minimum weight such that A ∈ (P ∩ NG(H)). This
can be done sequentially as follows. Let P = {S1, . . . , S�}. Now iteratively visit
the neighbors of Si in H, i ∈ [�], and for each vertex of H store the smallest weight
vertex S ∈ P it has seen so far. After this we have a marked set of vertices in H such
that with each marked vertex H in H we stored a smallest weight marked vertex in
L1 which is a neighbor of H . Now for each marked vertex B in L2, we go through the
neighbors of B in the marked set of vertices in H and associate (if possible) a second
vertex (which is a minimum weighted marked neighbor from L2) with each marked
vertex in H. We obtain a pair of sets (A, B) ∈ J (F) such that w(A)+w(B) = wF .
This can be easily done by keeping a variable that stores a minimum weighted A∪B
seen after every step of marking procedure. Since for each F ∈ F we add at most
one set to L̂, the size of L̂ follows.

Correctness. We first show that L̂ ⊆ L. Towards this we only need to show
that for every A ∪ B ∈ L̂ we have that A ∩ B = ∅. Observe that if A ∪ B ∈ L̂
then there exists a F ∈ F , H ∈ H such that FAHB forms a cycle of length
four in the graph G. So H ∈ χH(A) and H ∈ χ′

H(B). This means A ⊆ H and
B ∩ H = ∅. So we conclude A and B are disjoint and hence L̂ ⊆ L. We also need
to show that if there exist pairwise disjoint sets A ∈ L1, B ∈ L2, C ∈ (

U
q

)
, then

there exist Â ∈ L1, B̂ ∈ L2 such that Â ∪ B̂ ∈ L̂, Â, B̂, C are pairwise disjoint
and w(Â) + w(B̂) ≤ w(A) + w(B). By the property of separating collections
(F , χF , χ′

F) and (H, χH, χ′
H), we know that there exists F ∈ χF (A) ∩ χF (B) ∩

χ′
F(C), H ∈ χH(A) ∩ χ′

H(B). This implies that FAHB forms a cycle of length
four in the graph G. Hence in the construction of L̂, we should have chosen
Â ∈ L1 and B̂ ∈ L2 corresponding to F such that w(Â) + w(B̂) ≤ w(A) + w(B)
and added to L̂. So we know that F ∈ χF(Â) ∩ χF (B̂). Now we claim that
Â, B̂ and C are pairwise disjoint. Since Â ∪ B̂ ∈ L̂, Â ∩ B̂ = ∅. Finally, since
F ∈ χF(Â) ∩ χF(B̂) and F ∈ χ′

F(C), we get Â, B̂ ⊆ F and F ∩ C = ∅ which

452 F.V. Fomin et al.

implies C is disjoint from Â and B̂. This completes the correctness proof. The
running time analysis is deferred to the full version of the paper ��

For the product families of a linear matroid we have the following theorem.

Theorem 2 (�). Let M = (E, I) be a linear matroid of rank k, L1
be a p1-family of independent sets of M and L2 be a p2-family of in-
dependent sets of M . Given a representation AM of M over a field
F, we can find L̂1 • L2 ⊆k−p1−p2

minrep L1 • L2 of size at most
(

k
p1+p2

)
in

O
(

|L2||L1|(k−p2
p1

)ω−1
pω

1 + |L2|(k−p2
p1

)(
k

p1+p2

)ω−1
(p1 + p2)ω

)
operations over F.

4 Applications

In this subsection we mention some of the applications of Theorems 1 and 2 and
its derivatives.

Multilinear Monomial Testing. In this section we first design a faster algorithm
for a weighted version of k-MlD and then give an algorithm for an extension of
this to a matroidal version. In the weighted version of k-MlD in addition to an
arithmetic circuit C over variables X = {x1, x2, . . . , xn} representing a polyno-
mial P (X) over Z+, we are also given an additive weight function w : 2X → N.
The task is that if there exists a k-multilinear term then find one with minimum
weight. We call the weighted variant by k-wMlD. We start with the definition
of an arithmetic circuit.
Definition 4. An arithmetic circuit C over a commutative ring R is a simple
labelled directed acyclic graph with its internal nodes are labeled by + or × and
leaves (in-degree zero nodes) are labeled from X ∪R, where X = {x1, x2, . . . , xn},
a set of variables. There is a node of out-degree zero, called the root node or the
output gate. The size of C, s(C) is the number of vertices in the graph.

It is well known that we can replace any arithmetic circuit C with an equiv-
alent circuit with fan-in two for all the internal nodes with quadratic blow up
in the size. For an example, by replacing each node of in-degree greater than 2,
with at most s(C) many nodes of the same label and in-degree 2, we can convert
a circuit C to a circuit C′ of size s(C′) = s(C)2. So from now onwards we always
assume that we are given a circuit of this form. We assume W be the maximum
weight defined by w.

Theorem 3 (�). k-wMlD can be solved in time O(3.8408k2o(k)s(C)n log2 n ·
log W).

Proof (Sketch of the proof). An arithmetic circuit C over Z+ with all leaves la-
belled from X ∪Z+ will represent sum of monomials with positive integer coeffi-
cients. With each multilinear term Π�

j=1xij we associate a set {xi1 , . . . , xil
} ⊆ X .

With any polynomial we can associate a family of subsets of X which corresponds
to the set of multilinear terms in it. Since C is a directed acyclic graph, there ex-
ists a topological ordering π = v1, . . . , vn, such that all the nodes corresponding

Representative Sets of Product Families 453

to variables appear before any other gate and for every directed arc uv we have
that u <π v. For a node vi of the circuit let Pi(X) be the multivariate polyno-
mial represented by the subcircuit containing all the nodes w such that w ≤π vi.
At every node we keep a family F j

vi
of j-multilinear term, where j ∈ {1, . . . , k}.

Let Fvi = ∪k
x=1Fx

vi
. Given a circuit C, if we compute associated family of sub-

sets of X for each node we can answer the question of having a k-multilinear
term of minimum weight in the polynomial computed by C. But the size of the
family of subsets could be exponential in n, the number of variables. That is,
the size of F j

vi
could be

(
n
j

)
. So instead of storing all subsets, we store a repre-

sentative family for the associated family of subsets of each node. That is, we
store F̂ j

vi ⊆k−j
minrep F j

vi
. The correctness of this step follows from the definition of

k − j-representative family.
We make a dynamic programming algorithm to detect a multilinear monomial

of order k as follows. Our algorithm goes from left to right following the order-
ing given by π and computes Fvi from the families previously computed. The
algorithm computes an appropriate representative family corresponding to each
node of C. We show that we can compute a representative family Fv associated
with any node v, where the number of subsets with p elements in Fv is at most(

k
p

)
2o(k) log n. Detailed algorithm and correctness proof will be available in the

full version of the paper. ��
We also provide an algorithm for matroidal version of k-wMlD where we are

additionally given a linear matroid on the “variable set” and the objective is to
find a multilinear monomial that is also an independent set of the given matroid.
More precisely we give the following theorem.

Theorem 4 (�). k-wMMlD can be solved in time O(7.7703kkωs(C)).

Improved Treewidth Algorithms. Using Theorem 2 we give the fastest known
deterministic algorithms for “connectivity problems” such as Steiner Tree,
Feedback Vertex Set parameterized by the treewidth of the input graph.

Theorem 5 (�). Let G be an n-vertex graph given together with its tree decom-
position of with tw. Then Steiner Tree (or Feedback Vertex Set) on G

can be solved in time O
((

1 + 2ω−1 · 3
)tw twO(1)n

)
.

Finally, we have.

Theorem 6 (�). k-Path admits an algorithm with running time
O(2.619kn log2 n).

References

1. Alon, N., Yuster, R., Zwick, U.: Color-coding. J. Assoc. Comput. Mach. 42(4),
844–856 (1995)

2. Bellman, R., Karush, W.: Mathematical programming and the maximum trans-
form. J. Soc. Indust. Appl. Math. 10, 550–567 (1962)

454 F.V. Fomin et al.

3. Bellman, R., Karush, W.: On the maximum transform and semigroup of transfor-
mations. Bull. Amer. Math. Soc. 68, 516–518 (1962)

4. Björklund, A., Husfeldt, T., Kaski, P., Koivisto, M.: Fourier meets Möbious: Fast
subset convolution. In: Proceedings of the 39th Annual ACM Symposium on The-
ory of Computing (STOC 2007). ACM Press, New York (2007) (page to appear)

5. Björklund, A., Husfeldt, T., Kaski, P., Koivisto, M.: Narrow sieves for parameter-
ized paths and packings. CoRR, abs/1007.1161 (2010)

6. Björklund, A., Kaski, P., Kowalik, L.: Probably optimal graph motifs. In: STACS.
LIPIcs, vol. 20, pp. 20–31 (2013)

7. Bodlaender, H.L., Cygan, M., Kratsch, S., Nederlof, J.: Deterministic single expo-
nential time algorithms for connectivity problems parameterized by treewidth. In:
Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013, Part
I. LNCS, vol. 7965, pp. 196–207. Springer, Heidelberg (2013)

8. Cygan, M., Nederlof, J., Pilipczuk, M., Pilipczuk, M., van Rooij, J.M.M., Woj-
taszczyk, J.O.: Solving connectivity problems parameterized by treewidth in single
exponential time. In: Proceedings of the 52nd Annual Symposium on Foundations
of Computer Science (FOCS 2011). IEEE (2011)

9. Fomin, F.V., Lokshtanov, D., Raman, V., Saurabh, S., Rao, B.V.R.: Faster algorithms
for finding and counting subgraphs. J. Comput. System Sci. 78(3), 698–706 (2012)

10. Fomin, F.V., Lokshtanov, D., Saurabh, S.: Efficient computation of representa-
tive sets with applications in parameterized and exact algorithms. In: SODA,
pp. 142–151 (2014)

11. Guillemot, S., Sikora, F.: Finding and counting vertex-colored subtrees. Algorith-
mica 65(4), 828–844 (2013)

12. Koutis, I.: Faster algebraic algorithms for path and packing problems. In: Aceto, L.,
Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I.
(eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 575–586. Springer, Heidelberg (2008)

13. Koutis, I.: Constrained multilinear detection for faster functional motif discovery.
Inf. Process. Lett. 112(22), 889–892 (2012)

14. Lovász, L.: Flats in matroids and geometric graphs. In: Combinatorial surveys
(Proc. Sixth British Combinatorial Conf., Royal Holloway Coll., Egham), pp. 45–
86. Academic Press, London (1977)

15. Marx, D.: Parameterized coloring problems on chordal graphs. Theor. Comput.
Sci. 351(3), 407–424 (2006)

16. Marx, D.: A parameterized view on matroid optimization problems. Theor. Com-
put. Sci. 410(44), 4471–4479 (2009)

17. Monien, B.: How to find long paths efficiently. In: Analysis and design of algorithms
for combinatorial problems, Udine, 1982. North-Holland Math. Stud., vol. 109, pp.
239–254. North-Holland, Amsterdam (1985)

18. Oxley, J.G.: Matroid theory, vol. 3. Oxford University Press (2006)
19. Shachnai, H., Zehavi, M.: Faster computation of representative families for uniform

matroids with applications. CoRR, abs/1402.3547 (2014)
20. Williams, R.: Finding paths of length k in O∗(2k) time. Inf. Process. Lett. 109(6),

315–318 (2009)
21. Williams, V.V.: Multiplying matrices faster than Coppersmith-Winograd. In: Pro-

ceedings of the 44th Symposium on Theory of Computing Conference (STOC
2012), pp. 887–898. ACM (2012)

Weighted Ancestors in Suffix Trees

Pawe�l Gawrychowski1, Moshe Lewenstein2, and Patrick K. Nicholson1

1 Max-Planck-Institut für Informatik, Saarbrücken, Germany
2 Bar-Ilan University, Israel

Abstract. The classical, ubiquitous, predecessor problem is to construct
a data structure for a set of integers that supports fast predecessor
queries. Its generalisation to weighted trees, a.k.a. the weighted ances-
tor problem, has been extensively explored and successfully reduced to
the predecessor problem. It is known that any data structure solution for
the weighted ancestor problem that occupies O(n polylog(n)) space must
have Ω(log log n) query time, if the weights are drawn from a polynomi-
ally bounded universe. Perhaps the most important and frequent appli-
cation of the weighted ancestors problem is for suffix trees. It has been
a long-standing open question whether the weighted ancestors problem
has better bounds for suffix trees. We answer this question positively: we
show that a suffix tree built for a text w[1..n] can be preprocessed using
O(n) extra space, so that queries can be answered in O(1) time. Thus
we improve the running times of several applications. Our improvement
is based on a number of data structure tools and a periodicity-based
insight into the combinatorial structure of a suffix tree.

1 Introduction

The well-known and widely-used predecessor problem is to preprocess a set of
integers so that the predecessor of a given number can be located. Tight tradeoffs
between construction space and query times for such a data structure are known
(see [12] for a survey). The predecessor problem was generalised to trees by
Farach and Muthukrishnan [6]. It is called the weighted ancestor problem and
is defined as follows. We are given a rooted tree in which every node v has
an associated integer weight w(v) as input. The weights satisfy the min-heap
property, that is the weight of every node is larger than the weight of its parent
(the tree does not need to be binary). The goal of the problem is to preprocess
the tree so that the predecessor of a given number, among the weights of all the
ancestor nodes of a given leaf, can be located. They [6] described a randomised
data structure, which can be constructed in O(n) time and space given an n-
node tree with weights from [1, n]. The query time is O(log logn), see [1] for a
deterministic version of the structure with the same bounds.

In the simpler unweighted version of the problem, called the level ancestor
problem, we must preprocess a tree on n nodes, so that we can retrieve the k-th
ancestor of a given node efficiently. Berkman and Vishkin showed that such a
query can be answered in O(1) time, using O(n) preprocessing time and space [3].

A.S. Schulz and D. Wagner (Eds.): ESA 2014, LNCS 8737, pp. 455–466, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

456 P. Gawrychowski, M. Lewenstein, and P.K. Nicholson

Later, a much simpler solution was discovered [2]. However, the solutions for the
level ancestor strongly utilise the fact that the difference in “weight” between
levels is one, so they give no insight into the weighted ancestors problem.

The application for which the weighted ancestor problem was initially intro-
duced [6] is substring hashing. In substring hashing one wants to preprocess a
given string w[1..n], to allow the efficient computation of the hash h(i, j) of any
of its substrings w[i..j]. The hashing should be perfect, i.e., h(i, j) = h(i′, j′) if
and only if w[i..j] = w[i′..j′]. In [6] the substring hashing problem was reduced
to weighted ancestor queries on a suffix tree. Since for suffix trees the universe
size is O(n), one can use a predecessor data structure such as a y-fast trie [13]
to obtain O(n) preprocessing time and space so that any hash can be computed
in O(log logn) time. Their solution also gives the same bounds for the weighted
ancestor problem in any tree where the weights are polynomial in n.

In the context of suffix trees the weighted ancestors problem can also be
viewed as preprocessing a suffix tree built for a string w[1..n], so as to allow the
retrieval of the (implicit or explicit) node corresponding to any substring w[i..j],
given i and j. There are numerous applications and we will mention a few later.

Kopelowitz and Lewenstein [10] generalised the weighted ancestor problem to
the dynamic setting and showed how to support leaf insertions and edge split-
ting operations (required to maintain a suffix tree for a growing text). They also
showed that, up to an additive O(log� n) term, the static problem is as easy
as predecessor search: if one can implement a linear space static predecessor
structure with a query time of pred(n, U), where pred(n, U) is the predeces-
sor query time for a set of n integers drawn from the universe [1, U], then a
weighted ancestor query can be answered in O(pred(n, U) + log� n) time after
linear preprocessing.

Since the weighted ancestor is a generalisation of the predecessor problem,
it cannot have better time/space bounds than the predecessor problem. Hence,
by the known bounds for the weighted ancestor problem in which the universe
size is polynomially bounded in n, any weighted ancestor data structure of size
O(n polylog(n)) must have query time of Ω(log logn). Furthermore, this lower
bound holds even when the the node weights are bounded by n. Nevertheless,
weighted ancestors on suffix trees are a special case of the general weighted an-
cestors problem. Hence, it is plausible that one can do better. This was indirectly
expressed in [6] where the question was raised whether batched substring hash-
ing can be sped up. This led to the challenge of solving weighted ancestors on
suffix trees in O(n) preprocessing time and space and O(1) query time which
has been an open question for a long time now.

Contribution. All our results hold in the word-RAM model with logarithmic
word size. We show that, for weighted ancestor in suffix trees, it is possible to
achieve O(1) deterministic worst-case query time using O(n) additional space.
To simplify the presentation in this shortened version of the paper, we describe
a simpler solution that occupies O(n polylog(n)) space, and allows O(1) time
queries. In the full version of this paper [8] we present the details to reduce the
space usage to O(n), as well as the omitted proofs.

Weighted Ancestors in Suffix Trees 457

To sidestep the lower bound for the weighted ancestor problem, we look deeper
into the structure of a suffix tree, and apply a periodicity-based argument. This
argument allows us to decompose the tree into sufficiently simple subtrees, which
are then preprocessed separately. To preprocess the subtrees, we develop an
efficient solution for a variant of the predecessor problem, in which we are given
multiple correlated sets of integers. The correlation allows us to circumvent the
predecessor lower bound, which would be relevant if we were to consider each of
the sets separately. As our solution contains many details, we provide a high level
overview in Section 3. This yields improved query times to several problems.

Substring Search. Preprocess the suffix tree built for w[1..n] to answer sub-
string search queries, i.e., given a pair of indices i, j return the locus of w[i..j]
in the suffix tree (the node at the end of the partial path denoting w[i..j]). This
is solved by a weighted ancestor query on a suffix tree: go to the node repre-
senting w[i..n] and answer the predecessor query of j − i + 1 (in this case we
prefer the analogous successor query). Since the weighted ancestors takes O(n)
preprocessing space and O(1) query time, substring search has the same bounds.

Substring Hashing. We define h(i, j) = 〈locus of w[i..j], i− j + 1〉, where the
locus of w[i..j] is found by substring search. It is easy to verify that h(i, j) =
h(i′, j′) iff w[i..j] = w[i′..j′]. Hence, substring hashing can be improved to O(n)
preprocessing space and O(1) query time. Consequently, batched substring hash-
ing is also optimal. By not insisting that we return the corresponding node of
the suffix tree, one can achieve an optimal O(1) query after O(n) preprocessing
with a simpler method [7]. Nevertheless, the number of bits in the answer in [7]
is 3 logn while in our solution it is optimal 2 logn, and in some applications we
want to access the suffix tree node, as it provides more information.

Cross-Document Pattern Matching. Index a collection of documents, so
that given a substring w[i..j] of the k-th document, we can search for its ap-
pearances in the k′-th document. This problem was introduced by Kopelowitz et
al. [9], who also considered some extensions. Their linear space solution uses a
generalised suffix tree with weighted ancestor queries. With our result the query
time becomes O(1). The improvement can be also embedded in the extensions.

Searching Substrings Internally in the Suffix Tree. Cole et al. [5], when
proposing data structures for indexing a text w[1..n] with k mismatches, k errors
and k wildcards, suggested the LCP data structure. The LCP data structure
has two variants: rooted and unrooted. The former preprocesses an arbitrary
collection of suffixes of w[1..n] in O(n) space and allows a search from the root
of the compressed trie of these suffixes in O(log logn) time by using weighted
ancestor queries on a careful decomposition of the compressed trie. The latter
preprocesses such a collection in O(n logn) space to allow a search from an
arbitrary node with an even more detailed decomposition. Both have query time
O(log logn) due to weighted ancestors. Alas, reducing this to O(1) is problematic
since the compressed trie is not a suffix tree, so required properties are lost.
Nevertheless, we can support O(1) time LCP queries on the original suffix tree.

458 P. Gawrychowski, M. Lewenstein, and P.K. Nicholson

Indexing with k Wildcards. Cole et al. [5] also implicitly describe a solution
to indexing with k wildcards in O(n log n) space, that supports queries in time
O(m+ σk log logn+ occ), using the LCP data structures mentioned above. The
space was improved to O(n) by Bille et al. [4]. Recently, in [11] the running
time was improved to O(m + σk

√
log log logn + occ). Now this can be further

improved to O(m+σk +occ) with unrooted LCP queries on the suffix tree itself.

Fragmented Pattern Matching. The problem of Substring Concatenation,
defined in [1], requires preprocessing a text w[1..n] so that given i, j and i′, j′we
can return a substring of w which is the concatenation of w[i..j] and w[i′..j′]. [1]
solved this by using a suffix tree, a reversed suffix tree, weighted ancestor queries
on both and a node intersection data structure, all in O(log logn) time. However,
this can also be solved with a couple of LCP data structures, one rooted and
one unrooted. Combined with our new result this achieves O(1) query time. The
more general Fragmented Pattern Matching requires proprocessing a text w[1..n]
so that after receiving a collection of k substrings as pairs of indices, one can
answer whether there exists a substring w[i1..j1]w[i2..j2] . . . w[ik..jk] within the
text. By extending the result for substring concatenation this takes O(k) time.

Weighted Ancestors in Arbitrary Trees. In the process of solving our prob-
lem, we remove the additive O(log� n) term from [10], improving the cost of
weighted ancestor queries in any tree to O(pred(n, U)) after linear preprocess-
ing.

2 Preliminaries

A suffix tree of a string w, denoted ST (w), is a compacted trie containing all
suffixes of w$, where $ is a unique character not occurring in w. A generalised
suffix tree of a collection of strings w1, w2, . . . , wk, denoted GST (w1, w2, . . . , wk),
is a compacted trie containing all suffixes of w1$1, w2$2, . . ., wk$k, where each
$i is a unique character not occurring in any of the strings. We will often use
wi[j..] to denote the suffix of wi starting at the j-th character. In a compacted
trie we define the depth of a node to be its number of explicit ancestors, and the
string depth to be the length of the string it represents. In a (generalised) suffix
tree we define the suffix link of a node representing the string as to be a pointer
to the node representing s. Every explicit node v stores such a link sl(v). If v is
implicit, then sl(v) is not stored, but we will use this notion in some proofs.

We want to preprocess a suffix tree built for a string w[1..n], so that, later, we
can quickly retrieve the node corresponding to any substring w[i..j]. If the node
is explicit, then we simply return a pointer to it, and if it is implicit, then we
return a pointer to the corresponding edge of the suffix tree. We call this special
case of the weighted level ancestor problem substring retrieval.

We say that a natural number p is a period of string w if w[i] = w[i + p]
for every i such that both sides are defined. The smallest such p is called the
period of w, and if the period is at most |w|/2 we call w periodic. Otherwise it is
aperiodic. The well-known property of periods is that if p and q are both periods

Weighted Ancestors in Suffix Trees 459

cad
ab

ra$

$ a

bra cadabra$
dabra$ ra

cad
ab

ra$

$

cad
ab

ra$

$b
ra$

cadabra$

dabra$

$

12

11

8 1

4 6 9 2

5 7

10 3

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10S11S12S13
13
12
11
10
9
8
7
6
5
4
3
2
1

Fig. 1. A suffix tree built for abracadabra and the corresponding instance of PISNS

of w, and additionally p + q ≤ |w|, then gcd(p, q) is a period of w, too. A cyclic
rotation of a string w[1..n] is a string w[i + 1..n]w[1..i]. A Lyndon word has the
property that it is lexicographically smallest among all its cyclic rotations. A
string u is primitive if it cannot be represented as u = vi with i > 1.

All space bounds are measured in machine words, and all time bounds are
deterministic worst-case. We make use of the solution to the level ancestor prob-
lem [2], so that we can retrieve a node of our compacted trie as soon as we know
its depth.

3 Intuition and Overview

We start by presenting the intuition behind our solution and an overview of its
formalisation, which is the main contribution of the paper.

Our goal is to preprocess the set of ancestors of every leaf. More precisely,
if D(v) is the set of string depths of all of the ancestors of v, we want to per-
form a predecessor search in any D(v), where v is a leaf. We could preprocess
every such D(v) separately, but then the best query time that we can hope for
is O(log logn), assuming that the allowed preprocessing space for every D(v) is
O(|D(v)| polylog(|D(v)|)) [12]. To overcome this, we observe that the sets corre-
sponding to different leaves v are correlated. More precisely, if we consider two
leaves v and u = sl(v), then x ∈ D(v) and x > 0 implies x−1 ∈ D(u). If for every
leaf corresponding to a suffix w[i..n] we define a set Si = {i+x : x ∈ D(v)}, then
we get a collection of sets S1, S2, . . . , Sn ⊆ [1, N] such that Si∩ [ni+1, N] ⊆ Si+1,
where N = n+1 and ni = i, see Figure 1. We call the problem of supporting pre-
decessor queries on these types of sets predecessor in shrinking nested sets. In Sec-
tion 4 we show that such collections can be processed using O(N log2 N+

∑
i |Si|)

space so that predecessor searching in any Si takes just O(1) time (the space
can be further improved). So, the correlation between different sets allows us to
circumvent the known lower bound for near-linear space predecessor structures.
Now if it were the case that O(

∑
i |Si|) ∈ O(n polylog(n)), we would be done.

Unfortunately, it can happen that a single explicit node contributes to multiple
D(v)’s, hence the sum might be substantially larger. However, when we try

460 P. Gawrychowski, M. Lewenstein, and P.K. Nicholson

to construct a string with such a large sum, it seems that the most natural
candidates are very repetitive, for example an−1b. This is not a coincidence. If
the same explicit node u contributes to two different sets D(v) and D(v′), and
the string depth of u is at least 3

4n, then there are two different suffixes of the
whole string such that their longest common prefix is of length at least 3

4n. This
means that the period of the middle part of the string, i.e., w[14n..

3
4n], is at most

1
4n, or in other words the middle part is periodic. So the intuition is that the
larger O(

∑
i |Si|) is, the more periodic the string—or at least its middle part—is.

If the period of the whole string is p, then (by the periodicity lemma) any two
suffixes w[i..] and w[j..] either branch out at string depth less than 2p, or the
shorter suffix is a prefix of the longer one and j = i+αp. Moreover, any explicit
node at string depth less than 2p is the lowest common ancestor of two leaves
corresponding to suffixes of length less than 3p. Hence the whole suffix tree can
be decomposed into the top part, which is the suffix tree built for the length
3p suffix of w, and p long paths corresponding to the longer suffixes starting
at different offsets modulo p (with one leaf attached to every explicit node on
such path). On the i-th path, all explicit nodes are at string depths i + αp, so
it is trivial to answer a predecessor query in O(1) time there. If we additionally
preprocess the top part, which is easy if p is small, we can answer any predecessor
query. Hence the intuition is that the larger the sum becomes, the less interesting
the tree is. Unfortunately, formalising this intuition is quite technical, as we need
more control on how we measure the repetitiveness of our string.

To make the formalisation easier, in Section 5 we reduce the substring retrieval
problem to a more structured variant. In long substring retrieval we must pre-
process a generalised suffix tree T built for a collection of strings w1, w2, . . . , wβ ,
where β = O(n/�), all of the same length �, so that we can retrieve the node
corresponding to any substring wk[i..j] of length at least 3

4�. We call each wi

a document. All documents will be substrings of w, hence we specify them by
giving their starting and ending positions. We show that if we can preprocess
such a collection in S(n) space achieving O(1) query time for the long sub-
string retrieval problem, then we can solve the original substring retrieval in
O((S(n) + n) logn) space and the same query time. The idea is to decompose
the string into fragments of length roughly 2i for i = 0, 1, . . . , logn.

In Section 6 we solve long substring retrieval. We partition the substrings of
length at least 3

4� of all documents into two types depending on whether their
period is at least or at most 1

4�. Informally, both types are easy to deal with,
but for different reasons. Observe that if a substring of some wi has period at
most 1

4�, then the middle part of wi of length 1
2� is periodic. This allows us to

quickly detect if the period of wi[j..k] that we query with is at least 1
4�.

The simple case is when no wi has a periodic middle part, i.e., all substrings
of length at least 3

4� have periods at most 1
4�. This implies that no wi has two

suffixes of length at least 3
4� such that their longest common prefix is of length

at least 3
4�. We define T ′ to be the bottom part of T consisting of all nodes at

string depth at least 3
4�. The number of leaves in any subtree of T ′ is exactly the

number of different documents with suffixes in that subtree. Additionally, we

Weighted Ancestors in Suffix Trees 461

partition the nodes of T ′ into levels according to the rounded logarithm of the
number of documents in their subtree. Since this number is equal to the number
of document ending in the subtree, the nodes at the same level constitute a
collection of disjoint paths. Also, by looking at the suffix links we observe that
the explicit nodes on these paths are, in a certain sense, nested. We exploit this
nesting to retrieve the node lying on any of these paths in constant time. This is
done by reducing the problem to predecessor in shrinking nested sets, allowing
us to sidestep predecessor lower bounds.

In the general case some wi might have a periodic middle part. Then T ′ is
also the bottom part of T , but we additionally prune it to contain only the
nodes such that their subtree does not contain the same document twice. We
preprocess the pruned tree T ′ as in the simple case, which allows us to retrieve
the node if the period of wi[j..k] is larger than 1

4�. To process wi[j..k] with period
at most 1

4�, we group all substrings of length at least 3
4� with period at most 1

4�
according to their periods. More precisely, for such a wi[j..k] with period p we
find the (unique) Lyndon word r such that |r| = p and wi[j..k] is a substring of
r∞. For every possible r we build a separate structure allowing us to locate the
node corresponding to any wi[j..k] of length at least 3

4� being a substring of r∞.
The structure is again based on the observation that the explicit nodes in the
corresponding part of T are in a certain sense nested.

4 Predecessor in Nested Sets

In this section we develop an efficient solution for a certain variant of the prede-
cessor problem, where we want to preprocess a collection of sets of integers as to
allow predecessor searching in any of them. By predecessor searching we mean
returning the rank of the element which is the predecessor of a given value. We
start with a version where the sets are S1, S2, . . . , Sk ⊆ [1, N] and Si ⊆ Si+1,
which we call predecessor in nested sets or PINS .

Lemma 1. PINS can be solved in O(N logN +
∑

i |Si|) space and O(1) time.

Proof. We partition the collection of sets into logN groups. The k-th group
contains all Si with |Si| ∈ [2k, 2k+1). Because |Si| ≤ |Si+1|, we have that the
k-th group contains the sets Sgk−1+1, . . . , Sgk−1, Sgk , where 0 = g0 ≤ g1 ≤ . . . ≤
glogN . For every such group we allocate a table of length N , where we explicitly
store the predecessor of every x ∈ [1, N] in Sgk . These tables allow us to locate
the predecessor of any x ∈ [1, N] in the last set of any group in O(1) time.
Additionally, for every set Si belonging to the k-th group we allocate a table of
length |Sgk |, where we store the predecessor of every x ∈ Sgk in Si. To locate
the predecessor of x ∈ [1, N] in Si, we first locate its predecessor y in Sgk .
Then we locate the predecessor of y in Si. Both steps take O(1) time using the
precomputed tables. Furthermore, the table allocated for every Si is of length
|Sgk | ≤ 2|Si|, making the total space usage O(N logN +

∑
i |Si|). ��

Now we discuss the more involved version of the problem, where we relax the
requirement that Si ⊆ Si+1. In predecessor in shrinking nested sets (or PISNS)

462 P. Gawrychowski, M. Lewenstein, and P.K. Nicholson

N

1

S1 Sk

Fig. 2. An instance of PISNS. Each rectangle is an instance of PINS. Each horizontal
line represents an element. If x ∈ Si then x ∈ Sj as long as j > i and nj ≤ x.

the sets have the additional property that one can choose N = n1 ≥ n2 ≥ . . . ≥
nk such that Si ⊆ [ni, N] and Si ∩ [ni+1, N] ⊆ Si+1. We reduce this problem to
a number of carefully chosen instances of PINS, as illustrated in Figure 2.

Lemma 2. PISNS can be solved in O(N log2 N +
∑

i |Si|) space and O(1) time.

5 Reduction to Long Substring Retrieval

Lemma 3. Suppose that any instance of long substring retrieval can be prepro-
cessed using S(n) space so that a query can be answered in O(1) time. Then, the
general substring retrieval can be preprocessed using O((S(n)+n) log n) space so
that a query can be answered in O(1) time.

Proof. (Sketch) To preprocess w for the general substring retrieval we con-
struct a constant number of instances of long substring retrieval for each k =
0, 1, . . . , logn. For every such k, the instances roughly correspond to a decompo-
sition of w into documents of length around � = 2k. For every k = 0, 1, . . . , logn
we first split w into disjoint substrings of length 2k, i.e., b1 = w[1..2k], b2 =
w[2k + 1..2k+1], . . ., padding the last substring if necessary. Then for every
α = 8, 9, . . . , 15 we create an instance of long substring retrieval with � = α2k by
taking the documents to be of the form w′

i = bibi+1..bi+α−1 for i = 1, 2, . . ., i.e.,
every possible contiguous sequence of α full blocks. Note that these documents
are not disjoint substrings of w. There are O(n/�) such documents.

Now consider a query concerning a substring s. We want to select k and α ∈
{8, 9, . . . , 15} such that (α−2)2k ≤ |s| < (α−1)2k and access the corresponding
instance. This is always possible, as we can compute k such that 2k+3 ≤ |s| <
2k+4, then |s| − 2k+3 < 2k+3, so we can choose α′ < 8 such that α′2k ≤ |s| −
2k+3 < (α′ + 1)2k, and finally take α = 8 + α′. Let bi be the block where s
starts, then s is fully within bibi+1..bi+α−1, so we can query the instance with
the substring of w′

i-th document equal to s. For the answer to be correct, we
must guarantee that |s| ≥ 3

4α2k, but this follows from α ≥ 8. Hence using long
substring retrieval we get the node v corresponding to s in the the generalised
suffix tree built for all w′

i. ��

Weighted Ancestors in Suffix Trees 463

6 Solving Long Substring Retrieval

Recall that the goal in long substring retrieval is to preprocess a generalised
suffix tree built for documents w1, w2, . . . , wβ , where β = O(n/�) and |wi| = �,
as to retrieve the node corresponding to any wk[i..j] of length at least 3

4�.

6.1 Handling Active Nodes

Let T be the generalised suffix tree built for w1, w2, . . . , wβ , where β = O(n/�).
While the goal is to preprocess the whole bottom part of T , i.e., all nodes at
string depth at least 3

4�, we will first show how to preprocess just some of these
nodes. A node of T is active if its string depth is at least 3

4 � and additionally there
are no two different leaves corresponding to the suffixes of the same document
in its subtree. Notice that if v is not active, neither is its parent, hence we can
find a collection of nodes v1, v2, . . . , vs such that a node is active iff it is a (not
necessarily proper) descendant of some vi. The active part of T , i.e., the forest
consisting of all subtrees rooted at v1, v2, . . . , vs, will be called T ′.

Lemma 4. If a non-root node v is not active, then sl(v) is not active either.

We will preprocess T so that we can retrieve the node corresponding to a
substring wk[i..j] assuming that it is active. First we observe that it is not
difficult to detect that the corresponding node is not active: for every leaf of T
we can compute and store the string depth of its active ancestor that has the
smallest string depth. Then we can take the leaf corresponding to wk[i..] and
check if it has an active ancestor with a sufficiently large string depth.

We partition T ′ into disjoint paths using a variant of the centroid path de-
composition. First define the level of a node v ∈ T to be the unique integer k
such that the number of leaves in the subtree of v belongs to [2k, 2k+1). From
the definition, the level of any ancestor of v is at least as large as the level of v,
and any node has at most one child at the same level. We also need the following
properties of the levels, which are specific to the tree T . While we can afford
to store the level only at the explicit nodes, all properties hold also for implicit
nodes, and clearly the level of an implicit node can be determined by looking at
its first explicit descendant. Based on these definitions, we prove the following.

Lemma 5. The level of sl(v) is at least as large as the level of v.

Lemma 6. Suppose u and v are two nodes at the same level, such that u is
neither an ancestor or descendant of v. If sl(u) is an ancestor of sl(v), then its
level is larger than the levels of u and v.

From now on we focus on a fixed level k. Since no node has two children at the
same level, the active nodes at level k create a set of disjoint paths, p1, p2, . . . , ps,
such that no node in pi is an ancestor of a node in pj if i �= j. Every such
path starts at an explicit node which has no child at level k and continues up,
terminating either just before another explicit node at a level larger than k or an

464 P. Gawrychowski, M. Lewenstein, and P.K. Nicholson

implicit node at string depth exactly 3
4�. We say that path pi points to path pj ,

denoted pi → pj , if there is a node u ∈ pi and a node v ∈ pj such that sl(u) = v.
This is a valid definition, and furthermore any path is pointed to by at most one
other path, as shown in the following lemma.

Lemma 7. Relation → has the following properties (a) if pi → pj then i �= j,
(b) if pi → pj and pi → pj′ then j = j′, (c) if pi → pj and pi′ → pj then i = i′.

Hence we can partition the whole set of paths of active nodes at level k into:

1. cycles of paths, which are of the form pi1 → pi2 → . . . → piz → pi1 , z ≥ 2;
2. chains of paths, which are of the form pi1 → pi2 → . . . → piz , where piz

doesn’t point to any path and no path points to pi1 .

We will preprocess every such cycle and chain separately using the solution
for predecessor in shrinking nested sets from the previous section, which allow
us to answer a predecessor query on any path in O(1) time, and bound the total
space used by all the instances of the solution.

Consider a single cycle or chain of paths, where for a cycle of paths we ad-
ditionally define iz+1 = i1. If v ∈ pij is an explicit node, then sl(v) is either an
explicit node on pij+1 , or its level is larger. Hence the sets of explicit nodes on
subsequent paths are, in a certain sense, nested. To formalise this intuition, for
every path pij we denote the smallest and largest string depth of an (implicit
or explicit) node by �j and rj , respectively. Then the range of this path is an
interval Uj = [j + �j , j + rj]. Furthermore, we construct a set Sj ⊆ Uj corre-
sponding to the path by including the depth of every explicit node (increased by
j for technical reasons). Now the ranges and the sets are nested in the following
sense.

Lemma 8. The following properties of Uj and Sj hold (a) j+ �j ≤ j+1+ �j+1,
(b) j + rj ≤ j + 1 + rj+1, (c) Sj ∩ Uj+1 ⊆ Sj+1.

To execute a predecessor query on pij , it is enough to perform such a query on
the corresponding set Sj , so we focus on preprocessing all these sets. It is clear
that their total size is small, as every element of Sj corresponds to a different
explicit node of T ′, but this is not enough to beat the O(log logn) bound on the
query time. We need an insight into the structure of all Sj based on Lemma 8.

Suppose we extend every range to the right by defining U ′
j = [j + �j, z + rz].

Then it still holds that Sj ∩ U ′
j+1 ⊆ Sj+1, but additionally all U ′

j end with the
same number. We will preprocess all U ′

j using the data structure of Lemma 2.
Its space usage depends on the total size of all Sj , which as already observed
is small, but also on the size of the largest extended range U ′

1. Even though a
single |U ′

1| might be big, the sum of all such values over all cycles and chains
of paths is at most n/2k by the following lemmas based on charging arguments.
We define the cost c(pij) of a path pij as follows: (1) c(pij) = rj − rj−1 + 1 if
j > 1; (2) for a cycle of paths c(pij) = r1−rz +1 if j = 1; (3) for a chain of paths
c(pij) = r1 − �1 + 1 if j = 1. Note that for a cycle of paths we arbitrarily fix one
of the paths to be pi1 . The following two lemmas bound the costs of individual
chains (or cycles) of paths, and the cost of all paths at level k, respectively.

Weighted Ancestors in Suffix Trees 465

Lemma 9. For any chain of paths we have that |U ′
1| =
∑

j c(pij), and for any
cycle of paths |U ′

1| ≤ 2
∑

j c(pij).

Lemma 10. The sum of costs of all paths at level k is at most 3n/2k.

To locate the node corresponding to wk[i..j], we first retrieve the leaf of T
corresponding to the whole wk[i..]. Then we must compute the level of the node
corresponding to wk[i..j]. More precisely, we must find an ancestor u of v at level
k such that the string depth of u is at least |wk[i..j]|, and furthermore the level of
the node corresponding to wk[i..j] is the same as the level of u. This is enough to
reduce the query to a weighted predecessor search on a single path in one of our
collections. Computing u can be done in O(1) using the following lemma, which
also removes the O(log∗ n) additive term from the query complexity of [10].

Lemma 11. A weighted tree on n nodes, where some of the nodes are marked,
but any path from a leaf to the root contains at most O(log n) marked nodes,
can be preprocessed in O(n) space so that predecessor search can be performed
among the marked ancestors of any node in O(1) time.

To apply the above lemma, we mark the explicit nodes of T such that the level
of their parent is strictly larger. As the maximum level is log n, the maximum
number of marked nodes on any path from the leaf is also logn. Hence we have
reduced the query to performing a predecessor search among all ancestors on
the same level of an explicit node u. At every explicit node we store a pointer
to its path, and for every path we store a pointer to its cycle or chain of paths.

6.2 Handling the Remaining Nodes

The method from last subsection allows us to retrieve the node v corresponding
to wi[j..k] if it belongs to T ′, or detect that we need to look at the non-active
part. If v does not belong to T ′, even though |wi[j..k]| ≥ 3

4�, then its subtree
contains two different leaves originating from the same document. But then these
leaves correspond to some wi′ [j

′..] and wi′ [j
′′..] with j′ �= j′′, and furthermore

wi[j..k] is a prefix of both these suffixes. It follows that the period of wi[j..k] is
at most 1

4�. We preprocess all such wi[j..k] separately.
As discussed in Section 3, if the period of wi[j..k] of length at least 3

4� is at
most 1

4�, then the middle part of wi, namely wi[
1
4�..

3
4�], is periodic. For every

wi we compute the period p of its middle part, and if p ≤ 1
4� we also find the

lexicographically smallest cyclic rotation of the corresponding string r of length
p such that the middle part is a substring of r∞. We group together all wi with
the same r and preprocess the subtree of T corresponding to their substrings
fully contained in the periodic part separately.

For a string r, let Tr be the subtree of T corresponding to all substrings
of r∞ of length at least 1

2�. First we show that any such Tr can be efficiently
preprocessed for weighted level ancestor queries. In this case the input to a query
is a substring of r∞ specified by its length and starting position. Without loss
of generality the starting position is less than |r|.

466 P. Gawrychowski, M. Lewenstein, and P.K. Nicholson

Lemma 12. Let r be any primitive string of length at most 1
4�, and s be the

number of explicit nodes in Tr at string depth at least 1
2�. Tr can be preprocessed

using O(|r| log |r| + s) space, so that, in O(1) time, the node corresponding to
any substring of r∞ of length at least 3

4� can be retrieved.

Now if r and r′ are two different Lyndon words of length at most 1
4�, the

sets of explicit nodes in Tr and Tr′ at string depth at least 1
2� are disjoint, as

otherwise from the periodicity lemma we would get that r and r′ are cyclic shifts
of the same string. Hence if we apply the above lemma for every different Lyndon
word r such that some wi has the middle part which is a substring of r∞, all
explicit nodes contributing to the s added in the space complexity will sum up
to n. Also, all |r| will sum up to at most

∑
i
1
4 |wi| = O(n), making the total

space complexity O(n logn).

References

1. Amir, A., Landau, G.M., Lewenstein, M., Sokol, D.: Dynamic text and static pat-
tern matching. ACM Transactions on Algorithms 3(2) (2007)

2. Bender, M.A., Farach-Colton, M.: The level ancestor problem simplified. Theor.
Comput. Sci. 321(1), 5–12 (2004)

3. Berkman, O., Vishkin, U.: Finding level-ancestors in trees. J. Comput. Syst.
Sci. 48(2), 214–230 (1994)

4. Bille, P., Gørtz, I.L., Vildhøj, H.W., Vind, S.: String indexing for patterns
with wildcards. In: Fomin, F.V., Kaski, P. (eds.) SWAT 2012. LNCS, vol. 7357,
pp. 283–294. Springer, Heidelberg (2012)

5. Cole, R., Gottlieb, L.A., Lewenstein, M.: Dictionary matching and indexing with
errors and don’t cares. In: STOC, pp. 91–100 (2004)

6. Farach, M., Muthukrishnan, S.: Perfect hashing for strings: Formalization and
algorithms. In: Hirschberg, D.S., Meyers, G. (eds.) CPM 1996. LNCS, vol. 1075,
pp. 130–140. Springer, Heidelberg (1996)

7. Gawrychowski, P.: Pattern Matching in Lempel-Ziv Compressed Strings: Fast, Sim-
ple, and Deterministic. In: Demetrescu, C., Halldórsson, M.M. (eds.) ESA 2011.
LNCS, vol. 6942, pp. 421–432. Springer, Heidelberg (2011)

8. Gawrychowski, P., Lewenstein, M., Nicholson, P.K.: Weighted ancestors in suffix
trees. CoRR abs/1406.7716 (2014)

9. Kopelowitz, T., Kucherov, G., Nekrich, Y., Starikovskaya, T.A.: Cross-document
pattern matching. J. Discrete Algorithms 24, 40–47 (2014)

10. Kopelowitz, T., Lewenstein, M.: Dynamic weighted ancestors. In: SODA,
pp. 565–574 (2007)

11. Lewenstein, M., Nekrich, Y., Vitter, J.S.: Space-efficient string indexing for wild-
card pattern matching. In: STACS, pp. 506–517 (2014)

12. Pătraşcu, M.: Predecessor search. In: Encyclopedia of Algorithms (2008)
13. Willard, D.E.: Log-logarithmic worst-case range queries are possible in space θ(n).

Inf. Process. Lett. 17(2), 81–84 (1983)

Improved Practical Matrix Sketching

with Guarantees

Mina Ghashami, Amey Desai, and Jeff M. Phillips

University of Utah, Utah, USA

Abstract. Matrices have become essential data representations for
many large-scale problems in data analytics, and hence matrix sketch-
ing is a critical task. Although much research has focused on improving
the error/size tradeoff under various sketching paradigms, we find a sim-
ple heuristic iSVD, with no guarantees, tends to outperform all known
approaches. In this paper we adapt the best performing guaranteed algo-
rithm, FrequentDirections, in a way that preserves the guarantees,
and nearly matches iSVD in practice. We also demonstrate an adversar-
ial dataset for which iSVD performs quite poorly, but our new technique
has almost no error. Finally, we provide easy replication of our studies on
APT, a new testbed which makes available not only code and datasets,
but also a computing platform with fixed environmental settings.

1 Introduction

Matrix sketching has become a central challenge [3, 15, 18, 26, 31] in large-scale
data analysis as many large data sets including customer recommendations, im-
age databases, social graphs, document feature vectors can be modeled as a
matrix, and sketching is either a necessary first step in data reduction or has
direct relationships to core techniques including PCA, LDA, and clustering.

There are several variants of this problem, but in general the goal it to process
an n×d matrix A to somehow represent a matrix B so ‖A−B‖F or (examining
the covariance) ‖ATA−BTB‖2 is small.

In both cases, the best rank-k approximation Ak can be computed using the
singular value decomposition (svd); however this takes O(ndmin(n, d)) time and
O(nd) memory. This is prohibitive for modern applications which usually desire
a small space streaming approach, or even an approach that works in parallel.
For instance diverse applications receive data in a potentially unbounded and
time-varying stream and want to maintain some sketch B. Examples of these
applications include data feeds from sensor networks [6], financial tickers [9,39],
on-line auctions [5], network traffic [21, 36], and telecom call records [12].

In recent years, extensive work has taken place to improve theoretical bounds
in B. Random projection [3, 35] and hashing [10, 38] approximate A in B as
a random linear combination of rows and/or columns of A. Column sampling
methods [7,14–17,28,34] choose a set of columns (and/or rows) from A to repre-
sent B; the best bounds require multiple passes over the data. We refer readers to
recent work [10,20] for extensive discussion of various models and error bounds.

A.S. Schulz and D. Wagner (Eds.): ESA 2014, LNCS 8737, pp. 467–479, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

468 M. Ghashami, A. Desai, and J.M. Phillips

Very recently Liberty [26] introduced a new technique FrequentDirections

(abbreviated FD) which is deterministic, achieves the best bounds on the covari-
ance ‖ATA − BTB‖2 error, the direct error ‖A − B‖2F [20] (using B as a pro-
jection), and moreover, it seems to greatly outperform the projection, hashing,
and column sampling techniques in practice.

However, there is a family of heuristic techniques [8, 22, 23, 25, 33] (which we
refer to as iSVD, described relative to FD in Section 2), which are used in many
practical settings, but are not known to have any error guarantees. In fact, we
observe (see Section 3) on many real and synthetic data sets that iSVD noticeably
outperforms FD, yet there are adversarial examples where it fails dramatically.

Thus in this paper we ask (and answer in the affirmative), can one achieve
a matrix sketching algorithm that matches the usual-case performance of iSVD,
and the adversarial-case performance of FD, and error guarantees of FD?

1.1 Notation and Problem Formalization

We denote an n× d matrix A as a set of n rows as [a1; a2; . . . , an] where each ai
is a row of length d. Alternatively a matrix V can be written as a set of columns
[v1, v2, . . . , vd]. We assume d * n. We will consider streaming algorithms where
each element of the stream is a row ai of A.

The squared Frobenius norm of a matrix A is defined ‖A‖2F =
∑

i=1 ‖ai‖2
where ‖ai‖ is Euclidean norm of row ai, and it intuitively represents the total
size of A. The spectral norm ‖A‖2 = maxx:‖x‖=1 ‖Ax‖, and represents the max-
imum influence along any unit direction x. It follows that ‖ATA − BTB‖2 =
maxx:‖x‖=1 |‖Ax‖2 − ‖Bx‖2|.

Given a matrix A and a low-rank matrix X let πX(A) = AXT (XXT)+X be
a projection operation of A onto the rowspace spanned by X ; that is if X is rank
r, then it projects to the r-dimensional subspace of points (e.g. rows) in X . Here
X+ indicates taking the Moore-Penrose pseudoinverse of X .

The singular value decomposition of A, written svd(A), produces three matri-
ces [U, S, V] so that A = USV T . Matrix U is n×n and orthogonal. Matrix V is
d × d and orthogonal; its columns [v1, v2, . . . , vd] are the right singular vectors,
describing directions of most covariance in ATA. S is n× d and is all 0s except
for the diagonal entries {σ1, σ2, . . . , σr}, the singular values, where r ≤ d is the
rank. Note that σj ≥ σj+1, ‖A‖2 = σ1, and σj = ‖Avj‖ describes the norm
along directions vj .

Frequent Directions Bounds. We describe FD in detail in Section 2, here we state
the error bounds precisely. From personal communication [19], in a forth-coming
extension of the analysis by Liberty [26] and Ghashami and Phillips [20], it is
shown that there exists a value Δ that FD, run with parameter �, satisfies three
facts (for α = 1):

• Fact 1: For any unit vector x we have ‖Ax‖2 − ‖Bx‖2 ≥ 0.
• Fact 2: For any unit vector x we have ‖Ax‖2 − ‖Bx‖2 ≤ Δ.
• Fact 3: ‖A‖2F − ‖B‖2F ≥ αΔ�.

Improved Practical Matrix Sketching with Guarantees 469

Their analysis shows that any algorithm that follows these facts (for any α ∈
(0, 1], and any k ≤ α� including k = 0 where A0 is the all zeros matrix) satisfies
Δ ≤ ‖A − Ak‖2F/(α� − k); hence for any unit vector x we have 0 ≤ ‖Ax‖2 −
‖Bx‖2 ≤ Δ ≤ ‖A−Ak‖2F /(α�−k). Furthermore any such algorithm also satisfies
‖A− πBk

(A)‖ ≤ α�Δ ≤ ‖A− Ak‖2Fα�/(α� − k), where πBk
(·) projections onto

Bk, the top k singular vectors of B. We reprove these results in the full version.
FD maintains an � × d matrix B (i.e. using O(�d) space), with α = 1. Thus

setting � = k+1/ε achieves ‖ATA−BTB‖2 ≤ ε‖A−Ak‖2F , and setting � = k+k/ε
achieves ‖A− πBk

(A)‖2F ≤ (1 + ε)‖A−Ak‖2F .

1.2 Frequency Approximation, Intuition, and Results

FD is inspired by an algorithm by Misra and Gries [30] for the streaming frequent
items problem. That is, given a stream S = 〈s1, s2, . . . , sn〉 of items si ∈ [u] =
{1, 2, . . . , u}, represent fj = |{si ∈ S | si = j}|; the frequency of each item

j ∈ [u]. The MG sketch uses O(1/ε) space to construct an estimate f̂j (for all

j ∈ [u]) so that 0 ≤ fj − f̂j ≤ εn. In brief it keeps � − 1 = 1/ε counters, each
labeled by some j ∈ [u]: it increments a counter if the new item matches the
associated label or for an empty counter, and it decrements all counters if there
is no empty counter and none match the stream element. f̂j is the associated
counter value for j, or 0 if there is no associated counter.

Intuitively (as we will see in Section 2), FD works similarly treating the sin-
gular vectors of B as labels and the squared singular values as counters.

This MG algorithm and variants have been rediscovered several times [13,
24, 29] and can be shown to process elements in O(1) time. In particular, the

SpaceSaving (SS) algorithm [29] has similar guarantees (0 ≤ f̂j − fj ≤ εn for
all j ∈ [u]) and also uses � counters/labels. But when no counter is available,
it does the unintuitive step of replacing the label of the least counter with the
current stream element, and incrementing it by one. f̂j is the associated counter,
or otherwise the value of the minimum counter. A masterful empirical study by
Cormode and Hadjieleftheriou [11] demonstrates that the SpaceSaving approach
can outperform the standard MG step, and Agarwal et al. [4] shows that one
can isomorphically convert between them by adding the number of decrements
to each estimate from the MG sketch.

Main Results. To improve on FD empirically, it is natural to ask if variants mim-
icking SpaceSaving can be applied. We present two approaches SpaceSaving

Directions (abbreviated SSD, which directly mimics the SpaceSaving algo-
rithm) and Compensative FrequentDirections (abbreviated CFD, which
mimics the conversion from MG to SS sketch). These are not isomorphic in the
matrix setting as is the case in the items setting, but we are able to show strong
error guarantees for each, asymptotically equivalent to FD. However, while these
sometimes improve empirically on FD, they do not match iSVD.

Rather, we achieve our ultimate goal with another approach Parametrized

FrequentDirections; it has parameter α and is abbreviated α-FD. It smoothly
translates between FD and iSVD (FD = 1-FD and iSVD = 0-FD), and for α = 0.2

470 M. Ghashami, A. Desai, and J.M. Phillips

we empirically demonstrate that it nearly matches the performance of iSVD on
several synthetic and real data sets. It also has the same asymptotic guarantees
as FD. Furthermore, we construct an adversarial data set where iSVD performs
dramatically worse than FD and all proposed algorithms, including α-FD.

Finally, to ensure our results are easily and readily reproducible, we implement
all experiments on a new extension of Emulab [37] called APT [32]. It allows one
to check out a virtual machine with the same specs as we run our experiments,
load our precise environments and code and data sets, and directly reproduce
all experiments.

2 Algorithms

The main structure of the algorithm we will study is presented in Algorithm 2.1,
where S′ ← ReduceRank(S) is a subroutine that differs for each variant we
consider. It sets at least one non-zero in S to 0 in S′; this leads to a reduced
rank for Bi, in particular with one row as all 0s. Notationally we use σj as the
jth singular value in S, and σ′

j as the jth singular value in S′.

Algorithm 2.1. (Generic) FD Algorithm

Input: �, α ∈ (0, 1], A ∈ Rn×d

B0 ← all zeros matrix ∈ R�×d

for i ∈ [n] do
Insert ai into a zero valued rows of Bi−1; result is Bi

if (Bi has no zero valued rows) then
[U, S, V] ← svd(Bi)
Ci = SV T # Only needed for proof notation
S′ ← ReduceRank(S)
Bi ← S′V T

return B = Bn

For FD, ReduceRank sets each σ′
j =
√
σ2
j − δi where δi = σ2

� .

For iSVD, ReduceRank keeps σ′
j = σj for j < � and sets σ′

� = 0.
The runtime of FD can be improved [26] by doubling the space, and batching

the svd call. A similar approach is possible for variants we consider.

2.1 Parameterized FD

Parameterized FD uses the following subroutine (Algorithm 2.2) to reduce the
rank of the sketch; it zeros out row �. This method has an extra parameter
α ∈ [0, 1] that describes the fraction of singular values which will get affected
in the ReduceRank subroutine. Note iSVD has α = 0 and FD has α = 1. The
intuition is that the smaller singular values are more likely associated with noise
terms and the larger ones with signals, so we should avoid altering the signal
terms in the ReduceRank step.

Here we show error bounds asymptotically matching FD for α-FD (for constant
α > 0), by showing the three Facts hold. We use Δ =

∑n
i=1 δi.

Improved Practical Matrix Sketching with Guarantees 471

Algorithm 2.2. ReduceRank-PFD(S, α)

δi ← σ2
�

return diag(σ1, . . . , σ�(1−α),
√

σ2
�(1−α)+1

− δi, . . . ,
√

σ2
� − δi)

Lemma 1. For any unit vector x and any α ≥ 0: 0 ≤ ‖Cix‖2 − ‖Bix‖2 ≤ δi.

Proof. The right hand side is shown by just expanding ‖Cix‖2 − ‖Bix‖2.

‖Cix‖2 − ‖Bix‖2 =

�∑
j=1

σ2
j 〈vj , x〉2 −

�∑
j=1

σ′2
j〈vj , x〉2 =

�∑
j=1

(σ2
j − σ′2

j)〈vj , x〉2

= δi

�∑
j=(1−α)�+1

〈vj , x〉2 ≤ δi‖x‖2 = δi

To see the left side of the inequality δi
∑�

j=(1−α)�+1〈vj , x〉2 ≥ 0. ��

Then summing over all steps of the algorithm (using ‖aix‖2 = ‖Cix‖2 −
‖Bi−1x‖2) it follows (see Lemma 2.3 in [20]) that

0 ≤ ‖Ax‖2 − ‖Bx‖2 ≤
n∑

i=1

δi = Δ,

proving Fact 1 and Fact 2 about α-FD for any α ∈ [0, 1].

Lemma 2. For any α ∈ (0, 1], ‖A‖2F − ‖B‖2F = αΔ�, proving Fact 3.

Proof. We expand that ‖Ci‖2F =
∑�

j=1 σ
2
j to get

‖Ci‖2F =

(1−α)�∑
j=1

σ2
j +

�∑
j=(1−α)�+1

σ2
j

=

(1−α)�∑
j=1

σ′2
j +

�∑
j=(1−α)�+1

(σ′2
j + δi) = ‖Bi‖2F + α�δi.

By using ‖ai‖2 = ‖Ci‖2F −‖Bi−1‖2F = (‖Bi‖2F +α�δi)− ‖Bi−1‖2F , and summing
over i we get

‖A‖2F =

n∑
i=1

‖ai‖2 =

n∑
i=1

‖Bi‖2F − ‖Bi−1‖2F + α�δi = ‖B‖2F + α�Δ.

Subtracting ‖B‖2F from both sides, completes the proof. ��

The combination of the three Facts, provides the following results.

472 M. Ghashami, A. Desai, and J.M. Phillips

Theorem 1. Given an input matrix A ∈ Rn×d, α-FD with parameter � returns
a sketch B ∈ R�×d that satisfies

0 ≤ ‖Ax‖2 − ‖Bx‖2 ≤ ‖A−Ak‖2F/(α� − k)

and projection of A onto Bk, the top k rows of B satisfies

‖A− πBk
(A)‖2F ≤ α�

α�− k
‖A−Ak‖2F .

2.2 SpaceSaving Directions

SpaceSaving Directions (abbreviated SSD) uses Algorithm 2.3 for Reduc-

eRank. Like the SS algorithm for frequent items, it assigns the counts for the
smallest counter (in this case squared singular value σ2

�−1) to the incoming di-
rection. Unlike the SS algorithm, we do not use σ2

�−1 as the squared norm along
each direction orthogonal to B, as that gives a consistent over-estimate.

Algorithm 2.3. ReduceRank-SS(S)

δi ← σ2
�−1

return diag(σ1, . . . , σ�−2, 0,
√

σ2
� + δi).

Then to understand the error bounds for ReduceRank-SS, we will con-
sider an arbitrary unit vector x. We can decompose x =

∑d
j=1 βjvj where

β2
j = 〈x, vj〉2 > 0 and

∑d
j=1 β

2
j = 1. For notational convenience, without loss

of generality, we assume that βj = 0 for j > �. Thus v�−1 represents the entire
component of x in the null space of B (or Bi after processing row i).

To analyze this algorithm, at iteration i ≥ �, we consider a d × d matrix B̄i

that has the following properties: ‖Bivj‖2 = ‖B̄ivj‖2 for j < � − 1 and j = �,
and ‖B̄ivj‖2 = δi for j = �− 1 and j > �. Also let Ai = [a1; a2; . . . ; ai].

Lemma 3. For any unit vector x we have 0 ≤ ‖B̄ix‖2 − ‖Aix‖2 ≤ 2δi

Proof. We prove the first inequality by induction on i. It holds for i = � − 1,
since B�−1 = A�−1, and ‖B̄ix‖2 ≥ ‖Bix‖2. We now consider the inductive step
at i. Before the reduce-rank call, the property holds, since adding row ai to both
Ai (from Ai−1) and Ci (from Bi−1) increases both squared norms equally (by
〈ai, x〉2) and the left rotation by UT also does not change norms on the right.
On the reduce-rank, norms only change in directions v� and v�−1. Direction v�
increases by δi, and in B̄i the directions v�−1 also does not change, since it is set
back to δi, which it was before the reduce-rank.

We prove the second inequality also by induction, where it also trivially holds
for the base case i = � − 1. Now we consider the inductive step, given it holds
for i − 1. First obverse that δi ≥ δi−1 since δi is at least the (� − 1)st squared

Improved Practical Matrix Sketching with Guarantees 473

singular value of Bi−1, which is at least δi−1. Thus, the property holds up to
the reduce rank step, since again, adding row ai and left-rotating does not affect
the difference in norms. After the reduce rank, we again only need to consider the
two directions changed v�−1 and v�. By definition ‖Aiv�−1‖2+2δi ≥ ‖Civ�−1‖2 =
δi = ‖B̄iv�−1‖2, so direction v�−1 is satisfied. Then ‖B̄iv�‖2 = ‖Biv�‖2 = δi +
‖Civ�‖2 ≤ 2δi and 0 ≤ ‖Aiv�‖2 ≤ ‖B̄iv�‖2. Hence ‖B̄iv�‖2 − ‖Aiv�‖2 ≤ 2δi − 0,
satisfying the property for direction v�, and completing the proof. ��

Now we would like to prove the three Facts needed for relative error bounds
for B = Bn. But this does not hold since ‖B‖2F = ‖A‖2F (an otherwise nice

property), and ‖B̄‖2F . ‖A‖2F . Instead, we first consider yet another matrix B̂

defined as follows with respect to B. B and B̂ have the same right singular values
V . Let δ = δn, and for each singular value σj of B, adjust the corresponding

singular values of B̂ to be σ̂j = max{0,
√
σ2
j − 2δ}. Now from Lemma 3 it

immediately follows that:

Lemma 4. For any unit vector x we have 0 ≤ ‖Ax‖2−‖B̂x‖2 ≤ 2δ and ‖A‖2F −
‖B̂‖2F ≥ δ(�− 1).

Thus B̂ satisfies the three Facts. We can now state the following property
about B directly, setting α = (1/2), adjusting � to � − 1, then adding back the
at most 2δ = Δ ≤ ‖A−Ak‖2F /(α�− α− k) to each directional norm.

Theorem 2. After obtaining a matrix B from SSD on a matrix A with param-
eter �, the following properties hold:
• ‖A‖2F = ‖B‖2F .
• for any unit vector x and for k < �/2 − 1/2, we have |‖Ax‖2 − ‖Bx‖2| ≤

‖A−Ak‖2F /(�/2 − 1/2 − k).
• for k < �/2 − 1 we have ‖A− πk

B(A)‖2F ≤ ‖A−Ak‖2F (� − 1)/(�− 1 − 2k).

2.3 Compensative Frequent Directions

In original FD, the computed sketch B underestimates Frobenius norm of stream
[20]. In Compensative FrequentDirections (abbreviated CFD), we keep
track of the total mass Δ =

∑n
i=1 δi subtracted from squared singular values

(this requires only an extra counter). Then we slightly modify the FD algorithm.
In the final step where B = S′V T , we modify S′ to Ŝ by setting each singular

value σ̂j =
√
σ′2

j + Δ, then we instead return B = ŜV T .

It now follows that for any k ≤ �, including k = 0, that ‖A‖2F = ‖B‖2F , that
for any unit vector x we have |‖Ax‖2F − ‖Bx‖2F | ≤ Δ ≤ ‖A− Ak‖2F/(� − k) for
any k < �, and since V is unchanged that ‖A− πk

B(A)‖2F ≤ ‖A−Ak‖2F �/(�− k).

3 Experiments

Herein we describe an extensive set of experiments on a wide variety of large
input data sets. We show improvements over FD (and in one instance iSVD) by

474 M. Ghashami, A. Desai, and J.M. Phillips

Table 1. Datasets; numeric rank is defined ‖A‖2F /‖A‖22

DataSet # Datapoints # Attributes Rank Numeric Rank

Random Noisy 10000 500 500
m=50

21.62,
m=30

15.39,
m=20

11.82,
m=10

8.79

Adversarial 10000 500 500 1.69

Birds [2] 11788 312 312 12.50

Spam [1] 9324 499 499 3.25

our proposed algorithm 0.2-FD. All experiments are easily reproducible through
a configuration we have prepared on the APT [32] system.

Each data set is an n × d matrix A, and the n rows are processed one-by-
one in a stream. We also compare against some additional baseline streaming
techniques, exemplifying the three alternatives to techniques based on FD. We
perform a separate set of experiments to compare accuracy of our algorithms
against each other and against exemplar algorithms in hashing, random projec-
tion and column sampling line of works.

Competing Algorithms. For randomized algorithms, we average over 5 trials.

Random Projection: In this method [27, 35], sketch B is constructed by multi-
plying a projection matrix R into the input matrix A. R is a �×n matrix where
each entry Ri,j ∈ {−1/

√
�, 1/

√
�} uniformly. In fact matrix R randomly projects

columns of A from dimension n to dimension �. This method needs O(�d) space
and update time per row is O(�d).

Hashing: In this method [38], there are two hash functions h : [n] → [�] and
s : [n] → {−1,+1} which map each row of A to a row of sketch B and to either
+1 or −1, respectively. More precisely, B is initialized to be a �× d zero matrix,
then when we process row ai, we change B as Bh(i) = Bh(i) + s(i)ai.

Sampling: Column Sampling [15,16,34] (which translates to row sampling in our
setting), samples � rows ai of matrix A with replacement proportional to ‖ai‖2
and rescales each chosen rows to have norm ‖A‖F/

√
�. This method requires

O(d�) space and the update time per row is O(d) when implemented as � inde-
pendent reservoir sampler. We do not consider other column sampling techniques
with better error guarantees since they cannot operate in a stream.

FD and iSVD are described in detail in Section 2.

Datasets. We compare performance of our algorithms on both synthetic and real
datasets; see a summary in Table 1. We also generate adversarial data to show
that iSVD performs poorly under specific circumstances, this explains why there
is no theoretical guarantee for them.

For Random Noisy, we generate the input n× d matrix A synthetically, mim-
icking the approach by Liberty [26]. We compose A = SDU +F/ζ, where SDU
is the m-dimensional signal (for m < d) and G/ζ is the (full) d-dimensional noise

Improved Practical Matrix Sketching with Guarantees 475

Fig. 1. Covariance Error: Random Noisy(50) (left), Birds (middle), and Spam (right)

Fig. 2. Projection Error: Random Noisy(50) (left), Birds (middle), and Spam (right)

with ζ controlling the signal to noise ratio. Each entry Fi,j of F is generated i.i.d.
from a normal distribution N(0, 1), and we set ζ = 10. For the signal, S ∈ Rn×m

again with each Si,j ∼ N(0, 1) i.i.d; D is diagonal with entries Di,i = 1−(i−1)/d
linearly decreasing; and U ∈ Rm×d is just a random rotation. We use n = 10000,
d = 500, and consider m ∈ {10, 20, 30, 50} (the default is m = 50).

In order to create Adversarial data, we constructed two orthogonal subspaces
S1 = Rm1 and S2 = Rm2 (m1 = 400 and m2 = 4). Then we picked two separate
sets of random vectors Y and Z and projected them on S1 and S2, respectively.
Normalizing the projected vectors and concatenating them gives us the input
matrix A. All vectors in πS1(Y) appear in the stream before πS2(Z); this rep-
resents a very sudden and orthogonal shift. As the theorems predict, FD and
our proposed algorithms adjust to this change and properly compensate for it.
However, since m1 ≥ �, then iSVD cannot adjust and always discards all new
rows in S2 since they always represent the smallest singular value of Bi.

We consider two real-world datasets. Birds [2] has each row represent an im-
age of a bird, and each column a feature. PCA is a common first approach in
analyzing this data, so we center the matrix. Spam [1] has each row represent
a spam message, and each column some feature; it has dramatic and abrupt
feature drift over the stream, but not as much as Adversarial.

Approximation Error vs. Sketch Size. We measure error for all algorithms as we
change the parameter � (Sketch Size) determining the number of rows in matrix
B. We measure covariance error as err = ‖ATA−BTB‖2/‖A‖2F (Covariance Error);
this indicates for instance for FD, that err should be at most 1/�, but could be

476 M. Ghashami, A. Desai, and J.M. Phillips

20 30 40 50 60 70 80 90 100

Sketch Size

0.00

0.01

0.02

0.03

0.04

0.05

C
o
v
a
ri

a
n
c
e
 E

rr
o
r

ISVD

Frequent Directions (FD)

0.2FD

0.4FD

0.6FD

0.8FD

20 30 40 50 60 70 80 90 100

Sketch Size

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

C
o
v
a
ri

a
n
c
e
 E

rr
o
r

ISVD

Frequent Directions (FD)

0.2FD

0.4FD

0.6FD

0.8FD

Fig. 3. Parametrized FD on Random Noisy(50) (left), Birds (middle), and Spam (right)

20 30 40 50 60 70 80 90 100

Sketch Size

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

C
o
v
a
ri

a
n
c
e
 E

rr
o
r

ISVD

Frequent Directions (FD)

0.2FD

0.4FD

0.6FD

0.8FD

Fig. 4. Parametrized FD on Random Noisy for m = 30 (left), 20 (middle), 10 (right)

dramatically less if ‖A − Ak‖2F is much less than ‖A‖2F for some not so large
k. We also consider proj-err = ‖A− πBk

(A)‖2F /‖A− Ak‖2F , always using k = 10
(Projection Error); for FD we should have proj-err ≤ �/(�− 10), and ≥ 1 in general.

We see in Figure 1 for Covariance Error and Figure 2 for Projection Error that all
baseline algorithms Sampling, Hashing, and Random Projections perform much worse
than FD and the variants we consider. Each of Sampling, Hashing, and Random

Projections perform about the same. Moreover, FD typically is out-performed by
iSVD and our best proposed method 0.2-FD. Thus, we now focus only on FD,
iSVD, and the new proposed methods which operate in a smaller error regime.
For simplicity now we only examine Covariance Error, Projection Error acts similarly.

Next we consider Parametrized FD; we denote each variant as α-FD in Fig-
ure 3. We explore the effect of the parameter α, and run variants with α ∈
{0.2, 0.4, 0.6, 0.8}, comparing against FD (α = 1) and iSVD (α = 0). Note that
the guaranteed error gets worse for smaller α, so performance being equal, it is
preferable to have larger α. Yet, we observe empirically that FD is consistently
the worst algorithm, and iSVD consistently the best, and as α decreases, the
observed error improves. The difference can be quite dramatic; for instance in
the Spam dataset, for � = 20, FD has err = 0.032 while iSVD and 0.2-FD have
err = 0.008. Yet, as � approaches 100, all algorithms seems to be approaching
the same small error. We also explore the effect on α-FD in Figure 4 on Random

Noisy data by varying m ∈ {10, 20, 30}, and m = 50 in Figure 3. We observe
that all algorithms get smaller error for smaller m (there are fewer “directions”
to approximate), but that each α-FD variant reaches 0.005 err before � = 100,
sooner for smaller α; eventually “snapping” to a smaller 0.002 err level.

Improved Practical Matrix Sketching with Guarantees 477

20 30 40 50 60 70 80 90 100

Sketch Size

0.00

0.01

0.02

0.03

0.04

0.05

0.06

C
o
v
a
ri

a
n
c
e
 E

rr
o
r

ISVD

Frequent Directions (FD)

0.2FD

SpaceSaving

CompensativeFD

20 30 40 50 60 70 80 90 100

Sketch Size

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

C
o
v
a
ri

a
n
c
e
 E

rr
o
r

ISVD

Frequent Directions (FD)

0.2FD

SpaceSaving

CompensativeFD

Fig. 5. SpaceSaving algos on Random Noisy(50) (left), Birds (middle), and Spam (right)

20 30 40 50 60 70 80 90 100

Sketch Size

0.000

0.002

0.004

0.006

0.008

0.010

C
o
v
a
ri

a
n
c
e
 E

rr
o
r

ISVD

Frequent Directions (FD)

0.2FD

0.4FD

0.6FD

0.8FD

20 30 40 50 60 70 80 90 100

Sketch Size

0.000

0.002

0.004

0.006

0.008

0.010

C
o
v
a
ri

a
n
c
e
 E

rr
o
r

ISVD

Frequent Directions (FD)

0.2FD

SpaceSaving

CompensativeFD

Fig. 6. Demonstrating dangers of iSVD on Adversarial data

In Figure 5, we compare iSVD, FD, and 0.2-FD with the other variants based on
the SS streaming algorithm: CFD and SSD. We see that these typically perform
slightly better than FD, but not nearly as good as 0.2-FD and iSVD. Perhaps it
is surprising that although SpaceSavings variants empirically improve upon MG
variants for frequent items, 0.2-FD (based on MG) can largely outperform the
all SS variants on matrix sketching.

Finally, we show that iSVD is not always better in practice. Using the Adver-

sarial construction in Figure 6, we see that iSVD can perform much worse than
the other techniques. Although at � = 20, iSVD and FD roughly perform the
same (with about err = 0.09), iSVD does not improve much as � increases, ob-
taining only err = 0.08 for � = 100. On the other hand, FD (as well as CFD and
SSD) decrease markedly and consistently to err = 0.02 for � = 100. Moreover,
all version of α-FD obtain roughly err=0.005 already for � = 20. The large-norm
directions are the first 4 singular vectors (from the second part of the stream)
and once these directions are recognized as having the largest singular vectors,
they are no longer decremented in any Parametrized FD algorithm.

Reproducibility. All experiments are conducted on a Linux Ubuntu 12.04 machine
with 16 cores of Intel(R) Xeon(R) CPU(2.10GHz) and 48GB of RAM. We pro-
vide public access to all of our results using a testbed facility APT [32]. APT
is a platform where researchers can perform experiments and keep them public
for verification and validation of the results. We provide our code, datasets, and
experimental results in our APT profile with detailed description on how to re-
produce, available at: http://aptlab.net/p/MatrixApx/FrequentDirection.

http://aptlab.net/p/MatrixApx/FrequentDirection

478 M. Ghashami, A. Desai, and J.M. Phillips

References

1. Concept drift in machine learning and knowledge discovery group,
http://mlkd.csd.auth.gr/concept_drift.html

2. vision.caltech, http://www.vision.caltech.edu/visipedia/CUB-200-2011.html

3. Achlioptas, D., McSherry, F.: Fast computation of low rank matrix approximations.
In: STOC (2001)

4. Agarwal, P.K., Cormode, G., Huang, Z., Phillips, J.M., Wei, Z., Yi, K.: Merge-
able summaries. In: Proceedings of the 31st Symposium on Principles of Database
Systems (2012)

5. Arasu, A., Babu, S., Widom, J.: An abstract semantics and concrete language for
continuous queries over streams and relations (2002)

6. Bonnet, P., Gehrke, J., Seshadri, P.: Towards sensor database systems. In: Tan,
K.-L., Franklin, M.J., Lui, J.C.-S. (eds.) MDM 2001. LNCS, vol. 1987, pp. 3–14.
Springer, Heidelberg (2000)

7. Boutsidis, C., Drineas, P., Magdon-Ismail, M.: Near optimal column-based matrix
reconstruction. In: FOCS (2011)

8. Brand, M.: Incremental singular value decomposition of uncertain data with miss-
ing values. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002,
Part I. LNCS, vol. 2350, pp. 707–720. Springer, Heidelberg (2002)

9. Chen, J., DeWitt, D.J., Tian, F., Wang, Y.: Niagaracq: A scalable continuous query
system for internet databases. ACM SIGMOD Record 29(2), 379–390 (2000)

10. Clarkson, K.L., Woodruff, D.P.: Numerical linear algebra in the streaming model.
In: STOC (2009)

11. Cormode, G., Hadjieleftheriou, M.: Finding frequent items in data streams. In:
VLDB (2008)

12. Cortes, C., Fisher, K., Pregibon, D., Rogers, A.: Hancock: a language for extracting
signatures from data streams. In: KDD (2000)

13. Demaine, E.D., López-Ortiz, A., Munro, J.I.: Frequency Estimation of Internet
Packet Streams with Limited Space. In: Möhring, R.H., Raman, R. (eds.) ESA
2002. LNCS, vol. 2461, p. 348. Springer, Heidelberg (2002)

14. Deshpande, A., Vempala, S.S.: Adaptive Sampling and Fast Low-Rank Matrix
Approximation. In: Dı́az, J., Jansen, K., Rolim, J.D.P., Zwick, U. (eds.) APPROX
2006 and RANDOM 2006. LNCS, vol. 4110, pp. 292–303. Springer, Heidelberg
(2006)

15. Drineas, P., Kannan, R.: Pass efficient algorithms for approximating large matrices.
In: SODA (2003)

16. Drineas, P., Kannan, R., Mahoney, M.W.: Fast Monte Carlo algorithms for ma-
trices II: Computing a low-rank approximation to a matrix. SIAM Journal on
Computing 3636(1), 158–183 (2006)

17. Drineas, P., Mahoney, M.W., Muthukrishnan, S.: Relative-error CUR matrix de-
compositions. SIAM Journal on Matrix Analysis and Applications 30, 844–881
(2008)

18. Frieze, A., Kannan, R., Vempala, S.: Fast Monte-Carlo algorithms for finding low-
rank approximations. In: FOCS (1998)

19. Ghashami, M., Liberty, E., Phillips, J.M.: Frequent directions: Simple and deter-
ministic matrix sketchings. In: Personal Communication (2014)

20. Ghashami, M., Phillips, J.M.: Relative errors for deterministic low-rank matrix
approximation. In: SODA (2014)

http://mlkd.csd.auth.gr/concept_drift.html
http://www.vision.caltech.edu/visipedia/CUB-200-2011.html

Improved Practical Matrix Sketching with Guarantees 479

21. Gilbert, A.C., Kotidis, Y., Muthukrishnan, S., Strauss, M.: Quicksand: Quick sum-
mary and analysis of network data. Technical report, DIMACS 2001-43 (2001)

22. Golub, G.H., van Loan, C.F.: Matrix Computations, vol. 3. JHUP (2012)
23. Hall, P., Marshall, D., Martin, R.: Incremental eigenanalysis for classification. In:

British Machine Vision Conference (1998)
24. Karp, R.M., Shenker, S., Papadimitriou, C.H.: A simple algorithm for finding fre-

quent elements in streams and bags. ACM ToDS 28, 51–55 (2003)
25. Levey, A., Lindenbaum, M.: Sequential Karhunen-Loeve basis extraction and its

application to images. IEEE ToIP 9, 1371–1374 (2000)
26. Liberty, E.: Simple and deterministic matrix sketching. In: KDD (2013)
27. Liberty, E., Woolfe, F., Martinsson, P.-G., Rokhlin, V., Tygert, M.: Randomized

algorithms for the low-rank approximation of matrices. PNAS 104(51), 20167–
20172 (2007)

28. Mahoney, M.W., Drineas, P.: CUR matrix decompositions for improved data anal-
ysis. PNAS 106, 697–702 (2009)

29. Metwally, A., Agrawal, D., Abbadi, A.E.: An integrated efficient solution for com-
puting frequent and top-k elements in data streams. ACM ToDS 31, 1095–1133
(2006)

30. Misra, J., Gries, D.: Finding repeated elements. Sc. Comp. Prog. 2, 143–152 (1982)
31. Papadimitriou, C.H., Tamaki, H., Raghavan, P., Vempala, S.: Latent semantic

indexing: A probabilistic analysis. In: PODS (1998)
32. Ricci, R.: Apt (adaptable profile-driven testbed) (2014),

http://www.flux.utah.edu/project/apt

33. Ross, D.A., Lim, J., Lin, R.-S., Yang, M.-H.: Incremental learning for robust visual
tracking. IJCV 77, 125–141 (2008)

34. Rudelson, M., Vershynin, R.: Sampling from large matrices: An approach through
geometric functional analysis. Journal of the ACM 54(4), 21 (2007)

35. Sarlos, T.: Improved approximation algorithms for large matrices via random pro-
jections. In: FOCS (2006)

36. Sullivan, M., Heybey, A.: A system for managing large databases of network traffic.
In: Proceedings of USENIX (1998)

37. Emulab testbed, http://www.flux.utah.edu/project/emulab
38. Weinberger, K., Dasgupta, A., Langford, J., Smola, A., Attenberg, J.: Feature

hashing for large scale multitask learning. In: ICML (2009)
39. Zhu, Y., Shasha, D.: Statstream: Statistical monitoring of thousands of data

streams in real time. In: VLDB (2002)

http://www.flux.utah.edu/project/apt
http://www.flux.utah.edu/project/emulab

Computing Regions Decomposable into m Stars�

Matt Gibson1, Kasturi Varadarajan2, and Xiaodong Wu3

1 Dept. of Computer Science
University of Texas at San Antonio

San Antonio, TX, USA
2 Dept. of Computer Science

3 Dept. of Electrical and Computer Engineering
University of Iowa
Iowa City, IA, USA

Abstract. Motivated by an approach to image segmentation, we con-
sider an optimization problem on a node-weighted planar grid graph, that
of finding a maximum weight subset of nodes that can be partitioned into
m subsets, each with a simple geometric structure. The problem has been
considered in earlier papers, which give polynomial time algorithms for
m = 2. We show that the problem admits a polynomial time algorithm
for any fixed m ≥ 3.

1 Introduction

In this article, we consider a planar partitioning problem that is motivated from
image segmentation. We are given an (N × N) grid graph G with node set
{(i, j) | 1 ≤ i, j ≤ N}. There is an arc connecting two nodes (i, j) and (i′, j′) if
and only if |i − i′| + |j − j′| = 1. Each grid node c has a weight w(c) ∈ R (note
weights can be negative). We are interested in computing a maximum-weight
subset of nodes in G that has a particular geometric structure.

One main challenge when dealing with objects in digital geometry is that
many standard geometric objects and definitions from Euclidean geometry do
not have “trivial” counterparts in the digital setting. For example, it is a non-
trivial task to define line segments between grid nodes in the digital setting
such that the line segments (1) satisfy some standard axioms of Euclidean line
segments and (2) “look similar” to their corresponding Euclidean line segments.
The work of [4,6] gives, for each grid node c, a spanning tree Sc of the grid graph.
The digital line segment dig(a, b) between two nodes a and b is then simply (the
set of nodes on) the unique path between a and b in Sa (it turns out that we get
the same path in Sb). We can now define a subset S of the grid to be star-shaped
if there exists some “center” grid node c ∈ S such that for any s ∈ S we have
dig(c, s) ⊆ S.

Motivated by this, in the problem we consider we are given a spanning tree
Sc for each node c of G. Finally, we are given an integer parameter m. A feasible

� This research was partially supported by NSF grants CCF-0844765 and CCF-
1318996.

A.S. Schulz and D. Wagner (Eds.): ESA 2014, LNCS 8737, pp. 480–491, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

Computing Regions Decomposable into m Stars 481

solution to our optimization problem consists of m disjoint subsets of nodes
S′
1, S

′
2, . . . , S

′
m with the property that each S′

i is star-shaped. The objective is to
maximize the sum of the weights of the nodes in S′

1 ∪ S′
2 ∪ · · · ∪ S′

m.
It is not hard to develop a polynomial time algorithm for the problem when

m = 1: guess node c1, think of the spanning tree Sc1 as rooted at c1, and use
a recursive algorithm to find the maximum weight subtree of Sc1 that contains
c1. For m = 2, a case that is considerably more difficult, Chun et al. [5] gave a
polynomial time algorithm based on dynamic programming, and subsequently,
Gibson et al. [9] found a polynomial time algorithm based on maximum flow.
The latter approach generalizes to the scenario where the underlying graph is an
arbitrary graph that is not necessarily a grid. Here we ask if there is a polynomial
time algorithm for any fixed m ≥ 3. Addressing first the general case, we can
prove the following theorem (proof omitted due to lack of space).

Theorem 1. Given an arbitrary node-weighted graph G, a set of spanning trees
Sc for each node c of G, the problem of computing a maximum-weight set of 3
disjoint subsets of nodes S′

1, S
′
2, S

′
3 with the property that each S′

i is star-shaped
is NP-hard.

This naturally brings up the question of whether the geometry of the grid can
somehow be exploited to develop a polynomial time algorithm for fixed m ≥ 3.
This is the question that this article answers.

Motivation from Image Segmentation. Image segmentation, which aims to de-
fine accurate boundaries for the objects of interest captured by image data, has
recently attracted extensive attention in the pattern recognition and computer
vision communities. It is a central problem in medical image analysis. Accurate
image segmentation techniques promise to improve medical diagnosis and revo-
lutionize the current medical imaging practice, such as tumor detection, surgery
planning, tissue volume measurement, and other health related issues.

In an attempt to find a “good” segmentation, the problem is often cast as
an optimization problem. This often involves constructing a weighted grid graph
(the graph G above) where the grid nodes in the graph correspond to the pixels in
the input image. The weights are assigned in a way that captures the likelihood
of a particular pixel being in the object of interest, and then we attempt to
find some subset of the nodes that optimizes an objective function subject to
some constraints. In this context, a subset of the node set of the grid is often
called a region, and the constraints are often used to enforce the output to have
a particular geometric shape. There have been several results which show that
it is possible to develop efficient algorithms for finding the optimal region with
some simple geometric structure, including x-monotone regions, based monotone
regions, rectilinear convex regions, and star-shaped regions [3, 6, 7, 11, 12].

Regions that can be Decomposed into Regions with “Simple” Structure. Chun et
al. [5] consider the maximum-weight region problem with a twist on the constraints
of previous work. The authors are interested in finding a maximum-weight region

482 M. Gibson, K. Varadarajan, and X. Wu

that may not have simple geometric structure, but can be decomposed into objects
with simple geometric structure. We say that a subset of the grid nodes can be
decomposed into m objects of a particular structure if and only if there exists a
coloring of the grid nodes in the subset using m colors such that for each color, the
subset consisting of grid nodes of that color has the desired structure. For exam-
ple, a feasible solution to our problem, S′

1 ∪S′
2 ∪ · · · ∪S′

m, can be decomposed into
m objects (the S′

i), each of which is star-shaped. Chun et al. give an efficient dy-
namic programming algorithm for computing the maximum-weight region that is
decomposable into two star-shaped regions. Recently, Gibson et al. [9] give an effi-
cient maximum flow based algorithm for the same problem. (Thus these algorithms
solve precisely the same problem that we address for m = 2.)

Computing these types of objects is an interesting problem both from a prac-
tical perspective as well as a theoretical perspective. In practice, we can identify
a more complex class of objects while still being able to control the topology of
the returned object (see Figure 1). In theory, the decomposablity constraint poses
an interesting algorithmic challenge to overcome. If we instead consider comput-
ing an object which is the union of m simple objects, the problem becomes much
harder, and in fact the problem of computing the maximum-weight object which is
the union of two star-shaped objects is NP-hard even when the underlying graph
is a grid graph [5]. The decomposability problem may emit polynomial-time algo-
rithms, but the design of such an algorithm is a non-trivial task even for m = 2 and
often becomes much harder when m = 3. The mutual interaction of three disjoint
regions forms a known form of so-called “frustrated cycles” [10], which represents
a computational barrier in computer vision. Neither the Chun et al. nor the Gibson
et al. algorithms are easily extended to handle objects that can be decomposed into
more than two stars. Another such example is the work of Delong and Boykov [8].
See Anzai et al. [2] for an example of one case where an algorithm is given that can
handle three disjoint regions.

Our Contribution. Let us recall the main question in this article – is there a
polynomial time algorithm which computes the maximum weight region (S′

1 ∪
· · · ∪ S′

m) of the grid that can be decomposed into m objects (the S′
i) such that

each object is star-shaped (there is a ci ∈ S′
i such that the subgraph of Sci

induced by S′
i is a spanning tree on S′

i)? Here m is an integer constant. Our
main result is an affirmative answer to this question.

Theorem 2. Given a node-weighted grid graph graph G, a set of spanning trees
Sc for each node c of G, and a fixed integer m ≥ 3, there is a polynomial-time
algorithm which computes m disjoint subsets of nodes S′

1, S
′
2, . . . , S

′
m with the

properties that each S′
i is star-shaped and the weight of S′

1 ∪ S′
2 ∪ · · · ∪ S′

m is
maximized.

To explain our approach to obtain the polynomial time algorithm, let us first
observe that we can guess the grid node ci such that S′

i is star-shaped with respect
to ci. (That is, S′

i contains ci and the subgraph of Sci induced by S′
i spans S′

i.)
We refer to ci as the center of the star-shaped region S′

i. Now the unknown
S′
i is potentially (the node set of) any subtree of Sci that contains ci, and is

Computing Regions Decomposable into m Stars 483

Fig. 1. Two “general” objects which can be decomposed into a small number of star-
shaped objects

thus a complex shape. Thus the interaction between two distinct star-shaped
regions (or stars) S′

i and S′
j in the optimal solution is also a complex one. Yet

the algorithms of Chun et al. [5] and Gibson et al. [9] are able to handle this
complexity in solving the 2-star problem (the case m = 2). So we aim to reduce
the problem for m ≥ 3 to several instances of the 2-star problem.

To be able to do this efficiently, we have to hope that the structure of the
optimal solution has some features that we can guess. The optimal stars them-
selves do not directly seem to have any such features in all cases. So we define
a Voronoi decomposition of the grid with the stars as the Voronoi centers. Our
first contribution is the high level observation that knowing the ‘vertices’ of this
Voronoi diagram, and ‘connecting’ them to the centers ci of the stars appropri-
ately, gives us a way of decomposing the problem into several 2-star instances.
Our second, more technical, contribution is the careful realization of this high
level observation in the context of the grid graph: how to define the Voronoi
diagram and its useful vertex features so that there are only a constant number
of them? And how to connect the vertex features to the centers of the stars
meaningfully, in a way that does not require too much guessing?

(a) (b) (c)

Fig. 2. Algorithm overview: (a) The unknown optimal region, and its decomposition
into three stars R,B, and G. (b) The three corresponding Voronoi regions. (c) By
guessing the star centers, the Voronoi vertices, and suitable connections, we obtain a
decomposition of the grid into 2-star (or 1-star) subproblems.

484 M. Gibson, K. Varadarajan, and X. Wu

Our polynomial algorithm has a prohibitively large running time to be directly
useful practically. Our result however does point out that the bottleneck to
having a useful and general algorithm for m ≥ 3 is not the NP-hardness of the
problem. Also, our Voronoi diagram approach can be an effective technique for
other classes of geometric objects, as Ahmed et al. [1] recently demonstrated
for objects which can be decomposed into c “based rectilinear convex objects”
for any constant c.

To simplify the description of the algorithm, we will describe our algorithm
in the setting where we want to find the maximum weight object decomposable
into 3 star-shaped regions. It will be apparent that the algorithm can easily be
extended to m stars for any constant m.

Organization of the Paper. In Section 2 we introduce some preliminaries and
definitions. In Sections 3 and 4 we make some observations about the structure
of an optimal solution that will be used in our algorithm. In Section 5 we give
our algorithm.

2 Preliminaries

The input to our algorithm consists of the set G = {(i, j)|1 ≤ i, j,≤ N} and a
weight w(c) for each node c ∈ G. For node (i, j), we refer to i as its x-coordinate
and j as its y-coordinate. We will also denote by G the grid graph that was
described earlier.

We can think of the grid graph as being embedded in the following natural
way: grid node (i, j) embeds to point (i, j), and an adjacency between two grid
nodes is represented by the straight line segment connecting the corresponding
points. Sometimes, we will view the grid nodes as grid cells forming a cell-
complex. For this, we think of grid cell (i, j) as the square {(x, y) |i − 1

2 ≤ x ≤
i + 1

2 , j −
1
2 ≤ y ≤ j + 1

2}. In this view, each cell is incident to four vertices and
four edges. We think of the nodes that are adjacent in the grid graph as also
being adjacent as cells/squares. From the context, it will be clear which view
of the grid we are referring to – the abstract grid graph, its embedding in the
plane, or its view as a cell complex. We will use ‘grid nodes’ and ‘grid cells’
interchangeably.

Since we can enumerate the centers of the three stars in the optimal solution,
we assume that as part of the input, we are given three designated “center”
grid cells in G which we denote cr, cb, and cg respectively. We want to compute
the maximum weight object which can be decomposed into three star-shaped
objects: one with respect to cr, one with respect to cb, and one with respect to cg.
Let OPT be such a maximum weight region that can be decomposed into three
star-shaped regions with respect to these centers. We fix such a decompostion
into 3 stars, and we denote R ⊆ OPT the star-shaped object with respect to cr,
B ⊆ OPT the star-shaped object with respect to cb, and G ⊆ OPT the star-
shaped object with respect to cg. We call these stars the red, blue, and green
stars respectively.

Computing Regions Decomposable into m Stars 485

Recall that a star shaped object centered at cr is defined with respect to a
spanning tree Sr of G; this spanning tree is part of the input. Similarly, we have
the spanning trees Sb and Sg for cb and cg. We can view each of these spanning
trees as a rooted spanning tree with the corresponding “center” cell as the root
of the tree. The path from the root to any grid cell in the tree defines the “star
path” for that grid cell. For example, if a grid cell g is in R then every grid cell
along the path from cr to g in Sr must also be in R, since R is star-shaped with
respect to cr. See Figure 3 for an illustration.

(a) (b) (c) (d)

Fig. 3. An illustration of three spanning trees rooted at three different points (parts
a, b, and c), and an object decomposable into three star-shaped objects (part d)

Let π be a simple path between x and y, and π′ be a simple path between x′

and y′ in the grid graph. We will now define what it means for the two paths
to be non-crossing. If there are no end points common to π and π′, that is,
{x, y} ∩ {x′, y′} = ∅, then the paths are non-crossing if they have no nodes in
common. In case there is at least one common endpoint, we can assume w.l.o.g.
that this is y = y′ and x may or may not be the same as x′. The paths are non-
crossing in this scenario if the nodes common to both are contiguous in both
paths.

Consider a grid cell g and a set of grid cells Y . We will now define a way
of identifying the unique closest cell (UCC) in Y to g which we will denote
UCCY (g). We want that UCCY (g) is at least as close to g as all other grid
cells in Y under the L1 metric. In the case where there are multiple such cells,
we provide a simple two-step tie-breaking rule to obtain a unique closest cell.
First consider the grid cells in Y that are closest to g which have the smallest
x-coordinate (there can be at most two such cells). If there is only one such cell
then this cell is UCCY (g), and if there are two such cells then we choose the cell
with the larger y-coordinate.

For a pair of grid cells x and y, we will now define a unique “L-shaped” path
from x to y in the grid which we denote p(x, y). We view p(x, y) as directed, from
x to y. Note that any L-shaped path between a pair of grid cells is a shortest
path between the grid cells. We will describe the path p(x, y) by “walking” along
the path from x to y. We start at x and walk horizontally until we have reached
a grid cell with the same x-coordinate as y. We then turn and walk towards y
vertically until we have reached y. The grid cells that we traversed are the grid
cells in our path (note that p(x, y) may not be the same as p(y, x) but for our
purposes this is not an issue).

486 M. Gibson, K. Varadarajan, and X. Wu

We now can prove the following observation which follows from the fact that
a subpath of a shortest path is also a shortest path (proof omitted due to lack
of space).

Lemma 1. For any two grid cells x and x′, the paths p(x, UCCY (x)) and
p(x′, UCCY (x′)) are non crossing (as undirected paths).

3 Voronoi Diagram

In this section, we will define a digital Voronoi Diagram with respect to the
three stars that an optimal solution decomposes into. After defining this Voronoi
Diagram, we will make several observations about the structure of this Voronoi
Diagram which we will crucially use in our algorithm.

For a grid cell g and a star-shaped region S, we define d(g, S) to be min
x∈S

d(g, x),

where d(g, x) is the number of grid cells in a shortest path between g and x in
the grid topology. We will define a digital Voronoi Diagram with respect to R, B,
and G. The grid cells in the grid will be partitioned into three subsets which we
call Voronoi regions. There will be exactly one Voronoi region defined for each
of the stars R, B, and G that we denote V (R), V (B), and V (G) respectively,
and each grid cell in the grid will be assigned to exactly one Voronoi region.
Consider some grid cell g. If d(g,R) < d(g,B) and d(g,R) < d(g,G) (i.e. g is
strictly closer to R than to either B or G under the distance measure d), then
g will belong to the red Voronoi region. Likewise, if g is strictly closer to B it is
in the blue Voronoi region and if it is strictly closer to G then it is in the green
Voronoi region. There could be grid cells in which there are two or three stars
that are closest to the grid cell. To handle these grid cells, we fix an arbitrary
ordering of the stars. Consider the stars a grid cell is closest to. Of these stars,
assign the grid cell to the Voronoi region of the star which comes earliest in the
ordering. This completes the definition of the digital Voronoi Diagram.

Observation 3. Let g be a grid cell that is in V (S) for some star S, and let
S′ ⊆ S be the subset of grid cells in S that are closest to g. Then any shortest
path from g to any grid cell in S′ consists entirely of grid cells that are in V (S).

The proof of Observation 3 is omitted due to lack of space. The following
corollary immediately follows from the observation.

Corollary 4. Each Voronoi region in the Voronoi diagram is connected under
the grid topology.

For a grid cell g that belongs to the Voronoi region V (S), let πg denote the
path obtained by concatenating the L-shaped path p(g, UCCS(g)) to the path
in the star S from UCCS(g) to the center of the star S. Note that πg lies entirely
in V (S), by Observation 3. Also, let σg denote the piece-wise linear path that
connects the centers of the cells in πg in the order in which they occur in πg.
That is, σg is the path corresponding to πg in the embedding of the grid graph.

Lemma 2. For any two distinct cells g and g′, πg and πg′ do not cross.

Computing Regions Decomposable into m Stars 487

4 Marking Cells

In this section, we will introduce a procedure of identifying several key grid cells
which will enable us to break the problem down into several instances of the
2-star problem. For the purposes of describing this procedure, it is convenient
to add the following set of dummy cells to the grid:

{(0, j) | 1 ≤ j ≤ N} ∪ {(N + 1, j) | 1 ≤ j ≤ N}
∪{(i, 0) | 1 ≤ i ≤ N} ∪ {(i, N + 1) | 1 ≤ i ≤ N}.

These dummy cells are not actually part of the grid and are not eligible to
be included in a solution to the problem, but rather serve as a “placeholder” to
help describe the procedure in a cleaner way.

Consider the set of points in the plane that lie in the cells belonging to V (S),
the Voronoi region for some star S. Abusing terminology slightly, we will refer
to this set also as the Voronoi region. Since V (S) is connected under the grid
topology, the Voronoi region is a rectilinear polygon that possibly has holes.
(Each such hole contains one or more other Voronoi regions.) We will refer to
the boundary of the polygon with its holes filled in as the outer frontier OB(S)
of V (S), and the boundary of each of the holes of the polygon as an inner
frontier of V (S). Each frontier is a union of edges of grid cells. Each cell edge
that belongs to a frontier is incident on two grid cells; one of these is in V (S)
and the other is either a dummy cell (one that surrounds the N × N grid) or
belongs to a different Voronoi region. The edges that belong to a frontier (outer
or inner) can be cyclically ordered in the way they occur on the boundary.

We now describe a procedure for marking certain cells in each of the Voronoi
regions. There is a phase of this marking procedure for each of the Voronoi
regions; we describe the phase for the red region V (R). The other phases are
similar.

Processing the outer frontier of V (R). Each cell edge on the outer frontier OB(R)
of R is incident on a cell that can be one of three types: a grid cell in V (B),
V (G), or a dummy cell. (Each such edge is of course also incident on a cell in
V (R).) Consider any two adjacent cell edges e and e′ on OB(R) (adjacent with
respect to the cyclic order mentioned above) for which the types of the incident
grid cell are different. We mark all the cells in the grid (including the ones in
V (R)) that are incident on e and e′. We refer to this set of cells as a vertex feature
on OB(R) induced by e and e′. Intuitively, a vertex feature is a location in the
grid in which three Voronoi regions (or two Voronoi regions and the border of
the grid) “come together”. We will use these vertex features to help us partition
the three-star problem into several instances of a two-star problem. Notice that
there may be several vertex features on OB(R), but as we shall see, we can
bound this number by a constant. All the corresponding cells are marked while
processing the outer frontier of V (R). See part (a) Figure 4 for an illustration.

Processing the boundary of each hole of V (R). Fix a hole h in V (R) and consider
its boundary, which is an inner frontier of V (R). We find one pair of adjacent

488 M. Gibson, K. Varadarajan, and X. Wu

ge

gf

v
w

(a) (b)

Fig. 4. Marking cells: (a) Marking an outer frontier. The 7 cells with the pattern. (b)
Marking an inner frontier. Note that the two marked cells (ge and gf) are the two red
cells with bold boundaries.

edges e and f on the frontier with the property that (a) the cell ge in V (R)
incident to e and the cell gf in V (R) incident to f are distinct; and (b) the path
σge , the straight-line segment from the center of ge to the vertex v incident to
both e and f , the straight-line segment from v to the center of gf , and the path
σgf together enclose the hole. (Notice that σge and σgf share a common portion
from the center of the cell that is the center of R to some point w, after which
they split and don’t intersect again. Hence, the plane minus the points in σge

and σgf is connected. On the other hand, the concatenation of the portion of
σge from w to the center of ge, the segment connecting the center of ge to v,
the segment connecting v to the center of gf , and the portion of σgf from the
center of gf to w forms a Jordan cycle, which we denote by Jh. Condition (b) is
asking if the hole h is contained within the Jordan cycle Jh.) The existence of
such a pair of adjacent edges e and f follows from a topological argument – if
such a pair doesn’t exist, we can contract (within V (R)) the frontier to a point,
a contradiction.

For such e and f , notice that the points contained in the cells belonging to
πge and πgf forms a rectilinear polygon, one of whose holes contains h. We will
therefore refer to the collection of cells in πge and πgf as the red enclosure for h.

Having picked e and f , we mark the cells ge and gf . We do the same for each
hole of V (R). See part (b) Figure 4 for an illustration.

With this, the marking phase corresponding to V (R) is finished. Notice that
this phase can also mark cells not in V (R).

Let M denote the cells that are marked, and let π(M) denote all the cells
that belong to πg for g ∈ M . We make the following useful observation:

Lemma 3. For any star S, the cells π(M)∩ V (S) induce a connected subgraph
of the grid.

The main consequence of the marking procedure is that when the cells in
π(M) are removed, each connected component that remains contains grid cells
from at most two different Voronoi regions. As we explain below, this is what
enables us to reduce the problem to several instances of the two-star problem.

Computing Regions Decomposable into m Stars 489

Lemma 4. After the removal of π(M), any connected component Γ (of the
subgraph of the grid induced by the remaining grid cells) contains cells from at
most two Voronoi regions. Furthermore, the set of cells in π(M) that are adjacent
to some cell in Γ come from at most two Voronoi regions.

We also need a bound on the number of cells marked by the procedure.

Lemma 5. The set M of marked cells has size at most 60.

5 The Algorithm

In this section, we give our algorithm for computing the maximum weight object
decomposable into three star-shaped objects. Let us call this desired object OPT .
We begin with a high level overview of the algorithm. The algorithm iteratively
guesses the cells M that are marked by our marking procedure for OPT , and
then guesses the unique closest cells in OPT and which star (red, blue, or green)
these cells are in for each guess M . This allows us to compute the paths π(M),
which we remove from the grid, breaking the grid into connected components. For
the correct guess of π(M), we have that each connected component of the grid
contains cells from at most two Voronoi regions and that the cells in π(M) that
are adjacent to the component contains cells from at most two Voronoi regions
by Lemma 4. We have already guessed from which Voronoi regions the cells in
π(M) that are adjacent to each component come from (from the guess of which
stars the unique closest points belong to) and this then gives us from which two
Voronoi regions are the grid cells in each component. We then use the algorithm
of Gibson et al. [9] to compute the maximum weight region decomposable into
two star-shaped regions for each component. We then put the pieces together
(combining the two-star solutions in each component with some of the grid cells
in π(M)), and argue that for the correct guess, the solution we obtain is OPT .
Following from Lemma 5, we only have to make a polynomial number of guesses
to guarantee at some point we made all of the correct guesses.

Algorithm Details. Let M denote the grid cells that are marked by the procedure
in Section 4. The algorithm first guesses these cells M . Let us call the guess M ′.
Then for each grid cell g ∈ M ′, we guess it’s unique closest cell UCCOPT (g). We
call the union of these guessed unique closest cells C. For each cell in C we guess
which star this cell is in ({r, b, g}). Now for this particular guess (M ′, C, and the
colors of the grid cells in C) we will compute 6 sets of grid cells Ir, Ib, Ig, Or, Ob,
and Og. These sets will contain some of the grid cells that we are guessing belong
to a particular Voronoi region but are “outside” of the optimal solution (Or, Ob,
and Og) or will contain some of the grid cells that we are guessing are “inside”
one of the three stars in the optimal solution (Ir , Ib, and Ig). For a grid cell
g ∈ C, let color(g) denote the color we guessed for g. For each m ∈ M ′, let
πm denote the concatenation of the L-shaped path p(m,UCCC(m)) with the
path from UCCC(m) to ccolor(UCCC(m)) in the corresponding star (as defined in
Section 3). We place each grid cell in the path p(m,UCCC(m)) up to (but not

490 M. Gibson, K. Varadarajan, and X. Wu

including) UCCC(m) into the set Ocolor(UCCC(m)) (intuitively, we are marking
these cells as being in the color(UCCC(m)) Voronoi region but not in the optimal
solution). We place all of the grid cells in the path in the star from UCCC(m) to
ccolor(UCCC(m)) into the set Icolor(UCCC(m)) (marking these cells as being in the
optimal solution as part of the color(UCCC(m)) star). After doing this for each
m ∈ M ′, we check to see that each grid cell in the grid graph was assigned to at
most one of these six sets. It can easily be seen that if we have made the correct
guess for OPT then it will be the case that each grid cell will be assigned to at
most one of the six sets, and therefore if this is not the case then we know that
we have made an incorrect guess and we do not continue with this guess and try
again. So now we will assume that each grid cell has been assigned to at most
one of the six sets.

Let π(M ′) denote the union of πm for each m ∈ M ′, and remove π(M ′) from
the grid, leaving the grid broken up into several connected components. Let
Γ denote a connected component of the grid after the removal of π(M ′). Let
πΓ (M ′) denote the grid cells in π(M ′) that are adjacent to Γ . If the grid cells in
πΓ (M ′) have been assigned to more than 2 distinct colors of the six sets (note
that Ir and Or are of the same color), then we know that we guessed incorrectly
by Lemma 4 and we guess again. So now assume that we did guess that the grid
cells in πΓ (M ′) have been assigned to at most 2 distinct colors of the six sets.
Without loss of generality, assume that the grid cells in πΓ (M ′) were assigned
the colors red and blue. Then Lemma 4 implies that every grid cell in Γ can
only come from the red or blue Voronoi regions.

We are now ready to set up an instance of the 2-star problem for each con-
nected component Γ . To be more precise, we will setup an instance of the more
general problem that can be solved with the algorithm of Gibson et al. [9] listed
in the Introduction. Without loss of generality assume that two colors of Voronoi
regions that the grid cells in Γ come from are red and blue. The vertex set V of
this instance is Γ ∪ Ir ∪ Ib. To get the two trees S′

r and S′
b, recall the definitions

of Sr and Sb from Section 2. Consider the subgraph of Sr induced by the vertex
set V . We set S′

r to be the connected component of this subgraph that contains
Ir. Likewise, we set S′

b to be connected component of the the subgraph of Sb

induced by V that contains Ib. For each grid cell in Γ the corresponding vertex
in V is assigned the same weight it had in the grid graph. For each grid cell in
Ir ∪ Ib, we assign the corresponding vertex in V a weight of α where α is some
value larger than the sum of weights of grid cells in Γ that have positive weights.
This is because we have already guessed that these grid cells are in OPT , and
we want to guarantee that these grid cells will be included in our solution. This
completes the setup of the 2-star instance, and we find the optimal 2-star solu-
tion OΓ for this instance using the algorithm of Gibson et al. Note that Ir ∪ Ib
will always be included in OΓ .

We denote our final object for this guess O :=
⋃

Γ OΓ . This object can clearly
be decomposed into three star-shaped objects. Lemma 5 implies that we must
make at most a polynomial number of guesses before we are guaranteed to make
the correct guess for OPT . We iterate through each of these guesses, and we

Computing Regions Decomposable into m Stars 491

remember the object with the largest weight that we obtained throughout each
of the guesses and return this object as our final solution (where the weight of
a grid cell is the weight in the original grid graph and not the weight assigned
in the 2-star instance). At least one such guess of M ′, C and the colors assigned
to C corresponds with OPT , and therefore the object that we compute for this
guess will have weight w(OPT).

References

1. Ahmed, M., Chowdhury, I., Gibson, M., Islam, M.S., Sherrette, J.: On maximum
weight objects decomposable into based rectilinear convex objects. In: Dehne, F.,
Solis-Oba, R., Sack, J.-R. (eds.) WADS 2013. LNCS, vol. 8037, pp. 1–12. Springer,
Heidelberg (2013)

2. Anzai, S., Chun, J., Kasai, R., Korman, M., Tokuyama, T.: Effect of corner informa-
tion in simultaneous placement of k rectangles and tableaux. Discrete Mathematics,
Algorithms and Applications 2(4), 527–537 (2010)

3. Chen, D.Z., Chun, J., Katoh, N., Tokuyama, T.: Efficient algorithms for approxi-
mating a multi-dimensional voxel terrain by a unimodal terrain. In: Chwa, K.-Y.,
Munro, J.I. (eds.) COCOON 2004. LNCS, vol. 3106, pp. 238–248. Springer, Hei-
delberg (2004)

4. Christ, T., Pálvölgyi, D., Stojakovic, M.: Consistent digital line segments. Discrete
& Computational Geometry 47(4), 691–710 (2012)

5. Chun, J., Kasai, R., Korman, M., Tokuyama, T.: Algorithms for computing the
maximum weight region decomposable into elementary shapes. In: Dong, Y., Du,
D.-Z., Ibarra, O. (eds.) ISAAC 2009. LNCS, vol. 5878, pp. 1166–1174. Springer,
Heidelberg (2009)

6. Chun, J., Korman, M., Nöllenburg, M., Tokuyama, T.: Consistent digital rays.
Discrete & Computational Geometry 42(3), 359–378 (2009)

7. Chun, J., Sadakane, K., Tokuyama, T.: Efficient algorithms for constructing a
pyramid from a terrain. IEICE Transactions 89-D(2), 783–788 (2006)

8. Delong, A., Boykov, Y.: Globally optimal segmentation of multi-region objects. In:
ICCV, pp. 285–292. IEEE Computer Society Press, Los Alamitos (2009)

9. Gibson, M., Han, D., Sonka, M., Wu, X.: Maximum weight digital regions decom-
posable into digital star-shaped regions. In: Asano, T., Nakano, S.-I., Okamoto,
Y., Watanabe, O. (eds.) ISAAC 2011. LNCS, vol. 7074, pp. 724–733. Springer,
Heidelberg (2011)

10. Rother, C., Kolmogorov, V., Lempitsky, V.S., Szummer, M.: Optimizing binary
mrfs via extended roof duality. In: CVPR. IEEE Computer Society (2007)

11. Wu, X., Chen, D.Z., Li, K., Sonka, M., Zhang, L.: The layered net surface problems
in discrete geometry and medical image segmentation. International Journal of
Computational Geometry and Applications 17, 261–296 (2007)

12. Wu, X., Dou, X., Wahle, A., Sonka, M.: Region detection by minimizing intraclass
variance with geometric constraints, global optimality, and efficient approximation.
IEEE Transactions on Medical Imaging 30, 814–827 (2011)

The Parameterized Complexity
of Graph Cyclability�

Petr A. Golovach1, Marcin Kamiński2,
Spyridon Maniatis3, and Dimitrios M. Thilikos3,4

1 Department of Informatics, University of Bergen, Bergen, Norway
2 Institute of Computer Science, University of Warsaw, Warsaw, Poland

3 Department of Mathematics, National and Kapodistrian University of Athens,
Athens, Greece

4 AlGCo project-team, CNRS, LIRMM, Montpellier, France

Abstract. The cyclability of a graph is the maximum integer k for
which every k vertices lie on a cycle. The algorithmic version of the
problem, given a graph G and a non-negative integer k, decide whether
the cyclability of G is at least k, is NP-hard. We prove that this problem,
parameterized by k, is co-W[1]-hard. We give an FPT algorithm for planar

graphs that runs in time 22
O(k2 log k) · n2. Our algorithm is based on a

series of graph theoretical results on cyclic linkages in planar graphs.

1 Introduction

In the opening paragraph of his book Extremal Graph Theory Béla Bollobás
notes: “Perhaps the most basic property a graph may posses is that of being
connected. At a more refined level, there are various functions that may be said
to measure the connectedness of a connected graph.” Indeed, connectivity is one
of the fundamental properties considered in graph theory and studying different
variants of connectivity gives a better understanding of this property. Many such
alternative connectivity measures have been studied in graph theory but very
little is known about their algorithmic properties. The main goal of this paper is
to focus on one of such parameters – cyclability – from an algorithmic point of
view. Cyclability can be thought of as a quantitative measure of Hamiltonicity,
or as a natural “tuning” parameter between connectivity and Hamiltonicity.

Cyclability. For a positive integer k, a graph is k-cyclable if every k vertices lie
on a common cycle; we assume that any graph is 1-cyclable. Respectively, the
cyclability of a graph G is the maximum integer k for which G is k-cyclable.
Cyclability is well studied in the graph theory literature. Dirac proved that

� The first author was supported by the European Research Council under the
European Union’s Seventh Framework Programme (FP/2007-2013)/ERC Grant
Agreement n. 267959. The second author was supported by the Foundation for
Polish Science (HOMING PLUS/2011-4/8) and National Science Center (SONATA
2012/07/D/ST6/02432). The third and the fourth author were co-financed by
the E.U. (European Social Fund - ESF) and Greek national funds through the
Operational Program “Education and Lifelong Learning” of the National Strate-
gic Reference Framework (NSRF) - Research Funding Program: “Thales. Investing
in knowledge society through the European Social Fund”.

A.S. Schulz and D. Wagner (Eds.): ESA 2014, LNCS 8737, pp. 492–504, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

The Parameterized Complexity of Graph Cyclability 493

cyclability of a k-connected graph is at least k, for k ≥ 2 [6]. Watkins and
Mesner [27] characterized the extremal graphs for the theorem of Dirac. There is
a variant of cyclability restricted only to a set of vertices of a graph. Generalizing
the theorem of Dirac, Flandrin et al. [12] proved that if a set of vertices S in
a graph G is k-connected, then there is a cycle in G through any k vertices of
S. (A set of vertices S is k-connected in G if a pair of vertices in S cannot be
separated by removing at most k− 1 vertices of G.) Another avenue of research
is lower-bounds on cyclability of graphs in restricted families. For example, every
3-connected claw-free graph has cyclability at least 6 [22] and every 3-connected
cubic planar graph has cyclability at least 23 [4].

Clearly, a graph G is Hamiltonian if and only if its cyclability equals |V (G)|.
Therefore, we can think of cyclability as a quantitive measure of Hamiltonicity.
A graph G is hypohamiltonian if it is not Hamiltonian but all graphs obtained
from G by deleting one vertex are. Clearly, a graph G is hypohamiltonian if
and only if its cyclability equals |V (G)| − 1. Hypohamiltonian graphs appear in
combinatorial optimization and are used to define facets of the traveling salesman
polytope [16]. Curiously, the computational complexity of deciding whether a
graph is hypohamiltonian seems to be open.

To our knowledge no algorithmic study of cyclability has been done so far. In
this paper we initiate this study. For this, we consider the following problem.

Cyclability

Input: A graph G and a non-negative integer k.
Question: Is every k-vertex set S in G cyclable, i.e., is there a
cycle C in G such that S ⊆ V (C)?

Cyclability with k = |V (G)| is Hamiltonicity and Hamiltonicity is
NP-complete for planar cubic graphs [15]. Hence, we have the following.

Proposition 1. Cyclability is NP-hard for cubic planar graphs.

Parameterized complexity. A parameterized problem has as instances pairs (I, k)
where I is the main part and k is the parameterized part. Parameterized Com-
plexity settles the question of whether a parameterized problem is solvable by an
algorithm (we call it FPT-algorithm) of time complexity f(k) · |I|O(1) where f(k)
is a function that does not depend on n. If such an algorithm exists, we say that
the parameterized problem belongs in the class FPT. In a series of fundamen-
tal papers (see [10,11,8,9]), Downey and Fellows invented a series of complexity
classes, namely the classes such as W[1] ⊆ W[2] ⊆ · · · ⊆ W[SAT] ⊆ W[P] ⊆ XP
and proposed special types of reductions such that hardness for some of the
above classes makes it rather impossible that a problem belongs in FPT (we
stress that FPT ⊆ W[1]). We mention that XP is the class of parameterized
problems such that for every k there is an algorithm that solves that problem in
time O(|I|f(k)), for some function f (that does not depend on |I|). For more on
parameterized complexity, we refer the reader to [7], [13], or [20].

Our results. In this paper we deal with the parameterized complexity of Cycla-

bility parameterized by k. It is easy to see that Cyclability is in XP. For a
graph G, we can check all possible subsets X of V (G) of size k. For each subset

494 P.A. Golovach et al.

X, we consider k! orderings of its vertices, and for each sequence of k vertices
x1, . . . , xk of X, we use the celebrated result of Robertson and Seymour [25] (see
also [18]), to check whether there are k disjoint paths that join xi−1 and xi for
i ∈ {1, . . . , k} assuming that x0 = xk. We return a yes if and only if there is an
ordering that has the required disjoint paths for each set X .

Is it possible that Cyclability is FPT when parameterized by k? By showing
that Cyclability is co-W[1]-hard (even for split graphs1), we show that this is
rather unlikely. However, we prove that the problem is FPT on planar graphs.

Theorem 1 (�2). It is W[1]-hard to decide for a split graph G and a positive
integer k, whether G has k vertices such that there is no cycle in G that contains
these k vertices, when the problem is parameterized by k.

Theorem 2. The Cyclability problem, when parameterized by k, is in FPT
when its input graphs are restricted to be planar graphs. Moreover, the corre-

sponding FPT-algorithm runs in 22
O(k2 log k) · n2 steps.

Our Techniques. Theorem 1 is proved in the appendix and the proof is a reduction
from the Clique problem.

The two key ingredients in the proof of Theorem 2 are a new two-step version
of the irrelevant vertex technique, a new combinatorial concept of cyclic linkages
and a strong notion of vitality on them (vital linkages played an important role
in the Graph Minors series, in [26] and [23]). The proof of Theorem 2 is presented
in Section 3 (with references to the appendix). Below we give a rough sketch of
our method.

We work with a variant of Cyclability in which some vertices (initially all)
are colored. We only require that every k colored vertices lie on a common cycle.
If the treewidth of the input graph G is “small” (bounded by an appropriate
function of k), we employ a dynamic programming routine to solve the problem.
Otherwise, there exists a cycle in a plane embedding of G such that the graph
H in the interior of that cycle is “bidimensional” (contains a large subdivided
wall) but still of bounded treewidth. This structure permits to distinguish in
H a sequence C of sufficiently many concentric cycles that are all traversed
by some sufficiently many paths of H . Our first aim is to check whether the
distribution of the colored vertices in these cycles yields some “big uncolored
area” of H . In this case we declare some “central” vertex of this area problem-
irrelevant in the sense that its removal creates an equivalent instance of the
problem. If such an area does not exists, then R is “uniformly” distributed
inside the cycle sequence C. Our next step is to set up a sequence of instances
of the problem, each corresponding to the graph “cropped” by the interior of
the cycles of C, where all vertices of a sufficiently big “annulus” in it are now
uncolored. As the graphs of these instances are subgraphs of H and therefore
they have bounded treewidth, we can get an answer for all of them by performing
a sequence of dynamic programming calls (each taking a linear number of steps).
At this point, we prove that if one of these instances is a no-instance then we
just report that the initial instance is a no-instance and we stop. Otherwise, we

1 A graph G is split if V (G) can be partitioned into a clique and an independent set.
2 Proofs of results that are marked with a star “�” have been moved to the Appendix.

The Parameterized Complexity of Graph Cyclability 495

pick a colored vertex inside the most “central” cycle of C and we prove that this
vertex is color-irrelevant, i.e., an equivalent instance is created when this vertex
is not any more colored. In any case, the algorithm produces either a solution
or some “simpler” equivalent instance that either contains a vertex less or a
colored vertex less. This permits a linear number of recursive calls of the same
procedure. To prove that these two last critical steps work correctly, we have to
introduce several combinatorial tools. One of them is the notion of strongly vital
linkages, a variant of the notion of vital linkages introduced in [26], which we
apply to terminals traversed by cycles instead of terminals linked by paths, as
it has been done in [26]. This notion of vitality permits a significant restriction
of the expansion of the cycles that certify that sets of k vertices are cyclable
and is able to justify both critical steps of our algorithm. The proofs of the
combinatorial results that support our algorithm are presented in Section 4 and
we believe that they have independent combinatorial importance.

Structure of the paper. The paper is organized as follows. In Section 2 we give
a minimal set of definitions that are necessary for the presentation of our al-
gorithm. The main steps of the algorithm are presented in Section 3 and the
combinatorial results (along with the necessary definitions) are presented in Sec-
tion 4. We conclude with some discussion and open questions in Section 5. The
paper is followed by an Appendix with 4 parts. The first one is the reduction
supporting the proof of Theorem 1. The second and the third part contain the
proofs of Section 3 and 4 respectively. Finally, the fourth part of the Appendix
contains a series of remarks on the dynamic programming procedures that can
be used to solve Cyclability for graphs of bounded treewidth.

2 Definitions and Preliminary Results

For any graph G, V (G) (respectively E(G)) denotes the set of vertices (respec-
tively edges) of G. A graph G′ is a subgraph of a graph G if V (G′) ⊆ V (G) and
E(G′) ⊆ E(G), and we denote this by G′ ⊆ G. If S is a set of vertices or a set
of edges of a graph G, the graph G \ S is the graph obtained from G after the
removal of the elements of S. Given two graphs G1 and G2, we define G1∪G2 =
(V (G1)∪V (G2), E(G1)∪E(G2)) and G1∩G2 = (V (G1)∩V (G2), E(G1)∩E(G2)).

For every vertex v ∈ V (G) the neighborhood of v in G, denoted by NG(v),
is the subset of vertices that are adjacent to v, and its size is called the degree
of v in G, denoted by degG(v). The maximum degree Δ(G) of a graph G is the
maximum value taken by degG over V (G). A cycle of G is a subgraph of G that
is connected and all its vertices have degree 2. We call a set of vertices S ⊆ V (G)
cyclable if for some cycle C of G, it holds that S ⊆ V (C).

Treewidth. A tree decomposition of a graph G is a pair D = (X , T) in which T
is a tree and X = {Xi | i ∈ V (T)} is a family of subsets of V (G) such that:
•
⋃

i∈V (T) Xi = V (G)

496 P.A. Golovach et al.

• for each edge e = {u, v} ∈ E(G) there exists an i ∈ V (T) such that both u
and v belong to Xi

• for all v ∈ V, the set of nodes {i ∈ V (T) | v ∈ Xi} forms a connected subtree
of T .

The width of a tree decomposition is max{|Xi| | i ∈ V (T)}− 1. The treewidth
of a graph G (denoted by tw(G)) is the minimum width over all possible tree
decompositions of G.

Concentric cycles. Let G be a graph embedded in the sphere S0 and let D =
{D1, . . . , Dr}, be a sequence of closed disks in S0. We call D concentric if D1 ⊆
D2 ⊆ · · · ⊆ Dr and no point belongs in the boundary of two disks in D. We
call a sequence C = {C1, . . . , Cr}, r ≥ 2, of cycles of G concentric if there exists
a concentric sequence of closed disks D = {D1, . . . , Dr}, such that Ci is the

boundary of Di, i ∈ {1, . . . , r}. For i ∈ {1, . . . , r}, we set C̄i = Di, C̊i = C̄i \Ci,

and Ĉi = G ∩Di (notice that C̄i and C̊i are sets while Ĉi is a subgraph of G).

Given i, j, i ≤ j − 1, we denote by Âi,j the graph Ĉj \ C̊i. Finally, given a q ≥ 1,
we say that a set R ⊆ V (G) is q-dense in C if, for every i ∈ {1, . . . , r − q + 1},
V (Âi,i+q−1) ∩R �= ∅.

Railed annulus. Let r and q be integers such that r ≥ 2 and q ≥ 1 and let G
be a graph embedded in the S0. A (r, q)-railed annulus in G is a pair (C,W)
such that C = {C1, C2, . . . , Cr} is a sequence of r concentric cycles that are all
met by a sequence W of q paths P1, P2, . . . , Pq (called rails) in such a way that
∪∪∪∪∪∪∪∪∪W ⊆ A1,r and the intersection of a cycle and a rail is always connected, that
is, it is a (possibly trivial) path.

Walls and subdivided walls. Let k ≥ 1. A wall of height k is the graph obtained
from a ((k + 1) × (2 · k + 2))-grid with vertices (x, y), x ∈ {1, . . . , 2 · k + 4},
y ∈ {1, . . . , k + 1}, after the removal of the “vertical” edges {(x, y), (x, y + 1)}
for odd x + y, and then the removal of all vertices of degree 1. We denote such
a wall by Wk. A subdivided wall of height k is a wall obtained from Wk after
replacing some of its edges by paths without common internal vertices. We call
such a path an edge-path of W . The perimeter PW of a subdivided wall W of
height k is the cycle defined by its boundary. Let C2 = PW and let C1 be any
cycle of W that has no common vertices with PW . Notice that C = {C1, C2} is
a sequence of concentric cycles in G. We define the compass KW of W in G as
the graph Ĉ2. Given a graph G we denote by gw(G) the maximum h for which
G contains a subdivided wall of height h as a subgraph. The next lemma follows
easily combining results in [14], [17], and [24].

Lemma 1. If G is a planar graph, then tw(G) ≤ 9 · gw(G) + 1.

3 The Algorithm

This section is devoted to the proof of Theorem 2. We consider the following
slightly more general problem.

The Parameterized Complexity of Graph Cyclability 497

Planar Annotated Cyclability

Input: A plane graph G, a set R ⊆ V (G), and a non-negative integer k.
Question: Does there exist, for every set S of k vertices in R, a cycle C
of G such that S ⊆ V (C)?

In this section, for simplicity, we denote Planar Annotated Cyclability by
Π. Theorem 2 follows directly from the following lemma.

Lemma 2. There is an algorithm that solves Π in 22
O(k2 log k) · n2 steps.

Problem/color-irrelevant vertices. Let (G, k,R) be an instance of Π. We call
a vertex v ∈ V (G) \ R problem-irrelevant if (G, k,R) is a yes-instance if and
only if (G \ v, k, R) is a yes-instance. We call a vertex v ∈ R color-irrelevant
when (G, k,R) is a yes-instance if and only if v ∈ R and (G, k,R \ {v}) is a
yes-instance.

Before we present the algorithm of Lemma 2, we need to introduce three
algorithms that are used in it as subroutines.

Algorithm DP(G,R, k, q,D)
Input: A graph G, a vertex set R ⊆ V (G), two non-negative integers k and q,
where k ≤ q, and a tree decomposition D of G of width q.
Output: An answer whether (G,R, k) is a yes-instance of Π or not.

Running time: 22
O(q·log q) · n.

Algorithm DP is based on dynamic programming on tree decompositions of
graphs. The technical details are omitted in this extended abstract.

Algorithm Compass(G, q)
Input: A planar graph G and a non-negative integer q.
Output: Either a tree decomposition of G of width at most 18q or a subdivided
wall W of G of height q and a tree decomposition D of the compass KW of W
of width at most 18q.

Running time: 2q
O(1) · n.

We describe algorithm Compass in Subsection 3.1.

Algorithm concentric cycles(G,R, k, q,W)
Input: A planar graph G, a set R ⊆ V (G), a non-negative integer k, and a
subdivided wall W of G of height at least 392k2 + 40k.
Output: Either a problem-irrelevant vertex v or a sequence C = {C1, C2, . . . ,
C98k+2} of concentric cycles of G, with the following properties:
(1) C̄1 ∩R �= ∅.
(2) The set R is 32k-dense in C.
(3) There exists a sequence W of 2k + 1 paths in KW such that (C,W) is a

(98k + 2, 2k + 1)-railed annulus.
Running time: O(n).

We describe Algorithm concentric cycles in Subsection 3.2. We now use the
above three algorithms to describe the main algorithm of this paper that is the
following.

498 P.A. Golovach et al.

Algorithm Planar Annotated Cyclability(G,R, k)
Input: A planar graph G, a set R ⊆ V (G), and a non-negative integer k.
Output: An answer whether (G,R, k) is a yes-instance of Π, or not.

Running time: 22
O(k2 log k) · n2.

[Step 1.] Let r = 98k2 +2k, y = 16k, and q = 2y+4r. If Compass(G, q) returns
a tree decomposition of G of width w = 18q, then return DP(G,R, k, w) and
stop. Otherwise, the algorithm Compass(G, q) returns a subdivided wall W
of G of height q and a tree decomposition D of the compass KW of W of
width at most w.

[Step 2.] If the algorithm concentric cycles(G,R, k, q,W) returns a problem-
irrelevant vertex v, then return Planar Annotated Cyclability(G\v,R\
v, k) and stop. Otherwise, it returns a sequence C = {C1, C2, . . . , Cr} of
concentric cycles of G with the properties (1)–(3).

[Step 3.] For every i ∈ {1, . . . , r − 98k − 2} let wi be a vertex in Âi+k,i+33·k ∩R
(this vertex exists as, from property (2), R is 32k-dense in C), let Ri =

(R ∩ V (Ĉi)) ∪ {wi}, and let Di be a tree decomposition of Ĉi of width at
most w – this tree decomposition can be constructed in linear time from D
as each Ĉi is a subgraph of KW .

[Step 4.] If, for some i ∈ {1, . . . , r− 98k− 2}, the algorithm DP(Ĉi, Ri, k, q,Di)
returns a negative answer, then return a negative answer and stop. Otherwise
return Planar Annotated Cyclability(G,R\v, k) where v is some vertex

of Ĉ1 that belongs in R (the choice of v is possible due to property (1)).

Proof of Lemma 2. The only non-trivial step in the above algorithm is Step 4.
Its correctness follows from Lemma 6, presented in Subsection 3.3.

We now proceed with the analysis of the running time of the algorithm. Ob-

serve first that the call of Compass(G, q) in Step 1 takes 2k
O(1) ·n steps and, in

case, a tree decomposition is returned, the DP requires 22
O(k2 log k) · n steps. For

Step 2, the algorithm concentric cycles takes O(n) steps and if it returns a
problem-irrelevant vertex, then the whole algorithm is applied again for a graph
with one vertex less. Suppose now that Step 2 returns a sequence C of concentric
cycles of G with the properties (1)–(3). Then the algorithm DP is called O(k2)

times and this takes in total 22
O(k2 log k) ·n steps. After that, the algorithm either

concludes to a negative answer or is called again with one vertex less in the set
R. In both cases where the algorithm is called again we have that the quantity
|V (G)| + |R| is becoming smaller. This means that the recursive calls of the al-
gorithm cannot be more than 2n. Therefore the total running time is bounded

by 22
O(k2 log k) · n2 as required. ��

3.1 The Algorithm Compass

Before we start the description of algorithm Compass we present a result that
follows by Proposition 1, the algorithms in [21] and [5], and the fact that finding
a subdivision of a planar k-vertex graph H that has maximum degree 3 in a
graph G can be done, using dynamic programming, in 2O(k·log k) · n steps (see
also [1]).

The Parameterized Complexity of Graph Cyclability 499

Lemma 3. There exists an algorithm A1 that, given a graph G and an integer
h, outputs either a tree decomposition of G of width at most 9h or a subdivided

wall of G of height h. This algorithm runs in 2h
O(1) · n steps.

Description of Algorithm Compass. Let q′ = 9q. We use the routine A2 that
receives as input a subdivided wall W of G with height equal to some even
number h and outputs a subdivided wall W ′ of G such that with W ′ has height
h/2 and |V (KW ′)| ≤ |V (G)|/4. A2 uses the fact that, in W, there are 4 vertex-
disjoint subdivided subwalls of W of height h/2. Among them, A2 outputs the
one with the minimum number of vertices and this can be done in O(n) steps.
The algorithm Compass uses as subroutines the routine A2 and the algorithm
A1 of Lemma 3.1.

Algorithm Compass(G, q)
[Step 1.] if A1(G, 2q) outputs a tree decomposition D of G with

width at most 2q′ then return D,
otherwise it outputs a subdivided wall W of G of height 2q

[Step 2.] Let W ′ = A2(W)
if A1(KW ′ , 2q) outputs a tree decomposition D of
KW ′ with width at most 2q′ then return W ′ and D,
otherwise W ← W ′ and go to Step 2.

Notice that, if A terminates after the first execution of step 1, then it outputs
a tree decomposition of G of width at most 2q′. Otherwise, the output is a
subdivided wall W ′ of height k in G and a tree decomposition of KW ′ of width
at most 2q′ (notice that as long as this is not the case, the algorithm keeps
returning to step 2). The aplication of routine A2 ensures that the number
vertices of every new KW is at least four times smaller than the one of the

previous one. Therefore, the i-th call of the the algorithm A1 requires O(2h
O(1) ·

n
22(i−1)) steps. As

∑∞
i=0

1
22i = O(1), algorithm Compass has the same running

time as algorithm A1.

3.2 The Algorithm Concentric Cycles

We require first the following two lemmata, The first one is strongly based on
the combinatorial Lemma 9 that is the main result of Section 4.

Lemma 4 (�). Let (G,R, k) be an instance of Π and let C = {C1, . . . , Cr} be a

sequence of concentric cycles in G such that V (Ĉr) ∩ R = ∅. If r ≥ 16 · k, then

all vertices in Ĉ1 are problem-irrelevant.

Lemma 5 (�). Let y, r, q, z be positive integers such that y + 1 ≤ z ≤ r, G be
a graph embedded on S0 and let R ⊆ V (G) be the set of annotated vertices of
G. Given a subdivided wall W in G of height h = 2 · max{y,
 q

8�} + 4r, then
either G contains a sequence C′ = {C′

1, C
′
2, . . . , C

′
y} of concentric cycles such

that V (Ĉ′
y)∩R = ∅ or a sequence C = {C1, C2, . . . , Cr} of concentric cycles such

that:
1. C̄1 ∩R �= ∅.

500 P.A. Golovach et al.

2. R is z-dense in C.
3. There exists a collection W of q paths in KW , such that (C,W) is a (r, q)-

railed annulus in G.
Moreover, a sequence C′ or C of concentric cycles as above can be constructed in
O(n) steps.

Description of algorithm concentric cycles This algorithm first applies the
algorithm of Lemma 5 for y = 16k, r = 98k2 + 2k, q = 2k + 1, and z = 32k.
If the output is a sequence C′ = {C′

1, C
′
2, . . . , C

′
y} of concentric cycles such that

V (Ĉ′
y)∩R = ∅ then, the algorithm returns a vertex w of Ĉ′

1. As V (Ĉr)∩R = ∅,
Lemma 4, implies that w is problem-irrelevant. If the output is a sequence C the
it remains to observe that conditions 1–3 match the specifications of algorithm
concentric cycles.

3.3 Correctness of Algorithm Planar Annotated Cyclability

As mentioned in the proof of Lemma 2, the main step – [step 4] – of algorithm
Planar Annotated Cyclability is based in Lemma 6 bellow.

Lemma 6 (�). Let (G,R, k) be an instance of problem Π and let b = 98k + 2
and r = 98k2 + 2k. Let also (C,W) be an (r, 2k + 1)-railed annulus in G, where

C = {C1, . . . Cr} is a sequence of concentric cycles such that Ĉ1 contains some
vertex v ∈ R and that, R is 32k-dense in C. For every i ∈ {1, . . . , r − b} let

Ri = (R ∩ V (Ĉi)) ∪ {wi}, where wi ∈ V (Âi+k+1,33k+i+1) ∩R. If (Ĉi+b, Ri, k) is
a NO-instance of Π, for some i ∈ {1, . . . , r− b}, then (G,R, k) is a NO-instance
of Π. Otherwise vertex v is color-irrelevant.

The proof of Lemma 6 is strongly based on Lemma 4.

4 Vital Cyclic Linkages

Tight sequences. A sequence C = {C1, . . . , Cr} of concentric cycles of G is tight
in G, if

– C1 is surface minimal, i.e., there is no closed disk D of S that is properly
contained in C̄1 and whose boundary is a cycle of G;

– for every i ∈ {1, . . . , r−1}, there is no closed disk D such that C̄i ⊂ D ⊂ C̄i+1

and such that the boundary of D is a cycle of G.

Graph Linkages. Let G be a graph. A graph linkage in G is a pair L = (H,T)
such that H is a subgraph of G without isolated vertices and T is a subset of
the vertices of H, called terminals of L, such that every vertex of H with degree
different than 2 is contained in T . Set P(L), which we call path set of the graph
linkage L, contains all paths of H whose endpoints are in T and do not have any
other vertex in T . The pattern of L is the graph

(T,
{
{s, t} | P(L) contains a path from s to t in H

}
).

The Parameterized Complexity of Graph Cyclability 501

Two graph linkages of G are equivalent if they have the same pattern and are
isomorphic if their patterns are isomorphic. A graph linkage L = (H,T) is called
weakly vital (reps. strongly vital) in G if V (H) = V (G) and there is no other
equivalent (resp. isomorphic) graph linkage that is different from L. Clearly, if
a graph linkage L is strongly vital then it is also weakly vital. We call a graph
linkage L linkage if its pattern has maximum degree 1 (i.e., it consists of a
collection of paths). We call a graph linkage L cyclic linkage if its pattern is a
cycle.

CGL-configurations. Let G be a graph embedded on the sphere S0. Then we say
that a pair Q = (C,L) is a CGL-configuration of depth r if C = {C1, . . . , Cr}
is a sequence of concentric cycles in G, L = (H,T) is a graph linkage in G,

and T ∩ V (Ĉr) = ∅, i.e., all vertices in the terminals of L are outside Ĉr. The
penetration of L in C, pC(L), is the number of cycles of C that are intersected
by the paths of L (when L = (C, S) is cyclic we will sometimes refer to the
penetration of L as the penetration of cycle C). We say that Q is touch-free if
for every path P ∈ L, the number of connected components of P ∩ Cr is not 1.

Cheap graph linkages. Let G be a graph embedded on the sphere S0, let C =
{C1, . . . , Cr} be a sequence of cycles in G, and let L = (H,T) be a graph linkage

where T ⊆ V (G \ Ĉr)(notice that (C,L) is a CGL-configuration). We define
the function c that matches graph linkages of G to positive integers such that
c(L) = |E(L) \

⋃
i∈{1,...,r}E(Ci)|.

A graph linkage L of G is C-strongly cheap (resp. C-weakly cheap), if T (L) ∩
Ĉr = ∅ and there is no other isomorphic (resp. equivalent) graph linkage L′ such
c(L) > c(L′). Obviously if L is C-strongly cheap then it is also C-weakly cheap.

The proof of the next lemma is based on a suitable adaptation of the results
in [2] about weakly vital linkages to strongly vital cyclic linkages.

Lemma 7 (�). Let G be a graph embedded on the sphere S0 that is the union of
r ≥ 2 concentric cycles C = {C1, . . . , Cr} and one more cycle C of G. Assume

that C is tight in G, T ∩ V (Ĉr) = ∅ and the cyclic linkage L = (C, T) is strongly
vital in G. Then r ≤ 16 · |T | − 1.

A corollary of Lemma 7 with independent combinatorial interest is the fol-
lowing.

Corollary 1. If a plane graph G contains a strongly vital cyclic linkage L =
(C, T), then tw(G) = O(|T |3/2).

Notice that, according to what is claimed in [2], we cannot restate the above
corollary for weakly vital linkages, unless we change the bound to be an ex-
ponential one. That way, the fact that treewidth is (unavoidably, due to [2])
exponential to the number of terminals for (weakly) vital linkages is caused by
the fact that the ordering of the terminals is predetermined.

Lemma 8 (�). Let G be a graph embedded on the sphere S0 that is the union of
r concentric cycles C = {C1, . . . , Cr} and a hamiltonian cycle C of G. Let also

T ∩V (Ĉr) = ∅. If L = (C, T) is C-strongly cheap then L is a strongly vital cyclic
linkage in G.

502 P.A. Golovach et al.

We are now able to prove the main combinatorial result of this paper.

Lemma 9. Let G be a plane graph with some sequence of concentric cycles C =
{C1, . . . , Cr}. Let also L = (C, T) be a cyclic linkage of G where T ∩V (Ĉr) = ∅.
If L is C- strongly cheap then the penetration of L in C is at most r ≤ 16 · |T |−1.

Proof. Suppose that some path in P(L) intersects 16 · |T | cycles in the set
C∗ = {Cr−16·|T |+1, . . . , Cr}. Let G′ be the graph obtained by C ∪ ∪∪∪∪∪∪∪∪∪C∗ after
dissolving all vertices not in T that have degree 2 and let L′ = (C′, T) be the
linkage of G′ obtained from L if we dissolve the same vertices in the paths of
L. Similarly, by dissolving vertices of degree 2 in the cycles of C∗ we obtain a
new sequence of concentric cycles that, for notational convenience, we denote
by C′ = {C1, . . . , Cr′}, where r′ = 16 · |T |. L′ is C′-strongly cheap because L is
C-strongy cheap. Notice that C′ is a Hamiltonian cycle of G′ and, from Lemma 8,
L′ is a strongly vital cyclic linkage of G′. We also assume that C′ is tight (oth-
erwise replace it by a tight one and observe that, by its uniqueness, L′ will be
cheap to this new one as well). As L′ is C′-strongly cheap and C′ is tight, from
Lemma 7, r′ ≤ 16 · |T | − 1, a contradiction. ��

5 Discussion

Notice that the bounds in the running time of our algorithm depend heavily on
Lemma 4, which makes strong use of the results in [2] (and also [3]) that, in
turn, are heavily based on planarity. It is an interesting task to prove the same
line of results with the same (optimal) bounds for graphs of bounded genus. In
fact, using directly the general results of [26] and [19] we can easily adapt the
techniques of this paper to prove that Cyclability, when parameterized by
k + g is fixed parameter tractable (here g is the genus of the input graph). We
are also convinced that this can be extended to more general minor free graph
classes, however, this should be a much more complicated and technical task.

Notice that we have no proof that Cyclability is in NP. The definition
of the problem classifies it directly in ΠP

2 . This prompts us to conjecture the
following:

Conjecture 1. Cyclability is ΠP
2 -complete.

Moreover, while we have proved that Cyclability is co-W[1]-hard, we have no
evidence on which level of the parameterized complexity hierarchy it belongs
(lower than the XP class). We find it an intriguing question whether there is
some i ≥ 1 for which Cyclability is W[i]-complete (or co-W[i]-complete).

Clearly, a challenging question is whether the, double exponential, paramet-
ric dependance of our FPT-algorithm can be improved. We believe that this is
not possible and we suspect that this issue might be related with Conjecture 1.
Also we find it an interesting question whether the standard parameterization
of Cyclability (or its complements) belongs in some class of the W-hierarchy
or “higher levers” parameterized complexity classes are required for its clas-
sification. A different direction that we find interesting is the approximation
complexity of the problem for which no result appear to appear up to this mo-
ment.

The Parameterized Complexity of Graph Cyclability 503

References

1. Adler, I., Dorn, F., Fomin, F.V., Sau, I., Thilikos, D.M.: Fast minor testing in
planar graphs. In: de Berg, M., Meyer, U. (eds.) ESA 2010, Part I. LNCS, vol. 6346,
pp. 97–109. Springer, Heidelberg (2010)

2. Adler, I., Kolliopoulos, S.G., Krause, P.K., Lokshtanov, D., Saurabh, S., Thilikos,
D.: Tight bounds for linkages in planar graphs. In: Aceto, L., Henzinger, M., Sgall,
J. (eds.) ICALP 2011, Part I. LNCS, vol. 6755, pp. 110–121. Springer, Heidelberg
(2011)

3. Adler, I., Kolliopoulos, S.G., Thilikos, D.M.: Planar disjoint-paths completion. In:
Marx, D., Rossmanith, P. (eds.) IPEC 2011. LNCS, vol. 7112, pp. 80–93. Springer,
Heidelberg (2012)

4. Aldred, R.E., Bau, S., Holton, D.A., McKay, B.D.: Cycles through 23 vertices in
3-connected cubic planar graphs. Graphs and Combinatorics 15(4), 373–376 (1999)

5. Bodlaender, H.L.: A linear-time algorithm for finding tree-decompositions of small
treewidth. SIAM J. Comput. 25(6), 1305–1317 (1996)

6. Dirac, G.A.: In abstrakten Graphen vorhandene vollständige 4-Graphen und ihre
Unterteilungen. Math. Nachr. 22, 61–85 (1960)

7. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, New York
(1999)

8. Downey, R., Fellows, M.: Fixed-parameter tractability and completeness. III. Some
structural aspects of the W hierarchy. In: Complexity Theory, pp. 191–225. Cam-
bridge Univ. Press, Cambridge (1993)

9. Downey, R.G., Fellows, M.R.: Fixed-parameter tractability and completeness. In:
21st Manitoba Conference on Numerical Mathematics and Computing, Winnipeg,
MB, vol. 87, pp. 161–178 (1992)

10. Downey, R.G., Fellows, M.R.: Fixed-parameter tractability and completeness. I.
Basic results. SIAM J. Comput. 24(4), 873–921 (1995)

11. Downey, R.G., Fellows, M.R.: Fixed-parameter tractability and completeness II:
On completeness for W [1]. Theoretical Computer Science 141(1-2), 109–131 (1995)

12. Flandrin, E., Li, H., Marczyk, A., Woźniak, M.: A generalization of dirac’s theorem
on cycles through K vertices in K-connected graphs. Discrete Mathematics 307(7),
878–884 (2007)

13. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer (2006)
14. Fomin, F.V., Golovach, P.A., Thilikos, D.M.: Contraction obstructions for

treewidth. J. Comb. Theory, Ser. B 101(5), 302–314 (2011)
15. Garey, M.R., Johnson, D.S.: Computers and intractability. W. H. Freeman and

Co. (1979) a guide to the theory of NP-completeness, A Series of Books in the
Mathematical Sciences

16. Grötschel, M.: Hypohamiltonian facets of the symmetric travelling salesman poly-
tope. Zeitschrift für Angewandte Mathematik und Mechanik 58, 469–471 (1977)

17. Gu, Q.-P., Tamaki, H.: Improved bounds on the planar branchwidth with respect
to the largest grid minor size. In: Cheong, O., Chwa, K.-Y., Park, K. (eds.) ISAAC
2010, Part II. LNCS, vol. 6507, pp. 85–96. Springer, Heidelberg (2010)

18. Kawarabayashi, K.I.: An improved algorithm for finding cycles through elements.
In: Lodi, A., Panconesi, A., Rinaldi, G. (eds.) IPCO 2008. LNCS, vol. 5035,
pp. 374–384. Springer, Heidelberg (2008)

19. Kawarabayashi, K., Wollan, P.: A shorter proof of the graph minor algorithm:
the unique linkage theorem. In: FOCS 2008 49th Annual IEEE Symposium on
Foundations of Computer Science, pp. 771–780 (2008)

20. Niedermeier, R.: Invitation to fixed-parameter algorithms. Habilitation thesis
(September 2002)

504 P.A. Golovach et al.

21. Perkovic, L., Reed, B.A.: An improved algorithm for finding tree decompositions
of small width. Int. J. Found. Comput. Sci. 11(3), 365–371 (2000)

22. Plummer, M., Győri, E.: A nine vertex theorem for 3-connected claw-free graphs.
Studia Scientiarum Mathematicarum Hungarica 38(1), 233–244 (2001)

23. Robertson, N., Seymour, P.: Graph Minors. XIII. irrelevant vertices in linkage
problems. Journal of Combinatorial Theory, Series B 102(2), 530–563 (2012),
http://www.sciencedirect.com/science/article/pii/S0095895611000724

24. Robertson, N., Seymour, P.D.: Graph Minors. X. Obstructions to Tree-
decomposition. J. Combin. Theory Series B 52(2), 153–190 (1991)

25. Robertson, N., Seymour, P.D.: Graph Minors. XIII. The disjoint paths problem.
J. Combin. Theory, Ser. B 63(1), 65–110 (1995)

26. Robertson, N., Seymour, P.D.: Graph Minors. XXI. Graphs with unique linkages.
J. Combin. Theory Ser. 99(3), 583–616 (2009),
http://dx.doi.org/10.1016/j.jctb.2008.08.003

27. Watkins, M., Mesner, D.: Cycles and connectivity in graphs. Canad. J. Math. 19,
1319–1328 (1967)

http://www.sciencedirect.com/science/article/pii/S0095895611000724
http://dx.doi.org/10.1016/j.jctb.2008.08.003

Dimension Reduction via Colour Refinement

Martin Grohe1,�, Kristian Kersting2,��, Martin Mladenov2, and Erkal Selman1

1 RWTH Aachen University
2 TU Dortmund University

Abstract. Colour refinement is a basic algorithmic routine for graph
isomorphism testing, appearing as a subroutine in almost all practical
isomorphism solvers. It partitions the vertices of a graph into “colour
classes” in such a way that all vertices in the same colour class have
the same number of neighbours in every colour class. There is a tight
correspondence between colour refinement and fractional isomorphisms
of graphs, which are solutions to the LP relaxation of a natural ILP
formulation of graph isomorphism.

We introduce a version of colour refinement for matrices and extend
existing quasilinear algorithms for computing the colour classes. Then we
generalise the correspondence between colour refinement and fractional
automorphisms and develop a theory of fractional automorphisms and
isomorphisms of matrices.

We apply our results to reduce the dimensions of systems of linear
equations and linear programs. Specifically, we show that any given LP
L can efficiently be transformed into a (potentially) smaller LP L′ whose
number of variables and constraints is the number of colour classes of the
colour refinement algorithm, applied to a matrix associated with the LP.
The transformation is such that we can easily (by a linear mapping) map
both feasible and optimal solutions back and forth between the two LPs.
We demonstrate empirically that colour refinement can indeed greatly
reduce the cost of solving linear programs.

1 Introduction

Colour refinement (a.k.a. “naive vertex classification” or “colour passing”) is a
basic algorithmic routine for graph isomorphism testing. It iteratively partitions,
or colours, the vertices of a graph according to an iterated degree sequence: ini-
tially, all vertices get the same colour, and then in each round of the iteration
two vertices that so far have the same colour get different colours if for some
colour c they have a different number of neighbours of colour c. The iteration

� Martin Grohe and Erkal Selman were supported by the German Research Foundation
DFG Koselleck grant GR 1492/14-1.

�� Kristian Kersting was supported by the Fraunhofer ATTRACT fellowship STREAM
and by the European Commission under contract number FP7-248258-First-MM.
Martin Mladenov and Kristian Kersting were supported by the German Research
Foundation DFG, KE 1686/2-1, within the SPP 1527, and the German-Israeli Foun-
dation for Scientific Research and Development, 1180-218.6/2011.

A.S. Schulz and D. Wagner (Eds.): ESA 2014, LNCS 8737, pp. 505–516, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

506 M. Grohe et al.

stops if in some step the partition remains unchanged; the resulting partition is
known as the coarsest equitable partition of the graph. By refining the partition
asynchronously using Hopcroft’s strategy of “processing the smaller half” (for
DFA-minimisation [8]), the coarsest equitable partition of a graph can be com-
puted very efficiently, in time O((n+m) log n) [5,11] (also see [2] for a matching
lower bound). A beautiful result due to Tinhofer [14], Ramana, Scheinerman,
and Ullman [12] and Godsil [6] establishes a tight correspondence between eq-
uitable partitions of a graph and fractional automorphisms, which are solutions
to the LP relaxation of a natural ILP formulation of graph isomorphism.

In this paper, we introduce a version of colour refinement for matrices (to be
outlined soon) and develop a theory of equitable partitions and fractional auto-
morphisms and isomorphisms of matrices. A somewhat surprising application of
the theory is a method to reduce the dimensions of systems of linear equations
and linear programs.

When applied in the context of graph isomorphism testing, the goal of colour
refinement is to partition the vertices of a graph as finely as possible; ideally,
one would like to compute the partition of the vertices into the orbits of the
automorphism group of the graph. In this paper, our goal is to partition the rows
and columns of a matrix as coarsely as possible. We show that by “factoring” a
matrix associated with a system of linear equations or a linear program through
an “equitable partition” of the variables and constraints, we obtain a smaller
system or LP equivalent to the original one, in the sense that feasible and optimal
solutions can be transferred back and forth between the two via linear mappings
that we can compute efficiently. Hence we can use colour refinement as a simple
and efficient preprocessing routine for linear programming, transforming a given
linear program into an equivalent one in a lower dimensional space and with fewer
constraints. We demonstrate the effectiveness of this method experimentally.

Due to the ubiquity of linear programming, our method potentially has a wide
range of applications. Of course not all linear programs show the regularities
needed by our method to be effective. Yet some do. This work grew out of appli-
cations in machine learning, or more specifically, inference problems in graphical
models. Actually, many problems arising in a wide variety of other fields such as
semantic web, network communication, computer vision, and robotics can also
be modelled using graphical models. The models often have inherent regulari-
ties, which are not exploited by classical inference approaches such as loopy belief
propagation. Symmetry-aware approaches, see e.g. [13,9,1,4], run (a modified)
loopy belief propagation on the quotient model of the (fractional) automorphisms
of the graphical model and have been proven successful in several applications
such as link prediction, social network analysis, satisfiability and boolean model
counting problems. Some of these approaches have natural LP formulations, and
the method proposed here is a strengthening of the symmetry-aware approaches
applied by the second and third author (jointly with Ahmadi) in [10].

Our work is related to other methods of symmetry reduction for linear pro-
grams. Most notably, Bödi, Grundhöfer and Herr [3] proposed a method of sym-
metry reduction for linear programs, which, however, requires to compute the

Dimension Reduction via Colour Refinement 507

automorphism group of a linear program. In the full version of this paper [7], we
show that, in some sense, our method subsumes that of [3].

Colour Refinement on Matrices

Consider a matrix A ∈ RV ×W .1 We iteratively compute partitions (or colourings)
Pi and Qi of the rows and columns of A, that is, of the sets V and W . We let
P0 = {V } and Q0 = {W} be the trivial partitions. To define Pi+1, we put two
rows v, v′ in the same class if they are in the same class of Pi and if for all classes
Q of Qi, ∑

w∈Q

Avw =
∑
w∈Q

Av′w. (1.1)

Similarly, to define Qi+1, we put two columns w,w′ in the same class if they are
in the same class of Qi and if for all classes P of Pi,∑

v∈P

Avw =
∑
v∈P

Avw′ . (1.2)

Clearly, for some i ≤ |V | + |W | we have (Pi,Qi) = (Pi+1,Qi+1) = (Pj ,Qj) for
all j ≥ i. We let (P∞,Q∞) := (Pi,Qi). To see that this is a direct generalisation
of colour refinement on graphs, suppose that A is a 0-1-matrix, and view it as
the adjacency matrix of a bipartite graph BA with vertex set V ∪W and edge
set {vw | Avw �= 0}. Then the coarsest equitable partition of A is equal to
the partition obtained by running colour refinement on BA starting from the
partition {V,W}.

Adopting Paige and Tarjan’s [11] algorithm for colour refinement on graphs,
we obtain an algorithm that, given a sparse representation of a matrix A, com-
putes (P∞,Q∞) in time O((n + m) logn), where n = |V | + |W | and m is the
total bitlength of all nonzero entries of A. Details on the algorithm can be found
in the full version [7].

Slightly abusing terminology, we say that a partition of a matrix A ∈ RV×W

is a pair (P ,Q) of partitions of V , W , respectively. Such a partition partitions
the matrix into “combinatorial rectangles”. A partition (P ,Q) of A is equitable
if for all P ∈ P , Q ∈ Q and all v, v′ ∈ P , w,w′ ∈ Q equations (1.1) and (1.2)
are satisfied. It is easy to see that the partition (P∞,Q∞) computed by colour
refinement is the coarsest equitable partition, in the sense that it is equitable
and all other equitable partitions refine it.

The key result that enables us to apply colour refinement to reduce the dimen-
sions of linear programs is a correspondence between equitable partitions and
fractional automorphisms of a matrix. We view an automorphism of a matrix

1 We find it convenient to index the rows and columns of our matrices by elements of
finite sets V,W , respectively, which we assume to be disjoint. RV ×W denotes the set
of matrices with real entries and row and column indices from V , W , respectively.
The order of the rows and columns of a matrix is irrelevant for us. We denote the
entries of a matrix A ∈ RV ×W by Avw.

508 M. Grohe et al.

A ∈ RV ×W as a pair of permutations of the rows and columns that leaves the
matrix invariant, or equivalently, a pair (X,Y) ∈ RV×V ×RW×W of permutation
matrices such that

XA = AY. (1.3)

A fractional automorphism of A is a pair (X,Y) ∈ RV ×V × RW×W of doubly
stochastic matrices satisfying (1.3). We shall prove (Theorem 3.1) that every
equitable partition of a matrix yields a fractional automorphism and, conversely,
every fractional automorphism (X,Y) yields an equitable partition. The classes
of this equitable partition are simply the strongly connected components of the
directed graphs underlying the square matrices X,Y . This basic result is the
foundation for everything else in this paper.

We proceed to studying fractional isomorphisms between matrices. However,
it turns out that fractional isomorphism is still too fine as an equivalence relation
that captures the solvability of linear programs. We introduce a coarser equiv-
alence relation between matrices that we call partition equivalence. The idea is
that two matrices are equivalent if they have “isomorphic” equitable partitions.
We prove that two linear programs with associated matrices that are partition
equivalent are equivalent in the sense that there are two linear mappings that
map the feasible solutions of one LP to the feasible solutions of the other, and
these mappings preserve optimality.

Application to Linear Programming

Every matrix A is partition equivalent to a matrix [A] obtained by “factoring”
A through its coarsest equitable partition; we call [A] the core factor of A.
We can repeat this factoring process and go to matrices [[A]], [[[A]]]], et cetera,
until we finally arrive at the iterated core factor �A�. Now suppose that A is
associated with an LP L, then �A� is associated with an LP �L�. To solve L,
we compute �L�, which we can do efficiently using colour refinement. The colour
refinement procedure also yields the matrices that we need to translate between
the solution spaces of L and �L�. Then we solve �L� and translate the solution
back to a solution of L.

Example 1.1. We consider a linear program in standard form:

min ctx
subject to Ax = b, x ≥ 0,

(L)

for the matrix A and the vectors b, c shown in Fig. 1.1. We combine A, b, c in
a matrix Ã shown in Fig. 1.2. The lines subdividing the matrix indicate the
coarsest equitable partition. As the core factor of Ã we obtain the matrix

[Ã] =

⎛⎝3 1 0 2 1
1 3 2 0 1
6 6 2 2 ∞

⎞⎠ .

Dimension Reduction via Colour Refinement 509

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

3 −1 1 1/4 1/4 1/4 1/4 0 0 3 −2 1/2 1/2
−1 1 3 1/4 1/4 1/4 1/4 0 0 −2 3 1/2 1/2
1 3 −1 1/4 1/4 1/4 1/4 0 0 1/2 1/2 1/2 1/2
0 1/3 2/3 0 3/2 0 3/2 2 0 1 0 −1 0

1/3 1/3 1/3 3/2 0 3/2 0 2 0 0 1 0 −1
1/3 1/3 1/3 0 3/2 0 3/2 0 2 −1 0 1 0
2/3 1/3 0 3/2 0 3/2 0 0 2 0 −1 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, b =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1
1
1
1
1
1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, c =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2
2
2

3/2
3/2
3/2
3/2
1
1

1/2
1/2
1/2
1/2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Fig. 1.1. The LP of Example 1.1

Ã =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3 −1 1 1/4 1/4 1/4 1/4 0 0 3 −2 1/2 1/2 1
−1 1 3 1/4 1/4 1/4 1/4 0 0 −2 3 1/2 1/2 1
1 3 −1 1/4 1/4 1/4 1/4 0 0 1/2 1/2 1/2 1/2 1

0 1/3 2/3 0 3/2 0 3/2 2 0 1 0 −1 0 1
1/3 1/3 1/3 3/2 0 3/2 0 2 0 0 1 0 −1 1
1/3 1/3 1/3 0 3/2 0 3/2 0 2 −1 0 1 0 1
2/3 1/3 0 3/2 0 3/2 0 0 2 0 −1 0 1 1

2 2 2 3/2 3/2 3/2 3/2 1 1 1/2 1/2 1/2 1/2 ∞

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Fig. 1.2. The matrix Ã of Example 1.1

Again, the lines subdividing the matrix indicate the coarsest equitable partition.
The core factor of [Ã], which turns out to be the iterated core factor of Ã, is

�Ã� = [[Ã]] =

(
4 2 1
12 4 ∞

)
This matrix corresponds to the LP

min (c′)tx′

subject to A′x′ = b′, x′ ≥ 0,
(L′)

where A′ = (4 2), b′ = (1), and (c′)t = (12, 4). An optimal solution to (L′) is
x′ = (0, 1

2)t. We can lift x′ to a solution of the original LP (L) by multiplying it
with a suitable matrix, which yields the (optimal) solution

x := (0, 0, 0, 0, 0, 0, 0, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2)t.

510 M. Grohe et al.

2 Preliminaries

We use a standard notation for graphs and digraphs. In graph G, we let NG(v)
denote the set of neighbours of vertex v, and in a digraph D we let ND

+ (v) and
ND

− (v) denote, respectively, the sets of out-neighbours and in-neighbours of v.
We have already introduced some basic matrix notation in the introduction.

A permutation matrix is a 0-1-matrix that has exactly one 1 in every row and
column. We call two matrices A1 ∈ RV 1×W 1

and A2 ∈ RV 2×W 2

isomorphic (and
write A1 ∼= A2) if there are bijective mappings π : V 1 → V 2 and ρ : W 1 → W 2

such that A1
vw = A2

π(v)ρ(w) for all v ∈ V 1, w ∈ W 1. Equivalently, A1 and A2 are

isomorphic if there are permutation matrices X ⊆ RV 2×V 1

and Y ⊆ RW 2×W 1

such that XA1 = A2Y .
A matrix X ∈ RV×W is stochastic if it is nonnegative and

∑
w∈W Xvw = 1 for

all v ∈ V . It is doubly stochastic if both X and its transpose X t are stochastic.
Observe that a doubly stochastic matrix is always square.

The direct sum of two matrices A1 ∈ RV 1×W 1

and A2 ∈ RV 2×W 2

is the matrix

A1 ⊕A2 :=

(
A1 0
0 A2

)
With every matrix A ⊆ RV×W we associate its bipartite graph BA with vertex
set V ∪ W and edge set {vw | Avw �= 0}. The matrix A is connected if BA

is connected. (Sometimes, this is called indecomposable.) Note that A is not
connected if and only if it is isomorphic to matrix that can be written as the
direct sum of two matrices. A connected component of A is a submatrix A′ whose
rows and columns form the vertex set of a connected component of the bipartite
graph BA. With every square matrix A ∈ RV×V we associate two more graphs:
the directed graph DA has vertex set V and edge set {(v, v′) | Avv′ �= 0}. The
graph GA is the underlying undirected graph of DA. We call A strongly connected
if the graph DA is strongly connected. (Sometimes, this is called irreducible.) It
is not hard to see that a doubly stochastic matrix X is strongly connected if and
only if the graph GA is connected.

Let A ∈ RV×W . For all subsets P ⊆ V,Q ⊆ W , we let

FA(P,Q) =
∑

(v,w)∈P×Q

Avw. (2.1)

We write FA(v,Q), FA(P,w) instead of FA({v}, Q), FA(P, {w}). We omit the
superscript A in FA if A is clear from the context.

Sometimes, we consider matrices with entries from R = R ∪ {∞}. We will
only form linear combinations of elements of R with nonnegative real coefficients,
using the rules r + ∞ = ∞ + r = ∞ for all r ∈ R and 0 · ∞ = 0, r · ∞ = ∞ for
r > 0.

3 Fractional Automorphisms and Isomorphisms

In this section, we prove the theorem relating fractional automorphisms to eq-
uitable partitions. For every pair (X,Y) ∈ RV ×V × RW×W of matrices we let

Dimension Reduction via Colour Refinement 511

PX be the partition of V into the strongly connected components of X , and
we let QY be the partition of W into the strongly connected components of Y .
Conversely, for every partition (P ,Q) of A, we let XP ∈ RV×V be the matrix
with entries Xvv′ := 1/|P | if v, v′ ∈ P for some P ∈ P and Xvv′ := 0 otherwise,
and we let YQ ∈ RW×W be the matrix with entries Yww′ := 1/|Q| if w,w′ ∈ Q
for some Q ∈ Q and Yvv′ := 0 otherwise.

Theorem 3.1. Let A ∈ RV ×W .

1. If (P ,Q) is an equitable partition of A, then (XP , YQ) is a fractional auto-
morphism.

2. If (X,Y) is a fractional automorphism of A, then (PX ,QY) is an equitable
partition.

Proof. To prove (1), let (P ,Q) be an equitable partition of A, and let X := XP
and Y := YQ. Let v ∈ V,w ∈ W , and let P ∈ P and Q ∈ Q be the classes of v
and w, respectively. Then

(XA)vw =
∑
v′∈P

1

|P | ·Av′w =
1

|P | · F (P,w)
(a)
=

1

|Q| · F (v,Q) = (AY)vw

Equality (a) can be established by a double-counting argument: we have
F (P,Q) =

∑
v′∈P F (v′, Q) = |P | · F (v,Q) by (1.1) and F (P,Q) =

∑
w′∈Q

F (P,w′) = |Q| · F (P,w) by (1.2).
To prove (2), let (X,Y) be a fractional automorphism of A. Let P ∈ PX and

Q ∈ QY . We need to prove that P,Q satisfy (1.1) and (1.2).
We first prove (1.1). For every v ∈ P , we have

F (v,Q) =
∑
w′∈Q

Avw′
(b1)
=
∑
w′∈Q

Avw′
∑
w∈Q

Yw′w =
∑
w∈Q

∑
w′∈Q

Avw′Yw′w

(b2)
=
∑
w∈Q

∑
v′∈P

Xvv′Av′w =
∑
v′∈P

Xvv′
∑
w∈Q

Av′w︸ ︷︷ ︸
=F (v′,Q)

(b3)
=
∑

v′∈N
DX
+ (v)

Xvv′ · F (v′, Q),

Equation (b1) holds because
∑

w∈W Yw′w = 1 and Yw′w = 0 for w′ ∈ Q,w �∈ Q.
Here we use that Q, which by definition is a strongly connected component of
the digraph DY , is also a connected component of the undirected graph GY .
Equation (b2) holds by XA = AY and Yw′w = 0 for w′ �∈ Q,w ∈ Q and
Xvv′ = 0 for v ∈ P, v′ �∈ P . Equation (b3) holds, because NDX

+ (v) ⊆ P and

Xvv′ �= 0 ⇐⇒ v′ ∈ NDX
+ (v). As the matrix X is stochastic, this implies that

F (v,Q) is a strictly positive convex combination of the F (v′, Q) for v′ ∈ NDX
+ (v).

Note that P is the vertex set of a strongly connected component of DX .
We use the fact that if we have a function f on the vertices of a strongly

connected digraph such that for each vertex v the value f(v) is a strictly positive
convex combination of the values f(w) for the out-neighbours w of v then this
function is constant. Thus F (v,Q) = F (v′, Q) for all v, v′ ∈ P . This proves (1.1).

(1.2) can be proved similarly. ��

512 M. Grohe et al.

In the full version [7], we also introduce a notion of fractional isomorphism
between two matrices and characterise it in terms of equitable partitions.

4 Factor Matrices and Partition Equivalence

For our applications, fractional isomorphism is an equivalence relation that is
still too fine. In this section, we introduce a coarser equivalence relation that
we will call partition equivalence. For the applications in the next section, it
will be helpful to develop partition equivalence for matrices with entries from
R = R ∪ {∞}.

4.1 Partition Matrices and Factor Matrices

A partition matrix is a 0-1 matrix that has exactly one 1-entry in each row and
at least one 1-entry in each column. We usually denote partition matrices by
Π or C,D. With each partition matrix Π ⊆ {0, 1}V×T we associate a partition
{Pt | t ∈ T } of V into parts Pt = {v ∈ V | Πvt = 1}. Conversely, with every
partition P of V we associate the partition matrix ΠP ∈ {0, 1}V×P defined by
(ΠP)vP = 1 ⇐⇒ v ∈ P , for all v ∈ V and P ∈ P .

Note that partition matrices are stochastic, but, in general, not doubly sto-
chastic. (The only doubly stochastic partition matrices are the permutation ma-
trices.) For every partition matrix Π ∈ RV×T , we define its scaled transpose to
be the matrix Πs ∈ RT×V with entries Πs

tv := Πvt∑
v′∈V Πv′t

. Then Πs is the trans-

pose of Π scaled to a stochastic matrix. Observe that the matrix ΠΠs ∈ RV×V

is symmetric and doubly stochastic. Indeed, if Π = ΠP for a partition P of V ,
then (ΠΠs)vv′ = XP for the matrix XP defined on page 511. Thus by Theo-
rem 3.1, if (P ,Q) is an equitable partition of a matrix A ∈ RV×W , and we let
C := ΠP and D := ΠQ, then (CCs, DDs) is a fractional automorphism of A.

A factor matrix of a matrix A ∈ R
V ×W

is a matrix B = Πs
PAΠQ ∈ R

P×Q
,

where (P ,Q) is an equitable partition of A. The asymmetry in the definition
(multiplying with Πs

P rather than Π t
P) may seem strange first, but turns out to

be necessary in several places. An immediate advantage of it is that we multiply
with stochastic matrices from both sides. Note that for all P ∈ P , Q ∈ Q,

BPQ =
1

|P |F
A(P,Q) = FA(v,Q) (4.1)

for some (and hence for all) v ∈ P . We will see that factor matrices still carry all
information about a matrix necessary to solve systems of linear equations and
linear programs.

As the dimensions of B are determined by the number of classes of the par-
tition, there is a unique smallest factor matrix [A] := Πs

P∞AΠQ∞ , where, as
usual, (P∞,Q∞) denotes the coarsest equitable partition of A. We call [A] the
core factor of A. Since we can compute the coarsest equitable partition in time
O((n + m) logn), we can also compute the core factor in time O((n +m) log n).

Dimension Reduction via Colour Refinement 513

4.2 Partition Equivalence

We define the relation ≈ on the class of all matrices by letting A1 ≈ A2 if there
are factor matrices B1 of A1 and B2 of A2 such that B1 and B2 are isomor-
phic. Observe that for every matrix A ∈ R

V ×W
we have A ≈ [A]. Moreover,

fractionally isomorphic matrices are partition equivalent, but in general not vice
versa.

Maybe surprisingly, the relation ≈ is not an equivalence relation. It is ob-
viously reflexive and symmetric, but it is not transitive. In Example 1.1 we
have a matrix Ã with distinct factor matrices [Ã] and [[Ã]]. Then Ã ≈ [Ã] and

[Ã] ≈ [[Ã]], but A �≈ [[Ã]], because there is no factor of Ã smaller than the core
factor.

We let ≈∗ be the transitive closure of ≈ and call two matrices A1, A2 partition
equivalent if A1 ≈∗ A2.

Let A ∈ R
V×W

. We let [A]0 := A and [A]i+1 := [[A]i] for every i ≥ 0. Then
there is an i ≤ |V |+ |W | such that [A]i = [A]i+1. We denote [A]i by �A� and call
it the iterated core factor of A. Observe that A ≈∗ �A�. In the full version [7],
we give an example of partition equivalent matrices with nonisomorphic iterated
core factors and also an example of a matrix whose iterated core factor is not
the smallest partition equivalent matrix. This is unfortunate, because it leaves
us without an efficient way of deciding partition equivalence.

It remains an open question whether partition equivalence is decidable, or
even decidable in polynomial time. Note, however, that we can compute �A�
from A in time O(n(n+m) logn). It is conceivable that this can be improved to
O((n + m) logn), but this remains open as well.

5 Reducing the Dimension of a Linear Program

In this section, we will apply our theory of fractional automorphisms and parti-
tion equivalence to solving systems of linear equations and linear programs. For
the ease of presentation, we only consider linear programs in standard form:

min ctx
subject to Ax = b, x ≥ 0,

(LA,b,c)

where A ∈ RV ×W , b ∈ RV , c ∈ RW , and x = (xw | w ∈ W). We combine the ma-

trix A and the vectors b, c in one matrix Ã = Ã(A, b, c) ∈ R
(V ∪{v∞})×(W∪{w∞})

,

where v∞ �= w∞ �∈ V ∪ W , defined by Ãvw := Avw and Avw∞ := bv and

Ãv∞w := cw and Av∞w∞ := ∞, for all v ∈ V,w ∈ W (see Example 1.1).
As A is a real matrix (that does not contain ∞ as an entry), every equitable

partition (P̃ , Q̃) of Ã contains {v∞} and {w∞} as separate classes. If we let

514 M. Grohe et al.

P := P̃ \ {v∞} and Q := Q̃ \ {w∞}, then (P ,Q) is an equitable partition of A
satisfying

bv = bv′ for all P ∈ P , v, v′ ∈ P, (5.1)

cw = cw′ for all Q ∈ Q, w, w′ ∈ Q. (5.2)

Furthermore, if (P̃, Q̃) is the coarsest equitable partition of Ã then (P ,Q) is the
coarsest equitable partition of A that satisfies (5.1) and (5.2).

Lemma 5.1 (Reduction Lemma). Let A, b, c, Ã as above. Let (P̃ , Q̃) an eq-

uitable partition of Ã and P := P̃ \ {v∞}, Q := Q̃ \ {w∞}. Furthermore, let
C := ΠP and D := ΠQ and A′ := CsAD, b′ := Csb, and c′ := Dtc.

1. If x ∈ RW is a feasible solution to (LA,b,c) then x′ := Dsx is a feasible
solution to (LA′,b′,c′). Moreover, if x is an optimal solution then x′ is an
optimal solution as well.

2. If x′ ∈ RQ is a feasible solution to (LA′,b′,c′), then x := Dx′ is a feasible
solution to (LA,b,c), and if x′ is optimal then x is optimal as well.

Proof. An easy calculation shows that CsCCs = Cs and DDsD = D.
To prove (1), let x ∈ RW be a feasible solution to (LA,b,c) and x′ := Dsx ∈ RQ.

Then x′ ≥ 0 because x ≥ 0 and Ds is nonnegative. Furthermore,

A′x′ = CsADDsx
(a)
= CsCCsAx

(b)
= Csb = b′.

Here (a) holds because (CCs, DDs) is a fractional automorphism of A and (b)
holds because CsCCs = Cs and Ax = b. Thus x′ is a feasible solution to
(LA′,b′,c′).

Before we prove the second assertion of (1) regarding optimal solutions, we
prove the first assertion of (2). Let x′ ∈ RQ be a feasible solution to (LA′,b′,c′) and
x := Dx′ ∈ RW . Then x ≥ 0 because x′ ≥ 0 and D is nonnegative. Furthermore,

Ax = ADx′ (c)
= ADDsDx′ (d)

= CCsADx′ = CA′x′ = Cb′ = CCsb
(e)
= b.

Here (c) holds, because DDsD = D, and (d) holds, because (CCs, DDs) is a
fractional automorphism of A. (e) follows from (5.1).

It remains to prove the two assertions about optimal solutions. Suppose first
that x ∈ RW is an optimal solution to (LA,b,c), and let x′ := Dsx. Then x′ is
a feasible solution to (LA′,b′,c′). We claim that it is optimal. Let y′ be another
feasible solution to (LA′,b′,c′). We shall prove that (c′)tx′ ≤ (c′)ty′. Let y = Dy′.
Then y is a feasible solution to (LA,b,c), and thus ctx ≤ cty by the optimality of
x. Thus

(c′)tx′ = ctDDsx
(f)
= ctx ≤ cty = ctDy′ = (c′)ty′.

To that (f) holds, observe that ctDDs = ct. This follows from (5.2).
Suppose conversely that x′ ∈ RQ is an optimal solution to (LA′,b′,c′) and

let x := Dx′. Then x is a feasible solution to (LA,b,c). Let y be another feasible

Dimension Reduction via Colour Refinement 515

solution. Then y′ := Dsy is a feasible solution to (LA′,b′,c′), and by the optimality
of x′ we have (c′)tx′ ≤ (c′)ty′. Thus

ctx
(f)
= ctDDsx = (c′)tx′ ≤ (c′)ty′ = ctDDsy

(f)
= cty.

The two equations marked (f) hold, because ctDDs = ct, as we have seen above.
��

Theorem 5.2. For j = 1, 2, let Aj ∈ RV j×W j

and bj ∈ RV j

and cj ∈ RW j

and Ãj := Ã(Aj , bj, cj). Suppose that Ã1 ≈∗ Ã2. Then for j = 1, 2 there is a

matrix M j ∈ RW 3−j×W j

such that for all x ∈ RW j

, if x is a feasible solution to
(LAj ,bj ,cj) then M jx is a feasible solution to (LA3−j ,b3−j ,c3−j).

Furthermore, if x is an optimal solution to (LAj ,bj ,cj) then M jx is an optimal
solution to (LA3−j ,b3−j ,c3−j).

A proof of the theorem can be found in the full version [7]. Example 1.1
illustrates how the theorem can be applied.

6 Implementation and Computational Evaluation

In our experimental evaluation, we only apply the Reduction Lemma 5.1 once
to the coarsest equitable partition. We believe that the gain we may have by
searching for a smaller partition equivalent matrix than the core factor, for ex-
ample the iterated core factor, is almost always outweighed by the additional
time spent to find such a matrix. But we have not yet conducted any systematic
experiments in this direction yet.

Let us briefly describe our implementation. We are given A ∈ RV ×W , b ∈ RV ,
c ∈ RW and want to solve the linear program (LA,b,c). To apply the Reduction
Lemma, instead of computing the coarsest equitable partition of the matrix
Ã(A, b, c), we directly compute the coarsest equitable partition (P ,Q) of A that
refines an initial partition (P0,Q0) depending on the vectors b and c. (P0 is the
partition of V where v and v′ are in the same class if bv = bv′ , and Q0 is defined
similarly from c.) We compute (P ,Q) using colour refinement starting from the
initial partition (P0,Q0).

To investigate the computational benefits of our reduction method, we car-
ried out three series of experiments. For the first we used Margot’s benchmark
of (integer) linear programs with symmetries.2 They encode various combinato-
rial optimisation problems. For the second, we considered the computation of
the value function of Markov Decision Problems, modelling decision making in
situations where outcomes of actions are partly random. This can naturally be
modelled as LPs. For the third, we considered MAP inference in Markov logic
networks. In all cases, the reduction in the number of variables and constraints
of the LPs was significant. Moreover, and more importantly, the time spent in
total on solving the LPs — reducing an LP and solving the reduced LP — is

2 http://wpweb2.tepper.cmu.edu/fmargot/lpsym.html

http://wpweb2.tepper.cmu.edu/fmargot/lpsym.html

516 M. Grohe et al.

often an order of magnitude smaller than solving the original LP directly. We
have compared our method with a method of symmetry reduction for LPs due to
Bödi, Grundhöfer and Herr [3]. A more detailed description of our experiments
can be found in the full version [7].

References

1. Ahmadi, B., Kersting, K., Mladenov, M., Natarajan, S.: Exploiting symmetries for
scaling loopy belief propagation and relational training. Machine Learning Jour-
nal 92, 91–132 (2013)

2. Berkholz, C., Bonsma, P., Grohe, M.: Tight lower and upper bounds for the com-
plexity of canonical colour refinement. In: Proceedings of the 21st Annual European
Symposium on Algorithms (2013) (to appear)

3. Bödi, R., Grundhöfer, T., Herr, K.: Symmetries of linear programs. Note di Matem-
atica 30(1), 129–132 (2010)

4. Bui, H.H., Huynh, T.N., Riedel, S.: Automorphism groups of graphical models
and lifted variational inference. In: Proc. of the 29th Conference on Uncertainty in
Artificial Intelligence, UAI-2013 (2013)

5. Cardon, A., Crochemore, M.: Partitioning a graph in O(|A| log2 |V |). Theoretical
Computer Science 19(1), 85–98 (1982)

6. Godsil, C.D.: Compact graphs and equitable partitions. Linear Algebra and its
Applications 255, 259–266 (1997)

7. Grohe, M., Kersting, K., Mladenov, M., Selman, E.: Dimension reduction via colour
refinement. ArXiv, 1307.5697 (2014) (full version of this paper)

8. Hopcroft, J.E.: An n log n algorithm for minimizing states in a finite automaton.
In: Kohavi, Z., Paz, A. (eds.) Theory of Machines and Computations, pp. 189–196.
Academic Press (1971)

9. Kersting, K., Ahmadi, B., Natarajan, S.: Counting Belief Propagation. In: Proc.
of the 25th Conf. on Uncertainty in Artificial Intelligence, UAI 2009 (2009)

10. Mladenov, M., Ahmadi, B., Kersting, K.: Lifted linear programming. In: 15th Int.
Conf. on Artificial Intelligence and Statistics (AISTATS 2012). JMLR: W&CP 22,
vol. 22, pp. 788–797 (2012)

11. Paige, R., Tarjan, R.E.: Three partition refinement algorithms. SIAM Journal on
Computing 16(6), 973–989 (1987)

12. Ramana, M.V., Scheinerman, E.R., Ullman, D.: Fractional isomorphism of graphs.
Discrete Mathematics 132, 247–265 (1994)

13. Singla, P., Domingos, P.: Lifted First-Order Belief Propagation. In: Proc. of the
23rd AAAI Conf. on Artificial Intelligence (AAAI 2008), Chicago, IL, USA, July
13-17, pp. 1094–1099. AAAI Press, Menlo Park (2008)

14. Tinhofer, G.: A note on compact graphs. Discrete Applied Mathematics 30,
253–264 (1991)

How Experts Can Solve LPs Online�

Anupam Gupta1 and Marco Molinaro2

1 Computer Science Department, Carnegie Mellon University, Pittsburgh, PA
2 ISyE, Georgia Tech, Atlanta, GA

Abstract. We consider the problem of solving packing/covering LPs
online, when the columns of the constraint matrix are presented in ran-
dom order. This problem has received much attention: the main open
question is to figure out how large the right-hand sides of the LPs have
to be (compared to the entries on the left-hand side of the constraint)
to get (1 + ε)-approximations online? It is known that the RHS has to
be Ω(ε−2 logm) times the left-hand sides, where m is the number of
constraints.

In this paper we show how to achieve this bound for all packing LPs,
and also for a wide class of mixed packing/covering LPs. Our algorithms
construct dual solutions using a regret-minimizing online learning algo-
rithm in a black-box fashion, and use them to construct primal solutions.
The adversarial guarantee that holds for the constructed duals help us to
take care of most of the correlations that arise in the algorithm; the re-
maining correlations are handled via martingale concentration and max-
imal inequalities. These ideas lead to conceptually simple and modular
algorithms, which we hope will be useful in other contexts.

1 Introduction

In this paper we consider the problem of solving packing-covering LPs online.
For concreteness, consider as a simple example the packing LP max{πᵀx | Ax ≤
b, x ∈ [0, 1]n}—we will consider more complicated LPs in this paper—where the
columns of A are being revealed one by one, and we have to choose values for
each xt and irrevocably before the next columns are revealed.

While such problems have been also studied in the worst-case competitive
analysis [5,3], to avoid the pessimistic achievable guarantees a lot of recent re-
search has focused on the random permutation model: the matrix A is chosen
adversarially but its columns are presented to the algorithm in random order.
Several packing problems have been considered in this model, starting from a
classic maximization version of the secretary problem [10], to single-knapsack
problems [16,4], the AdWords problem [17,13,8] and recently more general pack-
ing LPs [11,1,18,15]. These models have a vast range of applications, like online
advertisement, online routing, and airline revenue management. In this paper
we consider this random permutation model.

� Research partly supported by NSF awards CCF-1016799 and CCF-1319811, and by
a grant from the CMU-Microsoft Center for Computational Thinking.

A.S. Schulz and D. Wagner (Eds.): ESA 2014, LNCS 8737, pp. 517–529, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

518 A. Gupta and M. Molinaro

A major question of research has been: how large must the right-hand sides of the
LPs be (compared to the left-hand side coefficients) to get (1 + ε)-approximations
online, say, in expectation?

Dual methods. Dual-based method are very important in optimization under
uncertainty and have been used extensively in the operations management liter-
ature [20,22,21]. Most of the works on packing LPs in the random permutation
model [8,11,1,18] use the following form of this approach. If the optimal dual
solution was known, then one could use it to set the primal variables according
to their reduced costs and obtain an (almost) optimal solution. The idea is then
to see the first few (say εn) columns of the LP, use this sample to estimate a
good dual solution for the LP, and then use this dual solution to decide how to
select the primal values for the future columns.

This idea was first analyzed by Devanur and Hayes for the AdWords prob-
lem [8], and recently extended to more general packing LPs [11,1]; the latter
show that having right-hand sides roughly Ω(ε−2m log(n/ε)) times larger than
the left-hand side entries suffices, where m is the number of packing constraints.
Recently, Molinaro and Ravi [18] also used a modified version of this idea to show
that Ω(ε−2m2 log(m/ε)) suffices, removing the dependence on n at the expense
of extra m factors. Agrawal et al. [1] showed that Ω(ε−2 logm) is the best one
can do, and this was believed to be the right answer.

The main difficulty in analyzing these algorithms lies in the fact that the
primal and dual solutions are, by construction, heavily connected. In order to
deal with the correlations that arise, all of these above analyses resort to a
massive union bound, which is the root of the extra logn and m factors.

1.1 Our Techniques

Decoupling primal and dual via regret minimization. One of our contributions in
this paper is an alternative algorithmic construction where the primal and the
dual are loosely coupled. For that, we construct duals using a regret-minimizing
online learning algorithm (which offers adversarial guarantees); in the primal,
we use a greedy strategy which ensures that, with respect to these duals, we are
doing at least as well as the optimal offline solution.

The fact that the guarantees for the dual hold in the adversarial setting,
together with the greedy primal step, reduces the analysis to that of comparing
the dual constructed solution to the offline optimal solution (see Section 2.4).
Since the latter is a fixed solution (modulo the permutation of the columns), it
is only loosely correlated with our constructed dual; in fact, correlations only
come from the fact we can think of the random permutation model as sampling
without replacement.

As far as we know, this is the first explicit black-box connection between
regret-minimization and optimization in the random permutation model; in the
offline packing-covering LP setting such connection was implicit in [19,23,12] and
made explicit in [2] (see also [14,6]). In the simpler i.i.d. case, where columns of
the LP are sampled with replacement, [7] uses multiplicative-weights based dual

How Experts Can Solve LPs Online 519

updates, reminiscent of the multiplicative-weight expert algorithm for regret-
minimization. Our analysis then abstracts out the reliance on the details of that
technique, giving perhaps a cleaner conceptual explanation of what is happen-
ing. Importantly, this isolation between the analysis of the regret-minimization
algorithm and the comparison of our dual solution and the offline optimum is in-
strumental in dealing with the dependencies arising in the random permutation
model.

Handling dependencies in random permutations. Handling the dependencies that
arise from the fact that we are sampling without replacement is not immediate:
the known bounds on the distances between sampling with and without replace-
ment distributions (e.g. [9]) do not seem to be strong enough, and a simple
approach requires taking a union bound across all time steps, leading again to
extra logn factors. Instead, we use a maximal inequality for sampling without
replacement to compare sampling with/without replacement at every time step
while avoiding a union bound, together with martingale concentration inequali-
ties. These ideas might find uses in other contexts.

1.2 Our Results

Let us now discuss our results in more detail. For brevity, several proofs are
omitted from the paper and are deferred to its full version.

Generalized Load Balancing. First we consider a simple packing-type problem,
modeling the following generalized load balancing: We have a set of m machines.
For each arriving job t, there are k different options on how to serve it, and the jth

choice requires some amount of processing on each of the machines, given by the
vector (at1j , a

t
2j , . . . , a

t
mj). When the job arrives, we must (fractionally) choose

one of these options. The goal is to minimize the makespan, i.e. the maximum
total processing assigned to any machine. Notice that when the matrices At’s
are diagonal m×m this captures the classic problem of scheduling in unrelated
machines.

If the jobs are i.i.d. draws from some distribution, the result of Devanur et
al. [7, Section 3] mentioned above achieve with probability 1 − δ a (1 + ε)-

approximation to the optimum makespan assuming this optimum is Ω(log(m/δ)
ε2)

times the maximum processing atij . They left as an open question whether the
same result holds in the more general random permutation model. Our first
result, algorithm expertLB, answers this in the affirmative:

Informal Theorem 1 (Load Balancing). Consider the load-balancing prob-
lem where the jobs arrive in random order. Given ε > 0, if the optimal makespan

λ∗ is at least Ω(log(m/δ)
ε2) times the maximum amount of processing required by

any option for any job, the makespan for the online algorithm expertLB is at
most (1 + ε)λ∗ with probability 1 − δ.

As is common in this context, our algorithm in fact produces integer solutions
that compare favorably to the optimal solution.

520 A. Gupta and M. Molinaro

Moreover, we can handle processing requirements that can be both positive
or negative, as long as for each machine, the jobs are mostly positive or mostly
negative (see Definition 1). This is useful, because we employ this abstraction
for the next result, to solve packing-covering linear programs.

Packing-Covering LPs. Again we have n jobs with k processing options. Choice j
for a job t has a profit πt

j . The goal is to make fractional choices {xt
j} (subject to∑

j x
t
j ≤ 1) that maximize the profit

∑
t,j π

t
jx

t
j subject to m constraints, some of

them of packing form
∑

t,j a
t
ijx

t
j ≤ bi some of covering form

∑
t,j c

t
ijx

t
j ≥ di (atij

and ctij non-negative). This is a (multiple-choice) packing-covering LP where
the items arrive online, in random order; the multiple-choice emphasizes the
presence of constraints like

∑
j x

t
j ≤ 1 which have small RHS. We show how to

simply reduce the problem of solving such a packing-covering LP problem to a
load balancing problem by viewing the covering constraints and the objective
function as yet another packing constraints with (mostly) negative loads. This
gives the next result.

Informal Theorem 2 (Packing-Covering LPs). Consider a feasible multiple-
choice packing-covering LP where the items arrive in random order. Given ε, δ,

assume that each right hand side in the LP is at least Ω(log(m/δ)
ε2) times the maxi-

mum coefficient of the left-hand side in its row, and that the optimal profit is at least

Ω(log(m/δ)
ε2) times each individual item’s profit. Then given an (under)estimate O∗

for the optimal profit, the algorithm LPviaLB computes an ε-feasible solution on-
line that achieves a profit of (1 − ε)O∗ with probability 1 − δ.

The astute reader will notice that the above two theorems required us to
provide estimates of the optimal profit as input. This is sometimes a reason-
able assumption (e.g. when enough historic knowledge of the problem directly
provides such estimates). Nonetheless, we show how to construct such estimates
as the columns come. However, to obtain good estimates we need to consider
stable LP’s, which informally means allowing solutions to violate the covering
constraints by a small factor does not increase the optimal value by much (see
Definition 2). We note that a packing-only LP is vacuously stable.

The rough idea to obtain the optimum estimate is to sample half the columns
of the LP and solve it (with the capacities reduced by a factor of 2) to obtain a
good estimate for the optimal value. This would, however, lose the profit from
50% of the LP right off the bat! We then use a doubling idea of [1] to learn
progressively better opt estimates (this was also used in [16,7,18]).

Informal Theorem 3 (Packing-Covering LPs II). Consider a feasible, sta-
ble, multiple-choice packing-covering LP in the random order setting. Given ε, δ,

assume that each right hand side in the LP is at least Ω(log(m/δ)
ε2) times the max-

imum coefficient of the left-hand side in its row, and that the optimal profit is at

least Ω(log(m/δ)
ε2) times each individual item’s profit. Then the MultiphaseLP

algorithm computes a solution that is ε-feasible with probability 1 − δ and has
expected value at least (1 − ε) times the optimum.

How Experts Can Solve LPs Online 521

As far as we know this is the first guarantee for packing-covering LPs in the
random permutation (or i.i.d.) model.

Packing LPs. This entire section appears only in the full version of the paper.
The assumption of individual item profits being small compared to the optimal
net profit is often a reasonable one. However, there are reasonable situations
where we want a stronger result. Our final result removes all assumptions about
the magnitude of the profit whenever we are dealing with packing-only LPs
(without multiple-choice constraints of the form

∑
j x

t
j ≤ 1). Obtaining good

estimates of opt without any assumptions on the item values in our setting
requires significantly new ideas.

Informal Theorem 4 (Ultimate Packing LP). Consider a packing LP in

the random order setting. Given ε > 0, suppose the capacities are Ω(log(m/ε)
ε2)

times any left hand side entry. Then the MultiSkimLP algorithm computes a
solution online with expected value at least (1 − ε) times the optimum.

As mentioned earlier, this problem has been approached using dual-based
methods by several authors [8,1,18], showing that bounds Ω(ε−2m logn) and
Ω(ε−2m2 logm) are sufficient and Ω(ε−2 logm) is necessary. Hence our result is
asymptotically optimal.

Very recently, and independently of our work, Kesselheim et al. [15] give
a primal-only algorithm for the more general multiple-choice packing LPs that
achieves a (1+ε)-approximation when the bound on the capacities is Ω(ε−2 log d),
where d is the column-sparsity of the constraint matrix (i.e. maximum number
of non-zero entries in each column). Since d ≤ m, this bound is optimal. Their
algorithm is very elegant, where at time t the optimal solution of a primal LP
comprising the columns seen up to time t is directly used to set the variable xt;
somewhat surprisingly, this strategy, which does not directly impose consistency
of the xt’s set in different time steps, still works.

While the guarantee for packing LPs we obtain does not fully recover the result
of Kesselheim et al., we believe that it is still worth presenting, specially given
the potential of this method to extend to more general cases, e.g. to packing-
covering LPs, and also as a different primal-dual approach to contrast with their
primal-only ideas.

2 Load-Balancing Using Experts

In this section, we formally define the generalized load-balancing problem and
present our online algorithm for it.

2.1 Definitions: Offline and Online Instances

An instance of the offline version of the Load-balance problem is a set of matrices
{At}, each in Rm×k. The goal is to find vectors p1, p2, . . . , pn ∈ Δk to minimize
‖
∑n

t=1 A
tpt‖max, the load of the most-loaded machine, where ‖v‖max= maxj vj

522 A. Gupta and M. Molinaro

and Δk is the simplex {p ∈ [0, 1]k :
∑

i pi = 1}. We use throughout λ∗ to denote
the offline optimum value.

In the online version of this problem, we consider the random permutation
model. Now the number of time steps n is the only information known upfront.
Let A1,A2, . . . ,An be matrices sampled from the set {A1, . . . , An} uniformly
without replacement. At time step t, the algorithm has seen matrices A1, . . . ,At

and must decide on a (random) vector pt ∈ Δ; the randomness is both from
the random order and the internal coin flips of the algorithm (if any). The goal
is to minimize ‖

∑n
t=1 A

tpt‖max. The vectors {pt}t output by the algorithm are
called the online solution for the online instance {At}t corresponding to the
offline instance I.

2.2 Well-Bounded Instances

While instances arising from scheduling-type applications usually consist of pos-
itive loads, for future sections it is useful to handle instances where some entries
At

ij are also negative. To get good guarantees we need to control the class of
permissible instances: loosely speaking, while we allow the entries of the load
matrices At to be in the symmetric interval [−M,M], on each machine the loads
are either mostly positive on all steps (with any negative loads being very small),
or mostly a negative load on all steps.

Definition 1. For M,γ ≥ 0, an instance A1, . . . , An of the load-balance problem
is (M,γ)-well-bounded if At

ij ∈ [−M,M] for all i, j, t, and moreover for each

i ∈ [m] we have: either At
ij ∈ [−min{ γλ∗

n ,M},M] for all t ∈ [n], or At
ij ∈

[−M,min{ γλ∗
n ,M}] for all t ∈ [n].

In particular, this is satisfied with γ = 0 if the At’s are non-negative. The
reader can think of γ as a small constant, say one. The main motivation behind
this definition is that it allows us to control the variation of random processes
defined over {At}t, as the next lemma shows.

Lemma 1. Suppose {At}nt=1 is an (M,γ)-well-bounded instance for some M,γ ≥
0, and consider p̂1, . . . , p̂n ∈ Δk. Let the sequence A1p̂1, . . .Anp̂n be sampled with-
out replacement from the set {Atp̂t}t. Then for every event E and for every i ∈ [m]
and t ∈ [n],

E
[
|At

ip̂
t − E[At

ip̂
t | E]|| E

]
≤ 2γλ∗

n
+ 2|E[At

ip̂
t | E]|.

2.3 The ExpertLB Algorithm and Its Guarantee

To define the algorithm expertLB, we need to recall the online experts problem
[2]: We are given an adversarial sequence of vectors o1, o2, . . . , on ∈ [−1, 1]m. At
time t, using only information up to time t − 1 (i.e. o1, . . . , ot−1), we need to
compute a vector wt ∈ Δm; then we incur a reward of 〈wt, ot〉. The goal is to
maximize the total reward

∑
t 〈wt, ot〉.

How Experts Can Solve LPs Online 523

Given an online instance {At} to the generalized load-balancing problem
and values n,M , and ε, the following algorithm expertLB (for “expert load-
balancing”) runs a primal greedy strategy and a dual online experts algorithm,
restarting at timestep n/2. The algorithm maintains primal vectors p1, . . . ,
pn/2 ∈ Δk and “dual” vectors w1, . . . ,wn/2 ∈ Δm as follows:
(P) primal step: in step t, the algorithm sees the random item At, computes

wtAt and chooses pt ∈ Δk so as to minimize 〈wtAt,pt〉;
(D) dual step: run an online experts algorithm (with A1p1, . . . ,Atpt as the ad-

versarial vectors) to compute wt+1 (so the “reward” accrued by this experts
algorithm at time t + 1 is

〈
wt+1,At+1pt+1

〉
.

At time n/2, the algorithm restarts the online experts subroutine afresh, and
computes the vectors pn/2+1, . . . ,pn and wn/2+1, . . . ,wn in the same way as
before. For concreteness, the online experts algorithm we use is a multiplicative-
weights update algorithm from [2, Section 2.3], scaling down by M to ensure
gains are in [−1, 1], and using ε for the learning rate η.

Note the simplicity of the algorithm: it is perhaps the “natural” algorithm,
once we decide to reduce load-balancing to the experts algorithm. The main
theorem of this section states the guarantee of this algorithm; given a vector
v ∈ Rm, define |v|:= (|v1|, . . . , |vm|).

Theorem 5 (Load Balancing Guarantee). Suppose {At} is (M,γ)-well-
bounded load-balancing instance for γ ≥ 1. Let λ∗ be its optimal load and suppose

ε ≤ ε1 := 1
80 and δ ∈ (0, ε] are such that λ∗ ≥ 3M log(m/δ)

ε2 . Given values of n,
M and ε, the algorithm expertLB finds an online solution {pt}t such that with
probability at least 1 − δ, ‖

∑
t A

tpt − ε
∑

t|Atpt|‖
max

≤ λ∗(1 + c1(1 + γ)ε) for
a universal constant c1.

Moreover, if all At’s are non-negative, we can take γ = 1 and then have
‖
∑

t A
tpt‖∞≤ (1 + O(ε))λ∗ with probability at least 1 − δ.

2.4 Analysis of ExpertLB

In this section we outline the analysis of algorithm expertLB. Let p̂1, . . . p̂n

be the optimal solution for the offline instance. We see this as a mapping from
matrix At to solution p̂t (say φ(At) = p̂t); this way, define p̂t as the random
solution with respect to the random matrix At (i.e. p̂t = φ(At)). (Formally, if
there are repeated matrices then we can assume that the optimal solution does
the same thing for all of them.)

To simplify the notation, let ot := Atpt denote the load vector incurred at
step t by our algorithm; for an integer �, we use A≤� to denote the sequence
A1, . . . ,A�, and similarly for other objects.

Theorem 5 seeks to bound ‖
∑

t o
t − ε
∑

t|ot|‖max. By exchangeability of our

distribution, (A1, . . . ,An/2) has the same distribution as (An/2+1, . . . ,An). This
implies that our algorithm behaves in the same in the two halves of the process,
namely (A≤n/2,p≤n/2) has the same distribution as (A>n/2,p>n/2).

524 A. Gupta and M. Molinaro

Fact 6 (Suffices to Analyze First Half). The random variables ‖
∑

t≤n/2 o
t−

ε
∑

t≤n/2|ot| ‖max and ‖
∑

t>n/2 o
t − ε
∑

t>n/2|ot| ‖max have the same distribu-
tion.

We want to show that the computed dual solutions wt capture our (non-
linear) total load, i.e., that

∑
t w

t · ot ≈ ‖
∑

t o
t‖max. To this end we formally

show:

Fact 7 (Dual Captures Load). For every scenario,

n/2∑
t=1

〈
wt, ot

〉
≥

∥∥∥∥ ∑
t≤n/2

ot − ε
∑

t≤n/2

|ot|
∥∥∥∥
max

−
M logm

ε
≥

∥∥∥∥ ∑
t≤n/2

ot − ε
∑

t≤n/2

|ot|
∥∥∥∥
max

− ελ∗.

Let ôt := Atp̂t denote the load incurred by the optimal solution p̂ at step t.
By our primal greedy choice of the pt’s, we directly have the following.

Fact 8 (Optimality of Algorithm wrt Duals).∑n/2
t=1 〈wt,ot〉 =

∑n/2
t=1 w

tAtpt ≤
∑n/2

t=1 w
tAtp̂t =

∑n/2
t=1 〈wt, ôt〉 .

From these facts, in order to give a guarantee in expectation, it suffices to
show that

E[
∑

t≤n/2 〈wt, ôt〉] �
∑

t≤n/2 〈E[wt],E[ôt]〉 ≤ ‖E[
∑

t≤n/2 ô
t]‖max = λ∗

2 . (1)

Notice that these are easy implications if we were sampling with replacement,
since in that case wt and ôt are independent. For the random permutation model
we need to work harder.

Let Gi,t be the good event that E[ôt
i | A<t] ≤ (1 + 80(1 +γ)ε)λ

∗
n , i.e., that the

expected occupation at timestep t is at most ≈ λ∗
n even after conditioning on the

history up to time t− 1. What we are able to show is that with high probability,
the good events Gi,t hold for all t ≤ n/2 simultaneously; effectively, this says
that for our purposes, sampling with and without replacement has essentially
the same effect. Note that applying Bernstein’s inequality to each ôt

i and taking
a union bound over the t’s would only give E[ôt

i | A<t] � (1 + γ lognε)λ
∗
n , with

an extra logn factor. To avoid this we employ a maximal version of Bernstein’s
inequality.

Lemma 2. With probability 1 − δ/m, Gi,t holds for all i and all t ≤ n/2; i.e.,
Pr(
∨

i

∨
t≤n/2 Gi,t) ≤ δ/m.

Using this lemma, it is an easy exercise to show that (1) indeed holds (within a
factor (1±γε)); this then gives that the bound in Theorem 5 holds in expectation.

Moreover, we can show that with probability at least 1− δ,
∑

t≤n/2 〈wt, ôt〉 ≤
λ∗
2 + O(εγ)λ∗. For that we need to employ martingale concentration (Freed-

man’s inequality), and use Lemma 2 to control the predictable variation of our
martingale. This then gives the full statement of Theorem 5.

How Experts Can Solve LPs Online 525

3 Solving Packing-Covering LPs via Load-Balancing

We now show how to solve packing-covering LPs using the load-balancing al-
gorithm we developed in Theorem 5, provided an estimate of the optimum is
available. The packing-covering LPs (PCLPs) we will solve will be of the follow-
ing form:

max
∑n

t=1 π
txt (PCLP)

st
∑n

t=1 A
txt ≤ b (2)∑n

t=1 C
txt ≥ d (3)

xt ∈ �k ∀t ∈ [n] (4)

where all the data πt, At, Ct, b, d is non-negative and �k denotes the “full
simplex” {x ∈ [0, 1]k :

∑
j xj ≤ 1}. We use mp to denote the number packing

constraints (2) and mc to denote the number of covering constraints (3), so our

matrices have dimensions At ∈ R
mp×k
+ , and Ct ∈ Rmc×k

+ . We allow for either
mc or mp to be zero—i.e., it could be a pure packing or covering LP. Note that
the variables {xt

1, x
t
2, . . . , x

t
k} in each block t are bound together by

∑
j x

t
j ≤ 1.

Given a packing-covering LP L, we use opt(L) to denote its optimal value; we
omit L when it is clear from the context.

In the online version of PCLP, we again present a fixed PCLP L in random
order. We know upfront the number of time steps n and the right-hand sides b, d.
At each time t = 1, . . . , n, a “block” is sampled from L without replacement and
revealed to the algorithm, which then outputs a vector xt ∈ �k. Formally, define
the random variables πt,At,Ct so that triples (π1,A1,C1), . . . , (πn,An,Cn)
are sampled from {(πt, At, Ct)}t uniformly without replacement. Define the ran-
domly permuted LP L

L = max

{∑
t

πtxt :
∑
t

Atxt ≤ b,
∑
t

Ctxt ≥ d, xt ∈ �k ∀t
}

(5)

At time step t, the algorithm computes a (random) vector xt ∈ �k based on
the information seen up to time t, i.e., (π1,A1,C1), . . . , (πt,At,Ct), plus n and
b, d. We call such {xt}t an online solution. The online solution {xt} is ε-feasible
for L if it satisfies the packing constraints (i.e.

∑
t≤n A

txt ≤ b) and almost

satisfies the covering constraints (i.e.
∑

t≤n C
txt ≥ (1 − ε)d). The goal in the

online PCLP is to obtain an online solution {xt} which (with high probability)
is ε-feasible, and gets a reward

∑
t≤n π

txt ≥ (1 − O(ε))opt(L) (notice that
opt(L) = opt(L), so again we are comparing against the optimal offline solution).

Before we state our main result for this section, we need one more concept.
For a packing-covering LP L of the form (PCLP), define its generalized width to
be

max

{
max
i,j,t

ati,j
bi

, max
i,j,t

cti,j
di

, max
t,j

πt
j

opt

}
. (6)

526 A. Gupta and M. Molinaro

Theorem 9. Consider a feasible (multiple-choice) packing-covering LP L, and

let ε ≤ ε1
4 and δ ∈ (0, ε] be such that its generalized width is at most ε2

log(m/δ) .

Suppose the algorithm is given an approximation ôpt to the optimal value, as well
as the right-hand sides b, d and values ε, δ, n. If the estimate ôpt ∈ [opt2 , opt], then
the algorithm LPviaLB below finds an online solution {xt} that with probability
at least 1 − δ is (c2ε)-feasible for L and has value

∑
t π

txt ≥ (1 − c3ε)ôpt, for
constants c2, c3 ≥ 1.

3.1 The Algorithm LPviaLB

The idea of the reduction is very simple: take the covering constraints (and the
objective function) and flip their signs to make them packing constraints; also
shift these negated values by adding a constant to both sides and then rescale
the constraints so that all of them have same right-hand side. Notice that this
creates negative entries in the left-hand side (negative loads); this is precisely
why we had considered the load-balancing problem in this generality in the
previous section.

First, a minor detail: we can assume that ε2 ≥ log(m/δ)
n . Indeed, if ε2 < log(m/δ)

n

then the assumption that the generalized width is at most ε2

log(m/δ) implies cti,j <
di

n for all t, i; this means the covering constraints, if any, cannot be satisfied and
the LP is infeasible. On the other hand, if mc = 0 and there are no covering
constraints, then another implication of the low value of ε is that ati,j < bi

n ;
in this case the packing constraints are so loose that the optimal solution is to
choose the most profitable choice for each time t independently.

Given a packing-covering LP L, define the matrices H1, . . . , Hn with k + 1
columns and mp + mc + 1 rows (indexed from 0 to m := mp + mc) as follows:
the zeroth row of Ht equals the vector

Ht
0,� := (2

n − πt
1

ôpt
, . . . , 2

n − πt
k

ôpt
, 2
n) ;

for i ∈ {1, . . . ,mp}, the ith row of Ht is

Ht
i,� := (

at
i1

bi
, . . . ,

at
ik

bi
, 0),

and for i ∈ {mp + 1, . . . ,mp + mc}, the (mp + i)th row of Ht is

Ht
mp+i,� := (2

n − cti1
di
, . . . , 2

n − ctik
di

, 2
n).

(For simplicity, we assume that ôpt and all bi, dis are strictly positive.)
The algorithm LPviaLB can be thought of as having three phases. In the

first phase, it computes the matrices H1, . . . , Hn. In the second, it runs load-
balancing algorithm expertLB over the instance {Ht}t with parameters M =

2ε2

log(m/δ) , ε′ = 4ε and δ (given), obtaining a solution {x̃t}t. In the last phase,

the algorithm simply outputs the scaled and truncated solution {x̂t}t, for x̂t
j :=

How Experts Can Solve LPs Online 527

(1−2ε′)
(1+c1ε′) x̃

t
j with j = 1, . . . , k, as an (approximate) solution to L, where c1 is the

constant from Theorem 5. Notice that all the steps in this algorithm can be
implemented to run in an online manner.

The analysis of LPviaLB relies on: 1) making sure the assumptions of The-
orem 5 are satisfied by the load-balancing instance {Ht}t, and 2) connecting
feasible solutions for the instance {Ht}t to solutions of the LP L. These give
Theorem 9.

4 Solving Packing/Covering LPs with Unknown OPT

We now turn to the problem of estimating the value of opt for a packing-covering
problem, so that we can use it in Theorem 9. For that, we will require a kind
of stability property, loosely asking that the covering constraints are not “very
tight”.

Definition 2 (Stability). A packing-covering LP L is called (ε, σ)-stable if
any optimal ε-feasible solution for it has value at most (1 + σε)opt(L).

For a randomly permuted LP L, the basic idea to obtain an estimate of opt(L)
is to see the first n/2 random blocks and form a sampled LP with these blocks
and right-hand side scaled by a factor of 1/2; computing an optimal O(ε)-solution
for this sampled LP should give a good estimate of opt(L)/2.

Definition 3 (Restricted LP). Given a packing-covering LP L, and a subset
I of [n], the restricted LP LI is obtained by retaining only the columns of L that

belong to I, and setting the right hand side rhs(LI) to be |I|
n rhs(L).

For a (ε, σ)-stable L, we show that an O(ε)-optimal solution for the sampled

LP L{1,...,n2 } is, with probability at least 1 − δ, is about 1
2opt(L) ± σεopt(L);

while the lower bound is a straightforward application of Bernstein’s inequality,
for the upper bound we uses (ε, σ)-stability to control the variance of the (dual
of the) sampled LP.

Given this bound, we can estimate the optimum of the remaining LP L>n
2

using the sampled LP opt(L≤n
2) and employ Theorem 9 to the former to obtain

the following.

Theorem 10. Let ε ≤ ε1
4 , and δ ∈ (0, ε]. Consider a packing-covering LP L with

generalized width at most ε2

32 log(m/δ) and that is (ε, σ)-stable for σ ∈ [1, 1
12

√
2ε

].

Suppose that the number n of columns of L, the right-hand sides of L, ε, δ and
σ are known a priori. Then with probability at least 1− 5δ we can find an online
ε(
√

2 + c2)-feasible solution to the random LP L>n
2 with value at least

(1 − c3ε) opt(L≤n
2) − ε (5

√
2σ) opt(L).

To avoid the total loss of value from the first n/2 columns of the LP, instead
of applying the above theorem directly to input LP, we apply it to the sub-LPs

528 A. Gupta and M. Molinaro

of doubling sizes L≤2εn, L≤4εn, L≤8εn, etc. to obtain a sequence of “disjoint”
solutions which, when put together, give an O(ε)-feasible solution for the whole
LP. The total loss in value is about opt(L≤εn) + σ log ε−1opt(L). This leads to
the following result.

Theorem 11. Let ε ≤ (ε14)2, and δ ∈ (0, ε]. Consider a packing-covering LP

L with generalized width at most ε2

32 log(m/δ) and that is (ε, σ)-stable for σ ∈
[1, 1

12
√
2
√
ε
]. Suppose that the number n of columns of L, the right-hand sides of

L, ε, δ and σ are known a priori. Then we can find an online solution to the
random LP L that is ε(

√
2 + c2)-feasible with probability at least 1 − 5δ log ε−1,

and has expected value at least (1 −O(σε + δ log ε−1))opt(L).

Note: Most proofs, as well as a section proving the Informal Theorem 4, are
presented in the final version of the paper.

References

1. Agrawal, S., Wang, Z., Ye, Y.: A dynamic near-optimal algorithm for online linear
programming. CoRR abs/0911.2974 (2009), to appear in Opertaions Research

2. Arora, S., Hazan, E., Kale, S.: The multiplicative weights update method: a meta-
algorithm and applications. Theory of Computing 8(6), 121–164 (2012)

3. Azar, Y., Bhaskar, U., Fleischer, L., Panigrahi, D.: Online mixed packing and
covering. In: SODA. pp. 85–100 (2013)

4. Babaioff, M., Immorlica, N., Kempe, D., Kleinberg, R.: A knapsack secretary prob-
lem with applications. In: APPROX-RANDOM (2007)

5. Buchbinder, N., Naor, J.: The design of competitive online algorithms via a primal-
dual approach. Foundations and Trends in Theoretical Computer Science 3(2-3),
93–263 (2009)

6. Clarkson, K.L., Hazan, E., Woodruff, D.P.: Sublinear optimization for machine
learning. J. ACM 59(5), 23:1–23:49 (2012)

7. Devanur, N.R., Jain, K., Sivan, B., Wilkens, C.A.: Near optimal online algorithms
and fast approximation algorithms for resource allocation problems. In: EC (2011)

8. Devenur, N.R., Hayes, T.P.: The adwords problem: online keyword matching with
budgeted bidders under random permutations. In: EC (2009)

9. Diaconis, P., Freedman, D.: Finite exchangeable sequences. The Annals of Proba-
bility 8(4), 745–764 (1980)

10. Dynkin, E.B.: The optimum choice of the instant for stopping a Markov process.
Soviet Math. Dokl 4 (1963)

11. Feldman, J., Henzinger, M., Korula, N., Mirrokni, V.S., Stein, C.: Online stochastic
packing applied to display ad allocation. In: ESA (2010)

12. Garg, N., Könemann, J.: Faster and simpler algorithms for multicommodity flow
and other fractional packing problems. SIAM J. Comput. 37(2) (2007)

13. Goel, G., Mehta, A.: Online budgeted matching in random input models with
applications to adWords. In: SODA (2008)

14. Hazan, E.: Approximate convex optimization by online game playing. Tech. rep.
15. Kesselheim, T., Radke, K., Tönnis, A., Vöcking, B.: Primal beats dual on online

packing lps in the random-order model. CoRR abs/1311.2578 (2013), to appear in
STOC 2014

How Experts Can Solve LPs Online 529

16. Kleinberg, R.: A multiple-choice secretary algorithm with applications to online
auctions. In: SODA (2005)

17. Mehta, A., Saberi, A., Vazirani, U., Vazirani, V.: AdWords and generalized online
matching. J. ACM 54(5) (2007)

18. Molinaro, M., Ravi, R.: Geometry of online packing linear programs. In: ICALP
(2012)

19. Plotkin, S.A., Shmoys, D.B., Tardos, É.: Fast approximation algorithms for frac-
tional packing and covering problems. Math. Oper. Res. 20(2), 257–301 (1995)

20. Simpson, R.W.: Using network flow techniques to find shadow prices for market
and seat inventory control (1989), MIT Memorandum M89-1

21. Telluri, K., van Ryzin, G.: An Analysis of Bid-Price Controls for Network Revenue
Management. Management Science 44, 1577–1593 (1998)

22. Williamson, E.L.: Airline network seat inventory control : methodologies and rev-
enue impacts (1992), Ph. D. Thesis, MIT

23. Young, N.E.: Sequential and parallel algorithms for mixed packing and covering.
In: FOCS (2001)

Parameterized Complexity of the k-Arc Chinese

Postman Problem

Gregory Gutin, Mark Jones, and Bin Sheng

Royal Holloway, University of London
Egham, Surrey TW20 0EX, UK

Abstract. In the Mixed Chinese Postman Problem (MCPP), given an
edge-weighted mixed graph G (G may have both edges and arcs), our
aim is to find a minimum weight closed walk traversing each edge and
arc at least once. The MCPP parameterized by the number of edges
was known to be fixed-parameter tractable using a simple argument.
Solving an open question of van Bevern et al., we prove that the MCPP
parameterized by the number of arcs is also fixed-parameter tractable.
Our proof is more involved and, in particular, uses a very useful result
of Marx, O’Sullivan and Razgon (2013) on the treewidth of torso graphs
with respect to small separators.

1 Introduction

A mixed graph is a graph that may contain both edges and arcs (i.e., directed
edges). A mixed graph G is strongly connected if for each ordered pair x, y of
vertices in G there is a path from x to y that traverses each arc in its direction.
We provide further definitions and notation on (mainly) directed graphs in the
next section.

In this paper, we will study the following problem.

Mixed Chinese Postman Problem (MCPP)

Instance: A strongly connected mixed graph G = (V,E∪A), with vertex
set V , set E of edges and set A of arcs; a weight function w : E∪A → N0.
Output: A closed walk of G that traverses each edge and arc at least
once, of minimum weight.

There is numerous literature on various algorithms and heuristics for MCPP;
for informative surveys, see [2,4,8,12,14]. When A = ∅, we call the problem the
Undirected Chinese Postman Problem (UCPP), and when E = ∅, we
call the problem the Directed Chinese Postman Problem (DCPP). It is
well-known that UCPP is polynomial-time solvable [7] and so is DCPP [3,5,7],
but MCPP is NP-complete, even when G is planar with each vertex having total
degree 3 and all edges and arcs having weight 1 [13]. It is therefore reasonable to
believe that MCPP may become easier the closer it gets to UCPP or DCPP.

Van Bevern et al. [2] considered two natural parameters for MCPP: the num-
ber of edges and the number of arcs. They showed that MCPP is fixed-parameter

A.S. Schulz and D. Wagner (Eds.): ESA 2014, LNCS 8737, pp. 530–541, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

Parameterized Complexity of the k-Arc Chinese Postman Problem 531

tractable1 (FPT) when parameterized by the number k of edges. Their algorithm
is as follows. Replace every undirected edge uv by either the arc −→uv or arc −→vu or
the pair −→uv and −→vu (all arc have the same weight as uv) and solve the resulting
DCPP. Thus, the MCPP can be solved in time O(3kn3), where n is the number
of vertices in G. We describe a faster algorithm in the full version of this paper
[10].

Van Bevern et al. [2] and Sorge [15] left it as an open question whether the
MCPP is fixed-parameter tractable when parameterized by the number of arcs.

k-arc Chinese Postman Problem (k-arc CPP)

Instance: A strongly connected weighted mixed graph G = (V,E ∪ A),
with vertex set V , set E of edges and set A of arcs; a weight function
w : E ∪ A → N0.
Parameter: k = |A|.
Output: A closed walk of G that traverses each edge and arc at least
once, of minimum weight.

This parameterized problem is of interest, for example, if we view the mixed
graph as a network of streets in a city: while edges represent two-way streets, arcs
are for one-way streets. Many cities have a relatively small number of one-way
streets and so the number of arcs appears to be a good parameter for optimizing,
say, police patrol in such cities [2].

We will assume for convenience that the input G of k-arc CPP is a simple
graph, i.e. there is at most one edge or one arc (but not both) between any
pair of vertices. The multigraph version of the problem may be reduced to the
simple graph version by subdividing arcs and edges. As the number of arcs and
edges is at most doubled by this reduction, this does not affect the parameterized
complexity of the problem.

We will show that k-arc CPP is fixed-parameter tractable. Our proof is
significantly more complicated than the one for the MCPP parameterized by
the number of edges as a similar approach will not work. Instead, in FPT time, we
reduce the problem to the Balanced Chinese Postman Problem (BCPP),
in which there are no arcs but instead a demand function on the imbalance of
the vertices. Unfortunately this problem is still NP-hard, and so we must use
further techniques to solve the problem.

Marx, O’Sullivan and Razgon [11] use the following notion of a graph torso.
Let G = (V,E) be a graph and S ⊆ V. The graph torso(G,S) has vertex set S
and vertices a, b ∈ S are connected by an edge ab if ab ∈ E or there is a path in
G connecting a and b whose internal vertices are not in S.

Marx et al. [11] show that for a number of graph separation problems, it is
possible to derive a graph closely related to a torso graph, which has the same
separators as the original input graph. The separation problem can then be

1 That is, MCPP can be solved in time f(k)nO(1), where f is a function only depending
on k, and n is the number of vertices in G. For background and terminology on
parameterized complexity we refer the reader to [6].

532 G. Gutin, M. Jones, and B. Sheng

solved on this new graph, which has bounded treewidth. By contrast, we use the
torso graph as a tool to construct a tree decomposition of the original graph,
which does not have bounded width, but has enough other structural restrictions
to make a dynamic programming algorithm possible. So, our application of Marx
et al.’s result is quite different from its use in [11], and we believe it may be used
for designing fixed-parameter algorithms for other problems on graphs. Note
that Marx et al. are interested in small separators (i.e. sets of vertices whose
removal disconnects a graph), whereas we are interested in small cuts (sets of
edges whose removal disconnects a graph). This necessitates an extra step in
the construction of our tree decomposition, to ensure that all minimal cuts are
covered by minimal separators.

The rest of the paper is organized as follows. The next section contains further
terminology and notation. In Section 3, we reduce k-arc CPP to Balanced

Chinese Postman Problem (BCPP). In Section 4, we introduce and study
two key notions that we use to solve BCPP: t-roads and small t-cuts. In Sec-
tion 5, we investigate a special tree decomposition of the input graph of BCPP.
This decomposition is used in a dynamic programming algorithm given in Sec-
tion 6. The last section contains some conclusions and open problems.

2 Further Terminology and Notation

For a positive integer p and an integer q, q < p, [q, p] will denote the set
{q, q + 1, . . . , p} and [p] the set [1, p]. To avoid confusion, we denote an edge
between two vertices u, v as uv, and an arc from u to v as −→uv.

For a mixed multigraph G, let D be a directed multigraph derived from G
by replacing each arc −→uv of G with multiple copies of −→uv (at least one), and
replacing each edge in uv in G with multiple copies of the arcs −→uv and −→vu (such
that there is at least one copy of −→uv or at least one copy of −→vu). Then we say D
is a multi-orientation of G. If D has exactly one copy −→uv for each arc −→uv in G,
and either exactly one copy of −→uv or exactly one copy of −→vu for each edge uv in
G, we say D is an orientation of G. If D is an orientation of G, we say that G
is the undirected version of D (if D has parallel arcs then G has parallel edges).

For a mixed multigraph G, μG(−→uv) denotes the number of arcs of the form −→uv
in G, and μG(uv) denotes the number of edges of the form uv. For a weighted
graph G and a multi-orientation D of G, the weight of D is the sum of the
weights of all its arcs, where the weight of an arc in D is the weight of the
corresponding edge or arc in G.

For a directed multigraph D = (V,A) and v ∈ V , d+D(v) and d−D(v) denote the
out-degree and in-degree of v in D, respectively. Let t : V → Z be a function.
We say that a vertex u in D is t-balanced if d+D(u) − d−D(u) = t(u). We say that
D is t-balanced if every vertex is t-balanced. Note that if D is t-balanced then∑

v∈V t(v) = 0. When t(v) = 0 for all v ∈ V , we omit t and speak of balanced

vertices and balanced directed multigraphs. Let V +
t = {v ∈ V : t(v) > 0} and

V −
t = {v ∈ V : t(v) < 0}.

In directed multigraphs, all walks (in particular, paths and cycles) that we
consider are directed. A directed multigraph D is Eulerian if there is a closed

Parameterized Complexity of the k-Arc Chinese Postman Problem 533

walk of D traversing every arc exactly once. It is well-known that a directed
multigraph D is Eulerian if and only if D is balanced and the undirected version
of D is connected [1].

For an undirected graph G = (V,E) and vertices a, b of G, a set S of edges
(vertices, respectively) is called an (a, b)-cut ((a, b)-separator, respectively) if a
and b are in different components of G− S.

Observe that the following is an equivalent formulation of the k-arc CPP.

k-arc Chinese Postman Problem (k-arc CPP)

Instance: A strongly connected mixed graph G = (V,E∪A), with vertex
set V , set E of edges and set A of arcs; weight function w : E ∪A → N0.
Parameter: k = |A|.
Output: A directed multigraph D of minimum weight such that D is a
multi-orientation of G and D is Eulerian.

3 Reduction to Balanced CPP

Our first step is to reduce k-arc CPP to a problem on a graph without arcs.
Essentially, given a graph G = (V,E ∪ A) we will “guess” the number of times
each arc in A is traversed in an optimal solution. This then leaves us with a
problem on G′ = (V,E). Rather than trying to find an Eulerian multi-orientation
of G, we now try to find a multi-orientation of G′ in which the imbalance between
the in- and out-degrees of each vertex depends on the guesses for the arcs in A
incident with that vertex.

More formally, we will provide a Turing reduction to the following problem:

Balanced Chinese Postman Problem (BCPP)

Instance: An undirected graph G = (V,E); a weight function
w : E → N0; a demand function t : V → Z such that

∑
v∈V t(v) = 0.

Parameter: p =
∑

v∈V +
t
t(v).

Output: A minimum weight t-balanced multi-orientation D of G.

Observe that when t(v) = 0 for all v ∈ V , BCPP is equivalent to UCPP.
BCPP was studied by Zaragoza Mart́ınez [16] who proved that the problem is
NP-hard. We will reduce k-arc CPP to BCPP by guessing the number of times
each arc is traversed. In order to ensure a fixed-parameter aglorithm, we need a
bound (in terms of |A|) on the number guesses. We will do this by bounding the
total number of times any arc can be traversed in an optimal solution.

Lemma 1. Let G = (V,A∪E) be a mixed graph, and let k = |A|. Then for any
optimal solution D to k-arc CPP on G with minimal number of arcs, we have
that
∑

−→uv∈A μD(−→uv) ≤ k2/2 + 2k.

Proof. Let A = A1 ∪ A2 where A1 = {−→uv : −→uv ∈ A and μD(−→uv) ≥ 3} and
A2 = A \A1. Let |A1| = p and |A2| = k − p = q.

534 G. Gutin, M. Jones, and B. Sheng

Consider an arc −→uv ∈ A. Since D is balanced, we have that D has μD(−→uv)
arc-disjoint directed cycles, each containing exactly one copy of −→uv. We claim
that each such cycle must contain at least one copy of an arc in A2. Indeed,
otherwise, there is a cycle C containing −→uv that does not contain any arc in A2,
which means that C consists of arcs in A1 and arcs corresponding to (undirected)
edges in G. We may construct a directed multigraph D′ as follows: Remove from
D two copies of each arc in A1 that appears in C, and reverse the arcs in C that
correspond to undirected edges in G. Observe that D′ is Eulerian and is also a
multi-orientation of G, and so D′ is a solution with smaller weight than D or an
optimal solution with fewer arcs than D, contradicting the minimality of D.

So each of the μD(−→uv) cycles contains at least one copy of an arc in A2.
Observe that D has at most 2q copies of arcs in A2, and so μD(−→uv) ≤ 2q. Thus,
we have

∑
−→uv∈A μD(−→uv) =

∑
−→uv∈A1

μD(−→uv) +
∑

−→uv∈A2
μD(−→uv) ≤ p · 2q + 2q ≤

2 · (p+q
2)2 + 2k = k2/2 + 2k. ��

Now we may prove the following:

Lemma 2. If BCPP is FPT then so is k-arc CPP.

Proof. Let (G = (V,A ∪ E), w) be an instance of k-arc CPP, and let k = |A|.
Let κ = �k2/2 + 2k�. By Lemma 1,

∑
−→uv∈A μD(−→uv) ≤ κ for any optimal solution

D to k-arc CPP on (G,w) with minimal number of arcs.
Let G′ = (V,E) and let w′ be w restricted to E. Given a function φ : A → [κ]

such that
∑

−→uv∈A φ(−→uv) ≤ κ, let tφ : V → [−κ, κ] be the function such that
tφ(v) =

∑
−→uv∈A φ(−→uv)−

∑
−→vu∈A φ(−→vu) for all v ∈ V . Observe that

∑
v∈V +

tφ

tφ(v) ≤∑
−→uv∈A φ(−→uv) ≤ κ, and thus BCPP on (G′, w′, tφ) has parameter pφ ≤ κ.
Observe that given a solution Dφ to BCPP on (G′, w′, tφ), if we add φ(−→uv)

copies of each arc −→uv ∈ A to Dφ, then the resulting graph D is a solution to
k-arc CPP on (G,w) with weight w′(Dφ) +

∑
−→uv∈A φ(−→uv)w(−→uv). Furthermore

for any solution D to k-arc CPP on (G,w), let φ(−→uv) = μD(−→uv) for each −→uv ∈ A
and let Dφ be D restricted to E. Then Dφ is a solution to BCPP on (G′, w′, tφ)
and D has weight w′(Dφ) +

∑
−→uv∈A φ(−→uv)w(−→uv).

Suppose that there exists an algorithm which finds the optimal solution to an
instance of BCPP on (G′, w′, t′) with parameter p in time f(p)|V |O(1). There are
at most

(
q
k

)
ways of choosing positive integers x1, . . . , xk such that

∑
i∈[k] xi ≤ q.

Indeed, for each i ∈ [k] let yi =
∑i

j=1 xj . Then yi < yj for i < j and yi ∈ [q]
for all i, and for any such choice of y1, . . . , yk there is corresponding choice of
x1, . . . , xk satisfying

∑k
i=1 xi ≤ q. Therefore the number of valid choices for

x1, . . . , xk is the number of ways of choosing y1, . . . , yk, which is the number of
ways of choosing k elements from a set of q elements.

Therefore there are at most
(
κ
k

)
choices for a function φ : A → [κ] such that∑

−→uv∈A φ(−→uv) ≤ κ. Each choice leads to an instance of BCPP with parameter at

most κ. Therefore in time
(
κ
k

)
f(κ)|V |O(1) we can find the optimal solution Dφ

to BCPP on (G′, w′, tφ) for every valid choice of φ.

Parameterized Complexity of the k-Arc Chinese Postman Problem 535

It then remains to choose the function φ that minimizes w′(Dφ) +∑
−→uv∈A φ(−→uv)w(−→uv), and return the graph Dφ together with φ(−→uv) copies of each

arc −→uv ∈ A. ��

Due to Lemma 2, we may now focus on BCPP.

4 t-Roads and t-Cuts

Lemma 3. Let (G,w, t) be an instance of BCPP, with p =
∑

v∈V +
t
t(v). Then

for any optimal solution D to BCPP on (G,w, t) with minimal number of arcs,
we have that μD(−→uv) + μD(−→vu) ≤ max{p, 2} for each edge uv in G.

Proof. Suppose that μD(−→uv) + μD(−→vu) > max{p, 2} for some edge uv in G.
Observe that if μD(−→uv) ≥ 1 and μD(−→vu) ≥ 1, then by removing one copy of −→uv
and one copy of −→vu, we obtain a solution to BCPP on (G,w, t) with weight at
most that of D but with fewer arcs. Therefore, we may assume that μD(−→uv) >
max{p, 2} and μD(−→vu) = 0.

We now show that there must exist a cycle in D containing a copy of −→uv.
Modify D by adding a new vertex x, with t(v) arcs from x to v for each

v ∈ V +
t , and −t(v) arcs from v to x for each v ∈ V −

t . Let D∗ be the resulting
directed graph. Then observe that D∗ is balanced, and therefore D∗ has μD(−→uv)
arc-disjoint cycles, each containing exactly one copy of −→uv. At most p of these
cycles can pass through x. Therefore there is at least one cycle containing −→uv
which is a cycle in D.

So now let v = v1, v2, . . . , vl = u be a sequence of vertices such that
μD(−−−→vivi+1) ≥ 1 for each i ∈ [l − 1]. Replace one copy of each arc −−−→vivi+1 with
a copy of −−−→vi+1vi and remove 2 copies of −→uv. Observe that the resulting graph
covers every edge of G, and the imbalance of each vertex is the same as in D.
Therefore, we have a solution to BCPP on (G,w, t) with weight at most that of
D but with fewer arcs. This contradiction proves the lemma. ��

Definition 1. Let H = (V,E) be an undirected multigraph and t a function
V → Z. A t-road is a directed multigraph T such that for each vertex v, d+T (v)−
d−T (v) = t(v). We say H has a t-road T if there is a subgraph H ′ of H such that
T is an orientation of H ′.

Observe that given a solution D to the BCPP on (G,w, t), the undirected
version of D has a t-road.

Definition 2. Let H = (V,E(H)) be an undirected multigraph and t : V → Z a
function such that

∑
v∈V t(v) = 0. Let H∗ be the multigraph derived from H by

creating two new vertices a, b, with t(v) edges between a and v for each v ∈ V +
t ,

and −t(v) edges between b and v for each v ∈ V −
t . Let p =

∑
v∈V +

t
t(v). Then

a small t-cut is a set of edges F ⊆ E(H) such that F = E(H) ∩ F ′ for some
minimal (a, b)-cut F ′ of H∗ and |F ′| < p.

536 G. Gutin, M. Jones, and B. Sheng

Note that a small t-cut can be the empty set. A t-road, if one exists, can be
found in polynomial time by computing a flow of value p from a to b in the unit
capacity network N with underlying multigraph H∗. The next lemma follows
from the well-known max-flow-min-cut theorem for N .

Lemma 4. An undirected multigraph H has a t-road if and only if H does not
have a small t-cut.

Let (G = (V,E), w, t) be an instance of BCPP, and let F be the union of all
small t-cuts in G. We say a t-road T is well-behaved if μT (−→uv) + μT (−→vu) ≤ 1 for
all uv ∈ E \ F .

Lemma 5. Let D be an optimal solution to BCPP on (G = (V,E), w, t), and
let H be the undirected version of D. Then H has a well-behaved t-road.

Proof. Let F ⊆ E be the union of all small t-cuts in G. Let J be the undirected
multigraph derived from H by removing all but one copy of every edge in E \F .
Observe that every t-road in J is also a t-road in H and every t-road in J is
well-behaved. So, it is sufficient to show that J has a t-road.

Note that if J does not have a t-road, then by Lemma 4 J has a small t-cut.
Note also that by construction H has a t-road and therefore does not have a
small t-cut. Consider a small t-cut S in J and suppose that every edge in S is a
copy of an edge in F . As S is not a small t-cut in H , there are vertices u ∈ V +

t

and v ∈ V −
t such that H \S contains a path v1v2 . . . vl, where v1 = u and vl = v.

Note that v1 . . . vl is also a path in J \ S, unless all copies of the edge vivi+1

are in S for some i ∈ [l − 1]. However, as S ⊆ F , if all copies of vivi+1 in J are
in S, then all copies of vivi+1 in H are in S (as μH(vivi+1) = μJ(vivi+1)), and
v1 . . . vl is not a path in H \ S, a contradiction. Therefore v1 . . . vl is a path in
J \ S, and so S is not a small t-cut in J , a contradiction. Therefore every small
t-cut in J contains a copy of an edge not in F . If J has a small t-cut, then as
every small t-cut in J is also a small t-cut in G, it follows that there is a small
t-cut in G containing edges not in F . This is a contradiction by definition of F .
Therefore we may conclude that J does not have a small t-cut, and so J has a
t-road, as required. ��

If |F | is bounded by a function on p then, using Lemma 5 we can solve BCPP in
FPT time by guessing the multiplicities of each edge in F for an optimal solution
D. Unfortunately, |F | may be larger than any function of p in general. It is also
possible to solve the problem on graphs of bounded treewidth using dynamic
programming techniques, but in general the treewidth may be unbounded. In
Section 5 we give a tree decomposition of G in which the number of edges from
F in each bag is bounded by a function of p. This allows us to combine both
techniques. In Section 6 we give a dynamic programming algorithm utilizing
Lemma 5 that runs in FPT time.

5 Tree Decomposition

In this section, we provide a tree decomposition of G which we will use for
our dynamic programming algorithm. The tree decomposition does not have

Parameterized Complexity of the k-Arc Chinese Postman Problem 537

bounded treewidth (i.e. the bags do not have bounded size), but the intersection
between bags is small, and each bag has a bounded number of vertices from small
t-cuts. This will turn out to be enough to develop a fixed-parameter algorithm,
as in some sense the hardness of BCPP comes from the small t-cuts.

Our tree decomposition is based on a result by Marx, O’Sullivan and Razgon
[11], in which they show that the minimal small separators of a graph “live in a
part of the graph that has bounded treewidth”[11].

Definition 3. Given an undirected graph G = (V,E), a tree decomposition of G
is a pair (T , β), where T is a tree and β : V (T) → 2V such that

⋃
x∈V (T) β(x) =

V , for each edge uv ∈ E, there exists a node x ∈ V (T) such that u, v ∈ β(x),
and for each v ∈ V , the set β−1(v) of nodes form a connected subgraph in T .

The width of (T , β) is maxx∈V (T)(|β(x)| − 1). The treewidth of G (denoted
tw(G)) is the minimum width of all tree decompositions of G.

Lemma 6. [11, Lemma 2.11] Let a, b be vertices of a graph G = (V,E) and
let l be the minimum size of an (a, b)-separator. For some e ≥ 0, let S be the
union of all minimal (a, b)-separators of size at most l + e. Then there is an
f(l, e) · (|E| + |V |) time algorithm that returns a set S′ ⊇ S disjoint from {a, b}
such that tw(torso(G,S′)) ≤ g(l, e), for some functions f and g depending only
on l and e.

Definition 4. Given an undirected graph G = (V,E), a nice tree decomposition
(T , β) is a tree decomposition such that T is a rooted tree, and each of the nodes
x ∈ V (T) falls under one of the following classes:

– x is a Leaf node: Then x has no children in T ;
– x is an Introduce node: Then x has a single child y in T , and there exists

a vertex v /∈ β(y) such that β(x) = β(y) ∪ {v};
– x is a Forget node: Then x has a single child y in T , and there exists a

vertex v ∈ β(y) such that β(x) = β(y) \ {v};
– x is a Join node: Then x has two children y and z, and β(x) = β(y) = β(z).

It is well-known that given a tree decomposition of a graph, it can be trans-
formed into a nice tree decomposition of the same width in polynomial time.

Our tree decomposition will be similar but not identical to a nice tree decom-
position. We are now ready to give our tree decomposition, which is the main
result of this section. Lemma 7 is proved in the Appendix.

Lemma 7. Let (G = (V,E), w, t) be an instance of BCPP, let C be the non-
empty set of vertices appearing in edges in small t-cuts. Then there is an f(p) ·
(n+m)O(1) time algorithm that returns a set S′ and a (binary) tree decomposition
(T , β) of G such that:

1. C ⊆ S′;
2. For any nodes x �= y in T , β(x) ∩ β(y) ⊆ S′;
3. For any node x in T , |β(x) ∩ S′| ≤ g(p)

538 G. Gutin, M. Jones, and B. Sheng

for some functions f and g depending only on p. In addition, T is a rooted tree,
and each of the nodes T falls under one of the following classes:

1. x is a Leaf node: Then x has no children;
2. x is an Introduce node: Then x has a single child y in T , β(x) ⊆ S′, and

there exists a vertex v /∈ β(y) such that β(x) = (β(y) ∩ S′) ∪ {v};
3. x is a Forget node: Then x has a single child y in T , β(x) ⊆ S′, and there

exists a vertex v ∈ β(y) ∩ S′ such that β(x) = (β(y) ∩ S′) \ {v};
4. x is a Join node: Then x has two children y and z, β(x) ⊆ S′, and β(x) =

β(y) ∩ S′ = β(z) ∩ S′.

Note that in our tree decomposition, the only nodes of T with bags not
contained in S′ are the Leaf nodes.

6 Dynamic Programming

Let (G,w, t) be an instance of BCPP. Let (T , β) be the tree decomposition of
G and S′ the set of vertices containing all vertices of every small t-cut given by
Lemma 7. In this section we give a dynamic programming algorithm based on
this decomposition.

Unlike the usual use of dynamic programming tree decompositions, we will
not construct the restrictions of potential solutions to each bag when that bag is
processed. Instead, we will produce undirected multigraphs corresponding to the
undirected versions of potential solutions. When we have the optimal undirected
multigraph for the whole problem, we then find its orientation as a last step.
We do this because trying to find an optimal orientation at each bag β(x) would
involve making the bag t′-balanced for an arbitrary function t′ : β(x) → [−p, p].
On the other hand, to find the undirected version of a solution it is enough to
guess the parity of the degree of each vertex within each bag.

To this end we introduce a function h : V (G) → {odd, even}, where h(v) =
odd if t(v) is odd and h(v) = even if t(v) is even. Observe that in the undirected
version of any solution to BCPP on (G,w, t), each vertex v will have odd degree
if and only if t(v) is odd. Thus, h and similar functions will be used to tell us
whether a vertex should have odd or even degree.

To simplify some expressions, we adopt the convention that odd + odd =
even, even + even = even, and odd + even = odd. We say a vertex v is h-
balanced if it has odd degree if and only if h(v) = odd. An undirected multigraph
H is h-balanced if every vertex is h-balanced.

Let α(x) = β(x) ∩ S′. Thus β(x) ∩ β(y) ⊆ α(x) for all nodes x �= y, and
α(x) = β(x) for every non-leaf x. Furthermore, for any Join node x with two
children y and z, we have that α(x) = α(y) = α(z), even if one or both of the
children of x is a Leaf node whose bag contains vertices not in S′.

Let γ(x) be the union of the bags of all predecessors of x including x itself.
Thus, if r is the root node of T , then γ(r) = V (G).

We now define the set of graphs constructed in our dynamic programming
algorithm. Let x be a node of T , let H ′ be an undirected multigraph with

Parameterized Complexity of the k-Arc Chinese Postman Problem 539

underlying graph G[α(x)], such that μH′(uv) ≤ max{p, 2} for all edges uv. Let T ′

be a directed graph with vertex set α(x), such that μT ′(−→uv)+μT ′(−→vu) ≤ μH′(uv)
for all edges uv. Let t′ be a function α(x) → [−p, p] and let h′ be a function
α(x) → {odd, even}. Then let ψ(x,H ′, T ′, t′, h′) be an undirected multigraph
H with underlying graph G[γ(x)], of minimum weight such that

1. H [α(x)] = H ′.
2. H has a well-behaved t∗-road T such that T restricted to α(x) is T ′, where

t∗ : γ(x) → [−p, p] is the function such that t∗(v) = t′(v) for v ∈ α(x) and
t∗(v) = t(v), otherwise.

3. H is h∗-balanced, where h∗ : γ(x) → {odd, even} is the function such that
h∗(v) = h′(v) if v ∈ α(x) and h∗(v) = h(v), otherwise.

Lemma 8. Let r be the root node of T . Let t′ be t restricted to α(r), and let
h′ be h restricted to α(r). Let H ′ and T ′ be chosen such that the weight of
H = ψ(r,H ′, T ′, t′, h′) is minimized. Then the weight of H is the weight of
an optimal solution to BCPP on (G,w, t), and given H we may construct an
optimal solution to BCPP on (G,w, t) in polynomial time.

Proof. Observe that by construction of t′ and h′, t∗ and h∗ in the definition of
ψ(r,H ′, T ′, t′, h′) are t and h, respectively. Let H = ψ(r,H ′, T ′, t′, h′) for some
choice of H ′ and T ′. Then by definition H has a well-behaved t-road T and H
is h-balanced. For each arc −→uv in T , orient a copy of the edge uv in H from
u to v. Let D′ be the resulting mixed multigraph. Then for every vertex v in
D′, we have d+D′(v) − d−D′(v) = t(v). By definition of h and the fact that H was
h-balanced, every v has an even number of edges incident to it.

Thus, the undirected edges can be partitioned into a set of cycles. By orienting
each of these cycles to make a directed cycle, we get a directed multigraph D
which is a solution to BCPP on (G,w, t). This shows that for every choice of
H ′ and T ′, the graph ψ(r,H ′, T ′, t′, h′) can be oriented to produce a solution to
BCPP on (G,w, t). We will now show that an optimal solution D to BCPP on
(G,w, t) is an orientation of H = ψ(r,H ′, T ′, t′, h′) for some choice of H ′, T ′.

Let H ′ be the undirected version of D restricted to α(r). Given a t-road T
in D, let T ′ be T restricted to α(r). By Lemma 5, we may assume that T is
well-behaved. Observe that H satisfies the conditions of ψ(r,H ′, T ′, t′, h′). ��

Given an undirected graph F and a set X of vertices of F of even size, a set
J of edges of F is an X-Join if dF [J](v) is odd if and only if v ∈ X . When F has
weights on its edges, we can speak of the Minimum Weight X-Join Problem;
this problem can be solved in time O(|V (F)|3) [7]. (Traditionally, the Minimum

Weight X-Join Problem is called the Minimum Weight T -Join Problem,
but we use T for t-roads.)

Lemma 9. ψ(x,H ′, T ′, t′, h′) can be calculated in FPT time, for all choices of
x,H ′, T ′, t′, h′.

Proof. Consider some node x, and assume that we have already calculated
ψ(y,H ′′, T ′′, t′′, h′′), for all descendants y of x and all choices of H ′′, T ′′, t′′, h′′.
We consider the possible types of nodes separately.

540 G. Gutin, M. Jones, and B. Sheng

x is a Leaf node: If β(x) ⊆ S′, then the only possible graph is H ′. So return
H ′ if H ′ is a solution, and return null, otherwise.

If β(x)\S′ �= ∅, proceed as follows. Let Gx = (β(x), E(G[β(x)])\E(G[α(x)])).
For each v ∈ β(x), let t′′(v) = t′(v) −

∑
u μT ′(−→vu) +

∑
u μT ′(−→uv). Then for any

t′-road T ∗ that agrees with T ′ on α(x), T ∗ is the union of T ′ and a t′′-road
T ′′ on Gx. Furthermore, if T ∗ is well-behaved then μT ′′(−→uv) + μT ′′(−→vu) ≤ 1 for
any u, v. Thus, if ψ(x,H ′, T ′, t′, h′) �= null, then Gx has a t′′-road. So we may
proceed as follows. Check if Gx has a t′′-road. If it does not, then return null.
Otherwise, let h∗∗ : β(x) → {odd, even} be such that if v ∈ α(x) has odd degree
in H ′, then h∗∗(v) = h∗(v) + odd, and otherwise h∗∗(v) = h∗(v). Observe that
the restriction of ψ(x,H ′, T ′, t′, h′) to Gx will be h∗∗-balanced. Then to find
ψ(x,H ′, T ′, t′, h′), it suffices to find a minimum weight (multi)set of edges to
add to Gx to make it h∗∗-balanced. This can be done by solving the Minimum

Weight X-Join Problem, where X is the set of all vertices in β(x) that are
not h∗∗-balanced in Gx.

x is an Introduce node: Let y be the child node of x, and let v be the
single vertex in β(x)\α(y). Then no vertices in γ(x) are adjacent with v, except
for those in α(x). Therefore if v is not h′-balanced in H ′ or is not t′-balanced
in T ′, we may return null. Otherwise, let H ′′ be H ′ restricted to α(y). Let T ′′

be T ′ restricted to α(y). Let t′′ : α(y) → [−p, p] be such that t′′(u) = t′(u) −
μT ′(−→uv) + μT ′(−→vu). Let h′′ : α(y) → {odd, even} be such that if μH′ (uv) is odd
then h′′(u) = h′(u) +odd, and otherwise h′′(u) = h′(u). Then ψ(x,H ′, T ′, t′, h′)
is ψ(y,H ′′, T ′′, t′′, h′′) together with the edges of H ′ incident with v.

x is a Forget node: Let y be the child node of x, and let v be the single
vertex in α(y) \β(x). Let t′′ : α(y) → [−p, p] be the function that extends t′ and
assigns v to t(v). Let h′′ : α(y) → {odd, even} be the function that extends h′

and assings v to h(v). Then ψ(x,H ′, T ′, t′, h′) is ψ(y,H ′′, T ′′, t′′, h′′), for some
choice of H ′′ and T ′′ minimizing the weight of ψ(y,H ′′, T ′′, t′′, h′′) such that H ′′

restricted to α(x) is H ′, and T ′′ restricted to α(x) is T ′.
The proof of the case when x is a Join node and the analysis of algorithm’s

running time are in the Appendix. ��

Lemmas 8 and 9 imply the following:

Theorem 1. BCPP is fixed-parameter tractable.

Theorem 1 and Lemma 2 imply the following:

Theorem 2. k-arc CPP is fixed-parameter tractable.

7 Conclusions and Open Problems

We have solved an open problem in [2] by showing that MCPP parameterized by
the number of arcs is fixed-parameter tractable. To prove this result we reduced
MCPP to a generalization of UCPP and applied a very useful lemma of Marx et
al. [11] on treewidth of the torso graph with respect to small separators. Note

Parameterized Complexity of the k-Arc Chinese Postman Problem 541

that our application of the lemma is significantly different from those in [11] and
we believe that our approach will be of interest in designing fixed-parameter
algorithms for other problems.

Van Bevern et al. [2] mention two other parameterizations of MCPP. One of
them is by tw(G). It was proved by Fernandes et al. [9] that this parameterisation
of MCPP is in XP, but it is unknown whether it is FPT [2]. A vertex v of G is
called even if the number of arcs and edges incident to v is even. Edmonds and
Johnson [7] proved that if all vertices of G are even then MCPP is polynomial
time solvable. So, the number of odd (not even) vertices is a natural parameter.
It is unknown whether the corresponding parameterization of MCPP is FPT [2].

Acknowledgement. Research of GG was supported by Royal Society Wolfson
Research Merit Award.

References

1. Bang-Jensen, J., Gutin, G.: Digraphs: Theory, Algorithms and Applications, 2nd
edn. Springer (2009)

2. van Bevern, R., Niedermeier, R., Sorge, M., Weller, M.: Complexity of Arc Rooting
Problems. In: Corberán, A., Laporte, G. (eds.) Arc Routing: Problems, Methods
and Applications, ch. 2. SIAM, Phil

3. Beltrami, E.J., Bodin, L.D.: Networks and vehicle routing for municipal waste
collection. Networks 4(1), 65–94 (1974)

4. Brucker, P.: The Chinese postman problem for mixed graphs. In: Noltemeier, H.
(ed.) Graphtheoretic Concepts in Computer Science. LNCS, vol. 100, pp. 354–366.
Springer, Heidelberg (1981)

5. Christofides, N.: The optimum traversal of a graph. Omega 1, 719–732 (1973)
6. Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity.

Springer (2013)
7. Edmonds, J., Johnson, E.L.: Matching, Euler tours and the Chinese postman.

Mathematical Programming 5, 88–124 (1973)
8. Eiselt, H.A., Gendreau, M., Laporte, G.: Arc routing problems. I. The Chinese

postman problem. Oper. Res. 43, 231–242 (1995)
9. Fernandes, C.G., Lee, O., Wakabayashi, Y.: Minimum cycle cover and Chinese

postman problems on mixed graphs with bounded tree-width. Discrete Applied
Mathematics 157(2), 272–279 (2009)

10. Gutin, G., Jones, M., Sheng, B.: Parameterized Complexity of the k-Arc Chinese
Postman Problem, http://arxiv.org/abs/1403.1512

11. Marx, D., O’Sullivan, B., Razgon, I.: Finding small separators in linear time via
treewidth reduction. ACM Trans. Algorithms 9, article 30 (2013)

12. Minieka, E.: The Chinese postman problem for mixed networks. Management
Sci. 25, 643–648 (1979/80)

13. Papadimitriou, C.H.: On the complexity of edge traversing. J. ACM 23, 544–554
(1976)

14. Peng, Y.: Approximation algorithms for some postman problems over mixed
graphs. Chinese J. Oper. Res. 8, 76–80 (1989)

15. Sorge, M.: Some Algorithmic Challenges in Arc Routing. In: Talk at NII Shonan
Seminar, no. 18 (May 2013)

16. Zaragoza Mart́ınez, F.J.: Postman Problems on Mixed Graphs. PhD thesis, Uni-
versity of Waterloo (2003)

http://arxiv.org/abs/1403.1512

Approximating the Maximum Overlap

of Polygons under Translation

Sariel Har-Peled and Subhro Roy

University of Illinois, Urbana-Champaign

Abstract. Let P and Q be two simple polygons in the plane of total
complexity n, each of which can be decomposed into at most k convex
parts. We present an (1 − ε)-approximation algorithm, for finding the
translation of Q, which maximizes its area of overlap with P. Our algo-
rithm runs in O(cn) time, where c is a constant that depends only on k
and ε.

This suggest that for polygons that are “close” to being convex, the
problem can be solved (approximately), in near linear time.

1 Introduction

Shape matching is an important problem in databases, robotics, visualization
and many other fields. Given two shapes, we want to find how similar (or dis-
similar) they are. Typical problems include matching point sets by the Hausdorff
distance metric, or matching polygons by the Hausdorff or Fréchet distance be-
tween their boundaries. See the survey by Alt and Guibas [5].

The maximum area of overlap is one possible measure for shape matching that
is not significantly effected by noise. Mount et al. [18] studied the behavior of
the area of overlap function, when one simple polygon is translated over another
simple polygon. They showed that the function is continuous and piece-wise
polynomial of degree at most two. If the polygons P and Q have complexity m
and n, respectively, the area of overlap function can have complexity of Θ(m2n2).
Known algorithms to find the maximum of the function work by constructing
the entire overlap function. It is also known that the problem is 3SUM-Hard [8],
that is, it is believed no subquadratic time algorithm is possible for the problem.

Approximating maximum overlap of general polygons. Cheong et al. [13] gave a
(1−ε)-approximation algorithm for maximizing the area of overlap under trans-
lation of one simple polygon over the other using random sampling techniques.
However, the error associated with the algorithm is additive, and the algorithm
runs in near quadratic time. Specifically, the error is an ε fraction of the area
of the smaller of the two polygons. Under rigid motions, the running time dete-
riorates to being near cubic. More recently, Cheng and Lam [12] improved the
running times, and can also handle rigid motions, and present a near linear time
approximation algorithm if one of the polygons is convex.

A.S. Schulz and D. Wagner (Eds.): ESA 2014, LNCS 8737, pp. 542–553, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

Approximating the Maximum Overlap of Polygons under Translation 543

Maximum overlap in the convex case under translations. de Berg et al. [10]
showed that finding maximum overlap translation is relatively easier in case of
convex polygons. Specifically, the overlap function in this case is unimodal (as a
consequence of the Brunn-Minkowski Theorem). Using this property, they gave
a near linear time exact algorithm for computing the translation that maximizes
the area of overlap of two convex polygons. The complexity of the graph of the
overlap function is only O

(
m2 + n2 + min(m2n,mn2)

)
in this case. Alt et al. [4]

gave a constant-factor approximation for the minimum area of the symmetric
difference of two convex polygons.

Approximating maximum overlap in the convex case. As for (1−ε)-approximation,
assuming that the two polygons are provided in an appropriate form (i.e., the ver-
tices are in an array in their order along the boundary of the polygon), then one can
get a sub-linear time approximation algorithm. Specifically, Ahn et al. [3] show an
(1−ε)-approximation algorithm, with running time O((1/ε) log(n/ε)) for the case
of translation, and O((1/ε) logn + (1/ε)2 log 1/ε)) for the case of rigid motions.
(For a result using similar ideas in higher dimensions see the work by Chazelle
et al. [11].)

Overlap of union of balls. de Berg et al. [9] considered the case where X and
Y are disjoint unions of m and n unit disks, with m ≤ n. They computed
a (1 − ε) approximation for the maximal area of overlap of X and Y under
translations in time O((nm/ε2) log(n/ε)). Cheong et al. [13] gave an additive
error ε-approximation algorithm for this case, with near linear running time.

Other relevant results. Avis et al. [6] computes the overlap of a polytope and a
translated hyperplane in linear time, if the polytope is represented by a lattice
of its faces. Vigneron [21] presented (1 − ε)-approximation algorithms for maxi-
mum overlap of polyhedra (in constant dimension) that runs in polynomial time.
Ahn et al. [1] approximates the maximum overlap of two convex polytopes in
three dimensions under rigid motions. Ahn et al. [2] approximates the maximum

overlap of two polytopes in IRd under translation in O
(
n�d/2�+1 logd n

)
time.

Our Results

As the above indicates, there is a big gap between the algorithms known for the
convex and non-convex case. Our work aims to bridge this gap, showing that
for “close” to convex polygons, under translation, the problem can be solved
approximately in near linear time.

Specifically, assume we are given two polygons P and Q of total complexity
n, such that they can be decomposed into k convex parts, we show that one can
(1−ε)-approximate the translation of Q, which maximizes its area of overlap with
P, in linear time (for k and ε constants). The translation returned has overlap
area which is at least (1− ε)μmax(P,Q), where μmax(P,Q) is the maximum area
of overlap of the given polygons.

544 S. Har-Peled and S. Roy

Approach. We break the two polygons into a minimum number of convex parts.
We then approximate the overlap function for each pair of pieces (everywhere).
This is required as one cannot just approximate the two polygons (as done by
Ahn et al. [3]) since the optimal solution does not realize the maximum overlap
of each pair of parts separately, and the alignment of each pair of parts might
be arbitrary.

To this end, if the two convex parts are of completely different sizes, we
approximate the smaller part, and approximate the overlap function by taking
slices (i.e., level sets) of the overlap function. In the other case, where the two
parts are “large”, which is intuitively easier, we can approximate both convex
parts, and then the overlap function has constant complexity. Finally, we overlap
all these functions together, argue that the overlap has low complexity, and find
the maximum area of overlap.

Our approach has some overlap in ideas with the work of Ahn et al. [3].
In particular, a similar distinction between large and small overlap, as done in
Section 4.1 and Section 4.2 was already done in [3, Theorem 17].

Why the “naive” solution fails? The naive solution to our problem is to break
the two polygons into k convex polygons, and then apply to each pair of them the
approximation of Ahn et al. [3]. Now, just treat the input polygon as the union of
their respective approximations, and solve problem using brute force approach.
This fails miserably as the approximation of Ahn et al. [3] captures only the
maximum overlap of the two polygons. It does not, and can not, approximates
the overlap if two convex polygons are translated such that their overlap is “far”
from the maximum configuration, especially if the two polygons are of different
sizes. This issue is demonstrated in more detail in the beginning of Section 4.1.
A more detailed counterexample is presented in the full version of the paper [16].

Paper organization. We start in Section 2 by defining formally the problem, and
review some needed results. In Section 3, we build some necessary tools. Specifi-
cally, we start in Section 3.1 by observing that one can get O(1/ε) approximation
of a convex polygon, where the error is an ε-fraction of the width of the polygon.
In Section 3.2, we show how to compute a level set of the overlap function of two
convex polygons efficiently. In Section 3.3, we show that, surprisingly, the poly-
gon formed by the maximum overlap of two convex polygons, contains (up to
scaling by a small constant and translation) the intersection of any translation of
these two convex polygons. Among other things this implies an easy linear time
constant factor approximation for the maximum overlap (which also follows, of
course, by the result of Ahn et al. [3]). In Section 4, we present the technical
main contribution of this paper, showing how to approximate, by a compact
representation that has roughly linear complexity, the area overlap function of
two convex polygons. In Section 5 we put everything together and present our
approximation algorithm for the non-convex case.

Approximating the Maximum Overlap of Polygons under Translation 545

2 Preliminaries

For any vector t ∈ IR2 and a set Q, let t + Q denote the translation of Q by t;

formally, t + Q =
{
t + q

∣∣∣ q ∈ Q
}

. Also let μ(P,Q) = area(P ∩ Q), which is the

area of overlap of sets P and Q. We are interested in the following problem.

Problem 1. We are given two polygons X and Y in the plane, such that each
can be decomposed into at most k convex polygons. The task is to compute the
translation t of Y, which maximizes the area of overlap between X and t + Y.
Specifically our purpose is to approximate the quantity

μmax(X,Y) = max
t∈IR2

μ(X, t + Y) .

For a polygon P, let |P| denote the number of vertices of P. For X,Y ⊆ IRd,
the set X is contained under translation in Y, denoted by X / Y, if there
exists x such that x + X ⊆ Y.

Unimodal. A function f : IR → IR is unimodal , if there is a value α, such that f
is monotonically increasing (formally, non-decreasing) in the range [−∞, α], and
f is monotonically decreasing (formally, non-increasing) in the interval [α,+∞].

From width to inner radius. For a convex polygon P, the width of P, denoted
by ω(P), is the minimum distance between two parallel lines that enclose P.

Lemma 1 ([14]). For a convex shape X in the plane, we have that the largest
disk enclosed inside X, has radius at least width(X) /2

√
3.

Convex Decomposition of Simple Polygons. A vertex of a polygon is a notch if
the internal angle at this vertex is reflex (i.e. > 180◦). For a non-convex polygon P
with n vertices and r notches, Keil and Snoeyink [17] solves the minimal convex
decomposition problem in O

(
n + r2 min(r2, n)

)
time, that is, they compute a

decomposition of P into minimum number of convex polygons. Observe, that
if the number of components in the minimum convex decomposition is k, the
number of notches r is upper bounded by 2k.

Scaling similarity between polygons. For two convex polygons X and Y, let us
define their scaling similarity , denoted by ssim(X,Y), as the minimum number
α ≥ 0, such that X / αY . Using low-dimensional linear programming, one can
compute ssim(X,Y) in linear time. In particular, the work by Sharir and Toledo
[19] implies the following.

Lemma 2 (ssim). Given two convex polygons X and Y of total complexity n,
one can compute, in linear time, ssim(X,Y), and the translation that realizes it.

546 S. Har-Peled and S. Roy

3 Building Blocks

3.1 A Better Convex Approximation in the Plane

Let B be the minimum volume bounding box of some bounded convex set K ⊆
IRd. We have that v + cdB ⊆ K ⊆ B [15], for some vector v and a constant cd
which depends only on the dimension d. This approximation can be computed
in O(n) time [7], where n is the number of vertices of the convex-hull of K. The
more powerful result showing that a convex body can be approximated by an
ellipsoid (up to a scaling factor of d), is known as John’s Theorem [15].

We need the following variant of the algorithm of Barequet and Har-Peled [7].

Lemma 3. Given a convex polygon Z in the plane, with n vertices, one can
compute, in linear time, a rectangle rZ and a point z, such that z + rZ ⊆ Z ⊆
z + 5rZ.

u

rZ &z

Z

v

wProof. This is all well known, and we include the
details for the sake of completeness. Using rotating
caliper [20] compute the two vertices u and v of Z
realizing its diameter. Let w be the vertex of Z fur-
thest away from uv, Consider the rectangle r′Z having
its base on uv, having half the height of 0uvw, and
contained inside this triangle. Now, let z be the cen-
ter of r′Z, and set rZ = r′Z −z, see figure on the right.
It is now easy to verify that the claim holds with rZ
and z. ��
Observation 1. Given two bodies X,Y ⊆ IR2 and a non-singular affine trans-

formation M, we have
area(X)

area(Y)
=

area(M(X))

area(M(Y))
.

Since a similar construction is described by Ahn et al. [3], we delegate the
proof of this lemma to the full version of this paper [16].

Lemma 4 (approxPolygon). Given a convex polygon P, and a parameter m >
0, we can compute, in O(|P|) time, a convex polygon P′ with O(m) vertices, such
that (i) P′ ⊆ P, and (ii) for any point p ∈ P, its distance from P′ is at most
ω(P) /m, where ω(P) is the width of P.

3.2 The Level Set of the Area of Overlap Function

Definition 1. The superlevel set of a function f : IRd → IR, for a value α is

the set Lα(f) =
{
p ∈ IRd

∣∣∣ f(p) ≥ α
}
. We will refer to it as the α-slice of f .

Lemma 5. Given two convex polygons X and Y, the slice Z = Lα(μ(X, t + Y))
is convex, and has complexity O(m), where m = |X| |Y|. Furthermore, given a
point p ∈ Z, the convex body Z can be computed in O(m logm) time.

The proof is in the full version of the paper [16].

Approximating the Maximum Overlap of Polygons under Translation 547

3.3 The Shape of the Polygon Realizing the Maximum Area
Overlap

In the following, all the ellipses being considered are centered in the origin.

Lemma 6. Given two ellipses E1 and E2, the translation which maximizes their
area of overlap is the one in which their centers are the same points.

Proof. Translate E1 and E2 such that their centers are at the origin. Consider any
unit vector u, translate E2 along the direction of u, and consider the behavior

of the overlap function f(x) = μ
(
E1, E2 + xu

)
, where x varies from −∞ to +∞.

The function f is unimodal [10]. By symmetry, we have

f(x) = μ
(
E1, E2 + xu

)
= μ
(
−E1, −(E2 + xu)

)
= μ
(
E1, E2 − xu

)
= f(−x),

as Ei = −Ei. If the maximum is attained at x �= 0, we will get another maximum
at −x, which implies, as f unimodal, that f(0) = f(x) = f(−x), as desired. ��

EG

EX

−→y + EY

Fig. 3.1.

EX

−→y + EY

EY

−−→y + EY

−−→g + EG

Fig. 3.2.

Lemma 7. Consider two ellipses EX and EY in the plane, and consider any two
vectors x and y, then there is a vector u such that u + (x + EX) ∩ (y + EY) ⊆
2EX ∩ 2EY.

Proof. For the sake of simplicity of exposition, assume that x = 0. Now, consider
the intersection G = EX∩(y + EY), and let EG be the largest area ellipse contained
inside G. John’s theorem implies that there is a translation vector g, such that
g + EG ⊆ G ⊆ g + 2EG, see Figure 3.1.

Observe that g + EG ⊆ EX, and by the symmetry of EG and EX, we have that
−g + EG = −g − EG ⊆ −EX = EX. This by convexity implies that EG ⊆ EX. A
similar argument implies that EG ⊆ EY. As such, EG ⊆ EX ∩ EY.

Thus, we have that G ⊆ g + 2EG ⊆ g + 2EX ∩ 2EY, as desired. ��

548 S. Har-Peled and S. Roy

Lemma 8 ([15, Lemma 22.5]). Any convex set K ⊆ IRd contained in a unit
square, contains a ball of radius area(K) /8

The following lemma is one of our key insights – the maximum area of inter-
section of two polygons contains any intersection of translated copies of these
polygons up to translation and a constant factor scaling.

Lemma 9. Let X and Y be two convex polygons, and let M be the polygon realiz-
ing their maximum area of intersection under translation. Let u be any vector in
the plane, and consider the polygon D = X ∩ (u + Y), then there exists a vector
v such that, v + D ⊆ c0M, for some fixed constant c0.

Proof. Let EX (resp., EY) denote the maximum area ellipse (centered at the
origin) contained inside X (resp. Y). By John’s Theorem, we have x+ EX ⊆ X ⊆
x+2EX and y+EY ⊆ Y ⊆ y+2EY, where x,y are some vector. Let B = EX∩EY,
and let EB be the maximum area ellipse contained inside B. Observe that B is
symmetric and centered at the origin, and by John’s theorem EB ⊆ B ⊆ 2EB.

By Lemma 7, there are vectors z and −→w , such that

D = X ∩ (u + Y) ⊆(x + 2EX) ∩ (z + y + 2EY) ⊆ −→w + 4EX ∩ 4EY = −→w + 4B

⊆ −→w + 8EB.

Applying a similar argument, we have that M ⊆ −→m + 8EB, for some vector −→m.
Apply the linear transformation that maps EB to disk(1/16), where disk(r)

denotes the disk of radius r centered at the origin. By Observation 1, we can
continue our discussion in the transformed coordinates. This implies that M −
−→m ⊆ disk(1/2) (which is contained inside a unit square). By Lemma 8, there is
a vector x1, such that x1 + disk(area(M) /8) ⊆ M.

Observe that B = EX ∩ EY ⊆ (−x + X) ∩ (−y + Y). As such, the area of B
must be smaller than the area of M (by the definition of M). We thus have
area(M) ≥ area(B) ≥ area(EB) = area(disk(1/16)) which is a constant bounded
away from zero. Therefore,

D ⊆ −→w + 8EB = −→w + disk

(
1

2

)
= −→w +

4

area(M)
· disk

(
area(M)

8

)
⊆ −→w +

4

area(M)
(M − x1) ,

which implies the claim. ��

Constant Approximation to the Maximum Overlap

Lemma 10 (constApproxByRect). Let X and Y be two convex polygons, and
let M be the polygon realizing their maximum area intersection under translation.
Then, one can compute, in O(|X| + |Y|) time, a rectangle r, such that r ⊆ u +
M ⊆ crr, where cr is a constant. That is, one can compute a constant factor
approximation to the maximum area overlap in linear time.

Furthermore, for any translation tY, we have that X ∩ (Y + tY) / crr.

Approximating the Maximum Overlap of Polygons under Translation 549

Proof. We are going to implement the algorithmic proof of Lemma 9. Instead of
John’s ellipsoid we use the rectangle of Lemma 3. Clearly, the proof of Lemma 9
goes through with the constants being somewhat worse. Specifically, we compute,
in linear time, vectors x,y, and rectangles rX, rY, such that x+ rX ⊆ X ⊆ x+5rX
and y + rY ⊆ Y ⊆ y + 5rY. Again, compute a rectangle rM, such that rM/5 ⊆
rX ∩ rY ⊆ rM. Arguing as in Lemma 9, and setting r = rM/c3, for some constant
c3, is the desired rectangle. ��

4 Approximating the Overlap Function of Convex
Polygons

Definition 2 Given two convex polygons X and Y in the plane, of total complex-
ity n, and parameters ε ∈ (0, 1), ν, ρ, a function ψ(t) is (ε, ν, ρ)-approximation
of μ(X, t + Y), if the following conditions hold:

(A) ∀t ∈ IR2, we have |μ(X, t + Y) − ψ(t)| ≤ εμmax(X,Y) .
(B) There are convex polygons P1, . . . ,Pν , each of maximum complexity ρ,

such that inside every face of the arrangement A = A(P1, . . . ,Pν), the
approximation function ψ(t) is the same quadratic function.

That is, the total descriptive complexity of ψ(·) is the complexity of the arrange-
ment A.

Algorithm 3 The input is two convex polygons X and Y in the plane, of total
complexity n, and a parameter ε ∈ (0, 1). As a first step, the algorithm is going
to approximate X and Y as follows:

(A) rM ← constApproxByRect(X,Y), see Lemma 10.
(B) T ← affine transformation that maps 2crrM to [0, 1]2.
(C) X′

T ← approxPolygon(T (X) , N) and Y′
T ←

approxPolygon(T (Y) , N).
See Lemma 4, here N =
c4/ε�, and c4 is a sufficiently large constant.

(D) X′ ← T −1(X′
T) and Y′ ← T −1(Y′

T).

4.1 If One Polygon is Smaller than the Other

Y Y′ X
Assume, without loss of generality, that X

is smaller than Y, that is, X can be trans-
lated so that it is entirely contained inside Y
(i.e., ssim(X,Y) ≤ 1, see Lemma 2). The max-
imum area of overlap is now equal to area(X).
The challenge is, that for any approximation
of Y, we can always have a sufficiently small
X which can be placed in Y \ Y′, as shown in the figure on the right. Therefore
for all those translations for which X is placed inside Y \ Y′, our approximation
will show zero overlap, even though the actual overlap is area(X).

To get around this problem, we will first approximate the smaller polygon X,
using our approximation scheme, to get polygon X′, then we will compute level
sets of the overlap function and use them to approximate it.

550 S. Har-Peled and S. Roy

Lemma 11. Given convex polygons X and Y, such that ssim(X,Y) < 1, and pa-
rameter ε > 0, and let X′ be the approximation to X, as computed by Algorithm 3.

Then, we have, for all translations t ∈ IR2, that
∣∣∣μ(X′, t + Y) − μ(X, t + Y)

∣∣∣ ≤
εμmax(X,Y) .

Proof. Consider the overlap of XT = T (X) and YT = T (Y). Lemma 10 implies
that any intersection polygon of XT and YT can be contained (via translation)
in T (crrM) (which is a translation of the square [0, 1/2]2). Clearly, in this case,
XT and X′

T can both be translated to be contained in this square, both con-
tain a disk of constant radius, the maximum distance between XT and X′

T is
O(ε), and the total area of XT \ X′

T is O(ε), as the perimeter of XT ≤ 4. Thus,
setting c4 to be sufficiently large, implies that area(XT \ X′

T) ≤ εμmax(XT ,YT),

as μmax(XT ,YT) = Ω(1). This implies that
∣∣∣μ(X′

T , t + YT) − μ(XT , t + YT)
∣∣∣ ≤

εμmax(XT ,YT) , which implies the claims by applying T −1 to both sides. ��
Therefore, μ(X′, t + Y) is a good approximation for μ(X, t + Y). However,

μ(X′, t + Y) has complexity O
(
|X′|2 |Y|2

)
[10], in the worst case, which is still

too high.

Lemma 12 (approxLevelSet). Given two convex polygons X and Y, of total
complexity n, and a parameter ε, such that ssim(X,Y) < 1, then one can construct
in O
(
n/ε2
)

time, a
(
ε,O(1/ε2), O(n/ε2)

)
-approximation ψ(·) to μ(X, t + Y).

Proof. There is a translation of X such that it is contained completely in Y.
Approximate X from the outside by a rectangle r, using Lemma 3. Next, spread
a grid in r by partitioning each of its edges into O(1/ε) equal length intervals.
Let S be the set of points of the grid that are in X. It is easy to verify, that for
any convex body Z and a translation t, we have∣∣∣∣μ(X, t + Z) − |(t + Z) ∩ S|

|S|

∣∣∣∣ ≤ ε area(X)

Namely, to approximate the overlap area for t+Y, we need to count the number
of points of S that it covers. To this end, for each point p ∈ S, we generate a
180

◦
rotated and translated copy of Y, denoted by Y′

p, such that p ∈ t+Y if and
only if t ∈ Y′

p.

Clearly, the generated set of polygons is the desired
(
ε,O(1/ε2), O(n/ε2)

)
-

approximation ψ(·) to μ(X, t + Y).
The time to build this approximation is O(n/ε2).

We next describe a slightly slower algorithm that generates a slightly better
approximation.

Lemma 13 (approxLevelSet). Given two convex polygons X and Y, of to-
tal complexity n, and a parameter ε, such that ssim(X,Y) < 1, then one can
construct in O

(
ε−2n logn

)
time, a (ε,O(1/ε), O(n/ε))-approximation ψ(·) to

μ(X, t + Y).

The proof is in the full version of the paper [16].

Approximating the Maximum Overlap of Polygons under Translation 551

4.2 If the Two Polygons are Incomparable

The more interesting case, is when the maximum intersection of X and Y is signif-
icantly smaller than both polygons; that is, ssim(X,Y) ≥ 1 and ssim(Y,X) ≥ 1.
Surprisingly, in this case, we can approximate both polygons simultaneously.

Lemma 14. Given convex polygons X and Y, such that ssim(X,Y) ≥ 1 and
ssim(Y,X) ≥ 1, then the widths of XT = T (X) and YT = T (Y), as computed by
Algorithm 3, are bounded by 7.

The proof is in the full version of the paper [16].

Lemma 15. Given two convex polygons X and Y, of total complexity n, and a
parameter ε, such that ssim(X,Y) ≥ 1 and ssim(Y,X) ≥ 1, then one can construct
in O
(
n + 1/ε2

)
time, a (ε,O(1/ε), O(1/ε))-approximation ψ(·) to μ(X, t + Y).

The proof is in the full version of the paper [16].

The result. By combining Lemma 12 and Lemma 15 (deciding which one to
apply can be done by computing ssim(X,Y) and ssim(Y,X), which takes O(n)
time), we get the following.

Lemma 16. Given two convex polygons X and Y, of total complexity n, and
a parameter ε, one can construct in O

(
n/ε2
)

time, a
(
ε,O(1/ε2), O(n/ε2)

)
-

approximation ψ(·) to μ(X, t + Y).

5 Approximating the Maximum Overlap of Polygons

The input is two polygons P and Q in the plane, of total complexity n, each of
them can be decomposed into at most k convex polygons. Our purpose is to find
the translation that maximizes the area of overlap.

The Algorithm. We decompose the polygons P and Q into minimum number
of interior disjoint convex polygons [17], in time O

(
n + k2 min(k2, n)

)
(some of

these convex polygons can be empty). Then, for every pair Pi, Qj , we compute
an
(
ε, O(1/ε2), O(n/ε2)

)
-approximation ψij to the overlap function of Pi and Qj ,

using Lemma 16, where ε = ε/k2.
Next, as each function ψij is defined by an arrangement defined by O(1/ε2)

polygons, we overlay all these arrangements together, and compute for each face
of the arrangement the function ψ =

∑
i,j ψij . Inside such a face this function is

the same, and it is a quadratic function. We then find the global maximum of
this function, and return it as the desired approximation.

Analysis – Quality of approximation. For any translation t, we have that∣∣∣μ(P, t + Q) − ψ(t)
∣∣∣ ≤ k∑

i=1

k∑
j=1

∣∣∣μ(Pi, t + Qj) − ψij(t)
∣∣∣ ≤ k∑

i=1

k∑
j=1

εμmax(Pi,Qj)

≤ εk2μmax(P,Q) ≤ εμmax(P,Q) .

552 S. Har-Peled and S. Roy

Analysis – Running time. Computing each of the k2 approximation function,
takesO

(
(k/ε)2n

)
time. Each one of them is a

(
ε/k,O(k2/ε2), O(k2n/ε2)

)
-approx-

imation, which means that the final arrangement is the overlay ofO(k4/ε2) convex
polygons, each of complexity O(k2n/ε2). In particular, any pair of such polygons
can have at mostO(k2n/ε2) intersection points, and thus the overall complexity of

the arrangement of these polygons is N = O
((
k4/ε2

)2
(k2n/ε2)

)
= O
(
k10ε−6n

)
.

Computing this arrangement can be done by a standard sweeping algorithm.
Observing that every vertical line crosses only O(k4/ε2) segments, imply that
the sweeping can be done in O(log(k/ε)) time per operation, which implies that
the overall running time is

O

(
k2

k2

ε2
n + N log

k

ε

)
= O

(
k10

ε6
n log

k

ε

)
.

The result.

Theorem 4. Given two simple polygons P and Q of total complexity n, one
can compute a translation which ε-approximates the maximum area of overlap

of P and Q. The time required is O(c′n) where c′ =
k10

ε6
log

k

ε
, where k is the

minimum number of convex polygons in the decomposition of P and Q.
More specifically, one gets a data-structure, such that for any query trans-

lation t, one can compute, in O(log n) time, an approximation ψ(t), such that
|ψ(t) − μ(P,Q)| ≤ εμmax(P,Q), where μmax(P,Q) is the maximum area of over-
lap between P and Q.

Note, that our analysis is far from tight. Specifically, for the sake of simplicity
of exposition, it is loose in several places as far as the dependency on k and ε.

Acknowledgments. The authors would like to thank the anonymous referees for
their insightful comments. In particular, the improved construction of Lemma 12
was suggested by an anonymous referee.

References

1. Ahn, H.K., Cheng, S.W., Kweon, H.J., Yon, J.: Overlap of convex polytopes under
rigid motion. Comput. Geom. Theory Appl. 47(1), 15–24 (2014),
http://dx.doi.org/10.1016/j.comgeo.2013.08.001

2. Ahn, H.K., Cheng, S.W., Reinbacher, I.: Maximum overlap of convex polytopes
under translation. Comput. Geom. Theory Appl. 46(5), 552–565 (2013),
http://dx.doi.org/10.1016/j.comgeo.2011.11.003

3. Ahn, H.K., Cheong, O., Park, C.D., Shin, C.S., Vigneron, A.: Maximizing the
overlap of two planar convex sets under rigid motions. Comput. Geom. Theory
Appl. 37(1), 3–15 (2007)

4. Alt, H., Fuchs, U., Rote, G., Weber, G.: Matching convex shapes with respect to
the symmetric difference. Algorithmica 21, 89–103 (1998),
http://citeseer.nj.nec.com/267158.html

http://dx.doi.org/10.1016/j.comgeo.2013.08.001
http://dx.doi.org/10.1016/j.comgeo.2011.11.003
http://citeseer.nj.nec.com/267158.html

Approximating the Maximum Overlap of Polygons under Translation 553

5. Alt, H., Guibas, L.J.: Discrete geometric shapes: Matching, interpolation, and ap-
proximation. In: Sack, J.R., Urrutia, J. (eds.) Handbook of Computational Geom-
etry, pp. 121–153. Elsevier (2000)

6. Avis, D., Bose, P., Toussaint, G.T., Shermer, T.C., Zhu, B., Snoeyink, J.: On the
sectional area of convex polytopes. In: Proc. 12th Annu. Sympos. Comput. Geom.,
pp. 411–412 (1996)

7. Barequet, G., Har-Peled, S.: Efficiently approximating the minimum-volume
bounding box of a point set in three dimensions. J. Algorithms 38, 91–109 (2001),
http://cs.uiuc.edu/~sariel/research/papers/98/bbox.html

8. Barequet, G., Har-Peled, S.: Polygon containment and translational min-hausdorff-
distance between segment sets are 3sum-hard. Internat. J. Comput. Geom.
Appl. 11(4), 465–474 (2001)

9. de Berg, M., Cabello, S., Giannopoulos, P., Knauer, C., van Oostrum, R., Veltkamp,
R.C.: Maximizing the area of overlap of two unions of disks under rigid motion.
In: Hagerup, T., Katajainen, J. (eds.) SWAT 2004. LNCS, vol. 3111, pp. 138–149.
Springer, Heidelberg (2004)

10. de Berg, M., Cheong, O., Devillers, O., van Kreveld, M., Teillaud, M.: Computing
the maximum overlap of two convex polygons under translations. Theo. Comp.
Sci. 31, 613–628 (1998), http://link.springer-ny.com/link/service/
journals/00224/bibs/31n5p613.html

11. Chazelle, B., Liu, D., Magen, A.: Sublinear geometric algorithms. SIAM J. Com-
put. 35(3), 627–646 (2005)

12. Vigneron, A.: Geometric optimization and sums of algebraic functions. ACM Trans.
Algo. 4, 1–4 (2014), http://doi.acm.org/10.1145/2532647

13. Cheong, O., Efrat, A., Har-Peled, S.: On finding a guard that sees most and a shop
that sells most. Discrete Comput. 37(4), 545–563 (2007),
http://link.springer-ny.com/link/service/journals/00454/

14. Gritzmann, P., Klee, V.: Inner and outer j-radii of convex bodies in finite-
dimensional normed spaces. Discrete Comput. Geom. 7, 255–280 (1992),
http://link.springer-ny.com/link/service/journals/00454/

15. Har-Peled, S.: Geometric Approximation Algorithms. Mathematical Surveys and
Monographs, vol. 173. Amer. Math. Soc. (2011)

16. Har-Peled, S., Roy, S.: Approximating the maximum overlap of polygons under
translation. CoRR abs/1406.5778 (2014), http://arxiv.org/abs/1406.5778

17. Keil, J.M., Snoeyink, J.: On the time bound for convex decomposition of simple
polygons. Internat. J. Comput. Geom. Appl. 12(3), 181–192 (2002)

18. Mount, D.M., Silverman, R., Wu, A.Y.: On the area of overlap of translated poly-
gons. Computer Vision and Image Understanding: CVIU 64(1), 53–61 (1996),
http://www.cs.umd.edu/~mount/Papers/overlap.ps

19. Sharir, M., Toledo, S.: Extremal polygon containment problems. Comput. Geom.
Theory Appl. 4, 99–118 (1994)

20. Toussaint, G.T.: Solving geometric problems with the rotating calipers. In: Proc.
IEEE MELECON 1983. pp. A10.02/1–4 (1983)

21. Vigneron, A.: Geometric optimization and sums of algebraic functions. ACM Trans.
Algo. 4, 1–4 (2014), http://doi.acm.org/10.1145/2532647

http://cs.uiuc.edu/~sariel/research/papers/98/bbox.html
http://link.springer-ny.com/link/service/journals/00224/bibs/31n5p613.html
http://link.springer-ny.com/link/service/journals/00224/bibs/31n5p613.html
http://doi.acm.org/10.1145/2532647
http://link.springer-ny.com/link/service/journals/00454/
http://link.springer-ny.com/link/service/journals/00454/
http://arxiv.org/abs/1406.5778
http://www.cs.umd.edu/~mount/Papers/overlap.ps
http://doi.acm.org/10.1145/2532647

Ordering without Forbidden Patterns�

Pavol Hell, Bojan Mohar, and Arash Rafiey

Simon Fraser University, Burnaby, Canada
pavol,mohar,arashr@sfu.ca

Abstract. Let F be a set of ordered patterns, i.e., graphs whose vertices
are linearly ordered. An F-free ordering of the vertices of a graph H is a
linear ordering of V (H) such that none of the patterns in F occurs as an
induced ordered subgraph. We denote by Ord(F) the decision problem
asking whether an input graph admits an F-free ordering; we also use
Ord(F) to denote the class of graphs that do admit an F-free ordering.
It was observed by Damaschke (and others) that many natural graph
classes can be described as Ord(F) for sets F of small patterns (with
three or four vertices). This includes recognition of split graphs, interval
graphs, proper interval graphs, cographs, comparability graphs, chordal
graphs, strongly chordal graphs, and so on. Damaschke also noted that
for many sets F consisting of patterns with three vertices, Ord(F) is
polynomial-time solvable by known algorithms or their simple modifica-
tions. We complete the picture by proving that all these problems can be
solved in polynomial time. In fact, we provide a single master algorithm,
which solves in polynomial time the problem Ord3 in which the input is
a set F of patterns, each with at most three vertices, and a graph H , and
the problem is to decide whether or not H admits an F-free ordering of
the vertices. Our algorithm certifies non-membership by a forbidden sub-
structure, and thus provides a single forbidden structure characterization
for all the graph classes described by some Ord(F) with F consisting
of patterns with at most three vertices. This includes bipartite graphs,
split graphs, interval graphs, proper interval graphs, chordal graphs, and
comparability graphs. Many of the problems Ord(F) with F consisting
of larger patterns have been shown to be NP-complete by Duffus, Ginn,
and Rödl, and we add some additional examples.

We also discuss a bipartite version of the problem, BiOrd(F), in
which the input is a bipartite graph H with a fixed bipartition of the
vertices, and we are given a set F of bipartite patterns. We give a unified
polynomial-time algorithm for all problems BiOrd(F) where F has at
most four vertices, i.e., we solve the analogous problem BiOrd4. This
is also a certifying algorithm, and it yields a unified forbidden substruc-
ture characterization for all bipartite graph classes described by some
BiOrd(F) with F consisting of bipartite patterns with at most four
vertices. This includes chordal bipartite graphs, co-circular-arc bipartite
graphs, and bipartite permutation graphs. We also describe some exam-
ples of digraph ordering problems and algorithms.

We conjecture that for every set F of forbidden patterns, Ord(F) is
either polynomial or NP-complete.

� Supported by NSERC, Canada.

A.S. Schulz and D. Wagner (Eds.): ESA 2014, LNCS 8737, pp. 554–565, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

Ordering without Forbidden Patterns 555

1 Problem Definition and Motivation

For every positive integer k we write [k] = {1, 2, . . . , k}, Ek = {{i, j} | i, j ∈
[k], i �= j}, and Fk = 2Ek . Each element in Fk can be viewed as a labelled
graph on vertex set [k] and is called a pattern of order k, or simply a k-pattern.
Given an input graph H and a linear ordering < of its vertices, we say that
a pattern F ∈ Fk occurs in H (under the ordering <) if H contains vertices
v1 < v2 < · · · < vk such that the induced ordered subgraph on these vertices is
isomorphic to F , i.e., for every i, j ∈ [k], vivj ∈ E(H) if and only if {i, j} ∈ F .
For convenience, we shall henceforth write ij to simplify notation for unordered
pairs {i, j}.

For a set F ⊆ Fk we say that a linear ordering < of V (H) is F-free if none
of the patterns in F occurs in <. The problem Ord(F) asks whether or not
the input graph H has an F -free ordering. We also consider the problem Ordk

that asks, for an input F ⊆ Fk and a graph H , whether or not H has an F -free
ordering.

The problems Ord(F) can be viewed as 2-satisability problems with addi-
tional ordering constraints, or as special ternary constraint satisfaction problems.
In neither of these cases are there general polynomial time algorithms known for
their solution. (See also [15].)

The problems Ord(F) have been studied by Damaschke [5], Duffus, Ginn,
and Rödl [6], and others. In particular, Damaschke lists many graph classes that
can be equivalently described as Ord(F). For example (see [2]), it is well known
that a graph H is chordal if and only if it admits an F -free ordering for F con-
sisting of the single pattern {12, 13}, and H is an interval graph if and only if it
admits an F -free ordering for F consisting of the pattern {{13}, {13, 23}}. Sim-
ilar sets of patterns from F3 describe proper interval graphs, bipartite graphs,
split graphs, and comparability graphs [5]. With patterns from F4 we can addi-
tionally describe strongly chordal graphs [7], circular-arc graphs [22], and many
other graph classes.

Analogous definitions apply to bipartite graphs: a bipartite pattern of order
k is a bipartite graph whose vertices in each part of the bipartition are labelled
by elements of [�] and [�′], respectively, with � + �′ ≤ k. We again denote by
Bk the set of all bipartite patterns of order k. The problem BiOrd(F) for a
fixed F ⊆ Bk asks whether or not an input bipartite graph H with a given
bipartition V (H) = U ∪ V admits an ordering of U and of V so that no pattern
from F occurs. We also define the corresponding problem BiOrdk in which both
F ⊆ Bk and H with V (H) = U ∪ V are part of the input.

Several known bipartite graph classes can be characterized as BiOrd(F) for
F ⊆ B4. For instance, for F = {11′, 31′} (here � = 3, �′ = 1), the class BiOrd(F)
consists precisely of convex bipartite graphs, and F = {{11′, 12′, 21′}, {12′, 21′},
{12′, 21′, 22′}} (here � = �′ = 2) similarly defines bipartite permutation graphs
(a.k.a., proper interval bigraphs) [14,25,26]. One can similarly obtain the classes
of chordal bipartite graphs, and bipartite co-circular arc bigraphs [17].

556 P. Hell, B. Mohar, and A. Rafiey

Summary of Our Main Results

We show that Ord3 and BiOrd4 are solvable in polynomial time. In particu-
lar, this completes the picture analyzed by Damaschke [5], and proves that all
Ord(F) with F ⊆ F3 are polynomial-time solvable; similarly, all BiOrd(F)
with F ⊆ B4 are polynomial-time solvable.

We also discuss digraphs with forbidden patterns on three vertices, and present
two classes of digraphs for which our algorithm can be deployed to obtain the
desired ordering without forbidden patterns.

We further describe sets F ⊆ F4 for which Ord(F) is polynomial time solv-
able and other sets F ⊆ F4 for which the same problem is NP-complete. Many
more NP-complete cases of Ord(F) are presented in [6]; in particular, the au-
thors of [6] conjecture that any F consisting of a single 2-connected pattern
(other than a complete graph) yields an NP-complete Ord(F).

Our master algorithm for Ord3 provides a unified approach to all recognition
problems for classes Ord(F) with F ⊆ F3, including all the well known graph
classes mentioned earlier. Our algorithm is a certifying algorithm, and so it also
provides a unified obstruction characterization for all these graph classes. (We
note that these graphs have different ad-hoc obstruction characterizations [13].)
A similar situation occurs with BiOrd(F) with F ⊆ B4 and classes characterized
as BiOrd(F) with F ⊆ B4, including the well known classes of bipartite graphs
mentioned earlier. We note that these special graph classes received much atten-
tion in the past; efficient recognition algorithms and structural characterizations
can be found in [1,3,4,10,16,23,25,27] and elsewhere, cf. [2,13].

The algorithms use a novel idea of an auxiliary digraph. We believe this will
be useful in other situations, and we have used similar digraphs in [9,19]. The
algorithm for Ord3 runs in time O(n3) where n is the number of vertices of
H and in several cases (when the family F is particularly nice) it runs in time
O(nm), where m is the number of edges of H . The algorithm for BiOrd4 runs
in time O(n4) and in some cases in time O(n2m). We note that several special
cases have recognition algorithms whose time complexity is O(m + n), so we
are definitely paying a price for having a unified algorithm; we note that the
auxiliary digraph we use has Ω(nm) edges, so this technique is not likely to
produce a linear time unified algorithm.

We conjecture that for every set F of forbidden patterns, Ord(F) is either
polynomial or NP-complete and provide some additional evidence for this di-
chotomy.

2 Algorithm for Ord3 on Undirected Graphs

Consider an input graph H and a set of patterns F ⊆ F3. Note that F imposes a
constraint on any three vertices x, y, z of H . This means that whenever (x, y, z)
induce a subgraph isomorphic to a pattern from F and x is before y, then z
must not be after y.

We first construct an auxiliary digraph H+, which we call a constraint digraph.
The vertex set of H+ consists of the ordered pairs (x, y) ∈ V (H)×V (H), x �= y,

Ordering without Forbidden Patterns 557

and the arcs of H+ are defined as follows. There is an arc from (x, y) to (z, y)
and an arc from (y, z) to (y, x) whenever the vertices x, y, z ordered as x < y < z
induce a forbidden pattern in F . We say that a pair (x, y) dominates (x′, y′) and
we write (x, y) → (x′, y′) if there is an arc from (x, y) to (x′, y′) in H+.

Consider a strong component S of H+. The dual component S of S consists
of all the pairs (y, x) where (x, y) ∈ S. Note that if (x, y) → (x, z), then (z, x) →
(y, x), and vice versa.

There are two operations that appear naturally when dealing with orderings
and forbidden patterns [5]. If we replace each pattern in F with its complement
(change edges to nonedges and vice versa), thus obtaining a set F , then a linear
ordering of V (H) is F -free for H if and only if it is F -free for the complementary
graph H . Another equivalence is obtained by replacing F with patterns that
represent the same induced subgraphs but with the reversed order, e.g., replacing
{12, 13} by {32, 31}. Then a linear ordering will be F -free if and only if the
reverse ordering will be free of the reversed patterns. We rely on these two
properties in some of our proofs.

In general, the structure of the digraph H+ depends on the patterns. It is
easy to see that if {12, 23} or {13} is the only forbidden pattern in F ⊂ F3,
then (u, v)(u′, v′) is an arc of H+ if and only if (u′, v′)(u, v) is an arc of H+,
i.e. (u, v)(u′, v′) is a symmetric arc of H+ and hence H+ is a graph. On the
other hand, if {12, 13} is the only forbidden pattern in F , then H+ is a digraph
without digons and if (u, v)(u′, v′) is an arc, then (u′, v′)(u, v) is not an arc of
H+.

If all pairs (x0, x1), (x1, x2), ..., (xn−1, xn), (xn, x0), n ≥ 1, are in the same
subset D of V (H+) then we say that (x0, x1), (x1, x2), ..., (xn−1, xn), (xn, x0) is
a circuit in D.

Lemma 1. Let F ⊆ F3 and let H+ be the constraint digraph of H with respect
to F . If there exists a circuit in a strong component S of H+, then H has no
F-free ordering.

Proof. For a contradiction suppose < is an F -free ordering. Consider a circuit
(x0, x1), . . . , (xn−1, xn), (xn, x0) in S. Since S is strong, there is a directed path
Pi from (xi, xi+1) to (xi+1, xi+2) in S. If xi < xi+1 then following the path Pi in
S we conclude that we must have xi+1 < xi+2. Thus, if x0 < x1, then eventually
by following each Pj , 0 ≤ j ≤ n, we conclude that x0 < x1 < · · · < xn < x0.
This is a contradiction. Thus we must have x1 < x0. Now there is a path P ′

i in
S and hence by following the paths P ′

i we eventually conclude that x1 < x0 <
xn < · · · < x2 < x1, yielding a contradiction. ��

Lemma 2. (a) Suppose ∅ ∈ F ⊆ F3.
If H contains an independent set of three vertices, then H+ has a strong

component with a circuit and H has no F-free ordering.
Otherwise H+ is the same for F and for (F \ {∅}), and H has an F-free

ordering if and only if it has an (F \ {∅})-free ordering.
(b) Suppose {12, 13, 23} ∈ F ⊆ F3.

558 P. Hell, B. Mohar, and A. Rafiey

If H contains a triangle, then H+ has a strong component with a circuit and
H has no F-free ordering.

Otherwise H+ is the same for F and for (F \ {∅}), and H has an F-free
ordering if and only if it has an (F \ {{12, 13, 23}})-free ordering.

Proof. We only prove part (a) since the proof of (b) is similar.
Let a, b, c be pairwise nonadjacent vertices of H . If ∅ ∈ F , then (a, b) → (c, b),

and (c, b) → (a, b), thus (a, b) and (c, b) are in the same strong component of
H+. Similarly, we have (a, b) → (a, c), and (a, c) → (a, b), thus (a, b) and (a, c)
are in the same strong component of H+. By symmetry, applied to other pairs,
we conclude that all ordered pairs of two distinct vertices from the set {a, b, c}
are in the same strong component S of H+. Clearly, (a, b), (b, a) is a circuit in S.

As for the second part of the claim, if H has no independent set of three
vertices, then ∅ contributes no restriction to orderings of V (H), so both claims
follow. ��

Our main result is the following theorem which implies that Ord3 is solvable
in polynomial time. (In fact, its proof will amount to a polynomial-time algorithm
to actually construct an F -free ordering if one exists.)

Theorem 1. Let F ⊆ F3 and let H+ be the constraint digraph of H with respect
to F . Then H has an F-free ordering if and only if no strong component of H+

contains a circuit.

Theorem 1 will follow from the correctness of our algorithm for Ord3. The
proof of correctness will be given in a full journal version of this note [18].

Note that Theorem 1 provides a universal forbidden substructure (namely a
circuit in a strong component of H+) characterizing the membership in graph
classes as varied as chordal graphs, interval graphs, proper interval graphs, com-
parability graphs, and co-comparability graphs.

We say a strong component S of H+ is a sink component if there is no arc
from S to a vertex outside S in H+. Consider a subset D of the pairs in V (H+).
We say that a strong component S of H+ \ (D ∪D) is green with respect to D
if there is no arc from an element of S to a vertex in H+ \ (D ∪D ∪ S). This is
equivalent to the condition that S is a sink component in H+ \ (D ∪D).

In the algorithm below, we start with an empty set D and we construct the
final set D step by step. After each step of the algorithm, D (and hence also
D) is the union of vertex-sets of strong components of H+ and neither D nor
D contains a circuit. Each strong component S of H+ either belongs to D or D
or V (H+) \ (D ∪ D). At the end of the algorithm D ∪ D is a partition of the
vertices (pairs) in V (H+) such that whenever (x, y), (y, z) ∈ D then (x, z) ∈ D.
We will say that D satisfies transitivity condition. At the end of the algorithm
we place x before y whenever (x, y) ∈ D and we obtain the desired ordering. We
say a strong component is trivial if it has only one element otherwise it is called
non-trivial.

Ordering without Forbidden Patterns 559

Ordering with forbidden 3-patterns, Ord3

Input: A graph H and a set F ⊆ F3 of forbidden patterns on three vertices
Output: An F -free ordering of the vertices of H or report that there is no such
ordering.

Algorithm for Ord3

1. If a strong component S of H+ contains a circuit then report that no solution
exists and exit. Otherwise, remove ∅ and {12, 13, 23} from F . If F is empty
after this step, then return any ordering of vertices of H and stop.

2. Set D to be the empty set.
3. Choose a strong component S of H+ that is green with respect to D. The

choice is made according to the following rules.
a) If F contains one of the forbidden patterns {13, 23}, {12, 13}, {12, 23},
then the priority is given to strong components containing a pair (x, y) with
xy ∈ E(H). If there is a choice then it is preferred S to be a trivial com-
ponent. Subject to these preferences, if there are several candidates, then
priority is given to the ones that are sink components in H+.
b) If F contains one of {12}, {23}, {13}, then priority is given to a strong
component S containing (x, y) with xy �∈ E(H). If there is a choice, then the
priority is given to trivial components, and if there are several candidates
for S, then preference is given to the sink components in H+.

4. If by adding S into D we do not close a circuit, then we add S into D and
discard S. Otherwise we add S and its outsection (all vertices in H+ that
are reachable from S) into D and discard S and its insection (the vertices
that can reach S). Return to Step 3 if there are some strong components of
H+ left.

5. For every (x, y) ∈ D, place x before y in the final ordering.

Our proof of the correctness of the algorithm will, in particular, also imply
Theorem 1.

Corollary 1. Each problem Ord(F) with F ⊆ F3 can be solved in polynomial
time.

Remark. Our algorithm is linear in the size of H+. The number of edges in
H+ is at most n3 since each pair (x, y) has at most n out-neighbors. Thus the
algorithms runs in O(n3), where n = |V (H)|. In some cases, e.g., when |F| = 1,
this can be improved to O(nm), where m = |E(H)|.

2.1 Characterization of Obstructions

Many of the known graph classes discussed here have obstruction characteriza-
tions, usually in terms of forbidden induced subgraphs or some other forbidden
substructures. A typical example is chordal graphs, whose very definition is a
forbidden induced subgraph description: no induced cycles of length greater than
three. Interval graphs have been characterized by Lekkerkerker and Boland [21]

560 P. Hell, B. Mohar, and A. Rafiey

as not having an induced cycle of length greater than three, and no substruc-
ture called an asteroidal triple. Proper interval graphs have been characterized
by the absence of induced cycles of length greater than three, and three spe-
cial graphs usually called net, tent, and claw [29]. Comparability graphs have a
similar forbidden substructure characterization [11].

The constraint digraph offers a natural way to define a common obstruction
characterization for all these graph classes. In fact, Theorem 1 can be viewed as
an obstruction characterization of Ord(F) for any F ⊆ F3, i.e., each of these
classes is characterized by the absence of a circuit in a strong component of
the constraint digraph. Moreover, our algorithm is a certifying algorithm, in the
sense that when it fails, it identifies a circuit in a strong component of H+.

For some of the sets F ⊆ F3, we have an even simpler forbidden substructure
characterization. We say x, y is an invertible pair of H if (x, y) and (y, x) belong
to the same strong component of H+. (Thus an invertible pair is precisely a
circuit of length two.) We say F is nice if it is one of the following sets

{{13}}, {{12, 23}}, {{13}, {13, 23}}, {{13}, {12, 13}, {13, 23}}.

By following the correctness proof of our algorithm, it will be seen that if
F is nice, then the algorithm does not create a circuit as long as every strong
component S of H+ has S ∩ S = ∅. Thus we obtain the following theorem for
nice sets F .

Theorem 2. Suppose F is nice. A graph H admits an F-free ordering if an
only if it does not have an invertible pair. ��

In fact the correctness proof will show that if there is any circuit in a strong
component of H+, then there is also a circuit of length two.

Theorem 2 applies to, amongst others, interval graphs, proper interval graphs,
comparability graphs and co-comparability graphs.

3 Forbidden Patterns in Bipartite Graphs

In this section we consider bipartite graphs H with a fixed bipartition U ∪V . We
prove that BiOrd4 is polynomial-time solvable, and so BiOrd(F) is polynomial-
time solvable for each F ⊆ B4. Each forbidden pattern F ∈ F imposes con-
straints for those 4-tuples of vertices that induce a subgraph isomorphic to F .
We construct an auxiliary digraph H+, that we also call a constraint digraph.
The vertex set of H+ consists of the pairs (x, y) ∈ (U × U) ∪ (V × V), where
x �= y, and the arc-set of H+ is defined as follows.

There is an arc from (x, y) to (z, y) and an arc from (y, z) to (y, x) whenever
the vertices x, y, z from the same part (U or V) of the bipartition, ordered
x < y < z, together with some vertex v from the other part of the bipartition
(V or U), induce a forbidden pattern in F . There is also an arc from (x, y) to
(u, v) and an arc from (v, u) to (y, x) whenever the vertices x, y from the same
part, ordered as x < y, together with vertices u, v from the other part, ordered
as v < u, induce a pattern in F .

Ordering without Forbidden Patterns 561

We say that a pair (x, y) dominates (x′, y′) and we write (x, y) → (x′, y′) if
there is an arc from (x, y) to (x′, y′) in H+.

A circuit in a subset D of H+ is a sequence of pairs (x0, x1), (x1, x2), . . . ,
(xn−1, xn), (xn, x0), n ≥ 1, that all belong to D. Observe that x0, x1, . . . , xn

belong to the same bipartition part of V (H).

Ordering with bipartite forbidden 4-patterns, BiOrd4

Input: A bigraph H = (U, V) and a set F ⊆ B4 of bipartite forbidden patterns
on four vertices
Output: And ordering of the vertices in U and an ordering of the vertices in V
that is a F -free ordering or report that there is no such ordering.

Algorithm for BiOrd4

1. If a strong component S of H+ contains a circuit then report that no solution
exists and exit. Otherwise, remove ∅, {11′, 12′, 21′, 22′}, {11′, 21′, 31′} and
{11′, 22′, 13′} from F . If F is empty after this step, then return any ordering
of vertices of H and stop.

2. Set D to be the empty set.
3. Choose a strong component S of H+ that is green with respect to D. The

choice is made according to the following rules.
a) If F contains one of the forbidden patterns {11′, 12′, 21′}, {12′, 21′, 22′},
{11′, 12′, 22′}, {11′, 21′, 22′} then priority is given to a component S contain-
ing (x, y) where x, y have a common neighbor in H . If there is a choice then
it is preferred S to be a trivial component. Subject to these preferences, if
there are several candidates, then priority is given to the ones that are sink
components in H+.
b) If F contains one of the forbidden patterns {11′}, {22′}), {12′}, {21′} then
priority is given to a component S containing (x, y) where x, y have a com-
mon non-neighbor in H . If there is a choice then it is preferred S to be a
trivial component. Subject to these preferences, if there are several candi-
dates, then priority is given to the ones that are sink components in H+.

4. If by adding S into D we do not close a circuit, then we add S into D and
discard S. Otherwise we add S and its outsection (all vertices in H+ that
are reachable from S) into D and discard S and its insection (the vertices
that can reach S). Return to Step 3 if there are some strong components of
H+ left.

5. For every (x, y) ∈ D, place x before y in the final ordering.

A polynomial-time solution to BiOrd4 is implicit in the following fact, the
main result of this section.

Theorem 3. Let F ⊆ B4 and let H+ be the constraint digraph of H with re-
spect to F . Then H has an F-free ordering of its parts if and only if no strong
component of H+ contains a circuit.

The proof, and the correctness of the algorithm will also be proved in the full
version [18].

562 P. Hell, B. Mohar, and A. Rafiey

Corollary 2. Each problem BiOrd(F) with F ⊆ F4 can be solved in polynomial
time.

3.1 Obstruction Characterizations

It is similarly the case that the constraint digraph offers a unifying concept
of an obstruction for graph classes BiOrd(F), F ⊆ B4. Namely, Theorem 3
characterizes all these classes by the absence of a circuit in a strong component
of the constraint digraph. In some cases we can again simplify the obstructions
to a bipartite version of invertible pairs.

An invertible pair of H is a pair of vertices u, v from the same part of the
bipartition such that both (u, v) and (v, u) lie on the same directed cycle of H+.
Thus a circuit of length two in a strong component of H+ corresponds precisely
to an invertible pair.

For our first illustration we discuss the case of co-circular-arc bigraphs. A
co-circular-arc bigraph is a bipartite graph whose complement is a circular arc
graph. A complex characterization of co-circular-arc graphs by seven infinite
families of forbidden induced subgraphs has been given in [27], later simplified
to a Lekerkerker-Boland-like characterization by forbidden induced cycles and
edge asteroids in [8]. These graphs seem to be the bipartite analogues of interval
graphs, see [8]. One reason may be that co-circular-arc bigraphs are precisely
the intersection graphs of 2-directional rays [24].

We observe the following simple characterization.

Theorem 4. Let H = (B,W) be a bipartite graph. Then the following are equiv-
alent.

(1) H is a co-circular-arc bigraph.
(2) H admits an F-free ordering where F = {{12′, 21′}, {12′, 21′, 22′}}.
(3) H has no invertible pair.

Proof. It was shown in [20] that (1) and (2) are equivalent. (In [20] F -free order-
ings are described by an equivalent notion of so-called min orderings.) According
to proof of Theorem 3 for F we assume that H does not have an invertible pair.
Therefore (2) and (3) are equivalent and hence the theorem is proved. ��

A bipartite graph G = (V, U) is called proper interval bigraph if the vertices in
each part can be represented by an inclusion-free family of intervals, and a vertex
from V is adjacent to a vertex from U if and only if their intervals intersect. They
are also known as bipartite permutation graphs [14,25,26].

Theorem 5. Let H = (B,W) be a bipartite graph. Then the following are equiv-
alent.

(1) H is a proper interval bigraph
(2) H admits an F-free ordering where F = {{12′, 21′}, {12′, 21′, 22′},

{11′, 12′, 21′}}.
(3) H does not have an invertible pair.

Ordering without Forbidden Patterns 563

Proof. It was noted in [14] that H admits an F -free ordering if and only if H is a
bipartite permutation graph (proper interval bigraph). (In [14] F -free orderings
are described by an equivalent notion of min-max orderings.) Therefore (1) and
(2) are equivalent. It is easy to see that if no strong component of H+ contains
a circuit of length two, i.e. if H has no invertible pair, then the Algorithm for
BiOrd4 does not create a circuit. Therefore (2) and (3) are equivalent and hence
the theorem is proved. ��

4 Remarks and Conclusions

As noted earlier, Duffus, Ginn, and Rödl have found many examples of NP-
complete problems Ord(F); in fact if F consists of a single ordered pattern,
they offered strong evidence that Ord(F) may be NP-complete as soon as the
pattern is 2-connected. We offer just two simple examples to illustrate some
NP-complete cases.

Proposition 1. For every k ≥ 4 there exists a set F ⊆ Fk such that Ord(F)
is NP-complete.

Proof. We show that if F is a set of all those forbidden patterns on k vertices,
which contain {12, 23, 34, . . . , (k− 1)k} as a subset, then Ordk is NP-complete.
We reduce the problem to (k − 1)-colorability. Let H be an arbitrary graph. If
H is (k − 1)-colorable with color classes X1, X2, . . . , Xk−1, then we put all the
vertices in Xi before all the vertices in Xi+1, 1 ≤ i ≤ k− 2. This way we obtain
an ordering of the vertices and it is clear that it does not contain any of the
forbidden patterns in F .

Now suppose there is an ordering v1, v2, . . . , vn of the vertices in H without
seeing any forbidden pattern in F . Let X1 be the set of vertices vj , 1 ≤ j ≤ n
that have no neighbor before vj . Now for every 2 ≤ i ≤ k − 1, let Xi be the
set of vertices vj , 1 ≤ j ≤ n, from the set Yi = V (H) \ (∪i−1

�=1X�) that have no
neighbor in Yi that is before vj . Note that by definition each Xi, 1 ≤ i ≤ k− 1 is
an independent subset of H . Moreover V (H) = ∪k−1

�=1X� as otherwise we obtain
k vertices u1 < u2 < · · · < uk where ujuj+1, 1 ≤ j ≤ k − 1, is an edge of H and
hence we find a forbidden pattern from F . Thus H is (k − 1)-colorable. ��

We note that in Damaschke’s paper [5] the complexity of Ord(F) was left
open for F = {12, 23, 34}. (However, other folklore solutions for this particular
case have been reported since.)

In the case of bipartite graphs, we offer the following simple example.

Proposition 2. BiOrd(F) is NP-complete for the set F = {{11′, 31′, 51′}}.

Proof. Let M be an m× n matrix with entities 0 and 1. Finding an ordering of
the columns such that in each row there are at most two sequences of consecutive
1’s has been shown to be NP-complete in [12]. Now from an instance of a matrix
M we construct a bipartite graph H = (A,B,E) where A represents the set of
columns and B represents the set of rows in M . There is an edge between a ∈ A

564 P. Hell, B. Mohar, and A. Rafiey

and b ∈ B if the entry in M , corresponding to row a and column b is 1. Now if
we were able to reorder to columns with the required property we would be able
to find the ordering of H without seeing the forbidden pattern in F and vice
versa. ��

There are natural polynomial problems Ord(F) for sets F of larger patterns.
For instance, strongly chordal graphs are characterized as Ord(F),F ⊆ F4, in
[7]. In fact, an algorithm similar to the one presented here can be developed for
this case. (The authors will be happy to communicate the details to interested
readers.)

There is a natural version of Ord(F) for digraph patterns F . We are given an
input digraph H and a set F of forbidden digraph patterns (each digraph pattern
is an ordered digraph). The decision problem asking whether an input digraph
admits an ordering without forbidden patterns in F is denoted by DiOrd(F).
Let Dk denote the collection of sets F of digraph patterns with k vertices. The
problem DiOrdk asks, for an input F ⊆ Dk and a digraph H , whether or not
H has an F -free ordering.

The algorithms in [9,19] illustrate two cases where DiOrd(F) problems have
been solved by algorithms similar to the algorithm for Ord3, and the obstruc-
tions characterized as invertible pairs. (The problems in [9,19] are not presented
as Ord(F), but they can easily be so reformulated.) We believe many other di-
graph problems can be similarly handled. In fact we wonder whether the problem
DiOrd(F) is polynomial for every set D ∈ D3 .

We conjecture that for every set F of forbidden patterns, Ord(F) is either
polynomial or NP-complete.

References

1. Booth, K.S., Lueker, G.S.: Testing for the consecutive ones property, interval
graphs, and graph planarity using PQ-tree algorithms. Journal of Computer and
System Sciences 13(3), 335–379 (1976)

2. Brandstädt, A., Le, V.B., Spinrad, J.: Graph Classes: A Survey. SIAMMonographs
on Discrete Mathematics and Applications (1999)

3. Calamoneri, T., Caminiti, S., Petreschi, R., Olariu, S.: On the L(h,k)-labeling of
co-comparability graphs and circular-arc graphs. Networks 53(1), 27–34 (2009)

4. Corneil, D.G., Olariu, S., Stewart, L.: The LBFS Structure and Recognition of
Interval Graphs. SIAM J. Discrete Math. 23(4), 1905–1953 (2009)

5. Damaschke, P.: Forbidden Ordered Subgraphs. Topics in Combinatorics and Graph
Theory, pp. 219–229 (1990)

6. Duffus, D., Ginn, M., Rödl, V.: On the computational complexity of ordered sub-
graph recognition. Random Structures and Algorithms 7(3), 223–268 (1995)

7. Farber, M.: Characterizations of strongly chordal graphs. Discrete Mathemat-
ics 43(2-3), 173–189 (1983)

8. Feder, T., Hell, P., Huang, J.: List homomorphisms and circular arc graphs. Com-
binatorica 19, 487–505 (1999)

9. Feder, T., Hell, P., Huang, J., Rafiey, A.: Interval graphs, adjusted interval graphs
and reflexive list homomorphisms. Discrete Appl. Math. 160, 697–707 (2012)

Ordering without Forbidden Patterns 565

10. Fulkerson, D.R., Gross, O.A.: Incidence matrices and interval graphs. Pacific J.
Math., 835–855 (1965)

11. Gallai, T.: Transitiv orientierbare Graphen. Acta Math. Acad. Sci. Hung 18, 25–66
(1967)

12. Goldberg, P.W., Golumbic, M.C., Kaplan, H., Shamir, R.: Four strikes against
physical mapping of DNA. J. Comput. Biol., 139–152 (1995)

13. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Academic Press
(1980)

14. Gutin, G., Hell, P., Rafiey, A., Yeo, A.: A dichotomy for minimum cost graph
homomorphisms. European J. Combinatorics 29, 900–911 (2008)

15. Guttmann, W., Maucher, M.: Variations on an ordering theme with constraints.
In: Navarro, G., Bertossi, L., Kohayakawa, Y. (eds.) Proc. 4th IFIP International
Conference on Theoretical Computer Science, TCS 2006. IFIP, vol. 209, pp. 77–90.
Springer, Heidelberg (2006)

16. Habib, M., McConnell, R.: Ch. Paul and L. Viennot. Lex-BFS and Partition Re-
finement, with Applications to Transitive Orientation, Interval Graph Recognition,
and Consecutive Ones Testing 234, 59–84 (2000)

17. Hell, P., Huang, J.: Interval bigraphs and circular arc graphs. Journal of Graph
Theory 46, 313–327 (2004)

18. Hell, P., Mohar, B., Rafiey, A.: Ordering without forbidden patterns, arXiv (2014)
19. Hell, P., Rafiey, A.: Monotone Proper Interval Digraphs. SIAM J. Discrete

Math. 26(4), 1576–1596 (2012)
20. Hell, P., Mastrolilli, M., Nevisi, M.M., Rafiey, A.: Approximation of Minimum Cost

Homomorphisms. In: Epstein, L., Ferragina, P. (eds.) ESA 2012. LNCS, vol. 7501,
pp. 587–598. Springer, Heidelberg (2012)

21. Lekkerkerker, C.G., Boland, J.C.: Representation of a finite graph by a set of
intervals on the real line. Fundamenta Math. 51, 45–64 (1962)

22. Lin, M.C., Szwarcfiter, J.L.: Characterizations and recognition of circular-arc
graphs and subclasses: A survey. Discrete Mathematics 309(18), 5618–5635 (2009)

23. Rose, D., Lueker, G., Tarjan, R.E.: Algorithmic aspects of vertex elimination on
graphs. SIAM Journal on Computing 5(2), 266–283 (1976)

24. Shrestha, A.M.S., Tayu, S., Ueno, S.: On orthogonal ray graphs. Discrete Applied
Math. 158, 1650–1659 (2010)

25. Spinrad, J.P., Brandstaedt, A., Stewart, L.: Bipartite permutation graphs. Discrete
Applied Math. 18, 279–292 (1987)

26. Spinrad, J.: Efficient Graph Representations. AMS (2003)
27. Trotter, W.T., Moore, J.: Characterization problems for graphs, partially ordered

sets, lattices, and families of sets. Discrete Math. 16, 361–381 (1976)
28. Trotter, W.T.: Combinatorics and Partially Ordered Sets–Dimension Theory. The

Johns Hopkins University Press (1992)
29. Wegner, G.: Eigenschaften der Nerven homologisch-einfacher Familien im Rn,

Ph.D. thesis, University of Göttingen (1967)

Halving Balls in Deterministic Linear Time�

Michael Hoffmann1, Vincent Kusters1, and Tillmann Miltzow2

1 Department of Computer Science, ETH Zürich, Switzerland
{hoffmann,vincent.kusters}@inf.ethz.ch

2 Institute of Computer Science, Freie Universität Berlin, Germany
miltzow@mi.fu-berlin.de

Abstract. Let D be a set of n pairwise disjoint unit balls in Rd and P
the set of their center points. A hyperplane H is an m-separator for D if
each closed halfspace bounded by H contains at least m points from P .
This generalizes the notion of halving hyperplanes (n/2-separators). The
analogous notion for point sets has been well studied. Separators have
various applications, for instance, in divide-and-conquer schemes. In such
a scheme any ball that is intersected by the separating hyperplane may
still interact with both sides of the partition. Therefore it is desirable
that the separating hyperplane intersects a small number of balls only.

We present three deterministic algorithms to bisect or approximately
bisect a given set of n disjoint unit balls by a hyperplane: firstly, a linear-
time algorithm to construct an αn-separator in Rd, for 0 < α < 1/2,
that intersects at most cn(d−1)/d balls, where c depends on d and α. The
number of balls intersected is best possible up to the constant c. Secondly,
we present a near-linear time algorithm to find an (n/2−o(n))-separator
in Rd that intersects o(n) balls. Finally, we give a linear-time algorithm
to construct a halving line in R2 that intersects O(n(5/6)+ε) disks.

Our results improve the runtime of a disk sliding algorithm by Bereg,
Dumitrescu and Pach. In addition, our results improve and derandomize
an algorithm to construct a space decomposition used by Löffler and
Mulzer to construct an onion decomposition for imprecise points.

1 Introduction

Let D be a set of n pairwise disjoint unit balls in Rd and P the set of their
center points. A hyperplane H is an m-separator for D if each closed halfspace
bounded by H contains at least m points from P . This generalizes the notion of
halving hyperplanes, which correspond to n/2-separators. The analogous notion
of separating hyperplanes for point sets has been well studied (see, e.g, [11]
for a survey). Separators have various applications, for instance in divide-and-
conquer schemes In such a scheme any ball that is intersected by the separating
hyperplane may still interact with both sides of the partition. Therefore it is
desirable that the separating hyperplane intersects a small number of balls only.
� Partially supported by the ESF EUROCORES programme EuroGIGA, CRP GraDR

and the Swiss National Science Foundation, SNF Project 20GG21-134306.

A.S. Schulz and D. Wagner (Eds.): ESA 2014, LNCS 8737, pp. 566–578, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

Halving Balls in Deterministic Linear Time 567

Fig. 1. A set of 18 disks and three separators. The dashed line forms a 6-separator.
Both the solid line and the dotted line are halving lines. The solid line is preferable to
the other two lines because it separates perfectly and does not intersect any disk.

Alon et al. [1] prove that for any set D in R2, there is a direction such that
every line in this direction intersects O(

√
n logn) disks. In particular, this guar-

antees the existence of a halving line that intersects O(
√
n logn) disks. This

result does not immediately extend to Rd. Löffler and Mulzer [10] observed that
this proof gives a randomized linear-time algorithm to find such a halving line.
In this paper, we present three deterministic algorithms to find an m-separator
that intersects o(n) balls, for various m.

Theorem 1. Given a set D of n pairwise disjoint unit balls in Rd and any
α ∈ (0, 1/2), one can construct in O(nd2/(1 − 2α)) time a hyperplane H that
intersects O(d3(n/(1 − 2α))(d−1)/d) balls from D and such that each closed half-
space bounded by H contains at least αn balls from D (for n sufficiently large,
depending on d and α).

Theorem 2. Given a set D of n pairwise disjoint unit balls in Rd and a function
f(n) ∈ ω(1) ∩ O(log n), one can construct in O(nd2f(n)) time a hyperplane H
such that each closed halfspace bounded by H contains at least n

2 (1 − 1/f(n)) =
n
2 (1 − o(1)) balls from D (for n sufficiently large, depending on d).

Theorem 3. For any set D of n pairwise disjoint unit disks in R2 and any
ε > 0 one can construct in O(n) time a line � that intersects O(n(5/6)+ε) disks
from D and such that each closed halfplane bounded by � contains at least n/2
centers of disks from D.

We develop a generic algorithm in Rd that can be instantiated with different
parameters to obtain the first two theorems. Note that Theorem 2 improves the
separation of the center points (compared to Theorem 1) at the cost of increasing
the running time slightly. Theorem 3 computes a true halving line in the plane.

Related work. Bereg at el. [4] (see also [13, Lemma 9.3.2]) strengthen the result
of Alon et al. slightly by proving that there exists a direction such that any line
with this direction has O(

√
n logn) disks within constant distance. They use this

lemma to prove that one can always move a set of n unit disks from a start
to a target configuration in 3n/2 + O(

√
n logn) moves. Their algorithm runs in

568 M. Hoffmann, V. Kusters, and T. Miltzow

O(n3/2(logn)
−1/2

) time, which Theorem 3 improves to O(n log n) (simply by
replacing part of their algorithm).

Held and Mitchell [7] introduced a paradigm to model data imprecision where
the location of a point is not known exactly. Instead, for each point we are
given a unit disk that is guaranteed to contain it. After preprocessing the disks
in O(n log n) time, they can construct a triangulation of the actual point set
in linear time. Löffler and Mulzer [10] follow the same model to construct the
onion layer of an imprecise point set. They observed that the proof by Alon et al.
immediately gives a randomized expected linear-time algorithm to find a halving
line that intersects O(

√
n logn) unit disks with probability at least 1/2. Using

this algorithm they compute a (α, β)-space decomposition tree: a data structure
similar to a binary space partition in which every line is an αk-separator that
intersects at most kβ disks. They show that such a (1/2 + ε, 1/2 + ε) space
decomposition tree can be computed in O(n log n) expected time, for every ε > 0.
Theorem 1 improves this to O(n log n) deterministic time. They also present a
simple deterministic linear-time algorithm that guarantees that at least n/10
of the disks are completely on each side of some axis-parallel line. Next, they
describe a more sophisticated, deterministic O(n logn) algorithm to compute a
line � such that there are at least n/2− cn5/6 disks completely to each side of �.
The algorithm uses an r-partition of the plane [12] to find good candidate lines.
Theorem 3 can be used to improve running time of this algorithm to O(n).

Tverberg [15] studies a related question. He proves that for every natural
number k there is a number K(k), such that given convex pairwise disjoint sets
C1, . . . , CK(k), there always exists a line with some set completely on one side
and k sets completely on the other side. Finally, the question has a continuous
counterpart that has been solved recently [6].

Organization. In Section 2 we develop a generic algorithm to compute a separa-
tor in Rd, where the trade-off between the number of intersected disks and the
number of disk centers on each side is determined by a parameter. Theorem 1
and Theorem 2 follow from specific instances of this generic algorithm. Section 3
is devoted to the proof of Theorem 3. Our algorithm follows the approach used
in the linear-time ham-sandwich cut algorithm [9]. It divides the line arrange-
ment dual to the set of disk center points by vertical lines such that each slab
(the region bounded by two consecutive vertical lines) contains at most a con-
stant fraction of the vertices of the arrangement. In each iteration, the algorithm
chooses one slab to continue with and discards the rest of the arrangement. Due
to space contraints, we have to omit a number of proofs in this extended abstract.

2 Separating Balls in Rd

In this section, we develop a generic algorithm to compute a separator for a
given set of pairwise disjoint unit balls in Rd. Using this generic algorithm, we
will give two algorithms to compute an approximately halving hyperplane that
intersects a sublinear number of balls.

Halving Balls in Deterministic Linear Time 569

In addition to the set D of n balls in Rd, the generic algorithm has two more
parameters. First, a number b ∈ {1, . . . , n} that quantifies the quality of the
approximation: we will show that the hyperplane constructed by the algorithm
forms an (n − b)/2-separator for D. The main step of the algorithm consists in
finding a direction d such that we are guaranteed to find a desired separator
that is orthogonal to d. A second parameter k ∈ N of the algorithm specifies the
number of different directions to generate and test during this step. As a rule
of thumb, generating more directions results in a better solution, but the run-
time of the algorithm increases proportionally. The algorithm works for certain
combinations of these parameters only, as detailed in the following theorem.

Theorem 4. Given a set D of n pairwise disjoint unit balls in Rd and param-
eters b ∈ {1, . . . , n} and k ∈ N that satisfy the conditions

dn ≤ kb and (1)

t :=

(
Vd

2d(d−2)/2

)1/d
n1/d

k2−1/d
> 2, (2)

(where Vd ∼ (
√
dπ)−1(2πe/d)d/2 is the volume of the d-dimensional unit ball),

one can construct in O(kdn) time a hyperplane H that intersects at most 2b/(t−
2) balls from D and such that each closed halfspace bounded by H contains at
least (n− b)/2 balls from D.

More interesting than Theorem 4 in its full generality are the special cases
stated as Theorem 1 and Theorem 2 above. Theorem 1 describes a version with
running time linear in n and can be obtained by choosing b =
(1 − 2α)n� and
k =
d/(1− 2α)� for α ∈ (0, 1/2). Theorem 2 describes a version that achieves a
separator that halves up to a lower order term. It can be obtained by choosing
b =
n/f(n)� and k =
df(n)� for a a very slowly growing function f(n).

Overview of the algorithm. Our algorithm consists of two steps. In the first step,
we find a direction in which the balls from D are “spread out nicely”. More
precisely, for an arbitrary (oriented) line � consider the set P of points that
results from orthogonally projecting all centers of balls from D onto �. Denote
by p1, . . . , pn the order of points from P sorted along �. We want to find an
(n− b)/2-separator orthogonal to �. This means that the separating hyperplane
H must intersect � somewhere in between p(n−b)/2 and p(n+b)/2.

However, we also need to guarantee that not too many points from P are
within distance one of H, which may or may not be possible depending on the
choice of �. Therefore we try several possible directions/lines and select the first
one among them that works. In order to evaluate the quality of a line, we use
as a simple criterion the spread, defined to be the distance between p(n−b)/2 and
p(n+b)/2. Given a line � with sufficient spread, we can find a suitable (n− b)/2-
separator orthogonal to � in the second step of our algorithm, as follows (note
the safety cushion of width one to the remaining disks of D).

570 M. Hoffmann, V. Kusters, and T. Miltzow

Lemma 1. Given a set P of b (one-dimensional) points in an interval [�, r] of
length w = r − � > 2, we can find in O(b) time a point p ∈ (� + 1, r − 1) such
that at most 2b/(w − 2) points from P are within distance one of p.

How to find a good direction. We try k different directions and stop as soon as
we find a direction with spread at least t (see Theorem 4). For a given direction
the spread can be computed in O(dn) time using linear time rank selection [5].
In the remainder of this section, we will discuss how to select an appropriate set
of directions such that one direction is guaranteed to have spread at least t.

For this we need a bound on the number of balls simultaneously within dis-
tance w1, . . . , wd of some hyperplanes H1, . . . ,Hd. Below we give an easy formula
based on a volume argument. This formula in turn motivates our choice of di-
rections, which we will explain thereafter.

Lemma 2. Let v1,v2, . . . ,vd ∈ Sd−1 ⊂ Rd be linearly independent directions
and H1,H2, . . . ,Hd hyperplanes with corresponding normal directions, then the
maximal number of pairwise disjoint unit balls entirely within distance w1, . . . , wd

of H1,H2, . . . ,Hd, respectively, is bounded from above by

2dw1 . . . wd

| det (v1, . . . ,vd) |Vd
,

where Vd denotes the volume of the d-dimensional unit ball.

The bound in Lemma 2 depends on the determinant formed by the d direction
vectors, which corresponds to the volume of the (d−1)-simplex spanned by them.
In order to obtain a good upper bound, we must guarantee that this volume does
not become too small. Ensuring this reduces to the Heilbronn Problem: Given
k ∈ N and a compact region P ⊂ Rd of unit volume, how can we select k
points from P as to maximize the area of the smallest d-simplex formed by
these points? Heilbronn posed this question for d = 2; the natural generalization
to higher dimension was studied by Barequet [3] and Lefmann [8]. We use the
following simple explicit construction in R2 that goes back to Erdős and was
generalized to higher dimension by Barequet.

Lemma 3 ([3,14]). Given a prime k, let P = {p0, . . . , pk−1} ⊂ [0, 1]
d with

pi =
1

k

(
i, i2 mod k, . . . , id mod k

)
.

Then the smallest d-simplex spanned by d+ 1 points from P has volume at least
1/(d!kd).

Assuming k to be prime is not a restriction: If k is not prime, then by Bertrand’s
postulate there is a prime k′ ≤ 2k. We can compute k′ efficiently, for instance,
in O(k/ log log k) time using Atkin’s sieve [2]. In order to obtain the desired

Halving Balls in Deterministic Linear Time 571

direction vectors we proceed as follows: Use Lemma 3 to generate k points
p0, . . . , pk−1 in [0, 1]d−1. Then lift the points to Sd−1 ⊂ Rd using the map

f : (x1, . . . , xd−1) "→
(x1 − 1

2 , . . . , xd−1 − 1
2 ,

1
2)

||(x1 − 1
2 , . . . , xd−1 − 1

2 ,
1
2)||

and denote the resulting set of directions by D = {v0, . . . ,vk−1} with vi = f(pi).

Lemma 4. For any d vectors vi1 , . . . ,vid from D we have | det(vi1 , . . . ,vid)| ≥
2d−1/((d− 1)!dd/2kd−1).

We are now ready to prove Theorem 4.

Proof. Compute directions v1, . . . ,vk as in Lemma 4 in time O(kd). For each
i ∈ {1, . . . , k} consider the sequence of center points of the disks in D, sorted
according to direction vi, and denote by Si the middle b points in this order
(rank (n− b)/2 up to (n + b)/2). We can bound

kb =
k∑

i=1

|Si| ≤ (d− 1)n +
∑

i1<...<id

|Si1 ∩ . . . ∩ Sid |,

noting that a point that is contained in at most d − 1 sets Si is counted d − 1
times on the right hand side, whereas a point that is contained in a ≥ d sets
is counted d − 1 +

(
a
d

)
≥ a times. Denote by wi the width of Si in direction vi

(which is the spread of vi). We claim that wi ≥ t, for some i ∈ {1, . . . , k}. For
the purpose of contradiction assume wi < t, for all i ∈ {1, . . . , k}. Together with
Lemma 2 and Lemma 4 we get

kb =

k∑
i=1

|Si| ≤ (d− 1)n +
∑

i1<...<id

2dwi1 . . . wid

| det (vi1 , . . . ,vid) |Vd

< (d− 1)n +
∑

i1<...<id

2dtd

Vd

(d− 1)!dd/2kd−1

2d−1

= (d− 1)n +

(
k

d

)
2td(d− 1)!dd/2kd−1

Vd
≤ (d− 1)n +

2d(d−2)/2

Vd
tdk2d−1.

In combination with Condition (1) we get

dn ≤ kb < (d− 1)n +
2d(d−2)/2

Vd
tdk2d−1

and so
td >

Vd

2d(d−2)/2

n

k2d−1
,

in contradiction to the definition of t in Condition (2). Therefore, our assumption
wi < t, for all i ∈ {1, . . . , k}, was wrong and there is some wj ≥ t.

572 M. Hoffmann, V. Kusters, and T. Miltzow

Project Sj to a line in direction vj in O(bd) time and use Lemma 1 to obtain
a hyperplane H orthogonal to vj that intersects at most 2b/(wj−2) ≤ 2b/(t−2)
balls from D in O(b) time. By Lemma 1, the hyperplane H does not intersect
any ball in D whose center is not in Sj, and so H is the desired separator.

Regarding the runtime bound: we compute the directions in O(kd) time, the
spread of a direction in O(dn) time, which yields O(kdn) time for k directions.
The second step of finding H takes O(bd) = O(nd) time. Therefore the overall
runtime is O(kdn).

3 A Deterministic Linear Time Algorithm in the Plane

In this section we describe a deterministic linear time algorithm to construct a
halving line � for a given set D of n disks in the plane. The line � bisects D
perfectly (≤ n/2 centers lie on either side) and it intersects O(nc) disks, where
c may be chosen arbitrarily close to 5/6. We may assume that n is odd: If n
is even, remove one arbitrary disk and observe that any halving line for the
resulting set of disks is also a halving line for the original set. As our algorithm
works in the dual arrangement, we first briefly review this duality and how it
applies to line-disk intersections.

Point-line duality. The standard duality transform maps a point p = (px, py) to
the line p∗ : y = pxx − py and a non-vertical line g : y = mx + b to the point
g∗ = (m,−b). This transformation is both incidence preserving (p ∈ g ⇐⇒
g∗ ∈ p∗) and order preserving (p is above g ⇐⇒ g∗ is above p∗). Given a set
P of points in the plane, the dual arrangement A(P ∗) is defined by the lines in
P ∗ = {p∗ | p ∈ P}. In order to avoid parallel lines we assume that no two points
in P have the same x-coordinate (which can be achieved by an infinitesimal
rotation of the plane).

A halving line � for P corresponds to a point �∗ in the dual arrangement that
has no more than half of the lines from P ∗ above it and no more than half of the
lines below it. The set of these points is referred to as the median level of the
arrangement induced by P ∗. Since n is odd, for any x-coordinate there is exactly
one such point, and so we can regard the median level as a function from R to
R. The following lemma characterizes line-disk intersections in the dual plane.

Lemma 5. Let � : y = mx+ b be a non-vertical line and let p denote the center
of a unit disk D. Then D intersects � if and only if the line p∗ intersects the
vertical segment s = [(m,−b−

√
m2 + 1), (m,−b +

√
m2 + 1)].

If we view Lemma 5 from the perspective of a unit disk D with center p, then
the set of lines that intersect D dualizes to the set of points (x, y) whose vertical
distance to p∗ is at most

√
1 + x2. We call this closed region of points the (dual)

1-tube of D. Note that the function
√

1 + x2 is strictly convex and so the 1-tube
is bounded by a strictly convex function from above and by a strictly concave
function from below.

Halving Balls in Deterministic Linear Time 573

Overview of the algorithm. The algorithm works in the dual arrangement and
follows the prune and search paradigm. At the beginning we consider all potential
halving lines, but subsequently narrow the range of potential slopes.

The successive narrowing of the range of slopes under consideration is made
explicit by a parameter S, denoting the closed region bounded by at most two
vertical lines. Such a region we call a slab. A slab S = {(x, y) ∈ R2 : � ≤ x ≤ r}
we denote by S = <�, r>. The distance r− � between the two bounding vertical
lines is the width of S. By Alon et al. [1] we may start with S = <0, 1> as an
initial slab, that is, there is always a halving line that intersects few disks and
whose slope is between zero and one.

Crucial for the linear runtime bound is that a constant fraction of all lines from
L be discarded after each iteration. However, by discarding some lines also our
level of interest—which is the median level of the original set of lines—changes.
Therefore this level also appears as a parameter of the algorithm. We denote
this parameter by λ ∈ {1, 2, . . . , |L|}. Initially λ =
n/2�.

We first describe a single iteration of the algorithm, then prove some bounds
for the parameters, and finally present the analysis of the whole algorithm.

A single iteration. At the beginning of each iteration we have a set L of n lines,
a slab S = <�, r> of width w = r − �, and a level parameter λ. Our goal is to
find a constant fraction of lines from L that can be discarded. The outline of an
iteration step is as follows.

1. Divide S in constantly many slabs S1, . . . , Sm, such that each contains at
most α

(
n
2

)
many vertices of the arrangement A(L), for some appropriate

constant 0 < α < 1. We define Si = <�i, ri> and wi = ri − �i.
2. For each slab Si, construct a trapezoid Ti ⊆ Si such that Ti contains the

λ-level of A(L) within Si and at most half of the lines from L intersect Ti.
3. For each trapezoid Ti, define its 1-tube τi ⊃ Ti as follows: Consider the

two lines ai and bi passing through the segment bounding Ti from above
and below, respectively; then τi is defined as the closed subset of Si that is
bounded by the upper boundary of the 1-tube of ai from above and by the
lower boundary of the 1-tube of bi from below.
For each slab Si and some parameter γ ∈ (0, 1/2), define the γ-core Cγ of Si

to be the central (1−2γ)-section of Si, that is, Cγ(Si) = <�i+γwi, ri−γwi>.
For each slab Si, count the number ni of lines that intersect τi within Cγ(Si).

4. Select (in a way to be described) one of the slabs Cγ(Si) to continue the
search with. Discard all lines from L that do not intersect τi within Cγ(Si)
and adjust λ accordingly (decrease by #lines discarded that are below τi).

Observe first that discarding lines as described in Step 4 is justified: A line
� ∈ L that does not intersect τi within Cγ(Si) by Lemma 5 corresponds to a
unit disk centered at �∗ that within Cγ(Si) is not intersected by any line whose
dual point lies on the λ-level of A(L).

Next we will detail the steps listed above and analyze their runtime. For the
first two steps we apply the machinery due to Lo et al. [9]. The first step can be

574 M. Hoffmann, V. Kusters, and T. Miltzow

handled in linear time using the following lemma, which follows from Lemma 3.3
of Lo et al. with α = 1/32.

Lemma 6 ([9]). Let L be a set of n lines in the plane in general position1 and
let S be a slab. In O(n) time S can be subdivided into subslabs S1, S2, . . . , Sm ⊂ S
(for some constant m ≤ 64), such that each Si contains at most 1

32

(
n
2

)
of the

(
n
2

)
vertices of A(L).

The trapezoids mentioned in the second step can be computed as follows. For
Si = <�i, ri>, let the upper left (right) corner of Ti be defined by the (λ+n/8)-
level of A(L) at x = �i (x = ri). Analogously, the lower corners of Ti are defined
by the (λ − n/8)-level of A(L) at x = �i (x = ri). Then Lemma 3.5 from the
paper by Lo et al. (with δ = 1/8) gives the following:

Lemma 7 ([9]). The trapezoid Ti contains the λ-level of A(L) within Si and
at most half of the lines from L intersect Ti.

All these trapezoids can be constructed in a brute-force manner in O(n) time
(recall that m is constant). This completes the first two steps: we have computed
(in linear time) a subdivision of our initial slab S into m ≤ 64 subslabs Si, each
of which contains a trapezoid Ti that contains the λ-level of A(L) within Si and
at most half of the lines from L intersect Ti.

Regarding Step 3, note that testing whether a given line intersects τi is a
geometric predicate of constant algebraic degree. Hence this step can be executed
in a straightforward manner in O(mn) = O(n) time. It remains to argue how to
select an appropriate slab to continue with in Step 4. It turns out that not only
the number of lines matters, but it is also important to ensure that the width of
the slab does not become too small. The following lemma gives a precise account
for the bounds we are after.

Lemma 8. For any 0 < ε < 1/2 and 0 < γ < 1/2 there exist an integer n′ > 0

and constants m ≤ 64 and c = (8m/γε)
2 such that for any n ≥ n′ the following

statement holds. Given a set L of n lines, an integer λ ∈ {1, . . . , n}, and a slab
S ⊆ <0, 1> of width w ≥ c log(n)/n, there exist a set L′ ⊂ L of at most (12 +ε)n
lines and a slab S′ of width ≥ (1 − 2γ)w/m such that inside S′ the λ-level of
A(L) does not intersect any line in L \ L′.

Analysis of the algorithm. Let us postpone the proof of Lemma 8 for now and
first complete the overall analysis of the algorithm. Denote by nt the number of
lines and by wt the width of the current slab after t iterations. We have n0 = n

and w0 = 1. By Lemma 8 we have nt ≤
(
1
2 + ε
)t
n and wt ≥ ((1 − 2γ)/m)

t, as
long as w ≥ c log(n)/n. After some number of iterations, either we are left with
a constant number of lines or a slab of width w < c log(n)/n. As in the first case
we can finish by brute force, let us concentrate on the second case. Suppose t∗

1 Any two intersect in exactly one point.

Halving Balls in Deterministic Linear Time 575

is the smallest index for which wt∗ < c log(n)/n. The following inequalities are
equivalent: (

1 − 2γ

m

)t∗

<

(
8m

γε

)2

· logn

n

−t∗ log

(
m

1 − 2γ

)
< 2 log

(
8m

γε

)
+ log logn− logn

t∗ >
logn− 2 log

(
8m
γε

)
− log logn

log
(

m
1−2γ

) .

Since γ, ε and m are all constant, the last inequality implies that for any constant
0 < ε′ < 1 we have

t∗ > logn · (1 − ε′)

log(m
1−2γ)

,

for sufficiently large n (depending on ε′). Hence the number of lines to be con-
sidered after t∗ iterations is

nt∗ ≤
(

1

2
+ ε

)t∗

· n <

(
1

2
+ ε

)logn 1−ε′
log(m

1−2γ
)

· n = n
log(1

2+ε) 1−ε′
log(m

1−2γ
)
+1

≤ n
5
6+δ ,

where the last inequality uses logm ≤ 6 and where δ > 0 can be made arbitrarily
small by choosing ε, ε′ and γ to be correspondingly small.

So after at most t∗ = Θ(log n) iterations we are left with a slab S and O(n
5
6+δ)

lines. All lines that have been discarded do not intersect the 1-tube of the level
that corresponds to the original median level. Therefore any point on this level
within S corresponds to a halving line for the original set of disks that intersects
o(n) of the disks. Such a point can easily be found in a brute force manner in
o(n) time.

Denote by R(n) the runtime of the algorithm for n disks. Each iteration can
be handled in time linear in the number of lines/disks remaining and so

R(n) ≤
t∗∑
t=0

cnt ≤ cn

t∗∑
t=0

(
1

2
+ ε

)t

<
2c

1 − 2ε
n = O(n),

for some constant c. This proves Theorem 3.

Proof of Lemma 8. It remains to prove that we can select a constant fraction
of lines to be discarded in each iteration while at the same time the width of
the current slab does not shrink too much. To begin with we need a slab whose
1-tube is not intersected by too many lines. To show that such a slab exists, we
use an averaging argument: While a single 1-tube τi may be intersected by all
lines from L, on average the number of intersecting lines per slab is sublinear.

576 M. Hoffmann, V. Kusters, and T. Miltzow

To this end we define a function g by setting g(x) to be the number of lines that
intersect

⋃m
i=1 τi at x ∈ (�, r). The following lemma provides an upper bound on

the average number of such lines.

Lemma 9. For a slab S = <�, r> ⊆ <0, 1> of width w = r − �, there is some
constant c ≤ 4 such that ∫ r

�

g(x) dx ≤ c
√
nw log(nw) ,

if nw is sufficiently large.

By the pigeonhole principle, the integral is small for most subslabs. But bound-
ing the integral is not sufficient to bound the number of lines that intersect the
1-tube, because lines that do so for a very short interval only do not contribute
much to the integral. To account for such lines we restrict our focus to the γ-
core of the slabs instead. For a slab Si let di(x) denote the number of lines
that intersect τi \ Ti at x, for x ∈ (�i, ri). Clearly di ≤ g. Furthermore let
φγ,i = max {di(x) : x×R ⊂ Cγ(Si)}.

Proposition 1. The number of lines from L that intersect (τi \ Ti) ∩ Cγ(Si) is
bounded by 2φγ,i, for any i ∈ {1, . . . ,m} and 0 < γ < 1/2.

Proposition 2. φγ,iwi ≤ γ−1
∫ ri
�i

g(x) dx.

Now we have all tools in place to complete the proof of Lemma 8. Combining
Proposition 2 and Lemma 9 yields

∑m
i=1 φγ,iwi ≤ 4γ−1

√
nw log(nw) .

We claim that we can select any slab Sj for which wj ≥ w/m and continue
the search within Cγ(Sj). Such a slab exists because there are m slabs in total
and w =

∑m
i=1 wi. We can then bound

φγ,j
w

m
≤ φγ,jwj ≤

m∑
i=1

φγ,iwi ≤ 4γ−1
√
nw log(nw)

and so

φγ,j ≤ 4γ−1m

√
n log(nw)

w
≤ 4γ−1m

√
n log(n)

w
.

The slab we continue to search in (the core Cγ(Sj) of Sj) has width at least
(1 − 2γ)w/m. Lemma 7 and Proposition 1 bound the number nγ,j of lines that
intersect τj within Cγ(Sj) by

nγ,j ≤
n

2
+ 2φγ,j ≤

n

2
+

8m

γ

√
n log(n)

w
.

Given any 0 < ε < 1/2 and 0 < γ < 1/2, we have nγ,j ≤
(
1
2 + ε
)
n , as long as

w ≥
(

8m
γε

)2
· log n

n , which is stated as an assumption. ��

Halving Balls in Deterministic Linear Time 577

4 Conclusions

We studied the construction of separators for balls in deterministic linear time.
The aim is to intersect as few balls as possible while (approximately) bisecting
the set of center points. We presented essentially two ways to compute such
seperators. The first algorithm is simple and obtains an arbitrarily good bisection
in combination with an asymptotically optimal number of intersections. The
second algorithm bisects the center points exactly, but works in the plane only.

Throughout the paper we assumed the balls to be disjoint, but for our al-
gorithms it is enough to have some density lower bound on the objects under
consideration and some bound on the size of the objects (e.g. disjoint fat ob-
jects). Also note that, in contrast to the continuous case, we do not make use of
the fact that the hyperplane to be constructed is bisecting. Therefore it is easy
to adapt the algorithm to, for instance, have n/3 of the points on one side and
2n/3 of the other side of the hyperplane.

There are point sets for which the number of balls intersected by every halving
hyperplane is Ω(n(d−1)/d). But already for dimension three it is not clear if a
halving plane with o(n3/4) intersections always exists (O(n3/4) is not difficult).
In dimension two it is open if o(

√
n logn) can be achieved. So let us ask the

following question: Is it true that for every set of n disjoint unit balls in Rd

there exists a halving hyperplane that intersects O(n(d−1)/d) of the balls?

Acknowledgments. We want to thank Marek Elias, Jiřka Matoušek, Edgardo
Roldán-Pensado and Zuzana Safernová for interesting discussions on the con-
jecture for higher dimensions and referring us to related work. We thank the
anonymous reviewers for their constructive comments and suggestions.

References

1. Alon, N., Katchalski, M., Pulleyblank, W.R.: Cutting disjoint disks by straight
lines. Discrete & Computational Geometry 4, 239–243 (1989)

2. Atkin, A.O.L., Bernstein, D.J.: Prime sieves using binary quadratic forms. Math.
Comput. 73(246), 1023–1030 (2004)

3. Barequet, G.: A lower bound for Heilbronn’s triangle problem in d dimensions.
SIAM Journal on Discrete Mathematics 14(2), 230–236 (2001)

4. Bereg, S., Dumitrescu, A., Pach, J.: Sliding disks in the plane. International Journal
of Computational Geometry & Applications 18(05), 373–387 (2008)

5. Blum, M., Floyd, R.W., Pratt, V., Rivest, R.L., Tarjan, R.E.: Time bounds for
selection. Journal of Computer and System Sciences 7(4), 448–461 (1973)

6. Esposito, L., Ferone, V., Kawohl, B., Nitsch, C., Trombetti, C.: The longest shortest
fence and sharp Poincaré–sobolev inequalities. Archive for Rational Mechanics and
Analysis 206(3), 821–851 (2012)

7. Held, M., Mitchell, J.S.: Triangulating input-constrained planar point sets. Infor-
mation Processing Letters 109(1), 54–56 (2008)

8. Lefmann, H.: On Heilbronn’s problem in higher dimension. Combinatorica 23(4),
669–680 (2003)

578 M. Hoffmann, V. Kusters, and T. Miltzow

9. Lo, C.-Y., Matoušek, J., Steiger, W.L.: Algorithms for ham-sandwich cuts. Discrete
& Computational Geometry 11, 433–452 (1994)

10. Löffler, M., Mulzer, W.: Unions of onions: preprocessing imprecise points for fast
onion layer decomposition. In: Algorithms and Data Structures, pp. 487–498.
Springer, Heidelberg (2013)

11. Martini, H., Schöbel, A.: Median hyperplanes in normed spaces – a survey. Discrete
Applied Mathematics 89(1), 181–195 (1998)

12. Matoušek, J.: Efficient partition trees. Discrete & Computational Geometry 8(1),
315–334 (1992)

13. Pach, J., Sharir, M.: Combinatorial geometry and its algorithmic applications: The
Alcalá lectures. Mathematical Surveys and Monographs, vol. 152. Amer. Math. Soc.
(2009)

14. Roth, K.F.: On a problem of Heilbronn. J. London Math. Soc. 26(3), 198–204
(1951)

15. Tverberg, H.: A seperation property of plane convex sets. Mathematica Scandinav-
ica 45, 255–260 (1979)

Turing Kernelization for Finding Long Paths

and Cycles in Restricted Graph Classes�

Bart M.P. Jansen

University of Bergen, Norway
Bart.Jansen@ii.uib.no

Abstract. We analyze the potential for provably effective preprocessing
for the problems of finding paths and cycles with at least k edges. Several
years ago, the question was raised whether the existing superpolynomial
kernelization lower bounds for k-Path and k-Cycle can be circumvented
by relaxing the requirement that the preprocessing algorithm outputs a
single instance. To this date, very few examples are known where the
relaxation to Turing kernelization is fruitful. We provide a novel example
by giving polynomial-size Turing kernels for k-Path and k-Cycle on
planar graphs, graphs of maximum degree t, claw-free graphs, and K3,t-
minor-free graphs, for each constant t ≥ 3. The result for planar graphs
solves an open problem posed by Lokshtanov. Our kernelization schemes
are based on a new methodology called Decompose-Query-Reduce.

1 Introduction

Motivation. Kernelization is a formalization of efficient and provably effective
data reduction originating from parameterized complexity theory. In this setting,
each instance x ∈ Σ∗ of a decision problem is associated with a parameter k ∈ N
that measures some aspect of its complexity. Work on kernelization over the
last few years has resulted in deep insights into the possibility of reducing an
instance (x, k) of a parameterized problem to an equivalent instance (x′, k′)
of size polynomial in k, in polynomial time. By now, many results are known
concerning problems that admit such polynomial kernelization algorithms, versus
problems for which the existence of a polynomial kernel is unlikely because it
implies the complexity-theoretic collapse NP ⊆ coNP/poly. (See Section 2 for
formal definitions of parameterized complexity.)

In this work we study the potential of effectively preprocessing instances of
the problems of finding long paths or cycles in a graph. In the model of (Karp)
kernelization described above, in which the output of the preprocessing algo-
rithm is a single, small instance, we cannot guarantee effective polynomial-time
preprocessing for these problems. Indeed, the k-Path (is there a path of at
least k edges) and k-Cycle (is there a cycle of at least k edges) problems are
or-compositional [6] since the disjoint union of graphs G1, . . . , Gt contains a path

� This work was supported by the European Research Council through Starting Grant
306992 “Parameterized Approximation”.

A.S. Schulz and D. Wagner (Eds.): ESA 2014, LNCS 8737, pp. 579–591, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

580 B.M.P. Jansen

(cycle) of length k if and only if there is at least one input graph with such a
structure. Using the framework of Bodlaender et al. [6] this proves that k-Path
and k-Cycle do not admit Karp kernelizations of polynomial size unless NP ⊆
coNP/poly and the polynomial hierarchy collapses to its third level.

More than five years ago, the question was raised how fragile this bad news
is: what happens if we relax the requirement that the preprocessing algorithm
outputs a single instance? Does a polynomial-time preprocessing algorithm exist
that, given an instance (G, k) of k-Path, builds a list of instances (x1, k1), . . . ,
(xt, kt), each of size polynomial in k, such that G has a length-k path if and
only if there is at least one yes-instance among the outputs? Such a cheating
kernelization is possible for the k-Leaf Out-Tree problem [3] while it does
not admit a polynomial Karp kernelization unless NP ⊆ coNP/poly. Hence it is
natural to ask whether this can be done for k-Path or k-Cycle.

A robust definition of such relaxed forms of preprocessing was given by Lok-
shtanov [19] under the name Turing kernelization. It is phrased in terms of
algorithms that can query an oracle for the answer to instances of specific de-
cision problem in a single computation step.1 Observe that the existence of an
f(k)-size kernel for a parameterized problem Q shows that Q can be solved in
polynomial time if we allow the algorithm to make a single size-f(k) query to
an oracle for Q: apply the kernelization to input (x, k) to obtain an equivalent
instance (x′, k′) of size f(k), query the Q-oracle for this instance and output
its answer. A natural relaxation, which encompasses the cheating kernelization
mentioned above, is to allow the polynomial-time algorithm to query the ora-
cle more than once for the answers to f(k)-size instances. This motivates the
definition of Turing kernelization.

Definition 1. Let Q be a parameterized problem and let f : N → N be a com-
putable function. A Turing kernelization for Q of size f is an algorithm that
decides whether a given instance (x, k) ∈ Σ∗×N is contained in Q in time poly-
nomial in |x| + k, when given access to an oracle that decides membership in Q
for any instance (x′, k′) with |x′|, k′ ≤ f(k) in a single step.

For practical purposes the role of oracle is fulfilled by an external computing
cluster that computes the answers to the queries. A Turing kernelization gives
the means of efficiently splitting the work on a large input into manageable
chunks, which may be solvable in parallel depending on the nature of the Turing
kernelization. Moreover, Turing kernelization is a natural relaxation of Karp
kernelization that facilitates a theoretical analysis of the nature of preprocessing.

At first glance, it seems significantly easier to develop a Turing kerneliza-
tion than a Karp kernelization. However, to this date there are only a handful
of parameterized problems known for which polynomial-size Turing kernel-
ization is possible but polynomial-size Karp kernelization is unlikely [1,8,22,23].

1 Formally, such algorithms are oracle Turing machines (cf. [13, Appendix A.1]).

Turing Kernelization for Finding Long Paths and Cycles 581

Recently, the first adaptive2 Turing kernelization was given by Thomassé et al. [23]
for the k-Independent Set problem restricted to bull-free graphs. Although this
forms an interesting step forwards in harnessing the power of Turing kernelization,
the existence of polynomial-size Turing kernels for k-Path and related subgraph-
containment problems remains a major open problem in the area of kernelization
[3,5,14]. Since many graph problems that are intractable in general admit
polynomial-size (Karp) kernels when restricted to planar graphs, it is natural to
consider whether such a restriction makes it easier to obtain polynomial Turing
kernels for k-Path. Consequently, Lokshtanov [19] and Misra et al. [20] posed
the existence of a polynomial Turing kernel for k-Path on planar graphs as an
open problem. Observe that, by the or-composition argument given above, planar
k-Path does not have a polynomial-size (Karp) kernel unless NP ⊆ coNP/poly.

Our Results. In this paper we introduce the Decompose-Query-Reduce frame-
work for obtaining adaptive polynomial-size Turing kernelizations for the k-Path
and k-Cycle problems on various restricted graph families, including planar
graphs and bounded-degree graphs. The three steps of the framework consist
of (i) decomposing the input (G, k) into parts of size kO(1) with constant-size
interfaces between the various parts; (ii) querying the oracle to determine how
a solution can intersect such bounded-size parts, and (iii) reducing to an equiv-
alent but smaller instance using this information. In our case, we use a classic
result by Tutte [24] concerning the decomposition of a graph into its triconnected
components, made algorithmic by Hopcroft and Tarjan [15], to find a tree de-
composition of adhesion two of the input graph G such that all torsos of the
decomposition are triconnected minors of G. We complement this with various
known graph-theoretic lower bounds on the circumference of triconnected graphs
belonging to restricted graph families to deduce that if this Tutte decomposition
has a bag of size Ω(kO(1)), then there must be a cycle (and therefore path) of
length at least k in G. If we have not already found the answer to the problem we
may therefore assume that all bags of the decomposition have polynomial size.
Consequently we may query the oracle for solutions involving only kO(1) parts
of the decomposition. Observe that if G is a graph and S ⊆ V (G), then a simple
path in G cannot visit more than |S|+1 different components of G−S. Hence for
each node of the Tutte decomposition, which represents a bag of size kO(1), at
most kO(1) of the triconnected components represented by its children are used
in a solution. Using ideas from earlier work [7], this allows us to invoke the oracle
to instances of size kO(1) to obtain the information that is needed to safely dis-
card some pieces of the input, thereby shrinking it. Iterating this procedure, we
arrive at a final equivalent instance of size kO(1), whose answer is queried from
the oracle and given as the output of the Turing kernelization. In this way we
obtain polynomial Turing kernels for k-Path and the related k-Cycle problem

2 The algorithm is adaptive because it uses the answers to earlier oracle queries to for-
mulate its next query. In contrast, the cheating kernelization for k-Leaf Out-Tree

constructs all its querieswithout having to knowa single answer. In the language of clas-
sical computability theory [21], the adaptive algorithm is a Turing reduction whereas
the cheating kernelization is a truth-table reduction.

582 B.M.P. Jansen

in planar graphs, graphs that exclude K3,t as a minor for some t ≥ 3, graphs of
maximum degree bounded by t ≥ 3, and claw-free graphs. We remark that the
k-Path and k-Cycle problems remain NP-complete in all these cases [18].

Our results raise a number of interesting challenges and shed some light on
the possibility of polynomial Turing kernelization for the unrestricted k-Path
problem. A completeness program for classifying Turing kernelization complex-
ity was recently introduced by Hermelin et al. [14]. They proved that a colored
variant of the k-Path problem is complete for a class called WK[1] and conjec-
tured that WK[1]-hard problems do not admit polynomial Turing kernels. We
give evidence that the classification of the colored variant may have little to do
with the kernelization complexity of the base problem: Multicolored k-Path
remains WK[1]-hard on bounded-degree graphs, while our framework yields a
polynomial Turing kernel for uncolored k-Path in this case.

Related Work. Non-adaptive Turing kernels of polynomial size are known
for k-Leaf Out-Tree [3], k-Colorful Motif on comb graphs [1], and s-
Club [22] (see also [14]). Trotignon et al. [23] gave an adaptive Turing kernel of
polynomial size for k-Independent Set on bull-free graphs. Weller [25, Chapter
5] discusses various variants of Turing kernelization.

Organization. In Section 2 we give preliminaries on parameterized complex-
ity and graph theory. In Section 3 we present Turing kernels for the k-Cycle

problem. These are technically somewhat less involved than the analogues for
k-Path that are described in Section 4. In Section 5 we briefly consider Multi-

colored k-Path. Due to length restrictions, the proofs of statements marked
by a star () have been deferred to the full version [17].

2 Preliminaries

Parameterized Complexity and Kernels. The set {1, 2, . . . , n} is abbrevi-
ated as [n]. For a set X and non-negative integer n we use

(
X
n

)
to denote the col-

lection of size-n subsets of X . A parameterized problem Q is a subset of Σ∗×N,
the second component of a tuple (x, k) ∈ Σ∗ × N is called the parameter. A
parameterized problem is (strongly uniformly) fixed-parameter tractable if there
exists an algorithm to decide whether (x, k) ∈ Q in time f(k)|x|O(1) where f
is a computable function. A Karp kernelization algorithm (or Karp kernel) of
size f : N → N for a parameterized problem Q ⊆ Σ∗ × N is a polynomial-
time algorithm that, on input (x, k) ∈ Σ∗ × N, outputs an instance (x′, k′)
with |x′|, k′ ≤ f(k) such that (x, k) ∈ Q ⇔ (x′, k′) ∈ Q. If f(k) ∈ O(kO(1))
then this is a polynomial kernel (cf. [4]). We refer to a textbook [13] for more
background on parameterized complexity.

Graphs and Tree Decompositions. All graphs we consider are finite, simple,
and undirected. An undirected graph G consists of a vertex set V (G) and an

edge set E(G) ⊆
(
V (G)

2

)
. We write G ⊆ H if graph G is a subgraph of graph H .

The subgraph of G induced by a set X ⊆ V (G) is denoted G[X]. We use G−X

Turing Kernelization for Finding Long Paths and Cycles 583

as a shorthand for G[V (G)\X]. When deleting a single vertex v, we write G− v
rather than G−{v}. The open neighborhood of a vertex v in graph G is NG(v).
The open neighborhood of a set X ⊆ V (G) is

⋃
v∈X NG(v) \ X . Graph H is

a minor of graph G if H can be obtained from a subgraph of G by edge con-
tractions. A cut vertex in a connected graph G is a vertex v such that G− v is
disconnected. A vertex is a cutvertex in a disconnected graph if it forms such
a structure for a connected component. A graph G is biconnected if it is con-
nected and contains no cut vertices. The biconnected components of G partition
the edges of G into biconnected subgraphs of G. A graph G is triconnected if
removing at most three vertices from G cannot result in a disconnected graph.3

A walk in G is a sequence of vertices v1, . . . , vk such that {vi, vi+1} ∈ E(G)
for i ∈ [k − 1]. An xy-walk is a walk with v1 = x and vk = y. A path is a walk
in which all vertices are distinct. Similarly, an xy-path is an xy-walk consisting
of distinct vertices. The vertices x and y are the endpoints of an xy-path. The
length of a path v1, . . . , vk is the number of edges on it: k − 1. A cycle is a
sequence of three or more vertices v1, . . . , vk that forms a v1vk-path such that,
additionally, the edge {v1, vk} is contained in G. The length of a cycle is the
number of edges on it: k. For an integer k, a k-cycle in a graph is a cycle with
at least k edges; similarly a k-path is a path with at least k edges. The claw
is the complete bipartite graph K1,3 with partite sets of size one and three. A
graph is claw-free if it does not contain the claw as an induced subgraph. When
analyzing the running time of graph algorithms, we use n to denote the number
of vertices and m to denote the number of edges.

Proposition 1 (). If the graph G contains a cycle (path) of length at least k
as a minor, then it contains a cycle (path) of length at least k as a subgraph.

Definition 2. A tree decomposition of a graph G is a pair (T,X), where T is
a tree and X : V (T) → 2V (G) assigns to every node of T a subset of V (G) called
a bag, such that: (a)

⋃
i∈V (T) X (i) = V (G), (b) for each edge {u, v} ∈ E(G)

there is a node i ∈ V (T) with {u, v} ⊆ X (i), and (c) for each v ∈ V (G) the
nodes {i | v ∈ X (i)} induce a connected subtree of T .

The width of the tree decomposition is maxi∈V (T) |X (i)| − 1. The adhesion
of a tree decomposition is max{i,j}∈E(T) |X (i) ∩ X (j)|. If T has no edges, we
define the adhesion to be zero. If (T,X) is a tree decomposition of a graph G,
then the torso of a bag X (i) for i ∈ V (T) is the graph torso(G,X (i)) obtained
from G[X (i)] by adding an edge between each pair of vertices in X (i) that are
connected by a path in G whose internal vertices do not belong to X (i).

Tutte Decomposition. The following theorem is originally due to Tutte, but
has been reformulated in the language of tree decompositions. The full paper [17]
contains a proof for completeness. Recall that a minimal separator in a connected
graph G is a vertex set S ⊆ V (G) such that G− S is disconnected and G − S′

3 Some authors require a triconnected graph to contain more than three vertices; the
present definition allows us to omit some case distinctions.

584 B.M.P. Jansen

is connected for all S′ � S. A vertex set of a disconnected graph is a minimal
separator if it is a minimal separator for one of the connected components.

Theorem 1 ([24], see [12, Exercise 12.20]). For every graph G there is a
tree decomposition (T,X) of adhesion at most two, called a Tutte decomposition,
such that (i) for each node i ∈ V (T), the graph torso(G,X (i)) is a triconnected
minor of G, and (ii) for each edge {i, j} of T the set X (i) ∩ X (j) is a minimal
separator in G or the empty set.

Circumference of Restricted Classes of Triconnected Graphs. The cir-
cumference of a graph is the length of a longest cycle. Several results are known
that give a lower bound on the circumference of a triconnected graph in terms of
its order. We will use these lower bounds to deduce that if a Tutte decomposition
of a graph has large width, then the graph contains a long cycle (and therefore
also a long path).

Theorem 2. Let G be a triconnected graph on n vertices and let � be its cir-
cumference.

(a) If G is planar, then � ≥ nlog3 2. [10]
(b) If G is K3,t-minor free, then � ≥ (1/2)t(t−1)nlog1729 2. [11]
(c) If G is claw-free, then � ≥ (n/12)0.753 + 2. [2]
(d) If G has maximum degree at most Δ ≥ 4, then � ≥ nlogr 2/2 + 3, where r :=

max(64, 4Δ + 1). [9].

3 Turing Kernelization for Finding Cycles

In this section we show how to obtain polynomial Turing kernels for k-Cycle

on various restricted graph families. After discussing some properties of cycles in
Section 3.1, we start with the planar case in Section 3.2. In Section 3.3 we show
how to adapt the strategy for K3,t-minor-free, claw-free, and bounded-degree
graphs.

3.1 Properties of Cycles

We present several properties of cycles that will be used in the Turing kerneliza-
tion. Recall that a k-cycle is a cycle with at least k edges.

A separation of a graph G is a pair (A,B) of subsets of V (G) such that A∪B =
V (G) and G has no edges between A\B and B\A. The latter implies that A∩B
separates the vertices A\B from the vertices B \A. The order of the separation
is |A∩B|. The following lemma shows that, after testing one side of an order-two
separation for having a k-cycle, we may safely remove vertices from that side as
long as we preserve a maximum-length path connecting the two vertices in the
separator.

Turing Kernelization for Finding Long Paths and Cycles 585

Lemma 1 (). Let A,B ⊆ V (G) be a separation of order two of a graph G
with A∩B = {x, y}. Let V (PA) be the vertices on a maximum-length xy-path PA

in G[A], or ∅ if no such path exists. If G has a k-cycle, then G[A] has a k-cycle
or G[V (PA) ∪B] has a k-cycle.

We show how to use an oracle for the decision version of k-Cycle to construct
longest xy-paths by self-reduction. These paths can be used with the previous
lemma to find vertices that can be removed from the graph while preserving a
k-cycle, if one exists. We will invoke Lemma 2 only for graphs with n ∈ kO(1).

Lemma 2 (). There is an algorithm that, given a graph G with distinct ver-
tices x and y, and an integer k, either (i) determines that G contains a k-cycle,
(ii) determines that G contains an xy-path of length at least k, or (iii) outputs
the (unordered) vertex set of a maximum-length xy-path in G (or ∅ if no such
path exists). The algorithm runs in O((n + k)(n + m + k)) time when given ac-
cess to an oracle that decides the k-Cycle problem. The oracle is queried for
instances (G′, k) with |V (G′)| ≤ n + k, where G′ is obtained from an induced
subgraph of G by adding an xy-path that is either a single edge or consists of
new vertices of degree two.

When the self-reduction algorithm detects a long xy-path for a minimal separa-
tor {x, y}, the following proposition proves that there is in fact a long cycle.

Proposition 2 (). If {x, y} is a minimal separator of a graph G and G con-
tains an xy-path of length k ≥ 2, then G contains a (k + 1)-cycle.

3.2 k-Cycle in Planar Graphs

Before presenting the Turing kernelization algorithm we sketch the main ideas.
Suppose that the input (G, k) contains a separation A,B ⊆ V (G) of order two
such that k < |A| < kO(1), and the separator {x, y} := A ∩ B is minimal. As
the size of G[A] is polynomial in the parameter, we can invoke the oracle to
determine the existence of a k-cycle in G[A]. If such a cycle exists, then we are
done. If not, then using Lemma 2 we can find the vertices on a maximum-length
xy-path PA in G[A]. If the path has at least k vertices (implying the length is
at least k − 1), then by Proposition 2 there is a k-cycle in G and again we are
done. Otherwise, by Lemma 1, we can safely remove the vertices of G[A]\V (PA)
from G. Since k < |A| we discard at least one vertex in this way. Hence as long
as a minimal order-two separation with k < |A| < kO(1) exists, we can reduce
to a smaller equivalent instance after querying the oracle for polynomial-size
subgraphs. The main insight is that for biconnected planar graphs, either the
graph contains a k-cycle or such a separation exists. The proof given below
exploits this insight implicitly in its recursive procedure to solve the k-Cycle

problem.

Theorem 3. The planar k-Cycle problem has a polynomial Turing kernel: it
can be solved in polynomial-time using an oracle that decides planar k-Cycle

instances with at most (3k + 1)klog2 3 + k vertices and parameter value k.

586 B.M.P. Jansen

Proof. We present the Turing kernel for k-Cycle on planar graphs following
the three steps of the kernelization framework.

Decompose. Consider an input (G, k) of planar k-Cycle. First observe that a cy-
cle in G is contained within a single biconnected component of G. We may there-
fore compute the biconnected components of G in linear time using the algorithm
by Hopcroft and Tarjan [16] and work on each biconnected component separately.
In the remainder we therefore assume that the input graph G is biconnected. By
another algorithm of Hopcroft and Tarjan [15] we can compute a Tutte decom-
position (T,X) of G in linear time. For each edge {i, j} ∈ E(T) of the decompo-
sition tree, the definition of a Tutte decomposition ensures that X (i)∩X (j) is a
minimal separator in G. Since T has adhesion at most two by Theorem 1, these
minimal separators have size at most two. Using the biconnectedness of G it fol-
lows that the intersection of the bags of adjacent nodes in T has size exactly two.
Since each torso of the decomposition is a triconnected minor of G, and therefore
planar, the following claim follows by combining Theorem 1, Proposition 1, and
Theorem 2.

Claim 1 (). If there is a node i ∈ V (T) of the Tutte decomposition such
that |X (i)| ≥ klog2 3, then G has a k-cycle.

The claim shows that we may safely output yes if the width of (T,X) ex-
ceeds klog2 3. For the remainder of the kernelization we may therefore assume
that (T,X) has width at most klog2 3. We start the reduction phase by making
a copy G′ of G and a copy (T ′,X ′) of the decomposition. During the reduction
phase we will repeatedly remove vertices from the graph G′ to reduce its size.
Removing these vertices from the bags of the decomposition (T ′,X ′), we may
violate the property of a Tutte decomposition that all torsos of bags are tricon-
nected. However, we will maintain the fact that (T ′,X ′) is a tree decomposition
of adhesion at most two and width at most klog2 3 of G′. We root the decompo-
sition tree T ′ at an arbitrary vertex to complete the decomposition phase. We
use the following terminology. For i ∈ V (T ′) we write T ′[i] for the subtree of T ′

rooted at i. For a subtree T ′′ ⊆ T ′ we write X ′(T ′′) for the union
⋃

i∈V (T ′′) X ′(i)

of the bags of the nodes in T ′′. For a node i in the rooted tree T ′ we write N+
T ′(i)

to denote the children (the out-neighbors) of node i.

Query and reduce. In the next phase we repeatedly query the k-Cycle oracle
to reduce the size of G′ while preserving a k-cycle, if one exists. At any point
in the process we may find a k-cycle and halt. The procedure is given as Algo-
rithm 1. It is initially called for the root node r of T ′. Intuitively, Algorithm 1
processes the decomposition tree T ′ bottom-up, applying Lemma 1 to justify two
types of size reductions for a node i ∈ V (T ′). During the first foreach loop the
sizes |X ′(T ′[j])| of the subtrees T ′[j] rooted at children j of i are reduced, by re-
moving vertices that are avoided by some maximum-length xy-path. The second
foreach loop applies the same lemma to reduce the number of children of i by
effectively deleting connected components C of G′[A]−{x, y} when a maximum-
length xy-path can be obtained through a different component C′ �= C.

Turing Kernelization for Finding Long Paths and Cycles 587

Algorithm 1. QueryReduceCycle(G′, (T ′,X ′), i, k)

Precondition: G′ is an induced subgraph of G with a tree decomposition (T ′,X ′) of
adhesion at most two. A node i of T ′ is specified.

Postcondition: The existence of a k-cycle in G is reported, or the graph G′ and
decomposition (T ′,X ′) are updated by removing vertices of X ′(T ′[i])\X ′(i), resulting
in |X ′(T ′[i])| ≤ k · |E(torso(G,X (i)))|+ |X (i)|. If G′ initially contained a k-cycle,
then the modifications preserve this fact.

for each j ∈ N+
T ′ (i) do

QueryReduceCycle(G′, (T ′,X ′), j, k)
Let {x, y} := X ′(i)∩X ′(j), let A′ := X ′(T ′[j]), and let B := (V (G′) \A)∪ {x, y}
Invoke the k-Cycle oracle on (G′[A], k) and apply Lemma 2 to (G′[A], k, x, y)
if the oracle answers yes or Lemma 2 reports an xy-path of length ≥ k then

Report the existence of a k-cycle and halt
else

Let S be the vertex set computed by Lemma 2
Remove the vertices X ′(T ′[j]) \ S from G′ and T ′

for each pair {x, y} ∈
(X ′(i)

2

)
do

while ∃j, j′ ∈ N+
T ′ (i) with j �= j′ and X ′(i) ∩X ′(j) = X ′(i) ∩X ′(j′) = {x, y} do

Let A := X ′(T ′[j]) ∪ X ′(T ′[j′]), let B := (V (G′) \A) ∪ {x, y}
Invoke the k-Cycle oracle on (G′[A], k) and apply Lemma 2 to (G′[A], k, x, y)
if the oracle answers yes or Lemma 2 reports an xy-path of length ≥ k then

Report the existence of a k-cycle and halt
else

Let S be the vertex set computed by Lemma 2
Choose jS ∈ {j, j′} such that X ′(T ′[jS]) \ {x, y} contains no vertex of S
Remove T ′[jS] from (T ′, X ′) and remove X ′(T ′[jS]) \ {x, y} from G′

After the procedure terminates, we make a final call to the planar k-Cycle

oracle for the remaining graph G′ and parameter k. The output of the oracle
is given as the output of the procedure. By the postcondition of the procedure,
each modification step preserves the existence of a k-cycle. The oracle answer
to the final reduced graph G′ is therefore the correct answer to the original
input instance (G, k). It is easy to see that the algorithm runs in polynomial
time using constant-time access to the oracle: note that each iteration of the
while-loop removes at least one child subtree of node i from the decomposition.
Assuming that the algorithm acts according to its specification, it is also easy
to see that the overall approach is correct. To establish Theorem 3 it therefore
remains to prove that the algorithm adheres to its specifications and that it only
queries the oracle for small instances of the k-Path problem on planar graphs.

Claim 2 (). If Algorithm 1 reports a k-cycle, then G has a k-cycle.

Claim 3 (). If the input to Algorithm 1 satisfies the precondition, then the
output satisfies the postcondition.

588 B.M.P. Jansen

Claim 4 (). Algorithm 1 only queries the k-Cycle oracle with parameter k
on planar graphs of order at most (3k + 1)klog2 3 + k.

This concludes the proof of Theorem 3. ��

3.3 k-Cycle in Other Graph Families

There are two obstacles when generalizing the Turing kernel for k-Cycle on
planar graphs to the other restricted graph families. In the decompose step we
have to ensure that each torso of the Tutte decomposition still belongs to the
restricted graph family, so that Theorem 2 may be used to deduce the existence
of a k-cycle if the width of the Tutte decomposition is sufficiently large. Lemma 3
is used for this purpose. In the query step we have to deal with the fact that
the alterations made to the graph by the self-reduction procedure may violate
the defining property of the graph class, which can be handled by using an NP-
completeness transformation before querying the oracle. Besides these issues, the
kernelization is the same as in the planar case.

Lemma 3 (). Let (T,X) be a tree decomposition of adhesion at most two of
a graph G and let i ∈ V (T).

1. If G is claw-free, then torso(G,X (i)) is claw-free.
2. If G has maximum degree Δ, then torso(G,X (i)) has degrees at most Δ.
3. If G is H-minor-free, then torso(G,X (i)) is H-minor-free.

Theorem 4 (). The k-Cycle problem has a polynomial Turing kernel when
restricted to graphs of maximum degree t, claw-free graphs, or K3,t-minor-free
graphs, for each constant t ≥ 3.

4 Turing Kernelization for Finding Paths

Now we turn our attention to the k-Path problem. While the main ideas are
the same as in the k-Cycle case, the details are a bit more technical, for two
reasons. First of all, since a path may cross several biconnected components, we
can no longer restrict ourselves to biconnected graphs and therefore the minimal
separators formed by the intersections of adjacent bags of the Tutte decompo-
sition may now have size one or two. Additionally, there are six structurally
different ways in which a path may cross a separation of order two and we have
to account for all possible options. To query for the relevant information, we need
a more robust self-reduction algorithm. Due to space restrictions, the necessary
material is developed in the full version [17]. It results in the following theorem.

Theorem 5 (). The k-Path problem has a polynomial-size Turing kernel
when restricted to planar graphs, graphs of maximum degree t, claw-free graphs,
or K3,t-minor-free graphs, for each constant t ≥ 3.

Turing Kernelization for Finding Long Paths and Cycles 589

5 Multicolored Paths in Bounded-Degree Graphs

An input for the Multicolored k-Path problem consists of a graph G, an inte-
ger k and a (generally not proper) coloring f : V (G) → [k + 1] of its vertices. The
question is whether there is a path of length k (which must contain k+1 vertices)
that contains exactly one vertex of each color. Hermelin et al. [14] showed that
Multicolored k-Path is WK[1]-complete under polynomial-parameter trans-
formations. They conjectured that WK[1]-hard problems do not have polynomial-
size Turing kernels.

Theorem 6 (). The Multicolored k-Path problem on graphs of maximum
degree at most three is WK[1]-hard.

The theorem shows that the Multicolored k-Path problem remains WK[1]-
hard on bounded-degree graphs. However, Theorem 5 shows that the uncolored
k-Path problem admits a polynomial Turing kernel on bounded-degree graphs.
This indicates that the colored problem may be significantly harder to preprocess
than the uncolored version.

6 Conclusion

We presented polynomial-size Turing kernels for k-Path and k-Cycle on re-
stricted graph families using the Decompose-Query-Reduce framework, thereby
answering an open problem posed by Lokshtanov [19] and Misra et al. [20]. Our
results form the second [23] example of adaptive Turing kernelization of poly-
nomial size. (We remark that our results were obtained independently without
knowing of the work of Thomassé et al [23].)

The question remains whether k-Path admits a polynomial-size Turing kernel
in general graphs. Theorem 6 indicates that the WK[1]-hardness of Multicol-

ored k-Path [14] may not be relevant for the k-Path problem. The Tutte
decomposition is of little use in general graphs: in contrast to Theorem 2, the
circumference of a general triconnected graph may be as low as O(log n) (e.g.,
for the join of a triangle with a complete binary tree). Analyzing k-Path on
chordal graphs may be an intermediate step: the example above shows that even
for triconnected chordal graphs the circumference may be O(log n).

Our results also prompt the investigation of other subgraph and minor testing
problems. For example, does the problem of testing whether H is isomorphic to a
subgraph of a planar graph G admit a polynomial Turing kernel, parameterized
by |H |? The simplest unresolved case of this problem seems to be the Exact

k-Cycle problem of finding a cycle of length exactly, rather than at least, k.
The present approach fails on this problem since it is already unclear how to
deal with triconnected planar graphs. Similar questions can be asked for the
problem of finding a graph H as a minor in a planar graph G, parameterized
by |H |. To further understand the nature of Turing kernelization, one might also

590 B.M.P. Jansen

investigate whether the adaptive Turing kernel given here can be transformed
into a non-adaptive Turing kernel, whose queries only depend on the input but
not on the answers to earlier queries. Since the queries in a non-adaptive Turing
kernel can be executed in parallel, this might offer practical advantages.

Acknowledgments. We are grateful to Micha�l Pilipczuk for suggesting Theo-
rem 6 and Dániel Marx for suggesting its current easy proof.

References

1. Ambalath, A.M., Balasundaram, R., Koppula, C.R.H.V., Misra, N., Philip, G.,
Ramanujan, M.S.: On the kernelization complexity of colorful motifs. In: Proc. 5th
IPEC, pp. 14–25 (2010)

2. Bilinski, M., Jackson, B., Ma, J., Yu, X.: Circumference of 3-connected claw-free
graphs and large Eulerian subgraphs of 3-edge-connected graphs. J. Comb. Theory,
Ser. B 101(4), 214–236 (2011)

3. Binkele-Raible, D., Fernau, H., Fomin, F.V., Lokshtanov, D., Saurabh, S.,
Villanger, Y.: Kernel(s) for problems with no kernel: On out-trees with many leaves.
ACM Trans. Algorithms 8(4), 38 (2012)

4. Bodlaender, H.L.: Kernelization: New upper and lower bound techniques. In:
Chen, J., Fomin, F.V. (eds.) IWPEC 2009. LNCS, vol. 5917, pp. 17–37. Springer,
Heidelberg (2009)

5. Bodlaender, H.L., Demaine, E.D., Fellows, M.R., Guo, J., Hermelin, D., Loksh-
tanov, D., Müller, M., Raman, V., Rooij, J.V., Rosamond, F.A.: Open problems in
parameterized and exact computation - IWPEC 2008. Technical Report UU-CS-
2008-017, Utrecht University (2008)

6. Bodlaender, H.L., Downey, R.G., Fellows, M.R., Hermelin, D.: On problems with-
out polynomial kernels. J. Comput. Syst. Sci. 75(8), 423–434 (2009)

7. Bodlaender, H.L., Jansen, B.M.P., Kratsch, S.: Kernel bounds for path and cycle
problems. In: Proc. 6th IPEC, pp. 145–158 (2011)

8. Bodlaender, H.L., Jansen, B.M.P., Kratsch, S.: Kernelization lower bounds by
cross-composition. SIAM J. Discrete Math. 28(1), 277–305 (2014)

9. Chen, G., Gao, Z., Yu, X., Zang, W.: Approximating longest cycles in graphs with
bounded degrees. SIAM J. Comput. 36(3), 635–656 (2006)

10. Chen, G., Yu, X.: Long cycles in 3-connected graphs. J. Comb. Theory, Ser. B 86(1),
80–99 (2002)

11. Chen, G., Yu, X., Zang, W.: The circumference of a graph with no K3,t-minor, II.
J. Comb. Theory, Ser. B 102(6), 1211–1240 (2012)

12. Diestel, R.: Graph Theory, 4th edn. Springer, Heidelberg (2010)
13. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer-Verlag New

York, Inc. (2006)
14. Hermelin, D., Kratsch, S., So�ltys, K., Wahlström, M., Wu, X.: A completeness

theory for polynomial (Turing) kernelization. In: Proc. 8th IPEC, pp. 202–215
(2013)

15. Hopcroft, J.E., Tarjan, R.E.: Dividing a graph into triconnected components. SIAM
J. Comput. 2(3), 135–158 (1973), doi:10.1137/0202012

16. Hopcroft, J.E., Tarjan, R.E.: Efficient algorithms for graph manipulation [H] (al-
gorithm 447). Commun. ACM 16(6), 372–378 (1973)

Turing Kernelization for Finding Long Paths and Cycles 591

17. Jansen, B.M.P.: Turing kernelization for finding long paths and cycles in restricted
graph classes. arXiv, abs/1305.3102 (2014)

18. Li, M.-C., Corneil, D.G., Mendelsohn, E.: Pancyclicity and NP-completeness in
planar graphs. Discrete Appl. Math. 98(3), 219–225 (2000)

19. Lokshtanov, D.: New Methods in Parameterized Algorithms and Complexity. PhD
thesis, University of Bergen, Norway (2009)

20. Misra, N., Raman, V., Saurabh, S.: Lower bounds on kernelization. Discrete Op-
tim. 8(1), 110–128 (2011)

21. Rogers Jr., H.: Theory of Recursive Functions and Effective Computability. MIT
Press, Cambridge (1987)

22. Schäfer, A., Komusiewicz, C., Moser, H., Niedermeier, R.: Parameterized computa-
tional complexity of finding small-diameter subgraphs. Optim. Lett. 6(5), 883–891
(2012)

23. Thomassé, S., Trotignon, N., Vuskovic, K.: A polynomial Turing-kernel for
weighted independent set in bull-free graphs. In: Proc. 40th WG (2014) (in press)

24. Tutte, W.T.: Connectivity in graphs. Mathematical expositions. University of
Toronto Press (1966)

25. Weller, M.: Aspects of Preprocessing Applied to Combinatorial Graph Problems.
PhD thesis, Technische Universität Berlin (2013)

Optimal Parallel Quantum Query Algorithms

Stacey Jeffery1, Frederic Magniez2, and Ronald de Wolf3

1 IQC, University of Waterloo, Canada
sjeffery@uwaterloo.ca

2 CNRS, LIAFA, Univ Paris Diderot, Sorbonne Paris-Cité, 75205 Paris, France
frederic.magniez@univ-paris-diderot.fr

3 CWI and University of Amsterdam, The Netherlands
rdewolf@cwi.nl

Abstract. We study the complexity of quantum query algorithms that
make p queries in parallel in each timestep. We show tight bounds for
a number of problems, specifically Θ((n/p)2/3) p-parallel queries for el-
ement distinctness and Θ((n/p)k/(k+1)) for k-sum. Our upper bounds
are obtained by parallelized quantum walk algorithms, and our lower
bounds are based on a relatively small modification of the adversary
lower bound method, combined with recent results of Belovs et al. on
learning graphs. We also prove some general bounds, in particular that
quantum and classical p-parallel complexity are polynomially related for
all total functions f when p is small compared to f ’s block sensitivity.

1 Introduction

Using quantum effects to speed up computation has been a prominent research-
topic for the past two decades. Most known quantum algorithms have been de-
veloped in the model of quantum query complexity, the quantum generalization
of decision tree complexity. Here an algorithm is charged for each “query” to the
input, while intermediate computation is free (see [15] for more details). This
model facilitates the proof of lower bounds, and often, though not always, quan-
tum query upper bounds carry over to quantum time complexity. For certain
functions one can obtain large quantum-speedups in this model. For example,
Grover’s algorithm [21] can search an n-bit database (looking for a bit-position
of a 1) using O(

√
n) queries. In contrast, any classical algorithm needs Ω(n)

queries. For some partial functions we know exponential and even unbounded
speed-ups [18,34,33,7].

A more recent crop of quantum speed-ups come from algorithms based on
quantum walks. Such algorithms solve a search problem by embedding the search
on a graph, and doing a quantum walk on this graph that converges rapidly to a
superposition over only the “marked” vertices, which are the ones containing a
solution. An important example is Ambainis’s quantum algorithm for solving
the element distinctness problem [3]. In this problem one is given an input
x ∈ [q]n, and the goal is to find a pair of distinct i and j in [n] such that
xi = xj , or report that none exists. Ambainis’s quantum walk solves this in

A.S. Schulz and D. Wagner (Eds.): ESA 2014, LNCS 8737, pp. 592–604, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

Optimal Parallel Quantum Query Algorithms 593

O(n2/3) queries, which is optimal [1]. Classically, Θ(n) queries are required. Two
generalizations of this are the k-distinctness problem, where the objective is to
find distinct i1, . . . , ik ∈ [n] such that xi1 = · · · = xik , and the k-sum problem,
where the objective is to find distinct i1, . . . , ik ∈ [n] such that xi1 + · · ·+xik = 0
mod q. Ambainis’s approach solves both problems using O(nk/(k+1)) quantum
queries. Recently, Belovs gave a o(n3/4)-query algorithm for k-distinctness for
any fixed k [8] (which can also be made time-efficient for k = 3 [11]). In contrast,
Ambainis’s O(nk/(k+1))-query algorithm is optimal for k-sum [10,14].

Here we consider to what extent such algorithms can be parallelized. Doing
operations in parallel is a well-known way to trade hardware for time, speeding up
computations by distributing the work over many processors that run in parallel.
This is becoming ever more prominent in classical computing due to multi-core
processors and grid computing. In the case of quantum computing there is an
additional reason to consider parallelization, namely the limited lifetime of qubits
due to decoherence: because of unintended interaction with their environment,
qubits tend to lose their quantum properties over a limited amount of time,
called the decoherence time, and degrade to classical random bits. One way to
fight this is to apply quantum error-correction1, which can counteract the effects
of certain models of decoherence. Another way is to try to parallelize as much as
possible, completing the computation before the qubits decohere too much (this
may of course increase the width of the computation, creating other problems).

We know of only a few results about parallel quantum algorithms, most of
them in the circuit model where “time” is measured by the depth of the circuit.
A particularly important and beautiful example is the work of Cleve and Wa-
trous [16], who showed how to implement the n-qubit quantum Fourier transform
using a quantum circuit of depth O(log n). As a consequence, they were able to
parallelize the quantum component of Shor’s algorithm: they showed that one
can factor n-bit integers by means of an O(log n)-depth quantum circuit with
polynomial-time classical pre- and post-processing. There have also been a num-
ber of papers about quantum versions of small-depth classical Boolean circuit
classes like AC and NC [29,19,23,35]. Beals et al. [5] show how the quantum
circuit model can be efficiently simulated by the more realistic model of a dis-
tributed quantum computer (see also [20]). The setting of measurement-based
quantum computing (see [25] and references therein) in some cases allows more
parallelization than the usual circuit model. Another example, the only one we
know of in the setting of query complexity, is Zalka’s tight analysis of paral-
lelizing quantum search [36, Section 4]. Suppose one wants to search an n-bit
database, with the ability to do p queries in parallel in one time-step. An easy
way to make use of this parallelism is to view the database as p databases of n/p
bits each, and to run a separate copy of Grover’s algorithm on each of those.
This finds a 1-position with high probability using O(

√
n/p) p-parallel queries,

and Zalka showed that this is optimal.

1 Parallelism is in fact necessary to do quantum error-correction against a constant
noise rate: sequential operations cannot keep up with the parallel build-up of errors.

594 S. Jeffery, F. Magniez, and R. de Wolf

Our Results. We focus on parallel quantum algorithms in the setting of quan-
tum query complexity. Consider a function f : D → {0, 1}, with D ⊆ [q]n. For
standard (sequential) query complexity, let Q(f) denote the bounded-error quan-
tum query complexity of f , i.e., the minimal number of queries needed among all
quantum algorithms that (for every input x ∈ D) output f(x) with probability
at least 2/3. In the p-parallel query model, for some integer p ≥ 1, an algorithm
can make up to p quantum queries in parallel in each timestep. In that case,
we let Qp‖(f) denote the bounded-error p-parallel complexity of f . As always in
query complexity, all intermediate input-independent computation is free. For
every function, we have Q(f)/p ≤ Qp‖(f) ≤ Q(f).

An extreme case of the parallel model is where p large enough so that Qp‖(f)
becomes 1; such algorithms are called “nonadaptive,” because all queries are
made in parallel. Montanaro [28] showed that for total functions, such nonadap-
tive quantum algorithms cannot improve much over classical algorithms: every
Boolean function that depends on n input bits needs p ≥ n/2 nonadaptive quan-
tum queries for exact computation, and p = Ω(n) for bounded-error.

Here we prove matching upper and lower bounds on the p-parallel complexity
Qp‖(f) for a number of problems: Θ((n/p)2/3) queries for element distinctness
and Θ((n/p)k/(k+1)) for the k-sum problem for any constant k > 1. Our upper
bounds are obtained by parallelized quantum walk algorithms, and our lower
bounds are based on a modification of the adversary lower bound method com-
bined with some recent results by Belovs et al. about using so-called “learning
graphs,” both for upper and for lower bounds [9,13,10,14]. The modification we
need to make is surprisingly small, and technically we need to do little more
than adapt recent progress on sequential algorithms to the parallel case. Still,
we feel this extension is important because: (1) our techniques may be useful
for proving future lower bounds; (2) parallel quantum algorithms are important
and yet have received little attention before; and (3) the fact that the extension
is easy and natural increases our confidence that the adversary method is the
“right” approach in the parallel as well as the sequential case.

In Section 5 we prove some more “structural” results, i.e., bounds for Qp‖(f)
that hold for all Boolean functions f : {0, 1}n → {0, 1}. Specifically, based on
earlier results in the sequential model due to Beals et al. [6], we show that if p
is not too large then Qp‖(f) is polynomially related to its classical deterministic
p-parallel counterpart. We also observe that Qp‖(f) ≈ n/2p for almost all f .

2 Preliminaries

Sequential and Parallel Query Complexity. We use [n] := {1, . . . , n},(
[n]
k

)
:= {S ⊆ [n] : |S| = k},

(
[n]
≤k

)
:= {S ⊆ [n] : |S| ≤ k}, and

(
n
≤k

)
:=
∑k

s=0

(
n
s

)
.

We will consider algorithms in the p-parallel quantum query model. A quan-
tum query to an input x ∈ [q]n corresponds to the unitary map |i, b〉 "→ |i, b+xi〉.
Here the first n-dimensional register contains the index i ∈ [n] of the queried
element, and the value of that element is added (in Zq) to the contents of the
second (q-dimensional) register. In order to enable an algorithm to not make a

Optimal Parallel Quantum Query Algorithms 595

query on part of its state, we extend the previous unitary map to the case i = 0
by |0, b〉 "→ |0, b〉. In each timestep we can make up to p quantum queries in
parallel by applying the map |i1, b1, . . . , ip, bp〉 "→ |i1, b1 + xi1 , . . . , ip, bp + xip〉 at
unit cost. All intermediate input-independent computation is free.

Consider a function f : D → {0, 1}, with D ⊆ [q]n. When p = 1 we have
the standard sequential query complexity, and we let Qε(f) denote the quantum
query complexity of f with error probability ≤ ε on every input x ∈ D. For

general p, let Q
p‖
ε (f) be the p-parallel complexity of f . Note that Qε(f)/p ≤

Q
p‖
ε (f) ≤ Qε(f) for every function. The exact value of the error probability ε

does not matter, as long as it is a constant < 1/2. We usually fix ε = 1/3,

abbreviating Q(f) = Q1/3(f) and Qp‖(f) = Q
p‖
1/3(f) as in the introduction.

We will use an extension of the adversary bound for the usual sequential (1-
parallel) quantum query model. An adversary matrix Γ for f is a real-valued
matrix whose rows are indexed by f−1(0) and whose columns by f−1(1). Let Δj

be the Boolean matrix whose rows and columns are indexed by x ∈ f−1(0) and
y ∈ f−1(1), such that Δj [x, y] = 1 if xj �= yj, and Δj [x, y] = 0 otherwise. The
(negative-weights) adversary bound for f is given by:

ADV(f) = max
Γ

‖Γ‖
maxj∈[n] ‖Γ ◦Δj‖

, (1)

where Γ ranges over all adversary matrices for f , ‘◦’ denotes entry-wise product
of two matrices, and ‘‖·‖’ denotes the operator norm associated to the �2 norm.
This lower bound (often denoted ADV±(f) instead of ADV(f)) was introduced
by Høyer et al. [22], generalizing Ambainis [2]. They showed Qε(f) ≥ 1

2 (1 −√
ε(1 − ε))ADV(f) for all f . Reichardt et al. [32,26] showed this is tight: Q(f) =

Θ(ADV(f)) for all f .

Quantum Walks. We will construct and analyze our algorithms in the quantum
walk framework of [27], which we now briefly describe. Given a reversible Markov
process P on state space V , and a subset M ⊂ V of marked elements, we
define three costs: the setup cost, S, is the cost to construct a superposition
over all states

∑
v∈V

√
πv|v〉, where πv is the probability of vertex v in the

stationary distribution π of P ; the checking cost, C, is the cost to check if a
state v ∈ V is in M ; and the update cost, U, is the cost to perform the map
|v〉|0〉 "→ |v〉

∑
u∈V

√
Pvu|u〉, where Pvu is the transition probability in P to

go from v to u. Then, if δ is the spectral gap of P , and ε is a lower bound
on
∑

v∈M πv whenever M is nonempty, we can determine if M is nonempty

with bounded error probability in cost O
(
S + 1√

ε

(
1√
δ
U + C

))
. If S, U and C

denote query complexities, then the above expression gives the bounded-error
query complexity of the quantum walk algorithm. If they denote p-parallel query
complexities, the above expression gives the bounded-error p-parallel complexity.

596 S. Jeffery, F. Magniez, and R. de Wolf

3 Lower Bounds for Parallel Quantum Query Complexity

3.1 Adversary Bound for Parallel Algorithms

We start by extending the adversary bound for the usual sequential quantum
query algorithms to p-parallel algorithms. For J ⊆ [n], let xJ be the string x
restricted to the entries in J . Let ΔJ be the Boolean matrix whose rows are
indexed by x ∈ f−1(0) and whose columns are indexed by y ∈ f−1(1), and that
has a 1 at position (x, y) iff xJ �= yJ (i.e., xj �= yj for at least one j ∈ J). For
J = ∅, ΔJ is the all-0 matrix. Define the following quantity:

ADVp‖(f) = maxΓ
‖Γ‖

max
J∈([n]

≤p)
‖Γ ◦ΔJ‖ . (2)

The following fact (proved in our full version [24]) implies we only need

to consider sets J ∈
(
[n]
p

)
in the above definition: ADVp‖(f) equals

max
Γ

‖Γ‖
max

J∈([n]
p) ‖Γ ◦ΔJ‖

up to a factor of 2. We could even use the latter as an

alternative definition of ADVp‖(f).

Fact 1. For every set J ⊆ K ⊆ [n], we have ‖Γ ◦ΔJ‖ ≤ 2‖Γ ◦ΔK‖.

Theorem 2. For every f : D → {0, 1} and D ⊆ [q]n, Qp‖(f) = Θ(ADVp‖(f)).

Proof. In order to derive p-parallel lower bounds from sequential lower bounds,
observe that we can make a bijection between input x ∈ [q]n and a larger string

X indexed by all sets J ∈
(
[n]
≤p

)
, such that XJ = (xj)j∈J . That is, each index

J of X corresponds to up to p indices j of x. We now define a new function
F : D′ → {0, 1}, where D′ is the set of X as above, in 1-to-1 correspondence
with the elements of x ∈ D, and F (X) is defined as f(x). One query to X can be
simulated by p parallel queries to x, and vice versa, so we have Qp‖(f) = Q(F).
We have Q(F) = Θ(ADV(F)) by [32,26]. Now Eq. (1) applied to F gives the
claimed lower bound of Eq. (2) on Qp‖(f). ��

Sometimes we can even use the same adversary matrix Γ to obtain optimal
lower bounds for F and f . An example is the n-bit OR-function. Let Γ be the
all-ones 1 × n matrix, with the row corresponding to input 0n and the columns
indexed by all weight-1 inputs. Then ‖Γ‖ =

√
n and ‖Γ ◦Δj‖ = 1 for all

j ∈ [n], and hence Q(OR) = Ω(
√
n). To get p-parallel lower bounds, we define

a new function F : X "→ {0, 1} as in the proof of Theorem 2. We can use the
same Γ , with the n columns still indexed by the weight-1 inputs to f (which
induce 1-inputs to F). Now J ranges over subsets of [n] of size at most p, and
ΔJ will be the matrix whose (x, y)-entry is 1 if there is at least one j ∈ J
such that xj �= yj . Note that ‖Γ ◦ΔJ‖ =

√
|J | for all J . Hence Qp‖(OR) =

Ω(ADV(F)) = Ω(
√
n/p). This is optimal and was already proved (in a different

way) by Zalka [36, Section 4].

Optimal Parallel Quantum Query Algorithms 597

3.2 Belovs’s Learning Graph Approach

Recently Belovs [9] gave a new approach to designing quantum algorithms, in-
troducing the model of learning graphs to prove upper bounds on the adversary
bound, and hence on quantum query complexity. We state it here for certifi-
cate structures. We define these below, slightly simpler and less general than
Definitions 1 and 3 of Belovs and Rosmanis [13] (for us M denotes a minimal
certificate, while in [13] it denotes the set of supersets of a minimal certificate).

Definition 1. Let C be a set of incomparable subsets of [n]. We say C is a 1-
certificate structure for a function f : D → {0, 1}, with D ⊆ [q]n, if for every
x ∈ f−1(1) there exists an M ∈ C such that for all y ∈ D, yM = xM implies
f(y) = 1. We say C is k-bounded if |M | ≤ k for all M ∈ C.

The learning graph complexity of C is defined in the following in its primal
formulation as a minimization problem (we will see an equivalent dual formu-
lation soon). Let E = {(S, j) : S ⊆ [n], j ∈ [n]\S}. For e = (S, j) ∈ E , we use
s(e) = S and t(e) = S ∪ {j}.

LGC(C) = min
√∑

e∈E we such that (3)∑
e∈E

θe(M)2

we
≤ 1 for all M ∈ C (4)∑

e∈E:t(e)=S

θe(M) =
∑

e∈E:s(e)=S

θe(M) for all M ∈ C, ∅ �= S ⊆ [n],M �⊆ S (5)

∑
e∈E:s(e)=∅

θe(M) = 1 for all M ∈ C (6)

θe(M) ∈ R, we ≥ 0 for all e ∈ E and M ∈ C (7)

For each M , θe(M) is a flow from ∅ to M on the graph with vertices {S ⊆ [n]}
and edges {{S, S ∪ {j}} : (S, j) ∈ E} if θe(M) satisfies condition (5). Moreover,
θe(M) is a unit flow if it also satisfies condition (6).

The learning graph complexity of C is an upper bound on ADV(f), and hence
on Q(f), for any function f with certificate structure C. This bound is not always
optimal, since it only depends on the certificate structure of f . E.g. k-distinctness
has quantum query complexity o(n3/4) even though it has the same 1-certificate
structure as k-sum, whose quantum query complexity is Θ(nk/(k+1)) [10,14].
However, Belovs and Rosmanis [13] proved that for a special class of functions,
it turns out the upper bound LGC(C) is optimal.

Definition 2. An orthogonal array of length k is a set T ⊆ [q]k, such that for
every i ∈ [k] and every x1, . . . , xi−1, xi+1, . . . , xk there exists exactly one xi ∈ [q]
such that (x1, . . . , xk) ∈ T .

Theorem 3 (Belovs-Rosmanis). Let C be a k-bounded 1-certificate structure
for some constant k, q ≥ 2|C|, and let each M ∈ C be equipped with an orthogonal
array TM of length |M |. Define a Boolean function f : [q]n → {0, 1} by: f(x) = 1
iff there exists an M ∈ C such that xM ∈ TM . Then Q(f) = Θ(LGC(C)).

598 S. Jeffery, F. Magniez, and R. de Wolf

For example, the element distinctness problem ED on input x ∈ [q]n is induced

by the 2-bounded 1-certificate structure C =
(
[n]
2

)
, equipped with associated

orthogonal arrays T{i,j} = {(v, v) : v ∈ [q]}. Hence Q(ED) = Θ(LGC(C)).
Belovs and Rosmanis [13] show that an equivalent dual definition of the learn-

ing graph complexity as a maximization problem is the following:

LGC(C) = max
√∑

M∈C α∅(M)2 (8)

s.t.
∑

M∈C(αs(e)(M) − αt(e)(M))2 ≤ 1 for all e ∈ E (9)

αS(M) = 0 whenever M ⊆ S

αS(M) ∈ R for all S ⊆ [n] and M ∈ C

In particular, that means we can prove lower bounds on LGC(C) (and hence, for
the functions described in Theorem 3, on Q(f)) by exhibiting a feasible solution
{αS(M)} for this maximization problem and calculating its objective value.

Before stating a similar result for p-parallel query complexity, we first adapt
learning graphs. Edges, which were of type e = (S, j) with S ⊆ [n] and j ∈ [n]\S,
are now of type e = (S, J) with S ⊆ [n], J ⊆ [n] \ S and |J | ≤ p.

Definition 3. The p-parallel learning graph complexity LGCp‖(C) of C is de-
fined as LGC(C) where we replace the edge set E with Ep = {(S, J) : S ⊆ [n], J ⊆
[n] \ S, |J | ≤ p}. Its dual is analogous. In particular, we replace (9) by∑

M∈C(αs(e)(M) − αt(e)(M))2 ≤ 1 for all e = (S, J) ∈ Ep,
where s(e) = S and t(e) = S ∪J . We call this modified constraint “parallel-(9).”

As in the special case of p = 1, the p-parallel learning graph complexity of C
provides an upper bound on ADVp‖(f), and hence on Qp‖(f), for any function f
having that same certificate structure. The proof is given in our full version [24].

Lemma 1. Let C be a certificate structure for f . Then ADVp‖(f) ≤ LGCp‖(C).

We now generalize Theorem 3 to the p-parallel case. The proof, given in [24],
is an adaptation of the proof of [13, Theorem 5].

Theorem 4. Let C be a k-bounded 1-certificate structure for some constant k,
q ≥ 2|C|, and let each M ∈ C be equipped with an orthogonal array TM of length
|M |. Define a Boolean function f : [q]n → {0, 1} as follows: f(x) = 1 iff there

exists an M ∈ C such that xM ∈ TM . Then Qp‖(f) = Θ(LGCp‖(C)).

4 Parallel Quantum Query Complexity of Specific
Functions

4.1 Algorithms

In this section we give upper bounds for element distinctness and k-sum in the
p-parallel quantum query model, by way of quantum walk algorithms.

Optimal Parallel Quantum Query Algorithms 599

Our p-parallel algorithm for element distinctness is based on the sequential
query algorithm for element distinctness of Ambainis [3]. Ambainis’s algorithm
uses a quantum walk on a Johnson graph, J(n, r), which has vertex set V =
{S ⊆ [n] : |S| = r} and edge set {{S, S′} ⊆ V : |S \ S′| = 1}. Each state S ∈ V
represents a set of queried indices. The algorithm seeks a state S containing
(i, xi) and (j, xj) such that i �= j and xi = xj . Such a state is said to be marked.

Theorem 5. Element distinctness on [q]n has Qp‖(ED) = O((n/p)2/3).

Proof. We modify Ambainis’s quantum walk algorithm slightly. Consider a walk
J(n, r/p)p, on p copies of the Johnson graph J(n, r/p). Vertices are p-tuples
(S1, S2, . . . , Sp) where, for each i ∈ [p], Si ⊆ [n] and |Si| = r/p. Two vertices
(S1, S2, . . . , Sp) and (S′

1, S
′
2, . . . , S

′
p) are adjacent if, for each i ∈ [p], |Si \S′

i| = 1.
We call a state (S1, S2, . . . , Sp) marked if there are j, j′ ∈

⋃p
i=1 Si such that xj =

xj′ . Since the stationary distribution is μp, where μ is the uniform distribution

on
([n]
r/p

)
, the probability that a state is marked is at least ε = Ω(r2/n2).

The setup cost is only S = O(r/p) p-parallel queries, since it suffices to query
r elements in the initial superposition over all states. Similarly, the update re-
quires that we query and unquery p elements, but we can accomplish this in two
p-parallel queries, so U = O(1). Also, C = 0. Finally, the eigenvalues of the prod-
uct of p copies of a graph are exactly the products of p eigenvalues of that graph.
Hence if the largest eigenvalue of a graph is 1 and the second-largest is 1 − δ,
then the same will be true for the product graph. Accordingly, the spectral gap δ
of p copies of J(n, r/p) is exactly the spectral gap of one copy of J(n, r/p), which
is Ω(p/r). We can now calculate the p-parallel query complexity of element dis-

tinctness as O
(
S + 1√

ε

(
(1√

δ
)U + C

))
= O
(

r
p + (nr)

(√
r
p

))
= O
(

r
p + n√

rp

)
.

Setting r to the optimal n2/3p1/3 gives an upper bound of O((n/p)2/3). ��

It is easy to generalize our element distinctness upper bound to k-sum:

Theorem 6. k-sum on [q]n has Qp‖(k-sum) = O((n/p)k/(k+1)).

Proof. Again, we walk on p copies of J(n, r/p), but now we consider a state
(S1, S2, . . . , Sp) marked if there are distinct indices i1, . . . , ik ∈

⋃p
i=1 Si such

that
∑k

j=1 xij = 0 (mod q). The proportion of marked states in a 1-instance is

ε = Ω(rk/nk). All other parameters are as in Theorem 5. We get the follow-

ing upper bound for k-sum: O
(
S + 1√

ε

(
1√
δ
U + C

))
= O
(

r
p + nk/2

rk/2

(√
r
p

))
=

O
(

r
p + nk/2

r(k−1)/2√p

)
. Setting r = nk/(k+1)p1/(k+1) gives O((n/p)k/(k+1)). ��

4.2 Lower Bounds

We now use the ideas from Section 3.2 to prove p-parallel lower bounds for ED
and k-sum, matching our upper bounds if the alphabet size q is sufficiently large.
Our proofs are generalizations of the sequential lower bounds in [13, Section 4].

600 S. Jeffery, F. Magniez, and R. de Wolf

Theorem 7. For q ≥ 2
(
n
2

)
, ED on [q]n has Qp‖(ED) = Ω((n/p)2/3).

Proof. Recall that element distinctness is induced by the 1-certificate structure
C =
(
[n]
2

)
, equipped with associated orthogonal arrays T{i,j} = {(v, v) : v ∈ [q]}.

By Theorem 4, it suffices to prove the lower bound on the p-parallel learning
graph complexity of ED. For this, it suffices to exhibit a feasible solution to the
dual (8) and to lower bound its objective function. Note that the elements of E
are now of the form (S, J), where S ⊆ [n] and J ⊆ [n] \ S with |J | ≤ p. Define

αj = 1
2n max((n/p)2/3 − j/p, 0), and αS(M) =

{
0 if M ⊆ S
α|S| otherwise.

To show that this is a feasible solution, the only constraint we need to verify is
parallel-(9). Fix S ⊆ [n] of some size s, and a set J ⊆ [n] \S with |J | ≤ p. Let L
denote the left-hand side of parallel-(9), which is a sum over all

(
n
2

)
certificates

M ∈ C. With respect to e = (S, J), there are four kinds of M = {i, j}:

1. i, j ∈ S. Then αt(e)(M) = αs(e)(M) = 0, so these M contribute 0 to L.
2. i ∈ S, j ∈ J . There are s|J | ≤ sp such M , and each contributes α2

s to L
because αs(e)(M) = αs and αt(e)(M) = 0.

3. i, j �∈ S, i, j ∈ J . There are
(|J|

2

)
≤
(
p
2

)
such M , each contributes α2

s to L.

4. i and/or j �∈ S ∪ J . There are
(
n
2

)
−
(
s+|J|

2

)
≤ n2 such M , each contributes

|αs − αs+|J||2 to L.

Hence, using αs = 0 if s ≥ n2/3p1/3, αs ≤ α0 = 1
2p2/3n1/3 , and |αs − αs+|J||2 ≤

1/4n2, we can establish constraint parallel-(9):

L ≤
(
sp +
(
p
2

))
α2
s + n2|αs − αs+|J||2 ≤ p(n2/3p1/3 + p/2) 1

4p4/3n2/3 + n2 1
4n2 ≤ 1.

Hence our solution is feasible. Its objective value is
√(

n
2

)
α2
0 = Ω((n/p)2/3). ��

The lower bound proof for k-sum is similar. Here we use certificate structure
C =
(
[n]
k

)
with the orthogonal array T = {(v1, . . . , vk) :

∑k
i=1 vi = 0 mod q},

which induces k-sum. In [24], we show that the following has objective value√(
n
k

)
α2
0 = Ω

(
(n/p)k/(k+1)

)
and is feasible for LGCp‖(C):

αj = 1
2nk/2 max((n/p)k/(k+1) − j/p, 0) and αS(M) =

{
0 if M ⊆ S
α|S| otherwise;

Theorem 8. For q ≥ 2
(
n
k

)
, k-sum on [q]n has Qp‖(k-sum) = Ω

(
(n/p)k/(k+1)

)
.

5 Some General Bounds

In this section we will relate quantum and classical p-parallel complexity. For the
sequential model (p = 1) it is known that quantum bounded-error query com-
plexity is no more than a 6th power less than classical deterministic complexity,

Optimal Parallel Quantum Query Algorithms 601

for all total Boolean functions [6]. Here we will see to what extent we can prove
a similar result for the p-parallel model.

We start with a few definitions, referring to [15] for more details. Let f :
{0, 1}n → {0, 1} be a total Boolean function. For b ∈ {0, 1}, a b-certificate for f
is an assignment C : S → {0, 1} to a subset S of the n variables, such that
f(x) = b whenever x is consistent with C. The size of C is |S|. The certificate
complexity Cx(f) of f on x is the size of a smallest f(x)-certificate that is
consistent with x. The certificate complexity of f is C(f) = maxx Cx(f). The
1-certificate complexity of f is C(1)(f) = max{x:f(x)=1}Cx(f). Given an input
x ∈ {0, 1}n and subset B ⊆ [n] of indices of variables, let xB denote the n-bit
input obtained from x by negating all bits xi whose index i is in B. The block
sensitivity bs(f, x) of f at input x, is the maximal integer k such that there
exist disjoint sets B1, . . . , Bk satisfying f(x) �= f(xBi) for all i ∈ [k]. The block
sensitivity of f is bs(f) = maxx bs(f, x). Nisan [30] proved that

bs(f) ≤ C(f) ≤ bs(f)2. (10)

Via a standard reduction [31], Zalka’s Θ(
√

n/p) bound for OR implies:

Theorem 9. For every f : {0, 1}n → {0, 1}, Qp‖(f) = Ω(
√
bs(f)/p).

We now prove a general upper bound on deterministic p-parallel complexity:

Theorem 10. For every f : {0, 1}n → {0, 1}, Dp‖(f) ≤
C(1)(f)/p�bs(f).

Proof. Beals et al. [6, Lemma 5.3] give a deterministic decision tree for f that
runs for at most bs(f) rounds, and in each round queries all variables of a
1-certificate, and substituting their values into the function. This reduces the
function to a constant. By parallelizing the querying of the certificate we can
implement every round using
C(1)(f)/p� p-parallel steps. ��

Dp‖(f) and Qp‖(f) are polynomially related if p is not too big:

Theorem 11. For every f : {0, 1}n → {0, 1}, c > 1, p ≤ bs(f)1/c, we have
Dp‖(f) ≤ O(Qp‖(f)6+4/(c−1)).

Proof. We can assume C(f) = C(1)(f) (else consider 1−f). By Eq. (10) we have
p ≤ bs(f)1/c ≤ C(1)(f). We also have C(1)(f) ≤ bs(f)2. The assumption on p is
equivalent to p ≤ (bs(f)/p)1/(c−1). Using Theorems 9 and 10, we obtain

Dp‖(f) ≤
C(1)(f)/p�bs(f) ≤ O(bs(f)3/p) = O((bs(f)/p)3p2)

≤ O((bs(f)/p)3+2/(c−1)) ≤ O(Qp‖(f)6+4/(c−1)). ��

For example, if p ≤ bs(f)1/3 then Qp‖(f) is at most an 8th power smaller
than Dp‖(f). Whether superpolynomial gaps exist for large p remains open.

We end with an observation about random functions. Van Dam [17] showed
that an n-bit input string x can be recovered with high probability using n/2 +
O(

√
n) quantum queries, hence Q(f) ≤ n/2+O(

√
n) for all f : {0, 1}n → {0, 1}.

602 S. Jeffery, F. Magniez, and R. de Wolf

His algorithm already applies its queries in parallel, so allows us to compute x
using roughly n/2p p-parallel quantum queries. Ambainis et al. [4] proved an
essentially optimal lower bound for random functions: almost all f have Q(f) ≥
(1/2 − o(1))n. Since trivially Q(f) ≤ pQp‖(f), we obtain the p-parallel lower
bound Qp‖(f) ≥ (1/2 − o(1))n/p for almost all f .

6 Conclusion and Future Work

This paper is the first to systematically study the power and limitations of paral-
lelism for quantum query algorithms. We leave open many interesting questions:

– There are many other computational problems whose p-parallel complexity
is unknown, for example finding a triangle in a graph or deciding whether two
given matrices multiply to a third one. For both of these problems, however,
even the sequential quantum query complexity is still open.

– We suspect Theorem 11 is non-optimal, and conjecture that Dp‖(f) and
Qp‖(f) are polynomially related for large p as well. Montanaro’s result [28]
about the weakness of maximally parallel quantum algorithms is evidence.

– Can we find relations with quantum communication complexity? Nonadap-
tive quantum query algorithms induce one-way communication protocols,
while fully adaptive ones induce protocols that are very interactive. Our
p-parallel algorithms would sit somewhere in between.

Acknowledgment. We are partially supported by the French ANR Blanc
project ANR-12-BS02-005 (RDAM), a Vidi grant from the Netherlands Organi-
zation for Scientific Research (NWO), an ERC Consolidator grant, the European
Commission IST STREP project Quantum Algorithms (QALGO) 600700 and
the US ARO. We thank Jérémie Roland for helpful discussions.

References

1. Aaronson, S., Shi, Y.: Quantum lower bounds for the collision and the element
distinctness problems. J. of the ACM 51(4), 595–605 (2004)

2. Ambainis, A.: Quantum lower bounds by quantum arguments. J. of Computer and
System Sciences 64(4), 750–767 (2002)

3. Ambainis, A.: Quantum walk algorithm for element distinctness. SIAM J. on Com-
puting 37(1), 210–239 (2007), Earlier version in FOCS 2004. quant-ph/0311001

4. Ambainis, A., Bačkurs, A., Smotrovs, J., de Wolf, R.: Optimal quantum query
bounds for almost all Boolean functions. In: Proc. 30th STACS, pp. 446–453 (2013)

5. Beals, R., Brierley, S., Gray, O., Harrow, A., Kutin, S., Linden, N., Shepherd, D.,
Stather, M.: Efficient distributed quantum computing. Proc. of the Royal Soci-
ety A469, 2153 (2013)

6. Beals, R., Buhrman, H., Cleve, R., Mosca, M., de Wolf, R.: Quantum lower bounds
by polynomials. J. of the ACM 48(4), 778–797 (2001)

7. de Beaudrap, N., Cleve, R., Watrous, J.: Sharp quantum vs. classical query com-
plexity separations. Algorithmica 34(4), 449–461 (2002)

Optimal Parallel Quantum Query Algorithms 603

8. Belovs, A.: Learning-graph-based quantum algorithm for k-distinctness. In: Proc.
of 53rd IEEE FOCS, pp. 207–216 (2012)

9. Belovs, A.: Span programs for functions with constant-sized 1-certificates. In:
Proc. of 43rd ACM STOC, pp. 77–84 (2012)

10. Belovs, A.: Adversary lower bound for element distinctness, arXiv:1204.5074 (2012)
11. Belovs, A., Childs, A.M., Jeffery, S., Kothari, R., Magniez, F.: Time-efficient quan-

tum walks for 3-distinctness. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M.,
Peleg, D. (eds.) ICALP 2013, Part I. LNCS, vol. 7965, pp. 105–122. Springer,
Heidelberg (2013)

12. Belovs, A., Lee, T.: Quantum algorithm for k-distinctness with prior knowledge on
the input. Technical Report arXiv:1108.3022, arXiv (2011)

13. Belovs, A., Rosmanis, A.: On the power of non-adaptive learning graphs. In:
Proc. of 28th IEEE CCC, pp. 44–55 (2013) References are to arXiv:1210.3279v2

14. Belovs, A., Špalek, R.: Adversary lower bound for the k-sum problem. In: Proc. of
4th ITCS, pp. 323–328 (2013)

15. Buhrman, H., de Wolf, R.: Complexity measures and decision tree complexity: A
survey. Theoretical Computer Science 288(1), 21–43 (2002)

16. Cleve, R., Watrous, J.: Fast parallel circuits for the quantum Fourier transform.
In: Proc. of 41st IEEE FOCS, pp. 526–536 (2000)

17. van Dam, W.: Quantum oracle interrogation: Getting all information for almost
half the price. In: Proc. of 39th IEEE FOCS, pp. 362–367 (1998)

18. Deutsch, D., Jozsa, R.: Rapid solution of problems by quantum computation.
Proc. of the Royal Society of London A439, 553–558 (1992)

19. Green, F., Homer, S., Moore, C., Pollett, C.: Counting, fanout and the complexity
of quantum ACC. Quantum Inf. and Comp. 2(1), 35–65 (2002)

20. Grover, L., Rudolph, T.: How significant are the known collision and element dis-
tinctness quantum algorithms? Quantum Inf. and Comp. 4(3), 201–206 (2004)

21. Grover, L.K.: A fast quantum mechanical algorithm for database search. In:
Proc. of 28th ACM STOC, pp. 212–219 (1996)

22. Høyer, P., Lee, T., Špalek, R.: Negative weights make adversaries stronger. In:
Proc. of 39th ACM STOC, pp. 526–535 (2007)

23. Høyer, P., Špalek, R.: Quantum fan-out is powerful. Th. Comp. 1, 81–103 (2005)
24. Jeffery, S., Magniez, F., de Wolf, R.: Optimal parallel quantum query algorithms.

arXiv:1309.6116 (2013)
25. Jozsa, R.: An introduction to measurement based quantum computation. In: An-

gelakis, D.G., Christandl, M., Ekert, A. (eds.) Quantum Information Processing,
pp. 137–158. IOS Press (2006) arXiv:0508124

26. Lee, T., Mittal, R., Reichardt, B., Špalek, R., Szegedy, M.: Quantum query com-
plexity of state conversion. In: Proc. of 52nd IEEE FOCS, pp. 344–353 (2011)
References are to arXiv:1011.3020v2

27. Magniez, F., Nayak, A., Roland, J., Santha, M.: Search via quantum walk. SIAM
J. on Computing 40(1), 142–164 (2011)

28. Montanaro, A.: Nonadaptive quantum query complexity. Information Processing
Letters 110(24), 1110–1113 (2010)

29. Moore, C., Nilsson, M.: Parallel quantum computation and quantum codes. SIAM
J. on Computing 31(3), 799–815 (2002)

30. Nisan, N.: CREW PRAMs and decision trees. SIAM J. on Computing 20(6),
999–1007 (1991)

31. Nisan, N., Szegedy, M.: On the degree of Boolean functions as real polynomials.
Computational Complexity 4(4), 301–313 (1994)

604 S. Jeffery, F. Magniez, and R. de Wolf

32. Reichardt, B.: Span programs and quantum query complexity: The general ad-
versary bound is nearly tight for every Boolean function. In: Proc. of 50th IEEE
FOCS, pp. 544–551 (2009)

33. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer. SIAM J. on Computing 26(5), 1484–1509 (1997)

34. Simon, D.: On the power of quantum computation. SIAM J. on Computing 26(5),
1474–1483 (1997)

35. Takahashi, Y., Tani, S.: Collapse of the hierarchy of constant-depth exact quantum
circuits. In: Proc. of 28th IEEE CCC (2013)

36. Zalka, C.: Grover’s quantum searching algorithm is optimal. Physical Review A 60,
2746–2751 (1999)

Sublinear Space Algorithms

for the Longest Common Substring Problem

Tomasz Kociumaka1,�, Tatiana Starikovskaya2,��, and Hjalte Wedel Vildhøj3

1 Institute of Informatics, University of Warsaw
2 National Research University Higher School of Economics (HSE)

3 Technical University of Denmark, DTU Compute

Abstract. Given m documents of total length n, we consider the prob-
lem of finding a longest string common to at least d ≥ 2 of the docu-
ments. This problem is known as the longest common substring (LCS)
problem and has a classic O(n) space and O(n) time solution (Weiner
[FOCS’73], Hui [CPM’92]). However, the use of linear space is imprac-
tical in many applications. In this paper we show that for any trade-off
parameter 1 ≤ τ ≤ n, the LCS problem can be solved in O(τ) space
and O(n2/τ) time, thus providing the first smooth deterministic time-
space trade-off from constant to linear space. The result uses a new and
very simple algorithm, which computes a τ -additive approximation to
the LCS in O(n2/τ) time and O(1) space. We also show a time-space
trade-off lower bound for deterministic branching programs, which im-
plies that any deterministic RAM algorithm solving the LCS problem
on documents from a sufficiently large alphabet in O(τ) space must use
Ω(n

√
log(n/(τ log n))/ log log(n/(τ log n)) time.

1 Introduction

The longest common substring (LCS) problem is a fundamental and classic string
problem with numerous applications. Given m strings T1, T2, . . . , Tm (the doc-
uments) from an alphabet Σ and a parameter 2 ≤ d ≤ m, the LCS problem is
to compute a longest string occurring in least d of the m documents. We denote
such a string by LCS and use n =

∑m
i=1 |Ti| to refer to the total length of the

documents.
The classic text-book solution to this problem is to build the (generalized)

suffix tree of the documents and find the node that corresponds to LCS [11,17,9].
While this can be achieved in linear time, it comes at the cost of using Ω(n)
space1 to store the suffix tree. In applications with large amounts of data or
strict space constraints, this renders the classic solution impractical. A recent
example of this challenge is automatic generation of signatures for identifying

� Supported by Polish budget funds for science in 2013-2017 as a research project
under the ‘Diamond Grant’ program.

�� Partly supported by Dynasty Foundation.
1 Throughout the paper, we measure space as the number of words in the standard
unit-cost word-RAM model with word size w = Θ(log n) bits.

A.S. Schulz and D. Wagner (Eds.): ESA 2014, LNCS 8737, pp. 605–617, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

606 T. Kociumaka, T. Starikovskaya, and H.W. Vildhøj

zero-day worms by solving the LCS problem on internet packet data [1,12,16].
The same challenge is faced if the length of the longest common substring is
used as a measure for plagiarism detection in large document collections.

To overcome the space challenge of suffix trees, succinct and compressed data
structures have been subject to extensive research [8,13]. Nevertheless, these
data structures still use Ω(n) bits of space in the worst-case, and are thus not
capable of providing truly sublinear space solutions to the LCS problem.

1.1 Our Results

We give new sublinear space algorithms for the LCS problem. They are designed
for the word-RAM model with word size w = Ω(log n), and work for integer
alphabets Σ = {1, 2, . . . , σ} with σ = nO(1). Throughout the paper, we regard
the output to the LCS problem as a pair of integers referring to a substring in
the input documents, and thus the output fits in O(1) machine words.

As a stepping stone to our main result, we first show that an additive approx-
imation of LCS can be computed in constant space. We use |LCS| to denote
the length of the longest common substring.

Theorem 1. There is an algorithm that given a parameter τ , 1 ≤ τ ≤ n, runs
in O(n2/τ) time and O(1) space, and outputs a string, which is common to at
least d documents and has length at least |LCS| − τ + 1.

The solution is very simple and essentially only relies on a constant space pattern
matching algorithm as a black-box. We expect that it could be of interest in
applications where an approximation of LCS suffices.

For τ = 1 we obtain the corollary:

Corollary 1. LCS can be computed in O(1) space and O(n2) time.

To the best of our knowledge, this is the first constant space O(n2)-time algo-
rithm for the LCS problem. Given that it is a simple application of a constant
space pattern matching algorithm, it is an interesting result on its own.

Using Theorem 1 we are able to establish our main result, which gives the
first deterministic time-space trade-off from constant to linear space:

Theorem 2. There is an algorithm that given a parameter τ , 1 ≤ τ ≤ n, com-
putes LCS in O(τ) space and O(n2/τ) time.

Previously, no deterministic trade-off was known except in the restricted setting
of n2/3 < τ ≤ n, where two of the authors showed that the problem allows
an O((n2/τ)d log2 n(log2 n + d))-time and O(τ)-space trade-off [15]. Our new
solution is also strictly better than the O((n2/τ) logn)-time and O(τ)-space
randomized trade-off, which correctly outputs LCS with high probability (see
[15] for a description).

Finally, we prove a time-space trade-off lower bound for the LCS problem over
large-enough alphabets, which remains valid even restricted to two documents.

Sublinear Space Algorithms for the Longest Common Substring Problem 607

Theorem 3. Given two documents of total length n from an alphabet Σ of
size at least n2, any deterministic RAM algorithm, which uses τ ≤ n

logn space
to compute the longest common substring of both documents, must use time
Ω(n
√

log(n/(τ logn))/ log log(n/(τ logn))).

We prove the bound for non-uniform deterministic branching programs, which
are known to simulate deterministic RAM algorithms with constant overhead.
The lower bound of Theorem 3 implies that the classic linear-time solution is
close to asymptotically optimal in the sense that there is no hope for a linear-time
and o(n/ logn)-space algorithm that solves the LCS problem on polynomial-sized
alphabets.

2 Upper Bounds

Let T be a string of length n > 0. Throughout the paper, we use the notation
T [i..j], 1 ≤ i ≤ j ≤ n, to denote the substring of T starting at position i and
ending at position j (both inclusive). We use the shorthand T [..i] and T [i..] to
denote T [1..i] and T [i..n] respectively.

A suffix tree of T is a compacted trie on suffixes of T appended with a unique
letter (sentinel) $ to guarantee one-to-one correspondence between suffixes and
leaves of the tree. The suffix tree occupies linear space. Moreover, if the size
of the alphabet is polynomial in the length of T , then the suffix tree can be
constructed in linear time [7]. We refer to nodes of the suffix tree as explicit
nodes, and to nodes of the underlying trie, which are not preserved in the suffix
tree, as implicit nodes. Note that each substring of T corresponds to a unique
explicit or implicit node, the latter can be specified by the edge it belongs to
and its distance to the upper endpoint of the edge.

A generalized suffix tree of strings T1, T2, . . . , Tm is a trie on all suffixes of these
strings appended with sentinels $i. It occupies linear space and for polynomial-
sized alphabets can also be constructed in linear time.

Classic solution. As a warm-up, we briefly recall how to solve the LCS problem
in linear time and space. Consider the generalized suffix tree of the documents
T1, T2, . . . , Tm, where leaves corresponding to suffixes of Ti, i = 1, 2, . . . ,m, are
painted with color i. The main observation is that LCS is the label of a deepest
explicit node with leaves of at least d distinct colors in its subtree. Hui [11]
showed that given a tree with O(n) nodes where some leaves are colored, it is
possible to compute the number of distinctly colored leaves below all nodes in
O(n) time. Consequently, we can locate the node corresponding to LCS in O(n)
time and O(n) space.

2.1 Approximating LCS in Constant Space

Given a pattern and a string, it is possible to find all occurrences of the pattern
in the string using constant space and linear time (see [5] and references therein).
We use this result in the following O(1)-space additive approximation algorithm.

608 T. Kociumaka, T. Starikovskaya, and H.W. Vildhøj

Lemma 1. There is an algorithm that given integer parameters �, r satisfying

1 ≤ � < r ≤ n, runs in O
(

n2

r−�

)
time and constant space, and returns NO if

|LCS| < �, YES if |LCS| ≥ r, and an arbitrary answer otherwise.

Proof. Let S = T1$1T2$2 . . . Tm$m and τ = r − �. Consider substrings Sk =

S[kτ + 1..kτ + �] for k = 0, . . . ,
⌊ |S|

τ

⌋
. For each Sk we use a constant-space

pattern matching algorithm to count the number of documents Ti containing an
occurrence of Sk. We return YES if for any Sk this value is at least d and NO
otherwise.

If |LCS| < �, then any substring of S of length � — in particular, any Sk —
occurs in less than d documents. Consequently, in this case the algorithm will
return NO. On the other hand, any substring of S of length r contains some Sk,
so if |LCS| ≥ r, then some Sk occurs in at least d documents, and in this case
the algorithm will return YES. ��

To establish Theorem 1 we perform a ternary search using Lemma 1 with the
modification that if the algorithm returns YES, it also outputs a string of length
� common to at least d documents. We maintain an interval R containing |LCS|;
initially R = [1, n]. In each step we set � and r (approximately) in 1/3 and 2/3
of R, so that we can reduce R by �|R|/3�. We stop when |R| ≤ τ . The time
complexity bound forms a geometric progression dominated by the last term,
which is O(n2/τ). This concludes the proof of the following result.

Theorem 1. There is an algorithm that given a parameter τ , 1 ≤ τ ≤ n, runs
in O(n2/τ) time and O(1) space, and outputs a string, which is common to at
least d documents and has length at least |LCS| − τ + 1.

2.2 An O(τ)-Space and O(n2/τ)-Time Solution

We now return to the main goal of this section. Using Theorem 1, we can assume
to know � such that � ≤ |LCS| < � + τ . Organization of the text below is as
follows. First, we explain how to compute LCS if � = 1. Then we extend our
solution so that it works with larger values of �. Here we additionally assume that
the alphabet size is constant and later, in Section 2.3, we remove this assumption.

Case 	 = 1. From the documents T1, T2, . . . , Tm we compose two lists of strings.
First, we consider “short” documents Tj with |Tj | < τ . We split them into groups
of total length in [τ, 1 + 2τ] (except for the last group, possibly). For each group
we add a concatenation of the documents in this group, appended with sentinels
$j, to a list L1. Separately, we consider “long” documents Tj with |Tj | ≥ τ . For
each of them we add to a list L2 its substrings starting at positions of the form
kτ + 1 for integer k and in total covering Tj. These substrings are chosen to
have length 2τ , except for the last whose length is in [τ, 2τ]. We assume that
substrings of the same document Tj occur contiguously in L2 and append them
with $j . The lists L1 and L2 will not be stored explicitly but will be generated
on the fly while scanning the input. Note that |L1 ∪ L2| = O(n/τ).

Sublinear Space Algorithms for the Longest Common Substring Problem 609

Observation 4. Since the length of LCS is between 1 and τ , LCS is a substring
of some string Sk ∈ L1 ∪ L2. Moreover, it is a label of an explicit node of the
suffix tree of Sk or of a node where a suffix of some Si ∈ L1 ∪ L2 branches out
of the suffix tree of Sk.

We process candidate substrings in groups of τ , using the two lemmas below.

Lemma 2. Consider a suffix tree of Sk with τ marked nodes (explicit or im-
plicit). There is an O(n)-time and O(τ)-space algorithm that counts the number
of short documents containing an occurrence of the label of each marked node.

Proof. For each marked node we maintain a counter c(v) storing the number
of short documents the label of v occurs in. Counters are initialized with zeros.
We add each string Si ∈ L1 to the suffix tree of Sk in O(τ) time. By adding a
string to the suffix tree of another string, we mean constructing the generalized
suffix tree of both strings and establishing pointers from explicit nodes of the
generalized suffix tree to the corresponding nodes of the original suffix tree. We
then paint leaves representing suffixes of Si: namely, we paint a leaf with color j
if the corresponding suffix of Si starts within a document Tj (remember that Si

is a concatenation of short documents). Then the label of a marked node occurs
in Tj iff this node has a leaf of color j in its subtree. Using Hui’s algorithm we
compute the number of distinctly colored leaves in the subtree of each marked
node v and add this number to c(v). After updating the counters, we remove
colors and newly added nodes from the tree. Since all sentinels in the strings in
L1 are distinct, the algorithm is correct. It runs in O(|L1|τ +τ) = O(n) time. ��

Lemma 3. Consider a suffix tree of Sk with τ marked nodes (explicit or im-
plicit). There is an O(n)-time and O(τ)-space algorithm that counts the number
of long documents containing an occurrence of the label of each marked node.

Proof. For each of the marked nodes we maintain a variable c(v) counting the
documents where the label of v occurs. A single document might correspond to
several strings Si, so we also keep an additional variable m(v), which prevents
increasing c(v) several times for a single document. As in Lemma 2, we add each
string Si ∈ L2 to the suffix tree of Sk. For each marked node v whose subtree
contains a suffix of Si ending with $j, we compare m(v) with j. We increase c(v)
only if m(v) �= j, also setting m(v) = j to prevent further increases for the same
document. Since strings corresponding to the Tj occur contiguously in L2, the
algorithm is correct. Its running time is O(|L2|τ + τ) = O(n). ��

Let L = L1∪L2. If LCS is a substring of Sk ∈ L, we can find it as follows: we
construct the suffix tree of Sk, mark its explicit nodes and nodes where suffixes
of Si ∈ L (i �= k) branch out, and determine the deepest of them which occurs in
at least d documents. Repeating for all Sk ∈ L, this allows us to determine LCS.
To reduce the space usage to O(τ), we use Lemma 2 and Lemma 3 for batches
of O(τ) marked nodes in the suffix tree of Sk at a time. Labels of all marked
node are also labels of explicit nodes in the generalized suffix tree of T1, . . . , Tm.
In order to achieve good running time we will make sure that marked nodes

610 T. Kociumaka, T. Starikovskaya, and H.W. Vildhøj

have, over all Sk ∈ L, distinct labels. This will imply that we use Lemma 2 and
Lemma 3 only O(n/τ) times, and hence spend O(n2/τ) time overall.

We consider each of the substrings Sk ∈ L in order. We start by constructing
a suffix tree for Sk. To make sure the labels of marked nodes are distinct, we
shall exclude some (explicit and implicit) nodes of Sk. Each node is going to be
excluded together with all its ancestors or descendants, so that it is easy to test
whether a particular node is excluded. (It suffices to remember the highest and
the lowest non-excluded node on each edge, if any, O(τ) nodes in total.)

First of all, we do not need to consider substrings of S1, . . . , Sk−1. Therefore
we add each of strings S1, S2, . . . , Sk−1 to the suffix tree (one by one) and exclude
nodes common to Sk and these strings from consideration. Note that in this case
a node is excluded with all its ancestors.

Then we consider all strings Sk, Sk+1, Sk+2, . . . in turn. For each string we
construct the generalized suffix tree of Sk and the current Si and iterate over
explicit nodes of the tree whose labels are substrings of Sk. If a node has not
been excluded, we mark it. Once we have τ marked nodes (and if any marked
nodes are left at the end), we apply Lemma 2 and Lemma 3. If the label of a
marked node occurs in at least d documents, then we can exclude the marked
node and all its ancestors. Otherwise, we can exclude it with all its descendants.

Recall that LCS is a label of one of the explicit inner nodes of the generalized
suffix tree of T1, T2, . . . , Tm, i.e., there are O(n) possible candidates for LCS.
Moreover, we are only interested in candidates of length at most τ , and each
such candidate corresponds to an explicit node of the generalized suffix tree of a
pair of strings from L. The algorithm process each such candidate exactly once
due to node exclusion. Thus, its running time is O(nτ n + τ) = O(n2/τ). At any
moment it uses O(τ) space.

General Case. If � < 10τ we can still use the technique above, adjusting the
multiplicative constants in the complexity bounds. Thus, we can assume � > 10τ .

Documents shorter than � cannot contain LCS and we ignore them. For each
of the remaining documents Tj we add to a list L its substrings starting at
positions of the form kτ +1 for integer k and in total covering Tj . The substrings
are chosen to have length �+2τ , except for the last whose length is in the interval
[�, �+2τ]. Each substring is appended with $j , and we assume that the substrings
of the same document occur contiguously.

Observation 5. Since the length of LCS is between � and � + τ , LCS is a
substring of some string Sk ∈ L. Moreover, it is the label of a node of the suffix
tree of Sk where a suffix of another string Si ∈ L branches out. (We do not need
to consider explicit nodes of the suffix tree as there are no short documents.)

As before, we consider strings Sk ∈ L in order and check all candidates which
are substrings of Sk but not any Si for i < k. However, in order to make the
algorithm efficient, we replace all strings Si, including Sk, with strings rk(Si),
each of length O(τ). To define the mapping rk we first introduce some necessary
notions.

Sublinear Space Algorithms for the Longest Common Substring Problem 611

We say that S[1..p] is a period of a string S if S[i] = S[i+ p], 1 ≤ i ≤ |S| − p.
The length of the shortest period of S is denoted as per(S). We say that a string
S is primitive if its shortest period is not a proper divisor of |S|. Note that
ρ = S[1.. per(S)] is primitive and therefore satisfies the following lemma:

Lemma 4 (Primitivity Lemma [6]). Let ρ be a primitive string. Then ρ has
exactly two occurrences in a string ρρ.

Let Qk = Sk[1 + 2τ..�]; note that |Qk| = � − 2τ ≥ 8τ . Let per(Qk) be the
length of the shortest period ρ of Q. If per(Qk) > 4τ , we define Q′

k = #, where
is a special letter that does not belong to the main alphabet. Otherwise Qk

can be represented as ρtρ′, where ρ′ is a prefix of ρ. We set Q′
k = ρt

′
ρ′ for t′ ≤ t

chosen so that 8τ ≤ |Q′
k| < 12τ . For any string S we define rk(S) = ε if S does

not contain Qk, and a string obtained from S by replacing the first occurrence
of Qk with Q′

k otherwise. Below we explain how to compute Q′
k.

Lemma 5. One can decide in linear time and constant space if per(Qk) ≤ 4τ
and provided that this condition holds, compute per(Qk).

Proof. Let P be the prefix of Qk of length
|Qk|/2� and p be the starting position
of the second occurrence of P in Qk, if any. The position p can be found in
O(|Qk|) time by a constant-space pattern matching algorithm.

We claim that if per(Qk) ≤ 4τ ≤
|Qk|/2�, then p = per(Qk)+1. Observe first
that in this case P occurs at a position per(Qk) + 1, and hence p ≤ per(Qk) + 1.
Furthermore, p cannot be smaller than per(Qk) + 1, because otherwise ρ =
Qk[1.. per(Qk)] would occur in ρρ = Qk[1..2 per(Qk)] at the position p. The
shortest period ρ is primitive, so this is a contradiction with Lemma 4.

The algorithm compares p and 4τ+1. If p ≤ 4τ+1, it uses letter-by-letter com-
parison to determine whether Qk[1..p−1] is a period of Qk. If so, by the discussion
above per(Qk) = p− 1, and the algorithm returns it. Otherwise per(Qk) > 4τ .
The algorithm runs in O(|Qk|) time and uses constant space. ��

Fact 6. Suppose that a string S, |S| ≤ |Qk| + 4τ , contains Qk as a substring.
Then

(a) replacing with Q′
k any occurrence of Qk in S results in rk(S),

(b) replacing with Qk any occurrence of Q′
k in rk(S) results in S.

Proof. We start with (a). Let i and i′ be the positions of the first and last
occurrence of Qk in S. We have 1 ≤ i ≤ i′ ≤ |S| − |Qk| + 1, so i′ − i ≤
|S| − |Qk| ≤ 4τ . If per(Qk) > 4τ this implies that i′ − i = 0, or, in other words,
that Qk has just one occurrence in S.

On the other hand, if per(Qk) ≤ 4τ , we observe that i′ − i ≤ 4τ = 8τ −
4τ ≤ |Qk| − per(Qk). Therefore the string ρ = S[i′..i′ + per(Qk) − 1] fits within
Qk = S[i..i + |Qk| − 1]. It is primitive and Lemma 4 implies that ρ occurs in
ρtρ′ only t times, so i′ = i + j · per(Qk) for some integer j ≤ t. Therefore all
occurrences of Qk lie in the substring of S of the form ρsρ′ for some s ≥ t. Thus,
replacing any of these occurrences with Q′

k leads to the same result, rk(S).

612 T. Kociumaka, T. Starikovskaya, and H.W. Vildhøj

Now, let us prove (b). Note that if we replace an occurrence of Q′
k in rk(S)

with Qk, by (a) we obtain a string S′ such that rk(S′) = rk(S). Moreover all
such strings S′ can be obtained by replacing some occurrence of Q′

k, in particular
this is true for S.

If per(Qk) > 4τ , since # does not belong to the main alphabet, Q′
k has exactly

one occurrence in rk(S) and the statement holds trivially. For the other case we
proceed as in the proof of (a) showing that all occurrences of Q′

k are in fact

substrings of a longer substring of S of the form ρs
′
ρ′ for some s′ ≥ t′. ��

Lemma 6. Consider strings P and S, such that |S| ≤ |Qk|+4τ and P contains
Qk as a substring. Then P occurs in S at position p if and only if rk(P) occurs
in rk(S) at position p.

Proof. First, assume that P occurs in S at a position p. This induces an oc-
currence of Qk in S within the occurrence of P , and replacing this occurrence
of Qk with Q′

k gives rk(S) by Theorem 6(a). This replacement also turns the
occurrence of P at the position p into an occurrence of rk(P).

Now, assume rk(P) occurs in rk(S) at the position p. Since rk(P) �= ε, this
means that rk(S) �= ε and that Q′

k occurs in rk(S) (within the occurrence of
rk(P)). By Theorem 6(b) replacing this occurrence of Q′

k with Qk turns rk(S)
into S and the occurrence of rk(P) at the position p into an occurrence of P . ��

Observe that applied for S = Sk, Lemma 6 implies that rk gives a bijection
between substrings of Sk of length ≥ � = |Qk| + 2τ and substrings of rk(Sk) of
length ≥ |Q′

k| + 2τ . Moreover, it shows that any substring of Sk of length ≥ �
occurs in Si iff the corresponding substring of rk(Sk) occurs in rk(Si).

This lets us apply the technique described in the previous section to find LCS
provided that it occurs in Sk but not Si with i < k. Strings rk(Si) are computed
in parallel with a constant-space pattern matching algorithm for a pattern Qk

in the documents of length � or more, which takes O(n) time in total. The list
L is composed rk(Si) obtained from long documents, and we use Lemma 3 to
compute the number of documents each candidates occurs in.

Compared to the arguments of the previous section, we additionally exclude
nodes of depth less than |Q′

k|+2τ to make sure that each marked node is indeed
rk(P) for some substring P of Sk of length at least � = |Qk|+2τ . This lets us use
the amortization by the number of explicit nodes in the generalized suffix tree
of T1, . . . , Tm. More precisely, if a node with label rk(P) is marked, we charge
P , which is guaranteed to be explicit in the generalized suffix tree. This implies
O(n2/τ)-time and O(τ)-space bounds.

2.3 Large Alphabets

In this section we describe how to adapt our solution so that it works for al-
phabets of size nO(1). Note that we have used the constant-alphabet assumption
only to make sure that suffix trees can be efficiently constructed. If the alphabet
is not constant, a suffix tree of a string can be constructed in linear time plus the

Sublinear Space Algorithms for the Longest Common Substring Problem 613

time of sorting its letters [7]. If τ >
√
n, the size of the alphabet is nO(1) = τO(1)

and hence any suffix tree used by the algorithm can be constructed in O(τ) time.
Suppose now that τ ≤

√
n and � = 1. Our algorithm uses suffix trees in

a specific pattern: in a single phase it builds the suffix tree of Sk and then
constructs the generalized suffix tree of Sk and Si for each i. Note that the
algorithm only needs information about the nodes of the suffix tree of Sk, the
nodes where suffixes of Si ∈ L branch out, and leaves of the generalized suffix
tree. None of these changes if we replace each letter of Σ occurring in Si, but
not in Sk, with a special letter which does not belong to Σ.

Thus our approach is as follows: first we build a deterministic dictionary, map-
ping letters of Sk to integers of magnitude O(|Sk|) = O(τ) and any other letter
of the main alphabet to the special letter. The dictionary can be constructed in
O(τ log2 log τ) time [14,10]. Then instead of building the generalized suffix tree
of Sk and Si we build it for the corresponding strings with letters mapped using
the dictionary. In general, when � is large, we apply the same idea with rk(Sk)
and rk(Si) instead of Sk and Si respectively.

In total, the running time is O(n2/τ +n log2 log τ). For τ ≤
√
n the first term

dominates the other, i.e. we obtain an O(n2/τ)-time solution.

Theorem 2. There is an algorithm that given a parameter τ , 1 ≤ τ ≤ n, com-
putes LCS in O(n2/τ) time using O(τ) space.

3 A Time-Space Trade-Off Lower Bound

Given n elements over a domain D, the element distinctness problem is to decide
whether all n elements are distinct. Beame et al. [3] showed that if |D| ≥ n2,
then any RAM algorithm solving the element distinctness problem in τ space,
must use at least Ω(n

√
log(n/(τ logn))/ log log(n/(τ logn))) time.1

The element distinctness (ED) problem can be seen as a special case of the
LCS problem where we have m = n documents of length 1 and want to find the
longest string common to at least d = 2 documents. Thus, the lower bound for
ED also holds for this rather artificial case of the LCS problem. Below we show
that the same bound holds with just m = 2 documents. The main idea is to show
an analogous bound for a two-dimensional variant of the element distinctness
problem, which we call the element bidistinctness problem. The LCS problem on
two documents naturally captures this problem. The steps are similar to those
for the ED lower bound by Beame et al. [3], but the details differ. We start
by introducing the necessary definitions of branching programs and embedded
rectangles. We refer to [3] for a thorough overview of this proof technique.

Branching Programs. A n-variate branching program P over domain D is an
acyclic directed graph with the following properties: (1) there is a unique source
node denoted s, (2) there are two sink nodes, one labelled by 0 and one labelled

1 Note that in [3,4] the space consumption is measured in bits. The version of RAM
used there is unit-cost with respect to time and log-cost with respect to space.

614 T. Kociumaka, T. Starikovskaya, and H.W. Vildhøj

by 1, (3) each nonsink node v is assigned an index i(v) ∈ [1, n] of a variable,
and (4) there are exactly |D| arcs out of each nonsink node, labelled by distinct
elements of D. A branching program is executed on an input x ∈ Dn by starting
at s, reading the variable xi(s) and following the unique arc labelled by xi(s). This
process is continued until a sink is reached and the output of the computation
is the label of the sink. For a branching program P , we define its size as the
number of nodes, and its length as the length of the longest path from s to a
sink node.

Lemma 7 (see page 2 of [4]). If f : Dn → {0, 1} has a word-RAM al-
gorithm with running time T (n) using S(n) w-bit words, then there exists an
n-variate branching program P over D computing f , of length O(T (n)) and
size 2O(wS(n)+logn).

Embedded Rectangles. If A ⊆ [1, n], a point τ ∈ DA (i.e. a function τ : A → D)
is called a partial input on A. If τ1, τ2 are partial inputs on A1, A2 ∈ [1, n],
A1 ∩ A2 = ∅, then τ1τ2 is the partial input on A1 ∪ A2 agreeing with τ1 on
A1 and with τ2 on A2. For sets B ⊆ D[1,n] and A ⊆ [1, n] we define BA, the
projection of B onto A, as the set of all partial inputs on A which agree with
some input in B. An embedded rectangle R is a triple (B,A1, A2), where A1 and
A2 are disjoint subsets of [1, n], and B ⊆ D[1,n] satisfies: (i) B[1,n]\A1∪A2

consists
of a single partial input σ, (ii) if τ1 ∈ BA1 , and τ2 ∈ BA2 , then τ1τ2σ ∈ B. For
an embedded rectangle R = (B,A1, A2), and j ∈ {1, 2} we define:

mj(R) = |Aj | m(R) = min(m1(R),m2(R))

αj(R) = |BAj |/|D||Aj| α(R) = min(α1(R), α2(R))

Given a small branching program P it can be shown that P−1(1), the set of all
YES-inputs, contains a relatively large embedded rectangle. Namely,

Lemma 8 (Corollary 5.4 (i) [3]). Let k ≥ 8 be an integer, q ≤ 2−40k−8,

n ≥ r ≥ q−5k2

. Let P be a n-variate branching program over domain D of
length at most (k − 2)n and size 2S. Then there is an embedded rectangle R

contained in P−1(1) satisfying m(R) = m1(R) = m2(R) ≥ q2k
2

n/2 and α(R) ≥
2−q1/2m(R)−Sr|P−1(1)|/|Dn|.

Element Bidistinctness. We say that two elements x = (x1, x2) and y = (y1, y2)
of the Cartesian product D × D are bidistinct if both x1 �= y2 and x2 �= y1.
The element bidistinctness function EB : (D × D)n → {0, 1} is defined to
be 1 iff for every pair of indices 1 ≤ i, j ≤ n the i-th and j-th pair are bidis-
tinct. Note that computing EB for (s1, t1), . . . , (sn, tn) is equivalent to deciding
if LCS(s1 . . . sn, t1 . . . tn) ≥ 1. Thus the problem of computing the longest com-
mon substring of two strings over Σ = D is at least as hard as the EB problem.
Below we show a time-space trade-off lower bound for element bidistinctness.

Lemma 9. If |D| ≥ 2n2, at least a fraction 1/e of inputs belong to EB−1(1).

Sublinear Space Algorithms for the Longest Common Substring Problem 615

Proof. The size of EB−1(1) is at least (|D| − 1)2 · (|D| − 2)2 · . . . · (|D| − n)2.

Hence, |EB−1(1)| = |D|2n
n∏

i=1

(1 − i
|D|)

2 ≥ |D|2n(1 − 1
2n)2n ≥ |D|2n/e. ��

Lemma 10. For any embedded rectangle R = (B,A1, A2) ⊆ EB−1(1) we have
α(R) ≤ 2−2m(R).

Proof. Let Sj be the subset of D ×D that appear on indices in Aj , i.e., Sj =⋃
τ∈BAj

{τ(i) : i ∈ Aj}, j = 1, 2. Clearly, all elements in S1 must be bidistinct

from all elements in S2. If this was not the case B would contain a vector with two
non-bidistinct elements of D ×D. We will prove that min(|S1|, |S2|) ≤ |D|2/4.
Let us first argue that this implies the lemma. For j = 1 or j = 2, we get
that |BAj | ≤ (|D|2/4)|Aj|, and thus αj(R) ≤ (|D|2/4)|Aj|/(|D|2)|Aj | = 4−|Aj| ≤
4−m(R) = 2−2m(R).

It remains to prove that min(|S1|, |S2|) ≤ |D|2/4. For j ∈ {1, 2} let Xj and
Yj denote the set of first and second coordinates that appear in Sj . Note that
by bidistinctness X1 ∩ Y2 = X2 ∩ Y1 = ∅. Moreover |Sj | ≤ |Xj||Yj | and there-

fore
√
|Sj | ≤

√
|Xj||Yj | ≤ 1

2 (|Xj | + |Yj |). Consequently 2(
√
|S1| +

√
|S2|) ≤

|X1| + |Y1| + |X2| + |Y2| = (|X1| + |Y2|) + (|Y1| + |X2|) ≤ 2|D| and thus
min(
√

|S1|,
√
|S2|) ≤ |D|/2, i.e. min(|S1|, |S2|) ≤ |D|2/4 as claimed. ��

Theorem 7. Any n-variate branching program P of length T and size 2S over
domain D, |D| ≥ 2n2, which computes the element bidistinctness function EB,
requires T = Ω(n

√
log(n/S)/ log log(n/S)) time.

Proof. The proof repeats the proof of Theorem 6.13 [3]. We restore the details
omitted in [3] for the sake of completeness. Suppose that the length of P is

T = (k−2)n/2 and size 2S . Apply Lemma 8 with q = 2−40k−8 and r =
⌈
q−5k2

⌉
.

We then obtain an embedded rectangle R ∈ EB−1(1) such that m(R) ≥ q2k
2

n/4

and α(R) ≥ 2−q1/2m(R)−Sr/e = 2−q1/2m(R)−Sr−log e. From Lemma 10 we have

2−2m(R) ≥ 2−q1/2m(R)−Sr−log e and thus Sr ≥ m(R)(2− q1/2)− log e ≥ m(R)/2.

Consequently, S ≥ q2k
2

n/(8r). Remember that q = 2−40k−8 and r =
⌈
q−5k2

⌉
,

which means that P requires at least k−ck2

n space for some constant c > 0. That
is, kck

2 ≥ n/S, which implies k = Ω(
√

log(n/S)/ log log(n/S). Substituting
k = 2T/n + 2, we obtain the claimed bound. ��

Corollary 2. Any deterministic RAM algorithm that solves the element bidis-
tinctness (EB) problem on inputs in (D×D)n, |D| ≥ 2n2, using τ ≤ n

logn space,

must use at least Ω(n
√

log(n/(τ logn))/ log log(n/(τ logn))
)

time.

Corollary 3 (Theorem 3). Given two documents of total length n from an
alphabet Σ of size at least n2, any deterministic RAM algorithm, which uses
τ ≤ n

logn space to compute the longest common substring of both documents,

must use time Ω(n
√

log(n/(τ logn))/ log log(n/(τ log n))).

616 T. Kociumaka, T. Starikovskaya, and H.W. Vildhøj

4 Conclusions

The main problem left open by our work is to settle the optimal time-space
product for the LCS problem. While it is tempting to guess that the answer
lies in the vicinity of Θ(n2), it seems really difficult to substantially improve
our lower bound. Strong time-space product lower bounds have so far only been
established in weaker models (e.g., the comparison model) or for multi-output
problems (e.g., sorting an array, outputting its distinct elements and various
pattern matching problems). Proving an Ω(n2) time-space product lower bound
in the RAM model for any problem where the output fits in a constant number
of words (e.g., the LCS problem) is a major open problem.

References

1. Afek, Y., Bremler-Barr, A., Landau Feibish, S.: Automated signature extraction
for high volume attacks. In: Proc. 9th ANCS, pp. 147–156 (2013)

2. Beame, P.: Clifford, R., Machmouchi, W.: Element Distinctness, Frequency Mo-
ments, and Sliding Windows. In: Proc. 54th FOCS, pp. 290–299 (2013)

3. Beame, P., Saks, M., Sun, X., Vee, E.: Time-Space Trade-Off Lower Bounds
for Randomized Computation of Decision Problems. Journal of the ACM 50(2),
154–195 (2003)

4. Borodin, A., Cook, S.A.: A Time-Space Tradeoff for Sorting on a General Sequen-
tial Model of Computation. SIAM Journal on Computing 11(2), 287–297 (1982)

5. Breslauer, D., Grossi, R., Mignosi, F.: Simple Real-Time Constant-Space String
Matching. Theor. Comput. Sci. 483, 2–9 (2013)

6. Crochemore, M., Hancart, C., Lecroq, T.: Algorithms on Strings. Cambridge Uni-
versity Press (2007)

7. Farach-Colton, M.: Optimal Suffix Tree Construction with Large Alphabets. In:
Proc. 38th FOCS, pp. 137–143 (1997)

8. Grossi, R., Vitter, J.S.: Compressed Suffix Arrays and Suffix Trees with Applica-
tions to Text Indexing and String Matching. SIAM Journal on Computing 35(2),
378–407 (2005)

9. Gusfield, D.: Algorithms on Strings, Trees and Sequences: Computer Science and
Computational Biology. Cambridge University Press (1997)

10. Han, Y.: Deterministic sorting in O(n log log n) time and linear space. Journal of
Algorithms 50(1), 96–105 (2004)

11. Hui, L.C.K.: Color Set Size Problem with Applications to String Matching. In:
Apostolico, A., Galil, Z., Manber, U., Crochemore, M. (eds.) CPM 1992. LNCS,
vol. 644, pp. 230–243. Springer, Heidelberg (1992)

12. Kreibich, C., Crowcroft, J.: Honeycomb: Creating Intrusion Detection Signatures
Using Honeypots. ACM SIGCOMM Comput. Commun. Rev. 34(1), 51–56 (2004)

13. Navarro, G., Mäkinen, V.: Compressed Full-Text Indexes. ACM Computing Sur-
veys (CSUR) 39(1), 2 (2007)

14. Ružić, M.: Constructing Efficient Dictionaries in Close to Sorting Time. In:
Aceto, L., Damgrard, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A.,
Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 84–95. Springer,
Heidelberg (2008)

Sublinear Space Algorithms for the Longest Common Substring Problem 617

15. Starikovskaya, T., Vildhøj, H.W.: Time-Space Trade-Offs for the Longest Common
Substring Problem. In: Fischer, J., Sanders, P. (eds.) CPM 2013. LNCS, vol. 7922,
pp. 223–234. Springer, Heidelberg (2013)

16. Wang, K., Cretu, G.F., Stolfo, S.J.: Anomalous Payload-Based Worm Detection
and Signature Generation. In: Valdes, A., Zamboni, D. (eds.) RAID 2005. LNCS,
vol. 3858, pp. 227–246. Springer, Heidelberg (2006)

17. Weiner, P.: Linear Pattern Matching Algorithms. In: Proc. 14th FOCS (SWAT),
pp. 1–11 (1973)

Nested Set Union

Daniel H. Larkin1,� and Robert E. Tarjan1,2

1 Princeton University Department of Computer Science
{dhlarkin,ret}@cs.princeton.edu

2 MSR SVC

Abstract. We consider a version of the classic disjoint set union (union-
find) problem in which there are two partitions of the elements, rather
than just one, but restricted such that one partition is a refinement
of the other. We call this the nested set union problem. This problem
occurs in a new algorithm to find dominators in a flow graph. One can
solve the problem by using two instances of a data structure for the
classical problem, but it is natural to ask whether these instances can be
combined. We show that the answer is yes: the nested problem can be
solved by extending the classic solution to support two nested partitions,
at the cost of at most a few bits of storage per element and a small
constant overhead in running time. Our solution extends to handle any
constant number of nested partitions.

Keywords: data structures, disjoint set union, union-find.

1 Introduction

The disjoint set union problem is to maintain a partition under set union. More
precisely, the problem is to maintain a collection of disjoint sets (the parts of
the partition), each with a canonical element called its root, under an intermixed
sequence of Unite and Find operations, defined as follows:

Find (x): Return the root of the set containing x.
Unite (x, y): If x and y are in the same set, return false; otherwise, unite the

two sets containing x and y, choose a root for the new set, and return true.
Initially each set is a singleton whose root is its only element. During a Unite,

the implementation is free to choose any element in the set as the new root.
The classic solution to this problem is to use a compressed tree [6]. Each set is
represented by a rooted tree with a node for each element of the set; the tree
root is the canonical element. Each node x has a pointer x.p to its parent. The
root points to itself. This representation makes implementing Find and Unite

very simple. To execute Find (x), follow parent pointers from x until reaching
the root. The path of ancestors from x to the root is called the Find path. To
execute Unite (x, y), first Find the roots of the sets containing x and y. If they
are the same, return false. Otherwise make one the parent of the other and
return true.

� Research at Princeton University partially supported by NSF grant CCF-0832797.

A.S. Schulz and D. Wagner (Eds.): ESA 2014, LNCS 8737, pp. 618–629, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

Nested Set Union 619

This representation allows for a great deal of flexibility, and a rich body of
literature explores the design space. The tree may be restructured freely during
the traversal of a Find path, and a variety of efficient methods for compacting
each Find path have been proposed. Furthermore, the root of a new set can
be chosen arbitrarily, and several methods of making this choice, called linking
rules, have been proposed. The most efficient algorithms combine a good form
of compaction with a good linking rule.

Among the good compaction methods, arguably the simplest conceptually
is compression, which replaces the parent of each node along the Find path
by the root [8]. Other good methods include splitting [13], halving [14], and
splicing [2,12].

Two simple linking rules are näıve linking, which when doing Unite (x, y)
chooses as the new root the root of the old tree containing x, and linking by
index which requires that the elements be totally ordered and chooses as the
new root the larger of the two old roots. Two more-efficient rules are linking by
size, which chooses as the new root the root of the tree containing more nodes,
and linking by rank, which maintains a non-negative integer rank for each node,
initially 0, and chooses as the new root the old root of larger rank, increasing the
rank of the new root by 1 if there is a tie. All these rules are deterministic. An
efficient randomized rule is randomized linking, which totally orders the elements
by choosing a fixed permutation uniformly at random and then does linking by
index.

Tarjan and van Leeuwen [12] proved that compression, splitting, halving, or
splicing in combination with linking by rank or compression, splitting, or halving
in combination with linking by size takes O (mα (n,m/n)) time to execute m ≥ n
operations on sets containing a total of n elements, where α is a functional in-
verse of Ackermann’s function. Goel et al. [7] recently obtained the same bound
in expectation for randomized linking in combination with any of the four com-
paction methods. We will reference their paper extensively, and henceforth refer
to it as GKLT. These results match the lower bound of Fredman and Saks [5]
and thus are optimal to within a constant factor.

Some applications require the maintenance of more than one partition of the
same collection of elements. An example is a recent algorithm of Fraczak et al. [4]
for finding dominators in a flow graph, which needs to maintain two nested
partitions of the node set. Of course one can maintain each partition using a
separate data structure, but it is natural to ask whether one can save space by
using a single compressed tree to represent both partitions, without sacrificing
the inverse-Ackermann-function amortized time bound. We show that the answer
is yes.

Let us define the problem precisely. For simplicity we consider the case of two
nested partitions, but it is easy to extend our results to any fixed nesting depth.
Given a set of n elements, we wish to maintain two nested partitions of the
elements, the coarse partition and the fine partition, under intermixed Find and
Unite operations on either partition. The only requirement is that the Unite

operations must maintain the nesting of the partitions: each fine Unite must

620 D.H. Larkin and R.E. Tarjan

combine sets contained in the same set of the coarse partition. Initially both
partitions are the same, the partition into singletons.

Our solution to this problem represents both partitions by a single compressed
forest, requiring one parent pointer and a few extra bits of information per node.
Each coarse set is represented by a tree whose nodes are the elements of the set,
with the root of the tree equal to the root of the set. We call such a tree a coarse
tree. Each fine set is represented by a subtree whose nodes are the elements of
the set, with the root of the subtree equal to the root of the set. We call such
a subtree a fine tree; we call its root a subroot. The root of a coarse tree is also
the root of a fine tree and hence also a subroot.

To complete the solution, we need algorithms for coarse and fine Find and
coarse and fine Unite. We want to adapt algorithms for the one-level case,
specifically path compaction methods and linking rules, to the two-level case.
In doing this, we encounter two technical challenges, in the implementation of
coarse Find and that of fine Unite. We cannot implement coarse Find using
any of the standard compaction methods because they can destroy the parti-
tion of the coarse tree into fine trees. To overcome this problem we do coarse
Find operations using two-level compression. First, we compress each part of the
coarse Find path that is within a single fine tree. This compresses the coarse
Find path into a path of subroots. Then we compress the path of subroots.

We call this method segmented compression. The idea of first compressing
subpaths between subroots and then compressing the resulting path of subroots
was used by Farrow in an unpublished algorithm for combining values along
paths in rooted trees subject to arc additions. For a definition and some results
on this problem see [3,11]. In that application, there is no freedom in the way
links are done. Farrow introduced a complicated definition of subroots and only
managed to prove an O (log∗ n) amortized time bound per operation. In our
application, on the other hand, we can adapt standard linking rules, and we
are able to obtain an inverse-Ackermann time bound per operation. Whether
Farrow’s algorithm has a o (log∗ n) bound is an intriguing open problem.

The second challenge arises from the fine Unite operations. If a fine Unite is
done on two fine sets whose subroots are children of the root of a coarse set, then
making one of the subroots a child of the other uncompacts the coarse tree. This
complicates the extension of standard linking rules to nested partitions, and it
makes the analysis of the resulting algorithms much more than a straightforward
extension of existing results.

We prove an asymptotically optimal bound for segmented compression used
with an extended version of linking by rank. Our analysis is unconventional.
Most analyses of disjoint set union structures use the “union forest” idea, which
measures the effect of compactions on a forest built by the Unite operations
without any compaction. The fine Unite operations prevent the use of this idea,
requiring us to cope with non-fixed ranks and non-ancestral parent changes.

The remainder of our paper contains five sections. We begin in Section 2 by
detailing our algorithms. In Section 3 we establish key properties of node ranks.
In Section 4, we use these rank properties and adapt the analysis from GKLT

Nested Set Union 621

of standard compression to prove amortized bounds for segmented compression.
We conclude in Section 5 with further discussion of addional results related to
the design space, the extension to deeper nesting, and open problems.

2 Algorithms

In order to guarantee that the operations remain asymptotically efficient, we
will adapt clever forms of linking and path compaction from other disjoint set
union structures. In particular, we will adapt segmented compression and linking
by rank. We call the root of each set in the coarse partition a root and one of
a set in the fine partition a subroot. One simple property of our algorithms is
that all roots are also subroots, but not vice-versa. Another is that fine sets are
represented by contiguous subtrees.

For a node x, we denote its parent by x.p and its rank by x.r. We also store a
flag, x.γ which is set to true if x is a subroot and false otherwise. We have one
additional field for the purpose of analysis and which is not maintained by the
algorithm. The maximum rank of a node, denoted x.rm, is equal to the maximum
value of x.r over the sequence of operations.

Segmented compression was initially developed by Farrow to provide an effi-
cient algorithm for path evaluation problems on unbalanced trees [3]. Farrow’s
work was quite complicated. There was no natural notion of a subroot in his ap-
plication, so he used artificial functions to calculate subroot status. Furthermore,
the path evaluation problem does not allow for the use of intelligent linking rules
(and hence leads to unbalanced trees). His algorithm was designed to achieve
an amortized O (log∗ n) bound per operation rather than the O (logn) bound
achieved by standard compression. So in truth, we are borrowing just the skele-
ton of his algorithm and will be providing a fully new analysis of it in this
different setting.

Segmented compression can be viewed as a two-step process, though its im-
plementation will be more direct. First, each non-subroot is made to point to
its nearest ancestral subroot. Next, each subroot is made to point to the root
of the tree. By default, segmented compression returns the roots of both the
coarse and fine set containing the node to be found. All coarse Find operations
will be done using segmented compression, including those within Unite oper-
ations. See Algorithms 1 and 2 for an implementation of Find with segmented
compression and Figure 1 for a visual example.

While one could use segmented compression for fine Find operations, this is
over-kill in a certain sense. We use a more local implementation for fine Find

operations. We perform standard compression within the fine subtree containing
the node to be found and return the root of this subtree, which is the near-
est ancestral subroot of the input node. We call this level-sensitive approach
local compression. Local compression is compatible with the analysis through-
out the paper, but we will not specifically mention it elsewhere for notational
convenience, referring instead to just segmented compression.

We now describe our adapted form of linking by rank. Each node has an initial
rank of 0. When performing a Unite at the coarse level, the algorithm works

622 D.H. Larkin and R.E. Tarjan

Algorithm 1. Segmented Compression

procedure SegmentCompress(x)
if x.p = x then

return (x, x)

(u, v) ← SegmentCompress (x.p)
if x.γ = true then

x.p ← u
return (u, x)

else
x.p ← v
return (u, v) � Segmented compression returns a (root, subroot) pair

Algorithm 2. Find with Segmented Compression

procedure Find(i, x)
(u, v) ← SegmentCompress (x)
if i = 0 then � Coarse partition

return u
else � Fine partition

return v

exactly like that of normal linking by rank. The root of each set is found using
segmented compression. That of lesser rank is made the child of the other, making
it the loser of the link. In case of a rank tie, the new parent is chosen arbitrarily
and its rank is incremented. When performing a Unite at the fine level, the
process is slightly different. The two subroots are found using compression. If
one is already the parent of the other, all that needs to be done is to mark the
child as a non-subroot. Otherwise, the one of lesser rank is made the child of
the other. In case of a rank tie, the new parent is chosen arbitrarily and its
rank incremented. If the rank of the winner is now equal to that of its parent,
we need to make an adjustment. If the parent is the root, then the rank of the
root is increased. Otherwise we set the parent pointer to the grandparent. This
preserves strictly increasing ranks along a Find path. In any such case, the loser
of the link ceases to be a subroot. See Algorithm 3 for an implementation and

Fig. 1. The Find path on the left is segment compressed, resulting in the tree on the
right. Subroots are shown in black, with non-subroots in white.

Nested Set Union 623

Figure 2 for demonstration of different cases of subroot linking. It is also possible
to allow limited rank ties. Instead of always ensuring that the rank of the root
is greater than those of its children, one can instead simply ensure that it is no
less than those of its children. This leads to a slightly better constant factor
guarantee on the maximum rank, but the statement of the associated bound
(Lemma 1) is a bit uglier.

Algorithm 3. Nested Unite with Linking by Rank

procedure Unite(i, x, y)
u ← Find (i, x)
v ← Find (i, y)
if u = v then

return false
if u.r < v.r then

u ↔ v
v.p ← u
if u.r = v.r then

u.r ← u.r + 1

if i = 1 then � Check for and fix rank monotonicity
v.γ = false
if u = u.p then

return true
else if u.p = u.p.p and u.p.r = u.r then

u.p.r ← u.r + 1
else if u.p.r = u.r then

u.p ← u.p.p

return true

3 Properties of Node Ranks

We now establish a few key properties of node ranks with our modified algo-
rithms. This lemma and the associated corollaries will allow us to adapt simple
analyses of standard compression to work with segmented compression.

While it is almost trivial to prove that the sum of ranks is linear (each coarse
Unite can only contribute 1 to the sum, while a fine Unite can contribute 2),
we will need a somewhat stronger property. Let R (k), S (k), and N (k) denote
the maximum number of roots, subroots, and non-roots of rank k respectively
(for the purpose of this analysis, “subroot” means a subroot which is not also a
root).

Lemma 1. Using linking by rank, R (k) ≤ n · (3/4)k and S (k) ≤ 3/2 · n · (3/4)k.

Proof. We examine different types of transitions a node can undergo, and demon-
strate that credits can be transferred between the nodes involved in a way which
requires no new credit to be introduced to the system. The transitions and as-
sociated node count adjustments are the following:

624 D.H. Larkin and R.E. Tarjan

Fig. 2. Three different cases of subroot linking by rank. Subroots shown in black, with
non-subroots shown in white. On the left, the two subroots are linked, and the rank of
the winner increased. In the center, the rank increase causes the rank of the root to be
equal to that of its child, so its rank is also increased. On the right, the rank increase
causes the rank of the parent to be equal to that of its child, so the child’s parent is
set to the grandparent.

1. Two roots of ranks k and j < k are linked. R (j) decreases by 1 and S (j)
increases by 1.

2. Two subroots of ranks k and j < k are linked. S (j) decreases by 1 and N (j)
increases by 1.

3. Two roots of rank k are linked. R (k) decreases by 2, R (k + 1) increases by
1, and S (k) increases by 1.

4. Two subroots of rank k are linked underneath a root of rank at least k + 2.
S (k) decreases by 2, S (k + 1) increases by 1, and N (k) increases by 1.

5. Two subroots of rank k are linked underneath a root of rank k+1. R (k + 1)
decreases by 1, S (k) decreases by 2, R (k + 2) increases by 1, S (k + 1) in-
creases by 1, and N (k) increases by 1.

Each node must hold a minimum number of credits dependent on its type and
rank. A root of rank k must hold at least nR (k) credits. Similarly a subroot and
a nonroot of rank k must hold at least nS (k) and nN (k) credits respectively. We
now examine the transitions and the requirements they impose on these these
minimum values under the assumption that credits are preserved.

1. nR (k) ≥ nS (k)
2. nS (k) ≥ nN (k)
3. 2nR (k) ≥ nR (k + 1) + nS (k)
4. 2nS (k) ≥ nS (k + 1) + nN (k)
5. nR (k + 1) + 2nS (k) ≥ nR (k + 2) + nS (k + 1) + nN (k)

These requirements leave some flexibility, but here is one simple and uniform
way to satisfy them. We first set nN (k) = 0 for all k, then we set nS (k + 1) =
4/3nS (k) and nR (k) = 3/2nS (k). Finally we establish base values with nS (0) =
1. This leads to a total credit of 3n/2 in the system (n roots of initial rank 0).

One can easily verify that these transitions allow credits to be preserved while
meeting the minimum requirements. We have that a root of rank k must have
at least nR (0) · (4/3)

k
= 3/2 · (4/3)

k
credits. Therefore with a total of 3n/2 credit

Nested Set Union 625

in the system, at most n · (3/4)k such nodes can exist. Adjusting for the value of

nS (0), we also obtain a bound of at most 3n/2 · (3/4)
k

subroots of rank k.
Once credit leaves a root of rank k (either because it moves to a different

node or because the node rank increases), it can never return to a root of rank
k. This is also true of subroots and nonroots of a given rank. The manner in
which credit is transferred imposes a partial order on node types. The lemma
follows.

Corollary 1. With linking by rank, the maximum node rank is O (logn).

Corollary 2. With linking by rank, the sum of ranks is O (n).

Corollary 3. With linking by rank, the sum of maximum ranks is O (n).

4 Amortized Analysis

We will adapt the analysis of compression used in GKLT to count grandparent
changes rather than parent changes. In particular we will use many of the same
functional definitions and cite some building-block lemmas about them, but we
will need to account for the non-fixed ranks and non-ancestral parent changes
which may result from fine Unite operations. Among other implications, this
means we will not be able to use the standard “union-tree” approach, which
assumes that all Unite operations are performed first without compaction, and
all compaction is performed on the final, full tree.

Ackermann’s function [1,10] is defined recursively on two non-negative integer
variables:

A (0, j) = j + 1

A (k, 0) = A (k − 1, 1) if k > 0

A (k, j) = A (k − 1, A (k, j − 1)) if k > 0 and j > 0

A simple inductive argument shows that A is strictly increasing in both ar-
guments, A (k + 1, j) ≥ A (k, j + 1), and A (1, j) = j + 2. The function A (k, j)
increases very rapidly as k grows even a bit larger.

We will use the same definitions for the inverse Ackermann function α (r, d),
the index function b (k, r), and the level function a (r, s) as found in GKLT. The
variable d = m/n is used for notational convenience. The inverse Ackermann
function, defined for any non-negative integer r and non-negative real number
d, is non-decreasing in r and non-increasing in d. The index function, defined
for any non-negative integers k and r, is non-increasing in k and non-decreasing
in r. Finally, the level function a (r, s) is defined for any non-negative integers
r ≤ s.

α (r, d) = min {k > 0|A (k, �d�) > r}
b (k, r) = min {j ≥ 0|A (k, j) > r}
a (r, s) = min ({α (r, d) + 1} ∪ {k ≤ α (r, d) |A (k, b (k, r)) > s})

626 D.H. Larkin and R.E. Tarjan

For each node x we define a level x.a and an index x.b follows:

x.a = a (x.r, x.p.p.r)

x.b = b (x.a− 1, x.p.p.r) if x.a > 0, x.b = 0 otherwise

The following three lemmas about these definitions correspond to Lemmas 3.1,
3.2, and 3.3 in GKLT respectively, and the proofs are omitted.

Lemma 2. If r ≤ s, a (r, s) = 0 if and only if r = s.

Lemma 3. If x.a ≤ α (x.r, d), then x.b ≤ max {x.r, 1} ≤ x.r + 1.

Lemma 4. If x.a = α (x.r, d) + 1 = α (x.p.p.r, d) + 1, then x.b ≤ d.

With these preliminaries, we are ready to start building a framework to count
grandparent changes. We start by defining a count for each node x.

x.c = x.a× (x.r + 2) + x.b

The following two lemmas are the key to counting grandparent changes. Since
ranks remain fixed during a Find with the substitution of parents and grand-
parents the statements and proofs are equivalent to those of Lemmas 3.4 and
3.5 in GKLT (so, once more, the proofs are omitted).

Lemma 5. During a Find, for every node x, x.c never decreases, and x.c in-
creases whenever x.a or x.b changes. If x.a increases by k, x.c increases by at
least k.

Lemma 6. Let x and y be nodes such that x.p.p.r ≤ y.r and x.a = y.a just
before a Find that sets x.p.p to a node with rank at least y.p.p.r. Then the Find

increases x.c.

Now we are ready to count grandparent changes. Let the potential of a node
x be

max {0, (α (x.rm, d) + 1) × (x.rm + 2) + d + 1 − x.c} .
Let the potential of a collection of trees be the sum of the potentials of their
nodes, and let the amortized cost of an operation be the number of grandparent
changes it makes plus the change in potential it causes (all but the last three
nodes on the Find path will change grandparents to the root).

Lemma 7. The initial potential is O (nα (n, d) + m).

Proof. By Corollary 3 the sum of maximum ranks is linear. By Corollary 1 the
value of α (x.rm, d) is O (α (n, d)). Thus summing over the first product term,
we get at most O (nα (n, d)). An additive O (m + n) term comes from summing
d + 1 over each node x.

Lemma 8. The sequence of Unite operations increases the potential by at most
O (nα (n, d) + m).

Nested Set Union 627

Proof. A Unite can change two parent pointers and increase up to two ranks.
This means that three nodes may have their counts decreased, contributing an
increase to the potential.

We consider the potential increase contributed by the parent changes first.
Since the new parent of the loser need not be an ancestor, it is possible to
completely reset the level and index. This can happen only once per node though,
as the node ceases to be a subroot. Thus if we sum over the maximum node
counts for each node, then with Corollary 3 and Lemmas 3 and 4, we get∑

x

x.c =
∑
x

(x.a× (x.r + 2) + x.b)

≤
∑
x

((α (n, d) + 1) × (x.rm + 2) + x.b)

= (α (n, d) + 1)
∑
x

x.rm +
∑
x

x.b

= O (nα (n, d) + m) .

It is also posible that the Unite changes the parent of the winner, though in
this case the rank of the grandparent can only increase. Thus it cannot increase
the potential.

Now we consider the effect of rank increases on node counts. Each Unite may
increase the rank of a root, but when a root changes rank, its level and index
remain fixed at 0, meaning there is no change in potential. We need only examine
rank changes in non-root subroots. Each fine Unite may increment the rank of
one such node x. A given node may have its rank updated many times this way
over the course of multiple Unite operations; however, we can use Lemma 1 to
bound the total change. The decrease in count due to a rank increase of x is
at most x.a × (x.r + 2) + x.b. By Lemma 1 there can be at most 3/2 · n · (3/4)k

subroots of rank k, and subsequently at most 3/2 · n · (3/4)
k
Unite operations

increase a subroot’s rank from k − 1 to k. Since x.r is O (logn) by Corollary 1
for all nodes, we can sum the potential increased in this manner over all Unite

operations with relevant nodes indexed from 1 to j < 3n

j∑
i=1

xi.c ≤ (α (n, d) + 1)

j∑
i=1

(xi.r + 2) +

j∑
i=1

xi.b

≤ 3/2 · n · (α (n, d) + 1)

∞∑
k=0

(k + 2) · (3/4)
k

+

j∑
i=1

xi.b

≤ 45n · (α (n, d) + 1) +

j∑
i=1

(xi.r + 1) +

j∑
i=1

d

≤ 45n · (α (n, d) + 1) + 3/2 · n ·
∞∑
k=0

(k + 1) · (3/4)
k

+ 3m

= 45n · (α (n, d) + 1) + 36n + 3m

628 D.H. Larkin and R.E. Tarjan

to get a bound of O (nα (n, d) + m) with the help of Lemmas 3 and 4. Thus the
total increase in potential due to Unite operations is O (nα (n, d) + m).

Lemma 9. The amortized cost a Find using segmented compression is
O (α (n, d)).

Proof. Consider any Find path. Segmented compression of the Find path does
not increase the potential of any node. Let v be the last node on the path, and
let x be any node on the path whose grandparent is changed by the segmented
compression. For all such nodes, x.a > 0 by Lemma 2. If x.a > 0, α (x.r, d) =
α (x.p.p.r, d), and there is a node y after x on the path such that x.p.p.r ≤ y.r and
y.a = x.a, it must be the case that the Find increases x.p.p.r to at least y.p.p.r,
since it sets x.p.p = v. Thus, segment compressing the path reduces the potential
of x by at least two by Lemmas 3, 4, and 6. Thus the segmented compression
decreases the potential of x unless α (x.r, d) < α (x.p.r, d) or x is either the last
or second–to–last on its level with rank at least x.r. Since α (x.r, d) ≤ α (x.p.r, d)
for every x, at most 2α (v.r, d) nodes x have α (x.r, d) < α (x.p.p.r, d). Since every
node on the path has level at most α (v.r, d)+1, at most 2α (v.r, d)+2 nodes are
last or second–to–last on their level. The amortized cost of the Find is thus at
most 4α (v.r, d) + 2. By Corollary 1 v.r is O (logn). Subsequently the amortized
cost of the Find is O (α (n, d)).

Theorem 1. The total time to execute m ≥ n operations using linking by rank
and segmented compression is O (mα (n,m/n)).

Proof. Each Unite takes constant real time, uses two internal Find operations,
and may increase the potential. Thus, the theorem follows from Lemmas 7, 8,
and 9.

5 Remarks

We have shown that the two-level nested set union problem can be solved in
optimal time to within a constant factor while only using one pointer and very
little additional space per element. We have provided a relatively simple deter-
ministic solution. We will now proceed to address some natural questions about
extensions to the problem and the design space around it, some of which remain
open.

Additional results in the design space. It is natural to wonder whether other
algorithms for disjoint set union may be adapted to the nested case. In our full
paper [9], we answer this question in the affirmative. It is possible to adapt linking
by size to work instead of linking by rank, though with slightly worse constants.
In addition to segmented compression, we have developed segmented versions of
splitting and halving, thereby offering one-pass compaction methods. Any of the
three compaction methods can be used with either deterministic linking rule, and
their standard (local) versions can be used for fine Find operations, including

Nested Set Union 629

those within fine Unite operations. It has also been shown that randomized
linking works in conjunction with segmented compression. It is unclear whether
it will work with the other compaction methods, including local compression. The
simple permutation argument to bound rank ties no longer holds. Currently the
proof relies critically on the fact that fine Unite operations can only introduce
a single new ancestor (i.e. both subroots are children of the root before linking).

Deeper Nesting. As we do not yet have a concrete application for nesting deeper
than two levels, we did not study this extension in full depth. Both the algorithm
itself and the presentation of the analysis are more complicated, but all the core
tools for such work are present in this paper. Rather than a single subroot
bit, a small integer field would be kept to maintain the finest level at which a
node is still a root. The natural generalization of segmented compression would
make each node point to the nearest coarser node on the Find path, and each
recursive call would return a k-tuple rather than a pair. This solution increases
the potential by a factor of k, adds an O (k) term to the amortized time for a
Find operation, and requires O (log k) extra bits per node. This makes it optimal
up to a constant factor when k is O (α (n,m/n)) and kn is O (m). It remains open
whether a better solution could be had for larger k.

References

1. Ackermann, W.: Zum hilbertschen aufbau der reellen zahlen. Mathematische An-
nalen 99(1), 118–133 (1928)

2. Dijkstra, E.W.: A Discipline of Programming. Prentice-Hall (1976)
3. Farrow, R.: Efficient on-line evaluation of functions defined on paths in trees. Tech-

nical Report 476-093-17, Rice University (1977)
4. Fraczak, L., Georgiadis, W., Miller, A., Tarjan, R.E.: Finding dominators via dis-

joint set union. J. Discrete Algorithms 23, 2–20 (2013)
5. Fredman,M.L., Saks,M.E.:The cell probe complexity of dynamic data structures. In:

Proc. 21st Annual ACM Symposium on Theory of Computing, pp. 345–354 (1989)
6. Galler, B.A., Fisher, M.J.: An improved equivalence algorithm. Commun.

ACM 7(5), 301–303 (1964)
7. Goel, A., Khanna, S., Larkin, D.H., Tarjan, R.E.: Disjoint set union with ran-

domized linking. In: Proc. 25th Annual ACM-SIAM Symposium on Discrete Algo-
rithms, pp. 1005–1017 (2014)

8. Knuth, D.E.: The Art of Computer Programming, 3rd edn. Fundamental Algo-
rithms, vol. 1. Addison-Wesley (1997)

9. Larkin, D.H., Tarjan, R.E.: Nested set union. CoRR (2014)
10. Péter, R.: Rekursive funktionen. Académiai Kiadó (1951)
11. Tarjan, R.E.: Applications of path compression on balanced trees. J. ACM 26(4),

690–715 (1979)
12. Tarjan, R.E., van Leeuwen, J.: Worst-case analysis of set union algorithms. J.

ACM 31(2), 245–281 (1984)
13. van der Wiede, T.P.: Datastructures: An Axiomatic Approach and the Use of

Binomial Trees in Developing and Analyzing Algorithms. Mathematisch Centrum
(1980)

14. van Leeuwen, J., van der Wiede, T.P.: Alternative path compression techniques.
Technical Report RUU-CS-77-3, Rijksuniversiteit Utrecht (1977)

Improved Explicit Data Structures

in the Bitprobe Model�

Moshe Lewenstein1, J. Ian Munro2, Patrick K. Nicholson3,
and Venkatesh Raman4

1 Department of Computer Science, Bar Ilan University, Israel
2 Cheriton School of Computer Science, University of Waterloo, Canada

3 Max-Planck-Institut für Informatik, Saarbrücken, Germany
4 Institute for Mathematical Sciences, Chennai, India

moshe@cs.biu.ac.il, imunro@uwaterloo.ca,

pnichols@mpi-inf.mpg.de, vraman@imsc.res.in

Abstract. Buhrman et al. [SICOMP 2002] studied the membership
problem in the bitprobe model, presenting both randomized and de-
terministic schemes for storing a set of size n from a universe of size m
such that membership queries on the set can be answered using t bit
probes. Since then, there have been several papers focusing on determin-
istic schemes, especially for the first non-trivial case when n = 2. The
most recent, due to Radhakrishnan, Shah, and Shannigrahi [ESA 2010],
describes non-explicit schemes (existential results) for t ≥ 3 using prob-
abilistic arguments. We describe a fully explicit scheme for n = 2 that
matches their space bound of Θ(m2/5) bits for t = 3 and, furthermore,
improves upon it for t > 3, answering their open problem. Our structure
(consisting of query and storage algorithms) manipulates blocks of bits
of the query element in a novel way that may be of independent inter-
est. We also describe recursive schemes for n ≥ 3 that improve upon all
previous fully explicit schemes for a wide range of parameters.

1 Introduction

This paper is about the fundamental membership problem, which asks us to
store a (static) subset E of n elements from a universe [1,m], such that we can
efficiently answer membership queries on the set E . The information theoretic
lower bound indicates that any data structure solving this problem must occupy
lg
(
m
n

)
= n lg(m/n)+Θ(n) bits of space.1 Furthermore, existing word-RAM data

structures—for instance those of Fredman, Komlós and Szemerédi [5], Brodnik
and Munro [3], Pagh [8], and Pǎtraşcu [9]—can achieve this space bound to
within constant factors, and can answer queries using a constant number of
word operations: i.e., by reading Θ(lg m) bits from the data structure.

� This work was supported in part by NSERC, the Canada Research Chairs program,
a David Cheriton Scholarship, and a Derick Wood Graduate Scholarship.

1 We use lg x to denote log2 x. The stated bound assumes n ≤ m/2.

A.S. Schulz and D. Wagner (Eds.): ESA 2014, LNCS 8737, pp. 630–641, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

Improved Explicit Data Structures in the Bitprobe Model 631

Following Buhrman et al. [4] we address this problem in the bitprobe model
(see [4, Section 2] for a formal definition). In the bitprobe model we are concerned
with the tradeoff between the number of bits occupied by a data structure, and
the exact number of bits of the data structure that must be read, or probed, in
order to answer queries. Like Buhrman et al. [4], we argue that the problem of
membership in the bitprobe model is both fundamental and natural, since to
answer a query we need only one bit, indicating yes or no, rather than Θ(lg m).
Even though the bitprobe model does not accurately describe modern computing
architectures, which can read and write many bits in parallel, there are scenarios
in which it may find utility. For example, suppose we wish to communicate with
a device that has limited storage, and for which the cost of sending a bit of
information is high, yet can nonetheless recieve messages. Alon and Feige [1],
who studied the problem and gave asymptotic results for larger values of n and
small values of t, describe additional applications. Buhrman et al. also discuss
different interpretations of this problem in terms of coding theory.

Buhrman et al.’s main result was that if randomization and false positives
are allowed, then membership queries can be answered using one bit probe and
(almost) optimal Θ(n lgm) bits of space, with a fixed constant probability of
error. For deterministic schemes, they showed a lower bound of Ω(tn1−1/tm1/t)
bits of space, for t probe schemes, where n * m and t * lgm.2 For upper
bounds, they showed that it is possible to generalize FKS-hashing [5] to the
bitprobe model, achieving Θ(ntm1/t′) bits of space for t probes, where t′ =
t−Θ(lg n + lg lgm), and t′ ≥ 1.

Our Results and High Level Description: As in previous work [10,11], we
focus on the case where n and t are small relative to m. Our main result is a fully
explicit deterministic scheme for the case where n = 2 and t ≥ 3. A scheme is
fully explicit if the locations of the probes to be performed by the query algorithm
are computable in time polynomial in t and lgm given the query, and the bits
stored in the data structure are computable in time polynomial of its size, given
the subset E [4]. Radhakrishnan, Shah, and Shannigrahi [11] designed a non-

explicit scheme occupying Θ(m2/5) bits for t = 3, and Θ(tm1/(t−(t−1)21−t)) for
t > 3, via probabilistic arguments. They left open whether a fully explicit scheme
matching these bounds exists. Answering their question in the affirmative, we
describe a fully explicit scheme that not only matches their bound for t = 3, but
also improves upon it for t > 3. The only fully explicit bound previously known
for the case where n = 2 and t = 3 occupies Θ(

√
m) bits [10]. For t > 3, this

had been generalized by Radhakrishnan, Shah, and Shannigrahi [11] to occupy
Θ(t2m1/(t−1)) bits. In contrast, in Section 2.1 we describe a fully explicit scheme

for n = 2 occupying Θ(2tm1/(t−22−t)) bits, for t ≥ 3 probes.
Also as in previous work [10,11], our scheme divides the bits of the query

element into blocks, and treats these blocks of bits as table indices, which are
then probed sequentially. However, our scheme uses a novel interpretation of
the bits read during the first t − 1 probes: we describe the three-probe case

2 It was, in fact, Alon and Feige [1] who wrote the lower bound in this form.

632 M. Lewenstein et al.

for clarity. In particular, the query algorithm treats the first two bits read as a
one-to-many code that specifies two subblocks within the blocks: one subblock
per block. During a successful search for a query element, at least one of the
subblocks specified by the code is such that the bits of the two elements being
stored differ within it. We use this information to select the hash function with
which to make the final probe, returning the correct answer without revealing
in which block the bits differ. Conceptually, the storage algorithm assigns two
bit codes to each element, ensuring that the two stored elements x and y have
different codes, if this is possible. There are additional constraints on how the
codes are assigned, but our main technical contribution is that we explicitly
describe a set of hash functions hi : m4/5 "→ m1/5, for i = 1, ..., 4 such that
all elements assigned the same code as x (resp. y) do not collide with x (resp.
y). We contrast our approach with the previous best fully explicit three probe
scheme [10], which, with a simple modification, can be made to reveal in which
block the two stored elements differ during a successful search. We believe that
our approach of limiting the amount of information revealed about the set E
during a search—by overloading the interpretation of the bits returned in the
first two probes—leads to a more space efficient data structure.

For n ≥ 3, the non-explicit scheme of Radhakrishnan, Shah, and Shanni-
grahi [11] occupies Θ(ntm1/(t−(n−1)(t−1)21−t)) bits. They also described a fully
explicit scheme that occupies Θ(tnm1/(t−n+1)) bits. Both of these schemes re-
quire t > n. In Section 2.2 we present schemes for n ≥ 3 that are fully explicit
and, though they fall short of matching the upper bounds for the non-explicit
scheme, improve all known fully explicit bounds. For any t ≥ 2�lgn� + 1, our
scheme uses Θ(2tm1/(t−min{2�lgn�,n−3/2})) bits of space. In particular, we note
this scheme occupies less space than both the fully explicit FKS-based scheme
of Buhrman et al. [4] (notice our lack of a dependence on m in the exponent),
and the fully explicit scheme of Radhakrishnan, Shah, and Shannigrahi [11]. Fur-
thermore, the subtracted term in the exponent-of-m in our scheme is not only
exponentially smaller than that of Radhakrishnan, Shah, and Shannigrahi [11],
but is also applicable in the range t ∈ [2�lg n� + 1, n].

The main technique we use for the n ≥ 3 case is to define new kinds of (j, δ)-
decompositions of the universe [1,m]. Simply put, a (j, δ)-decomposition divides
the universe into buckets of size m1−δ, and assigns j bits to each bucket. Thus,
a (j, δ)-decomposition occupies jmδ bits of space. Using this terminology, the
previous fully explicit result of Radhakrishnan, Shannigrahi, and Shah [11] uses
a (n, 1/(t − n + 1))-decomposition, based on a unary encoding. Our approach
is to use what we call a (2, 1/(t − Θ(lg n))-balanced decomposition. While the
previous unary encoding approach is analogous to a linked list, our approach
is analogous to a balanced tree. Furthermore, our decomposition strategy may
also be of independent interest, as it can be used to solve a number of problems
that generalize membership, such as rank [9], one-dimensional range counting
(which can be solved using two rank queries) and emptiness [2], with similar
space tradeoffs; see Chapter 4 of the third author’s thesis for details [6].

Improved Explicit Data Structures in the Bitprobe Model 633

Finally, in Section 3 we close by discussing the difficulties of matching the
known non-explicit bounds [11] for the n ≥ 3 case in a fully explicit scheme.

Notation and Definitions: As in previous work [4,10,11] we use the notation
(n,m, s, t)-scheme to refer to a scheme structure that uses s bits of memory to
store any n element subset of a universe of size m, such that queries can always be
answered using t probes. For example, the trivial bit vector data structure with
direct access is an (n,m,m, 1)-scheme for the membership problem. A scheme is
adaptive if any probe after the first uses the results of prior probes in order to
determine the location of the next probe; otherwise the scheme is non-adaptive.
All the results we have discussed are for adaptive schemes, though we note
that many interesting results have been proved for non-adaptive schemes as
well [4,10,1,11]: for example, Buhrman et al. [4] showed that there is a non-
explicit non-adaptive (n,m,O(ntm4/t+1), t)-scheme.

Other Related Work: For a comprehensive discussion of related work and
definitions we refer the reader to a recent survey on the topic [7]; we only mention
the most closely related results here. For n = 1, there is a folklore explicit
scheme that achieves Θ(tm1/t) bits of space. The scheme divides the bits of the
element we wish to represent into t blocks, and stores the characteristic bit vector
for each block. Given a query element, we can answer a membership query by
probing each characteristic bit vector. For n = t = 2, Radhakrishnan, Raman,
and Rao [10] designed a subtle fully explicit scheme that uses Θ(m2/3) bits of
space. They also showed that this bound is tight for a restricted set of schemes.
Radhakrishnan, Shah, and Shannigrahi [11] proved a general (unrestricted) lower
bound of Ω(m4/7), which improves the lower bound of Buhrman et al. for the
n = 2 case. Alon and Feige [1] presented several schemes for the case where
t ∈ {2, 3, 4}. While they have strong asymptotic bounds for larger n, in the case
when n = 2, these schemes yield weaker upper bounds: Θ(m2/3) for t = 3 probes.
Finally, we mention that Viola [12] has proved a lower bound for the case when
n = Θ(m), which is not covered by the lower bound of Buhrman et al.

2 Technical Discussion

2.1 Explicit Adaptive Schemes for n = 2

In this section we begin by proving a special case of our main theorem, where
t = 3. For brevity, we omit floor and ceiling operators in cases where they do
not affect asymptotic complexity.

Theorem 1. There is a fully explicit adaptive (2,m,Θ(m2/5), 3)-scheme. In
other words, there is a fully explicit adaptive scheme that occupies Θ(m2/5) bits
for storing two elements from the universe [1,m], such that membership queries
can always be answered in 3 probes.

Proof. We define a subblock to be lgm/5 consecutive bits. A block is two con-
secutive subblocks. Let z ∈ [0,m − 1] be an integer3, and zi be the i-th bit in

3 For notational convenience, we remap the universe [1, m] to [0, m− 1] in our proofs.

634 M. Lewenstein et al.

the binary representation of z, for 1 ≤ i ≤ lgm, where z1 is the most significant
bit. We divide the binary representation of z into blocks, B1(z), B2(z), B3(z),
where Bj(z) are bits z(j−1)χ+1, z(j−1)χ+2, ..., zmin(jχ,lgm), where j ∈ {1, 2, 3} and
χ = 2 lgm/5. The block B3(z) is special in that it is not a complete block: i.e.,
it will only consist of one subblock, rather than two. Finally, we use Bj,k(z) to
denote the k-th subblock of the j-th block of z, for 1 ≤ k ≤ 2. An illustration of
these definitions can be found in Figure 1. Note that in the following description
when we refer to a particular block or subblock, we are referring to the binary
number represented by the bits contained in the block, following the convention
that the leftmost bit is the most significant bit.

0 1 0 1 0 1 0 1 0 1

0 1 0 1 0 0 0 0 0 1

B1,1 B1,2 B2,1 B2,2 B3

x

y

� = 2
g = 1

Fig. 1. Given integers x = 341, and y = 321, and a universe [0, 1023], we divide the
bits of x and y into blocks

Our scheme stores 7 tables. Each table is denoted TS , where S is a bit string
in {ε, 0, 1, 00, 01, 10, 11}, and ε represents the empty string. Each table occupies
m2/5 bits. Thus, the total space is 7m2/5.

We begin by describing the algorithm for searching the data structure. Let q
be the element we are searching for:

1. We probe table Tε at location B1(q), and are given bit r1.
2. We probe table Tr1 at location B2(q), and are given bit r2.
3. We read the bit r3 by probing table Tr1r2 at location:(

(B1,r2+1(q) + B2,r1+1(q)) mod m1/5
)
m1/5 + B3(q) . (1)

4. If r3 = 1 then we return YES, otherwise we return NO.

Next we describe how to construct the data structure, i.e., set the bits. Con-
sider the two elements x, y ∈ [0,m−1] that we wish to store, and assume without
loss of generality that x < y. Let � be the smallest integer such that B�(x) differs
from B�(y), and g be the smallest integer such that B�,g(x) differs from B�,g(y).
See Figure 1 for an example. Let g′ = g− 1: it is a bit representing the subblock
in which x and y differ. We next argue that we can assume � < 3, since a trivial
assignment exists in the alternate case.

If � = 3, then we are free to select any of the 4 tables {TS}, where |S| = 2,
as a destination for the elements x and y. Without loss of generality, assume we
choose T11. Thus, we assign the characteristic bit vector of B1(x) to table Tε,

Improved Explicit Data Structures in the Bitprobe Model 635

and the characteristic bit vector of B2(x) to table T1. In the final table, T11, we
store (at most) two ones in the locations that can be computed by plugging in
x and y into Equation 1. All other entries are set to zero. It is not difficult to
see that the search for q will function correctly for this assignment, because of
the fact that x and y are identical in all blocks except possibly B3.

If � = 1, then let Sx = 0g′, and Sy = 1g′. Otherwise, if � = 2, then let
Sx = g′0, and Sy = g′1. Our aim is use TSx as the destination for x and TSy as
the destination for y, while ensuring that the search algorithm always returns
the correct result. We use the notation Sz,u to denote the u-bit prefix of Sz . For
example, if Sz = 01, then Sz,0 = ε, Sz,1 = 0, Sz,2 = 01.

m
1
5

Tε

T0

T1

0 0
1

1
0

1

0
1
0
0
0
0
0

0
0
0
0

1

1
1
1
1
1
1
1
1
1
1
1
1
1
1

1

1

1
1
1
1
1
1
1
1
1
1
1
1
1

Tε

T0

T1

1

0
1
0
0
0
0
0

0

Tε

T0

1

0
0
0

1

0
0
0

0
0
0
0
0
0
0
0
0
1
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0

0
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1 1

1
1

0
0
0
0

0
0
0
0

0
1
0
0

0

� = 1, g = 1 � = 1, g = 2 � = 2, g = 1 � = 2, g = 2

T1

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

Tε

1
0

0
0

0

0
0
0
0
0 0

0
0

0
0
0
0

0
0
0
0

0
0
0
0

0

T1

0
1
0
0
0
0
0
1
0
1
0
0
0
1
0
0

0
0
0

0
0
0

x

y

x

y

x

x

y

y
m

2
5

0

T0

Fig. 2. Four cases illustrating how to set the bits in tables Tε, T0, and T1. In this
example the universe is the range [0, 1023].

We now describe the assignment of bits to the tables:

1. For the value u ∈ [0, 1], where u �= �−1, we describe how to set the values in
TSz,u , for z ∈ {x, y}. Let v be the (u+ 1)-th bit of Sz . If v is a 0, then we set
the bit in location Bu+1(z) to 0, and all other bits to 1 in TSz,u. Otherwise,
if v is 1, then we set the bit in location Bu+1(z) to 1, and all other bits to 0.

2. Next, we explain how to set the bits in T̂ = TSx,�−1
= TSy,�−1

. We store a 0

in location B�(x), and a 1 in location B�(y) in T̂ . All locations γx �= B�(x),
such that �γx/m(1−g′)/5� ≡ B�,g(x) mod m1/5 are assigned a 1. All locations

γy �= B�(y), such that �γy/m(1−g′)/5� ≡ B�,g(y) mod m1/5 are assigned a 0.
After setting the tables in the way described above, we perform a search for
x and y using the search algorithm, and set the two bits corresponding to
x and y to 1 in tables TSx and TSy , respectively. Finally, all table locations
that remain unspecified are set to 0. We give an example of how to set tables
Tε, T0, and T1 in each of the four cases in Figure 2.

All that remains is to prove that the search algorithm will always return the
correct result, provided we set the bits as described above. In the first case, if the

636 M. Lewenstein et al.

query element q is equal to either x or y, then we will return YES, which is cor-
rect. In the second case, suppose q �= x and q �= y, and Sq is the sequence of first
two bits returned by the search algorithm for q. If Sq �= Sx and Sq �= Sy, then
we will return NO—since all tables are zeroed out except those containing x and
y—which is correct. Otherwise, suppose Sq = Sz where z ∈ {x, y}; note that we
can assume Sx �= Sy by the assumption that � < 3. If q differs from z in block B3,
then the search algorithm will return NO, which is correct. Thus, we can assume q
differs from z somewhere other than block B3. Consider the table TSq,u = TSz,u ,
where u ∈ [0, 1] and u �= �− 1, and let v denote the value of the (u+ 1)-th bit in
Sq. Since the table TSz,u contains only one location that stores bit v, we can infer
that q and z can differ only in block �. However, B�,g(q) �= B�,g(z), according to

the way we set the bits in table T̂ , since q �= z. Based on the discussion above, we
have that either: (1) B1,r2+1(q) �= B1,r2+1(z) and B2,r1+1(q) = B2,r1+1(z); or
(2) B1,r2+1(q) = B1,r2+1(z) and B2,r1+1(q) �= B2,r1+1(z). This implies that:
(B1,r2+1(q) + B2,r1+1(q) �= B1,r2+1(z) + B2,r1+1(z)) mod m1/5. Thus, we will
return the correct answer of NO. This completes the proof of correctness.

Next, we state our main theorem, and provide most of the details of the
proof. The remaining details for this proof can be found in Chapter 4 of the
third author’s thesis [6]. Note that this result improves the non-explicit bound
of Radhakrishnan, Shah, and Shannigrahi [11], provided 2t = o(mε) for any
constant ε > 0.

Theorem 2. There is a fully explicit adaptive (2,m,Θ((2t − 1)m1/(t−22−t)), t)-
scheme for the membership problem, for t ≥ 3.

Proof. We define a subblock to be (lgm/(t2t−2 − 1)) consecutive bits. A block is
2t−2 consecutive subblocks. Let z ∈ [0,m−1] be an integer, and zi be the i-th bit
in the binary representation of z, for 1 ≤ i ≤ lgm, where z1 is the most significant
bit. We divide the binary representation of z into blocks, B1(z), ..., Bt(z), where
Bj(z) are bits z(j−1)χ+1, z(j−1)χ+2, ..., zmin(jχ,lgm), where 1 ≤ j ≤ t and χ =
((2t−2) lgm)/(t2t−2 − 1). The block Bt(z) is special in that it is not a complete
block: i.e., it will only consist of 2t−2 − 1 consecutive subblocks, rather than
2t−2. Finally, we use Bj,k(z) to denote the k-th subblock of the j-th block of
z, for 1 ≤ k ≤ 2t−2. Note that in the following description when we refer to a
particular block or subblock, we are referring to the binary number represented
by the bits contained in the block, following the convention that the leftmost bit
is the most significant bit.

Our scheme stores 2t−1 tables. Each table is denoted TS , where S is a binary
string of length between 0 (an empty string), and t−1 bits. Each table TS , where

|S| ≤ t will store m(2t−2)/(t2t−2−1) bits. The sum of the sizes of these tables is
no more than the space bound claimed in the statement of the theorem.

We begin by describing the algorithm for searching the data structure:

1. Let q be the query element, S be an empty binary string, and i = 1.
2. We probe table TS at location Bi(q), and are given bit ri. We append ri to

S (i.e., add ri to the end of S) and increment i. If i ≤ t− 1, then we repeat
this step.

Improved Explicit Data Structures in the Bitprobe Model 637

3. At this point S consists of t − 1 bits. Let S[j] be the binary number that
results from deleting the j-th digit (counting left to right) from S. We read
the bit rt by probing table TS at location:⎛⎝⎛⎝t−1∑

j=1

Bj,S[j]+1(q)

⎞⎠ mod m1/(t2t−2−1)

⎞⎠m(2t−2−1)/(t2t−2−1) + Bt(q) .

(2)
4. If rt = 1 then we return YES, otherwise we return NO.

Next we describe how to construct the data structure, i.e., set the bits. Con-
sider the two elements x, y ∈ [0,m−1] that we wish to store, and assume without
loss of generality that x < y. Let � be the smallest integer such that B�(x) differs
from B�(y), and g be the smallest integer such that B�,g(x) differs from B�,g(y).
As in the t = 3 case, we can assume � < t, since a trivial assignment exists in
the alternate case.

Let g1, ..., gt−2 be the digits of the binary representation of g − 1. Let Sx =
g1, g2, ..., g�−1, 0, g�, ..., gt−2, and Sy = g1, g2, ..., g�−1, 1, g�, ..., gt−2. We use the
notation Sz,u to denote the u-bit prefix of Sz . For each u ∈ [0, t − 2], where
u �= � − 1, we describe how to set the values in TSz,u , for z ∈ {x, y}. Let v be
the (u + 1)-th bit of Sz. If v is a 0, then we set the bit in location Bu+1(z) to
0, and all other bits to 1 in TSz,u . Otherwise, if v is 1, then we set the bit in
location Bu+1(z) to 1, and all other bits to 0. We now explain how to set the
bits in T̂ = TSx,�−1

= TSy,�−1
. We store a 0 in location B�(x), and a 1 in location

B�(y) in T̂ . All locations γx �= B�(x), such that �γx/m(2t−2−1−g)/(t2t−2−1)� ≡
B�,g(x) mod m1/(t2t−2−1) are assigned a 1. All locations γy �= B�(y), such that

�γy/m(2t−2−1−g)/(t2t−2−1)� ≡ B�,g(y) mod m1/(t2t−2−1) are assigned a 0. After
setting the tables in the way described above, we perform a search for x and
y using the search algorithm, and set the two bits corresponding to x and y
to 1 in tables TSx and TSy , respectively. Finally, all table locations that remain
unspecified are set to 0. We omit the discussion of correctness, which follows
from arguments similar to the t = 3 case.

2.2 Explicit Adaptive Schemes for n ≥ 3

In this section we describe our general scheme for the case when n ≥ 3. We
begin by providing some definitions for decomposition techniques that are used
in the recursive schemes defined in the remainder of the paper. We then devise a
scheme for small values of n that uses Theorem 2 recursively to outperform the
previous fully explicit scheme of Radhakrishnan et al. Finally, using a slightly
more sophisticated decomposition technique we improve all previous fully ex-
plicit results for the general case of n ≥ 3. All proofs omitted due to space
constraints can be found in Chapter 4 of the third author’s thesis [6].

We begin by defining the heaviest bucket in a (j, δ)-decomposition as the
bucket which contains the most elements of the set E , breaking ties arbitrarily.
Next, we discuss some special kinds of (j, δ)-decompositions. A (1, δ)-balanced

638 M. Lewenstein et al.

a

b

[1,m]

[1,m(1−δ)]

10 0 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0 0
0 0 0 0 1 1 X 1 1 1

Heaviest Bucket

Fig. 3. Illustration of the various decomposition strategies on the universe represented
by the horizontal line, containing elements marked with red dots. For each decompo-
sition, each of the bits are drawn below the bucket with which it is associated. Bits
labelled ‘X’ can either be set to 0 or 1. (a) is a (1, δ)-balanced decomposition, and (b)
is a (2, δ)-balanced decomposition.

decomposition is a (1, δ)-decomposition in which the heaviest bucket is assigned
a 1, and all remaining buckets are assigned a 0 (see Figure 3 (a)). Similarly,
a (2, δ)-balanced decomposition is a (2, δ)-decomposition in which the heaviest
bucket is assigned a 10 or 11 (the second bit is irrelevant). We have the following:

Lemma 1. Suppose there is a set of buckets, where each bucket contains between
0 and n elements, and the total number of elements in all the buckets is n.
Suppose the heaviest bucket is removed. It is possible to partition the remaining
buckets into two groups G0 and G1, such that there are no more than �n/2�
elements in total contained in the buckets of either group.

To the buckets in groups G0 and G1 in our (2, δ)-balanced decomposition we
assign the bits 00 and 01, respectively (see Figure 3 (b)).

Basic Scheme for n ≥ 3. We describe a recursive scheme for the case when
n ≥ 3. We improve the bound for n > 5 in the next section. We begin by stating
a useful preliminary result of Radhakrishnan, Raman, and Rao:

Lemma 2 (Theorem 1 from [10]). For n ≥ 2, there is a fully explicit adaptive
(n,m, 2n

√
m,
lg(n + 1)� + 1)-scheme for the membership problem.

We next describe a scheme that extends the result of Theorem 2 to obtain
better space bounds for the case when n ≥ 3 and the t = n + 1.

Theorem 3. Suppose that for n0 ≥ 2, f > 0, and c ∈ [1/3, 1], there is a fully
explicit adaptive (n0,m, fmc, n0 +1)-scheme for the membership problem. Then,
for any n > n0 ≥ 2, there is a fully explicit adaptive (n,m, (f +

∑n
j=n0+1(2j +

1))mc, n + 1)-scheme for the membership problem.

Proof. Proof by induction on n. The supposition in the statement of the theorem
serves as the base case when n = n0. For the induction hypothesis, we assume
there is a (n − 1,m, (f +

∑n−1
j=n0+1(2j + 1))mc, n)-scheme. We compute and

Improved Explicit Data Structures in the Bitprobe Model 639

store a (1, c)-balanced decomposition. The query proceeds by probing the bucket
associated with the first c-th of the bits of the query element q. Since at least one
element will be in the heaviest bucket, if the probe returns 0 it is sufficient to defer
to an (n−1,m, (f+

∑n−1
j=n0+1(2j+1))mc, n)-scheme, which exists by the induction

hypothesis. In this case, we have reduced the number of elements by at least one,
but have not reduced the size of the universe. In the alternative case, if the probe
returns 1, then we know that at most n elements are stored in a smaller universe,
of size m1−c. Thus, we can defer this case to an (n,m1−c, 2nm(1−c)/2, n)-scheme,
which exists by Lemma 2 (since n ≥ 3 and
lg(n + 1)� + 1 probes are sufficient
for this scheme). Overall the total number of bits used by the scheme is: (f +1+∑n−1

j=n0+1(2j+1))mc+2nm(1−c)/2, which is no more than (f +1+
∑n

j=n0+1(2j+
1))mc, since c ≥ 1/3.

Combining Theorems 2 and 3 we get the following corollary, setting n0 = 2
in Theorem 3, and by applying the scheme of Theorem 2 with t = 3.

Corollary 1. For n ≥ 3, there is a fully explicit adaptive (n,m, (n2 + 2n +
6)m2/5, n + 1)-scheme for the membership problem.

Next, using roughly the same decomposition technique as Theorem 3, we
extend the result to the more general case when t > n ≥ 2.

Theorem 4. Suppose for the membership problem there is a fully explicit adap-
tive (n0,m, (2n0+1 − 1)mc, n0 + 1)-scheme for some c ∈ (0, 1], and a fully ex-
plicit adaptive (n0 − 1,m, (2t1 − 1)m1/(t1−n0+1/c−1), t1)-scheme for n0 ≥ 3,
and t1 > n0. For any n ≥ n0, t > n, there is a fully explicit adaptive
(n,m, (2t − 1)m1/(t−n+1/c−1), t)-scheme for the membership problem.

We can combine Theorem 4 (with c = 2/5) with Corollary 1, and the ob-
servation that n2 + 2n + 6 < 2t − 1, for n ≥ 3 and t > n. This improves the
exponent-of-m in the result of Radhakrishnan, Shah, Shannigrahi [11].

Corollary 2. For n ≥ 3 and t > n, there is an fully explicit adaptive (n,m, (2t−
1)m1/(t−n+3/2), t)-scheme for the membership problem.

Improved Scheme for n ≥ 3. Next, we present a fully explicit adaptive
scheme that achieves significantly better bounds than the one from the previous
section. We start by stating the bound of the trivial scheme for one element:

Lemma 3. [4] There is a fully explicit non-adaptive (1,m, tm1/t, t)-scheme for
the membership problem.

Using Lemma 3 we prove the following:

Theorem 5. Let R(n) be the recurrence defined by R(0) = R(1) = 0 and
R(n) = R(�n/2�) + 1. For n ≥ 2 and t ≥ 2R(n) + 1, there is a fully explicit
adaptive (n,m, (2t − 1)m1/(t−2R(n)), t)-scheme for the membership problem.

640 M. Lewenstein et al.

Proof. The proof is by strong induction on both t and n. In the base case we
have t = 2R(n)+1, and we store the trivial (n,m,m, 1)-scheme. In the inductive
case, we assume t > 2R(n) + 1. We compute and store a (2, 1/(t − 2R(n)))-
balanced decomposition. The search algorithm proceeds as follows: if we probe
the bucket associated with the query element and read a 1 bit, we immediately
recurse to the (n,m′, (2t−1 − 1)m′1/(t−2R(n)−1), t− 1)-scheme that is guaranteed
to exist by the induction hypothesis. In this case we have reduced the size of
the universe to m′ = m(t−2R(n)−1)/(t−2R(n)), but not changed the number of
elements. Otherwise, we read both bits associated with the bucket. After reading
either 00 or 01, it is sufficient to recurse to a scheme that represents a set of
�n/2� elements. Thus, in this case we have reduced the number of elements, but
not the size of the universe.

If �n/2� = 1, then we can recurse to two copies of the trivial (1,m, (t −
2)m1/(t−2), t− 2)-scheme of Lemma 3 (one for 00 and one for 01). Otherwise, we
assume the existence of a (�n/2�,m, (2t−2− 1)m1/(t−2−2(R(n)−1)), t− 2)-scheme,
and recurse to two separate copies of this scheme.

We now analyze the space bound. If n ∈ {2, 3} then �n/2� = 1 and R(n) = 1.
In this case, we have stored no more than: (2 + 2t−1− 1 + 2(t− 2))m1/(t−2) bits,
which is no more than the claimed space bound since t > 3. If n > 3 then the
overall space is no more than (2+2t−1−1+2(2t−2−1))m1/(t−2R(n)) bits, which
is exactly (2t − 1)m1/(t−2R(n)) bits, completing the proof.

Since R(n) = �lg n�, we get the following corollary by combining Corollary 2
and Theorem 5. This result improves the both previously known fully explicit
bounds [4,11], provided 2t = o(mε) for any constant ε > 0.

Corollary 3. For n ≥ 2 and t ≥ 2�lg n� + 1, there is a fully explicit adaptive
(n,m, (2t − 1)m1/(t−min{2�lg n�,n−3/2}), t)-scheme for the membership problem.

3 Further Discussion

We have presented new fully explicit schemes for the membership problem in
the bitprobe model. These schemes significantly outperform the previous fully
explicit schemes of Radhakrishnan, Shah, and Shannigrahi [11], and Buhrman
et al. [4], for a wide range of input parameters, answering an open problem [11].

Our main result for the n = 2 case is both fully explicit, and even outperforms
the best previous non-explicit schemes. We conclude with a discussion regarding
the difficulty of matching the non-explicit bounds for n ≥ 3. First we introduce
some further terminology. We observe that the functions used to determine the
locations to probe on the first t − 1 probes for both the non-explicit scheme of
Radhakrishnan et al. [11], and Theorem 2 have a particular format. In particular,
if the desired space bound is Θ(mc) for some constant c > 0—let us treat t as
a constant to simplify the discussion—then the schemes divide the bits of the
query element q into blocks B1(q), ..., Bt(q), where the first t−1 blocks consist of
c
lgm� bits, and the t-th block is potentially smaller. We refer to such a scheme
that divides the bits of the query element into blocks, such that the location

Improved Explicit Data Structures in the Bitprobe Model 641

of probe i, 1 ≤ i ≤ t − 1 is specified by (the number represented by) Bi(q),
as blocking. Note that this definition makes no claims about the function used
to determine the final probe. Thus, the fully explicit scheme of Theorem 2 is
blocking, whereas the fully explicit scheme of Corollary 3 is not. We also refine
our notion of adaptivity, and define a ρ-adaptive scheme to be one in which only
the final ρ probes are adaptive. We have the following conjecture:

Conjecture 1. There is no fully explicit (2,m,Θ(m1/3−ε), 4)-scheme that is both
2-adaptive and blocking for any constant ε > 0.

Assuming this conjecture is true, we have strong evidence that matching the
non-explicit bound of Radhakrishnan et al. [11] using an approach similar to
that of Theorem 2 would be difficult for n ≥ 3. In particular, we show that a
wide class of blocking schemes with rather natural seeming properties violate
Conjecture 1. See Chapter 4 of the third author’s thesis for details [6].

References

1. Alon, N., Feige, U.: On the power of two, three and four probes. In: Proc. of
the 20th Annual Symposium on Discrete Algorithms (SODA), pp. 346–354. SIAM
(2009)

2. Alstrup, S., Brodal, G., Rauhe, T.: Optimal static range reporting in one dimen-
sion. In: Proc. of the 33rd Annual Symposium on Theory of Computing (STOC),
pp. 476–482. ACM (2001)

3. Brodnik, A., Munro, J.I.: Membership in constant time and almost-minimum space.
SIAM Journal on Computing 28(5), 1627–1640 (1999)

4. Buhrman, H., Miltersen, P., Radhakrishnan, J., Venkatesh, S.: Are bitvectors op-
timal? SIAM Journal on Computing 31(6), 1723–1744 (2002)

5. Fredman, M.L., Komlós, J., Szemerédi, E.: Storing a sparse table with 0(1) worst
case access time. Journal of the ACM (JACM) 31(3), 538–544 (1984)

6. Nicholson, P.K.: Space Efficient Data Structures in the Word-RAM and Bitprobe
Models. Ph.D. thesis, University of Waterloo (2013)

7. Nicholson, P.K., Raman, V., Rao, S.: Data structures in the bitprobe model.
In: Brodnik, A., López-Ortiz, A., Raman, V., Viola, A. (eds.) Ianfest-66. LNCS,
vol. 8066, pp. 303–318. Springer, Heidelberg (2013)

8. Pagh, R.: Low redundancy in static dictionaries with constant query time. SIAM
Journal on Computing 31(2), 353–363 (2001)

9. Pǎtraşcu, M.: Succincter. In: Proc. of the 49th Annual Symposium on Foundations
of Computer Science, pp. 305–313. IEEE (2008)

10. Radhakrishnan, J., Raman, V., Rao, S.S.: Explicit deterministic constructions for
membership in the bitprobe model. In: Meyer auf der Heide, F. (ed.) ESA 2001.
LNCS, vol. 2161, pp. 290–299. Springer, Heidelberg (2001)

11. Radhakrishnan, J., Shah, S., Shannigrahi, S.: Data structures for storing small sets
in the bitprobe model. In: de Berg, M., Meyer, U. (eds.) ESA 2010, Part II. LNCS,
vol. 6347, pp. 159–170. Springer, Heidelberg (2010)

12. Viola, E.: Bit-probe lower bounds for succinct data structures. SIAM Journal on
Computing 41(6), 1593–1604 (2012)

Deeper Local Search for Better Approximation

on Maximum Internal Spanning Trees�

Wenjun Li1, Jianer Chen1,2, and Jianxin Wang1

1 School of Information Science and Engineering
Central South University

Changsha, Hunan 410083, P.R. China
2 Department of Computer Science and Engineering

Texas A&M University
College Station, Texas 77843-3112, USA

Abstract. Spanning tree has been fundamental in the research of graph
algorithms. In this paper, we study the optimization problem MaxIST,
which maximizes the number of internal nodes in a spanning tree of a
given graph, and is a generalization of the famous Hamiltonian-Path

problem. We present a polynomial-time approximation algorithm based
on a deep local search strategy, identify combinatorial structures that
support thorough analysis on the spanning trees resulted from such deep
local search strategies, and prove that our algorithm has an approxi-
mation ratio 1.5 for the MaxIST problem, improving the previous best
approximation algorithm of ratio 5/3 for the problem.

1 Introduction

Spanning trees have been fundamental in graph theory and algorithms [19]. A
spanning tree uses the minimum number of edges that interconnect the vertices
of a graph, which provides an economic structure for efficient processing in many
applications, such as in network communication and network routing [13].

A graph can have many different spanning trees [5], but a specific application
may particularly be interested in making use of a spanning tree with certain spe-
cial properties. As a consequence, construction of spanning trees that optimize
certain objective functions has been a popular topic in the research in combi-
natorial optimization [19]. In particular, spanning trees of the minimum weight
have been extensively studied [1]. Other optimization problems on spanning
trees include Maximum Bandwidth Spanning Tree, Maximum Internal

Spanning Tree, Minimum Internal Spanning Tree, Minimum Diameter

Spanning Tree, and Minimum Dilation Spanning Tree [10, 11, 17, 19].
In the current paper, we are focused on the Maximum Internal Spanning

Tree problem (MaxIST), which is for a given graph to construct a spanning
tree with the maximum number of internal nodes. The problem is an obvious

� This work is supported by the National Natural Science Foundation of China under
Grant (61173051, 61103033, 71221061).

A.S. Schulz and D. Wagner (Eds.): ESA 2014, LNCS 8737, pp. 642–653, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

Deeper Local Search for Better Approximation MaxIST 643

generalization of the famous NP-hard Hamiltonian-Path problem [7], thus, is
NP-hard. The MaxIST problem has applications in the design of cost-efficient
communication networks [18] and in minimizing turbulence in supply networks
[2]. Recently, there have been considerable interests in the study of algorithms
for MaxIST (see the survey by Salamon [17]), such as exact algorithms [2, 12],
parameterized algorithms [2–4, 15], and approximation algorithms [9, 14, 16, 18].

In particular, approximation algorithms for MaxIST have gone through a
number of rounds of improvements. Prieto and Sloper [14], based on local search,
gave a 2-approximation algorithm for MaxIST. Salamon and Wiener [18] pre-
sented a linear-time 2-approximation algorithm for MaxIST based on depth
first search. By refining the algorithm, they were also able to obtain a (3/2)-
approximation algorithm for claw-free graphs and a (6/5)-approximation al-
gorithm for cubic graphs [18]. For graphs without pendant nodes, Salamon
[16] developed a (7/4)-approximation algorithm. Recently, Knauer and Spoer-
hase simplified and revised Salamon’s algorithm in [16], and presented a (5/3)-
approximation algorithm for general graphs [9].

All these algorithms are based on the techniques of local search/improvements,
which have been a popular method used in practice and in theoretical study in
dealing with computationally intractable problems [8]. Let G be a graph and let
T be a spanning tree of G. If we pick an edge e in G\T and replace in T any edge
in the unique cycle in T + e by e, then we get another spanning tree for G. We
will call such an operation an edge swapping, which has been the basic operation
used by all approximation algorithms for the MaxIST problem [9, 14, 16, 18].
Therefore, in order to construct a spanning tree with many internal nodes for
a graph, we can repeatedly apply the edge swapping operation, as long as the
operation results in an improved spanning tree. In particular, both Prieto-Sloper
algorithm [14] and Salamon-Wiener algorithm [18] use this simple strategy to
achieve 2-approximation algorithms for the MaxIST problem.

Thus, edge swapping can be regarded as a basic step for local search processes
of depth 1 on spanning trees. It is reasonable to consider local search processes
of depth k, with k > 1, which examines a sequence of up to k consecutive edge
swappings to seek a possible improvement on a spanning tree. Intuitively, a
local search process of larger depth will result in a better spanning tree. This is
indeed the idea used by Knauer and Spoerhase [9], who presented a local search
process of depth 2 and proved that the process leads to a (5/3)-approximation
algorithm for MaxIST. We also remark that the (7/4)-approximation algorithm
for MaxIST on graphs without pendant nodes by Salamon [16] uses a large
number of local improvement operations (14 improvement rules), in which one
of the operations has depth 3 in terms of our characterization. However, as
demonstrated by Knauer and Spoerhase [9], Salamon’s algorithm [16] does not
perform better than Knauer-Spoerhase algorithm [9] in the worst case.

Although local search process with further larger depth seems conceivably to
lead to further improved spanning trees, it also presents a great challenge for
the analysis to confirm the improvement. To see how the depth complicates the
analysis, the readers may compare the analysis (of a few lines) for the depth-1

644 W. Li, J. Chen, and J. Wang

local search processes in [14, 18] with the analysis (of more than 5 pages) for
the depth-2 local search process in [9]. Therefore, the questions raised in this
direction are: (1) Is it feasible to analyze a local search process of depth larger
than 2? and (2) If possible, how well can such a local search process do?

The current paper makes contributions to answering these questions. We pro-
pose a small set of simple local search rules, of which some has depth up to
5 in terms of the above characterization. We then present analysis to formally
prove that these local search rules lead to a (3/2)-approximation algorithm for
the MaxIST problem, thus improving all previous results. To achieve this, the
concept of “quasi-branch” is introduced. Roughly speaking, quasi-branches are
degree-2 nodes in a spanning tree that can be treated as nodes of degree larger
than 2 in the tree in a local search of depth larger than 1. The concept of
quasi-branches allows the edge swapping operation to become applicable on a
much larger range of structures in the spanning tree. We also classify the other
degree-2 internal nodes in a spanning tree into “live” and “dead” nodes, which
enable us to apply edge swappings that, although not directly producing better
spanning trees, lead to spanning trees of the same quality for further potential
improvements. These new concepts and related structures reveal very rich and
interesting combinatorial structures of spanning trees.

The paper is organized as follows. Section 2 presents our local search rules and
verifies their validity. Section 3 discusses the structural properties of irreducible
spanning trees, i.e., spanning trees on which none of the local search rules is ap-
plicable. Section 4 presents the proof to show that our approximation algorithm
based on irreducible spanning trees has an approximation ratio bounded by 3/2.
Section 5 concludes the paper with problems for further research.

2 The Local Search Rules

Our graphs are always simple, undirected, and connected. Let G be a graph and
let v be a node in a subgraph H of G. Denote by NH(v) the set of the neighbors
of v in H and denote by dH(v) = |NH(v)| the degree of v in H .

Let T be a spanning tree of the graph G. For a node u in T , if dT (u) ≤ 1,
then u is a leaf of T , otherwise, u is an internal node of T . For two nodes u and
v in the tree T , denote by PT (u, v) the unique path in T from u to v, and denote

by u
T→ v the unique neighbor of u in the path PT (u, v). An internal node u of T

is an RT -branch (i.e., a real branch) in T if dT (u) ≥ 3. An edge in G but not
in the spanning tree T is called a cotree edge for T . A cotree edge [l, x] with l a
leaf and x an internal node of T is called an L-cotree edge for T . We will always
write an L-cotree edge [l, x] such that the first node l of the edge is the leaf. We
say that the L-cotree edge [l, x] defines the path PT (l, x).

Let [v1, v2] be an cotree edge for T . An edge swapping with [v1, v2] on T is to
add [v1, v2] to T and remove an edge [w1, w2] on the path PT (v1, v2) (so the edge
swapping is implemented on the edges [v1, v2] and [w1, w2]). An edge swapping
on a spanning tree of a graph always results in a spanning tree of the graph. An
edge swapping is improving, weakening, and holding, respectively, if it increases,
decreases, and unchanges the number of internal nodes in a spanning tree.

Deeper Local Search for Better Approximation MaxIST 645

We now present our local search rules, which form the basis for our (3/2)-
approximation algorithm for MaxIST. There are five rules and we assume that
the rules are applied in order, i.e, Rule j will not be applied unless all Rules i for
i < j become unapplicable. Compared with the previous work [9, 14, 16, 18], our
algorithm takes a much deeper local search strategy that in some cases considers
a sequence of up to five consecutive edge swappings to seek an improvement on a
spanning tree. Let G be a graph and let T be a given spanning tree of G. Without
loss of generality, we assume that the graph G has more than two nodes and
that the spanning tree T for G is not a path – otherwise the MaxIST problem
for G can be trivially solved. Therefore, there is at least one RT -branch in T .

Rule 1 (local search of depth 1). If there is an improving edge swapping
on T , then apply the edge swapping.

Note that a cotree edge [l1, l2] between two leaves of T can always induce an
improving edge swapping: let v be any RT -branch on the path PT (l1, l2). Then
swapping the cotree edge [l1, l2] and an edge on PT (l1, l2) that is incident to v
will always give an improved spanning tree.

Suppose the improving edge swapping is on an L-cotree edge [l, x] and an edge

[v1, v2] on the path PT (l, x), where v2 = v
T→x
1 . To obtain an improved spanning

tree, both nodes v1 and v2 must have degree at least 3 in T + [l, x]. Therefore,
v1 must be an RT -branch, while v2 must be either an RT -branch or v2 = x.

For the convenience of our later reference, we distinguish the above two sub-
cases in Rule 1 and split the rule into two detailed subrules:

Rule 1.1. If there is a cotree edge [l1, l2] between two leaves l1 and l2 of T , then
find an RT -branch v on the path PT (l1, l2), swap [l1, l2] and an edge on PT (l1, l2)
that is incident to v.

Rule 1.2. If there is an L-cotree edge [l, x] and an edge [v1, v2] on the path

PT (l, x), where v2 = v
T→ x
1 , such that either both v1 and v2 are RT -branches, or

v1 is an RT -branch and v2 = x, then swap [l, x] and [v1, v2].
Rule 1.1 has been used in all previous approximation algorithms for the Max-

IST problem. A restricted version of Rule 1.2 has been used in [9, 16].
Note that a cotree edge connecting two internal nodes of T can never induce

an improving edge swapping.

Rule 2 (local search of depth 2). If a holding edge swapping with an L-cotree
edge creates a new cotree edge between two leaves, then apply the holding edge
swapping, then apply Rule 1.1 on the created cotree edge between leaves.

Suppose that the holding edge swapping is on an L-cotree edge [l, x] and an
edge [v1, v2] on the path PT (l, x). In order for the edge swapping to be holding,
exact one of v1 and v2 has degree larger than 2 in T + [l, x]. Let v′ be the one
in {v1, v2} that has degree 2 in T + [l, x], then the cotree edge between leaves
created by the edge swapping must have v′ as one of its ends (the cotree edge
cannot be between two leaves in T – otherwise, Rule 1.1 would be applied).
Thus, in this case, there must be another leaf l′ of T , l′ �= l, such that [v′, l′] is
an L-cotree edge for T . The following refined subrules of Rule 2 distinguish the

646 W. Li, J. Chen, and J. Wang

subcases for v′ = v2 and v′ = v1. Thus, [l, x] is an L-cotree edge, [v1, v2] is an

edge on the path PT (l, x), where v2 = v
T→ x
1 .

Rule 2.1. If v1 is an RT -branch, dT (v2) = 2, v2 �= x, and there is an L-cotree
edge [l′, v2] with l′ �= l, then swap [l, x] and [v1, v2], and apply Rule 1.1 to [l′, v2].

Rule 2.2. If dT (v1) = 2 with an L-cotree edge [l′, v1], where l′ �= l, v2 = x or v2
is an RT -branch, then swap [l, x] and [v1, v2], and apply Rule 1.1 to [l′, v1].

Rule 3 (local search of depth 3). If a weakening edge swapping with an
L-cotree edge creates two cotree edges on two disjoint pairs of leaves, then apply
the weakening edge swapping, and apply Rule 1.1 to each of the created cotree
edges between leaves.

Rule 4 (local search of depth up to 4). If a holding edge swapping with
an L-cotree edge results in a spanning tree on which Rule i becomes applicable,
where 1 ≤ i ≤ 3, then apply the holding edge swapping, and apply Rule i.

Rule 5 (local search of depth up to 5). If a weakening edge swapping with
an L-cotree edge leads to a spanning tree on which applying Rule 1.1 produces
a spanning tree T ′ such that Rule i is applicable on T ′, where 1 ≤ i ≤ 3, then
apply the edge swapping, Rule 1.1, and Rule i.

Lemma 1. On any given spanning tree of the graph G, applying each of Rules
1-5 increases the number of internal nodes of a spanning tree by at least 1.

A spanning tree T of the graph G is irreducible if none of Rules 1-5 is appli-
cable on T . Our approximation algorithm for MaxIST starts with an arbitrary
spanning tree of the graph G, and repeatedly applies Rules 1-5, until an irre-
ducible spanning tree is obtained. It is easy to verify that in polynomial time we
can check if any of Rules 1-5 is applicable and, in case there is an applicable rule,
apply the rule. By Lemma 1, each application of a rule in Rules 1-5 increases
the number of internal nodes of a spanning tree by at least 1. Since a spanning
tree of the graph G of n nodes has at most n− 2 internal nodes, we have

Theorem 1. An irreducible spanning tree of a graph can be constructed in poly-
nomial time.

3 On Irreducible Spanning Trees

In this section, we present a number of properties for irreducible spanning trees,
which will be useful for us to show how well an irreducible spanning tree can
approximate an optimal spanning tree for the MaxIST problem. The study also
shows very rich and interesting combinatorial structures of irreducible spanning
trees of a graph. Let T be a fixed irreducible spanning tree of the graph G.
Assume that T is not a path (otherwise, T is an optimal spanning tree for G).

Definition 1. An internal node u in T with dT (u) = 2 is a QT -branch (i.e.,
a quasi-branch) if there is an L-cotree edge [l, u] for which the path PT (l, u)

Deeper Local Search for Better Approximation MaxIST 647

contains an internal node x such that either x is an RT -branch in T or there is
an L-cotree edge [l′, x] for T with l′ �= l (x can be u).

The concept of QT -branches distinguishes our work from all previous approx-
imation algorithms for MaxIST. In many cases, a QT -branch can be treated as
an RT -branch in a local search process of depth larger than 1.

An internal node of T is a T -branch if it is either an RT -branch or a QT -
branch in T . An internal node of T that is not a T -branch is called a T -forward.
For a leaf l of T , denote by b(l) the first T -branch we will encounter when we
traverse the tree T , starting from the leaf l. Note that if T is not a simple path,
then there must be at least one RT -branch in T and all nodes we encounter
between l and b(l) during our traversing are T -forwards that are of degree 2 in
T . Therefore, the node b(l) is always well-defined.

Removing an edge [u, v] in the tree T splits T into two subtrees. We denote by
T−[u, v](u) the subtree that contains u, and by T−[u, v](v) the subtree that contains
v. Similarly, removing edges of an edge subset E′ in the tree T breaks T into
a forest, which is denoted by T−E′ , and we denote by T−E′(x) the connected
component of the forest T−E′ that contains the node x.

Definition 2. An edge [u, v] in the spanning tree T is a T -bridge if (1) there is
no L-cotree edge [l, x] such that the path PT (l, x) contains the edge [u, v]; and
(2) each of T−[u, v](u) and T−[u, v](v) contains at least one T -branch.

Lemma 2. Let [x1, x2] be an edge in T that is not a T -bridge, where x1 and
x2 are T -branches. Then there is an L-cotree edge [l, x] with [x1, x2] on the path

PT (l, x) such that if x2 = x
T→ x
1 , then x1 is a QT -branch and [l, x1] is the only

L-cotree edge incident to x1 in G.

The situation of the node x1 in Lemma 2 turns out to be very special for
counting the number of T -branches in T . For this, we give it a specific name.

Definition 3. A QT -branch x1 is a bad T -branch if it is adjacent to a T -branch
x2 and there is an L-cotree edge [l, x] such that the edge [x1, x2] is on the path

PT (l, x), x2 = x
T→ x
1 , and [l, x1] is the only L-cotree edge incident to x1 in G.

Remark 1. The node x2 above can be assumed to be in one of the following
cases: (a) x2 is an RT -branch; (b) x2 = x; or (c) x2 is a QT -branch with an
L-cotree edge [l′, x2], l′ �= l.

A T -branch is good if it is not a bad T -branch. By definition, an RT -branch
is always a good T -branch. A leaf of T is a bad T -leaf if it is adjacent in G to a
bad T -branch. From Lemma 2, we get immediately:

Corollary 1. Let [x1, x2] be an edge in T , where x1 and x2 are T -branches. If
[x1, x2] is not a T -bridge, then at least one of x1 and x2 is a bad T -branch.

Recall that for a leaf l, b(l) is the T -branch closest to l in the tree T . Observe
that if [l, b(l)] is an edge in T , then b(l) must be a good T -branch. In fact, if
b(l) were a bad T -branch, then b(l) is a QT -branch adjacent to a T -branch x2

648 W. Li, J. Chen, and J. Wang

such that the edge [b(l), x2] is on a path PT (l′, x) defined by an L-cotree edge

[l′, x] with x2 = b(l)
T→ x and [l′, b(l)] is the only L-cotree edge incident to b(l)

in G. Since G is a simple graph, l′ cannot be l. Thus, the path PT (l′, x), which

contains [b(l), x2] with x2 = b(l)
T→x but not the leaf l, would make b(l) to have

degree at least 3 in T , contradicting the assumption that b(l) is a QT -branch.
As a consequence, a bad T -branch x in T is adjacent in the graph G to exact

one leaf l of the spanning tree T , and [l, x] must be an L-cotree edge for T .

Lemma 3. Let v be a T -forward in T and let l be a leaf of T . If v is not on the
path PT (l, b(l)), then v and l are not adjacent in the graph G.

A leaf l is a long leaf if [l, b(l)] is not an edge in T . Otherwise, l is a short

leaf. A long leaf l is hung if the edge [b(l)
T→ l, b(l)] is not on a path defined by an

L-cotree edge for T , otherwise, l is unhung. Note that by Lemma 3, if a long leaf

l is unhung, then the L-cotree edge that defines a path containing [b(l)
T→ l, b(l)]

must have the leaf l as an end.

Lemma 4. If a short leaf l is not a bad T -leaf, then all its neighbors in G are
good T -branches.

Now we consider the T -forwards, which can be classified into two classes. The
nodes of each class can be further classified into “live” and “dead” nodes.

Definition 4. A T -forward is a TI-forward if it is not on the path PT (l, b(l)) for
any leaf l of T . A TI-forward v is live if there is an edge [v, v′] on the path PT (l, x)
defined by an L-cotree edge [l, x] for T such that either v′ is an RT -branch, or

v′ is a QT -branch and v′ = v
T→x. The T1-forward v is dead if it is not live.

Remark 2. The node v′ in the above definition for the live TI-forward v can be
assumed to be in one of the following three cases: (a) v′ is anRT -branch; (b) v′ = x;

and (c) v′ = v
T→ x and v′ is a QT -branch with an L-cotree edge [l′, v′], l′ �= l.

Definition 5. A T -forward is a TL-forward if it is on the path PT (l, b(l)) for a leaf

l of T . A TL-forward v is live if either [l, v
T→ b(l)] is an edge in G or v

T→ b(l) = b(l) and
l is an unhung long leaf of T . The T1-forward v is dead if it is not live.

Lemma 5. For a live TL-forward v on the path PT (l, b(l)) for a leaf l of T ,

there is an L-cotree edge [l, x] with the path PT (l, x) containing [v, v
T→ b(l)], such

that v
T→x is in one of the following three cases: (a) v

T→ x is an RT -branch; (b)

v
T→ x = x; and (c) v

T→x is a QT -branch with an L-cotree edge [l′, v
T→ x], l′ �= l.

A T -forward v is live if it is either a live TI -forward or a live TL-forward.
A T -forward that is not live is a dead T -forward. Live T -forwards provide an-
other important concept that distinguishes our work from others. Although a
live T -forward does not directly induce improving edge swappings, it may in-
troduce holding edge swappings that lead to spanning trees with more desired
combinatorial structures.

Deeper Local Search for Better Approximation MaxIST 649

Let B be the set of all T -bridges in the spanning tree T . Let FT = T−B =
{τ1, τ2, · · · , τh}, where each τi is a connected component of FT (thus, each τi is
a tree). FT will be called the T -forest. The following lemma follows directly from
the definition of T -bridges.

Lemma 6. No L-cotree edge for T can cross two connected components of FT .

Remark 3. Let [z1, z2] be an edge in the tree T , such that z1 is a good T -branch
and z2 is a T -branch. If there is an L-cotree edge [l, z2], then the leaf l cannot
be in T−[z1, z2](z1).
Remark 4. Let [z1, z2] be an edge in the tree T , where z1 and z2 are T -branches
with L-cotree edges [l1, z1] and [l2, z2]. If l2 is in T−[z1, z2](z1), then l1 = l2.

Lemma 7. For any two good T -branches x1 and x2 in the same connected com-
ponent of FT , there is at least one live TI-forward on the path PT (x1, x2).

Now we consider edges between internal nodes of the spanning tree T . For a
leaf l of T , let TL(l) be the set of all live TL-forwards on the path PT (l, b(l)).

Lemma 8. Let v1 ∈ TL(l), where l is a hung long leaf of T . For any node v2
that is either a bad T -branch or a live T -forward but not in TL(l), there is no
edge between v1 and v2 in G.

Our last lemma in this section considers the adjacency relation between two
nodes that belong to different connected components in the T -forest FT .

Lemma 9. Suppose that each of the nodes v1 and v2 is either a bad T -branch
or a live T -forward. If v1 and v2 are in different connected components in the
T -forest FT , then there is no edge between v1 and v2 in the graph G.

4 An Approximation Algorithm of Ratio 1.5

In this section, we show that the number of internal nodes in a maximum internal
spanning tree of a graph G is no more than 1.5 of that in an irreducible spanning
tree T of G. This result combined with Theorem 1 leads directly to a polynomial-
time approximation algorithm of ratio 1.5 for the MaxIST problem. Our analysis
is involved in nontrivial comparisons on combinatorial structures of different
spanning trees of G. To avoid confusion, for a subgraph H of G, we will say that
a node v is H-adjacent to a node w if [v, w] is an edge in the subgraph H .

Let T ∗ be an optimal spanning tree of the graph G for the MaxIST problem,
that is, T ∗ has the maximum number of internal nodes over all spanning trees
of G. Let T be a fixed irreducible spanning tree of G.

We divide the internal nodes of the irreducible spanning tree T of G into six
disjoint sets: (1) The set of all good T -branches in T ; (2) The set of all bad
T -branches in T ; (3) The set of all live TL-forwards in T ; (4) The set of all dead
TL-forwards in T ; (5) The set of all live TI -forwards in T ; and (6) The set of all
dead TI -forwards in T .

650 W. Li, J. Chen, and J. Wang

Let Igb be the set of all good T -branches in T , and let F ∗
T = T ∗ \ Igb =

{τ∗1 , · · · , τ∗r }, which will be called the T ∗-forest, where each τ∗i is a connected
component of F ∗

T . Recall that the T -forest FT = T−B is the forest obtained from
the irreducible spanning tree T with the set B of all T -bridges removed.

Lemma 10. Suppose that in the T ∗-forest F ∗
T = T ∗ \ Igb = {τ∗1 , · · · , τ∗r }, for

each i, 1 ≤ i ≤ r, there are mi edges in T ∗ between τ∗i and Igb. Then
∑r

i=1(mi−
1) ≤ |Igb| − 1.

Now we consider the neighborhood structures of a leaf l of T in T ∗.

Lemma 11. Let l be a leaf of T , and let [l, v] be an edge in G. Then l and v are
in the same connected component of FT , and v is neither a leaf nor a TI-forward
in T . Moreover, if l is a short leaf of T but not a bad T -leaf, then l makes a
single-node connected component of the T ∗-forest F ∗

T .

Lemma 12. If two leaves l1 and l2 of T are in the same connected component
τ∗i of the T ∗-forest F ∗

T , then no node in T ∗ can be T ∗-adjacent to both l1 and l2.

A leaf l of T is an inside-leaf (w.r.t. T ∗) if dT∗(l) ≥ 2 and each component of
T ∗ \ l contains at least one leaf of T . Otherwise, l is an outside-leaf of T .

Let l be a leaf of T and let v be a node in F ∗
T = T ∗ \ Igb such that [l, v] is an

edge in G. By Lemma 11, v is either a bad T -branch or a TL-forward. Based on
this, we can classify the nodes in F ∗

T that are related to a leaf of T as follows.
Fix a connected component τ∗i of the T ∗-forest F ∗

T , and let l be a leaf of T
that is in τ∗i . Recall that TL(l) is the set of live TL-forwards in T on the path
PT (l, b(l)). We also denote by TB(l) the set of bad T -branches in T that are
G-adjacent to l. Let Lx

i and Lo
i , respectively, be the set of inside-leaves and

the set of outside-leaves of T in the tree τ∗i , and let Li = Lx
i ∪ Lo

i . Naturally,
let TL(Li) =

⋃
l∈Li

TL(l) and TB(Li) =
⋃

l∈Li
TB(l). Finally, let Hi be the set

TL(Li) ∪ TB(Li) plus all nodes in τ∗i that are dead T -forwards in T .

Lemma 13. Let mi be the number of edges in T ∗ between the tree τ∗i and the
set Igb. Then |Hi| + mi ≥ 2|Lx

i |. Moreover, if τ∗i is T ∗-adjacent to at most one
good T -branch in each component of the T -forest FT , then |Hi|+mi ≥ 2|Lx

i |+1.

Lemma 13 gives, in terms of the number of inside-leaves in the component τ∗i
of the T ∗-forest F ∗

T , a lower bound on the size of the set Hi, which contains bad
T -branches, dead T -forwards, and live TL-forwards in T . The following lemma
gives a lower bound on the number of live TI-forwards in T .

Lemma 14. If there are q connected components in the T ∗-forest F ∗
T such that

each of them is T ∗-adjacent to at least two good T -branches in some connected
component of the T -forest FT , then there are at least q live TI-forwards in T .

Now we are ready for our main result of this paper.

Theorem 2. Let β∗ be the number of internal nodes in the optimal spanning
tree T ∗ and let βT be the number of internal nodes in the irreducible spanning
tree T . Then β∗/βT < 1.5.

Deeper Local Search for Better Approximation MaxIST 651

Proof. Recall for a component τ∗i of the T ∗-forest F ∗
T = T ∗ \ Igb = {τ∗1 , . . . , τ∗r },

Lx
i is the set of inside-leaves of T in τ∗i , Lo

i is the set of outside-leaves of T in
τ∗i , Li = Lx

i ∪ Lo
i , Hi is the set TL(Li) ∪ TB(Li) plus all dead T -forwards in τ∗i ,

and mi is the number of edges in T ∗ between τ∗i and Igb. First observe that for
i �= j, the sets Hi and Hj are disjoint, because: (1) a dead T -forward in Hi is
in τ∗i that is disjoint with τ∗j ; (2) a live TL-forward in TL(l) for a leaf l in Li is
on the path PT (l, b(l)) so it cannot be in TL(l′) for a leaf l′ in Lj; and (3) a bad
T -branch in TB(l) for a leaf l in Li cannot be in TB(l′) for a leaf l′ in Lj because
by definition a bad T -branch is G-adjacent to only one leaf in T .

Without loss of generality, let q, 0 ≤ q ≤ r, be such an integer that for
1 ≤ i ≤ q, the connected component τ∗i is T ∗-adjacent to at most one good T -
branch in each connected component of the T -forest FT , and for q + 1 ≤ j ≤ r,
the connected component τ∗j is T ∗-adjacent to at least two good T -branches in

some connected component of FT . Finally, let Lx =
⋃r

i=1 L
x
i be the set of all

inside-leaves of T , and let Ili be the set of all live TI -forwards in T .
By Lemma 13, we have

r∑
i=1

(|Hi| + mi) =

q∑
i=1

(|Hi| + mi) +

r∑
i=q+1

(|Hi| + mi)

≥
q∑

i=1

(2|Lx
i | + 1) +

r∑
i=q+1

2|Lx
i | = 2

r∑
i=1

|Lx
i | + q = 2|Lx| + q. (1)

By Lemma 10 and Lemma 14, we have

r∑
i=1

(mi − 1) ≤ |Igb| − 1, and |Ili| ≥ r − q. (2)

The set
⋃r

i=1 Hi consists of bad T -branches, TL-forwards, and dead T -forwards
in T , while Igb is the set of good T -branches in T , and Ili is the set of live TI -
forwards in T . These sets are disjoint sets of internal nodes of T . Therefore,

βT ≥ |
r⋃

i=1

Hi ∪ Igb ∪ Ili| = |
r⋃

i=1

Hi| + |Igb| + |Ili| =
r∑

i=1

|Hi| + |Igb| + |Ili|, (3)

where the last equality comes from the pairwise disjointness of Hi, 1 ≤ i ≤ r.
Combining (3) with (1) and (2), we get

βT ≥ (2|Lx|+ q−
r∑

i=1

mi) + (
r∑

i=1

(mi− 1) + 1) + (r− q) = 2|Lx|+ 1 > 2|Lx|. (4)

This provides a lower bound on βT in terms of the number of inside-leaves of T .
The outside-leaves of T are mapped to leaves of T ∗, as follows. Let l be an

outside-leaf of T . If l is also a leaf of T ∗, then let l be mapped to itself. If l is an
internal node of T ∗, then by definition, at least one of the connected components
of T ∗ \ l contains no leaves of T . In this component, we construct a path Pl in

652 W. Li, J. Chen, and J. Wang

T ∗ from l to a(ny) leaf l∗ of T ∗, and map l to l∗. Note that for two different
outside-leaves l1 and l2 of T , the two paths Pl1 and Pl2 in T ∗ are node-disjoint:
otherwise, the component of T ∗ \ l1 containing the path Pl1 would contain the
leaf l2. The disjointness of these paths shows that the mapping we constructed
is an injective mapping from the set Lo of outside-leaves of T to the set L∗ of
leaves of T ∗. Thus, |Lo| ≤ |L∗|. From this and using (4), we get (where n is the
total number of nodes in the graph G):

β∗ = n− |L∗| ≤ n− |Lo| = βT + |Lx| < βT + βT /2 = 1.5 · βT . ��

Corollary 2. There is a polynomial-time approximation algorithm of approxi-
mation ratio bounded by 1.5 for the MaxIST problem.

5 Conclusion

We have presented a polynomial-time approximation algorithm for the MaxIST

problem. Our algorithm is based on a deep local search strategy that allows
local search with up to five consecutive edge swapping operations. We identified
proper combinatorial structures to support the analysis of the approximability
of such deep local search strategies. We were able to formally prove that our
approximation algorithm has a ratio bounded by 1.5.

The combinatorial structures, such as QT -branches, dead T -branches, and
live T -forwards, have shown rich and interesting properties of spanning trees of
graphs, which may also be useful for other studies on graph spanning trees.

References

1. Bazlamacci, C., Hindi, K.: Minimum-weight spanning tree algorithms: a survey
and empirical study. Computer & Operations Research 28, 767–785 (2001)

2. Binkele-Raible, D., Fernau, H., Gaspers, S., Raible, D.: Exact and parameterized
algorithms for max internal spanning tree. Algorithmica 65(1), 95–128 (2013)

3. Cohen, N., Fomin, F., Gutin, G., Kim, E., Saurabh, S., Yeo, A.: Algorithm for
finding k-vertex out-trees and its application to k-internal out-branching broblem.
J. Comput. Syst. Sci. 76(7), 650–662 (2010)

4. Fomin, F., Gaspers, S., Saurabh, S., Thomassé, S.: A linear vertex kernel for max-
imum internal spanning tree. J. Comput. Syst. Sci. 79(1), 1–6 (2012)

5. Gabow, H., Myers, E.: Finding all spanning trees of directed and undirected graphs.
SIAM J. Comput. 7(3), 280–287 (1978)

6. Galbiati, G., Maffioli, F., Morzenti, A.: A short note on the approximability of the
maximum leaves spanning tree problem. Inform. Process. Lett. 52, 45–49 (1994)

7. Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Thoery of
NP-completeness. Freeman, W. H. and Company, New York (1979)

8. Johnson, D., Papadimitriou, C., Yanakakis, M.: How easy is local search? J. Com-
put. Syst. Sci. 37, 79–100 (1988)

9. Knauer, M., Spoerhase, J.: Better Approximation Algorithms for the Maximum
Internal Spanning Tree Problem. In: Dehne, F., Gavrilova, M., Sack, J.-R., Tóth,
C.D. (eds.) WADS 2009. LNCS, vol. 5664, pp. 459–470. Springer, Heidelberg (2009)

Deeper Local Search for Better Approximation MaxIST 653

10. Lu, H., Ravi, R.: Approximating maximum leaf spanning trees in almost linear
time. J. Algorithms 29, 132–141 (1998)

11. Malpani, N., Chen, J.: A note on practical construction of maximum bandwidth
paths. Inf. Process. Lett. 83(3), 175–180 (2002)

12. Nederlof, J.: Fast polynomial-space algorithms using inclusion-exclusion: improving
on Steiner tree and related problems. Algorithmica 65(4), 868–884 (2013)

13. Perlman, R.: Interconnections: Bridges, Routers, Switches, and Internetworking
Protocols, ch. 3, 2nd edn. Addison-Wesley (2000)

14. Prieto, E., Sloper, C.: Either/or: Using vertex cover structure in designing FPT-
algorithms – the case of k-internal spanning tree. In: Dehne, F., Sack, J.-R., Smid,
M. (eds.) WADS 2003. LNCS, vol. 2748, pp. 474–483. Springer, Heidelberg (2003)

15. Prieto, E., Sloper, C.: Reducing to independent set structure – the case of k-internal
spanning tree. Nord. J. Comput. 12(3), 308–318 (2005)

16. Salamon, G.: Approximating the maximum internal spanning tree problem. Theor.
Comput. Sci. 410, 5273–5284 (2009)

17. Salamon, G.: A survey on algorithms for the maximum internal tree and related
problem. Electron. Notes Discrete Math. 36, 1209–1216 (2010)

18. Salamon, G., Wiener, G.: On finding spanning trees with few leaves. Information
Processing Letters 105, 164–169 (2008)

19. Wu, B., Chao, K.-M.: Spanning Trees and Optimization Problems. CRC Press,
Boca Raton (2004)

FPTAS for Counting Weighted Edge Covers

Jingcheng Liu1, Pinyan Lu2, and Chihao Zhang1,�

1 Shanghai Jiao Tong University
{liuexp,chihao.zhang}@gmail.com

2 Microsoft Research
pinyanl@microsoft.com

Abstract. An edge cover of a graph is a set of edges in which each
vertex has at least one of its incident edges. The problem of counting
the number of edge covers is #P-complete and was shown to admit
a fully polynomial-time approximation scheme (FPTAS) recently [10].
Counting weighted edge covers is the problem of computing the sum of
the weights for all the edge covers, where the weight of each edge cover
is defined to be the product of the edge weights of all the edges in the
cover. The FPTAS in [10] cannot apply to general weighted counting for
edge covers, which was stated as an open question there. Such weighted
counting is generally interesting as for instance the weighted counting
independent sets (vertex covers) problem has been exhaustively studied
in both statistical physics and computer science. Weighted counting for
edge cover is especially interesting as it is closely related to counting
perfect matchings, which is a long-standing open question. In this paper,
we obtain an FPTAS for counting general weighted edge covers, and thus
solve an open question in [10]. Our algorithm also goes beyond that to
certain generalization of edge cover.

1 Introduction

An edge cover for an undirected graph G(V,E) is a set of edges C ⊆ E such
that for every v ∈ V , it holds that N(v)∩C �= ∅ where N(v) is the set of edges
incident to v. The problem of counting edge covers in an undirected graphs was
known to be #P-hard and was recently shown to admit a fully polynomial-time
approximation scheme (FPTAS)[10].

A natural generalization of the edge cover problem is to consider edge weights.
That is, we assign a positive real number λe for every edge e ∈ E and an edge
cover C is of weight wC �

∏
e∈C λe. Denote EC(G) the set of edge covers of G,

the problem of counting weighted edge covers is to compute∑
C∈EC(G)

wC =
∑

C∈EC(G)

∏
e∈C

λe.

Such sum of product expression is usually called partition function in statistical
physics, or graph polynomial in combinatorics, which are of great interests. For

� The author is supported by NSF of China (61033002, ANR 61261130589).

A.S. Schulz and D. Wagner (Eds.): ESA 2014, LNCS 8737, pp. 654–665, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

FPTAS for Counting Weighted Edge Covers 655

example, if we replace the edge cover constraint with matching constraint, then
we get the well-known matching polynomial. If we replace the constraint with
vertex cover (or complementary independent set) constraint, and edge weights
with vertex weights, we get the problem of counting weighted independent sets,
which is also known as hard-core model in statistical physics. This problem is
extensively studied and a complete understanding was not available until very
recently [5,20,16,6,17]. There is a phase transition in terms of weights for the
computational complexity of the problem. In [10], Lin et al. asked whether the
problem of counting weighted edge covers also exhibits a phase transition in
terms of edge weights. In particular, the method in [10] can be extended to
that all edges are of uniform weight λ with λ ≥ 4

9 , but not further. We answer
the question by designing an FPTAS for counting weighted edge covers with
arbitrary edge weights, even if they are not uniform, provided that they are
constants.

In weighted edge covers, λe > 1 indicates that the edge e is preferred to be
chosen and it is preferred not if λe < 1. If all the edge weights are the same and
smaller than 1, then an edge cover with smaller cardinality contributes more in
the sum. As the uniform edge weight approach zero (exponentially small in terms
of the graph size), the weights from the minimum edge covers will dominate
all the other terms. Provided that the graph has a perfect matching, the set
of minimum edge covers is exactly the same as the set of perfect matchings.
Therefore when the edge weights are exponentially small in terms of the graph
size, the problem of counting weighted edge covers is essentially counting minimal
edge covers, which is even stronger than counting perfect matchings, for which
no polynomial-time approximation algorithm in general was known. It is widely
open whether one can design an FPTAS for counting perfect matchings or not.
But unfortunately, our FPTAS only works for constant edge weights, which is
not exponentially small in terms of the input size.

It is worth noting that there is a similar situation for counting weighted match-
ings (not necessarily perfect). There is a fully polynomial-time randomized ap-
proximation scheme (FPRAS) for constant edge weights based on Markov chain
Monte-Carlo method [7]. If one allows the weights go to infinity (exponentially
large in terms of the graph size), counting matching is essentially the same as
counting perfect matching provided that the graph has one since the contri-
bution from those perfect matchings will dominate the others. But the known
algorithm does not work for exponentially large weights either. In some sense,
the constraint of perfect matching is upper and lower bounded by the constraints
of edge cover and partial matching respectively. For both, we have approximate
algorithms, while the perfect matching problem is widely open. With our new
FPTAS for counting weighted edge covers, it is interesting to see that if we can
play with these upper and lower bounds simultaneously to get an algorithm for
counting perfect matchings. We remark that our algorithm for weighted edge
cover is deterministic while the general algorithm for counting matchings is ran-
domized and deterministic FPTAS is only known for graphs with bounded degree
even in the unweighted setting [1].

656 J. Liu, P. Lu, and C. Zhang

We then consider another generalization of edge cover: We allow vertices stay
uncovered in a “cover” and each of these (uncovered) vertices v contributes a
weight (or penalty) μv ∈ [0, 1] to the weight of the cover. Formally, we have

Z(G) �
∑

σ∈{0,1}E

∏
e∈E

λσ(e)
e

∏
v∈V

μδ(σ,v)
v ,

where δ(σ, v) is defined to be

δ(σ, v) =

{
0, if σ(e) = 1 for some e incident to v
1, otherwise.

This is similar to allowing omissible vertices for perfect matching [18]. The
original edge cover is equivalent to the case that μv = 0 for every v ∈ V . Our
FPTAS can also be generalized to this generalization of weighted edge cover.
Indeed, we shall state our theorem, algorithm and proof for this generalization
directly and the ordinary weighted edge cover follows as a special case. Formally,
we have the following main result.

Theorem 1. For any constant λ > 0, there is an FPTAS to approximate Z(G)
for graphs G(V,E) with edge weights λe ≥ λ for every edge e ∈ E and vertex
weights μv ∈ [0, 1] for every v ∈ V .

1.1 Related Works

Counting edge covers was previously studied in [2] where a Markov chain Monte-
Carlo based algorithm was given for 3-regular graphs. Later in [10], an FPTAS
for general graphs was proposed.

Our technique for designing FPTAS is the correlation decay method. The
technique was proved to be very powerful in obtaining FPTAS for counting
problems, some notable examples include [1,20,14,9,11,15,12]. An crucial ingre-
dient of our analysis is the use of potential function (or called message in some
literature) to amortize error propagated [13,8,14,9,15,11].

The problem of counting (perfect) matching, edge cover and our generaliza-
tion with vertex weights can be uniformly treated in the framework of Holant
problems [19,3,4].

2 Preliminaries

2.1 Dangling Edge

Following [10], we introduce dangling edges into our graph to simplify the de-
scription of our algorithm and proofs.

Definition 2. A dangling edge e = (u,) in a graph G(V,E) is such an edge
with exactly one end point u ∈ V .

A free edge e = (,) is an edge with no end points.

FPTAS for Counting Weighted Edge Covers 657

��
��

��
��
�

��
��

�
��

��

v

u

e

(a) G

��
��

��
��
�

��
��

�
��

��

v

u
e2

e1

(b) G′

Fig. 1. Breaking up a normal edge into two dangling edges

A graph with two dangling edges e1, e2 is depicted in Figure 1b.
It is natural to generalize Z(G) to graphs with dangling edges. For a graph

G = (V,E), an edge e = (u, v) ∈ E and a vertex u ∈ V , define

G− e �(V,E − e)

e− u �(, v) (note that here v could be)

G− u �(V − u,

{e | e ∈ E, e is not incident with u}
∪ {e− u | e ∈ E, e is incident with u})

The definition of G−u indicates that all edges incident to u in G become dangling
in G− u.

2.2 Approximate Counting from Estimation of Marginal
Probabilities

The definition of the partition function naturally induces a Gibbs measure on all
configurations over E. From this joint distribution, we can also define marginal
probability for a (dangling) edge e. For c ∈ {0, 1}, we define

Ze=c(G) �
∑

σ∈{0,1}E

σ(e)=c

∏
v∈V

μδ(σ,v)
v

∏
e∈E

λσ(e)
e

The marginal probability that e is chosen (σ(e) = 1) or not (σ(e) = 0) can be
expressed as

PG (e = 0) � Ze=0(G)

Z(G)
, PG (e = 1) � Ze=1(G)

Z(G)
.

It is a standard routine to approximate the partition function Z(G) if the
marginal probability can be well-estimated.

658 J. Liu, P. Lu, and C. Zhang

Proposition 3. There is an FPTAS for approximating the partition function of
weighted edge cover provided an oracle O to estimate PG (e = 1) where G(V,E)
is an arbitrary graph with (dangling) edge e. O takes input G, e, ε > 0 and is
required to satisfy

1. O outputs an estimate p̂ within time polynomial in |G| and 1/ε;

2. exp(−ε) · p̂ ≤ PG (e = 1) ≤ exp(ε) · p̂.

Proof. Let G(V,E) be a graph and we now give an algorithm to estimate Z(G)

with the help of the oracle. Let σ ∈ {0, 1}E be the configuration that σ(e) = 1
for every e ∈ E. Then

PG (σ) =
ωσ

Z(G)

where wσ is the weight of configuration σ and it is easily computable. Thus in
order to compute Z(G), it is sufficient to estimate PG (σ).

We fix an arbitrary order of edges in E, i.e., E = {e1, . . . , em} in which
ei = (ui, vi) for every 1 ≤ i ≤ m. Then

PG (σ) = PG

(
m∧
i=1

σ(ei) = 1

)
=

m∏
i=1

PG

⎛⎝ei = 1

∣∣∣∣∣∣
i−1∧
j=1

ej = 1

⎞⎠ .

Define G1 � G, Gi � Gi−1 − ei−1 − ui−1 − vi−1, for 2 ≤ i ≤ m. We have

PG

(
ei = 1

∣∣∣∧i−1
j=1 ej = 1

)
= PGi (ei = 1). For every 1 ≤ i ≤ m, we call the oracle

with input
(
Gi, ei,

ε
2|E|

)
. Let p̂i be the result of our i-th call, p̂ =

∏m
i p̂i and

Ẑ = ωσ

p̂ , then it holds that

exp(−ε) · Z(G) ≤ Ẑ ≤ exp(ε) · Z(G).

��

3 Approximation for Marginal Probabilities

In this section, we prove Theorem 1. By Proposition 3, we only need to estimate
the marginal probabilities as following:

Lemma 4. Let G(V,E) be an instance of weighted edge cover with an edge e,
and vertex weight μv ≤ 1, there is an algorithm A that efficiently approximates
PG (e = 1). More precisely, A takes as input G, e, ε > 0 and the following holds:

1. A outputs an estimate p̂ within time polynomial in |G| and 1/ε;

2. exp(−ε) · p̂ ≤ PG (e = 1) ≤ exp(ε) · p̂.

The lemma together with Proposition 3 implies Theorem 1.

FPTAS for Counting Weighted Edge Covers 659

3.1 Computational Tree Recursion and the Algorithm

We use computational tree recursion to compute PG (e = 0), a good estimate of
which is also a good estimate of PG (e = 1). We express PG (e = 0) as a function
of marginal probabilities on smaller instances.

Free Edge. If e is a free edge, then PG (e = 0) = 1
1+λe

.

Normal Edge. Assume e = (u, v), we define a recursion to compute RG(e) �
PG(e=1)
PG(e=0) . Then PG (e = 0) = 1

1+RG(e) .

To this end, we replace e = (u, v) with dangling edges e1 = (u,) and e2 =
(v,). Denote this new graph by G′(V ′, E′), as depicted in Figure 1a and 1b.

We further let G1 � G′ − e2, G2 � G′ − e1 − u. It holds that

RG(e) =
PG′ (e1 = 1, e2 = 1)

PG′ (e1 = 0, e2 = 0)

=
PG′ (e1 = 1, e2 = 0)

PG′ (e1 = 0, e2 = 0)
· PG′ (e1 = 1, e2 = 1)

PG′ (e1 = 1, e2 = 0)

=
PG1 (e1 = 1)

PG1 (e1 = 0)
· PG2 (e2 = 1)

PG2 (e2 = 0)

= RG1(e1) ·RG2(e2).

This directly gives the recursion for PG (e = 0):

PG (e = 0) =
PG1 (e1 = 0)PG2 (e2 = 0)

1 − PG1 (e1 = 0) − PG2 (e2 = 0) + 2PG1 (e1 = 0)PG2 (e2 = 0)
.

We remark that in the RHS of the recursion, both e1 and e2 are dangling edges
in G1 and G2 respectively.

Dangling Edge. Let e=(u,) be the dangling edge. Denote Ê={ei | 1 ≤ i ≤ d}
the set of other edges incident to u. Let G′ � G− e− u as illustrated in Figure
2a and 2b.

Define a family of graphs {Gi}1≤i≤d obtained by removing edges in Ê con-

secutively: G1 � G′, Gi � Gi−1 − ei−1, for 2 ≤ i ≤ d.

��
��

��
��
�u

e

e1 e2

(a) G

� �
e1 e2

(b) G′

Fig. 2. Dangling edges examples

660 J. Liu, P. Lu, and C. Zhang

Let α ∈ {0, 1}d be a configuration over Ê. We use Zα(G) to denote the sum
of weights over configurations of G whose restriction on Ê is consistent with α.
Formally we let

Zα(G) �
∑

σ∈{0,1}E

σ|Ê=α

∏
v∈V

μδ(σ,v)
v

∏
e∈E

λσ(e)
e .

Then by the definition of the marginal probability, we have

PG (e = 0) =
Ze=0(G)

Ze=0(G) + Ze=1(G)

=
μuZ0(G′) +

∑
α∈{0,1}d,α�=0 Zα(G′)

(μu + λe)Z0(G′) + (1 + λe)
∑

α∈{0,1}d,α�=0 Zα(G′)

=
Z(G′) − (1 − μu)Z0(G′)

(1 + λe)Z(G′) − (1 − μu)Z0(G′)

=
1 − (1 − μu)Z0(G

′)
Z(G′)

1 + λe − (1 − μu)Z0(G′)
Z(G′)

. (1)

The term Z0(G
′)

Z(G′) can be expressed as a product of probabilities:

Z0(G′)

Z(G′)
= PG′

(
Ê = 0

)
=

d∏
i=1

PG′

⎛⎝ei = 0

∣∣∣∣∣∣
i−1∧
j=1

ej = 0

⎞⎠ =

d∏
i=1

PGi (ei = 0) .

Plugging this into (1), we obtain

PG (e = 0) =
1 − (1 − μu)

∏d
i=1 PGi (ei = 0)

1 + λe − (1 − μu)
∏d

i=1 PGi (ei = 0)
.

We remark the if e is the only incident edge to u (i.e. d = 0), we have
PG (e = 0) = μu

λe+μu
, which is consistent with the above recursion if we take

the convention that an empty product is 1. We also note that every edge ei in
the RHS is a dangling or free edge of Gi.

The above recursion gives a computation tree to compute PG (e = 0). We
truncate it get our Algorithm 1 to estimate PG (e = 0).

3.2 Analysis of Correlation Decay

We recall that λe ≥ λ for a constant λ > 0. We show that Algorithm 1 is a
good estimator for PG (e = 0). Formally, denote P�

G (e = 0) � compute (�, G, e),
we prove

Lemma 5. For every � ≥ 0,∣∣P�
G (e = 0) − PG (e = 0)

∣∣ ≤ α · (1 + λ)−�/2.

where α � 1
4 ln
(
1 + 1

λ

)
· max

{
1, 2(1+λ)3

λ4

}
.

FPTAS for Counting Weighted Edge Covers 661

Algorithm 1. Estimating PG (e = 0)

function compute(�, G, e) :

input : Recursion depth �; Graph G(V,E) with edge e
output: An estimate of PG (e = 0)
begin

if � ≤ 0 then
return 1

1+λe
;

else if e is a free edge then
return 1

1+λe
;

else if e is a dangling edge then
�′ ← �− � d+1

2
�;

return
1−(1−μu)

∏d
i=1 compute(�′ ,Gi,ei)

1+λe−(1−μu)
∏

d
i=1 compute(�′ ,Gi,ei)

;

else // e is a normal edge
X ← compute (�, G1, e1);
Y ← compute (�, G2, e2);

return XY
1−X−Y +2XY

;

In order to establish this lemma, we first prove two auxiliary lemmas. Lemma
7 deals with the recursion for dangling edges and Lemma 8 provides a universal
bound for marginal probabilities we estimate.

A powerful technique to prove the correlation decay property for a recursion
system is to use potential function to amortize the error propagated.

Let f : Dd → R be a d-ary function where D ⊆ R and φ : R → R is an
increasing differentiable continuous function. Denote Φ(x) � φ′(x) and fφ(x) �
φ(f(φ−1(x1), . . . , φ−1(xd))). The following proposition is a consequence of mean
value theorem:

Proposition 6. For every x = (x1, . . . , xd), x̂ = (x̂1, . . . , x̂d) ∈ Dd, it holds
that

1. |f(x) − f(x̂)| = 1
|Φ(x̃)| · |φ(f(x)) − φ(f(x̂))| for some x̃ ∈ D;

2. Assume xi = f(xi) and x̂i = f(x̂i) for all 1 ≤ i ≤ d, then

|φ(f(x)) − φ(f(x̂))| ≤
∥∥∇fφ(x̃)

∥∥
1
· max
1≤i≤d

|φ(f(xi)) − φ(f(x̂i))|

for some x̃ ∈ Dd.

The proof is standard, one can find it in, e.g. [15].

662 J. Liu, P. Lu, and C. Zhang

Lemma 7. Let x = (x1, . . . , xd), x̂ = (x̂1, . . . , x̂d) ∈
(

0, 1
1+λ

]d
for some λ > 0.

For every λ̂ > 0 and 0 ≤ μ̂ ≤ 1, define

fλ̂,μ̂(x) � 1 − (1 − μ̂)
∏d

i=1 xi

1 + λ̂− (1 − μ̂)
∏d

i=1 xi

;

Φ(x) � 1

x(1 − x)
;

φ(x) �
∫

Φ(x) dx = ln

(
x

1 − x

)
;

fφ

λ̂,μ̂
(x) � φ(fλ̂,μ̂(φ−1(x1), . . . , φ−1(xd))).

Assume xi = fλi,μi(zi), x̂i = fλi,μi(ẑi) for all 1 ≤ i ≤ d. Then

1. fλ̂,μ̂(x) ≤ 1

1+λ̂
.

2.
∣∣∣φ(fλ̂,μ̂(x)) − φ(fλ̂,μ̂(x̂))

∣∣∣ ≤ (1 + λ)−
d+1
2 max1≤i≤d |φ(fλi,μi(zi))

−φ(fλi,μi(ẑi))|.

Proof. 1. fλ̂,μ̂(x) is monotonically decreasing with respect to each xi, thus

fλ̂,μ̂(x) ≤ fλ̂,μ̂(0) ≤ 1

1+λ̂
.

2. For every x ∈
(

0, 1
1+λ

]d
, it holds that

∥∥∥∇fφ

λ̂,μ̂
(x)

∥∥∥
1
= Φ(f

λ̂,μ̂
(x)) ·

d∑
i=1

∣∣∣∣∣∣∣
∂f

λ̂,μ̂
(x1,...,xd)

∂xi

Φ(xi)

∣∣∣∣∣∣∣
=

(
1 + λ̂− (1 − μ̂)

∏d
i=1 xi

)2

λ̂
(
1− (1 − μ̂)

∏d
i=1 xi

) · λ̂(1− μ̂)
∏d

i=1 xi(
1 + λ̂− (1 − μ̂)

∏d
i=1 xi

)2
·

d∑
i=1

(1 − xi)

=
(1− μ̂)

∏d
i=1 xi

1− (1− μ̂)
∏d

i=1 xi

(
d−

d∑
i=1

xi

)

≤
∏d

i=1 xi

1−∏d
i=1 xi

(
d−

d∑
i=1

xi

)
.

Let y �
(∏d

i=1 xi

)1/d
and note that y ≤ 1

1+λ , we have

∥∥∥∇fφ

λ̂,μ̂
(x)
∥∥∥
1
≤ dyd(1 − y)

1 − yd
=

dyd∑d−1
i=0 yi

≤ d∑d
i=1(1 + λ)i

≤ (1 + λ)−
d+1
2 .

Then the lemma follows from Proposition 6. ��

Lemma 8. For an arbitrary G(V,E) with dangling edge e = (u,) and � ≥ 0. It
holds that

P�
G (e = 0) ,PG (e = 0) ≤ 1

1 + λe
≤ 1

1 + λ

FPTAS for Counting Weighted Edge Covers 663

Proof. If e is a free edge, then the lemma naturally holds. Otherwise, the bound
follows from the first part of Lemma 7. ��

We are now ready to prove Lemma 5.

Proof (of Lemma 5).

– If e is a free edge, then
∣∣P�

G (e = 0) − PG (e = 0)
∣∣ = 0.

– If e = (u,) is a dangling edge, recall that φ(x) = ln
(

x
1−x

)
, we first prove

that for every � (may be negative), it holds that

∣∣φ (P�
G (e = 0)

)
− φ (PG (e = 0))

∣∣ ≤ ln

(
1 +

1

λ

)
· (1 + λ)−L/2 (2)

where L � max {�, 0}.
Denote Ê � {e1, . . . , ed} the set of edges incident to e. If d = 0, we have
P�
G (e = 0) = PG (e = 0). So we assume d ≥ 1 and apply induction on L. The

base case is that L = 0, which means � ≤ 0.
Then

∣∣∣φ(
P
�
G (e = 0)

)
− φ (PG (e = 0))

∣∣∣ = ∣∣∣∣∣φ
(

1

1 + λe

)
− φ

(
1 − (1 − μu)

∏d
i=1 xi

1 + λe − (1 − μu)
∏

d
i=1 xi

)∣∣∣∣∣
= ln

(
1

1 − (1 − μu)
∏

d
i=1 xi

)

where xi � PGi (ei = 0). It follows from Lemma 8 that for every 1 ≤ i ≤ d,
xi ≤ 1

1+λ , thus

∣∣φ (P�
G (e = 0)

)
− φ (PG (e = 0))

∣∣ ≤ − ln

(
1 − 1

(1 + λ)d

)
≤ ln

(
1 +

1

λ

)
.

Now assume L = � > 0 and (2) holds for smaller L. Then the induction
hypothesis implies that

ε � max
1≤i≤d

∣∣∣φ(P�′
Gi

(ei = 0)
)
− φ (PGi (ei = 0))

∣∣∣ ≤ ln

(
1 +

1

λ

)
(1 + λ)−L′/2

where L′ = max
{

0, �−
d+1
2 �
}

.
Applying Proposition 6, Lemma 7 and Lemma 8, we obtain∣∣φ (P�

G (e = 0)
)
− φ (PG (e = 0))

∣∣ ≤ (1 + λ)−
d+1
2 ε

≤ (1 + λ)−
d+1
2 · ln

(
1 +

1

λ

)
· (1 + λ)−L′/2

≤ ln

(
1 +

1

λ

)
· (1 + λ)−(L−� d+1

2 �+d+1)/2

≤ ln

(
1 +

1

λ

)
· (1 + λ)−L/2.

664 J. Liu, P. Lu, and C. Zhang

Recall that Φ(x) = 1
x(1−x) ≥ 4 for x ∈ (0, 1). For all � ≥ 0, Proposition 6

and Lemma 8 together imply that∣∣P�
G (e = 0) − PG (e = 0)

∣∣ ≤ 1

4
ln

(
1 +

1

λ

)
· (1 + λ)−L/2

=
1

4
ln

(
1 +

1

λ

)
· (1 + λ)−�/2.

– If e is a normal edge, the recursion in this case is only applied once and
we do not decrease �. Then the algorithm only deals with dangling edges.
Consider the recursion we defined in Section 3.1:

g(x, y) =
xy

1 − x− y + 2xy
.

It holds that

‖∇g‖1 =
y(1 − y) + x(1 − x)

(1 − x− y + 2xy)
2 ≤ x + y

(1 − x)2(1 − y)2
≤ 2(1 + λ)3

λ4

whenever x, y ∈
(

0, 1
1+λ

]
. Thus we have

∣∣P�
G (e = 0) − PG (e = 0)

∣∣ ≤ 2(1 + λ)3

λ4
max

i∈{1,2}

∣∣P�
Gi

(ei = 0) − PGi (ei = 0)
∣∣

≤ (1 + λ)3

2λ4
ln

(
1 +

1

λ

)
· (1 + λ)−�/2.

��

3.3 Putting All Together

In this section, we prove Lemma 4. It follows from Lemma 5 and Lemma 8 that

(1)
∣∣P�

G (e = 0) − PG (e = 0)
∣∣ ≤ α · (1 + λ)−�/2 for some constant α; and

(2) P�
G (e = 0) ,PG (e = 0) ≤ 1

1+λ < 1.

Choosing � = O(log 1
ε) is sufficient to ensure

exp(−ε) · p̂ ≤ PG (e = 1) ≤ exp(ε) · p̂

where p̂ = 1 − P�
G (e = 0).

Now we bound the running time of Algorithm 1. Denote T (�) the running
time with recursion depth � and denote n the size of the graph. Since we only
branch into the case of normal edge once, the following recursion for the case of
dangling edge dominates the running time of our algorithm:

T (�) = d · T (�−Θ(d)) + O(n)

where d is the degree of the dangling edge in consideration. Solving the recursion
gives T (�) = O(n exp(�)). Taking � = O(log 1

ε) concludes the proof.

FPTAS for Counting Weighted Edge Covers 665

References

1. Bayati, M., Gamarnik, D., Katz, D., Nair, C., Tetali, P.: Simple deterministic
approximation algorithms for counting matchings. In: Proceedings of STOC, pp.
122–127. ACM (2007)

2. Bezáková, I., Rummler, W.A.: Sampling edge covers in 3-regular graphs. In:
Královič, R., Niwiński, D. (eds.) MFCS 2009. LNCS, vol. 5734, pp. 137–148.
Springer, Heidelberg (2009)

3. Cai, J.-Y., Lu, P., Xia, M.: Holant problems and counting CSP. In: Proceedings of
STOC, pp. 715–724 (2009)

4. Cai, J.-Y., Lu, P., Xia, M.: Computational complexity of Holant problems. SIAM
Journal on Computing 40(4), 1101–1132 (2011)

5. Dyer, M., Frieze, A., Jerrum, M.: On counting independent sets in sparse graphs.
SIAM Journal on Computing 31(5), 1527–1541 (2002)

6. Galanis, A., Ge, Q., Štefankovič, D., Vigoda, E., Yang, L.: Improved inapproxima-
bility results for counting independent sets in the hard-core model. In: Goldberg,
L.A., Jansen, K., Ravi, R., Rolim, J.D.P. (eds.) RANDOM 2011 and APPROX
2011. LNCS, vol. 6845, pp. 567–578. Springer, Heidelberg (2011)

7. Jerrum, M., Sinclair, A.: The Markov chain Monte Carlo method: an approach to
approximate counting and integration. In: Approximation Algorithms for NP-hard
Problems, pp. 482–520 (1996)

8. Li, L., Lu, P., Yin, Y.: Approximate counting via correlation decay in spin systems.
In: Proceedings of SODA, pp. 922–940. SIAM (2012)

9. Li, L., Lu, P., Yin, Y.: Correlation decay up to uniqueness in spin systems. In:
Proceedings of SODA, pp. 67–84 (2013)

10. Lin, C., Liu, J., Lu, P.: A simple FPTAS for counting edge covers. In: Proceedings
of SODA, pp. 341–348 (2014)

11. Liu, J., Lu, P.: FPTAS for counting monotone CNF. arXiv preprint arXiv:1311.3728
(2013)

12. Lu, P., Wang, M., Zhang, C.: FPTAS for weighted Fibonacci gates and its applica-
tions. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP
2014. LNCS, vol. 8572, pp. 787–799. Springer, Heidelberg (2014)

13. Restrepo, R., Shin, J., Tetali, P., Vigoda, E., Yang, L.: Improved mixing condition
on the grid for counting and sampling independent sets. Probability Theory and
Related Fields 156(1-2), 75–99 (2013)

14. Sinclair, A., Srivastava, P., Thurley, M.: Approximation algorithms for two-state
anti-ferromagnetic spin systems on bounded degree graphs. In: Proceedings of
SODA, pp. 941–953. SIAM (2012)

15. Sinclair, A., Srivastava, P., Yin, Y.: Spatial mixing and approximation algorithms
for graphs with bounded connective constant. In: Proceedings of FOCS, pp. 300–
309. IEEE (2013)

16. Sly, A.: Computational transition at the uniqueness threshold. In: Proceedings of
FOCS, pp. 287–296. IEEE (2010)

17. Sly, A., Sun, N.: The computational hardness of counting in two-spin models on
d-regular graphs. In: Proceedings of FOCS, pp. 361–369. IEEE (2012)

18. Valiant, L.G.: Quantum circuits that can be simulated classically in polynomial
time. SIAM Journal on Computing 31(4), 1229–1254 (2002)

19. Valiant, L.G.: Holographic algorithms. SIAM Journal on Computing 37(5), 1565–
1594 (2008)

20. Weitz, D.: Counting independent sets up to the tree threshold. In: Proceedings of
STOC, pp. 140–149. ACM (2006)

Solving Multicut Faster Than 2n

Daniel Lokshtanov1,�, Saket Saurabh1,2,��, and Ondřej Suchý3,� � �

1 University of Bergen, Norway
daniello@ii.uib.no

2 Institute of Mathematical Sciences, Chennai, India
saket@imsc.res.in

3 Faculty of Information Technology, Czech Technical University in Prague
Czech Republic

ondrej.suchy@fit.cvut.cz

Abstract. In the Multicut problem, we are given an undirected graph
G = (V,E) and a family T = {(si, ti) | si, ti ∈ V } of pairs of requests
and the objective is to find a minimum sized set S ⊆ V such that every
connected component of G \ S contains at most one of si and ti for any
pair (si, ti) ∈ T . In this paper we give the first non-trivial algorithm for
Multicut running in time O(1.987n).

1 Introduction

Cuts and flows represent one of the most fundamental fields of studies in net-
work design. Given two distinguished vertices in a graph one can determine the
minimum size of a vertex or edge cut separating them in polynomial time using
the well known min-cut max-flow duality. However, when one wants to separate
more than two terminals from each other, the duality no longer works and the
problem of determining the smallest size cut becomes NP-hard for every fixed
number of at least three terminals [8].

In this paper we consider a generalization of the above problem, where one is
given several pairs of vertices (requests) and the task is to determine the mini-
mum size of a set of vertices that separates each pair. More formally, we consider
the following problem:

Multicut

Input: An undirected graph G = (V,E) and a family T = {(si, ti) | si, ti ∈ V }.
Task: Find a minimum size set S ⊆ V such that every connected component

of G \ S contains at most one of si and ti for any pair (si, ti) ∈ T .

Note specifically, that we allow the terminals itself to be deleted, i.e., we consider
the unrestricted variant of the problem as named in [2]. However, the version

� Supported by Bergen Research Foundation grant BeHard.
�� Supported by ERC Starting Grant PARAPPROX, 306992.

� � � Work partially supported by the grant 14-13017P of the Czech Science Foundation.

A.S. Schulz and D. Wagner (Eds.): ESA 2014, LNCS 8737, pp. 666–676, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

Solving Multicut Faster Than 2n 667

where the terminals are forbidden to delete reduces to the version we investigate
(see Observation 1 for more details). If a set S ⊆ V has the requested properties,
than we call it a cut-set for (G, T). As the roles of si and ti in the pairs of T are
symmetric, we consider the pairs unordered, i.e., if (s, t) ∈ T , then we also say
(t, s) ∈ T . Moreover, for technical reasons we allow s = t = v for a pair (s, t) ∈ T
and v ∈ V . In this case, obviously, v must be in any cut-set, as otherwise the
component containing v contains both s and t.

Multicut generalizes Multiway Cut, where one is given a set of terminals
and the task is to separate each two of them. Therefore, Multicut is NP-hard
already for three requests [8]. Moreover, there is no constant factor approxima-
tion for the problem, unless the Unique Games Conjecture fails [3]. Furthermore,
the edge variant of Multicut is MaxSNP-hard already on stars [12].

Hence, we turn our attention to exact algorithms working in exponential time.
Since one can try all subset of vertices, the problem admits a trivial O(2nn3)-
time algorithm, where n is the number of vertices of the input graph. In this
work we break the 2n barrier. Namely we prove the following theorem.

Theorem 1. Multicut on an n vertex graph can be solved in O(1.987n)-time.

Related work. Deleting vertices of the input graph such that the resulting graph
satisfies some interesting properties is one of the most well studied directions
in exact exponential algorithms. This includes the classical O(1.2109n)-time al-
gorithm of Robson [18] for Maximum Independent Set, an O(1.7356n)-time
algorithm for Feedback Vertex Set [19], or an O(1.4689n)-time algorithm
for Dominating Set [13], to name at least a few of them. For Multiway Cut,
such an algorithm was presented by Fomin et al. [11] achieving O(1.8638n)-
time. This was recently improved to O(1.4766n)-time by Chitnis et al. [5]. For
Multicut, however, no algorithm faster than the trivial O(2n · nO(1))-time is
known.

Concerning approximation algorithms, Garg et al. [12] show that Multicut

can be approximated within O(log k) factor, where k = |T |. Cut problems are
also well studied from the perspective of parameterized algorithms. Marx [14]
was the first to consider cut problems in the context of parameterized complex-
ity. He gave an algorithm for parameterized Multiway Cut with running time
O(4k

3

nO(1)) with the current fastest algorithm running in time O(2knO(1)) [7].
The notions used in this paper has been useful in settling parameterized com-
plexity of variety of problems including Directed Feedback vertex Set [4],
Almost 2 SAT [17] and Above Guarantee Vertex Cover [16,17]. Recently,
Marx and Razgon [15] and Bousquet, Daligault, and Thomassé [1] independently
showed that Multicut, finding k vertices to disconnect given pairs of termi-
nals is FPT. Continuing this line of study, Chitnis, Hajiaghayi and Marx studied
Multiway Cut on directed graphs and showed it to be FPT [6].

2 Preliminaries

Our notation for graph theoretic notions is standard. We summarize some of the
frequently used concepts here. For a finite set V , a pair G = (V,E) such that

668 D. Lokshtanov, S. Saurabh, and O. Suchý

E ⊆ V 2 is a graph on V . The elements of V are called vertices, while pairs of
vertices {u, v} such that {u, v} ∈ E are called edges. A graph G′ = (V ′, E′) is
a subgraph of G = (V,E) if V ′ ⊆ V and E′ ⊆ E ∩ V ′2. If E′ contains all the
edges {u, v} ∈ E with u, v ∈ V ′, then G′ is an induced subgraph of G, induced
by V ′, denoted by G[V ′]. For any U ⊆ V , G \ U = G[V \ U]. For v ∈ V ,
NG(v) = {u | {u, v} ∈ E}. A set of vertices C of V is said to be clique if there
is an edge for every pair of vertices in C.

3 Basic Observations

Our algorithm applies the following two operations on vertices of the graph:

Definition 1. 1. By deleting a vertex v from the instance (G, T) we mean
removing the vertex v from the vertex set of G together with all its incident
edges as well as removing all pairs containing v from T . I.e., we continue
with the instance (G′, T ′), where G′ = G\{v} and T ′ = T \{(u, v) | u ∈ V }.

2. By contracting a vertex v in the instance (G, T) we mean first turning the
neighborhood of v into a clique and adding into T the pair (u,w), whenever
(v, w) was in T and u is a neighbor of v in G. Finally, we remove the
vertex v from V together with all its incident edges from E and all pairs
containing v from T . I.e., we continue with the instance (G′, T ′), where G′ =
(V \ {v}, E′), E′ = E ∪{{u,w} | u,w ∈ NG(v)} \ {{v, u} | u ∈ V }, and T ′ =
T ∪ {(u,w) | u ∈ NG(v) ∧ (v, w) ∈ T } \ {(v, w) | w ∈ V }.

The following two lemmata show, that the two operations correspond to taking
and not taking the vertex into the constructed solution, respectively.

Lemma 1. If (G′, T ′) is obtained from (G, T) by deleting a vertex v, then S ⊆ V
containing v is a cut-set for (G, T) if and only if S \{v} is a cut-set for (G′, T ′).

Proof. First, if S is a cut-set for (G, T), then S \ {v} is a cut-set for (G′, T ′),
since we have G′ \ (S \ {v}) = G \ S and T ′ ⊆ T .

Let us now assume, that S \ {v} is a cut-set for (G′, T ′) and v ∈ S. Then
again G \ S = G′ \ (S \ {v}), each connected component of G \ S contains at
most one vertex of each pair in T ′ and, since all pairs in T \ T ′ contain v, also
of each pair in T . ��

Lemma 2. If (G′, T ′) is obtained from (G, T) by contracting a vertex v and
(v, v) /∈ T , then S ⊆ V \ {v} is a cut-set for (G, T) if and only if S is a cut-set
for (G′, T ′).

Proof. Suppose first that S ⊆ V \ {v} is not a cut-set for (G, T). Hence there is
a pair (x, y) ∈ T such that there is an x-y-path in G \ S. If this path does not
contain v then it is also present in G′ \ S, (x, y) ∈ T ′, and S is not a cut-set
for (G′, T ′). If v /∈ {x, y} but the x-y-path contains v, then we may omit it from
the path to obtain a path in G′ \ S, as all the neighbors of v are connected by
edges in G′. Thus again S is not a cut-set for (G′, T ′). Finally, if v ∈ {x, y}, we

Solving Multicut Faster Than 2n 669

may assume without loss of generality, that v = x and v �= y as (v, v) /∈ T . Let u
be the neighbor of v on the path. The graph G′ \ S contains the u-y-path and
(u, y) ∈ T ′ by the construction of T ′. Hence also in this case S is not a cut-set
for (G′, T ′).

Now suppose that S is not a cut-set for (G′, T ′). Therefore there is a pair
(x, y) ∈ T ′ such that there is an x-y-path in G′ \ S. If (x, y) ∈ T and the path
contains at most one neighbor of v, then this path is also contained in G \ S.
If the path contains at least two neighbors of v, then we may go from the first
neighbor of v on the path to v and from v to the last neighbor of v on the
path, obtaining an x-y-path in G \ S. If (x, y) /∈ T , then assume without loss of
generality that (v, y) ∈ T and x is a neighbor of v. Furthermore, as all neighbors
of v have a request to y in T ′ in this case, we may assume that the path does not
contain any further neighbor of v, except for x. Now we can prolong the path
by adding v to the beginning to obtain a v-y-path in G \ S. Summing up, S is
not a cut-set for (G, T), finishing the proof. ��

As we have said, if (v, v) ∈ T for some v ∈ V , then v is in any cut-set. Hence
we apply the following reduction rule as often as possible.

Reduction Rule 1. If (v, v) ∈ T , then delete v from (G, T).

Observe now, that one can obtain an O(2n ·nO(1))-time algorithm for MultiCut

by branching for each vertex into two branches — either the vertex is deleted
or contracted. Lemmata 1 and 2 give recipe how the minimum cut-sets returned
by the recursive calls need to be modified to obtain the minimum cut-set for the
instance (see Function Cut).

Function Cut(G, T)

begin
if T = ∅ then

return ∅;
Let v be an arbitrary vertex of G;
(G′, T ′) ←Delete(v, (G, T));
S1 ← {v}∪Cut(G′, T ′);
if (v, v) ∈ T then

return S1;
(G′, T ′) ←Contract(v, (G, T));
S2 ←Cut(G′, T ′);
if |S1| ≤ |S2| then

return S1;
else

return S2;

end

As our algorithm is based on the same operations, we will no longer describe
how the minimum cut-set is actually obtained, for brevity. The speed up of

670 D. Lokshtanov, S. Saurabh, and O. Suchý

our algorithm is achieved by carefully choosing the vertices to branch on and
omitting the branches that cannot lead to a (minimum) cut-set.

To conclude this section, we show that the variant of Multicut, where the
terminals are forbidden to delete can be reduced to Multicut.

Observation 1. Multicut with Undeletable Terminals can be reduced
in polynomial time to Multicut with at most the same number of vertices.

Proof. It is enough to contract all terminals. By Lemma 2, a subset of vertices
is a cut-set in the original instance not containing the terminals, if and only if it
is a cut set in the resulting instance. The contraction can be clearly carried out
in polynomial time and does not increase the number of vertices. ��

4 Our Algorithm

To guide the branching, our algorithm maintains a clique C, which we call the
active clique. Hence, in the recursive calls, we give G, T , and C as arguments.
We should explain how our two operations affect the active clique. If v /∈ C,
then C stays untouched after the operations. If v ∈ C and we delete v, then we
let C := C \ {v} whereas if we contract v we let C := C \ {v} ∪N(v). Note that
in the last case the new C is indeed a clique, as originally C must have been a
subset of N [v].

The bigger C is, the closer together are the vertices of the graph, which is ben-
eficial for the algorithm. Hence, if the graph has a big active clique, we consider
it little smaller. More precisely, we use the Measure and Conquer approach [9]
and our measure μ for the size of the instance (G, T , C) is given by the following
formula:

μ = |V | − α|C|,
where 0 < α < 0.1.

Along with the Reduction Rule 1 we apply also the following two reduction
rules:

Reduction Rule 2. If vertex v is isolated in G and Reduction Rule 1 does not
apply, then contract v in (G, T).

Note that vertex v does not influence whether a set is a cut-set, since it always
forms a component for itself and (v, v) /∈ T , justifying the correctness of the
rule.

Reduction Rule 3. If C = ∅, then pick any vertex v ∈ V and let C = {v}.

Note that each of the reduction rules decreases the value of μ.
We now describe the branching rules. We apply them in the given order,

that is, a latter branching rule is only applied if none of the earlier ones ap-
plies. Moreover, we apply the reduction rules exhaustively before applying any
of the branching rules. We argue the correctness of the rules, but postpone the
discussion of the running time of the whole algorithm.

Solving Multicut Faster Than 2n 671

Rule 1. If there is (x, y) ∈ T such that the shortest path P between x and y in G
is of length at most 3, then denote V (P) = {v1, . . . , vt} for some t ∈ {2, . . .4} in
such a way that V (P)∩C = {vs+1, . . . , vt} for some s ∈ {t− 2, t− 1, t}. Branch
into following ways:

• v1 is deleted;
• v1 is contracted, v2 is deleted;
• v1, v2 are contracted, v3 is deleted;

...
• v1, . . . , vt−1 are contracted, vt is deleted.

In the case described in Rule 1 at least one of the vertices v1, . . . , vt must be
deleted and the rule explores all such options. It follows that the rule is correct.

Rule 2. Let N(C) =
⋃

c∈C N(c) \ C. If |N(C)| ≤ 2
3 |C| then for every S0 ⊆

(C ∪N(C)) with |S0| ≤ |N(C)| branch in the following way: delete all vertices
in S0 and contract all vertices in (C ∪N(C)) \ S0.

The correctness of the rule follows from the following lemma:

Lemma 3. If the situation is as in Rule 2, then there is a minimal cut-set S
such that |S ∩ (C ∪N(C))| ≤ |N(C)|.
Proof. Let S be a minimal cut-set such that |S ∩ (C ∪ N(C))| > |N(C)|. We
claim that S′ = (S \ C) ∪ N(C) is also a cut-set, contradicting the minimality
of S as |S′| < |S|. Suppose S′ is not a cut-set. Then there is a pair (x, y) ∈ T
such that there is an x-y-path P in G \ S′. If V (P)∩ (C ∪N(C)) = ∅, then P is
also present in G \S contradicting S being a cut-set. If V (P)∩ (C ∪N(C)) �= ∅,
then either V (P) ∩N(C) �= ∅ or V (P) ⊆ C. The former case cannot appear as
V (P) ⊆ (V (G)\S′) and S′ contains N(C) and the later case implies that P is of
length at most 1. However, in this case Rule 1 would apply, a contradiction. ��

The correctness of Rule 2 now follows from Lemmata 1 and 2 as we exhaus-
tively try all possible intersections of the minimal cut-set with C ∪N(C).

Rule 3. If there is a vertex v ∈ C such that |N(v) \ C| ≥ 3, then branch into
the following canonical ways:

• delete v;
• contract v.

As the branching explores the two canonical options, the correctness is clear.
The following explains the significance of the coming rules.

Lemma 4. If Rules 2 and 3 do not apply, then there is a vertex v in N(C)
with |N(v) ∩ C| ≤ 2.

Proof. Suppose there is no such vertex and let us count the number z of edges
between C and N(C) in G. Since Rule 3 does not apply, we know that z ≤ 2|C|.
On the other hand, we know that z ≥ 3|N(C)| as otherwise there is a vertex
in N(C) incident to at most two edges with the other endpoint in C. As Rule 2
does not apply, we have 3|N(C)| > 3 · 23 |C| = 2|C|. Hence 2|C| < 3|N(C)| ≤ z ≤
2|C|— a contradiction. ��

672 D. Lokshtanov, S. Saurabh, and O. Suchý

Rule 4. If v is a vertex in N(C) with |N(v) ∩C| ≤ 2 and |N(v) \C| ≤ 3, then
denote N(v) = {u1, . . . , ut} such that N(v) ∩ C = {us+1, . . . , ut} for some t ∈
{1, . . . , 5} and s ∈ {t− 2, t− 1}. Branch into the following ways:

• u1 is contracted;
• u1 is deleted, u2 is contracted;

...
• u1, . . . , ut−1 are deleted, ut is contracted;
• u1, . . . , ut are deleted, v is contracted.

To see the correctness of this rule, observe that the first t branches correspond
to one of the neighbors of v not being part of the cut-set constructed, while the
last one corresponds to the whole neighborhood of v being part of the cut-set
constructed. In this sense the branching is exhaustive. In the last branch the
vertex v is contracted by Reduction Rule 2.

Rule 5. If v is a vertex in N(C) with |N(v) ∩C| ≤ 2 and |N(v) \C| ≥ 4, then
let u ∈ C ∩N(v) and branch into the following ways:

• v is deleted;
• v is contracted, u is deleted;

• v and u are contracted.

Since the rule only applies the canonical branching to v and then to u in one
of the branches, the correctness is clear.

5 Time Complexity

In this section we analyze the time complexity of our algorithm. As the algorithm
is recursive, we first bound the number of recursive calls and then the time spent
per each call.

Let us first bound the number of terminal calls T (μ) produced, when the
algorithm is executed on an instance with measure at most μ. Recall that μ =
|V |−α|C| and, since α < 0.1, we have 0.9|V | < μ ≤ |V |. We claim that T (μ) ≤ λμ

for λ = 1.9865, α = 0.032, and all values of μ ≥ 0. We prove the claim by
induction on μ.

If μ ≤ 0, then the graph is empty and the instance can be resolved by out-
putting ∅, giving one terminal call. For 0 < μ ≤ 1, the graph contains at most
one vertex and Reduction Rule 1 or 2 applies, reducing to previous case and
giving one terminal call. This gives the base of the induction.

Now suppose we are facing an instance of measure μ and the claim holds for
instances with measure μ′ where μ′ < μ. Note, that the measure is decreased by
one for each vertex not in C deleted or contracted, by at least 1 − α for each
vertex in C contracted or deleted, and by α for each vertex newly put in C (e.g.,
due to contraction of its neighbor).

Solving Multicut Faster Than 2n 673

If any of the reduction rules applies to the instance, then the measure gets
decreased without increasing the number of terminal calls and the claim follows.
Now let us distinguish, which of the branching rules applies.

If Rule 1 applies, then in the branch i (the one where vi is deleted) the measure
is reduced by at least i if i ≤ s and by at least s+(1−α)(i−s) = i−α(i−s) if i > s.
It follows that T (μ) ≤

∑s
i=1 T (μ−i)+

∑t
i=s+1 T (μ−i+α(i−s)). Hence to prove

the claim it is enough to prove that λμ ≥
∑s

i=1 λ
μ−i+

∑t
i=s+1 λ

μ−i+α(i−s) which

is equivalent to 1 ≥
∑s

i=1 λ
−i +

∑t
i=s+1 λ

−i+α(i−s). Observe that decreasing s
increases the right hand side, as λ > 1 and α > 0. Hence, it suffices to prove the
inequality for s = t− 2.

Distinguishing the value of t the claim follows from that

• 1 ≥ λ−1+α + λ−2+2α .
= 0.778 (t = 2),

• 1 ≥ λ−1 + λ−2+α + λ−3+2α .
= 0.896 (t = 3), and

• 1 ≥ λ−1 + λ−2 + λ−3+α + λ−4+2α .
= 0.954 (t = 4), for λ = 1.9865 and

α = 0.032.

If Rule 2 applies, let us denote a = |C|, b = |N(C)|, m = a + b, and β = b
m .

The measure drops in each case by at least b + a(1 − α) = m(1 − α) + bα.

Hence T (μ) ≤
∑b

c=0

(
m
c

)
T (μ−m(1 − α) − bα). To prove the claim we need to

show that 1 ≥
∑b

c=0

(
m
c

)
λ−m(1−α)−bα for any b ≤ 2

3a. By [10, Lemma 3.13]

we have that
∑b

c=0

(
m
c

)
λ−m(1−α)−bα ≤ λ−m(1−α)−bα · (1

β)βm(1
1−β)(1−β)m =(

1
λ1−α (1

βλα)β(1
1−β)1−β

)m
and it remains to prove that f(β) = 1

λ1−α · (1
βλα)β ·

(1
1−β)1−β ≤ 1 for every 0 ≤ β ≤

2
3

1+ 2
3

= 2
5 . We first show that this func-

tion is nondecreasing on the interval (0, 2
5]. To this end, consider the function

g(β) = ln f(β) = −(1 − α) ln λ− β(ln β + α lnλ) − (1 − β) ln(1 − β). Function g
is well defined on the interval and if g is nondecreasing, then so is f . For the
derivative we have g′(β) = −(lnβ+α lnλ)− β

β +ln(1−β)+ 1−β
1−β = ln 1−β

βλα . Thus,

g(β) is nondecreasing as long as 1−β
β ≥ λα. But since 3

2 > λα .
= 1.02, function g

and, hence, also f is non-decreasing for all β ∈ (0, 25]. Therefore, it is enough to

notice that 1 ≥ f(25) = 1
λ1−α (52)

2
5 (53)

3
5

.
= 0.99982 and 1 ≥ f(0) = 1

λ1−α

.
= 0.51

for λ = 1.9865 and α = 0.032.
If Rule 3 applies, then the measure gets reduced by 1 and at least 1 + 2α,

respectively, as in the latter case v is removed from C, while its at least 3
neighbors become part of C. Hence, we have T (μ) ≤ T (μ− 1) + T (μ− 1 − 2α).
To prove the claim it is enough to observe that 1 ≥ λ−1 + λ−1−2α .

= 0.985.
If Rule 4 applies, then in the branch i (the one where ui is contracted) the

measure is reduced by at least i if i ≤ s and by at least s + (1− α)(i− s) + α =
i−α(i−s−1) if t ≥ i > s, as in this case v becomes part of C, whereas in the last
branch it is reduced by s+(1−α)(t−s)+1 = t−α(t−s)+1. It follows that T (μ) ≤∑s

i=1 T (μ− i)+
∑t

i=s+1 T (μ− i+α(i−s−1))+T (μ− t+α(t−s)+1). Hence to

prove the claim it is enough to prove that 1 ≥
∑s

i=1 λ
−i+
∑t

i=s+1 λ
−i+α(i−s−1)+

λ−t+α(t−s)−1. Observe that decreasing s increases the right hand side, as λ > 1
and α > 0. Hence, it suffices to prove the inequality for s = t− 2.

674 D. Lokshtanov, S. Saurabh, and O. Suchý

Distinguishing the value of t we have that

• 1 ≥ λ−1 + λ−2+α .
= 0.762 (t = 1),

• 1 ≥ λ−1 + λ−2+α + λ−3+2α .
= 0.896 (t = 2),

• 1 ≥ λ−1 + λ−2 + λ−3+α + λ−4+2α .
= 0.954 (t = 3),

• 1 ≥ λ−1 + λ−2 + λ−3 + λ−4+α + λ−5+2α .
= 0.984 (t = 4),

• 1 ≥ λ−1+λ−2+λ−3+λ−4+λ−5+α+λ−6+2α .
= 0.9986 (t = 5), for λ = 1.9865

and α = 0.032.

Finally, if Rule 5 applies, then the measure is decreased by 1, by 2−α, and by
at least 2 + 3α, respectively, as in the last branch the neighbors of v outside C
become part of C, but u is removed from C. Therefore, we have T (μ) ≤ T (μ−
1) + T (μ− 2 + α) + T (μ− 2 − 4α). To prove the claim it is enough to observe
that 1 ≥ λ−1 + λ−2+α + λ−2−3α .

= 0.99968.
Now to compute the total number of recursive calls, observe that each branch-

ing rule reduces the number of vertices in the graph in each branch, and, hence,
the total number of recursive calls is at most n ·λμ. In each recursive call we first
apply the reduction rules exhaustively and then check which of the branching
rules applies. Reduction Rule 1 can be applied to each relevant vertex in O(n),
without creating new opportunities to apply it. Therefore, it can be applied ex-
haustively in O(n2) time. Similarly, Reduction Rule 2 can be applied to each
vertex in O(n) time and this does not create any new opportunities to apply
this rule or the previous one. Reduction Rule 3 can be always applied in con-
stant time.

To apply Rule 1 we compute the distance between every pair of vertices
in O(n3) time and then check for each pair (u, v) ∈ T their distance. To delete a
vertex from a graph takes O(n) time whereas contracting a vertex takes O(n2).
Thus, the whole preparation of the graph for each branch takes O(n2) time in
this case.

The size of the neighborhood N(C) can be computed in O(n2) time. It follows
from the above ideas that a graph can be prepared for each branch in O(n3)
time. Therefore, Rule 2 can be applied in O(n3) time, accounting the time for
the preparation of the graph to the call executed.

Rules 3–5 can be applied in O(n2) time, since we only have to compute for each
vertex the number of its neighbors in C and outside C and then prepare graphs
for constant number of branches, each deleting or contracting only constant
number of vertices.

Altogether we spend only O(n3) time per a recursive call. Since μ is always
at most n we obtain O(1.9865n · n4) = O(1.987n) running time for the whole
algorithm. We only need a polynomial space. This completes the proof of our
theorem.

6 Conclusions

In this paper we gave an algorithm for Multicut running in time O(1.987n),
the first algorithm breaking the barrier of 2n. One can obtain an algorithm for

Solving Multicut Faster Than 2n 675

edge variant of Multicut running in time 2nnO(1). It is an interesting problem
to obtain an algorithm for Edge Multicut running in time (2 − ε)nnO(1) for
some fixed ε > 0. Finally, it would also be interesting to obtain an algorithm for
Multicut in directed graphs running in time (2−ε)nnO(1) for some fixed ε > 0.

References

1. Bousquet, N., Daligault, J., Thomassé, S.: Multicut is FPT. In: Proceedings of the
Forty-third Annual ACM Symposium on Theory of Computing, STOC 2011, pp.
459–468. ACM, New York (2011),
http://doi.acm.org/10.1145/1993636.1993698

2. Cǎlinescu, G., Fernandes, C.G., Reed, B.: Multicuts in unweighted graphs and di-
graphs with bounded degree and bounded tree-width. Journal of Algorithms 48(2),
333–359 (2003),
http://www.sciencedirect.com/science/article/pii/S0196677403000737

3. Chawla, S., Krauthgamer, R., Kumar, R., Rabani, Y., Sivakumar, D.: On the hard-
ness of approximating multicut and sparsest-cut. Computational Complexity 15(2),
94–114 (2006), http://dx.doi.org/10.1007/s00037-006-0210-9

4. Chen, J., Liu, Y., Lu, S., O’Sullivan, B., Razgon, I.: A fixed-parameter algorithm
for the directed feedback vertex set problem. J. ACM 55(5) (2008)

5. Chitnis, R., Fomin, F., Lokshtanov, D., Misra, P., Ramanujan, M., Saurabh, S.:
Faster exact algorithms for some terminal set problems. In: Gutin, G., Szeider,
S. (eds.) IPEC 2013. LNCS, vol. 8246, pp. 150–162. Springer, Heidelberg (2013),
http://dx.doi.org/10.1007/978-3-319-03898-8_14

6. Chitnis, R.H., Hajiaghayi, M., Marx, D.: Fixed-parameter tractability of directed
multiway cut parameterized by the size of the cutset. In: Rabani, Y. (ed.) SODA,
pp. 1713–1725. SIAM (2012)

7. Cygan, M., Pilipczuk, M., Pilipczuk, M., Wojtaszczyk, J.O.: On multiway cut
parameterized above lower bounds. In: Marx, D., Rossmanith, P. (eds.) IPEC 2011.
LNCS, vol. 7112, pp. 1–12. Springer, Heidelberg (2012)

8. Dahlhaus, E., Johnson, D.S., Papadimitriou, C.H., Seymour, P.D., Yannakakis, M.:
The complexity of multiterminal cuts. SIAM J. Comput. 23(4), 864–894 (1994)

9. Fomin, F.V., Grandoni, F., Kratsch, D.: A measure & conquer approach for the
analysis of exact algorithms. J. ACM 56(5), 25:1–25:32 (2009),
http://doi.acm.org/10.1145/1552285.1552286

10. Fomin, F.V., Kratsch, D.: Exact Exponential Algorithms. Texts in Theoretical
Computer Science. An EATCS Series. Springer, Heidelberg (2010)

11. Fomin, F., Heggernes, P., Kratsch, D., Papadopoulos, C., Villanger, Y.: Enumer-
ating minimal subset feedback vertex sets. Algorithmica 69(1), 216–231 (2014),
http://dx.doi.org/10.1007/s00453-012-9731-6

12. Garg, N., Vazirani, V., Yannakakis, M.: Primal-dual approximation algorithms for
integral flow and multicut in trees. Algorithmica 18(1), 3–20 (1997),
http://dx.doi.org/10.1007/BF02523685

13. Iwata, Y.: A faster algorithm for dominating set analyzed by the potential method.
In: Marx, D., Rossmanith, P. (eds.) IPEC 2011. LNCS, vol. 7112, pp. 41–54.
Springer, Heidelberg (2012), http://dx.doi.org/10.1007/978-3-642-28050-4_4

14. Marx, D.: Parameterized graph separation problems. Theoret. Comput. Sci. 351(3),
394–406 (2006)

http://doi.acm.org/10.1145/1993636.1993698
http://www.sciencedirect.com/science/article/pii/S0196677403000737
http://dx.doi.org/10.1007/s00037-006-0210-9
http://dx.doi.org/10.1007/978-3-319-03898-8_14
http://doi.acm.org/10.1145/1552285.1552286
http://dx.doi.org/10.1007/s00453-012-9731-6
http://dx.doi.org/10.1007/BF02523685
http://dx.doi.org/10.1007/978-3-642-28050-4_4

676 D. Lokshtanov, S. Saurabh, and O. Suchý

15. Marx, D., Razgon, I.: Fixed-parameter tractability of multicut parameterized by
the size of the cutset. In: STOC, pp. 469–478 (2011)

16. Raman, V., Ramanujan, M.S., Saurabh, S.: Paths, flowers and vertex cover.
In: Demetrescu, C., Halldórsson, M.M. (eds.) ESA 2011. LNCS, vol. 6942,
pp. 382–393. Springer, Heidelberg (2011)

17. Razgon, I., O’Sullivan, B.: Almost 2-sat is fixed-parameter tractable. J. Comput.
Syst. Sci. 75(8), 435–450 (2009)

18. Robson, J.: Algorithms for maximum independent sets. Journal of Algorithms 7(3),
425–440 (1986),
http://www.sciencedirect.com/science/article/pii/0196677486900325

19. Xiao, M., Nagamochi, H.: An improved exact algorithm for undirected feedback
vertex set. In: Widmayer, P., Xu, Y., Zhu, B. (eds.) COCOA 2013. LNCS, vol. 8287,
pp. 153–164. Springer, Heidelberg (2013),
http://dx.doi.org/10.1007/978-3-319-03780-6_14

http://www.sciencedirect.com/science/article/pii/0196677486900325
http://dx.doi.org/10.1007/978-3-319-03780-6_14

Tight Bounds for Active Self-assembly

Using an Insertion Primitive�

Caleb Malchik and Andrew Winslow

Tufts University, Medford, MA 02155, USA
caleb.malchik@tufts.edu, awinslow@cs.tufts.edu

Abstract. We prove two tight bounds on the behavior of a model of self-
assembling particles introduced by Dabby and Chen (SODA 2012), called
insertion systems, where monomers insert themselves into the middle of
a growing linear polymer. First, we prove that the expressive power of
these systems is equal to context-free grammars, answering a question
posed by Dabby and Chen. Second, we prove that polymers of length

2Θ(k3/2) can be deterministically constructed by insertion systems of k
monomer types in O((log n)5/3) expected time, and that this is the best
possible in both the number of types and expected time.

Keywords: DNA computing, formal languages, polymers, context-free
grammars.

1 Introduction

In this work we study a theoretical model of algorithmic self-assembly, in which
simple particles aggregate in a distributed manner to carry out complex func-
tionality. Perhaps the the most well-studied theoretical model of algorithmic
self-assembly is the abstract Tile Assembly Model (aTAM) of Winfree [15] con-
sisting of square tiles irreversibly attach to a growing polyomino-shaped assem-
bly according to matching edge colors. This model is capable of Turing-universal
computation [15], self-simulation [5], and efficient assembly of general (scaled)
shapes [14] and squares [1,13]. Despite this power, the model is incapable of
assembling some shapes efficiently; a single row of n tiles requires n distinct
tile types and Ω(n logn) expected assembly time [2] and any shape with n tiles
requires Ω(

√
n) expected time to assemble [7].

Such a limitation may not seem so significant, except that a wide range of bio-
logical systems form complex assemblies in time polylogarithmic in the assembly
site, as Dabby and Chen [4] and Woods et al. [16] observe. These biological sys-
tems are capable of such growth because their particles (e.g. living cells) actively
carry out geometric reconfiguration. In the interest of both understanding natu-
rally occurring biological systems and creating synthetic systems with additional
capabilities, several models of active self-assembly have been proposed recently.
These include the graph grammars of Klavins et al. [9,10], the nubots model

� A full version of this paper can be found at http://arxiv.org/abs/1401.0359

A.S. Schulz and D. Wagner (Eds.): ESA 2014, LNCS 8737, pp. 677–688, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

http://arxiv.org/abs/1401.0359

678 C. Malchik and A. Winslow

of Woods et al. [3,16], and the insertion systems of Dabby and Chen [4]. Both
graph grammars and nubots are capable of a topologically rich set of assemblies
and reconfigurations, but rely on stateful particles forming complex bond ar-
rangments. In contrast, insertion systems consist of stateless particles forming a
single chain of bonds. Indeed, all insertion systems are captured as a special case
of nubots in which a linear polymer is assembled via parallel insertion-like recon-
figurations, as in Theorem 5.1 of [17]. The simplicity of insertion systems makes
their implementation in matter a more immediately attainable goal; Dabby and
Chen [4] describe a direct implementation of these systems in DNA.

We are careful to make a distinction between active self-assembly, where as-
semblies undergo reconfiguration, and active tile self-assembly [6,8,11,12], where
tile-based assemblies change their bond structure. Active self-assembly enables
exponential assembly rates by enabling insertion of new particles throughout
the assembly, while active tile self-assembly does not: assemblies formed consist
of rigid tiles and the Ω(

√
n) expected-time lower bound of Keenan, Schweller,

Sherman, and Zhong [7] still applies.

1.1 Our Results

We prove two tight bounds on the behavior of insertion systems. First, we con-
sider what languages can be expressed by insertion systems, i.e. correspond to
a set of polymers constructed by some insertion system. Dabby and Chen prove
that only context-free languages are expressible by insertion systems, and ask
whether every context-free language is indeed expressed by some insertion sys-
tem. We answer this question in the affirmative, and as a consequence prove
that the languages expressible by insertion systems are exactly the context-free
languages.

Second, we consider constructing the largest finite polymers as fast as possi-
ble. Dabby and Chen prove that insertion systems with k monomer types can

deterministically construct polymers of length n = 2Θ(
√
k) in O(log3 n) expected

time. We improve on both the polymer length and expected time by describ-

ing systems that deterministically constructing polymers of length 2Θ(k3/2) and
O((log n)5/3) expected time by utilizing novel aspects of insertion systems. We
also prove these systems are asymptotically optimal in both the length of the
polymers they construct and the construction time.

2 Definitions

2.1 Grammars

A context-free grammar G is a 4-tuple G = (Σ,Γ,Δ, S). The sets Σ and Γ are
the terminal and non-terminal symbols of the grammar. The set Δ consists of
production rules or simply rules, each of the form L → R1R2 · · ·Rj with L ∈ Γ
and Ri ∈ Σ∪Γ . Finally, the symbol S ∈ Γ is a special start symbol. The language
of G, denoted L(G), is the set of strings that can be derived by starting with S,

Tight Bounds for Active Self-Assembly 679

and repeatedly replacing a non-terminal symbol found on the left-hand side of
some rule in Δ with the sequence of symbols on the right-hand side of the rule.
The size of G is |Δ|, the number of rules in G. If every rule in Δ is of the form
L → R1R2 or L → t, with R1R2 ∈ Γ and t ∈ Σ, then the grammar is said to
be in Chomsky normal form. Every context-free grammar can be converted to a
grammar in Chomsky normal form while increasing the size of grammar by at
most a factor of 2.

An integer-pair grammar, used in Section 3, is a context-free grammar in
Chomsky normal form such that each non-terminal symbol is an integer pair
(a, d), and each production rule has the form (a, d) → (a, b)(c, d) or (a, d) → t.

2.2 Insertion Systems

An insertion system in the active self-assembly model of Dabby and Chen [4]
carries out the construction of a linear polymer consisting of constant length
monomers. A polymer grows incrementally by the insertion of a monomer at
an insertion site between two existing monomers in the polymer, according to
complementary bonding sites between the monomer and the insertion site.

An insertion system S is defined as a 4-tuple S = (Σ,Δ,Q,R). The first
element, Σ, is a set of symbols. Each symbol s ∈ Σ has a complement s∗. We
denote the complement of a symbol s as s, i.e. s = s∗ and s∗ = s. The set
Δ is a set of monomer types, each assigned a concentration. Each monomer is
specified by a quadruple (a, b, c, d)+ or (a, b, c, d)−, where a, b, c, d ∈ Σ ∪ {s∗ :
s ∈ Σ}, and each concentration is a real number between 0 and 1. The sum
of all concentrations in Δ must be at most 1. The two symbols Q = (a, b) and
R = (c, d) are special two-symbol monomers that together form the initiator of
S. It is required that either a = d or b = c. The size of S is |Δ|, the number of
monomer types in S.

A polymer is a sequence of monomers Qm1m2 . . .mnR where mi ∈ Δ such
that for each pair of adjacent monomers (w, x, a, b)(c, d, y, z), either a = d or
b = c. The length of a polymer is the number of monomers, including Q and R,
it contains. Each pair of adjacent monomer ends (a, b)(c, d) form an insertion
site. Monomers can be inserted into an insertion site (a, b)(c, d) (and the sequence
of monomers) according to the following rules (see Figure 1):

1. If a = d, then any monomer (b, e, f, c)+ can be inserted.
2. If b = c, then any monomer (e, a, d, f)− can be inserted.1

A monomer is inserted after time t, where t is an exponential random variable
with rate equal to the concentration of the monomer type. The set of all poly-
mers constructed by an insertion system is recursively defined as any polymer
constructed by inserting a monomer into a polymer constructed by the system,
beginning with the initiator. Note that the insertion rules guarantee by induction
that for every insertion site (a, b)(c, d), either a = d or b = c.

1 In [4], this rule is described as a monomer (d, f, e, a)− that is inserted into the
polymer as (e, a, d, f).

680 C. Malchik and A. Winslow

c∗
a∗ a

b

c∗
a∗ a

b
d∗

b∗c

e∗

d∗

b∗c

e∗

d∗
b∗c

e∗

c∗

a∗ a

b

c∗

a∗ a

b

d∗ e∗

c b∗

Inserting (c, d∗, e∗, b∗)+ into (a∗, c∗)(b, a)
to yield (a∗, c∗)(c, d∗, e∗, b∗)(b, a):

Inserting (d∗, c, b∗, e∗)− into (c∗, a∗)(a, b)
to yield (c∗, a∗)(d∗, c, b∗, e∗)(a, b):

Fig. 1. A pictorial interpretation of the two insertion rules for monomers. Loosely based
on Figure 2 and corresponding DNA-based implementation of [4].

We say that a polymer is terminal if no monomer can be inserted into any
insertion site in the polymer, and that an insertion system deterministically
constructs a polymer P if every polymer constructed by the system is either P
or is non-terminal and has length less than that of P (i.e. can become P). The
stringification of a polymer is the sequence of symbols in found on the polymer
from left to right, e.g. (a, b)(b∗, a, d, c)(c∗, a) has stringification abb∗adcc∗a. We
call the set of stringifications of all terminal polymers of an insertion system S
the language of S, denoted L(S).

2.3 Expressive Power

Intuitively, a system expresses another if the terminal polymers or strings created
by the system “look” like the terminal polymers or strings created by the other
system. In the simplest instance, an integer-pair grammar G′ is said to express
a context-free grammar G if L(G′) = L(G). Similarly, a grammar G is said to
express an insertion system S if L(S) = L(G), i.e. if the set of stringifications of
the terminal polymers of S equals the language of G.

An insertion system S = (Σ′, Δ′, Q′, R′) is said to express a grammar G =
(Σ,Γ,Δ, S) if there exists a function g : Σ′ ∪ {s∗ : s ∈ Σ′} → Σ ∪ {ε} such that

Tight Bounds for Active Self-Assembly 681

{g(s′1)g(s′2) . . . g(s′n) : s′1s
′
2 . . . s

′
n ∈ L(S)} = L(G). More precisely, we require

that there exists a fixed integer κ such that for any substring s′i+1s
′
i+2 . . . s

′
i+κ

in a string in L(S), {g(s′i+1), g(s′i+2), . . . , g(s′i+κ)} �= {ε}. That is, the insertion
system symbols mapping to grammar terminal symbols are evenly distributed
throughout the polymer. The requirement of a fixed integer κ prevents the possi-
bility of a polymer containing arbitrarily long and irregular regions of “garbage”
monomers.

3 The Expressive Power of Insertion Systems

Dabby and Chen proved that any insertion system has a context-free grammar
expressing it. They construct such a grammar by creating a non-terminal for
every possible pair of adjacent monomer types, and a production rule with this
left-hand side non-terminal for each monomer that can be inserted into the
insertion site formed by this pair. Here we give a reduction in the other direction,
resolving, in the affirmative, the question posed by Dabby and Chen of whether
context-free grammars and insertion systems have the same expressive power:

Theorem 1. For every context-free grammar G, there exists an insertion sys-
tem that expresses G.

The primary difficulty in proving Theorem 1 lies in developing a way to sim-
ulate the “complete” replacement that occurs during derivation with the “in-
complete” replacement that occurs when an insertion site is inserted into. For
instance, bcAbc becomes bcDDbc via a production rule A → DD and A is com-
pletely replaced by DD. On the other hand, inserting a monomer (b∗, d, d, c)+

into a site (a, b)(c∗, a∗) yields the consecutive sites (a, b)(b∗, d) and (d, c)(c∗, a∗),
with (a, b)(c∗, a∗) only partially replaced – the left side of the first site and the
right side of second site together form the initial site. This behavior constrains
how replacement can be captured by insertion sites, and the κ parameter of the
definition of expression (Section 2.3) prevents eliminating the issue via additional
insertions.

We overcome this difficulty by proving Theorem 1 in two steps. First, we prove
that integer-pair grammars, a constrained type of grammar with incomplete
replacements, are able to express context-free grammars (Lemma 1). Second, we
prove integer-pair grammars can be expressed by insertion systems (Lemma 2).

Lemma 1. For every context-free grammar G, there exists an integer-pair gram-
mar that expresses G.

Lemma 2. For every integer-pair grammar G, there exists an insertion system
that expresses G.

Proof. Let G = (Σ,Γ,Δ, S). The integer-pair grammar G is expressed by an
insertion system S = (Σ′, Δ′, Q′, R′) that we now define. Let Σ′ = {sa, sb :
(a, b) ∈ Γ} ∪ {u, x} ∪Σ. Let Δ′ = Δ′

1 ∪Δ′
2 ∪Δ′

3 ∪Δ′
4, where

Δ′
1 = {(sb, u, s

∗
b , x)− : (a, d) → (a, b)(c, d) ∈ Δ}

682 C. Malchik and A. Winslow

Δ′
2 = {(sa, sb, s

∗
c , s

∗
d)+ : (a, d) → (a, b)(c, d) ∈ Δ}

Δ′
3 = {(x, sc, u

∗, s∗c)− : (a, d) → (a, b)(c, d) ∈ Δ}

Δ′
4 = {(sa, t, x, s

∗
d)+ : (a, d) → t ∈ Δ}

We give each monomer type equal concentration, although the precise con-
centrations are not important for expressive power. Let Q′ = (u∗, a∗) and
R′ = (b, u), where S = (a, b).

Insertion Types. We start by proving that for any polymer constructed by S,
only the following types of insertions of a monomer m2 between two adjacent
monomers m1m3 are possible:

1. m1 ∈ Δ′
2, m2 ∈ Δ′

3, m3 ∈ Δ′
1

2. m1 ∈ Δ′
3, m2 ∈ Δ′

2 ∪Δ′
4, m3 ∈ Δ′

1

3. m1 ∈ Δ′
3, m2 ∈ Δ′

1, m3 ∈ Δ′
2

Moreover, we claim that for every adjacent m1m3 pair satisfying one of these
conditions, an insertion is possible. That is, there is a monomer m2 that can be
inserted, necessarily from the monomer subset specified.

Consider each possible combination of m1 ∈ Δ′
i and m3 ∈ Δ′

j , respectively,
with i, j ∈ {1, 2, 3, 4}. Observe that for an insertion to occur at insertion site
(a, b)(c, d), the symbols a, b, c, and d must each occur on some monomer. Then
since x∗ and t∗ do not appear on any monomers, any i, j with i ∈ {1, 4}
or j ∈ {3, 4} cannot occur. This leaves monomer pairs (Δ′

i, Δ
′
j) with (i, j) ∈

{(2, 1), (2, 2), (3, 1), (3, 2)}.
Insertion sites between (Δ′

2, Δ
′
1) pairs have the form (s∗c , s

∗
d)(sb, u), so an

inserted monomer must have the form (se, sc, s
∗
u, sf)− and is in Δ′

3. An insertion
site (s∗c , s

∗
d)(sb, u) implies a rule of the form (e, d) → (e, f)(c, d) in Δ, so there

exists a monomer (x, sc, u
∗, s∗c)− ∈ Δ′

3 that can be inserted.
Insertion sites between (Δ′

3, Δ
′
2) pairs have the form (u∗, s∗c)(sa, sb), so an

inserted monomer must have the form (, u, s∗b ,)− and thus is in Δ′
1. An in-

sertion site (u∗, s∗c)(sa, sb) implies a rule of the form (a, d) → (a, b)(e, d) in Γ , so
there exists a monomer (sb, u, s

∗
b , x)− ∈ Δ′

1 that can be inserted.
Insertion sites between (Δ′

2, Δ
′
2) pairs can only occur once a monomer m2 ∈

Δ′
2 has been inserted between a pair of adjacent monomers m1m3 with either

m1 ∈ Δ′
2 or m3 ∈ Δ′

2, but not both. But we just proved that all such such
possible insertions only permit m2 ∈ Δ′

3 ∪ Δ′
1. Moreover, the initial insertion

site between Q′ and R′ has the form (u∗, s∗a)(sb, u) of an insertion site with
m1 ∈ Δ′

3 and m3 ∈ Δ′
1. So no pair of adjacent monomers m1m3 are ever both

from Δ′
2 and no insertion site between (Δ′

2, Δ
′
2) pairs can ever exist.

Insertion sites between (Δ′
3, Δ

′
1) pairs have the form (u∗, s∗c)(sb, u), so an

inserted monomer must have the form (sc, , , b∗)+ or (, u, u∗,)− and is in
Δ′

2 or Δ′
4. We show by induction that for each such insertion site (u∗, s∗c)(sb, u)

that (c, b) ∈ Γ . First, observe that this is true for the insertion site (u∗, s∗a)(sb, u)
between Q′ and R′, since (a, b) = S ∈ Γ . Next, suppose this is true for all
insertion sites of some polymer and a monomer m2 ∈ Δ′

2 ∪ Δ′
4 is about to

Tight Bounds for Active Self-Assembly 683

be inserted into the polymer between monomers from Δ′
3 and Δ′

1. Inserting a
monomer m2 ∈ Δ′

4 only reduces the set of insertion sites between monomers in
Δ′

3 and Δ′
1, and the inductive hypothesis holds. Inserting a monomer m2 ∈ Δ′

2

induces new (Δ′
3, Δ

′
2) and (Δ′

2, Δ
′
1) insertion site pairs between m1m2 and m2m3.

These pairs must accept two monomers m4 ∈ Δ1 and m5 ∈ Δ3, inducing a
sequence of monomers m1m4m2m5m3 with adjacent pairs (Δ′

3, Δ
′
1), (Δ′

1, Δ
′
2),

(Δ′
2, Δ

′
3), (Δ′

3, Δ
′
1). Only the first and last pairs permit insertion and both are

(Δ′
3, Δ

′
1) pairs.

Now consider the details of the three insertions yielding m1m4m2m5m3, start-
ing with m1m3. The initial insertion site m1m3 must have the form (u∗, s∗a)(sd, u).
So the sequence of insertions has the following form, with the last two insertions
interchangeable. The symbol 2 is used to indicate the site being modified and the
inserted monomer shown in bold:

(u∗, s∗a) 2 (sd, u)

(u∗, s∗a) 2 (sa, sb, s∗c, s∗d)(sd, u)

(u∗, s∗a)(sb, u, s
∗
b, x)(sa, sb, s

∗
c , s

∗
d) 2 (sd, u)

(u∗, s∗a)(sb, u, s
∗
b , x)(sa, sb, s

∗
c , s

∗
d)(x, sc, u

∗, s∗c)(sd, u)

The two resulting (Δ′
3, Δ

′
1) pair insertion sites are (u∗, s∗a)

(sb, u) and (u∗, s∗c)(sd, u). Assume, by induction, that the monomer m2 must
exist. So there is a rule (a, d) → (a, b)(c, d) ∈ Δ and (a, b), (c, d) ∈ Γ , fulfill-
ing the inductive hypothesis. So for every insertion site (u∗, s∗c)(sb, u) between
a (Δ′

3, Δ
′
1) pair there exists a non-terminal (c, b) ∈ Γ . So for every adjacent

monomer pair m1m3 with m1 ∈ Δ′
3 and m3 ∈ Δ′

1, there exists a monomer
m2 ∈ Δ′

2 ∪Δ′
4 that can be inserted between m1 and m2.

Partial Derivations and Terminal Polymers. Next, consider the sequence of
insertion sites between (Δ′

3, Δ
′
1) pairs in a polymer constructed by a modified ver-

sion of S lacking the monomers of Δ′
4. We claim that there is a constructed poly-

mer with a sequence (u∗, s∗a1
)(sb1 , u), (u∗, s∗a2

)(sb2 , u), . . . , (u∗, s∗ai
)(sbi , u) of these

insertion sites if and only if there is a partial derivation (a1, b1)(a2, b2) . . . (ai, bi) of
a string in L(G). This follows directly from the previous proof by observing that
two new adjacent (Δ′

3, Δ
′
1) pair insertion sites (u∗, s∗a)(sb, u) and (u∗, s∗c)(sd, u)

can replace a (Δ′
3, Δ

′
1) pair insertion site if and only if there exists a rule (a, d) →

(a, b)(c, d) ∈ Δ.
Observe that any string in L(G) can be derived by first deriving a partial

derivation containing only non-terminals, then applying only rules of the form
(a, d) → t. Similarly, since the monomers of Δ′

4 never form half of a valid insertion
site, any terminal polymer of S can be constructed by first generating a polymer
containing only monomers in Δ′

1 ∪Δ′
2 ∪Δ′

3, then only inserting monomers from
Δ′

4. Also note that the types of insertions possible in S imply that in any terminal
polymer, any triple of adjacent monomers m1m2m3 with m1 ∈ Δ′

i, m2 ∈ Δ′
j ,

and m3 ∈ Δ′
k, that (i, j, k) ∈ {(4, 1, 2), (1, 2, 3), (2, 3, 4), (3, 4, 1)}, with the first

and last monomers of the polymer in Δ′
4.

684 C. Malchik and A. Winslow

Expression. Define the following piecewise function g : Σ′ ∪ {s∗ : s ∈ Σ′} →
Σ ∪ {ε} that maps to ε except for the second symbols of monomers in Δ′

4.

g(s) =

{
t, if t ∈ Σ
ε, otherwise

Observe that every string inL(S) has length 2+4·(4n−3)+2 = 16n−8 for some
n ≥ 0. Also, for each string s′1s

′
2 . . . s

′
16n−8 ∈ L(S), g(s′1)g(s′2) . . . g(s′16n−8) =

ε3t1ε
16t2ε

16 . . . tnε
5. There is a terminal polymer with stringification inL(S) yield-

ing the sequence s1s2 . . . sn if and only if the polymer can be constructed by first
generating a terminal polymer excludingΔ′

4 monomers with a sequence of (Δ′
3, Δ

′
1)

insertion pairs (a1, b1)(a2, b2) . . . (an, bn) followed by a sequence of insertions of
monomers from Δ′

4 with second symbols t1t2 . . . tn. Such a generation is possible
if and only if (a1, b1)(a2, b2) . . . (an, bn) is a partial derivation of a string in L(G)
and (a1, b1) → t1, (a2, b2) → t2, . . . , (an, bn) → tn ∈ Δ. So applying the func-
tion g to the stringifications of the terminal polymers of S gives L(G), i.e. L(S) =
L(G). Moreover, the second symbol in every fourth monomer in a terminal poly-
mer of S maps to a symbol of Σ using g. So S expresses G with the function g and
κ = 16. ��

4 Positive Results for Polymer Growth

Dabby and Chen also consider the size and speed of constructing finite polymers.
They give a construction achieving the following result:

Theorem 2 ([4]). For any positive integer r, there exists an insertion system
with O(r2) monomer types that deterministically constructs a polymer of length
n = 2Θ(r) in O(log3 n) expected time.

We improve on this construction significantly in both polymer length and
expected running time. In Section 5 we prove that our construction is the best
possible with respect to both the polymer length and construction time.

Theorem 3. For any positive integer r, there exists an insertion system with
O(r2) monomer types that deterministically constructs a polymer of length n =

2Θ(r3) in O((log n)5/3) expected time.

Proof. We give a constructive proof. The approach is to implement a three vari-
able counter where each variable ranges over the values 0 to r, effectively carrying
out the execution of a triple for-loop. Insertion sites of the form (sa, sb)(sc, s

∗
a)

are used to encode the state of the counter, where a, b, and c are the variables
of the outer, inner, and middle loops, respectively.

1. (Inner): If 0 ≤ b < r, then (sa, sb)(sc, s
∗
a) becomes (sa, sb+1)(sc, s

∗
a).

2. (Middle): If b = r and 0 ≤ c < r, then (sa, sb)(sc, s
∗
a) becomes

(sa, s0)(sc+1, s
∗
a).

3. (Outer): If b = c = r and 0 ≤ a < r, then (sa, sb)(sc, s
∗
a) becomes (sa+1, s0)

(s0, s
∗
a+1).

Tight Bounds for Active Self-Assembly 685

A site is modified by a sequence of monomer insertions that yields a new
usable site where all other sites created by the insertion sequence are unusable.
For instance, we modify a site (sa, sb)(sc, s

∗
a) to become (sa, sd)(sc, s

∗
a), written

(sa, sb)(sc, s
∗
a) → (sa, sd)(sc, s

∗
a), by adding the monomer types (s∗b , x, u, s

∗
c)+

and (x, u∗, sa, sb)
− to the system, where x is a special symbol whose complement

is not found on any monomer. These two monomer types cause the following
sequence of insertions, using 2 to indicate the site being modified and the inserted
monomer shown in bold:

(sa, sb) 2 (sc, s
∗
a)

(sa, sb)(s
∗
b , x, u, s

∗
c) 2 (sc, s

∗
a)

(sa, sb)(s
∗
b , x, u, s

∗
c)(x,u∗, sa, sd) 2 (sc, s

∗
a)

We call this simple modification, where a single symbol in the insertion site is
replaced with another symbol, a replacement. Four types of replacements, seen
in Table 1, can each be implemented by a pair of corresponding monomers.

Table 1. The four types of replacement steps and monomer pairs that implement
them. The symbol u can be any symbol, and x is a special symbol whose complement
does not appear on any monomer.

Replacement Monomers

(sa, sb)(sc, s
∗
a) → (sa, sd)(sc, s

∗
a) (s

∗
b , x, u, s

∗
c)

+, (x, u∗, sa, sd)−

(sa, sb)(sc, s
∗
a) → (sa, sb)(sd, s

∗
a) (s

∗
b , u, x, s

∗
c)

+, (sd, s
∗
a, u

∗, x)−

(sb, sa)(s
∗
a, sc) → (sd, sa)(s

∗
a, sc) (x, s

∗
b , s

∗
c , u)

−, (u∗, x, sd, sa)+

(sb, sa)(s
∗
a, sc) → (sb, sa)(s

∗
a, sd) (u, s

∗
b , s

∗
c , x)

−, (s∗a, sd, x, u
∗)+

Each of the three increment types are implemented using a sequence of site
modifications. The resulting triple for-loop carries out a sequence of Θ(r3) inser-

tions, constructing a Θ(r3)-length polymer. A 2Θ(r3)-length polymer is achieved
by simultaneously duplicating each site during each inner increment. Because the
for-loop runs for Θ(r3) steps and duplicates at a constant fraction of these steps
(those with 0 ≤ b < r), the number of counters reaching the final a = b = c = r

state is 2Θ(r3). In the remainder of the proof, we detail the implementation of
each increment type, starting with the simplest: middle increments.

Middle Increment. A middle increment of a site (sa, sb)(sc, s
∗
a) occurs when

the site has the form (sa, sr)(sc, s
∗
a) with 0 ≤ c < r, performing the modification

(sa, sr)(sc, s
∗
a) → (sa, s0)(sc+1, s

∗
a). We implement middle increments using a

sequence of three replacements:

(sa, sr)(sc, s
∗
a)

1−−→ (sa, sr)(sf1(c), s
∗
a)

2−−→ (sa, s0)(sf1(c), s
∗
a)

3−−→ (sa, s0)(sc+1, s
∗
a)

where fi(n) = n+2ir2. The use of f is to avoid unintended interactions between
monomers, since for any n1, n2 with 0 ≤ n1, n2 ≤ r, fi(n1) �= fj(n2) for all i �= j.

686 C. Malchik and A. Winslow

Compiling this sequence of replacements into monomer types gives the following
set:

1. (Step 1): (s∗r , sf2(c), x, s
∗
c)+ and (sf1(c), s

∗
a, s

∗
f2(c)

, x)−.

2. (Step 2): (s∗r , x, sf3(c), s
∗
f1(c)

)+ and (x, s∗f3(c), sa, s0)−.

3. (Step 3): (s∗0, sf4(c+1), x, s
∗
f1(c)

)+ and (sc+1, s
∗
a, s

∗
f4(c+1), x)−.

Since each inserted monomer has an instance of x, all other insertion sites
created are unusable. This is true of the insertions used for outer increments
and duplications as well.

Outer Increment. An outer increment of the site (sa, sb)(sc, s
∗
a) occurs when

the site has the form (sa, sr)(sr, s
∗
a) with 0 ≤ a < r. We implement this step using

a two-phase sequence of three (regular) replacements and a special quadruple
replacement (Step 3):

(sa, sr)(sr , s
∗
a)

1−−→ (sa, sf5(a))(sr , s
∗
a)

2−−→ (sa, sf5(a))(s
∗
f5(a)

, s∗a)

(sa, sf5(a))(s
∗
f5(a)

, s∗a)
3−−→ (sa+1, sf5(0))(s0, s

∗
a+1)

4−−→ (sa+1, s0)(s0, s
∗
a+1)

At each step, a (necessary) complementary pair of symbols is maintained,
which results in a sequence of more than 4 replacements. As with inner and
middle increments, we compile replacement steps 1, 2, and 4 into monomers
using Table 1. Step 3 is a special pair of monomers.

1. (Step 1): (s∗r , x, sf6(r), s
∗
r)+ and (x, s∗f6(r), sa, sf5(a))

−.

2. (Step 2): (s∗f5(a), s
∗
f7(r)

, x, s∗r)+ and (s∗f5(a), s
∗
a, sf7(r), x)−.

3. (Step 3): (s∗f5(a), x, sa+1, sf5(a))
+ and (s0, s

∗
a+1, sa, x)−.

4. (Step 4): (s∗f5(a), x, sf7(r), s
∗
0)+ and (x, s∗f7(r), sa+1, s0)−.

Inner Increment. The inner increment has two phases. The first phase per-
forms the modification (sa, sb)(sc, s

∗
a) → (sa, sb)(sf8(c), s

∗
a) . . . (sa, sb+1)(sc, s

∗
a),

yielding an incremented version of the original site and one other site. The sec-
ond phase is (sa, sb)(sf8(c), s

∗
a) → (sa, sb+1)(sc, a

∗), transforming the second site
into an incremented version of the original site.

For the first phase, we use the three monomers (s∗b , sf8(c), sf8(b+1), s
∗
c)+,

(sf8(c), s
∗
a, s

∗
f8(c)

, x)−, and (x, s∗f8(b+1), sa, sb+1)− and call the entire phase Step 1.

The site (sa, sb)(sf8(c), s
∗
a) is transformed into (sa, sb+1)(sc, s

∗
a) by a sequence of

replacement steps:

(sa, sb)(sf8(c), s
∗
a)

2−−→ (sa, sf9(b))(sf8(c), s
∗
a)

3−−→ (sa, sf9(b))(sc, s
∗
a)

4−−→ (sa, sb+1)(sc, s
∗
a)

As with previous sequences of replacement steps, we compile this sequence
into a set of monomers:

1. (Step 2): (s∗b , x, sf10(b), s
∗
f8(c)

)+ and (x, s∗f10(b), sa, sf9(b))
−.

Tight Bounds for Active Self-Assembly 687

2. (Step 3): (s∗f9(b), sf11(c), x, s
∗
f8(c)

)+ and (sc, s
∗
a, s

∗
f11(c)

, x)−.

3. (Step 4): (s∗f9(b), x, sf12(b+1), s
∗
c)+ and (x, s∗f12(b+1), sa, sb+1)−.

When combined, the two phases of duplication modify (sa, sb)(sc, s
∗
a) to be-

come (sa, sb+1)(sc, s
∗
a) . . . (sa, sb+1)(sc, s

∗
a), where all sites between the dupli-

cated sites are unusable.

Putting It Together. The system starts with the intiator (s0, s0)(s0, s
∗
0). Each

increment of the counter occurs either through a middle increment, outer in-
crement, or a duplication. There are at most (r + 1)2 monomer types in each
family and O(r2) monomer types total. The size Pi of a subpolymer with an
initiator encoding some value i between 0 and (r + 1)3 − 1 can be bounded by
2Pi+2 + 9 ≤ Pi2Pi+1 + 9 with P(r+1)3−2 > 0. So P0, the size of the terminal

polymer, is 2Θ(r3).

Running Time. Define the concentration of each monomer type to be equal.
There are less than 39r2 monomer types, so each monomer type has concen-
tration at least 1/(39r2). The polymer is complete as soon as every insertion
site has been modified to be (r, r)(r, r∗) and the monomer (s∗r , x, sf7(r), s

∗
r)+ has

been inserted. There are fewer than 28r
3

such insertions, and each insertion can
occur once at most 9 ·8r3 = 72r3 previous insertions have occurred. So an upper
bound on the expected time Tr for each such insertion is described as a sum of
72r3 random variables, each with expected time 39r2. The Chernoff bound for
exponential random variables implies Prob[Tr > 39r2 · 72r3(1 + δ)] ≤ e−r5δ/2

for all δ ≥ 2 and TSr , the total running time of the system, has Prob[TSr >

39r2 · 72r3(1 + δ)] ≤ 2−r5δ/4 for all δ ≥ 32. So the expected value of TSr , the
construction time, is O(r5) = O((log n)5/3) with an exponentially decaying tail
probability. ��

5 Negative Results for Polymer Growth

Here we prove that our system constructs polymers using an optimal number of
monomer types and in optimal expected time.

Theorem 4. Any polymer deterministically constructed by an insertion system

with k monomer types has length 2O(k3/2).

Theorem 5. Deterministically constructing a polymer of length n takes
Ω((log n)5/3) expected time.

Acknowledgments. We wish to thank Benjamin Hescott for many helpful
discussions and anonymous reviewers for feedback that helped to improve the
presentation of the paper.

688 C. Malchik and A. Winslow

References

1. Adleman, L., Cheng, Q., Goel, A., Huang, M.-D.: Running time and program size
for self-assembled squares. In: Proceedings of 33rd ACM Symposium on Theory of
Computing (STOC) (2001)

2. Adleman, L.M., Cheng, Q., Goel, A., Huang, M.-D., Wasserman, H.: Linear self-
assemblies: equilibria, entropy and convergence rates. In: Proceedings of 6th Inter-
national Conference on Difference Equations and Applications (2001)

3. Chen, M., Xin, D., Woods, D.: Parallel computation using active self-assembly. In:
Soloveichik, D., Yurke, B. (eds.) DNA 2013. LNCS, vol. 8141, pp. 16–30. Springer,
Heidelberg (2013)

4. Dabby, N., Chen, H.-L.: Active self-assembly of simple units using an insertion
primitive. In: Proceedings of 23rd ACM-SIAM Symposium on Discrete Algorithms
(SODA), pp. 1526–1536 (2012)

5. Doty, D., Lutz, J.H., Patitz, M.J., Schweller, R.T., Summers, S.M., Woods, D.:
The tile assembly model is intrinsically universal. In: Proceedings of 53rd IEEE
Symposium on Foundations of Computer Sciences (FOCS), pp. 302–310 (2012)

6. Hendricks, J., Padilla, J.E., Patitz, M.J., Rogers, T.A.: Signal transmission across
tile assemblies: 3D static tiles simulate active self-assembly by 2D signal-passing
tiles. In: Soloveichik, D., Yurke, B. (eds.) DNA 2013. LNCS, vol. 8141, pp. 90–104.
Springer, Heidelberg (2013)

7. Keenan, A., Schweller, R., Sherman, M., Zhong, X.: Fast arithmetic in algorithmic
self-assembly. Technical report, arXiv (2013)

8. Keenan, A., Schweller, R., Zhong, X.: Exponential replication of patterns in the
signal tile assembly model. In: Soloveichik, D., Yurke, B. (eds.) DNA 2013. LNCS,
vol. 8141, pp. 118–132. Springer, Heidelberg (2013)

9. Klavins, E.: Universal self-replication using graph grammars. In: Proceedings of In-
ternational Conference on MEMS, NANO, and Smart Systems, pp. 198–204 (2004)

10. Klavins, E., Ghrist, R., Lipsky, D.: Graph grammars for self assembling robotic sys-
tems. In: Proceedings of the International Conference on Robotics and Automation
(ICRA), vol. 5, pp. 5293–5300 (2004)

11. Majumder, U., LaBean, T.H., Reif, J.H.: Activatable tiles: Compact, robust pro-
grammable assembly and other applications. In: Garzon, M.H., Yan, H. (eds.) DNA
2007. LNCS, vol. 4848, pp. 15–25. Springer, Heidelberg (2008)

12. Padilla, J.E., Patitz, M.J., Pena, R., Schweller, R.T., Seeman, N.C., Sheline, R.,
Summers, S.M., Zhong, X.: Asynchronous signal passing for tile self-assembly: fuel
efficient computation and efficient assembly of shapes. In: Mauri, G., Dennunzio,
A., Manzoni, L., Porreca, A.E. (eds.) UCNC 2013. LNCS, vol. 7956, pp. 174–185.
Springer, Heidelberg (2013)

13. Rothemund, P.W.K., Winfree, E.: The program-size complexity of self-assembled
squares (extended abstract). In: Proceedings of 32nd ACM Symposium on Theory
of Computing (STOC), pp. 459–468 (2000)

14. Soloveichik, D., Winfree, E.: Complexity of self-assembled shapes. SIAM Journal
on Computing 36(6), 1544–1569 (2007)

15. Winfree, E.: Algorithmic Self-Assembly of DNA. PhD thesis, Caltech (1998)
16. Woods, D., Chen, H.-L., Goodfriend, S., Dabby, N., Winfree, E., Yin, P.: Active

self-assembly of algorithmic shapes and patterns in polylogarithmic time. In: Pro-
ceedings of 4th Conference on Innovations in Theoretical Compuer Science (ITCS),
pp. 353–354 (2013)

17. Woods, D., Chen, H.-L., Goodfriend, S., Dabby, N., Winfree, E., Yin, P.: Active
self-assembly of algorithmic shapes and patterns in polylogarithmic time. Technical
report, arXiv (2013)

Trace Reconstruction Revisited

Andrew McGregor1,�, Eric Price2, and Sofya Vorotnikova1

1 University of Massachusetts Amherst
{mcgregor,svorotni}@cs.umass.edu

2 IBM Almaden Research Center
ecprice@mit.edu

Abstract. The trace reconstruction problem is to reconstruct a string
x of length n given m random subsequences where each subsequence is
generated by deleting each character of x independently with probability
p. Two natural questions are a) how large must m be as a function
of n and p such that reconstruction is possible with high probability
and b) how can this reconstruction be performed efficiently. Existing
work considers the case when x is chosen uniformly at random and when
x is arbitrary. In this paper, we relate the complexity of both cases;
improve bounds by Holenstein et al. (SODA 2008) on the sufficient value
of m in both cases; and present a significantly simpler analysis for some
of the results proved by Viswanathan and Swaminathan (SODA 2008),
Kannan and McGregor (ISIT 2005), and Batu et al. (SODA 2004). In
particular, our work implies the first sub-polynomial upper bound (when
the alphabet is polylog n) and super-logarithmic lower bound on the
number of traces required when x is random and p is constant.

1 Introduction

The basic trace reconstruction problem is to infer a string x of length n from m
random subsequences y1, . . . , ym where each subsequence is generated by delet-
ing each character of x independently with probability p. The random subse-
quences are referred to as traces. Two natural questions are a) how many traces
(as a function of n and p) are required such that reconstruction is possible with
high probability and b) how can this reconstruction be performed efficiently.
Note that both questions are trivial if the entries of x were being substituted,
rather than deleted. In that case, if p < 1/2 is constant and m = O(log n) then
xi = mode(y1i , . . . , y

m
i) with high probability. However, when there are deletions,

there is no longer any clear way to align the subsequence and thereby decompose
the problem into inferring each entry of x independently.

The original motivation for the problem was from computational biology
where an active area of research is to reconstruct ancestral DNA sequences given
the DNA sequences of the descendants. The above abstraction is a simplification
of this problem in which we essentially restrict the possible mutations and assume
the descendants are independent. The abstraction serves to both demonstrate

� Supported by NSF CAREER Award CCF-0953754.

A.S. Schulz and D. Wagner (Eds.): ESA 2014, LNCS 8737, pp. 689–700, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

690 A. McGregor, E. Price, and S. Vorotnikova

why the original problem is hard and exposures our lack of good algorithmic
techniques for even basic inference problems. For example, for p = 1/3, it is
not at all obvious whether the minimal sufficient value m has a polylogarithmic,
polynomial, or exponential dependence on n.

Previous Work. The problem was introduced by Batu et al. [1] where they consid-
ered both an “average” case when x is chosen uniformly at random (in this case
the probability of successful reconstruction is over both the choice of x and the
deletions) and the case when x is chosen arbitrarily. In the average case, it was
shown that m = O(log n) is sufficient if p = O(1/ logn). This result was then ex-
tended to also handle insertions and substitutions by Kannan and McGregor [4]
and Viswanathan and Swaminathan [8]. For small constant deletion probability,
Holenstein et al. [3] showed that poly(n) traces was sufficient. While this last
result represented a major step forward, it leaves open the question whether
a polynomial number of traces is actually necessary or whether a logarithmic
number would suffice, as in the case when there was only substitutions. For re-
constructing an arbitrary x, Batu et al. [1] showed that O(n polylogn) traces
suffices if p = O(1/

√
n) and Holenstein et al. [3] showed that exp(

√
n ·polylogn)

traces suffices if p is any constant.
A separate line of work considers the related problem of determining the

value k such that the k-deck of any x uniquely determines x. The k-deck of x
is the number of times each string of length k appears as a subsequence of x.
Given a sufficient number of traces of length greater than k, we can compute
the k-deck and thereby determine x if k is large enough. Scott [7] proved that

k = O(
√
n logn) and Dudik and Schulman [2] showed that k = exp(Ω(log1/2 n)).

We will make use of the first of these results in the last section.

Our Results. Our main results in the average case are that a) a sub-polynomial
number of traces is sufficient if we consider a slightly larger alphabet and b)
a super-logarithmic number of traces is necessary. In particular, if x is chosen
uniformly from [σ]n where σ = Θ(log n) and p is a small constant then

m = exp(
√

logn · poly(log logn))

traces are sufficient which contrasts with the bound m = exp(O(log n)) that
was shown by Holenstein et al. for the binary case. We prove this result by
establishing an almost tight relationship between the complexity in the average
case to the complexity in the worst case. To do this, we first present a significantly
simpler proof of the results of Batu et al. [1] and Viswanathan and Swaminathan
[8]. It is then possible to extend the alternative approach to be robust to deletions
that occur with constant probability.

In the case of arbitrary strings (binary or otherwise), we show that m =
exp(

√
n · polylogn) traces are sufficient for all p ≤ 1 − c/

√
n/ logn for some

constant c > 0. This result improves upon the other result by Holenstein et al.
The previous result showed that the same number of traces were sufficient when
the traces are random subsequences of length Θ(n). The new result shows that
reconstruction is still possible even if the traces are only of length Θ(

√
n logn).

Trace Reconstruction Revisited 691

2 Preliminaries and Terminology

Given a string x1x2 . . . xn ∈ [σ]n, a trace generated with deletion probability p
is a random subsequence of x, y = xi1xi2xi3 . . . where i1 < i2 < i3 < . . . and
each i ∈ [n] is present in the set {i1, i2, . . .} independently with probability 1−p.
It will sometimes be helpful to refer to the trace y as being received when x
is transmitted. We are interested in whether it is possible to infer x with high
probability from multiple independently traces y1, y2, . . . , ym.

We define f(n, p, σ) to be the smallest value of m such that for any string
x ∈ [σ]n, m traces are sufficient to reconstruct x with high probability1. Define
g(n, p, σ) to be the smallest value of m such that for a random string x ∈R [σ]n, m
traces are sufficient to reconstruct x with high probability where the probability
is taken over both the randomness of x and the generation of the traces. For
example, existing results show that for small constant c > 0:

g(n, p, 2) =

{
O(log n) if p ≤ c/ logn

poly n if p ≤ c
.

We present a simple proof of the first part of this result and then prove that
g(n, p, σ) is sub-polynomial for small constant values of p if σ = Ω(log n). To
prove this result we show that for sufficiently large σ, f(logn, p, σ) ≈ g(n, p, σ).
Lastly, we prove f(n, p, 2) = exp(

√
n polylogn) for all p ≤ 1 − O(1/

√
n/ logn)

whereas it was previously only known for constant p.
Note that any reconstruction algorithm for binary strings can be extended to

a larger alphabet of size σ while increasing the number of traces by a factor of
O(log σ). The following simple lemma includes the necessary details.

Lemma 1. f(n, p, σ) = O(log σ)f(n, p, 2). If m traces suffice to reconstruct a
random string in {0, 1}n with probability 1 − δ, then m traces also suffice to
reconstruct a random string in [σ]n with probability 1 −O(δ log σ).

Proof. Suppose there exists an algorithm for arbitrary binary sequence recon-
struction that uses m traces and has failure probability at most δ. By repeating
the algorithm O(log σ) times and taking the modal answer we may reduce the
failure probability to δ/

(
σ
2

)
at the expense of increasing the number of traces by

a factor O(log σ). We will use the resulting algorithm to reconstruct a sequence
x from a larger alphabet as follows. For each pair i, j ∈ [σ], if we delete all occur-
rences of other characters in the traces then we can reconstruct the subsequence
xi,j of x consisting of i’s and j’s. By the union bound we can do this for all pairs
with probability of failure at most δ. For the resulting subsequences it is possible
to construct x, e.g., we can learn the position of the kth j in x by summing over
i the number of occurrences of i’s before the kth j in xi,j .

The same approach works to prove the bound for random strings except that
since the failure probability in this case is taken over both the randomness of
the initial string and the traces, we can’t first boost the probability of success.

��
1 That is, probability at least 1− 1/poly(n)

692 A. McGregor, E. Price, and S. Vorotnikova

Notation. We denote the Hamming distance between two strings u, v by Δ(u, v) =
|{i : ui �= vi}|. We write e ∈R S to denote that the element e is chosen uniformly
at random from the set S. A t-substring of x is a string consisting of t consecutive
characters of x. Given a substring w of a trace, we define the pre-image of w, to
be the range of indices of x under consideration when w was generated, e.g.,

w = xijxij+1 . . . xik and I(w) = {ij, ij + 1, ij + 2, . . . , ik} .

We say substrings u, v of two different traces overlap if I(u)∩ I(v) �= ∅. Lastly, we
use the notation x[a,b] to denote the substring xaxa+1 . . . , xb. Let Bn,p denote the
binomial distribution with n trials and probability p.

3 Average Case Reconstruction

In this section we assume that the original string x is chosen uniformly at random
from the set [σ]n. We first present a simpler approach to reconstruction when the
deletion probability is O(1/ logn). Previous approaches were generally based on
determining the characters of x from left to right, e.g., trying to maintain pointers
to corresponding characters in the different traces and using the majority to
determine the next character of x. While the resulting algorithms were relatively
straight-forward, the analysis was rather involved.

In contrast, our approach is based on finding all sufficiently-long substrings
of x independently and the analysis for our approach is significantly shorter and
intuitive. While this simplicity is appealing in its own right, it also allows us
to generalize the algorithm in the following section and prove a new result in
the case of constant deletion probability. We start with a simple lemma about
random binary strings.

Lemma 2. With high probability, every pair of t-substrings of a random se-
quence x ∈ {0, 1}n differ in at least t/3 positions if t > 94 lnn.

Proof. Consider two arbitrary substrings u = xi . . . xi+t−2 and v = xj . . . xj+t−2.
Let z ∈ {0, 1}t be defined by zk = xi+k−1 ⊕ xj+k−1. Note that Δ(u, v) =

∑
k zk

and that bits of zi are fully independent. Hence, E [
∑

k zk] = t/2 and by an
application of the Chernoff bound, Pr [

∑
k zk ≤ t/3] ≤ exp(−t/24). Therefore,

if t > 94 lnn, then Pr [Δ(u, v) ≤ t/3] ≤ 1/n4. Applying the union bound over
all
(
n
2

)
choices for substrings u and v establishes that the Hamming distance

between all pairs is at least t/3 with probability at least 1 − 1/n2. ��

3.1 Warmup: Inverse Logarithmic Deletion Probability

In this section we present a simple proof of the results by Batu et al. [1] when
p = O(1/ logn). For the rest of the section we let the deletion probability be
p ≤ c1/logn, number of traces be m = c2 logn for constants c1, c2 > 0.

Trace Reconstruction Revisited 693

Basic Idea and Algorithm. The idea behind the approach is simple and intu-
itive. For t = c3 logn where c3 is some sufficiently large constant, the following
statements hold with high probability:

1. The set of all t-substrings of a random string x, uniquely defines x.
2. w is a t-substring of x iff w is a t-substring of at least 3/4 of the traces.

Therefore, it is sufficient to check each t-substring of each trace to see whether
it appears in at least 3/4 of all the traces. The next lemma establishes the first
statement.

Lemma 3. The set of t-substrings of x ∈R [σ]n uniquely define x whp.

Proof. If all (t− 1)-substrings of x are unique, then for a t-substring w starting
at index i in x, there is a unique t-substrings starting at i+ 1. By repeating this
process, we can recover the original string x. The fact that all (t− 1)-substrings
are unique with high probability follows from Lemma 2. ��

The next two lemmas establish the if-and-only-if of the second bullet point.

Lemma 4. Every 4t-substring of x passes the test with high probability. In par-
ticular, none of the characters of any 4t-substring are deleted in at least 3m/4
of the traces.

Proof. Let w be a 4t-substring of x. Let F be the number of traces where
w appears. The probability that w appears in a particular trace is at least
(1 − p)4t > 1 − 4pt > 7/8 if pt = c1c3 < 1/32. Hence, E [F] > 7m/8 and
Pr [F ≤ 3m/4] < e−m/168 by an application of the Chernoff bound. If m >
2 · 168 lnn, this probability is at most 1/n2. ��
Lemma 5. Any t-string that passes the test is a t-substring of x whp.

Proof. We start with two simple claims that each hold with high probability:

1. For any t-substrings w and v of different traces, if w = v then w and v have
overlapping pre-images. This follows because the probability that two non-
overlapping t-substrings are equal is 1/2t by considering the randomness of x.
There are less than (mn)2 pairs of t-substrings and hence the claim doesn’t
hold with probability at most (mn)2/2t ≤ 1/n2 if t > 4 logn+2 log(c2 logn).

2. The pre-image of any t-substring w of a trace has length at most 2t. The
follows because the probability that more than half of the characters in
a 2t-substring of x are deleted is at most exp(−t/12) by an application
of the Chernoff bound. Since there are at most mn2 such sequences, the
claim doesn’t hold with probability at most mn2 exp(−t/12) ≤ 1/n2 if t >
48 lnn + 48 ln(c2 logn).

Suppose w equals the substrings w1, w2, . . . , wh in the other traces for h ≥
3m/4−1. It follows from the above claims that the pre-images ofw,w1, w2, . . . , wh

are contained in a contiguous region of x of size 4t. However, by Lemma 4 we know
the corresponding substring of x was transmitted with deletions in at most m/4
of the traces. Therefore, at least h − m/4 > 1 of the substrings w1, w2, . . . , wh

correspond exactly to a t-strings of x. Hence w equals a substrings of x. ��

694 A. McGregor, E. Price, and S. Vorotnikova

Insertions, Deletions, and Substitutions. Viswanathan and Swaminathan
[8] extended the above result to handle the case where, in addition to deletions,
each character is substituted by a random character with probability α and
random characters are inserted with probability q. Specifically, each character
xi is transformed independently as follows:

g(xi) =

⎧⎨⎩
Sxi with probability 1 − p− α(1 − p)
Sc with probability α(1 − p)
S with probability p

where c ∈R [σ], S ∈R [σ]k and k is a random variable distributed as a Geometric
random variable with parameter 1 − q. In particular,

Pr [g(xi) = xi] ≥ (1 − p− α(1 − p))(1 − q) ,

which is 1 − α − o(1) if p, q = o(1). In this section we present a simple proof
of Viswanathan and Swaminathan’s result that O(log n) traces are sufficient for
reconstruction if p, q < c/ logn and α < c for some sufficiently small constant c.

Basic Idea and Algorithm. We extend the substring test as follows: w is a t-
substring of x iff for some t-substring w′ of a trace, there exists t-substrings
w1, . . . w3m/4 in different traces such that Δ(w′, wi) ≤ 3αt for all i ∈ [3m/4] and

w = average(w1, . . . , w3m/4)

where average is taking the mode of each of the t character positions.

Lemma 6. Every t-substring of x passes the test with high probability.

Proof. Let w be an arbitrary t-substring of x and let w′ = g(w) be the result-
ing substring in some specific trace. In what follows we assume the constant
c governing the deletion and insertion probabilities is sufficiently small. The
probability no insertions or deletions occurred during the transmission of w is
(1− q−p+pq)t ≥ 6/7 and by an application of the Chernoff bound, the number
of substitutions is at most 3αt/2. Hence, by a further application of the Chernoff
bound there are at least 5m/6 traces that contain a t-substring whose Hamming
distance is at most 3αt/2 from w. The Hamming distance between these traces
is at most 3αt by the triangle inequality. Lastly if these t-substrings are averaged
character-wise then the resulting string equals w because with high probability
each character of w is flipped in at most 1/3 of the transmissions. ��

Lemma 7. Every t-string that passes the test is a t-substring of x whp.

Proof. Suppose a trace contains a t-substring w′ such that for some h ≥ 3m/4,
there exists w1, . . . wh in different traces such that Δ(w′, wi) ≤ 3αt < t/3 for
sufficiently small α. We infer that each wi overlaps with w′ since otherwise
wi and w′ are random strings and will differ in at least t/3 places with high
probability. Hence, each wi comes from substring x′ of x of length 4t. When

Trace Reconstruction Revisited 695

x′ was transmitted, it was transmitted without any insertions or deletions in
at least of 9/10 of the traces with high probability. Hence, all but at most
m/10 of the wi resulted from transmission with no insertions or deletions. But
appealing to Lemma 2 we deduce that these wi actually correspond to the same
t-substring of x; otherwise there would be a pair of different t-substrings of x
that were sufficiently similar that after bits were flipped with only probability α
then the strings would be closer than 6αt apart. Hence, when averaging w1, . . . wh

character-wise at most a 2α+(m/10)/h ≤ 2α+2/15 < 1/2 fraction of characters
will not be correct. Hence, the majority will be correct. ��

3.2 Constant Deletion Probability

In this section we again restrict our attention to the deletion case but now
consider p to be a small constant. In the previous two results, the crucial step
was being able to identify t-substrings in different traces that were overlapping.
Initially, it was sufficient to look for identical t-substrings but then we had to
relax this to finding pairs of substrings that were close in Hamming distance. The
main idea in this section is the observation that it is possible to find overlapping t-
substrings by computing the length of the longest common subsequence between
the substrings.

Lemma 8. If t = c logn for some large constant c > 0, the following claims
hold with high probability:

– For any two traces y and y′ and any t-substring w in y, there exists a t-
substring w′ in y′ such that lcs(w,w′) ≥ 0.99t.

– For any non-overlapping t-substrings w and v in different traces lcs(w, v) <
0.99t.

Proof. For the first part of the lemma, note that the expected number of deletions
during the transmission of a t-substring of x is pt and by an application of the
Chernoff bound we may assume it is never larger than 2pt with high probability
if t is sufficiently large multiple of logn. Therefore, there are at least (1 − 2p)t
characters of some t-substring u of x in w. But any t-substring of y′ whose pre-
image covers u, will also have (1 − 2p)t characters of u. Let w′ be such a string.
Then, lcs(w,w′) ≥ (1 − 4p)t ≥ 0.99t for sufficiently small constant p.

To prove the second part of the lemma suppose w, v are non-overlapping
t-substrings. Because x is random and w, v are non-overlapping, w, v are inde-
pendent random strings. Therefore,

Pr [lcs(w, v) ≥ 0.99t] <

(
t

0.99t

)2

1/20.99t < 22tH(0.99)−0.99t < 2−0.8t

where H(p) = −p log p − (1 − p) log(1 − p). The first inequality follows by con-
sidering the

(
t

0.99t

)
subsequences of each segment that might be equal. ��

It is likely that the constants in the above lemma can be improved. However,
one of the main ingredients in the proof is determining the length of the longest
common subsequence of two random strings. Determining even the expected
length is a long standing open question (see, e.g., [5] and references therein).

696 A. McGregor, E. Price, and S. Vorotnikova

Reduction to Short Sequence Reconstruction. To prove the constant dele-
tion result, the strategy is to reduce the problem of reconstructing a random
x ∈R [σ]n to reconstructing O(n) arbitrary strings each of length O(log n). To
do this, we will have to assume that x is chosen randomly from a larger alphabet
σ = Θ(log n). It will then follow that

g(n, p, σ) ≤ f(O(log n), p, σ) = exp(
√

lognpoly(log logn)) ,

by appealing to the bounds on the function f established in the next section. To
establish this reduction we need the notion of a useful character.

Definition 1. We say a character xi from x is a useful character if:

1. The character was not deleted when generating the first trace.

2. xi �= xj for all |i− j| ≤ 8t, i.e., xi is locally unique.

The goal is to identify the occurrence of useful characters in the traces and
then determine with high probability which characters correspond to the same xi.
The next lemma establishes that the number of non-useful characters between
two consecutive useful characters is O(log n). Since each useful character will
occur in all but about a p fraction of the traces, there are roughly a (1 − p)2

fraction of traces that have any pair of consecutive useful characters. We then
use the substrings of the traces between these useful characters to reconstruct
the substring of x between the useful characters. We can then solve the sequence
reconstruction problem on these substrings.

Note that because there are O(n) substrings and each has length O(log n)
we now need a reconstruction algorithm that works for all strings (rather than
working for random strings with high probability). Note that the algorithm for
reconstruction of arbitrary strings presented in Section 4 can be assumed to
have exponentially small failure probability without any significant change in
the number of traces required (i.e., repeating the algorithm poly(n) times to
boost success probability is not a significant increase when the number of traces
is already super-polynomial). This is important since we need the failure prob-
ability on length O(log n) instances to be 1/ poly(n) since there are O(n/ logn)
such instances.

Lemma 9. With high probability, there exists a useful character in every r-
substring of x if r = 8t = 8c logn.

Proof. Consider an arbitrary r-substring x[i,i+r−1]. With high probability there
exists more than 2r/3 distinct characters in this substring if the alphabet is
sufficiently large. Of these, at most r/2 can occur twice or more. Hence, there
are at least r/6 characters that occur exactly once. Of these, (1 − p)r/6 > r/7
occur in the first trace in expectation and hence the probability that none of them
appear in the first trace is at most pr/7 < 1/n2 for sufficiently small constant p.

��

Trace Reconstruction Revisited 697

Algorithm. The algorithm for finding corresponding characters is as follows:

– For each character a in the first trace, consider the t-substring w1 of the first
trace centered at this character (or as close as possible in the case when is a
is near the start of end of the trace).

– Find Overlapping Substrings: Identify t-substrings of the other traces
w2, . . . , wm such that each satisfies lcs(w1, wi) ≥ 0.99t.

– Check Local Uniqueness: For each wi consider the 8t-substring w′
i of the same

trace centered at wi. If a occurs twice in any w′
i abort.

– Match: Otherwise, conclude that any occurrence of a in wi corresponds to
the same character of x.

The correctness of the algorithm follows from Lemma 8. Specifically, the
lemma implies that with high probability the pre-images of every wi are con-
tained in a contiguous set of at most 4t indices. However, this contiguous set is
a subset of the pre-image of each w′

i. Hence, if a occurs twice within the contigu-
ous set the algorithm will abort. Otherwise, all occurrences of a in the wi must
correspond to the same index.

Relationship between f and g. We conclude this section by showing that
the above relationship between f and g is almost tight.

Lemma 10. For any p, f(12 logσ n, p, σ) ≤ g(n, p, σ).

Proof. By definition, there exists a reconstruction algorithm A that recovers a
random n character string with high probability using g(n, p, 2) traces.

Given a set of traces of an unknown string x, it is easy to simulate an equal
number of traces of the concatenated string a|x|b for arbitrary strings a and b.
Given successful recovery of a|x|b, we can of course extract x.

Let B = 1
2 logσ n. To recover x ∈ [σ]B from a set of traces, we first uniformly

at random choose integers c, d ∈ {0, 1, . . . , n/B − 1} subject to c + d = n/B − 1.
We then choose a ∈ [σ]cB and b ∈ [σ]dB uniformly at random. We simulate the
traces of a|x|b, run A on the results, and extract x.

This succeeds whenever A successfully recovers a|x|b. Let μ be the uniformly
random distribution on [σ]n and μ′ be the distribution of a|x|b. Because A
succeeds with high probability on μ, it suffices to show that the total variation
distance between μ and μ′ is polynomially small.

By thinking of the n character string as n/B blocks of length B, another way
to draw from μ would be to (1) let k be drawn from Bn/B,1/σB , the binomial

random variable with n/B trials of probability 1/σB; (2) set k random blocks
to have value x; (3) set every other block independently to have a uniform
value other than x. One can draw from μ′ in the same way, but setting k =
1 +Bn/B−1,1/σB in the first step. Therefore the total variation distance between
μ and μ′ is at most the distance between Bn/B,1/σB and 1 + Bn/B−1,1/σB . This

is O(1/
√
n/(BσB)) < O(n−1/3), which is polynomially small. ��

698 A. McGregor, E. Price, and S. Vorotnikova

3.3 Lower Bound

In this section we prove the first super-logarithmic lower bound on the value of
g(n, p, 2) for constant p. To do this we introduce two specific binary strings of
length 2r where r = O(log n):

1. w ∈ {0, 1}2r is the all zero string expect for a single 1 at position r
2. w′ ∈ {0, 1}2r is the all zero string expect for a single 1 at position r + 1

The proof relies on the fact that distinguishing w and w′ with probability greater
than 1− δ requires Ω(r log(1/δ)) traces (this will be implied by Corollary 1) and
each of w and w′ occur nΩ(1) times in a random binary string of length n. The
intuition is then that δ needs to be inversely polynomial in n otherwise one of
the occurrences of w will be confused with an occurrence of w′ (or vice versa).
The following theorem formalizes this argument.

Theorem 1. g(n, p, 2) = Ω(log2 n) for constant p > 0.

Proof. Set the length of w and w′ to be B = c logn for some small constant
c, i.e., r = (c log n)/2. By Corollary 1, if m < c2 log2 n for sufficiently small
constant c2, then the total variation distance between (m traces of w) and (m
traces of w′) is less than 1 − 1/

√
n. Thus we can draw a set of m traces of a

uniformly random choice between w or w′ by choosing something independent
of that choice with probability 1/

√
n.

We partition our vector of length n into n/B blocks of length B. For a random
bit vector and sufficiently small c < 1/2 we have with high probability that more
than

√
n blocks will equal one of w and w′. Therefore the algorithm must succeed

with high probability on a random bit vector conditioned on having more than√
n blocks of value w or w′.
Now, the trace of a bit vector is just the concatenation of the trace of the

component blocks. We could sample a set of m traces by first deciding which
blocks are one of w or w′, then choosing for each such block whether it is w
or w′, then taking the m traces. The resulting set of m traces is independent
of block’s choice between w and w′ with probability 1/

√
n; hence with at least

1 − (1 − 1/
√
n)

√
n > 1/2 probability, the set of m traces will be independent

of the choice of at least one of the
√
n blocks of value w or w′. If this is true,

the algorithm can give the correct output with probability at most 1/2; hence
the algorithm can give the correct output with probability at most 3/4 overall.
Therefore we need m = Ω(log2 n) for correct recovery with high probability. ��

What remains is to prove Corollary 1. We make use of the Hellinger distance,
a convenient measure of distance between distributions. For two discrete distribu-
tion P = (p1, p2, p3, . . .) and Q = (q1, q2, q3, . . .), the squared Hellinger distance
between P and Q is defined as H2(P,Q) = 1

2

∑
i(
√
pi −

√
qi)

2 .
Hellinger distance has two nice properties: first, squared Hellinger distance is

subadditive over product measures, so the squared Hellinger distance between
(m samples of P) and (m samples of Q) is at most mH2(P,Q); and second, if
H(P,Q) = o(1) then the total variation distance between P and Q is o(1). Hence
if H(P,Q) ≤ ε, then it requires Ω(1/ε) samples to distinguish P and Q.

Trace Reconstruction Revisited 699

Lemma 11. For any deletion probability p = Ω(1), the squared Hellinger dis-
tance between the distribution of a trace of w and the distribution of a trace of
w′ is O(1/r).

Proof. The distribution of a trace of w is

Tr(w) ∼

⎧⎪⎪⎨⎪⎪⎩
0 . . . 0︸ ︷︷ ︸

B2r−1,1−p

with probability p

0 . . . 0︸ ︷︷ ︸
Br−1,1−p

1 0 . . . 0︸ ︷︷ ︸
Br,1−p

with probability 1 − p

while the distribution of a trace of w′ is the same, except swapping Br−1,p and
Br,p. Hence the squared Hellinger distance between the two traces is

H2(Tr(w),Tr(w′)) = (1 − p)H2 ((Br−1,1−p,Br,1−p), (Br,1−p,Br−1,1−p))

≤ 2(1 − p)H2(Br−1,1−p,Br,1−p) ≤ O(1/r) .

��

Corollary 1. Consider any r > 1, δ < 1, and deletion probability p = Ω(1). For
some small constant c > 0, the total variation distance between m = c2r log(1/δ)
traces of w and m traces of w′ is at most 1 − δ.

Proof. Let y1, . . . , ym be traces of w and z1, . . . , zm be traces of w′ for m =
c2r log(1/δ) and a sufficiently small constant c. We will show that the total
variation distance between (y1, . . . , ym) and (z1, . . . , zm) is less than 1 − δ.

We partition [m] into k groups of size cr, for k = c log(1/δ). Within each
group, by subadditivity of squared Hellinger distance and appealing to Lemma
11, we have that

H2((y1, . . . , ycr), (z1, . . . , zcr)) ≤ crH2(Tr(w),Tr(w′)) = O(c) < 1/10

for sufficiently small c. Then the total variation distance between (y1, . . . , ycr)
and (z1, . . . , zcr) is bounded by 2H((y1, . . . , ycr), (z1, . . . , zcr)) ≤ 2/3.

Hence we may sample (y1, . . . , ycr) and (z1, . . . , zcr) in such a way that the
two distributions are identical with probability at least 1/3. If we do this for
all k groups, we have that (y1, . . . , ym) ∼ (z1, . . . , zm) with probability at least
1/3k > 2δ for sufficiently small constant c. ��

4 Arbitrary String Reconstruction

In this last section, we consider the problem of reconstructing an arbitrary bi-
nary2 string x ∈ {0, 1}n from random subsequences of length Θ(

√
n logn) or

equivalently when the deletion probability of each bit is 1− c
√

log n/n for some
constant c. We prove the following result.

2 Recall that Lemma 1 shows that this result can be extended to the non-binary case.

700 A. McGregor, E. Price, and S. Vorotnikova

Theorem 2. f(n, p, 2) ≤ e
√
npolylogn if p ≤ 1 − c

√
log n
n for some constant

c > 0.

Our result uses the following combinatorial result by Scott [7]. For
i ∈ {1, 2, 3, . . .}, let ni be the number of length i subsequences of x that end
with a 1, i.e., ni =

∑n
j=1 xj

(
j−1
i−1

)
. Scott showed that if k ≥ (1 + o(1))

√
n logn,

then there exists a unique binary solution to the equation PxT = nT where
n = (n1, n2, . . . , nk) and P is the k × n matrix with Pij =

(
j−1
i−1

)
. The next

theorem follows immediately.

Theorem 3 (Scott [7]). {ni}i∈[k] uniquely define x if k ≥ (1 + o(1))
√
n logn.

Therefore it is sufficient to determine each ni. To do this is we pick a random
subsequence of length i from each of the m traces and let mi be the number of
them that end with a 1. We then estimate ni by ñi = mi

m

(
n
i

)
. The next lemma

shows that if m is sufficiently large then ni = ñi with high probability.

Lemma 12. If m ≥ 2n2i log(2n) then Pr [ni �= ñi] ≤ 1/n2.

Proof. First note that E [mi/m] = ni/
(
n
i

)
and that mi is the sum of independent

boolean trials. By applying the Chernoff bound,

Pr [|ñi − ni| ≥ 1] = Pr

[∣∣∣∣∣mi −
mni(

n
i

) ∣∣∣∣∣ ≥ m(
n
i

)] ≤ 2 exp

(
− m

3ni

(
n
i

)) < 2 exp
(−m

n2i

)
.

Hence, m > 2n2i log 2n ensures this probability is less than 1/n2. ��

Therefore, by an application of the union bound 2n2(1+o(1))
√
n logn traces are

sufficient to compute all the necessary ni with high probability.

References

1. Batu, T., Kannan, S., Khanna, S., McGregor, A.: Reconstructing strings from ran-
dom traces. In: ACM-SIAM Symposium on Discrete Algorithms, pp. 910–918 (2004)

2. Dud́ık, M., Schulman, L.J.: Reconstruction from subsequences. J. Comb. Theory,
Ser. A 103(2), 337–348 (2003)

3. Holenstein, T., Mitzenmacher, M., Panigrahy, R., Wieder, U.: Trace reconstruction
with constant deletion probability and related results. In: ACM-SIAM Symposium
on Discrete Algorithms, pp. 389–398 (2008)

4. Kannan, S., McGregor, A.: More on reconstructing strings from random traces:
Insertions and deletions. In: IEEE International Symposium on Information Theory,
pp. 297–301 (2005)

5. Lember, J., Matzinger, H.: Standard deviation of the longest common subsequence.
The Annals of Probability 37(3), 1192–1235 (2009)

6. Pollard, D.: Asymptopia (2000), http://www.stat.yale.edu/pollard/
7. Scott, A.D.: Reconstructing sequences. Discrete Mathematics 175(1-3), 231–238

(1997)
8. Viswanathan, K., Swaminathan, R.: Improved string reconstruction over insertion-

deletion channels. In: ACM-SIAM Symposium on Discrete Algorithms, pp. 399–408
(2008)

http://www.stat.yale.edu/pollard/

PReaCH: A Fast Lightweight Reachability Index

Using Pruning and Contraction Hierarchies

Florian Merz and Peter Sanders

Karlsruhe Institute of Technology, Karlsruhe, Germany
sanders@kit.edu, flomerz@gmail.com

Abstract. We develop the data structure PReaCH (for Pruned Reach-
ability Contraction Hierarchies) which supports reachability queries in a
directed graph. PReaCH adapts the contraction hierarchy speedup tech-
niques for shortest path queries to the reachability setting. The resulting
approach is surprisingly simple and guarantees linear space and near lin-
ear preprocessing time. Orthogonally to that, we improve existing prun-
ing techniques for the search by gathering more information from a single
DFS-traversal of the graph. In particular, we show that more classes of
node numberings can be used to obtain strong pruning information.

1 Introduction

Many applications are modelled using graphs of some kind. One of the most
fundamental questions one may ask about a graph is whether there is a path
between two given nodes. For example, in a network of papers with links ex-
pressing citations, one might ask whether one paper is based on another paper
in some, possibly indirect, way. Further applications include semantic networks /
RDF graphs, XML, and applications in bioinformatics networks such as protein-
protein interactions, metabolic networks, and gene regulatory networks.

Reachability queries can be answered in linear time using any kind of graph
exploration, e.g., by breadth first search. However, for many applications this is
too slow since a large number of queries has to be answered. Assuming that the
graph changes rarely, we can afford to do some preprocessing, i.e., we compute
a data structure I that helps to accelerate later queries. I can be viewed as an
index data structure. When comparing such preprocessing approaches one faces
a tradeoff between at least three criteria – preprocessing time, the space needed
for the index, and the query time. For example, the above query by BFS approach
has zero preprocessing costs yet requires linear query time. On the other hand,
precomputing all possible answers needs space quadratic in the number of nodes
but allows constant time queries. Clearly, compromises are relevant here.

Our starting point was to transfer the rapid recent progress on speedup tech-
niques for route planning to reachability indices. We settled on Contraction
Hierarchies (CHs) [4] because they are one of the most successful such tech-
niques and because we found an adaptation to the reachability problem with
surprisingly low preprocessing time. In Section 3 it turns out that Reachability

A.S. Schulz and D. Wagner (Eds.): ESA 2014, LNCS 8737, pp. 701–712, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

702 F. Merz and P. Sanders

Contraction Hierarchies (RCHs) are much simpler than shortest path CHs and
guarantee near linear preprocessing time and linear space consumption. During
preprocessing, RCHs just repeatedly remove nodes with in-degree or out-degree
zero. Edges incident to nodes with in-degree (out-degree) zero are marked for
forward (backward) exploration. Queries are based on bidirectional graph explo-
ration. Forward (backward) exploration only has to consider edges marked as
forward (backward) during preprocessing. This can lead to dramatic speedups
since the average branching factor of the graph exploration is halved. In contrast
to RCHs, shortest path CHs need to insert additional shortcut edges during con-
struction which may lead to quadratic space and cubic preprocessing for graphs
that do not have very pronounced hierarchical properties.

An equally important ingredient of PReaCH is a suite of heuristics for pruning
graph exploration during a query. We adopt and improve techniques from GRAIL
[12]: Topological levels are essentially a compressed form of a topological ordering.
When the level of a node v is larger or equal to the level of a node t then there
certainly is no path from v to t. This information can be used for both forward
and backward search and we can calculate different topological levels to allow
further pruning.

Further rules are derived from a DFS-numbering of the nodes. For each node
v, we identify two (full) ranges of DFS numbers of nodes that are reachable
from v and three (empty) ranges of DFS numbers that are not reachable from
v. During a query, full ranges can be used to stop the search completely while
the empty ranges can prune the search as in topological levels. All these ranges
can be derived from a single DFS traversal of the graph. In Section 4 we report
on extensive experiments showing that PReaCH performs very well.

Related Work

There has been intensive previous work on reachability indices so that we can
only shortly mention the most closely related results and refer to full paper
[8] and the master thesis of Florian Merz [7] for more details which also con-
tain proofs and further experiments. GRAIL [12] is the most successful previous
work that uses graph traversal for pruning search. At the cost of possibly more
expensive preprocessing, even faster queries are possible using hop-labelling tech-
niques which precompute subsets of reachable nodes for every node that have
the property that reachability testing can be reduced to intersecting these sets
[2,1,11]. Among those, we compare with PPL [11] and TF [1]. These comparisons
can also be used for “transitive” comparisons with very recent results that were
published after our experiments ([7]) were performed [9,5].

2 Preliminaries

Consider a directed graph G = (V,E). Let n = |V | and m = |E|. A reachability
query (s, t) asks whether there is a path from s to t – in symbols s → t. Queries
with result true/false are called positive/negative, respectively. We restrict our

A Fast Lightweight Reachability Index 703

attention to directed acyclic graphs (DAGs) because the reachability problem
can be reduced to DAGs by contracting strongly connected components.

The reachability problem can be solved by running breadth first search (BFS)
from s: When t is found, the BFS is aborted and true is returned. Otherwise,
false is returned once all nodes reachable from s are exhausted. Reachability
can also be tested using bidirectional BFS where BFS steps from s alternate with
BFS steps from t on the backward graph Ḡ = (V, Ē) with (u, v) ∈ Ē whenever
(v, u) ∈ E. When any node is reached from both sides, true is returned. When
either search space is exhausted, false is returned. In the worst case, bidirec-
tional BFS does twice the amount of work as unidirectional BFS and we also
have considerable space overhead because we have to store both outgoing edges
and incoming edges. However, in many positive queries and in negative queries
where the backward search space is much smaller than the forward search space,
we can be dramatically faster than unidirectional BFS.

Depth first search (DFS) explores the nodes of a graph in a recursive fashion:
There is an outer loop through the nodes looking for roots r for an exploration
of the unexplored nodes reachable from r. The recursive function explore(u)
inspects the outgoing edges (u, v) and recursively calls itself when v has not
been explored yet. DFS defines a spanning forest of the graph – one tree for
each considered root. Let φ(v) ∈ 1..n define the order in which the nodes are
explored by DFS.1 Note that φ is a preordering of the nodes in each tree of the
DFS forest. In particular, the nodes in a subtree T of the forest rooted at v
have numbers starting at φ(v) and ending at φ(v) + |T | − 1. Other works use a
preordering of the same tree also known as finishing times.

A third useful way to explore the nodes of a DAG are topological levels [12].
Sources of the graph, i.e., nodes v with out-degree zero have level L(v) = 0. The
remaining nodes have level L(v) = 1+max{L(u) : (u, v) ∈ E}. Similarly, we can
define backward topological levels based on sink nodes of the graph, i.e., nodes
with in-degree zero.

3 The PReaCH Reachability Index

Reachability Contraction Hierarchies. In general, a Reachability Contraction Hi-
erarchy (RCH) can be defined based on any numbering order : V → 1..n. We
successively contract nodes with increasing order (v). Contracting node v means
removing it from the graph and possibly inserting new edges such that the reach-
ability relation in the new graph is the same as in the previous graph, i.e., if
the graph contains a path 〈u, v, w〉 and after removing v, w would no longer be
reachable from u, we have to insert a new shortcut edge (u,w). The query algo-
rithm does not use the contracted versions of the graph but only the ordering
and the shortcuts. This algorithm is based on the observation that in an RCH
it suffices to look at “up-down” paths:

1 Throughout this paper a..b is a shorthand for {a, . . . , b}.

704 F. Merz and P. Sanders

Theorem 1. In a graph G, s → t if and only if in an RCH G′ obtained from
G there is a path of the form 〈s = u1, . . . , uk = v = w1, . . . , w� = t〉 such that
order (u1) < · · · < order (uk) and order (w1) > · · · > order (w�).

Hence, a query can be implemented by a variant of the bidirectional BFS from
Section 2 where both searches only look at adjacent nodes with larger order -value
than the current node. A further modification is that now both search spaces
must be exhausted in order to safely return false.

We now exploit that any DAG contains source nodes (with in-degree zero) and
sink nodes (with out-degree zero). Contracting such a node v never requires the
insertion of shortcuts because shortcuts always bridge paths of the form 〈u, v, w〉
but such paths cannot exist because v either lacks incoming or outcoming edges.
Hence from now on we restrict the considered orderings such that they only
contract source or sink nodes. This implies a huge simplification and acceleration
of preprocessing compared to general RCHs. In particular, it suffices to use a
static graph data structure and we get linear time preprocessing except perhaps
for deciding which source or sink nodes should be contracted next. In contrast,
a general CH might have to insert a quadratic number of shortcuts and indeed
this is a significant limitation for computing shortest path CHs for graphs with
a less pronounced hierarchy than road networks. In other words, RCHs have a
much wider applicability and robustness than shortest path CHs.

There are still many ways to define an RCH ordering. We use the total de-
gree (in-degree plus out-degree) of the nodes in the input graph for deciding in
which order to contract source and sink nodes, i.e., nodes with smallest degree
are contracted first. The ordering is computed on-line – a priority queue holds
the source and sink nodes of the current graph using their degree in the input
graph as priority. In each iteration, a lowest priority node v is contracted. The
idea behind our priority function is to delay contraction of high degree nodes
and thus to limit the branching factor of the resulting query search spaces. Since
no shortcuts are needed, the contraction process degenerates to a kind of graph
traversal – a contracted node is not really removed but just marked as con-
tracted and the degrees of its neighbors are decremented. Those nodes which
become sources or sinks are inserted into the priority queue. Note that only 2n
priority queue operations are performed. In particular, no decrease key opera-
tions such as in Dijkstra’s shortest path algorithm are needed. The running time
of this algorithm is “near linear” in several senses. Using a comparison based
priority queue, the running time becomes O(m + n logn) with a quite small con-
stant in front of the n logn term. In theory, we could use faster integer priority
queues, for example van-Emde Boas trees [10,6,3] which would yield running
time O(m + n log logn).

Considering the RCH query algorithm, we can partition the edge set into two
disjoint sets: edges (u, v) with order(u) < order (v) will only be considered by the
forward search and the remaining ones only in the backward search. We organize
the graph data structure in such a way that forward and backward search can
directly access the edges they need. This implies that each edge is stored only

A Fast Lightweight Reachability Index 705

s

t

21

3

4 5 6

7

8

91314

15
10

11

12

16

17

Fig. 1. Example RCH. Edges in the forward search space are light green and those in
the backward search space are dark blue. The search spaces for a query from s to t are
circled. Node labels specify the node ordering.

once while ordinary bidirectional search requires us to store each edge twice.
Hence, RCHs save a considerable amount of space.

Figure 1 gives an example graph marking the forward and backward edges
and the search spaces for an example s-t query.

Pruning Based on Topological Levels. The central observation in [12] on topo-
logical levels is very simple:

Lemma 1. ∀u �= v ∈ V : L(u) ≥ L(v) ⇒ u �→ v .

We can apply Lemma 1 to v and t whenever we consider to explore a node
v in the forward search. Analogously, we can apply it to s and v whenever we
consider a node v in the backward search. Furthermore, we can apply the same
reasoning to backward topological levels.

Pruning Based on Node Numbering. Consider a numbering f : V → 1..n of the
nodes. One fairly general idea is to exploit the properties of f in order to store a
compressed, approximate representation of the set of nodes reachable from each
node. We aim for a rather rough approximation that can be computed in linear
time and space for the entire graph and where we can test in constant time
whether a node is in this approximated set. By applying this test everywhere
during a query, we can nevertheless obtain a significant amount of improvement.
More concretely, we will store a constant number of ranges of node numbers
that are either empty or full. When the destination node t is in an empty range,
the search does not have to continue there. When t is in a full range, the entire
search can be stopped with a positive result. Note the asymmetry between these
two cases. For positive queries, a positive test result has a much bigger potential
for improvement. As for topological levels, we only describe the case for forward
search. For backward search, the same reasoning is applied on the backward
graph.

In most previous work this approach is only used for finishing time with re-
spect to a DFS. For example, the conference version of GRAIL stores a single
range of finishing times that must contain the target node. In a later version

706 F. Merz and P. Sanders

empty
full full

1

empty empty

φ φ̂ nφgapφmin φ(ptree) φ̂(ptree)

v

ptreeDFS
numbering

(v) omitted

Fig. 2. Full and empty intervals derived from a DFS ordering φ. Shaded triangles
indicate subtrees of the DFS tree.

GRAIL adds a positive range based on DFS numbering. GRAIL achieves addi-
tional pruning by working with several DFS searches. In [9] a method is explained
to derive a tunable amount of information from DFS finishing times. We explain
how to extract several interesting intervals from a single DFS numbering, obvi-
ating the need to compute and store finishing times.

Let φ(v) denote the DFS number of node v, and φ̂(v) the largest DFS number
of a node in the subtree of the DFS tree rooted at v. The properties of DFS
ensure that the nodes in range(v):= φ(v)..φ̂(v) are all reachable from v (they
form the subtree of the DFS tree which is rooted at v) and that no nodes with

DFS number exceeding φ̂(v) is reachable from v. Only this property of DFS
numbering is already used in GRAIL [12]:

Lemma 2. ∀v, t ∈ V : φ(t) ∈ range(v) ⇒ v → t .

However, we also immediately get the following negative range:

Lemma 3. ∀v, t ∈ V : φ(t) > φ̂(v) ⇒ v �→ t .

Indeed, for any node w with v → w, range(w) yields a range that we can use
for positive pruning. We propose to actually compute and store the node outside
range(v) with the largest such range (or ⊥ if no such node exists). It turns out
this can be done while computing the DFS numbering.

Lemma 4. For any v ∈ V , consider the node w = ptree(v) with v → w and
w �∈ range(v) which maximizes |range(w)|. When DFS on v finishes, w can be
computed as w:= maxind {|range(ptree(u))| : (v, u) ∈ E ∧ ptree(u) �= ⊥}∪
{|range(u)| : (v, u) ∈ E ∧ φ(u) < φ(v)}.

Similarly, we can obtain information that yields the empty interval to the left
of any node reachable from v.

Lemma 5. For any v ∈ V , let φmin(v) denote the smallest DFS number of a
node reachable from v. When DFS on v finishes, φmin(v) can be computed as

φmin(v):= min {φmin(w) : (v, w) ∈ E} ∪ {φ(v)} .

A Fast Lightweight Reachability Index 707

Finally, we compute the following empty range just to the left of v;

Lemma 6. When DFS finishes for v, define

φgap(v):= max
{
φ̂(w) : (v, w) ∈ E ∧ φ(w) < φ(v)

}
∪ {φgap(w) : (v, w) ∈ E}.

Then φgap(v) + 1..φ(v) is an empty range.

Figure 2 summarizes lemmas 1-6.
There are many ways to define a DFS ordering: We are free to choose the order

in which we scan the nodes for starting recursive exploration and we can choose
the order in which we inspect edges leaving a node being explored. Indeed, we
could compute several DFS orderings and use all of them for pruning searches.
Our current implementation uses only a single ordering thus minimizing prepro-
cessing time and space. We do not have very strong heuristics for finding good
orderings but there is one heuristics that seems to be useful: Make sure that
most nodes are in a small number of trees because this leads to large positive
intervals. It therefore makes sense to only uses sources of the graph as tree roots.
In addition, we order the sources by the number of nodes reached from them
during the search for topological levels.

4 Experiments

All experiments have been performed using a single core of an Intel Xeon X5550
running at 2.67GHz with 8MB Level 3 cache, 256kB Level 2 cache and 48GB
of DDR3 RAM. The system ran Ubuntu 12.04.2 using a Linux kernel 3.5. The
code has been compiled using gcc 4.8.2 with optimization level O3.

As far as sensible, we adopt instances and measurement conventions from
previous work to improve comparability. In the tables, best values are bold. K
and M are shorthands for 000 and 000 000, respectively.

4.1 Instances

We use graphs of five categories, largely adopted from [12,1]. Table 1 summarizes
their properties. In addition we have added Kronecker graphs as a family of
graphs that have become a standard in benchmarking graph algorithms and can
be generated with arbitrary size. Besides the number of nodes and edges we give
a number of further important parameters. We see that the edge density m/n is
very small (even close to one) for many instances. We will see that the graphs
with larger m/n can be much more difficult to handle. Another column gives the
length d of the longest path which turns out to be fairly small for all instances
except the Kronecker graphs. Finally, we indicate the fraction of positive queries
in a random sample of 100 000 queries. It turns out that this fraction is close
to zero for most instances. Since an application is not guaranteed to have the
same small rate of positive queries, we explicitly use specially generated positive
query instances in our experiments. Most experiments average times for 100 000
s-t reachability queries. We distinguish between positive and negative queries
determined by picking a random s and then a random t (not) reachable from s.

708 F. Merz and P. Sanders

Table 1. Instances used for our experiments. d is the maximal path length.

Dataset Nodes Edges m/n d %pos

Kronecker

kron12 212 117K 28.60 279 28
kron17 217 5069K 38.68 1354 19
kron22 222 184M 43.95 5821 13

large random

rand100m5x 100M 500M 5 37 0.0
rand100m2x 100M 200M 2 21 0.0
rand10m10x 10M 100M 10 60 5.0
rand10m5x 10M 50M 5 35 0.0
rand10m2x 10M 20M 2 19 0.0
rand1m10x 1M 10M 10 59 10
rand1m5x 1M 5M 5 33 0.2
rand1m2x 1M 2M 2 19 0.0

large real

citeseer 694K 312K 0.45 13 0.0
citeseerx 6 540K 15M 2.30 59 0.2
cit-patents 3 775K 17M 4.38 32 0.1
go-uniprot 6 968K 35M 4.99 21 0.0
uniprot22m 1 595K 1 595K 1.00 4 0.0
uniprot100m 16M 16M 1.00 9 0.0
uniprot150m 25M 25M 1.00 10 0.0

small real dense

arxiv 6 000 67K 11.12 167 15
citeseer-sub 11K 44K 4.13 36 0.4
go 6 793 13K 1.97 16 0.2
pubmed 9 000 40K 4.45 19 0.7
yago 6 642 42K 6.38 13 0.2

small real sparse

agrocyc 13K 14K 1.07 16 0.1
amaze 3 710 3 947 1.06 16 17
anthra 12K 13K 1.07 16 0.1
ecoo 13K 14K 1.08 22 0.1
human 39K 40K 1.01 18 0.0
kegg 3 617 4 395 1.22 26 20
mtbrv 9 602 10K 1.09 22 0.2
nasa 5 605 6 538 1.17 35 0.6
vchocyc 9 491 10K 1.09 21 0.1
xmark 6 080 7 051 1.16 38 1.4

stanford

email-EuAll 231K 223K 0.97 7 5
p2p-Gnutella31 48K 55K 1.15 14 0.8
soc-LiveJournal1 971K 1 024K 1.05 24 21
web-Google 372K 518K 1.39 34 15
wiki-Talk 2 282K 2 312K 1.01 8 0.8

A Fast Lightweight Reachability Index 709

T
a
b
le

2
.
P
er
fo
rm

a
n
ce

o
f
P
R
ea
C
H

co
m
p
a
re
d
to

G
R
A
IL

[1
2
]
w
it
h
fi
v
e
D
F
S
n
u
m
b
er
in
g
s,
T
F
[1
],
a
n
d
P
P
L
[1
1
].
T
h
e
n
u
m
b
er
s
fo
r
P
R
ea
C
H

a
re

av
er
a
g
e
ex

ec
u
ti
o
n
ti
m
e
in

n
s
fo
r
q
u
er
ie
s
a
n
d
to
ta
l
co
n
st
ru
ct
io
n
ti
m
e
in

m
s.

T
h
e
o
th
er

n
u
m
b
er
s
a
re

sl
ow

d
ow

n
(o
r
sp
a
ce

ov
er
h
ea
d
fo
r

co
lu
m
n
s
“
in
d
”
)
re
la
ti
v
e
to

P
R
ea
C
H
.

P
R
ea
C
H

G
R
A
IL

5
T
F

P
P
L

+
−

co
n
st
r

+
−

co
n
st
r

+
−

co
n
st
r

in
d

+
−

co
n
st
r

in
d

ci
t-
P
a
te
n
ts

1
4
K

1
5
1
9

9
4
6
4

3
.8
8

3
.7
1

2
.3
1

0
.0
6

0
.3
5

2
2
.9
4

1
6
.7
0

0
.0
6

0
.2
0

2
6
.2
0

2
.3
0

ci
te
se
er

4
0
.0
7

3
5
.2
5

3
0
5

2
4
.3
2

3
.1
1

7
.2
8

2
.7
1

0
.2
6

2
.6
6

0
.3
8

3
.0
5

2
.8
1

4
.7
6

0
.1
9

ci
te
se
er
x

4
8
8

1
3
1

7
1
2
7

1
5
.8
0

3
.0
0

3
.0
2

2
.0
4

1
.4
2

1
1
.8
6

3
.7
2

0
.5
4

1
.3
0

5
.6
3

0
.2
8

g
o
-u
n
ip
ro
t

4
5
0

5
4
.5
9

6
0
9
7

3
.4
1

1
.9
3

5
.7
8

2
.5
0

0
.9
1

1
0
.3
7

0
.3
8

0
.5
6

3
.7
1

4
.3
0

0
.4
8

u
n
ip
ro
te
n
c-
2
2
m

3
6
.0
3

3
2
.5
5

4
0
2

2
2
.2
5

2
.7
6

1
3
.3
8

1
.7
9

1
.1
5

5
.5
3

0
.4
1

3
.1
5

3
.6
2

6
.8
9

0
.1
8

u
n
ip
ro
te
n
c-
1
0
0
m

5
3
.8
8

7
8
.4
7

6
0
7
2

2
1
.1
1

2
.3
0

1
2
.0
9

2
.6
0

1
.2
1

6
.5
6

0
.4
1

3
.5
6

2
.5
5

4
.7
4

0
.1
8

u
n
ip
ro
te
n
c-
1
5
0
m

6
0
.1
5

1
0
3

1
0
K

2
2
.3
2

2
.2
2

1
2
.0
3

3
.0
0

1
.1
2

5
.5
2

0
.4
1

3
.4
0

2
.1
6

4
.5
3

0
.1
8

a
rx
iv

4
0
8

1
8
1

6
.0
8

5
.5
2

3
.0
2

2
.8
2

0
.6
5

2
.3
8

1
1
2
8

2
3
.9
3

0
.1
4

0
.2
6

5
.8
3

0
.5
2

ci
te
se
er
-s
u
b

1
2
6

6
0
.0
6

6
.8
3

5
.1
5

2
.0
4

3
.2
3

0
.5
4

0
.6
6

1
5
.9
1

1
.3
0

0
.5
9

0
.7
7

5
.2
7

0
.3
5

g
o

4
9
.8
5

3
0
.5
9

2
.5
5

5
.5
0

1
.9
0

3
.8
1

0
.9
4

0
.9
4

1
5
.2
9

0
.6
7

1
.2
1

1
.2
2

5
.6
7

0
.4
4

p
u
b
m
ed

2
0
1

5
1
.2
4

5
.3
4

5
.7
5

2
.6
2

3
.3
1

0
.4
6

0
.7
9

5
2
.8
6

1
.4
5

0
.3
8

0
.8
8

4
.7
6

0
.4
0

y
a
g
o

4
4
.5
8

1
9
.3
9

3
.4
5

9
.7
6

2
.6
6

4
.0
6

2
.1
0

0
.8
7

1
6
.9
1

0
.6
8

1
.1
5

1
.9
6

4
.7
6

0
.3
6

a
g
ro
cy

c
1
2
.6
9

7
.7
1

2
.1
0

1
8
.8
2

4
.9
9

7
.6
3

1
7
.1
0

2
.0
9

1
5
.6
4

0
.7
6

2
.1
9

3
.8
2

8
.0
5

0
.2
4

a
m
a
ze

1
3
.0
2

8
.4
1

0
.7
5

1
9
.6
6

3
.2
7

6
.8
7

1
.3
1

1
.1
3

1
2
.6
9

0
.4
1

1
.9
5

2
.4
5

7
.0
5

0
.2
4

a
n
th
ra

1
2
.6
8

7
.1
6

2
.0
5

1
8
.3
0

5
.2
3

7
.7
0

1
3
.1
4

2
.1
8

2
2
.8
9

0
.7
1

2
.1
6

3
.9
5

8
.2
4

0
.2
4

ec
o
o

1
3
.8
0

7
.2
4

2
.0
7

1
7
.5
3

5
.4
4

7
.9
6

2
.7
3

2
.2
6

1
6
.8
4

0
.7
6

2
.0
0

4
.0
0

8
.1
1

0
.2
4

h
u
m
a
n

1
3
.3
4

7
.6
5

6
.8
2

1
7
.9
0

8
.4
7

1
0
.4
1

1
6
.8
1

1
.9
3

1
1
.4
7

0
.5
3

2
.1
8

5
.5
4

7
.8
1

0
.2
4

k
eg
g

1
3
.1
7

8
.9
5

0
.7
6

2
0
.1
8

3
.4
0

6
.4
8

1
.4
2

1
.1
8

1
3
.5
3

0
.4
1

2
.0
8

2
.5
4

1
4
.2
4

0
.2
4

m
tb
rv

1
2
.6
4

7
.2
4

1
.6
4

1
9
.1
1

4
.9
2

7
.2
7

1
.3
7

1
.9
0

1
2
.7
7

0
.4
7

2
.1
4

3
.7
4

8
.0
1

0
.2
4

n
a
sa

2
3
.0
1

2
1
.0
7

1
.3
8

1
3
.3
0

2
.2
7

4
.8
3

1
.8
5

1
.1
8

1
8
.9
3

0
.6
5

2
.0
9

1
.4
2

7
.9
2

0
.4
1

v
ch

o
cy

c
1
3
.2
4

7
.7
3

1
.5
7

1
7
.7
8

4
.6
0

7
.5
0

2
.5
6

2
.0
4

2
8
.4
5

0
.8
2

2
.0
2

3
.5
5

8
.1
8

0
.2
4

x
m
a
rk

4
1
.3
7

2
1
.7
1

1
.3
1

5
.9
1

2
.8
8

5
.6
5

1
.8
8

1
.1
8

2
0
.6
9

0
.6
5

1
.1
2

1
.4
3

1
0
.5
3

0
.4
1

em
a
il
-E

u
A
ll

3
1
.3
3

2
8
.4
1

7
2
.5
6

2
0
.8
9

3
.1
7

9
.0
1

2
.9
5

0
.5
5

2
.1
0

0
.3
5

2
.9
2

2
.5
6

5
.5
6

0
.1
8

p
2
p
-G

n
u
te
ll
a
3
1

3
4
.4
2

1
0
.0
5

1
4
.8
0

1
0
.9
5

6
.8
6

7
.2
8

1
.5
4

1
.6
8

3
.1
1

0
.4
1

1
.5
1

4
.4
3

4
.9
0

0
.2
4

so
c-
L
iv
eJ
o
u
rn
a
l1

5
0
.3
9

3
0
.0
2

3
2
3

1
5
.0
6

3
.4
5

8
.8
8

2
.1
8

1
.2
9

2
.0
0

0
.4
1

2
.7
3

2
.8
2

5
.3
9

0
.2
4

w
eb

-G
o
o
g
le

5
1
.8
1

4
2
.0
6

2
1
1

1
4
.2
1

3
.8
3

5
.2
5

1
.8
2

1
.1
1

2
.2
3

0
.4
1

2
.2
9

1
.8
8

4
.0
9

0
.2
4

w
ik
i-
T
a
lk

6
1
.5
3

3
4
.8
5

9
2
5

1
7
.1
3

2
.6
6

8
.9
1

2
.5
6

1
.1
8

1
.7
9

0
.4
1

2
.4
4

3
.4
9

4
.3
6

0
.1
8

710 F. Merz and P. Sanders

There are so many reachability indices that it is impossible to compare with
all of them directly. We have therefore focused on three recent techniques that
fare very well in comparison with others and seem to constitute the state of the
art. GRAIL [12] is particularly interesting since, similar to PReaCH, it has guar-
anteed linear preprocessing time and space. The authors recommend a variant
using data from five DFS traversals which we call GRAIL5 and which we use
in most comparisons. Incidentally, GRAIL5 also uses about the same amount
of space than PReaCH so that this additionally simplifies the analysis. In some
experiments we also look at the more light weight variant with a single DFS and
call it GRAIL.

TF [1] is a more recent labelling technique based on “folding” paths. It is
particularly, useful for graphs with small value of d in Table 1. PPL [11] is also
a labelling technique and very often achieves quite small labels, excellent query
time and good preprocessing time. In particular, it can profit from long paths
in the graph.

Table 2 summarizes the results giving absolute values for PReaCH and slow-
down factors relative to PReaCH for the other heuristics. PReaCH dominates
GRAIL5 with respect to both query time and preprocessing time (while using
about the same space). The advantage is particularly pronounced for positive
queries where the improvement is often more than an order of magnitude. The
significant advantage of PReaCH over GRAIL5 with respect to preprocessing
is surprising since both technique traverse the graph five times (for PReaCH:
RCHs, forward/backward topological levels, forward/backward DFS) and since
PReaCH has additional overhead for a priority queue. The reason may be im-
plementation details or deteriorating cache efficiency due to the randomization
of DFS used in GRAIL. Neither TF nor PPL dominate GRAIL5 because they
often need much higher preprocessing time.

Comparing PReaCH with TF and PPL is more complicated. With respect
to construction time, PReaCH is always the best algorithm – sometimes by or-
ders of magnitude. For the most difficult instances TF ran out of memory. For
random10M10x PPL was stopped after 9h. With respect to query time, PReaCH
achieves the best values for 43 out of 72 cases while TF ranks second with
16 best values closely followed by PPL with 13 best values. Basically, for easy
instances, PReaCH slightly outperforms the labeling techniques. For difficult
instances which the labeling techniques can handle at all, they significantly out-
perform PReaCH but at the cost of very high preprocessing time (and space
in case of TF). With respect to space consumption, PPL is the best in almost
all cases. However, for dense random graphs and for cit-Patents much more
space is needed than for PReaCH, i.e., PReaCH can still score for being more
predictable with respect to space consumption.

The recent result from [9] also guarantees efficient preprocessing and seems
to achieve better query performance than PReaCH in many cases. However, the
means to achieve this seem sufficiently orthogonal from ours that we believe that
a combination of both approaches could be the overall best. The results from

A Fast Lightweight Reachability Index 711

[5] seem to outperform PPL in many cases. However, as with all hop-labelling
techniques, preprocessing becomes very expensive for some difficult instances.

5 Conclusion

Reachability indices that guarantee linear space and near linear proprocessing
time have become more and more powerful in the recent years. The best imple-
mentations combine several techniques for pruning the search space. PReaCH
makes several contributions to this family of techniques: RCHs, using several
sets of topological levels, general techniques for deriving full and empty inter-
vals from node numberings, and particular instantiations of these ideas for DFS
numberings. PReaCH and related techniques can also be adapted to actually
compute paths for positive queries: RCH queries explicitly generate a path that,
due to the absence of shortcuts in our implementation, need not even be un-
packed. Pruning rules involving empty intervals and topological levels are no
problem since they are not applied on the path. The only problem are prun-
ing rules involving full intervals. Since our full intervals are fully inferred from a
neighbor, we can either store a pointer to that neighbor or traverse the neighbors
until the interval is found.

The constant factor in the space consumption of PReaCH might be too expen-
sive in some applications. However, we can derive very space efficient reachability
indices from PReaCH also. For example using a variant of RCHs, we only need to
store the graph itself plus a few bits telling where to split the edges stored with
a node between forward and backward search space. Except for the Kronecker
graphs, all the instances given in Table 1 need at most eight bits for representing
a topological level. Hence, with two bytes per node one can support pruning with
topological levels additionally.

Future Work

There are many opportunities for further improvements. Staying close to
PReaCH, we can try to trade time for space by using several DFS orderings
simultaneously for pruning the search. We could also derive more information
from a single DFS by adapting the methods developed in [9] to DFS numbers or
other node orderings. We can trade query time for preprocessing time by per-
forming several DFS searches (with random tie breaking) and only use the best
one for actually storing the index. Judging what “the best” is could be based on
performing queries for a random sample. The same idea can be applied to the
contraction hierarchy. More interesting would be more clever heuristics to find
good DFS-orderings and RCH-orderings. For example, for DFS we could better
approximate the tree sizes by actually performing complete DFS explorations
from all sources before deciding what the first tree is going to be. For RCH-
ordering, the simple, static priority function based on degree seems only like a
very first attempt. For example, CHs for route planning [4] use an estimate of
the (unpruned) search space size as an important term in the priority function.

712 F. Merz and P. Sanders

Besides compressing topological levels as mentioned above, we can also com-
press the data derived from DFS traversal. It suffices to store φ̂(v)−φ(v) rather

than φ̂(v) which will be small for most nodes. We could for example represent
only values between 0 and 254 directly using 255 as an escape value indicating
that the true value can be found in a small hash table. We have already men-
tioned that at the cost of an additional indirection, the values φ(ptree(v)) and

φ̂(ptree(v)) do not need to be stored when we store ptree(v). All these measures
combined would reduce the space requirement by about one third.

When scaling to even larger graphs, we would like to parallelize preprocessing.
A certain degree of ‘easy’ parallelization is available by computing the RCH,
topological levels and DFS based information independently. Moreover we can
perform multiple DFS – using all its information or only the one that works best.
For graphs with not too many topological levels, finding these levels can be done
by peeling them off in parallel. A similar strategy works for CHs (see also [4])
for route planning. There is also intensive work on finding SCCs in parallel. For
finding full intervals we could also use any preorder numbering of any spanning
forest of the graph, e.g., based on BFS. Only for the empty intervals we would
need a replacement for DFS with similarly useful properties.

References

1. Cheng, J., Huang, S., Wu, H., Fu, A.W.-C.: TF-Label: A topological-folding label-
ing scheme for reachability querying in a large graph (2013)

2. Cohen, E., Halperin, E., Kaplan, H., Zwick, U.: Reachability and distance queries
via 2-hop labels. SIAM Journal on Computing 32(5), 1338–1355 (2003)

3. Dementiev, R., Kettner, L., Mehnert, J., Sanders, P.: Engineering a sorted list
data structure for 32 bit keys. In: 6th Workshop on Algorithm Engineering &
Experiments, New Orleans (2004)

4. Geisberger, R., Sanders, P., Schultes, D., Vetter, C.: Exact routing in large road
networks using contraction hierarchies. Transp. Science 46(3), 388–404 (2012)

5. Jin, R., Wang, G.: Simple, fast, and scalable reachability oracle. Proc. VLDB En-
dow. 6(14), 1978–1989 (2013)

6. Mehlhorn, K., Näher, S.: Bounded ordered dictionaries in O(log logN) time and
O(n) space. Information Processing Letters 35(4), 183–189 (1990)

7. Merz, F.: Engineering an efficient reachability algorithm for directed graphs. Mas-
ter’s thesis, Kalsruhe Institute of Technology (2013)

8. Merz, F., Sanders, P.: PReaCH: A fast lightweight reachability index using pruning
and contraction hierarchies. Technical Report 1404.4465, arxiv (2014)

9. Seufert, S., Anand, A., Bedathur, S., Weikum, G.: Ferrari: Flexible and efficient
reachability range assignment for graph indexing. In: 29th International Conference
on Data Engineering (ICDE), pp. 1009–1020. IEEE (2013)

10. van Emde Boas, P.: Preserving order in a forest in less than logarithmic time.
Information Processing Letters 6(3), 80–82 (1977)

11. Yano, Y., Akiba, T., Iwata, Y., Yoshida, Y.: Fast and scalable reachability queries
on graphs by pruned labeling with landmarks and paths. In: 22nd Conf. on Infor-
mation and Knowledge Management (CIKM), pp. 1601–1606. ACM (2013)

12. Yıldırım, H., Chaoji, V., Zaki, M.J.: GRAIL: a scalable index for reachability
queries in very large graphs. VLDB Journal 21(4), 509–534 (2012)

Polynomial-Time Approximation Schemes

for Circle Packing Problems�

Flávio K. Miyazawa1, Lehilton L.C. Pedrosa1, Rafael C.S. Schouery1,
Maxim Sviridenko2, and Yoshiko Wakabayashi3

1 Institute of Computing, University of Campinas, Brazil
2 Yahoo! Labs, New York, NY

3 Institute of Mathematics and Statistics, University of São Paulo, Brazil

Abstract. We consider the problem of packing a set of circles into a
minimum number of unit square bins. We give an asymptotic approx-
imation scheme (APTAS) when we have resource augmentation in one
dimension, that is, we may use bins of height 1+γ, for some small γ > 0.
As a corollary, we also obtain an APTAS for the circle strip packing prob-
lem, whose objective is to pack a set of circles into a strip of unit width
and minimum height. These are the first approximation schemes for these
problems. Our algorithm is based on novel ideas of iteratively separating
small and large items, and may be extended to more general packing
problems. For example, we also obtain APTAS’s for the corresponding
problems of packing d-dimensional spheres under the Lp-norm.

1 Introduction

In the circle bin packing problem, we are given a list of circles C = {C1, . . . , Cn},
where circle Ci has radius ri ≤ 1/2, for 1 ≤ i ≤ n, and an unlimited number of
identical square bins of unit side. A packing is a non-overlapping arrangement of
circles (disks) into a set of bins, such that every circle is fully contained in a bin.
The objective is to find a packing of C into a minimum number of bins. In the
circle strip packing problem (or the circular open dimension packing problem),
the set of circles C must be packed in a strip of unit width and unbounded height,
and the objective is to obtain a packing of minimum height.

There are several results in the literature for packing problems involving cir-
cles, that are tackled using different methods, such as continuous and non-linear
systems, and discrete methods [6]. Demaine, Fekete, and Lang [11] proved that
it is NP-hard to decide whether a set of circles can be packed into a unit square,
or into an equilateral triangle. Therefore, the circle bin packing problem and the
circle strip packing problem are also NP-hard.

We are interested in polynomial-time approximation algorithms for the circle
bin packing and circle strip packing problems. As it is usual for packing problems,

� This work was partially supported by CNPq (grants 303987/2010-3, 306860/2010-4,
477203/2012-4, and 477692/2012-5), FAPESP (grants 2010/20710-4, 2013/02434-8,
2013/03447-6, and 2013/21744-8), and Project MaClinC of NUMEC at USP, Brazil.

A.S. Schulz and D. Wagner (Eds.): ESA 2014, LNCS 8737, pp. 713–724, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

714 F.K. Miyazawa et al.

the quality measure that we look for is the asymptotic performance ratio. Given
an algorithm A, and a problem instance I, we denote by A(I) the value of the
solution produced by A, and by OPT(I) the value of an optimum solution for I.
A family of algorithms {Aε} is an asymptotic polynomial-time approximation
scheme (APTAS) if, for every instance I, and every constant ε > 0, algorithm Aε

generates a solution with cost A(I) ≤ (1 + ε)OPT(I) + O(1).

Our results and techniques. In this paper, we give APTAS’s for both the circle bin
packing, and the circle strip packing. We consider the bin packing problem with
resource augmentation in one dimension, that is, we may use bins of unit width
and height 1 +γ, for some arbitrarily small γ > 0. To the best of our knowledge,
this is the first work to give approximation guarantees for these problems. Our
algorithm uses ideas that have appeared in the literature in several and new
interesting ways. As usual in the packing of rectangular items, our algorithm
distinguishes between “large” and “small” items. However, this distinction is
dynamic, that is, an item can be considered small in one iteration, but large in
a later one. There are two main novel ideas that differ from the approaches for
rectangle packing, and that are needed for the circle packing. First, instead of
packing large items using combinatorial brute-force algorithms, we reduce the
packing of large circles to the problem of solving a semi-algebraic system, that
can be solved with the aid of standard quantifier elimination algorithms. Second,
to pack small items, we cut the free space of previous packings in smaller bins,
and use the same algorithm for large items, recursively. We believe that our
new algorithm can serve as insight for other packing problems, and, indeed, we
present some possible generalizations.

Related works. In the literature of approximation algorithms, the majority of the
works consider the packing of simple items into larger recipients, such as rect-
angular bins and strips. Most of the works that give approximation guarantees
are interested in rectangular items or d-dimensional box. The packing problems
involving circles are mainly considered through heuristics, or numerical meth-
ods, and, to our knowledge, there is no approximation algorithm for the circle
bin packing or the circle strip packing problems. On the practical side, packing
problems have numerous applications, such as packaging of boxes in contain-
ers, or cutting of material. An application of circular packing is, for example,
obtaining a maximal coverage of radio towers in a geographical region [20].

The problem of finding the densest packing of equal circles into a square has
been largely investigated using many different optimization methods. For an ex-
tensive book on this problem, and corresponding approaches, see [20]. The case
of non-equal circles is considered in [13], that uses heuristics, such as genetic
algorithm, to pack circles in a rectangular container. The circle strip packing
has been considered using many approaches, such as branch-and-bound, meta-
heuristics, etc. For a broad list of algorithms for the circle strip packing, and
related circle packing problems, see [15] and references therein.

For the problem of packing rectangles into rectangular bins, there is a sequence
of algorithms [8,7,1,4] that leads to the recent 1.405-approximation by Bansal

Polynomial-Time Approximation Schemes for Circle Packing Problems 715

and Khan [4]. For the bin packing of d-dimensional cubes, Kohayakawa et al. [17]
showed an asymptotic ratio of 2 − (2/3)d, later improved to an APTAS by
Bansal et al. [2]. For a survey on bin packing, see [9]. The best bound for the
rectangle strip packing problem is an APTAS by Kenyon and Rémila [16]. For the
3-dimensional case, the first specialized algorithm for cubes has an asymptotic
ratio of 2.361 [19], and the best result is an APTAS due to Bansal et al. [3].

The remainder of this paper is organized as follows. In Section 2, we discuss
how to decide whether a set of n circles can all be packed in a rectangular
bin using algebraic quantifier elimination. In Section 3, we give approximation
algorithms for the case of “large” circles. In Section 4, we present an APTAS for
the circle bin packing problem, and for the circle strip packing problem. Also,
we comment on how the algorithm can be extended to more general problems,
such as packing of spheres. In Section 5, we conclude with some final remarks.

2 Packing through Algebraic Quantifier Elimination

In this section, we consider the following circle packing decision problem. We
are given numbers h,w ∈ Q+, and a set of n circles C = {C1, . . . , Cn}, where
circle Ci has radius ri, with 2ri ≤ min{w, h}, 1 ≤ i ≤ n. The objective is to
decide whether the circles can be packed in a bin of size w × h (of width w and
height h). In the case of a positive answer, a realization of the packing should also
be returned. More precisely, for each circle Ci, 1 ≤ i ≤ n, we want to find a point
(xi, yi) ∈ R2

+ that represents the center of Ci in a rectangle whose bottom-left
and top-right corners correspond to points (0, 0) and (w, h), respectively.

The circle packing decision problem can be equivalently formulated as deciding
whether there are real numbers xi, yi ∈ R+, 1 ≤ i ≤ n, that satisfy

(xi − xj)
2 + (yi − yj)

2 ≥ (ri + rj)
2 for 1 ≤ i < j ≤ n, (1)

ri ≤ xi ≤ w − ri for 1 ≤ i ≤ n, and (2)

ri ≤ yi ≤ h− ri for 1 ≤ i ≤ n. (3)

The set of constraints (1) guarantees that no two circles intersect, and the sets
of constraints (2) and (3) ensure that each circle has to be packed entirely in the
bin that expands from the origin (0, 0) to the point (w, h).

We observe that the set of solutions that satisfy (1)-(3) is a semi-algebraic set
in the field of the real numbers. Thus, the circle packing decision problem corre-
sponds to deciding whether this semi-algebraic set is empty. We also can rewrite
the constraints in (1)-(3) as fi(x1, y1, ..., xn, yn) ≥ 0, for 1 ≤ i ≤ s, where s is the
total number of constraints, and fi ∈ Q[x1, y1, ..., xn, yn] is a polynomial with
rational coefficients. Then, the circle packing problem is equivalent to deciding
the truth of the formula

(∃x1)(∃y1) . . . (∃xn)(∃yn)
∧s

i=0 fi(x1, y1, ..., xn, yn) ≥ 0. (4)

We can use any algorithm for the more general quantifier elimination problem
to decide this formula. There are several algorithms for this problem, such as the

716 F.K. Miyazawa et al.

algorithm of Tarski-Seidenberg Theorem [21], that is not elementary recursive,
or the Cylindrical Decomposition Algorithm [10], that is doubly exponential in
the number of variables. Since the formula corresponding to the circle packing
problem contains only one block of variables (of existential quantifiers), we can
use faster algorithms for the corresponding algebraic existential problem, such as
the algorithms of Grigor’ev and Vorobjov [14], or of Basu, Pollack, and Roy [5].

Sampling points of the solution. Any of the algorithms above receiving for-
mula (4) as input will return “true” if, and only if, there is some arrangement of
circles C in a bin of size w×h. When the answer is “true”, we are also interested
in a realization of such packing. The algorithms in [14,5] are based on critical
points, that is, they also return a finite set of points that meets every semi-
algebraic connected component of the semi-algebraic set. Thus, a realization of
the packing can be obtained by choosing one of such points (that is a point of a
connected component where all polynomials fi, 1 ≤ i ≤ s, are nonnegative).

Typically, a sample point is represented by a tuple (f(x), g0(x), . . . , gk(x)) of
k + 2 univariate polynomials with coefficients in Q, where k is the number of
variables, and the value of the ith variable is gi(x)/g0(x) evaluated at a real root
of f(x) = 0. Since a point in a semi-algebraic set could potentially be irrational,
we use the algorithm of Grigor’ev and Vorobjov [14], for which we have g0(x) = 1,
and thus an approximate rational solution of arbitrary precision can be readily
obtained. In particular, the algorithm given in [14] implies the following result.

Theorem 1. Let f1, ..., fs ∈ Q[x1, y1, ..., xn, yn] be polynomials with coefficients
of bit-size at most m, and maximum degree 2. There is an algorithm that decides
the truth of formula (4), with running time mO(1)sO(n2). In the case of affirma-
tive answer, then the algorithm also returns polynomials f, g1, h1, . . . , gn, hn ∈
Q[x] with coefficients of bit-size at most mO(1)sO(n), and maximum degree sO(n),
such that for a root x of f(x) = 0, the attribution x1 = g1(x), y1 = h1(x), ..., xn =
gn(x), yn = hn(x) is a realization of (4). Moreover, for any rational α > 0, we
can obtain x′

1, y
′
1, . . . , x

′
n, y

′
n ∈ Q, such that |x′

i − xi| ≤ α and |y′i − yi| ≤ α,

1 ≤ i ≤ n, with running time (log(1/α)m)O(1)sO(n2).

3 Approximate Bin Packing of Large Circles

In this section, we consider the special case of circle bin packing when the mini-
mum radius of a circle is at least a constant. For this case, the maximum number
of circles that fit in a bin is constant, so we can use the algorithm of Theorem 1
to decide whether a given set of circles can be packed in a bin in constant time.
Since Theorem 1 only gives us rational solutions that are close to real packings,
we start with the next definition to deal with approximate circle bin packings.

Definition 1. Let w, h be positive numbers, and C = {C1, . . . , Cn} be a set of
circles, such that each circle Ci, 1 ≤ i ≤ n, has radius ri, with 2ri ≤ min{w, h}.

Polynomial-Time Approximation Schemes for Circle Packing Problems 717

For a number ε ≥ 0, we say that a set of points (xi, yi), 1 ≤ i ≤ n, is an ε-packing
of C into a rectangular bin of width w and height h, if the following hold.√

(xi − xj)2 + (yi − yj)2 ≥ ri + rj − ε ≥ 0 for 1 ≤ i < j ≤ n, (5)

ri − ε ≤ xi ≤ w − ri + ε for 1 ≤ i ≤ n, and (6)

ri − ε ≤ yi ≤ h− ri + ε for 1 ≤ i ≤ n. (7)

We adopt the following strategy to fix intersections of an approximate bin
packing: (a) first we shift the x-coordinate of all circles that intersect the left
or right border until they are fully contained in the bin, (b) then we iteratively
lift each circle in order of the y-coordinate by an appropriate distance so that it
does not intersect circles considered previously. This leads to the next theorem.

Theorem 2. Given a set of circles C = {C1, . . . , Cn}, such that each circle Ci,
1 ≤ i ≤ n, has radius ri ∈ Q+, and 2ri ≤ min{w, h}, and a corresponding εh-
packing of C in a bin of width w and height h for some ε ∈ (0, 1], we can find a
packing of C in a bin of width w and height (1 + n

√
6ε)h in linear time.

Definition 2. Let w, h ∈ Q+ be positive numbers, and let C = {C1, . . . , Cn} be
a set of circles, such that each circle Ci, 1 ≤ i ≤ n, has radius ri ∈ Q+, and
2ri ≤ min{w, h}. We denote by OPTw×h(C) the minimum number of rectangular
bins of width w and height h that are necessary to pack C.

Now, we obtain an approximation algorithm for the bin packing of large cir-
cles, that is, assuming that the radius of each circle is greater than a given
constant. In this case, the maximum number of circles that fit in a bin is at
most a constant, M , so we can partition the set of circles into a small number
of groups with approximate sizes, and enumerate all patterns of groups with no
more than M circles. Then, we may apply the algorithm of Theorem 1 to list
which patterns correspond to feasible packings, and use integer programming in
fixed dimension to find out how many bins of each pattern are necessary to cover
all circles. Since a similar approach has already been used for bin packing [12],
and the following theorem uses analogous arguments, the proof is omitted.

Theorem 3. Let w, h ∈ Q+ be positive numbers, and let C = {C1, . . . , Cn} be
a set of circles, such that each circle Ci, 1 ≤ i ≤ n, has radius ri ∈ Q+, and
2ri ≤ min{w, h}. Assume that min1≤i≤n ri ≥ δ, for some constant δ. For any
constants ε, γ ∈ (0, 1], there is a polynomial-time algorithm that packs C into at
most (1 + ε)OPTw×h(C) rectangular bins of width w and height (1 + γ)h.

4 An Asymptotic PTAS for Circle Bin Packing

In this section, we consider the bin packing problem of circles of any size. The
main idea works as follows. First, we will use the algorithm from Section 3 and
obtain a packing of “large” circles into bins of the original size. Then, we consider
bins with a small fraction of the original size, and solve the problem of packing

718 F.K. Miyazawa et al.

the “small” circles in such bins recursively. To obtain a solution of the original
problem, we place each obtained small bin into the free space of the packing
obtained for large circles. The key idea is that, if the sizes of the small bins
are much smaller than the large circles, then the waste of space in the packing
of the large circles is proportional to a fraction of the area of the large circles.
Moreover, if the size of such small bin is also much larger than the small circles,
then restricting the packing of small circles to small bins does not increase much
the cost of a solution.

4.1 The Algorithm

In the following, if B is a circle or rectangle, then we denote by Area(B) the
area of B. Also, if D is a set, then Area(D) =

∑
B∈D Area(B). We give first a

formal description in Algorithm 1; an informal description is given thereafter.

Algorithm 1. Circle bin packing algorithm
Consider the parameters r and γ, such that r is a positive integer multiple of 3,

and γ a number in (0, 1]. The algorithm receives a set of circles C = {C1, . . . , Cn},
and numbers w, h, such that w ≤ h, and hr/w is an integer. Moreover, each circle
Ci, 1 ≤ i ≤ n, has radius ri ∈ Q+, with 2ri ≤ w. The algorithm returns a packing
of C into a set of bins of width w and height (1 + γ)h.

1. Let ε = 1/r;
2. For every integer i ≥ 0, define Gi = {Cj ∈ C : ε2iw ≥ 2rj > ε2(i+1)w};
3. For each 0 ≤ j < r, define Hj = {C ∈ Gi : i ≡ j (mod r)};
4. Find an integer t such that Area(Ht) ≤ εArea(C);
5. Place each circle of Ht into its bounding box, and pack them in separate

bins of width w and height (1 + γ)h using NFDH strategy [18];
6. For every integer j ≥ 0, define Sj = {C ∈ Gi : t+(j−1)r+1 ≤ i ≤ t+jr−1};
7. Define w0 = w, h0 = h and wj = hj = ε2(t+(j−1)r)+1w for every j ≥ 1;
8. Let F0 = ∅;
9. For every j ≥ 0:

(a) Use the algorithm of Theorem 3 to obtain a packing of circles Sj into
bins of width wj and height (1 + γ)hj . Let Pj be the set of such bins;

(b) Let Aj be a set of max{|Pj | − |Fj |, 0} new empty bins of width wj and
height (1 + γ)hj;

(c) Place each bin of Pj over one distinct bin of Fj ∪Aj ;
(d) Set Fj+1 = ∅, and Uj = ∅; (Uj is used only in the analysis)
(e) For each bin B of Fj ∪ Aj :

– Let V be the set of bins corresponding to the cells of the grid with
cells of width wj+1 and height (1 + γ)hj+1 over B;

– Add to Fj+1 all bins in V that do not intersect any circle of Sj .
– Add to Uj all bins in V that intersect a circle of Sj .

(f) If all circles are packed, go to step 10.
10. Place the bins A0, A1, . . . into the minimum number of bins of width w and

height (1 + γ)h.

Polynomial-Time Approximation Schemes for Circle Packing Problems 719

Ht :

S0: G0, . . . Gt−1 Gt

S1: Gt+1, Gt+2, . . . Gt+r−1 Gt+r

S2: Gt+r+1, Gt+r+2, . . . Gt+2r−1 Gt+2r

Sj : Gt+(j−1)r+1, Gt+jr+2, . . . Gt+jr−1 Gt+jr

...
...

Fig. 1. Partitioning of the set of circles

Notice that the assumption that hr/w is integer is without loss of generality,
since we could round up the height h0 otherwise. The algorithm partitions the
set of circles into sets Ht, S0, S1, . . . , as in Figure 1. For each j, we consider the
subproblem of packing the circles of Sj into bins of size wj × hj . The circles
in Sj are large when compared to bins of size wj × hj , and so we can use the
algorithm of Theorem 3. Notice that the bins considered in the next iteration
have size wj+1 × hj+1, and are much smaller than the circles of Sj . Also, since
the circles in Ht are considered separately, each remaining unpacked circle (of
Sj+1, Sj+2, . . .) fits in a bin of size wj+1 × hj+1.

In each iteration j ≥ 0, the algorithm keeps a set Fj of free bins of size
wj × (1 + γ)hj obtained from previous iterations. We obtain a packing of circles
of Sj into a set of bins Pj . Then, we place such bins over the free space of Fj ,
or over additional bins Aj , if necessary. The set of sub-bins of Fj ∪ Aj of size
wj+1 × (1 + γ)hj+1 that intersect circles of Sj are included in the set Uj , and
the remaining sub-bins are saved in Fj+1 for the next iteration.

4.2 Analysis

Consider a bin B of width wB and height hB. Given w and h, we say that B
respects w× h if either wB = w, and hB = h, or wB = hB = ε2(t+(j−1)r)+1w for
some j ≥ 1. Similarly, if D is a set of bins, then we say that D respects w × h
if every B ∈ D respects w × h. In what follows, we assume that we have run
Algorithm 1, giving as input positive numbers w, h ∈ Q+, with w ≤ h, a set of
circles C = {C1, . . . , Cn}, such that each circle Ci, 1 ≤ i ≤ n, has radius ri ∈ Q+,
and 2ri ≤ min{w, h}, and parameters r ∈ Z+, γ ∈ (0, 1].

Definition 3. Let j ≥ 0. If B′ is a bin that respects w × h, then we denote by
Gr′j(B

′) the set of bins in the grid with cells of width wj and height hj over B′,

and, if D′ is a set of bins that respects w × h, then Gr′j(D
′) = ∪B′∈D′Gr′j(B

′).

Definition 4. If B is a rectangle or circle, then define N′(B) = Area(B)/(wh).
Also, if D is a set of rectangles or circles, then define N′(D) =

∑
B∈D N′(B).

If a set of bins D respects w × h, then bins of D can be easily combined into
bins of size w × h using almost the same area. Thus, N′(D) is an estimate on
the number of bins of size w × h needed to pack D, as in the following remark.

720 F.K. Miyazawa et al.

Remark 1. If there is a packing of C into a set of bins D′ that respects w × h,
then there is a packing of C in
N′(D′)� bins of width w and height h.

For some j, the area of Uj is not fully used, since there might be cells of Uj

that partially intersect circles of Sj . This waste is bounded by the next lemma.

Lemma 1. Let C ∈ Sj be a circle packed in a bin B that respects w × h, and
let D ⊆ Gr′j+1(B) be the subset of bins in the grid that intersect circle C, but
are not contained in C. Then N′(D) ≤ 16εN′(C).

In the following, we show that requiring that each set of circles Sj be packed
into grid bins of size wj × hj does not increase much the solution cost. This fact
is central to the algorithm, since it allows iteratively packing sets Sj ’s.

To show these properties, we will transform an optimal packing Opt of C into
a packing D with the desired properties. The idea is moving circles of Sj that
intersect lines of the grid of size wj × hj to free bins that respect the grid. The
next algorithm keeps the invariant that, at the start of iteration j ≥ 1, the set
Rj contains free space to pack all such intersecting circles. Steps (3a)-(3c) move
intersecting circles to bins of Rj , and steps (3d)-(3f) make sure that there are
enough free bins in Rj+1 respecting the grid of size wj+1 × hj+1.

1. Let R1 be a set of 12ε(wh)/(w1h1)|Opt| new bins of width w1 and height h1;
2. Let D0 = Opt ∪R1;
3. For each j ≥ 1:

(a) Let Lj = ∅;
(b) For each bin B ∈ Gr′j(Opt):

i. Let W be the set of circles in Sj that intersect the boundary of B;
ii. Let V be a set of 4 new bins (2 of width 3εwj and height hj , and 2

of width wj and height 3εhj) placed over the boundary of B, so that
each circle in W is contained in one bin of V (see Figure 2);

iii. For each cell B′ ∈ Gr′j+1(V), let φ(B′) be the cell of Gr′j+1(Opt)
under B′;

iv. Remove each circle of W from the packing Dj and pack it over one
bin of V preserving the arrangement;

v. Add V to Lj ;
(c) Make groups of r/3 bins (of equal sizes) of Lj forming a new bin of

width wj and height hj , and place this bin over one distinct bin of Rj ;

(d) Let Rj+1 = ∅;
(e) Let Nj = ∅;
(f) For each bin B ∈ Gr′j+1(Lj), consider the cases:

i. If B does not intersect any circle of Sj , then add B to Rj+1;
ii. If B is contained in some circle of Sj , then add φ(B) to Rj+1;

iii. If B intersects, but is not contained in a circle of Sj , then create a
new bin of width wj+1 and height hj+1 and add to Rj+1, and to Nj ;

(g) Let Dj = Dj−1 ∪Nj ;
(h) If C \Ht = S0 ∪ · · · ∪ Sj, make D = Dj, and stop.

Polynomial-Time Approximation Schemes for Circle Packing Problems 721

Each circle of W has diameter at most εwj . To rearrange the rectangles into
bins of size wj × wj (of Rj), we use one side of length wj . To ensure every
circle is in a rectangle, the other side has length 3εwj (see lower circle).

Fig. 2. Removing circles that intersect lines

First, we note that the procedure is well defined. It is enough to check that Rj

has free space to pack bins of Lj . Indeed, it is not hard to obtain the following.

Claim 1. For every j ≥ 1, Area(Lj) = Area(Rj) = Area(R1).

Now, it will be shown that the algorithm produces a modified solution with
the desired properties.

Claim 2. At the end of iteration j ≥ 0, the following statements hold:

1. Dj is a packing of C;
2. for each � = 0, . . . , j, there is a packing of S� into a set P ′

� ⊆ Gr′�(Dj) of bins
of width w� and height h�;

3. the bins in Rj+1 ⊆ Gr′j+1(Dj) do not intersect any circle of C.

Proof. By induction on j. For j = 0, the statements are clear. So let j ≥ 1, and
assume that the statements are true for j − 1.

Statement 1: Clearly, Lj is a packing of the circles that were removed from
the original packing Dj−1. Since r is a multiple of 3 and by Claim 1, the step (3c)
is well defined, and thus we can place rectangles of Lj over bins of Rj . After
step (3c), we have a bin packing of C, since, by hypothesis, the set Rj did not
intersect any circle at the beginning of iteration j. This shows statement 1.

Statement 2: Since, at the end of iteration, each circle of Sj that intersected
a line of the grid Gr′j(Dj−1) is completely contained in a bin of Rj ⊆ Gr′j(Dj),
we obtain statement 2.

Statement 3: If step (3(f)i) or step (3(f)iii) is executed, then we add a free
bin to Rj+1. Thus, we only need to argue that whenever step (3(f)ii) is executed,
the bin φ(B) does not intersect any circle. Let C be the circle that contains B,
so that at the beginning of the iteration, φ(B) was contained in C. Since C was

722 F.K. Miyazawa et al.

moved to Lj , φ(B) does not intersect any circle when step (3(f)ii) is executed.
This completes the proof. ��

Finally, we may calculate the cost of the modified solution D.

Claim 3. N′(D) ≤ (1 + 28ε)OPTw×h(C).

Proof. Let m be the number of iterations of the algorithm that modifies Opt.
Notice that D is the disjoint union of Opt, R1, N1, . . . , Nm. We get

N′(D) = N′(Opt) + N′(R1) +
∑m

j=1 N′(Nj)

≤ N′(Opt) + 12ε(wh)|Opt|/(wh) +
∑m

j=1 16εN′(Sj)

≤ N′(Opt) + 12εN′(Opt) + 16εN′(C)

= (1 + 28ε)OPTw×h(C),

where the first inequality comes from Lemma 1. ��

By combining the last two claims, one can obtain the following lemma.

Lemma 2. There is a packing of C \Ht into a set of bins D that respects w×h
with N′(D) ≤ (1+28ε)OPTw×h(C), such that for every j ≥ 0, there is a packing
of Sj into a set of bins P ′

j ⊆ Gr′j(D).

In addition to requiring that each set of circles Sj be packed into bins of
the grid with cells of width wj and height hj, we also require that the bins
used to pack Sj+1, Sj+2, . . . do not intersect circles of S1, . . . , Sj−1. Again, this
restriction only increases the cost of a solution by a small fraction of the optimal
value, as shown by the next lemma. The proof is similar to that of the previous
lemma.

Lemma 3. There is a packing of C \Ht into a set of bins D that respects w×h
with N′(D) ≤ (1+44ε)OPTw×h(C), such that for every j ≥ 0, there is a packing
of Sj into a set of bins P ′

j ⊆ Gr′j(D). Moreover, if B ∈ P ′
j, then B does not

intersect any circle Ci ∈ S� for � < j.

Now, we obtain our main theorem, that states that Algorithm 1 is an APTAS
for the circle bin packing problem. The proof is rather long, and thus it is left
to the full version. The major technique is comparing the solution generated
by the algorithm to an optimal solution modified by Lemmas 2 and 3. The key
observation is that, for each subset of circles Sj , j ≥ 0, the packing Pj generated
by the algorithm is not much larger than the packing P ′

j of the modified optimal
solution. Also, although we use Theorem 3 to pack circles of any size, the radius
of the smallest circle is large when compared to the considered bins, so the
running time is polynomial.

Theorem 4. Let w, h ∈ Q+ be positive numbers, and let C = {C1, . . . , Cn}
be a set of circles, such that each circle Ci, 1 ≤ i ≤ n, has radius ri ∈ Q+,
and 2ri ≤ min{w, h}. For any given constants ε, γ ∈ (0, 1], we can obtain in
polynomial time a packing of C into at most (1 + ε)OPTw×h(C) + 2 rectangular
bins of width w and height (1 + γ)h.

Polynomial-Time Approximation Schemes for Circle Packing Problems 723

It is simple to extend Theorem 4 to the circle strip-packing.

Theorem 5. Let C = {C1, . . . , Cn} be a set of circles, such that each circle Ci,
1 ≤ i ≤ n, has radius ri ∈ Q+, and 2ri ≤ 1. For any given constant ε ∈ (0, 1],
we can obtain in polynomial time a packing of C in a strip of unit width and
height (1 + ε)OPTS(C) + O(1/ε), where OPTS(C) is the height of the minimum
packing of C in a strip of unit width.

Generalizations. Algorithm 1 does not depend on the items being circles. The
crucial assumptions are that the packing of “large” items can be (approximately)
solved, and that the space wasted by sub-bins that partially intersect an item is
bounded by a fraction of its area. For example, Algorithm 1 can be generalized to
deal with more general items, such as d-dimensional spheres under the Lp-norm,
for p ≥ 1. The packing of large spheres is done by algebraic quantifier algorithms,
and bounding the waste is similar to the case of circles. It is also possible to pack
items in augmented bins of different shapes. For example, Algorithm 1 may be
slightly modified, so that it can deal with packing of spheres into spheres.

5 Final Remarks

We presented the first approximation algorithms for the circle bin packing prob-
lem using augmented bins, and the circle strip packing problem. We obtained
asymptotic approximation schemes for circle packings exploring novel ideas, such
as iteratively distinguishing large and small items, and carefully using the free
space left after packing large items. We believe that our algorithm can lead to
further results for related problems, and we have already presented some possi-
ble generalizations. Also, our use of algebraic quantifier elimination algorithms
exemplifies how results from algebra can be successfully used in the context of op-
timization. Using these algorithms helped us to avoid discretization algorithms,
whose running time would depend exponentially on resource augmentation pa-
rameter 1/γ, and allowed the packing of more general items, such as Lp-norm
spheres, in a simple and concise framework.

We note that, although the quantifier elimination algorithms we used give a
precise representation of a packing in a non-augmented bin, the returned solution
may possibly contain irrational coordinates. To provide solutions with rational
numbers, we use approximate coordinates with arbitrary precision. This is the
only reason why we used augmented bins, and thus resource augmentation can
be avoided in a more general computational model. We left open the question
to determine if it is always possible to obtain a rational solution to the problem
of packing a set of circles of rational radii in a non-augmented bin of rational
dimensions.

Acknowledgement. We would like to thank Frank Vallentin for providing us
with insights and references on the cylindric algebraic decomposition and other
algebraic notions.

724 F.K. Miyazawa et al.

References

1. Bansal, N., Caprara, A., Sviridenko, M.: A New Approximation Method for Set
Covering Problems, with Applications to Multidimensional Bin Packing. SIAM J.
on Computing 39(4), 1256–1278 (2010)

2. Bansal, N., Correa, J.R., Kenyon, C., Sviridenko, M.: Bin Packing in Multiple
Dimensions: Inapproximability Results and Approximation Schemes. Mathematics
of Operations Research 31(1), 31–49 (2006)

3. Bansal, N., Han, X., Iwama, K., Sviridenko, M., Zhang, G.: A harmonic algorithm
for the 3D strip packing problem. SIAM J. on Computing 42(2), 579–592 (2013)

4. Bansal, N., Khan, A.: Improved Approximation Algorithm for Two-Dimensional
Bin Packing. In: SODA 2014, pp. 13–25 (2014)

5. Basu, S., Pollack, R., Roy, M.F.: On the Combinatorial and Algebraic Complexity
of Quantifier Elimination. J. ACM 43(6), 1002–1045 (1996)

6. Birgin, E.G., Gentil, J.M.: New and improved results for packing identical uni-
tary radius circles within triangles, rectangles and strips. Computers & Op. Re-
search 37(7), 1318–1327 (2010)

7. Caprara, A.: Packing d-dimensional bins in d stages. Mathematics of Operations
Research 33(1), 203–215 (2008)

8. Chung, F., Garey, M., Johnson, D.: On Packing Two-Dimensional Bins. SIAM
Journal on Algebraic Discrete Methods 3(1), 66–76 (1982)

9. Coffman, J.E.G., Csirik, J., Galambos, G., Martello, S., Vigo, D.: Bin Packing
Approximation Algorithms: Survey and Classification. In: Pardalos, P.M., Du,
D.Z., Graham, R.L. (eds.) Handbook of Combinatorial Optimization, pp. 455–531.
Springer, New York (2013)

10. Collins, G.E.: Quantifier elimination for real closed fields by cylindrical algebraic
decompostion. In: Brakhage, H. (ed.) GI-Fachtagung 1975. LNCS, vol. 33, pp.
134–183. Springer, Heidelberg (1975)

11. Demaine, E.D., Fekete, S.P., Lang, R.J.: Circle Packing for Origami Design Is Hard.
In: Proc. of the 5th Inter. Conference on Origami in Science, pp. 609–626 (2010)

12. Fernandez de la Vega, W., Lueker, G.S.: Bin packing can be solved within 1 + ε
in linear time. Combinatorica 1(4), 349–355 (1981)

13. George, J.A., George, J.M., Lamar, B.W.: Packing different-sized circles into a
rectangular container. European J. of Operational Research 84(3), 693–712 (1995)

14. Grigor’ev, D.Y., Vorobjov Jr., N.N.: Solving systems of polynomial inequalities in
subexponential time. Journal of Symbolic Computation 5(1-2), 37–64 (1988)

15. Hifi, M., M’Hallah, R.: A literature review on circle and sphere packing problems:
Models and methodologies. Advances in Operations Research 2009, 1–22 (2009)

16. Kenyon, C., Rémila, E.: A Near-Optimal Solution to a Two-Dimensional Cutting
Stock Problem. Mathematics of Operations Research 25(4), 645–656 (2000)

17. Kohayakawa, Y., Miyazawa, F., Raghavan, P., Wakabayashi, Y.: Multidimensional
Cube Packing. Algorithmica 40(3), 173–187 (2004)

18. Meir, A., Moser, L.: On packing of squares and cubes. Journal of Combinatorial
Theory 5(2), 126–134 (1968)

19. Miyazawa, F., Wakabayashi, Y.: Approximation algorithms for the orthogonal z-
oriented three-dimensional packing problem. J. on Comp. 29(3), 1008–1029 (2000)

20. Szabó, P.G., Markót, M.C., Csendes, T., Specht, E., Casado, L., Garćıa, I.: New-
Approaches-to-Circle-Packing-in-a-Square-Book. Springer (2007)

21. Tarski, A.: A decision method for elementary algebra and geometry. University of
California Press (1951)

Document Retrieval on Repetitive Collections�

Gonzalo Navarro1, Simon J. Puglisi2, and Jouni Sirén1

1 Center for Biotechnology and Bioengineering, Department of Computer Science,
University of Chile, Chile

{gnavarro,jsiren}@dcc.uchile.cl
2 Department of Computer Science, University of Helsinki, Finland

puglisi@cs.helsinki.fi

Abstract. Document retrieval aims at finding the most important doc-
uments where a pattern appears in a collection of strings. Traditional
pattern-matching techniques yield brute-force document retrieval solu-
tions, which has motivated the research on tailored indexes that offer
near-optimal performance. However, an experimental study establish-
ing which alternatives are actually better than brute force, and which
perform best depending on the collection characteristics, has not been
carried out. In this paper we address this shortcoming by exploring the
relationship between the nature of the underlying collection and the per-
formance of current methods. Via extensive experiments we show that
established solutions are often beaten in practice by brute-force alterna-
tives. We also design new methods that offer superior time/space trade-
offs, particularly on repetitive collections.

1 Introduction

The pattern matching problem, that is, preprocessing a text collection so as to
efficiently find the occurrences of patterns, is a classic in Computer Science. The
optimal suffix tree solution [18] dates back to 1973. Suffix arrays [10] are a sim-
pler, near-optimal alternative. Surprisingly, the natural variant of the problem
called document listing, where one wants to find simply in which texts of the
collection (called the documents) a pattern appears, was not solved optimally
until almost 30 years later [11]. Another natural variant, the top-k documents
problem, where one wants to find the k most relevant documents where a pattern
appears, for some notion of relevance, had to wait for other 10 years [6,15].

A general problem with the above indexes is their size. While for moderate-
sized collections (of total length n) their linear space (i.e., O(n) words, or
O(n logn) bits) is affordable, the constant factors multiplying the linear term
make the solutions prohibitive on large collections. In this aspect, again, the pat-
tern matching problem has had some years of advantage. The first compressed

� This work is funded in part by: Fondecyt Project 1-140796 (first author); Basal
Funds FB0001, Conicyt, Chile (first and third authors); the Jenny and Antti Wihuri
Foundation, Finland (third author); and by the Academy of Finland through grants
258308 and 250345 (CoECGR) (second author).

A.S. Schulz and D. Wagner (Eds.): ESA 2014, LNCS 8737, pp. 725–736, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

726 G. Navarro, S.J. Puglisi, and J. Sirén

suffix arrays (CSAs) appeared in the year 2000 (see [14]) and since then have
evolved until achieving, for example, asymptotically optimal space in terms of
high-order empirical entropy and time slightly over the optimal. There has been
much research on similarly compressed data structures for document retrieval
(see [13]). Since the foundational paper of Hon et al. [6], results have come close
to using just o(n) bits on top of the space of a CSA and almost optimal time.

Compressing in terms of statistical entropy is adequate in many cases, but
it fails in various types of modern collections. Repetitive document collections,
where most documents are similar, in whole or piecewise, to other documents,
naturally arise in fields like computational biology, versioned collections, peri-
odic publications, and software repositories (see [12]). The successful pattern
matching indices for these types of collections use grammar or Lempel-Ziv com-
pression, which exploit repetitiveness [2,3]. There are only a couple of document
listing indices for repetitive collections [4,1], and none for the top-k problem.

Although several document retrieval solutions have been implemented and
tested in practice [16,7,3,4], no systematic practical study of how these indexes
perform, depending on the collection characteristics, has been carried out.

A first issue is to determine under what circumstances specific document
listing solutions actually beat brute-force solutions based on pattern matching. In
many applications documents are relatively small (a few kilobytes) and therefore
are unlikely to contain many occurrences of a given pattern. This means that in
practice the number of pattern occurrences (occ) may not be much larger than
the number of documents the pattern occurs in (docc), and therefore pattern
matching-based solutions may be competitive.

A second issue that has been generally neglected in the literature is that
collections have different kinds of repetitiveness, depending on the application.
For example, one might have a set of distinct documents, each one internally
repetitive piecewise, or a set of documents that are in whole similar to each
other. The repetition structure can be linear (each document similar to a previous
one) as in versioned collections, or even tree-like, or completely unstructured,
as in some biological collections. It is not clear how current document retrieval
solutions behave depending on the type of repetitiveness.

In this paper we carry out a thorough experimental study of the performance
of most existing solutions to document listing and top-k document retrieval,
considering various types of real-life and synthetic collections. We show that
brute-force solutions are indeed competitive in several practical scenarios, and
that some existing solutions perform well only on some kinds of repetitive col-
lections, whereas others present a more stable behavior. We also design new and
superior alternatives for top-k document retrieval.

2 Background

Let T [1, n] be a concatenation of a collection of d documents. We assume each
document ends with a special character $ that is lexicographically smaller than
any other character of the alphabet. The suffix array of the collection is an array

Document Retrieval on Repetitive Collections 727

SA[1, n] of pointers to the suffixes of T in lexicographic order. The document
array DA[1, n] is a related array, where DA[i] is the identifier of the document
containing T [SA[i]]. Let B[1, n] be a bitvector, where B[i] = 1 if a new document
begins at T [i]. We can map text positions to document identifiers by: DA[i] =
rank1(B, SA[i]), where rank1(B, j) is the number of 1-bits in prefix B[1, j].

In this paper, we consider indexes supporting four kinds of queries: 1) find(P)
returns the range [sp, ep], where the suffixes in SA[sp, ep] start with pattern P ;
2) locate(sp, ep) returns SA[sp, ep]; 3) list(P) returns the identifiers of documents
containing pattern P ; and 4) topk(P, k) returns the identifiers of the k documents
containing the most occurrences of P . CSAs support the first two queries. find()
is relatively fast, while locate() can be much slower. The main time/space trade-
off in a CSA, the suffix array sample period, affects the performance of locate()
queries. Larger sample periods result in slower and smaller indexes.

Muthukrishnan’s document listing algorithm [11] uses an array C[1, n], where
C[i] points to the last occurrence of DA[i] in DA[1, i − 1]. Given a query range
[sp, ep], DA[i] is the first occurrence of that document in the range iff C[i] < sp.
A range minimum query (RMQ) structure over C is used to find the position
i with the smallest value in C[sp, ep]. If C[i] < sp, the algorithm reports DA[i],
and continues recursively in [sp, i−1] and [i+1, ep]. Sadakane [17] improved the
space usage with two observations: 1) if the recursion is done in preorder from
left to right, C[i] ≥ sp iff document DA[i] has been seen before, so array C is not
needed; and 2) array DA can also be removed by using locate() and B instead.

Let lcp(S, T) be the length of the longest common prefix of sequences S and
T . The LCP array of T [1, n] is an array LCP[1, n], where LCP[i] = lcp(T [SA[i−
1], n], T [SA[i], n]). We obtain the interleaved LCP array ILCP[1, n] by building
separate LCP arrays for each of the documents, and interleaving them according
to the document array. As ILCP[i] < |P | iff position i contains the first occurrence
of DA[i] in DA[sp, ep], we can use Sadakane’s algorithm with RMQs over ILCP
instead of C [4]. If the collection is repetitive, we can get a smaller and faster
index by building the RMQ only over the run heads in ILCP.

3 Algorithms

In this section we review practical methods for document listing and top-k doc-
ument retrieval. For a more detailed review see, e.g., [13].

Brute force. These algorithms sort the document identifiers in range DA[sp, ep]
and report each of them once. Brute-D stores DA in n log d bits, while Brute-L
retrieves the range SA[sp, ep] with locate() and uses bitvector B to convert it to
DA[sp, ep]. Both algorithms can also be used for top-k retrieval by computing
the frequency of each document identifier and then sorting by frequency.

Sadakane. This is a family of algorithms based on Sadakane’s improvements [17]
to Muthukrishnan’s algorithm [11]. Sada-C-L is the original algorithm of Sadakane,
while Sada-C-D uses an explicit document array instead of retrieving the document
identifiers with locate().Sada-I-L andSada-I-D are otherwise the same, respectively,
except that they build the RMQ over ILCP [4] instead of C.

728 G. Navarro, S.J. Puglisi, and J. Sirén

Wavelet tree. A wavelet tree over a sequence can be used to quickly list the dis-
tinct values in any substring, and hence a wavelet tree over DA can be a good so-
lution for many document retrieval problems. The best known implementation of
wavelet tree-based document listing [16] can use plain, entropy-compressed [14],
and grammar-compressed [8] bitvectors in the wavelet tree. Our WT uses a
heuristic similar to the original WT-alpha [16], multiplying the size of the plain
bitvector by 0.81 and the size of the entropy-compressed bitvector by 0.9, before
choosing the smallest one for each level of the tree.

For top-k retrieval, WT combines the wavelet tree used in document listing
with a space-efficient implementation [16] of the top-k trees of Hon et al. [6]. Out
of the alternatives investigated by Navarro and Valenzuela [16], we tested the
greedy algorithm, LIGHT and XLIGHT encodings for the trees, and sampling
parameter g′ = 400. In the results, we use the slightly smaller XLIGHT.

Precomputed document listing. PDL [4] builds a sparse suffix tree for the
collection, and stores the answers to document listing queries for the nodes of
the tree. For long query ranges, we compute the answer to the list() query as a
union of a small number of stored answer sets. The answers for short ranges are
computed by using Brute-L. PDL-BC is the original version, using a web graph
compressor [5] to compress the sets. If a subset S′ of document identifiers occurs
in many of the stored sets, the compressor creates a grammar rule X → S′,
and replaces the subset with X . We chose block size b = 256 and storing factor
β = 16 as good general-purpose parameter values. We extend PDL in Section 4.

Grammar-Based. Grammar [1] is an adaptation of a grammar-compressed self-
index [2] for document listing. Conceptually similar to PDL, Grammar uses Re-
Pair [8] to parse the collection. For each nonterminal symbol in the grammar,
it stores the set of document identifiers whose encoding contains the symbol. A
second round of Re-Pair is used to compress the sets. Unlike most of the other
solutions, Grammar is an independent index and needs no CSA to operate.

Lempel-Ziv. LZ [3] is an adaptation of self-indexes based on LZ78 parsing for
document listing. Like Grammar, LZ does not need a CSA.

Grid. Grid [7] is a faster but usually larger alternative to WT. It can answer top-k
queries quickly if the pattern occurs at least twice in each reported document. If
documents with just one occurrence are needed, Grid uses a variant of Sada-C-L
to find them. We also tried to use Grid for document listing, but the performance
was not good, as it usually reverted to Sada-C-L.

4 Extending Precomputed Document Listing

In addition to PDL-BC, we implemented another variant of precomputed docu-
ment listing [4] that uses Re-Pair [8] instead of the biclique-based compressor.

In the new variant, named PDL-RP, each stored set is represented as an in-
creasing sequence of document identifiers. The stored sets are compressed with
Re-Pair, but otherwise PDL-RP is the same as PDL-BC. Due to the multi-level
grammar generated by Re-Pair, decompressing the sets can be slower in PDL-
RP than in PDL-BC. Another drawback comes from representing the sets as

Document Retrieval on Repetitive Collections 729

sequences: when the collection is non-repetitive, Re-Pair cannot compress the
sets very well. On the positive side, compression is much faster and more stable.

We also tried an intermediate variant, PDL-set, that uses Re-Pair-like set com-
pression. While ordinary Re-Pair replaces common substrings ab of length 2 with
grammar rules X → ab, the compressor used in PDL-set searches for symbols
a and b that occur often in the same sets. Treating the sets this way should
lead to better compression on non-repetitive collections, but unfortunately our
current compression algorithm is still too slow with non-repetitive collections.
With repetitive collections, the size of PDL-set is very similar to PDL-RP.

Representing the sets as sequences allows for storing the document identifiers
in any desired order. One interesting order is the top-k order: store the identifiers
in the order they should be returned by a topk() query. This forms the basis
of our new PDL structure for top-k document retrieval. In each set, document
identifiers are sorted by their frequencies in decreasing order, with ties broken by
sorting the identifiers in increasing order. The sequences are then compressed by
Re-Pair. If document frequencies are needed, they are stored in the same order
as the identifiers. The frequencies can be represented space-efficiently by first
run-length encoding the sequences, and then using differential encoding for the
run heads. If there are b suffixes in the subtree corresponding to the set, there
are O(

√
b) runs, so the frequencies can be encoded in O(

√
b log b) bits.

There are two basic approaches to using the PDL structure for top-k document
retrieval. We can set β = 0, storing the document sets for all suffix tree nodes
above the leaf blocks. This approach is very fast, as we need only decompress the
first k document identifiers from the stored sequence. It works well with repeti-
tive collections, while the total size of the document sets becomes too large with
non-repetitive collections. We tried this approach with block sizes b = 64 (PDL-64
without frequencies and PDL-64+F with frequencies) and b = 256 (PDL-256 and
PDL-256+F).

Alternatively, we can build the PDL structure normally with β > 1, achieving
better compression. Answering queries is now slower, as we have to decompress
multiple document sets with frequencies, merge the sets, and determine the top k.
We tried different heuristics for merging only prefixes of the document sequences,
stopping when a correct answer to the top-k query could be guaranteed. The
heuristics did not generally work well, making brute-force merging the fastest
alternative. We used block size b = 256 and storing factors β = 2 (PDL-256-2)
and β = 4 (PDL-256-4). Smaller block sizes increased both index size and query
times, as the number of sets to be merged was generally larger.

5 Experimental Data

We did extensive experiments with both real and synthetic collections.1 The
details of the collections can be found in the full version of the paper2, where we
also describe how the search patterns were obtained.

1 See http://www.cs.helsinki.fi/group/suds/rlcsa/ for datasets and full results.
2 http://arxiv.org/abs/1404.4909

http://www.cs.helsinki.fi/group/suds/rlcsa/
http://arxiv.org/abs/1404.4909

730 G. Navarro, S.J. Puglisi, and J. Sirén

Most of our document collections were relatively small, around 100 MB in
size, as the WT implementation uses 32-bit libraries, while Grid requires large
amounts of memory for index construction. We also used larger versions of some
collections, up to 1 GB in size, to see how collection size affects the results.
In practice, collection size was more important in top-k document retrieval, as
increasing the number of documents generally increases the docc/k ratio. In
document listing, document size is more important than collection size, as the
performance of Brute depends on the occ/docc ratio.

Real collections. Page and Revision are repetitive collections generated from
a Finnish language Wikipedia archive with full version history. The collection
consists of either 60 pages (small) or 280 pages (large), with a total of 8834 or
65565 revisions. In Page, all revisions of a page form a single document, while
each revision becomes a separate document in Revision. Enwiki is a nonrepeti-
tive collection of 7000 or 90000 pages from a snapshot of the English language
Wikipedia. Influenza is a repetitive collection containing the genomes of 100000
or 227356 influenza viruses. Swissprot is a nonrepetitive collection of 143244 pro-
tein sequences used in many document retrieval papers (e.g., [16]). As the full
collection is only 54 MB, there is no large version of Swissprot.

Synthetic collections. To explore the effect of collection repetitiveness on doc-
ument retrieval performance in more detail, we generated three types of synthetic
collections, using files from the Pizza & Chilli corpus3.

DNA is similar to Influenza. Each collection has 1, 10, 100, or 1000 base docu-
ments, 100000, 10000, 1000, or 100 variants of each base document, respectively,
and mutation rate p = 0.001, 0.003, 0.01, 0.03, or 0.1. We generated the base doc-
uments by mutating a sequence of length 1000 from the DNA file with zero-order
entropy preserving point mutations, with probability 10p. We then generated the
variants in the same way with mutation rate p.

Concat is similar to Page. We read 10, 100, or 1000 base documents of length
10000 from the English file, and generated 1000, 100, or 10 variants of each
base document, respectively. The variants were generated by applying zero-order
entropy preserving point mutations with probability 0.001, 0.003, 0.01, 0.03, or
0.1 to the base document, and all variants of a base document were concatenated
to form a single document. We also generated collections similar to Revision by
making each variant a separate document. These collections are called Version.

6 Experimental Results

We implemented Brute, Sada, and PDL ourselves4, and modified existing imple-
mentations of WT, Grid, Grammar, and LZ for our purposes. All implementations
were written in C++. Details of our test machine are in the full version.

As our CSA, we used RLCSA [9], a practical implementation of a CSA that
compresses repetitive collections well. The locate() support in RLCSA includes

3 http://pizzachili.dcc.uchile.cl/
4 Available at http://www.cs.helsinki.fi/group/suds/rlcsa/

http://pizzachili.dcc.uchile.cl/
http://www.cs.helsinki.fi/group/suds/rlcsa/

Document Retrieval on Repetitive Collections 731

T
im

e
 (

s
)

0
.1

1
1

0
1

0
0

1
0

0
0

1
0

0
0

0

●

●

●

●
●

●●●●●

●●●●●●●● ●

●

●

●

●

●●●●●

●●●●●●●●●

●

●

●

Brute−L

Brute−D

Sada−C−L

Sada−C−D

Sada−I−L

Sada−I−D

PDL−BC

PDL−RP

WT

LZ

Grammar

T
im

e
 (

s
)

0
.1

1
1

0
1

0
0

1
0

0
0

1
0

0
0

0

●

●

●

●

●

●●●●●

●●●●●●●●

●

●

●

●

●

●●●●●

●●●●●●●●●

T
im

e
 (

s
)

0
.1

1
1

0
1

0
0

1
0

0
0

1
0

0
0

0

●

●

●

●

●

●●●●●

●●●●●●●●●

●

●

●

●

●

●●●●●

●●●●●●●●●●

T
im

e
 (

s
)

0
.1

1
1

0
1

0
0

1
0

0
0

1
0

0
0

0

●

●

●

●

●

●●●●●

●●●●●●●●

Size (bpc)

0 4 8 12 16 20 24 28 32

●

●

●

●

●

●●●●●

●●●●●●●●●

Size (bpc)

T
im

e
 (

s
)

0 4 8 12 16 20 24 28 32

0
.1

1
1

0
1

0
0

1
0

0
0

1
0

0
0

0

●
●

●

●

●

●●●●●

●●●●●●●●●

Fig. 1. Document listing on small (left) and large (right) real collections. Total size of
the index in bits per character and time required to run the queries in seconds. From
top to bottom, Page, Revision, Enwiki, Influenza, and Swissprot.

732 G. Navarro, S.J. Puglisi, and J. Sirén

T
im

e
 (

s
)

0
.1

1
1

0
1

0
0

1
0

0
0

1
0

0
0

0

●
●

●
●

●

●●
●
●

●

●●
●
●

●

●●
●
●
●

●

●

Brute−L

Brute−D

PDL−64

PDL−256

PDL−64+F

PDL−256+F

PDL−256−2

PDL−256−4

WT

Grid

T
im

e
 (

s
)

0
.1

1
1

0
1

0
0

1
0

0
0

1
0

0
0

0

●
●

●

●

●

●
●

●
●

●

●
●

●
●

●

●
●

●
●

●

T
im

e
 (

s
)

0
.1

1
1

0
1

0
0

1
0

0
0

1
0

0
0

0

Size (bpc)

T
im

e
 (

s
)

0 8 16 24 32 40 48

0
.1

1
1

0
1

0
0

1
0

0
0

1
0

0
0

0

Size (bpc)

0 8 16 24 32 40 48

Fig. 2. Top-k document retrieval with k = 10 (left) and k = 100 (right) on small real
collections. Total size of the index in bits per character and time required to run the
queries in seconds. From top to bottom, Revision, Enwiki, Influenza, and Swissprot. Page
is left out due to the low number of documents in that collection.

optimizations for long query ranges and repetitive collections, which is important
for Brute-L and Sada-I-L. We used suffix array sample periods 8, 16, 32, 64, 128
for non-repetitive collections and 32, 64, 128, 256, 512 for repetitive ones.

For algorithms using a CSA, we broke the list(P) and topk(P, k) queries into a
find(P) query, followed by a list([sp, ep]) query or topk([sp, ep], k) query, respec-
tively. The measured times do not include the time used by the find() query. As
this time is common to all solutions using a CSA, and negligible compared to
the time used by Grammar and LZ, the omission does not affect the results.

Document Retrieval on Repetitive Collections 733

T
im

e
 (

s
)

0
.1

1
1

0
1

0
0

1
0

0
0

1
0

0
0

0

●

●

Brute−L

Brute−D

PDL−64

PDL−256

PDL−64+F

PDL−256+F

PDL−256−2

PDL−256−4

WT

Grid

T
im

e
 (

s
)

0
.1

1
1

0
1

0
0

1
0

0
0

1
0

0
0

0

Size (bpc)

T
im

e
 (

s
)

0 8 16 24 32 40 48

0
.1

1
1

0
1

0
0

1
0

0
0

1
0

0
0

0

Size (bpc)

0 8 16 24 32 40 48

Fig. 3. Top-k document retrieval with k = 10 (left) and k = 100 (right) on large real
collections. Total size of the index in bits per character and time required to run the
queries in seconds. From top to bottom, Revision, Enwiki, and Influenza. Page is left out
due to the low number of documents in that collection.

Document Listing with Real Collections. Figure 1 contains the results for
document listing with real collections. For most of the indexes, the time/space
trade-off is based on the SA sample period. LZ’s trade-off comes from a parameter
specific to that structure involving RMQs (see [3]). Grammar has no trade-off.

Of the small indexes, Brute-L is usually the best choice. Thanks to the locate()
optimizations in RLCSA and the small documents, Brute-L beats Sada-C-L and
Sada-I-L, which are faster in theory due to using locate() more selectively. When
more space is available, PDL-BC is a good choice, combining fast queries with
moderate space usage. Of the bigger indexes, one storing the document array
explicitly is usually even faster than PDL-BC. Grammar works well with Revision
and Influenza, but becomes too large or too slow elsewhere.

Top-k Document Retrieval. Results for top-k document retrieval on real col-
lections are shown in Figures 2 and 3. Time/space trade-offs are again based on
the suffix array sample period, while PDL also uses other parameters (see Sec-
tion 4). We could not build PDL with β = 0 for Influenza or the large collections,
as the total size of the stored sets was more than 232, which was too much for

734 G. Navarro, S.J. Puglisi, and J. Sirén

M
u

ta
ti
o

n
 r

a
te

0
.0

0
1

0
.0

0
3

0
.0

1
0

.0
3

0
.1

None

B
ru

te
−
L

WT
B

ru
te

−
D

Sada−C−D

None
Brute−L

Grammar

LZ

P
D

L
−
B

C

Brute−D

Sada−I−D

M
u

ta
ti
o

n
 r

a
te

0
.0

0
1

0
.0

0
3

0
.0

1
0

.0
3

0
.1

None

B
ru

te
−
L

PDL−RP

WT

B
ru

te
−
D

Sada−C−D

None
Brute−L

LZ

PDL−RP

Brute−D

Size (bpc)

M
u

ta
ti
o

n
 r

a
te

0 4 8 12 16 20 24 28 32

0
.0

0
1

0
.0

0
3

0
.0

1
0

.0
3

0
.1

None

B
ru

te
−

L

Sada−C
−L

PDL−BC

Brute−D

Size (bpc)

0 4 8 12 16 20 24 28 32

None
Brute−L

LZ

PDL−RP

Brute−D

M
u

ta
ti
o

n
 r

a
te

0
.0

0
1

0
.0

0
3

0
.0

1
0

.0
3

0
.1

N
o

n
e

B
ru

te
−

L

G
ra

m
m

a
r

LZ

PDL−BC

N
o

n
e

Brute−L

G
ra

m
m

a
r

LZ

PDL−BC

Sada−I−D

Brute−D

Size (bpc)

M
u

ta
ti
o

n
 r

a
te

0 4 8 12 16 20 24 28 32

0
.0

0
1

0
.0

0
3

0
.0

1
0

.0
3

0
.1

None

Brute−L

Grammar

LZ

PDL−BC

Sada−I−D

Brute−D

Size (bpc)

0 4 8 12 16 20 24 28 32

None

Brute−L

G
ra

m
m

a
r

LZ

P
D
L−

R
P

PDL−BC

Brute−D

Fig. 4. Document listing with synthetic collections. The fastest solution for a given size
in bits per character and a mutation rate. Top group: from top to bottom 10, 100, and
1000 base documents with Concat (left) and Version (right). Bottom group: DNA with
1 (top left), 10 (top right), 100 (bottom left), and 1000 (bottom right) base documents.
None denotes that no solution can achieve that size.

Document Retrieval on Repetitive Collections 735

our Re-Pair compressor. WT was only built for the small collections, while Grid
construction used too much memory on the larger Wikipedia collections.

On Revision, PDL dominates the other solutions. On Enwiki, both WT and
Grid have good trade-offs with k = 10, while Brute-D and PDL beat them with
k = 100. On Influenza, some PDL variants, Brute-D, and Grid all offer good
trade-offs. On Swissprot, the brute-force algorithms win clearly. PDL with β = 0
is faster, but requires far too much space (60-70 bpc — off the chart).

Document Listing with Synthetic Collections. Figure 4 shows our docu-
ment listing results with synthetic collections. Due to the large number of collec-
tions, the results for a given collection type and number of base documents are
combined in a single plot, showing the fastest algorithm for a given amount of
space and a mutation rate. Solid lines connect measurements that are the fastest
for their size, while dashed lines are rough interpolations.

The plots were simplified in two ways. Algorithms providing a marginal and/or
inconsistent improvement in speed in a very narrow region (mainly Sada-C-L
and Sada-I-L) were left out. When PDL-BC and PDL-RP had very similar per-
formance, only one of them was chosen for the plot.

On DNA, Grammar was a good solution for small mutation rates, while LZ was
good with larger mutation rates. With more space available, PDL-BC became
the fastest algorithm. Brute-D and Sada-I-D were often slightly faster than PDL,
when there was enough space available to store the document array. On Concat
and Version, PDL was usually a good mid-range solution, with PDL-RP being
usually smaller than PDL-BC. The exceptions were the collections with 10 base
documents, where the number of variants (1000) was clearly larger than the
block size (256). With no other structure in the collection, PDL was unable to
find a good grammar to compress the sets. At the large end of the size scale,
algorithms using an explicit DA were usually the fastest choice.

7 Conclusions

Most document listing algorithms assume that the total number of occurrences
of the pattern is large compared to the number of document occurrences. When
documents are small, such as Wikipedia articles, this assumption generally does
not hold. In such cases, brute-force algorithms usually beat dedicated document
listing algorithms, such as Sadakane’s algorithm and wavelet tree-based ones.

Several new algorithms have been proposed recently. PDL is a fast and small
solution, effective on non-repetitive collections, and with repetitive collections, if
the collection is structured (e.g., incremental versions of base documents) or the
average number of similar suffixes is not too large. Of the two PDL variants, PDL-
BC has a more stable performance, while PDL-RP is faster to build. Grammar is
a small and moderately fast solution when the collection is repetitive but the
individual documents are not. LZ works well when repetition is moderate.

We adapted the PDL structure for top-k document retrieval. The new struc-
ture works well with repetitive collections, and is clearly the method of choice
on the versioned Revision. When the collections are non-repetitive, brute-force

736 G. Navarro, S.J. Puglisi, and J. Sirén

algorithms remain competitive even on gigabyte-sized collections. While some
dedicated algorithms can be faster, the price is much higher space usage.

References

1. Claude, F., Munro, J.I.: Document listing on versioned documents. In: Kurland,
O., Lewenstein, M., Porat, E. (eds.) SPIRE 2013. LNCS, vol. 8214, pp. 72–83.
Springer, Heidelberg (2013)

2. Claude, F., Navarro, G.: Improved grammar-based compressed indexes. In:
Calderón-Benavides, L., González-Caro, C., Chávez, E., Ziviani, N. (eds.) SPIRE
2012. LNCS, vol. 7608, pp. 180–192. Springer, Heidelberg (2012)

3. Ferrada, H., Navarro, G.: A Lempel-Ziv compressed structure for document listing.
In: Kurland, O., Lewenstein, M., Porat, E. (eds.) SPIRE 2013. LNCS, vol. 8214,
pp. 116–128. Springer, Heidelberg (2013)

4. Gagie, T., Karhu, K., Navarro, G., Puglisi, S.J., Sirén, J.: Document listing on
repetitive collections. In: Fischer, J., Sanders, P. (eds.) CPM 2013. LNCS, vol. 7922,
pp. 107–119. Springer, Heidelberg (2013)

5. Hernández,C.,Navarro,G.:Compressedrepresentationofwebandsocialnetworksvia
dense subgraphs. In:Calderón-Benavides, L.,González-Caro,C.,Chávez,E., Ziviani,
N. (eds.) SPIRE 2012. LNCS, vol. 7608, pp. 264–276. Springer, Heidelberg (2012)

6. Hon, W.-K., Shah, R., Vitter, J.: Space-efficient framework for top-k string retrieval
problems. In: Proc. FOCS, pp. 713–722 (2009)

7. Konow, R., Navarro, G.: Faster compact top-k document retrieval. In: Proc. DCC,
pp. 351–360 (2013)

8. Larsson, N.J., Moffat, A.: Off-line dictionary-based compression. In: Proceedings
of the IEEE Data Compression Conference, vol. 88(11), pp. 1722–1732 (2000)

9. Mäkinen, V., Navarro, G., Sirén, J., Välimäki, N.: Storage and retrieval of highly
repetitive sequence collections. J. Comp. Bio. 17(3), 281–308 (2010)

10. Manber, U., Myers, G.: Suffix arrays: a new method for on-line string searches.
SIAM J. Computing 22(5), 935–948 (1993)

11. Muthukrishnan, S.: Efficient algorithms for document retrieval problems. In: Proc.
SODA, pp. 657–666 (2002)

12. Navarro, G.: Indexing highly repetitive collections. In: Smyth, B. (ed.) IWOCA
2012. LNCS, vol. 7643, pp. 274–279. Springer, Heidelberg (2012)

13. Navarro, G.: Spaces, trees and colors: The algorithmic landscape of document re-
trieval on sequences. ACM Computing Surveys 46(4), article 52 (2014)

14. Navarro, G., Mäkinen, V.: Compressed full-text indexes. ACM Computing Sur-
veys 39(1), art. 2 (2007)

15. Navarro, G., Nekrich, Y.: Top-k document retrieval in optimal time and linear
space. In: Proc. SODA, pp. 1066–1078 (2012)

16. Navarro, G., Valenzuela, D.: Space-efficient top-k document retrieval. In: Klasing,
R. (ed.) SEA 2012. LNCS, vol. 7276, pp. 307–319. Springer, Heidelberg (2012)

17. Sadakane, K.: Succinct data structures for flexible text retrieval systems. J. Discrete
Algorithms 5, 12–22 (2007)

18. Weiner, P.: Linear pattern matching algorithm. In: Proc. 14th Annual IEEE Sym-
posium on Switching and Automata Theory, pp. 1–11 (1973)

An Improved Analysis of the Mömke-Svensson

Algorithm for Graph-TSP on Subquartic
Graphs�

Alantha Newman

CNRS-Université Grenoble Alpes and G-SCOP, F-38000 Grenoble, France
firstname.lastname@grenoble-inp.fr

Abstract. Recently, Mömke and Svensson presented a beautiful new
approach for the traveling salesman problem on a graph metric (graph-
TSP), which yielded a 4

3
-approximation guarantee on subcubic graphs as

well as a substantial improvement over the 3
2
-approximation guarantee

of Christofides’ algorithm on general graphs. The crux of their approach
is to compute an upper bound on the minimum cost of a circulation
in a particular network, C(G,T), where G is the input graph and T is
a carefully chosen spanning tree. The cost of this circulation is directly
related to the number of edges in a tour output by their algorithm. Mucha
subsequently improved the analysis of the circulation cost, proving that
Mömke and Svensson’s algorithm for graph-TSP has an approximation
ratio of at most 13

9
on general graphs.

This analysis of the circulation is local, and vertices with degree four
and five can contribute the most to its cost. Thus, hypothetically, there
could exist a subquartic graph (a graph with degree at most four at each
vertex) for which Mucha’s analysis of the Mömke-Svensson algorithm is
tight. In this paper, we show that this is not the case and that Mömke
and Svensson’s algorithm for graph-TSP has an approximation guarantee
of at most 46

33
on subquartic graphs. To prove this, we present a different

method to upper bound the minimum cost of a circulation on the network
C(G,T). Our approximation guarantee actually holds for all graphs that
have an optimal solution to a standard linear programming relaxation of
graph-TSP with subquartic support.

1 Introduction

The metric traveling salesman problem (TSP) is one of the most well-known
problems in the field of combinatorial optimization and approximation algo-
rithms. Given a complete graph, G = (V,E), with non-negative edge weights
that satisfy the triangle inequality, the goal is to compute a minimum cost tour
of G that visits each vertex exactly once. Christofides’ algorithm, dating from
almost four decades ago, yields a tour with cost no more than 3/2 times that of
an optimal tour [Chr76]. It remains a major open problem to improve upon this
approximation factor.

� Supported in part by LabEx PERSYVAL-Lab (ANR–11-LABX-0025).

A.S. Schulz and D. Wagner (Eds.): ESA 2014, LNCS 8737, pp. 737–749, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

738 A. Newman

Recently, there have been many exciting developments relating to graph-TSP.
In this setting, we are given an unweighted graph G = (V,E) and the goal is
to find the shortest tour that visits each vertex at least once. This problem is
equivalent to the special case of metric TSP where the shortest path distances in
G define the metric. It is also equivalent to the problem of finding a connected,
Eulerian multigraph in G with the minimum number of edges.

A promising approach to improving upon the factor of 3/2 for metric TSP
is to round a linear programming relaxation known as the Held-Karp relax-
ation [HK70]. A lower bound of 4/3 on its integrality gap can be demonstrated
using a family of graph-TSP instances. Even in this special case of metric TSP,
graph-TSP had also long resisted significant progress before the recent spate of
results.

1.1 Recent Progress on Graph-TSP

In 2005, Gamarnik et al. presented an algorithm for graph-TSP on cubic 3-edge
connected graphs with an approximation factor of 3/2 − 5/389 [GLS05], thus
proving that Christofides’ approximation factor of 3/2 is not optimal for this class
of graphs. Their approach is based on finding a cycle cover for which they can
upper bound the number of components. This general approach was also taken
by Boyd et al. who combined it with polyhedral ideas to obtain approximation
guarantees of 4/3 for cubic graphs and 7/5 for subcubic graphs, i.e. graphs
with degree at most three at each vertex [BSvdSS11]. Shortly afterwards, Oveis
Gharan et al. proved that a subtle modification of Christofides’ algorithm has
an approximation guarantee of 3/2− ε0 for graph-TSP on general graphs, where
ε0 is a fixed constant with value approximately 10−12 [GSS11].

Mömke and Svensson then presented a beautiful new approach for graph-TSP,
which resulted in a substantial improvement over the 3/2-approximation guar-
antee of Christofides [MS11]. Their approach also lead to a surprisingly simple
algorithm with an 4/3-approximation guarantee for subcubic graphs. We will
discuss their algorithm in more detail in Section 1.2, since our paper is directly
based on their approach. Ultimately, they were able to prove an approxima-
tion guarantee of 1.461 for graph-TSP. Mucha subsequently gave an improved
analysis, thereby proving that Mömke and Svensson’s algorithm for graph-TSP
actually has an approximation ratio of at most 13/9 [Muc12]. Sebő and Vygen in-
troduced an approach for graph-TSP based on ear decompositions and matroid
intersection, which incorporated the techniques of Mömke and Svensson, and
improved the approximation ratio to 7/5, where it currently stands [SV12]. For
the special case of k-regular graphs, Vishnoi gave an algorithm for graph-TSP
with an approximation guarantee that approaches 1 as k increases [Vis12].

Some of the new techniques for graph-TSP have also lead to progress on the
metric s-t-path TSP, in which the goal is to find a path between two fixed vertices
that visits every vertex at least once. Recent results improved upon the previ-
ously best-known bound of 5/3 for the s-t-path TSP due to Hoogeveen [Hoo91]
in the special case of s-t-path graph-TSP [MS11, Muc12, SV12, Gao13] as well
as in the case of general metrics [AKS12, Seb13].

An Improved Analysis of the Mömke-Svensson Algorithm 739

1.2 Mömke-Svensson’s Approach to Graph-TSP

Christofides’ algorithm for graph-TSP finds a spanning tree of the graph and
adds to it a J-join, where J is the set of vertices that have odd degree in the
spanning tree. Since the spanning tree is connected, the resulting subgraph is
clearly connected, and since the J-join corrects the parity of the spanning tree,
the resulting subgraph is Eulerian. In contrast, the recent approach of Mömke
and Svensson is based on removing an odd-join of the graph, which yields a
possibly disconnected Eulerian subgraph. Thus, to maintain connectivity, one
must double, rather than remove, some of the edges in the odd-join. The key
step in proving the approximation guarantee of the algorithm is to show that
many edges will actually be removed and relatively few edges will be doubled,
resulting in a connected, Eulerian subgraph with few edges. Using techniques of
Naddef and Pulleyblank [NP81], Mömke and Svensson show how to sample an
odd-join of size |E|/3, where E is the subset of edges in the support of the linear
programming relaxation for graph-TSP (see section 2.1). The number of edges
that are doubled to guarantee connectivity is directly related to the minimum
cost circulation of particular network, referred to as C(G, T), which Mömke and
Svensson construct based on the input graph G, an optimal solution to a linear
programming relaxation for graph-TSP, and a carefully chosen spanning tree T .
Lemma 4.1 from [MS11] relates the size of the solution for their algorithm to the
minimum cost circulation of this network.

Lemma 1. [MS11] Given a 2-vertex connected graph G and a depth first search
tree T of G, let C∗ be a minimum cost circulation for C(G, T) of cost c(C∗).
Then there is a spanning Eulerian multigraph in G with at most 4

3n + 2
3c(C

∗)
edges.

We defer a precise description of the circulation network C(G, T) to Section
2, where we formulate it using different notation from that in [MS11]. For the
moment, we emphasize that if one can prove a better upper bound on the value
of c(C∗), then this directly implies improved upper bounds on the number of
edges in a tour output by Mömke and Svensson’s algorithm.

1.3 Our Contribution

We consider the graph-TSP problem for subquartic graphs, i.e. graphs in which
each vertex has degree at most four. As pointed out in Lemma 2.1 of [MS11],
we can assume that these graphs are 2-vertex connected. The best-known ap-
proximation guarantee for these graphs is inherited from the general case, even
when the graph is 4-regular, and is therefore 7/5 due to Sebő and Vygen. For
subquartic graphs, we give an improved upper bound on the minimum cost of a
circulation for C(G, T). Using Lemma 1, this leads to an improved approximation
guarantee of 46/33 for graph-TSP on these graphs. Before we give an overview
of our approach, we first explain our motivation for studying graph-TSP on this
restricted class of graphs.

As mentioned in Section 1.1, graph-TSP is now known to be approximable to
within 4/3 for subcubic graphs. So, on the one hand, trying to prove the same

740 A. Newman

guarantee for subquartic graphs is arguably a natural next step. Additionally, it
is a well-motivated problem to study the graph-TSP on sparse graphs, because
the support of an optimal solution to the standard linear programming relaxation
(reviewed in Section 2.1) has at most 2n−1 edges (see Theorem 4.9 in [CFN85]).
Thus, any graph that corresponds to the support of an optimal solution to the
standard linear program has average degree less than four.

However, our actual motivation for studying graphs with degree at most four
has more to do with understanding the Mömke-Svensson algorithm than with an
abstract interest in subquartic graphs. The basic approach to computing an up-
per bound on the minimum cost circulation in C(G, T) used in both [MS11] and
[Muc12] is to specify flow values on the edges of C(G, T) that are functions of
an optimal solution to the linear programming relaxation for graph-TSP on the
graph G. The cost of the circulation obtained using these values can be analyzed
in a local, vertex by vertex manner. Mucha showed that vertices with degree
four or five potentially increase the cost of the circulation the most [Muc12]. In
fact, one could hypothetically construct a tight example for Mucha’s analysis
of the Mömke-Svensson algorithm on a graph where each vertex has degree at
most four (or where each vertex has degree at most five). Thus it seems worth-
while to determine if the cost of the circulation can be improved on subquartic
graphs. Our results actually hold for a slightly more general class of graphs than
subquartic graphs: they hold for any graph that has an optimal solution to the
standard linear programming relaxation of graph-TSP with subquartic support.

1.4 Organization

In Section 2.1, we discuss the standard linear programming relaxation for
graph-TSP, and in Section 2.2, we present notation and definitions necessary
for defining the circulation network C(G, T). In Section 3, we show that if, for
a subquartic graph, the optimal solution to the linear program has value equal
to the number of vertices in G, then the network C(G, T) has a circulation of
cost zero, implying that the Mömke-Svensson algorithm has an approximation
ratio of 4/3. This observation provides us with some intuition as to how one may
attempt to design a better circulation for general subquartic graphs.

In Section 4, we describe two different methods to obtain feasible circulations.
In Section 4.1, we detail the method used by Mömke-Svensson and Mucha, which
becomes somewhat simpler in the special case of subquartic graphs. This method
directly uses values from the optimal solution to the linear program to obtain
flow values on edges in the network. In Section 4.2, we present a new method,
which “rounds” the values from the optimal solution to the linear program. The
latter circulation alone leads to an improved analysis over 13/9 for subquartic
graphs, but it does not improve on the best-known guarantee of 7/5. However,
as we finally show in Section 5, if we take the best of the two circulations, we can
show that at least one of the circulations will lead to an approximation guarantee
of at most 46/33.

We remark that our notation differs from that in [MS11] or [Muc12], even
though we are using exactly the same circulation network and we use their

An Improved Analysis of the Mömke-Svensson Algorithm 741

approach for obtaining the feasible circulation described in Section 4.1. This
different notation allows us to more easily analyze the tradeoff between the two
circulations. Due to space constraints, this extended abstract is missing many
proofs, which can be found in the full version.

2 Preliminaries: Notation and Definitions

Let G = (V,E) be an undirected graph with maximum degree four, a prop-
erty often referred to as subquartic. Throughout this paper, we make use of the
following well-studied linear programming relaxation for graph-TSP.

2.1 Linear Program for Graph-TSP

For a graph G = (V,E), the following linear program is a relaxation of graph-
TSP. We refer to Section 2 of [MS11] for a discussion of its derivation and
history.

min
∑
e∈E

ye

y(δ(S)) ≥ 2 for ∅ �= S ⊂ V,

y ≥ 0.

We denote this linear program by LP (G) and we denote the value of an optimal
solution for LP (G) by OPTLP (G). Let n be the number of vertices in V . We can
assume that G has the following two properties: (i) |E| ≤ 2n− 1, and (ii) G is
2-vertex connected. Assumption (i) is based on the fact that any extreme point
of LP (G) has at most 2n−1 edges (see Theorem 4.9 in [CFN85]), and restricting
the graph to the edges in the support of an extreme point with optimal value
does not increase the optimal value OPTLP (G). Assumption (ii) is based on
Lemma 2.1 from [MS11]. We note that the two theorems we just cited may have
to be applied multiple times to guarantee that G has the desired properties (i)
and (ii).

Lemma 2. Let G = (V,E) be a 2-edge connected graph. Then there exists x ∈
LP (G), x ≤ 1 minimizing the sum of coordinates of a vector in LP (G).

From Lemma 2, we define x ∈ R|E| to be an optimal solution for LP (G) with
the following properties: (i) the support of x contains at most 2n− 1 edges, (ii)
the support of x is 2-vertex connected, and (iii) x ≤ 1. We will refer to the set
of values {xe} for e ∈ E as x-values. Let

∑
e∈E xe = OPTLP (G) = (1 + ε)n for

some ε, where 0 ≤ ε ≤ 1. We will eventually make use of the following definitions.

Definition 1. The excess x-value ε(v) at a vertex v is the amount by which the
total value on the adjacent edges exceeds 2, i.e ε(v) = x(δ(v)) − 2.

Definition 2. A vertex v ∈ V is called heavy if x(δ(v)) > 2.

742 A. Newman

The following fact will be useful in our analysis. If OPTLP (G) = (1 + ε)n, then,∑
v∈V

x(δ(v)) =
∑
v∈V

(2 + ε(v)) = 2(1 + ε)n.

This implies,
∑

v∈V ε(v) = 2εn.

2.2 Spanning Trees and Circulations

Let us recall some useful definitions from the approach of Mömke and Svens-
son [MS11] that we use throughout this paper.

Definition 3. A greedy DFS tree is a spanning tree formed via a depth-first
search of G. If there is a choice as to which edge to traverse next, the edge with
the highest x-value is chosen.

For a given graph G and an optimal solution to LP (G), let T denote a greedy
DFS tree. Let B(T) ⊂ E denote the set of back edges with respect to the tree
T . Each edge in T will be directed away from the root of the tree T and each
edge in B(T) will be directed towards the root of T . We use the notation (i, j)
to denote an edge directed from i to j. Note that once we have fixed a tree T ,
all edges in E can be viewed as directed edges. When we wish to refer to an
undirected edge in E, we use the notation ij ∈ E. With respect to the greedy
DFS tree T , we have the following definitions.

Definition 4. An internal node in T is a vertex that is neither the root of T
nor a leaf in T . We use Tint to denote this subset of vertices.

Definition 5. An expensive vertex is a vertex in Tint with two incoming edges
that belong to B(T). We use Texp to denote this subset of vertices.

As we will see in Lemma 4, expensive vertices are the vertices that can contribute
to the cost of C(G, T). The root can also contribute a negligible value of either
one or two to the cost of C(G, T). For the sake of simplicity, we ignore the
contribution of the root in most of our calculations.
Fact. The number of expensive vertices is bounded as follows: |Texp| ≤ n/2.

Definition 6. A branch vertex in T is a vertex with at least two outgoing tree
edges.

Lemma 3. A branch vertex is not expensive.

Definition 7. A tree cut is the partition of the vertices of the tree T induced
when we remove an edge (u, v) ∈ T .

For each edge (i, j) ∈ B(T), let b(i, j) ≤ 1 be a non-negative value.

Definition 8. Consider a tree cut corresponding to edge (u, v) ∈ T and remove
all back edges (w, u) ∈ B(T), where w belongs to the subtree of v in T . We say
that the remaining back edges that cross this tree cut cover the cut. If the total
b-value of the edges that cover the cut is at least 1, then we say that this tree cut
is satisfied by b.

An Improved Analysis of the Mömke-Svensson Algorithm 743

We extend this definition to the vertices of T .

Definition 9. A vertex v in T is satisfied by b if for each adjacent outgoing edge
in T , the corresponding tree cut is satisfied by b. On the other hand, if there is
at least one adjacent outgoing edge whose corresponding tree cut is not satisfied
by b, then the vertex v is unsatisfied by b.

Mömke and Svensson define a circulation network, C(G, T) (see Section 4 of
[MS11]), and use the cost of a feasible circulation to upper bound the length of
a TSP tour in G. (See Lemma 1.)

Lemma 4. Let b : B(T) → [0, 1]. If each internal vertex in T is satisfied by b,
then there is a feasible circulation of C(G, T) whose cost is upper bounded by the
following function:

∑
j∈Texp

max

⎧⎨⎩0,

⎛⎝ ∑
i:(i,j)∈B(T)

b(i, j)

⎞⎠− 1

⎫⎬⎭ . (1)

Although finding b-values for the back edges that satisfy all the vertices is equiv-
alent to finding a feasible circulation of C(G, T), and we could have stuck to the
notation presented in [MS11], we believe our notation results in a clearer pre-
sentation of our main theorems.

3 Subquartic Graphs: OPTLP (G) = n

We now show that in the special case when OPTLP (G) = n (i.e. ε = 0), there
is a circulation with cost zero. Note that if |E| = n, then each edge in E must
have x-value 1. Thus, G is a Hamiltonian cycle. If |E| > n, then we can show
that we can find a greedy DFS tree T for G such that each edge ij ∈ E with
x-value xij = 1 (a “1-edge”) belongs to T .

Lemma 5. When OPTLP (G) = n and |E| > n, there is a greedy DFS tree T
such that all 1-edges are in T .

For the rest of Section 3, let T denote a greedy DFS tree in which all 1-edges
are tree edges.

Lemma 6. If OPTLP (G) = n and each back edge (i, j) ∈ B(T) is assigned
value f(i, j) = 1/2, then each vertex in Tint is satisfied by f .

Lemma 7. If OPTLP (G) = n, setting f(i, j) = 1/2 for each edge (i, j) ∈ B(T)
yields a circulation with cost zero.

Theorem 1. If OPTLP (G) = n and G is a subquartic graph, then G has a TSP
tour of length at most 4n/3.

744 A. Newman

4 Subquartic Graphs: General Case

In this section, we consider the general case of subquartic graphs. For a graph
G = (V,E), suppose OPTLP (G) = (1 + ε)n for some ε > 0. There is a fixed
greedy DFS tree T as defined in Section 2.2. If we assign values to the edges in
B(T), then the only vertices that can add to the cost function are the expensive
vertices, as we have defined them, since the maximum value allowed on an edge
is one. Let x(i, j) = xij for all back edges in B(T). Recall that the {xij} values
are obtained from the solution to LP (G) in Section 2.1.

Lemma 8. A vertex v in Tint has at most one outgoing tree edge whose corre-
sponding tree cut is not satisfied by x.

Definition 10. A vertex v ∈ Tint that is satisfied by x is called LP-satisfied.

Definition 11. A vertex v ∈ Tint that is not satisfied by x is called LP-
unsatisfied.

Lemma 9. An expensive vertex is LP-satisfied.

Lemma 10. An LP-unsatisfied vertex is heavy.

The reason we emphasize that an LP-unsatisfied vertex is heavy is that we can
use the excess x-value of this vertex to increase an edge that covers the unsatisfied
tree cut corresponding to one of its adjacent outgoing edges so that this tree cut
becomes satisfied. We also wish to use the excess x-value of an expensive vertex
to pay for some of its contribution to the cost function incurred by the back edges
coming into the vertex. For each vertex v, we want to use the quantity ε(v) at
most once. This will be guaranteed by the fact that LP-unsatisfied vertices and
expensive vertices are disjoint sets.

4.1 The x-Circulation

In this section, we use the x-values to obtain an upper bound on the cost of a
circulation, essentially following the arguments of Mömke and Svensson [MS11]
and Mucha [Muc12]. We present the analysis here, since we refer to it in Section
5 when we analyze the cost of taking the best of two circulations. Also, the
arguments can be somewhat simplified due to the subquartic structure of the
graph, which is useful for our analysis.

For each back edge in B(T), set x(i, j) = xij , where x ∈ R|E| is an optimal
solution to LP (G). (For a vertex j /∈ Texp, we can actually set x(i, j) = 1, since
there is at most one incoming back edge to vertex j, but this does not change
the worst-case analysis.)

Definition 12. For each vertex j ∈ Texp, let xmin(j) ≤ xmax(j) denote the
x-values of the two incoming back edges to vertex j. Let cx(j) = xmin(j) +
xmax(j) − 1 − ε(j).

An Improved Analysis of the Mömke-Svensson Algorithm 745

Lemma 11. For an expensive vertex j ∈ Texp, the following holds:

2 · xmax(j) + xmin(j) ≤ 2 + ε(j).

We will show that there is a function x′ : B(T) → [0, 1] such that each vertex
in T is satisfied by x′ and the cost of the circulation can be bounded by:

∑
j∈Texp

max

⎧⎨⎩0,

⎛⎝ ∑
i:(i,j)∈B(T)

x′(i, j)

⎞⎠− 1

⎫⎬⎭ ≤
∑

j∈Texp

max{0, cx(j)} +
∑
j∈T

ε(j).(2)

Lemma 12. The value cx(j) can be upper bounded as follows:

cx(j) ≤ xmin(j)

2
− ε(j)

2
≤ 1 − xmin(j).

Lemma 13. For a vertex j ∈ Texp, cx(j) ≤ 1/3.

To make the circulation feasible, we need to increase the x-values of some
of the back edges in B(T) so that all of the LP-unsatisfied vertices become
satisfied. By Lemma 10, these vertices are heavy. Thus, we will use ε(v) for an LP-
unsatisfied vertex v to “pay” for increasing the x-value on an appropriate back
edge. For ease of notation, we now set x′(u, v) = x(u, v) for all (u, v) ∈ B(T).
We will update the x′(u, v) values so that each LP-unsatisfied vertex is satisfied
by x′.

Consider an LP-unsatisfied, non-branch vertex j ∈ T , and consider the tree
cut corresponding to the single edge (j, t2) outgoing from j in T . Let S ⊆ B(T)
denote the edges that cover this tree cut. Let (i, j), (j, k) ∈ B(T) represent the
adjacent back edges, and let (t1, j) ∈ T denote the incoming tree edge. Recall
that in this tree cut, both edges (j, t2) and (i, j) are removed and the remaining
edges in B(T) that cross this cut cover it. We have:

x(j, t2) + x(j, k) + x(t1, j) + x(i, j) = 2 + ε(j).

Since,

x(S) + x(j, t2) + x(i, j) ≥ 2, x(S) + x(j, k) + x(t1, j) ≥ 2,

it follows that

2 · x(S) ≥ 2 − ε(j) ⇒ x(S) ≥ 1 − ε(j)/2.

Let (u, v) ∈ S be an arbitrary edge in S. We will update the value of x′(u, v) as
follows:

x′(u, v) := min{1, x′(u, v) + ε(j)/2}.
We use this notation, because a back edge’s value can be increased multiple
times in the process of satisfying all LP-unsatisfied vertices.

If j is an LP-unsatisfied branch vertex, then it must have two outgoing edges
in T (call them (j, t2) and (j, t3)) and one incoming back edge (i, j) ∈ B(T).

746 A. Newman

Let (t1, j) denote the incoming tree edge. Suppose that vertex i is in the subtree
hanging from t2 in T . Then consider the tree cut corresponding to edge (j, t2),
i.e. remove edges (j, t2) and (i, j). Let S ⊂ B(T) denote the back edges that
cover this tree cut. Then we have,

x(S) + x(j, t2) + x(i, j) ≥ 2, x(S) + x(j, t3) + x(t1, j) ≥ 2.

We can conclude that x(S) ≥ 1 − ε(j)/2. Thus, as we did previously, we can
increase the x′-value of some edge in S by the quantity ε(j)/2. The following
Lemma follows by the construction of the x′ values.

Lemma 14. The cost of satisfying all of the LP-unsatisfied vertices is at most∑
j∈T\Texp

ε(j)/2. In other words:

∑
(u,v)∈B(T)

(x′(u, v) − x(u, v)) ≤
∑

j∈T\Texp

ε(j)

2
.

Since all vertices in T are now satisfied by x′, the x′-values can be used to
compute an upper bound on the cost of a feasible circulation of C(G, T).

Theorem 2. The function x′ : B(T) → [0, 1] corresponds to a feasible circula-
tion of C(G, T) with cost at most:∑

j∈Texp

max{0, cx(j)} +
∑
j∈T

ε(j).

Theorem 3. When OPTLP (G) = (1 + ε)n, there is a feasible circulation for
C(G, T) with cost at most n/6 + 2εn.

4.2 The f-Circulation

Now we describe a new method to obtain a feasible circulation, i.e. how to obtain
values f ′(i, j) for each edge (i, j) ∈ B(T) such that each vertex in T is satisfied by
f ′. The values will be used to demonstrate an improved upper bound on the cost
of a circulation of C(G, T) when G is a subquartic graph. In this section, we will
prove the following theorem, which implies that the Mömke-Svensson algorithm
has an approximation guarantee of 17/12 for graph-TSP on subquartic graphs.

Theorem 4. When OPTLP (G) = (1 + ε)n, there is a feasible circulation for
C(G, T) with cost at most n/8 + 2εn.

Consider a vertex v ∈ Texp. If both incoming back edges had f -value 1/2, then
this vertex would not contribute anything to the cost of the circulation. Thus,
on a high level, our goal is to find f -values that are as close to half as possible,
while at the same time not creating any additional unsatisfied vertices. The f -
value therefore corresponds to a decreased x-value if the x-value is high, and
an increased x-value if the x-value is low. A set of f -values corresponding to
decreased x-values may pose a problem if they correspond to the set of back

An Improved Analysis of the Mömke-Svensson Algorithm 747

xij > 3/4 ⇒ f(i, j) = 2xij − 1,
xij < 1/4 ⇒ f(i, j) = 2xij ,

1/4 ≤ xij ≤ 3/4 ⇒ f(i, j) = 1/2.

Fig. 1. Rules for creating the f -values from the x-values

edges that cover an LP-unsatisfied vertex. However, in Section 4.1, we only used
ε(j)/2 to satisfy an LP-unsatisfied vertex j. We can actually use at least ε(j).
This observation allows us to decrease the x-values. We use the rules shown in
Figure 1 to determine the values f : B(T) → [0, 1].

Lemma 15. If a vertex v is LP-satisfied, then it is satisfied by f .

Definition 13. For each vertex j ∈ Texp, let cf (j) =
∑

i:(i,j)∈B(T) f(i, j) − 1 −
ε(j).

For ease of notation, set f ′(u, v) = f(u, v) for all (u, v) ∈ B(T).

Lemma 16. For an LP-unsatisfied vertex v ∈ Tint, if we increase by the amount
ε(v) the f ′-value of an edge that covers its unsatisfied tree cut, then vertex v will
be satisfied by f ′.

Lemma 17. For j ∈ Texp, if xmin(j), xmax(j) ≥ 1/2 or if xmin(j), xmax(j) ≤
3/4, then cf (j) ≤ 0.

Lemma 18. If xmax(j) ≥ 3/4 and 0 < xmin(j) ≤ 1/2, then cf (j) ≤
min{xmin(j), 1/2 − xmin(j)}.

Similar to the approach taken in Section 4.1, any LP-unsatisfied vertex can
have the value of the edges covering the unsatisfied tree cut by adding ε(v) to
one of the edges covering the cut. We now have the following theorem.

Theorem 5. When OPTLP (G) = (1 + ε)n, there is a feasible circulation for
C(G, T) with cost at most n/8 + 2εn.

5 Combining the x- and the f -circulations

We can classify each vertex in Texp according to the value of xmin(j). Intuitively,
if many vertices contribute a lot, say 1/3 to the x-circulation, then they will not
contribute a lot of the f -circulation, and vice versa.

xmin(j) cx(j) cf (j)
[0, 1/4] xmin(j)/2 xmin(j)

[1/4, 1/2] xmin(j)/2 1/2 − xmin(j)
[1/2, 2/3] xmin(j)/2 0
[2/3, 1] 1 − xmin(j) 0

748 A. Newman

Theorem 6. When OPTLP (G) = (1 + ε)n, there is a feasible circulation for
C(G, T) with cost at most n/11 + 2εn.

Theorem 7. The approximation guarantee of the Mömke-Svensson algorithm
on subquartic graphs is at most 46/33.

6 Final Remarks

We note that we can obtain a slightly better approximation ratio by allowing
an larger coefficient in front of the amount εn in Theorem 6. However, the
improvement we obtain from this is extremely small (approximately 1.393) and
not worth the technical equations.

Acknowledgements. We wish to thank Sylvia Boyd, Satoru Iwata, R. Ravi,
András Sebő and Ola Svensson for helpful discussions and comments. This work
was done in part while the author was a member of the THL2 group at EPFL.

References

[AKS12] An, H.-C., Kleinberg, R., Shmoys, D.B.: Improving Christofides’ algo-
rithm for the s-t-path TSP. In: Proceedings of the 44th Symposium on
Theory of Computing, pp. 875–886. ACM (2012)

[BSvdSS11] Boyd, S., Sitters, R., van der Ster, S., Stougie, L.: TSP on cubic and
subcubic graphs. In: Günlük, O., Woeginger, G.J. (eds.) IPCO 2011.
LNCS, vol. 6655, pp. 65–77. Springer, Heidelberg (2011)

[CFN85] Cornuéjols, G., Fonlupt, J., Naddef, D.: The traveling salesman problem
on a graph and some related integer polyhedra. Mathematical Program-
ming 33(1), 1–27 (1985)

[Chr76] Christofides, N.: Worst-case analysis of a new heuristic for the travelling
salesman problem. Technical report, DTIC Document (1976)

[Gao13] Gao, Z.: An LP-based-approximation algorithm for the s-t path graph
traveling salesman problem. Operations Research Letters 41(6), 615–617
(2013)

[GLS05] Gamarnik, D., Lewenstein, M., Sviridenko, M.: An improved upper
bound for the TSP in cubic 3-edge-connected graphs. Operations Re-
search Letters 33(5), 467–474 (2005)

[GSS11] Gharan, S.O., Saberi, A., Singh, M.: A randomized rounding approach to
the traveling salesman problem. In: 2011 IEEE 52nd Annual Symposium
on Foundations of Computer Science (FOCS), pp. 550–559. IEEE (2011)

[HK70] Held, M., Karp, R.M.: The traveling-salesman problem and minimum
spanning trees. Operations Research 18(6), 1138–1162 (1970)

[Hoo91] Hoogeveen, J.A.: Analysis of Christofides’ heuristic: some paths are more
difficult than cycles. Operations Research Letters 10(5), 291–295 (1991)

[MS11] Mömke, T., Svensson, O.: Approximating graphic TSP by matchings. In:
IEEE 52nd Annual Symposium on Foundations of Computer Science, pp.
560–569 (2011)

An Improved Analysis of the Mömke-Svensson Algorithm 749

[Muc12] Mucha, M.: 13/9-approximation for graphic TSP. In: Dürr, C., Wilke,
T. (eds.) STACS. LIPIcs, vol. 14, pp. 30–41. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik (2012)

[NP81] Naddef, D., Pulleyblank, W.R.: Matchings in regular graphs. Discrete
Mathematics 34(3), 283–291 (1981)

[Seb13] Sebő, A.: Eight-fifth approximation for the path TSP. In: Goemans, M.,
Correa, J. (eds.) IPCO 2013. LNCS, vol. 7801, pp. 362–374. Springer,
Heidelberg (2013)

[SV12] Sebő, A., Vygen, J.: Shorter tours by nicer ears: 7/5-approximation for
graphic TSP, 3/2 for the path version, and 4/3 for two-edge-connected
subgraphs. arXiv:1201.1870 (2012)

[Vis12] Vishnoi, N.K.: A permanent approach to the traveling salesman problem.
In: 2012 IEEE 53rd Annual Symposium on Foundations of Computer
Science, pp. 76–80. IEEE (2012)

The Input/Output Complexity of Sparse Matrix

Multiplication�

Rasmus Pagh and Morten Stöckel

IT University of Copenhagen
{pagh,mstc}@itu.dk

Abstract. We consider the problem of multiplying sparse matrices (over
a semiring) where the number of non-zero entries is larger than main
memory. In the classical paper of Hong and Kung (STOC ’81) it was

shown that to compute a product of dense U×U matrices, Θ
(
U3/(B

√
M)

)
I/Os are necessary and sufficient in the I/O model with internal memory
size M and memory block size B.

In this paper we generalize the upper and lower bounds of Hong
and Kung to the sparse case. Our bounds depend of the number N =
nnz(A) + nnz(C) of nonzero entries in A and C, as well as the number
Z = nnz(AC) of nonzero entries in AC.

We show that using Õ

(
N
B
min

(√
Z
M
, N
M

))
I/Os, AC can be com-

puted with high probability. This is tight (up to polylogarithmic factors)
when only semiring operations are allowed, even for dense rectangular

matrices: We show a lower bound of Ω

(
N
B
min

(√
Z
M
, N
M

))
I/Os.

While our lower bound uses fairly standard techniques, the upper
bound makes use of “compressed matrix multiplication” sketches, which
is new in the context of I/O-efficient algorithms, and a new matrix prod-
uct size estimation technique that avoids the “no cancellation”
assumption.

1 Introduction

In this paper we consider the fundamental problem of multiplying matrices
that are sparse, that is, the number of nonzero entries in the input matrices
(but not necessarily the output matrix) is much smaller than the number of
entries. Matrix multiplication is a fundamental operation in computer science
and mathematics, due to the wide range of applications and reductions to it —
e.g. computing the determinant and inverse of a matrix, or Gaussian elimina-
tion. Matrix multiplication has also seen lots of use in non-obvious applications
such as bioinformatics [24], computing matchings [22,18] and algebraic reasoning
about graphs, e.g. cycle counting [2,3].

� This work is supported by the Danish National Research Foundation under the
Sapere Aude program.

A.S. Schulz and D. Wagner (Eds.): ESA 2014, LNCS 8737, pp. 750–761, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

The Input/Output Complexity of Sparse Matrix Multiplication 751

Matrix multiplication in the general case has been widely applied and studied
in a pure math context for decades. In an algorithmic context matrix multiplica-
tion is known to be computable using O(nω) ring operations, for some constant
ω between 2 and 3. The first improvement over the trivial cubic algorithm was
achieved in 1969 in the seminal work of Strassen [23] showing ω ≤ log2 7 and
most recently Vassilevska Williams [26] improved this to ω < 2.373.

Matrix multiplication over a semiring, where additive inverses cannot be used,
is better understood. In the I/O model introduced by Aggarwal and Vitter [1]
the optimal matrix multiplication algorithm for the dense case already existed
(see Section 1.2) and since then sparse-dense and sparse-sparse combinations of
vector and matrix products have been studied, e.g. in [6,12,19].

The main contribution of this paper is a tight bound for matrix multiplication
over a semiring in terms of the number of nonzero entries in the input and
output matrices, generalizing the classical result of Hong and Kung on dense
matrices [14] to the sparse case.

1.1 Preliminaries

Let A ∈ RU×U and C ∈ RU×U be matrices of U rows and U columns and
let every entry [A]i,j , [C]i′,j′ ∈ R for semiring R. Further for matrix A let Ai∗
denote row i of A and let A∗j denote column j of A. The matrix product AC,
where each entry [AC]i,j , i, j ∈ [U] is given as [AC]i,j =

∑
k[A]i,k[C]k,j . A

nonzero term [A]i,k[C]k,j is referred to as an elementary product. We say that
there is no cancellation of terms when [AC]i,j = 0 implies that [A]i,k[C]k,j = 0
for all k. For sparse semiring matrix multiplication, the number of entry pairs
with nonzero product measures the number of operations performed up to a
constant factor assuming optimal representation of the matrices. Specifically, let∑n

k=1 |{j | [A]j,k �= 0}||{i | [C]k,i �= 0}| be the number of such nonzero pairs of
matrix entries. Finally let nnz(A) = |{i, j | [A]i,j �= 0}| denote the number of
nonzero entries of matrix A. When no explicit base is stated, logarithms in this
paper are base 2.

External Memory Model. This model of computation [1] is an abstraction
of a two-level memory hierachy: We have an internal memory holding M data
items (“words”) and a disk of infinite size holding the remaining data. Transfers
between internal memory and disk happen in blocks of B words, and a word
must be in internal memory to be manipulated. The cost of an algorithm in this
model is the number of block transfers (I/Os) done by the algorithm. We will
use sort(n) = O((n/B) logM/B(n/B)) as shorthand for the sorting complexity

of n data items in the external memory model and Õ(·)-notation to suppress
polylogarithmic factor in input size N and matrix dimension U .

We assume that a word is big enough to hold a matrix element from a semiring
as well as the matrix coordinates of that element, i.e., a block holds B matrix
elements. We restrict attention to algorithms that work with semiring elements
as an abstract type, and can only copy them, and combine them using semiring
operations. We refer to this restriction as the semiring I/O model. Our upper

752 R. Pagh and M. Stöckel

bound uses a slight extension of this model in which equality check is allowed,
which allows us to take advantage of cancellations, i.e., inner products in the
matrix product that are zero in spite of nonzero elementary products.

The Problem We Solve. Given matrices A ∈ RU×U and C ∈ RU×U containing
nnz(A) and nnz(C) non-zero semiring elements, respectively, we wish to output
a sparse representation of the matrix product AC in the external memory model.
We are dealing with sparse matrices represented as a list of tuples of the form
(i, j, [A]i,j), where [A]i,j ∈ R is a (nonzero) matrix entry. To produce output
we must call a function emit(e) for every nonzero entry (i, j, (AC)i,j) of AC.
We only allow emit(·) to be called once on each output element, but impose no
particular order on the sequence of outputs.

We note that the algorithm could be altered to write the entire output before
termination by, instead of calling emit(·), simply writing the output element to
a disk buffer, outputting all nnz(AC) elements using O(nnz(AC)/B) additional
I/Os. However, in some applications such as database systems (see [5]) there
may not be a need to materialize the matrix product on disk, so we prefer the
more general method of generating output.

1.2 Related Work

The external memory model was introduced by Aggarwal and Vitter in their
seminal paper [1], where they provide tight bounds for a collection of central
problems.

An I/O-optimal matrix multiplication algorithm for dense semiring matrices
was achieved by Hong and Kung [14]: Group the matrices into k

√
M×k

√
M sub-

matrices where constant k is picked such that three
√
M ×

√
M matrices fit into

internal memory. This reduces the problem to O((U3/
√
M)3) matrix products

that fit in main memory, costing O(M/B) I/Os each, and hence O(U3/B
√
M)

in total [10]. Hong and Kung also provided a tight lower bound Ω(U3/B
√
M)

that holds for algorithms that work over a semiring. (It does not apply to algo-
rithms that make use of subtraction, such as fast matrix multiplication meth-
ods, for which the blocking method described above yields an I/O complexity of
Uω/(Mω/2−1B) I/Os.)

For sparse matrix multiplication the previously best upper bound [5],
shown for Boolean matrix products but claimed for any semiring, is
Õ(N
√
nnz(AC)/BM1/8).

It seems that this bound requires “no cancellation of terms” (or more specifi-
cally, the output sensitivity is with respect to the number of output entries that
have a nonzero elementary product). Our new upper bound of this paper im-
proves upon this: The Monte Carlo algorithm of Theorem 1 has strictly lower
I/O complexity for the entire parameter space and makes no assumptions about
cancellation.

An important subroutine in our algorithm is dense-vector sparse matrix mul-
tiplication: For a vector y and sparse matrix S we can compute their product
using optimal Õ((nnz(S) +nnz(y))/B) I/Os [6] - this holds for arbitrary layouts
of the vector and matrix on disk.

The Input/Output Complexity of Sparse Matrix Multiplication 753

Our algorithm has an interesting similarity to Williams and Yu’s recent output
sensitive matrix multiplication algorithm [25, Section 6]. Their algorithm works
by splitting the matrix product into 4 submatrices of equal dimension, running
a randomized test to determine which of these subproblems contain a nonzero
entry. Recursing on the non-zero submatrices, they arrive at an output sensitive
algorithm. We perform a similar recursion, but the splitting is computed differ-
ently in order to recurse in a balanced manner, such that each subproblem at a
given level of the recursion outputs approximately the same number of entries
in the matrix product.

Size estimation of the number of nonzeros in matrix products was used by
Cohen [9,8] to compute the order of multiplying several matrices to minimize
the total number of operations. For constant error probability this algorithm uses
O(ε−2N) operations in the RAM model to perform the size estimation. For ε >
4/ nnz(AC)1/4 Amossen et al [4] improved the running time to be expected O(N)
in the RAM model and expected O(sort(N)) in the I/O model. Contrary to the
approaches of [4,9,8] our new size estimation algorithm presented in Section 2 is
able to deal with cancellation of terms, and it uses Õ(ε−3N/B) I/Os. Informally,
the main idea of our size estimation algorithm is to multiply a sequence of vectors
x with certain properties onto AC but in the computationally inexpensive order
(xA)C, in order to produce linear sketches of the rows (columns) of AC.

1.3 New Results

We present a new upper bound in the I/O model for sparse matrix multiplication
over semirings. Our I/O complexity is at least a factor of roughly M3/8 better
than that of [5]. We show the following theorem:

Theorem 1. Let A ∈ RU×U and C ∈ RU×U be matrices with entries from a
semiring R, and let N = nnz(A)+nnz(C), Z = nnz(AC). There exist algorithms
(a) and (b) such that:

(a) emits the set of nonzero entries of AC, and uses O
(
N2/(MB)

)
I/Os.

(b) emits the set of nonzero entries of AC with probability at least 1−1/U , using

Õ
(
N
√
Z/(B

√
M)
)

I/Os.

For every A and C, using Õ (N/B) I/Os we can determine with probability at
least 1− 1/U if one of the two I/O bounds is significantly lower, i.e., distinguish
between N

√
Z/(B

√
M) > 2N2/(MB) and 2N

√
Z/(B

√
M) < N2/(MB).

The above theorem makes no assumptions about cancellation of terms. In par-
ticular, nnz(AC) can be smaller than the number of output entries that have
nonzero elementary products.

Our second main contribution is a new lower bound on sparse matrix multi-
plication in the semiring I/O model.

Theorem 2. For all positive integers N and Z < N2 there exist matrices A
and C with nnz(A), nnz(C) ≤ N , nnz(AC) ≤ Z, such that computing AC in the

semiring I/O model requires Ω
(

min
(

N2

MB , N
√
Z√

MB

))
I/Os.

754 R. Pagh and M. Stöckel

Since we can determine and run the algorithm satisfying the minimum com-
plexity of the lower bound, our bounds match. We note however, that equality
tests are disallowed in the lower bound model and allowed in the upper bound
model, but we conjecture that allowing equality tests would not weaken the lower
bound, making the bounds tight.

2 Matrix Output Size Estimation

We present a method to estimate column/row sizes of a matrix product AC,
represented as a sparse matrix. In particular, for a column C∗k (or analogously
row Ak∗) we are interested in estimating the number of nonzeros nnz(A[C]∗k)
(nnz([A]k∗B)). We note that there are no assumptions about (absence of) cancel-
lation of terms in the following. We show the existence of the following algorithms
(proof omitted due to space constraints).

Lemma 1. Let A ∈ RU×U and C ∈ RU×U be matrices with entries from semir-
ing R, N = nnz(A) + nnz(C) and let 0 < ε, δ ≤ 1. We can compute estimates
z1, . . . , zk using Õ(ε−3N/B) I/Os and O(ε−3N log(U/δ) logU) RAM operations
such that with probability at least 1 − δ it holds that (1 − ε) nnz([AC]∗k) ≤ zk ≤
(1 + ε) nnz([AC]∗k) for all 1 ≤ k ≤ U .

Corollary 1. Let A ∈ RU×U and C ∈ RU×U be matrices with entries from
semiring R, N = nnz(A) + nnz(C) and let 0 < ε, δ ≤ 1. We can compute Ẑ in
Õ(ε−3N/B) I/Os and O(ε−3N log(U/δ) logU) RAM operations such that with
probability at least 1 − δ it holds that (1 − ε) nnz(AC) ≤ Ẑ ≤ (1 + ε) nnz(AC).

At a high level, the algorithm is similar in spirit to Cohen [9,8], but uses linear
F0 sketches (see e.g. [11,15]) that serve the purpose of capturing cancellation
of terms.We will make use of a well-known F0-sketching method [11,16], where
F0(f) denotes the number of non-zero entries in a vector f . Let S be a data
stream of items of the form ((i, j), r), where (i, j) ∈ U × U and r ∈ R. The
stream defines a vector indexed by U × U (which can also be thought of as a
matrix), where entry (i, j) is the sum of all ring elements r that occurred with
index (i, j) in the stream. For a matrix S ∈ RU×U the number of distinct indices
is the sum of distinct indices over all column vectors F0(S) =

∑
i∈[U] F0(Si∗).

One can compute in space O(ε−3 logn log δ−1) [11,16] a linear sketch over x
that can output a number ẑ, where (1 − ε)F0 ≤ ẑ ≤ (1 + ε)F0 with constant
probability.

High-level algorithm description. We compute a linear sketch F followed by the
matrix product v = FAC. From v for a given T we can distinguish between a
column having more than (1 + ε)T and less than (1 − ε)T nonzero entries - we
repeat this procedure for suitable values of T to achieve the final estimate. We
use the following distinguishability result:

Fact 3. ([16], Section 2.1) There exists a projection matrix M ∈ {0, 1}n×d such
that for each frequency vector f ∈ R1×n we can estimate F0(f) from fM .

The Input/Output Complexity of Sparse Matrix Multiplication 755

In particular, for fixed T ′ > 0, 0 < ε′, δ′ ≤ 1 with probability 1 − δ′ we can
distinguish the cases F0(f) > (1 + ε′)T ′ and F0(f) < (1 − ε′)T ′ using space
d = O(ε′−2 log δ′−1).

We will apply this distinguishability sketch (matrix M from Fact 3) to the
columns of the product AC, since F0(AC) > (1+ε)T implies nnz(AC) > (1+ε)T
and analogously for the second case. This follows trivially from the definition of
F0 and the number of nonzeroes in a matrix product. From Fact 3 we have a
sketch F ∈ {0, 1}d×U which when multiplied with a matrix S ∈ RU×U can dis-
tinguish nnz(S∗k) > (1 + ε)T from nnz(S∗k) < (1 − ε)T with probability 1 − δ
using the columns [FS]∗k.

3 Cache-Aware Upper Bound

As in the previous section let A ∈ RU×U and C ∈ RU×U be matrices with entries
from a semiring R, and let N = nnz(A) + nnz(C) be the input size.

3.1 Output Insensitive Algorithm

We first describe algorithm (a) of Theorem 1, which is insensitive to the number
of output entries nnz(AC). It works as follows: First put the entries of C in
column-major order by lexicographic sorting. For every row ai of A with more
than M/2 nonzeros, compute the vector-matrix product aiC in time Õ(N/B)
using the algorithm of [6]. There can be at most 2N/M such rows, so the total
time spent on this is Õ(N2/(MB)). The remaining rows of A are then gathered
in groups with between M/2 and M nonzero entries per group. In a single scan
of C (using column-major order) we can compute the product of each such row
with the matrix C. The number of I/Os is O(N/B) for each of the at most
2N/M groups, so the total complexity is Õ(N2/(MB)).

3.2 Monte Carlo Algorithm Overview

We next describe algorithm (b) of Theorem 1 The algorithm works by first
performing a step of coloring, the purpose of which is to split the matrix product
into submatrices, each of which can be computed efficiently. The overall idea is
to color matrix rows A using c colors and for each of the c sets of colored rows we
color matrix C also using c colors, such that every combination of colored rows
from A and colored columns from C yields a low number of non-zero output
entries. Then, a “compressed” matrix multiplication algorithm (described by
Lemma 2) is used to compute the output entries of every such combination. The
number c of colors needed to achieve this, to be specified later, depends on an
estimate of nnz(AC), found using Corollary 1.

A technical hurdle is that there might be rows of A and columns of C that we
cannot color because they generate too many entries in the output. However, it
turns out that we can afford to handle such rows/columns in a direct way using
vector-matrix multiplication.

756 R. Pagh and M. Stöckel

3.3 Compressed Matrix Multiplication in the I/O Model

Let γ > 0 be a suitably small constant, and define r = 4γM/ logU . We now
describe an I/O-efficient algorithm for matrix products AC with nnz(AC) ≤
γM/ logU = r/4 nonzeros. If A is stored in column-major order and C is stored
in row-major order, the algorithm makes just a single scan over the matrices.

The algorithm is a variation of the one found in [19], adapted to the semiring
I/O model. Specifically, for some constant � and t = 1, . . . , � logU let ht, h

′
t :

[U] → [r] be pairwise independent hash functions. The algorithm computes the
following � logU polynomials of degree at most 2r:

pt(x) =

U∑
k=1

(
U∑
i=1

Ai,kx
ht(i)

)⎛⎝ U∑
j=1

Ck,jx
h′
t(j)

⎞⎠ .

It is not hard to see that the polynomial
∑U

i=1 Ai,kx
ht(i) can be computed in

a single scan over column i of A, using space r. Similarly, we can compute the
polynomial

∑U
j=1 Ck,jx

h′
t(j) in space r by scanning row j of C. As soon as both

polynomials have been computed, we multiply them and add the result to the
sum of products that will eventually be equal to pt(x). This requires additional
space 2r, for a total space usage of 4r.

Though a computationally less expensive approach is described in [19], we
present a simple method that (without using any I/Os) uses the polynomials
pt(x), t = 1, . . . , � logU , to compute the set of entries in AC with probability
1−U−3. For every i and j, to compute the value of [AC]i,j consider the coefficient

of xht(i)+h′
t(j) in pt, for t = 1, . . . , � logU . For suitably chosen c, with probability

1 − U−5 the value [AC]i,j is found in the majority of these coefficients. The
majority coefficient can be computed using just equality checks among semiring
elements [7]. The analysis in [19] gives us, for a suitable choice of γ and �, the
following:

Lemma 2. Suppose matrix A is stored in column-major order, and C is stored
in row-major order. There exists an algorithm in the semiring I/O model aug-
mented with equality test, and an absolute constant γ > 0, such that if nnz(AC) <
γM/ logU the algorithm outputs the nonzero entries of AC with probability
1 − U−3, using just a single scan over the input matrices.

3.4 Computing a Balanced Coloring

Let color set Si contain rows Ak∗ that are assigned color i, and for each color i

assigned to rows of A let color set S
(i)
j contain columns C∗k that are assigned

color j. Also, let A|Si be the input matrix A restricted to contain only elements

in rows from Si (and analogously for C and S
(i)
j).

The goal of the coloring step is to assign the colors such that for every pair of

color sets (Si, S
(i)
j), 1 ≤ i, j ≤ c it holds that nnz((A|Si)(C|S(i)

j)) < γM/ logU .
This can be seen as coloring the rows of A once and the columns of C c times.

The Input/Output Complexity of Sparse Matrix Multiplication 757

Lemma 3. Let A ∈ RU×U and C ∈ RU×U be matrices with N = nnz(A) +
nnz(C) nonzero entries.

Using Õ

(
N
√

nnz(AC)

B
√
M

)
I/Os a coloring with c =

√
nnz(AC) logU

M +O(1) colors can

be computed that assigns a color to rows of A and for each such color i, assigns
colors to columns of C such that:

1. For every i, j ∈ [c] it holds that nnz
(

(A|Si)(C|S(i)
j)
)
< M/ logU .

2. Rows from A and columns from C that are not in some color sets Si and

S
(i)
j has had their nonzero output entries emitted.

Proof. At a high level, the coloring will be computed by recursively splitting
the matrix rows in two disjoint parts to form matrices A1 and A2 where A1

contains the nonzeros from the first t− 1 rows, for some t, and A2 contains the
nonzeros from the last U − t rows. Row number t, the “splitting row”, will be
removed from consideration by generating the corresponding part of the output
using I/O-efficient vector-matrix multiplication. We wish to choose t such that:

I nnz(A1C) ∈
[
(1 − log−1 U) nnz(AC)/2; (1 + log−1 U) nnz(AC)/2

]
.

II nnz(A2C) ∈
[
(1 − log−1 U) nnz(AC)/2; (1 + log−1 U) nnz(AC)/2

]
.

And after log c + O(1) recursive levels of such splits, we will have O(c) disjoint
sets of rows from A. For each such set we then compute disjoint column sets
of C in the same manner, and we argue below that this gives us subproblems
with output size nnz(AC)/c2 = M/ logU , where each subproblem corresponds
exactly to a pair of color sets as described above.

In order to compute the row number t around which to perform the split, we
invoke the estimation algorithm from Corollary 1 with ε = log−1 U such that
for every row in [AC]k∗ we have access to an estimate ẑk where it holds with
probability at least 1 − U−l (for fixed l > 0 chosen to get sufficiently low error
probability):

ẑk ∈
[
(1 − log−1 U) nnz([AC]k∗)/2; (1 + log−1 U) nnz([AC]k∗)/2

]
. (1)

In particular for any set of rows r we have that

(1− log−1 U) nnz

(∑
i∈r

[AC]i∗

)
≤
∑
i∈r

ẑi ≤ (1 + log−1 U) nnz

(∑
i∈r

[AC]i∗

)
. (2)

We will now argue that if we can create a split of the rows such that (I) and (II)
hold, then when the splitting procedure terminates after log c + O(1) recursive

levels, we have that for each pair of colors it is the case that (A|Si)(C|S(i)
j) <

M/ logN . Consider the case where each split is done with the maximum positive
error possible, i.e., on recursive level q we have divided the nnz(AC) nonzeros
into subproblems where each are of size at most nnz(AC)(1/2 + 1/(2 logU))q.

758 R. Pagh and M. Stöckel

After log c + O(1) recursive levels we have subproblem size:

nnz(AC)

(
1

2
+

1

2 logU

)log c2

= nnz(AC)2− log c2
(

1 +
1

logU

)log c2

≤ nnz(AC)2− log c2e
log c2

log U (3)

≤ nnz(AC)O(1)/c2 = O(M/ logU) (4)

The main observation to see that we get the right subproblem size as in (4) is
that for each recursion we decrease the output size by a factor Ω(c). For (3) we
use (1 + 1/x)y ≤ ey/x, and (4) follows from nnz(AC) ≤ U2 and the definition of
c. The analysis for the case where each split is done with the maximum negative
error possible is analogous and thus omitted.

We will now argue that with access to the ẑi estimates as in (1) we can always
construct a split such that (I) and (II) hold. Let partitions 1 and 2 be denoted
P1 and P2 and ẑ =

∑
i ẑi be the estimate of the total number of outputs for the

current subproblem. Create P1 by examining rows [A]k∗ one at a time. If the
estimated number of nonzeros of P1 ∪ [A]k∗ is less than ẑ/2 then add [A]k∗ to
P1. Otherwise perform dense-vector sparse-matrix multiplication [A]k∗C using
Õ(nnz(C)/B) I/Os [6]and emit every nonzero of that product - this eliminates
the row vector [A]k∗ from matrix A as all outputs generated by row [A]k∗ has
now been emitted. Because of (2) we have that the remaining rows of A can
now be placed in partition P2 and the sum of their outputs will be at most
(1 + log−1 U) nnz(AC)/2. The procedure and analysis is equivalent for the case
of columns. From (4) we had that even with splits of nnz(AC)(1/2 + log(U)/2)
nonzeros then the subproblem size is the desired O(M/ logU) after all log c2

splits are done.
In terms of I/O complexity consider first the coloring of all rows in A. First

we perform the size estimates of Corollary 1 in Õ(N/B) such that we know
where to split. Then we perform c splits and each split also emits the output
entries for a specific row using dense-vector sparse-matrix multiplication, hence
this split takes c nnz(C) = Õ (cN/B) I/Os. Finally for each of the c sets of
rows of A we partition columns of C in the same manner, first by invoking c size
estimations taking Õ(N/B) due to the sum of the nonzeros in the c subproblems
being at most N . Then for each of the c row sets we perform c splits and output
a column from C. This step takes time Õ(cN/B) and hence in total we use

Õ(cN/B + 2N/B) = Õ

(
N
√

nnz(AC)

B
√
M

)
.

3.5 I/O Complexity Analysis

Next, we will use Lemma 3 for the algorithm that shows part (b) of Theorem 1.
We summarize the steps taken and their cost in the external memory model.

Proof. (Theorem 1, part (b)) The algorithm first estimates nnz(AC) with pa-
rameters ε = 1/ logN and δ = 1/U which by Corollary 1 uses Õ(N/B) I/Os. We

The Input/Output Complexity of Sparse Matrix Multiplication 759

then perform the coloring, outputting some entries of AC and dividing the re-

maining entries into c2 balanced sets for c =
√

nnz(AC) logU
M +O(1). By Lemma 3

this uses Õ

(
N
√

nnz(AC)

B
√
M

)
I/Os. Finally we invoke the compressed matrix mul-

tiplication algorithm from Lemma 2 on each subproblem. This is possible since
each subproblem has at most γM/ logU nonzeros entries in the output. The to-
tal cost of this is O(cN/B) I/Os, since each nonzero entry in A and C is part of
at most c products, and the cost of each product is simply the cost of scanning
the input.

4 Lower Bound

Our lower bound generalizes that of Hong and Kung [14] on the I/O complexity
of dense matrix multiplication. We extend the technique of [14] while taking
inspiration from lower bounds in [13,21,20]. The closest previous work is the
lower bound in [20] on the I/O complexity of triangle enumeration in a graph,
but new considerations are needed due to the fact that cancellations can occur.

Like the lower bound of Hong and Kung [14], our lower bound holds in a
semiring model where:

– A memory block holds up to B matrix entries (from the semiring), and
internal memory can hold M/B memory blocks.

– Semiring elements can be multiplied and added, resulting in new semiring
elements.

– No other operations on semiring elements (e.g. division, subtraction, or
equality test) are allowed.

The model allows us to store sparse matrices by listing just non-zero matrix
entries and their coordinates. We note that our algorithm respects the constraints
of the semiring model with one small exception: It uses equality checks among
semiring elements. We require the algorithm to work for every semiring, and in
particular over fields of infinite size such as the real numbers, and for arbitrary
values of nonzero entries in A and C. Since only addition and multiplication are
allowed, we can consider each output value as a polynomial over nonzero entries
of the input matrices. By the Schwartz-Zippel theorem [17, Theorem 7.2] we
know that two polynomials agree on all inputs if and only if they are identical.
Since we are working in the semiring model, the only way to get the term Ai,kCk,j

in an output polynomial is to directly multiply these input entries. That means
that to compute an output entry [AC]i,j we need to compute a polynomial that
is identical to the sum of elementary products

∑
k Ai,kCk,j . It is possible that

the computation of this polynomial involves other nonzero terms, but these are
required to cancel out.

We now argue that for every N and Z there exist matrices A and C with
nnz(A)+nnz(C) = Θ(N) and nnz(AC) = Θ(Z), for which every execution of an

external memory algorithm in the semiring model must use Ω
(

N
B min

(√
Z
M , N

M

))

760 R. Pagh and M. Stöckel

I/Os. Our lower bound holds for the best possible execution, i.e., even if the al-
gorithm has been tailored to the structure of the input matrices.

The hard instance for the lower bound is a dense matrix product, which
maximizes the number of elementary products. In particular, since we ignore
constant factors we may assume that

√
Z and N/

√
Z are integers. Let A be a

(
√
Z)-by-(N/

√
Z) dense matrix, and let C be a (N/

√
Z)-by-(

√
Z) dense matrix.

Without loss of generality, every semiring element that is stored during the
computation is either: 1) An input entry, or 2) Part of a sum that will eventually
be emitted as the value of a unique nonzero element [AC]i,j .

This is because these are the only values that can be used to compute an
output entry (making use of the fact that additive and multiplicative inverses
cannot be computed). This implies that every output entry can be traced through
the computation, and it is possible to pinpoint the time in the execution where
an elementary product is computed and stored in internal memory.

We use the following lemma from [13]:

Lemma 4. In space M the number of elementary products that can be computed
and stored is at most M3/2.

Following [20], observe that any execution of an I/O efficient algorithm can
be split into phases of M/B I/Os. By doubling the memory size to 2M we find
an equivalent execution where every read I/O happens at the beginning of the
phase (before any processing takes place), and every write I/O happens at the
end of the phase. For every phase we can therefore identify the set of at most
2M input and output entries that involved in the phase.

If all values needed for emitting a particular output entry are present in a
phase there may not be any storage location that can be associated with it. We
first account for such direct outputs: Each direct output requires two vectors
of length N/

√
Z to be stored in main memory. In each phase we can store at

most M
√
Z/N such vectors, resulting in at most M2Z/N2 output pairs. So the

number of phases needed to emit, say, Z/2 outputs would be at least (N/M)2,
using N2/(MB) I/Os. This means that to output a substantial portion of AC
in this way we need at least this number of I/Os.

Next, we focus on output entries for which an elementary product is written to
disk in some phase. By Lemma 4 the number of elementary products computed
and stored is at most (2M)3/2. If the total number of elementary products is
p then we need at least p/(2M)3/2 phases of M/B I/Os each. Considering Z/2
output entries in our hard instance, these contain N

√
Z/2 elementary products.

SinceZ/2 outputs are needed either in the direct or the indirect way, the number
of I/Os needed becomes the minimum of the two lower bounds we get Theorem 2.

References

1. Aggarwal, A., Vitter, J.S.: The Input/Output complexity of sorting and related
problems. Commun. ACM 31(9), 1116–1127 (1988)

2. Alon, N., Yuster, R., Zwick, U.: Color-coding. J. ACM (4), 844–856

The Input/Output Complexity of Sparse Matrix Multiplication 761

3. Alon, N., Yuster, R., Zwick, U.: Finding and counting given length cycles. Algo-
rithmica 17(3), 209–223 (1997)

4. Amossen, R.R., Campagna, A., Pagh, R.: Better size estimation for sparse matrix
products. APPROX/RANDOM 2010, 406–419 (2010)

5. Amossen, R.R., Pagh, R.: Faster join-projects and sparse matrix multiplications.
In: ICDT 2009, pp. 121–126. ACM (2009)

6. Bender, M., Brodal, G., Fagerberg, R., Jacob, R., Vicari, E.: Optimal sparse matrix
dense vector multiplication in the I/O-model. TCS 47(4), 934–962 (2010)

7. Boyer, R.S., Moore, J.S.: MJRTY - A fast majority vote algorithm. Technical
Report AI81-32 (February 1, 1981)

8. Cohen, E.: Estimating the size of the transitive closure in linear time. In: SFCS
1994, pp. 190–200. IEEE Computer Society, Washington, DC (1994)

9. Cohen, E.: Structure prediction and computation of sparse matrix products. Jour-
nal of Combinatorial Optimization 2(4), 307–332 (1998)

10. Demaine, E.D.: Cache-oblivious algorithms and data structures. In: Lecture Notes
from the EEF Summer School on Massive Data Sets, June 27-July 1 (2002)

11. Flajolet, P., Martin, G.N.: Probabilistic Counting Algorithms for Data Base Ap-
plications. Journal of Computer and System Sciences

12. Greiner, G., Jacob, R.: The I/O complexity of sparse matrix dense matrix mul-
tiplication. In: López-Ortiz, A. (ed.) LATIN 2010. LNCS, vol. 6034, pp. 143–156.
Springer, Heidelberg (2010)

13. Irony, D., Toledo, S., Tiskin, A.: Communication lower bounds for distributed-
memory matrix multiplication. JPDC 64(9), 1017–1026 (2004)

14. Jia-Wei, H., Kung, H.T.: I/O complexity: The red-blue pebble game. In: STOC
1981, pp. 326–333. ACM (1981)

15. Kane, D.M., Nelson, J., Woodruff, D.P.: An optimal algorithm for the distinct
elements problem. In: PODS 2010, pp. 41–52. ACM (2010)

16. McGregor, A.: Algorithms for Signals, book draft (2013)
17. Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press,

New York (1995)
18. Mulmuley, K., Vazirani, U., Vazirani, V.: Matching is as easy as matrix inversion.

Combinatorica 7(1), 105–113 (1987)
19. Pagh, R.: Compressed matrix multiplication. ACM Trans. Comput. Theory 5(3),

9:1–9:17 (2013)
20. Pagh, R., Silvestri, F.: The input/output complexity of triangle enumeration. arXiv

preprint arXiv:1312.0723 (2013)
21. Pietracaprina, A., Pucci, G., Riondato, M., Silvestri, F., Upfal, E.: Space-round

tradeoffs for mapreduce computations. In: ICS, pp. 235–244. ACM (2012)
22. Rabin, M.O., Vazirani, V.V.: Maximum matchings in general graphs through ran-

domization. J. Algorithms 10(4), 557–567 (1989)
23. Strassen, V.: Gaussian elimination is not optimal. Numerische Mathematik 13(4),

354–356 (1969)
24. van Dongen, S.: Graph Clustering by Flow Simulation. PhD thesis, University of

Utrecht (2000)
25. Williams, R., Yu, H.: Finding orthogonal vectors in discrete structures. In: SODA

2014, ch. 135, pp. 1867–1877 (2014)
26. Williams, V.V.: Multiplying matrices faster than coppersmith-winograd. In: STOC

2012, pp. 887–898. ACM, New York (2012)

Faster FPTASes for Counting and Random

Generation of Knapsack Solutions

Romeo Rizzi1 and Alexandru I. Tomescu2

1 Department of Computer Science, University of Verona, Italy
2 Helsinki Institute for Information Technology HIIT,

Department of Computer Science, University of Helsinki, Finland
romeo.rizzi@univr.it, tomescu@cs.helsinki.fi

Abstract. We give faster and simpler fully polynomial-time approxi-
mation schemes (FPTASes) for the #P-complete problem of counting
0/1 Knapsack solutions, and for its random generation counterpart. Our
method is based on dynamic programming and discretization of large
numbers through floating-point arithmetic. We improve both determin-
istic counting FPTASes in (Gopalan et al., FOCS 2011), (Štefankovič
et al., SIAM J. Comput. 2012) and the randomized counting and ran-
dom generation algorithms in (Dyer, STOC 2003). We also improve the
complexity of the problem of counting 0/1 Knapsack solutions in an
arc-weighted DAG.

1 Introduction

In the #P-complete problem of counting 0/1 Knapsack solutions, the input
consists of a sequence of n nonnegative integer weights w1, . . . , wn and an integer
C, and we have to find the number of subsets (subsets of indices) whose weights
add up to at most C. In its extension to a DAG with nonnegative integer arc
weights, we are given two vertices s and t, and a capacity C, and we are asked
to count how many paths exist from s to t of total weight at most C.

The 0/1 Knapsack counting problem is the classical example of a problem
where the difficulty lies entirely in the size of the numbers of solutions. After
initial efforts, including a randomized subexponential time algorithm [3] (based
on near-uniform sampling of feasible solutions by a random walk), and a fully
polynomial-time randomized approximation scheme1 (FPRAS) [8] (based on a
rapidly mixing Markov chain), this problem was shown to admit a dynamic
programming solution [2].

The solution in [2] uses a linear discretization scheme of the large numbers,
which gives an O(n)-factor approximation algorithm. This leads to a randomized
sampling algorithm generating a solution with probability at least 1−e−1, using
O(n2) arithmetic operations, once a supporting table is computed with O(n3)

1 A fully polynomial-time (randomized) approximation scheme, FPTAS (FPRAS), is
an algorithm that estimates the exact solution within relative error 1 ± ε, in time
polynomial in the input size and in 1/ε.

A.S. Schulz and D. Wagner (Eds.): ESA 2014, LNCS 8737, pp. 762–773, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

Faster FPTASes for Counting and Random Generation 763

arithmetic operations. However, these operations are on O(n)-bit numbers (of
possible solutions), and translate to a randomized algorithm generating ν uni-
form samples in time O(n4 + νn3) with probability at least 1− e−Ω(n). This can
be refined using rejection sampling into an FPRAS of complexity O(n4+n3ε−2).2

Recently, two deterministic FPTASes for this problem appeared. One is [4]
(see also the combined paper [5]), of complexity O(n3ε−1 log(n/ε) logC). It uses
read-once branching programs and insight from [6] to approximate the solution
space; it can be seen as a derandomized version of the result of [2]. Another FP-
TAS is [10] (see also the combined paper [5]), of complexity O(n3ε−1 log(n/ε)). It
is based on dynamic programming and geometric approximation of the numbers.

The problem of counting 0/1 Knapsack solutions has been extended in [7] to a
DAG with nonnegative arc weights, in connection to various applications in bio-
logical sequence analysis (see the references in [7]). Given two vertices s and t, we
have to count the number of s, t-paths of weight at most C. This is clearly a gener-
alization of counting 0/1 Knapsack solutions, since given an instance w1, . . . , wn

and C it suffices to construct the DAG having {v0, . . . , vn} as vertex set, s = v0,
t = vn, and for each i ∈ {1, . . . , n}, there are two parallel arcs from vi−1 to vi,
with weights 0 and wi, respectively. In [7], the technique of [10] is extended to
this problem, and an FPTAS running in time O(mn3 log(n)ε−1 log(n/ε)) is ob-
tained (inaccurately, the factor log(n/ε) is missing from their stated complexity
bound). Our results are the following ones:

Theorem 1. Let w1, . . . , wn and C be an input to the 0/1 Knapsack counting
problem, and let Z be the number of solutions. For any 0 < ε ≤ 1 we can
deterministically compute a floating-point number Z ′ with a
logn�-bit exponent
and a
logn + log(1/ε) + 1�-bit mantissa satisfying (1 − ε)Z ≤ Z ′ ≤ Z, in time

O(n3ε−1
log(1/ε)/ logn�),

assuming unit cost additions and comparisons on numbers with O(logC) bits.

Theorem 2. Let w1, . . . , wn and C be an input to the 0/1 Knapsack problem.
For any 0 < ε ≤ 1, we can generate a solution with a probability different from
the uniform one by a relative factor (1 − ε)±1, in expected time

O(n log(n/ε)).

This assumes data structures occupying O(n4ε−1
log(1/ε)/ logn�W) bits (W is
the word size) and computable in O(n4ε−1
log(1/ε)/ logn�M(
log(1/ε)/ logn�)
time, where M(x) denotes the multiplicative slowdown of multiplying two x-bit
numbers.3

Our supporting data structures are computed slower than in [2]; however, the
time needed for generating one solution is smaller by orders of magnitude. The
next result offers a generalization of Thm. 1 since, as explained above, a 0/1
Knapsack instance can be embedded into a DAG with m = O(n) arcs.

2 We assume, like in [3,5,10], that additions of O(logC)-bit numbers take unit time.
3 With the Schönhage-Strassen method [9], two x-bit numbers can be multiplied in
time x log x log log x, thus M(x) = log x log log x.

764 R. Rizzi and A.I. Tomescu

Theorem 3. Let G be a DAG with n vertices, m arcs with nonnegative weights,
and let s and t be two of its vertices. For any C and any 0 < ε ≤ 1, we can
deterministically compute an 1 − ε approximation of the number of s, t-paths of
weight at most C in G, in time

O
(
mn2 log

(m
n

)
ε−1
log (1/ε) / logn�

)
,

assuming unit cost additions and comparisons on numbers with O(logC) bits.

2 Previous Work and Outline of the Proofs

The solution in [10] is based on the decomposition τ(i, a) := the smallest ca-
pacity c such that there exist at least a solutions to the 0/1 Knapsack problem
with weights w1, . . . , wi and capacity c. The second parameter of τ is then ap-
proximated according to a geometric progression of ratio Q = 1 + ε/(n+ 1). The
approximated table is computed by dynamic programming using the recurrence:

T [i, j] = min
α∈[0,1]

max

{
T [i− 1, �j + logQ α�],
T [i− 1, �j + logQ(1 − α)�] + wi.

(1)

Thanks to the geometric discretization, the second parameter of T takes O(n2ε−1)
values. Finding the minimum over α ∈ [0, 1] is reducible to two binary searches
in row i − 1 of T , due to its monotonicity. The computation of �logQ α� and
�logQ(1 − α)� is then shown to be doable in time O(log(n/ε)).

We consider instead the classic problem decomposition s(i, c) := the number
of 0/1 Knapsack solutions that use a subset of the items w1, . . . , wi, and their
weights sum up to at most c ≤ C. Notice that s and τ are dual, in the sense

τ(i, a) = min{c : s(i, c) ≥ a} and s(i, c) = max{a : τ(i, a) ≤ c}. (2)

Table s can be computed by a dynamic programming algorithm obtained from
the recurrence

s(i, c) = s(i− 1, c) + s(i− 1, c− wi). (3)

We also approximate the number of solutions, which are now the values of s.
However, we approximate them using binary floating-point numbers. The dif-
ference with respect to a standard computer implementation is that we need
as many bits for the exponent as to represent them exactly, and as many bits
for the mantissa as to guarantee the required approximation. For counting 0/1
Knapsack solutions, we need
logn� bits for the exponent and
log(n/ε)�+1 bits
for the mantissa. The main advantage of such an approximation scheme for s is
that it avoids computing values such as �logQ α� (and the associated complexity
analysis), and requires a much simpler approximation analysis.

Second, we are able to avoid a minimization as in (1), and thus avoid binary
search. The idea is to store each row of s as a list. We prune entries with the
same value in each list (leading to O(n2/ε) different entries in each list), and
compute a list by two linear scans of the previous one.

Faster FPTASes for Counting and Random Generation 765

Third, having the table s explicitly, we can implement a random generation
algorithm which works by tracing back probabilistically a random solution from
s(n,C). At each step i, it throws a dice with two faces of sizes s(i − 1, c) and
s(i− 1, c−wi), where c is the capacity available for the remaining first i items.
In order to guarantee that the sampling distribution differs from the uniform
one by a factor (1 − ε)±1, we need another
logn� bit for the mantissa of our
approximated floating-point numbers, as this algorithm makes n choices. Since
we represent the table s as a collection of lists, we need to keep, for every entry
of a list, back-pointers to the corresponding two entries in the previous list. Each
such a pointer occupies W bits, where W is the word size.

Notice that the possibility of doing random generation presented itself also
in [10]. First, one needs to decrease Q to Q = 1 + ε/(n(n + 1)) (as we do by
increasing the length of the mantissa). Thanks to equations (2), one could employ
the same probabilistic trace back, by using the approximated table T as black
box, and decoding each necessary value of s from T . This can be done in time
O(log(n/ε)) by doing binary search in the corresponding row of T , which adds
another factor log(n/ε) to the construction time. However, this can be avoided
by similarly storing back-pointers from each entry of T to the corresponding
two entries in the previous row of T , which are obtained when having found the
minimum over α ∈ [0, 1]. Otherwise put, the two faces of the approximated dice
will have sizes �j + logQ α� and �j + logQ(1 − α)�, where α minimizes (1).

A further issue is rolling this dice in (expected) time proportional to the
number of bits of the two faces of the approximated dice. In our case, since the
two faces are floating-point numbers, we can easily solve this by generating a
random floating-point number x as follows. We generate a sequence of bits until
seeing the first bit equal to ‘1’. The expected number of bits until this happens is
2, thus this charges only a tiny O(1) term to the expected value of the running
time of rolling one dice. At this point, we know the exponent of x, and it is
sufficient to continue generating only the remaining bits of the mantissa of x,
and check whether x is smaller than the ratio between the approximations of
s(i−1, c−wi) and s(i, c). Moreover, our improvement and simplification obtained
by Thm. 1 preserves itself in this random generation algorithm.

Recurrence relation (3) can be extended to a DAG, and thus we can analo-
gously obtain a counting FPTAS. Another improvement with respect to [7] lies
in organizing the computation in sequences of O(n log(mn)) successive additions,
so that we need floating-point numbers with only
log(n log(mn)/ε)� + 1 bits for
the mantissa, and
logn� bits for the exponent.

3 Approximation by Floating-Point Numbers

In this paper, floating-point arithmetic with base 2 is sufficient, as it also has the
advantage of being immediately implementable on a computer for small enough
instances. Floating-point arithmetic, and the inherent accuracy analysis issues,
have a long history in numerical computation. Another recent application of
floating-point arithmetic to approximate counting problems was in [1] in con-
nection with uniform random generation of decomposable structures by partial

766 R. Rizzi and A.I. Tomescu

approximate counts. Moreover, observe that, conceptually, floating-point arith-
metic can be seen as an effective combination of the geometric discretization
of [10], through the exponent, and of the linear discretization of [3], through the
mantissa.

Throughout this paper, we assume that the problem instances consist of n
objects (0/1 Knapsack instances with n objects, DAGs with n vertices). Let c ≥ 1
be such that the maximum numerical value of a particular counting problem is
2n

c−1 (that is, it can be represented with nc bits). Any number x ∈ {0, . . . , 2n
c−

1} can be written as

x = x12p−1 +x22p−2 + · · ·+xp−121 +xp20 = 2p
(
x12−1 + x22−2 + · · · + xp2−p

)
,

where 1 ≤ p ≤ nc, x1 = 1, and xi ∈ {0, 1}, for i ∈ {2, . . . , p}. Under floating-
point arithmetic terminology, p is called the exponent of x, and the binary string
x1x2 . . . xp is called its mantissa.

We will approximate x as a floating-point number which has c logn bits ded-
icated to store its exponent p exactly, but only t bits dedicated to store the first
t bits of its mantissa; that is, we approximate x by the number

〈x〉c logn,t := 2p
(
x12−1 + x22−2 + · · · + xt2

−t
)
.

We will often drop the subscript c logn, t when this will be clear from the context.
For sure, we will choose t ≥ c logn, since the contrary cannot help.

For every 0 ≤ x < 2n
c

, it holds that

(1 − 21−t)x ≤ 〈x〉c logn,t ≤ x. (4)

Let x and y be two floating-point numbers with c logn bits for the exponent

and t bits for the mantissa. We denote the sum
〈
x + y

〉
by x⊕y. We assume that

we can compute x⊕y with a bit complexity of O(c log n+ t) = O(t); if additions
on O(log n)-bit numbers take unit time, then we assume we can compute x⊕ y
with a word complexity of O(t/ log n).

If x, y ∈ {0, . . . , 2n
c − 1} are such that x + y ∈ {0, . . . , 2n

c − 1}, and x, y are
two floating-point numbers with c logn bits for the exponent and t bits for the
mantissa such that

(1 − 21−t)ix ≤ x ≤ x, and (1 − 21−t)jy ≤ y ≤ y,

for some integers i, j ≥ 0, then by (4) the following inequality holds

(1 − 21−t)1+max(i,j)(x + y) ≤ x⊕ y ≤ x + y, (5)

For each particular problem, we will choose t as a function of n and of the
error factor ε, 0 < ε ≤ 1. For the problem of counting 0/1 Knapsack solutions,
c = 1 and t(n, ε) = 1 +
log(n/ε)�, while for its extension on a DAG, c = 1
and t(n, ε) = 1+
log(n log(mn)/ε)�. For the random generation of 0/1 Knapsack
solutions, c = 1 and t(n, ε) = 1 +
log(n2/ε)�.

Faster FPTASes for Counting and Random Generation 767

Algorithm 1. ApproximateCount(w1, . . . , wn, C)

An FPTAS for counting 0/1 Knapsack solutions.

1 Notation: s(i, c) := max{r : [c′, r] ∈ list(i), c′ ≤ c};
2 insert the pair [0, 1] into list(0);
3 for i = 1 to n do
4 construct the bimotonotic list′(i) containing, for each [c, r] in list(i− 1), the

two pairs:
5 • [c, r ⊕ s(i− 1, c−wi)];
6 • [c+ wi, s(i− 1, c+ wi)⊕ r];
7 obtain list(i) by scanning list′(i) and dropping a pair if the previous one

has the same second component;

8 return s(n,C).

4 Counting 0/1 Knapsack Solutions

The classic pseudo-polynomial algorithm for counting 0/1 Knapsack solutions
defines s(i, c) as the number of Knapsack solutions that use a subset of the
items {1, . . . , i}, of weight at most c ∈ {0, . . . , C}, and computes these values
s(i, c) by dynamic programming, using the recurrence

s(i, c) = s(i− 1, c) + s(i− 1, c− wi), (6)

where s(0, c) = 1 for any c ≥ 0, and s(i, c) = 0, for any i ∈ {1, . . . , n} and
c < 0. Indeed, we either use only a subset of items from {1, . . . , i − 1} whose
weights sum up to c, or use item i of weight wi and a subset of items from
{1, . . . , i− 1} whose weights sum up to c− wi. This DP algorithm executes nC
additions on n-bit numbers and its complexity is O(C n2). When C ≤ n, this
is O(n3), whence n ≤ C will be assumed in the following. We will assume, like
in [10], that additions and comparisons on numbers with O(logC) bits have unit
cost, which implies the same on O(log n)-bit numbers.

We use relation (6) to count, but our numbers, for any 0 < ε ≤ 1, are ap-
proximate floating-point numbers with logn bits for the exponent, and 1 +

log(n/ε)� bits for the mantissa (we can assume for simplicity that a solu-
tion using all n objects has cost greater than C, so that s(i, c) < 2n for all
i ∈ {1, . . . , n}, c ∈ {0, . . . , C}). By the above assumption, we have that addi-
tions and comparisons of these floating-point numbers on O(log(n/ε)) bits take
time O(
log(n/ε)/ logn�) = O(
log(1/ε)/ logn�).

For every i ∈ {0, . . . , n} we keep a list, list(i), whose entries are pairs of the
form [c, r], where c is a capacity in {0, . . . , C} and r is an approximate floating-
point number of solutions. We will refer to the set of first components of the pairs
in list(i) as the capacities in list(i). Having list(i), for every c ∈ {0, . . . , C} we
define s(i, c) := max{r : [c′, r] ∈ list(i), c′ ≤ c}, where the maximum of an
empty set is taken to be 0.

The first list, list(0), consists of the single pair [0, 1]. After this initialization,
while computing list(i) from list(i−1), we maintain the following two invariants:

768 R. Rizzi and A.I. Tomescu

(I1) list(i) is strictly increasing on both components;

(I2) (1 − ε/n)i s(i, c) ≤ s(i, c) ≤ s(i, c), for every c ∈ {0, . . . , C}.

Note that Property (I1) implies that the length of list(i) is at most the to-
tal number of floating-point numbers that can be represented with
logn� +

log(n/ε)� + 1 bits, that is O(n2/ε).

We obtain list(i) by first building the bimonotonic (i.e., nondecreasing on
both components) list list′(i) which, for every capacity c in list(i− 1), contains
the following two pairs:

[c, s(i − 1, c) ⊕ s(i− 1, c− wi)] and [c + wi, s(i− 1, c + wi) ⊕ s(i− 1, c)]. (7)

It may turn out that list′(i) contains distinct pairs having the same second
component. Therefore, in order to assure Property (I1), we obtain list(i) by
pruning away from list′(i) those pairs [c2, r] when another pair [c1, r] with c1 ≤ c2
is present. We summarize this procedure as Algorithm 1. Lemma 1 below shows
that we can efficiently construct list′(i); the idea of the proof is to do two linear
scans of list(i), each with two pointers.

Lemma 1. We can compute list′(i) and list(i) from list(i − 1) in time
O(n2ε−1
log(1/ε)/ logn�).

Proof. At a generic step i ∈ {1, . . . , n}, we compute list′(i) as follows. We con-
struct two auxiliary lists of pairs, back(i) and forw(i). For every capacity c in
list(i− 1), the list back(i) will contain the pairs [c, s(i− 1, c) ⊕ s(i− 1, c−wi)],
and the list forw(i) will contain the pairs [c + wi, s(i − 1, c + wi) ⊕ s(i − 1, c)].
List list′(i) is now obtained by merging in a unique sorted list the lists back(i)
and forw(i).

In order to compute forw(i), proceed as follows (the computation of back(i)
is entirely analogous). Keep two pointers left and right in list(i − 1). Pointer
left is initially set to the first pair in list(i− 1), say [c, r]. Pointer right is also
set to the first pair in list(i− 1), but starts scanning list(i− 1) until reaching a
pair [c1, r1], such that c1 +wi ≥ c and either [c1, r1] is the last pair in list(i− 1),
or [c1, r1] is immediately followed by a pair [c2, r2] with the property c+wi < c2.
Append the pair [c+wi, r1 ⊕ r] at the end of forw(i), and advance pointer left
to the next pair in list(i− 1); repeat the above procedure, by advancing pointer
right to the corresponding pair, and inserting a new resulting pair in forw(i).
This is repeated until pointer left reaches the end of list(i− 1).

Observe that list forw(i) is bimonotonic, by the fact that Property (I1) holds
for list(i− 1). By analogy, this is true also for back(i). Therefore, we can merge
them and call list′(i) the resulting list. In order to prune the bimonotonic list′(i)
to obtain list(i), we do a scan with two pointers, dropping a pair if the previous
one has the same second component. Thus Property (I1) holds for list(i).

Since we assume that additions and comparisons on O(logC)-bit num-
bers take unit time, that floating-point additions and comparisons take
O(
log(1/ε)/ logn�) time, and the length of list(i − 1) is O(n2/ε), the con-
struction of list(i) takes time O(n2ε−1
log(1/ε)/ logn�). ��

Faster FPTASes for Counting and Random Generation 769

Lemma 2. Property (I2) holds for list(i), that is, for every i ∈ {0, . . . , n} and

every c ∈ {0, . . . , C}, (1 − ε/n)
i
s(i, c) ≤ s(i, c) ≤ s(i, c) holds.

Proof. The claim is clear for i = 0. For an arbitrary capacity c ∈ {0, . . . , C},
let [c1, r1] in list(i) be such that s(i, c) = r1. From the definition of s, we get
s(i, c) = s(i, c1); from the fact that the pairs in list(i) are of the form (7), we
have

s(i, c) = s(i, c1) = s(i − 1, c1) ⊕ s(i− 1, c1 − wi). (8)

Since the capacities in list(i−1) are a subset of the capacities in list′(i), and the
fact that we have pruned the pairs in list′(i) by keeping the smallest capacity for
every approximate number of solutions corresponding to that capacity, it holds
that

s(i − 1, c1) = s(i − 1, c). (9)

Moreover, observe that there is no capacity c2 in list(i− 1) such that c1 −wi <
c2 < c − wi. Indeed, for assuming the contrary, c2 + wi would be a capacity
in list′(i), by (7). Since we have chosen c1 as the largest capacity in list(i)
smaller than c, and c1 < c2 +wi < c holds, this implies that c2 +wi was pruned
when passing from list′(i) to list(i); thus, the two pairs of list′(i) having c1
and c2 + wi as first components have equal second components. By (8) and the
bimonotonicity of list(i − 1), this entails that also the two pairs of list(i − 1)
having c1 − wi and c2 as first components must have equal second components.
This contradicts the fact that list(i− 1) satisfies Property (I1).

Therefore, it also holds that

s(i− 1, c1 − wi) = s(i − 1, c− wi). (10)

Plugging equations (9) and (10) into (8) we obtain

s(i, c) = s(i− 1, c) ⊕ s(i − 1, c− wi). (11)

From (6), the fact that Property (I2) holds for list(i− 1), and from (5), we get
that (1 − ε/n)is(i, c) ≤ s(i, c) ≤ s(i, c), which shows that Property (I2) holds
also for list(i). ��

By standard techniques, for all natural numbers n ≥ 1 and all 0 < ε ≤ 1, the
following hold:

1 − ε ≤
(

1 − ε

n

)n
, and

(
1 − ε

n

)−n

≤ (1 − ε)−1. (12)

From Lemma 2, the fact that Property (I2) holds, and (12), we obtain Thm. 1.

5 Random Generation of 0/1 Knapsack Solutions

For the random generation problem, we increase the length of the mantissa of
the floating-point numbers up to
log(n2/ε)� + 1 bits.

770 R. Rizzi and A.I. Tomescu

Let f(i, c) := s(i−1, c−wi)3s(i, c) (‘3’ denotes the floating-point division).4

It is important to remark here that the number of solutions including object i is
at most the number of solutions not including object i. Indeed, to every solution
S containing object i we can associate a different solution not containing object i,
namely S \ {i}. It follows that f(i, c) ≤ 1

2 so that f(i, c) is conveniently bounded
away from 1.

For clarity, assume for now that each s(i, c) and f(i, c) are available. We
repeat the following procedure, for every i from n downto 1, and starting with
c = C. With probability f(i, c) we include wi in the solution, and move to entry
(i− 1, c−wi); with complementary probability we do not include wi, and move
to entry (i−1, c). We next show how to implement this simple procedure so that
it samples in O(n log(n/ε)) expected time a Knapsack solution with probability
different from the uniform one by a factor (1−ε)±1. The next lemma shows how
to take each of the n subsequent choices.

Lemma 3. For any i ∈ {1, . . . , n}, c ∈ {0, . . . , C}, in expected time O(log(n/ε))
we can generate B ∈ {0, 1} with(

1 − ε

n2

)i s(i− 1, c− wi)

s(i, c)
≤ Pr(B = 0) ≤

(
1 − ε

n2

)−i s(i− 1, c− wi)

s(i, c)
.

Proof. By Property (I2), we get
(
1 − ε/n2

)i
s(i, c) ≤ s(i, c) ≤ s(i, c). Together

with (4), this implies(
1 − ε

n2

)i s(i− 1, c− wi)

s(i, c)
≤ f(i, c) ≤

(
1 − ε

n2

)−i s(i− 1, c− wi)

s(i, c)
. (13)

Thus, in order to generate B with the desired probability, it is enough to generate
uniformly at random a number x ∈ [0, 1) and set B = 0 iff x < f(i, c).

This can be implemented in expected time O(log(n/ε)) as follows. We start
generating a random sequence of bits (starting with the most significant one of
x) until seeing the first bit equal to ‘1’ (the first bit of the mantissa of x). At this
point, we know the exponent of x. Since f(i, c) has a mantissa of
log(n2/ε)�+1
bits, in order to decide whether x < f(i, c), it is enough to generate other

log(n2/ε)� bits for the mantissa of x. Call x the resulting floating-point number,
and set B = 0 iff x < f(i, c).

The exponent of x can be computed by starting with the exponent equal to
0, and for every bit of x equal to 0, subtracting 1 from it. Since the expected
number of bits until seeing the first bit of x equal to ‘1’ is 2, the expected time
for generating x is O(log(n/ε)). ��

By Lemma 3, the probability X of generating a 0/1 Knapsack solution satisfies
the following relation, which by (12) gives our (1 − ε)±1 approximation:(

1 − ε

n2

)n2
1

s(n,C)
≤ X ≤

(
1 − ε

n2

)−n2
1

s(n,C)
.

Faster FPTASes for Counting and Random Generation 771

Algorithm 2. ApproximateRandomGeneration(w1, . . . , wn, C)

Random generation of 0/1 Knapsack solutions.

1 compute list(1), . . . , list(n) with Algorithm 1, by attaching the two
back-pointers to each element;

2 c := C;
3 current := the last element of list(n);
4 solution := ∅;
5 for i := n downto 1 do
6 generate B ∈ {0, 1} with Lemma 3;
7 if B = 0 then
8 solution := solution ∪ {wi};
9 c := c− wi;

10 update current by following its back-pointer corresponding to choosing
wi in the solution;

11 else
12 update current by following its back-pointer corresponding to not

choosing wi in the solution;

13 return solution.

We show now how to implement this random generation procedure efficiently,
using the lists constructed in Sec. 4. See the resulting procedure in Algorithm 2.
The idea is that for every element approximating an entry s(i, c), we attach one
pointer to the element of list(i − 1) approximating s(i − 1, c), and one pointer
to the element of list(i− 1) approximating s(i− 1, c− wi).

We do this by extending the construction of forw(i) inside Lemma 1, as
follows. Assume, like in Lemma 1, that pointer left is on a pair [c, r] of list(i−1).
Assume also that pointer right reached a pair [c1, r1], and that we need to append
the pair [c+wi, r1⊕ r] (the approximation of s(i, c+wi)) at the end of forw(i).
We now attach to it two back-pointers: one to element left (the approximation
of s(i − 1, c + wi)) and one to element right (the approximation of s(i − 1, c)).
Similarly when computing list back(i). The trace back in the random generation
procedure starts in the last element of list(n), and follows the back-pointers
corresponding to whether the current element is included or not in the solution.

The time needed to construct this collection of extended lists is the same as
before, the only difference being that the floating-point numbers have mantissas
of
log(n2/ε)� + 1 bits, leading to a complexity of O(n4ε−1
log(1/ε)/ logn�).
Since we also need to store the back-pointers, the memory needed to store all
the lists is O(n4ε−1
log(1/ε)/ logn�W) bits, where W is the word size.

We can pre-compute each f(i, c) needed in Lemma 3 using one of the two
back-pointers of every element of a list, and doing the floating-point divi-
sion with the Newton-Raphson division method, which reduces a division to

4 For simplicity, in all subsequent considerations, we ignore the technical issue that
we need to use one extra bit for indicating that the exponent is less than zero.

772 R. Rizzi and A.I. Tomescu

a multiplication algorithm [9]. Thus, each division can be computed in time
O(
log(1/ε)/ logn�M(
log(1/ε)/ logn�) time, where M(x) = log x log log x [9]
(assuming again operations on O(log n) bits to have unit cost). Generating one
Knapsack solution takes expected time O(n log(n/ε)), by Lemma 3. This com-
pletes the proof of Thm. 2.

6 Counting Knapsack Solutions on a DAG

Onwards, we briefly sketch the details on applying this method to the Knapsack
problem on a DAG. We can assume that all vertices of the DAG D (with n
vertices and m arcs) are reachable from s, and all vertices reach t. We transform
D into an equivalent DAG D′ in which every vertex has at most two in-coming
arcs, and D′ has O(m) vertices and arcs, and the maximum path length (i.e.,
number of arcs in the path) is O(n log(mn)). This can be achieved as follows.
For every node vi of D, if its in-degree d−(vi) > 2, we construct a complete
binary tree on top of the in-neighbors vi1 , . . . , vid−(vi)

of vi, where vi is its root;

this tree has O(d−(vi)) vertices and edges, and depth log(d−(vi)). The vertices
and edges of this tree are added to D, the arcs from vi1 , . . . , vid−(vi)

to vi are

removed, and all edges of the tree are directed towards vi. The weights of the
new arcs out-going from vi1 , . . . , vid−(vi)

are set to be the weights of their former

arcs towards vi; all other new arcs have weight 0.
Say that D′ has n′ vertices and let s = v1, v2, . . . , vn′ = t be a topological

ordering of them. We now denote by s(i, c) the number of paths that end in
vi and their total weight is at most c ∈ {0, . . . , C}. If for every node vi, its
its in-neighborhood is {vi1 , vid−(vi)

}, and the weights of the arcs entering vi are

wi1 , wi
d−(vi)

, respectively, relation (6) generalizes to:

s(i, c) =

{
s(i1, c− wi1), if d−(vi) = 1,

s(i1, c− wi1) + s(i2, c− wi2), if d−(vi) = 2.
(14)

The solution is obtained as s(n′, C). As before, we use (14) to count, keeping at
each step approximate floating-point numbers. These numbers still have
logn�
bits for the exponent, but, since the maximum path length in D′ is O(n log(mn)),
the length of their mantissa will be 1 +
log(n log(mn)/ε)� bits. Additions and
comparisons of these floating-point numbers still take the same time as before,
namely O(
log(1/ε)/ logn�).

As before, for every i ∈ {1, . . . , n′}, we keep a list, list(i), of pairs [capac-
ity, approximate number of solutions], now of length at most O(n2 log(mn)ε−1).
Analogously, list(1) consists of the single pair [0, 1], and while comput-
ing list(i) from lists list(i1), or list(i1) and list(i2) (doable now in time
O(n2 log(mn)ε−1
log(1/ε)/ logn�)), we maintain the following two invariants,
where �(i) denotes the length of the longest path from s to vi:

(I1) list(i) is strictly increasing on both components;

(I2)
(
1 − ε/(n log(mn))

)�(i)
s(i, c) ≤ s(i, c) ≤ s(i, c), for every c ∈ {0, . . . , C}.

From these considerations, Thm. 3 immediately follows.

Faster FPTASes for Counting and Random Generation 773

7 Conclusions

Our approach can be applied to combinatorial decompositions of various other
problems, with the required math for bounding the run-time in terms of ε em-
bodied in the technical floating-point arithmetic layer. It is a conceptual tool
that can guide and inspire the design of new algorithms. In this new scenario,
the length of the mantissa becomes a resource, and minimizing its consumption
leads one to reduce the number of subsequent approximation phases in process-
ing the data flow. This view indeed supported us in gaining an extra n factor in
Thm. 3. Moreover, the algorithms inspired by this framework require very little
ad-hoc analysis, thanks to the reusable layer of floating-point arithmetic.

Acknowledgements. This work was partially supported by the Academy of
Finland under grant 250345 (CoECGR), and by the European Science Foun-
dation, activity “Games for Design and Verification”. We thank Djamal Be-
lazzougui and Daniel Valenzuela for discussions on data structures for large
numbers, and Stephan Wagner for remarks on decomposable structures.

References

1. Denise, A., Zimmermann, P.: Uniform Random Generation of Decomposable Struc-
tures Using Floating-Point Arithmetic. Theor. Comput. Sci. 218(2), 233–248 (1999)

2. Dyer, M.E.: Approximate counting by dynamic programming. In: Larmore, L.L.,
Goemans, M.X. (eds.) STOC, pp. 693–699. ACM (2003)

3. Dyer, M.E., Frieze, A.M., Kannan, R., Kapoor, A., Perkovic, L., Vazirani, U.V.:
A Mildly Exponential Time Algorithm for Approximating the Number of Solutions
to a Multidimensional Knapsack Problem. Combinatorics, Probability & Comput-
ing 2, 271–284 (1993)

4. Gopalan, P., Klivans, A., Meka, R.: Polynomial-Time Approximation Schemes
for Knapsack and Related Counting Problems using Branching Programs. CoRR
abs/1008.3187 (2010)

5. Gopalan, P., Klivans, A., Meka, R., Stefankovic, D., Vempala, S., Vigoda, E.: An
FPTAS for #Knapsack and Related Counting Problems. In: Ostrovsky, R. (ed.)
FOCS, pp. 817–826. IEEE (2011)

6. Meka, R., Zuckerman, D.: Pseudorandom generators for polynomial threshold func-
tions. In: Schulman, L.J. (ed.) STOC, pp. 427–436. ACM (2010)

7. Mihalák, M., Šrámek, R., Widmayer, P.: Counting approximately-shortest
paths in directed acyclic graphs. In: Kaklamanis, C., Pruhs, K. (eds.)
WAOA 2013. LNCS, vol. 8447, pp. 156–167. Springer, Heidelberg (2014),
http://arxiv.org/abs/1304.6707v2

8. Morris, B., Sinclair, A.: Random Walks on Truncated Cubes and Sampling 0-1
Knapsack Solutions. SIAM J. Comput. 34(1), 195–226 (2004)

9. Schönhage, A., Strassen, V.: Schnelle multiplikation großer zahlen. Computing
7(3-4), 281–292 (1971)

10. Štefankovič, D., Vempala, S., Vigoda, E.: A Deterministic Polynomial-Time
Approximation Scheme for Counting Knapsack Solutions. SIAM J. Comput. 41(2),
356–366 (2012)

http://arxiv.org/abs/1304.6707v2

Improved Guarantees for Tree Cut Sparsifiers

Harald Räcke and Chintan Shah

Institut für Informatik, Technische Universität München

Abstract. Harrelson, Hildrum and Rao [11] construct for a given graph
a single tree that acts as a flow sparsifier, i.e., it can approximate mul-
ticommodity flows in G up to an O(log2 n log log n) factor. Many ap-
plications that use these trees do not actually require a flow sparsifier
but would already work with just having a cut sparsifier. We show
how to construct a cut sparsifier that is a single tree and has quality
O(log1.5 n log log n).

In addition we show a close connection of this problem to the Mincut
Linear Arrangement Problem which shows that improving the guarantee
to o(log1.5 n) might be difficult.

1 Introduction

There exist many different results that aim to approximate the cut-structure of
a graph G = (V,E, capG) by a different graph H = (VH , EH , capH), where H
may either be smaller than G or may have a simpler structure. Formally, we say
H is a cut sparsifier for G with quality q if V ⊆ VH and for every cut U ⊆ V
we have capG(U, V \U) ≤ mincutH(U, V \U) ≤ q · capG(U, V \U). Benczur and
Karger [4] e.g. show how to compute a (1 + ε)-quality cut sparsifier H that has
the same vertex set as G and has a small edge-set.

A related notion is the concept of a flow sparsifier which is a graph H s.t. any
feasible multicommodity flow in G can be routed in H with congestion at most
1, and any feasible flow in H (between vertices from V) can be supported in G
with congestion at most q.

In the context of designing oblivious routing schemes, Räcke [17] developed
tree flow sparsifiers, where the graph H is a single tree and the leaf nodes of the
tree correspond to the vertex set V of G. He showed the existence of a tree flow
sparsifier with quality O(log3 n), which was later improved by Harrelson, Hildrum
and Rao [11] to O(log2 n log logn). These tree flow sparsifiers have subsequently
been used to obtain approximate solutions for a variety of cut-related problems
that seem very hard on general graphs but that are efficiently solvable on trees.
Examples include: Minimum Bisection, Simultaneous Source Location, Online
Multicut, k-multicut etc. (see e.g. [1,3,6,9,12,13,18]).

Instead of considering a single tree to approximate the cut-structure of a
graph G, Räcke [18] considered a convex combination of trees and obtained
a flow sparsifier with quality O(log n). While quite a few problems like e.g.
Minimum Bisection or Generalized Sparsest Cut can be approximated using a
convex combination of trees, there are important problems that seem to require

A.S. Schulz and D. Wagner (Eds.): ESA 2014, LNCS 8737, pp. 774–785, 2014.
© Springer-Verlag Berlin Heidelberg 2014

Improved Guarantees for Tree Cut Sparsifiers 775

a single tree. In particular, if the objective function is not linear in the total
capacity of cut edges, an approximation by a convex combination of trees does
not work. (see e.g. [19,12,1] for such problems).

Interestingly, most results that use the trees of Harrelson et al. do not actually
require a flow sparsifier but a cut sparsifier would work as well. Therefore in
this paper we develop improved guarantees for cut sparsifiers that are single
trees. One particular problem that benefits from the result of this paper is the
Min-Max graph partitioning problem, where the goal is to partition a graph
into k balanced components such that the number of edges incident to a single
component is minimized. Stotz [19] analyzes this problem in the scenario where
the balance constraint on the components is very tight (components should have
size at most (1 + ε)n/k). He obtains a (1 + ε,O(q))-bicriteria approximation,
where q is the quality of a single-tree cut sparsifier.

A more precise statement of the result of Harrelson et al. is that they compute
an O(α logn log logn)-quality flow sparsifier that is a single tree, where α is the
sparsest cut gap of the graph G. We show that we can efficiently compute a single
tree that is an O(β logn log logn)-quality cut sparsifier where β is the approxi-
mation guarantee of a sparsest cut algorithm for product multicommodity flows
It is known that for general graphs β = O(

√
logn) [2], while α may be Ω(log n).

If we only care about an existential result we can use an exact algorithm for
sparsest cut and show that there exists an O(logn log logn)-quality cut sparsi-
fier that is a single tree for arbitrary undirected graphs. There is a lower bound
of Ω(logn) for a tree flow sparsifier if G is a grid. Since the maxflow mincut
gap of a grid graph is constant, this lower bound also applies to cut sparsifiers,
which shows that our existential result is nearly tight.

Concerning the question whether our polynomial time construction can be
improved to yield a cut sparsifier of better quality we show a close relationship
of this problem to the mincut linear arrangement problem. Hence, it is likely that
an improvement of the construction actually yields an improvement for mincut
linear arrangement which seems very challenging.

1.1 Further Work

Vertex sparsifiers [16,14,5,8,15,10] are closely related to the sparsifiers that we
consider in this paper. In this scenario we are given a large capacitated graph
G = (V,E, capG) together with a set of terminals T ⊆ V . The goal is to generate
a cut sparsifier H = (VH , EH , capH) just for the terminal set T . Hence, it
is required that for all U ⊆ T : mincutG(U, T \ U) ≤ q mincutH(U, T \ U) ≤
mincutG(U, T \ U).

One usually aims for the size of H to be independent of n = |V | but only
depend on k = |T |. In this context one can construct flow sparsifiers with
quality O(log k

log log k) [5,15] and one can also get flow sparsifiers that are a convex
combination of trees and have quality O(log k) [10].

The idea of using ARV [2] to obtain better bounds when only cut-based guar-
antees are required appears frequently. For example, Chekuri et al. [7] develop

776 H. Räcke and C. Shah

well-linked decompositions to tackle edge disjoint path and related routing prob-
lems. They differentiate between flow well linked and cut well linked and obtain
better bounds when just cut-well-linked decompositions are required.

1.2 Our Results

Theorem 1. There is a polynomial time algorithm that for a weighted graph
G = (V,E, capG) computes a tree cut sparsifier of quality O(β logn log logn).

Before sketching the techniques we use, we introduce some notation. For two
sets X,Y ⊆ V we use capG(X,Y) =

∑
x∈X

∑
y∈Y capG((x, y)), where we define

capG((x, y)) = 0 if (x, y) /∈ E. Note that this counts an edge e twice if both
end-points of e are in X and Y . For a set S ⊆ V we will use S = {S0, . . . , S�} to
denote a partition of S into subsets. wS(x) is a function that for a vertex x ∈ S
counts the weight of edges incident to x that leave the sub-cluster of S in which
x is contained (i.e., it counts edges that go into other sub-clusters or leave S).
If the partition S is the trivial partition S = {S} we also write wS(x) instead of
w{S}(x). This counts the capacity of border-edges of S incident to x. For two
disjoint sets X and Y we use E(X,Y) to denote the set of edges that connect
nodes in X to nodes in Y .

A hierarchical decomposition of a graph G is a recursive partitioning of the
vertex set into smaller and smaller components such that on the final level of
the recursion the components just contain single vertices of G. Such a recursive
decomposition corresponds in a natural way to a decomposition tree T in which
leaf nodes correspond to nodes in G, the root corresponds to the whole vertex set,
and internal vertices correspond to subsets generated during the partitioning.

We will identify a node in T with the component/cluster S of vertices in G
that the node corresponds to. For such a cluster S we use S to denote its parti-
tion into child-clusters in T . Harrelson et al. [11] have constructed a hierarchical
decomposition such that an all-to-all flow between edges connecting different
sub-clusters can be routed with low congestion. We will not route a flow be-
tween these edges but we will embed an expander between them according to
the following definition.

Definition 1. Consider a cluster S together with its set S of child-clusters S =
{S0, . . . , S�}. We say a weighted graph HS = (S,EH , capH) is an S-expander if
minU⊆S{capH(U, S \ U)/min{wS(U), wS(S \ U)}} ≥ 1.

Theorem 1 follows from the following lemma.

Lemma 1. There exists a polynomial time algorithm to find a hierarchical de-
composition tree T , together with an S-expander HS for every cluster S such that
all graphs HS can be concurrently routed in G with congestion O(β logn log logn).

2 Constructing the Hierarchical Partition

We want to construct a hierarchical decomposition tree T , such that any clus-
ter S in T has good expansion w.r.t. S, its partition into child clusters. We

Improved Guarantees for Tree Cut Sparsifiers 777

demonstrate this by embedding a graph HS which is an S-expander into G[S]
with low congestion.

It is natural to construct T by providing a partitioning routine that on input
of a cluster S outputs a set of sub-clusters S = {S0, . . . , S�} of S, such that S has
good expansion w.r.t. S, and then to apply this routine recursively. However,
for some cluster S, there may not exist any partition S for which S expands well.

Consider e.g. a cluster S that has a cut U for which cap(U, S \ U) *
min{wS(U), wS(S \ U)}. Regardless of the chosen partition S, routing any S-
expander will incur a large congestion. We call such a cut U a bottleneck cut.
Harrelson, Hildrum and Rao [11] introduced the concept of a bad child event,
whereby a cluster S that does not have a good partition, signals this to the caller
by returning a bottleneck cut.

The partitioning of a cluster S is done in two phases – the merge phase and
the refinement phase. In the merge phase, we try to find a partition S together
with an S-expander HS such that HS can be embedded in S with low congestion.
If we succeed in finding such a partition, say Smerge, we proceed to the refinement
phase. Otherwise, we find a bottleneck cut U that certifies that there is no good
partition, and return this cut to the caller.

During the refinement phase for a cluster S, we call the partitioning routine
for each child-cluster Si ∈ Smerge. Whenever some Si signals a bad child event
and returns a bottleneck cut U , we find a related cut U ′ and refine the current
partition by replacing Si with Si ∩U ′ and Si \U ′. Then we call the partitioning
routine again on Si ∩ U ′ and Si \ U ′. This process is repeated until all calls of
the partitioning routine for sub-clusters succeeded. We use Sfinal to denote the
partition of S at the end of the refinement phase.

For the detailed description of our decomposition we require the following
lemma, which follows from a β-approximation algorithm for Sparsest Cut.

Theorem 2. Given a cluster S and a partition S = {S0, . . . , S�} of S into sub-
clusters, there is a polynomial time algorithm that finds an S-expander HS, and
a parameter γ such that

– HS embeds into G[S] with congestion β/γ, and
– there is a cut U ⊆ S in G[S] with |U | ≤ |S|/2, s.t. capG(U,S\U)

min{wS(U),wS(S\U)} = γ.

U is the cut returned by a β-approximation for Sparsest Cut, where the demands
are given by dem(u, v) = wS(u)wS(v), and γ is its sparsity. This means the
sparsest cut in G[S] has sparsity at least γ/β. Scaling capacities in G[S] by β/γ
gives us an S-expander that can be embedded into G[S] with congestion β/γ.

2.1 The Merge Phase

During the merge phase of a cluster S, we always maintain a working partition
S of S. Starting with S = {{v} | v ∈ S}, we perform the following steps:

1. Using the algorithm from Theorem 2, we find an S-expander HS , and an
upper bound β/γ on the congestion for embedding HS into G[S]. If 1/γ ≤

778 H. Räcke and C. Shah

f(S), we set Smerge = S and proceed to the refinement phase. Here, f(S) =
8 log(|P |/|S|) log logn, where P is the parent of S.

2. Otherwise, Theorem 2 returns a cut U with

capG(U, S \ U)/wS(U) = γ ≤ 1/f(S) . (1)

where |U | ≤ |S|/2. If, in addition,

capG(U, S \ U)/wS(U) ≤ 2/f(S) , (2)

we have a bottleneck cut. We signal this to the caller and return U . Oth-
erwise, we remove vertices in U from other sets of S1, and merge them into
one set U that we add to S. Then we go to Step 1.

The following lemma shows that this process terminates.

Lemma 2. An execution of the merge phase takes polynomial time.

Proof. In a merge step wS(S) changes as follows. We add edges between U
and S \ U which increases wS(S) by 2 capG(U, S \ U). We remove edges that
are incident to nodes in U and connect different sub-clusters Si in the current
partition (but do not leave S). The weight of the latter set of edges is

wS(U) − wS(U) ≥ f(S) · cap(U, S \ U) − f(S) · cap(U, S \ U)/2

= f(S) · cap(U, S \ U)/2

= 4 · cap(U, S \ U) · log logn · log(|P |/|S|) > 2 · cap(U, S \ U) .

Here the first inequality is due to the fact that whenever we perform a merge
step Equation 1 holds, but Equation 2 does not. The last inequality holds for
n ≥ 4 and uses the fact that |P | ≥ 2|S|.

Hence, wS(S) strictly decreases every time we perform a merge step. Initially,
wS(S) is a polynomial number, and since wS(S) cannot be 0, the merge phase
takes polynomial time. ��

2.2 The Refinement Phase

In the refinement phase we refine the partition Smerge obtained at the end of
the merge phase by partitioning a cluster Si into Si ∩ U ′ and Si \ U ′ whenever
the call of the partitioning routine for Si signals a bad child event and returns
a bottleneck cluster U . We first motivate the choice of the cut U ′ that we make
within Si by relating it to our overall goal.

In the end we want to embed an Sfinal-expander HS into G[S], where Sfinal
is our final partition of S. After the merge phase we are able to embed an
Smerge-expander with congestion at most β/γ ≤ βf(S). One way to embed
an Sfinal-expander (with slightly larger congestion) is to route flow from the
additional edges separated in Sfinal to the edges that were already separated in
1 If sets in the partition become empty we delete them.

Improved Guarantees for Tree Cut Sparsifiers 779

Smerge. Formally, we say that we route from a set of edges X to a distribution
μ(·) over nodes, if a node v injects a flow equal to its weighted degree in X and
receives a flow of 2μ(v)

∑
e∈X capG(e). The following lemma shows that given a

bottleneck cut U ⊆ Si (e.g. returned by a bad child event) we can find another
bottleneck cut U ′ ⊆ U such that we route from the edges between U ′ and Si \U ′

to the distribution wSi(·)/wSi(U
′) among border nodes in U ′.

Lemma 3. Given a bottleneck cut U for Si with capG(U, Si \ U)/wSi(U) ≤
2/f(Si) we can find in polynomial time a cut U ′ ⊆ U s.t.

– capG(U ′, Si \ U ′)/wSi(U
′) ≤ 2/f(Si)

– we can route from the edges E(U ′, Si \U ′) to the distribution wSi(·)/wSi(U
′)

among nodes in U ′ while incurring congestion at most 2 on edges in G[U ′]∪
E(U ′, Si \ U ′).

Proof. We show how to find a cut U ′ s.t. the vertices inside U ′ can route the
desired demand with congestion 1 inside G[U ′]. To route the complete flow we
have to add the flow originating at nodes in Si \ U ′. This flow is first routed
across the cut U ′ (resulting in load 1 on edges in E(U ′, Si \U ′)) and then to the
distribution wSi(·)/wSi(U

′) by using the same flow as before a second time.
We construct an s–t flow network from G[U] by adding a source s, a sink

t, edges (s, u) with capacity cap(u, Si \ U) for u ∈ U , and edges (u, t) with
capacity cap(U, Si \ U) · wSi(u)/wSi(U) for u ∈ U . Observe that cap({s}, U) =
cap({t}, U) = cap(U, Si \U) and that sending a flow from s to t in this network
corresponds to sending a flow from the cap(U, Si \U) units of capacity generated
by U to the boundary edges of Si that are incident to U .

We compute the minimum cut in this network. If {t} is a mincut, then U ′ = U
satisfies the first condition of the lemma by Equation 2, and the second condition
since the mincut, and, hence, the maxflow has value cap(U, Si \ U).

Otherwise, let U ′ be the set of vertices in U , which are on the same side of
the mincut as t. Observe that U ′ � U , since the mincut has value strictly less
than cap(U, Si \ U) and so {s} is not a mincut. The capacity of the mincut is

cap({s} ∪ U \ U ′, U ′ ∪ {t})

= cap(s, U ′) + cap(U \ U ′, U ′) + cap(U \ U ′, t)

= cap(Si \ U ′, U ′) + cap(U \ U ′, t)

= cap(U ′, Si \ U ′) + cap(U, Si \ U) · wSi(U \ U ′)

wSi(U)
< cap(U, Si \ U) .

This gives

cap(U ′, Si \ U ′) < (wSi(U
′)/wSi(U)) · cap(U, Si \ U)

and, hence, cap(U ′, Si \ U ′)/wSi(U
′) < cap(U, Si \ U)/wSi(U). This means U ′

is also a bottleneck cluster. Summing up we have shown that if {t} is a mincut
in the flow network the lemma follows for U ′ = U and otherwise we find another
bottleneck cut U ′ with strictly smaller cardinality. We can repeat the previous
step for this new bottleneck cut. At some point this process stops and we obtain
a U ′ that satisfies the lemma. ��

780 H. Räcke and C. Shah

The description how to obtain the cut U ′ from cut U completes the description
of the refinement phase.

2.3 Embedding an S-Expander

The goal of this section is to prove the following technical version of Lemma 1.

Lemma 4. There exists a polynomial time algorithm to find a hierarchical de-
composition tree T , together with an S-expander HS for every cluster S such that
the following holds: Every graph HS can be routed in G[S] in such a way that
an edge e ∈ Si has load O(β log logn · log(|P |/|Si|)) while edges between clusters
Si have load O(β log logn · log(|P |)). Here P is the parent cluster of S.

Lemma 1 is an easy consequence of Lemma 4 and is proved in the full version.
For proving Lemma 4 we have to show how to embed an Sfinal-expander into

a cluster S. Recall that we can embed an Smerge-expander with congestion at
most β · f(S) into G[S]. We first show how we can route from the additional
edges separating clusters in Sfinal to the edges separating clusters in Smerge with
small congestion.

More concretely, consider a cluster C ∈ Smerge. During the refinement phase
this cluster may be partitioned several times. We can represent the refinement
process by a binary tree TC . The root of TC corresponds to C, and the two
children of a cluster X ∈ TC correspond to the two subsets into which X is
refined. We show that we can route from the additional edges in the refinement
of C to the border edges of C.

Lemma 5. Let C ∈ Smerge and let C be the final refinement of C. We can route
a flow inside G[C] such that a node x injects wC(x) units of flow and receives at
most 2wC(x) units. In addition

– The load on an edge contained in a sub-clusterD ∈ C is at most 4 log(|C|/|D|).
– The load on an inter-cluster edge in C is at most 4 log(|C|).

Proof. For the following analysis we will view the flow as being routed between
edges; for simplicity we also assume that all edges have capacity 1.

Each border edge generated in the refinement process for C appears at some
point in TC namely when a cluster X is split into XL and XR (wlog, assume
that |XL| ≤ |XR|). An edge from G[C] between XL and XR will then give rise
to a border-edge of XL and to a border-edge of XR. We say that these border
edges are generated at X . They will also be border-edges for sub-clusters of XL

or XR further down in the tree, i.e., the same edge may exist at different levels
in the tree and we treat these edges as different in the following analysis.

The edges incident to leaf vertices in TC represent all weight of wC(C). We
show how to send flow from these edges on the leaf level to the edges incident
to the root cluster (edges contributing to wC(C)) with low congestion.

Reversing the direction of TC we can view it as an iterative merging process
where starting from the leafs, clusters are successively merged until only the root-
cluster C is left. Initially, every border-edge incident to a leaf cluster carries one

Improved Guarantees for Tree Cut Sparsifiers 781

unit of flow. Whenever two clusters XL and XR are merged into X we send flow
that is currently sitting at the border edges generated by X to the border-edges
of X as dictated by Lemma 3. The flow at other border-edges of XL and XR is
just send to the corresponding copy of the border-edge on the next level. In this
way we successively send the flow upwards in the tree until in the end it resides
at border edges of C.

We define the left depth of a cluster X in TC as the number of left-branches
on a path from the root-cluster to X . Let Φ(j) denote an upper bound on the
amount of flow routed to a border edge incident to a cluster of left depth at least
j. We show by induction over the merge steps that

Φ(j) ≤
�log |C|�∏

i=j

(
1 +

1

i log logn

)
. (3)

The left depth of a cluster can be at most
log(|C|)� + 1. For the base case,
Φ(j) = 1. Equation 3 holds as on the right hand side, we get an empty product
which is one.

Let X be a cluster with left depth j, and assume that Equation 3 holds for all
descendant clusters of X . Let XL and XR denote the child-clusters of X with
|XL| ≤ |XR|. Note that cluster XL has left depth at least j + 1 and cluster XR

has left depth at least j. A border edge from X that is incident to a node from
XR only gets the flow from its downward copy, which means it only gets flow
Φ(j) which is ok because XR fulfills Equation 3. A border-edge e of X that is
incident to a node in XL gets at most flow

Φ(j) ≤ Φ(j + 1) + (2/f(X))(Φ(j + 1) + Φ(j)) ≤ Φ(j + 1) + (4/f(X))Φ(j) .

Here Φ(j+1) comes from its downward copy, and the remaining terms come from
the distribution of flow due to Lemma 3. Note that one portion of the flow sent
to e comes from border-edges of XL (left depth ≥ j+1) and another from border
edges of XR (left depth ≥ j). By Lemma 3, cap(XL, XR) ≤ 2wX(XL)/f(X),
and since the flow is distributed evenly the equation follows. Rearranging gives

Φ(j) ≤ Φ(j + 1)/(1 − 4/f(X)) ≤ Φ(j + 1) · (1 + 8/f(X)) (4)

as long as 4/f(X) ≤ 1/2, which holds for sufficiently large n.
Since a left child has size at most half of its parent in TC , and since there

are j − 1 left edges on the path from C to X , |X | ≤ |C|/2j−1. Since |C| ≤
|S|/2, |X | ≤ |S|/2j. So, log(|S|/|X |) ≥ j. Hence, f(X) ≥ 8j log logn. From
Equation 4 we get

Φ(j) ≤ Φ(j + 1) ·
(

1 +
8

8j log logn

)
≤

�log |C|�∏
i=j

(
1 +

1

i log logn

)
,

where the last inequality follows by plugging in the induction hypothesis for
Φ(j + 1). So, each border edge of C receives at most Φ(1) units of flow. Lemma
10 in [11] gives Φ(1) ≤ 2.

782 H. Räcke and C. Shah

An edge is congested by a flow in Lemma 3 when it is on the small side of
the cut, or when it is contained in the cut. In the first case, let D be the leaf
node in TC containing both endpoints of the edge. Since the left depth of D
is at most log(|C|/|D|), the edge can be congested at most log(|C|/|D|) times.
The second case happens at most once, and in that case, the edge is congested
at most log |C| times, which is an upper bound on the height of TC . ��

Proof (of Lemma 4). At the end of the merge phase for a cluster S, we have
an Smerge-expander HS embedded into G[S]. Using Lemma 5, we embed a flow
(represented by a graph Hnew) that routes from the additional edges cut in the
refinement phase to the border edges of the clusters being refined.

Let for U ⊆ S, Z(U) = wSfinal
(U) − wSmerge(U) denote the weight added

to U by the refinement. We wish to show that HS ∪ Hnew expands well, i.e.
(capHS

(U, S \ U) + capHnew
(U, S \ U))/min{wSfinal

(U), wSfinal
(S \ U)} ≥ 1

8 .
We differentiate two cases. First suppose that either Z(U) ≥ wSmerge(U)} or

Z(S \ U) ≥ wSmerge(S \ U)} and assume w.l.o.g. that this holds for U . In the
flow represented by Hnew at most 2wSmerge(U) units can be absorbed within U .
Hence, at least Z(U)− 2wSmerge(U) ≥ Z(U)/4 +wSmerge/4 = wSfinal

/4 units have
to leave U . For the other case, we have Z(U) ≤ 4wSmerge(U), where w.l.o.g. U
fulfills wSmerge(U) ≤ wSmerge(S \ U). Then, since HS is an Smerge-expander we
have capHS

(U, S \ U) ≥ wSmerge(U) ≥ Z(U)/8 + wSmerge(U)/8 = wSfinal
/8.

Now, we consider the congestion incurred in G[S] to embed HS ∪Hnew. An
edge e in cluster Si ∈ Smerge in the merge phase, and cluster Sj ∈ Sfinal after
the refinement phase (if Si is not a bad cluster, Si = Sj) has load at most
8β log logn log(|P |/|S|) from the merge phase and load at most 4 log(|Si|/|Sj|)
from the refinement phase. Consequently, the total load on edge e is at most
8β log logn log(|P |/|Sj|). A similar argument holds for inter-cluster edges.

As a final step, we observe that instead of embedding a 1/8 expander we
embed a 1 expander by scaling HS and Hnew by a factor of 8. ��

3 Constructing a Cut Sparsifier

Theorem 3. Given a graph G, there is a polynomial time algorithm to compute
a cut sparsifier for G that is a single tree and has quality O(β logn log logn).

Given a decomposition tree T according to Lemma 1, we assign capacities to the
edges of T as follows. The capacity of an edge in T connecting a cluster S to a
parent cluster P is equal to cap(S, V \ S), i.e., the capacity of all edges leaving
cluster S in G. In the following we show that the tree defined in this way is a
cut sparsifier for G. Observe that the leaf nodes of T correspond to nodes in V .

Fix a cut (B,W) in G. Here, B ⊆ V is an arbitrary subset of vertices and
W := V \ B is its complement. We will refer to B as the set of black vertices,
and to W as the set of white vertices. In order to compare cuts in T and in G we
have to define a cut in T that separates the black leaf nodes from the white leaf
nodes. For this we extend the sets B and W also to inner vertices of T . We color
a vertex in T , that corresponds to cluster S, white if wS(S ∩W) ≥ wS(S ∩ B),

Improved Guarantees for Tree Cut Sparsifiers 783

otherwise we color it black. This coloring induces a cut in T that separates the
black nodes from the white nodes, and in particular the black leaf nodes from
the white leaf nodes. We use capT (B,W) to denote the capacity of this cut.
Similarly, capG(B,W) and capH(B,W) denotes the capacity of the cut (B,W),
measured in G and H , respectively. Here, H is the graph formed by the union
of all S-expanders HS that we obtained from the construction of T .

The fact that T is a cut sparsifier follows from the following three lemmas
(some proofs omitted).

Lemma 6. Any cut in T that separates the black leaf nodes from the white leaf
nodes has capacity at least capG(B,W).

Lemma 7. capT (B,W) ≤ 2 capH(B,W).

Proof. Fix a cluster S and assume w.l.o.g. that wS(S ∩ W) ≥ wS(S ∩ B), i.e.,
the tree node corresponding to S is colored white. Let S0, . . . , S� denote the
child-clusters of S, and let S0, . . . , Sk, k < �, be the black child-clusters of S. In
the tree the edges from S to each of the Si’s, 0 ≤ i ≤ k are cut. The capacity of
these edges is

∑k
i=0 wSi(Si) =

∑k
i=0 wSi(Si ∩W) +

∑k
i=0 wSi(Si ∩ B). We can

estimate the second term on the r.h.s. of this equation by
∑k

i=0 wSi(Si ∩ B) ≤∑�
i=0 wSi(Si∩B) = wS(S∩B) ≤ capHS

(S∩B,S∩W). Here the equality comes
from the definition wSi(·) and wS(·) and the final inequality follows from the
expansion properties of HS and the fact that wS(S∩B) ≤ wS(S)/2. For the first
term we use

∑k
i=0 wSi(Si∩W) ≤

∑k
i=0 wS(Si∩W) ≤

∑k
i=0 capHSi

(Si∩W,Si∩B)
where the second inequality holds because of the expansion properties of HSi and
the fact that wSi(Si ∩W) ≤ wSi(Si)/2.

Hence, we can amortize the cut-edges leading from S to child-clusters of S
against cut edges in HS and cut edges in HSi ’s. Doing this for all clusters S in
the decomposition tree gives that we amortize against every edge in H at most
twice which yields the lemma. ��

Lemma 8. capH(B,W) ≤ O(β log log logn) · capG(B,W).

4 Mincut Linear Arrangement

In this section we relate our results to the Mincut Linear Arrangement Problem
and give some indication that a substantial improvement in the approximation
guarantee of our construction would also lead to an improved approximation
guarantee for this problem.

In the Mincut Linear Arrangement Problem we are given a weighted graph
G = (V,E, capG) and the task is to map the vertices of G to the vertices of a
linear array A. If the endpoints of an edge (x, y) ∈ EG are mapped to u and
v in A all edges in A between u and v increase their load by capG((x, y)). The
goal is to minimize the maximum load of an edge in A. The Mincut Linear
Arrangement problem has an O(β · logn)-approximation algorithm were β is the
approximation guarantee of a sparsest cut algorithm used as a sub-routine. The

784 H. Räcke and C. Shah

following lemma shows that our construction gives rise to an O(log1.5 n log logn)
approximation for Mincut Linear Arrangement.

Lemma 9. Suppose we are given a graph G together with a decomposition tree
T . Let for a cluster S in T , S denote the sub-cluster of S used in T and let DS

denote some other sub-clustering with wDS (S) ≥ wS(S)/2.
Further, assume that a DS-expander HS can be embedded into G with con-

gestion CS and that for every root-to-leaf path S0, . . . , S� in T
∑

iCSi ≤ X.
Then we can solve the Minimum Cut Linear Arrangement Problem on G with
approximation guarantee 6X.

Note that the above lemma does not require that HS can be routed in G[S],
nor does it require that all H ′

Ss can be concurrently routed in G with small
congestion. Only the HSi that lie on some root-to-leaf path can concurrently be
routed in G. However, in contrast to Lemma 4 it requires that HS can be routed
with a uniform congestion (i.e., the congestion on an edge e does not depend on
the cluster Si in which e is contained on the next level).

The conditions for Lemma 9 follow from our decomposition with X =
O(β logn log logn) if we choose DS = Smerge for any cluster S, where Smerge

is the partitioning of S after the merge phase.

Proof. We perform a DFS-traversal of T and arrange the leaf nodes (i.e., nodes
in G) in the order of appearance into the linear array A. In the following we
show that this linear arrangement gives a 6X-approximation.

We assign the edges of G in a one-to-one fashion to clusters of T as follows.
We say an edge e of G is separated by cluster S if both end-points of e are in
cluster S but lie in different child-clusters of S. Note that the total weight of
edges that are separated by a cluster S is at most wS(S).

Depending on the mapping of G to the linear array A we also assign edges of
A to clusters (albeit not in a one-to-one fashion). We say an edge e ∈ A belongs
to cluster S if the vertices from G that are mapped to the endpoints of e both
lie in cluster S. Note that by this definition the clusters that an edge e ∈ A
belongs to, lie all on a root-to-leaf path in T .

An edge e = (u, v) ∈ G induces load on an edge e′ = (x, y) ∈ A if, e.g., u is
mapped to the left of x and v is mapped to the right of y (or vice versa). Since,
the nodes in some cluster S are mapped to a continuous region of the linear array
we can make the following observation.

Claim. An edge e = (u, v) ∈ G that induces load on an edge e′ ∈ A must be
separated by a cluster S to which e′ belongs.

Corollary 1. The load of an edge e ∈ A is at most
∑�

i=0 wSi(Si), where
S0, . . . , S� are the clusters to which e belongs.

The following lemma gives a lower bound (proof omitted).

Lemma 10. Let OPT denote the cost of an optimum solution to the Minimum
Cut Linear Arrangement Problem. Then for every cluster S we have OPT ≥
wS(S)/12CS.

Improved Guarantees for Tree Cut Sparsifiers 785

We can now combine the upper bound in Corollary 1 and the lower bound from
Lemma 10. According to Corollary 1 the load of an edge e ∈ A is at most∑�

i=0 wSi(Si) =
∑�

i=0 CSi · wSi(Si) · C−1
Si

≤ 12
∑�

i=0 CSi · OPT ≤ 12X · OPT,
where the first inequality is due to Lemma 10 and the last inequality follows
since S0, . . . , S� are on a root-to-leaf path in T .

References

1. Andreev, K., Garrod, C., Golovin, D., Maggs, B., Meyerson, A.: Simultaneous
source location. ACM Transactions on Algorithms 6(1) (2009)

2. Arora, S., Rao, S., Vazirani, U.: Expander flows, geometric embeddings, and graph
partitionings. In: Proc. of the 36th STOC, pp. 222–231 (2004)

3. Bansal, N., Feige, U., Krauthgamer, R., Makarychev, K., Nagarajan, V., Naor,
J.S., Schwartz, R.: Min-max graph partitioning and small set expansion. In: Proc.
of the 52nd FOCS, pp. 17–26 (2011)

4. Benczur, A.A., Karger, D.R.: Approximate s-t min-cuts in Õ(n2) time. In: Proc.
of the 28th STOC, pp. 47–55 (1996)

5. Charikar, M., Leighton, F.T., Li, S., Moitra, A.: Vertex sparsifiers and abstract
rounding algorithms. In: Proc. of the 51st FOCS, pp. 265–274 (2010)

6. Chekuri, C., Khanna, S., Shepherd, F.B.: The all-or-nothing multicommodity flow
problem. In: Proc. of the 36th STOC, pp. 156–165 (2004)

7. Chekuri, C., Khanna, S., Shepherd, F.B.: Multicommodity flow, well-linked termi-
nals, and routing problems. In: Proc. of the 37th STOC, pp. 183–192 (2005)

8. Chuzhoy, J.: On vertex sparsifiers with steiner nodes. In: Proc. of the 44th STOC,
pp. 673–688 (2012)

9. Engelberg, R., Könemann, J., Leonardi, S., Naor, J.S.: Cut problems in graphs
with a budget constraint. Journal of Discrete Algorithms 5(2), 262–279 (2007)

10. Englert, M., Gupta, A., Krauthgamer, R., Räcke, H., Talgam-Cohen, I., Talwar,
K.: Vertex sparsifiers: New results from old techniques. In: Serna, M., Shaltiel,
R., Jansen, K., Rolim, J. (eds.) APPROX 2010. LNCS, vol. 6302, pp. 152–165.
Springer, Heidelberg (2010)

11. Harrelson, C., Hildrum, K., Rao, S.: A polynomial-time tree decomposition to
minimize congestion. In: Proc. of the 15th SPAA, pp. 34–43 (2003)

12. Khandekar, R., Kortsarz, G., Mirrokni, V.: Advantage of overlapping clusters for
minimizing conductance. In: Fernández-Baca, D. (ed.) LATIN 2012. LNCS,
vol. 7256, pp. 494–505. Springer, Heidelberg (2012)

13. Könemann, J., Parekh, O., Segev, D.: A unified approach to approximating partial
covering problems. Algorithmica 59(4), 489–509 (2011)

14. Leighton, F.T., Moitra, A.: Extensions and limits to vertex sparsification. In: Proc.
of the 42nd STOC, pp. 47–56 (2010)

15. Makarychev, K., Makarychev, Y.: Metric extension operators, vertex sparsifiers
and Lipschitz extendability. In: Proc. of the 51st FOCS, pp. 255–264 (2010)

16. Moitra, A.: Approximation algorithms formulticommodity-typeproblemswithguar-
antees independent of the graph size. In: Proc. of the 50th FOCS, pp. 3–12 (2009)

17. Räcke, H.: Minimizing congestion in general networks. In: Proc. of the 43rd
FOCS, pp. 43–52 (2002)

18. Räcke, H.: Optimal hierarchical decompositions for congestion minimization in
networks. In: Proc. of the 40th STOC, pp. 255–264 (2008)

19. Stotz, R.: Approximation algorithms for scheduling processes in distributed sys-
tems. Master’s thesis, Institut für Informatik, Technische Universität München
(2014)

Representative Families:

A Unified Tradeoff-Based Approach

Hadas Shachnai and Meirav Zehavi

Department of Computer Science, Technion, Haifa 32000, Israel
{hadas,meizeh}@cs.technion.ac.il

Abstract. Let M = (E, I) be a matroid, and let S be a family of sub-

sets of size p of E. A subfamily Ŝ ⊆ S represents S if for every pair of sets
X ∈ S and Y ⊆ E \ X such that X∪Y ∈ I, there is a set X̂ ∈ Ŝ disjoint

from Y such that X̂ ∪ Y ∈ I. Fomin et al. (Proc. ACM-SIAM Sympo-
sium on Discrete Algorithms, 2014) introduced a powerful technique for
fast computation of representative families for uniform matroids. In this
paper, we show that this technique leads to a unified approach for sub-
stantially improving the running times of parameterized algorithms for
some classic problems. This includes, among others, k-Partial Cover,
k-Internal Out-Branching, and Long Directed Cycle. Our ap-
proach exploits an interesting tradeoff between running time and the
size of the representative families.

1 Introduction

Matroid theory connects such disparate branches of combinatorial theory and
algebra as graph theory, combinatorial optimization, linear algebra, and algo-
rithm theory. Marx [20] was the first to apply matroids to design fixed-parameter
tractable algorithms, using the notion of representative families as a main tool.
Representative families for set systems were introduced by Monien [21].

Let E be a universe of n elements, and I a family of subsets of size at most
k of E, for some k ∈ N, i.e., I ⊆ {S ⊆ E : |S| ≤ k}. Then, Un,k = (E, I) is
called a uniform matroid. Consider such a matroid and a family S of p-subsets
of E, i.e., sets of size p. A subfamily Ŝ ⊆ S represents S if for every pair of sets
X ∈ S and Y ⊆ E \X such that X ∪ Y ∈ I (i.e., |Y | ≤ (k − p)), there is a set

X̂ ∈ Ŝ disjoint from Y . In other words, if a set Y can be extended to a set of
size at most k by adding a subset from S, then it can also be extended to a set
of the same size by adding a subset from Ŝ.

The Two Families Theorem of Bollobás [2] implies that for any uniform ma-
troid Un,k = (E, I) and a family S of p-subsets of E, for some 1 ≤ p ≤ k, there is

a subfamily Ŝ ⊆ S of size
(
k
p

)
that represents S. For more general matroids, the

generalization of Lovász for this theorem, given in [18], implies a similar result,
and algorithms based on this generalization are given in [20] and [11].

A parameterized algorithm with parameter k has running time O∗(f(k)) for
some function f , where O∗ hides factors polynomial in the input size. A fast com-
putation of representative families for uniform matroids plays a central role in

A.S. Schulz and D. Wagner (Eds.): ESA 2014, LNCS 8737, pp. 786–797, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

Representative Families: A Unified Tradeoff-Based Approach 787

obtaining better running times for such algorithms. Plenty parameterized algo-
rithms are based dynamic programming, where after each stage, the algorithm
computes a family S of sets that are partial solutions. At that point we can
compute a subfamily Ŝ ⊆ S that represents S. Then, each reference to S can be
replaced by a reference to Ŝ. The representative family Ŝ contains “enough” sets
from S; therefore, such replacement preserves the correctness of the algorithm.
Thus, if we can efficiently compute representative families that are small enough,
we can substantially improve the running time of the algorithm.

For uniform matroids, Monien [21] computed representative families of size∑k−p
i=0 pi in time O(|S|p(k−p)

∑k−p
i=0 pi), and Marx [19] computed representative

families of size
(
k
p

)
in time O(|S|2pk−p). Recently, Fomin et al. [11] introduced

a powerful technique which enables to compute representative families of size(
k
p

)
2o(k) logn in time O(|S|(k/(k−p))k−p2o(k) logn), thus significantly improving

the previous results.
In this paper, we show that the technique of [11] leads to a unified tradeoff-

based approach for substantially improving the running time of parameterized
algorithms for some classic problems. In particular, we demonstrate the appli-
cability of our approach for the following problems (among others).

k-Partial Cover (k-PC): Given a universe U , a family S of subsets of U and
a parameter k ∈ N, find the smallest number of sets in S whose union contains
at least k elements.

k-Internal Out-Branching (k-IOB): Given a directed graph G = (V,E) and
a parameter k ∈ N, decide if G has an out-branching (i.e., a spanning tree having
exactly one node of in-degree 0) with at least k nodes of out-degree ≥ 1.

1.1 Prior Work

The k-PC problem generalizes the well-known k-Dominating Set (k-DS) prob-
lem, defined as follows. Given a graph G = (V,E) and a parameter k ∈ N, find
the smallest size of a set U ⊆ V such that the number of nodes in the closed
neighborhood of U is at least k. If k-PC can be solved in time t(|U |, |S|, k), then
k-DS can be solved in time t(|V |, |V |, k) (see, e.g., [3]). Note that the special
cases of k-PC and k-DS in which k = n, are the classical NP-complete Set

Cover and Dominating Set problems [12], respectively. Table 1 presents a
summary of known parameterized algorithms for k-PC and k-DS. We note that
the parameterized complexity of k-PC and k-DS has been studied also with
respect to other parameters and for more restricted inputs (see, e.g., [3,10,28]).

The k-IOB problem is of interest in database systems [6]. A special case of
k-IOB, called k-Internal Spanning Tree (k-IST), asks if a given undirected
graph G = (V,E) has a spanning tree with at least k internal nodes. An inter-
esting application of k-IST, for connecting cities with water pipes, is given in
[25]. The k-IST problem is NP-complete, since it generalizes the Hamiltonian

Path problem [13]; thus, k-IOB is also NP-complete. Table 2 presents a sum-
mary of known parameterized algorithms for k-IOB and k-IST. More details
on k-IOB, k-IST and variants of these problems can be found in the excellent
surveys of [22,26].

788 H. Shachnai and M. Zehavi

Table 1. Known parameterized algorithms for k-PC and k-DS

Reference Deterministic\Randomized Variant Running Time

Bonnet et al. [3] det k-PC O∗(4kk2k)

Bläser [1] rand k-PC O∗(5.437k)
Kneis et al. [16] det k-DS O∗((16 + ε)k)

rand k-DS O∗((4 + ε)k)

Chen et al. [4] det k-DS O∗(5.437k)
Kneis [15] det k-DS O∗((4 + ε)k)

Koutis et al. [17] rand k-DS O∗(2k)
This paper det k-PC O∗(2.619k)

Table 2. Known parameterized algorithms for k-IOB and k-IST

Reference Deterministic\Randomized Variant Running Time

Priesto et al. [24] det k-IST O∗(2O(k log k))

Gutin al. [14] det k-IOB O∗(2O(k log k))

Cohen et al. [5] det k-IOB O∗(55.8k)
rand k-IOB O∗(49.4k)

Fomin et al. [8] det k-IOB O∗(16k+o(k))

Fomin et al. [7] det k-IST O∗(8k)
Zehavi [29] rand k-IOB O∗(4k)
This paper det k-IOB O∗(6.855k)

1.2 Our Results

Given a uniform matroid Un,k = (E, I) and a family S of p-subsets of E, we

compute a subfamily Ŝ ⊆ S of size
(ck)k

pp(ck − p)k−p
2o(k) logn which represents S,

in time O(|S|((ck)/(ck − p))k−p2o(k) logn), for any fixed c ≥ 1. For c = 1, we

have the result of Fomin et al. [11]. As c grows larger, the size of Ŝ increases,
with a corresponding decrease in computation time. This enables to obtain better
running times for the algorithms for Long Directed Cycle, Weighted k-
Path and Weighted k-Tree, as given in [11].

In particular, we use this approach to develop deterministic algorithms solving
k-PC and k-IOB in times O∗(2.619k) and O∗(6.855k), respectively. We thus
significantly improve the algorithm with the best known O∗(5.437k) running time
for k-PC [1], and the deterministic algorithm with the best known O∗(16k+o(k))
running time for k-IOB [8]. This also improves the running times of the best
known deterministic algorithms for k-DS and k-IST (see Tables 1 and 2).

Independently of our work, Fomin et al. [9] have recently obtained a tradeoff
similar to the one we show in Section 3.

Technical Contribution: Our unified approach exploits an interesting tradeoff
between running time and the size of the representative families. This tradeoff is
made precise by using, along with the scheme of [11], a parameter c ≥ 1, which
enables a more careful selection of elements to the sets.

Representative Families: A Unified Tradeoff-Based Approach 789

Indeed, towards computing a representative family Ŝ, we seek a family F ⊆ 2E

that satisfies the following condition. For every pair of sets X ∈ S, and Y ⊆ E\X
such that X∪Y ∈ I, there is a set F ∈ F such that X ⊆ F , and Y ∩F = ∅. Then,
we compute Ŝ by iterating over all S ∈ S and F ∈ F such that S ⊆ F . The
time complexity of this iterative process is the dominant factor in the overall
running time. Thus, we seek a small family F , such that for any S ∈ S, the
expected number of sets in F containing S is small. In constructing each set
F ∈ F , we insert each element e ∈ E to F with probability p/(ck). For c = 1,
this is the approach proposed in [11]. When we take a larger value for c, we need
to construct a larger family F . Yet, since elements in E are inserted to sets in
F with a smaller probability, we get that for any S ∈ S, the expected number
of sets in F containing S is smaller.

Organization: Section 2 gives some definitions and notation. Section 3 presents
a tradeoff between running time and the size of the representative families. Using
this computation, we derive in Sections 4 and 5 our main results, which are fast
parameterized algorithms for k-PC and k-IOB. Finally, Section 6 shows the
improvements in running times resulting from our tradeoff-based approach for
three previous applications of representative families of [11].

Due to space constraints, some of the results are omitted. We give the full
details in [27].

2 Preliminaries

We now define the weighted version of representative families.

Definition 1. Given a matroid Un,k = (E, I), a family S of p-subsets of E, and

a function w : S → R, we say that a subfamily Ŝ ⊆ S max (min) represents S
if for every pair of sets X ∈ S, and Y ⊆ E \X such that X ∪ Y ∈ I, there is a

set X̂ ∈ Ŝ disjoint from Y such that w(X̂) ≥ w(X) (w(X̂) ≤ w(X)).

The special case where w(S) = 0, for all S ∈ S, is the unweighted version of
Definition 1.

Notation: Given a set U and a nonnegative integer t, let
(
U
t

)
= {U ′ ⊆ U :

|U ′| = t}. Also, recall that an out-tree T is a directed tree having exactly one
node of in-degree 0, called the root. We denote by VT , ET , i(T) and �(T) the
node set, edge set, number of internal nodes (i.e., nodes of out-degree ≥ 1) and
number of leaves (i.e., nodes of out-degree 0), respectively.

3 A Tradeoff-Based Approach

In this section we sketch the beginning of the proof of the following theorem,
which contains our main contribution. We note that, to fully prove this theorem,
we essentially follow and redo the proof of Theorem 6 in [11], taking into account
our tradeoff-related parameter c.

790 H. Shachnai and M. Zehavi

Theorem 1. Given a parameter c ≥ 1, a uniform matroid Un,k = (E, I), a

family S of p-subsets of E, and a function w : S → R, a family Ŝ ⊆ S of

size
(ck)k

pp(ck − p)k−p
2o(k) logn that max (min) represents S can be found in time

O(|S|(ck/(ck − p))k−p2o(k) logn + |S| log |S|).

Roughly speaking, the proof of Theorem 1 is structured as follows. We first argue
that we can focus on finding a certain data structure to compute representative
families. Then, we construct such a data structure that is not as efficient as
required (first randomly, and then deterministically). Finally, we show how to
improve the “efficiency” of this data structure (this is made precise below).

Proof. Clearly, we may assume that |S| ≥ (ck)k

pp(ck − p)k−p
2o(k) logn. Recall that

our computation of representative families requires finding initially a family F ⊆
2E that satisfies the following condition. For every pair of sets X ∈ S, and
Y ⊆ E \X such that X ∪ Y ∈ I, there is a set F ∈ F such that X ⊆ F , and
Y ∩ F = ∅. An (n, k, p)-separator is a data structure containing such a family
F , which, given a set S ∈

(
E
p

)
, outputs the subfamily of sets in F that contain

S, i.e., χ(S) = {F ∈ F : S ⊆ F}.
To derive a fast computation, we need an efficient (n, k, p)-separator, where

efficiency is measured by the following parameters: ζ = ζ(n, k, p), the number of
sets in the family F ; τI = τI(n, k, p), the time required to compute the family F ;
Δ = Δ(n, k, p), the maximum size of χ(S), for any S ∈

(
E
p

)
; and τQ = τQ(n, k, p),

an upper bound for the time required to output χ(S), for any S ∈
(
E
p

)
.

Given such a separator, a subfamily Ŝ ⊆ S of size ζ that max (min) represents
S can be constructed in time O(τI + |S|τQ+ |S| log |S|) as follows. First, compute
F , and χ(S) for all S ∈ S. Then, order S = {S1, . . . , S|S|}, such that w(Si−1) ≥
w(Si) (w(Si−1) ≤ w(Si)), for all 2 ≤ i ≤ |S|. Finally, return all Si ∈ S for
which there is a set F ∈ F containing Si but no Sj , for 1 ≤ j < i. Formally,

return Ŝ = {Si ∈ S : χ(Si) \ (
⋃

1≤j<i χ(Sj)) �= ∅}. The correctness of this
construction is proved in [11]. Thus, to prove the theorem it suffices to find an
(n, k, p)-separator with parameters:

– ζ∗ ≤ (ck)k

pp(ck − p)k−p
2o(k) logn. [Separator size]

– τ∗I ≤ (ck)k

pp(ck − p)k−p
2o(k)n logn. [Initialization time]

– τ∗Q ≤ (ck/(ck − p))k−p2o(k) logn. [Query time]

We start by giving an (n, k, p)-separator, that we call Separator 1, with the
following parameters, which are worse than required:

Representative Families: A Unified Tradeoff-Based Approach 791

– ζ1 = O(
(ck)k

pp(ck − p)k−p
kO(1) logn). [Separator size]

– τ1I = O(

(
2n

ζ1

)
nO(k)). [Initialization time]

– Δ1 = O((ck/(ck − p))k−pkO(1) logn). [Query size]

– τ1Q = O(
(ck)k

pp(ck − p)k−p
nO(1)). [Query time]

First, we give a randomized algorithm which constructs, with positive probabil-
ity, an (n, k, p)-separator having the desired ζ1 and Δ1 parameters. We then show
how to deterministically construct an (n, k, p)-separator having all the desired

parameter values. Let t =
(ck)k

pp(ck − p)k−p
(k + 1) lnn, and construct the family

F = {F1, . . . , Ft} as follows. For each i ∈ {1, . . . , t} and element e ∈ E, insert e
to Fi with probability p/(ck). The construction of different sets in F , as well as
the insertion of different elements into each set in F , are independent. Clearly,
ζ1 = t is within the required bound.

For fixed sets X ∈
(
E
p

)
, Y ∈

(
E\X
k−p

)
and F ∈ F , the probability that

X ⊆ F and Y ∩ F = ∅ is (
p

ck
)p(1 − p

ck
)k−p =

pp(ck − p)k−p

(ck)k
= (k + 1) lnn/t.

Thus, the probability that no set F ∈ F satisfies X ⊆ F and Y ∩ F = ∅ is
(1 − (k + 1) lnn/t)t ≤ e−(k+1) lnn = n−k−1. There are at most nk choices for

X ∈
(
E
p

)
and Y ∈

(
E\X
k−p

)
; thus, applying the union bound, the probability that

there exist X ∈
(
E
p

)
and Y ∈

(
E\X
k−p

)
, such that no set F ∈ F satisfies X ⊆ F

and Y ∩ F = ∅, is at most n−k−1 · nk = 1/n.
For any sets S ∈

(
E
p

)
and F ∈ F , the probability that S ⊆ F is (p/(ck))p.

Therefore, |χ(S)|, the number of sets in F containing S, is a sum of t i.i.d.
Bernoulli random variables with parameter (p/(ck))p. Then, the expected value

of |χ(S)| is E[|χ(S)|] = t(
p

ck
)p = (

ck

ck − p
)k−p(k + 1) lnn. Applying standard

Chernoff bounds, we have that the probability that |χ(S)| ≥ 6E[|χ(S)|] is upper
bounded by 2−6E[|χ(S)|] ≤ n−k−1. There are

(
n
p

)
choices for S ∈

(
E
p

)
. Thus, by

the union bound, the probability that Δ1 > 6 · [((ck)/(ck − p))k−p(k + 1) lnn] is
upper bounded by 1/n.

So far, we have given a randomized algorithm that constructs an (n, k, p)-
separator having the desired ζ1 and Δ1 parameters with probability at least
1− 2/n > 0. To deterministically construct F in time bounded by τ1I , we iterate

over all families of t subsets of E (there are
(
2n

ζ1

)
such families), where for each

family F , we test in time nO(k) whether Δ1 is within the required bound, and
whether for any pair of sets X ∈

(
E
p

)
and Y ∈

(
E\X
k−p

)
, there is a set F ∈ F such

that X ⊆ F and Y ∩F = ∅. Then, given a set S ∈
(
E
p

)
, we can deterministically

compute χ(S) within the stated bound for τ1Q, by iterating over F and inserting
each set that contains S.

792 H. Shachnai and M. Zehavi

We next repeatedly apply Lemmas 4.4 and 4.5 of [11] to Separator 1, con-
structing intermediate separators different than those in [11] (as we start with
a different Separator 1). This process eventually leads to an (n, k, p)-separator
having the desired parameters ζ∗, τ∗I and τ∗Q. ��

Given a parameter c and assuming that w is irrelevant, let RepAlg(E, k,S) be
the algorithm developed in Theorem 1.

4 An Algorithm for k-Partial Cover

We now apply our scheme, RepAlg, to obtain a faster parameterized algorithm
for k-PC. Let m = |S| be the number of sets in S. The main idea of the al-
gorithm is to iterate over the sets in S in some arbitrary order S1, S2, . . . , Sm,
such that when we reach a set Si, we have already computed representative fam-
ilies for families of “partial solutions” that include only elements from the sets
S1, . . . , Si−1. Then, we try to extend the partial solutions by adding uncovered
elements from Si. The key observation, that leads to our improved running time,
is that we cannot simply add “many” elements from Si at once, but rather add
these elements one-by-one; thus, we can compute new representative families
after adding each element, which are then used when adding the next element.

The Algorithm: We now describe PCAlg, our algorithm for k-PC (see the
pseudocode below). The first step solves the simple case where k elements can
be covered with one set. Then, algorithm PCAlg generates a matrix M, where
each entry M[i, j, �] holds a family that represents Soli,j,�. The sets in Soli,j,� are
those of exactly j elements, which can be covered by � sets among {S1, . . . , Si},
i.e., Soli,j,� = {S ⊆ (

⋃
S ′) : S ′ ⊆ {S1, . . . , Si}, |S| = j, |S ′| = �}.

PCAlg iterates over all triples (i, j, �), where i ∈ {1, . . . ,m}, j ∈ {1, . . . , k} and
� ∈ {1, . . . ,min{i, k}}. In each iteration, corresponding to a triple (i, j, �), PCAlg
computes M[i, j, �] by using M[i−1, j′, �−1], for all 1 ≤ j′ ≤ j, and M[i−1, j, �]. In
other words, PCAlg computes a family that represents Soli,j,� by using families
that represent Soli−1,j′,�−1, for all 1 ≤ j′ ≤ j, and Soli−1,j,�. In particular,
algorithm PCAlg adds elements in Si one-by-one to sets in M[i − 1, j′, � − 1],
for all 1 ≤ j′ ≤ j. After adding an element, PCAlg computes (in Step 7) new
representative families, to be used when adding the next element. Let Si =
{s1, . . . , sr}. Then, PCAlg computes a family Ar′,j′ , for all 1 ≤ r′ ≤ r and
0 ≤ j′ ≤ j, that represents the family of sets of exactly j′ elements that can be
covered by {s1, . . . , sr′} and � − 1 sets among {S1, . . . , Si−1}. The family Ar′,j′

is computed by calling RepAlg with the family parameter containing the union
of Ar′−1,j′ and the family of sets obtained by adding sr′ to sets in Ar′−1,j′−1.

Suppose the solution is �∗. Then, using representative families guarantees
that each entry M[i, j, �] holds “enough” sets from Soli,j,�, such that when the
algorithm terminates, M[m, k, �∗] �= ∅. Moreover, using representative families
guarantees that each entry M[i, j, �] does not hold “too many” sets from Soli,j,�,
thereby yielding an improved running time.

Correctness and Running Time: We first state a lemma referring to
Steps 5–8 in PCAlg. In this lemma, we use the following notation. For all

Representative Families: A Unified Tradeoff-Based Approach 793

Algorithm 1. PCAlg(U, k,S = {S1, . . . , Sm})

1: if there is S ∈ S s.t. |S| ≥ k then return 1. end if
2: let M be a matrix that has an entry [i, j, �] for all 0 ≤ i ≤ m, 1 ≤ j ≤ k and

0 ≤ � ≤ k, initialized to ∅.
3: for i = 1, . . . ,m, j = 1, . . . , k, � = 1, . . . ,min{i, k} do
4: let Si = {s1, . . . , sr}.
5: A0,0 ⇐ {∅}, and for j′ = 1, . . . , j do A0,j′ ⇐ M[i− 1, j′, �− 1]. end for
6: for r′ = 1, . . . , r, j′ = 0, . . . j do
7: Ar′,j′ ⇐ RepAlg(U, k, [Ar′−1,j′ ∪ {S ∪ {sr′} : j′≥1, S∈Ar′−1,j′−1, sr′ /∈S}]).
8: end for
9: M[i, j, �] ⇐ RepAlg(U, k,M[i− 1, j, �] ∪Ar,j).
10: end for
11: return the smallest � such that M[m, k, �] �= ∅.

0 ≤ i ≤ m, 1 ≤ j ≤ k and 0 ≤ � ≤ k, let A∗
i,j,� denote the family of sets contain-

ing j elements, constructed by adding elements from Si to sets in (
⋃

1≤j′≤j M[i−
1, j′, �−1])∪{∅}, i.e., A∗

i,j,� = {S∪S′
i : S ∈ (

⋃
1≤j′≤j M[i−1, j′, �−1])∪{∅}, S′

i ⊆
Si, |S ∪ S′

i| = j}.

Lemma 2. Consider an iteration of Step 3 in PCAlg, corresponding to some
values i, j and �. Then, the family Ar,j represents the family A∗

i,j,�.

We use Lemma 2 in proving the next lemma, showing the correctness of PCAlg.

Lemma 3. For all 0≤ i≤m, 1≤j≤k and 0≤�≤k, M[i, j, �] represents Soli,j,�.

We summarize in the next result.

Theorem 4. PCAlg solves k-PC in time O(2.619k|S| log2 |U |).

Proof. Lemma 3 and Step 11 imply that PCAlg solves k-PC. Also, Lemmas 2
and 3, and the way RepAlg proceeds, imply that PCAlg runs in time

O(2o(k)|S| log2 |U | · max
0≤t≤k

{
(ck)k

tt(ck − t)k−t
(

ck

ck − t
)k−t

}
)

Choosing c = 1.447, the maximum is obtained at t = αk, where α ∼= 0.55277.
Thus, PCAlg runs in time O(2.61804k|S| log2 |U |).1 ��

5 An Algorithm for k-Internal Out-Branching

We show below how to use our scheme, RepAlg, to obtain a faster parameterized
algorithm for k-IOB. We first define an auxiliary problem called (k, t)-Tree,
which requires finding a tree on a “small” number of nodes, rather than a span-
ning tree. Given a directed graph G = (V,E), a node r ∈ V , and nonnegative
integers k and t, the (k, t)-Tree problem asks if G contains an out-tree T rooted
at r, such that i(T) = k and �(T) = t. The following lemma implies that we can
focus on solving (k, t)-Tree.

1 Choosing c = 1, PCAlg runs in time O∗(2.851k).

794 H. Shachnai and M. Zehavi

Lemma 5 ([29]). If (k, t)-Tree can be solved in time τ(G, k, t), then k-IOB

can be solved in time O(|V |(|E| +
∑

1≤t≤k τ(G, k, t))).

We next solve (k, t)-Tree. Our solution technique is based on iterating over all
pairs of nodes v, u ∈ V , and all values 0 ≤ i ≤ k−1 and 0 ≤ � ≤ t. When we reach
such v, u, i and �, we have already computed, for all v′, u′ ∈ V , 0 ≤ i′ ≤ i, and
0 ≤ �′ ≤ � satisfying i′ + �′ < i+ �, representative families of “partial solutions”.
Such a partial solution is a set of nodes of an out-tree of G that is rooted at v′,
includes u′ as a leaf (unless v′ =u′) and consists of i′ internal nodes (excluding
v′) and �′ leaves (excluding u′). We then try to “connect” out-trees represented
by partial solutions in a manner that results in a legal out-tree—i.e., an out-tree
of G that is rooted at v, includes u as a leaf (unless v = u) and consists of i
internal nodes (excluding v) and � leaves (excluding u). In constructing a set
of such legal out-trees, we add families of “small” partial solutions one-by-one,
so we can compute new representative families after adding each family, and
then use them when adding the next one—this is a crucial point in obtaining
our improved running time. The construction itself is quite technical. On a high
level, it consists of iterating over some trees that indicate which families of partial
solutions should be currently used, and in which order they should be added.
We briefly note that this iterative process is based on a tool called guiding trees,
introduced in [23] (based on [11]).

Some Definitions: Let d ≥ 2 be a constant. Given nodes v, u ∈ V , 0 ≤ i ≤ k−1
and 0 ≤ � ≤ t, let Tv,u,i,� be the set of out-trees of G rooted at v, having exactly
i internal nodes and � leaves, excluding v and u, where v = u or u is a leaf. Also,
let Solv,u,i,� = {VT \ {v, u} : T ∈ Tv,u,i,�}. Given nodes v, u ∈ V , let Cv,u be the
set of trees C rooted at v, where v = u or u is a leaf, VC ⊆ V , and 3 ≤ |VC | ≤ 4d.
Given a node v of a rooted tree T , let fT (v) be the father of v in T .

The Algorithm: We now describe TreeAlg, our algorithm for (k, t)-Tree (see
the pseudocode below). TreeAlg first generates a matrix M, where each entry
M[v, u, i, �] holds a family that represents Solv,u,i,�. TreeAlg iterates over all
i ∈ {0, . . . , k−1}, � ∈ {0, . . . , t} such that 1 ≤ i+ �, and v, u ∈ V . Next, consider
some iteration, corresponding to such i, �, v and u.

The goal in each iteration is to compute M[v, u, i, �], by using entries that
are already computed. TreeAlg generates a matrix N, where each entry N[C]
holds a family that represents the subfamily of Solv,u,i,� including the node set
(excluding v and u) of each out-tree T ∈ Tv,u,i,� complying with the rooted tree
C as follows (see Fig. 1): (1) for any two nodes v′, u′ ∈ VC , v′ is an ancestor
of u′ in C iff v′ is an ancestor of u′ in T , (2) the leaves in C are leaves in T ,
and (3) in the forest obtained by removing VC from T , each tree has at most
two neighbors in T from VC and, unless this neighborhood includes only v, the
tree contains at most (k + t)/d nodes. Roughly speaking, each entry N[C] is
easier to compute than the entry M[v, u, i, �], since C “guides” us through the
computation as follows. The rooted tree C implies which entries in M are relevant
to N[C], in which order they should be used, and, in particular, it ensures that
these are only entries of the form M[v′, u′, i′, �′], where i′ + �′ ≤ (k + t)/d. This
bound on i′ + �′ ensures that the families for which we compute representative

Representative Families: A Unified Tradeoff-Based Approach 795

families are “small”, thereby reducing the running time of calls to RepAlg. Next,
consider an iteration corresponding to some C ∈ Cv,u.

The current goal is to compute N[C], using the guidance of C. To this end,
TreeAlg generates a matrix L, where each entry L[j, i′, �′] holds a family that
represents the family of node sets, excluding nodes in VC , of trees in Pv,u,C,j,i′,�′ ,
which is defined as follows. The set Pv,u,C,j,i′,�′ includes each subtree P ′ of G
complying with the subtree P of C induced by {w1, . . . , wj}, demanding only
from leaves in P that are leaves in C to be leaves in P ′, such that: (1) VP ′ ∩(VC \
VP) = ∅, and (2) the number of internal nodes (leaves) in P ′, excluding those
in VP , is i′ (�′). Informally, we consider such a subtree P ′ as a stage towards
computing an out-tree T ∈ Tv,u,i,� that complies with C. Indeed, Pv,u,C,|VC |,i∗,�∗
is the set of out-trees in Tv,u,i,� that comply with C.2 Roughly speaking, the
matrix L is computed by using dynamic programming and RepAlg (in Steps 8–
12) as follows. Each entry in L is computed by adding node sets of certain “small”
trees to node sets of trees computed at a previous stage, and then calling RepAlg
to compute a representative family for the result.

CTG v

u

k = 8
t = 5
d = 2

x y
v

x
u y

a b a b
v

x
u y

c d e
f

c e
f

g

d h

a b
c d e

f

T \ VC

Fig. 1. An out-tree T ∈ Tv,u,4,4, complying with the rooted tree C ∈ Cv,u

Correctness and Running Time: The following lemma implies the correct-
ness of TreeAlg.

Lemma 6. For all v, u ∈ V , 0 ≤ i < k and 0 ≤ � ≤ t, M[v,u,i,�] represents
Solv,u,i,�.

For c = 1.447 and a large enough constant d, we obtain the following result.

Lemma 7. TreeAlg solves (k, t)-Tree in time O(2.61804k+t|V |O(1)).

Finally, Lemmas 5 and 7 imply the following theorem.3

Theorem 8. k-IOB can be solved in time O(6.85414k|V |O(1)).

6 Improving Known Applications

Fomin et al. [11] proved that Long Directed Cycle, Weighted k-Path and
Weighted k-Tree can be solved in times O(8k|E|log2|V |), O(2.851k|V |log2|V |)
2 Note that i∗ (�∗), defined in Step 6, is the number of internal nodes (leaves) in an
out-tree T ∈ Tv,u,i,�, excluding those in VC .

3 Choosing c = 1, we solve k-IOB in time O∗(8.125k).

796 H. Shachnai and M. Zehavi

Algorithm 2. TreeAlg(G = (V,E), r, k, t)

1: let M be a matrix that has an entry [v, u, i, �] for all v, u ∈ V , 0 ≤ i ≤ k − 1 and
0 ≤ � ≤ t, which is initialized to ∅.

2: M[v, u, 0, 0] ⇐ {∅} for all v, u ∈ V s.t. (v, u) ∈ E or v = u.
3: for i = 0, . . . , k − 1, � = 0, . . . , t s.t. 1 ≤ i+ �, all v, u ∈ V do
4: let N be a matrix that has an entry [C] for all C ∈ Cv,u.
5: for all C ∈ Cv,u do
6: let w1, . . . , w|VC | be a preorder on VC , where w1 = v, and let i∗ = i+1− i(C)

and �∗ = �+ |{u} \ {v}| − �(C).
7: let L be a matrix that has an entry [j, i′, �′] for all 1 ≤ j ≤ |VC |, 0 ≤ i′ ≤ i∗

and 0 ≤ �′ ≤ �∗, which is initialized to ∅.
8: L[1, i′, �′] ⇐ {U ∈ M[v, v, i′, �′] : U∩VC = ∅} for all 0 ≤ i′ ≤ i∗ and 0 ≤ �′ ≤ �∗.
9: for j = 2, . . . , |VC |, i′ = 0, . . . , i∗, �′ = 0, . . . , �∗ do
10: let A be the family of all sets U ∪W such that U ∩ (W ∪VC) = ∅, and there

are 0 ≤ i′′ ≤ i′ and 0 ≤ �′′ ≤ �′ satisfying i′′ + �′′ ≤ k + t

d
for which

(1) U ∈ M[fC (wj), wj , i
′′, �′′]} and W ∈ L[j − 1, i′ − i′′, �′ − �′′]; or

(2) wj is not a leaf in C, �′′≥1, U ∈M[wj ,wj ,i
′′,�′′]} and W∈L[j,i′−i′′,�′−�′′].

11: L[j, i′, �′] ⇐ RepAlg(V, k + t,A).
12: end for
13: N[C] ⇐ {U ∪ (VC \ {v, u}) : U ∈ L[|VC |, i∗, �∗]}.
14: end for
15: M[v, u, i, �] ⇐ RepAlg(V, k + t,

⋃
C∈Cv,u

N[C]).
16: end for
17: accept iff M[r, r, k − 1, t] �= ∅.

and O(2.851k|V |O(1)), respectively. By replacing their computation of repre-
sentative families with our scheme, RepAlg, we solve these problems in times
O(6.75k|E| log2 |V |), O(2.619k|V | log2 |V |) and O(2.619k|V |O(1)), respectively.

Acknowledgment. We thank the anonymous referees for valuable comments.

References

1. Bläser, M.: Computing small partial coverings. Inf. Proc. Let. 85(6), 327–331 (2003)
2. Bollobás, B.: On generalized graphs. Acta Math. Aca. Sci. Hun. 16, 447–452 (1965)
3. Bonnet, E., Paschos, V.T., Sikora, F.: Multiparameterizations for max k-set cover

and related satisfiability problems. CoRR abs/1309.4718 (2013)
4. Chen, S., Chen, Z.: Faster deterministic algorithms for packing, matching and t-

dominating set problems. CoRR abs/1306.3602 (2013)
5. Cohen, N., Fomin, F.V., Gutin, G., Kim, E.J., Saurabh, S., Yeo, A.: Algorithm for

finding k-vertex out-trees and its application to k-internal out-branching problem.
J. Comput. Syst. Sci. 76(7), 650–662 (2010)

6. Demers, A., Downing, A.: Minimum leaf spanning tree. US Patent no. 6,105,018
(August 2013)

7. Fomin, F.V., Gaspers, S., Saurabh, S., Thomassé, S.: A linear vertex kernel for
maximum internal spanning tree. J. Comput. Syst. Sci. 79(1), 1–6 (2013)

Representative Families: A Unified Tradeoff-Based Approach 797

8. Fomin, F.V., Grandoni, F., Lokshtanov, D., Saurabh, S.: Sharp separation and
applications to exact and parameterized algorithms. Algorithmica 63(3), 692–706
(2012)

9. Fomin, F.V., Lokshtanov, D., Panolan, F., Saurabh, S.: Representative sets of
product families. CoRR abs/1402.3909 (2014)

10. Fomin, F.V., Lokshtanov, D., Raman, V., Saurabh, S.: Subexponential algorithms
for partial cover problems. Inf. Proc. Let. 111(16), 814–818 (2011)

11. Fomin, F.V., Lokshtanov, D., Saurabh, S.: Efficient computation of representative
sets with applications in parameterized and exact agorithms. In: SODA (see also:
CoRR abs/1304.4626), pp. 142–151 (2014)

12. Garey, M.R., Johnson, D.S.: Computers and intractability: a guide to the theory
of NP-completeness. W.H. Freeman, New York (1979)

13. Garey, M.R., Johnson, D.S., Stockmeyer, L.: Some simplified NP-complete prob-
lems. In: STOC, pp. 47–63 (1974)

14. Gutin, G., Razgon, I., Kim, E.J.: Minimum leaf out-branching and related prob-
lems. Theor. Comput. Sci. 410(45), 4571–4579 (2009)

15. Kneis, J.: Intuitive algorithms. RWTH Aachen University, pp. 1–167 (2009)
16. Kneis, J., Mölle, D., Rossmanith, P.: Partial vs. complete domination: t-dominating

set. In: SOFSEM, pp. 367–376 (2007)
17. Koutis, I., Williams, R.: Limits and applications of group algebras for parameter-

ized problems. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas,
S., Thomas, W. (eds.) ICALP 2009, Part I. LNCS, vol. 5555, pp. 653–664. Springer,
Heidelberg (2009)

18. Lovász, L.: Flats in matroids and geometric graphs. In: BCC, pp. 45–86 (1977)
19. Marx, D.: Parameterized coloring problems on chordal graphs. Theor. Comput.

Sci. 351, 407–424 (2006)
20. Marx, D.: A parameterized view on matroid optimization problems. Theor. Com-

put. Sci. 410, 4471–4479 (2009)
21. Monien, B.: How to find long paths efficiently. Annals Disc. Math. 25, 239–254

(1985)
22. Ozeki, K., Yamashita, T.: Spanning trees: A survey. Graphs and Combina-

torics 27(1), 1–26 (2011)
23. Pinter, R.Y., Shachnai, H., Zehavi, M.: Deterministic parameterized algorithms for

the graph motif problem. In: MFCS (to appear, 2014)
24. Prieto, E., Sloper, C.: Reducing to independent set structure – the case of k-internal

spanning tree. Nord. J. Comput. 12(3), 308–318 (2005)
25. Raible, D., Fernau, H., Gaspers, D., Liedloff, M.: Exact and parameterized algo-

rithms for max internal spanning tree. Algorithmica 65(1), 95–128 (2013)
26. Salamon, G.: A survey on algorithms for the maximum internal spanning tree and

related problems. Electronic Notes in Disc. Math. 36, 1209–1216 (2010)
27. Shachnai, H., Zehavi, M.: Representative families: a unified tradeoff-based ap-

proach. CoRR abs/1402.3547 (2014)
28. Skowron, P., Faliszewski, P.: Approximating the MaxCover problem with bounded

frequencies in FPT time. CoRR abs/1309.4405 (2013)
29. Zehavi, M.: Algorithms for k-internal out-branching. In: Gutin, G., Szeider, S.

(eds.) IPEC 2013. LNCS, vol. 8246, pp. 361–373. Springer, Heidelberg (2013)

A Branch and Price Procedure for the Container

Premarshalling Problem

Martijn van Brink and Ruben van der Zwaan

Maastricht University, Maastricht, The Netherlands
m.vanbrink@maastrichtuniversity.nl, grjzwaan@gmail.com

Abstract. During the loading phase of a vessel, only the containers that
are on top of their stack are directly accessible. If the container that
needs to be loaded next is not the top container, extra moves have to be
performed, resulting in an increased loading time. One way to resolve this
issue is via a procedure called premarshalling. The goal of premarshalling
is to reshuffle the containers into a desired lay-out prior to the arrival of
the vessel, in the minimum number of moves possible. This paper presents
an exact algorithm based on branch and bound, that is evaluated on a
large set of instances. The complexity of the premarshalling problem is
also considered, and this paper shows that the problem at hand is NP-
hard, even in the natural case of stacks with fixed height.

1 Introduction

Enormous volumes of goods are shipped yearly all over the world in standardized
containers. These containers typically require multiple modes of transportation
to reach their destination. At container terminals, containers are transshipped
between ships, trucks, and trains. This transshipment generally does not occur
immediately upon delivery of a container, therefore containers are temporarily
stored in an area called the container yard. The container yard consists of a set
of blocks, which in turn consist of a set of bays. Each bay contains a number of
rows, called stacks, with a certain height.

One main indicator of the efficiency of a container terminal is the berthing
time of a vessel, which consists primarily of the time needed to store and load
containers. During the storage, information on pick-up time and destination of
the containers is often inaccurate or even unknown. This makes it difficult to ob-
tain a storage sequence that permits an efficient loading sequence. Hence, during
the loading phase it can occur that the container that needs to be retrieved next,
is not on top of the stack. In this case, the containers on top of this container
need to be rehandled, i.e., relocated within the container yard, before the desired
container can be retrieved. These rehandle operations greatly increase the time
needed to remove the container from the yard.

One way to resolve this issue is to reshuffle the containers prior to the arrival
of the vessel. This operation is called remarshalling, and the goal is to find a
sequence of rehandles, also called moves, of minimum length that reorganizes the
stacks such that no container that is needed early is below a container that is

A.S. Schulz and D. Wagner (Eds.): ESA 2014, LNCS 8737, pp. 798–809, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

A Branch and Price Procedure for the Container Premarshalling Problem 799

1 2 3

1

3

5

2

4

6

3

5

4

6

3

5

4

6

3

5

4

62

1 1

2

2 1

Fig. 1. Small example of three moves swapping the position of containers 1 and 2

needed late. This results in no rehandles during the loading phase, thus reducing
the berthing time. The only valid move is to pick up the top container of one
stack and put it on top of another stack, see Figure 1 for an illustration.

Two types of remarshalling operations can be identified, called intra-block re-
marshalling (hereafter called remarshalling) and intra-bay premarshalling (here-
after called premarshalling). The containers are reshuffled between bays for the
former, and within a bay for the latter. The premarshalling variant is primarily
applicable to container yards that use rail mounted gantry cranes. It is usually
not allowed to move a container to another bay, as this operation is extremely
time consuming [9].

Another main difference between remarshalling and premarshalling lies in the
number of cranes that are used. For premarshalling typically only a single crane
is used, while for remarshalling several cranes are often used simultaneously [3].

In this paper we focus on the premarshalling problem, and we follow the
same assumptions as Bortfeldt and Forster [2]: (a) a single crane is used for
rehandling containers, and (b) the time needed to move a container from one
stack to another does not depend on the distance between the two stacks. This
last assumption follows from the fact that the time needed to position the crane
over a stack is negligible compared to the time needed to pick up or drop off a
container. As a consequence, we are only interested in the number of rehandling
operations.

We assume that for each container a priority level is given, and the goal is
to transform the initial lay-out into a desired target lay-out in the minimum
number of rehandles. The main problem studied is called Priority Stacking:
we accept all lay-outs in which no container with a lower priority is placed on
top of a container with a higher priority. In a variant, called Configuration

Stacking, we restrict the target lay-out to a single pre-specified lay-out. The
main motivation to also look at Configuration Stacking is that giving a
concrete target lay-out might give guidance to the algorithm and yield a faster
computation time.

Related Literature. The operations at container terminals are well studied
in the literature. Steenken, Voß, and Stahlbock [13] and Stahlbock and Voß
[12] describe the most important processes and operations at container termi-
nals and give an overview of methods to optimize these operations. Vis and De
Koster [16] give a classification of the different decision problems that occur at

800 M. van Brink and R. van der Zwaan

container terminals, and give an overview of relevant literature. Lehnfeld and
Knust [11] develop a classification scheme for loading, unloading and premar-
shalling problems that appear in several applications. This scheme is applied to
existing literature.

While there is a vast amount of work on the logistics of container terminals,
the number of publications on the premarshalling problem is limited. We are
only aware of one paper that thoroughly investigates an exact algorithm. Lee
and Hsu [10] develop a mixed integer linear program based on a multicommodity
network flow formulation that solves both Priority Stacking and Configu-

ration Stacking to optimality. However, this formulation can only be reason-
ably applied to very small instances, and the running time heavily depends on
the choice of the number of time points. For larger instances the authors provide
a heuristic that iteratively applies the exact approach on small parts of the in-
stance. Integer multicommodity network flow is a generalization of edge-disjoint
paths which cannot be approximated better than Ω(

√
n), which immediately

implies that the integrality gap of this formulation is at least that [7].
The remaining literature on the premarshalling problem is about the design

of fast heuristics for Priority Stacking. Lee and Chao [9] describe a heuristic
that minimizes the weighted sum of the mis-overlay index, which can be seen as a
measure for the number of rehandles during the loading phase, and the number
of rehandles during the premarshalling phase. Caserta and Voß [5] develop a
heuristic based on the corridor method, where the basic idea is to use an exact
method for limited portions of the entire solution space. Bortfeldt and Forster [2]
describe a refined heuristic tree search procedure that looks at move sequences
rather than individual moves. This heuristic is reported to be faster than the
heuristic by Caserta and Voß. Huang and Lin [8] describe two heuristics that
iteratively improve the lay-out of the yard. The second heuristic is applied to a
special case of Priority Stacking, where all containers in a stack should be of
the same priority level. Expósito-Izquierdo, Melián-Batista, and Morena-Vega [6]
describe a heuristic that considers the container from lowest to highest priority.
The considered container is moved to a position where it is not above a container
with higher priority. The authors also provide an instance generator and describe
an A∗ search algorithm that provides the optimal solution for smaller instances.

Caserta, Schwarze, and Voß [3] give an overview of recent developments on
three so-called post-stacking problems. Besides the remarshalling and premar-
shalling problem, the authors also consider the (intra-bay) blocks relocation
problem. In addition to the premarshalling problem, containers need to be re-
moved from the bay in a certain order that minimizes the number of rehandles.
It was proven that this problem is NP-hard, but with arbitrarily high stacks
[4]. This proof also works as a proof that Priority Stacking is NP-hard with
arbitrarily high stacks. To the best of the authors knowledge there are no results
about the natural case when stack heights are bounded by a constant. Typical
stack heights are between 2 and 8 containers, while currently used equipment
can handle a stack height of at most 10 containers [12], [16].

A Branch and Price Procedure for the Container Premarshalling Problem 801

Our Contributions. We develop a fast exact algorithm based on column gen-
eration for the premarshalling problem and evaluate it extensively. To the best
of our knowledge, we are the first to extensively experiment with an exact algo-
rithm. Expósito-Izquierdo, Melián-Batista, and Morena-Vega [6] describe an A∗

search algorithm, but its results are only used as a benchmark for their heuris-
tic. Lee and Hsu [10] also design an exact algorithm, but only evaluate it on
two instances. Our algorithm is evaluated on 960 instances, with roughly 70% of
the instances solved within one second. We also see that our method exhibits a
low integrality gap. Finally, we consider the complexity of Priority Stacking

and Configuration Stacking. Current NP-hardness proofs require a stack
height that depends on the number of containers. We strengthen this results by
showing that both problems are already NP-hard for all fixed heights at least
six, which resembles the real-life situation.

Organization. In Section 2 we introduce notation and formally describe the
premarshalling problem. In Section 3 we describe an ILP formulation and an
oracle for finding variables in a column generation approach. This is then used
in Section 4 to design a branch and price algorithm, whose experimental perfor-
mance is analyzed in Section 5. In Section 6 we consider the complexity of both
premarshalling variants. Finally, some conclusions are drawn in Section 7.

2 Preliminaries

Let [n] denote the set of integers from 1 up to n, i.e., [n] := {1, . . . , n}. The
premarshalling problem is defined as follows. Given are m stacks of maximum
height h and n containers, each container labeled with a priority � from [k]
(2 ≤ k ≤ n). In line with the definitions used in the literature, a lower priority
number indicates a higher priority level, i.e., containers with priority 1 are needed
first, and containers with priority k last. The lay-out of a stack i with j ≤ h
containers is denoted as an ordered set of priorities Xi := {x1, . . . , xj}, where
the first element is the priority of the bottom container and the last element is
the priority of the top container. Notice that containers with the same priority
are indistinguishable, therefore we will abbreviate “move container with priority
�” to “move container �”.

The goal is to transform the initial lay-out to a target lay-out by performing
the minimum number of moves, while adhering to the maximum stack height.
A move is defined as picking up the top-most container of one stack and placing
it on top of another stack. For Priority Stacking the set of target lay-outs
consists of all lay-outs such that all stacks are sorted in non-increasing order
when viewed from the bottom, i.e., for a stack i with Xi := {x1, . . . , xj}, we
have that xp+1 ≤ xp for p = 1, . . . , j − 1. For Configuration Stacking there
is only one target lay-out, which is specified beforehand.

802 M. van Brink and R. van der Zwaan

3 Formulation as an ILP

In this section we describe the linear program model that we use for both Pri-

ority Stacking and Configuration Stacking. Let us first introduce some
notation. Let T denote the number of time points. As only a single move is
allowed per time point, T can also be viewed as the maximum possible num-
ber of moves. Let the tuple (�, t) denote a move of container � at time t ∈ [T],
and consider stack s. Let Ladd

s and Lrem
s contain moves (�, t) such that con-

tainer � is respectively added to, or removed from, stack s at time t, and let
Ls := (Ladd

s , Lrem
s). The set Ls is feasible if (a) at every time t there is at most

one move, i.e., either a container is added, a container is removed, or no move is
performed; (b) for all moves (�, t) ∈ Ladd

s and (�, t) ∈ Lrem
s we have that at time t

stack s contains at least one free spot, or container � is the top container of stack
s, respectively; (c) the lay-out obtained by executing the moves is a target lay-
out. Hence, a feasible Ls can be viewed as a sequence of moves that transforms
stack s into a target lay-out, where Ladd

s and Lrem
s consist of the moves where

a container is added or removed, respectively. Furthermore, let #moves(Ls) de-
note the number of containers added in Ls, i.e., #moves(Ls) := |Ladd

s |. Finally,
let Ls denote the set of sequences that transform stack s into a target lay-out,
i.e., Ls := {Ls : Ls is feasible}. For an example of a feasible set of sequences,
see Figure 2.

Initial lay-out

a b c

2

3 3

1 2

Final lay-out

a b c

2

32

1 3

Fig. 2. For ease of reference, the stacks are called a, b, and c. The final lay-out can
be obtained by moving container 2 from stack c to stack a, 3 from b to c, 2 from
a to b, and 3 from a to c. Let La, Lb, and Lc denote the sequence for stack a, b,
and c, respectively. For these moves we get Ladd

a = {(2, 1)}, Lrem
a = {(2, 3), (3, 4)},

Ladd
b = {(2, 3)}, Lrem

b = {(3, 2)}, Ladd
c = {(3, 2), (3, 4)}, and Lrem

c = {(2, 1)}.

A Branch and Price Procedure for the Container Premarshalling Problem 803

We consider the following ILP, where xs,L ∈ {0, 1} for L ∈ Ls has value 1 if
and only if stack s is transformed according to sequence L. Let add(L, �, t) and
rem(L, �, t) be equal to 1 if and only if (�, t) ∈ Ladd and (�, t) ∈ Lrem, respectively.

min
∑
s∈[m]

∑
L∈Ls

#moves(L) xs,L (Integer Linear Program)

s.t.
∑
s∈[m]

∑
L∈Ls

(add(L, �, t) − rem(L, �, t))xs,L ≥ 0 ∀� ∈ [k], t ∈ [T] (C1)

∑
s∈[m]

∑
L∈Ls

∑
�∈[k]

add(L, �, t)xs,L ≤ 1 ∀t ∈ [T] (C2)

∑
L∈Ls

xs,L = 1 ∀s ∈ [m] (C3)

xs,L ∈ {0, 1} ∀s ∈ [m], L ∈ Ls.

The variables themselves already ensure that only sequences of moves are chosen
that for every stack individually are feasible. The remaining constraints ensure
that the local solutions together form a valid global solution. Constraint (C1)
ensures that at time t the number of containers of priority � that are added is at
least the number of containers of priority � that are removed. Constraint (C2)
enforces that at any time t at most one container can be added. Note that this
implies that at most one container is moved per time point. Constraint (C3)
makes sure that exactly one sequence is selected for each stack. By relaxing the
requirement that the variables are either 0 or 1 we obtain the LP relaxation.

Solving the Subproblem. The problem of finding variables with negative re-
duced costs is almost equivalent to finding a maximum weight independent set
in a circle graph, which can be solved in polynomial time by dynamic program-
ming [1], [14]. A circle graph is an intersection graph of chords of a a circle, two
vertices/chords are adjacent if and only if they intersect. Circle graphs can be
equivalently defined as the overlap graph of a set of intervals. The additional
constraint that we impose is that in the solution there are never more than h
intersecting intervals, corresponding to the height constraint. However, the al-
gorithm to find the maximum weight independent set by dynamic programming
can be easily adapted to take this constraint into account.

We will shortly describe how the problem of finding a sequence of moves with
negative reduced costs for a fixed stack s can be cast as finding a non-overlapping
set of (labeled) intervals. For a more detailed description we refer the reader to
the full version of this paper [15]. For ease of exposition ignore the conditions
on the initial and target lay-out of a stack and assume that all endpoints of the
intervals are distinct. Let an interval [a, b] with label � mean that a container
with priority � is added to stack s at time a and removed at time b. Having two
overlapping intervals [a, b] and [c, d] such that a < c < b < d is interpreted as
putting a container down at time a, putting another container on top at time c

804 M. van Brink and R. van der Zwaan

and removing the first container at time b while the second container is still there.
Clearly this is infeasible. However, if a < c < d < b, then the second container
would be put on top of the first, just as before, but it would be removed before
the first is removed. Therefore, given a non-overlapping set of intervals whose
endpoints are distinct, we have found a feasible sequence of moves.

4 Branch and Price Algorithm

The premarshalling problem is solved by iteratively running the algorithm with
an increasing number of time points, starting from some lower bound, until the
optimal solution is found. See Algorithm 1 for an overview of the procedure.

Lower Bound. We say that a container is wrongly placed if it is positioned on
top of a container that (a) has a higher priority, or (b) is itself wrongly placed.
Clearly, all wrongly placed containers need to be moved to obtain a target lay-
out. However, if all stacks contain a wrongly placed container, then moving one
does not reduce the number of wrongly placed containers. This number can only
be reduced if at least one stack does not contain wrongly placed containers.
The minimum number of moves required for this is equal to the lowest number
of wrongly placed containers over all stacks. As lower bound on the number
of moves we take the number of wrongly placed containers plus the minimum
number of wrongly placed containers over all stacks.

SolvingNodes. For each node in a tree, T time points are available to move con-
tainers. For solving a single node, we start with a model that contains (if any) pre-
viously generated sequences, and for each stack a dummy sequence with cost T +1,
that performs no moves. These dummy sequences ensure that a feasible solution for
the LP relaxation always exists. This initial model is solved, and as long as there
are sequences with negative reduced cost, they are added and the model is resolved.
Note that at each iteration at most one sequence is added per stack. If there are
no more sequences with negative reduced cost, and the LP value strictly exceeds
T , we discard the node. If the LP value does not exceed T , we check if the solu-
tion is integral. If it is integral, we have found the optimal solution, and we stop
the solve procedure. Otherwise, we apply the branching rule and continue with the
next node. Every 100 nodes the sequence pool is cleaned. All sequences that have
not been used since the last cleanup, i.e., whose corresponding variable had value
zero in all LP models since the last cleanup, are discarded.

Branching and Node Selection Rule. Consider an arbitrary stack s and
time point t, and observe that for this combination three actions are possible.
Either (a) a container is added, (b) a container is removed, or (c) no move
is performed. When applying branching, one of the three actions is forced for
stack s at time t. For instance, if action (a) is forced, only sequences that add
a container (of any priority level) to stack s at time t are still considered. Note

A Branch and Price Procedure for the Container Premarshalling Problem 805

that at most one container is moved per time point. Hence, if adding (removing)
a container is forced for stack s at time t, this action is no longer feasible for any
other stack at time t.

The stack and time point on which are branched, are determined as follows.
Let t be the minimum time point such that at least one of actions (a) and (b)
is not forced for any stack at time t. Hence, t is the minimum time point for
which the exact move is not yet fixed. Out of all the stacks for which no action is
forced at time t, we take the stack s for which the sum of all xs,L variables, such
that for sequence L a move is performed at time t, is maximized, i.e., for which∑

L∈Ls

∑
�∈[k](add(L, �, t) + rem(L, �, t))xs,L is maximized. In case of a tie, we

take the stack s that was considered first. By appropriately removing intervals, or
adapting their value, this branching rule does not affect the difficulty of applying
the separation oracle described in Section 3.

For exploring the tree we apply a depth first search. The node for which t
is maximized, is considered next. In case of a tie, we take the most recently
generated node.

Algorithm 1. Branch and Price algorithm

1 procedure Premarshal

2 set T equal to the lower bound for the number of moves
3 while optimal solution not found do
4 start with tree consisting of only a root node
5 while exist unpruned leaf node do
6 N := leaf node deepest in tree, initialize LP model with dummy and “valid”
7 sequences, solve LP model with column generation, update sequence pool
8 if LP value > T then prune node N
9 else if solution integral then output opt. solution & prune all nodes

10 else let (s, t) denote the stack and time to branch on, add children
11 N1/N2/N3 := N with Add / Remove / Nothing fixed for (s, t)
12 every 100 nodes clean sequence pool
13 T := T + 1

5 Experimental Results

In this section we evaluate the branch and price algorithm described in Section
4. We impose a time limit of one hour for each instance, and we only consider
results for Priority Stacking.

5.1 Experimental Setup

The algorithm is implemented in C++ in combination with CPLEX 12.6, run on
a machine with an Intel Core 2 Duo E8400 3.00 GHz processor and 4 GB RAM,
and evaluated on randomly generated instances. To the best of our knowledge

806 M. van Brink and R. van der Zwaan

no library with real-life instances for the premarshalling problem exists, and
randomly generated instances are also used in for instance [2], [5].

The instances depend on four input parameters: the number of different priori-
ties (Priorities), the number of stacks (Stacks), the height of the stacks (Height),
and the fill grade (Fill). For possible values for Priorities we consider [10]. To
the best of our knowledge, this is the only other paper that evaluates an exact
algorithm for the premarshalling problem. The authors basically consider two
instances, with 3 and 6 priority levels, respectively. Therefore we consider 2 (the
minimum value possible), 3 and 6 priority levels. For the other parameters, Lee
and Chao [9] observe that 12 stacks with a height of 6 is already larger than most
equipment can handle, and a fill grade of 75% is considered moderately high. A
minimum height of 4 is observed in general. As we apply an exact method, we
consider slightly lower parameter values. For Stacks we take values 3, 5, 7, and
9, for Height we consider 4 and 6, and for Fill we take either 50% or 70%, which
we consider a low and average fill grade, respectively. The number of containers
is determined by multiplying the number of available positions, i.e., Stacks times
Height, with Fill. In case this number is fractional, it is truncated.

First, consider the case where Priorities has value 6. Consider the containers
one by one, and consecutively assign them priority 1 to 6. The initial lay-out
is determined by randomly picking a container and placing it on a randomly
selected non-full stack, until all containers are placed. Second, consider the case
where Priorities has value 2 or 3. In this case, the instances are based on the
ones where Priorities has value 6. Each stack has the same number of containers,
but the priorities are updated. For Priorities equal to 2, the three lowest and the
three highest priorities are grouped together. For Priorities equal to 3 the lowest
two, middle two, and highest two priorities are grouped together. If for any of
the three values for Priorities the instance does not contain a wrongly placed
container, i.e., no premarshalling operations are necessary, all three instances
are discarded. This procedure is repeated until 20 instances are generated for all
48 combinations of parameter values, resulting in 960 instances.

5.2 Results

Table 1 contains an overview of the results. The first column contains the results
for all instances, while columns two through five contain the results for instances
with a running time less than one second, between one second and one minute,
between one minute and one hour, and more than one hour, respectively. For all
statistics the average is given, except for # instances and seq. memory, which
indicate the total and maximum value, respectively. If a cell contains two values,
then the first one indicates the average and the second one the maximum.

Over all 960 instances, the average mis-overlay is 38.3%. The mis-overlay of a
lay-out is defined as the total number of wrongly placed containers (see Section
4). Note that this definition corresponds to the one used in for instance [9].
Clearly, the higher the value for Priorities, Height, and Fill, the higher the mis-
overlay. For Stacks the value of mis-overlay is constant. This follows from the

A Branch and Price Procedure for the Container Premarshalling Problem 807

Table 1. Overview of the results

statistic all < 1 sec 1 sec - 1 min 1 min - 1 h > 1 h

instances 960 680 215 50 15
mis-overlay (%) 38.3 32.3 50.7 58.9 63.4
integrality gap 1.13 | 2.80 1.09 | 2.80 1.19 | 2.43 1.32 | 2.09 1.18 | 1.85
trees solved 2.45 | 11 1.90 | 6 3.40 | 8 5.12 | 11 5.07 | 9
trees killed 0.82 | 4 0.54 | 3 1.41 | 4 1.72 | 4 2.13 | 4
trees actually 1.63 | 8 1.36 | 5 1.99 | 6 3.40 | 8 2.93 | 7
run time (sec.) 93.65 0.23 8.42 678.39 3600.84
lp time (sec.) 46.66 0.05 3.02 327.05 1850.74
gen. time (sec.) 34.51 0.10 4.60 266.16 1250.63
clear time (sec.) 11.67 0.00 0.60 79.81 472.30
nodes solved 295.7 8.4 117.0 2569.2 8301.2
nodes memory 4.78 | 56 2.83 | 20 8.67 | 39 11.30 | 56 15.50 | 39
seq. generated 14, 396 271 4, 240 130, 542 413, 156
seq. memory 59, 729 1, 641 19, 536 56, 554 59, 729

way the instances are generated: the number of containers is (almost) linear in
the number of stacks, and for each container a random stack is selected.

Out of all the instances, 945 (98.4%) are solved within one hour, 895 (93.2%)
within one minute, and 680 (70.8%) within one second. The 15 instances that
are not solved within one hour all have value 6 for Priorities, value 6 for Height,
and value 70 for Fill. The number of unsolved instances is 1, 4, 4, and 6 for 3,
5, 7, and 9 stacks, respectively.

The average running time is 93.65 seconds. The main contributors are the
time spend on solving the LP relaxation (46.66 seconds), generating columns
(34.51 seconds), and clearing the cplex models (11.67 seconds). This leaves on
average only 0.80 seconds of overhead. If we compare the solved and unsolved
instances, we observe little difference in the relative amount spend on solving the
LP relaxation (47.5% versus 51.4%), generating columns (40.0% versus 34.7%),
and clearing the cplex model (11.5% versus 13.1%).

For the solved instances the integrality gap is on average 1.13. The integrality
gap is obtained by comparing the optimal (integer) solution with the value of the
LP relaxation at the root node of the tree that contains the optimal solution. This
LP value is the lowest one obtained, as adding forced actions and time points
respectively increases and decreases the LP value. For the 15 unsolved instances
we cannot determine the integrality gap, but we can give a lower bound. For
these instances the average lower bound on the integrality gap is 1.18. Although
this values are biased, there does not appear to be a big difference in integrality
gap between the solved and unsolved instances.

On average 2.41 trees are solved. Out of these trees, on average 0.80 are killed
immediately. A tree is killed immediately if the LP value of the root node exceeds
the number of time points. As only the root node is solved for killed trees, solving
these trees generally requires little time. Hence, on average 1.61 trees are actually
solved per instance. The average number of solved nodes is 295.7. On average

808 M. van Brink and R. van der Zwaan

0.32 seconds are needed to solve one node. This average time is higher for the
unsolved instances compared to the solved instances (0.23 versus 0.43 seconds).

The average and maximum number of nodes in memory is 4.8 and 56, re-
spectively. The maximum number of nodes in memory is obtained by a solved
instance. Hence, the memory usage with respect to the number of nodes is low
and stable over time, i.e., longer running times do not lead to a huge increase
in the number of nodes in the memory. Maximally 59, 729 sequences are stored
in the memory. In this case, the maximum is obtained by an unsolved instance.
Here again there does not appear to be a huge increase in memory usage with
increasing running time. Because unused sequences are discarded, the number
of sequences stored in the memory is kept at an acceptable level, at the expense
of possibly generating the same sequence several times.

6 Complexity: NP-Hard for Constant Height Stacks

Because of limited space, we only state our results that both stacking problems
are NP-hard for constant height stacks. For the proof we refer the reader to the
full version of this paper [15]. We would like to point out that the proof for
Configuration Stacking is significantly more involved and is not implied by
the proof for Priority Stacking.

Theorem 1. For every fixed h ≥ 6, Priority Stacking and Configuration

Stacking are NP-hard.

7 Conclusion

We considered the intra-bay premarshalling problem. The objective is to trans-
form the initial lay-out into a target lay-out in the minimum number of moves
possible. We showed that the premarshalling problem is NP-hard, even for a
fixed stack height of at least six. We developed an exact algorithm based on
branch and price, that is evaluated on 960 randomly generated instances. For
Priority Stacking, 945 are solved within one hour, 895 within one minute,
and 680 with one second. Preliminary experiments show that the algorithm runs
much faster for Configuration Stacking, in the full version of the paper
there will be a comparison. An interesting topic for future research concerns the
solution approach. Currently, either the optimal solution is found, or no solution
is found at all. By for instance incrementing the number of time points T (see
Section 4) with more than one, it might be possible to look for other feasible
(near-optimal) solutions. Another option would be to allow multiple moves per
time point. A restriction would be that each stack is involved in at most one
move per time point. This decreases the number of time points, which hopefully
results in a reduced running time.

A Branch and Price Procedure for the Container Premarshalling Problem 809

References

1. Bonsma, P., Breuer, F.: Counting hexagonal patches and independent sets in circle
graphs. Algorithmica 63(3), 645–671 (2012)

2. Bortfeldt, A., Forster, F.: A tree search procedure for the container pre-marshalling
problem. European Journal of Operational Research 217(3), 531–540 (2012)

3. Caserta, M., Schwarze, S., Voß, S.: Container rehandling at maritime container
terminals. In: Böse, J.W. (ed.) Handbook of Terminal Planning. Operations Re-
search/Computer Science Interfaces Series, vol. 49, pp. 247–269. Springer, New
York (2011)

4. Caserta, M., Schwarze, S., Voß, S.: A mathematical formulation and complexity
considerations for the blocks relocation problem. European Journal of Operational
Research 219(1), 96–104 (2012)

5. Caserta, M., Voß, S.: A corridor method-based algorithm for the pre-marshalling
problem. In: Giacobini, M., Brabazon, A., Cagnoni, S., Di Caro, G.A., Ekárt, A.,
Esparcia-Alcázar, A.I., Farooq, M., Fink, A., Machado, P. (eds.) EvoWorkshops
2009. LNCS, vol. 5484, pp. 788–797. Springer, Heidelberg (2009)

6. Expósito-Izquierdo, C., Melián-Batista, B., Moreno-Vega, M.: Pre-marshalling
problem: Heuristic solution method and instances generator. Expert Systems with
Applications 39(9), 8337–8349 (2012)

7. Guruswami, V., Khanna, S., Rajaraman, R., Shepherd, B., Yannakakis, M.: Near-
optimal hardness results and approximation algorithms for edge-disjoint paths and
related problems. Journal of Computer and System Sciences 67(3), 473–496 (2003)

8. Huang, S.-H., Lin, T.-H.: Heuristic algorithms for container pre-marshalling prob-
lems. Computers & Industrial Engineering 62(1), 13–20 (2012)

9. Lee, Y., Chao, S.-L.: A neighborhood search heuristic for pre-marshalling export
containers. European Journal of Operational Research 196(2), 468–475 (2009)

10. Lee, Y., Hsu, N.-Y.: An optimization model for the container pre-marshalling prob-
lem. Computers & Operations Research 34(11), 3295–3313 (2007)

11. Lehnfeld, J., Knust, S.: Loading, unloading and premarshalling of stacks in storage
areas: Survey and classification. European Journal of Operational Research (to
appear, 2014)

12. Stahlbock, R., Voß, S.: Operations research at container terminals: a literature
update. OR Spectrum 30(1), 1–52 (2008)

13. Steenken, D., Voß, S., Stahlbock, R.: Container terminal operation and operations
research - a classification and literature review. OR Spectrum 26(1), 3–49 (2004)

14. Valiente, G.: A new simple algorithm for the maximum-weight independent set
problem on circle graphs. In: Ibaraki, T., Katoh, N., Ono, H. (eds.) ISAAC 2003.
LNCS, vol. 2906, pp. 129–137. Springer, Heidelberg (2003)

15. van Brink, M., van der Zwaan, R.: A branch and price procedure for the container
premarshalling problem (2014), http://arxiv.org/abs/1406.7107

16. Vis, I.F.A., de Koster, R.: Transshipment of containers at a container terminal: An
overview. European Journal of Operational Research 147(1), 1–16 (2003)

http://arxiv.org/abs/1406.7107

Space-Efficient Randomized Algorithms

for K-SUM

Joshua R. Wang

Stanford University, Stanford CA 94305, USA
joshua.wang@cs.stanford.edu

Abstract. Recent results by Dinur et al. (2012) on random Subset-

Sum instances and by Austrin et al. (2013) on worst-case SubsetSum

instances have improved the long-standing time-space tradeoff curve. We
analyze a family of hash functions previously introduced by Dietzfel-
binger (1996), and apply it to decompose arbitrary k-Sum instances into
smaller ones. This allows us to extend the aforementioned tradeoff curve
to the k-Sum problem, which is SubsetSum restricted to sets of size k.
Three consequences are:

– a Las Vegas algorithm solving 3-Sum in O(n2) time and Õ(
√
n)

space,

– a Monte Carlo algorithm solving k-Sum in Õ(nk−√
2k+1) time and

Õ(n) space for k ≥ 3, and
– a Monte Carlo algorithm solving k-Sum in

Õ(nk−δ(k−1) + nk−1−δ(
√

2k−2)) time and Õ(nδ) space, for δ ∈ [0, 1]
and k ≥ 3.

Keywords: k-sum, subset-sum, hashing, time-space tradeoffs.

1 Introduction

The k-Sum problem on n numbers is as follows: Given k sets S1, S2, . . . , Sk with
at most n integers each and a target t, find a1, a2, . . . , ak such that for all i,
ai ∈ Si and

∑k
i=1 ai = t. One common variant of the problem has only a sin-

gle set S from which all elements in the solution are chosen from, but the two
are easily reducible to each other. The k-Sum problem can be trivially solved
in O(nk) arithmetic operations by trying all possibilities, and a more sophisti-
cated solution runs in O(n�k/2� logn) time (this log factor can be avoided for
k odd). However, this solution also requires O(n�k/2�) space, while the trivial
solution only needed O(1) space. Is some trade-off between time and space pos-
sible? Schroeppel an Shamir [12] provide an algorithm for 4-Sum that runs in
Õ(n2) time1 and Õ(n) space. In a survey of the time and space complexity of
exact algorithms, Woeginger [13] studied the k-Sum problem and questioned
whether an algorithm similar to the Schroeppel-Shamir 4-Sum algorithm can be
constructed for 6-Sum.

1 See Section 2.1 for an explanation of Õ and O∗ notation.

A.S. Schulz and D. Wagner (Eds.): ESA 2014, LNCS 8737, pp. 810–829, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

Space-Efficient Randomized Algorithms for K-SUM 811

Gajentaan and Overmars [6] classified many problems from computational ge-
ometry as “3-Sum-hard” (i.e. there exists a o(n2) reduction from 3-Sum to the
problem in question) in order to indirectly demonstrate their difficulty. Finding
a subquadratic algorithm for any problem in this class of problems would im-
mediately produce a subquadratic algorithm for 3-Sum. One example of such a
problem is 3-POINTS-ON-LINE: Given a set of points in the plane, are there
three collinear points? To reduce 3-Sum to this problem, map each x ∈ S (us-
ing the single-set variation of 3-Sum) to the point (x, x3), with the idea that
a1 + a2 + a3 = 0 iff the points (a1, a

3
1), (a2, a

3
2), and (a3, a

3
3) are collinear.

k-Sum is also fundamentally connected to several NP-hard problems. For
example, Pǎtraşcu and Williams [11] show that solving k-Sum over n numbers
in no(k) time would imply that 3-Sat with n variables can be solved in 2o(n)

time. Schroeppel and Shamir [12] showed how the SubsetSum problem can be
reduced to an (exponential-sized) k-Sum problem (Recall that in SubsetSum,
we are given a set S of n integers and a target t, and want to find a subset
S′ ⊆ S such that

∑
a∈S′ a = t). Therefore, more efficient k-Sum algorithms can

be used to derive faster SubsetSum algorithms. Indeed, Schroeppel and Shamir
use their 4-Sum algorithm to produce a O∗(20.5n) time and O∗(20.25n) space
SubsetSum algorithm. They also showed that SubsetSum is solvable in time
T and space S where T · S2 = O∗(2n) for T (n) ≥ Ω∗(2n/2).

This 30-year old time-space tradeoff for SubsetSum was recently improved. In
2010, Howgrave-Graham and Joux [7] derived an algorithm for random Subset-

Sum instances that runs in time O∗(20.337n) and memory O∗(20.256n). Becker,
Coron, and Joux [3] then derived two algorithms for random instances, one run-
ning in time O∗(20.291n) and space O∗(20.291n) and one running in O∗(20.72n)
time and O∗(1) space. Dinur et al. [5]. presented a time-space tradeoff curve
that dominates the Schroeppel-Shamir curve and matches it at its endpoints,
for random instances. Austrin et al. [1] matched the Dinur curve for worst case
instances with a randomized algorithm.

1.1 Our Results

The best known algorithm for 3-Sum takes Õ(n2) time (Baran, Demaine, and
Pǎtraşcu [2] have found polylogarithmic improvements over O(n2) which were
further improved by Gronlund and Pettie [9]), but also requires Ω̃(n) space (to
hold a sorted copy of the input). Can the same running time be achieved with
significantly less space? The primary difficulty here lies in the unsortedness of
the input. What about for k-Sum in general? In his 2004 survey [13], Woeginger
asked such questions, with the hopes of encouraging further progress on solving
SubsetSum.

In this paper, we lower the space requirement for 3-Sum while maintaining
the same running time, with a zero-error randomized algorithm:

812 J.R. Wang

Theorem 1. The 3-Sum problem on n numbers can be solved by a Las Vegas 2

algorithm in time O(n2) and space 3 Õ(
√
n).

We also investigate time-space tradeoffs for the general k-Sum problem. Given
a fixed space budget S, for what T can k-Sum be solved in time T and space S?
We prove the following general self-reduction for k-Sum:

Theorem 2. Let A be a Las Vegas algorithm that solves k-Sum (k ≥ 3) on n
numbers in T (n) time and S(n) space where T (n), S(n) ∈ poly(n), and let δ ≤ 1
be an arbitrary constant. Then there is a Las Vegas algorithm A′ that solves k-
Sum on n numbers in O(nk−δ(k−1) +nk−δ(k−1)−1T (nδ)) time and O(nδ +S(nδ))
space.

When S(n) = Õ(n), the reduction of Theorem 2 optimizes its space usage.
Independently of Theorem 2, we also provide a family of Monte Carlo ran-

domized algorithms for k-Sum that use linear space.

Theorem 3. There exists a Monte Carlo algorithm that solves k-Sum on n
numbers in Õ(nk−f(k)−1) time and Õ(n) space, where f(k) is the largest integer
p such that the (p + 1)-th triangular number is at most one less than k.

Theorem 3 provides algorithms for: 4-Sum in Õ(n2) time, 5-Sum in Õ(n3)
time, 6-Sum in Õ(n4) time, 7-Sum in Õ(n4) time, and so on, all in linear space.
Note that the 4-Sum time matches the Schroeppel-Shamir [12] 4-Sum result.

The actual savings over O(nk) time in Theorem 3 are subtle, and studied in
detail later in the paper (for now, we note that f(k) ≥

√
2k − 2). Theorem 3

strengthens the time-space tradeoff results of Dinur et al. and Austrin et al.
in the following sense. Applying the original Schroeppel-Shamir reduction from
SubsetSum to k-Sum, and running the algorithm of Theorem 3, we can recover
the endpoints of the time-space tradeoff curve previously obtained. In particular,
this occurs when k is one more than a triangular number.

Combining Theorem 2 and Theorem 3, we obtain the following time-space
tradeoff curve for k-Sum in the “sub-linear” space setting:

Corollary 1. Let δ ∈ [0, 1] be an arbitrary constant. There is a Monte Carlo
algorithm that solves k-Sum on n numbers in Õ(nk−δ(k−1) + nk−1−δf(k)) time
and Õ(nδ) space, where f(k) is the largest integer p such that the (p + 1)-th
triangular number is at most one less than k.

1.2 Intuition

To illustrate some of the ideas in this paper, let us consider 3-Sum. The naive
algorithm checks all triples of numbers to see if they sum to the target, in O(n3)

2 Recall that algorithms are Las Vegas randomized if they always give correct results,
but may take additional running time depending on the random numbers generated
(but not depending on the choice of input).

3 We consider a model of computation where the input is given in read-only memory
while the machine works in read/write memory, measuring the space usage by the
working memory size.

Space-Efficient Randomized Algorithms for K-SUM 813

time. Note that choosing two numbers in the solution determines the third. A
more careful algorithm will store the third set in a data structure so that after
choosing the first two numbers of the solution, the third can be quickly checked.
Because the last number is determined, this only requires O(n2) time.

Now consider algorithms that only use Õ(
√
n) space. One naive approach is

to partition each set into
√
n buckets of

√
n numbers and solve 3-Sum on all

triples of buckets. There are n1.5 such triples, and since solving 3-Sum on these
smaller instances will take O(n) time, the running time of this naive algorithm is
O(n2.5). However, this algorithm does redundant work checking buckets, for the
same reason that the O(n3) algorithm does redundant work checking numbers:
both check all possible triples.

We avoid this work via hashing. We apply a particular hash family H lin of
Dietzfelbinger [4] to create our buckets. We show that with this hash family,
choosing the first two buckets fixes the third bucket. Hence we now only check
O(n) triples of buckets, and the running time drops to O(n2). With H lin, we
can ensure that the sizes of the buckets also remain O(

√
n), to avoid increasing

the running time for solving a subproblem.
We can generalize this technique in two different ways. Firstly, this technique

works for general k: guessing the first (k − 1) buckets fixes the last bucket in a
general k-Sum solution. Secondly, it works for sizes other than O(

√
n), although

additional work is necessary to guarantee the bucket size. In fact, this generaliza-
tion yields a self-reduction for k-Sum problems, since the resulting subproblems
are smaller instances of k-Sum.

The running time and space usage of the final k-Sum algorithm depend on
how the subproblems from the self-reduction are solved. The space usage in the
self-reduction is optimized when a linear-space k-Sum algorithm is applied to
the resulting subproblems. Hence we take particular interest in linear-space k-
Sum algorithms and derive faster linear-space k-Sum algorithms, by adapting
SubsetSum techniques to the k-Sum setting.

1.3 Organization

In Section 2, we discuss some basic notation and several standard k-Sum algo-
rithms. In Section 3, we study a family of hash functions, introduced by Diet-
zfelbinger [4], and analyze its properties. In particular, we show the family is
“almost-affine”. In Section 4, we use this hash family to develop a self-reduction
on k-Sum problems to reduce memory usage. In Section 5, we analyze the k-Sum
time-space tradeoff curves produced by this reduction.

In Appendix A, we present the proof for our general k-Sum self-reduction
theorem. In Appendix B, we use the previously mentioned hash family to also
derive linear-space Monte Carlo algorithms for k-Sum.

814 J.R. Wang

2 Preliminaries

2.1 Randomized Algorithms and Running Time

This paper describes both Las Vegas and Monte Carlo randomized algorithms.
Las Vegas algorithms always give correct results, but their running times hold
in expectation over internal randomness (the input is still worst-case). Monte
Carlo algorithms may give incorrect results with some (small) probability, but
their running time is deterministic and worst-case. It is worth noting that a Las
Vegas algorithm can be converted into a Monte Carlo algorithm with the same
running time up to a constant factor, via a Markov bound.

We use Õ to indicate suppression of polylog factors, and O∗ to indicate sup-
pression of polynomial factors.

When determining running time, we will use the standard word RAM model,
assuming that operations on integers take constant time. Note that polylog time
operations would still fold into the Õ notation and do not affect the polynomial
exponent, which is the primary focus of this paper.

2.2 Sets and Triangular Numbers

Definition 1. [m] denotes the set {0, 1, . . . ,m− 1}.

Definition 2. Given sets S and T , the Minkowski sum of S and T , denoted
S + T , is defined as the set {s + t | s ∈ S, t ∈ T }.

Definition 3. Given a set S and a function f that can operate on the elements
of S, the image of S under f , denoted f(S), is defined as the set {f(s) | s ∈ S}.

Definition 4. The nth triangular number, Tn, is given by
∑n

i=1 i =
(
n+1
2

)
.

2.3 Basic k-Sum Algorithms

We review standard algorithms for k-Sum on n numbers where k ∈ [2, 4].

Theorem 4. 2-Sum on n numbers can be solved in O(n log n) time and Õ(n)
space.

The key idea is to sort one set in nondecreasing order and the other in nonin-
creasing order. Starting at the beginning of each set, advance the element in the
first set if the current sum is too small and advance the element in the second
set if the current sum is too large.

Theorem 5. 3-Sum on n numbers can be solved in O(n2) time and Õ(n) space.

3-Sum proceeds similarly, sorting the first two sets as above and then brute-
force guessing the element from the third set to use.

Theorem 6 (Schroeppel Shamir ’79). 4-Sum on n numbers can be solved
in O(n2 logn) time and Õ(n) space.

Space-Efficient Randomized Algorithms for K-SUM 815

4-Sum is solved by reducing to the 2-Sum case, treating S1 + S2 as one set
and S3 + S4 as another. In order to avoid Õ(n2) space usage, Schroeppel and
Shamir [12] use a priority queue for each set sum, each holding at most a linear
number of elements.

2.4 Hash Functions

Here are some definitions concerning hash functions:

Definition 5. A family of hash functions H = {h : U → [m]} is said to be
universal if for every x, y ∈ U , if x �= y then Prh∈H [h(x) = h(y)] ≤ 1

m .

Definition 6. Given a family of hash functions H = {h : U → [m]}, and a set
S ⊆ U , let the bucket of h with value v be h−1({v}) ∩ S (i.e. all elements in S
with hash value v). Also, define Bh(x) := h−1({h(x)}) ∩ S (the bucket of h with
value h(x)).

We will be hashing the elements in our k-Sum instance. We note that we
can assume elements (and hence |U |) are at most Õ(nk), since we can take all
numbers modulo a random prime on the order of Õ(nk); there are only O(nk)
sums to consider, each with at most O(log n) prime factors (the prime number
theorem guarantees there are enough primes to choose from). Note that we can
verify solutions to guard against collisions, so our algorithms are Las Vegas
randomized.

3 Almost Affine Hashing

Hashing has long been useful in k-Sum algorithms and reductions. Baran, De-
maine, and Pǎtraşcu [2] proved a key lemma about the load balancing property
of universal families of hash functions. Baran et al. use this to show an upper-
bound for 3-Sum, Pǎtraşcu [10] uses it to reduce 3-Sum to 3-SumConvolution,
and Abboud and Lewi show a more general reduction from k-Sum to k-
SumConvolution for k ≥ 2.

Lemma 1 (Baran Demaine Pǎtraşcu ’05). Given any universal family of
hash functions H = {h : [u] → [m]}, some set S ⊂ [u] of size n, and an integer
t > 2n/m−2, the expected number of elements x ∈ S with |Bh(x)| ≥ t is at most

2n
t−2n/m+2 .

However, Jafargholi and Viola [8] recently pointed out that it appears that the
family of hash functions used by Baran et al. with this lemma is not known to be
universal. They do suggest that similar hash functions studied by Dietzfelbinger
[4] might work, but do not explore the issue further. We show that this is indeed
the case; we can use the following family of hash functions:

Definition 7. Let u, m, and k positive integers be given. For a, b ∈ [km], let the
hash function ha,b : [u] → [m] be defined as ha,b(x) = ((ax+ b) mod km) div k,
where div is integer division.

Let the family of hash functions H lin
u,m,k be defined as {ha,b | a, b ∈ [km]}.

816 J.R. Wang

Theorem 7 (Dietzfelbinger ’96). If m, u, and k are all powers of 2, and
k ≥ u/2, then H lin

u,m,k is universal. In fact, it is two-wise independent, i.e.

Prh∈Hlin
u,m,k

[h(x1) = i1 ∧ h(x2) = i2] = 1/m2 for arbitrary i1, i2 ∈ [m] and

distinct x1, x2 ∈ [u].

This family of hash functions is particularly interesting with the constraint
that all sizes are powers of two, since it can be implemented with bit shift
operations, does not require a large prime, and uses relatively few operations,
all of which were noted by Dietzfelbinger [4].

With this bound on k in mind, denote H lin
u,m,�u/2� as H lin

u,m.

Baran, Demaine, and Pǎtraşcu [2] also relied the fact that the hash function
they chose was “almost-linear”. We prove a similar property for H lin

u,m. Call a
family of hash functions H that map from [u] to [m] almost-affine if for all h ∈ H
and x, y ∈ [u], h(x + y) ∈ {h(x) + h(y) − h(0) + z (mod m) | z ∈ {−1, 0, 1}}.

Lemma 2. The family of hash functions H lin
u,m is almost-affine.

Proof. The main idea is that dividing by k before addition can only influence
the result by at most 1 due to losing a carry. Suppose we have some integers a, b.
Then we can write a as ka1 + a2 and b as kb1 + b2, where a2, b2 ∈ [k]. Notice
that:

(a div k) + (b div k) = a1 + b1

=

{
((ka1 + kb1 + a2 + b2) div k) if a2 + b2 < k

((ka1 + kb1 + a2 + b2) div k) − 1 if a2 + b2 ≥ k

∈ {((a + b) div k) + z | z ∈ {−1, 0}}.

Hence, we can observe that:

h(x + y) + h(0) (mod m) = (((ax + ay + b) mod km) div k)

+ ((b mod km) div k) (mod m)

∈ {(((ax + ay + 2b) mod km) div k)

+ z (mod m) | z ∈ {−1, 0}}
h(x) + h(y) (mod m) = (((ax + b) mod km) div k)

+ ((ay + b mod km) div k) (mod m)

∈ {(((ax + ay + 2b) mod km) div k)

+ z (mod m) | z ∈ {−1, 0}}.

Hence, h(x + y) ∈ {h(x) + h(y)− h(0)} + {−1, 0, 1} (mod m), as desired. ��

Lemma 2 guarantees that if (k − 1) sets have their hash buckets fixed, any
solution that uses elements from those buckets could only have its last element

Space-Efficient Randomized Algorithms for K-SUM 817

in one of 2k − 1 buckets of the last set. Hence, hashing can be used to shrink
the problem size with some limited growth in the number of cases. It is worth
noting that this hash works best on 3-Sum, since for larger values of k, applying
the hash tends to increase the running time of the algorithm.

It can be seen that for large enough m, large buckets can be completely avoided
by simply inspecting a constant number of hashes (in expectation).

Corollary 2. Consider a universal family of hash functions
H = {h : [u] → [m]}, a set S ⊂ [u] of size n, where m ≤

√
n, and an arbitrary

constant c ≥ 1. Then:

Prh∈H

[
∀x ∈ S : |Bh(x)| ≤ (c + 2)

n

m

]
≥ 1 − 2

c2

Proof. Let t = (c + 2) n
m . Let b(h) be the number of elements x ∈ S with

|Bh(x)| ≥ t. Applying Lemma 1 yields that E[b(h)] ≤ 2n
c(n/m)+2 ≤ 2m

c . Applying

a Markov bound yields Prh[b(h) ≥ cm] ≤ 2
c2 . However, if b(h) < cm then in fact

b(h) = 0, since b(h) counts the number of elements in buckets of h with at least
(c + 2) n

m elements (m ≤ √
n implies n

m ≥ m). Hence,

Prh

[
∀x ∈ S : |Bh(x)| ≤ (c + 2)

n

m

]
≥ 1 − 2

c2
.

This completes the proof. ��

The next lemma is analogous to a result proved by Baran, Demaine, and
Pǎtraşcu [2] for 3-Sum and their hash family, but it holds for general k and our
almost-affine family. It will be used to limit the number of false positives after
hashing.

Lemma 3. Given a constant k and integers a1, a2, . . . , ak and b1, b2, . . . , bk where∑k
i=1 ai �=

∑k
i=1 bi, the probability that

∑k
i=1 h(ai) =

∑k
i=1 h(bi) after picking a

random h ∈ H lin
u,m is upper-bounded by O(1)

m .

Proof. By repeated application of Lemma 2, for all h ∈ H lin
u,m:

h(

k∑
i=1

ai) ∈
{

k∑
i=1

h(ai) − (k − 1)h(0) + z (mod m) | z ∈ {−k + 1, . . . , k − 1}
}

h(

k∑
i=1

bi) ∈
{

k∑
i=1

h(bi) − (k − 1)h(0) + z (mod m) | z ∈ {−k + 1, . . . , k − 1}
}

Suppose that
∑k

i=1 h(ai) =
∑k

i=1 h(bi). This could only occur if h
(∑k

i=1 ai

)
and h

(∑k
i=1 bi

)
are within 2k − 2 of each other.

818 J.R. Wang

However, H lin
u,m is two-wise independent by Theorem 7. There are only

m(4k−3) ways to assign the values of h
(∑k

i=1 ai

)
and h

(∑k
i=1 bi

)
because they

are within 2k− 2 of each other. This leads to an upper bound on the probability
of
∑k

i=1 h(ai) =
∑k

i=1 h(bi) of 4k−3
m . But k is constant, completing the proof. ��

4 A k-Sum Self-reduction

This section uses the hashing results to derive space-efficient randomized algo-
rithms for k-Sum. Specifically, we demonstrate how to reduce the space usage of
k-Sum algorithms using Corollary 2. These reductions are Las Vegas random-
ized. It is worth noting that without Corollary 2, the same running times could
be attained, but via Monte Carlo algorithms and the universality of H lin

u,m.
We begin by illustrating the idea with the 3-Sum problem, and then present a

theorem for general k. This family of hash functions does particularly well when
applied to 3-Sum, since it does not increase the running-time cost.

Reminder of Theorem 1. The 3-Sum problem on n numbers can be solved
by a Las Vegas algorithm in time O(n2) and space Õ(

√
n).

Proof. Algorithm 1 is the desired algorithm.

Algorithm 1. SpaceEfficient3Sum(S1, S2, S3, t)

1: Set m ←
√
n.

2: Randomly choose a hash function H lin
u,m.

3: for v ∈ [m] and i ∈ {1, 2, 3} do
4: Count the ai ∈ Si where h(ai) = v, and store the result in c.
5: if c > 5

√
n then

6: Restart the algorithm.
7: end if
8: end for
9: for sum ∈ {h(t)− 2h(0) + z (mod m) | z ∈ {−2, . . . , 2}} do
10: for v1 ∈ [m] do
11: for v2 ∈ [m] do
12: Set v3 ← sum− v1 − v2 (mod m).
13: Let S′

i = {ai ∈ Si | h(ai) = vi} for i = 1, 2, 3.
14: Run the basic 3-Sum algorithm on S′

1, S
′
2, S

′
3, t. Return any found solution.

15: end for
16: end for
17: end for
18: Report no solution.

Correctness: Since H lin
u,m is almost-affine (Lemma 2), for any solution (a1,a2,a3):

h(a1) + h(a2) + h(a3) ∈ {h(t) − 2h(0) + z (mod m) | z ∈ {−2, . . . , 2}}.

Space-Efficient Randomized Algorithms for K-SUM 819

Hence at some point vi = h(ai) for i = 1, 2, 3 and the algorithm will find this
solution. When no solutions exist, the algorithm cannot find one.

Running Time: Since m =
√
n, applying Corollary 2 with c = 3 yields that

there is at least a 7
9 chance that all buckets for a specific set Si are at most 5

√
n

elements in any bucket. By a union bound, there is at least a 1
3 chance that

all sets Si have at most 5
√
n elements in any bucket. Hence in expectation the

algorithm picks at most three hashes before it gets past the bucket size check.
Checking bucket sizes takes O(n1.5) time, since a linear scan is done for each

of
√
n values of v. There are O(n) choices for v1, v2, v3, and each iteration runs

the basic 3-Sum algorithm on instances of size O(
√
n), taking O(n) time. The

total running time is hence O(n2). Note that Baran, Demaine, Pǎtraşcu [2] could
be used for subproblems to shave off additional log factors.

Memory Usage: Since bucket sizes are guaranteed not to be too large, storing
S′
i only requires Õ(

√
n) space. Running the basic 3-Sum algorithm on instances

of O(
√
n) elements also uses Õ(

√
n) space.

This completes the proof. ��

This technique holds for general k as well as sizes other than Õ(
√
n). Theo-

rem 1 is actually an application of the following general theorem:

Reminder of Theorem 2. Let A be a Las Vegas algorithm that solves k-Sum
(k ≥ 3) on n numbers in T (n) time and S(n) space where T (n), S(n) ∈ poly(n),
and let δ ∈ [0, 1] be an arbitrary constant. Then there is a Las Vegas algorithm
A′ that solves k-Sum on n numbers in O(nk−δ(k−1) + nk−δ(k−1)−1T (nδ)) time
and O(nδ + S(nδ)) space.

The proof of this theorem is more complex and nuanced, and can be found in
Appendix A. Notice when δ = 0, we recover the brute force algorithm’s running
time and space usage. When δ = 1, we recover the input algorithm’s (given that
the input algorithm uses at least linear space).

As mentioned previously, there is a naive self-reduction that shrinks space
usage. It splits each set up into buckets of size O(nδ), and runs another algo-
rithm on each possible combination of buckets. This would result in an algorithm
that runs in Õ(nk−δkT (nδ)) time and Õ(S(nδ)) space. This naive reduction also
recovers brute-force for δ = 0 and the input algorithm for δ = 1, and in fact
interpolates the exponents of the two algorithms for values of δ in between. Our
reduction via hashing beats this naive reduction for all δ ∈ [0, 1], with equality
only at the endpoints (given that the input algorithm uses at least linear space).

5 Time-Space Tradeoffs for k-Sum

This section explores the results we get by applying Theorem 2. The following
theorem provides a family of k-Sum algorithms to use on subproblems:

Reminder of Theorem 3. There exists a Monte Carlo algorithm that solves
k-Sum on n numbers in Õ(nk−f(k)−1) time and Õ(n) space, where f(k) is the
largest integer p such that Tp+1 + 1 ≤ k.

820 J.R. Wang

The proof of Theorem 3 is in Appendix B. This theorem yields:

Reminder of Corollary 1. Let δ ∈ [0, 1] be an arbitary constant. There is
a Monte Carlo algorithm that solves k-Sum on n numbers in Õ(nk−δ(k−1) +
nk−1−δf(k)) time and Õ(nδ) space, where f(k) is the largest integer p such that
the (p + 1)-th triangular number is at most one less than k.

Proof. This follows directly from applying the reduction from Theorem 2 to the
algorithm guaranteed by Theorem 3. ��

Corollary 1 gives a tradeoff curve that consists of two linear pieces. Sup-
pose we want a k-Sum algorithm that runs in Õ(nδ) space. For the region
δ ∈ [0, 1

(k−1)−f(k)], we have an algorithm that runs in Õ(nk−δ(k−1)) time. In the

region δ ∈ [1
(k−1)−f(k) , 1], we have one that runs in Õ(nk−1−δ(f(k))) time. At the

shared point in these two intervals, the running time is Õ(nk−(k−1)/(k−1−f(k))).
We also note that f(k) has the following (coarse) lower bound:

Lemma 4. f(k) ≥
√

2k − 2

Proof. Notice that T�
√
2k−1� ≤

√
2k(

√
2k−1)
2 ≤ k. But f(k) is the largest integer

p for which Tp+1 + 1 ≤ k, so it must be at least

√

2k − 2�. ��

This immediately gives upper-bounds for Theorem 3 and Corollary 1:

Corollary 3. There exists a Monte Carlo algorithm that solves k-Sum on n

numbers in Õ(nk−
√
2k+1) time and O(n) space.

Corollary 4. Let δ ∈ [0, 1] be an arbitary constant. There is a Monte Carlo
algorithm that solves k-Sum on n numbers in Õ(nk−δ(k−1) + nk−1−δf(k)) time
and Õ(nδ) space, where f(k) is the largest integer p such that the (p + 1)-th
triangular number is at most one less than k.

6 Conclusion

Our results also extend to the k-Xor problem [8], which is identical except that
the elements are vectors from Fn

2 instead of integers. For this variant there is a
simple linear universal family of hash functions (let M be a random k×n matrix
over F2, and define hM (x) = Mx). Hence the hashing properties we need easily
hold in this case, and the same techniques work.

One open problem is whether our family of linear-space Monte Carlo algo-
rithms for k-Sum can be derandomized or be made to work for real inputs. The
Schroeppel-Shamir algorithm for 4-Sum matches the Õ running-time, so it seems
plausible that this might hold for larger values of k.

An especially interesting open problem is whether the algorithms presented by
Howgrave-Graham and Joux as well as Becker, Coron, and Joux can be moved
from random-instances to worst-case instances and randomized algorithms. Giv-
ing better worst-case bounds for SubsetSum has been an open problem for more
than 30 years.

Space-Efficient Randomized Algorithms for K-SUM 821

Acknowledgements. Many thanks to Ryan Williams for providing helpful
pointers to existing literature, insightful discussions, and proofreading.

References

1. Austrin, P., Kaski, P., Koivisto, M., Määttä, J.: Space–time tradeoffs for subset
sum: An improved worst case algorithm (2013)

2. Baran, I., Demaine, E.D., Pǎtraşcu, M.: Subquadratic algorithms for 3SUM.
In: Dehne, F., López-Ortiz, A., Sack, J.-R. (eds.) WADS 2005. LNCS, vol. 3608,
pp. 409–421. Springer, Heidelberg (2005)

3. Becker, A., Coron, J.-S., Joux, A.: Improved Generic Algorithms for Hard Knap-
sacks. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 364–385.
Springer, Heidelberg (2011)

4. Dietzfelbinger, M.: Universal hashing and k-wise independent random variables via
integer arithmetic without primes. In: Puech, C., Reischuk, R. (eds.) STACS 1996.
LNCS, vol. 1046, pp. 569–580. Springer, Heidelberg (1996)

5. Dinur, I., Dunkelman, O., Keller, N., Shamir, A.: Efficient Dissection of Compos-
ite Problems, with Applications to Cryptanalysis, Knapsacks, and Combinatorial
Search Problems. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS,
vol. 7417, pp. 719–740. Springer, Heidelberg (2012)

6. Gajentaan, A., Overmars, M.H.: On a class of O(n2) problems in computational
geometry. Comput. Geom. Theory Appl. 45(4), 140–152 (2012)

7. Howgrave-Graham, N., Joux, A.: New Generic Algorithms for Hard Knapsacks.
In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 235–256. Springer,
Heidelberg (2010)

8. Jafargholi, Z., Viola, E.: 3sum, 3xor, triangles. CoRR, abs/1305.3827 (2013)
9. Jørgensen, A.G., Pettie, S.: Threesomes, degenerates, and love triangles. CoRR,

abs/1404.0799 (2014)
10. Patrascu, M.: Towards polynomial lower bounds for dynamic problems. In: STOC,

pp. 603–610 (2010)
11. Pătraşcu, M., Williams, R.: On the possibility of faster sat algorithms. In: Pro-

ceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete Algo-
rithms, SODA 2010, pp. 1065–1075. Society for Industrial and Applied Mathemat-
ics, Philadelphia (2010)

12. Schroeppel, R., Shamir, A.: A T · S2 = O(2n) Time/Space Tradeoff for Cer-
tain NP-Complete Problems. In: Proceedings of the 20th Annual Sympo-
sium on Foundations of Computer Science, SFCS 1979, Washington, DC,
USA, pp. 328–336. IEEE Computer Society Press, Los Alamitos (1979),
http://dx.doi.org/10.1109/SFCS.1979.3, doi:10.1109/SFCS.1979.3

13. Woeginger, G.J.: Space and time complexity of exact algorithms: Some open prob-
lems. In: Downey, R.G., Fellows, M.R., Dehne, F. (eds.) IWPEC 2004. LNCS,
vol. 3162, pp. 281–290. Springer, Heidelberg (2004)

A Appendix: Proof of Theorem 2

Reminder of Theorem 2. Let A be a Las Vegas algorithm that solves k-Sum
(k ≥ 3) on n numbers in T (n) time and S(n) space where T (n), S(n) ∈ poly(n),

http://dx.doi.org/10.1109/SFCS.1979.3

822 J.R. Wang

and let δ ∈ [0, 1] be an arbitrary constant. Then there is a Las Vegas algorithm
A′ that solves k-Sum on n numbers in O(nk−δ(k−1) + nk−δ(k−1)−1T (nδ)) time
and O(nδ + S(nδ)) space.

Proof. The key idea is to use hashing to reduce the size of each set by a square
root factor at each step. However, storing any of the intermediate sets of this
computation defeats the purpose of hashing any further. To avoid this, the al-
gorithm first determines all hash functions and values to shrink each set to the
desired size, and then computes the final sets in one step.

A′ will recursively construct a list L whose elements are of the form
(h, v1, v2, . . . , vk), i.e. a hash function followed by k hash values (one for each
Si). At any step, define the active set of Si to be
S̃i = {s ∈ Si | h(s) = vi∀(h, v1, v2, . . . , vk) ∈ L}. Each element appended to L
reduces the size of all active sets, so elements can be repeatedly appended until
the active sets are only O(nδ) in size, at which point it is safe to invoke A. To
handle the possibility that δ is not a perfect power of 1

2 , define the function
s(x) := max((12)x, δ). Step i of the algorithm will reduce the size of all active

sets from O(ns(i)) to O(ns(i+1)).
The recursive helper function R will construct L and then invoke A. It has

access to all sets Si and is given a partially constructed L. Algorithm A′ simply
calls R with L = ∅.

Algorithm 2. R(L, S1, . . . , Sk)

Require: The active sets S̃1, . . . , S̃k each contain at most (k + 2)2ns(�) elements.
1: Let � ← |L|.
2: if s(�) = δ then
3: Call A(S̃1, . . . , S̃k).
4: return
5: end if
6: Set m� ← (k + 2)ns(�)−s(�+1).
7: Pick a random hash function h ∈ H lin

u,m�
.

8: for v ∈ [m�] and i ∈ {1, . . . , k} do
9: Count the ai ∈ S̃i where h(ai) = v, and store the result in c.
10: if c > (k + 2)2ns(�+1) then
11: Pick another hash and try again.
12: end if
13: end for
14: for sum ∈ {h(t)− (k − 1)h(0) + z (mod k�) | z ∈ {−k + 1, . . . , k − 1}} do
15: for v1, . . . , vk−1 ∈ [m�] do
16: Set vk ← sum−

∑k−1
i=1 vi (mod m�).

17: Let L′ be L appended with (h, v1, . . . , vk).
18: Call R(L′, S1, . . . , Sk).
19: end for
20: end for

Space-Efficient Randomized Algorithms for K-SUM 823

Correctness: We first prove the size guarantee made when calling R. A′ initially
calls R with � = 0 and sets of size n ≤ (k + 2)2ns(0). R ensures that the hash it
has chosen creates buckets that are no larger than (k + 2)2ns(�+1) in size, so it
may safely append an additional element to L before recursing.

We also want to show that if a solution exists, the algorithm will find it. Since
H lin

u,m is almost affine, a call to R where each element of the solution is active
will in turn make some recursive call where the solution elements are still active.
Since the top-level call to R is made with all elements active, all elements of a
solution will be found by the algorithm.
Running Time: Checking that the buckets of a randomly-selected hash func-
tion are not too large takes O(n1+s(�)−s(�+1)) time since the algorithm needs to
perform a linear scan for each hash value v ∈ [m�]. Applying Corollary 2 with
c = k, the chance of a hash failing over a specific Si is at most 2

k2 ; the chance of
it failing over any Si, by a union bound, is at most 2

k . Since k ≥ 3, the expected
number of hashes the algorithm needs to pick and check is at most three. Hence
our expected time checking for hashes during a single call to R, not including
recursive subcalls, is O(n1+s(�)−s(�+1)).

There is a single call where � = 0. Each recursive level of R makes
O(n(k−1)(s(�)−s(�+1))) calls to the level below it. Hence, there are O(n(k−1)(1−s(�)))
calls to R for a fixed �. The total expected time checking for hashes during all
calls with a given � is therefore O(n(k−1)(1−s(�))+(1+s(�)−s(�+1))). But notice that:

(k − 1)(1 − s(�)) + (1 + s(�) − s(� + 1)) = k − s(�)(k − 2) − s(� + 1)

≤ k − s(� + 1)(k − 1)

≤ k − δ(k − 1).

Hence, the total expected time checking for hashes during all calls with a given
� is also O(nk−δ(k−1)). Since the algorithm only searches for hash functions for
at levels up to
log2

1
δ �− 1, the total expected running time checking for hashes

overall is O(nk−δ(k−1)).
When s(�) = δ, the algorithm needs to compute all S̃i. From the previously-

derived formula, there are only O(n(k−1)(1−δ)) calls where this occurs. Comput-
ing all S̃i only requires a linear scan of each Si, so this takes time O(nk−δ(k−1)).

Finally, the algorithm invokes A O(n(k−1)(1−δ)) times on sets of size at most
(k+ 2)2nδ, so in total the algorithm uses O(n(k−1)(1−δ)T (nδ)) time making calls
to A.

The total time taken is O(nk−δ(k−1) + nk−δ(k−1)−1T (nδ)).
Memory Usage: Notice that L contains at most
log2

1
δ � elements of size (k+1)

each, so it takes O(1) space. The space needed to verify there are no large buckets
is also O(1), since the algorithm only computes a count for only a single hash
value at a time.

Invoking A on sets of size at most (k + 2)2nδ requires only O(nδ + S(nδ))
space (to store the inputs along with the space needed by A).

This completes the proof. ��

824 J.R. Wang

B Appendix: Linear Space Algorithms for k-Sum

The two factors in the space usage of the algorithm derived from applying Theo-
rem 2 are balanced when the original algorithm requires only linear space. In this
appendix, we utilize almost affine hashing to produce a family of linear-space
algorithms for k-Sum.

Theorem 8, Theorem 9, and Corollary 5 are based on results produced by
Austrin, Kaski, Koivisto, and Määttä [1]. We shift from the SubsetSum prob-
lem to the k-Sum problem and use almost affine hashing in place of carefully
chosen moduli. The switch from chosen moduli to this family of hash functions
is justified by the fact that, as mentioned before, this hashing can be done with
bit shift operations, without the availability of large primes, and with relatively
few operations. As mentioned before, if the Schroeppel-Shamir reduction from
SubsetSum to k-Sum is used on this set of algorithms, every endpoint of their
piecewise-linear time-space tradeoff curve for SubsetSum is recovered, so this
adaptation is lossless.

The technique requires that there are only a constant number of solutions to
the k-Sum instance, which can be ensured by some standard preprocessing:

Theorem 8. There is a O(n log n) time Monte Carlo algorithm to process in-
stances of k-Sum which takes as input an instance (S1, . . . , Sk, t) of size n and
outputs O(log n) k-Sum instances of the same size. If the original instance has
a solution, then at least one of the output instances will have at least one solu-
tion and at most O(1) solutions. Otherwise, none of the instances will have any
solutions.

Proof. Consider a k-Sum instance S1, . . . , Sk with target t. Without loss of gen-
erality, all sets contain only nonnegative elements (it is safe to add a positive
constant to all elements in any particular set Si and to the target t at the same
time).

Let S be the set of all solutions. The algorithm will guess that the size of
S is in the range [2s, 2s+1) for s = 0, 1, . . . , k logn (try them all, one will be
correct). Let m = 2s, and for each Si choose uniformly at random a function
fi : Si → [m]. Also, randomly choose a u ∈ [m].

For a fixed solution (a1, . . . , ak) ∈ S, there is a 1
m probability that:

k∑
i=1

fi(ai) ≡ u (mod m) (1)

Space-Efficient Randomized Algorithms for K-SUM 825

Also, any two distinct solutions both satisfy (1) with probability 1
m2 . When

s is a correct guess,

1 ≤ |S|
m < 2. Let X be a random variable denoting the number of solutions that

satisfy (1). Then:

E[X] =
|S|
m

E[X2] = E[X] +
|S|(|S| − 1)

m2
<

|S|
m

+
|S|2
m2

.

The first and second moment methods give:

Pr(X > 10) <
E[X]

10
<

1

5

Pr(X > 0) >
E[X]2

E[X2]
>

1

1 + m/|S| >
1

2
.

By a union bound, there is at least one correct solution and at most O(1)
solutions that satisfy (1) with constant probability. If a solution satisfies (1),

then in fact
∑k

i=1 fi(ai) = u + jm for some j ∈ [k] (there are at most k − 1
carries). Guess this j by iterating over all possibilities.

Let A be the largest element in any Si. For all Si, let
S′
i = {ai + (kA + 1)fi(ai) | ai ∈ Si} and let t′ = t + (kA + 1)(u + jm). Notice

that this maps invalid solutions to invalid solutions and correct solutions that
satisfy (1) to correct solutions provided that j was guessed correctly. The k-
Sum instances S′

1, . . . , S
′
k with target t′ are output, over all choices of s and j,

for k logn = O(log n) total instances.
If the original instance has a solution, then at least one guess of s is correct,

and there is a constant probabability that there will be an output instance has at
least one solution and at most O(1) solutions. Otherwise, none of the instances
will have solutions, as desired.

The algorithm takes O(n log n) time since there are logn values of s to guess
and modifying every element takes linear time.

This completes the proof. ��

We now inductively construct algorithms to solve k-Sum for increasing k,
assuming that at least one and at most O(1) solutions exist. For this proof, k
will take on values one more than a triangular number.

Theorem 9. For every integer p ≥ 0, there exists a Monte Carlo algorithm
that solves (Tp+1 + 1)-Sum on n numbers in Õ(nTp+1) time and Õ(n) space,
assuming that at least one solution and at most O(1) solutions exist.

826 J.R. Wang

Proof. It will be convenient to define a recursive function HashReduction that
takes k sets S1, . . . , Sk and a modulus m and finds up to num solutions (stopping
with fewer if not that many solutions exist) to k-Sum in the modular setting.

We wish to show that Algorithm 3 meets the desired requirements when run
with k = Tp+1 + 1, num = 1, and m large enough to avoid wrap-around (begin
with arithmetic over the integers).

Note that HashReduction makes calls to other functions, passing the images
of Si under some hash function h. It is assumed that these sets are implemented
as vectors, and that the results can be returned as indices, so that the original
elements can be recovered.

Algorithm 3. HashReduction(k, S1, . . . , Sk, t, num,m)

Require: k = Tj + 1 for some j ≥ 1.
1: if k = 2 then
2: Run the basic 2-Sum algorithm on S1 and S2, stopping at num solutions.
3: return
4: end if
5: Let m′ ← Θ(nj−1).
6: Randomly choose a hash function h ∈ H lin

m,m′ .
7: for v� ∈ [m′] do
8: Initialize an empty lookup table T .
9: Sort h(S1).
10: for a2 ∈ S2, . . . , aj ∈ Sj do
11: Do a binary search for v� −

∑j
i=2 h(ai) (mod m′) in h(S1).

12: If a solution (a1, . . . , aj) is found, store it in T as (
∑j

i=1 ai (mod m)) →
(a1, . . . , aj), but store Θ(n) entries at most.

13: end for
14: for sum ∈ {h(t)− (k − 1)h(0) + z (mod m′) | z ∈ {−k + 1, . . . , k − 1}} do
15: Set vr ← sum− v� (mod m′).
16: Call HashReduction(Tj−1 + 1, h(Sj+1), . . . , h(Sk), vr, Θ(nTj−2+1),m′).
17: For each solution (aj+1, . . . , ak), lookup t−

∑k
i=j+1 ai (mod m) in T .

18: for entry t−
∑k

i=j+1 ai (mod m) → (a1, . . . , aj) in T do
19: Record (a1, . . . , aj , aj+1, . . . , ak) as a solution.
20: if num solutions have been found then
21: return
22: end if
23: end for
24: end for
25: end for

Correctness: We begin by proving that HashReduction would run correctly
if each call actually returned all solutions, not just the requested num at each
recursive call. We will later show that it suffices to only return the requested
number of solutions.

Space-Efficient Randomized Algorithms for K-SUM 827

HashReduction divides the sets into two groups, left and right, and guesses
the sum of a solution’s hash values for each group. It relies on the almost affine-
property of H lin in order to reduce the number of cases it needs to guess.

Suppose there is a solution to the current HashReduction call, a1, . . . , ak.
If k = 2, then basic 2-Sum algorithm is called, which is a correct algorithm by
Theorem 4. Otherwise, HashReduction chooses a hash and then runs its main
for-loop.

In some iteration, v� is a correct guess for
∑j

i=1 h(ai). In this same iteration,

(
∑j

i=1 ai) → (a1, . . . , aj) will be stored in T . By Lemma 2,
∑k

i=1 h(ai) (mod m′)
must equal some value in the set
{h(t)− (k−1)h(0)+z (mod m′) | z ∈ {k−1, . . . , k−1}}. The algorithm guesses
all possible values for this sum, and then computes what vr must be to get this
sum. Since

∑k
i=1 ai = t, this solution will be correctly recorded by the algorithm

and returned.
Next, we will show that it suffices to return only the requested number of solu-

tions. Here, we will use the assumption that at most O(1) solutions exist in the top
level call. Fix some solution to the top level call, a1, a2, . . . , ak. Consider only the
recursive branch where all v� and vr are guessed correctly for this solution.

We claim that with probability arbitrarily close to 1, the value of num for
every call along this branch is large enough to have all solutions returned. Since
there are O(1) function calls in this branch (this number depends only on the
original value of k), it suffices to show this holds for any particular call.

At any recursive call, the current sets under consideration are a contiguous
group of the original sets, S�, . . . , Sr, transformed by randomly chosen hash
functions h1, h2, . . . , hs. We want to bound the probability of a false positive,
i.e. some b�, . . . , br such that bi ∈ Si and

r∑
i=�

(hs ◦ · · · ◦ h1)(ai) =

r∑
i=�

(hs ◦ · · · ◦ h1)(bi).

By Lemma 3, this probability has an upper bound of O(1)
values of hs

plus the
probability of the event:

r∑
i=�

(hs−1 ◦ · · · ◦ h1)(ai) =

r∑
i=�

(hs−1 ◦ · · · ◦ h1)(bi).

Repeating this s times gives an upper bound of
∑s

i=1
O(1)

values of hi
plus the

probability of the event that:

r∑
i=�

ai =
r∑

i=�

bi.

828 J.R. Wang

But any b�, . . . , br for which this holds can be combined with the other ai to
make a different solution to the original top-level call:
(a1, . . . , a�−1, b�, . . . , br, ar+1, . . . , ak). Hence there are only O(1) many b�, . . . , br
for which this event can occur. Ignoring these O(1) solutions, the probability

that any other b�, . . . , br is a false positive is just O(1)
values of hs

, since the number
of possible hash values drops by a factor of roughly n in each recursive call. But
the number of values of hs was chosen to be some m′ = Θ(nj−1). The algorithm
should pick m′ large enough to guarantee that non-solutions only have less than
a 1

nj−1 probability of a false positive. It is then possible to use a Markov bound
to pick a large enough value for Θ(n) and Θ(nTj−2+1) to guarantee that with
probability arbitrarily close to 1, the chosen value of num for any particular call
along this solution branch is large enough.

Hence this fixed solution will eventually be found by the top level call, and
the algorithm correctly finds some solution.
Running Time: We will inductively prove that for all p ≥ 0, HashReduction

takes Õ(nTp+1 + num) time when run with k = Tp+1 + 1.
For the base case p = 0, k = 2 and the algorithm simply runs the basic 2-Sum

algorithm. Theorem 4 guarantees it has the desired running time.
Assume that the inductive hypothesis holds for p = q. Consider when HashRe-

duction is run with k = Tq+2 + 1, j = q + 2. The algorithm chooses a hash
function (O(1) time) and then runs through m′ = O(nq+1) iterations of its main
for-loop. Finding solutions to store in T takes O(nTq+1) time in all cases, since for
all q ≥ 0, q + 1 ≤ Tq + 1. By the inductive hypothesis, calling HashReduction

with k = Tq+1 + 1 takes Õ(nTq+1) time.
Count the time taken to find and return solutions separately. Since only num

solutions are requested, this requires O(num) time. The total time for all iter-
ations is hence Õ(nTq+1+1 + num), as desired. By induction, the hypothesis is
true for all p ≥ 0.
Memory Usage: Every recursive call uses Õ(n) space for the lookup table T .
The number of recursive calls depends only on k, not n, so the total memory
usage is Õ(n), as desired. ��

Instances of the general k-Sum problem can be solved by preprocessing and
then running this algorithm.

Corollary 5. For a constant integer p ≥ 0, there exists a Monte Carlo algorithm
that solves
(Tp+1 + 1)-Sum on n numbers in Õ(nTp+1) time and Õ(n) space.

Algorithm 4. CompleteKSum(k, S1, . . . , Sk, t)

Proof. 1: Preprocess (S1, . . . , Sk, t) via the algorithm in Theorem 8.
2: for Resulting instances (S′

1, . . . , S
′
k, t

′) do
3: Run HashReduction on the instance to find a solution.
4: end for

Space-Efficient Randomized Algorithms for K-SUM 829

By Theorem 8 and Theorem 9, Algorithm 4 has the desired properties. Notice
that it has to run on O(log n) instances, but this is absorbed by the Õ notation.

��

The following lemma produces algorithms for the remaining values of k:

Lemma 5. Let A be an algorithm that solves k-Sum (k ≥ 3) on n numbers in
Õ(nd) time and Õ(n) space for some constant d. Then there is an algorithm A′

that solves (k + 1)-Sum on n numbers in Õ(nd+1) time and Õ(n) space.

Proof. The algorithm A′ is to guess one element s ∈ Sk+1 of the solution and
then to run A on S1, . . . , Sk for the remaining elements, which now need to sum
to t− s. ��

Hence, for general k, we get the following Monte Carlo algorithm for k-Sum:

Reminder of Theorem 3. There exists a Monte Carlo algorithm that solves
k-Sum on n numbers in Õ(nk−f(k)−1) time and Õ(n) space, where f(k) is the
largest integer p such that Tp+1 + 1 ≤ k.

Proof. This follows directly from Corollary 5 and Lemma 5. ��

Equivalence between Priority Queues

and Sorting in External Memory

Zhewei Wei1,2 and Ke Yi3,�

1 School of Information, Renmin University of China
wzskytop@gmail.com

2 MADALGO��, Department of Computer Science, Aarhus University, Denmark
zhewei@cs.au.dk

3 The Hong Kong University of Science and Technology, Hong Kong
yike@cse.ust.hk

Abstract. A priority queue is a fundamental data structure that main-
tains a dynamic ordered set of keys and supports the followig basic op-
erations: insertion of a key, deletion of a key, and finding the smallest
key. The complexity of the priority queue is closely related to that of
sorting: A priority queue can be used to implement a sorting algorithm
trivially. Thorup [11] proved that the converse is also true in the RAM
model. In particular, he designed a priority queue that uses the sorting
algorithm as a black box, such that the per-operation cost of the prior-
ity queue is asymptotically the same as the per-key cost of sorting. In
this paper, we prove an analogous result in the external memory model,
showing that priority queues are computationally equivalent to sorting in
external memory, under some mild assumptions. The reduction provides
a possibility for proving lower bounds for external sorting via showing a
lower bound for priority queues.

1 Introduction

The priority queue is an abstract data structure of fundamental importance. A
priority queue maintains a set of keys and supports the following operations:
insertion of a key, deletion of a key, and findmin, which returns the current min-
imum key in the priority queue. It is well known that a priority queue can be
used to implement a sorting algorithm: we simply insert all keys to be sorted
into the priority queue, and then repeatedly delete the minimum key to extract
the keys in sorted order. Thorup [11] showed that the converse is also true in the
RAM model. In particular, he showed that given a sorting algorithm that sorts
N keys in NS(N) time, there is a priority queue that uses the sorting algorithm
as a black box, and supports insertion and deletion in O(S(N)) time, and find-
min in constant time. The reduction uses linear space. The main implication of
this reduction is that we can regard the complexity of internal priority queues

� Supported by HKRGC under grant GRF-621413.
�� Center for Massive Data Algorithmics, a Center of the Danish National Research

Foundation.

A.S. Schulz and D. Wagner (Eds.): ESA 2014, LNCS 8737, pp. 830–841, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

Equivalence between Priority Queues and Sorting in External Memory 831

as settled, and just focus on establishing the complexity of sorting. Algorithmi-
cally, it also gives new priority queue constructions by using the fastest (integer)
sorting algorithms currently known: an O(N log logN) deterministic algorithm
by Han [7] and an O(N

√
log logN) randomized one by Han and Thorup [8].

In this paper, we prove an analogous result in the external memory model (the
I/O model), showing that priority queues are almost computationally equivalent
to sorting in external memory. We design a priority queue that uses the sorting
algorithm as a black box, such that the cost of an insertion or deletion (given
the key of the element to be deleted) in the priority queue is essentially the same
as the per-key I/O cost of the sorting algorithm. The priority queue always has
the current minimum key in memory so findmin can be handled without I/O
cost. Our priority queue is a non-trivial generalization of Thorup’s.

1.1 Our Results

Let us first recall the standard I/O model [1]: The machine consists of an internal
memory of size M and an infinitely large external memory. Computation can
only be carried out in internal memory. The external memory is divided into
blocks of size B, and with one I/O, a block of B keys can be together moved
from internal to external memory or vice versa. We measure the complexity of
an algorithm by counting the number of I/Os it performs, while internal memory
computation is free.

Let log() denote the nested logarithmic function, i.e., log(0) x = x and log(i) =
log(log(i−1) x). Our main result is stated in the following theorem:

Theorem 1. Suppose we can sort up to N keys in NS(N)/B I/Os in external
memory, where S is a non-decreasing function. Then there exists an external
priority queue that uses linear space and supports a sequence of N insertion and
deletion operations in O(1

B

∑
i≥0 S(B log(i) N

B)) amortized I/Os per operation.
Findmin can be supported without I/O cost. The reduction uses O(B) internal
memory and is deterministic.

The first implication of Theorem 1 is that if the main memory has size
Ω(B log(c) N

B) for any constant c, then our priority queue supports insertion
and deletion with O(S(N)/B) amortized I/O cost. This is because S(N) = 0
when N ≤ M . Even if M = O(B), the reduction is still tight as long as the
function S grows not too slowly. More precisely, we have the following corollary:

Corollary 1. For S(N) = Ω(2log
∗ N

B), the priority queue supports updates with

O(S(N)/B) amortized I/O cost; for S(N) = o(2log
∗ N

B), the priority queue sup-
ports updates with O(S(N) log∗ N

B /B) amortized I/O cost.

The first part can be verified by plugging S(N) = 2log
∗ N

B into Theorem 1 and

showing that the S(B log(i) N
B)’s decrease exponentially with i. For the second

part, we simply relax all the S(B log(i) N
B)’s to S(N). Note that 2log

∗ N
B =

o(log(c) N
B) for any constant c, so it is very unlikely that a sorting algorithm

832 Z. Wei and K. Yi

could achieve S(N) = o(2log
∗ N

B). No such algorithm is known, even in the RAM
model. Therefore, we can essentially consider our reduction to be tight.

1.2 Related Work

Sorting and priority queues have been well studied in the comparison-based I/O
model, in which the keys can only be accessed via comparisons. Aggarwal and
Vitter [1] showed that Θ(NB logM/B

N
B) I/Os are sufficient and necessary to sort

N keys in the comparison-based I/O model. This bound is often referred to as
the sorting bound. If the comparison constraint is replaced by the weaker indivis-
ibility constraint, there is an Ω(min{N

B logM/B
N
B , N}) lower bound, known as

the permuting bound. The two bounds are the same when N
B logM/B

N
B < N ; it

is conjectured that for this parameter range, Ω(NB logM/B
N
B) is still the sorting

lower bound even without the indivisibility constraint. For N
B logM/B

N
B > N ,

the current situation in the I/O model is the same as that in the RAM model,
that is, the best upper bound is just to use the best RAM algorithm (which
has O(N log logN) time deterministically or O(N

√
log logN) time randomized)

naively in external memory with one I/O only accessing one key in external
memory, completely wasting the parallelism of the block accesses. There is no
lower bound without the indivisibility assumption or when N

B logM/B
N
B > N . It

has been observed that when the block size is not too small, none of the RAM
sorting algorithms works better than the comparison-based one, which makes
the situation “cleaner”. Thus, a sorting lower bound (without any restrictions)
has been considered to be more hopeful in the I/O model (with B not too small)
than in the RAM model, and it was posed as a major open problem in [1]. Thus,
our result provides a way to approach a sorting lower bound via that of prior-
ity queues, while data structure lower bounds have been considered (relatively)
easier to obtain than (concrete) algorithm lower bounds (except in restricted
computation models), as witnessed by the many recent strong cell probe lower
bounds for data structures, such as [10,9] among many others. However, our re-
sult does not offer any new bounds for priority queues because we do not know
of a better sorting algorithm than the comparison-based ones in the I/O model.

Since a priority queue can be used to sort N keys with N insertion and N
deletemin operations, it follows that Ω(1

B logM/B
N
B) is also a lower bound for

the amortized I/O cost per operation for any external priority queue, in the
comparison-based I/O model. There are many priority queue constructions that
achieve this lower bound, such as the buffer tree [2], M/B-ary heaps [5], and array
heaps [4]. See the survey [12] for more details. However, they do not use sorting
as just a black box, and cannot be improved even if we have a faster external
sorting algorithm. Thus they do not give a priority queue-to-sorting reduction.
The extra O(logM/B

N
B) factor comes from a tree structure with fanout O(M/B)

within the priority queue construction. and a key must be moved Ω(logM/B
N
B)

times to “bubble up” or “bubble down”.
Arge et al. [3] developed a cache-oblivious priority queue that achieves the

sorting bound with the tall cache assumption, that is, M is assumed to be of

Equivalence between Priority Queues and Sorting in External Memory 833

size at least B2. We note that their structure can serve as a priority queue-
to-sorting reduction in the I/O model, by replacing the cache-oblivious sort
with a sorting black box. The resulting priority queue supports all operations in
O(1

B

∑
i≥0 S(N (2/3)i) amortized I/Os if the sorting algorithm sorts N keys in

NS(N)/B I/Os. However, this reduction is not tight for S(N) = O(log log N
B),

and there seems to be no easy way to get rid of the tall cache assumption, even
if the algorithm has the knowledge of M and B.

1.3 Reduction in Internal Memory

In this section we describe some high level ideas of Thorup’s priority queue in
internal memory, which will provide some intuition for our reduction in external
memory. Given N keys sorted in ascending order, the priority queue will divide
the keys into exponentially increasing subsets called levels. The number of levels
is Θ(logN). The minimum key is contained in the smallest level called the head.
We employ an atomic heap [6] of size Θ(logN) to accomodate insertions before
distributing them to corresponding levels. An atomic heap can support updates
and predecessor queries in sets of O(log2 N) size in constant time, so insertions
can be distributed to the corresponding levels in constant time. However, the
O(logN)-level structure implies that a key may be moved O(logN) times in
its lifetime. To overcome this, we group the keys in a level into base sets, each
of size Θ(logN). By moving the pointers to the base sets rather than the base
sets themselves, we can move Ω(logN) keys in constant time. Base sets are
rebalanced by merging and splitting whenever their sizes change by a constant
factor, which only adds O(1) to the amortized update cost. We also associate
each level with a buffer to accomodate keys before distributing them to the base
sets. Finally, the head consists of a single base set, which contains Θ(logN) keys.
We employ an atomic heap on top of it so that the minimum key can be returned
in constant time.

2 Structure

In this section, we describe the structure of our priority queue. In the next
section, we show how this structure supports various operations. Finally we
analyze the I/O costs of these operations.

Some intuitions. Before diving into technical details, we first give some intuitions
on our structure and why it works in the I/O model. We follow Thorup’s general
framework in our reduction. However, in order to achieve I/O-efficiency, there are
several challenges to be addressed. An obvious problem is how to integrate the
block size B into the structure. The choice of the parameters appears to be rather
important, as we don’t know any external structures that are as powerful as
atomic heaps, and therefore have to use a delicate recursive structure to get near
optimal performance. The second challenge is that the buffer flush and rebalance
operations of Thorup’s priority queue are not designed to be I/O-efficient. We

834 Z. Wei and K. Yi

need to come up with new schemes of maintaining and flushing the buffers in
order to achieve I/O efficiency. A third challenge concerns the different ways
of handling deletions in internal and external memory. In an internal priority
queue, each key is associated with a pointer, so given a deletion we can simply
follow the pointer to the key and perform the deletion immediately. In external
memory, however, this will incur an extra Ω(1) I/O cost for a deletion. Deletions
are usually supported in a lazy fashion in external memory: we insert a “deleting
signal” to the structure, and perform the actual deletions afterwards. However,
combining the deleting signal techniques with Thorup’s idea turns out to be a
non-trivial task; Since we do not have direct access to the base sets, we cannot
address the deleting signals when they hit the “lowest level” like buffer tree or
any other external priority queues do. As we shall see later, this introduces some
more subtle complications, and we have to carefully schedule the operations in
order to maintain the shape of the priority queue.

The priority queue consists of multiple layers whose sizes vary from N to cB,
where c is some constant to be determined later. The i’th layer from above has
size Θ(B log(i) N

B), for i ≥ 0, and the priority queue has O(log∗ N) layers. For
the sake of simplicity we will refer to a layer by its size. Thus the layers from
the largest to the smallest are layer N , layer B log N

B , . . ., layer cB. Layer cB is
also called the head, and is stored in main memory. Given a layer X , its upper
layer and lower layer are layer B2

X
B and layer B log X

B , respectively. We use ΨX

to denote B2
X
B and ΦX to denote B log X

B . The priority queue maintains the
invariant that the keys in layer ΦX are smaller than the keys in layer X . In
particular, the minimum key is always stored in the head and can be accessed
without I/O cost.

Memory buffer

Layer navigation list

Layer N

Layer B log N
B

Layer X

Layer cB (head)

Layer buffer

Level lX

Level lX − 1

level 0
Level navigation list

Level buffer of size ≤ 8jB

Base navigation list

Θ(8j) base sets of size Θ(ΦX) each

Level j

Θ(B)

BX of size
≤ ΦX/2

Layer 2cB

Fig. 1. The components of the priority queue

Equivalence between Priority Queues and Sorting in External Memory 835

We maintain a main memory buffer of size O(B) to accommodate incoming
insertion and deletion operations. In order to distribute keys in the memory
buffer to different layers I/O-efficiently, we maintain a structure called layer
navigation list. Since this structure will also be used in other components of the
priority queue, we define it in a unified way. Suppose we want to distribute the
keys in a buffer B to t sub-structures S1, S2, . . . St. The keys in different sub-
structures are sorted relative to each other, that is, the keys in Si are less or equal
to the keys in Si+1. Each sub-structure Si is associated with a buffer Bi, which
accommodates keys transferred from B. The goal is to distribute the keys in B to
each Bi I/O-efficiently, such that the keys that go to Bi have values between the
minimum keys of Si and Si+1. A navigation list stores a set of t representatives,
each representing a sub-structure. The representative of Si, denoted ri, is a
triple that stores the minimum key of Si, the number of keys stored in Bi, and
a pointer to the last non-full block of the buffer Bi. The representatives are
stored consecutively on the disk, and are sorted on the minimum keys. The layer
navigation list is built for the O(log∗ N) layers, so it has size O(log∗ N). Please
see Figure 1.

Now we will describe the structures inside a layer X except layer cB, which
is always in the main memory. First we maintain a layer buffer of size ΦX/2
to store keys flushed from the memory buffer. The main structure of layer X
consists of O(log X

ΦX
) levels with exponentially increasing sizes. The j’th level

from the bottom, denoted level j, has size Θ(8jΦX). We also keep the invariant
that the keys in level j are less or equal to the keys in level j + 1. We maintain a
level navigation list of size Θ(log X

ΦX
), which represents the log X

ΦX
levels. Most

keys in level j are stored in Θ(8j) disjoint base sets, each of size Θ(ΦX). The
base sets, from left to right, are sorted relative to each other, but they are not
internally sorted. Other than the base sets, there is a level buffer of size 8jB,
which is used to temporarily accommodate keys before distributing them to the
base set. We also maintain a base navigation list of size Θ(8j) for the base sets.
Note that we do not impose the level structures on layer cB since it can fit in the
main memory. The components of the priority queue are illustrated in Figure 1.

Let lX denote the top level of layer X . We use BX to denote the layer buffer
of layer X and Bj to denote the level buffer of level j when the layer is specified.
Our priority queue maintains the following invariants for layer X :

Invariant 1. The layer buffer BX contains at most 1
2ΦX keys; the level buffer

Bj at layer X contains at most 8jB keys.

Invariant 2. The layer buffer BX only contains keys between the minimum keys
of layer X and its upper layer. The level buffer Bj only contains keys between
the minimum keys of level j and its upper level.

Invariant 3. A base set in layer X has size between 1
2ΦX and 2ΦX ; level j of

layer X, for j = 0, 1, . . . , lX − 1, has size between 2 · 8jΦX and 6 · 8jΦX , and
level lX has size between 2 · 8lXΦX and 40 · 8lXΦX .

Invariant 4. The head contains at most 2cB keys and no delete signal.

836 Z. Wei and K. Yi

Note that when we talk about the size of a level, we only count the keys in
its base sets and exclude the level buffer. The top level has a slightly different
size range so that the construction works for any value of X .

We say a layer buffer, a level buffer, a base set, a level or the head overflows
if its size exceeds its upper bound in Invariant 1, 3 or 4; we say a base set, a
level underflows if its size gets below the lower bound in Invariant 3.

3 Operations

Recall that the priority queue supports three operations: insertion, deletion, and
findmin. Since we always maintain the minimum key in the main memory (it is
always in the head), the cost of a findmin operation is free. We process deletions
in a lazy fashion, that is, when a deletion comes we generate a delete signal
with the corresponding key and a time stamp, and insert the delete signal to the
priority queue. In most cases we treat the delete signals as normal insertions.
We only perform the actually delete in the head or during global rebuilding so
that the current minimum key is always valid. To ensure linear space usage we
perform a global rebuild after every N/8 updates.

Our priority queue is implemented by three general operations: global rebuild,
flush, and rebalance. A global rebuild operation sorts all keys and processes all
delete signals to maintain linear size. A flush operation distributes all keys in a
buffer to the buffers of corresponding sub-structures to maintain Invariant 1. A
rebalance operation moves keys between two adjacent sub-structures to maintain
Invariant 3.

3.1 Global Rebuild

We conduct the first global rebuild when the internal memory buffer is full.
Then, after each global rebuild, we set N to be the number of keys in the
priority queue, and keep it fixed until the next global rebuild. A global rebuild
is triggered whenever layer N (in fact, its top level) becomes unbalanced or the
priority queue has received N/8 new updates since the last global rebuild. We
show that it takes O(NS(N)/B) I/Os to rebuild our priority queue. We first
sort all keys in the priority queue and process the delete signals. Then we scan
through the remaining keys and divide them into base sets of size ΦN , except the
last base set which may be smaller. This base set is merged to its predecessor if
its size is less or equal to 1

2ΦN . The first base set is used to construct the lower

layers, and the rest are used to construct layer N . To rebuild the O(log N
ΦN

)

levels of layer N , we scan through the base sets, and take the next 4 · 8j base
sets to build level j, for j = 0, 1, 2, Note that the base navigation list of
these 4 · 8j base sets can be constructed when we scan through the keys in
the base sets. The level rebuild process stops when we encounter an integer lN
such that the number of remaining base sets is more than 4 · 8lN , but less or
equal to 4 · (8lN + 8lN+1) = 36 · 8lN . Then we take these base sets to form
the top level of layer N . After the global rebuild, level j has size 4jΦN , and

Equivalence between Priority Queues and Sorting in External Memory 837

the top level lN has size between (4 · 8lN − 1
2)ΦN and (36 · 8lN + 1

2)ΦN . For

X = B log N
B , B log(2) N

B , . . . , cB, layer X are constructed recursively using the
same algorithm. All buffers are left empty.

Based on the global rebuild algorithm, the priority queue maintains the fol-
lowing invariant between two global rebuilds:

Invariant 5. The top level lX in layer X is determined by the maximum lX
such that

1 +

lX∑
j=0

4 · 8j ≤ X

ΦX
.

The number of layers and the number of levels in each layer will not change
between two global rebuilds.

As a result of Invariant 5, we have the following lemma:

Lemma 1. Suppose the top level in layer X is level lX . Then lX is an integer
that satisfies the following inequality:

4 · 8lXΦX ≤ X ≤ 40 · 8lXΦX .

3.2 Flush

We define the flush operation in a unified way. Suppose we have a buffer B and
k sub-structures S1, S2, . . . , Sk. Each Si is associated with a buffer Bi, and a
navigation list L of size k is maintained for the k sub-structures. To flush the
buffer B we first sort the keys in it. Then we scan through the navigation list,
and for each representative ri in L, we read the last non-full block of Bi to the
memory, and fill it with keys in B. When the block is full, we write it back to
disk, and allocate a new block. We do so until we encounter a key that is larger
than the key in ri+1. Then we update ri, and advance to ri+1. The I/O cost for a
flush is the cost of sorting a buffer of size |B| plus one I/O for each sub-structure,
so we have the following lemma:

Lemma 2. The I/O cost for flushing keys in buffer B to k sub-structures is

bounded by O(|B|S(|B|)
B + k).

There are three individual flush operations. A memory flush distributes keys
in the internal memory buffer to O(log∗ N) layer buffers; a layer flush on layer
X distributes keys in the layer buffer to O(log X

Φ) level buffers in the layer; and
a level flush on level j at layer X distributes keys in the level buffer to Θ(8j)
base sets in the level.

3.3 Rebalance

Rebalancing the base sets. Base rebalance is performed only after a level flush,
since this is the only operation that causes a base set to be unbalanced. Consider
a level flush in level j of layer X . Suppose the base set A overflows after the flush.

838 Z. Wei and K. Yi

To rebalance A we sort and scan through the keys in it, and split it into base
sets of size ΦX . If the last base set has less than 1

2ΦX keys we merge it into its
predecessor. Note that any base set coming out of a split has between 3

2ΦX and
1
2ΦX keys, so it takes at least 1

2ΦX new updates to any of them before it initiates
a new split. Note that after the split we should update the representatives in the
base navigation list. This can be done without additional I/Os asymptotically
to the level flush operation: We store all new representatives in a temporary list
and rebuild the navigation list after all overflowed base sets are rebalanced in
level j. A base set never underflows so we do not have a join operation.

Rebalancing the levels. We define two level rebalance operations: level push and
level pull. Consider level j at layer X . When the number of keys in level j (except
the top level) gets to more than 6 · 8jΦX , a level push operation is performed to
move some of its base sets to the upper level. More precisely, we scan through the
navigation list of level j to find the first representative rk such that the number
of keys before rk is larger than 4 · 8jΦX . Then we split the navigation list of
level j around rk and attach the second half to the navigation list of level j + 1.
Note that by moving the representatives we also move their corresponding base
sets to level j + 1. By Invariant 3, the number of keys in a base set is at most
2ΦX , so the new level j has size between 4 · 8jΦX and (4 · 8j + 2)ΦX . Finally, to
maintain Invariant 2 we sort level buffer Bj and move keys larger than the rk to
the level buffer Bj+1.

Conversely, if the number of keys in level j gets below 2 ·8jΦX (except the top
level), a level pull operation is performed. We cut a proportion of the navigation
list of level j + 1 and attach it to the navigation list of level j, such that the
number of keys in level i becomes between 4 · 8jΦX and (4 · 8j − 2)ΦX . We also
sort Bj+1, the buffer of level j + 1, and move the corresponding keys to level
buffer Bj.

Observe that after a level push/pull, the number of keys in level j is between
(4 ·8j−2)ΦX and (4 ·8j +2)ΦX , so it takes at least Ω(8jΦX) new updates before
the level needs to be rebalanced again. The main reason that we adopt this level
rebalance strategy is that it does not touch all keys in the level; the rebalance
only takes place on the base navigation lists and the keys in the level buffers.

Rebalancing the layers. When the top level lX of layer X becomes unbalanced,
we can no longer rebalance it only using the navigation list. Recall that its upper
level is level 0 in layer ΨX . For simplicity we will refer to the two levels as level
lX and level 0, without specifying their layers. We also define two operations
for rebalancing a layer: layer push and layer pull. A layer push is performed
when the layer overflows, that is, the number of keys in level lX gets more than
40 · 8lXΦX . In this case we sort all keys in level lX and level 0 together, then use
the first 4 · 8lXΦX keys to rebuild level lX and the rest to rebuild level 0. Recall
that to rebuild a level we scan through the keys and divide them into base sets
of size ΦX , except the last one which has size between 1

2ΦX and 3
2ΦX , and then

we scan through the keys again to build the base navigation list. Note that the
rebuild operation will change the minimum key in layer ΨX , so we update the

Equivalence between Priority Queues and Sorting in External Memory 839

layer navigation list accordingly. Finally we sort the keys in the layer buffer BX

and the level buffer BlX , and move the keys larger than the new minimum key
of layer ΨX to the level buffer B0.

A layer pull operation is performed when the layer underflows, that is, there
are less than 2 · 8lXΦX keys in level lX . A layer pull proceeds in the same way
as a layer push does, except for the last step. Here we sort the layer buffer BΨX

and the level buffer B0 and move the keys smaller than the new minimum key
to the level buffer BlX . After a layer push or pull, the number of keys in level
lX is 4 · 8lXΦX . By lemma 1, we have 40 · 8lXΦX ≥ X , so it takes at least
2 · 8lXΦX = Ω(X) new updates to layer X before we initiate a new push or a
pull again.

Note that since we do not impose the level structure on the head layer cB,
we need to design the layer push and layer pull operations specifically for it. A
layer push is performed when the number of keys in the head gets to more than
2cB. We sort all keys in it and level 0 of layer ΨcB, and use the first cB keys
to rebuild the head and the rest to rebuild level 0. A layer pull is performed
when the head becomes empty. The operation processes in the same way as a
layer push does, except that after rebuilding both levels, we sort the layer buffer
BΨcB and the level buffer B0 together, and move the keys smaller than the new
minimum key of layer BΨcB to the head.

3.4 Scheduling Flush and Rebalance Operations

A key component in our priority queue construction is a schedule of the flush
and rebalance operations. This is mainly due to the introduction of the deleting
signals. Since we are only able to process deleting signals in the head, an update
may cause the priority queue to shrink and expand multiple times. In order
to maintain the shape of the priority queue, we need to schedule the operations
delicately. When a new update comes, we insert it to the head if it is smaller than
the maximum key in the head, and to the memory buffer if otherwise.If a delete
signal is inserted to the head we process it so that invariant 4 is maintained.
Whenever the memory buffer overflows or the head becomes empty or overflowed
we start to update the priority queue. This process is divided into three stages:
the flush stage, the push stage, and the pull stage. In the flush stage we flush
all overflowed buffers and rebalance all unbalanced base sets; in the push stage
we use push operations to rebalance all overflowed layers and levels. We treat
delete signals as insertions in the flush stage and the push stage. In the pull stage
we deal with delete signals and use pull operations to rebalance all underflowed
layers and levels.

In the flush stage, we initialize a queue Qo to keep track of all overflowed
buffers and a doubly linked list Lo to keep track of all overflowed levels. The
buffers are flushed in a BFS fashion. First we flush the memory buffer into
O(log∗ N) layer buffers. After flushing the memory buffer, we insert the repre-
sentatives of the overflowed layer buffers into Qo, from bottom to top. We also
check whether the head overflows after the memory flush. If so, we insert its
representatives to the beginning of Lo. Then we start to flush the layer buffers

840 Z. Wei and K. Yi

in Qo. Again, when flushing a layer buffer we insert the representatives of the
overflowed level buffers to Qo from bottom to top. After all layer buffers are
flushed, we begin to flush level buffers in Qo. After each level flush, we rebal-
ance all unbalanced base sets in this level, and if the level overflows we add the
representative of this level to the end of Lo. Note that the representatives in Lo

are sorted on the minimum keys of the levels.
After all overflowed level buffers are flushed, we enter the push stage and

start to rebalance levels in Lo in a bottom-up fashion. In each step, we take
out the first level in Lo (which is also the current lowest overflowed level) and
rebalance it. Suppose this level is level j of layer X . If it is not the top level or
the head layer we perform a level push; otherwise we perform a layer push. Then
we delete the representative of this level from Lo. A level push may cause the
level buffer of level j+1 to be overflowed, in which case we flush it and rebalance
the overflowed base sets. Then we check whether level j + 1 overflows. If so, we
insert the representative of level j + 1 to the head of Lo (unless it is already at
the beginning of Lo) and perform a level push on level j + 1. Otherwise we take
out a new level in Lo and continue the process. When the top level of layer N
becomes unbalanced we simply perform a global rebuild.

After rebalancing all levels, we enter the pull stage and start to process the
delete signals. This is done as follows. We first process all delete signals in the
head. If the head becomes empty we perform a layer pull to get more keys
into the head. This may cause higher levels or layers to underflow, and we keep
performing level pulls and layer pulls until all levels and layers are balanced.
Consider a level pull or layer pull on level j of layer X . After the level pull or
layer pull the level buffer Bj may overflow. If so, we flush it and rebalance the
base sets when necessary. Note that this may cause the size of level j to grow,
but it will not overflow, as we will show later, so that we do not need push
operations in the pull stage. After all levels and layers are balanced, we process
the delete signals in the head again. We repeat the pull process until there are
no delete signals left in the head and the head is non-empty.

4 Correctness and I/O Cost Analysis

We note that with inappropriate scheduling, it is possible that the pull stage
fails due to lack of keys or overflows in some levels. The following two lemmas
guarantee that in our scheduling, the pull stage will succeed.

Lemma 3. When we perform a level pull on level j, there are enough keys in
level j + 1 to rebalance level j; When we perform a layer pull on layer X, there
are enough keys in level 0 of layer ΨX to rebalance level lX .

Lemma 4. A level or a layer never overflows in the pull stage.

The following lemma states that the I/O cost for each update is very close to
S(N)/B, which directly implies Theorem 1.

Lemma 5. The amortized I/O cost per update for the priority queue is bounded

by O(1
B

∑
i=0 S(B log(i) N

B)).

Equivalence between Priority Queues and Sorting in External Memory 841

Due to space limitations, we omit the proofs of above lemmas from this ex-
tended abstract; all missing proofs can be found in the full version of the pa-
per [13].

References

1. Aggarwal, A., Vitter, J.S.: The input/output complexity of sorting and related
problems. Communications of the ACM 31(9), 1116–1127 (1988)

2. Arge, L.: The buffer tree: A technique for designing batched external data
structures. Algorithmica 37(1), 1–24 (2003)

3. Arge, L., Bender, M., Demaine, E., Holland-Minkley, B., Munro, J.: Cache-
oblivious priority queue and graph algorithm applications. In: Proc. ACM
Symposium on Theory of Computing, pp. 268–276. ACM (2002)

4. Brodal, G., Katajainen, J.: Worst-case efficient external-memory priority queues.
In: Proc. Scandinavian Workshop on Algorithms Theory, pp. 107–118 (1998)

5. Fadel, R., Jakobsen, K., Katajainen, J., Teuhola, J.: Heaps and heapsort on sec-
ondary storage. Theoretical Computer Science 220(2), 345–362 (1999)

6. Fredman, F.W., Willard, D.E.: Trans-dichotomous algorithms for minimum span-
ning trees and shortest paths. In: Proc. 31st Annu. IEEE Sympos. Found. Comput.
Sci., pp. 719–725 (1990)

7. Han, Y.: Deterministic sorting in o(n log log n) time and linear space. Journal of
Algorithms 50(1), 96–105 (2004)

8. Han, Y., Thorup, M.: Integer sorting in o(n
√
log log n) expected time and linear

space. In: Proc. IEEE Symposium on Foundations of Computer Science, pp. 135–
144. IEEE (2002)

9. Larsen, K.G.: The cell probe complexity of dynamic range counting. In: Proc. ACM
Symposium on Theory of Computing (2012)

10. Pǎtraşcu, M.: Unifying the landscape of cell-probe lower bounds. SIAM Journal
on Computing 40(3) (2011)

11. Thorup, M.: Equivalence between priority queues and sorting. Journal of the
ACM 54(6), 28 (2007)

12. Vitter, J.: External memory algorithms and data structures: Dealing with massive
data. ACM Computing Surveys 33(2), 209–271 (2001)

13. Wei, Z., Yi, K.: Equivalence between Priority Queues and Sorting in External
Memory. arXiv: 1207.4383 (2014)

Amortized Bounds for Dynamic Orthogonal

Range Reporting

Bryan T. Wilkinson�

MADALGO, Aarhus University, Aarhus, Denmark
btw@cs.au.dk

Abstract. We consider the fundamental problem of 2-D dynamic or-
thogonal range reporting for 2- and 3-sided queries in the standard word
RAM model. While many previous dynamic data structures use O(log n/
log log n) update time, we achieve faster O(log1/2+ε n) and O(log2/3+ε n)
update times for 2- and 3-sided queries, respectively. Our data struc-
tures have optimal O(log n/ log log n) query time. Only Mortensen [14]
had previously lowered the update time convincingly below O(log n),
with 3- and 4-sided data structures supporting updates in O(log5/6+ε n)
and O(log7/8+ε n) time, respectively. In practice, fast updates are often
as important as fast queries, so we make a step forward for an important
problem that has not seen any progress in recent years.

We also obtain new results for the special case of 3-sided insertion-
only emptiness, showing that the difference in complexity between fully
dynamic and partially dynamic 2-D orthogonal range reporting can be
significant (i.e., Ω(polylog n) factor differences). In particular, we achieve
O((log n log log n)2/3) update time andO((log n log log n)1/3) query time.
At the other end of our update/query trade-off curve, we achieveO(log n/
log log n) update time and O(log log n) query time. In contrast, in the
pointer machine model, there are only O(log log n) factor differences be-
tween the complexities of fully dynamic and partially dynamic 2-D or-
thogonal range reporting.

1 Introduction

We consider various special cases of 2-D dynamic orthogonal range reporting,
a fundamental problem in computational geometry. Range reporting has many
applications in, for example, databases and information retrieval, since it is often
useful to model objects with d attributes as points in Rd, where each dimension
represents an attribute. Performing an orthogonal range reporting query then
corresponds to filtering objects with inequality filters on attributes. The 2-D
orthogonal range reporting problem has been studied for over 30 years, but
optimal bounds are still not known. We give the first improved bounds since the
work of Mortensen [14] in 2006. In particular, we give data structures with faster

� Work supported in part by the Danish National Research Foundation grant DNRF84
through the Center for Massive Data Algorithmics (MADALGO) and in part by the
Natural Sciences and Engineering Research Council of Canada (NSERC).

A.S. Schulz and D. Wagner (Eds.): ESA 2014, LNCS 8737, pp. 842–856, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

Amortized Bounds for Dynamic Orthogonal Range Reporting 843

updates, maintaining optimal query times. In practice, fast updates are often as
important as fast queries, since fast updates allow the efficient maintenance of a
larger number of specialized indices, which can then support a more diverse set
of queries efficiently. We also give partially dynamic data structures with faster
query times than can be achieved by fully dynamic data structures.

Problems. The range reporting problem involves maintaining a set P of n points
from Rd so that given an online sequence of queries of the form Q ⊆ Rd, we
can efficiently compute P ∩Q. The output size, k, of a range reporting query Q
is |P ∩ Q|. The range emptiness problem requires only that the data structure
decides whether or not P∩Q is empty. In dynamic range reporting, insertions and
deletions of points to and from P may be interspersed with the online sequence
of queries. In incremental range reporting, the set P is initially empty and there
are no deletions (i.e., there are only insertions and queries). In orthogonal range
reporting, queries are restricted to the set of axis-aligned hypercubes. That is, a
query must be of the form [�1, h1]× [�2, h2]×· · ·× [�d, hd]. An s-sided query range
for d ≤ s ≤ 2d, has finite boundaries in both directions along s−d axes and only
one finite boundary along 2d− s axes. For example, the range [�, r] × (−∞, t] is
a 3-sided 2-D query range.

In the range minimum query (RMQ) problem, we maintain an array A of n
elements from R so that given an online sequence of queries of the form (i, j) ∈
[n]× [n] such that i ≤ j, we can efficiently compute min{A[k] | i ≤ k ≤ j}. That
is, we compute the minimum element in a given query subarray. RMQ can be
applied to solve the lowest common ancestor problem in trees and it is often used
in solutions to textual pattern matching problems. In the dynamic variant of this
problem, an update (i, v) ∈ [n] × R sets A[i] to v. In the decremental variant of
the problem, the update may not increase A[i]. That is, if A[i] contains u prior
to the update, then it must be that v ≤ u.

We consider 2- and 3-sided 2-D orthogonal range reporting. In particular, we
consider dynamic reporting as well as incremental emptiness. We also consider
RMQ due to its close connection to 3-sided emptiness.

Model. Our model of computation is the standard w-bit word RAM model. We
assume that our points have integer coordinates that each fit in a single word, so
P ⊆ [U]d, where w ≥ logU . Similarly, the bounds of each query range are from
[U]. We make the standard assumption that w ≥ logn so that an index into our
input array fits in a single word.

Previous Results. In the pointer machine model, the best known bounds for
dynamic orthogonal range reporting are O(n log n) space, and O(log n log logn)
update time, and O(log n log logn+k) query time. These bounds are achieved by
augmenting range trees [5] with dynamic fractional cascading [13]. The doubly
logarithmic factors can be eliminated for the partially dynamic variants of the
problem. The priority search tree [12] solves 3-sided dynamic orthogonal range
reporting optimally in the pointer machine model with only linear space, O(log n)
update time, and O(log n + k) query time.

844 B.T. Wilkinson

In the word RAM model, sublogarithmic time operations were first obtained
for 3-sided queries. Willard [15] reduces both the update time and the query
time of the priority search tree to O(log n/ log logn). Let Tu be the time for
an update operation and let Tq be the time for a query operation. Alstrup
et al. [1] give a cell probe lower bound for 2-D orthogonal range emptiness,
showing that Tq = Ω(log n/ log(Tu logn)). This lower bound implies a lower
bound of Ω(logn/ log logn) on the time per operation (i.e., max{Tu, Tq}). These
lower bounds hold even when restricted to 2-sided queries. Crucially, they hold
for the amortized bounds of fully dynamic data structures as well as for the worst-
case bounds of partially dynamic data structures, but not for the amortized
bounds of partially dynamic data structures. For some intuition, imagine an
adversary forces an extremely expensive insertion. In the fully dynamic case, it
can then undo the insertion with a deletion and repeat the expensive operation
over and over again. However, in the incremental case, the adversary cannot
repeat the operation and the rest of the insertions might require very little
work, resulting in low amortized time per insertion.

Despite mounting evidence that the true update and query times for 2-D or-
thogonal range reporting might be Θ(log n/ log logn), Mortensen [14] showed
that updates could in fact be made faster. For 3-sided queries, his data structure
supports updates in O(log5/6+ε n) time. He gives a worst-case deterministic fully

dynamic data structure for 4-sided queries that requires O(n log7/8+ε n) space,

O(log7/8+ε n) update time, and optimal O(log n/ log logn) query time. The speed
up in update time is achieved by reducing the number of bits required to specify
points and packing multiple points into a word for efficient parallel process-
ing. Importantly, Mortensen shows that update time can be reduced convinc-
ingly (i.e., by an Ω(polylogn) factor) below O(log n) while maintaining optimal
O(log n/ log logn) query time.

Our Results. We make an initial effort to determine the complexity of updates
by first considering the 2- and 3-sided special cases and allowing amortization
and randomization. All of our update and query bounds are amortized. The only
source of randomization in our data structures originates from our use of random-
ized dynamic predecessor search data structures [7]. It is possible to eliminate
all randomization from our data structures by instead using the deterministic
predecessor search data structure of Andersson and Thorup [2], at the expense of
doubly logarithmic factors. All of our data structures require only linear space.

Our results are summarized in Table 1. Note that ε > 0 is an arbitrarily small
constant and k = |P ∩ Q| is the output size of a reporting query. Each of our
reporting data structures with a query time of the form O(t(n)+k) can be easily
adapted to decide emptiness in O(t(n)) time. Also, pred is the cost of an update
or query to a linear-space dynamic predecessor search data structure containing
at most n elements from a universe of size U . These updates and queries can be
performed in O(log logU) [7] time, O(logw n) time [8], or O(

√
logn/ log logn)

time [2]. For each 3-sided emptiness result there is a corresponding RMQ result
due to the close relationship between these two problems.

Amortized Bounds for Dynamic Orthogonal Range Reporting 845

Table 1. Our results

Problem Update Time Query Time

2-sided reporting log1/2+ε n log n/ log log n+ k

2-sided reporting (log n log log n)1/2 log n+ k

3-sided reporting log2/3+ε n log n/ log log n+ k

3-sided reporting (log n log log n)2/3 log n+ k

RMQ log2/3+ε n log n/ log log n

RMQ (log n log log n)2/3 log n
2-sided incremental emptiness pred+ log log n pred+ log log n

3-sided incremental emptiness pred+(log n log log n)2/3 pred+(log n log log n)1/3

3-sided incremental emptiness pred+ log n/ log log n pred+ log log n

decremental RMQ (log n log log n)2/3 (log n log log n)1/3

decremental RMQ log n/ log log n log log n

For 2- and 3-sided reporting, we obtain data structures with optimal query
time and update times of the form O(logγ n) for γ < 1. Mortensen [14] previously
gave a 3-sided data structure with γ = 5/6 + ε. We improve the exponent to
γ = 2/3+ε for 3-sided queries and even further to γ = 1/2+ε for 2-sided queries.
It is plausible that an exponent of γ = 1/2 is optimal.

We circumvent the lower bound of Alstrup et al. [1] by considering amortized
solutions to partially dynamic problems. We give an optimal 2-sided data struc-
ture with operations that run in only O(pred + log logn) time. We finally give
3-sided incremental emptiness data structures. At one end of our update/query
trade-off curve, we obtain update and query times that are both of the form
O(logγ n) for γ < 1, showing that there can be Ω(polylogn) factor differences
between the complexities of fully dynamic and partially dynamic reporting prob-
lems. In contrast, in the pointer machine model, there are only O(log logn) factor
differences between the complexities of the fully dynamic and partially dynamic
problems. At the other end of our trade-off curve, we obtain queries that run in
only O(pred + log logn) time. These latter bounds could plausibly be optimal.

Our Approach. Mortensen [14] develops a framework which essentially uses a
high-fanout priority search tree to reduce the problem of 3-sided range reporting
to the same problem, but with fewer points, of which multiple can be packed
into a single word. Once points are packed into words, we encounter a situation
that can be modeled very closely to the external memory model. An important
divergence from the work of Mortensen [14] is that we start by explicitly design-
ing external memory data structures. This both simplifies our presentation and
allows reuse of previous external memory results. We both reuse the framework
of Mortensen [14] and extend it to consider the more special case of 2-sided
queries and incremental emptiness. In the latter case, it turns out that using a
high-fanout range tree yields better results than the high-fanout priority search
tree of Mortensen [14].

846 B.T. Wilkinson

2 Preliminaries

Dynamic and Static Axes. An axis is a set of coordinates from which points
and query ranges obtain their coordinates along some dimension. Axes may also
specify restrictions on how points are assigned coordinates. A standard axis is
an axis with coordinates from [U] that accommodates at most n points with
distinct coordinates. Our geometric problems have two standard axes.

A standard technique in static orthogonal range reporting is rank space reduc-
tion. Instead of using the full coordinates of points, we use their x- and y-ranks.
Thus, each point is specified by ranks from [n] instead of coordinates from [U].
To handle a query, we must perform a predecessor search for each side of the
query range in order to reduce the query range to rank space. In the dynamic
case, rank space reduction as such does not work since inserting a new point
might require updating the ranks of all of the other points. To encapsulate this
problem, Mortensen [14] introduces the concept of a dynamic axis. A dynamic
axis has coordinates from the set of nodes of a linked list such that one node u
is less than another node v if u occurs prior to v in the linked list. There is a
bijection between points and linked list nodes. Initially, a new point has no node,
so an update specifies its position along the axis with a pointer to its predecessor
node. A new node is inserted to the linked list after the predecessor node. Query
coordinates are specified by pointers to linked list nodes. A dynamic axis of size
u can accommodate at most u points/nodes.

It is easy to reduce a standard axis to a dynamic axis via predecessor search.
This is why some of our results include pred terms. In some cases, in choosing
pred = O(

√
logn/ log logn), the pred terms are dominated by the other terms

of the update/query times. In these cases, we have omitted the pred terms.
In solving the problem encapsulated by dynamic axes, we will end up with

some form of reduction of coordinates to a smaller set of integers (though not to
the set of ranks as in rank space reduction). A static axis of size u has coordinates
from [u] and accommodates at most u points with distinct coordinates.

3-Sided Emptiness and RMQ. For any set of points P , a 3-sided range of the
form [�, r] × (−∞, t] is empty if and only if the lowest point of P in the slab
[�, r] × (−∞,+∞) has y-coordinate less than or equal to t. Assume we have an
array A of n elements from [U]. We construct a specific set P of points such that
for each i ∈ [n], there is a point (i, A[i]) ∈ P . Then, the result of an RMQ (i, j)
on A is the y-coordinate of the lowest point of P in the slab [i, j]×(−∞,+∞). So,
both types of queries can be solved by finding the lowest point in a query vertical
slab. This is precisely how our emptiness data structures operate. Consider an
update (i, v) which sets A[i], initially containing u, to v. We update P by deleting
(i, u) and inserting (i, v). So, an RMQ update is at most twice as expensive as a
3-sided emptiness update. In the case of decremental RMQ, we are guaranteed
that v ≤ u. Assuming we have a 3-sided incremental emptiness data structure
that can handle multiple points with the same x-coordinate, it is sufficient to
update P by only inserting (i, v) without first deleting (i, u). It is easy to modify
our incremental emptiness data structures to handle multiple points with the

Amortized Bounds for Dynamic Orthogonal Range Reporting 847

same x-coordinate by, in this case, implicitly deleting (i, u). Thus, (decremental)
RMQ can thus be solved by a 3-sided (incremental) emptiness data structure
with a static x-axis of size n and a standard y-axis. In order to reduce the
standard y-axis to a dynamic axis, we require predecessor search along the y-
axis only for updates, since an RMQ is specified with only two x-coordinates
and no y-coordinates.

Notation. We borrow and extend the notation of Mortensen [14] to specify var-
ious different 2-D range reporting problems. A dynamic problem is specified by
T s(tx : ux, ty : uy) where T ∈ {R,RI,E,EI}; d ≤ s ≤ 2d; tx, ty ∈ {d, s}; and
1 ≤ ux, uy ≤ n. Depending on T , the problem is either s-sided dynamic report-
ing (R), s-sided incremental reporting (RI), s-sided dynamic emptiness (E), or
s-sided incremental emptiness (EI). For each axis a ∈ {x, y}, depending on ta,
the axis is either dynamic (d) or static (s). The axis has size ua. We assume
without loss of generality that 2-sided queries are of the form (−∞, r]× (−∞, t]
and 3-sided queries are of the form [�, r] × (−∞, t].

We say a data structure has performance (Update : Tu,Query : Tq, Space : S)
if it requires O(Tu) update time, O(Tq) query time (or O(Tq + k) query time for
reporting problems), and O(S) words of space. We originally defined n as |P |,
but we redefine it now to an upper bound on |P | that we know in advance and for
which we have the guarantee that w ≥ log n. We give the performances of data
structures as functions of the sizes of their axes rather than of |P |. Our final data
structures have axes of size n. We can eliminate the requirement of knowing n in
advance and simultaneously ensure that performance is a function of |P | rather
than n by initially building a data structure with axes of constant size, rebuilding
the data structure with axes twice as large whenever the data structure fills up,
and rebuilding the data structure with axes half as large whenever the data
structure is only a quarter full (except when the axes are already at their initial
constant size).

When considering external memory data structures, we denote the input size
by N and the output size by K, in keeping with the conventions of the external
memory literature. A block can hold B elements and internal memory can hold
M elements. In the external memory setting, we say a data structure has per-
formance (Update : Tu,Query : Tq, Space : S) if it requires O(Tu) I/Os for an
update, O(Tq) I/Os for a query (or O(Tq + K/B) I/Os for a reporting query),
and O(S) blocks of space.

3 Data Structures

3.1 Dynamic Reporting

An important technique we will apply involves performing some form of reduc-
tion of the coordinates of small sets of u ≤ n points in such a way that we can
describe each point using only O(log u) bits. Thus, since w ≥ logn, we can pack
O(log n/ logu) of these points into a single word. Using standard word opera-
tions and table lookups, we can then operate on multiple points at unit cost.

848 B.T. Wilkinson

A similar situation arises in the external memory model: multiple points fit in
a block and we can operate on all of the points in all of the blocks in internal
memory at no cost. In fact, it is possible to simulate external memory algorithms
to solve problems on packed words. For this reason, we begin with the design
of an external memory reporting data structure, which we intend to simulate in
the word RAM.

Lemma 1. For any f ∈ [2, B], there exists an external memory data structure
for R3(s : N, s : N) with performance (Update : (f/B) logf N,Query : logf N +
(f/B)K, Space : N/B).

Proof. The data structure is a modified I/O tournament tree (I/O-TT) [11].
The I/O-TT is an I/O-efficient priority queue data structure, but we adapt it
to answer 3-sided range reporting queries. The I/O-TT stores elements, each of
which consists of a key and a priority. We map a point to an element so that
the point’s x-coordinate is the element’s key and the point’s y-coordinate is the
element’s priority.

The I/O-TT is a static binary tree on x-coordinates where each node is as-
sociated with a set of at most B points and an update buffer of size B1. The
sets of points are in heap order by y-coordinate and a non-root node may only
contain points if its parent is full. Updates are initially sent to the root node. An
update is inserted into a node’s update buffer if it cannot be resolved in the node
directly. When a node’s update buffer is filled, the updates are flushed down to
the node’s children (by x-coordinate) in O(1/B) amortized I/Os per update.
The total cost of an update is thus O((1/B)h) I/Os, where h is the height of
the I/O-TT. A query to the I/O-TT involves finding the point with minimum
y-coordinate. This point is in the root and can thus be found in O(1) I/Os. The
I/O-TT requires O(N/B) blocks of space.

Our first modification is to use the I/O priority search tree [3] query algorithm
to handle 3-sided reporting queries instead of priority queue queries. Ignoring
the update buffers, the I/O-TT is essentially an I/O priority search tree with
fanout of 2 instead of B. The query algorithm of the I/O priority search tree
performs O(1) I/Os in O(h + K/B) nodes. However, this query algorithm is
only correct if the updates in the buffers of all of these nodes, as well as all of
their ancestors, have been flushed. We flush these O(h + K/B) buffers as the
query algorithm proceeds. These flushing operations may cascade to descendant
nodes, but all I/Os performed while cascading are charged to update operations.
Therefore, there are only O(h + K/B) additional I/Os that cannot be charged
to update operations.

Our second modification is to increase the fanout of the I/O-TT to f . To
ensure that we can still flush updates from a node to its children efficiently, we
must reduce the sizes of the sets of points and update buffers to B/f . In this
way, we can store these sets for all of a node’s children in O(1) blocks and thus
flush an update buffer in O(f/B) amortized I/Os per update. As a side-effect,

1 In the original description of the I/O-TT these sets have size M instead of B, but it
is easy to see that such large sets are not necessary to achieve the desired bounds.

Amortized Bounds for Dynamic Orthogonal Range Reporting 849

the I/O priority search tree query algorithm then visits O(h + (f/B)K) nodes.
Since the height of the I/O-TT is now O(logf N), we are done. ��

Let m ≥ 2 be the smallest constant such that any of our external memory
data structures can operate with M = mB. Let δ > 0 be a sufficiently small
constant to be determined later.

Lemma 2. For any u ∈ [nδ/2m] and f ∈ [2, (δ/2m) logn/ logu], there exists a
data structure for R3(s : u, s : u) with performance (Update : 1 + f log2 u/ logn,
Query : logf u, Space : u).

Proof. We simulate the data structure of Lemma 1 in the word RAM. Since
an element (a point or block pointer) requires at most 2 logN bits, if N =
u, we can store (δ/2) logn/ log u elements in δ logn bits in a single word. We
designate a single word to act as our simulated main memory containing up to
M = (δ/2) logn/ logu elements. The rest of our actual main memory acts as our
simulated external memory: it is divided into blocks of B = (δ/2m) logn/ logu
elements such that M = mB. Since u ≤ nδ/2m, each block can hold at least
one element. A constant number of standard word operations can transfer a
simulated block into or out of our simulated main memory.

The update and query algorithms of Lemma 1 may perform arbitrary manip-
ulations of the elements in main memory between I/Os. Since the algorithms are
finite and do not depend on the input size, there are only a constant number
of different manipulations of the elements in main memory. Since our simulated
main memory can be described in exactly δ logn bits, we use a global lookup
table containing nδ entries of δ log n bits to support constant-time simulations of
each of these manipulations. Since our final data structures reuse these lookup
tables for many instances of our intermediate data structures (such as this one),
we do not include the space for global lookup tables in the space bounds for our
intermediate data structures. The lookup tables can be built in time polynomial
in their number of entries. We set δ sufficiently small so that they can be built
in O(n) time. Whenever we rebuild our final data structures to handle constant
factor changes in n, we can also afford to rebuild our global lookup tables.

Substituting N = u and B = (δ/2m) logn/ logu into Lemma 1 (and convert-
ing from space consumption in blocks to space consumption in words) gives the
desired bounds. We also need to add a constant term to the running times of the
update and query algorithms, since they may read from and write to simulated
main memory a constant number of times without performing any simulated
I/Os. In the external memory model, these reads and writes to main memory
are free, but they are not free in our simulation. Also, since we need to report
each output point individually, the (f/B)K term in the query time simply be-
comes k. ��

We now extract and slightly generalize two techniques from the framework
of Mortensen [14] and encapsulate them in the following two lemmata. The
first technique involves converting a data structure with a static axis to a data
structure with a dynamic axis. It can also be used as a space reduction technique.

850 B.T. Wilkinson

Lemma 3 (Lemma 24 of Mortensen [14]). Given a data structure for T s

(tx : u, ty : u) for u ∈ [n] with performance (Update : Tu,Query : Tq, Space : u
polylog u) where ta = s, for some a ∈ {x, y}, and queries have only one finite
boundary along the other axis, then there exists a data structure for the same
problem with ta = d and performance (Update : log log u+Tu,Query : log log u+
Tq, Space : u).

The second technique involves converting a data structure that can only han-
dle u ≤ n points to a data structure that handles n points. This is achieved
using a u-ary priority search tree.

Lemma 4 (Lemma 23 of Mortensen [14]). Given a data structure for T s(s :
u, d : u) for u ∈ [n] with performance (Update : Tu,Query : Tq, Space : u) where
queries have only one finite boundary along the y-axis, then there exists a data
structure for T s(s : n, d : n) with performance (Update : (log n/ logu)(log logn+
Tu),Query : (log n/ logu)(log logn + Tq), Space : n).

We note that R2(s : u, s : u) is a special case of R3(s : u, s : u), so the data
structure of Lemma 2 also solves R2(s : u, s : u). Since 2-sided queries have
only one finite boundary along the x-axis, we can apply Lemma 3 to the data
structure of Lemma 2 in order to obtain a dynamic y-axis, which then allows

us to apply Lemma 4 (with u = 2(δ/2m)((1/f) logn log logn)1/2) to handle n points.
Finally, another application of Lemma 3 converts the still static x-axis into a
dynamic axis and we obtain the following theorem.

Theorem 1. For any f ∈ [2, logn/ log logn], there exists a data structure for
R2(d : n, d : n) with performance (Update : (f logn log log n)1/2,Query : (f logn
log logn)1/2 + logf n, Space : n).

We obtain the 2-sided reporting data structures of Table 1 by setting f =

logε
′
n for some positive constant ε′ < 2ε, or alternatively setting f = 2. All of

the techniques we have seen so far carry through for both 2- and 3-sided queries,
except for the first application of Lemma 3. Therefore, in order to obtain results
for 3-sided queries we only need some way to support a dynamic y-axis for 3-sided
queries.

We proceed by designing an external memory data structure for online list
labelling which we will use to augment our original external memory data struc-
ture with a dynamic y-axis. In the online list labelling problem, we maintain an
assignment of labels from some universe of totally ordered labels to linked list
nodes so that the labels are monotonically increasing along the list. Assume the
linked list has at most n nodes. For a universe of size O(n), an insertion or dele-
tion requires that Θ(log2 n) worst-case nodes are relabelled [4]. However, for a
universe of size O(n2), an insertion or deletion can be limited to relabelling only
O(log n) amortized nodes (this is a folklore modification of [10]). In the external
memory setting, we consider a linked list to be a linked list of blocks, where
each block contains an ordered array of elements with unique ids. A pointer to
a specific element is then its id along with a pointer to its containing block.

Amortized Bounds for Dynamic Orthogonal Range Reporting 851

An insertion is specified by the element to be inserted and a pointer to its in-
tended predecessor. A deletion is specified by a pointer to the element to be
deleted. A relabelling consists of a triple (i, �, �′), where i is the id of the element
being relabelled, � is its old label, and �′ is its new label.

Lemma 5. There exists an external memory data structure for online list la-
belling of up to N elements with labels from a universe of size O(N2) that,
upon each update, reports O(logN) amortized relabellings in O(1 + (1/B) logN)
amortized I/Os.

Proof. See Appendix A.

Lemma 6. For any f ∈ [2, B], there exists an external memory data struc-
ture for R3(s : N, d : N) with performance (Update : 1 + (f/B) logf N logN,
Query : logf N + (f/B)K, Space : N/B).

Proof. We maintain the online list labelling data structure of Lemma 5 on the
y-axis list of our data structure of type R3(s : N, d : N), using x-coordinates as
the unique ids. We build the data structure D of Lemma 1 on an asymmetric
N ×N ′ grid, where N ′ = O(N2), instead of an N ×N grid. The bounds of the
data structure increase by only constant factors, but we obtain the requirement
that points must be a constant factor larger to store the larger y-coordinates.
Queries and updates to our data structure include y-axis pointers, which we
convert to y-coordinates in [N ′] in constant I/Os using the online list labelling
data structure. We then forward the operations on to D, including the given
x-coordinates and our computed y-coordinates. Upon an update, the online list
labelling data structure reports O(logN) relabellings in O(1+(1/B) logN) I/Os.
In a scan through the relabellings, we convert each relabelling of the form (i, �, �′)
to a deletion of (i, �) from D and an insertion of (i, �′) to D. So, our update time
increases by an O(logN) factor. ��

We can now simulate the data structure of Lemma 6 similarly to the simulation
of Lemma 2.

Lemma 7. For any u ∈ [nδ/O(m)] and f ∈ [2, (δ/O(m)) log n/ logu], there exists
a data structure for R3(s : u, d : u) with performance (Update : 1+f log3 u/ logn,
Query : logf u, Space : u).

Proof. See Appendix B.

Applications of Lemmata 4 and 3 to the data structure of Lemma 7 with

u = 2(δ/O(m))((1/f) logn log logn)1/3 yield the following theorem.

Theorem 2. For any f ∈ [2, logn/ log logn], there exists a data structure for
R3(d : n, d : n) with performance (Update : f1/3(logn log logn)2/3,Query : f1/3

(logn log logn)2/3 + logf n, Space : n).

We obtain the 3-sided reporting and RMQ data structures of Table 1 by

setting f = logε′ n for some positive constant ε′ < 3ε, or alternatively setting
f = 2.

852 B.T. Wilkinson

3.2 Incremental Emptiness

We will require a data structure of Mortensen [14] that solves a problem called
colored predecessor search in a linked list L with colored nodes. The data struc-
ture supports the following operations:

– insert(u, v, c): inserts node u with color c after node v
– delete(u): deletes node u
– change(u, c): changes the color of u to c
– predecessor(u, c): returns the last node of color c that is not after u

Lemma 8 (Theorem 15 of Mortensen [14]). There exists a linear-space
data structure for colored predecessor search in a linked list L that supports all
operations in O(log log |L|) time.

We begin with an efficient data structure for 2-sided incremental emptiness.

Theorem 3. There exists a data structure for E2
I (d : n, d : n) with performance

(Update : log logn,Query : log logn, Space : n).

Proof. Without loss of generality, we handle 2-sided queries of the form (−∞, r]×
(−∞, t]. It is sufficient to find the lowest point in the query range and compare
its y-coordinate to t. Since y-coordinates are linked list nodes, we require the
list order data structure of Dietz and Sleator [6] to compare them. The lowest
point with x-coordinate at most r is the minimal point whose x-coordinate is the
predecessor of r. A point p = (px, py) ∈ P is minimal if and only if there does not
exist another point (p′x, p

′
y) ∈ P \{p} such that p′x < px and p′y < py. We maintain

the colored predecessor search data structure of Lemma 8 on the x-axis list. We
color nodes associated with minimal points one color and all other nodes another
color. We can thus find the minimal point whose x-coordinate is the predecessor
of r in O(log logn) time. A newly inserted point may be a minimal point, which
can result in many, say k, previously minimal points becoming non-minimal.
For each of these k points we must execute a color change operation, which
requires O(k log logn) time. However, in the incremental setting, a point p can
only transition from minimal to non-minimal at most once, so we can charge the
O(log logn) cost of the color change of p to the insertion of p. ��

Given that 2-sided incremental emptiness queries can be supported very effi-
ciently, we can use an alternative to Lemma 4 to handle n points given a data
structure for only u ≤ n points: a u-ary range tree instead of a u-ary priority
search tree. The range tree requires superlinear space; however, we can reduce
space to linear once again with an application of Lemma 3.

Lemma 9. For any u ∈ [nδ/O(m)] and f ∈ [2, (δ/O(m)) log n/ logu], there exists
a data structure for E3

I (s : n, d : n) with performance (Update : (log n/ logu)
(log logn + f log3 u/ logn),Query : log logn + logf u, Space : n logn/ logu)

Proof. See Appendix C.

Amortized Bounds for Dynamic Orthogonal Range Reporting 853

An application of Lemma 3 to the data structure of Lemma 9 yields the
following theorem.

Theorem 4. For any u ∈ [nδ/O(m)] and f ∈ [2, (δ/O(m)) log n/ logu], there ex-
ists a data structure for E3

I (d : n, d : n) with performance (Update : (log n/ logu)
(log logn + f log3 u/ logn),Query : log logn + logf u, Space : n).

We obtain the 3-sided incremental emptiness and decremental RMQ data

structures of Table 1 by setting u = 2(logn log logn)1/3 and f = 2, or alternatively

setting u = 2(log log n)2 and f = logε′ n for a sufficiently small ε′ > 0.

References

1. Alstrup, S., Husfeldt, T., Rauhe, T.: Marked ancestor problems. In: Proceedings
of the Annual IEEE Symposium on Foundations of Computer Science (FOCS),
pp. 534–544 (1998)

2. Andersson, A., Thorup, M.: Dynamic ordered sets with exponential search trees.
Journal of the ACM (JACM) 54(3) (2007)

3. Arge, L., Samoladas, V., Vitter, J.S.: On two-dimensional indexability and optimal
range search indexing. In: Proceedings of the ACM Symposium on Principles of
Database Systems (PODS), pp. 346–357 (1999)

4. Bender, M.A., Cole, R., Demaine, E.D., Farach-Colton, M., Zito, J.: Two simplified
algorithms for maintaining order in a list. In: Möhring, R.H., Raman, R. (eds.) ESA
2002. LNCS, vol. 2461, pp. 152–164. Springer, Heidelberg (2002)

5. Bentley, J.L.: Multidimensional divide-and-conquer. Communications of the ACM
(CACM) 23(4), 214–229 (1980)

6. Dietz, P.F., Sleator, D.D.: Two algorithms for maintaining order in a list. In: Pro-
ceedings of the ACM Symposium on Theory of Computing (STOC), pp. 365–372
(1987)

7. van Emde Boas, P.: Preserving order in a forest in less than logarithmic time and
linear space. Information Processing Letters (IPL) 6(3), 80–82 (1977)

8. Fredman, M.L., Willard, D.E.: Blasting through the information theoretic barrier
with fusion trees. In: Proceedings of the ACM Symposium on Theory of Computing
(STOC), pp. 1–7 (1990)

9. Harel, D., Tarjan, R.E.: Fast algorithms for finding nearest common ancestors.
SIAM Journal of Computing 13(2), 338–355 (1984)

10. Itai, A., Konheim, A.G., Rodeh, M.: A sparse table implementation of priority
queues. In: Even, S., Kariv, O. (eds.) ICALP 1981. LNCS, vol. 115, pp. 417–431.
Springer, Heidelberg (1981)

11. Kumar, V., Schwabe, E.J.: Improved algorithms and data structures for solving
graph problems in external memory. In: Proceedings of the Annual IEEE Sympo-
sium on Parallel and Distributed Processing (SPDP), pp. 169–176 (1996)

12. McCreight, E.M.: Priority search trees. SIAM Journal of Computing 14(2), 257–276
(1985)

13. Mehlhorn, K., Näher, S.: Dynamic fractional cascading. Algorithmica 5(2), 215–241
(1990)

14. Mortensen, C.W.: Fully dynamic orthogonal range reporting on RAM. SIAM
Journal of Computing 35(6), 1494–1525 (2006)

15. Willard, D.E.: Examining computational geometry, van Emde Boas trees, and hash-
ing from the perspective of the fusion tree. SIAM Journal of Computing 29(3),
1030–1049 (2000)

854 B.T. Wilkinson

A Proof of Lemma 5

Lemma. There exists an external memory data structure for online list labelling
of up to N elements with labels from a universe of size O(N2) that, upon each
update, reports O(logN) amortized relabellings in O(1 + (1/B) logN) amortized
I/Os.

Upon an insertion or deletion, we load the target block in a single I/O and
add or remove the element. We maintain block sizes of Θ(B) elements (except
when there are too few elements to fill a single block) by splitting and merging
adjacent blocks whenever they become a constant factor too large or too small.
Each split or merge can be charged to Ω(B) updates. Each split or merge causes
an insertion to or a deletion from the linked list of blocks. We maintain an online
list labelling data structure for a polynomially large universe [10] to assign the
O(N/B) blocks labels from a universe of size O((N/B)2) with O(log(N/B))
amortized relabellings per update. If an element has rank r in the block with
label �, then its label is B�+ r− 1, which is bounded by O(N2). For each block
relabelled, we can report all of the relabellings for all of its elements in O(1)
I/Os.

B Proof of Lemma 7

Lemma. For any u ∈ [nδ/O(m)] and f ∈ [2, (δ/O(m)) log n/ logu], there exists a
data structure for R3(s : u, d : u) with performance (Update : 1 + f log3 u/ logn,
Query : logf u, Space : u).

We simulate the data structure of Lemma 6 as in Lemma 2, except that
elements now require a constant factor more bits due to the polynomially large
universe used by the online list labelling data structure. In internal memory,
the y-axis list is a standard linked list. To support conversions from pointers
to y-axis list nodes to simulated external memory pointers, we store in each
y-axis list node the external memory element’s unique id (x-coordinate) and a
pointer to the simulated block containing the element. Whenever there is a split
or a merge, we must update O(B) pointers from the y-axis list to simulated
blocks. These updates can be charged to the Ω(B) updates that are required
to cause a split or a merge. When a point is reported by the simulated data
structure, its x-coordinate is included. To obtain the associated y-axis list node,
we simply maintain (in O(1) time per update) an array of size u containing, for
each x-coordinate, the associated y-axis list node.

C Proof of Lemma 9

Lemma. For any u ∈ [nδ/O(m)] and f ∈ [2, (δ/O(m)) log n/ logu], there exists
a data structure for E3

I (s : n, d : n) with performance (Update : (log n/ logu)
(log logn + f log3 u/ logn),Query : log logn + logf u, Space : n logn/ logu)

Amortized Bounds for Dynamic Orthogonal Range Reporting 855

We first consider a problem called subsequence predecessor search in which we
maintain a primary linked list L and a set of secondary linked lists S. For the
purposes of this problem, let n = |L| +

∑
S∈S |S| be the total size of all lists.

Each node u in a secondary list S ∈ S is associated with a primary node p(u),
such that mapping S with function p yields a subsequence of L. For any primary
node v, there may be multiple nodes u from different secondary lists for which
p(u) = v. We require the following operations:

– insertp(u, v): inserts primary node u after v in L
– deletep(u): deletes primary node u from L (only if there is no secondary node

v with p(v) = u)

– inserts(u, S): inserts a new secondary node v with p(v) = u to secondary list
S (preserving the subsequence ordering of S)

– deletes(u): deletes secondary node u from its secondary list

– predecessor(u, S): returns the last secondary node v in secondary list S such
that p(v) is not after primary node u in L

– secondaries(u): returns all secondary nodes v such that p(v) = u for primary
node u

– primary(u): returns p(u) for secondary node u

Lemma 10. There exists a data structure for subsequence predecessor search
that requires O(n) space, O(log logn) time for updates and predecessor queries,
O(1 + k) time to report the k secondary nodes associated with a primary node,
and O(1) time to find the primary node associated with a secondary node.

Proof. We construct an aggregate doubly linked list A containing, for each pri-
mary node u in order, pointers to all secondary nodes v such that p(v) = u
followed by a pointer to u. We also store pointers from primary and secondary
nodes to their corresponding aggregate nodes. We color each node of A with the
list of the node to which it stores a pointer. For each aggregate node pointing to
a secondary node u, we also store an extra pointer to p(u) which does not affect
the aggregate node’s color. We build the colored predecessor search data struc-
ture of Lemma 8 on A, which has size n. We can then support a subsequence
predecessor query in secondary list S with a colored predecessor query in A with
color S. Reporting the secondary nodes of a primary node requires a walk in
A. Reporting p(u) for secondary node u requires following two pointers. It is
a simple exercise to verify that all of the update operations can be supported
using a constant number of colored predecessor search operations and a constant
amount of pointer rewiring. ��

We build a static u-ary range tree on x-coordinates. In each internal node
of the range tree, we build 2 auxiliary data structures on the points stored in
the node. Each of these data structures has its own y-axis list corresponding
to a subsequence of the original y-axis list. The total size of all y-axis lists is
O(nh), where h is the height of the range tree. We build the subsequence pre-
decessor search data structure of Lemma 10 using the original y-axis list as

856 B.T. Wilkinson

the primary list and all other y-axis lists as secondary lists. This data struc-
ture requires O(nh) space. Now, given a query or update, we can translate it in
O(log log(nh)) = O(log logn) time into the coordinate space of a specific aux-
iliary data structure. Also, we can convert a point in the coordinate space of a
specific auxiliary data structure to our original coordinate space in O(1) time.

One of our auxiliary data structures is that of Theorem 3, which handles 2-
sided ranges of the form (−∞, r] × (−∞, t] and [�,∞) × (−∞, t]. The other is a
data structure which handles 3-sided ranges that are aligned to the boundaries
of the x-ranges of the node’s children. We call these aligned queries. This data
structure for aligned queries is the data structure of Lemma 7 built on the lowest
points in each of the node’s chidren. An aligned query is empty if and only if it
contains none of the lowest points in each of the node’s children. Since a node
has u children, the axes of our data structure for aligned queries have size u. All
of these auxiliary data structures require a total of O(nh) space.

Given an insertion of a point p, we insert p into the 2-sided data structures of
all O(h) nodes of the range tree to which p belongs at a cost of O(h log logn).
If p becomes the lowest point in the child of some node u, we must delete the
old lowest point from the data structure of Lemma 7 in u and insert p. This
introduces another term of O(hf log3 u/ logn) to our update time.

Given a query of the form [�, r]×(−∞, t], we find the lowest common ancestor
(LCA) in the range tree of the leaf corresponding to x-coordinate � and the leaf
corresponding to x-coordinate r. Using a linear-space data structure, this LCA
operation requires only O(1) time [9]. In the resulting node u, we can decompose
the query into an aligned query and two 2-sided queries in children of u. Our
range is empty if and only if all 3 of these subranges are empty. The 3 emptiness
queries to the auxiliary data structures require O(log logn + logf u) time. Since
the height of the range tree is O(logu n) = O(log n/ logu), we are done.

Author Index

Abboud, Amir 1
Abed, Fidaa 13
Acar, Umut A. 25
Agarwal, Pankaj K. 37
Agarwal, Rachit 49
Alewijnse, Sander P.A. 61
Attali, Dominique 74

Bekos, Michael A. 87
Ben-Avraham, Rinat 100
Bender, Michael A. 112
Bhattacharyya, Arnab 125
Bilò, Davide 137
Björklund, Andreas 149
Bläsius, Thomas 161
Bliznets, Ivan 173
Boissonnat, Jean-Daniel 185
Bouts, Quirijn W. 61
Bringmann, Karl 197
Brink, Alex P. ten 61
Brückner, Guido 161
Buchbinder, Niv 209

Chakaravarthy, Venkatesan T. 222
Chalermsook, Parinya 235
Chan, Timothy M. 247
Charguéraud, Arthur 25
Charikar, Moses 260
Chen, Jianer 642
Chen, Shahar 209
Cheng, Siu-Wing 272
Correa, José R. 13

Darwish, Omar 284
Davoodi, Pooya 296
Dean, Brian C. 309
Delling, Daniel 321
Desai, Amey 467
Devillers, Olivier 74
de Wolf, Ronald 592
Dijk, Thomas C. van 87
Dvořák, Zdeněk 334, 346

Efentakis, Alexandros 358
Efthymiou, Charilaos 371

Elmasry, Amr 284
Ene, Alina 382
Even, Guy 394

Farach-Colton, Mart́ın 112
Farruggia, Andrea 406
Ferragina, Paolo 406
Ferreira, Rui 418
Fineman, Jeremy T. 296
Fink, Martin 87
Fiorini, Samuel 430
Fomin, Fedor V. 173, 443
Friedrich, Tobias 197

Gawrychowski, Pawe�l 455
Ghashami, Mina 467
Gibson, Matt 480
Glisse, Marc 74
Goldberg, Andrew V. 321
Golovach, Petr A. 492
Goswami, Mayank 112
Grohe, Martin 505
Grossi, Roberto 418
Gualà, Luciano 137
Gupta, Anupam 517
Gupta, Shalmoli 222
Gutin, Gregory 530

Har-Peled, Sariel 37, 542
He, Meng 247
Hell, Pavol 554
Henze, Matthias 100
Henzinger, Monika 260
Heydrich, Sandy 235
Hoffmann, Michael 566
Holm, Eugenia 235
Huang, Chien-Chung 13

Iacono, John 296

Jalasutram, Rommel 309
Jansen, Bart M.P. 579
Jaume, Rafel 100
Jeffery, Stacey 592
Jones, Mark 530

858 Author Index

Kamiński, Marcin 492
Karrenbauer, Andreas 235
Kaski, Petteri 149
Kersting, Kristian 505
Keszegh, Balázs 100
Kindermann, Philipp 87
Kobourov, Stephen 87
Kociumaka, Tomasz 605
Kowalik, �Lukasz 149
Krithika, R. 430
Krohmer, Anton 197
Kupec, Martin 334
Kusters, Vincent 566

Larkin, Daniel H. 618
Lazard, Sylvain 74
Leucci, Stefano 137
Lewenstein, Moshe 455, 630
Lewi, Kevin 1
Li, Wenjun 642
Liu, Jingcheng 654
Lokshtanov, Daniel 443, 666
Lu, Pinyan 654

Magniez, Frederic 592
Malchik, Caleb 677
Maniatis, Spyridon 492
Maria, Clément 185
McGregor, Andrew 689
Medina, Moti 394
Medjedovic, Dzejla 112
Mencel, Liam 272
Merz, Florian 701
Miltzow, Tillmann 566
Miyazawa, Flávio K. 713
Mladenov, Martin 505
Mnich, Matthias 346
Mohar, Bojan 554
Molinaro, Marco 517
Montes, Pablo 112
Munro, J. Ian 247, 630

Naor, Joseph (Seffi) 209
Narayanaswamy, N.S. 430
Navarro, Gonzalo 725
Newman, Alantha 737
Nguy˜̂en, Huy L. 260, 382
Nicholson, Patrick K. 455, 630

Özkan, Özgür 296

Pagh, Rasmus 750
Pajor, Thomas 321
Panolan, Fahad 443
Pedrosa, Lehilton L.C. 713
Pfoser, Dieter 358
Phillips, Jeff M. 467
Pilipczuk, Marcin 173
Pilipczuk, Micha�l 173
Price, Eric 689
Proietti, Guido 137
Puglisi, Simon J. 725
Pupyrev, Sergey 87

Räcke, Harald 774
Rafiey, Arash 554
Rainey, Mike 25
Raman, Venkatesh 430, 630
Raz, Orit E. 100
Rizzi, Romeo 418, 762
Ron, Dana 394
Roy, Sambuddha 222
Roy, Subhro 542
Roy Choudhury, Anamitra 222
Rutter, Ignaz 161

Sabharwal, Yogish 222
Sacomoto, Gustavo 418
Sagot, Marie-France 418
Sanders, Peter 701
Saurabh, Saket 443, 666
Schouery, Rafael C.S. 713
Selman, Erkal 505
Shachnai, Hadas 786
Shah, Chintan 774
Sharir, Micha 100
Sheng, Bin 530
Sirén, Jouni 725
Spoerhase, Joachim 87
Starikovskaya, Tatiana 605
Stöckel, Morten 750
Suchý, Ondřej 666
Suri, Subhash 37
Sviridenko, Maxim 713

Tarjan, Robert E. 618
Thilikos, Dimitrios M. 492
Tomescu, Alexandru I. 762
Tsai, Meng-Tsung 112
Tubis, Igor 100
Tůma, Vojtěch 334

Author Index 859

van Brink, Martijn 798
van der Zwaan, Ruben 798
Varadarajan, Kasturi 480
Venturini, Rossano 406
Vigneron, Antoine 272
Vildhøj, Hjalte Wedel 605
Vorotnikova, Sofya 689

Wakabayashi, Yoshiko 713
Wang, Jianxin 642
Wang, Joshua R. 810
Waters, Chad 309
Wei, Zhewei 830
Werneck, Renato F. 321

Wilkinson, Bryan T. 842

Williams, Ryan 1
Winslow, Andrew 677
Wolff, Alexander 87
Wu, Xiaodong 480

Yi, Ke 830
Yıldız, Hakan 37

Zehavi, Meirav 786
Zhang, Chihao 654

Zhang, Wuzhou 37
Zhou, Gelin 247

	Preface
	Organization
	Table of Contents
	Losing Weight by Gaining Edges
	1 Introduction
	1.1 Overview of the Proofs
	1.2 Related Work

	2 Preliminaries
	3 From Numbers to Edges
	3.1 Reducing k-SUM to k-Vector-Sum

	3.2 Reducing to k-Clique

	3.3 k-SUM is in W[1]

	3.4 Node-Weight k-Clique-Sum

	4 Fromk-Clique to k-SUM

	References

	Optimal Coordination Mechanisms
for Multi-job Scheduling Games

	1 Introduction
	2 Nonpreemptive Mechanisms
	3 Preemptive Mechanisms
	4 Final Remarks

	References

	Theory and Practice of Chunked Sequences
	1 Introduction
	2 Challenges
	3 Efficient Chunked Sequences
	4 Bootstrapped Chunked Sequences
	5 Benchmarks
	6 Conclusion and Future Work
	References

	Convex Hulls under Uncertainty
	1 Introduction
	2 Computing the Membership Probability
	2.1 The Two-Dimensional Case
	2.2 The d-Dimensional Case

	3 Membership Queries
	4 Tukey Depth and Convex Hull
	5 β-Hull

	References

	The Space-Stretch-Time Tradeoff in Distance Oracles

	1 Introduction
	1.1 Our Contributions

	2 Preliminaries
	2.1 Reducing the Problem to Degree-Bounded Graphs
	2.2 Balls and Vicinities, Shortest Distances and Candidate Distances

	3 Stretch (1 + 1/k) Oracle

	3.1 i-Balls and i-Vicinities
	3.2 Oracle and Query Algorithm
	3.3 Analysis

	4 Stretch (1 + 1/k+0.5) Oracle
	4.1 Oracle and Query Algorithm
	4.2 Analysis

	5 Stretch (1 + 2/3) Oracle

	5.1 Inverse-Ball and Inverse-Vicinities
	5.2 Oracle and Query Algorithm
	5.3 Analysis

	6 Open Problems
	References

	Distribution-Sensitive Construction
of the Greedy Spanner

	1 Introduction
	2 Bridging Points

	3 Uniform Point Sets

	4 Algorithms
	4.1 Testing t-Spanners

	4.2 Greedy Spanner
	4.3 The Full Distribution-Sensitive Algorithm

	5 Experimental Results
	5.1 Environment
	5.2 Dependence on Instance Size
	5.3 Real Data

	6 Conclusion
	References

	Recognizing Shrinkable Complexes
Is NP-Complete

	1 Introduction
	2 Preliminaries
	3 A Simple Non-shrinkable Contractible Simplicial Complex
	4 NP-completeness of Shrinkability
	4.1 Gadgets Design
	4.2 Wrap up

	5 A Non-shrinkable Bing’s House
	References

	Improved Approximation Algorithms for Box Contact Representations
	1 Introduction
	2 Some Basic Results
	2.1 A Combination Lemma
	2.2 Improvement on Existing Approximation Algorithms
	2.3 APX-Completeness

	3 The Weighted Case
	4 The Unweighted Case
	5 Conclusions and Open Problems
	References

	Minimum Partial-Matching and Hausdorff
RMS-Distance under Translation:
Combinatorics and Algorithms

	1 Introduction
	2 Properties of DB,A

	3 Finding a Local Minimum of the Partial-Matching RMS-Distance under Translation
	4 Finding a Local Minimum of the Hausdorff RMS-Distance under Translation
	References

	The Batched Predecessor Problem in External Memory
	1 Introduction
	2 Batched Predecessor in the I/O Comparison Model
	2.1 Lower Bounds for Unrestricted Space/Preprocessing
	2.2 Preprocessing-Searching Tradeoffs

	3 Batched Predecessor in the I/O Pointer-Machine Model
	4 Batched Predecessor in the Indexability Model
	References

	Polynomial Decompositions in Polynomial Time
	1 Introduction
	1.1 Discussion
	1.2 Proof Overview

	2 Technical Preliminaries
	2.1 Three Notions of Polynomial Pseudorandomness
	2.2 Algorithmic Regularity Lemma

	3 The Main Proof

	References

	Fault-Tolerant Approximate
Shortest-Path Trees

	1 Introduction
	2 Notation
	3 A(1+ε)-EASPT Structure

	4 A(1+ε)-VASPT Structure

	5 Relation with (α, β)-Spanners in Unweighted Graphs

	References

	Fast Witness Extraction Using a Decision
Oracle

	1 Introduction
	2 Extracting a Witness Using a Deterministic Oracle
	3 Extracting a Witness Using a Randomized Oracle
	4 Implementation of Finite Field Arithmetic
	References

	Complexity of Higher-Degree Orthogonal Graph Embedding in the Kandinsky Model
	1 Introduction
	2 Preliminaries
	3 Complexity
	3.1 Orthogonal 01-Embeddability
	3.2 Kandinsky Bend Minimization

	4 A Subexponential Algorithm
	4.1 Interfaces of Kandinsky Representations
	4.2 Merging Two Kandinsky Representations
	4.3 The Algorithm

	References

	A Subexponential Parameterized Algorithm
for Proper Interval Completion

	1 Introduction
	2 Preliminaries
	3 Expensive Vertices
	4 Sections
	5 Dynamic Programming
	6 Conclusions and Open Problems
	References

	Computing Persistent Homology with Various
Coefficient Fields in a Single Pass

	1 Introduction
	2 Multi-field Persistent Homology
	3 Algorithm for Multi-field Persistent Homology
	3.1 Modular Reconstruction for Elementary Matrix Operations:
	3.2 Modular Reconstruction for Multi-field Persistent Homology

	4 Output-Sensitive Complexity Analysis
	5 Experiments
	References

	De-anonymization of Heterogeneous
Random Graphs in Quasilinear Time

	1 Introduction
	2 Preliminaries
	3 Estimating Weights and Edge Probabilities
	4 Matching Phase

	4.1 The Y -Test

	4.2 The Algorithm
	4.3 Quality Analysis

	5 Quasilinear Runtime
	6 Experiments
	7 Conclusion
	References

	Competitive Algorithms for Restricted Caching
and Matroid Caching

	1 Introduction
	1.1 Our Contributions and Techniques
	1.2 Related Work

	2 Definitions and Problem Formulation
	3 Main Algorithm
	4 Rounding the Fractional Solution Online
	5 Special Cases of Restricted Caching
	6 Conclusions
	References

	Improved Algorithms for Resource Allocation
under Varying Capacity

	1 Introduction
	2 Overview
	3 Small Job Instances
	3.1 Algorithm
	3.2 Analysis

	References

	Nearly Tight Approximability Results
for Minimum Biclique Cover and Partition

	1 Introduction
	1.1 Our Contributions

	2 Preliminaries
	3 Hardness of Approximation
	3.1 Graph Products
	3.2 Proof of the Hardness Result
	3.3 Proof of Lemma 4

	4 Algorithmic Results
	4.1 An Approximation Guarantee of O(n/
ˇ
log(n))

	4.2 An Approximation Guarantee w.r.t. the Number of Edges

	References

	Succinct Indices for Path Minimum,
with Applications to Path Reporting

	1 Introduction
	2 Preliminaries
	3 Path Minimum Queries
	4 Encoding Topology Trees
	5 A Sketch of Supporting Path Reporting Queries
	References

	Online Bipartite Matching with Decomposable
Weights

	1 Introduction
	1.1 Our Results
	1.2 Related Work
	1.3 Notation and Preliminaries

	2 Upper Bound for the Greedy Algorithm
	3 Randomized Algorithm
	3.1 Analysis Outline
	3.2 Analysis Details

	4 Upper Bound for Deterministic Algorithms
	5 Upper Bound for Randomized Algorithms
	References

	A Faster Algorithm for Computing Straight
Skeletons

	1 Introduction
	2 Notations and Preliminaries
	3 Computing the Vertical Subdivision
	3.1 Subdivision Induced by a Vertical Cut
	3.2 Data Structure
	3.3 Algorithm
	3.4 Analysis

	4 Cutting Between Valleys
	References

	Optimal Time-Space Tradeoff for the 2D
Convex-Hull Problem

	1 Introduction
	2 Background
	2.1 The Chan-Chen Algorithm
	2.2 Memory-Adjustable Navigation Piles
	2.3 Bit Vectors with rank and select Support

	3 Augmenting the Navigation Pile
	4 Our Convex-Hull Algorithm
	5 Conclusion
	References

	Cache-Oblivious Persistence
	1 Introduction
	2 Preliminaries
	3 Data Structure
	3.1 Space-Time Trees
	3.2 Global Data Structure
	3.3 How the ST-Trees are Stored
	3.4 Executing Operations

	4 Analysis
	4.1 Space Usage
	4.2 Comments on Memory Allocation
	4.3 Analysis of Read
	4.4 Analysis of Persistent-Read
	4.5 Analysis of Write

	References

	Lightweight Approximate Selection
	1 Introduction
	1.1 Prior Results

	2 Approximating the Median
	2.1 Analysis
	2.2 Higher-Order Generalizations

	3 Approximating Arbitrary Quantiles
	4 Implementation Considerations
	5 Computational Experience
	References

	Robust Distance Queries on Massive Networks

	1 Introduction
	2 Background
	3 Computing Orderings
	4 Compression
	5 Experiments
	References

	A Dynamic Data Structure for MSO Properties
in Graphs with Bounded Tree-Depth

	1 Introduction
	2 Preliminaries
	3 Data Structure
	4 Auxiliary Operations
	4.1 Correcting S-Codes

	4.2 Extracting a Path
	4.3 Finding a Best Root
	4.4 Rerooting and Restoring Optimality

	5 Updating the Data Structure
	5.1 Edge Insertion and Deletion
	5.2 Isolated Vertex Insertion or Deletion

	References

	Large Independent Sets
in Triangle-Free Planar Graphs

	1 Introduction
	1.1 Our Contributions
	1.2 Related Work

	2 Preliminaries
	3 Classes of Graphs with Bounded Expansion
	4 Large Scattered Sets
	5 Colorings and Independent Sets
	6 Proofs
	7 Discussion
	References

	GRASP. Extending Graph Separators for the Single-Source Shortest-Path Problem
	1 Introduction
	2 Related work
	3 The GRASP Algorithm
	3.1 GRASP Tuning
	3.2 Range and Isochrone Queries
	3.3 One-to-Many Queries

	4 Experiments
	5 Conclusion and Future Work
	References

	Switching Colouring of G(n, d/n) for Sampling
up to Gibbs Uniqueness Threshold

	1 Introduction
	2 Basic Description
	3 The Setting for the Analysis of the Algorithm
	3.1 Bounding the Error

	4 Correlation Decay to Bound the Number of Bichromatic Paths
	References

	From Graph to Hypergraph Multiway Partition:Is the Single Threshold the Only Route?
	1 Introduction
	2 LP Relaxation
	3 Rounding Algorithms
	References

	Deterministic Stateless Centralized Local
Algorithms for Bounded Degree Graphs

	1 Introduction
	1.1 The Ranking Technique
	1.2 Our Contributions
	1.3 Comparison to Previous Work

	2 Preliminaries
	2.1 Notations
	2.2 The CentLocal Model
	2.3 The DistLocal Model

	3 Acyclic Orientation with Bounded Reachability
	3.1 A CentLocal Algorithm for OBR

	4 Deterministic Localization of Sequential Algorithms and Applications
	References

	Bicriteria Data Compression:Efficient and Usable

	1 Introduction
	2 Background
	3 Bit-Optimal Compression: Faster and Practical
	4 Experiments
	References

	Amortized ˜O (|V |)-Delay Algorithm for Listing
Chordless Cycles in Undirected Graphs

	1 Introduction
	2 Preliminaries
	3 Our Approach and Key Ideas
	3.1 Certificates for Chordless st-path

	3.2 From Chordless Cycles to Chordless
	3.3 Difficulty of Cleaning st-paths

	3.4 Reduced Degree Property
	3.5 Cleanup of Current Vertex

	4 Listing Algorithm
	5 Amortized Analysis
	References

	LP Approaches to Improved Approximation for Clique Transversal in Perfect Graphs

	1 Introduction
	1.1 Results and Techniques Used

	2 Preliminaries
	3 A Primal-Dual Approach to r-Clique Transversal
	3.1 VERTEX COVER in r-uniform r-partite Hypergraphs
	3.2 r-CLIQUE TRANSVERSAL on Perfect Graphs

	4 Approximating OCT Using the Lovász Theta Function
	4.1 Perfect Graphs and the Vertex Cover Polytope
	4.2 The OCT Polytope and Its LP Relaxation
	4.3 A 2-Approximation for OCT on Perfect Graphs

	5 Hardness of OCT on Perfect Graphs
	6 Conclusion
	References

	Representative Sets of Product Families
	1 Introduction
	2 Preliminaries
	3 Representative Set Computation for Product Families
	3.1 Generalized n-p-q-Separating Collections
	3.2 Representative Sets for Product Families

	4 Applications
	References

	Weighted Ancestors in Suffix Trees
	1 Introduction
	2 Preliminaries
	3 Intuition and Overview
	4 Predecessor in Nested Sets
	5 Reduction to Long Substring Retrieval
	6 Solving Long Substring Retrieval
	6.1 Handling Active Nodes
	6.2 Handling the Remaining Nodes

	References

	Improved Practical Matrix Sketching
with Guarantees

	1 Introduction
	1.1 Notation and Problem Formalization
	1.2 Frequency Approximation, Intuition, and Results

	2 Algorithms
	2.1 Parameterized FD

	2.2 SpaceSaving Directions
	2.3 Compensative Frequent Directions

	3 Experiments
	References

	Computing Regions Decomposable into m Stars

	1 Introduction
	2 Preliminaries
	3 Voronoi Diagram
	4 Marking Cells
	5 The Algorithm
	References

	The Parameterized Complexity
of Graph Cyclability

	1 Introduction
	2 Definitions and Preliminary Results
	3 The Algorithm
	3.1 The Algorithm Compass
	3.2 The Algorithm Concentric Cycles
	3.3 Correctness of Algorithm Planar Annotated Cyclability

	4 Vital Cyclic Linkages
	5 Discussion
	References

	Dimension Reduction via Colour Refinement
	1 Introduction
	2 Preliminaries
	3 Fractional Automorphisms and Isomorphisms
	4 Factor Matrices and Partition Equivalence
	4.1 Partition Matrices and Factor Matrices
	4.2 Partition Equivalence

	5 Reducing the Dimension of a Linear Program
	6 Implementation and Computational Evaluation
	References

	How Experts Can Solve LPs Online
	1 Introduction
	1.1 Our Techniques
	1.2 Our Results

	2 Load-Balancing Using Experts
	2.1 Definitions: Offline and Online Instances
	2.2 Well-Bounded Instances
	2.3 The ExpertLB Algorithm and Its Guarantee

	3 Solving Packing-Covering LPs via Load-Balancing
	3.1 The Algorithm LPviaLB

	4 Solving Packing/Covering LPs with Unknown OPT
	References

	Parameterized Complexity of the k-Arc Chinese
Postman Problem

	1 Introduction
	2 Further Terminology and Notation
	3 Reduction to Balanced CPP
	4 t-Roads and t-Cuts

	5 Tree Decomposition
	6 Dynamic Programming
	7 Conclusions and Open Problems
	References

	Approximating the Maximum Overlap
of Polygons under Translation

	1 Introduction
	2 Preliminaries
	3 Building Blocks
	3.1 A Better Convex Approximation in the Plane
	3.2 The Level Set of the Area of Overlap Function
	3.3 The Shape of the Polygon Realizing the Maximum Area Overlap

	4 Approximating the Overlap Function of Convex Polygons
	4.1 If One Polygon is Smaller than the Other
	4.2 If the Two Polygons are Incomparable

	5 Approximating the Maximum Overlap of Polygons
	References

	Ordering without Forbidden Patterns
	1 Problem Definition and Motivation
	2 Algorithm for ORD3 on Undirected Graphs

	2.1 Characterization of Obstructions

	3 Forbidden Patterns in Bipartite Graphs
	3.1 Obstruction Characterizations

	4 Remarks and Conclusions
	References

	Halving Balls in Deterministic Linear Time
	1 Introduction
	2 Separating Balls in Rd

	3 A Deterministic Linear Time Algorithm in the Plane
	4 Conclusions
	References

	Turing Kernelization for Finding Long Paths
and Cycles in Restricted Graph Classes

	1 Introduction
	2 Preliminaries
	3 Turing Kernelization for Finding Cycles
	3.1 Properties of Cycles
	3.2 k-Cycle in Planar Graphs

	3.3 k-Cycle in Other Graph Families

	4 Turing Kernelization for Finding Paths
	5 Multicolored Paths in Bounded-Degree Graphs
	6 Conclusion
	References

	Optimal Parallel Quantum Query Algorithms
	1 Introduction
	2 Preliminaries
	3 Lower Bounds for Parallel Quantum Query Complexity
	3.1 Adversary Bound for Parallel Algorithms
	3.2 Belovs’s Learning Graph Approach

	4 Parallel Quantum Query Complexity of Specific Functions
	4.1 Algorithms
	4.2 Lower Bounds

	5 Some General Bounds
	6 Conclusion and Future Work
	References

	Sublinear Space Algorithms
for the Longest Common Substring Problem

	1 Introduction
	1.1 Our Results

	2 Upper Bounds
	2.1 Approximating LCS in Constant Space
	2.2 An O(τ)-Space and O(n2/τ)-Time Solution

	2.3 Large Alphabets

	3 A Time-Space Trade-Off Lower Bound
	4 Conclusions
	References

	Nested Set Union
	1 Introduction
	2 Algorithms
	3 Properties of Node Ranks
	4 Amortized Analysis
	5 Remarks
	References

	Improved Explicit Data Structures
in the Bitprobe Model

	1 Introduction
	2 Technical Discussion
	2.1 Explicit Adaptive Schemes for n = 2

	2.2 Explicit Adaptive Schemes for n ≥ 3

	3 Further Discussion
	References

	Deeper Local Search for Better Approximation
on Maximum Internal Spanning Trees

	1 Introduction
	2 The Local Search Rules
	3 On Irreducible Spanning Trees
	4 An Approximation Algorithm of Ratio 1.5
	5 Conclusion
	References

	FPTAS for Counting Weighted Edge Covers
	1 Introduction
	1.1 Related Works

	2 Preliminaries
	2.1 Dangling Edge
	2.2 Approximate Counting from Estimation of Marginal Probabilities

	3 Approximation for Marginal Probabilities
	3.1 Computational Tree Recursion and the Algorithm
	3.2 Analysis of Correlation Decay
	3.3 Putting All Together

	References

	Solving Multicut Faster Than 2n

	1 Introduction
	2 Preliminaries
	3 Basic Observations
	4 Our Algorithm
	5 Time Complexity
	6 Conclusions
	References

	Tight Bounds for Active Self-assembly
Using an Insertion Primitive

	1 Introduction
	1.1 Our Results

	2 Definitions
	2.1 Grammars
	2.2 Insertion Systems
	2.3 Expressive Power

	3 The Expressive Power of Insertion Systems
	4 Positive Results for Polymer Growth
	5 Negative Results for Polymer Growth
	References

	Trace Reconstruction Revisited
	1 Introduction
	2 Preliminaries and Terminology
	3 Average Case Reconstruction
	3.1 Warmup: Inverse Logarithmic Deletion Probability
	3.2 Constant Deletion Probability
	3.3 Lower Bound

	4 Arbitrary String Reconstruction
	References

	PReaCH: A Fast Lightweight Reachability Index
Using Pruning and Contraction Hierarchies

	1 Introduction
	2 Preliminaries
	3 The PReaCH Reachability Index
	4 Experiments
	4.1 Instances

	5 Conclusion
	References

	Polynomial-Time Approximation Schemes
for Circle Packing Problems

	1 Introduction
	2 Packing through Algebraic Quantifier Elimination
	3 Approximate Bin Packing of Large Circles
	4 An Asymptotic PTAS for Circle Bin Packing
	4.1 The Algorithm
	4.2 Analysis

	5 Final Remarks

	References

	Document Retrieval on Repetitive Collections
	1 Introduction
	2 Background
	3 Algorithms
	4 Extending Precomputed Document Listing
	5 Experimental Data
	6 Experimental Results
	7 Conclusions
	References

	An Improved Analysis of the M¨omke-Svensson
Algorithm for Graph-TSP on Subquartic
Graphs

	1 Introduction
	1.1 Recent Progress on Graph-TSP
	1.2 M¨omke-Svensson’s Approach to Graph-TSP
	1.3 Our Contribution
	1.4 Organization

	2 Preliminaries: Notation and Definitions
	2.1 Linear Program for Graph-TSP
	2.2 Spanning Trees and Circulations

	3 Subquartic Graphs: OPTLP (G) = n

	4 Subquartic Graphs: General Case
	4.1 The x-Circulation

	4.2 The f-Circulation

	5 Combining the x- and the f-circulations

	6 Final Remarks

	References

	The Input/Output Complexity of Sparse Matrix
Multiplication

	1 Introduction
	1.1 Preliminaries
	1.2 Related Work
	1.3 New Results

	2 Matrix Output Size Estimation
	3 Cache-Aware Upper Bound
	3.1 Output Insensitive Algorithm
	3.2 Monte Carlo Algorithm Overview
	3.3 Compressed Matrix Multiplication in the I/O Model
	3.4 Computing a Balanced Coloring
	3.5 I/O Complexity Analysis

	4 Lower Bound
	References

	Faster FPTASes for Counting and Random
Generation of Knapsack Solutions

	1 Introduction
	2 Previous Work and Outline of the Proofs
	3 Approximation by Floating-Point Numbers
	4 Counting 0/1 Knapsack Solutions
	5 Random Generation of 0/1 Knapsack Solutions
	6 Counting Knapsack Solutions on a DAG
	7 Conclusions
	References

	Improved Guarantees for Tree Cut Sparsifiers
	1 Introduction
	1.1 Further Work
	1.2 Our Results

	2 Constructing the Hierarchical Partition
	2.1 The Merge Phase
	2.2 The Refinement Phase
	2.3 Embedding an S-Expander

	3 Constructing a Cut Sparsifier
	4 Mincut Linear Arrangement
	References

	Representative Families:
A Unified Tradeoff-Based Approach

	1 Introduction
	1.1 Prior Work
	1.2 Our Results

	2 Preliminaries
	3 A Tradeoff-Based Approach
	4 An Algorithm for k-Partial Cover

	5 An Algorithm for k-Internal Out-Branching

	6 Improving Known Applications
	References

	A Branch and Price Procedure for the Container
Premarshalling Problem

	1 Introduction
	2 Preliminaries
	3 Formulation as an ILP
	4 Branch and Price Algorithm
	5 Experimental Results
	5.1 Experimental Setup
	5.2 Results

	6 Complexity: NP-Hard for Constant Height Stacks
	7 Conclusion
	References

	Space-Efficient Randomized Algorithms
for K-SUM

	1 Introduction
	1.1 Our Results
	1.2 Intuition
	1.3 Organization

	2 Preliminaries
	2.1 Randomized Algorithms and Running Time
	2.2 Sets and Triangular Numbers
	2.3 Basic k-Sum Algorithms

	2.4 Hash Functions

	3 Almost Affine Hashing
	4 Ak-Sum Self-reduction
	5 Time-Space Tradeoffs for k-Sum

	6 Conclusion
	References

	Equivalence between Priority Queues
and Sorting in External Memory

	1 Introduction
	1.1 Our Results
	1.2 Related Work
	1.3 Reduction in Internal Memory

	2 Structure
	3 Operations
	3.1 Global Rebuild
	3.2 Flush
	3.3 Rebalance
	3.4 Scheduling Flush and Rebalance Operations

	4 Correctness and I/O Cost Analysis
	References

	Amortized Bounds for Dynamic Orthogonal
Range Reporting

	1 Introduction
	2 Preliminaries
	3 Data Structures
	3.1 Dynamic Reporting
	3.2 Incremental Emptiness

	References

	Author Index

