
Increasing Anonymity in Bitcoin

Amitabh Saxena1, Janardan Misra1(B), and Aritra Dhar2

1 Accenture Technology Labs, Bangalore 560066, India
{amitabh.saxena,janardan.misra}@accenture.com

2 Indraprastha Institute of Information Technology, New Delhi, India
aritra1204@iiitd.ac.in

Abstract. Bitcoin prevents double-spending using the blockchain, a
public ledger kept with every client. Every single transaction till date
is present in this ledger. Due to this, true anonymity is not present in
bitcoin. We present a method to enhance anonymity in bitcoin-type cryp-
tocurrencies. In the blockchain, each block holds a list of transactions
linking the sending and receiving addresses. In our modified protocol the
transactions (and blocks) do not contain any such links. Using this, we
obtain a far higher degree of anonymity. Our method uses a new primi-
tive known as composite signatures. Our security is based on the hardness
of the Computation Diffie-Hellman assumption in bilinear maps.

Keywords: Bitcoin · Cryptocurrency · Aggregate signatures · Plausible
deniability · Anonymity

1 Introduction

Bitcoin (symbol) is virtual currency based on peer-to-peer technology. It is
designed to operate without any central authority and enables transaction con-
firmation using a reward system [1–3]. The first transaction of every block is a
reward (currently 25) to whoever first provides a solution to a hard puzzle as
a “proof-of-work”. The puzzle is constructed from unconfirmed transactions and
the proof-of-work serves as a tamper-proof ledger.

In bitcoin, funds are exchanged between addresses which are hashes of public
keys The addresses serve as pseudonyms and provide some anonymity. However,
bitcoin raises serious privacy concerns because all the information is public and
permanently stored. Furthermore, digital signatures used in transactions provide
cryptographic proofs of funds transfer.

Our contribution: We propose a method to enhance the anonymity of bitcoin-
type currencies using a new primitive known as composite signatures. Our method
removes any cryptographic proofs of funds transfer and obfuscates the links
between inputs and outputs. Multiple transactions are combined into a larger
transaction to hide the links of the individual transactions. Our anonymity comes
in the form of plausible deniability.

c© IFCA/Springer-Verlag Berlin Heidelberg 2014
R. Böhme et al. (Eds.): FC 2014 Workshops, LNCS 8438, pp. 122–139, 2014.
DOI: 10.1007/978-3-662-44774-1 9

Increasing Anonymity in Bitcoin 123

The rest of the paper is organized as follows. We review related works in
Sect. 2. We give an overview of bitcoin in Sect. 3. We describe our method to
enhance anonymity using composite signatures in Sect. 4. We give the definition
and construction of composite signatures in Sect. 5. A summary of our method is
given in Sect. 6. Finally, we describe how to integrate our protocol with existing
bitcoin protocol in Sect. 7.

2 Related Work

Aggregate signatures: In aggregate signatures [4] many individual signatures can
be combined into and replaced with one short object - the aggregate signature.
They were proposed to increase efficiency of verifying multiple signatures.

Composite signatures: The aggregate signatures of [4], however, have another
useful property that is not captured (and not needed) in standard definitions such
as in [4]. The property is that the aggregation process is one-way - given just the
aggregate signature, it is very hard to compute the individual signatures. This
was used in verifiably encrypted signatures [4]. Coron and Naccache proved in [5]
that extracting any sub-aggregate signature in a non-adaptive attack (where the
adversary makes only one sign query) is as hard as solving the CDH problem.
Composite signatures capture this property in the stronger adaptive chosen key
and message attack, where the adversary is allowed to make several sign queries
on messages of his choice before outputting a forgery.

There are other extensions of aggregate signatures such as sequential aggre-
gate signatures [6–8], ordered multi-signatures [9,10], history-free sequential
aggregate signatures [11] and sequential aggregate signatures with lazy verifi-
cation [12]. However, none exploit the one-way property of aggregate signatures.

Anonymity in Bitcoin: Elli Androulaki et.al [13] discuss privacy issues in bitcoin
such as discovering which public addresses are controlled by the same user.
They classify the problem into Activity Unlinkability or Address Unlinkability
and User Profile Indistinguishability. and propose several heuristic techniques
to reveal user privacy in multi-input transactions. Furthermore, they perform
behavioral analysis to link multiple public addresses to same user. Fergal Reid
and Martin Harrigan [14] on the other hand considered the topological structure
of two networks derived from bitcoin’s public transaction history and analyze
implications for the anonymity and currency theft. In [15], Dorit Ron and Adi
Shamir used the transaction graph of [14] to find that several large transactions
were likely used to obfuscate the funds from a larger transaction earlier on.

Current and proposed approaches for increasing anonymity rely on “mixers”
that mix bitcoins from various different sources before sending to destinations.
Zerocoin [16] is a technique that uses zero-knowledge proofs and commitment
schemes to unlink sending and receiving addresses and uses an alternate currency
as an intermediate exchange medium. Our technique does not rely on alternate
currencies or zero-knowledge proofs. Note that although our method also does
not provide true anonymity, the anonymity offered is far higher than what is

124 A. Saxena et al.

currently offered in bitcoin. Our method can be used in conjunction with other
proposed approaches (such as zerocoin). Compared to zerocoin, it is easier to
integrate our method with bitcoin.

The CoinJoin [17] protocol is similar to ours. CoinJoin’s goal is to unlink
inputs in the same wallet. Several parties agree on the inputs and outputs of
a transaction. The total funds in the inputs should cover the total funds of
the outputs. Finally, the parties individually sign the transaction for the inputs
they control. Once all the inputs are signed, the transaction is broadcast. The
difference in our method is that the input/outputs of other parties need not
be known a priori. Additionally, our method is non-interactive while CoinJoin
requires interaction with other parties. Finally, in CoinJoin, parties cannot later
deny knowledge of the outputs and other inputs.

3 Overview of Bitcoin

Although the bitcoin protocol is quite complex, only a few concepts are necessary
to understand our idea. These are: transaction, input, output, reference, block and
confirmation. We describe these below. For simplicity, we consider an address as
a public key itself rather than its hash.

Transaction. Roughly speaking, a transaction consists of a set of inputs (source
of funds) and outputs (destination of funds).

Example: Suppose Alice is the owner of address A which received x bitcoins in
a previous transaction. She wants to send y ≤ x bitcoins to Bob’s address B.
Alice constructs a transaction with A as the input and B as one of the outputs.
She also inserts ref , the reference to the previous transaction’s output where A
received those x bitcoins. The entire amount x must be transferred from A. Alice
sends y bitcoins to B, sets a transaction fee t and sends the remaining amount
z = x − y − t to her change address C, which is the other output. The change
address is simply any address owned by Alice (possibly A). The message

“(ref : remove x from A), (put y in B), (put z in C)”
is signed under A.

Notation: We will use the following notation:

– X
ref→ x is the message “(ref : remove x from X)”. This is an input.

– X ← x is the message “put x in X”. This is an output.
– σX(m) is signature on message m under public key X.

Alice’s transaction is then (m,σA(m)), where m = (A
ref→ x,B ← y, C ← z).

Transactions: The above scenario had a single input. In reality, a bitcoin trans-
action can have multiple inputs with no particular link between any source-
destination pair. The entire transaction is signed under every input public key.
The only requirement is that the sum of the funds at the inputs is greater than

Increasing Anonymity in Bitcoin 125

or equal to the sum of funds at the outputs. Any difference is considered a
transaction fee. More formally, define m to be the message

M
def= (A1

ref1→ x1, A2
ref2→ x2, . . . , An

refn→ xn, B1 ← y1, B2 ← y2, . . . , Bl ← yl),
(1)

where: (A1, x1, ref1), (A2, x2, ref2), . . . , (An, xn, refn) are n tuples each consist-
ing of an address Ai, amount of funds xi and a reference to a previous transac-
tion where Ai received xi bitcoins, and (B1, y1), (B2, y2), . . . , (Bl, yl) are l pairs
of addresses and amount of funds. A valid transaction tx is a tuple:

tx
def= (M,σA1(M), σA2(M), . . . , σAn

(M)) (2)

such that each signature σAi
(M) verifies correctly and the following holds:

1.
∑l

i=1 yi ≤ ∑n
i=1 xi

2. Each refi for 1 ≤ i ≤ n was never used in any prior transaction.

The ordering of the signatures in tx is determined from the ordering of mes-
sages inside M (which is fixed due to the signatures).

Referencing outputs: In future, when spending the funds from any of the outputs
(say Bi ← yi) of the above transaction, a reference refBi←yi

to that output needs
to be provided. Let tx be the string of Eq. 2. Then

refBi←yi

def= (Hash(tx), i)

Because ref is constructed from the hash of a previous transaction, it is
guaranteed that two different transactions are distinct unless the outputs, input
and ref are identical (a forbidden scenario). Due to this, it is also guaranteed
(with high probability) that the refs generated by using hashes of two differ-
ent transactions are also different. In fact, this is how bitcoin prevents double
spending (see below). A ref can be used in a transaction at most once. Bitcoin
clients maintain a list of unused refs to do this check.

Unspent outputs (and double-spends): An unspent output is essentially an unused
reference, one that has never been used in any transaction. The protocol design
guarantees that references to two different outputs will be distinct (see above).
Each client maintains a set called ‘unspent outputs’. Each output of every trans-
action is added to this set, and removed when is it used as a reference in another
transaction. A transaction with a reference not in this list is considered a double
spend and is not processed.

Validating Transactions: A new transaction is valid if all the references are
unused. If so, the transaction is accepted as valid but unconfirmed, and is relayed
on the network. The clients add each such transaction to a pool of unconfirmed
transactions. Unconfirmed transactions can be double-spent.

126 A. Saxena et al.

Confirming Transactions. A miner is a client who confirms new transactions
by solving a hard puzzle and providing the solution as a ‘proof-of-work’ as follows:

1. A bunch of unconfirmed transactions along with one reward transaction
(known as the coinbase transaction) are combined into a ‘block’.

2. Hash of the previous block hpr is added to the block.
3. A nonce is added to the block.
4. Hash(b) of the final block b is computed.

If the output of the hash contains at least a specified number of leading
zeros, the puzzle is solved, otherwise the miner tries with different nonces until
the puzzle is solved or some other miner broadcasts the solution of a puzzle for
a block referencing hpr. A correct solution implies that the corresponding block
is ‘mined’ and all transactions contained in it are confirmed.

Confirmations: The number of confirmations of a transaction are the number
of blocks in the blockchain that have been accepted by the network since the
block that includes the transaction. The possibility of double-spending a trans-
action decreases exponentially with the number of confirmations. The default
client requires 6 confirmations for normal transactions and 100 confirmations
for reward transactions before they can be spent.

Transaction pool management: Each client maintains a pool of unverified (but
valid) transactions. An element is removed from this pool when that transaction
gets included in a mined block. This ensures that even if a transaction is not
included in an immediate block, it is kept in the pool until it gets mined.

Anonymity. Transactions are not anonymous; since each input public-key signs
the entire transaction, some information is inherently leaked. In particular,

1. Each output is linked to the inputs via the signatures.
2. Each input is also linked to the previous output via the ref .
3. The inputs themselves are linked together (they belong to the same wallet).

4 Increasing Anonymity

The links between inputs and outputs result in loss of anonymity. We describe a
slight modification to the protocol that removes these links. The modification is
so minor that apart from the way signatures and references are computed, the
rest of the design remains the same. Yet, the anonymity gained is significant.

The intuition for anonymity is that because inputs and outputs in a transac-
tion are linked cryptographically, a miner and other intermediaries can ‘dilute’
the information contained in a transaction by inserting more information before
processing it further. The final mined block will have the input-output links in
each individual transaction highly obfuscated. The only information will be the
set of inputs and outputs of an entire block.

Our protocol uses a primitive called composite signatures described below.

Increasing Anonymity in Bitcoin 127

Composite Signatures. The symbol σX(m) denotes a signature on message
m under public key X. Roughly speaking, composite signatures are an extension
of aggregate signatures with the following properties:

1. Composition: A number of individual signatures σX1(m1), σX2(m2), . . . , σXn

(mn) can be combined into a composite signature σ{X1,X2,...,Xn}({m1,m2, . . . ,
mn}), which proves that each mi was signed under public key Xi.
The composite signature is said to be on the set {(m1,X1), (m2,X2), . . .
(mn,Xn)}.

2. Incremental composition: More signatures can be added to the composite
signature at any time.

3. One-way: It is computationally hard to obtain any sub-composite signature
given just the composite signature. Informally, given the composite signa-
ture on a set S = {(m1,X1), (m2,X2), . . . (mn,Xn)} of (message, public-key)
pairs, it is hard to compute the composite signature on any subset S′ � S.

4. No ordering: The signature does not maintain order. It is impossible to
decide if a composite signature was computed ‘all at once’ or incrementally.

Composite signatures are formally defined in Sect. 5.

A Modified Protocol. Consider the message from the original protocol:

M
def= (A1

ref1→ x1, A2
ref2→ x2, . . . , An

refn→ xn, B1 ← y1, B2 ← y2, . . . , Bl ← yl),

M is a combination of messages m1,m2, . . . ,mn,m1,m2, . . . ,ml, where:

mi
def= (Ai

refi→ xi) (1 ≤ i ≤ n) [Inputs]

mi
def= (Bi ← yi) (1 ≤ i ≤ l) [Outputs]

Transactions: Instead of defining a transaction as in Eq. 2 (repeated below):

tx
def= (M,σA1(M), σA2(M), . . . , σAn

(M)),

we define it using composite signatures as follows::

tx
def= (M,σ{A1,A2,...,An,A1,A2,...,Al}({m1,m2, . . . ,mn,m1,m2, . . . ,ml})), (3)

such that each Ai is a randomly generated public key, called a masking key, and
the pairs (Ai,mi) are unique. Define Λ

def= {A1, A2, . . . An, A1, A2, . . . Al} and
Π

def= {m1,m2, . . . mn,m1,m2, . . . ml}. Equivalently, tx
def= (Π,σ(Λ)(Π)).

Observe that in the above transaction, unlike the original bitcoin protocol,
each ‘regular’ public key signs a message containing only its own address. Conse-
quently, the signatures never link the sending addresses to the receiving addresses
or other sending addresses. The one-way property of composite signatures pre-
serves the security of the original protocol; it is infeasible to isolate any signatures
spending funds from the inputs.

Confirming a transaction: A transaction tx is valid if each of the inputs has an
unused reference to a previous output. Confirmation of tx requires a miner to
solve a puzzle for a block containing that transaction, constructed as follows:

128 A. Saxena et al.

1. A number of unconfirmed transactions tx1, tx2, . . . txα are collected for inclu-
sion in the block, where each txi is defined as:

txi
def= (Πi, σΛi

(Πi)) (1 ≤ i ≤ α)

Additionally, a coinbase (reward) transaction txc with no inputs is created:

txc
def= (Πc, σΛc

(Πc)),

2. It is verified that each (masking-key, output) pair from all the transactions
combined together is unique. Not only do we require that the pairs are unique
in each transaction but also in all the transactions combined together.

3. A final block b is computed as follows:
(a) Hash of the previous block hpr is computed.
(b) A combined composite signature σb is computed. That is,

σb
def= σ(Λc∪Λ1∪Λ2∪...Λα)(Πc ∪ Π1 ∪ Π2 ∪ . . . Πα)

(c) Assume some canonical ordering of all inputs and outputs. Define

Πb
def= Πc ∪ Π1 ∪ Π2 ∪ . . . Πα,

where the elements of Πb are arranged in the canonical order.
(d) The final mined block b is computed as:

b
def= (hpr,Πb, σb, θb),

where θb is a nonce s.t. Hash(b) has a certain number of leading zeros.

Referencing the outputs: In this modified protocol, we don’t reference simply
the outputs, but rather the (masking-key, output) pairs. Let (Aj ,mj) be some
(masking-key, output) pair in one of transactions included in the above block.
Recall that such a pair is unique in a block (even if the output may be repeated).
We compute a reference to the above pair as:

ref(Aj ,mj)
def= (Hash(b),Hash(Aj ,mj))

Since the reference contains the hash of the block, an output can only be
spent if its transaction has been included in a mined block. This makes the new
transaction incompatible with services that allow spending from unconfirmed
transactions (such as satoshidice.com). However, this also makes the protocol
more robust to DoS attacks. To summarize, in the modified protocol, it is not
possible to spend from unconfirmed transactions.

Security: Composite signatures provide security against two distinct types of
forgery. The first type, called ordinary forgery is the one that all conventional
signature schemes are expected to satisfy. This involves forging a signature under
an input public-key to steal funds. The second one, called extraction forgery
occurs when two signatures can be ‘separated’ given their composition. This will

Increasing Anonymity in Bitcoin 129

also allow an attacker to steal funds.1 Since extraction of any sub-composite
signature is infeasible, peers can only add further signatures to a transaction.
Double spending and replay attacks are prevented in a manner similar to the
original protocol. We maintain a list of unused refs, and reject the transaction
that contains a ref that has been used. The references are unique because:

1. The reference is a hash of the block and the (masking-key, output) pair.
2. Each block is unique because it contains a hash of the previous block.
3. The (masking-key, output) pairs in a block are unique.

We additionally consider the case where the sender uses a weak or compromised
masking key. This is similar to a double spending attack. The receiver should
not trust the transaction until it is confirmed.

Anonymity: First observe that each input and output is cryptographically linked
to only one public key (the regular key or a masking key). Therefore given
a transaction as in Eq. 3, it is impossible to prove that the signer knew any
outputs. Furthermore, signatures from many transactions can be composed to
obfuscate the input-output relationships (we discuss this below). Additionally,
once a transaction is confirmed in a block, it is removed from memory and only
the confirmed block is stored. The block alone does not leak any information
about the input-output links. Consequently, if the individual transactions are
not saved, this information is eventually erased with time.

Enhancing Anonymity. We can enhance anonymity via plausible deniability.

Joiners: To further enhance anonymity, we propose the notion of joiners as fol-
lows. The senders will leave a certain amount of funds free for their peers (this
is additional to the transaction fee). This transaction is called partial and the
free funds are the joining bonus. This transaction is sent to only one peer. Peers
receiving any transaction with free funds can add their addresses as outputs and
claim the joining bonus to make the transaction full before broadcasting it to
the network. The joining bonus is not specifically marked to make it indistin-
guishable from normal funds. Given a full transaction, it should not be possible
to distinguish which outputs consume the joining bonus.

Even with access to the individual transactions, it would still be impossible
to prove with certainty that the sender indeed sent those funds to some given
output, since it is possible that the outputs were added later on by a joiner.
To ensure that transaction fees don’t get consumed by joiners, a special output
can be used for transaction fees. To ensure that the original partial transaction
is never broadcast, a spender should send it to only to one peer. Once the
transaction is full, it will be broadcast to the network. Clients attempting to
disrupt the network by broadcasting partial transactions will be handled as
explained below in the section on transaction pool management. Similarly if
a misbehaving peer drops a partial transaction, this can be detected and the
transaction resent to a different peer.
1 If an attacker can extract signatures, he can isolate the input and add any output.

130 A. Saxena et al.

Merging services: A merging service accepts various transactions from clients
(over a private channel) and once sufficient of them are obtained, it merges
them by aggregating the signatures before broadcasting to the network. Clients
attempting to disrupt the network by sending the same transactions to multiple
merging services will be handled in a similar way as for joiners.

Using the Knapsack problem: Given a ‘merged’ or ‘joined’ transaction, it may
still be possible to deduce some input-output relationships from the amount
of funds going in and out. We use the knapsack problem to further obfuscate
this information. The knapsack problem [18–20] can be described as follows.
Given a positive rational number X and a set W of positive rational numbers
w1, w2, ...wn, find a subset S of W (if it exists) such that Sum(S) ≤ X.

The recipient generates a number of addresses to receive funds into. The
sender randomly splits the funds into those addresses and broadcasts the trans-
action. Other joiners/merging services add further transactions also generated in
a similar manner. In the merged transaction, any subset of inputs and outputs
with sums close to each other can potentially belong to one sub-transaction.
However, if there are overlapping or multiple solutions, then it is impossible to
prove this fact with certainty, thereby ensuring plausible deniability.

Revealing the masking keys: To enhance deniability, the masking private keys
can be publicized after a few confirmations. In this case, a partial transaction
(presented later) cannot act as a cryptographic proof of knowledge of the outputs.

Transaction Pool Management. Referring to the joiner protocol above, sup-
pose a malicious peer transmits a partial transaction tx = A to j joiners, where
A is a set of inputs and outputs. This will result in multiple full transactions
AB1, AB2, . . . ABj , one for each joiner. Since an output can only be used once,
only one of these transactions will be accepted. In such a situation, a peer will
reject all new transactions, while a miner could pick one that maximizes fees.

The remaining aspects of the protocol such as rules for pruning and broad-
casting shall be the same as the original protocol.

5 Composite Signatures

Our protocol uses a primitive called composite signatures, which we define here.
Message-descriptor: A message-descriptor is a set {(m1, pk1), (m2, pk2),. . . ,
(mn, pkn)} of (message, public-key) pairs.

Algorithms. A composite signature scheme has four algorithms:

1. KeyGen(K) The algorithm takes in a security parameter K and outputs a
(public-private) key pair pk, sk.

2. Sign(sk,m) The algorithm takes in a private key sk and a message m. It
outputs a single-key signature σ. This single-key signature is equivalent to a
composite signature on the single pair {(m, pk)}

Increasing Anonymity in Bitcoin 131

3. Compose((�1, σ1), (�2, σ2)) The algorithm takes in two (message-descriptor,
signature) pairs. If both signatures are valid and �1 ∩ �2 = ∅, it outputs a
composite signature σ on the message-descriptor �1 ∪ �2, otherwise it outputs
an error symbol ⊥. Validity is checked by the Verify algorithm below.

4. Verify(�, σ) The algorithm takes in a message descriptor

� = {(m1, pk1), (m2, pk2), . . . , (mn, pkn)},

and σ, a purported composite signature on �. If the messages in � are not
unique, the algorithm outputs Invalid. Otherwise it invokes a deterministic
poly-time procedure and outputs either Valid or Invalid.

The composite signatures exhibit an abelian group structure under composi-
tion. Given a set of composite signatures, we can compute composite signatures
on any union of their message descriptors. Furthermore, these are the only com-
posite signatures we should be able to compute. We capture this below.

Security. Security is defined using the following interaction with a forger A.

1. Setup: A chooses n. We generate n (public-private) keypairs {(pki, ski)}i∈[1..n]

with security parameter K. We give the set PK = {pki}i∈[1..n] to A.
2. Queries: A makes up to α sign queries. Each sign query i consists of �i, a

message-descriptor with public keys from PK. If the pairs in �i are unique,
we respond with an composite signature on �i, otherwise we return the error
symbol ⊥. Let L be the set of message-descriptors in all sign queries.

3. Output: A outputs (�A, σA), a purported (message-descriptor, signature) pair
possibly containing public keys not from PK. Let PKA = {pk|(m, pk) ∈ �A}.
A wins if the following conditions hold:
(a) Verify(�A, σA) = Valid.
(b) The set PK ∩ PKA is non-empty.
(c) �A is not signable (Definition 1 below).

Notation: Let �′
A = {(m, pk)|(m, pk) ∈ �A ∧ pk ∈ PK}. Assign a unique prime

number to each element of the set {(m, pk)|((m, pk) ∈ � ∧ � ∈ L) ∨ (m, pk) ∈
�′
A}. Then each � ∈ L corresponds to a unique integer integer(�) obtained by

multiplying the primes corresponding to its constituent (m, pk) pairs. Let Z be
the set {integer(�)|� ∈ L}. Let zA = integer(�′

A), obtained by multiplying the
primes corresponding to �′

A.

Definition 1. (Signable Set) The set �A is signable iff there exists a solution
in non-negative integers xi to the equation zA =

∏

zi∈Z

zxi
i .

In a weaker notion, we allow integer solutions. We call this weakly signable.

Example. Suppose L = {�1, �2, �3}, with �1 = {(m1, pk1), (m2, pk2)}, �2 =
{(m2, pk2), (m3, pk3)} and �3 = {(m3, pk3), (m4, pk4)}. Let �A = {(m1, pk1),
(m4, pk4)}. Let us assign the primes as: (m1, pk1) → 2, (m2, pk2) → 3, (m3, pk3) →

132 A. Saxena et al.

5, (m4, pk4) → 7. We have Z = {6, 15, 35} and zA = 14. Then �A is weakly
signable because 14 = 6 · 15−1 · 35. However, �A is not signable since there are
no solutions in non-negative integers to 14 = 6x1 · 15x2 · 35x3 .

Observe that the signable sets form a monoid under the signature aggregation
operation, while the weakly signable sets form a group. The signable sets are
exactly those sets that can be generated by aggregating the collected signatures
using this operation.

Definition 2. A composite signature scheme {KeyGen, Sign,Compose, V erify}
is secure if for sufficiently large K, there is no probabilistic poly-time A that wins
with non-negligible advantage in K.

Intuition: In the above definition, aggregation of signatures is represented by
multiplication of the primes. The game captures the fact that it is possible
to generate new signatures by aggregating smaller signatures (represented by
signable numbers - obtained by multiplying elements of Z). Furthermore, it may
additionally be possible to generate new signatures by ‘reversing the aggregation
algorithm’ when only one input is unknown (represented by weakly signable
numbers - obtained by multiplying and dividing elements of Z).

Construction. Our construction is derived from the aggregate signatures of [4]
by appending the public key and a random string to the message.
Bilinear pairing: Let G1 and G2 be two cyclic multiplicative groups both of
prime order q. A bilinear pairing is a map ê : G1 × G1 �→ G2 satisfying:

– Bilinearity : ê(ax, by) = ê(a, b)xy ∀a, b ∈ G1 and x, y ∈ Zq.
– Non-degeneracy : If g is a generator of G1 then ê(g, g) is a generator of G2.
– Computability : The map ê is efficiently computable.

We require a case where the discrete logarithm problem in G1 is believed to
be hard. Such bilinear pairings are known to exist (see [4]). Our security depends
on the hardness of the following problem in G1:
Computation Diffie-Hellman (CDH) problem: Given gx, gy for a generator g of
G1 and unknowns x, y ∈ Zq, compute gxy.

Algorithms: Select a security parameter κ. Let ê : G1 × G1 �→ G2 be a bilinear
map over groups (G1, G2) of prime order q, and g be a generator of G1. Denote
by Σ the alphabet {0, 1}. Let H : Σ∗ × Σκ × G1 �→ G1 be a cryptographic hash
function. These parameters are public.

1. KeyGen: The private key is x
R← Zq and the public key is pk = gx ∈ G1.

2. Sign: To sign a message m under the above public key pk, generate r
R← Σκ

and compute the signature σ ∈ (G1, Σ
κ) as:

σ = (H(m, r, pk)x, r)

Increasing Anonymity in Bitcoin 133

3. Compose: Two (message-descriptor, signature) pairs, (�1, σ1), (�2, σ2) are
given. Ensure that Verify(�1σ1) = Verify(�2, σ2) = valid and �1 ∩ �2 = ∅.
Then parse σ1 and σ2 as (σ′

1, R1) and (σ′
2, R2) respectively and compute the

composite signature σ on �1 ∪ �2 as σ = (σ′
1σ

′
2, R1 ∪ R2).

4. Verify(�, σ): Here � = {(m1, pk1), (m2, pk2), . . . , (mk, pkk)} is a message-
descriptor of length k and σ is a purported composite signature on �. To verify
σ, first ensure that all pairs are distinct. Then parse σ as (σ′, {r1, r2, . . . , rk}) ∈
G1 × (Σκ)k and check that the following holds:

ê(σ′, g) ?=
k∏

i=1

ê(H(mi, ri, pki), pki)

Verification works because:

LHS = ê(
k∏

i=1

σ′
i, g) = ê(

n∏

i=1

H(mi, ri, pki)
xi , g) =

n∏

i=1

ê(H(mi, ri, pki), g
xi) = RHS

Security: Security is based on the hardness of the CDH problem (Theorem 1).

Theorem 1. Let H be a random oracle and let ε be the probability of an attacker
breaking the composite signature scheme after making at most α sign queries and
at most γ queries to H, such that the forgery contains at most β keys. Then we
can solve the CDH problem in G1 with probability ≥ ε

3

(
1 − α+γ−1

2κ

)nα
.

The proof of Theorem 1 is given in Appendix A.

6 Composite Signatures and Cryptocurrencies

As discussed earlier, composite signatures can be used to enhance anonymity in
cryptocurrencies (such as bitcoin) by unlinking the input and output addresses
from where funds move. We summarize the ideas below.

In bitcoin transactions, the sending addresses (i.e., public keys) are linked to
the other sending addresses and receiving addresses in a transaction. This link
is ‘hard’ in the sense that it provides a cryptographic proof of funds transfer
between those addresses. For example, suppose owner of address pk1 wants to
transfer 1 bitcoin to address pk2. The transaction will be the message “Take 1
bitcoin from pk1; Put 1 bitcoin in pk2”, signed under the public key pk1.
This transaction cryptographically links the addresses pk1 and pk2. The owner
of pk1 cannot later deny sending the funds to pk2.

Composite signatures enable significantly higher anonymity by removing
linkages from sending and receiving addresses. This allows senders to release
funds without referring to receiving addresses or other sending addresses. Using
composite signatures, the transaction in the above example will consist of two
messages (1) the message “Take 1 bitcoin from pk1” signed under pk1, and
(2) the message “Put 1 bitcoin in pk2” signed under a randomly generated

134 A. Saxena et al.

public key (which we call the masking key). The two signatures will then be com-
bined into one composite signature and broadcast to the network. Other peers
may add more signatures from their transactions before broadcasting further
(to increase unlinkability). Since individual signatures in a composite signature
cannot be extracted, the composite signature serves as a secure record of the
transaction, despite the fact that messages do not contain references to other
public keys. Senders can claim plausible deniability, since the composite signature
cannot serve as proofs of knowledge of the receiving addresses.

We proposed the use of ‘joiners’, ‘merging services’ and the knapsack prob-
lem [19] to further increase plausible deniability.
Anti-censorship and participation incentive: The proposal also has a desirable
anti-censorship property. Because composite spends cannot be de-aggregated, if
a miner learns of a ‘desirable’ spend only after it is aggregated with censored
spends, it must take all or none. The prospect of open aggregates also allows
relaying nodes to participate in collecting transaction fees.

7 Integrating with Bitcoin

The modified transactions described here use composite signatures instead of
ordinary signatures (such as ECDSA). Their construction uses bilinear pairings
on elliptic curves. Some examples of such pairings are: Weil pairing [21], the
Tate-Lichtenbaum pairing [22] and the Eta Pairing [23].

Efficiency: Public keys are elements of G1, which are elements of a suitable finite
field. Based on [24,25], such elements can be represented in about 30 bytes for 128
bits of security. The signatures constitute one group element and n κ-bit strings
(the random rs). The size of signatures increases linearly. Below we consider
the possibility of using a weaker scheme where these rs are removed. Signature
verification requires several pairing computations, which can be performed fairly
efficiently [24,25] (< 10 ms on a Pentium).

Increasing efficiency: Our composite signature construction extends the aggre-
gate signatures of [4] by including a random string r in the signature. The sig-
natures of [4] are constant-size (about 30 bytes) because the r is not included.
However, they do not satisfy the security of Definition 2. In practice, however, a
weaker security notion is sufficient. In the weaker notion we require the forgery
�A to be not weakly signable (Definition 1). We posit that the construction of [4]
is secure in this weaker sense. Furthermore, for our application, an even weaker
form of security - the non-adaptive case - should be sufficient. This requires the
adversary to output a forgery after making only one sign query. The signatures
of [4] satisfy this model [5]. Therefore, we envisage the construction of [4] to be
used in our application.

Based on above parameters, transaction size is comparable to that in the
existing protocol. In order to verify transactions/blocks created via composite
signatures, all relevant masking keys need to be available. These can either be
part of the payload or kept in a publicly database (with hashes as payloads).
The remaining details of the protocol (such as pruning, etc.) remain the same.

Increasing Anonymity in Bitcoin 135

The modified protocol can possibly co-exist with the current protocol. We
add the new type of transaction output based on composite signatures. These
outputs can be mixed with standard outputs. A composite signature based out-
put will be spent using the new protocol described here. A transaction can even
be constructed using a mix of these outputs. We leave this as further work.

8 Conclusion and Future Work

Bitcoin is a popular peer-to-peer cryptocurrency with a weak form of anonymity.
We presented an enhancement of the bitcoin protocol to increase anonymity.
Our method is based on a new cryptographic primitive known as composite
signatures. Composite signatures are an extension of Boneh et al.’s aggregate
signatures [4] and have the property that multiple signatures can be aggregated
into one signatures such that once aggregated, the individual signatures cannot
be recovered. We gave the security model of composite signatures and presented
a construction with a security proof under the random oracle model and the
computational Diffie-Hellman assumption in bilinear maps. We also presented a
weaker notion of composite signatures (Definition 1), which may be interesting
because the publicly computable signatures exhibit a group structure.

Composite signatures can be used to enhance anonymity in cryptocurrencies
such as bitcoin by unlinking the input and output addresses from where funds
move. In the current bitcoin protocol the sending addresses are linked to the other
sending addresses and receiving addresses in a transaction. This link is ‘hard’
in the sense that it provides a cryptographic proof of funds transfer between
those addresses. We use composite signatures to remove all linkages from the
sending and receiving addresses. This enables senders to sign messages releasing
funds without mentioning the receiving addresses or other sending addresses,
thereby providing plausible deniability. Additionally, several transactions can be
combined into one large transaction (possibly via the knapsack problem) in order
to further obfuscate the links.

A Proof of Theorem 1

Proof. Let g, gx, gy ∈ G1 be the given CDH instance we need to solve (our goal
is to compute gxy). We show how to solve this using A as a black-box.

Setup: We generate a1, a2, . . . an
R← Zq and set the target public keys as pki =

gx+ai for 1 ≤ i ≤ n. The set PK = {pki}i∈[1..n] is given to A.
H-list: A can query the random oracle H on points from Σ∗ × Σκ × G1. To
respond to such queries, we maintain a list called the H-list, which is initially
empty and contains tuples of the type

(m, r, pk, h, b, c, d) ∈ Σ∗ × Σκ × G1 × G1 × Zq × Z2 × ±1,

such that h = gcdy+b always holds.

136 A. Saxena et al.

H-Queries: On H(mi, ri, pki) query, if a tuple (mi, ri, pki, hi, bi, ci, di) exists
in the H-list, we respond with hi = H(mi, ri, pki), otherwise we add such an
entry as follows. Generate bi

R← Zq uniformly and set di = 1. If pki /∈ PK,
set ci = 0, otherwise set ci = 1. Finally, set hi = gciy+bi and respond with
hi = H(mi, ri, pki). In effect, hi = gbi if pki /∈ PK, otherwise hi = gbi+y.

Sign queries: Let � = ((m1, pk1), (m2, pk2), . . . (mk, pkk)) be any sign query for
k ≤ n. To respond to this, we generate k random numbers r1, r2, . . . rk

R← Σκ

and for each i ∈ [1..k] we check the H-list for entries starting with (mi, ri, pki). If
any such entry exists, we report failure and abort, otherwise we add the entries
as follows. We uniformly select k pairs ((c1, d1), (c2, d2), . . . (ck, dk)) ∈ (Z2×±1)k

such that
∑k

i=1 cidi = 0 and k − ∑k
i=1 ci ∈ Z2. The latter says that at most one

of the cis can be 0.2 We then generate b1, b2, . . . bk
R← Zq and for each i ∈ [1..k],

we set hi = gcidiyi+bi . We add (mi, ri, pki, hi, bi, ci, di) to the H-list.
Let σ′ = g

∑k
i=1(x+ai)(cidiy+bi) = gxy

∑k
i=1 cidi+

∑k
i=1 xbi+aicidiy+aibi . We know

that
∑k

i=1 cidi = 0 (by construction). Therefore, σ′ = g
∑k

i=1 xbi+aicidiy+aibi ,
a value that can be computed by us. Also, σ = (σ′, {r1, r2, . . . rk}) is a valid
signature on �, which is our response to the query.

Output: Finally, A outputs a pair (σA, �A). If σA is not a valid forgery on �A, we
report failure. Let PKA be the set of public keys in this forgery. Some of these
keys may not be from PK. Let PK# = PKA \ PK and PK∗ = PK ∩ PKA.

By construction, all cis in the H-list corresponding to the messages signed
under PK# are 0. Therefore, the respective bis are the discrete logarithms (to
base g) of the corresponding his. Hence, we can compute the sub-composite
signature corresponding to the messages of PK∗, denoted by σ∗ (we compute this
by first computing the sub-composite signature corresponding to the messages
of PK# and “dividing” σA by that).

Let ((a∗
1, b

∗
1, c

∗
1, d

∗
1), . . . , (a

∗
k∗ , b∗

k∗ , c∗
k∗ , d∗

k∗)) be tuples containing ais and H-
list entries corresponding to PK∗. If

∑k∗

i=1 c∗
i d

∗
i = 0, we report failure and

abort, otherwise σ∗ corresponds to a signature we could not have computed our-
selves, which can be used to solve the CDH problem as follows. We know that
σ∗ = (σ′

∗, {r∗
1 , . . . r

∗
k∗}) such that σ′

∗ = g
∑k∗

i=1(x+a∗
i)(c

∗
i d∗

i y+b∗
i) = gxy

∑k∗
i=1 c∗

i d∗
i ·

g
∑k∗

i=1 xb∗
i +a∗

i c∗
i d∗

i y+a∗
i b∗

i = gxyz ·w for some nonzero w and z that we know. Thus,
we can compute gxy = (σ′

∗/w)1/z.
It now remains to bound the probability of success. Define events:

– E1 = We do not abort during sign queries.
– E2 = E1 and A outputs a successful forgery.
– E3 = E2 and

∑k∗

i=1 c∗
i d

∗
i �= 0.

Then Pr[success] = Pr[E3|E2] · Pr[E2|E1] · Pr[E1].

2 These pairs can be generated as follows. First set all cis to 1. If k is odd, randomly
set one of the cis to 0. Then for those cis that are 1, randomly set half of the dis to
+1 and the rest to −1.

Increasing Anonymity in Bitcoin 137

Claim 1. Pr[E1] ≥ (
1 − α+γ−1

2κ

)nα

Proof. Consider the number of entries in the H-list corresponding to a given
(message, public-key) pair (m, pk). Each H-query can add at most one entry to
the H-list for this pair. Since a sign query can contain at most one instance of
the pair (m, pk), therefore, each sign query can add at most one entry in the
H-list for this pair. Therefore there can be a maximum of α+γ −1 entries in the
H-list corresponding to (m, pk). Now select r

R← Σκ and consider the event that
an entry beginning with (m, r, pk) exists in the H-list. Since there are 2κ possible
ways to select r, we can be assured that Pr[no entry in H-list for (m, r, pk)] ≥
1 − α+γ−1

2κ . Now there can be maximum n pairs in a sign query. Therefore,
Pr[we do not abort in one sign query] ≥ (

1 − α+γ−1
2κ

)n
, and so

Pr[E1] = Pr[we do not abort in α sign queries] ≥
(

1 − α + γ − 1
2κ

)nα

��

Claim 2. Pr[E2|E1] = ε.

Proof. If we do not abort during sign queries, then the view of the adversary is
identical to a real simulation, and it follows that Pr[E2|E1] = ε. ��
Claim 3. Pr[E3|E2] ≥ 1/3

Proof. Split H-list entries into two disjoint sets based on how they are generated:

1. S1: Sign queries on single (message, public-key) pairs. Here Pr[c = 0] = 1.
2. S2: H-queries or sign queries on two or more (message, public-key) pairs. It

can be checked that Pr[c = 0] ≤ 1/3 for such entries.

Let the forgery contain k∗ (message, public-key) pairs. Let {(m∗
i , r

∗
i , pk∗

i)}i∈
[1..k∗] be the set of tuples corresponding to the forgery. We ensure that an entry
for each tuple exists in the H-list (by simulating H-queries ourselves if necessary).

Lemma 1. If the forgery is valid (i.e., �A is not signable), then at least one of
the tuples in the forgery must must correspond to an element of S2.

Proof. If all tuples {(m∗
i , r

∗
i , pk∗

i)}i∈[1..k∗] in the forgery correspond to elements
from S1, then A made sign queries on every pair (m∗

i , pk∗
i), possibly more than

once. By definition, �A is signable. Hence the forgery cannot be valid. ��
For any signature σ� from the sign queries or the forgery, define f(σ�) =

∑k
i=1 cidi, obtained from corresponding entries (mi, ri, pki, hi, bi, ci, di) in the

H-list. A’s goal is to maximize Pr[¬E3|E2] = Pr[f(σ∗) = 0].
Since we did not abort during the sign queries, each tuple (m∗

i , r
∗
i , pk∗

i) was
used in at most one sign query. Therefore A’s view of any of the c∗

i s for tuples
from S2 is independent of any queries. Extending Lemma 1, we can see that if
�A is not signable, then A’s view of f(σ∗) is independent of all queries. An upper
bound for Pr[¬E3|E2] then gives us the worst case scenario.

138 A. Saxena et al.

Keeping tuples from S1 in the forgery is not useful for A, since ci = 0 for
such values and so f(σ∗) is independent of them. Therefore, assume that A’s
forgery contains only elements from S2. Now S2 can be further divided into:
(1) S′

2 consisting of entries due to H-queries and (2) S′′
2 consisting of entries

due to sign queries. Since for elements of S′′
2 , the dis are uniformly distributed

between ±1, while for those of S′
2, the dis are guaranteed to be +1, a symmetric

argument shows that including elements from S′
2 is not beneficial to A since it

only biases f(σ∗) towards nonzero. Therefore, assume that A’s forgery contains
only elements from S′′

2 . A counting argument shows that if all elements are from
S′′
2 , then Pr[f(σ∗) = 0] ≤ 2/3, with the maximum occurring when A extracts a

2-tuple signature from a 4-tuple signature. Hence Pr[E3|E2] ≥ 1/3 ��
This proves Theorem 1. ��

References

1. Nakamoto, S.: Bitcoin: A Peer-to-Peer Electronic Cash System
2. Martins, S., Yang, Y.: Introduction to bitcoins: a pseudo-anonymous electronic

currency system. In: Proceedings of the 2011 Conference of the Center for Advanced
Studies on Collaborative Research, CASCON ’11, Riverton, NJ, USA, pp. 349–350.
IBM Corp. (2011)

3. Bitcoin Developers. Bitcoin client source code (github) (2008)
4. Boneh, D., Gentry, C., Lynn, B., Shacham, H.: Aggregate and verifiably encrypted

signatures from bilinear maps. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS,
vol. 2656, pp. 416–432. Springer, Heidelberg (2003)

5. Coron, J.-S., Naccache, D.: Boneh et al.’s k -Element aggregate extraction assump-
tion is equivalent to the diffie-hellman assumption. In: Laih, C.-S. (ed.) ASI-
ACRYPT 2003. LNCS, vol. 2894, pp. 392–397. Springer, Heidelberg (2003)

6. Lysyanskaya, A., Micali, S., Reyzin, L., Shacham, H.: Sequential aggregate signa-
tures from trapdoor permutations. In: Cachin, C., Camenisch, J.L. (eds.) EURO-
CRYPT 2004. LNCS, vol. 3027, pp. 74–90. Springer, Heidelberg (2004)

7. Zhu, H., Bao, F., Li, T., Wu, Y.: Sequential aggregate signatures for wireless routing
protocols. In: 2005 IEEE Wireless Communications and Networking Conference,
vol. 4, pp. 2436–2439 (2005)

8. Ma, D.: Practical forward secure sequential aggregate signatures. In: Abe, M.,
Gligor, V.D. (eds.), ASIACCS, pp. 341–352. ACM (2008)

9. Boldyreva, A., Gentry, C., O’Neill, A., Yum, D.H.: Ordered multisignatures and
identity-based sequential aggregate signatures, with applications to secure routing.
In: CCS ’07: Proceedings of the 14th ACM Conference on Computer and Commu-
nications Security, pp. 276–285. ACM, New York (2007)

10. Lu, S., Ostrovsky, R., Sahai, A., Shacham, H., Waters, B.: Sequential aggregate
signatures and multisignatures without random oracles. In: Vaudenay, S. (ed.)
EUROCRYPT 2006. LNCS, vol. 4004, pp. 465–485. Springer, Heidelberg (2006)

11. Fischlin, M., Lehmann, A., Schröder, D.: History-free sequential aggregate signa-
tures. In: Visconti, I., De Prisco, R. (eds.) SCN 2012. LNCS, vol. 7485, pp. 113–130.
Springer, Heidelberg (2012)

12. Brogle, K., Goldberg, S., Reyzin, L.: Sequential aggregate signatures with lazy ver-
ification from trapdoor permutations. In: Wang, X., Sako, K. (eds.) ASIACRYPT
2012. LNCS, vol. 7658, pp. 644–662. Springer, Heidelberg (2012)

Increasing Anonymity in Bitcoin 139

13. Androulaki, E., Karame, G., Roeschlin, M., Scherer, T., Capkun, S.: Evaluating
user privacy in bitcoin. Cryptology ePrint Archive, Report 2012/596 (2012)

14. Reid, F., Harrigan, M.: An analysis of anonymity in the bitcoin system. In: Alt-
shuler, Y., Elovici, Y., Cremers, A.B., Aharony, N., Pentland, A. (eds.) Security
and Privacy in Social Networks, pp. 197–223. Springer, New York (2013)

15. Ron, D., Shamir, A.: Quantitative analysis of the full bitcoin transaction graph.
Cryptology ePrint Archive, Report 2012/584 (2012). http://eprint.iacr.org/

16. Zerocoin: Anonymous distributed e-cash from bitcoin (2012)
17. Maxwell, G.: Coinjoin: Bitcoin privacy for the real world (2013)
18. Pisinger, D.: Where are the hard knapsack problems. Comput. Oper. Res. 32,

2271–2284 (2005)
19. Chvatal, V.: Hard knapsack problems. Oper. Res. 28(6), 1402–1411 (1980)
20. Micciancio, D.: Generalized compact knapsacks, cyclic lattices, and efficient one-

way functions. Comput. Complex. 16(4), 365–411 (2007). (Prelim. In: FOCS 2002)
21. Miller, V.S.: The Weil pairing, and its efficient calculation. J. Cryptology 17(4),

235–261 (2004)
22. Uchida, Y., Uchiyama, S.: The tate-lichtenbaum pairing on a hyperelliptic curve

via hyperelliptic nets. In: Abdalla, M., Lange, T. (eds.) Pairing 2012. LNCS, vol.
7708, pp. 218–233. Springer, Heidelberg (2013)

23. Hess, F., Smart, N.P., Vercauteren, F.: The Eta pairing revisited. IEEE Trans. Inf.
Theor. 52(10), 4595–4602 (2006)

24. Shinohara, N., Shimoyama, T., Hayashi, T., Takagi, T.: Key length estimation of
pairing-based cryptosystems using ηT pairing. In: Ryan, M.D., Smyth, B., Wang,
G. (eds.) ISPEC 2012. LNCS, vol. 7232, pp. 228–244. Springer, Heidelberg (2012)

25. Scott, M.: Scaling security in pairing-based protocols. IACR Cryptology ePrint
Archive 2005, 139 (2005)

http://eprint.iacr.org/

	Increasing Anonymity in Bitcoin
	1 Introduction
	2 Related Work
	3 Overview of Bitcoin
	4 Increasing Anonymity
	5 Composite Signatures
	6 Composite Signatures and Cryptocurrencies
	7 Integrating with Bitcoin
	8 Conclusion and Future Work
	A Proof of Theorem 1
	References

