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Abstract. One of the unique features of the digital currency Bitcoin is
that new cash is introduced by so-called miners carrying out resource-
intensive proof-of-work operations. To increase their chances of obtaining
freshly minted bitcoins, miners typically join pools to collaborate on the
computations. However, intense competition among mining pools has
recently manifested in two ways. Miners may invest in additional com-
puting resources to increase the likelihood of winning the next mining
race. But, at times, a more sinister tactic is also employed: a mining pool
may trigger a costly distributed denial-of-service (DDoS) attack to lower
the expected success outlook of a competing mining pool. We explore
the trade-off between these strategies with a series of game-theoretical
models of competition between two pools of varying sizes. We consider
differences in costs of investment and attack, as well as uncertainty over
whether a DDoS attack will succeed. By characterizing the game’s equi-
libria, we can draw a number of conclusions. In particular, we find that
pools have a greater incentive to attack large pools than small ones. We
also observe that larger mining pools have a greater incentive to attack
than smaller ones.
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1 Introduction

Bitcoin is a decentralized digital currency that first became operational in 2009
[1]. While cryptographically protected digital currencies have been around for
decades [2], none has received the attention or experienced the same rise in
adoption as Bitcoin [3].

There are many factors that contribute to the success of a currency. Most
currencies are tightly associated with a particular country, and are influenced
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by decisions regarding economic factors and political leadership. At the same
time, internal stakeholders and external trade partners benefit from the adoption
and maintenance of a stable currency. Wider adoption enables positive network
effects, e.g., by enabling exchange of goods beyond the scope of a traditional
barter community. However, currencies remain in competition with each other,
and new currencies might gain a foothold if they offer comparative advantages
to a certain set of stakeholders [4].1

One reason why Bitcoin has attracted enthusiastic backers is that its design
creates opportunities for participants to shape its future and to profit from its
success. The artificially constrained money supply helps drive up the exchange
rate over time, rewarding those who have invested in bitcoins. Most importantly,
new bitcoins are given as rewards to the miner who finds the solution to a com-
plex mathematical problem. However, this also means that new entrants in the
market for Bitcoin mining impose negative externalities on other contributors.
Each new miner who contributes to Bitcoin automatically lowers the value of
the relative contributions of all other miners.

Miners respond in two primary ways to increase their output during the
quest to earn another bundle of bitcoins. First, they form associations with other
contributors in mining pools. Second, they may invest in additional computing
resources. For example, the increasing value of Bitcoin has also created a market
for specialized hardware. At the same time, botnets have been used to increase
the output of mining pools that control these illegally acquired resources. In the
end, the most powerful mining pool is the most likely to win the next race.

There is one caveat to this relatively straightforward process. More recently,
attacks hampering the effectiveness of mining pools have been observed. Distrib-
uted Denial of Service Attacks (DDoS) frequently target mining pools in order
to disrupt their operations (e.g., the distribution and submission of delegated
tasks). There are two primary objectives that attackers are following when facili-
tating DDoS attacks on mining pools. First, the operations at competing mining
pools are slowed down which might give a decisive (but unfair) advantage in the
race for the next bundle of bitcoins. Second, individual miners might become
discouraged and decide to leave “unreliable” mining pools as the result of these
attacks.2

1 Rules for currency competition may differ by country. For example, in the United
States the following rules are of importance. United States money, as identified by
the U.S. Code, when tendered to a creditor always legally satisfies a debt to the
extent of the amount tendered. However, no federal law mandates that a person or
an organization must accept United States money as payment for goods or services
not yet provided. That is, a business might specify a particular currency and therefore
increase competition between currencies.

2 Other attack motivations might include the facilitation of other cybercriminal activ-
ities, e.g., using DDoS as a means to extract payments from a mining pool as part
of an extortion ploy [5]. Attacks might also be indicative of non-financial objectives,
e.g., the earning of reputation in the attacker community or general disagreement
with the goals and objectives of the Bitcoin community.
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Mining pools have been sporadically targeted by DDoS attacks since 2011.
According to an empirical analysis of Bitcoin-related DDoS attacks [6], mining
pools are the second-most frequently targeted Bitcoin service after currency
exchanges. Of 49 mining pools, 12 experienced DDoS attacks, often repeatedly.
At least one mining pool, Altcoin.pw, appears to have shut down due to repeated
DDoS attacks.

Our study addresses the trade-off between two different investment dimen-
sions in the context of Bitcoin creation: construction and destruction. Under
the construction paradigm, a mining pool may invest in additional computing
resources to increase the likelihood of winning the next race. Under the destruc-
tion focus, a mining pool may trigger a costly DDoS attack to lower the expected
success outlook of a competing mining pool.

We approach the study of this trade-off by developing a series of game-
theoretical models. We begin our analysis with a simple model that presents a
binary choice between investment and DDoS attack. Subsequently, we expand
this baseline model to account for costs and the possibility of attack failure. Our
goal is to give the reader initially an intuitive understanding about the impact
of the different investment choices. With increasing model complexity, we aim
for a heightened degree of realism regarding actual investment decisions.

Our work is important because it contributes to a greater understanding of
the inherent risks of the Bitcoin economy. Due to its decentralized nature, inter-
national focus and lack of regulation, the existing competing and misaligned
interests prevalent in the Bitcoin community can frequently lead to undesir-
able outcomes. For example, many Bitcoin currency exchanges have a short sur-
vival time, often leaving their customers in the lurch [7]. The scenario we study
becomes an increasingly central concern to Bitcoin mining pools. With acceler-
ating upfront investment costs to compete in the Bitcoin mining race, the asso-
ciated risks are ballooning as well, e.g., interference with the mining operations
becomes more costly. Responding to such threats requires a good understanding
of the economic impact of attacks and potential countermeasures.

Our presentation proceeds as follows. In Sect. 2, we briefly discuss related
work with a focus on theoretical research. In Sect. 3, we develop and analyze a
series of game-theoretical models. We discuss the practical implications of these
analyses and conclude in Sect. 4.

2 Related Work

2.1 Economics of Security Decision-Making

Our model is concerned with DDoS attacks as a strategic choice impacting the
Bitcoin mining race. As such, we focus in our review on research in which adver-
sarial interests are the subject of economic models. However, relatively little work
has addressed the strategic choices of attackers and cybercriminals. Fultz and
Grossklags model strategic attackers and the competition between those attack-
ers [8]. In their model, attackers and defenders have to be cognizant of inherent
interdependencies that shape the impact of offensive and defensive actions [9–11].
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Similarly, Clark and Konrad present a game-theoretic model with one def-
ender and one attacker. The defending player has to successfully protect multiple
nodes while the attacker must merely compromise a single point [12]. Cavusoglu
et al. [13] analyze the decision-making problem of a firm when attack probabili-
ties are externally given compared to a scenario when the attacker is explicitly
modeled as a strategic player in a game-theoretic framework.

Cremonini and Nizovtsev compare attacker decisions under different scenar-
ios of information availability regarding defensive strength [14]. Schechter and
Smith [15] draw upon the economics of crime literature to construct a model of
attackers in the computer security context [16]. They derive the penalties and
probabilities of enforcement that will deter an attacker who acts as an utility
optimizer evaluating the risks and rewards of committing an offense.

Several surveys have summarized the achievements in this area [17–19].

2.2 Economics of DDoS

Research on the economics of DDoS attacks has focused on the organization of an
effective defense [20–22]. For example, Liu et al. develop a game-theoretic model
of DDoS attacker-defender interactions, and conduct a network simulation study
which utilizes their model to infer DDoS attack strategies [20].

More closely related to our work is a paper by Li et al. [23]. They model the
incentives of a botnet herder to maintain a zombie network for the primary pur-
pose of renting a sufficiently large subset to a DDoS attacker. They investigate
whether this business relationship can remain profitable if defenders can pol-
lute the botnet with decoy machines (which lowers the effectiveness of a DDoS
attack). Complementary to this work, Christin et al. investigate the incentives
of a group of defenders when they face the threat of being absorbed into a bot-
net, e.g., for the purpose of a DDoS attack [24]. Their model shows how the
bounded rationality of defenders can contribute to lower defensive investments
and a higher risk of security compromise.

We are unaware of any economic research that investigates the potential
impact of DDoS attacks on the Bitcoin economy.

2.3 Incentive Modeling of the Bitcoin Economy

In this subsection, we briefly report on research studies that investigate the
stability of Bitcoin to economically-driven attacks. We do not review research
on the robustness of the cryptographic underpinnings of Bitcoin.

Kroll et al. study the stability of Bitcoin mining if an outsider has motivation
to destroy the currency [25]. More specifically, their “Goldfinger” attack com-
pares on a high level the collective benefit of Bitcoin mining with some externally
given incentive to destroy the economy altogether. They also study the likelihood
of deviations from the consensus process of Bitcoin mining.

Similarly, Barber et al. perform an in-depth investigation of the success of
Bitcoin, and study the characteristics of a “doomsday” attack in which the
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complete transaction history would be invalidated by an adversary with vastly
superior computing power [3]. They also investigate a number of other potential
weaknesses, and propose improvements to the Bitcoin protocol.

Babaioff et al. show that, as the Bitcoin protocol is currently defined, it does
not provide incentives for nodes to broadcast transactions; in fact, it provides
strong disincentives [26]. However, the Bitcoin economy seems to be – at least
in this respect – working well in practice. The authors propose a solution for
this potential problem, which is based on augmenting the Bitcoin protocol with
a scheme for rewarding information propagation.

3 Game-Theoretic Model and Analysis

Our modeling approach focuses on the incentives of Bitcoin mining pool opera-
tors to initiate distributed denial of service attacks against other mining pools.
Toward this end, we begin our analysis with a very simple model that presents a
binary choice between investment and attack. Subsequently, we expand the base-
line model to account for the possibility of attack failure, and then to consider
linear investment and attack costs.

In each model, we focus on exactly two players – a big player B and a small
player S. By the size comparison, we simply mean that B has more computa-
tional power to mine bitcoins than S. A third entity R represents the rest of
the Bitcoin mining market. R behaves heuristically and thus is not a player in
a game-theoretical sense. In equations, we overload the notation B, S, and R to
represent the value of the respective player’s computing power.

Each player’s decision space involves a binary choice of investment – either
to invest in additional computing power, or to initiate a DDoS attack against
the other strategic player. The outcome of each player’s decision is realized over
a time scale that is long enough so that payoffs to pools in bitcoins are real-
ized according to the mining probabilities, but short enough so that reaching an
approximate equilibrium in the relative computational power of mining pools is
a reasonable assumption.

3.1 Baseline Model

We assume that the Bitcoin mining market increases computational power over
the game’s time scale at a fixed rate ε; and that the market is at an equilibrium
with respect to each player’s relative computing power. Each player’s base strat-
egy is to maintain the market equilibrium by investing in computation to keep
up with the market. Each player’s alternative strategy is to use those resources
that would have been used for increased computation to initiate a DDoS attack
against the other strategic player.

In the baseline model, we assume that DDoS attacks are 100 % effective, so
that a player who is subject to the attack cannot mine any Bitcoins for the
duration of the game’s time scale. Secondly, in the baseline model, we assume
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that the costs to invest or initiate an attack are negligible relative to the overall
Bitcoin revenue, so that they do not factor into the players’ strategic decisions.

The payoff for each player is determined by the expected value of the fraction
of Bitcoins that they mine. If both players use the base strategy to keep up with
the market, then the payoff of player S is

S(1 + ε)
(B + S + R)(1 + ε)

=
S

B + S + R
;

similarly, the payoff for player B is

B

B + S + R
.

If both players initiate DDoS attacks against each other, then they each receive
nothing. If player S initiates a DDoS attack against player B, while B keeps up
with the market, then B receives nothing, and S receives

S

S + R(1 + ε)
.

These consequences are symmetric with respect to S and B.
The full payoff matrix for each player is summarized in Table 1. From this,

we derive each players’ best responses to each of the other player’s strategies.
Then we use best response conditions to classify the game’s Nash equilibria.
Finally, we provide numerical illustrations for the game’s equilibria and analyze
the corresponding implications.

Table 1. Payoff matrix for B, S

Player B

Computation DDoS

Player S Computation B
B+S+R

, S
B+S+R

B
B+R(1+ε)

, 0

DDoS 0, S
S+R(1+ε)

0, 0

Best-Response Strategies. If player S invests in DDoS, then investing in DDoS
and investing in computing are both best responses for player B, since they both
yield a payoff of 0. On the other hand, if player S invests in computing, then
investing in DDoS is a unique best response for player B if

B

B + R(1 + ε)
>

B

(B + S + R)
;

which reduces to

Rε < S. (1)
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Both DDoS and computing are best responses if

Rε = S; (2)

and computing is a unique best response otherwise. The best responses of player
S analogous, with the constants B and S swapped.

Equilibria

– First, both players investing in DDoS is always a Nash equilibrium. However,
this is only a weak equilibrium, as both players are indifferent to their strategy
choices.

– Second, both players investing in computing is an equilibrium if

S ≤ Rε (3)

and
B ≤ Rε. (4)

Furthermore, the equilibrium is strict if both inequalities are strict.
– Finally, if only one of the above inequalities holds, then there is an equilibrium

in which the player whose inequality does not hold invests in DDoS, while the
other player invests in computing. This is again a weak equilibrium, since the
latter player is indifferent to her strategy.

Numerical Illustrations. Figure 1 shows features of the Nash equilibria for various
values of B and S. Figure 1a divides the parameter space based on the set of
equilibrium profiles. Figure 1b shows the payoff of player B as a function of the
relative sizes of B and S, where the average payoff is taken for regions having
multiple equilibria. The average payoffs of players B and S (for a fixed S) are
shown as a function of B by Fig. 1c.

From Fig. 1a, we see immediately that it is always a weak equilibrium for
each player to DDoS the other. This happens because, with perfect effectiveness
of DDoS, the player being attacked loses all incentives related to their strate-
gic choice, and thus can choose an arbitrary strategy. We extend the model in
the next section to incorporate imperfect DDoS, which alleviates this phenom-
enon. From the same figure, we also see that if either player becomes much
larger than the market growth rate, there is no incentive to mutually cooper-
ate. In these regions, one of the players always has a greater incentive to DDoS
if her opponent invests in computation. The slant of the dividing lines also
shows that the tendency to avoid cooperation is slightly affected by a player’s
own size. Figure 1b shows that in this model, the large player fares extremely
poorly against a small player if her size becomes too large relative to the market
growth rate.

3.2 Baseline Model with Imperfect DDoS

In the first extension of our baseline model, we assume that DDoS attacks are
successful only with fixed probability 1−σ. For numerical illustrations, we take σ
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(a) Equilibrium strategy
profiles for players (B, S)
as a function of the players’
sizes. The letters c and D
abbreviate computation and
DDoS, respectively.

(b) Equilibrium payoff of
player B (lighter shades
represent higher payoffs).
Where there are multiple
equilibria, the figure shows
the average payoff.

(c) Average equilibrium pay-
offs of players B (solid) and
S (dotted) as a function of
B, with S = 0.1.

Fig. 1. Equilibria for various values of B and S. The increase in computational power
is ε = 0.1.

Table 2. Payoff matrix for B, S with imperfect DDoS

B

Computation DDoS

S Computation B
B+S+R

, S
B+S+R

B
B+(σS+R)(1+ε)

, σS(1+ε)
B+(σS+R)(1+ε)

DDoS σB(1+ε)
(σB+R)(1+ε)+S

, S
(σB+R)(1+ε)+S

σB
σ(B+S)+R(1+ε)

, σS
σ(B+S)+R(1+ε)

to be 0.2. The new payoffs (with arbitrary σ) for players B and S are summarized
in Table 2.

Best-Response Strategies. If player S invests in computation, then investing in
computation is a best response for player B if

B

B + S + R
≥ B

B + (σS + R)(1 + ε)
,

which reduces to

S ≤ εR

1 − σ(1 + ε)
; (5)

and investing in DDoS is a best response if

S ≥ εR

1 − σ(1 + ε)
. (6)

If player S initiates a DDoS attack, then investing in computation is a best
response for player B if
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σB(1 + ε)
(σB + R)(1 + ε) + S

≥ σB

σ(B + S) + R(1 + ε)
,

which reduces to

S ≤ εR

1 − σ − ε
1+ε

; (7)

and investing in DDoS is a best response if

S ≥ εR

1 − σ − ε
1+ε

. (8)

Equilibria. The game’s equilibria depend on the sizes of B and S compared to the
quantities εR

1−σ(1+ε) and εR
1−σ− ε

1+ε
. Note that we would expect the first quantity

to be smaller, because we typically have σ < 1
1+ε . Concretely, for example, this

desired relation holds when the growth rate ε is less than 100 % and the DDoS
failure rate σ is at most 50 %.

– First, both players investing in DDoS is a Nash equilibrium whenever

B,S ≥ εR

1 − σ − ε
1+ε

(9)

and the equilibrium is strict whenever the inequality is strict.
– Second, both players investing in computing is an equilibrium if

B,S ≤ εR

1 − σ(1 + ε)
(10)

and again the equilibrium is strict if the inequality is strict.
– Third, there exists an equilibrium in which S initiates a DDoS attack and B

invests in computation whenever

B ≥ εR

1 − σ(1 + ε)
(11)

and

S ≤ εR

1 − σ − ε
1+ε

. (12)

– Finally, there is a sub-case of the previous condition in which B can initiate
a DDoS attack while S invests in computation, if

εR

1 − σ(1 + ε)
≤ B,S ≤ εR

1 − σ − ε
1+ε

. (13)
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(a) Equilibrium strategy
profiles for players (B, S)
as a function of the players’
sizes. The letters c and D
abbreviate computation and
DDoS, respectively.

(b) Equilibrium payoff of
player B (lighter shades
represent higher payoffs).
Where there are multiple
equilibria, the figure shows
the average payoff.

(c) Equilibrium payoff of
players B (solid) and S (dot-
ted) as a function of B for
S = 0.1.

Fig. 2. Equilibria for various values of B and S. The increase in computational power
is ε = 0.1, and the success probability of DDoS is 1 − σ = 0.8.

Numerical Illustration. Figure 2, illustrates features of the equilibria for the base-
line model with imperfect DDoS. Figure 2a divides the parameter space based
on the set of equilibrium profiles. Figure 2b shows the payoff of player B as a
function of the relative sizes of B and S; and Fig. 2c shows the payoff of players
B and S (for a fixed S) as a function of B.

From Fig. 2a, we see that, (compared to the baseline model) there is no longer
a weak equilibrium in which each player initiates a DDoS attack against the
other; and in most parameter configurations, there is now a unique equilibrium.
For each player, this unique equilibrium strategy is primarily determined by her
opponent’s computational power. Once the opponent reaches a given threshold,
it is in the player’s best interest to DDoS that opponent. The slanted nature of
the equilibrium-dividing lines shows that a player’s equilibrium strategy is also
determined to a weaker degree by her own computational power, with larger
players having slightly more incentive to attack. Finally, there is a region for
players of medium and comparable sizes, in which the game has two competing
equilibria. The strategic dynamic in this region is similar to the classical game
of battle of the sexes.

3.3 Baseline Model with Imperfect DDoS and Linear Costs

The third extension of our baseline model combines the features of imperfect
DDoS attacks and linear costs for player investment choices. Here we assume
that the cost of an investment to keep up with the mining market is proportional
to the size of the investing player, and that the cost to initiate a DDoS attack
is proportional to the size of the player who is being attacked.
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If S invests in computation, she incurs a cost of γS; while if S initiates a
DDoS attack against player B, it results in a cost of λB. Other things being
equal, we suppose that a DDoS attack should cost less than an investment in
computation, so for our numerical illustrations, we choose an assignment with
λ < γ. The resulting payoffs for players B and S (for arbitrary γ and λ) are
summarized in Tables 3 and 4.

Table 3. Payoff matrix for B with imperfect DDoS and linear costs

B

Computation DDoS

S Computation B
B+S+R

− γB B
B+(σS+R)(1+ε)

− λS,

DDoS σB(1+ε)
(σB+R)(1+ε)+S

− γB σB
σ(B+S)+R(1+ε)

− λS

Table 4. Payoff matrix for S with imperfect DDoS and linear costs

B

Computation DDoS

S Computation S
B+S+R

− γS σS(1+ε)
B+(σS+R)(1+ε)

− γS

DDoS S
(σB+R)(1+ε)+S

− λB σS
σ(B+S)+R(1+ε)

− λB

Best-Response Strategies. If player S invests in computation, then investing in
computation is a best response for player B if

B

B + S + R
− γB ≥ B

B + (σS + R)(1 + ε)
− λS; (14)

and investing in DDoS is a best response if

B

B + S + R
− γB ≤ B

B + (σS + R)(1 + ε)
− λS. (15)

If player S initiates a DDoS attack, then investing in computation is a best
response for player B if

σB(1 + ε)
(σB + R)(1 + ε) + S

− γB ≥ σB

σ(B + S) + R(1 + ε)
− λS; (16)

and investing in DDoS is a best response if

σB(1 + ε)
(σB + R)(1 + ε) + S

− γB ≤ σB

σ(B + S) + R(1 + ε)
− λS. (17)
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Equilibria

– First, both players initiating DDoS attacks is a Nash equilibrium whenever

B

B + S + R
− γB ≥ B

B + (σS + R)(1 + ε)
− λS (18)

and

S

B + S + R
− γS ≥ S

(σB + R)(1 + ε) + S
− λB. (19)

– Second, both players investing in computing is an equilibrium if

σB(1 + ε)
(σB + R)(1 + ε) + S

− γB ≤ σB

σ(B + S) + R(1 + ε)
− λS (20)

and

σS(1 + ε)
B + (σS + R)(1 + ε)

− γS ≤ σS

σ(B + S) + R(1 + ε)
− λB. (21)

– Third, an equilibrium in which S conducts a DDoS attack against B while B
invests in computation may occur when

σB(1 + ε)
(σB + R)(1 + ε) + S

− γB ≤ σB

σ(B + S) + R(1 + ε)
− λS (22)

and

S

B + S + R
− γS ≤ S

(σB + R)(1 + ε) + S
− λB. (23)

– Finally, there can be an equilibrium in which B conducts a DDoS attack
against S while S invests in computation whenever the roles of B and S are
interchanged in the two inequalities from the previous case.

Numerical Illustration. Figure 3 shows features of the Nash equilibria for various
values of B and S. Figure 3a divides the parameter space based on the set of
equilibrium profiles. Figure 3b shows the payoff of player B as a function of the
relative sizes of B and S; and Fig. 3c shows the payoff of players B and S (for a
fixed S) as a function of B.

The addition of costs to the model keeps the smallest players from partici-
pating in DDoS attacks, as they are best served by investing in their own compu-
tational prowess. Aside from this, the dynamics of the equilibrium strategies are
largely similar to the model without costs. Namely, players are still incentivized
to attack large players, and slightly more so if they are larger themselves. There
still remains a small region for midsize players in which either player can attack
the other; and with the possible exception of an extremely large player, the pay-
offs are generally higher for a player whose size lies just below the threshold for
being attacked.
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(a) Equilibrium strategy
profiles for players (B, S)
as a function of the players’
sizes. The letters c and D
abbreviate computation and
DDoS, respectively.

(b) Equilibrium payoff of
player B (lighter shades
represent higher payoffs).
Where there are multiple
equilibria, the figure shows
the average payoff.

(c) Equilibrium payoff of
players B (solid) and S (dot-
ted) as a function of B for
S = 0.1.

Fig. 3. Equilibria for various values of B and S. The increase in computational power
is ε = 0.1, the success probability of DDoS is 1 − σ = 0.8, and the linear cost factors
for investing into computation and DDoS are γ = 0.002 and λ = 0.001.

4 Conclusions and Future Work

We set out in this work to understand the motivation behind recent DDoS attacks
against Bitcoin mining pools. To do this, we analyzed a series of game-theoretical
models involving two mining pools with different sizes. Several fundamental
dynamics of this game were common to all models and seem well-motivated in
the context of Bitcoin. First, we saw that there is a greater incentive to attack a
larger mining pool than a smaller one. This finding is intuitive because each pool
battles for the reward; and eliminating the largest mining pool has the greatest
impact on the chances of the remaining mining pools to win. It is also consis-
tent with what has been observed empirically: 63 % of large mining pools have
experienced DDoS attacks, compared to just 17 % of small ones [6]. Second, we
observed that the larger mining pool has a slightly greater incentive to attack
than the smaller mining pool. This dynamic arises because a larger mining pool
has a smaller relative competitor base, and eliminating a competitor from a small
base yields more benefit than eliminating one from a larger base. Finally, there is
a size threshold such that mining pools larger than this threshold are subject to
economically-motivated attacks; and pools smaller than the threshold are not.
Furthermore, players whose sizes are just below this threshold tend to receive
the highest payoffs.

From our modeling extensions we found additional insights. First, if attacks
can be mitigated, then the size threshold for a mining pool to be safe from
DDoS increases. That is, the market will tolerate (without attempting an attack)
progressively larger pools as attacks become less effective. Second, the prevalence
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of costs can keep smaller players out of the DDoS market, but these do not change
the core dynamics for mid-size and large mining pools.

There are many extensions to pursue in future work. A more direct economic
approach to the cost dimension would have each player optimize their own invest-
ment costs relative to their current size. A player’s choice of whether to initiate
a DDoS attack would depend on the solution to two investment optimization
problems. This extension would improve realism and reduce the game’s exoge-
nous parameters at the expense of additional model complexity. Another way to
extend the model would be to give DDoS attacks a variable cost constraining
their effectiveness. Finally, our work considers the incentives of mining pools
as a whole, but in reality most pools consist of heterogeneous individuals who
have a choice to change pools. By expanding our game to an iterated version in
which individual players could switch mining pools between rounds, we might
gain further insights into the strategies we see in today’s Bitcoin mining market.
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