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Abstract. During the Summer of 2013, it was revealed through the
documents leaked by Edward Snowden that the NSA was collecting the
metadata of every US-to-foreign, foreign-to-US and US-to-US call from
the largest US telephone providers. This led to public outcry and to Pres-
ident Obama calling for the restructuring of this program. The options
initially considered included keeping the data at the providers, entrusting
the data to a private entity, entrusting the data to a non-NSA govern-
ment agency or ending the program all-together.

In this work, we show how cryptography can be used to design a
privacy-preserving alternative to the NSA metadata program. We present
a protocol based on structured encryption, in particular on graph encryp-
tion, and secure function evaluation that provides the following guaran-
tees: (1) providers learn no information about NSA queries; (2) NSA
queries can only be executed if validated by a given certification process;
(3) the NSA learns nothing about the data beyond what can be inferred
from the query results. In addition, these properties are achieved whether
the data is stored at the providers, the NSA or on a third-party cloud.

1 Introduction

On June 5th, 2013, Glenn Greenwald published the first document from the
Edward Snowden leaks in the Guardian [10]. This was a top secret court order
compelling Verizon to hand the metadata of its calls to the National Security
Agency (NSA) on a daily basis. This metadata was to include (among other
things) the to and from numbers, the time and the duration of every foreign-to-
US, US-to-foreign and US-to-US call. The revelation that the NSA was collecting
information concerning every US citizen was astonishing to many and led to
public outcry.

The Snowden revelations have motivated many important questions in a
variety of disciplines including in Ethics, Law, Public Policy and Diplomacy.
This work explores and formulates new problems in cryptography motivated by
these disclosures. In particular, we consider the following question:

Can we design a practical privacy-preserving alternative to the NSA
telephony metadata program?

Answering this question will first require us to understand how the program
works—as much as is possible from only public sources—and to formulate an
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appropriate notion of privacy for this setting. While we do propose a concrete
cryptographic protocol for this problem, we stress that our proposal should be
viewed as a first step and that our main interest is in formulating and moti-
vating further research in this direction. It is also worth mentioning that by
practical, we roughly mean: built out of efficient cryptographic primitives like
symmetric-key encryption and hash functions and not from primitives that are
currently mostly of theoretical interest like fully-homomorphic [8] or functional
encryption [1].

To properly model the problem, we provide in Sect. 1.1 an overview of how the
program works. Our understanding is based on various public sources including
[4,5] but we note that this may not reflect exactly how the program works in
practice and that there are likely many important aspects of it that have not
been disclosed. To provide context for our work, we provide in the full version
[13] a high-level survey of the legal questions surrounding the NSA metadata
program. This is not needed to understand the protocols we present.

1.1 How the NSA Metadata Program Works

We provide an overview of how the metadata program works. Our understanding
of the program relies mostly on the findings of President Obama’s Review Group
on Intelligence and Communications Technologies [4]. Each day, the telophone
providers hand the metadata of every US-to-foreign, foreign-to-US and US-to-US
call to the NSA. This metadata consists of the origin and destination numbers,
the time and duration of the call, the international mobile subscriber identity
(IMSI) number, the trunk identifier and telephone calling card numbers [4].
This data is stored by the NSA and each record has to be deleted after 5 years.
The data can only be queried by a subset of 22 NSA analysts (two of which
are supervisors) that have received special training. Furthermore, the dataset
can only be queried by phone number and each query has to go through an
internal NSA certification process. In particular, each query to the database has
to be found to be relevant to a particular investigation by at least two analysts.
If this is the case, the query has to be approved by at least one of the two
supervisors and found to be associated with one of a set of FISA-court-approved
Terrorist organizations. If the query passes this certification process, the analyst
is allowed to query the database and receives the metadata associated with every
number that called or was called from the query number and every number that
was either called from or called any one of the latter numbers. Viewing the
database as an undirected graph with phone numbers as vertices and edges
between any two numbers for which there was a call, the analyst receives the
metadata associated with any number that is at most 2 hops away from the
query number.1

1 Originally, the program allowed for 3-hop queries but this was reduced to 2 hops by
the Obama Administration as of January 17th.
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1.2 Our Approach

While the current NSA metadata program has an internal process for query
certification and is claimed to include technological procedures to minimize the
exposure of private information,2 the program does not provide any crypto-
graphic privacy guarantees. This simply follows from the fact that the telecom-
munications companies provide the metadata in plaintext to the NSA. At a
high-level, our goal in designing a new system will therefore consist of having
the providers hand encrypted metadata to the NSA in such a way that analysts
can then issue (cryptographically-enforced) certified queries on the encrypted
data.

To achieve this we design a cryptographic protocol we refer to as MetaCrypt
which relies in part on two important building blocks. The first is graph encryp-
tion (a special case of structured encryption) [3] which encrypts graphs in such a
way that they can be privately queried. The second is secure function evaluation
(SFE) which enables a set of parties to evaluate a function without revealing
information about their inputs to each other [9,17]. We review both building
blocks in Sect. 5. Our protocol makes a non-trivial use of these primitives and
there are several technical difficulties to overcome in order to arrive at a final
solution.

To analyze the security of our proposal, we isolate four properties we believe
are crucial to any satisfactory solution:

1. isolation: the database should be protected from outsiders;
2. query privacy: the analyst queries should remain hidden from the providers

and the server;
3. data privacy: the analyst should not learn any information about the database

beyond what it can infer from the 2-hop queries it makes;
4. query certification: the analyst should only be able to make queries that sat-

isfy the certification process described above (i.e., two analysts agree about
the relevance of the query, at least one supervisor approves it and the associ-
ated organization is on a FISA-approved list of organizations).

In the full version of this work [13], we formalize these security properties in
the ideal/real-world paradigm which is typically used to analyze the security
of multi-party computation protocols. This paradigm has several advantages
including modularity and simplicity.

Applications beyond the metadata program. Though the focus of this
work is on the metadata program, the cryptographic techniques and protocols
introduced have applications beyond this specific application. In particular, our
main protocol can be used in any setting where a client wishes to privately query
a set of privacy-sensitive graph datasets generated by various providers.
2 Unfortunately, we could not find any details of how these mechanisms worked in

public sources.
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2 Related Work

As far as we know, the first discussion of privacy-preserving alternatives to the
NSA programs appeared in a blog post of the author from July, 2013 [12]. There,
a protocol is described that would enable an intelligence agency to privately
query encrypted data generated by a provider in such a way that the query is
certified by a third-party judge. The protocol makes use of MACs, secure two-
party computation [17] and a keyword OT protocol of Freedman, Ishai, Pinkas
and Reingold [7]. In [11], Jarecki, Jutla, Krawczyk, Rosu and Steiner describe a
protocol similar in functionality to the one proposed in [12] but that, in addition,
supports boolean keyword searches over the encrypted data. Concurrently with
this work, Kroll, Felten and Boneh describe in [15] a set of protocols that allow an
investigator to privately retrieve the encrypted records of providers in such a way
that investigator queries are certified by a judge. The protocols of [15] provide
accountability but, unlike the solutions proposed in [11,12], do not support any
form of search functionality over encrypted records (i.e., investigators can only
access a record by an identifier).

We note that none of the protocols above are directly applicable to the prob-
lem considered in this work. This is simply because, as discussed in Sect. 1.1,
the NSA metadata system is designed to support 2-hop neighbor queries on the
call graph (i.e., the graph that underlies the providers’ datasets) and such a
functionality is not directly supported by these works. Presumably, 2-hop neigh-
bor queries could be instantiated on top of these protocols by having the client
perform an interactive breadth-first search, but this would require O(d) rounds,
where d is the degree of the vertex queried.

In this work, we provide a solution with a completely non-interactive query
phase. More precisely, it only uses interaction to certify queries, not to execute
the 2-hop queries over the encrypted datasets. We achieve this in part by making
use of a 1-hop graph encryption scheme which, roughly speaking, allows one to
encrypt a graph in such a way that it can be privately queried. Graph encryption
was introduced by Chase and Kamara in [3], where constructions supporting
various types of queries were proposed (adjacency queries, 1-hop neighbor queries
and focused sub-graph queries). Graph encryption is a special case of structured
encryption which encrypts arbitrarily-structured data in such a way that it can
be privately queried [3]. To certify queries, we make use of secure multi-party
computation as introduced by Yao for the two-party case [17] and by Goldreich,
Micali and Wigderson for the n-party case [9].

In the 90’s, a team at NSA led by Binney, Loomis and Wiebe designed a sys-
tem called ThinThread for large-scale data analysis. The system was designed
to provide some form of privacy protection for US citizens. Unfortunately, it
was never deployed on a large scale and the only official document that dis-
cusses it is so heavily redacted that no information about its design can be
gleaned [16].
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3 Preliminaries and Notation

Graphs and graph databases. A graph G = (V,E) consists of a set of vertices
V and a set of edges E ⊆ V × V. For any vertex v ∈ V, we denote its d-hop
neighbors by ΓG

d (v) and its neighbors at a distance of at most d hops by ΓG
≤d(v).

Given two graphs G = (V,E) and G′ = (V′,E′) such that E′ ⊆ (V∪V′)×(V∪V′),
we refer to the graph G′′ = (V ∪ V′,E ∪ E′) as the sum of G and G′ and to G′

as an update to G. We sometime write G′′ = G + G′.
We view the metadata generated by a telecommunications provider as a

directed graph, G = (V,E), where the vertices v ∈ V correspond to telephone
numbers and where there is a directed edge from v1 to v2 if there is a call from
the number associated with v1 to the number associated with v2. We associate
to each undirected edge e = {v1, v2} in E: (1) a unique identifier id(e) that is
independent of the numbers/vertices in e; and (2) a document Did(e) that stores
information about calls between v1 and v2 such as time, originating number, des-
tination number and duration. We refer to a graph G = (V,E) and its auxiliary
documents D = {Did(e)}e∈E as a graph database GDB = (G,D). We denote the
documents associated with edges 2 hops away from v as follows:

GDB(v) =
{
Did(v,w) ∈ D : w ∈ ΓG

1 (v)
} ⋃{

Did(w,z) ∈ D : z ∈ ΓG
1 (w)

}
w∈ΓG

1 (v)
.

Parties and adversarial structures. The participants in our protocol include
t providers (Prv1, . . . ,Prvt) that generate the metadata; a server Srv that stores
the (encrypted) metadata; two analysts An1 and An2 which query the metadata;
two supervisors Sup1 and Sup2 that validate queries; and a FISA judge J that
provides a watch list WL of organizations. The analysts and supervisors are
assumed to belong to a single agency. In our security analysis, we will consider
the cases where the server is managed by the providers and where the server is
managed by the agency. We assume private and authenticated channels between
all parties.

4 The MetaDB Functionality

As mentioned in Sect. 1, we use the ideal/real-world paradigm to analyze the
security of our protocol. Here, we give an overview of the ideal functionality
that captures the security properties we want (a detailed security definition is
provided in the full version). The functionality, which we refer to as the MetaDB
functionality, supports the operations of the NSA metadata program as described
in Sect. 1.1, but with privacy guarantees for the analyst queries and the graph
databases, and with a cryptographically-enforced query certification process.

The functionality is executed between t providers (Prv1, . . . ,Prvt), a server
Srv, two analysts An1 and An2, two supervisors Sup1 and Sup2 and a judge J. It
is parameterized by three leakage functions LS, LN and LU and is a (t+6)-party
reactive functionality. Throughout, we will assume that the first analyst An1 is
primarily interested in making the query and that the purpose of the second
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analyst An2 is to provide support for the query (i.e., to satisfy the constraint
that at least two analysts must determine that the query is relevant to the
investigation). This is without loss of generality since the roles can be inversed.

In the first phase, each provider Prvi sends its graph database GDBi =
(Vi,Ei,Di) to the trusted party while the judge J sends a watch-list WL. At the
end of this phase, the functionality sends leakage (LS(GDB1), . . . ,LS(GDBt)) to
the server Srv. In the next phases the parties either update the data or query
it. To query the data, the parties do the following. The two analysts send their
query vertices v and v′ to the functionality and the two supervisors Sup1 and
Sup2 send tuples (v1, b1, org1) and (v2, b2, org2), respectively. Here, v1 and v2
are the vertices under consideration, b1 and b2 are bits indicating whether the
respective vertices are authorized, and org1 and org2 are the organizations asso-
ciated with the vertex. If v = v′ and if at least one of the supervisors’ inputs has
the form (v, 1, org), the functionality checks that org ∈ WL. If this is the case,
it returns the documents

⋃t
i=1 GDBi(v) to analyst An1. It also sends leakage

(LN(GDB1, v), . . . ,LN(GDBt, v)) to the server Srv. To update a graph database,
each provider Prvi sends a tuple upi = (V+

i ,E+
i ,D+

i ), where V+
i is either a set

of new vertices or ⊥, E+
i is a set of new edges in (Vi × V+

i ) ∪ (Vi × V+
i ) and

D+
i = {Did(e+)}e+∈E+

i
is a set of new documents. The functionality then sends

leakage (LU(GDB1, up1), . . . ,LU(GDBt, upt)) to the server.

Other certification processes. We briefly note that while the MetaDB
functionality captures a very specific certification process—essentially the one
described in [4]—any new or different process could be easily formalized by
changing or extending the functionality described above. Since our concrete pro-
tocol relies in part on (general-purpose) secure function evaluation for query
certification, it could also be extended to capture a new/different certification
process.

5 Cryptographic Building Blocks

We review the building blocks used in the MetaCrypt protocol. These include
SFE [9,17] and graph encryption [3]. An SFE protocol allows n parties to evalu-
ate a function f on their private inputs x = (x1, . . . , xn) in such a way they can-
not learn any information about each other’s inputs beyond what can be inferred
from the result. A graph encryption scheme encrypts a graph G = (V,E) in such
that way that the graph structure (i.e., the edges E) is hidden and that it can be
queried without disclosing the query. We describe each of these in more detail.

Secure function evaluation. An SFE protocol securely computes any poly-
time computable function f : X1 × · · · × Xn → Y1 × · · · × Yn. The protocol is
executed between n parties (P1, . . . , Pn), where the ith party holds input xi and
receives output yi = fi(x1, . . . , xn). An MPC protocol is a protocol that securely
computes any polynomial-time reactive functionality F = (f1, . . . , f�).
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5.1 Graph Encryption

Graph encryption was introduced in [3] as a special case of structured encryption.
A graph encryption scheme takes a graph G = (V,E) and produces an encrypted
graph EGR that hides the structure of the graph.3 The encrypted graph can then
be queried using tokens that can only be generated with knowledge of a secret
key. In [3], several constructions are proposed that support various kinds of
queries, including adjacency queries (i.e., given two vertices, do they share an
edge?) and 1-hop neighbor queries (i.e., given a vertex v, return all the vertices
that share an edge with v). In this work, we require a scheme that supports
1-hop neighbor queries but that, in addition, is associative, dynamic and is edge-
centric. We augment the syntax and security definitions of [3] to capture such a
scheme.

Definition 1 (Dynamic graph encryption with 1-hop neighbor queries).
A dynamic and associative graph encryption scheme that supports 1-hop neighbor
queries Graph = (Setup,Token,Nghbr,Token+,Add) consists of five polynomial-
time algorithms that work as follows:

– (K,EGR) ← Setup(1k,G, sp): is a probabilistic algorithm that takes as input
a security parameter k, a graph G = (V,E) and semi-private information
sp =

(
e, se

)
e∈E

. It outputs a secret key K and an encrypted graph EGR.
– tk := Token(K, v): is a deterministic algorithm that takes as input a secret

key K and a vertex v ∈ V and outputs a token tk.
– {(id, sid)}id∈I := Nghbr(EGR, tk): is a deterministic algorithm that takes as

input an encrypted graph EGR and a token tk and returns a set of id/string
pairs {(id, sid)}id∈I , where I ⊆ {id(e)}e∈E.

– atk := Token+(K,G+, sp+): is a deterministic algorithm that takes as input
a secret key K, a graph update G+ and semi-private information sp+ and
returns an add token atk.

– EGR′ := Add(EGR, atk): is a deterministic algorithm that takes as input an
encrypted graph EGR and a token atk and outputs an encrypted graph EGR′.

A note on deletion. Recall that the metadata program requires the NSA to
remove from its database all information associated with calls older than 5 years.
Note, however, that the formulation of graph encryption given in Definition 1
does not support deletions. The reason is essentially that since the deletion
of the (encrypted) documents cannot be enforced (e.g., the server holding the
documents can always make copies) there is no security-related reason for the
encrypted graphs to support deletion. The value of supporting deletion would
mostly be efficiency (e.g., to avoid returning old documents) but that can be
handled using non-cryptographic mechanisms (e.g., not returning any encrypted
document that was received past a certain date).

Security. Intuitively, a graph encryption scheme is secure if, given an encrypted
graph EGR and a token tk, the adversary cannot learn anything about the under-
lying graph and query. This exact intuition is difficult to achieve (efficiently) so
3 Typically, the number of vertices is revealed but this can be hidden using padding.
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the security guarantee is usually weakened to allow for some form of leakage.
The leakage is formalized by parameterizing the security definition with a set
of leakage functions LS, LN and LU which precisely capture the leakage of the
scheme’s Setup, Nghbr and update algorithms, respectively. We recall in Defini-
tion 2 below the notion of adaptive semantic security for graph encryption which
is a special case of the definition from [3] which itself generalizes the definition
from [6].

Definition 2 (Adaptive semantic security [3,6]). Let Graph = (Setup,
Token,Nghbr,Token+,Add) be a dynamic and associative graph encryption
scheme supporting 1-hop neighbor queries and consider the following probabilis-
tic experiments where A is an adversary, S is a simulator and LS, LN and LU

are (stateful) leakage algorithms:

RealGraph,A(k): the adversary A generates a graph G = (V,E) and semi-private
information sp from which the challenger creates an encrypted graph EGR,
where (K,EGR) ← Setup(1k,G, sp). Given EGR, the adversary A makes a
polynomial number of adaptive queries and updates. For each neighbor query
v, A receives a token tk := TokenK(v) from the challenger and for each
graph update G+ and semi-private information sp+ it receives an add token
atk := Token+(K,G+, sp+). Finally, A returns a bit b that is output by the
experiment.

IdealGraph,A,S(k): the adversary A outputs a graph G = (V,E) and semi-private
information sp =

(
e, se

)
e∈E

. Given leakage LS(G, sp), the simulator S returns
an encrypted graph EGR. The adversary then makes a polynomial number of
adaptive queries and updates. For each query v the simulator is given LN(G, v)
and

{
s(v,w)

}
w∈ΓG

1 (v)
and returns a token tk to A. For each graph update G+

and new semi-private information sp+, the simulator receives LU(G,G+, sp+)
and returns an add token atk to A. Finally, A returns a bit b that is output
by the experiment.

We say that Graph is adaptively (LS,LN,LU)-secure if for all ppt adversaries
A, there exists a ppt simulator S such that

|Pr[RealGraph,A(k) = 1] − Pr[IdealGraph,A,S(k) = 1]| ≤ negl(k).

Instantiating 1-hop graph encryption. In [3], Chase and Kamara show how
to construct a static, non-interactive, associative 1-hop graph encryption scheme
from any static, non-interactive, associative, and chainable searchable symmet-
ric encryption (SSE) scheme. Roughly speaking, chainability means that the
scheme’s LS leakage does not reveal any information about the semi-private
information. For a discussion and formalization see the full version of [3]. Non-
interactive means search requires only a single message from the client.

The high-level idea of the CK transformation is as follows: document identi-
fiers are set to the vertex labels and a vertex label v′ is added to a document with
identifier v if the graph has either a (directed) edge (v, v′) or (v′, v). A 1-hop
undirected neighbor query for vertex v then consists of searching for keyword v.
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It is not hard to see that this transformation can be extended to the dynamic
case as well if the underlying SSE scheme supports both add operations (i.e.,
adding documents) and edits (i.e., adding words to an existing document).

Unfortunately, we cannot use the Chase-Kamara transformation here. The
reason is that a direct application of it yields a “vertex-centric” 1-hop graph
encryption scheme in the sense that the semi-private strings are associated
to vertices and that the Nghbr algorithm returns vertex identifiers. This is in
contrast to the kind of scheme we need and that is described above which is
“edge-centric” in the sense that the semi-private strings are associated with
edges and that the Nghbr algorithm returns edge identifiers. Nevertheless, in the
full version of this work [13], we show how to construct such an edge-centric
1-hop graph encryption scheme based on the dynamic SSE schemes of Kamara,
Papamanthou and Roeder [14] and of Cash et al. [2] (in particular, based on the
scheme Π+

bas).

6 The MetaCrypt Protocol

In this Section, we describe our main protocol, MetaCrypt, which securely com-
putes the MetaDB functionality. The protocol is described in detail in the full
version of this work [13] and, at a high level, works as follows. It makes use of
an SFE protocol Π, a graph encryption scheme Graph = (Setup,Token,Nghbr,
Token+,Add) that supports 1-hop neighbor queries, a public-key encryption
scheme PKE = (Gen,Enc,Dec), a pseudo-random function F and a random oracle
(RO) H. The RO can be removed at the cost of increased storage complexity.
We assume private and authenticated channels between all parties which can
be instantiated using standard cryptographic primitives. The protocol supports
three operations: setup, queries and updates, which are described next.

Setup. During setup, the agency generates a public/private key pair (pk, sk).
The secret key is sent to all its analysts (we discuss in the full version how to
augment the protocol to support individual analyst keys) and the public key
is sent to the providers (Prv1, . . . ,Prvt). The t providers encrypt their graph
databases GDB1, . . . ,GDBt and send the result to the server. This encryption
step, however, does not consist of simply applying the underlying graph encryp-
tion scheme as there are three main difficulties to overcome. The first is that in
our setting—unlike in the standard structured/searchable encryption setting—
the intended recipient of the data (the analyst) is not the owner of the data
(the provider). The second difficulty is that the graph encryption schemes we
have only support 1-hop neighbor queries, whereas we need to handle 2 hops.
A third, and more subtle, issue has to do with how the documents are encrypted.
In fact, unlike the standard client/server setting where structured/searchable
encryption is typically applied, in our setting we cannot use any CPA-secure
symmetric encryption scheme to encrypt the documents. The difficulty is that
in the adversarial structures we consider, the adversary not only corrupts the
server but the analyst as well which means the adversary will have access to the
decrypted documents that are relevant to the queries. To satisfy our adaptive and
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simulation-based definition where the ideal adversary learns the contents of the
documents only after having committed to simulated ciphertexts, the underlying
encryption scheme has to be non-committing.

We handle the first issue using hybrid encryption and the third using the “stan-
dard” PRF-based symmetric-key encryption scheme—though we replace the PRF
with a RO for efficiency reasons. Recall that each graph database GDB consists of
a graph G = (V,E) and a set of documents D. Each provider encrypts its docu-
ments by computing, for all e ∈ E, cid(e) := 〈Did(e) ⊕ H(Kid(e), rid(e), rid(e), where

Kid(e) := FKh(id(e)), Kh $← {0, 1}k and rid(e)
$← {0, 1}k. Each key Kid(e) is then

encrypted under the agency public key pk. We refer to these public-key-encrypted
keys as key encapsulations and denote them keid(e). The encapsulations are stored
as semi-private information in encrypted graphs constructed from G. This is done
so that the result of a query includes both the identifiers and the encapsulations
of the relevant encrypted documents. After receiving the encrypted documents
and encapsulations from the server, the analyst uses the agency secret key sk to
recover the symmetric keys with which it decrypts the documents.

To handle 2-hop neighbor queries based on a scheme that only supports
1-hop queries, we use the chaining approach first used in [3] to construct
web graph encryption schemes for focused subgraph queries. The high-level
idea is to encrypt the graph G = (V,E) twice and to store tokens for
the second encryption as semi-private information in the first encryption.
More specifically, we generate a second-level encrypted graph by computing
(K(2),EGR(2)) ← Setup(1k,G, sp(2)), where sp(2) is the semi-private informa-
tion

(
e, keid(e)

)
e∈E

. We then generate tokens for all vertices v ∈ V by computing

tk(2)v ← TokenK(2)(v) and create a first-level encrypted graph by computing
(K(1),EGR(1)) ← Setup(1k,G, sp(1)), where sp(1) is the semi-private informa-
tion

(
e, 〈tk(2)e2

, keid(e)
〉
)e∈E, where e2 is the terminating vertex of e. Finally, the

provider sets its key to K = (Kh,K(1),K(2)) and sends an encrypted graph
database EGDB =

(
EGR(1),EGR(2), {cid(e)}e∈E

)
to the server.

Updates. To update an encrypted graph database with a new graph G+ =
(V+,E+) and new documents D+, a provider does the following. It first
encrypts the documents as in the Setup phase: it generates a key Kid(e+) :=
FKh(id(e+)) for each new edge e+ ∈ E+; creates a key encapsulation
keid(e+) ← PKE.Encpk(Kid(e+)); and encrypts the document by computing

cid(e+) := 〈Did(e+) ⊕ H(Kid(e+), rid(e+)), rid(e+)〉, where rid(e+)
$← {0, 1}k. It

then stores the key encapsulations as semi-private information in an update
to the second-level encrypted graph. More precisely, it generates an add token
atk(2) := Token+

K(2)(G+, sp(2)), where sp(2) = (e+, keid(e+))e+∈E+ . It then gen-
erates second-level query tokens for every vertex in G+ by computing, for all
v+ ∈ V+, tk

(2)
v+ := TokenK(2)(v+). These second-level query tokens are then

stored as semi-private information in an update to the first-level encrypted
graph. Specifically, the provider computes atk(1) := Token+

K(1)(G+, sp(1)),
where sp(1) =

(
e+, 〈tk(2)

e+
2

, keid(e+)〉
)
e+∈E+ . The provider then sends an update



Restructuring the NSA Metadata Program 245

(atk(1), atk(2), {cid(e+)}e+∈E+) to the server who uses the add tokens to update
the encrypted graphs and stores the new ciphertexts. If a new document encryp-
tion cid(e+) is for an edge for which there already exists ciphertexts (perhaps the
new document contains metdata on new calls conducted between the vertices),
then the server just concatenates the new ciphertext to the olds ones.

Queries. During the query phase, the parties interact in such a way that the
analyst An1 receives a token for his vertex if the latter is certified with respect
to the policy outlined in Sect. 1. This phase mainly consists of the execution of
an SFE protocol Π between the providers (Prv1, . . . ,Prvt) who input the keys
(K(1)

1 , . . . , K
(1)
t ), the analysts An1 and An2 who input their query vertices v and

v′, the supervisors Sup1 and Sup2 who input tuples (v1, b1, org1) and (v2, b2, org2)
and the judge J who inputs the watch list WL.

The function f that is evaluated is defined as follows. First, it checks whether
the query vertices v and v′ of the analysts are equal. If so, it verifies that at least
one supervisor authorizes the query by verifying that either b1 = 1 or b2 = 1. In
the following suppose, without loss of generality, that b1 = 1, i.e., the first super-
visor Sup1 approved the query. The function checks that the vertex v1 approved
by Sup1 is indeed the same as the vertex input by the analysts. This is to avoid
a potential attack where an analyst, say An1, asks a supervisor, say Sup1, to
approve a query vertex v1 but inputs a vertex v �= v1 into the SFE protocol. If
this is the case, the function checks that the organization org1 submitted by Sup1

is on the watch list submitted by the judge. If this is the case, the function uses
the keys (K(1)

1 , . . . , K
(1)
t ) to generate query tokens (tk(1)1 , . . . , tk

(1)
t ) for vertex v.

The function returns these tokens to the analyst.
The analyst then sends the tokens to the server who uses them to query

the providers’ encrypted graph databases (EGDB1, . . . ,EGDBt). More pre-
cisely, for each encrypted database EGDBi = (EGR(1)

i ,EGR
(2)
i , {cid(e)}e∈E)

the server does the following. It queries the first-level encrypted graph by
computing Nghbr(EGR(1)

i , tk
(1)
i ). This results in either ⊥ or a set of tuples(

id(v, w),
〈
tk(2)w , keid(v,w)

〉)
w∈ΓG

1 (v)
, consisting of an edge identifier id(v, w), a

second-level token tk(2)w and a key encapsulation keid(v,w). For each w ∈ ΓG
1 (v),

the server uses the second-level token to query the second-level encrypted graph
EGR

(2)
i , which results in tuples

(
id(w, z), keid(w,z)

)
z∈ΓG

1 (w)
, consisting of an edge

identifier id(w, z) and a key encapsulation keid(w,z). The server then returns the
encryptions and key encapsulations of all the edges recovered.

Security of the MetaCrypt protocol. To analyze the security of our protocol,
we show in the full version that it securely computes the MetaDB functionality.
Our analysis, however, is slightly different and less general than what is typi-
cally found in the literature. In particular, we are not interested in threshold
adversarial structures since, in our setting, each party plays a very distinct role
and since, in practice, we are concerned with very specific threats. Specifically,
the two main adversarial structures that concern us are: (1) when the adversary
corrupts the server Srv, the analysts An1 and An2, the supervisors Sup1 and
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Sup2 and the judge J; and (2) when the adversary corrupts the server Srv and
the providers Prv1 through Prvt. The first structure captures the setting where
the agency-affiliated parties (plus the judge) are corrupted and collude. Showing
that our protocol is secure under this structure essentially lets us analyze the
security afforded to providers—and by extension to the users whose metadata
is included in the datasets—when the Government acts dishonestly. The second
structure captures the setting where the providers are corrupted and colluding.
Showing that our protocol is secure under this structure lets us reason about the
security afforded to the agency when the providers act dishonestly. Notice that
in both cases, we include the server in the adversarial structure. This effectively
guarantees that the security of the protocol still holds no matter who manages
the server. In the full version, we show the security of our protocol in the pres-
ence of a semi-honest adversary against these adversarial structures and discuss
how to achieve malicious security.

References

1. Boneh, D., Sahai, A., Waters, B.: Functional encryption: definitions and challenges.
In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273. Springer, Heidelberg
(2011)

2. Cash, D., Jaeger, J., Jarecki, S., Jutla, C., Krawczyk, H., Rosu, M., Steiner, M.:
Dynamic searchable encryption in very-large databases: data structures and imple-
mentation. In: Network and Distributed System Security Symposium, NDSS ’14
(2014)

3. Chase, M., Kamara, S.: Structured encryption and controlled disclosure. In: Abe,
M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 577–594. Springer, Heidelberg
(2010)

4. Clarke, R., Morell, M., Stone, G., Sunstein, C., Swire, P.: Liberty and security
in a changing world (2013). http://www.whitehouse.gov/sites/default/files/docs/
2013-12-12 rg final report.pdf

5. United States Foreign Intelligence Surveillance Court. Primary order, April 2013.
http://www.dni.gov/files/documents/PrimaryOrder Collection 215.pdf

6. Curtmola, R., Garay, J., Kamara, S., Ostrovsky, R.: Searchable symmetric encryp-
tion: improved definitions and efficient constructions. In: ACM Conference on Com-
puter and Communications Security (CCS ’06), pp. 79–88. ACM (2006)

7. Freedman, M.J., Ishai, Y., Pinkas, B., Reingold, O.: Keyword search and oblivious
pseudorandom functions. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 303–
324. Springer, Heidelberg (2005)

8. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: ACM Sympo-
sium on Theory of Computing (STOC ’09), pp, 169–178. ACM Press (2009)

9. Goldreich, O., Micali, S., Wigderson, A.: How to play ANY mental game. In: ACM
Symposium on the Theory of Computation (STOC ’87), pp. 218–229 (1987)

10. Greenwald, G.: NSA collecting phone records of millions of verizon cus-
tomers daily, July 2013. http://www.theguardian.com/world/2013/jun/06/
nsa-phone-records-verizon-court-order

11. Jarecki, S., Jutla, C., Krawczyk, H., Rosu, M., Steiner, M.: Outsourced symmetric
private information retrieval. In: ACM Conference on Computer and Communica-
tions Security (CCS ’13), pp. 875–888 (2013)

http://www.whitehouse.gov/sites/default/files/docs/2013-12-12_rg_final_report.pdf
http://www.whitehouse.gov/sites/default/files/docs/2013-12-12_rg_final_report.pdf
http://www.dni.gov/files/documents/PrimaryOrder_Collection_215.pdf
http://www.theguardian.com/world/2013/jun/06/nsa-phone-records-verizon-court-order
http://www.theguardian.com/world/2013/jun/06/nsa-phone-records-verizon-court-order


Restructuring the NSA Metadata Program 247

12. Kamara, S.: Are compliance and privacy always at odds? July 2013. http://
outsourcedbits.org/2013/07/23/are-compliance-and-privacy-always-at-odds/

13. Kamara, S.: Restructuring the NSA metadata program. In: Böhme, R.,
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