
Toward Practical Homomorphic Evaluation
of Block Ciphers Using Prince

Yarkın Doröz(B), Aria Shahverdi, Thomas Eisenbarth,
and Berk Sunar

Worcester Polytechnic Institute, Worcester, MA, USA
{ydoroz,ashahverdi,teisenbarth,sunar}@wpi.edu

Abstract. We present the homomorphic evaluation of the Prince block
cipher. Our leveled implementation is based on a generalization of NTRU.
We are motivated by the drastic bandwidth savings that may be achieved
by scheme conversion. To unlock this advantage we turn to lightweight
ciphers such as Prince. These ciphers were designed from scratch to yield
fast and compact implementations on resource-constrained embedded
platforms. We show that some of these ciphers have the potential to enable
near practical homomorphic evaluation of block ciphers. Indeed, our
analysis shows that Prince can be implemented using only a 24 level deep
circuit. Using an NTRU based implementation we achieve an evaluation
time of 3.3 s per Prince block – one and two orders of magnitude improve-
ment over homomorphic AES implementations achieved using NTRU,
and BGV-style homomorphic encryption libraries, respectively.

Keywords: Homomorphic encryption · NTRU · Prince · Lightweight
block ciphers

1 Introduction

An encryption scheme is fully homomorphic (FHE scheme) if it permits the
efficient evaluation of any boolean circuit or arithmetic function on ciphertexts
[1]. Gentry proposed the first FHE scheme [2,3] based on lattices that sup-
ports addition and multiplication circuits for arbitrary depth. Since addition
and multiplication on any non-trivial ring give us a universal set of logic gates,
this scheme – if made efficient – allows one to employ any untrusted computing
resources without risk of revealing sensitive data. In [4], van Dijk, et al., pro-
posed a FHE scheme based on integers. In 2010, Gentry and Halevi [5] presented
a variant of Gentry’s FHE; this publication introduced a number of optimiza-
tions as well as the first actual FHE implementation. For other optimizations
see also [6–8]. Although these earlier schemes have achieved full homomorphism,
there is a serious bottleneck that prevents deployment.

To address this problem, some newer FHE schemes were proposed in recent
years. In [9], Brakerski, Gentry and Vaikuntanathan proposed a new FHE scheme
(BGV) based on LWE problems. Instead of re-encryption, this new scheme
c© IFCA/Springer-Verlag Berlin Heidelberg 2014
R. Böhme et al. (Eds.): FC 2014 Workshops, LNCS 8438, pp. 208–220, 2014.
DOI: 10.1007/978-3-662-44774-1 17



Toward Practical Homomorphic Evaluation of Block Ciphers Using Prince 209

uses other lightweight methods to refresh ciphertexts. These methods cannot
thoroughly refresh ciphertexts (as re-encryption does), but they limit noise
growth so that the scheme can evaluate much deeper circuits. The re-encryption
process is then reserved as an optimization only for extremely complicated cir-
cuits instead of a necessity for the majority of practical circuits. Gentry, Halevi
and Smart [8] proposed a customized LWE-based FHE scheme tailored to achieve
efficient evaluation of the AES cipher without bootstrapping. Their implementa-
tion is highly customized to evaluate AES efficiently and makes use of batching
[7], key and modulus switching techniques [9]. Their byte-sliced and SIMD imple-
mentations take about 5 min and 40 min, respectively, to evaluate an AES block.

In [10], Alt-López, Tromer and Vaikuntanathan adopted this idea to Stehlé
and Steinfeld’s generalized NTRU scheme [11] and developed an FHE scheme
(ATV) that supports inputs from multiple public keys. Bos et al. [12] presented a
leveled FHE scheme and its implementation derived from ATV. The ATV scheme
is modified by adopting a tensor product technique introduced by Brakerski [14]
such that the security depends only on standard lattice assumptions (and no
longer on the decisional small polynomial ratio assumption). Furthermore, mod-
ulus switching is no longer needed due to the reduced noise growth. Lastly, the
authors advocate use of the Chinese Remainder Theorem on the message space
to improve the flexibility of the scheme. In [15] Doröz, Hu and Sunar propose
another implementation based on the ATV scheme [10]. Similar to earlier pro-
posals the implementation is batched, bit-sliced and features modulus switching
techniques. The authors also introduce a specialization of the modulus to reduce
the public key size and thereby memory required during evaluation. The scheme
is generic, i.e. not customized to efficiently evaluate any specific class of circuits
such as AES. When used to evaluate an AES block the implementation performs
one order of magnitude faster than the implementation of [8].

More recent FHE schemes displayed significant improvements over earlier
constructions in both time complexity and in ciphertext size. Nevertheless, both
latency and message expansion rates remain roughly two orders of magnitude
higher than those of traditional public-key schemes. This rapid emergence of a
diverse set of homomorphic encryption schemes has brought with it the need
to transform one ciphertext into another. Bootstrapping [2], relinearization [16],
and modulus reduction [9,16] are tools of this form, allowing someone other than
the holder of the original private key to transform one encryption into one or
more encryptions using the same scheme and (typically) a different key and/or
different parameters. One important type of ciphertext transformation was intro-
duced by Brakerski and Vaikuntanathan. In [16, Sect. 1.1], the technique of relin-
earization is introduced as a way to re-encrypt quadratic polynomials as linear
polynomials under a new key, thereby making their security argument indepen-
dent of lattice assumptions and dependent only on a standard LWE hardness
assumption.

Lauter, Naehrig and Vaikuntanathan [17] discuss tools for making some-
what homomorphic encryption schemes more practical including scheme con-
version. First, they present two natural options for encryption of integers and



210 Y. Doröz et al.

demonstrate the versatility afforded by efficient transforms between bitwise
representation and integer representation with a larger modulus. The authors
of [17] also use this conversion idea to facilitate efficient communication with a
cloud server. If cloud computations are to be performed with a FHE scheme, data
can be uploaded to the server under a more compact scheme such as AES pro-
vided it has a relatively simple decryption circuit. If computations on ciphertexts
are to be carried out, the decryption circuit of the target scheme is evaluated
homomorphically to re-encrypt this data under the FHE. The result of these
computations is a collection of very large ciphertexts and, at present, no method
is known to transform these back to AES encryptions. But Lauter et al. observe
that the dimension reduction technique of Brakerski and Vaikuntanathan [16] is
useful here to reduce the ciphertext size (i.e., the overall FHE is the same, but
the parameters are smaller, prohibiting further computation) before transmit-
ting the results back to the client. In [17], efficient implementation is left as an
important open problem.

Motivated by this need, we propose the use of lightweight block ciphers to
facilitate efficient conversion. As a research area lightweight block ciphers [18]
emerged from the proliferation of severely constrained embedded and mobile
computing applications such as RFIDs, sensor network nodes etc. Such appli-
cations demand cryptographic primitives that can be computed with very little
power in compact chips. Driven by this strong need, a new class of lightweight
block ciphers were designed from scratch with security and implementation effi-
ciency in mind. Here we exploit the synergy between block ciphers designed for
constrained environments and the efficiency bottleneck of homomorphic encryp-
tion schemes to achieve efficient homomorphic evaluation of a block cipher.
Our Contribution. In this work,

– we present a survey of lightweight block ciphers. We show that some
lightweight block ciphers are more suitable than others. In contrast some light-
weight ciphers have worse homomorphic evaluation performance than tradi-
tional block ciphers, e.g. AES since our metric (circuit depth) is related to but
different than the metrics used in the construction of lightweight ciphers.

– we present a leveled homomorphic implementation of the Prince cipher. Our
implementation makes use of the NTRU based library developed by Doröz, Hu
and Sunar [15]. Specifically, we optimize the Prince cipher for shallow circuit
implementation, and based on the depth characteristics, chose optimal but
secure parameters for the library to evaluate Prince efficiently. With the chosen
parameters, the batched implementation evaluates 1024 blocks in 57 min, with
3.3 s per block amortization.

– more broadly, we motivate the study of lightweight block cipher design for
homomorphic evaluation bringing a new metric, i.e. circuit depth, to the atten-
tion of block cipher designers.



Toward Practical Homomorphic Evaluation of Block Ciphers Using Prince 211

2 Background

2.1 The ATV-FHE Scheme

NTRU based FHE schemes present a viable alternative to the currently dominant
BGV style constructions. We follow the methodology proposed in [15] by Doröz
et al. which builds on the NTRU based homomorphic encryption scheme (ATV)
by Alt-López, Tromer and Vaikuntanathan [10]. The ATV scheme uses a variant
of NTRU proposed by Stehlé and Steinfeld [11] to develop a leveled multi-key
FHE that features a new operation named relinearization. The authors note that
although the transformation to a fully homomorphic system deteriorates the
efficiency, their construction is a leading candidate for a practical FHE scheme.

We next briefly outline the single key version of the ATV scheme. All oper-
ations are performed in Rq = Zq[x]/〈xn + 1〉 where n represents the lattice
dimension and q is the prime modulus. A polynomial is B-bounded if all of
its coefficients lie in [−B,B]. In the primitives we often sample “small” polyno-
mials f ∈ R such that f is B-bounded. The error distribution χ is the truncated
discrete Gaussian distribution DZn,r for standard deviation r > 0. A sample from
this distribution is a r

√
n-bounded polynomial e ∈ R. For a detailed treatment

of the discrete Gaussian distribution see [19]. With these definitions we are now
ready to outline the primitives of the public key encryption scheme:

KeyGen. We choose a decreasing sequence of primes q0 > q1 > · · · > qd and a
polynomial φ(x) = xn+1. For each i, we sample u(i) and g(i) from distribution
χ, set f (i) = 2u(i) + 1 and h(i) = 2g(i)

(
f (i)

)−1
in ring Rqi = Zqi [x]/〈φ(x)〉

(If f (i) is not invertible, re-sample). We then sample, for i = 0, . . . , d and for

τ = 0, . . . , �log qi�, s
(i)
τ and e

(i)
τ from χ and publish evaluation key

{
ζ
(i)
τ (x)

}i

τ

where ζ
(i)
τ (x) = h(i)s

(i)
τ + 2e

(i)
τ + 2τ

(
f (i−1)

)2
in Rqi−1 .

Encrypt. To encrypt a bit b ∈ {0, 1} with a public key (h(0), q0), Encrypt first
generates random samples s and e from χ and sets c(0) = h(0)s + 2e + b, a
polynomial in Rq0 .

Decrypt. To decrypt the ciphertext c with the corresponding private key f (i),
Decrypt multiplies the ciphertext and the private key in Rqi then compute
the message by modulo two: m = c(i)f (i) (mod 2)

Eval. We assume we are computing a leveled circuit with gates alternating
between XOR and AND. Arithmetic operations are performed directly on
ciphertexts as follows: Suppose c

(0)
1 = Encrypt(b1) and c

(0)
2 = Encrypt(b2).

Then XOR is effected by simply adding ciphertexts: Encrypt(b1 + b2) =
c
(0)
1 + c

(0)
2 . Polynomial multiplication incurs a much greater growth in the

noise, so each multiplication step is followed by a modulus switching. First,
we compute c̃(0)(x) = c

(0)
1 · c

(0)
2 (mod φ(x)) and then perform Relineariza-

tion, as described below, to obtain c̃(1)(x) followed by modulus switching
Encrypt(b1 ·b2) = � q1

q0
c̃(1)(x)�2 where the subscript 2 on the rounding operator



212 Y. Doröz et al.

indicates that we round up or down in order to make all coefficients equal
modulo 2. The same process holds for evaluating with ith level ciphertexts,
e.g. computing c̃(i)(x) from c

(i−1)
1 and c

(i−1)
2 .

In addition to the primitives [10] defines another operation named Relin-
earization that computes c̃(i)(x) from c̃(i−1)(x) extending c̃(i−1)(x) as a lin-
ear combination of 1-bounded polynomials c̃(i−1)(x) =

∑
τ 2τ c̃

(i−1)
τ (x) where

c̃
(i−1)
τ (x) takes its coefficients from {0, 1}. Also define c̃(i)(x) =

∑
τ ζ

(i)
τ (x)c̃(i−1)

τ (x)
in Rqi .

Note that by augmenting the public key with the evaluation keys ζ
(i)
τ (x),

i.e. encrypted shifted versions of f2, it becomes possible to homomorphically
evaluate the product of c with the encrypted f2 using a shallow circuit of only
additions. The authors propose the use of relinearization (with modulus switch-
ing) after both addition and multiplication operations and define evaluation key
parameters accordingly. To relinearize after additions, we need shifted versions
of the secret key f encrypted with respect to the new modulus, whereas for after
multiplications, we need the same but of f2 instead.

2.2 The DHS FHE Library

Doröz, Hu and Sunar (DHS) [15] proposed a customized leveled implementation
of the ATV FHE scheme. The code is written in C++ and relies on the library
functions provided by NTL software package linked with GMP. The implemen-
tation introduces a number of optimizations, including a modulus specialization
technique to reduce the public key size. The main features of the DHS imple-
mentation are as follows:

– The arithmetic is performed over Rq = Zq[x]/〈Ψm(x)〉 where the modulus q
takes the special form q = pk and p > 2 is a prime, and Ψm(x) denotes the
mth cyclotomic polynomial and n = ϕ(m) = deg(Ψ). Noise vectors are chosen
from the discrete Gaussian noise distribution χ [19].

– Circuit evaluation is divided into levels by the multiplication (AND) opera-
tions. Modulus switching is implemented at the end of each level. Since the
moduli are special: q = pk, after every multiplication first relinearization is
performed which is then followed by modulus switching. Due to the special
structure, the public key in one level can also be promoted to the next level
via modular reduction. For instance, to evaluate a depth d circuit, the scheme
uses the public key in the first level defined over q0 = pd which is then pro-
moted to the following levels that use q1 = pd−1, q2 = pd−2, . . . , qd−1 = p by
on-the-fly modular reduction with the new modulus, significantly reducing the
memory requirement.

– The authors analyze the noise growth during circuit evaluation and determined
that to keep the noise stable over the levels of the evaluation one needs to cut
after each relinearization by

log(p) ≈ log
(
ε[an(6B2 + 2B) log(aq0) + n3/2(2B + 1)2B2]

)



Toward Practical Homomorphic Evaluation of Block Ciphers Using Prince 213

bits where ε is small constant chosen to minimize the error probability, B = 2
from the χ distribution, and a represents the maximum number of ciphertexts
summed before multiplication in each level. Also note that in instantiation we
fix χ to choose from {−1, 0, 1} with probabilities {0.25, 0.5, 0.25}, respectively.

– The implementation is bit-sliced and uses the batching technique proposed
by Smart and Vercauteren [6,7] (see also [8]). For this the modulus polyno-
mial Ψm(x) is factorized over F2 into equal degree polynomials Fi(x) which
define the message slots in which message bits are embedded using the Chi-
nese Remainder Theorem. Therefore, the number of message slots is found as
	 = ϕ(m)/t where deg(Fi(x)) = t may be determined by finding the smallest
integer d such that m|(2t − 1).

The ATV library contains 5 main operations; KeyGen, Encryption, Decryp-

tion, Modulus Switch and Relinearization. The most critical operation
for circuit evaluation is Relinearization. The other operations have negligible
effect on the run time.

The authors also implement the 128-bit AES circuit to compare the perfor-
mance of their scheme to the earlier AES implementation by Gentry, Halevi and
Smart [8]. The implementation manages to evaluate the 10 round AES circuit in
31 h with 2048 message slots with a 55 sec per AES block evaluation time making
it 48 times faster than the generic SIMD implementation, 6 times faster than
the AES customized byte-sliced implementation by Gentry, Halevi and Smart.

2.3 A Lightweight Block Cipher: Prince

Several lightweight block ciphers have been proposed with the goal of permit-
ting a compact hardware implementation or good performance at small memory
footprint in software. Examples include ciphers like Present, KATAN, TEA,
HIGHT, etc. An overview of implementation properties can be found in [20].
Among these, Prince is a lightweight block cipher that has been optimized for
low latency and a small hardware footprint [21]. It features a 64-bit block size,
128-bit key size. Prince implements a substitution-permutation network which
iterates for 12 rounds. The round function is AES-like and operates on a 4 by 4
array of nibbles, with 4-bit S–boxes, shift rows and mix columns operations. The
round key remains constant, but is augmented with a 64-bit round constant to
ensure variation between rounds. An interesting feature of Prince is the inflective
property: encryption and decryption only differ in the round key, i.e. decryption
can use the same implementation as encryption, only the round key needs to
be modified. Figure 1 shows the structure of the Prince cipher. To implement
Prince, the following operations have to be realized:

Key Schedule. The 128-bit key is split into two parts k0 and k1. k0 is used to
generate another key k′

0 = (k0 >>> 1)⊕ (k0 >> 63). The keys k0 and k′
0 are

used as pre- and post-whitening keys, i.e. are XOR-added to the state before
and after all round functions are performed. The round key k1 is the same
for all rounds and is also XOR-added during the key addition phase.



214 Y. Doröz et al.

Fig. 1. The Prince cipher

Round Constant Addition. Prince defines different round constants RCi for
each round. A noteworthy property of the round constants is that RCi ⊕
RC11−i = α for 0 ≤ i ≤ 11, with α = c0ac29b7c97c50dd. The round
constant addition is a binary addition, just as the round key addition. Both
operations can be merged.

S–box. The S–box layer uses a mapping of 4-bit to 4-bit, as defined in the
following table. The S–box is the only operation of Prince that is not linear
in the bits, and hence needs costly AND operations (or binary multiplication)
for its implementation. While other S–boxes are possible for Prince, we chose
to use the original S–box, since the maximum depth of multiplication is
already optimal for the standard S–box. More details on how we implemented
the S–box is given in Sect. 3.2.

Linear Layer. The linear layer consists of two parts: a shift rows which is
similar to the shift rows used in AES and simply changes the order of the
nibbles. Hence, it is a free operation in a bit-oriented implementation. The
mix columns equivalent XOR-adds three input bits to compute one output
bit in such a way that the operation is invertible. Again, this operation is
linear and easily implementable.

i 0 1 2 3 4 5 6 7 8 9 A B C D E F

S[i] B F 3 2 A C 9 1 6 7 8 0 E 5 D 4

All operations also need an implementation of their inverse, as the last six rounds
use the inverse operations.

3 NTRU Based Homomorphic Evaluation

In this section we describe our implementation in detail. Specifically, we first
present a study of the depth characteristics of popular lightweight block ciphers
among which we identify the Prince cipher as the most promising for homomor-
phic evaluation. Later we present in detail a shallow circuit implementation of
Prince. In what follows, we select optimal parameters for the Doröz et al. [15]
leveled ATV FHE implementation to support evaluation of the Prince circuit.



Toward Practical Homomorphic Evaluation of Block Ciphers Using Prince 215

3.1 Picking a Lightweight Block Cipher

We are looking for any cipher that provides efficient encryption while permitting
a shallow circuit implementation, i.e. the number of consecutive multiplication
levels should be minimized. Therefore we turn our attention to lightweight block
ciphers [22]. There are two main factors that increase the number of consecutive
multiplications: The size and complexity of the S–boxes, as higher non-linearity
usually results in higher-degree terms, i.e. an increased number of consecutive
binary multiplications. PRESENT [18], for example, has very simple S–boxes,
resulting in a shallow circuit for each individual S–box. Another important factor
is the number of rounds, where PRESENT is less optimal due to the rather high
number of rounds. Prince, a recently proposed block cipher [21], has roughly the
same complexity for the S–boxes, but has only 12 rounds which make it a much
more efficient choice for our purposes. The more complex linear layer is not a
problem, since it does not introduce new binary multiplications. We present an
overview of the complexity of different lightweight ciphers in Table 1.

Table 1. Comparison of the complexity of common lightweight block ciphers in number
of rounds, algebraic degree of the S–box function, algebraic degree of a round excluding
the S–box, per round and total number of multiplicative levels.

Cipher # Rounds Algebraic Degree Total Depth

S–box Rem.
Round

Per Round Full Cipher

AES-128 [23] 10 8 0 3 30

Present [18] 31 4 0 2 62

Prince [21] 12 4 0 2 24

HIGHT [24] 32 N/A 8 3 96

SEA96,8 [25] 93 3 8 4 372

KATAN-64 [26] 254 N/A 1 1 254

Simon-64/96
(64/128) [27]

42 (44) N/A 1 1 42 (44)

Note that the cipher depth is almost fully determined by the consecutive lev-
els of binary AND-statements. The two software-oriented ciphers, namely SEA
and HIGHT, feature Feistel-structure and a high number of rounds. The num-
ber of rounds, together with the Feistel structure, results in a high depth circuit,
making them a bad choice for our purposes. Furthermore, additions mod 2n

add significant depth due to high nonlinearity for the most significant output
bits. While there are [12,13] FHE implementations capable of evaluating integer
operations they do not support mixing of integer and bit-oriented operations as
required by most block ciphers. Hence, the hardware-oriented ciphers such as
Present and Prince seem more appropriate. Certain possible cipher-specific opti-
mizations are likely missed in the table. Katan, for example, allows the evaluation



216 Y. Doröz et al.

of a few rounds in parallel, since independent bits are processed in consecutive
rounds. We did not explore this further due to the big starting disadvantage in
the number of rounds. It can be seen that AES already offers quite a low depth,
due to the low number of rounds. In practice, the depth 30 implementation of
AES is not attainable since the number of multiplications grows significantly.
Instead at best a depth 40 implementation is used in practice [15]. Either way,
the Prince cipher offers a significant improvement over AES.

3.2 Prince as a Shallow Circuit

As described in Sect. 2.3, Prince can be implemented in a way that every opera-
tion is done on a single bit. Consecutive AND operations are costly in the ATV
FHE scheme so it is a necessity to prevent them as much as possible. The only
part of Prince that is nonlinear is the S–box layer. To determine an optimal
representation of the S–box, we use Mathematica to obtain the Algebraic Nor-
mal Form (ANF), which represents all equations only in terms of XOR or AND
statements. The following table gives the resulting ANF representation of the
Prince S–box S(A,B,C,D) = (S0, S1, S2, S3). According to the table the S–box
requires 28 AND-operations. Further optimization, making use of efficient reuse
of intermediate terms, enables a significant reduction of two-input AND opera-
tions. The values for AB,AC,AD,BC,BD,CD can simply be stored and used
whenever it is necessary instead of recalculating them every time. There exist
four more terms in the formula that can be saved and used again; these values
are ABD,ABC,ACD,BCD. To be more efficient, for calculating the first two
terms and the next two terms we will use the saved value AB and CD, respec-
tively. The resulting depth of the multiplication is 2 i.e. one for calculating terms
such as AB and one for calculating terms such as ABD. Hence the total number
of ANDs for S–box would be 10—much less than by straight implementation of
the ANF. The same procedure is applied to optimize the implementation of the
inverse S–box.

S0 A ⊕ C ⊕ AB ⊕ BC ⊕ ABD ⊕ ACD ⊕ BCD ⊕ 1

S1 A ⊕ D ⊕ AC ⊕ AD ⊕ CD ⊕ ABC ⊕ ACD

S2 AC ⊕ BC ⊕ BD ⊕ ABC ⊕ BCD ⊕ 1

S3 A ⊕ B ⊕ AB ⊕ AD ⊕ BC ⊕ CD ⊕ BCD ⊕ 1

3.3 Parameter Selection for the ATV FHE

We follow the parameter selection process of [15] for our ATV Prince imple-
mentation. In Table 2 we summarize the chosen parameters for Prince and AES.
Clearly, the 24 levels of Prince give us an advantage over the 40 level AES in
selecting smaller parameters: The polynomial degree of Prince is half the size of
AES with n = 16384. The per level cutting rate is log (p) = 20 bits, better than



Toward Practical Homomorphic Evaluation of Block Ciphers Using Prince 217

Table 2. Parameters for the AES [15] and our Prince implementations.

n log(q0) δ Levels log(p) Message Slots

AES [15] 32768 1271 1.0067 40 31 2048

Prince 16384 500 1.0052 24 20 1024

expected than the noise analysis in [15] predicts. The reason is simple; the Prince
S–box has AND operations with three gates, e.g. A · B · C, and therefore in the
second level two polynomials with different noise levels are multiplied, whereas
[15] assumes the product inputs bear the same level of noise. With log (p) = 20,
the modulus may be chosen as log(q0) = 500 which is less than half as long as
the AES modulus, i.e. 1271-bits used in [15]. With n = 16384 and log (q0), our
Hermite factor is δ = 1.0052. This gives us a 130-bit security level, which actu-
ally exceeds the security claims of Prince. The only disadvantage of our Prince
evaluation is that we have fewer message slots, exactly half of those of the AES
evaluation.

4 Implementation Results

We ran our implementation on a single thread on Intel Core i7 3770 K running
3.5 Ghz with 32 GBytes of memory. The most expensive Prince operation is the
evaluation of the S–box circuit, since it is the only operation that contains multi-
plications and therefore requires Relinearization. The S–box is evaluated using 6
Relinearizations, resulting in 1,152 Relinearizations for the entire evaluation. The
execution completes in 57 min compared to 31 h [15] and 36 h [8] for AES. This
shows about ×30 speedup. A block of Prince encryption takes 3.3 s compared to
55 s for AES blocks. Another significant advantage of Prince is that at 1 Gbytes
the public key is much smaller. Therefore we can run our implementations on
standard machines (Table 3).

Table 3. Performance comparison of Prince against AES implementations.

Total Time #Blocks Per Block

seconds
PK Size
GBytes

AES [15] 31 h 2048 55 13.1

AES-Byte Sliced [8] 65 h 720 300 n/a

AES-SIMD Sliced [8] 36 h 54 2400 n/a

Prince (Ours) 57min 1024 3.3 1.0



218 Y. Doröz et al.

5 Conclusion

We presented a customized implementation of the lightweight block cipher Prince
using a leveled fully homomorphic encryption scheme based on NTRU. For this
we surveyed lightweight block ciphers and analyzed them with respect to a new
metric: circuit depth. Our analysis determined that the Prince block cipher is the
most suitable for homomorphic evaluation as it can be implemented using only a
depth 24 circuit. Using the recently proposed ATV library [15] we developed an
optimized shallow circuit implementation of Prince, which yielded an amortized
3.3 s per block evaluation running time, one to two orders of magnitude faster
than previous homomorphic AES evaluation proposals [8,15].

With this work, we presented a near practical block cipher implementation
that could be used for scheme conversion [17]. We also aim to further motivate
research in the field of lightweight cryptography under the new shallow circuit
or circuit depth metric.

Acknowledgments. Funding for this research was in part provided by the US National
Science Foundation CNS Awards #1117590, #1319130, and #1261399.

References

1. Rivest, R.L., Adleman, L., Dertouzos, M.L.: On data banks and privacy homomor-
phisms. In: Foundations of Secure Computation (1978)

2. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Symposium on
the Theory of Computing (STOC), pp. 169–178 (2009)

3. Gentry, C.: A Fully Homomorphic Encryption Scheme. Ph.D. thesis, Department
of Computer Science, Stanford University (2009)

4. van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully homomorphic
encryption over the integers. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS,
vol. 6110, pp. 24–43. Springer, Heidelberg (2010)

5. Gentry, C., Halevi, S.: Implementing gentry’s fully-homomorphic encryption
scheme. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632,
pp. 129–148. Springer, Heidelberg (2011)

6. Gentry, C., Halevi, S., Smart, N.P.: Fully homomorphic encryption with polylog
overhead. Manuscript (2011)

7. Smart, N.P., Vercauteren, F.: Fully homomorphic SIMD operations (2011). http://
eprint.iacr.org/2011/133

8. Gentry, C., Halevi, S., Smart, N.P.: Homomorphic evaluation of the AES circuit. In:
Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 850–867.
Springer, Heidelberg (2012)

9. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: Fully homomorphic encryption
without bootstrapping. In: Innovations in Theoretical Computer Science, ITCS,
pp. 309–325 (2012)

10. Alt-López, A., Tromer E., Vaikuntanathan, V.: On-the-fly multiparty computation
on the cloud via multikey fully homomorphic encryption. In: Proceedings of the
44th STOC, pp. 1219–1234. ACM (2012)

http://eprint.iacr.org/2011/133
http://eprint.iacr.org/2011/133


Toward Practical Homomorphic Evaluation of Block Ciphers Using Prince 219

11. Stehlé, D., Steinfeld, R.: Making NTRU as secure as worst-case problems over. In:
Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 27–47. Springer,
Heidelberg (2011)

12. Bos, J.W., Lauter, K., Loftus, J., Naehrig, M.: Improved security for a ring-based
fully homomorphic encryption scheme. In: Stam, M. (ed.) IMACC 2013. LNCS,
vol. 8308, pp. 45–64. Springer, Heidelberg (2013)

13. Coron, J.-S., Naccache, D., Tibouchi, M.: Public key compression and modulus
switching for fully homomorphic encryption over the integers. In: Pointcheval, D.,
Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 446–464. Springer,
Heidelberg (2012)

14. Brakerski, Z.: Fully homomorphic encryption without modulus switching from
classical GapSVP. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS,
vol. 7417, pp. 868–886. Springer, Heidelberg (2012)

15. Doröz, Y., Hu, Y., Sunar, B.: Homomorphic AES Evaluation using NTRU, IACR
ePrint Archive. Technical report 2014/039 January 2014. http://eprint.iacr.org/
2014/039.pdf

16. Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from
(standard) LWE. In: 2011 IEEE 52nd Annual Symposium on Foundations of
Computer Science (FOCS), IEEE (2011)

17. Lauter, K., Naehrig, M., Vaikuntanathan, V.: Can homomorphic encryption be
practical?. In: Proceedings of the 3rd ACM CCSW (Cloud Computing Security
Workshop), ACM (2011)

18. Bogdanov, A.A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw,
M., Seurin, Y., Vikkelsoe, C.: PRESENT: an ultra-lightweight block cipher. In:
Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466.
Springer, Heidelberg (2007)

19. Micciancio, D., Regev, O.: Worst-case to average-case reductions based on gaussian
measures. SIAM J. Comput. 37(1), 267–302 (2007)

20. Eisenbarth, T., Gong, Z., Güneysu, T., Heyse, S., Indesteege, S., Kerckhof, S.,
Koeune, F., Nad, T., Plos, T., Regazzoni, F., Standaert, F.-X., van Oldeneel
tot Oldenzeel, L.: Compact implementation and performance evaluation of block
ciphers in ATtiny devices. In: Mitrokotsa, A., Vaudenay, S. (eds.) AFRICACRYPT
2012. LNCS, vol. 7374, pp. 172–187. Springer, Heidelberg (2012)

21. Borghoff, J., Canteaut, A., Güneysu, T., Kavun, E.B., Knezevic, M., Knudsen,
L.R., Leander, G., Nikov, V., Paar, C., Rechberger, C., Rombouts, P., Thomsen,
S.S., Yalçın, T.: PRINCE – A low-latency block cipher for pervasive computing
applications. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658,
pp. 208–225. Springer, Heidelberg (2012)

22. Eisenbarth, T., Paar, C., Poschmann, A., Kumar, S., Uhsadel, L.: A Survey
of lightweight-cryptography implementations. IEEE Des. Test Comput. 24(6),
522–533 (2007)

23. Daemen, J., Rijmen, V.: The design of Rijndael: AES-the advanced encryption
standard. Information Security and Cryptography, vol. XVII, pp. 1–238. Springer,
Heidelberg (2002)

24. Hong, D., Sung, J., Hong, S.H., Lim, J.-I., Lee, S.-J., Koo, B.-S., Lee, C.-H., Chang,
D., Lee, J., Jeong, K., Kim, H., Kim, J.-S., Chee, S.: HIGHT: a new block cipher
suitable for low-resource device. In: Goubin, L., Matsui, M. (eds.) CHES 2006.
LNCS, vol. 4249, pp. 46–59. Springer, Heidelberg (2006)

http://eprint.iacr.org/2014/039.pdf
http://eprint.iacr.org/2014/039.pdf


220 Y. Doröz et al.

25. Standaert, F.-X., Piret, G., Gershenfeld, N., Quisquater, J.-J.: SEA: a scalable
encryption algorithm for small embedded applications. In: Domingo-Ferrer, J.,
Posegga, J., Schreckling, D. (eds.) CARDIS 2006. LNCS, vol. 3928, pp. 222–236.
Springer, Heidelberg (2006)

26. De Cannière, C., Dunkelman, O., Knežević, M.: KATAN and KTANTAN — a
family of small and efficient hardware-oriented block ciphers. In: Clavier, C., Gaj,
K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 272–288. Springer, Heidelberg (2009)

27. Canniere, C.D., Dunkelman, O., Knezevic, M.: The SIMON and SPECK Families
of Lightweight Block Ciphers. Cryptology ePrint Archive, Report 2013/404 (2013).
http://eprint.iacr.org/

http://eprint.iacr.org/

	Toward Practical Homomorphic Evaluation of Block Ciphers Using Prince
	1 Introduction
	2 Background
	2.1 The ATV-FHE Scheme
	2.2 The DHS FHE Library
	2.3 A Lightweight Block Cipher: Prince

	3 NTRU Based Homomorphic Evaluation
	3.1 Picking a Lightweight Block Cipher
	3.2 Prince as a Shallow Circuit
	3.3 Parameter Selection for the ATV FHE

	4 Implementation Results
	5 Conclusion
	References


