
An LP-Rounding Algorithm for Degenerate
Primer Design�

Yu-Ting Huang and Marek Chrobak

Department of Computer Science, University of California, Riverside

Abstract. In applications where a collection of similar sequences needs
to be amplified through PCR, degenerate primers can be used to improve
the efficiency and accuracy of amplification. Conceptually, a degenerate
primer is a sequence in which some bases are ambiguous, in the sense that
they can bind to more than one nucleotide. These ambiguous bases allow
degenerate primers to bind to multiple target sequences. When designing
degenerate primers, it is essential to find a good balance between high
coverage (the number of amplified target sequences) and low degeneracy.
In this paper, we propose a new heuristic, called RRD2P, for comput-
ing a pair of forward and reverse primers with near-optimal coverage,
under the specified degeneracy threshold. The fundamental idea of our
algorithm is to represent computing optimal primers as an integer lin-
ear program, solve its fractional relaxation, and then apply randomized
rounding to compute an integral solution. We tested Algorithm RRD2P
on three biological data sets, and our experiments confirmed that it pro-
duces primer pairs with good coverage, comparing favorably with a sim-
ilar tool called HYDEN.

1 Introduction

Polymerase Chain Reaction (PCR) is an amplification technique widely used in
molecular biology to generate multiple copies of a desired region of a given DNA
sequence. In a PCR process, two small pieces of synthetic DNA sequences called
primers, typically of length 15-30 bases, are required to identify the boundary of
amplification. This pair of primers, referred to as forward and reverse primers,
are obtained from the 5’ end of the target sequences and their opposite strand,
respectively. Each primer hybridizes to the 3’ end of another strand and starts
to amplify toward the 5’ end.

In applications where a collection of similar sequences needs to be amplified
through PCR, degenerate primers can be used to improve the efficiency and
accuracy of amplification. Degenerate primers [1] can be thought of, conceptually,
as having ambiguous bases at certain positions, that is bases that represent
several different nucleotides. This enables degenerate primers to bind to several
different sequences at once, thus allowing amplification of multiple sequences in
a single PCR experiment. Degenerate primers are represented as strings formed

� Research supported by NSF grants CCF-1217314 and NIH 1R01AI078885.

D. Brown and B. Morgenstern (Eds.): WABI 2014, LNBI 8701, pp. 107–121, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

108 Y.-T. Huang and M. Chrobak

from IUPAC codes, where each code represents multiple possible alternatives for
each position in a primer sequence (see Table 1).

The degeneracy deg(p) of a primer p is the number of distinct non-degenerate
primers that it represents. For example, the degeneracy of primer p = ACMCM is 4,
because it represents the following four non-degenerate primers: ACACA, ACACC,
ACCCA, and ACCCC.

Table 1. IUPAC nucleotide code table for ambiguous bases

IUPAC nucleotide code M R W S Y K V H D B N

represented bases A A A A A A A

C C C C C C C

G G G G G G G

T T T T T T T

Figure 1 shows a simple example of a pair of primers binding to a target DNA
sequence. The forward primer TRTAWTGATY matches the substring TGGACTGATT

of the target sequence in all but two positions, illustrating that, in practice,
binding can occur even in the presence of a small number of mismatched bases.
The reverse primer AGAAAAGTCM matches the target sequence (or, more precisely,
its reverse complement) perfectly. This primer pair can produce copies of the
region ACCGATGACT of the target sequence, as well as its reverse complement.

5’--AGAAAAGTCM--3’ ⇒ reverse primer

||||||||||

5’--GATGGACTGATTACCGATGACTGGACTTTTCTG--3’ ⇒ target sequence

5’--CAGAAAAGTCCAGTCATCGGTAATCAGTCCATC--3’

|| | |||||

forward primer ⇐ 5’--TRTAWTGATY--3’

Fig. 1. A symbolic illustration of a pair of primers binding to a DNA sequence

Quite obviously, primers with higher degeneracy can cover more target se-
quences, but in practice high degeneracy can also negatively impact the quality
and quantity of amplification. This is because, in reality, degenerate primers are
just appropriate mixtures of regular primers, and including too many primers
in the mixture could lead to problems such as mis-priming, where unrelated
sequences may be amplified, or primer cross-hybridization, where primers may
hybridize to each other. Thus, when designing degenerate primers, it is essential
to find a good balance between high coverage and low degeneracy.

PCR experiments involving degenerate primers are useful in studying the
composition of microbial communities that typically include many different but
similar organisms (see, for example, [2,3]). This variant of PCR is sometimes

An LP-Rounding Algorithm for Degenerate Primer Design 109

referred to as Multiplex PCR (MP-PCR) [4], although in the literature the term
MP-PCR is also used in the context of applications where non-similar sequences
are amplified, in which case using degenerate primers may not be beneficial.
Designing (non-degenerate) primers for MP-PCR applications also leads to in-
teresting algorithmic problems – see, for example, [5] and references therein.

For the purpose of designing primers we can assume that our target sequences
are single-strain DNA sequences. Thus from now on target sequences will be
represented by strings of symbols A, C, T, and G.

We say that a (degenerate) primer p covers a target sequence s if at least
one of the non-degenerate primers represented by p occurs in s as a substring.
In practice, a primer can often hybridize to the target sequence even if it only
approximately matches the sequence. Formally, we will say that p covers s with
at most m mismatches if there exists a sub-string s′ of s of length |p| such some
non-degenerate primer represented by p matches s′ on at least |p|−m positions.
We refer to m as mismatch allowance.

Following the approach in [6], we model the task as an optimization problem
that can be formulated as follows: given a collection of target sequences, a desired
primer length, and bounds on the degeneracy and mismatch allowance, we want
to find a pair of degenerate primers that meet these criteria and maximize the
number of covered target sequences. We add, however, that, as discussed later in
Section 2, there are other alternative approaches that emphasize other aspects
of primer design, for example biological properties of primers.

As in [6], using heuristics taking advantage of properties of DNA sequences,
the above task can be reduced to the following problem, which, though concep-
tually simpler, still captures the core difficulty of degenerate primer design:

Problem: MCDPDmis.
Instance: A set of n target strings A =

{
a1, a2, . . . , an

}
over alphabet

Σ, each of length k, integers d (degeneracy threshold) and m (mismatch
allowance);
Objective: Find a degenerate primer p of length k and degeneracy at most
d that covers the maximum number of strings in A with up to m mis-
matches.

This reduction involves computing the left and right primers separately, as
well as using local alignment of target sequences to extract target strings that
have the same length as the desired primer. There may be many collections of
such target strings (see Section 4), and only those likely to produce good primer
candidates need to be considered. Once we solve the instance ofMCDPDmis for
each collection, obtaining a number of forward and reverse primer candidates,
we select the final primer pair that optimizes the joint coverage, either through
exhaustive search or using heuristic approaches.

The main contribution of this paper is a new algorithm for MCDPDmis,
called SRRdna, based on LP-rounding.We show thatMCDPDmis can be formu-
lated as an integer linear program. (This linear program actually solves a slightly
modified version of MCDPDmis – see Section 3 for details.) Algorithm SRRdna

computes the optimal fractional solution of this linear program, and then uses

110 Y.-T. Huang and M. Chrobak

an appropriate randomized rounding strategy to convert this fractional solution
into an integral one, which represents a degenerate primer.

Using the framework outlined above, we then use Algorithm SRRdna to design
a new heuristic algorithm, called RRD2P, that computes pairs of primers for a
given collection of target DNA sequences. We implemented Algorithm RRD2P
and tested it on three biological data sets. The results were compared to those
generated by the existing state-of-the-art tool HYDEN, developed by Linhart
and Shamir [7]. Our experiments show that Algorithm RRD2P is able to find
primer pairs with better coverage than HYDEN.

2 Related Work

The problem of designing high-quality primers for PCR experiments has been
extensively studied and has a vast literature. Much less is known about designing
degenerate primers. The work most relevant to ours is by Linhart and Shamir [7],
who introduced the MCDPDmis model, proved that the problem is NP-hard,
and gave some efficient approximation algorithms.

In their paper [7], the ideas behind their approximation algorithms were in-
corporated into a heuristic algorithmHYDEN for designing degenerate primers.
HYDEN uses an efficient heuristic approach to design degenerate primers [7]
with good coverage. It constructs primers of specified length and with specified
degeneracy threshold. HYDEN consists of three phases. It first uses a non-gap
local alignment algorithm to find best-conserved regions among target sequences.
These regions are called alignments. The degree to which an alignment A is con-
served is measured by its entropy score:

HA = −∑k
j=1

∑
σ∈Σ

DA(σ,j)
n · log2 DA(σ,j)

n ,

where k is the length of A, n is the number of target sequences, and DA(σ, j)
is the number of sequences in A that have symbol σ at the jth position. Matrix
DA() is called the column distribution matrix.

Then, HYDEN designs degenerate primers for these regions using two heuris-
tic algorithms called CONTRACTION and EXPANSION. Finally, it chooses a
certain number of best primer candidates, from which it computes a pair of
primers with good coverage using a hill-climbing heuristic.

HYDEN has a number of parameters that users can specify, including the
desired primer length, the preferred binding regions, the degeneracy threshold,
and the mismatch allowance.HYDEN has been tested in a real biological exper-
iment with 127 human olfactory receptor (OR) genes, showing that it produces
fairly good primer pairs [7].

Linhart and Shamir [7] also introduced another variant of degenerate primer
design problem, called MDDPD, where the objective is to find a degenerate
primer that covers all given target sequences and has minimum degeneracy. This
problem is also NP-hard. An extension of this model where multiple primers are
sought was studied by Souvenir et al. [8]. See also [9,10] for more related work.

An LP-Rounding Algorithm for Degenerate Primer Design 111

We briefly mention two other software packages for designing degenerate
primers. (See the full paper for a more comprehensive survey.) PrimerHunter
[11,12] is a software tool that accepts both target and non-target sequences on
input, to ensure that the selected primers can efficiently amplify target sequences
but avoid the amplification of non-target sequences. This feature allows Primer-
Hunter to distinguish closely related subtypes. PrimerHunter allows users to set
biological parameters. However, it does not provide the feature to directly con-
trol the primer degeneracy. Instead, it uses a degeneracy mask that specifies the
positions at which fully degenerate nucleotides are allowed.

iCODEHOP is a web application which designs degenerate primers at the
amino acid level [13,14]. This means that during the primer design process, it
will reverse-translate the amino acid sequences to DNA, using a user-specified
codon usage table. iCODEHOP does not explicitly attempt to optimize the
coverage.

3 Randomized Rounding

We now present our randomized rounding approach to solving the MCDPDmis

problem defined in the introduction. Recall that in this problem we are given a
collection A of strings over an alphabet Σ, each of the same length k, a degener-
acy threshold d, and a mismatch allowance m, and the objective is to compute
a degenerate primer p of length k and degeneracy at most d, that covers the
maximum number of strings in A with at most m mismatches.

An optimal primer p covers at least one target string ai ∈ A with at most m
mismatches. In other words, p can be obtained from ai by (i) changing at most
m bases in ai to different bases, and (ii) changing some bases in ai to ambiguous
bases that match the original bases, without exceeding the degeneracy limit d.
Let Tmplm(A) denote the set of all strings of length k that can be obtained
from some target string ai ∈ A by operation (i), namely changing up to m
bases in ai. By trying all strings in Tmplm(A), we can reduce MCDPDmis

to its variant where p is required to cover a given template string (without
mismatches). Formally, this new optimization problem is:

Problem: MCDPDmis
tmpl.

Instance: A set of n strings A = {a1, a2, . . . , an}, each of length k, a
template string p̂, and integers d (degeneracy threshold) andm (mismatch
allowance);
Objective: Find a degenerate primer p of length k, with deg(p) ≤ d that
covers p̂ and covers the maximum number of sequences in A with mis-
match allowance m.

We remark that our algorithm for MCDPDmis will not actually try all pos-
sible templates from Tmplm(A) – there are simply too many of these, if m is
large. Instead, we randomly sample templates from Tmplm(A) and apply the
algorithm for MCDPDmis

tmpl only to those sampled templates. The number of
samples affects the running time and accuracy (see Section 5).

112 Y.-T. Huang and M. Chrobak

We present our algorithm for MCDPDmis
tmpl in two steps. In Section 3.1 that

follows, we explain the fundamental idea of our approach, by presenting the
linear program and our randomized rounding algorithm for the case of binary
strings, where Σ = {0, 1}. The extension to DNA strings is somewhat compli-
cated due to the presence of several ambiguous bases. We present our linear
program formulation and the algorithm for DNA strings in Section 3.2.

3.1 Randomized Rounding for Binary Strings

In this section we focus on the case of the binary alphabet Σ = {0, 1}. For this
alphabet we only have one ambiguous base, denoted by N, which can represent
either 0 or 1. We first demonstrate the integer linear program representation of
MCDPDmis

tmpl for the binary alphabet and then we give a randomized rounding
algorithm for this case, called SRRbin. The idea of SRRbin is to compute an
optimal fractional solution of this linear program and then round it to a feasible
integral solution.

Let p̂ = p̂1p̂2 · · · p̂k be the template string from the given instance of
MCDPDmis

tmpl. It is convenient to think of the objective of MCDPDmis
tmpl as

converting p̂ into a degenerate primer p by changing up to log d symbols in p̂ to
N. For each target string ai = ai1a

i
2 · · · aik, we use a binary variable xi to indicate

if ai is covered by p. For each position j, a binary variable nj is used to indicate
whether p̂j will be changed to N. To take mismatch allowance into consideration,
we also use binary variables μi

j , which indicate if we allow a mismatch between

p and ai on position j, that is, whether or not aij �⊆ pj .

With the above variables, the objective is to maximize the sum of all xi.
Next, we need to specify the constraints. One constraint involves the mismatch
allowance m; for a string ai, the number of mismatches

∑
j μ

i
j should not exceed

m. Next, we have the bound on the degeneracy. In the binary case, the degener-
acy of p can be written as deg(p) =

∏
j 2

nj , and we require that deg(p) ≤ d. To
convert this inequality into a linear constraint, we take the logarithms of both
sides. The last group of constraints are the covering constraints. For each j, if
p covers ai and p̂j �= aij , then either pj = N or pj contributes to the number of

mismatches. This can be expressed by inequalities xi ≤ nj + μi
j , for all i, j such

that aij �= p̂j . Then the complete linear program is:

maximize
∑

i x
i

subject to
∑

j μ
i
j ≤ m ∀i

∑
j nj ≤ log2 d

xi ≤ nj + μi
j , ∀i, j : aij �= p̂j

xi, nj , μ
i
j ∈ {0, 1} ∀i, j

(1)

The pseudo-code of our Algorithm SRRbin is given below in Pseudocode 1.
The algorithm starts with p = p̂ and gradually changes some symbols in p to N,

An LP-Rounding Algorithm for Degenerate Primer Design 113

solving a linear program at each step. At each iteration, the size of the linear
program can be reduced by discarding strings that are too different from the
current p, and by ignoring strings that are already matched by p. More precisely,
any ai which differs from the current p on more than m+log2 d positions cannot
be covered by any degenerate primer obtained from p, so this ai can be discarded.
On the other hand, if ai differs from p on at most m positions then it will
always be covered, in which case we can set xi = 1 and we can also remove it
from A. This pruning process in Algorithm SRRbin is implemented by function
FilterOut.

Pseudocode 1. Algorithm SRRbin(p̂, A, d,m)

1: p← p̂
2: while deg(p) < d do
3: FilterOut(p,A, d,m)
4: if A = ∅ then break � updates A
5: LP←GenLinProgram(p,A, d,m)
6: FracSol←SolveLinProgram(LP)
7: RandRoundingbin(p,FracSol, d) � updates p and d

8: return p

If no sequences are left in A then we are done; we can output p. Otherwise,
we construct the linear program for the remaining strings. This linear program
is essentially the same as the one above, with p̂ replaced by p, and with the
constraint xi ≤ nj+μi

j included only if pj �= N. Additional constraints are added
to take into account the rounded positions in p, namely we add the constraint
nj = 1 for all pj already replaced by N.

We then consider the relaxation of the above integer program, where all in-
tegral constraints xi, nj, μ

i
j ∈ {0, 1} are replaced by xi, nj, μ

i
j ∈ [0, 1], that is,

all variables are allowed to take fractional values. After solving this relaxation,
we call Procedure RandRoundingbin, which chooses one fractional variable nj ,
with probability proportional to its value, and rounds it up to 1. (It is suffi-
cient to round only the nj variables, since all other variables are uniquely deter-
mined from the nj’s.) To do so, let J be the set of all j for which nj �= 1 and
π =

∑
j∈J nj . The interval [0, π] can be split into consecutive |J | intervals, with

the interval corresponding to j ∈ J having length nj . Thus we can randomly
(uniformly) choose a value c from [0, π], and if c is in the interval corresponding
to j ∈ J then we round nj to 1.

If the degeneracy of p is still below the threshold, Algorithm SRRbin executes
the next iteration: it correspondingly adjusts the constraints of the linear pro-
gram, which produces a new linear program, and so on. The process stops when
the degeneracy allowance is exhausted.

114 Y.-T. Huang and M. Chrobak

3.2 Randomized Rounding for DNA Sequences Data

We now present our randomized rounding scheme for MCDPDmis
tmpl when the

input consists of DNA sequences.
We start with the description of the integer linear program for MCDPDmis

tmpl

with Σ = {A, C, G, T}. Degenerate primers for DNA sequences, in addition to
four nucleotide symbols A, C, G and T, can use eleven symbols corresponding to
ambiguous positions, described by their IUPAC codes M, R, W, S, Y, K, V, H, D, B,
and N. The interpretation of these codes was given in Table 1 in Section 1. Let Λ
denote the set of these fifteen symbols. We think of each λ ∈ Λ as representing
a subset of Σ, and we write |λ| for the cardinality of this subset. For example,
we have |C| = 1, |H| = 3 and |N| = 4.

The complete linear program is given below. As for binary sequences, xi in-
dicates whether the i-th target sequence ai is covered. Then the objective of the
linear program is to maximize the primer coverage, that is

∑
i x

i.

maximize
∑

i x
i

mj + rj + wj + sj + yj + kj + vj + hj + dj + bj + nj ≤ 1 ∀j
∑

j
μi
j ≤ m ∀i

∑
j

[
(mj + rj + wj + sj + yj+kj) + log 3 · (vj + hj + dj + bj) + 2 · nj] ≤ log d

xi ≤ mj + vj + hj + nj + μi
j ∀i, j : (p̂j = A, aij = C) ∨ (p̂j = C, aij = A)

xi ≤ rj + vj + dj + nj + μi
j ∀i, j : (p̂j = A, aij = G) ∨ (p̂j = G, aij = A)

xi ≤ wj + hj + dj + nj + μi
j ∀i, j : (p̂j = A, aij = T) ∨ (p̂j = T, aij = A)

xi ≤ sj + vj + bj + nj + μi
j ∀i, j : (p̂j = C, aij = G) ∨ (p̂j = G, aij = C)

xi ≤ yj + hj + bj + nj + μi
j ∀i, j : (p̂j = C, aij = T) ∨ (p̂j = T, aij = C)

xi ≤ kj + dj + bj + nj + μi
j ∀i, j : (p̂j = G, aij = T) ∨ (p̂j = T, aij = G)

xi,mj , rj , wj , sj , yj , kj ,vj , hj , dj , bj, nj , μ
i
j ∈ {0, 1} ∀i, j

To specify the constraints, we now have eleven variables representing the pres-
ence of ambiguous bases in the degenerate primer, namely mj , rj , wj , sj , yj ,
kj , vj , hj, dj , bj , and nj, denoted using letters corresponding to the ambigu-
ous symbols. Specifically, for each position j and for each symbol λ ∈ Λ, the
corresponding variable λj indicates whether p̂j is changed to this symbol in the
computed degenerate primer p. For example, rj represents the absence or pres-
ence of R in position j. For each j, at most one of these variables can be 1, which
can be represented by the constraint that their sum is at most 1.

Variables μi
j indicate a mismatch between p and ai on position j. Then the

bound on the number of mismatches can be written as
∑

j μ
i
j ≤ m, for each i.

The bound on the degeneracy of the primer p can be written as

deg(p) =
∏

j 2
(mj+rj+wj+sj+yj+kj) × 3(vj+hj+dj+bj) × 4nj ≤ d,

An LP-Rounding Algorithm for Degenerate Primer Design 115

which after taking logarithms of both sides gives us another linear constraint.
In order for ai to be covered (that is, when xi = 1), for each position j

for which aij �= p̂j, we must either have a mismatch at position j or we need

aij ⊆ pj . Expressing this with linear constraints can be done by considering

cases corresponding to different values of p̂j and aij. For example, when p̂j = A

and aij = C (or vice versa), then either we have a mismatch at position j (that is,

μi
j = 1) or pj must be one of ambiguous symbols that match A and C (that is M,

V, H, or N). This can be expressed by the constraint xi ≤ mj + vj +hj +nj +μi
j .

We will have one such case for any two different choices of p̂j and aij , giving us
six groups of such constraints.

We then extend our randomized rounding approach from the previous section
to this new linear program. From the linear program, we can see that the integral
solution can be determined from the values of all variables λj , for λ ∈ Λ. In the
fractional solution, a higher value of λj indicates that pj is more likely to be the
ambiguous symbol λ. We thus determine ambiguous bases in p one at a time by
rounding the corresponding variables.

As for binary strings, Algorithm SRRdna will start with p = p̂ and gradually
change some bases in p to ambiguous bases, solving a linear program at each
step. At each iteration we first call function FilterOut that filters out target
sequences that are either too different from the template p̂, so that they cannot
be matched, or too similar, in which case they are guaranteed to be matched. The
pseudocode of Algorithm SRRdna is the same as in Pseudocode 1 except that
the procedure RandRoundingbin is replaced by the corresponding procedure
RandRoundingdna for DNA strings.

If no sequences are left in A then we output p and halt. Otherwise, we con-
struct a linear program for the remaining sequences. This linear program is a
slight modification of the one above, with p̂ replaced by p. Each base pj that was
rounded to an ambiguous symbol is essentially removed from consideration and
will not be changed in the future. Specifically, the constraints on xi associated
with this position j will be dropped from the linear program (because these
constraints apply only to positions where pj ∈ {A, C, G, T}). For each position j
that was already rounded, we appropriately modify the corresponding variables.
If pj = λ, for some λ ∈ Λ − Σ, then the corresponding variable λj is set to 1
and all other variables λ′

j are set to 0. If aij ∈ pj , that is, a
i
j is already matched,

then we set μi
j = 0, and if aij /∈ pj then we set μi

j = 1, which effectively reduces

the mismatch allowance for ai in the remaining linear program.
Next, Algorithm SRRdna solves the fractional relaxation of such constructed

integer program, obtaining a fractional solution FracSol. Finally, the algorithm
calls function RandRoundingdna that will round one fractional variable λj to
1. (This represents setting pj to λ.) To choose j and the symbol λ for pj , we
randomly choose a fractional variable λj proportionally to their values among
undetermined positions. This is done similarly as in the binary case, by summing
up fractional values corresponding to different symbols and positions, and choos-
ing uniformly a random number c between 0 and this sum. This c determines
which variable should be rounded up to 1.

116 Y.-T. Huang and M. Chrobak

3.3 Experimental Approximation Ratio

To examine the quality of primers generated by algorithm SRRdna, we compared
the coverage of these primers to the optimal coverage. In our experiments we
used the human OR gene [7] data set consisting of 50 sequences, each of length
approximately 1Kbps. For this dataset we computed 15 alignments (regions)
of length 25 with highest entropy scores (representing sequence similarity, see
Section 2). Thus each obtained alignment consists of 50 target strings of length
25. Then, for each of these alignments A, we use each target string in A as
a template to run SRRdna, which gives us 50 candidate primers, from which
we choose the best one. We then compared this selected primer to a primer
computed with Cplex using a similar process, namely computing an optimal
integral solution for each template and choosing the best solution.

Table 2. Algorithm SRRdna versus the integral solution obtained with Cplex. The
numbers represent coverage values for the fifteen alignments.

d = 10000, m = 0 d = 625, m = 2

Ai 1 2 3 4 5 6 7 8 9 10 11 12 13 1 2 3 4 5 6 7 8 9 10 11 12 13

Opt 26 24 24 24 26 26 24 24 24 26 24 24 24 43 42 42 42 43 43 42 42 42 43 42 42 42
SRR 26 24 23 23 26 26 23 24 23 26 24 23 23 42 40 42 42 43 43 40 41 42 43 42 42 40

This experiment was repeated for two different settings form (the mismatch al-
lowance) and d (the degeneracy threshold), namely for (m, d) = (0, 1000), (2, 625).
The results are shown inTable 2. As can be seen from this table, AlgorithmSRRdna

computes degenerate primers that are very close, and often equal, to the values ob-
tained from the integer program. Note that form = 0 the value obtained with the
integer program represents the true optimal solution for the instance of
MCDPDmis, because we try all target strings as templates. For m = 2, to com-
pute the optimal solution we would have to try all template strings in Tmpl2(Ah),
which is not feasible; thus the values in the first row are only close approximations
to the optimum.

The linear programs we construct are very sparse. This is because for any
given ai and position j, the corresponding constraint on xi is generated only
when p and ai differ on position j (see Section 3.2), and our data sets are very
conserved. Thus, for sufficently small data sets one could simply use integral
solutions from Cplex instead of rounding the fractional solution. For example,
the initial linear programs in the above instances had typically around 150 con-
straints, and computing each integral solution took only about 5 times longer
than for the fractional solution (roughly, 0.7s versus 0.15s). For larger datasets,
however, computing the optimal integral solution becomes quickly infeasible.

4 RRD2P – Complete Primer Design Algorithm

Toassess the effectiveness of our randomized rounding approach,we have extended
Algorithm SRRdna to a complete primer design algorithm, called RRD2P, and

An LP-Rounding Algorithm for Degenerate Primer Design 117

we tested it experimentally on real data sets. In this section we describe Algo-
rithm RRD2P; the experimental evaluation is given in the next section.

Algorithm RRD2P (see Pseudocode 2) has two parameters: Sfvd and Srev,
which are, respectively, two sets of target sequences, one for forward and the
other for reverse primers. They are provided by the user and represent desired
binding regions for the two primers. The algorithm finds candidates for forward
primers and reverse primers separately. Then, from among these candidates, it
iterates over all primer pairs to choose primer pairs with the best joint coverage.

Pseudocode 2. Algorithm RRD2P(Sfvd, Srev, k, d,m)

1: PrimerListfvd ← DesignPrimers(Sfvd, k, d,m)
2: PrimerListrev ← DesignPrimers(Srev, k, d,m)
3: ChooseBestPairs(PrimerListfvd,PrimerListrev) � Find best primer pairs (f, r)

For both types of primers, we call AlgorithmDesignPrimers (Pseudocode 3),
that consists of two parts. In the first part, the algorithm identifies conserved re-
gions within target sequences (Line 1). As before, these regions are also called
alignments, and they are denoted Ah. In the second part we design primers for
these regions (Lines 2-7).

Pseudocode 3. Algorithm DesignPrimers(S = {s1, s2, · · · , sn}, k, d,m)

1: A1, A2, · · ·AN ← FindAlignments(S, k)
2: for all alignments Ah, h = 1, · · ·N do
3: PLh ← ∅
4: Th ← set of templates � see explanation in text
5: for all p̂ ∈ Th do
6: p← SRRdna(p̂, Ah, d,m)
7: Add p to PLh

8: PrimerList← PL1 ∪ PL2 · · · ∪ PLN

9: return PrimerList (sorted according to coverage)

Finding alignments. Algorithm FindAlignments for locating conserved regions
(Pseudocode 4) follows the strategy from [7]. It enumerates over all sub-strings
of length k of the target sequences. For each k-mer, K, we align it against every
target sequence si without gaps, to find the best match ai of length k, i.e, ai has
the smallest Hamming distance withK. The resulting set A = {a1, a2, · · · , an} of
the n best matches, one for each target string, is a conserved region (alignment).
Intuitively, more conserved alignments are preferred, since they are more likely
to generate low-degeneracy primers. In order to identify how well-conserved an
alignment A is, the entropy score is applied.

118 Y.-T. Huang and M. Chrobak

Pseudocode 4. Algorithm FindAlignments(S = {s1, s2 · · · , sn}, k)
1: AlignmentList← ∅
2: for all k-mers, K, in S do
3: A← ∅
4: for all si ∈ S do
5: ai ← substring of si that is the best match for K
6: Add ai to A
7: Add A to AlignmentList

8: return AlignmentList (sorted according to entropy)

Computing primers. In the second part (Lines 2-7), the algorithm considers all
alignments Ah computed by Algorithm FindAlignments. For each Ah, we
use the list Th of template strings (see below), and for each p̂ ∈ Th we call
SRRdna(p̂, Ah, d,m) to compute a primer p that is added to the list of primers
PLh. All lists PLh are then combined into the final list of candidate primers.

It remains to explain how to choose the set Th of templates. If the set
Tmplm(Ah) of all candidate templates is small then one can take Th to be the
whole set Tmplm(Ah). (For instance, when m = 0 then Tmpl0(Ah) = Ah.) In
general, we take Th to be a random sample of r strings from Tmplm(Ah), where
the value of r is a parameter of the program, which can be used to optimize the
tradeoff between the accuracy and the running time. Each p̂ ∈ Th is constructed
as follows: (i) choose uniformly a random ai ∈ Ah, (ii) choose uniformly a set
of exactly m random positions in ai, and (iii) for each chosen position j in ai,
set aij to a randomly chosen base, where this base is selected with probability
proportional to its frequency in position j in all sequences from Ah.

5 Experiments

We tested Algorithm RRD2P on three biological data sets, and we compared
our results to those from Algorithm HYDEN [7].
1. The first data set is a set of 50 sequences of human olfactory receptor (OR)
gene [7], of length around 1Kbps, provided along with the HYDEN program.
2. The second data set is from the NCBI flu database [15], from which we chose
Human flu sequences of lengths 900-1000 bps (dated from November 2013). This
set contains 229 flu sequences.
3. The third one contains 160 fungal ITS genes of various lengths, obtained from
NCBI-INSD [16]. Sequence lengths vary from 400 to 2000 bps.

We run AlgorithmRRD2P with the following parameters: (i) Primer length =
25. (ii) Primer degeneracy threshold (forward, reverse) : (625,3750), (1250,7500),
(1875, 11250), (2500, 15000), (3750, 22500), (5000,30000), (7500,45000),
(10000,60000). Note that the degeneracy values increase roughly exponentially,
which corresponds to a linear increase in the number of ambiguous bases.The
degeneracy of the reverse primer is six times larger than that of the forward
primer (the default in HYDEN). (iii) Forward primer binding range : 0 ∼ 300,

An LP-Rounding Algorithm for Degenerate Primer Design 119

reverse primer binding range : −1 ∼ −350. (iv) Mismatch allowance : m = 0, 1, 2
(m represents the mismatch allowance for each primer separately). (v) Number
of alignments: N = 50. (vi) Number of template samples: r = 5.

We compare our algorithm to HYDEN in terms of the coverage of computed
primers. To make this comparison meaningful, we designed our algorithm to
have similar input parameters, which allows us to run HYDEN with the same
settings. For the purpose of these experiments, we use the best primer pair from
the list computed by Algorithm RRD2P.

The results are shown in Figures 2, 3 and 4, respectively. The x-axis represents
the degeneracy of the forward primer; the degeneracy of the reverse primer is six
times larger. The y-axis is the coverage of the computed primer pair. The results
show that RRD2P is capable to find better degenerate primers than HYDEN,
for different choices of parameters.

62
5

12
50

18
75

25
00

37
50

50
00

75
00

10
00
0

10

12

14

16

18

20

22

15 15

17

18 18

19

20

21

11

13

14 14

16 16

17

19

degeneracy

C
ov

er
a
g
e

RRD2P

HYDEN

62
5

12
50

18
75

25
00

37
50

50
00

75
00

10
00
0

26

28

30

32

34

36

38

27

30

31 31

33

34

35

37

26

29

31 31 31

32 32

30

degeneracy

C
ov

er
a
g
e

RRD2P

HYDEN

62
5

12
50

18
75

25
00

37
50

50
00

75
00

10
00
0

36

38

40

42

44

36

39

41 41

42

43

44 44

36

39 39

41

42

43 43 43

degeneracy

C
ov

er
a
g
e

RRD2P

HYDEN

Fig. 2. Comparison of RRD2P and HYDEN on human OR genes for m = 0 (left),
m = 1 (center) and m = 2 (right)

62
5

12
50

18
75

25
00

37
50

50
00

75
00

10
00
0

110

120

130

118

122
123

125

131
132

134

137

110 110 110 110 110 110

116
117

degeneracy

C
ov

er
a
g
e

RRD2P

HYDEN

62
5

12
50

18
75

25
00

37
50

50
00

75
00

10
00
0

125

130

135

140

128

130

138

140 140 140
141 141

123
124 124 124 124 124 124

127

degeneracy

C
ov

er
a
g
e

RRD2P

HYDEN

62
5

12
50

18
75

25
00

37
50

50
00

75
00

10
00
0

130

140

150

160

136

139 140
142

150
152

156

159

127

137

140

137

140

137
139

146

degeneracy

C
ov

er
a
g
e

RRD2P

HYDEN

Fig. 3. Comparison of RRD2P and HYDEN on flu sequences for m = 0 (left), m = 1
(center) and m = 2 (right)

62
5

12
50

18
75

25
00

37
50

50
00

75
00

10
00
0

55

60

65

70 69
70

71
72 72 72

73 73

65

69 69 69
70

56

69 69

degeneracy

C
ov

er
a
g
e

RRD2P

HYDEN

62
5

12
50

18
75

25
00

37
50

50
00

75
00

10
00
0

72

74

76

78

80

75

76

77 77

78 78

80 80

75

71

74

76 76 76 76

78

degeneracy

C
ov

er
a
g
e

RRD2P

HYDEN

62
5

12
50

18
75

25
00

37
50

50
00

75
00

10
00
0

78

80

82

80

81 81 81 81 81

82

83

78

79

80 80 80 80

79

81

degeneracy

C
ov

er
a
g
e

RRD2P

HYDEN

Fig. 4. Comparison of RRD2P and HYDEN on fungal sequences for m = 0 (left),
m = 1 (center) and m = 2 (right)

120 Y.-T. Huang and M. Chrobak

Running time. The running time of Algorithm RRD2P is dominated by the
module running Cplex to solve the linear program, and it depends, roughly
linearly, on the number of times the LP solver is run. The above experiments
were performed for r = 5. For the third dataset above and m = 0, the running
times of Algorithm RRD2P varied from 110s for d = 625 to 164s for d = 10000
(on Windows 8 2.4 GHz CPU, 8.0 G memory). The respective run times of
HYDEN were lower, between 25s and 28s. The run time of Algorithm RRD2P
can be adjusted by using smaller values of r. For example, for r = 1, 2, RRD2P
is actually faster than HYDEN for small to moderate degeneracy values, and
the loss of accuracy is not significant.

6 Discussion

We studied the problem of computing a pair of degenerate forward and reverse
primers that maximizes the number of covered target sequences, assuming upper
bounds on the primer degeneracy and the number of mismatches. We proposed
an algorithm for this problem, calledRRD2P, based on representing the problem
as an integer linear program, solving its fractional relaxation, and then rounding
the optimal fractional solution to integral values. We tested Algorithm RRD2P
on three biological datasets. Our algorithm usually finds solutions that are near
optimal or optimal, and it produces primer pairs with higher coverage than
Algorithm HYDEN from [7], regardless of the parameters.

Our work focussed on optimizing the coverage of the sequence data by de-
generate primers. Algorithm RRD2P does not consider biological parameters
that affect the quality of the primers in laboratory PCR, including the melting
temperature of the primers, GC content, secondary structure and other. In the
future, we are planning to integrate Algorithm RRD2P into our software tool,
called PRISE2 [17], that can be used to interactively design PCR primers based
both on coverage and on a variety of biological parameters.

The integrality gap of the linear programs in Section 3.1 can be shown to be
Ω(n(m+ log d)/k), where n is the number of target sequences, k is their length,
d is the degeneracy bound and m is the mismatch allowance. An example with
this integrality gap consists of n target binary sequences of length k such that
each two differ from each other on more than m + log2 d positions. When we
choose any target sequence as template, the optimal coverage can only be 1.
However, there is a fractional solution with value n(m + log d)/k, obtained by
setting nj = (log d)/k and μi

j = m/k, for all i, j.
Nevertheless, as we show, for real DNA datasets the solutions produced by

rounding the fractional solution are very close to the optimum. Providing some
analytical results that explain this phenomenon would be of considerable interest,
both from the theoretical and practical standpoint, and will be a focus of our
future work. This work would involve developing formal models for “conserved
sequences” (or adapting existing ones) and establishing integrality gap results,
both lower and upper bounds, for such datasets.

An LP-Rounding Algorithm for Degenerate Primer Design 121

Acknowledgements. We would like to thank anonymous reviewers for pointing
some deficiencies in the earlier version of the paper and for insightful comments.

References

1. Kwok, S., Chang, S., Sninsky, J., Wang, A.: A guide to the design and use of
mismatched and degenerate primers. PCR Methods and Applications 47, S39–S47
(1994)

2. Hunt, D.E., Klepac-Ceraj, V., Acinas, S.G., Gautier, C., Bertilsson, S., Polz, M.F.:
Evaluation of 23s rRNA PCR primers for use in phylogenetic studies of bacterial
diversity. Applied Environmental Microbiology 72, 2221–2225 (2006)

3. Ihrmark, K., Bödeker, I.T., Cruz-Martinez, K., Friberg, H., Kubartova, A.,
Schenck, J., Strid, Y., Stenlid, J., Brandström-Durling, M., Clemmensen, K.E.,
Lindahl, B.D.: New primers to amplify the fungal its2 region–evaluation by 454-
sequencing of artificial and natural communities. FEMS Microbiology Ecology 82,
666–677 (2012)

4. Chamberlain, J.S., Gibbs, R.A., Rainer, J.E., Nguyen, P.N., Casey, C.T.: Deletion
screening of the duchenne muscular dystrophy locus via multiplex dna amplifica-
tion. Nucleic Acid Research 16, 11141–11156 (1988)

5. Konwar, K.M., Mandoiu, I.I., Russell, A.C., Shvartsman, A.A.: Improved algo-
rithms for multiplex PCR primer set selection with amplification length constraints.
In: Proc. 3rd Asia-Pacific Bioinformatics Conference, pp. 41–50 (2005)

6. Linhart, C., Shamir, R.: The degenerate primer design problem: theory and appli-
cations. Journal of Computational Biology 12(4), 431–456 (2005)

7. Linhart, C., Shamir, R.: The degenerate primer design problem. Bioinformatics 180,
S172–S180 (2002)

8. Souvenir, R., Buhler, J.P., Stormo, G., Zhang, W.: Selecting degenerate multiplex
PCR primers. In: Benson, G., Page, R.D.M. (eds.) WABI 2003. LNCS (LNBI),
vol. 2812, pp. 512–526. Springer, Heidelberg (2003)

9. Balla, S., Rajasekaran, S.: An efficient algorithm for minimum degeneracy primer
selection. IEEE Transactions on NanoBioscience 6, 12–17 (2007)

10. Sharma, D., Balla, S., Rajasekaran, S., DiGirolamo, N.: Degenerate primer selec-
tion algorithms. Computational Intelligence in Bioinformatics and Computational
Biology, 155–162 (2009)

11. Duitama, J., Kumar, D.M., Hemphill, E., Khan, M., Mandoiu, I.I., Nelson, C.E.:
Primerhunter: a primer design tool for PCR-based virus subtype identification.
Nucleic Acids Research 37, 2483–2492 (2009)

12. http://dna.engr.uconn.edu/software/PrimerHunter/primerhunter.php

13. Boyce, R., Chilana, P., Rose, T.M.: iCODEHOP: a new interactive program for
designing COnsensus-DEgenerate Hybrid Oligonucleotide Primers from multiply
aligned protein sequences. Nucleid Acids Research 37, 222–228 (2009)

14. http://blocks.fhcrc.org/codehop.html

15. http://www.ncbi.nlm.nih.gov/genomes/FLU/FLU.html

16. http://www.ncbi.nlm.nih.gov/genbank/collab/

17. Huang, Y.T., Yang, J.I., Chrobak, M., Borneman, J.: Prise2: Software for designing
sequence-selective PCR primers and probes (2013) (in preparation)

http://dna.engr.uconn.edu/software/PrimerHunter/primerhunter.php
http://blocks.fhcrc.org/codehop.html
http://www.ncbi.nlm.nih.gov/genomes/FLU/FLU.html
http://www.ncbi.nlm.nih.gov/genbank/collab/

	An LP-Rounding Algorithm for Degenerate
Primer Design

	1 Introduction
	2 Related Work
	3 Randomized Rounding
	3.1 Randomized Rounding for Binary Strings
	3.2 Randomized Rounding for DNA Sequences Data
	3.3 Experimental Approximation Ratio

	4 RRD2P – Complete Primer Design Algorithm
	5 Experiments
	6 Discussion
	References

