
Navigating in a Sea of Repeats in RNA-seq

without Drowning

Gustavo Sacomoto1,2, Blerina Sinaimeri1,2, Camille Marchet1,2,
Vincent Miele2, Marie-France Sagot1,2, and Vincent Lacroix1,2

1 INRIA Grenoble Rhône-Alpes, France
2 UMR CNRS 5558 - LBBE, Université Lyon 1, France

Abstract. The main challenge in de novo assembly of NGS data is
certainly to deal with repeats that are longer than the reads. This is
particularly true for RNA-seq data, since coverage information cannot
be used to flag repeated sequences, of which transposable elements are
one of the main examples. Most transcriptome assemblers are based on de
Bruijn graphs and have no clear and explicit model for repeats in RNA-
seq data, relying instead on heuristics to deal with them. The results of
this work are twofold. First, we introduce a formal model for representing
high copy-number repeats in RNA-seq data and exploit its properties to
infer a combinatorial characteristic of repeat-associated subgraphs. We
show that the problem of identifying in a de Bruijn graph a subgraph
with this characteristic is NP-complete. In a second step, we show that in
the specific case of a local assembly of alternative splicing (AS) events,
using our combinatorial characterization we can implicitly avoid such
subgraphs. In particular, we designed and implemented an algorithm to
efficiently identify AS events that are not included in repeated regions.
Finally, we validate our results using synthetic data. We also give an
indication of the usefulness of our method on real data.

1 Introduction

Transcriptomes can now be studied through sequencing. However, in the ab-
sence of a reference genome, de novo assembly remains a challenging task. The
main difficulty certainly comes from the fact that sequencing reads are short,
and repeated sequences within transcriptomes could be longer than the reads.
This short read / long repeat issue is of course not specific to transcriptome
sequencing. It is an old problem that has been around since the first algorithms
for genome assembly. In this latter case, the problem is somehow easier because
coverage can be used to discriminate contigs that correspond to repeats, e.g.
using Myer’s A-statistics [8] or [9]. In transcriptome assembly, this idea does
not apply, since the coverage of a gene does not only reflect its copy-number
in the genome, but also and mostly its expression level. Some genes are highly
expressed and therefore highly covered, while most genes are poorly expressed
and therefore poorly covered.

Initially, it was thought that repeats would not be a major issue in RNA-
seq, since they are mostly in introns and intergenic regions. However, the truth

D. Brown and B. Morgenstern (Eds.): WABI 2014, LNBI 8701, pp. 82–96, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

Navigating in a Sea of Repeats in RNA-seq without Drowning 83

is that many regions which are thought to be intergenic are transcribed [3]
and introns are not always already spliced out when mRNA is collected to be
sequenced. Repeats, especially transposable elements, are therefore very present
in real samples and cause major problems in transcriptome assembly.

Most, if not all current short-read transcriptome assemblers are based on de
Bruijn graphs. Among the best known are Oases [14], Trinity [4], and to a
lesser degree Trans-Abyss [11] and IDBA-tran [10]. Common to all of them
is the lack of a clear and explicit model for repeats in RNA-seq data. Heuristics
are thus used to try and cope efficiently with repeats. For instance, in Oases
short nodes are thought to correspond to repeats and are therefore not used for
assembling genes. They are added in a second step, which hopefully causes genes
sharing repeats not to be assembled together. In Trinity, there is no attempt
to deal with repeats explicitly. The first module of Trinity, Inchworm, will try
and assemble the most covered contig which hopefully corresponds to the most
abundant alternative transcript. Then alternative exons are glued to this major
transcript to form a splicing graph. The last step is to enumerate all alternative
transcripts. If repeats are present, their high coverage may be interpreted as
a highly expressed link between two unrelated transcripts. Overall, assembled
transcripts may be chimeric or spliced into many sub-transcripts.

In the method we developed, KisSplice, which is a local transcriptome as-
sembler [12], repeats may be less problematic, since the goal is not to assemble
full-length transcripts. KisSplice instead aims at finding variations expressed
at the transcriptome level (SNPs, indels and alternative splicings). However, as
we previously reported in [12], KisSplice is not able to deal with large por-
tions of a de Bruijn graph containing subgraphs associated to highly repeated
sequences, e.g. transposable elements, the so-called complex BCCs.

Here, we try and achieve two goals: (i) give a clear formalization of the no-
tion of repeats with high copy-number in RNA-seq data, and (ii) based on it,
give a practical way to enumerate bubbles that are lost because of such re-
peats. Recall that we are in a de novo context, so we assume that neither a
reference genome/transcriptome nor a database of known repeats, e.g. Repeat-
Masker [15], are available.

First, we formally introduce a model for representing high copy-number re-
peats and exploit its properties to infer a parameter characterizing repeat-
associated subgraphs in a de Bruijn graph. We prove its relevance but we also
show that the problem of identifying, in a de Bruijn graph, a subgraph corre-
sponding to repeats according to such characterization is NP-complete. Hence,
a polynomial time algorithm is unlikely. We then show that in the specific case
of a local assembly of alternative splicing (AS) events, by using a strategy based
on that parameter, we can implicitly avoid such subgraphs. More precisely, it
is possible to find the structures (i.e. bubbles) corresponding to AS events in a
de Bruijn graph that are not contained in a repeat-associated subgraph. Finally,
using simulated RNA-seq data, we show that the new algorithm improves by a
factor of up to 2 the sensitivity of KisSplice, while also improving its precision.
For the specific tasks of calling AS events, we further show that our algorithm

84 G. Sacomoto et al.

more sensitive, by a factor of 2, than Trinity, while also being slightly more
precise. Finally, we give an indication of the usefulness of our method on real
data.

2 Preliminaries

Let Σ be an alphabet of fixed size σ. Here we always assume Σ = {A,C, T,G}.
Given a sequence (string) s ∈ Σ∗, let |s| denote its length, s[i] the ith element
of s, and s[i, j] the substring s[i]s[i+ 1] . . . s[j] for any 1 ≤ i < j ≤ |s|.

A k-mer is a sequence s ∈ Σk. Given an integer k and a set S of sequences
each of length n ≥ k, we define span(S, k) as the set of all distinct k-mers that
appear as a substring in S.

Definition 1. Given a set of sequences (reads) R ⊆ Σ∗ and an integer k, we
define the directed de Bruijn graph Gk(R) = (V,A) where V = span(R, k) and
A = span(R, k + 1).

Given a directed graph G = (V,A) and a vertex v ∈ V , we denote its out-
neighborhood (resp. in-neighborhood) by N+(v) = {u ∈ V | (v, u) ∈ A} (resp.
N−(v) = {u ∈ V | (u, v) ∈ A}), and its out-degree (resp. in-degree) by d+(v) =
|N+(v)| (d−(v) = |N−(v)|). A (simple) path π = s � t in G is a sequence of
distinct vertices s = v0, . . . , vl = t such that, for each 0 ≤ i < l, (vi, vi+1) is
an arc of G. If the graph is weighted, i.e. there is a function w : A → Q≥0

associating a weight to every arc in the graph, then the length of a path π is the
sum of the weights of the traversed arcs, and is denoted by |π|.

An arc (u, v) ∈ A is called compressible if d+(u) = 1 and d−(v) = 1. The intu-
ition behind this definition comes from the fact that every path passing through
u should also pass through v. It should therefore be possible to “compress”
or contract this arc without losing any information. Note that the compressed
de Bruijn graph [4,14] commonly used by transcriptomic assemblers is obtained
from a de Bruijn graph by replacing, for each compressible arc (u, v), the vertices
u, v by a new vertex x, where N−(x) = N−(u), N+(x) = N+(v) and the label is
the concatenation of the k-mer of u and the k-mer of v without the overlapping
part (see Fig. 1).

CTG

ACT

TCT

TGA

GAT

GAG

(a)

CTGA

ACT

TCT

GAT

GAG

(b)

Fig. 1. (a) The arc (CTG, TGA) is the only compressible arc in the given de Bruijn
graph (k = 3). (b) The corresponding compressed de Bruijn graph.

Navigating in a Sea of Repeats in RNA-seq without Drowning 85

3 Repeats in de Bruijn Graphs

Given a de Bruijn graph Gk(R) generated by a set of reads R for which we
do not have any prior information, our goal is to identify whether there are
subgraphs of Gk(R) that correspond each to a set of high copy-number repeats
in R. To this end, we identify and then exploit some of the topological properties
of the subgraphs that are induced by repeats. Starting with a formal model
for representing repeats with high-copy number, we show that the number of
compressible arcs, which we denote by γ, is a relevant parameter for such a
characterization. This parameter will play an important role in the algorithm
of Section 4. However, we also prove that, for an arbitrary de Bruijn graph,
identifying a subgraph G′ with bounded γ(G′) is NP-complete.

3.1 Simple Uniform Model for Repeats

We now present the model we adopted for representing high copy-number re-
peats, e.g. transposable elements, in a genome or transcriptome. Basically, our
model consists of several “similar” sequences, each generated by uniformly mu-
tating a fixed initial sequence. This model is a simple one and as such should be
seen as only a first approximation of what may happen in reality. It is important
to point out however that such model is realistic enough in some real cases. In
particular, it enables to model well recent invasions of transposable elements
which often involve high copy-number and low divergence rate (i.e. divergence
from their consensus sequence). Consider indeed as an example the recent sub-
families AluYa5 and AluYb8 with 2640 and 1852 copies respectively, which both
present a divergence rate below 1% [2] (see [6] for other subfamilies with high
copy-number and low divergence).

The model is as follows. First, due to mutations, the sequences s1, . . . , sm that
represent the repeats are not identical. However, provided that the number of
such mutations is not high (otherwise the concept of repeats would not apply),
the repeats are considered “similar” in the sense of having a small pairwise Ham-
ming distance between them. We recall that, given two equal length sequences
s and s′ in Σn, their Hamming distance, denoted by dH(s, s′), is the number
of positions i for which s[i] �= s′[i]. Indels are thus not consider in this model.
Mathematically, it is more convenient to consider substitutions only, but this is
not a crucial part of the model.

The model has then the following parameters:Σ, the length n of the repeat, the
number m of copies of the repeat, an integer k (for the length of the k-mers con-
sidered), and the mutation rate, α, i.e. the probability that a mutation happens
in a particular position. The sequences s1, . . . , sm are then generated by the fol-
lowing process. We first choose uniformly at random a sequence s0 ∈ Σn. At step
i ≤ m, we create a sequence si as follows: for each position j, si[j] = s0[j] with
probability 1 − α, whereas with probability α a value different from s[j] is chosen
uniformly at random for si[j].We repeat the whole processm times and thus create
a set S(m,n, α) ofm such sequences from s0 (see Fig. 2 for a small example). The
generated sequences thus have an expected Hamming distance of αn from s0.

86 G. Sacomoto et al.

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

A A C T G T A T C C s0
A C C T G T A G C C s1
G A C T C A A T C C s2
A A C T C T A T C C s3
A A C A G T A T C A s4
A A T T G T A G C C s5
A G C T G T A T C A s6
...

...
...

...
...

...
...

...
...

...
A A G T G A A T C C s20

Fig. 2. An example of a set of repeats S(20, 10, 0.1)

3.2 Topological Characterization of the Subgraphs Generated by
Repeats

Given a de Bruijn graphGk(R), if a is a compressible arc labeled by the sequence
s = s1 . . . sk+1, then by definition, a is the only outgoing arc of the vertex labeled
by the sequence s[1, k] and the only incoming arc of the vertex labeled by the
sequence s[2, k + 1]. Hence the (k − 1)-mer s[2, k] appears as a substring in R,
always preceded by the symbol s[1] and followed by the symbol s[k + 1]. We
refer to such (k − 1)-mers as being boundary rigid. It is not difficult to see that
the set of compressible arcs in a de Bruijn graph Gk(R) stands in a one-to-one
correspondence with the set of boundary rigid (k − 1)-mers in R.

We now calculate and compare among them the expected number of com-
pressible arcs in G = Gk(R) when R corresponds to a set of sequences that are
generated: (i) uniformly at random, and (ii) according to our model. We show
that γ is “small” in the cases where the induced graph corresponds to similar
sequences, which provides evidence for the relevance of this parameter.

Claim. Let R be a set of m sequences randomly chosen from Σn. Then the
expected number of compressible arcs in Gk(R) is Θ(mn).

Proof. The probability that a sequence of length k−1 occurs in a fixed position in
a randomly chosen sequence of length n is (1/4)k−1. Thus the expected number
of appearances of a sequence of length k − 1 in a set of m randomly chosen
sequences of length n is given by m(n − k + 2)(1/4)k−1. If m(n − k + 2) ≤ 4k,
then this value is upper bounded by 1, and all the sequences of length k − 1
are boundary rigid (as a sequence appears once). The claim follows by observing
that there are m(n− k + 1) different k-mers. �	

We consider now γ(Gk(R)) for R = S(m,n, α). We upper bound the expected
number of compressible arcs by upper bounding the number of boundary rigid
(k − 1)-mers.

Navigating in a Sea of Repeats in RNA-seq without Drowning 87

Theorem 1. Given integers k, n,m with k < n and a real number 0 ≤ α ≤ 3/4,
the de Bruijn graph Gk(S(m,n, α)) has o(nm) expected compressible arcs.

Proof. Let s0 be a sequence chosen randomly from Σn. Let S(m,n, α) be the
set {s1, . . . , sm} of m repeats generated according to our model starting from
s0. Consider now the de Bruijn graph G = Gk(S(m,n, α)). Recall that the
number of compressible arcs in this graph is equal to the number of boundary
rigid (k − 1)-mers in S(m,n, α). Let X be a random variable representing the
number of boundary rigid (k− 1)-mers in G. Consider the repeats in S(m,n, α)
in a matrix-like ordering as in Fig.2 and observe that the mutations from one
column to another are independent. Due to the symmetry and the linearity of
expectation, E[X] is given by m(n − k − 1) (the total number of (k − 1)-mers)
multiplied by the probability that a given (k − 1)-mer is boundary rigid.

The probability that the (k−1)-mer ŝ = s[i, i+k−2] is boundary rigid clearly
depends on the distance from the starting sequence ŝ0 = s0[i, i + k − 2]. Let d
be the distance dH(ŝ, ŝ0).

Observe that if the (k − 1)-mer s[i] . . . s[k − 1] is not boundary rigid then
there exists a sequence y in S(m,n, α) such that y[j] = s[j] for all i ≤ j ≤
i + k − 2 and either y[i + k − 1] �= s[i + k − 1] or y[i − 1] �= s[i − 1]. It is
not difficult to see that the probability that this happens is lower bounded by
(2α− 4/3α2)(1− α)k−1−d(α/3)d. Hence we have:

Pr[ŝ is boundary rigid|dH(ŝ, ŝ0) = d] ≤
(
1−(2α−4/3α2)(1−α)k−1−d(α/3)d

)m−1

By approximating the above expression we therefore have that,

E[X] ≤ (n− k − 1)m
k−1∑
d=0

Pr[ŝ is boundary rigid|dH(ŝ, ŝ0) = d] (1)

≤ (n− k − 1)me−(m−1)(2α−4/3α2)/(α
3)k−1

For a sufficiently large number of copies (e.g. m =
(

k
αk

)
) and using the fact

that
(

k
αk

) ≥ (1/α)αk, we have that E[X] is o(mn). This concludes the proof. �	
The previous result shows that the number of compressible arcs is a good

parameter for characterizing a repeat-associated subgraph.

3.3 Identifying a Repeat-Associated Subgraph

As we showed, a subgraph due to repeated elements has a distinctive feature:
it contains few compressible arcs. Based on this, a natural formulation to the
repeat identification problem in RNA-seq data is to search for large enough
subgraphs that do not contain many compressible arcs. This is formally stated
in Problem 1. In order to disregard trivial solutions, it is necessary to require
a large enough connected subgraph, otherwise any set of disconnected vertices

88 G. Sacomoto et al.

or any small subgraph would be a solution. Unfortunately, we show that this
problem is NP-complete, so an efficient algorithm for the repeat identification
problem based on this formulation is unlikely.

Problem 1 (Repeat Subgraph).
INSTANCE: A directed graph G and two positive integers m, t.
DECIDE: If there exists a connected subgraph G′ = (V ′, E′), with |V ′| ≥ m

and having at most t compressible arcs.

In Theorem 2, we prove that this problem is NP-complete for all directed
graphs with (total) degree, i.e. sum of in and out-degree, bounded by 3. The
reduction is from the Steiner tree problem which requires finding a minimum
weight subgraph spanning a given subset of vertices. It remains NP-hard even
when all arc weights are 1 or 2 (see [1]). This version of the problem is denoted by
STEINER(1, 2). More formally, given a complete undirected graph G = (V,E)
with arc weights in {1, 2}, a set of terminal vertices N ⊆ V and an integer B, it
is NP-complete to decide if there exists a subgraph of G spanning N with weight
at most B, i.e. a connected subgraph of G containing all vertices of N .

We specify next a family of directed graphs that we use in the reduction. Given
an integer x we define the directed graphR(x) as a cycle on 2x vertices numbered
in a clockwise order and where the arcs have alternating directions, i.e. for any
i ≤ x, (v2i, v2i+1) is an arc. Note that in R(x) all vertices in even positions, i.e.
all vertices v2i, have out-degree 2 and in-degree 0, while all vertices v2i+1, have
out-degree 0 and in-degree 2. Clearly, none of the arcs of R(x) is compressible.

Theorem 2. The Repeat Subgraph Problem is NP-complete even for directed
graphs with degree bounded by d, for any d ≥ 3.

Proof. Given a complete graph G = (V,E), a set of terminal vertices N and
an upper bound B, i.e. an instance of STEINER(1, 2), we transform it into an
instance of Repeat Subgraph Problem for a graph G′ with degree bounded by 3.
Let us first build the graph G′ = (V ′, E′). For each vertex v in V \ N , add a
corresponding subgraph r(v) = R(|V |) in G′ and for each vertex v in N , add a
corresponding subgraph r(v) = R(|E|+ |V |2 +1) in G′. For each arc (u, v) in E
with weight w ∈ {1, 2}, add a simple directed path composed by w compressible
arcs connecting r(u) to r(v) in G′; these are the subgraphs corresponding to
u and v. The first vertex of the path should be in a sink of r(u) and the last
vertex in a source of r(v). By construction, there are at least |V | vertices with in-
degree 2 and out-degree 0 (sink) and |V | vertices with out-degree 2 and in-degree
0 (source) in both r(v) and r(u). It is clear that G′ has degree bounded by 3.
Moreover, the size of G′ is polynomial in the size of G and it can be constructed
in polynomial time.

In this way, the graph G′ has one subgraph for each vertex of G and a path
with one or two (depending on the weight of the corresponding arc) compressible
arcs for each arc of G. Thus, there exists a subgraph spanning N in G with
weight at most B if and only if there exists a subgraph in G′ with at least
m = 2|N |+ 2|E||N |+ 2|V |2|N | vertices and at most t = |B| compressible arcs.

Navigating in a Sea of Repeats in RNA-seq without Drowning 89

This follows from the fact that any subgraph of G′ with at least m vertices
necessarily contains all the subgraphs r(v), where v ∈ N , since the number
of vertices in all r(v), with v ∈ V \ N , is at most |E| + 2|V |2 and the only
compressible arcs of G′ are in the paths corresponding to the arcs of G. �	

We can obtain the same result for the specific case of de Bruijn graphs. The
reduction is very similar but uses a different graph family.

Theorem 3. The Repeat Subgraph Problem is NP-complete even for subgraphs
of de Bruijn graphs on |Σ| = 4 symbols.

4 Bubbles “Drowned” in Repeats

In the previous section, we showed that an efficient algorithm to directly iden-
tify the subgraphs of a de Bruijn graph corresponding to repeated elements,
according to our model (i.e. containing few compressible arcs), is unlikely to
exist since the problem is NP-complete. However, in this section we show that
in the specific case of a local assembly of alternative splicing (AS) events, based
on the compressible-arc characterization of Section 3.2, we can implicitly avoid
such subgraphs. More precisely, it is possible to find the structures (i.e. bub-
bles) corresponding to AS events in a de Bruijn graph that are not contained in
a repeat-associated subgraph, thus answering to the main open question of [12].

Fig. 3. An alternative splicing event in the SCN5A gene (human) trapped inside a
complex region, likely containing repeat-associated subgraphs, in a de Bruijn graph.
The alternative isoforms correspond to a pair of paths shown in red and blue.

KisSplice [12] is a method for de novo calling of AS events through the enu-
meration of so-called bubbles, that correspond to pairs of vertex-disjoint paths in
a de Bruijn graph. The bubble enumeration algorithm proposed in [12] was later
improved in [13]. However, even the improved algorithm is not able to enumerate
all bubbles corresponding to AS events in a de Bruijn graph. There are certain
complex regions in the graph, likely containing repeat-associated subgraphs but
also real AS events [12], where both algorithms take a huge amount of time. See

90 G. Sacomoto et al.

Fig. 3 for an example of a complex region with a bubble corresponding to an AS
event. The enumeration is therefore halted after a given timeout. The bubbles
drowned (or trapped) inside these regions are thus missed by KisSplice.

In Section 3, the repeat-associated subgraphs are characterized by the pres-
ence of few compressible arcs. This suggests that in order to avoid repeat-
associated subgraphs, we should restrict the search to bubbles containing many
compressible arcs. Equivalently, in a compressed de Bruijn graph (see Section 2),
we should restrict the search to bubbles with few branching vertices. Indeed, in
a compressed de Bruijn graph, given a fixed sequence length, the number of
branching vertices in a path is inversely proportional to the number of com-
pressible arcs of the corresponding path in the non-compressed de Bruijn graph.
We thus modify the definition of (s, t, α1, α2)-bubbles in compressed de Bruijn
graphs (Def. 1 in [13]) by adding the extra constraint that each path should have
at most b branching vertices.

Definition 2 ((s, t, α1, α2, b)-bubbles). Given a weighted directed graph G =
(V,E) and two vertices s, t ∈ V , an (s, t, α1, α2, b)-bubble is a pair of vertex-
disjoint st-paths π1, π2 with lengths bounded by α1, α2, each containing at most
b branching vertices.

By restricting the search to bubbles with few branching vertices, we are able
to enumerate them in complex regions implicitly avoiding repeat-associated sub-
graphs. Indeed, in Section 5 we show that by considering bubbles with at most b
branching vertices in KisSplice, we increase both its sensitivity and precision.
This supports our claim that by focusing on (s, t, α1, α2, b)-bubbles, we avoid
repeat-associated subgraphs and recover at least part of the bubbles trapped in
complex regions.

4.1 Enumerating Bubbles Avoiding Repeats

In this section, we modify the algorithm of [13] to enumerate all bubbles with
at most b branching vertices in each path. Given a weighted directed graph
G = (V,E) and a vertex s ∈ V , let Bs(G) denote the set of (s, ∗, α1, α2, b)-bubbles
of G. The algorithm recursively partitions the solution space Bs(G) at every call
until the considered subspace is a singleton (contains only one solution), and in
that case it outputs the corresponding solution. In order to avoid unnecessary
recursive calls, it maintains the invariant that the current partition contains at
least one solution. The algorithm proceeds as follows.

Invariant: At a generic recursive step on vertices u1, u2 (initially, u1 = u2 = s),
let π1 = s � u1, π2 = s � u2 be the paths discovered so far (initially, π1, π2 are
empty). Let G′ be the current graph (initially, G′ := G). More precisely, G′ is
defined as follows: remove from G all the vertices in π1 and π2 but u1 and u2.
Moreover, we also maintain the following invariant (∗): there exists at least one
pair of paths π̄1 and π̄2 in G′ that extends π1 and π2 so that π1 · π̄1 and π2 · π̄2

belong to Bs(G).

Base case: When u1 = u2 = u, output the (s, u, α1, α2, b)-bubble given by π1

and π2.

Navigating in a Sea of Repeats in RNA-seq without Drowning 91

Recursive rule: Let Bs(π1, π2, G
′) denote the set of (s, ∗, α1, α2, b)-bubbles to be

listed by the current recursive call, i.e. the subset of Bs(G) with prefixes π1, π2.
It is the union of the following disjoint sets1.

– The bubbles of Bs(π1, π2, G
′) that use e, for each arc e = (u1, v) outgoing

from u1, that is Bs(π1 · e, π2, G
′ − u1), where G′ − u1 is the subgraph of G′

after the removal of u1 and all its incident arcs.
– The bubbles that do not use any arc from u1, that is Bs(π1, π2, G

′′), where
G′′ is the subgraph of G′ after the removal of all arcs outgoing from u1.

In order to maintain the invariant (∗), we only perform the recursive calls when
Bs(π1 · e, π2, G

′ − u) or Bs(π1, π2, G
′′) are non-empty. In both cases, we have to

decide if there exist a pair of (internally) vertex-disjoint paths π̄1 = u1 � t1
and π̄2 = u2 � t2, such that |π̄1| ≤ α′

1, |π̄2| ≤ α′
2, and π̄1, π̄2 have at most

b1, b2 branching vertices, respectively. Since both the length and the number
of branching vertices are monotonic properties, i.e. the length and the number
of branching vertices of a path prefix is smaller than this number for the full
path, we can drop the vertex-disjoint condition. Indeed, let π̄1 and π̄2 be a pair
of paths satisfying all conditions but the vertex-disjointness one. The prefixes
π̄∗
1 = u1 � t∗ and π̄∗

2 = u2 � t∗, where t∗ is the first intersection of the
paths, satisfy all conditions and are internally vertex-disjoint. Moreover, using a
dynamic programming algorithm, we can obtain the following result.

Lemma 1. Given a non-negatively weighted directed graph G = (V,E) and a
source s ∈ V , we can compute the shortest paths from s using at most b branching
vertices in O(b|V ||E|) time.

As a corollary, we can decide if Bs(π1, π2, G) is non-empty in O(b|V ||E|) time.
Now, using an argument similar to [13], i.e. leaves of the recursion tree and
solutions are in one-to-one correspondence and the height of the recursion tree
is bounded by 2n, we obtain the following theorem.

Theorem 4. The (s, ∗, α1, α2, b)-bubbles can be enumerated in
O(b|V |3|E||Bs(G)|) time. Moreover, the time elapsed between the output
of any two consecutive solutions (i.e. the delay) is O(b|V |3|E|).

5 Experimental Results

5.1 Experimental Setup

To evaluate the performance of our method, we simulated RNA-seq data using
the FluxSimulator version 1.2.1 [5]. We generated 100 million reads of 75
bp using its the default error model. We used the RefSeq annotated Human
transcriptome (hg19 coordinates) as a reference and we performed a two-step
pipeline to obtain a mixture of mRNA and pre-mRNA (i.e. with introns not

1 The same holds for u2 instead of u1.

92 G. Sacomoto et al.

yet spliced). To achieve this, we first ran the FluxSimulator with the Refseq
annotations. We then modified the annotations to include the introns and re-ran
it on this modified version. In this second run, we additionally constrained the
expression values of the pre-mRNAs to be correlated to the expression values of
their corresponding mRNAs, as simulated in the first run. Finally, we mixed the
two sets of reads to obtain a total of 100M reads. We tested two values: 5% and
15% for the proportion of reads from pre-mRNAs. Those values were chosen so
as to correspond to realistic ones as observed in a cytoplasmic mRNA extraction
(5%) and a total (cytoplasmic + nuclear) mRNA extraction (15%) [16].

On these simulated datasets, we ran KisSplice [12] versions 2.1.0 (KsOld)
and 2.2.0 (KsNew, with a maximum number of branching vertices set to 5) and
obtained lists of detected bubbles that are putative alternative splicing (AS)
events. We also ran the full-length transcriptome assembler Trinity version
r2013 08 14 on both datasets, obtaining a list of predicted transcripts, from
which we then extracted a list of putative AS events.

In order to assess the precision and the sensitivity of our method, we com-
pared our set of found AS events to the set of true AS events. Following the
definition of Astalavista, an AS event is composed of two sets of transcripts,
the inclusion/exclusion isoforms respectively. An AS event is said to be true if at
least one transcript among the inclusion isoforms and one among the exclusion
isoforms is present in the simulated dataset with at least one read. We stress that
this definition is very permissive and includes AS events with very low coverage.
This means that our ground truth, i.e. the set of true AS events, contains some
events that are very hard, or even impossible, to detect. We chose to proceed in
this way as it reflects what happens in real data.

To compare the results of KisSplice with the true AS events, we propose
that a true AS event is a true positive (TP) if there is a bubble such that one
path matches the inclusion isoform and the other the exclusion isoform. If there
is no such bubble among the results of KisSplice, the event is counted as a false
negative (FN). If a bubble does not correspond to any true AS event, it is counted
as a false positive (FP). To align the paths of the bubbles to transcript sequences,
we used the Blat aligner [7] with 95% identity and a constraint of 95% of each
bubble path length to be aligned (to account for the sequencing errors simulated
by FluxSimulator). We computed the sensitivity TP/(TP+FN) and precision
TP/(TP+FP) for each simulation case and we report their values for various
classes of expression of the minor isoform. Expression values are measured in
reads per kilobase (RPK).

5.2 KsNew vs KsOld

The plots for the sensitivity of each version on the two simulated datasets are
shown in Fig. 4. On the one hand, both versions of KisSplice have similar sen-
sitivity in the 5% pre-mRNA dataset, with KsNew performing slightly better,
especially for highly expressed variants. The overall sensitivity in this dataset
is 32% and 37% for KsOld and KsNew, respectively. On the other hand, the
sensitivity of the new version is considerably better over all expression levels in

Navigating in a Sea of Repeats in RNA-seq without Drowning 93

●

●

●

●

●

−2 −1 0 1 2 3

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

5% pre−mRNA

RPK (log scale)

S
en

si
tiv

ity

● KsNew
KsOld
Trinity

●

●

●

●

●

●

●

●

●

●

●

−1 0 1 2 3

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

15% pre−mRNA

RPK (log scale)

S
en

si
tiv

ity

● KsNew
KsOld
Trinity

Fig. 4. Sensitivity of KsNew, KsOld and Trinity for several classes of expression
of the minor isoform. Each class (i.e. point in the graph) contains the same number of
AS events (250). It is therefore an average sensitivity on a potentially broad class of
expression.

the 15% pre-mRNA dataset. In this case, the sensitivity for KsNew and KsOld
are 24% and 48%, respectively. This represents an improvement of 100% over the
old version. The results reflect the fact that the most problematic repeats are
in intronic regions. A small unspliced mRNA rate leads to few repeat-associated
subgraphs, so there are not many AS events drowned in them (which are then
missed by KsOld). In this case, the advantage of using KsNew is less obvi-
ous, whereas a large proportion of pre-mRNA leads to more AS events drowned
in repeat-associated subgraphs which are identified by KsNew and missed by
KsOld.

Clearly, any improvement in the sensitivity is meaningless if there is also a
significant decrease in precision. This is not the case here. In both datasets,
KsNew improves the precision of KsOld. It increases from 95% to 98% and
from 90% to 99%, in the 5% and 15% datasets, respectively. The high precision
we obtain indicates that very few FP bubbles, including the ones generated by
repeats, are mistakenly identified as AS events. Moreover, both running times
and memory consumption are very similar for the two versions.

5.3 KsNew vs Trinity

The plots for the sensitivity of Trinity on the two simulated datasets are also
shown in Fig. 4. In both cases, KsNew performs considerably better than Trin-
ity over all expression levels, with a larger gap for highly expressed variants.
The overall sensitivity of Trinity for the 5% and 15% pre-mRNA datasets is
18% and 28%, whereas for KsNew we have 37% and 48%, respectively. Simi-
larly to both KsNew and KsOld, the specificity of Trinity improved from the

94 G. Sacomoto et al.

5% pre-mRNA to the 15% pre-mRNA dataset. However, this improvement was
coupled with a decrease of precision from 94% to 75%. This drop in precision is
actually mostly due to the prediction of a large number of intron retention, since
Trinity assembles both the mRNA and pre-mRNA. KisSplice does not have
this problem because most of these apparent intron retentions are bubbles with
more than 5 branches (KsNew) or drowned in complex regions of the graph
(KsOld). To summarize, KsNew is almost a factor of 2 more sensitive than
Trinity, while also being slightly more precise.

As it was already reported in [12], KisSplice (i.e. both KsNew and KsOld)
is faster and uses considerably less memory than Trinity. For instance, on these
datasets, KisSplice uses around 5GB of RAM, while Trinity uses more than
20GB. However, it should be noted that Trinity tries to solve a more general
problem than KisSplice, that is reconstructing the full-length transcripts.

5.4 On the Usefulness of KsNew

In order to give an indication of the usefulness of our repeat-avoiding bubble enu-
meration algorithm with real data, we also ran KsNew and KsOld on the SK-
N-SH Human neuroblastoma cell line RNA-seq dataset (wgEncodeEH000169,
total RNA). In Fig. 5, we have an example of a non-annotated exon skipping
event not found by KsOld. Observe that the intronic region contains several
transposable elements (many of which are Alu sequences), while the exons con-
tain none. This is a good example of a bubble (exon skipping event) drowned in
a complex region of the de Bruijn graph. The bubble (composed by the two alter-
native paths) itself contains no repeated elements, but it is surrounded by them.
In other words, this is a bubble with few branching vertices that is surrounded
by repeat-associated subgraphs. Since KsOld is unable to differentiate between
repeat-associated subgraphs and the bubble, it spends a prohibitive amount of
time in the repeat-associated subgraph and fails to find the bubble.

Fig. 5. One of the bubbles found only by KsNew with the corresponding sequences
mapped to the reference human genome and visualized using the UCSC Genome
Browser. The first two lines correspond to the sequences of, respectively, the short-
est (exon exclusion variant) and longest paths (exon inclusion variant) of the bubble
mapped to the genome. The blue line is the Refseq annotation. The last line shows the
annotated SINE and LINE sequences (transposable elements).

Navigating in a Sea of Repeats in RNA-seq without Drowning 95

6 Conclusion

Although transcriptome assemblers are now commonly used, their way to handle
repeats is not satisfactory, arguably because the presence of repeats in transcrip-
tomes has been underestimated so far. Given that most RNA-seq datasets corre-
spond to total mRNA extractions, many introns are still present in the data and
their repeat content cannot be simply ignored. In this paper, we first proposed
a simple formal model for representing high copy-number repeats in RNA-seq
data. Exploiting the properties of this model we established that the number
of compressible arcs is a relevant quantitative characteristic of repeat-associated
subgraphs. We proved that the problem of identifying in a de Bruijn graph a
subgraph with this characteristic is NP-complete. However, this characteristic
drove the design of an algorithm for efficiently identifying AS events that are not
included in repeated regions. The new algorithm was implemented in KisSplice
(KsNew), and by using simulated RNA-seq data, we showed that it improves
by a factor of up to 2 the sensitivity of the previous version of KisSplice, while
also improving its precision. In addition, we compared our algorithm with Trin-
ity and showed that for the specific tasks of calling AS events, our algorithm is
more sensitive, by a factor of 2, while also being slightly more precise. Finally,
we gave an indication of the usefulness of our method on real data.

Clearly our model could be improved, for instance by using a tree-like struc-
ture to take into account the evolutionary nature of repeat (sub)families. Indeed,
many TE families are composed by different subfamilies that can be divergent
from each other. Consider for instance the human ALU family of TEs that con-
tains at least 7 high copy-number subfamilies with intra-family divergence less
than 1% and substantially higher inter-family divergence [6]. In this model, the
repeats are generated through a branching process on binary trees. Starting from
the root to which we associate a sequence s0, the tree generation process follows
recursively the following rule: each node has probability γ to give birth to two
children and 1 − γ to give birth to a single child. In each case the node is as-
sociated to a sequence obtained by independently mutating each symbol of the
parent sequence with probability α. In this way, the height of the tree reflects the
passing of the time. Hence, the maximum height of the tree would correspond to
the time passed since the appearance of the first element of this repeat family.
The leaves will be associated to the set of repetitions of s0 in a genome. Beside
representing in a more realistic way the generation of copies of transposable ele-
ments, this would also allow to model subfamilies of repeats. Indeed, sequences
corresponding to leaves of the same subtree are more similar between them then
to sequences belonging to leaves outside the subtree.

However, a formal mathematical analysis on this model seems more difficult
to obtain. Observe that in the case α is sufficiently small, such model would
converge to the one presented in this paper.

Finally, an interesting open problem remains on how to efficiently enumerate
AS events for which their variable region (i.e. the skipped exon) is itself a high
copy number and low divergence repeat.

96 G. Sacomoto et al.

Acknowledgments. We thank Alexandre Trindade for implementing an early
prototype of the model. This work was supported by the European Research
Council under the European Community’s Seventh Framework Programme
(FP7/2007-2013) / ERC grant agreement no. [247073]10, and the French
project ANR-12-BS02-0008 (Colib’read). Part of this work was supported by the
ABS4NGS ANR project (ANR-11-BINF-0001-06) and Action n3.6 Plan Cancer
2009-2013.

References

1. Bern, M., Plassmann, P.: The steiner problem with edge lengths 1 and 2. Informa-
tion Processing Letters (1989)

2. Carroll, M.L., Roy-Engel, A.M., Nguyen, S.V., Salem, A.-H., et al.: Large-scale
analysis of the alu ya5 and yb8 subfamilies and their contribution to human ge-
nomic diversity. Journal of Molecular Biology 311(1), 17–40 (2001)

3. Djebali, S., Davis, C., Merkel, A., Dobin, A., et al.: Landscape of transcription in
human cells. Nature (2012)

4. Grabherr, M., Haas, B., Yassour, M., Levin, J., et al.: Full-length transcriptome
assembly from RNA-Seq data without a reference genome. Nat. Biot. (2011)

5. Griebel, T., Zacher, B., Ribeca, P., Raineri, E., et al.: Modelling and simulating
generic RNA-Seq experiments with the flux simulator. Nucleic Acids Res. (2012)

6. Jurka, J., Bao, W., Kojima, K.: Families of transposable elements, population
structure and the origin of species. Biology Direct 6(1), 44 (2011)

7. Kent, W.J.: BLAT–the BLAST-like alignment tool. Genome Res. 12 (2002)
8. Myers, E., Sutton, G., Delcher, A., Dew, I., et al.: A whole-genome assembly of

drosophila. Science 287(5461), 2196–2204 (2000)
9. Novák, P., Neumann, P., Macas, J.: Graph-based clustering and characterization

of repetitive sequences in next-generation sequencing data. BMC Bioinf. (2010)
10. Peng, Y., Leung, H., Yiu, S.-M., Lv, M.-J., et al.: IDBA-tran: a more robust de

novo de bruijn graph assembler for transcriptomes with uneven expression levels.
Bioinf. 29(13) (2013)

11. Robertson, G., Schein, J., Chiu, R., Corbett, R., et al.: De novo assembly and
analysis of RNA-seq data. Nat. Met. 7(11), 909–912 (2010)

12. Sacomoto, G., Kielbassa, J., Chikhi, R., Uricaru, R., et al.: KISSPLICE: de-
novo calling alternative splicing events from RNA-seq data. BMC Bioinformat-
ics 13(Suppl 6), S5 (2012)

13. Sacomoto, G., Lacroix, V., Sagot, M.-F.: A polynomial delay algorithm for the enu-
meration of bubbles with length constraints in directed graphs and its application
to the detection of alternative splicing in RNA-seq data. In: Darling, A., Stoye, J.
(eds.) WABI 2013. LNCS, vol. 8126, pp. 99–111. Springer, Heidelberg (2013)

14. Schulz, M., Zerbino, D., Vingron, M., Birney, E.: Oases: robust de novo RNA-seq
assembly across the dynamic range of expression levels. Bioinf. (2012)

15. Smit, A.F.A., Hubley, R., Green, P.: RepeatMasker Open-3.0, 1996-2004
16. Tilgner, H., Knowles, D., Johnson, R., Davis, C., et al.: Deep sequencing of subcel-

lular RNA fractions shows splicing to be predominantly co-transcriptional in the
human genome but inefficient for lncRNAs. Genome Res. (2012)

	Navigating in a Sea of Repeats in RNA-seqwithout Drowning
	1 Introduction
	2 Preliminaries
	3 Repeats in de Bruijn Graphs
	3.1 Simple Uniform Model for Repeats
	3.2 Topological Characterization of the Subgraphs Generated by Repeats
	3.3 Identifying a Repeat-Associated Subgraph

	4 Bubbles “Drowned” in Repeats
	4.1 Enumerating Bubbles Avoiding Repeats

	5 Experimental Results
	5.1 Experimental Setup
	5.2 KsNew vs KsOld
	5.3 KsNew vs Trinity
	5.4 On the Usefulness of KsNew

	6 Conclusion
	References

