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Abstract. Since its emergence almost 20 years ago (Schwartz et al.,
Science 1995), optical mapping has undergone a transition from labora-
tory technique to commercially available data generation method. In line
with this transition, it is only relatively recently that optical mapping
data has started to be used for scaffolding contigs and assembly valida-
tion in large-scale sequencing projects — for example, the goat (Dong
et al., Nature Biotech. 2013) and amborella (Chamala et al., Science
2013) genomes. One major hurdle to the wider use of optical mapping
data is the efficient alignment of in silico digested contigs to an optical
map. We develop TWIN to tackle this very problem. TWwiIN is the first
index-based method for aligning in silico digested contigs to an opti-
cal map. Our results demonstrate that TWIN is an order of magnitude
faster than competing methods on the largest genome. Most importantly,
it is specifically designed to be capable of dealing with large eukaryote
genomes and thus is the only non-proprietary method capable of com-
pleting the alignment for the budgerigar genome in a reasonable amount
of CPU time.

1 Introduction

With the cost of next generation sequencing (NGS) continuing to fall, the last
decade has been witness to the production of draft whole genome sequences
for dozens of species. However, de novo genome assembly, the process of recon-
structing long contiguous sequences (contigs) from short sequence reads, still
produces a substantial number of errors [25,1] and is easily misled by repetitive
regions [26].

One way to improve the quality of assembly is to use secondary informa-
tion (independent of the short sequence reads themselves) about the order and
orientation of contigs. Optical mapping, which constructs ordered genome-wide
high-resolution restriction maps, can provide such information. Optical mapping
is a system that works as follows [4,10]: an ensemble of DNA molecules adhered
to a charged glass plate are elongated by fluid flow. An enzyme is then used
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to cleave them into fragments at loci where the enzyme’s recognition sequence
occurs. Next, the remaining fragments are highlighted with fluorescent dye and
digitally photographed under a microscope. Finally, these images are analyzed
to estimate the fragment sizes, producing a molecular map. Since the fragments
stay relatively stationary during the aforementioned process, the images cap-
tures their relative order and size [23]. Multiple copies of the genome undergo
this process, and a consensus map is formed that consists of an ordered sequence
of fragment sizes, each indicating the approximate number of bases between oc-
currences of the recognition sequence in the genome [2].

The raw optical mapping data identified by the image processing is an ordered
sequence of fragment lengths. Hence, an optical map with z fragments can be
denoted as ¢ = {1, ¥a,...,L;}, where £; is the length of the ith fragment in base
pairs. This raw data can then be converted into a sequence of locations, each
of which determines where a restriction site occurs. We denote the converted
data as follows: L(z) = {Lo < L1 < --- < L,}, where ¢;, = L; — L;_1 for
i=1,...,n, and Ly and L,, are defined by the original molecule as a segment
of the whole genome by shearing. This latter representation is convenient for
algorithmic descriptions. The approximate mean and standard deviation of the
fragment size error rate for current data [31] are zero and 150 bp, respectively.
See Figure 1 for an illustration of the data produced by this technique. Each
restriction enzyme recognizes a specific nucleotide sequence so a unique optical
map results from each enzyme, and multiple enzymes can be used in combination
to derive denser optical maps. Optical maps have recently become commercially
available for mammalian-sized genomes!, allowing them to be used in a variety
of applications.

Although optical mapping data has been used for structural variation detec-
tion [28], scaffolding and validating contigs for several large sequencing projects
— including those for various prokaryote species [24,32,33], Oryza sativa (rice)
[35], maize [34], mouse [9], goat [11], Melopsittacus Undulatus (budgerigar) [16],
and Amborella trichopoda [8] — there exist few non-proprietary tools for ana-
lyzing this data. Furthermore, the currently available tools are extremely slow
because most of them were specifically designed for smaller, prokaryote genomes.

Our Contribution. We present the first index-based method for aligning contigs
to an optical map. We call our tool TWIN to illustrate the association between
the assembly and optical map as two representations of the genome sequence.
The first step of our procedure is to in silico digest the contigs with the set
of restriction enzymes, computationally mimicking how each restriction enzyme
would cleave the short segment of DNA defined by the contig. Thus, in silico di-
gested contigs are miniature optical maps that can be aligned to the much longer
(sometimes genome-wide) optical maps. The objective is to search and align the
in silico digested contigs to the correct location in the optical map. By using a
suitably-constructed FM-Index data structure [12] built on the optical map, we

! OpGen (http://www.opgen.com) and BioNano (http://www.bionanogenomics.com)
are commercial producers of optical mapping data.


http://www.opgen.com
http://www.bionanogenomics.com

70 M.D. Muggli, S.J. Puglisi, and C. Boucher

Fig.1. An illustration of
the data produced by opti-
cal mapping. Optical map-
ping locates and measures
the distance between re-
striction sites. Analogous
to sequence data, optical
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map for each chromosome.

show that alignments between contigs and optical maps can be computed in time
that is faster than competing methods by more than two orders of magnitude.
TwIN takes as input a set of contigs and an optical map, and produces a
set of alignments. The alignments are output in Pattern Space Layout (PSL)
format, allowing them to be visualized using any PSL visualization software,
such as IGV [29]. TWIN is specifically designed to work on a wide range of
genomes, anything from relatively small genomes, to large eukaryote genomes.
Thus, we demonstrate the effectiveness of TWIN on Yersinia kristensenii, rice,
and budgerigar genomes. Rice and budgerigar have genomes of total sizes 430 Mb
and 1.2 Gb, respectively. Yersinia kristensenii, a bacteria with genome size of 4.6
Mb, is the smallest genome we considered. Short read sequence data was assem-
bled for these genomes, and the resulting contigs were aligned to the respective
optical map. We compared the performance of our tool with available competing
methods; specifically, the method of Valouev et al. [30] and SOMA [22]. TWIN has
superior performance on all datasets, and is demonstrated to be the only current
method that is capable of completing the alignment for the budgerigar genome in
a reasonable amount of CPU time; SOMA [22] required over 77 days of machine
time to solve this problem, whereas, TWIN required just 35 minutes. Lastly, we
verify our approach on simulated E. coli data by showing our alignment method
found correct placements for the in silico digested contigs on a simulated optical
map. TWIN is available for download at http://www.cs.colostate.edu/twin.

Roadmap. We review related tools for the problem in the remainder of this sec-
tion. Section 2 then sets notation and formally lays the data structural tools we
make use of. Section 3 gives details of our approach. We report our experimental
results in Section 4. Finally, Section 5 offers reflections and some potentially
fruitful avenues future work may take.

Related Work. The most recent tools to make use of optical mapping data in
the context of assembly are AGORA [19] and SOMA [22]. AGORA [19] uses
the optical map information to constrain de Bruijn graph construction with the
aim of improving the resulting assembly. SOMA [22] is a scaffolding method that
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uses an optical map and is specifically designed for short-read assemblies. SOMA
requires an alignment method for scaffolding and implements an O(n?m?)-time
dynamic programming algorithm. Gentig [2], and software developed by Val-
ouev et al. [30] also use dynamic programming to address the closely related
task of finding alignments between optical maps. Gentig is not available for
download. BACop [34] also uses a dynamic programming algorithm and corre-
sponding scoring scheme that gives more weight to contigs with higher fragment
density. Antoniotti et al. [3] consider the unique problem of validating an optical
map by using assembled contigs. This method assumes the contigs are error-free.
Optical mapping data was produced for Assemblathon 2 [6].

2 Background

Strings. Throughout we consider a string X = X[1..n] = X[1]X[2]...X[n] of |X| =
n symbols drawn from the alphabet [0..0 — 1]. For i = 1,...,n we write X[i..n]
to denote the suffiz of X of length n — i+ 1, that is X[i..n] = X[i|X[i + 1] ... X][n].
Similarly, we write X[1..i] to denote the prefiz of X of length i. X[i..j] is the
substring X[i]X[i + 1] ... X[j] of X that starts at position ¢ and ends at j.

Optical Mapping. From a computational point of view, optical mapping is a
process that takes two strings: a genome A[1, n] and a restriction sequence BJ[1, b],
and produces an array (string) of integers M[1, m], such that M[i] = j if and only
if A[j..j + b] = B is the ith occurrence of B in A.

For example, if we let B = act and

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
Aat act t act ggactact aaac't

then we would have
M =3,7,12,15, 20.

It will also be convenient to view M slightly differently, as an array of frag-
ment sizes, or distances between occurrences of B in A (equivalently differences
between adjacent values in M). We denote this fragment size domain of M, as
the array F[1,m], defined such that F[i] = (M[i] — M[i —1]), with F[1] = M[1] —1.
Continuing with the example above, we have

F=24,535.

Suffix Arrays. The suffix array [20] SAx (we drop subscripts when they are clear
from the context) of a string X is an array SA[1..n] which contains a permutation
of the integers [1..n] such that X[SA[1]..n] < X[SA[2]..n] < -+ < X[SA[n]..n]. In
other words, SA[j] = i iff X[i..n] is the ;' suffix of X in lexicographical order.

SA Intervals. For a string Y, the Y-interval in the suffix array SAx is the in-
terval SA[s..e] that contains all suffixes having Y as a prefix. The Y-interval is
a representation of the occurrences of Y in X. For a character ¢ and a string Y,
the computation of cY-interval from Y-interval is called a left extension.
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BWT and backward search. The Burrows-Wheeler Transform [7] BWT[1..n] is a
permutation of X such that BWT([i] = X[SA[i] — 1] if SA[i] > 1 and $ otherwise.
We also define LF[i] = j iff SA[j] = SA[i] — 1, except when SA[i] = 1, in which
case LF[i] = I, where SA[I] = n.

Ferragina and Manzini [12] linked BWT and SA in the following way. Let
Cle], for symbol ¢, be the number of symbols in X lexicographically smaller than
¢. The function rank(X, ¢, ), for string X, symbol ¢, and integer i, returns the
number of occurrences of ¢ in X[1..i]. It is well known that LF[i] = C[BWT][i]] +
rank(BWT, BWT/i], 7). Furthermore, we can compute the left extension using
C and rank. If SA[s..e] is the Y-interval, then SA[C[c] + rank(BWT,¢,s), Clc] +
rank(BWT, ¢, e)] is the cY-interval. This is called backward search [12], and a
data structure supporting it is called an FM-indez.

3 Methods

We find alignments in four steps. First, we convert contigs from the sequence
domain to the optical map domain through the process of in silico digestion.
Second, an FM-index is built from the sequence of optical map fragment sizes.
Third, we execute a modified version of the FM-index backward search algorithm
described in Section 2 that allows inexact matches. As a result of allowing inexact
matches, there may be multiple fragments in an optical map that could each be
a reasonable match for an in silico digested fragment, and in order to include all
of these as candidate matches, backtracking becomes necessary in the backward
search. For every backward search path that maintains a non-empty interval for
the entire query contig, we emit the alignments denoted by the final interval.

3.1 Converting Contigs to the Optical Map Domain

In order to find alignments for contigs relative to the optical map, we must first
convert the strings of bases into the domain of optical maps, that is, strings
of fragment sizes. We do this by performing an in silico digest of each contig,
which is performing a linear search over its bases, searching for occurrences of the
enzyme recognition sequence and then computing the distances between adjacent
restriction sites. These distances are taken to be equivalent to the fragment sizes
that would result if the contig’s genomic region underwent digestion in a lab.
Additionally, the end fragments of the in silico digested contig are removed,
as the outside ends are most likely not a result of the optical map restriction
enzyme digestion, but rather an artifact of the sequencing and assembly process.

3.2 Building an FM-index from Optical Mapping Data

We construct the FM-index for ¢, the string of fragment sizes. The particular
FM-index implementation we use is the SDSL-Lite? [14] library’s compressed
suffiz array with integer wavelet tree data structure®.

2 https://github.com/simongog/sdsl-lite.
3 The exact revision we used was commit ae42592099707bc59cd 1e74997¢635324b210115.
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In preparation for finding alignments, we also keep two auxiliary data struc-
tures. The first is the suffix array, SAg, corresponding to our FM-index, which
we use to report the positions in ¢ where alignments of a contig occur. While we
could decode the relevant entries of SA on demand with the FM-index in O(p)
time, where p is the so-called sample period of the FM-index, storing SA explic-
itly significantly improves runtime at the cost of a modest increase in memory
usage. The second data structure we store is M, which allows us to map from
positions in ¢ to positions in the original genome in constant time.

3.3 Alignment of Contigs Using the FM-index

After constructing the FM-index of the optical map, we find alignments between
the optical map and the in silico digested contigs.

Specifically, we try to find substrings of the optical map fragment sequence ¢
that are similar to the string of each in silico digested contig’s non-end fragments
F satisfying an alignment goodness metric suggested by Nagarajan et al. [22] *:

t
>R~ ZU:@‘ <E(>
=8 j=u Jj=u

where a parameter F,, will affect the precision/recall tradeoft.

This computation is carried out using a modified FM-index backward search.
A simplified, recursive version of our algorithm for finding alignments is shown
in Algorithm 1. The original FM-index backward search proceeds by finding a
succession of intervals in the suffix array of the original text that progressively
match longer and longer suffixes of the query string, starting from the rightmost
symbol of the query. Each additional symbol in the query string is matched
in a process taking two arguments: 1) a suffix array interval, the Y-interval,
corresponding to the suffixes in the text, £, whose prefix matches a suffix of the
query string, and 2) an extension symbol c¢. The process returns a new interval,
the cY-interval, where a prefix of each text suffix corresponding to the new
interval is a left extension of the previous query suffix. This process is preserved
in TWIN, and is represented by the function BackwardSearchOneSymbol in the
TwiIN algorithm, displayed in Algorithm 1.

Since the optical map fragments include error from the measurement process,
it cannot be assumed an in silico fragment size will exactly match the optical
map fragment size from the same locus in the genome. To accomodate these dif-
ferences, we determine a set of distinct candidate match fragment sizes, D, each
similar in size to the next fragment to be matched in our query. These candidates
are drawn from the interval of the BWT currently active in our backward search.
We do this by a wavelet tree traversal function provided by SDSL-Lite, which
implements the algorithm described in [13] and takes O(|D|log(f/A)) time. This

4 N.B. Alternative goodness metrics could be substituted. They must satisfy the prop-
erty that pairs of strings considered to align well are composed of substrings that
are also considered to align well would also work.
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is represented by the function Restricted UniqueRange Values in Algorithm 1. We
emphasise that, due to the large alphabet of ¢, the wavelet tree’s ability to list
unique values in a range efficiently is vital to overall performance. Unlike in other
applications where the FM-index is used for approximate pattern matching (e.g.
read alignment), we cannot afford a bruteforce enumeration of the alphabet at
each step in the backward search.

These candidates are chosen to be within a reasonable noise tolerance, t, based
on assumptions about the distribution of optical measurement error around the
true fragment length. Since there may be multiple match candidates in the BWT
interval of the optical map for a query fragment, we extend the backward search
with backtracking so each candidate size computed from the wavelet tree is eval-
uated. That is, for a given in silico fragment size (i.e. symbol) ¢, every possible
candidate fragment size, ¢/, that can be found in the optical map in the range
¢—t...c+t and in the interval s...e (of the BWT) for some tolerance ¢ is used
as a substitute in the backward search. Each of these candidates is then checked
to ensure that a left extension would still satify the goodness metric, and then
used as the extension symbol in the backward search. So it is actually a set of
c'Y-intervals that is computed as the left extension in TWIN. Additionally, small
DNA fragments may not adhere sufficiently to the glass surface and can be lost
in the optical mapping process, so we also branch the backtracking search both
with and without small in silico fragments to accomodate the uncertainty.

Each time the backward search algorithm successfully progresses throughout
the entire query (i.e. it finds some approximate match in the optical map for
each fragment in the contig query), we take the contents of the resulting interval
in the SA as representing a set of likely alignments.

3.4 Output of Alignments in PSL Format

For each in silico digested contig that has an approximate match in the optical
map, we emit the alignment, converting positions in the fragment string ¢ to
positions in the genome using the M table. We provide a script to convert the
human readable output into PSL format.

4 Results

We evaluated the performance of TWIN against the best competing methods
on Yersinia kristensenii, rice and budgerigar. These three genomes were chosen
because they have available sequence and optical mapping data and are diverse
in size. For each dataset, we compared the runtime, peak memory usage, and
the number of contigs for which at least one alignment was found for TWIN,
SOMA [22], and the software of Valouev et al. [30]. Peak memory was measured
as the maximum resident set size as reported by the operating system. Runtime
is the user process time, also reported by the operating system. SOMA [22] v2.0
was run with example parameters provided with the tool and the software of
Valouev et al. [30] was run with its scoring parameters object constructed with
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Algorithm 1. MATCH(s, e, g, h) Provided a suffix array start index s and end
index e, query string ¢, and rightmost unmatched query string index h (initially
s=1,e=m, h=|q| — 1), emit alignments of an in silico digested contig to an
optical map
procedure MATCH(s,e,q,h)
if h = —1 then
> Recursion base case. Suffix array indexes s..e denote original query matches.
Emit(s,e)
else
> The next symbol to match, ¢, is the last symbol in the query string.
c < q[h]
> Find the approximately matching values in BWT](s ... e], within tolerance ¢.
D <+ RestrictedUniqueRange Values(s, e, c+t, ¢ — t)
> Let ¢’ be one possible substitute for ¢ drawn from D
for all ¢ € D do
> If Equation 1 is still satisified with ¢’ and ¢, ...

if [l SAs] + ¢ — Z|]q:\21 g — c‘ < Fg\/ZLq:‘gh o? then
> ... determine the suffix array range of the left extension of c.
s', e’ + BackwardSearchOneSymbol(s,e,c’)
> Recurse to attempt to match the currently unmatched prefix.

MatcH(s',€e’,q,h — 1)

arguments (0.2, 2, 1, 5, 17.43, 0.579, 0.005, 0.999, 3, 1). TWIN was run with
D, =4, t=1000, and [250...1000] for the range of small fragments. Gentig [2]
and BACop [34] were not available for download so we did not test the data
using these approaches.

The sequence data was assembled for Yersinia kristensenii, rice and budgeri-
gar by using various assemblers. The relevant assembly statistics are given in
Table 1. An important statistic in this table is the number of contigs that have
at least two restriction sites, since contigs with fewer than two are unable to be
aligned meaningfully by any method, including TwWiN. This statistic was com-
puted to reveal cases of ambiguity in placement from lack of information. Indeed,
Assemblathon 2 required there to be nine restriction sites present in a contig to
align it to the optical mapping data [6]. All experiments were performed on Intel
x86-64 workstations with sufficient RAM to avoid paging, running 64-bit Linux.

The experiments for Yersinia kristensenii, rice and budgerigar illustrate how
each of the programs’ running time scale as the size of the genome increases. How-
ever, due to the possibility of mis-assemblies in these draft genomes, comparing
the actual alignments could possibly lead to erroneous conclusions. Therefore,
we will verify the alignments using simulated E. coli data. See Subsection 4.4 for
this experiment.
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Table 1. Assembly and genome statistics for Yersinia kristensenii, rice and budgerigar.
The assembly statistics were obtained from Quast. [15].

Genome N50 Genome Size No. of Contigs with > 2 restriction sties
Y. kristensenii 30,719 4.6 Mb 92

Rice 5,299 430 Mb 3,103

Budgerigar 77,556 1.2 Gb 10,019

4.1 Performance on Yersinia kristensenii

The sequence and optical map data for Yersinia kristensenii are described by
Nagarajan et al. [22]. The Yersinia kristensenii ATCC 33638 reads were gen-
erated using 454 GS 20 sequencing and assembled using SPAdes version 3.0.0
[5] using default parameters. Contigs from this assembly were aligned against
an optical map of the bacterial strain generated by OpGen using the AfIII re-
striction enzyme. There are approximately 1.4 million single-end reads for this
dataset, and they were obtained from the NCBI Short Read Archive (accession
SRX013205). Of the 92 contigs that could be aligned to the optical map, the soft-
ware of Valouev et al. aligned 91 contigs, SOMA aligned 54 contigs, and TWIN
aligned 61 contigs. Thus, TWIN found more alignments than SOMA, and did so
faster. It should be noted that, for this dataset, all three tools had reasonable
runtimes. However, while the software of Valouev et al. found more alignments,
our validation experiments (below) suggest these results may favor recall over
precision, and many of the additional alignments may not be credibled.

4.2 Performance on Rice Genome

The second dataset consists of approximately 134 million 76 bp paired-end reads
from Oryza sativa Japonica rice, generated by Illumina, Inc. on the Genome
Analayzer (GA) IIx platform, as described by Kawahara et al. [17]. These reads
were obtained from the NCBI Short Read Archive (accession SRX032913) and
assembled using SPAdes version 3.0.0 [5] using default parameters. The optical
map for rice was constructed by Zhou et al. [35] using Swal as the restriction
enzyme. This optical map was assembled from single molecule restriction maps
into 14 optical map contigs, labeled as 12 chromosomes, with chromosome labels
6 and 11 both containing two optical map contigs.

Again, TwiN found alignments for more contigs than SOMA on the rice
genome. SOMA and TwiN found alignments for 2,434, and 3,098 contigs, re-
spectively, out of 3,103 contigs that could be aligned to the optical map. How-
ever, while SOMA required over 29 minutes to run, TWIN required less than one
minute. The software of Valouev executed faster than SOMA (taking around
3 minutes), though still several times slower than TWIN on this modest sized
genome.
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4.3 Performance on Budgerigar Genome

The sequence and optical map data for the budgerigar genome were generated
for the Assemblathon 2 project of Bradnam et al. [6]. Sequence data consists of
a combination of Roche 454, Illumina, and Pacific Biosciences reads, providing
16x, 285x, and 10x coverage (respectively) of the genome. All sequence reads
are available at the NCBI Short Read Archive (accession ERP002324). For our
analysis we consider the assembly generated using Celera [21], which was com-
pleted by the CBCB team (Koren and Phillippy) as part of Assemblathon 2 [6].
The optical mapping data was created by Zhou, Goldstein, Place, Schwartz, and
Bechner using the Swal restriction enzyme and consists of 92 separate pieces.

As with the two previous data sets, TWIN found alignments for more contigs
than SOMA on the budgerigar genome. SOMA and TwIN found alignments
for 9,668, and 9,826 contigs, respectively, out of 10,019 contigs that could be
aligned to the optical map. However, SOMA required over 77 days of CPU time
and TWIN required 35 minutes. The software of Valouev et al. returned 9,814
alignments and required over an order of magnitude (6.5 hours) of CPU time.
Hence, TWIN was the only method that efficiently aligned the in silico digested
budgerigar genome contigs to the optical map. It should be kept in mind that
the competing methods were developed for prokaryote genomes and so we are
repurposing them at a scale for which they were not designed. Lastly, the amount
of memory used by all the methods on all experiments was low enough for them
to run on a standard workstation.

We were forced to parallelize SOMA due to the enormous amount of CPU
time SOMA required for this dataset. To accomplish this task, the FASTA file
containing the contigs was split into 300 different files, and then IPython Parallel
library was used to invoke up to two instances of SOMA on each machine from a
set of 150 machines. Thus, when using a cluster with up to 300 jobs concurrently,
the alignment for the budgerigar genome took about a day of wall clock time.
In contrast, we ran the software of Valouev et al. and TWIN with a single thread
running on a single core. However, it should be noted that the same paralleliza-
tion could have been accomplished for both these software methods too. Also,
even with parallelization of SOMA, TWIN is still an order of magnitude faster
than it.

4.4 Alignment Verification

We compared the alignments given by TWIN against the alignments of the contigs
of an E. coli assembly to the E. Coli (str. K-12 substr. MG1655) reference
genome. Our prior experiments involved species for which the reference genome
may have regions that are mis-asssembled and therefore, contig alignments to
the reference genome may be inaccurate and cannot be used for comparison
and verification of the in silico digested contig alignment. The E. coli reference
genome is likely to contain the fewest errors and thus, is the one we used for
assembly verification. The sequence data consists of approximately 27 million
paired-end 100 bp reads from E. coli (str. K-12 substr. MG1655) generated by
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Table 2. Comparsion of the alignment results for TwWIN and competing
method. The performance of TWIN was compared against SOMA [22] and the method
of Valouev et al. [30] using the assembly and optical mapping data for Yersinia Kris-
tensenii, rice, and budgerigar. Various assemblers were used to assemble the data for
these species. The relevant statistics and information concerning these assemblies and
genomes can be found in Table 1. The peak memory is given in megabytes (mb). The
running time is reported in seconds (s), minutes (m), hours (h), and days.

Genome Program Memory Time Aligned Contigs
Y. Kristensenii
Valouev et al. 1.81 A7 s 91
SOMA 1.71 7.32 s 54
TwIN 18 .06 s 65
Rice
Valouev et al. 11.25 2mb7s 2,676
SOMA 7.94 29 m 38 s 2,434
TwiIN 18.25 50 s 3,098
Budgerigar
Valouev et al. 390 6.5 h 9,814
SOMA 380.95 77.2d 9,668
TwiN 127.112 35 m 9,826

Tllumina, Inc. on the Genome Analayzer (GA) IIx platform, and was obtained
from the NCBI Short Read Archive (accession ERA000206), and was assembled
using SPAdes version 3.0.0 [5] using default parameters. This assembly consists
of 160 contigs; 50 of which contain two restriction sites, the minimum required
for any possible optical alignment, and complete alignments with minimal (<800
bp) total in/dels relative to the reference genome.

We simulated an optical map using the reference genome for E. coli (str. K-12
substr. MG1655) since there is no publicly available one for this genome.

The 50 contigs that contained more than two restriction sites were aligned to
the reference genome using BLAT [18]. These same contigs were then in silico
digested and aligned to the optical map using TWIN. The resulting PSL files were
then compared. TWIN found alignment positions within 10% of those found by
BLAT for all 50 contigs, justifying that our method is finding correct alignments.
We repeated this verification approach with both SOMA and the software from
Valouev. All of SOMA’s reported alignments had matching BLAT alignments,
while of the 49 alignments the software from Valuoev reported, only 18 could be
matched with alignments from BLAT.

5 Discussion and Conclusions

We demonstrated that TwIN, an index-based algorithm for aligning in silico
digested contigs to an optical map, gave over an order of magnitude improve-
ment to runtime without sacrificing alignment quality. Our results show that we
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are able to handle genomes at least as large as the budgerigar genome directly,
whereas SOMA cannot feasibly complete the alignment for this genome in a
reasonable amount of time without significant parallelization, and even then is
orders of magnitude slower than TWIN. Indeed, given its performance on the
budgerigar genome, and its O(m?n?) time complexity, larger genomes seem be-
yond SOMA. For example, the loblolly pine tree genome, which is approximately
20 Gb [36], would take SOMA approximately 84 machine years, which, even with
parallelization, is prohibitively long.

Lastly, optical mapping is a relatively new technology, and thus, with so few
algorithms available for working with this data, we feel there remains good op-
portunities for developing more efficient and flexible methods. Dynamic pro-
gramming optical map alignment approaches are still important today, as the
assembly of the consensus optical maps from the individually imaged molecules
often has to deal with missing or spurious restriction sites in the single molecule
maps when enzymes fail to digest a recognition sequence or the molecule breaks.
Though coverage is high (e.g. about 1,241 Gb of optical data was collected for
the 2.66 Gb goat genome), there may be cases where missing restriction site
errors are not resolved by the assembly process. In these rare cases (only 1% of
alignments reported by SOMA on parrot contain such errors) they will inhibit
TWIN’s ability to find correct alignments. In essence, TWIN is trading a small
degree of sensitivity for a huge speed increase, just as other index based aligners
have done for sequence data. Sirén et al. [27] recently extended the Burrows-
Wheeler transform (BWT) from strings to acyclic directed labeled graphs and
to support path queries. In future work, an adaptation of this method for op-
tical map alignment may allow for the efficient handling of missing or spurious
restriction sites.
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