
A Faster 1.375-Approximation Algorithm

for Sorting by Transpositions

Lúıs Felipe I. Cunha1, Luis Antonio B. Kowada2,
Rodrigo de A. Hausen3, and Celina M.H. de Figueiredo1

1 Universidade Federal do Rio de Janeiro, Brasil
{lfignacio,celina}@cos.ufrj.br

2 Universidade Federal Fluminense, Brasil
luis@vm.uff.br

3 Universidade Federal do ABC, Brasil
hausen@compscinet.org

Abstract. Sorting by Transpositions is an NP-hard problem for which
several polynomial time approximation algorithms have been developed.
Hartman and Shamir (2006) developed a 1.5-approximation algorithm,
whose running time was improved to O(n log n) by Feng and Zhu (2007)
with a data structure they defined, the permutation tree. Elias and
Hartman (2006) developed a 1.375-approximation algorithm that runs
in O(n2) time. In this paper, we propose the first correct adaptation of
this algorithm to run in O(n log n) time.

Keywords: comparative genomics, genome rearrangement, sorting by
transpositions, approximation algorithms.

1 Introduction

By comparing the orders of common genes between two organisms, one may
estimate the series of mutations that occurred in the underlying evolutionary
process. In a simplified genome rearrangement model, each mutation is a trans-
position, and the sole chromosome of each organism is modeled by a permutation,
which means that there are no duplicated or deleted genes. A transposition is a
rearrangement of the gene order within a chromosome, in which two contiguous
blocks are swapped. The transposition distance is the minimum number of trans-
positions required to transform one chromosome into another. Bulteau et al. [3]
proved that the problem of determining the transposition distance between two
permutations – or Sorting by Transpositions (SBT) – is NP-hard.

Several approaches to handle the SBT problem have been considered. Our
focus is to explore approximation algorithms for estimating the transposition
distance between permutations, providing better practical results or lowering
time complexities.

Bafna and Pevzner [2] designed a 1.5-approximation O(n2) algorithm, based
on the cycle structure of the breakpoint graph. Hartman and Shamir [10], by

D. Brown and B. Morgenstern (Eds.): WABI 2014, LNBI 8701, pp. 26–37, 2014.
c© Springer-Verlag Berlin Heidelberg 2014



A Faster 1.375-Approximation Algorithm for Sorting by Transpositions 27

considering simple permutations, proposed an easier 1.5-approximation algo-
rithm and, by exploiting a balanced tree data structure, decreased the running
time to O(n

3
2

√
logn). Feng and Zhu [7] developed the balanced permutation

tree data structure, further decreasing the complexity of Hartman and Shamir’s
1.5-approximation algorithm to O(n log n).

Elias and Hartman [6] obtained, by a thorough computational case analysis
of cycles of the breakpoint graph, a 1.375-approximation O(n2) algorithm. Firoz
et al. [8] tried to lower the running time of this algorithm to O(n logn) via a
simple application of permutation trees, but we later found counter-examples [5]
that disprove the correctness of Firoz et al.’s strategy.

In this paper, we propose a new algorithm that uses the strategy of Elias and
Hartman towards bad full configurations, implemented using permutation trees
and achieving both a 1.375 approximation ratio and O(n log n) time complexity.
Section 2 contains basic definitions, Section 3 presents a strategy to find in linear
time a sequence of two transpositions in which both are 2-moves, if it exists, and
Section 4 describes our 1.375-approximation algorithm for SBT.

2 Background

For our purposes, a gene is represented by a unique integer and a chromo-
some with n genes is a permutation π = [π0 π1 π2 . . . πn πn+1], where π0 =
0, πn+1 = n+1 and each πi is a unique integer in the range 1, . . . , n. The
transposition t(i, j, k), where 1 ≤ i < j < k ≤ n+1 over π, is the permu-
tation π · t(i, j, k) where the product interchanges the two contiguous blocks
πi πi+1 . . . πj−1 and πj πj+1 . . . πk−1. A sequence of q transpositions sorts a per-
mutation π if π t1 t2 · · · tq = ι, where every ti is a transposition and ι is the
identity permutation [0 1 2 . . . nn+1]. The transposition distance of π, denoted
d(π), is the length of a minimum sequence of transpositions that sorts π.

Given a permutation π, the breakpoint graph of π is G(π)=(V,R∪D); the set of
vertices is V = {0,−1,+1,−2,+2, . . . ,−n,+n,−(n+1)}, and the edges are par-

titioned into two sets, the directed reality edges R = {−→i = (+πi, −πi+1) | i =
0, . . . , n} and the undirected desire edges D = {(+i, −(i + 1)) | i = 0, . . . , n}).
Fig. 1 shows G([0 10 9 8 7 1 6 11 5 4 3 212]), the horizontal lines represent the
edges in R and the arcs represent the edges in D.

Fig. 1. G([0 10 9 8 7 1 6 11 5 4 3 2 12]). The cycles C2 = 〈1 3 6〉 and C3 = 〈5 8 10〉
intersect, but C2 and C3 are not interleaving; the cycles C1 = 〈0 2 4〉 and C2 = 〈1 3 6〉
are interleaving, and so are C3 = 〈5 8 10〉 and C4 = 〈7 9 11〉.

Every vertex in G(π) has degree 2, so G(π) can be partitioned into disjoint
cycles. We shall use the terms a cycle in π and a cycle in G(π) interchangeably



28 L.F.I. Cunha et al.

to denote the latter. A cycle in π has length � (or it is an �-cycle), if it has
exactly � reality edges. A permutation π is a simple permutation if every cycle
in π has length at most 3.

Non-trivial bounds on the transposition distance were obtained by using the
breakpoint graph [2], after applying a transposition t, the number of cycles of
odd length in G(π), denoted codd(π), is changed such that codd(πt) = codd(π)+x,
where x ∈ {−2, 0, 2} and t is said to be an x-move for π. Since codd(ι) = n+ 1,

we have the lower bound d(π)≥
⌈
(n+1)−codd(π)

2

⌉
, where the equality holds if, and

only if, π can be sorted with only 2-moves.
Hannenhalli and Pevzner [9] proved that every permutation π can be trans-

formed into a simple one π̂, by inserting new elements on appropriate positions of

π, preserving the lower bound for the distance,
⌈
(n+1)−codd(π)

2

⌉
=
⌈
(m+1)−codd(π̂)

2

⌉

wherem is such that π̂ = [0π̂1 . . . π̂mm+1]. Additionally, a sequence that sorts π̂
can be transformed into a sequence that sorts π, which implies that d(π)≤d(π̂).
This method is commonly used in the literature, as in Hartman and Shamir’s [10]
and Elias and Hartman’s [6] approximation algorithms.

A transposition t(i, j, k) affects a cycle C if it contains one of the following

reality edges:
−−→
i+ 1, or

−−−→
j + 1, or

−−−→
k + 1. A cycle is oriented if there is a 2-move

that affects it (name given by the relative order of such a triplet of reality edges),
otherwise it is unoriented. If there exists a 2-move that may be applied to π,
then π is oriented, otherwise π is unoriented.

A sequence of q transpositions in which exactly r transpositions are 2-moves
is a (q, r)-sequence. A q

r -sequence is a (x, y)-sequence such that x ≤ q and x
y ≤ q

r .
A cycle in π is determined by its reality edges, in the order that they appear,

starting from the leftmost edge. The notation C = 〈x1x2 . . . x�〉, where −→x1,
−→x2,

. . . , −→x� are reality edges, and x1 = min{x1, x2, . . . , x�}, characterizes an �-cycle.

Let −→x ,−→y ,−→z , where x < y < z, be reality edges in a cycle C, and −→a ,
−→
b ,−→c ,

where a < b < c be reality edges in a different cycle C′. The pair of reality edges
−→x ,−→y intersects the pair −→a ,

−→
b if these four edges occur in an alternating order in

the breakpoint graph, i.e. x < a < y < b or a < x < b < y. Similarly, two triplets

of reality edges −→x ,−→y ,−→z and −→a ,
−→
b ,−→c are interleaving if these six edges occur in

an alternating order, i.e. x < a < y < b < z < c or a < x < b < y < c < z. Two
cycles C and C′ intersect if there is a pair of reality edges in C that intersects
with a pair of reality edges in C′, and two 3-cycles are interleaving if their
respective triplets of reality edges are interleaving. See Fig. 1.

A configuration of π is a subset of the cycles in G(π). A configuration C is
connected if, for any two cycles C1 and Ck in C, there are cycles C1, ..., Ck−1 ∈ C
such that, for each i ∈ {1, 2, ..., k − 1}, the cycles Ci and Ci+1 are either inter-
secting or interleaving. If the configuration C is connected and maximal, then C
is a component. Every permutation admits a unique decomposition into disjoint
components. For instance, in Fig. 1, the configuration {C1, C2, C3, C4} is a com-
ponent, but the configuration {C1, C2, C3} is connected but not a component.

Let C be a 3-cycle in a configuration C. An open gate is a pair of reality edges
of C that does not intersect any other pair of reality edges in C. If a configuration



A Faster 1.375-Approximation Algorithm for Sorting by Transpositions 29

C has only 3-cycles and no open gates, then C is a full configuration. Some full
configurations, such as the one in Fig. 2(a), do not correspond to the breakpoint
graph of any permutation [6].

A configuration C that has k edges is in the cromulent form1 if every edge

from
−→
0 to

−−−→
k − 1 is in C. Given a configuration C having k edges, a cromulent

relabeling (Fig. 2b) of C is a configuration C′ such that C′ is in the cromulent

form and there is a function σ satisfying that, for every pair of edges
−→
i ,

−→
j in

C such that i < j, we have that
−−→
σ(i),

−−→
σ(j) are in C′ and σ(i) < σ(j).

Given an integer x, a circular shift of a configuration C, which is in the cro-
mulent form and has k edges, is a configuration denoted C + x such that every

edge
−→
i in C corresponds to

−−−−−−−−−→
i+ x(mod k) in C+ x. Two configurations C and K

are equivalent if there is an integer x such that C′+x = K′, where C′ and K′ are
their respective cromulent relabelings.

(a) (b)

Fig. 2. (a) Full configuration {C1, C2, C3, C4} = {〈0 2 5〉, 〈1 3 10〉, 〈4 7 9〉, 〈6 8 11〉}. (b)
The cromulent relabeling of {C1, C2} is {〈0 2 4〉, 〈1 3 5〉}.

Elias and Hartman’s algorithm Elias and Hartman [6] performed a systematic
enumeration of all components having nine or less cycles, in which all cycles have
length 3. Starting from single 3-cycles, components were obtained by applying a
series of sufficient extensions, as described next. An extension of a configuration
C is a connected configuration C∪{C}, where C 
∈ C. A sufficient extension is an
extension that either: 1) closes an open gate; or 2) extends a full configuration
such that the extension has at most one open gate. A configuration obtained by
a series of sufficient extensions is named sufficient configuration, which has an
(x, y)-, or x

y -, sequence if it is possible to apply such a sequence to its cycles.

Lemma 1. [6] Every unoriented sufficient configuration of nine cycles has an
11
8 -sequence.

Components with less than nine cycles are called small components. Elias and
Hartman showed that there are just five kinds of small components that do not
have an 11

8 -sequence; these components are called bad small components. Small
components that have an 11

8 -sequence are good small components.

Lemma 2. [6] The bad small components are: A = {〈0 2 4〉, 〈1 3 5〉}; B =
{〈0 2 10〉, 〈1 3 5〉, 〈4 6 8〉, 〈7 9 11〉}; C = {〈0 5 7〉, 〈1 9 11〉, 〈2 4 6〉, 〈3 8 10〉};
D = {〈0 2 4〉, 〈1 12 14〉, 〈3 5 7〉, 〈6 8 10〉, 〈9 11 13〉}; and E = {〈0 2 16〉, 〈1 3 5〉,
〈4 6 8〉, 〈7 9 11〉, 〈10 12 14〉, 〈13 15 17〉}.
1 cromulent : neologism coined by David X. Cohen, meaning “normal” or “acceptable.”



30 L.F.I. Cunha et al.

If a permutation has bad small components, it is still possible to find 11
8 -

sequences, as Lemma 3 states.

Lemma 3. [6] Let π be a permutation with at least eight cycles and containing
only bad small components. Then π has an (11, 8)-sequence.

Corollary 1. [6] If every cycle in G(π) is a 3-cycle, and there are at least eight
cycles, then π has an 11

8 -sequence.

Lemmas 1 and 3, and Corollary 1 form the theoretical basis for Elias and
Hartman’s 11

8 = 1.375-approximation algorithm for SBT, shown in Algorithm 1.

Algorithm 1. Elias and Hartman’s Sort(π)

1 Transform permutation π into a simple permutation π̂.
2 Check if there is a (2, 2)-sequence. If so, apply it.
3 While G(π̂) contains a 2-cycle, apply a 2-move.
4 π̂ consists of 3-cycles. Mark all 3-cycles in G(π̂).
5 while G(π̂) contains a marked 3-cycle C do
6 if C is oriented then
7 Apply a 2-move to it.

8 else
9 Try to sufficiently extend C eight times (to obtain a configuration with

at most 9 cycles).
10 if sufficient configuration with 9 cycles has been achieved then
11 Apply an 11

8
-sequence.

12 else It is a small component
13 if it is a good component then
14 Apply an 11

8
-sequence.

15 else
16 Unmark all cycles of the component.

17 (Now G(π̂) has only bad small components.)
18 while G(π̂) contains at least eight cycles do
19 Apply an (11, 8)-sequence

20 While G(π̂) contains a 3-cycle, apply a (3, 2)-sequence.
21 Mimic the sorting of π using the sorting of π̂.

Feng and Zhu’s permutation tree Feng and Zhu [7] introduced the permutation
tree, a binary balanced tree that represents a permutation, and provided four
algorithms: to build a permutation tree in O(n) time, to join two permutation
trees into one in O(h) time, where h is the height difference between the trees, to
split a permutation tree into two in O(log n) time, and to query a permutation

tree and find reality edges that intersect a given pair
−→
i ,

−→
j in O(log n) time.



A Faster 1.375-Approximation Algorithm for Sorting by Transpositions 31

Operations split and join allow applying a transposition to a permutation π
and updating the tree in time O(log n). Lemma 4 provides a way to determine,
in logarithmic time, which transposition should be applied to a permutation,
and serves as the basis for the query procedure. This method was applied [7]
to Hartman and Shamir’s 1.5-approximation algorithm [10], to find a (3, 2)-
sequence that affects a pair of intersecting or interleaving cycles.

Lemma 4. [2] Let
−→
i and

−→
j be two reality edges in an unoriented cycle C,

i < j. Let πk = maxi<m≤j πm, π� = πk+1, then
−→
k and

−−−→
�− 1 belong to the same

cycle, and the pair
−→
k ,

−−−→
�− 1 intersects the pair

−→
i ,

−→
j .

Firoz’s et al. use of the permutation tree Firoz et al. [8] suggested the use of
the permutation tree to reduce the running time of Elias and Hartman’s [6]
algorithm. In [5], we showed that this strategy fails to extend some full configu-
rations.

Firoz et al. [8] stated that extensions can be done in O(log n) time. To do that,
they categorized sufficient extensions of a configuration A into type 1 extensions
– those that add a cycle that closes open gates – and type 2 extensions – those
that extend a full configuration by adding a cycle C such that A ∪ {C} has at
most one open gate.

A type 1 extension can be performed in logarithmic time by running query
for an open gate. In a type 2 extension, since there are no open gates, Firoz et
al. claimed that it is sufficient to perform queries on all pairs of reality edges
belonging to the same cycle in a configuration that is being extended. But, as
shown in [5], there is an infinite family of configurations for which this strat-
egy fails; some instances are subsets of two cycles of [0 10 9 8 7 1 6 11 5 4 3 212]
(Fig. 1). Consider the configuration A = {C1}; try to sufficiently extend A (step
9 in Algorithm 1) using the steps proposed by Firoz et al.:

1. Configuration A has three open gates. Executing the query for an open gate
results in a pair of edges belonging the cycle C2. Therefore, we add this cycle
to the configuration A, which becomes A = {C1, C2}.

2. Configuration A has no more open gates. Executing the query for every pair
of edges in the same cycle of A, we observe that the query will return a pair
that is already in A. So far, Firoz et al.’s method has failed to extend A.

3 Finding a (2, 2)-Sequence in Linear Time

Elias and Hartman [6] proved that, given a simple permutation, a (2, 2)-sequence
can be found in O(n2) time. Firoz et al. [8] described a strategy for finding and
applying a (2, 2)-sequence in O(n log n) time using permutation trees and the
result in Lemma 5; see below. But, according to their strategy, it is still necessary
to search for an oriented cycle in O(n) time and, after applying the first 2-move,
checking for the existence of an oriented cycle, again in O(n) time. However,
these steps must be performed O(n) times in the worst case, which implies that
Firoz et al.’s strategy also takes O(n2) time.



32 L.F.I. Cunha et al.

Algorithm 2. Search (2, 2)-sequence from K1

1 for i = minK1+1, . . . ,midK1−1 do

2 if
−→
i belongs to an oriented cycle Kj then

3 if midKj < midK1 or maxKj < maxK1 then
4 return (2, 2)-sequence that affects K1 and Kj .

5 if
−→
i belongs to an unoriented cycle Lj then

6 if midK1 < midLj < maxK1 < maxLj then
7 return (2, 2)-sequence that affects K1 and Lj .

8 for i = midK1+1, . . . ,maxK1−1 do

9 if
−→
i belongs to an oriented cycle Kj then

10 if midK1 < minKj then
11 return (2, 2)-sequence that affects K1 and Kj .

12 for i = maxK1+1, . . . , n−1 do

13 if
−→
i belongs to an oriented cycle Kj then

14 if maxK1 ≤ minKj then
15 return (2, 2)-sequence affecting K1 and Kj .

Algorithm 4 summarizes our approach towards finding and applying a (2, 2)-
sequence in O(n) time.

Lemma 5. [2,4,6] Given a breakpoint graph of a simple permutation, there ex-
ists a (2, 2)-sequence if any of the following conditions is met:

1. there are either four 2-cycles, or two intersecting 2-cycles, or two non inter-
secting 2-cycles, and the resulting graph contains an oriented cycle after the
first transposition is applied;

2. there are two non interleaving oriented 3-cycles;
3. there is an oriented cycle interleaving an unoriented cycle.

Our strategy to find a (2, 2)-sequence in linear time starts with checking
whether a breakpoint graph satisfies Lemma 5, as described in detail in Al-
gorithm 2. It differs from previous approaches [6,8] in that the leftmost oriented
cycle, dubbed K1, is fixed when verifying conditions 2 and 3, avoiding compar-
isons between every pair of cycles.

Given a simple permutation π, it is trivial to enumerate all of its cycles in lin-
ear time. The size of each cycle, and whether it is oriented, are both determined
in constant time.

Christie [4] proved that every permutation has an even number (possibly zero)
of even cycles; he also showed that, given a simple permutation, when the number
of even cycles is not zero, there exists a (2, 2)-sequence that affects those cycles
if, and only if, there are either four 2-cycles, or there are two intersecting even
cycles. Therefore, in these cases, a (2, 2)-sequence can be applied in O(log n)



A Faster 1.375-Approximation Algorithm for Sorting by Transpositions 33

using permutation trees. If there is only a pair of non-intersecting 2-cycles, it
remains to check if there is a 3-cycle intersecting both even cycles: i) if the 3-
cycle is oriented, then first we apply the 2-move over the 3-cycle, and the second
2-move is over the 2-cycles; ii) if the 3-cycle is unoriented, then first we apply the
2-move over the 2-cycles, and the second 2-move is over the 3-cycle, which turns
oriented after the first transposition. There is also a (2, 2)-sequence if there is
an oriented cycle intersecting at most one even cycle.

However, if no even cycle satisfies the previous conditions, but there is an
oriented cycle, the 3-cycles must be scanned for the existence of a (2, 2)-sequence,
as required conditions 2 and 3 in Lemma 5.

To check, in linear time, for the existence of a pair of cycles satisfying either
condition 2 or 2 in Lemma 5, consider the oriented cycles of the breakpoint graph,
in the order K1 = 〈a1 b1 c1〉,K2 = 〈a2 b2 c2〉, . . . such that a1 < a2 < . . ., and
the unoriented cycles in the order L1 = 〈x1 y1 z1〉, L2 = 〈x2 y2 z2〉, . . . such that
x1 < x2 < . . .. Given any 3-cycle C = 〈a b c〉, let minC = a, midC = min{b, c}
and maxC = max{b, c}. The main idea is:

1. Check for the existence of an oriented cycleKj non-interleavingK1 or an un-
oriented cycle Lj interleaving K1. Algorithm 2 solves that: between minK1

and midK1, between midK1 and maxK1, and to the right of maxK1, search
for an oriented cycle Ki non-interleaving K1 or an unoriented cycle Li in-
terleaving K1.

2. If every oriented cycle interleavesK1 and no unoriented cycle interleavesK1,
then check for the existence of two oriented cycles Ki,Kj that are intersect-
ing but not interleaving. Notice that if there is a pair of non-interleaving
oriented cycles, then the cycles intersect each other, otherwise one of the
cycles would be non-interleaving K1, and Algorithm 2 would have this case
already covered (see Fig. 3). Algorithm 3 describes how to verify the exis-
tence of two intersecting oriented cycles that are also interleaving K1.

Fig. 3. Oriented cycles represented by their reality edges. All oriented cycles interleave
K1, but Ki and Kj non-interleave each other.

4 Sufficient Extensions Using Query

At the end of Section 2, we discussed Firoz’s et al. use of the permutation tree,
and as proven in [5], their strategy does not account for configurations with less
than nine cycles that are not components, since successive invocations of the
query procedure may result in a full configuration with less than nine cycles
that is not a small component. Our proposed strategy generalizes the definitions
related to small components by defining a small configuration, a configuration
with less than nine cycles.



34 L.F.I. Cunha et al.

Algorithm 3. Finding intersecting oriented cycles interleaving K1.

1 s1 = sequence of edges belonging to oriented cycles from left to right between
minK1 and midK1.

2 s2 = sequence of edges belonging to oriented cycles from left to right between
midK1 and maxK1.

3 if s1 and s2 are different then
4 There is a pair of intersecting oriented cycles, exists a (2, 2)-sequence.

5 else
6 All oriented cycles are mutually interleaving.

Algorithm 4. Find and Apply (2,2)-sequence

1 if there are four 2-cycles then
2 Apply (2, 2)-sequence.

3 else if there is a pair of intersecting 2-cycles then
4 Apply (2, 2)-sequence.

5 else if there is a 3-cycle intersecting a pair of 2-cycles then
6 Apply (2, 2)-sequence.

7 else if there is a pair of 2-cycles and an oriented 3-cycle intersecting at most
one of them then

8 Apply (2, 2)-sequence.

9 else if Search (2, 2)-sequence from K1 returns a sequence then
10 Apply (2, 2)-sequence.

11 else if Finding intersecting oriented cycles interleaving K1 then
12 Apply (2, 2)-sequence.

13 else
14 There are no (2, 2)-sequences to apply.

A small configuration is said to be full if it has no open gates. Small con-
figurations are also classified as good if they have an 11

8 -sequence, or as bad
otherwise.

Algorithm 1 applies an 11
8 -sequence to every sufficient unoriented configura-

tion of nine cycles, and also to every good small component. After that, the
permutation contains just bad small components, and Lemma 3 states the exis-
tence of an (11, 8)-sequence in every combination of bad small components with
at least 8 cycles.

By doing extensions using the query procedure, we can deal with bad small
full configurations, which may or may not be bad small components. The possible
bad small full configurations are the bad small components A, B, C, D and E,
from Lemma 2, and one more full configuration

F = {〈0 7 9〉, 〈1 3 6〉, 〈2 4 11〉, 〈5 8 10〉},
which is the only bad small full configuration that is not a component [6].



A Faster 1.375-Approximation Algorithm for Sorting by Transpositions 35

Our strategy (Algorithm 5) is similar to Elias and Hartman’s (Algorithm 1):
we apply an 11

8 -sequence to every sufficient unoriented configuration of nine
cycles, and additionally to every good small full configuration; the main differ-
ence is that, whenever a combination of bad small full configuration is found, a
decision to apply an 11

8 -sequence is made according to Lemma 6.

Lemma 6. Every combination of F with one or more copies of either B, C, D
or E has an 11

8 -sequence.

Proof. Consider all breakpoint graphs of F and its circular shifts combined with
B, C, D, E, and their circular shifts. A combination of a pair of small full config-
urations is obtained by starting from one small full configuration and inserting
a new one in different positions in the breakpoint graph. Altogether, there are
324 such graphs. A computerized case analysis, in [1], enumerates every possible
breakpoint graph and provides an 11

8 -sequence for each of them. ��
Notice that Lemma 6 considers neither combinations of F with F , nor com-

binations of F with A. We have found that almost every combination of F with
F has an 11

8 -sequence. Let FiF
j be the configuration obtained by inserting the

circular shift F + j between the edges
−→
i and

−−→
i+ 1 of F .

Lemma 7. There exists an 11
8 -sequence for FiF

j, if:

• i ∈ {0, 4} and j ∈ {0, 1, 2, 3, 4, 5};
• i ∈ {1, 2, 3} and j ∈ {1, 2, 3, 4, 5}; or
• i = 5 and j ∈ {1, 5}.

Proof. The 11
8 -sequences for the cases enumerated above were also found through

a computerized case analysis [1]. Note that FiF
j is equivalent to Fi+6F

j for
i = {0, 1, . . . , 5}, which simplifies our analysis. ��

The combinations of F with F for which our branch-and-bound case analysis
cannot find an 11

8 -sequence are: F1F
0, F2F

0, F3F
0, F5F

0, F5F
2, F5F

3 and
F5F

4.
All combinations of one copy of F and one of A have less than eight cycles.

It only remains to analyse the combinations of F and two copies of A, denoted
F−A−A. The good F−A−A combinations are the F−A−A combinations for which
an 11

8 -sequence exists. Out of 57 combinations of F−A−A, only 31 are good. The
explicit list of combinations is in [1].

Combinations of F and A, B, C, D, E that have an 11
8 -sequence are called

well-behaved combinations : the ones in Lemmas 6, 7 and the good F−A−A
combinations. The remaining combinations having F are called naughty.

For extensions that yield a bad small configuration, Algorithm 5 adds their
cycles to a set S (line 18). Later, if a well-behaved combination is found among
the cycles in S, an 11

8 -sequence is applied (line 21) and the set is emptied. The
set S may just contain naughty combinations and in the next iteration (line 6)
another bad small configuration may be obtained and added to S. We have
shown [1] that every combination of three copies of F is well-behaved, even if



36 L.F.I. Cunha et al.

each pair of F is naughty; the same can also be said of every combination of F
and three copies of A such that each triple F−A−A is naughty. Therefore, at
most 12 cycles are in S, since there are in the worst case three copies of F ; or
one copy of F and three copies of A. In all these cases we apply 11

8 -sequences as
proved in [1].

New Algorithm. The previous results allow us to devise Algorithm 5, that basi-
cally obtains configurations using the query procedure, and applies 11

8 -sequences
to configurations of size at most 9. It differs from Algorithm 1 not only in the
use of permutation trees, but also because we continuously deal with bad small
full configurations instead of only at the end.

Algorithm 5. New algorithm based on Elias and Hartman’s algorithm

1 Transform permutation π into a simple permutation π̂.
2 Find and Apply (2,2)-sequence (Algorithm 4).
3 While G(π̂) contains a 2-cycle, apply a 2-move.
4 π̂ consists of 3-cycles. Mark all 3-cycles in G(π̂).
5 Let S be an empty set.
6 while G(π̂) contains at least eight 3-cycles do
7 Start a configuration C with a marked 3-cycle.
8 if the cycle in C is oriented then
9 Apply a 2-move to it.

10 else
11 Try to sufficiently extend C eight times.
12 if C is a sufficient configuration with 9 cycles then
13 Apply an 11

8
-sequence.

14 else C is a small full configuration
15 if C is a good small configuration then
16 Apply an 11

8
-sequence.

17 else C is a bad small configuration.
18 Add every cycle in C to S .
19 Unmark all cycles in C.
20 if S contains a well-behaved combination then
21 Apply an 11

8
-sequence.

22 Mark the remaining 3-cycles in S .
23 Remove all cycles from S .

24 While G(π̂) contains a 3-cycle, apply a (4, 3)-sequence or a (3, 2)-sequence.
25 Mimic the sorting of π using the sorting of π̂.

Theorem 1. Algorithm 5 runs in O(n log n) time.

Proof. Steps 1 through 5 can be implemented to run in linear time (proofs in
[6] and in Sect. 3). Step 11 runs in O(log n) time using permutation trees. The



A Faster 1.375-Approximation Algorithm for Sorting by Transpositions 37

comparisons in Steps 12, 14, 15, 17 and 20 are done in constant time using
lookup tables of size bound by a constant. Updating the set S also requires
constant time, since it has at most 12 cycles. Every sequence of transpositions
of size bounded by a constant can be applied in time O(log n) due to the use
of permutation trees. The time complexity of the loop between Steps 6 to 23 is
O(n log n), since the number of 3-cycles is linear in n, and the number cycles
decreases, in the worst case, once in three iterations. In Step 24, the search for
a (4, 3) or a (3, 2)-sequence is done in constant time, since the number of cycles
is bounded by a constant. Steps 24 and 25 also run in time O(n log n). ��

5 Conclusion

The goal of this paper is to lower the time complexity of Elias and Hartman’s [6]
1.375-approximation algorithm down to O(n log n). Our new approach provides,
so far, both the lowest fixed approximation ratio and time complexity of any
non-trivial algorithm for sorting by transpositions.

We have previously shown that a simple application of permutation trees [7],
as claimed in [8], does not suffice to correctly improve the running time of Elias
and Hartman’s algorithm. In order to lower the time complexity, it is necessary
to add more configurations [1] to the original analysis in [6], and also to perform
some changes in the sorting procedure, as shown in Algorithm 5.

References

1. http://compscinet.org/research/sbt1375 (2014)
2. Bafna, V., Pevzner, P.A.: Sorting by transpositions. SIAM J. Discrete Math. 11(2),

224–240 (1998)
3. Bulteau, L., Fertin, G., Rusu, I.: Sorting by transpositions is difficult. SIAM J.

Discrete Math. 26(3), 1148–1180 (2012)
4. Christie, D.A.: Genome Rearrangement Problems. Ph.D. thesis, University of Glas-

gow, UK (1999)
5. Cunha, L.F.I., Kowada, L.A.B., de A. Hausen, R., de Figueiredo, C.M.H.: On the

1.375-approximation algorithm for sorting by transpositions in O(n logn) time.
In: Setubal, J.C., Almeida, N.F. (eds.) BSB 2013. LNCS, vol. 8213, pp. 126–135.
Springer, Heidelberg (2013)

6. Elias, I., Hartman, T.: A 1.375-approximation algorithm for sorting by transposi-
tions. IEEE/ACM Trans. Comput. Biol. Bioinformatics 3(4), 369–379 (2006)

7. Feng, J., Zhu, D.: Faster algorithms for sorting by transpositions and sorting by
block interchanges. ACM Trans. Algorithms 3(3), 1549–6325 (2007)

8. Firoz, J.S., Hasan, M., Khan, A.Z., Rahman, M.S.: The 1.375 approximation
algorithm for sorting by transpositions can run in O(n log n) time. J. Comput.
Biol. 18(8), 1007–1011 (2011)

9. Hannenhalli, S., Pevzner, P.A.: Transforming cabbage into turnip: Polynomial al-
gorithm for sorting signed permutations by reversals. J. ACM 46(1), 1–27 (1999)

10. Hartman, T., Shamir, R.: A simpler and faster 1.5-approximation algorithm for
sorting by transpositions. Inf. Comput. 204(2), 275–290 (2006)

http://compscinet.org/research/sbt1375

	A Faster 1.375-Approximation Algorithm
for Sorting by Transpositions

	1 Introduction
	2 Background
	3 Finding a (2, 2)-Sequence in Linear Time
	4 Sufficient Extensions Using Query

	5 Conclusion
	References




