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Abstract. In this paper we present improved approximation results
for the max duo-preservation string mapping problem (MPSM)
introduced in [Chen et al., Theoretical Computer Science, 2014] that
is complementary to the well-studied min common string partition
problem (MCSP). When each letter occurs at most k times in each string
the problem is denoted by k-MPSM. First, we prove that k-MPSM is
APX-Hard even when k = 2. Then, we improve on the previous results
by devising two distinct algorithms: the first ensures approximation ra-
tio 8/5 for k = 2 and ratio 3 for k = 3, while the second guarantees
approximation ratio 4 for any bigger value of k. Finally, we address the
approximation of constrained maximum induced subgraph (CMIS,
a generalization of MPSM, also introduced in [Chen et al., Theoretical
Computer Science, 2014]), and improve the best known 9-approximation
for 3-CMIS to a 6-approximation, by using a configuration LP to get a
better linear relaxation. We also prove that such a linear program has
an integrality gap of k, which suggests that no constant approximation
(i.e. independent of k) can be achieved through rounding techniques.

Keywords: Polynomial approximation, Max Duo-Preserving String
Mapping Problem, Min Common String Partition Problem, Linear Pro-
gramming, Configuration LP.

1 Introduction

String comparison is a central problem in stringology with a wide range of ap-
plications, including data compression, and bio-informatics. There are various
ways to measure the similarity of two strings: one may use the Hamming dis-
tance which counts the number of positions at which the corresponding symbols
are different, the Jaro-Winkler distance, the overlap coefficient, etc. However in
computer science, the most common measure is the so called edit distance that
measures the minimum number of edit operations that must be performed to
transform the first string into the second. In biology, this number may provide
some measure of the kinship between different species based on the similarities
of their DNA. In data compression, it may help to store efficiently a set of similar
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yet different data (e.g. different versions of the same object) by storing only one
"base" element of the set, and then storing the series of edit operations that
result in the other versions of the base element.

The concept of edit distance changes definition based on the set of edit op-
erations that are allowed. When the only edit operation that is allowed is to
shift a block of characters, the edit distance can be measured by solving the min
common string partition problem.

The min common string partition (MCSP) is a fundamental problem in
the field of string comparison [7,13], and can be applied more specifically to
genome rearrangement issues, as shown in [7]. Consider two strings A and B,
both of length n, such that B is a permutation of A. Also, let PA denote a
partition of A, that is, a set of substrings whose concatenation results in A. The
MCSP Problem introduced in [13] and [19] asks for a partition PA of A and
PB of B of minimum cardinality such that PA is a permutation of PB. The
k−MCSP denotes the restricted version of the problem where each letters has at
most k occurrences. This problem is NP-Hard and even APX-Hard, also when the
number of occurrences of each letter is at most 2 (note that the problem is trivial
when this number is at most 1) [13]. Since then, the problem has been intensively
studied, especially in terms of polynomial approximation [7,8,9,13,15,16], but
also parametric computation [4,17,10,14]. The best approximations known so far
are an O(log n log∗ n)-approximation for the general version of the problem [9],
and an O(k)-approximation for k−MCSP [16]. On the other hand, the problem
was proved to be Fixed Parameter Tractable (FPT), first with respect to both k
and the cardinality φ of an optimal partition [4,10,14], and more recently, with
respect to φ only [17].

In [6], the maximization version of the problem is introduced and denoted
by max duo-preservation string mapping (MPSM). Reminding that a duo
denotes a couple of consecutive letters it is clear that when a solution (PA,PB)
for min common string partition partitions A and B into φ substrings, this
solution can be translated as a mapping π from A to B that preserves exactly
n − φ duos. Hence, given two strings A and B, the MPSM problem asks for a
mapping π from A to B that preserves a maximum number of duos (a formal
definition is given in Subsection 3.1). An example is provided in Figure 1.

A : a b c b a c

B : b a b c a c

Fig. 1. A mapping π that preserves 3 duos
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Considering that MCSP is NP-Hard [13], its maximization counterpart MPSM
is also NP-Hard. However, these two problems might have different behaviors
in terms of approximation, inapproximability, and parameterized complexity.
max independent set and min vertex cover provide a good example of
how symmetrical problems might have different characteristics: on the one hand,
max independent set is inapproximable within ratio nε−1 for a given ε ∈ (0, 1)
unless P = NP [18], and is W [1]-Hard [11]; and on the other hand min vertex
cover is easily 2-approximable in polynomial time by taking all endpoints of a
maximal matching [12], and is FPT [5].

The authors of [6] provide some approximation results for MPSM in the follow-
ing way: a graph problem called constrained maximum induced subgraph
(CMIS) is defined and proved to be a generalization of MPSM. Using a solution
to the linear relaxation of CMIS, it is proved that a randomized rounding pro-
vides a k2 expected approximation ratio for k-CMIS (and thus for k-MPSM),
and a 2 expected approximation ratio for 2-CMIS (and thus for 2-MPSM).

In what follows, we start by proving briefly that k-MPSM is APX-Hard, even
when k = 2 (Section 2). Then, we present some improved approximation results
for MPSM (Section 3), namely a general approximation algorithm that guar-
antees approximation ratio 4 regardless of the value of k (Subsection 3.2), and
an algorithm that improves on this ratio for small values of k (Subsection 3.3).
Finally, we improve on the approximation of 3-CMIS, by using a configuration
LP to get a better relaxed solution (Section 4), and analyze the integrality gap
of this relaxed solution.

2 Hardness of Approximation

We will show that MPSM is APX–hard, which essentially rules out any polyno-
mial time approximation schemes unless P = NP. The result follows with slight
modifications from the known approximation hardness result for MCSP. Indeed,
in [13] it is shown that any instance of max independent set in a cubic graph
(3–MIS) can be reduced to an instance of 2–MCSP (proof of Theorem 2.1 in
[13]). We observe that the construction used in their reduction also works as a
reduction from 3–MIS to 2–MPSM. In particular, given a cubic graph with n
vertices and independence number α, the corresponding reduction to 2–MPSM
has an optimum value of m = 4n+ α.

Given a ρ–approximation to 2–MPSM, we will hence always find an inde-
pendent set of size at least ρm − 4n. It is shown in [3] that it is NP–hard to
approximate 3–MIS within 139

140 + ε for any ε > 0. Therefore, unless P = NP, for
every ε > 0 there is an instance I of 3–MIS such that:

APPI
OPTI

� 139

140
+ ε

where APPI is the solution produced by any polynomial time approximation
algorithm and OPTI the optimum value of I. Substituting here we get:

ρm− 4n

m− 4n
� 139

140
+ ε
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Solving for ρ yields:

ρ � 139

140
+

4n

m

(
1

140
− ε

)
+ ε � 139

140
+

16

17 · 140 +
1

17
ε

where the last inequality follows from noting that for any cubic graph the max-
imum independent set α is always at least of size 1

4n.

3 Approximation Algorithms for max duo-preservation
string mapping

In this section we present two different approximation algorithms. First, a simple
algorithm that provides a 4-approximation ratio for the general version of the
problem, and then an algorithm that improves on this ratio for small values of
k.

3.1 Preliminaries

For i = 1, ..., n, we denote by ai the ith character of string A, and by bi
the ith character in B. We also denote by DA = (DA

1 , ..., D
A
n−1) and DB =

(DB
1 , ..., D

B
n−1) the set of duos of A and B respectively. For i = 1, ..., n− 1, DA

i

corresponds to the duo (ai, ai+1), and DB
i corresponds to the duo (bi, bi+1).

A mapping π from A to B is said to be proper if it is bijective, and if,
∀i = 1, ..., n, ai = bπ(i). In other words, each letter of the alphabet in A must be
mapped to the same letter in B for the mapping to be proper. A couple of duos(
DA
i , D

B
j

)
is said to be preservable if ai = bj and ai+1 = bj+1. Given a mapping

π, a preservable couple of duos
(
DA
i , D

B
j

)
is said to be preserved by π if π(i) = j

and π(i + 1) = j + 1. Finally, two preservable couples of duos
(
DA
i , D

B
j

)
and(

DA
h , D

B
l

)
will be called conflicting if there is no proper mapping that preserves

both of them. These conflicts can be of two types, w.l.o.g., we suppose that i � h
(resp. j � l):

– Type 1: i = h (resp. j = l) and j �= l (resp. i �= h) (see Figure 2(a))
– Type 2: i = h− 1 (resp. j = l− 1) and j �= l− 1 (resp. i �= h− 1) (see Figure

2(b))

Let us now define formally the problem at hand:

Definition 1. max duo-preservation string mapping (MPSM):

– Instance: two strings A and B such that B is a permutation of A.
– Solution: a proper mapping π from A to B.
– Objective: maximizing the number of duos preserved by π, denoted by f(π).

Let us finally introduce the concept of duo-mapping. A duo-mapping σ is
a mapping, which - unlike a mapping π that maps each character in A to a
character in B - maps a subset of duos of DA to a subset of duos of DB. Having



18 N. Boria et al.

A : . . . a b . . .

B : . . . a b . . . a b . . .

DA
i (= DA

h )

DB
j DB

l

(a) Type 1

A: . . . a b c . . .

B: . . . a b . . . . b c . . .

DA
i DA

h

DB
j DB

l

(b) Type 2

Fig. 2. Different types of conflicting pairs of duos

σ(i) = j means that the duoDA
i is mapped to the duoDB

j . Again, a duo-mapping
σ is said to be proper if it is bijective, and if DA

i = DB
σ(i) for all duos mapped

through σ. Note that a proper duo-mapping might map some conflicting couple
of duos. Revisit the example of Figure 2(b): having σ(i) = j and σ(h) = l defines
a proper duo-mapping that maps conflicting couple of duos. Notice however that
a proper duo-mapping might generate conflicts of Type 2 only. We finally define
the concept of unconflicting duo-mapping, which is a proper duo-mapping that
does not map any pair of conflicting duos.

Remark 1. An unconflicting duo-mapping σ on some subset of duos of size f(σ)
immediatly derives a proper mapping π on the whole set of characters with
f(π) � f(σ): it suffices to map characters mapped by σ in the same way that σ
does, and map arbitrarily the remaining characters.

3.2 A 4-Approximation Algorithm for MPSM

Proposition 1. There exists a 4-approximation algorithm for MPSM that runs
in O(n3/2) time.

Proof. Consider the two strings A = a1a2...an and B = b1b2...bn that one wishes
to map while preserving a maximal number of duos, and let DA and DB de-
note their respective sets of duos. Also, denote by π∗ an optimal mapping that
preserves a maximum number f(π∗) of duos.

Build a bipartite graph G in the following way: vertices on the left and the
right represent duos of DA and DB, respectively. Whenever one duo on the right
and one on the left are preservable (same two letters in the same order), we add
an edge between the two corresponding vertices. Figure 3 provides an example
of this construction.

At this point, notice that there exists a one-to-one correspondence between
matchings in G and proper duo-mappings between DA and DB. In other words
there exists a matching in G with f(π∗) edges. Indeed, the set of duos preserved
by any solution (and a fortiori by the optimal one) can be represented as a
matching in G. Hence, denoting by M∗ a maximum matching in G, it holds that
:

f(π∗) � |M∗| (1)
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Unfortunately, a matching M∗ in G does not immediately translate into a
proper mapping that preserves |M∗| duos. However, it does correspond to a
proper duo-mapping that maps |M∗| duos, which, as noticed earlier, might gen-
erate conflicts of Type 2 only.

DA

ab

bc

ca

ab

bc

DB

ca

ab

ba

ab

bc

(a) A proper duo-mapping with 2 conflicts

DA

ab

bc

ca

ab

bc

DB

ca

ab

ba

ab

bc

(b) An unconflicting duo-mapping

Fig. 3. The graph G where A = abcabc and B = cababc

In G, a conflict of Type 2 corresponds to two consecutive vertices on one side
matched to two non-consecutive vertices on the other side. Hence, to generate
an unconflicting duo-mapping σ using a matching M∗, it suffices to partition
the matching M∗ in 4 sub-matchings in the following way : Let M(even, odd)
denote the submatching of M∗ containing all edges whose left endpoint have
even indices, and right endpoint have odd indices; and define M(odd, even),
M(even, even), and M(odd, odd) in the same way. Denote by M̂ the matching
with biggest cardinality among these 4. Obviously, remembering that the four
submatchings define a partition of M∗, it holds that |M̂ | � |M∗|/4. Consider-
ing that M̂ does not contain any pair of edges with consecutive endpoints, the
corresponding duo-mapping σ has no conflict. Following Remark 1, σ derives a
proper mapping π on the characters such that:

f(π) � f(σ) = |M̂ | � |M∗|
4

(1)
� f(π∗)

4

A 4-approximate solution can thus be computed by creating the graph G from
strings A and B, computing an maximum matching M∗ on it, partitioning M∗

four ways by indices parity and return the biggest partition M̂ . Then map the
matched duos following the edges M̂ , and map all the other characters arbitrarily.
The complexity of the whole procedure is given by the complexity of computing
an optimal matching in G, which is O(n3/2). ��
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It is likely that the simple edge removal procedure that nullifies all conflicts
of Type 2 can be replaced by a more involved heuristic method in order to solve
efficiently real life problems.

3.3 An 8/5-Approximation for 2-MPSM

In the following, we make use of a reduction from MSPM to max independent
set (MIS) already pointed out in [13]. Given two strings A and B, consider
the graph H built in the following way: H has a vertex vij for each preservable
couple of duos ((DA

i ), (D
B
j )), andH has an edge (vij , vhl) for each conflicting pair

of preservable couple of duos ((DA
i ), (D

B
j )) ((D

A
h ), (D

B
l )). It is easy to see that

there is a 1 to 1 correspondence between independent sets in H and unconflicting
duo-mappings between A and B.

Notice that, for a given k, a couple of duos ((DA
i ), (D

B
j )) can belong to at

most 6(k − 1) conflicting pairs: on the one hand, there can be at most 2(k − 1)
conflicts of Type 1 (one for each other occurrence of the duo DA

i in DA and
DB), and on the other hand at most 4(k − 1) conflicts of Type 2 (one for each
possible conflicting occurrence of DB

j−1 or DB
j+1 in DA, and one for each possible

conflicting occurrence of DA
j−1 or DA

j+1 in DB). This bound is tight.
Hence, for a given instance of k-MPSM, the corresponding instance of MIS is a

graph with maximum degreeΔ � 6(k−1). Using the approximation algorithm of
[2] and [1] for independent set (which guarantees approximation ratio (Δ+3)/5
), this leads to obtaining approximation ratio arbitrarily close to (6k − 3)/5
for k-MPSM, which already improves on the best known 2-approximation when
k = 2, and also on the 4-approximation of Proposition 1 when k = 3.

We now prove the following result in order to further improve on the approx-
imation:

Lemma 1. In a graph H corresponding to an instance of 2-MPSM, there exists
an optimal solution for MIS that does not pick any vertex of degree 6.

Proof. Consider a vertex vij of degree 6 in such a graph H . This vertex corre-
sponds to a preservable couple of duos that conflicts with 6 other preservable
couples. There exists only one possible configuration in the strings A and B that
can create this situation, which is illustrated in Figure 4(a).

In return, this configuration always corresponds to the gadget illustrated in
Figure 4(b), where vertices vij , vhj , vil, and vhl have no connection with the rest
of the graph.

Now, consider any maximal independent set S that picks some vertex vij
of degree 6 in H . The existence of this degree-6 vertex induces that graph H
contains the gadget of Figure 4(a). S is maximal, so it necessarily contains vertex
vhl as well. Let S′ = S \ ({vij}, {vhl}) ∪ ({vil}, {vhj}). Reminding that vil and
vhj have no neighbor outside of the gadget, it is clear that S′ also defines an
independent set.

Hence, in a maximal (and a fortiori optimal) independent set, any pair of
degree-6 vertices (in such graphs, degree-6 vertices always appear in pair) can
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A: . . . a b c d . . . x b c y . . .

B: . . . x b c y . . . a b c d . . .

DA
i DA

h

DB
j DB

l

(a) Strings A and B

vij

vil

vhj

vhl

vi+1,l+1vi−1,l−1

vh+1,j+1vh−1,j−1

(b) Gadget in H

Fig. 4. A degree 6-vertex in graph H

be replaced by a pair of degree 2 vertices, which concludes the proof of Lemma
1. ��

Let H ′ be the subgraph of H induced by all vertices apart from vertices of
degree 6. Lemma 1 tells us that an optimal independent set on H ′ has the same
cardinality than an optimal independent set in H . However H ′ has maximum
degree 5 and not 6, which yields a better approximation when using the algorithm
described in [2] and [1]:

Proposition 2. 2-MPSM is approximable within ratio arbitrarily close to 8/5
in polynomial time.

Notice that the reduction from k-MPSM to 6(k − 1)-MIS also yields the fol-
lowing simple parameterized algorithm:

Corollary 1. k-MPSM can be solved in O∗((6(k − 1) + 1)ψ), where ψ denotes
the value of an optimal solution.

Consider an optimal independent set S in H , if some vertex v of H has no
neighbour in S then v necessarily belongs to S. Thus, in order to build an optimal
solution S, one can go through the decision tree that, for each vertex v that has
no neighbour in the current solution, consists of deciding which vertex among
v and its set of neighbours will be included in the solution. Any solution S will
take one of these 6(k−1)+1 vertices. Each node of the decision tree has at most
6(k− 1) + 1 branches, and the tree has obviously depth ψ, considering that one
vertex is added to S at each level.

4 Some Results on 3-constrained maximum induced
subgraph

In this section we consider the constrained maximum induced subgraph
problem (CMIS) which is a generalization of max duo-preservation string
mapping (MPSM). In [6] the CMIS served as the main tool to analyze its special
case, namely the MPSP problem. The problem is expressed as a natural linear
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program denoted by NLP , which is used to obtain a randomized k2 approxima-
tion algorithm. In this section we provide a 6-approximation algorithm for the
3-CMIS which improves on the previous 9-approximation algorithm. We do this
by introducing a configuration-LP denoted by CLP . Moreover we show that
both NLP and CLP have an integrality gap of at least k which implies that it
is unlikely to construct a better than k-approximation algorithm based on these
linear programs.

We start with a formal definition of the problem.

Definition 2. constrained maximum induced subgraph (CMIS):

– Instance: an m-partite graph G(V,E) with parts: G1, . . . , Gm. Each part Gi
has n2

i vertices organized in an ni × ni grid.
– Solution: a subset of vertices such that within each grid in each column and

each row at most one vertex is chosen.
– Objective: maximizing the number of edges in the induced subgraph.

In the constrained k-CMIS problem each grid consists of at most k× k vertices.
Let vijp be the vertex placed in position (i, j) in the pth grid. Consider the

linear program NLP as proposed in [6]. Let xijp be the boolean variable which
takes value 1 if the corresponding vertex vijp is chosen, and 0 otherwise. Let
xpijqkl

be the edge-corresponding boolean variable such that it takes the value 1
if both the endpoint vertices vijp and vklq are selected and 0 otherwise. The task
is to choose a subset of vertices, such that within each block, in each column and
each row at most one vertex is chosen. The objective is to maximize the number
of edges in the induced subgraph. The LP formulation is the following:

NLP :

Max
∑

(vijp vkl
q )∈E

xpijqkl

s.t. xpijqkl
� xijp for i, j, k, l = [np], p, q = [m],

np∑
i=1

xijp = 1 for j = [np], p = [m],

np∑
j=1

xijp = 1 for i = [np], p = [m],

0 � xpijqkl
� 1 for i, j, k, l = [np], p, q = [m],

0 � xijp � 1 for i, j = [np], p = [m].

(2)

Note that when the size of each grid is constant, the CLP is of polynomial size.
The first constraint ensures that the value of the edge-corresponding variable
is not greater than the value of the vertex-corresponding variable of any of its
endpoints. The second and the third constraints ensure that within each grid at
most one vertex is taken in each column, each row, respectively.

Notice that within each grid there are k! possible ways of taking a feasible
subset of vertices. We call a configuration, a feasible subset of vertices for a given
grid. Let us denote by Cp the set of all possible configurations for a grid p. Now,
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consider that we have boolean variable xCp for each possible configuration. The
variable xCp takes value 1 if all the vertices contained in Cp are chosen and 0
otherwise. The induced linear program is called Configuration-LP , (CLP ). The
CLP formulation for the CMIS problem is the following:

CLP (K) :

Max
∑

(vijp vkl
q )∈E

xpijqkl

s.t. xpijqkl
� xijp for i, j, k, l = [np], p, q = [m],

xijp =
∑

vijp ∈Cp∈Cp

xCp for i, j = [np], p,= [m],

∑
Cp∈Cp

xCp = 1 for p = [m],

0 � xpijqkl
� 1 for i, j, k, l = [np], p, q = [m],

0 � xCp � 1 for Cp ∈ Cp, p = [m],

(3)

The first constraint is the same as in NLP . The second one ensures that
the value of the vertex-corresponding variable is equal to the summation of the
values of the configuration-corresponding variables containing considered vertex.
The third constraint ensures that within each grid exactly one configuration can
be taken. Notice that the vertex variables are redundant and serve just as an
additional description. In particular the first and the second constraints could
be merged into one constraint without vertex variables.

One can easily see that the CLP is at least as strong as the NLP formulation:
a feasible solution to CLP always translates to a feasible solution to NLP.

Proposition 3. There exists a randomized 6-approximation algorithm for the
3-constrained maximum induced subgraph problem.

Proof. Consider a randomized algorithm that, in each grid Gp, takes the vertices
from configuration C with a probability

√
xC∑

Cp∈Cp

√xCp
.

Consider any vertex, w.l.o.g. v1,1p . Each vertex is contained in two configura-
tions, w.l.o.g. let v1,1p be contained in C1

p and C2
p . The probability that v1,1p is

chosen is:

Pr
(
v1,1p is taken

)
=

√xC1
p
+√xC2

p∑
Cp∈Cp

√
xCp

Optimizing the expression √xC1
p
+√xC2

p
under the condition xC1

p
+ xC2

p
= x1,1p ,

we have that the minimum is when either xC1
p
= 0 or xC2

p
= 0 which implies

√xC1
p
+√xC2

p
=

√
x1,1p . Thus:

Pr
(
v1,1p is taken

)
�

√
x1,1p∑

Cp∈Cp

√
xCp
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Using a standard arithmetic inequality we can get that:

∑
Cp∈Cp

√
xCp

6
�

√∑
Cp∈Cp

xCp

6
=

√
1

6

which implies that:

Pr
(
v1,1p is taken

)
�

√
x1,1p√
6

Now let us consider any edge and the corresponding variable, xpijqkl
. The prob-

ability that the edge is taken can be lower bounded by:

Pr
(
xpijqkl

is taken
)
= Pr

(
vijp is taken

) · Pr (vklq is taken
)
�

√
xijp√
6

·
√
xklq√
6

�

1

6
min{xijp , xklq } � 1

6
xpijqkl

Since our algorithm takes in expectation every edge with probability 1
6 of the

fractional value assigned to the corresponding edge-variable by the CLP it is a
randomized 6-approximation algorithm. ��

4.1 Integrality Gap of NLP and CLP

We now show that the linear relaxationNLP has an integrality gap of at least k.
Consider the following instance of k-CMIS. Let the input graph G(V,E) consists
of two grids, G1, G2. Both grids consist of k2 vertices. Every vertex from one
grid is connected to all the vertices in the second grid and vice versa. Thus
the number of edges is equal to k4. By putting all the LP variables to 1

k one
can easily notice that this solution is feasible and the objective value for this
solution is k3. On the other hand any feasible integral solution for this instance
must return at most k vertices from each grid, each of which is connected to at
most k vertices from the other grid. Thus the integral optimum is at most k2.
This produces the intergality gap of k. Moreover by putting the configuration-
corresponding variables in CLP (K) to 1

k! we can construct a feasible solution to
CLP (K) with the same integrality gap of k.
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