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Abstract. Mass spectrometry (MS) in combination with a fragmenta-
tion technique is the method of choice for analyzing small molecules
in high throughput experiments. The automated interpretation of such
data is highly non-trivial. Recently, fragmentation trees have been in-
troduced for de novo analysis of tandem fragmentation spectra (MS2),
describing the fragmentation process of the molecule. Multiple-stage MS
(MSn) reveals additional information about the dependencies between
fragments. Unfortunately, the computational analysis of MSn data using
fragmentation trees turns out to be more challenging than for tandem
mass spectra.

We present an Integer Linear Program for solving the Combined Col-
orful Subtree problem, which is orders of magnitude faster than the
currently best algorithm which is based on dynamic programming. Using
the new algorithm, we show that correlation between structural similar-
ity and fragmentation tree similarity increases when using the additional
information gained from MSn. Thus, we show for the first time that using
MSn data can improve the quality of fragmentation trees.

Keywords: metabolomics, computational mass spectrometry,
multiple-stage mass spectrometry, fragmentation trees, Integer Linear
Programming.

1 Introduction

Studying metabolites and other small biomolecules with mass below 1000 Da, is
relevant, for example, in drug design and the search for new signaling molecules
and biomarkers [14]. Since such molecules cannot be predicted from the genome
sequence, high-throughput de novo identification of metabolites is highly sought.
Mass spectrometry (MS) in combination with a fragmentation technique is com-
monly used for this task. In liquid chromatography MS, a selected molecule
can be fragmented in a second step typically using collision-induced dissociation
(CID). The resulting fragment ions are recorded in tandem mass spectra (MS2

spectra). For metabolites, the understanding of CID fragmentation is still in its
infancy.
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Multiple-stage MS (MSn) allows to select the product ions of the initial frag-
mentation step (manually or automatically) and subject them to another frag-
mentation reaction. This reveals additional information about the dependencies
between the fragments. The resulting fragment ions can, in turn, again be se-
lected as precursor ions for further fragmentation. Typically, with each additional
fragmentation reaction, the quality of mass spectra is reduced and measuring
time increases. Thus, analysis is usually limited to a few fragmentation reac-
tions beyond MS2.

CID mass spectra (both MS2 and MSn) are limited in their reproducibility
on different instruments, making spectral library search a non-trivial task [16].
Furthermore, spectral libraries are vastly incomplete. Recent approaches tend to
replace searching in spectral libraries by searching in the more comprehensive
molecular structure databases [1, 9–11, 26, 31]. However, many metabolites even
remain uncharacterized with respect to their structure and function [17].

For the de novo interpretation of tandem mass spectra of small molecules,
Böcker and Rasche [5] introduced fragmentation trees to identify the molecu-
lar formula of an unknown and its fragments. Moreover, fragmentation trees
are reasonable descriptions of the fragmentation process and hence can also be
used to derive further information about the unknown molecule [19]. Scheubert
et al. [23,24] adjusted the fragmentation tree concept to MSn data to reflect the
succession of fragmentation reactions.

Adjusting the fragmentation tree concept to MSn data, results in the NP-hard
Colorful Subtree Closure problem [24] which has to be solved in conjunc-
tion with the original NP-hard Maximum Colorful Subtree problem [5],
resulting in the Combined Colorful Subtree problem [24]. To solve this
problem, Scheubert et al. [24] presented a fixed-parameter algorithm based on
dynamic programming (DP) with worst-case running time depending exponen-
tially on the number of peaks in the spectrum.

To compare two molecules based on their fragmentation spectra, Rasche
et al. [18] introduced fragmentation tree alignments. By this, similar fragmen-
tation cascades in the two trees are identified and scored. This allows us to use
fragmentation trees in applications such as database searching, assuming that
structural similarity is inherently coded in the CID spectra fragments. Improving
the quality of the fragmentation trees using the additional information provided
by MSn, may improves this downstream analysis.

Here, we present a novel exact algorithm for solving the Combined Color-
ful Subtree problem. This Integer Linear Program (ILP) is faster than the
DP algorithm. Further, we demonstrate the impact of the additional informa-
tion from MSn data for the downstream analysis: We compute fragmentation
tree alignments [18] and find that correlation between the similarity score of
two fragmentation trees and the structural similarity score of the correspond-
ing molecules increases when using the additional information gained from the
succession of fragments in multiple MS.
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2 Constructing Fragmentation Trees

Given the molecular structure of a molecule and the measured fragmentation
spectrum, an MS expert can assign peaks to fragments of the molecule and
derive a “fragmentation diagram”. Fragmentation trees are similar to experts’
“fragmentation diagrams” but are extracted directly from the data, without
knowledge about a molecule’s structure. A fragmentation tree consists of vertices
annotated with the molecular formulas of the precursor ion and fragment ions,
and directed edges representing the fragmentation steps. Fragmentation trees
must not be confused with spectral trees for multiple stage mass spectrometry
[22,25]. Spectral trees are a formal representation of the MS setup and describe
the relationship between the MSn spectra, but do not contain any additional
information.

For the computation of fragmentation trees [5], a fragmentation graph is con-
structed (see Fig. 1): vertices represent all fragment molecular formulas with
mass sufficiently close to the peak mass [3, 4]; and weighted edges represent the
fragmentation steps leading to those formulas. Two vertices u, v are connected
by a directed edge if the molecular formula of v is a sub-molecule of the molec-
ular formula of u. We assume the molecular formula of the full molecule to be
given (see [19] for details). The resulting graph is a directed acyclic graph (DAG)
G = (V,E), since fragments can only lose, never gain, weight. Vertices in the
graph are colored c : V → C, such that vertices that explain the same peak receive
the same color. Edges are weighted, reflecting that some fragmentation steps are
more likely. Common fragmentation steps get a higher weight than implausible
fragmentation steps. Also peak intensities and mass deviations are taken into ac-
count in these weights. The resulting fragmentation graph contains all possible
fragmentation trees as subgraphs. The weight of an induced tree T = (VT , ET )
is defined as the sum of its edge weights: w(T ) :=

∑
(u,v)∈ET

w
(
u, v

)
.

The MSn data does not only hint to direct but also to indirect successions,
that is a fragment is not only scored based on its direct ancestor (its parent
node), but also on indirect ancestors (grandparent node etc). Thus, we also
have to score the transitive closure of the induced subtrees [24]. The transitive
closure G+ = (V,E+) of a DAG G = (V,E) contains the edge (u, v) ∈ E+

if and only if there is a directed path in G from u to v. As MSn data does
not differentiate between different explanations of the peaks, we score pairs of
colors: w+ : C2 → R. The transitive weight of an induced tree T = (VT , ET ) with
transitive closure T+ = (VT , E

+
T ) is defined as

w+(T ) :=
∑

(u,v)∈E+
T

w+
(
c(u), c(v)

)
(1)

Scheubert et al. [24] introduced three parameters σ1, σ2 and σ3 to score the
transitive closure. Parameter σ1 rewards fragments of an MSn spectrum that
are successors of its parent fragment (σ1 ≥ 0). Parameter σ2 penalizes frag-
ments that are successors of a parent fragment of an MSn spectrum although
the corresponding peak is not contained in this spectrum (σ2 ≤ 0). Parameter
σ3 penalizes direct and indirect fragmentation steps that occur at high collision
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Fig. 1. (1) As input we use MSn spectra that contain additional information on the
succession of fragments. (2) For each peak, we compute all fragment molecular for-
mulas with mass sufficiently close to the peak mass. (3) A fragmentation graph is
constructed with vertices for all fragment molecular formulas and edges (grey) for all
possible fragmentation steps. Explanations of the same peak receive the same color.
The transitive closure of the graph is scored based on pairs of colors. To simplify the
drawing, we only show non zero edges of the transitive closure (black). (4) The colorful
subtree with maximum combined weight of the edges and the transitive closure is the
best explanation of the observed fragments.

energy but not at low collision energy (σ3 ≤ 0). For a more detailed description
of the parameters see [24].

Now, each subtree of the fragmentation graph corresponds to a possible frag-
mentation tree. Considering trees, every fragment is explained by a unique frag-
mentation pathway. To avoid the case that one peak is explained by more than
one molecular formula, we limit our search to colorful trees, where each color is
used at most once. In practice, it is very rare that a peak is indeed created by two
different fragments. Searching for a colorful subtree of maximum sum of edge
weights is known as the Maximum Colorful Subtree problem, which is NP-
hard [5,8]. Searching for a colorful subtree of maximum weight of the transitive
closure is known as the Colorful Subtree Closure problem, which is again
NP-hard (even for unit weights) [24]. In addition, both problems are even hard
to approximate [6, 24, 27]. The problem we are interested in combines the two
above problems, that is searching for a colorful subtree of maximum combined
weight of the edges and the transitive closure, which is the best explanation of
the observed fragments [24]:

Combined Colorful Subtree Problem. Given a vertex-colored DAG G =
(V,E) with colors C, edge weights w : E → R, and transitive weights w+ :
C2 → R. Find the induced colorful subtree T of G of maximum weight w∗(T ) =
w(T ) + w+(T ).

3 Integer Linear Programming for Fragmentation Trees

For the computation of fragmentation trees from tandem MS data, several exact
and heuristic algorithms to solve the Maximum Colorful Subtree problem
have been proposed and evaluated [5, 19, 20], inter alia a fixed-parameter algo-
rithm using dynamic programming (DP) over vertices and color subsets [5, 7],
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and an Integer Linear Program (ILP) [20] (see below) – both computing an exact
solution. For multiple MS data, Scheubert et al. [24] presented an exact DP algo-
rithm for the Combined Colorful Subtree problem, which is parameterized
by the number of colors k in the graph. Here, we present an ILP for solving
the Combined Colorful Subtree problem. ILPs are a classical approach for
finding exact solutions of computationally hard problems.

3.1 ILP for Tandem MS

We first repeat the ILP introduced by Rauf et al. [20] for tandem MS data. By
mapping all peaks into a single “pseudo tandem MS” spectrum we can also use
this ILP to find a fragmentation tree for multiple MS data. However, by doing
so, we ignore the additional information gained from the succession of fragments
in multiple MS.

Let G = (V,E) be the input graph, and let C : V → C denote the vertex
coloring of G. We assume that G has a unique source r that will be the root of
the subtree. For each color c ∈ C let V (c) be the set of all vertices in G which are
colored with c. We introduce binary variables xuv for each edge uv ∈ E, where
xuv = 1 if and only if uv is part of the subtree.

max
∑

uv∈E

w(u, v) · xuv (2)

s.t.
∑

u with uv ∈ E

xuv ≤ 1 for all v ∈ V \ {r}, (3)

xvw ≤
∑

u with uv ∈ E

xuv for all vw ∈ E with v �= r, (4)

∑

uv ∈ E with v ∈ V (c)

xuv ≤ 1 for all c ∈ C, (5)

xuv ∈ {0, 1} for all uv ∈ E. (6)

Constraints (3) ensure that the feasible solution is a tree, whereas constraints
(5) make sure that there is at most one vertex of each color present in the so-
lution. Finally, constraints (4) require the solution to be connected. Note that
in general graphs, we would have to ensure for every cut of the graph to be
connected to some parent vertex. That would require an exponential number of
constraints [15]. But since our graph is directed and acyclic, a linear number
of constraints suffice. White et al. [30] pointed out that constraints (3) are re-
dundant due to constraints (5). However, in the following we will refer to the
original ILP from [20].

3.2 ILP for Multiple MS Allowing Transitivity Penalties Only

A rather simple ILP for solving the Combined Colorful Subtree problem
extends the ILP from Rauf et al. [20] by adding constraints similar to [2] to
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capture the transitivity of the closure. To this end, we will introduce additional
variables that capture the edges of the transitive closure of the tree. Unfortu-
nately, this simple approach is only working for negative weights for all edges of
the transitive closure and cannot be generalized to arbitrary transitivity scores.

Let G+ = (V,E+) be the transitive closure of the input graph G. We assume
that w+(c(u), c(v)) ≤ 0 holds for all edges uv of the transitive closure. Let us
define binary variables xuv for each edge uv ∈ E, and zuv for each edge uv ∈ E+.
We assume xuv = 1 if and only if uv is part of the subtree; and zuv = 1 if uv is
part of the closure of the subtree. We can formulate the following ILP:

max
∑

uv∈E

w(u, v) · xuv +
∑

uv∈E+

w+(c(u), c(v)) · zuv (7)

satisfying constraints (3), (4), (5) and, in addition:

xuv ≤ zuv for all uv ∈ E, (8)

zuv + zvw − zuw ≤ 1 for all uv, vw ∈ E+, (9)

xuv ∈ {0, 1} for all uv ∈ E, (10)

zuv ∈ {0, 1} for all uv ∈ E+. (11)

As w+(c(u), c(v)) ≤ 0 for all uv ∈ E+ we may assume that zuv = 0 holds unless
required otherwise by (8) or (9). Constraint (8) requires that all edges of the
subtree are also edges of the closure; constraint (9) results in the transitivity of
the closure.

Unfortunately, the above ILP cannot be generalized to arbitrary transitivity
scores, demonstrated by the example that zuv = 1 for all uv ∈ E+ satisfies both
constraints (8) and (9), independently of the actual assignment of variables xuv.

3.3 ILP for Multiple MS Using General Transitivity Scores

Here, we present an ILP for solving the Combined Colorful Subtree prob-
lem using general transitivity scores. Let G = (V,E) be the input graph, and
let C : V → C denote the vertex coloring of G. For each color c ∈ C let V (c) be
the set of all vertices in G which are colored with c. Let H = (U, F ) be the color
version of G with

U := C(V ) and F := {C(u)C(v) : uv ∈ E}.
We may assume U = C, but for the sake of clarity we will use U whenever we
refer to the vertices of the color graph H .

Let us define binary variables xuv for each edge uv ∈ E, and zab and yab for
each edge ab ∈ F . We assume xuv = 1 if and only if uv is part of the subtree,
and yab = 1 if there exist u ∈ V (a) and v ∈ V (b) such that uv is part of the
subtree, that is, xuv = 1. Variables yab are merely helper variables that map the
subtree to the color space. Finally, we assume zab = 1 if ab is part of the closure
of the subtree in color space. The following ILP captures the maximum colorful
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subtree problem as well as the Colorful Subtree Closure problem using
arbitrary transitivity scores:

max
∑

uv∈E

w(u, v) · xuv +
∑

ab∈F

w+(a, b) · zab (12)

satisfying constraints (3), (4), (5) and, in addition:

xuv ≤ yC(u)C(v) for all uv ∈ E, (13)

yab ≤
∑

u∈V (a),v∈V (b)

xuv for all ab ∈ F , (14)

yab ≤ zab for all ab ∈ F , (15)

zab + ybc − 1 ≤ zac for all bc ∈ F , a ∈ U, (16)

zab − ybc + 1 ≥ zac for all bc ∈ F , a ∈ U, (17)

zac ≤
∑

b ∈ U with
bc∈F

ybc for all ac ∈ F , (18)

xuv ∈ {0, 1} for all uv ∈ E, (19)

yab, zab ∈ {0, 1} for all ab ∈ F . (20)

Constraints (13) and (14) ensure that there is an edge in the color version
of the tree if and only if there is an edge between vertices of the corresponding
colors. Constraints (15) guarantee that for each edge that is part of the solution,
also its transitive edge is part of the solution. Constraints (16) and (17) ensure
the transitivity of the transitive closure of the solution: For a given edge ybc in
the color version of the tree and an arbitrary color a, a is either an ancestor of b
(and thus also of c), or not. The first case implies that there must be transitive
edges from a to b as well as from a to c. In the second case, transitive edges
from a to b as well as from a to c are prohibited. Constraints (18) guarantee
that only the transitive closure of the solution tree is part of the solution, and
not the transitive closure of other subgraphs.

4 Correlation with Structural Similarity

Rasche et al. [18] presented the comparison of fragmentation trees using fragmen-
tation tree alignments. One important application of this approach is searching
in a database for molecules that are similar to the measured unknown molecule.
Two structurally similar molecules have similar fragmentation trees and vice
versa [18]. Hence, the similarity of high quality fragmentation trees correlates
with the structural similarity of the corresponding molecules. We will use the
correlation coefficient to optimize the parameters of the transitivity score and
to evaluate the benefit of MSn data compared to MS2 data.

Fragmentation tree similarity is defined via edges, representing fragmentation
steps, and vertices, representing fragments. A local fragmentation tree alignment
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contains those parts of the two trees where similar fragmentation cascades oc-
curred [18]. To compute fragmentation tree alignments we use the sparse DP
introduced by Hufsky et al. [12] which is very fast in practice.

For the comparison of molecular structures, many different similarity scores
have been developed [13]. Molecular structures can be represented as binary fin-
gerprints. Here, we use two of those fingerprint representations, that is the fin-
gerprints from PubChem database [29] accessed via the Chemistry Development
Toolkit version 1.3.37 [28]1, and Molecular ACCess System (MACCS) finger-
prints implemented in OpenBabel2. We use Tanimoto similarity scores (Jaccard
indices) [21] to compare those binary vectors.

To assess the correlation between fragmentation tree similarity and structural
similarity, we use the well-known Pearson correlation coefficient r which mea-
sures the linear dependence of two variables, as well as the Spearman’s rank
correlation coefficient ρ that is the Pearson correlation coefficient between the
ranked variables. The coefficient of determination, r2, measures how well a model
explains and predicts future outcomes. Fragmentation tree alignment scores and
structural similarity scores are two measures where one would not expect a linear
dependence. This being said, we argue that any Pearson correlation coefficients
r > 0.5 (r2 > 0.25) can be regarded as strong correlation.

5 Results

To evaluate our work, we analyze spectra from a dataset introduced in [24]. It
contains 185 mass spectra of 45 molecules, mainly representing plant secondary
metabolites. All spectra were measured on a Thermo Scientific Orbitrap XL
instrument using direct infusion. For more details of the dataset see [24].

For the construction of the fragmentation graph, we use a relative mass er-
ror of 20 ppm and the standard alphabet – that is carbon, hydrogen, nitrogen,
oxygen, phosphorus, and sulfur – to compute the fragment molecular formulas.
For weighting the fragmentation graph, we use the scoring parameters from [19].
For scoring the transitive closure, we evaluate the influence of parameters σ1, σ2

and σ3 on the quality of fragmentation trees. We assume the molecular formula
of the unfragmented molecule to be given (for details, see [18, 19, 24]).

For the computation of fragmentation trees from tandem MS data, we use the
DP algorithm from [5] (called DP-MS2 in the following) and the ILP from [20]
(ILP-MS2). Recall, that we can convert MSn data to “pseudo MS2” data by
mapping all peaks into a single spectrum and ignoring the additional informa-
tion gained from the succession of fragments in MSn. For the computation of
fragmentation trees from multiple MS data, we use the DP algorithm from [24]
(DP-MSn) as well as our novel ILP (ILP-MSn). Both DP algorithms are re-
stricted by memory and time consumptions. Thus, exact calculations are limited
to the k′ most intense peaks. The remaining peaks are added in descending inten-
sity order by a greedy heuristic (see the tree completion heuristic from [20,24]).

1 https://sourceforge.net/projects/cdk/
2 http://openbabel.sourceforge.net/

https://sourceforge.net/projects/cdk/
http://openbabel.sourceforge.net/
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For solving the ILPs we use Gurobi 5.63. The experiments were run on a cluster
with four nodes each containing 2x Intel XEON 6 Cores E5645 at 2.40GHz with
48GB RAM. Each instance is started on a single core.

For computing fragmentation tree alignments, we use the sparse DP from [12]
and the scoring from [18]. Estimation of Pearson and Spearman correlation co-
efficients was done using the programming language R.

Running Time Comparison. For the evaluation of running times depending on
the number of peaks in the spectrum, we calculate the exact solution (using all
four algorithms) for the k′ most intense peaks for each molecule. Afterwards,
remaining peaks are added heuristically. For each k′, we exclude instances with
less than k′ peaks in the spectrum. For very small instances, the DP algorithms
are slightly faster than the ILPs (see Fig. 2 (left)). On moderate large instances
(e.g. k′ = 17), the ILPs clearly outperform the DP algorithms. For k′ > 20 it is
not possible to calculate fragmentation trees with the DP due to memory and
time constraints. On huge instances (k′ > 30) the ILP-MSn is slower than the
ILP-MS2.

To get an overview of differences in the running times between hard and easy
fragmentation tree computations for tandem MS and multiple MS data, we sort
the instances by their running times in increasing order. This is done separately
for the ILP-MS2 and the ILP-MSn algorithm (see Fig. 2 (right)). We find that
solving the Combined Colorful Subtree problem using the ILP-MSn is still
very fast on most instances. Further, we find that for the ILP-MSn, there is
one molecule for which the calculation of the fragmentation tree takes nearly as
much time as for the remaining 39 molecules together.

Parameter Estimation. In [24] the estimation of parameters was based on the
assumption that fragmentation trees change when using the additional scoring
of the transitive closure. Here, we want to optimize the scoring of the transitive
closure by maximizing the correlation of fragmentation tree alignment scores
and the structural similarity scores of the corresponding molecules. For three of
the 45 molecules, it was not possible to calculate fragmentation tree alignments
due to memory and time constraints. Those compounds were excluded from the
analysis.

For estimating the optimal scoring parameters σ1, σ2 and σ3 of the tran-
sitive closure, we compute exact fragmentation trees using the k′ = 20 most
intense peaks and attach the remaining peaks by the tree completion heuris-
tic. For scoring the transitive closure of the fragmentation graph, we separately
vary 0 ≤ σ1 ≤ 6, −3 ≤ σ2 ≤ 0 and −3 ≤ σ3 ≤ 0. We compute fragmenta-
tion tree alignments and analyze the resulting PubChem/Tanimmoto as well
as MACCS/Tanimoto Pearson correlation coefficients (see Fig. 3). Increasing σ1

the correlation coefficient increases and converges at approximately σ1 = 3. For
σ2 and σ3 the highest correlation is reached around −0.5. For the further evalu-
ation, we set σ1 = 3, σ2 = −0.5 and σ3 = −0.5. We find, that this result agrees

3 Gurobi Optimizer 5.6. Houston, Texas: Gurobi Optimization, Inc.
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Fig. 2. Running times for calculating fragmentation trees. Times are averaged on 10
repetitive evaluations and given in seconds. Note the logarithmic y-axis. Left: Average
running times for calculating one fragmentation tree with exact solution for the k′

most intense peaks. The remaining peaks are attached by tree completion heuristic.
Right: Total running times for instances of size k′ = 35. Again, the remaining peaks
are attached heuristically. We calculate the total running time of the x instances for
which the tree was computed faster than for any of the remaining instances. For each
algorithm, instances were sorted separately.

with the original scoring parameters from [24]. Although they were chosen ad
hoc, they seem to work very well in practice. We further find, that σ1 has a
larger effect on the correlation than σ2 and σ3 (see Fig. 3). This was expected,
as the requirement that a fragments is placed below its parent fragment is very
strong.

Further, we evaluate the effect of using more peaks for the exact fragmentation
tree computation on the correlation. We set σ1 = 3, σ2 = −0.5 and σ3 = −0.5,
and vary the number of peaks from 10 ≤ k′ ≤ 35. We find that the highest
PubChem/Tanimoto correlation coefficient r = 0.5643137 (r2 = 0.31844500) is
achieved for k′ = 21 (see Fig. 4).

Note that the DP-MSn is not able to solve problems of size k′ = 21 with
acceptable running time and memory consumption. Thus, only by help of the
ILP-MSn it is possible to compute trees with best quality.

The optimum of k′ remains relatively stable in a leave-one-out validation
experiment: For each compound, we delete the corresponding fragmentation tree
from the dataset and repeat the former analysis to determine the best k′. For 30
of the 42 sub-datasets k′ = 21 achieves the best correlation. For the remaining
11 sub-datasets k′ = 14, k′ = 20 or k′ = 25 are optimal.

Due to the small size of the dataset, it is hard to determine best parameters
without overfitting. Hence, these analyzes should not be seen as perfect param-
eter estimation, but more as a rough estimation until a bigger dataset becomes
available.

Comparison between Trees from MS2, Pseudo-MS2 and MSn Data. To evaluate
the benefit of scoring the additional information from MSn data, we compare the
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Fig. 3. Pearson correlation coefficients of PubChem/Tanimoto (left) and
MACCS/Tanimoto (right) scores with fragmentation tree alignment scores, sep-
arately varying the scoring parameters σ1, σ2 and σ3 of the transitive closure for
fragmentation tree computation. When varying σ1, we set σ2 = 0 and σ3 = 0 and vice
versa

correlation coefficients of using only the MS2 spectra, using Pseudo-MS2 data,
and using MSn data. As mentioned above, Pseudo-MS2 data means mapping all
peaks into a single spectrum and ignoring the additional information gained from
the succession of fragments in MSn, that is not scoring the transitive closure. For
fragmentation tree computation fromMS2 and Pseudo-MS2 data we use the ILP-
MS2, for MSn data we use the ILP-MSn. For a fair evaluation, we again vary the
number of peaks from 10 ≤ k′ ≤ 35 to choose the k′ with the highest correlation
coefficient. The highest Pearson correlation coefficient with PubChem/Tanimoto
fingerprints for MS2 data is r = 0.3860874 (r2 = 0.1490635) with k′ = 21 and
for Pseudo-MS2 data r = 0.5477199 (r2 = 0.2999970) with k′ = 25 (see Fig. 4).

Further, we compare the Pearson correlation coefficients between the three
datasets MS2, Pseudo-MS2 and MSn (see Table 1). We find that the benefit of
MSn data is huge in comparison to using only MS2 data, which is expected since
the MS2 spectra contain too few peaks. The question that is more intriguing is
whether scoring the transitive closure improves correlation results. Comparing
Pseudo-MS2 with MSn data, we get an increase in the coefficient of determination
r2 by up to 6.7% for PubChem fingerprints and 6.3% for MACCS fingerprints.
The results for Spearman correlation coefficients look similar. When restricting
the evaluation to large trees (at least three edges, five edges, seven edges), we
cannot observe an increase in correlation.

When fragmentation trees are used in database search the relevant accuracy
measure is not Pearson correlation, but identification accuracy. The dataset used
in this paper is small and there is only one measurement per compound. Thus
we cannot evaluate the identification accuracy. Instead we analyze the Tanimoto
scores T (h) of the first h hits with h ranging from one to the number of com-
pounds (see Fig. 5). We exclude the identical compound from the hitlist and then
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Fig. 4. Correlation and regression line for the complete datasets. Fragmentation
tree similarity (x-axis) plotted against structural similarity measured by Pub-
Chem/Tanimoto score (y-axis). (a) Fragmentation trees for MS2 data (k′ = 21). Pear-
son correlation is r = 0.386. Spearman correlation is ρ = 0.364 (b) Fragmentation trees
for Pseudo-MS2 data (k′ = 25). Pearson correlation is r = 0.548. Spearman correlation
is ρ = 0.615 (c) Fragmentation trees for MSn data (k′ = 21). Pearson correlation is
r = 0.564. Spearman correlation is ρ = 0.624.

Table 1. Pearson correlation r and coefficient of determination r2 (in brackets) of
structural similarity (PubChem/Tanimoto and MACCS/Tanimoto) with fragmenta-
tion tree similarity, for all three datasets and different minimum tree sizes (at least
one edge, three edges, five edges, seven edges). We report the number of alignments
(molecule pairs) N for each set. The subsets with different minimum tree sizes are de-
termined by the tree sizes of the MSn trees (that is, the MS2 and Pseudo-MS2 subsets
contain the same molecules).

only molecules with at least
fingerprint dataset 1 edge 3 edges 5 edges 7 edges

PubChem MS2 0.386 (0.149) 0.386 (0.149) 0.374 (0.140) 0.384 (0.147)
Pseudo-MS2 0.548 (0.300) 0.549 (0.301) 0.530 (0.281) 0.549 (0.301)
MSn 0.564 (0.318) 0.567 (0.321) 0.547 (0.299) 0.565 (0.319)

MACCS MS2 0.379 (0.143) 0.371 (0.138) 0.371 (0.138) 0.373 (0.139)
Pseudo-MS2 0.453 (0.206) 0.445 (0.198) 0.438 (0.192) 0.439 (0.193)
MSn 0.466 (0.217) 0.456 (0.210) 0.449 (0.202) 0.449 (0.201)

no. molecule
pairs N

861 820 630 561

average over the hitlists of all compounds in the dataset. We compare the results
from MS2, Pseudo-MS2 and MSn data with pseudo hitlists containing randomly
ordered compounds (minimum value, RANDOM) and compounds arranged in
descending order in accordance with the Tanimoto scores (upper limit, BEST).
There is a significant increase of average Tanimoto scores from MS2 data to MSn

data, and a slight increase from Pseudo-MS2 data to MSn data especially for
the first h = 5 compounds.
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Fig. 5. Average Tanimoto scores T (h) between query structures and the first h struc-
tures from hitlists obtained by FT alignments (MS2, Pseudo-MS2, MSn data), pseudo
hitlists containing the structures with maximum Tanimoto score to query structure
(BEST) and randomly selected pseudo hitlists (RANDOM)

6 Conclusion

In this work, we have presented an Integer Linear Program for the Combined
Colorful Subtree problem, that outperforms the Dynamic Programming
algorithm that has been presented before [24]. Solving this problem is relevant
for calculating fragmentation trees from multistage mass spectrometry data.

Quality of fragmentation trees is measured by correlation of tree alignment
scores with structural similarity scores of the corresponding compounds. Ex-
periments on a dataset with 45 compounds revealed that trees computed with
transitivity scores σ1 = 3, σ2 = −0.5 and σ3 = −0.5 achieve the best quality. The
highest correlation of r = 0.564 was achieved when computing exact fragmenta-
tion trees for the k′ = 21 most intense peaks and attaching the remaining peaks
heuristically. Using the additional information provided by multiple MS data,
the coefficient of determination r2 increases by up to 6.7% compared to trees
computed without transitivity scores. Thus, we could show for the first time that
additional information from MSn data can improve the quality of fragmentation
trees.

For the computation of those trees with highest quality (k′ = 21), our ILP
needs 1.3 s on average. In contrast, the original DP is not able to solve those
instances with acceptable running time and memory consumption. The ILP for
MSn is, however, slower than the ILP for MS2 that has been presented before [20].
This is due to the number of constraints which increases by an order of magnitude
from MS2 to MSn. White et al. [30] suggested rules to speed up computations
for the ILP on MS2 data. These rules may also improve the running time of our
algorithm.
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