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Abstract. Structural variation in genomes can be revealed by many
(dis)similarity measures. Rearrangement operations, such as the so called
double-cut-and-join (DCJ), are large-scale mutations that can create
complex changes and produce such variations in genomes. A basic task in
comparative genomics is to find the rearrangement distance between two
given genomes, i.e., the minimum number of rearragement operations
that transform one given genome into another one. In a family-based
setting, genes are grouped into gene families and efficient algorithms
were already proposed to compute the DCJ distance between two given
genomes. In this work we propose the problem of computing the DCJ
distance of two given genomes without prior gene family assignment, di-
rectly using the pairwise similarity between genes. We propose a new
family-free DCJ distance, prove that the family-free DCJ distance prob-
lem is APX-hard, and provide an integer linear program to its solution.

1 Introduction

Genomes are subject to mutations or rearrangements in the course of evolution.
Typical large-scale rearrangements change the number of chromosomes and/or
the positions and orientations of genes. Examples of such rearrangements are
inversions, translocations, fusions and fissions. A classical problem in compara-
tive genomics is to compute the rearrangement distance, that is, the minimum
number of rearrangements required to transform a given genome into another
given genome [14].

In order to study this problem, one usually adopts a high-level view of genomes,
in which only “relevant” fragments of the DNA (e.g., genes) are taken into con-
sideration. Furthermore, a pre-processing of the data is required, so that we can
compare the content of the genomes.

One popular method, adopted for more than 20 years, is to group the genes
in both genomes into gene families, so that two genes in the same family are
said to be equivalent. This setting is said to be family-based. Without gene
duplications, that is, with the additional restriction that each family occurs
exactly once in each genome, many polynomial models have been proposed to
compute the genomic distance [3,4,12,17]. However, when gene duplications are
allowed, the problem is more intrincate and all approaches proposed so far are
NP-hard, see for instance [1, 7, 8, 15, 16].
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It is not always possible to classify each gene unambiguously into a single
gene family. Due to this fact, an alternative to the family-based setting was
proposed recently and consists in studying the rearrangement distance without
prior family assignment. Instead of families, the pairwise similarity between genes
is directly used [5, 10]. This approach is said to be family-free. Although the
family-free setting seems to be at least as difficult as the family-based setting
with duplications, its complexity is still unknown for various distance models.

In this work we are interested in the problem of computing the distance of
two given genomes in a family-free setting, using the double cut and join (DCJ)
model [17]. The DCJ operation, that consists of cutting a genome in two distinct
positions and joining the four resultant open ends in a different way, represents
most of large-scale rearrangements that modify genomes. After preliminaries and
a formal definition of the family-free DCJ distance, we present in Section 4 a
hardness result, before giving a linear programming solution and showing its
feasibility for practical problem instances in Section 5. Section 6 concludes.

2 Preliminaries

Let A and B be two distinct genomes and let A be the set of genes in genome
A and B be the set of genes in genome B.

Each gene g in a genome is an oriented DNA fragment that can be repre-
sented by the symbol g itself, if it has direct orientation, or by the symbol −g,
if it has reverse orientation. Furthermore, each one of the two extremities of a
linear chromosome is called a telomere, represented by the symbol ◦. Each chro-
mosome in a genome can be represented by a string that can be circular, if the
chromosome is circular, or linear and flanked by the symbols ◦ if the chromosome
is linear. For the sake of clarity, each chromosome is also flanked by parentheses.
As an example, consider the genome A = {(◦ 3 −1 4 2 ◦), (◦ 5 −6 −7 ◦)} that is
composed of two linear chromosomes.

Since a gene g has an orientation, we can distinguish its two ends, also called
its extremities, and denote them by gt (tail) and gh (head). An adjacency in a
genome is either the extremity of a gene that is adjacent to one of its telomeres,
or a pair of consecutive gene extremities in one of its chromosomes. If we consider
again the genome A above, the adjacencies in its first chromosome are 3t, 3h1h,
1t4t, 4h2t and 2h.

2.1 Adjacency Graph and Family-Based DCJ Distance

In the family-based setting we are given two genomes A and B with the same
content, that is, A = B. When there are no duplications, that is, when each
family is represented by exactly one gene in each genome, the DCJ distance can
be easily computed with the help of the adjacency graph AG(A,B), a bipartite
multigraph such that each partition corresponds to the set of adjacencies of one
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of the two input genomes and an edge connects the same extremities of genes in
both genomes. In other words, there is a one-to-one correspondence between the
set of edges in AG(A,B) and the set of gene extremities. Vertices have degree
one or two and thus an adjacency graph is a collection of paths and cycles. An
example of an adjacency graph is given in Figure 1.

1h 1t3t 3h4t 4h2t 2h

2h 2t1t 1h4t 4h3t 3h

Fig. 1. The adjacency graph for the two unichromosomal and linear genomes A =
{(◦ −1 3 4 2 ◦)} and B = {(◦ −2 1 4 3 ◦)}

The family-based DCJ distance ddcj between two genomes A and B without
duplications can be computed in linear time and is closely related to the number
of components in the adjacency graph AG(A,B) [4]:

ddcj(A,B) = n− c− i/2 ,

where n = |A| = |B| is the number of genes in both genomes, c is the number of
cycles and i is the number of odd paths in AG(A,B).

Observe that, in Figure 1, the number of genes is n = 4 and AG(A,B) has
one cycle and two odd paths. Consequently the DCJ distance is ddcj(A,B) =
4− 1− 2/2 = 2.

The formula for ddcj(A,B) can also be derived using the following approach.
Given a component C in AG(A,B), let |C| denote the length, or number of
edges, of C. From [6,11] we know that each component in AG(A,B) contributes
independently to the DCJ distance, depending uniquely on its length. Formally,
the contribution d(C) of a component C in the total distance is given by:

d(C) =

⎧
⎪⎪⎨

⎪⎪⎩

|C|
2 − 1 , if C is a cycle ,
|C|−1

2 , if C is an odd path ,
|C|
2 , if C is an even path .

The sum of the lengths of all components in the adjacency graph is equal
to 2n. Let C, I, and P represent the sets of components in AG(A,B) that
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are cycles, odd paths and even paths, respectively. Then, the DCJ distance can
be calculated as the sum of the contributions of each component:

ddcj(A,B) =
∑

C∈AG(A,B)

d(C)

=
∑

C∈C

( |C|
2

− 1

)

+
∑

C∈I

( |C| − 1

2

)

+
∑

C∈P

( |C|
2

)

=
1

2

(
∑

C∈AG(A,B)

|C|
)

−
∑

C∈C
1−

∑

C∈I

1

2

= n− c− i/2 .

2.2 Gene Similarity Graph for the Family-Free Model

In the family-free setting, each gene in each genome is represented by a distinct
symbol, thus A∩B = ∅ and the cardinalities |A| and |B| may be distinct. Let a
be a gene in A and b be a gene in B, then their normalized similarity is given
by the value σ(a, b) that ranges in the interval [0, 1].

We can represent the similarities between the genes of genome A and the
genes of genome B with respect to σ in the so called gene similarity graph [5],
denoted by GSσ(A,B). This is a weighted bipartite graph whose partitions A
and B are the sets of genes in genomes A and B, respectively. Furthermore, for
each pair of genes (a, b), such that a ∈ A and b ∈ B, if σ(a, b) > 0 there is
an edge e connecting a and b in GSσ(A,B) whose weight is σ(e) := σ(a, b). An
example of a gene similarity graph is given in Figure 2.
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Fig. 2. A possible gene similarity graph for the two unichromosomal linear genomes
A = {(◦ 1 2 3 4 5 ◦)} and B = {(◦ 6 −7 −8 −9 10 11 ◦)}

3 Reduced Genomes and Family-Free DCJ Distance

Let A and B be two genomes and let GSσ(A,B) be their gene similarity graph.
Now letM = {e1, e2, . . . , en} be a matching in GSσ(A,B) and denote by w(M) =∑

ei∈M σ(ei) the weight of M , that is the sum of its edge weights. Since the
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endpoints of each edge ei = (a, b) inM are not saturated by any other edge ofM ,
we can unambiguously define the function s(a,M) = s(b,M) = i. The reduced
genome AM is obtained by deleting from A all genes that are not saturated by
M , and renaming each saturated gene a to s(a,M), preserving its orientation.
Similarly, the reduced genome BM is obtained by deleting from B all genes
that are not saturated by M , and renaming each saturated gene b to s(b,M),
preserving its orientation. Observe that the set of genes in AM and in BM is
G(M) = {s(g,M) : g is saturated by the matching M} = {1, 2, . . . , n}.

3.1 The Weighted Adjacency Graph of Reduced Genomes

Let AM and BM be the reduced genomes for a given matching M of GSσ(A,B).
The weighted adjacency graph of AM and BM , denoted by AGσ(A

M , BM ), is
obtained by constructing the adjacency graph of AM and BM and adding weights
to the edges as follows. For each gene i in G(M), both edges itit and ihih inherit
the weight of edge ei in M , that is, σ(itit) = σ(ihih) = σ(ei). Observe that,
for each edge e ∈ M , we have two edges of weight σ(e) in AGσ(A

M , BM ), thus
w(AGσ(A

M , BM )) = 2w(M) (the weight of AGσ(A
M , BM ) is twice the weight

of M). Examples of weighted adjacency graphs are shown in Figure 3.
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Fig. 3. Considering the same genomes A = {(◦ 1 2 3 4 5 ◦)} and B =
{(◦ 6 −7 −8 −9 10 11 ◦)} as in Figure 2, let M1 (dotted edges) and M2 (dashed
edges) be two distinct matchings in GSσ(A,B), shown in the upper part. The two re-
sulting weighted adjacency graphs AGσ(A

M1 , BM1), that has two odd paths and three
cycles, and AGσ(A

M2 , BM2), that has two odd paths and two cycles, are shown in the
lower part.
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3.2 The Weighted DCJ Distance of Reduced Genomes

Based on the weighted adjacency graph, in [5] a family-free DCJ similarity mea-
sure has been proposed. To be more consistent with the comparative genomics
literature, where distance measures are more common than similarities, here we
propose a general family-free DCJ distance. Moreover, edge weights are treated
in a way that, when all weights are equal to 1, the definition falls back to the
(unweighted) family-based DCJ distance.

To define the distance measure, we consider the components of the graph
AGσ(A

M , BM ) separately, similarly to the approach described in Section 2.1 for
the family-based model. Now, the contribution of each component C is denoted
by dσ(C) and must include not only the length |C| of the component, but also
information about the weights of the edges in C. Basically, we need a function
f(C) to use instead of |C| in the contribution function dσ(C), such that: (i)
when all edges in C have weight 1, f(C) = |C|, that is, the contribution of
C is the same as in the family-based version; (ii) when the weights decrease,
f should increase, because smaller weights mean less similarity, or increased
distance between the genomes.

The simplest linear function f that satisfies both conditions is f(C) = 2|C| −
w(C), where w(C) =

∑
e∈C σ(e) is the sum of the weights of all the edges in C.

Then, the weighted contribution dσ(C) of the different types of components is:

dσ(C) =

⎧
⎪⎪⎨

⎪⎪⎩

2|C|−w(C)
2 − 1 , if C is a cycle ,

2|C|−w(C)−1
2 , if C is an odd path ,

2|C|−w(C)
2 , if C is an even path .

Let C, I, and P represent the sets of components in AGσ(A
M , BM ) that are

cycles, odd paths and even paths, respectively. Summing the contributions of all
the components, the resulting distance for a certain matching M is computed as
follows:

dσ(A
M , BM ) =

∑

C∈AGσ(AM ,BM )

dσ(C)

=
∑

C∈C

(
2|C|−w(C)

2
− 1

)
+
∑

C∈I

(
2|C|−w(C)−1

2

)
+

∑

C∈P

(
2|C|−w(C)

2

)

=
∑

C∈AGσ(AM ,BM )

|C| − 1

2

( ∑

C∈AGσ(AM ,BM )

w(C)

)
−

∑

C∈C
1−

∑

C∈I

1

2

= 2|M | − w(AGσ(A
M , BM ))/2− c− i/2

= ddcj(A
M , BM ) + |M | − w(M) ,

since the number of genes in G(M) is equal to the size of M .
In Figure 3, matching M1 gives the weighted adjacency graph with more

components, but whose distance dσ(A
M1 , BM1) = 1+5− 2.7 = 3.3 is larger. On

the other hand, M2 gives the weighted adjacency graph with less components,
but whose distance dσ(A

M2 , BM2) = 2 + 5− 3.9 = 3.1 is smaller.
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3.3 The Family-Free DCJ Distance

Our goal in the remainder of this paper is to study the problem of computing
the family-free DCJ distance, i.e., to find a matching in GSσ(A,B) that min-
imizes dσ. First of all, it is important to observe that the behaviour of this
function does not correlate with the size of the matching. Often smaller match-
ings, that possibly discard gene assignments, lead to smaller distances. genomes
with any gene similarity graph, a trivial empty matching leads to the minimum
distance, equal to zero.

Due to this fact we restrict the distance to maximal matchings only. This
ensures that no pairs of genes with positive similarity score are simply discarded,
even though they might increase the overall distance. Hence we have the following
optimization problem:

Problem ffdcj-distance(A,B): Given genomes A and B and their
gene similarities σ, calculate their family-free DCJ distance

dffdcj(A,B) = min
M∈M

{dσ(AM , BM )} ,

where M is the set of all maximal matchings in GSσ(A,B).

4 Complexity of the Family-Free DCJ Distance

In order to assess the complexity of ffdcj-distance, we use a restricted version
of the family-based exemplar DCJ distance problem [8, 15]:

Problem. (s, t)-exdcj-distance(A,B): Given genomesA and B, where
each family occurs at most s times in A and at most t times in B, obtain
exemplar genomes A′ and B′ by removing all but one copy of each family
in each genome, so that the DCJ distance ddcj(A

′, B′) is minimized.

We establish the computational complexity of the ffdcj-distance problem
by means of a polynomial time and approximation preserving (AP-) reduction
from the problem (1, 2)-exdcj-distance, which is NP-hard [8]. Note that the
authors of [8] only consider unichromosomal genomes, but the reduction can
be extended to multichromosomal genomes, since an algorithm that solves the
multichromosomal case also solves the unichromosomal case.

Theorem 1. Problem ffdcj-distance(A,B) is APX-hard, even if the maxi-
mum degrees in the two partitions of GSσ(A,B) are respectively one and two.

Proof. Using notation from [2] (Chapter 8), we give an AP-reduction (f, g, β)
from (1, 2)-exdcj-distance to ffdcj-distance as follows:

Algorithm f receives as input a positive rational number δ and an instance
(A,B) of (1, 2)-exdcj-distance where A and B are genomes from a set of genes
G and each gene in G occurs at most once in A and at most twice in B, and
constructs an instance (A′, B′) = f(δ, (A,B)) of ffdcj-distance as follows.
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Let the genes of A be denoted a1, a2, . . . , a|A| and the genes of B be denoted
b1, b2, . . . , b|B|. Then A′ and B′ are copies of A and B, respectively, except that
symbol ai in A′ is relabeled by i, keeping its orientation, and bj in B′ is relabeled
by j + |A|, also keeping its orientation. Furthermore, the similarity σ for genes
in A′ and B′ is defined as σ(i, k) = 1 for i in A′ and k in B′, such that ai is in
A, bj is in B, ai and bj are in the same gene family, and k = j + |A|. Otherwise,
σ(i, k) = 0. Figure 4 gives an example of a GSσ(A

′, B′) for this construction.

1 2 −3 4

−5 6 7 8 9 −10

Fig. 4. Gene similarity graph GSσ(A
′, B′) constructed from the input genomes A =

{(◦ a c −b d ◦)} and B = {(◦ −c d a c b −b ◦)} of (1, 2)-exdcj-distance, where all
edge weights are 1. Highlighted edges represent a maximal matching in GSσ(A

′, B′).

Algorithm g receives as input a positive rational number δ, an instance (A,B)
of (1, 2)-exdcj-distance and a solution M ′ of ffdcj-distance, and trans-
forms M ′ into a solution (Ax, Bx) of (1, 2)-exdcj-distance. This is a sim-
ple construction: for each edge (i, k) in M ′ we add symbols ai to Ax and bj
to Bx, where j = k − |A|. For the example of Figure 4, a matching M ′ =
{(1, 7), (2, 8), (−3,−10), (4, 6)}, which is a solution to ffdcj-distance(A′, B′),
is transformed by g into the genomesAx = {(◦ a1 a2 a3 a4 ◦)} = {(◦ a c −b d ◦)}
and Bx = {(◦ b2 b3 b4 b6 ◦)} = {(◦ d a c −b ◦)}, which is a solution to (1, 2)-
exdcj-distance(A,B).

Notice that for any positive rational number δ, functions f and g are poly-
nomial time algorithms on the size of their respective instances. Let Ax := A
and let Bx be an exemplar genome of B, such that (Ax, Bx) = g(δ, (A,B),M ′).
Denote by cAG and iAG the number of cycles and odd paths in AG(Ax, Bx),
and by cAGσ and iAGσ the number of cycles and odd paths in AGσ(A

M ′
, BM ′

).
Observe that we have |Ax|= |Bx|= |M ′|, cAG=cAGσ , iAG= iAGσ , and thus

dσ(A
′, B′) = 2|M ′| − w(M ′)− cAGσ − iAGσ/2

= |Ax| − cAG − iAG/2

= d(Ax, Bx) ,

that is, opt(ffdcj-distance(A′, B′)) = opt((1, 2)-exdcj-distance(A,B)) .
Therefore, dσ(A

′, B′) ≤ (1+δ) opt((1,2)-exdcj-distance(A,B)) for any pos-
itive δ, and the last condition for the AP-reduction holds by setting β := 1:

d(Ax, Bx) ≤ (1 + βδ) opt((1, 2)-exdcj-distance(A,B)) .

��
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Corollary 2. There exists no polynomial-time algorithm for ffdcj-distance
with approximation factor better than 1237/1236, unless P = NP.

Proof. As shown in [8], (1, 2)-exdcj-distance is NP-hard to approximate within
a factor of 1237/1236− ε for any ε > 0. Therefore, the result follows immediately
from [8] and from the AP-reduction in the proof of Theorem 1. ��

Since the weight plays an important role in dσ, a matching with maximum
weight, that is obviously maximal, could be a candidate for the design of an ap-
proximation algorithm for ffdcj-distance. However, we can demonstrate that
it is not possible to obtain such an approximation, with the following example.

Consider an integer k ≥ 1 and let A = {(◦ 1 −2 · · · (2k−1) −2k ◦)} and
B = {(◦ −(2k+1) (2k+2) · · · −(2k+2k−1) (2k+2k) ◦)} be two unichromosomal
linear genomes. Observe that A and B have an even number of genes with
alternating orientation. While A starts with a gene in direct orientation, B starts
with a gene in reverse orientation. Now let σ be the normalized similarity measure
between the genes of A and B, defined as follows:

σ(i, j) =

⎧
⎨

⎩

1, for each i ∈ {1, 2, . . . , 2k} and j=2k+i ;
1−ε, for each i ∈ {1, 3, . . . , 2k−1} and j=2k+i+1,with ε ∈ [0, 1);
0, otherwise.

Figure 5 shows GSσ(A,B) for k = 3 and σ as defined above.

1 −2 3 −4 5 −6

−7 8 −9 10 −11 12

1 1 1 1 1 1
1−ε 1−ε 1−ε

Fig. 5. Gene similarity graph GSσ(A,B) for k = 3

There are several matchings in GSσ(A,B). We are interested in two particular
maximal matchings:

– M∗ is composed of all edges that have weight 1− ε. It has weight w(M∗) =
(1−ε)|M∗|. Its corresponding weighted adjacency graphAGσ(A

M∗
, BM∗

) has
|M∗| − 1 cycles and two odd paths, thus ddcj(A

M∗
, BM∗

) = 0. Consequently,
we have dσ(A

M∗
, BM∗

) = |M∗| − (1− ε)|M∗| = ε|M∗|.
– M is composed of all edges that have weight 1. It is the only matching with

the maximum weight w(M) = |M |. Its corresponding weighted adjacency
graph AGσ(A

M , BM ) has two even paths, but no cycles or odd paths, giving
ddcj(A

M , BM ) = |M |. Hence, dσ(AM , BM ) = 2|M | − |M | = |M |.
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Notice that dffdcj(A,B) ≤ dσ(A
M∗

, BM∗
). Furthermore, since |M | = 2|M∗|,

dσ(A
M , BM )

dσ(AM∗ , BM∗)
=

|M |
ε|M∗| =

2

ε

and 2/ε → +∞ when ε → 0.
This shows that, for any genomes A and B, a matching of maximum weight

in GSσ(A,B) can have dσ arbitrarily far from the optimal solution and cannot
give an approximation for ffdcj-distance(A,B).

5 ILP to Compute the Family-Free DCJ Distance

We propose an integer linear program (ILP) formulation to compute the family-
free DCJ distance between two given genomes. This formulation is a slightly
different version of the ILP for the maximum cycle decomposition problem given
by Shao et al. [16] to compute the DCJ distance between two given genomes with
duplicate genes. Besides the cycle decomposition in a graph, as was made in [16],
we also have to take into account maximal matchings in the gene similarity graph
and their weights.

Let A and B be two genomes with extremity sets XA and XB, respectively,
and let G = GSσ(A,B) be their gene similarity graph. The weight w(e) of an
edge e in G is also denoted by we. Let M be a maximal matching in G. For the
ILP formulation, a weighted adjacency graph H = AGσ(A

M , BM ) is such that
V (H) = XA ∪XB and E(H) has three types of edges: (i) matching edges that
connect two extremities in different extremity sets, one in XA and the other in
XB, if there exists one edge inM connecting these genes inG; the set of matching
edges is denoted by Em; (ii) adjacency edges that connect two extremities in
the same extremity set if they are an adjacency; the set of adjacency edges is
denoted by Ea; and (iii) self edges that connect two extremities of the same gene
in an extremity set; the set of self edges is denoted by Es. All edges in H are in
Em ∪Ea ∪Es = E(H). Matching edges have weights defined by the normalized
similarity σ, all adjacency edges have weight 1, and all self edges have weight 0.
Notice that any edge in G corresponds to two matching edges in H .

Now we describe the ILP. For each edge e in H , we create the binary variable
xe to indicate whether e will be in the final solution. We require first that each
adjacency edge be chosen:

xe = 1 , ∀ e ∈ Ea .

We require then that, for each vertex in H , exactly one incident edge to it be
chosen:

∑

uv∈Em∪Es

xuv = 1 , ∀ u ∈ XA , and
∑

uv∈Em∪Es

xuv = 1 , ∀ v ∈ XB .
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Then, we require that the final solution be consistent, meaning that if one
extremity of a gene in A is assigned to an extremity of a gene in B, then the
other extremities of these two genes have to be assigned as well:

xahbh = xatbt , ∀ ab ∈ E(G) .

We also require that the matching be maximal. It can be easily ensured if
we garantee that at least one of the vertices connected by an edge in the gene
similarity graph be chosen, which is equivalent to not allowing both of the cor-
responding self edges in the weighted adjacency graph be chosen:

xahat + xbhbt ≤ 1 , ∀ ab ∈ E(G) .

To count the number of cycles, we use the same strategy as described in [16].
We first give an arbitrary index for each vertex in H such that V (H) = {v1, v2,
. . . , vk} with k = |V (H)|. For each vertex vi, we define a variable yi that labels
vi such that

0 ≤ yi ≤ i , 1 ≤ i ≤ k .

We also require that all vertices in the same cycle in the solution have the same
label:

yi ≤ yj + i · (1 − xe) , ∀ e = vivj ∈ E(H) ,

yj ≤ yi + j · (1 − xe) , ∀ e = vivj ∈ E(H) .

And we create a binary variable zi, for each vertex vi, to verify whether yi is
equal to its upper bound i:

i · zi ≤ yi , 1 ≤ i ≤ k .

Notice that the way as variables zi were defined, they count the number of cycles
in H [16].

Finally, we set the objective function as follows:

minimize 2
∑

e∈Em

xe −
∑

e∈Em

wexe −
∑

1≤i≤k

zi ,

which is exactly the family-free DCJ distance dffdcj(A,B) as defined in Section 3.

We performed some initial simulated experiments of our integer linear pro-
gram formulation. We produced some datasets using the Artificial Life Simulator
(ALF) [9]. Genome sizes varied from 1000 to 3000 genes, where the gene lengths
were generated according to a gamma distribution with shape parameter k = 3
and scale parameter θ = 133. A birth-death tree with 10 leaves was generated,
with PAM distance of 100 from the root to the deepest leaf. For the amino
acid evolution, the WAG substitution model with default parameters was used,
with Zipfian indels at a rate of 0.000005. For structural evolution, gene dupli-
cations and gene losses were applied with a 0.001 rate, with a 0.0025 rate for
reversals and translocations. To test different ration of rearrangement events, we
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also simulated datasets where the structural evolution ratios had a 2- and 5-fold
increase.

To solve the ILPs, we ran the CPLEX Optimizer1 on the 45 pairwise compar-
isons of each simulated dataset. All simulations were run in parallel on a cluster
consisting of machines with an Intel(R) Xeon(R) E7540 CPU, with 48 cores and
as many as 2 TB of memory, but for each individual CPLEX run only 4 cores
and 2 GB of memory were allocated. The results are summarized on Table 1.

Table 1. ILP results for datasets with different genome sizes and evolutionary rates.
Each dataset has 10 genomes, totalling 45 pairwise comparisons. Maximum running
time was set to 20 minutes. For each dataset, it is shown the number of runs that found
an optimal solution in time and their average running time. For the runs that did not
finish, the last row shows the gap between the upper bound and the current solution.
Rate r = 1 means the default rate for ALF evolution, and r = 2 and r = 5 mean 2-fold
and 5-fold increase for the gene duplication, gene deletion and rearrangement rates.

1000 genes 2000 genes 3000 genes

r = 1 r = 2 r = 5 r = 1 r = 2 r = 5 r = 1 r = 2 r = 5

Finished 45/45 22/45 6/45 45/45 9/45 1/45 45/45 7/45 3/45

Avg. Time (s) 0.66 11.09 24.26 1.29 2.76 16.97 2.24 16.36 36.01

Avg. Gap (%) 0 1.08 3.9 0 1.93 12.4 0 3.9 6.03

6 Conclusion

In this paper, we have defined a new distance measure for two genomes that is
motivated by the double cut and join model, while not relying on gene annota-
tions in form of gene families. In case gene families are known and each family
has exactly one member in each of the two genomes, the distance equals the
family-based DCJ distance and thus can be computed in linear time. In the gen-
eral case, however, it is NP-hard and even hard to approximate. Nevertheless, we
could give an integer linear program for the exact computation of the distance
that is fast enough to be applied to realistic problem instances.

The family-free model has many potentials when gene family assignments are
not available or ambiguous, in fact it can even be used to improve family assign-
ments [13]. The work presented in this paper is another step in this direction.
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