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Abstract. The degree of predictability of a sequence can be measured
by its entropy and it is closely related to its repetitiveness and com-
pressibility. Entropic profiles are useful tools to study the under- and
over-representation of subsequences, providing also information about
the scale of each conserved DNA region. On the other hand, compact
classes of repetitive motifs, such as maximal motifs, have been proved
to be useful for the identification of significant repetitions and for the
compression of biological sequences. In this paper we show that there is
a relationship between entropic profiles and maximal motifs, and in par-
ticular we prove that the former are a subset of the latter. As a further
contribution we propose a novel linear time linear space algorithm to
compute the function Entropic Profile introduced by Vinga and Almeida
in [18], and we present some preliminary results on real data, showing
the speed up of our approach with respect to other existing techniques.

1 Introduction

Sequence data is growing in volume with the availability of more and more pre-
cise, as well as accessible, assaying technologies. Patterns in biological sequences
is central to making sense of this exploding data space, and its study continues to
be a problem of vital interest. Natural notions of maximality and irredundancy
have been introduced and studied in literature in order to limit the number of
output patterns without losing information [3, 4, 6, 10, 11, 14–17]. Such notions
are related to both the length and the occurrences of the patterns in the input
sequence. Maximal patterns have been successfully applied to the identification
of biologically significant repetitions, and compressibility of biological sequences,
to list a few areas of use.

Different flavors of patterns, based either on combinatorics or statistics, can
usually be shown to be a variation on this basic concept of maximal patterns. In
particular, it is well known that the degree of predictability of a sequence can be
measured by its entropy and, at the same time, it is also closely related with its
repetitiveness and compressibility [9]. Entropic profile was introduced [7, 8, 18]
to study the under- and over-representation of segments, and also the scale of
each conserved DNA region.
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Due to the fundamental nature of maximality, a natural question arises about
a possible relationship between maximal patterns and entropic profiles. We ex-
plore this question in the paper and show that entropic profiles are indeed a
subset of maximal patterns. Based on this inshight, we improve the running
time of the detection of entropic profiles by proposing an efficient algorithm to
extract entropic profiles in O(n) time and space. The algorithm exploits well
known properties of the suffix tree to group together the subwords that are
needed to compute the entropy for a specific position and for the input sequence
as a whole.

Finally, we present an experimental validation of the proposed algorithm per-
formed on the whole genome of Haemophilus influenzae, showing that our ap-
proach outperforms the other existing techniques in terms of time performance.

The manuscript is organized as follows. In the next section we recall some
basic notions about DNA sequence entropic profiles and maximal motifs, while
in the next section we show the relationship occurring between them. Section 4
presents our linear time linear space algorithms, and some preliminary experi-
mental comparisons are discussed in Section 5. The paper ends with a summary
of results and some further considerations.

2 Background

Let x = x1 . . . xn be a string defined over an alphabet Σ. We denote by xi . . . xj

the subword of x starting at position i and ending at position j > i, and by
c([i, j]) the number of occurrences of xi . . . xj in x.

2.1 Maximal Motifs

Among all the candidate over-represented subwords of an input string, those
presenting special properties of maximal saturation have been proved to be a
special compact class of motifs with high informative content, and they have
been shown to be computable in linear time [12]. We next recall some basic
definitions.

Definition 1. (Left-maximal motif) The subword x′ = xi . . . xj of x is a left-
maximal motif if it does not extist any other subword x′′ = xi−h . . . xj (0 < h ≤ i)
such that c([i, j]) = c([i − h, j]).

Definition 2. (Right-maximal motif) The subword x′ = xi . . . xj of x is a right-
maximal motif if there exist no subword x′′′ = xi . . . xj+k (0 < k < n− j) such
that c([i, j]) = c([i, j + k]).

Definition 3. (Maximal motif) The subword x′ is a maximal subword if it is
both left- and right- maximal.

Maximal motifs are those subwords of the input string which cannot be ex-
tended at the left or at the right without loosing at least one of their occurrences.
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2.2 Entropic Profiles

Entropic profiles may be estimated according to different entropy formulations.
The definitions on entropic profiles recalled here are taken from the seminal
papers [7, 8, 18], where the Rényi entropy of probability density estimation and
the Parzen’s window method applied to Chaos Game Representation/Universal
Sequence Maps are exploited.

Let L be the chosen length resolution and φ be a smoothing parameter.

Definition 4. (Main EP function) The main EP function is given by:

f̂L,φ(xi) =
1 + 1

n

∑L
k=1 4

kφk · c([i− k + 1, i])
∑L

k=0 φ
k

Definition 5. (Normalized EP) Let mL,φ be the mean and SL,φ be the standard
deviation using all positions i = 1 . . . n. The normalized EP is:

EPL,φ(xi) =
f̂L,φ(xi)−mL,φ

SL,φ

where:

mL,φ =
1

n

n∑

i=1

f̂L,φ(xi) and SL,φ =

√
√
√
√ 1

n− 1

n∑

i=1

(f̂L,φ(xi)−mL,φ)2

The main entropy function f̂ is shown to be computable in linear time in [5].
In that work, however, the normalized entropy as defined in the original papers
is not considered. A different normalization is defined instead:

FastEPL,φ =
fL,φ(i)

max0≤j<n[fL,φ(j)]

3 Entropic Profiles vs Maximal Motifs

We now discuss the relationship between entropic profiles and maximal motifs.
The following theorem holds.

Theorem 1. The entropic profiles scoring maximum values of the main EP
function f̂ are left-maximal motifs of the input string.

Proof. Let i be a generic position of the input string and L′ be the length of
the subword x′ starting at i − L′ + 1 and ending at i, such that x′ scores the
maximum value of entropy at the position i. Then the following inequalities hold,
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with respect to the two subwords x′′ and x′′′ of length L′ +1 and L′ − 1, ending
at i and starting at i− L′ and at i− L′ + 2, respectively:

⎧
⎪⎨

⎪⎩

n+
∑L′

k=1 4kφkc([i−k+1,i])
∑

L′
k=0 φk

≥ n+
∑L′+1

k=1
4kφkc([i−k+1,i])

∑L′+1
k=0 φk

n+
∑L′

k=1 4kφkc([i−k+1,i])
∑

L′
k=0 φk

≥ n+
∑L′−1

k=1 4kφkc([i−k+1,i])
∑L′−1

k=0 φk

As shown in the Appendix, the two inequalities above can be rewritten as:

⎧
⎪⎨

⎪⎩

n+
∑L′

k=1 4kφkc([i−k+1,i])
∑

L′
k=0 φk

≥ 4L
′+1φL′+1c([i−L′,i])

φL′+1

n+
∑L′−1

k=1 4kφkc([i−k+1,i])
∑L′−1

k=0
φk

≤ 4L
′
φL′

c([i−L′+1,i])

φL′

leading to the following relation between the number of occurrences of x′ and
x′′:

c([i− L′ + 1]) ≥ 4 c([i− L′, i]).

Let us now suppose that x′ is not left-maximal. From Definition 3, it follows
that all the occurrences of x′ should be covered from another subword x′′ extend-
ing x′ at the left of at least one character. This would mean that c([i− L′ + 1])
should be equal to c([i− L′, i]), that is, a contraddiction. ��

Note that not necessarily a left-maximal motif corresponds to a peak of en-
tropy, as shown by the following example.

Example 1. Let φ = 10 and consider the following input string:

0 1 2 3 4 5 6 7 8 9 10 11
T C A A C G G C G G C T

We wonder if the maximal motif CGGC, ending at positions 7 and 10, corre-
sponds to a peak of entropy at one of those positions. We have that f̂3,10(7) =

9.85, f̂4,10(7) = 39.38 and f̂4,10(7) = 76.8, therefore CGGC has not a peak of f̂
at that position. The same values occur for the position i = 10.

4 Methods

In this section the available algorithms to compute entropic profiles are discussed,
and faster algorithms for entropic profiles computation and normalization are
presented. We recall that we want to analyze an input string x of length n by
means of entropic profiles of resolution L and for a fixed φ.
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4.1 Existing Algorithms

There are two algorithms available in literature that compute entropic profiles.
The algorithm described in [8] is a faster version of the original algorithm

proposed by Fernandes et al. [7]. It relies on a truncated suffix trie data structure,
which is quadratic both in time and space occupation, enhanced with a list of
side links that connect all the nodes at the same depth in the tree. This is needed
to speed up the normalization because, in the formulas used to compute mean
and standard deviation [7], the counting of subwords of the same length is a
routine operation. With this approach the maximum value of L had to be set to
15.

The other method, presented in [5], uses a suffix tree on the reverse string to
obtain linear time and space computation of the absolute values of entropy for
some paramethers L and φ. These values are then normalized with respect to the
maximum value of entropy among all the substrings of length L. To obtain the
maximum value maxL, in correspondence of a given L, all values maxl, where
1 ≤ l < L, are needed. The algorithm has a worst case complexity O(n2), but
being guided by a branch-and-cut technique in practice substantial savings are
possible.

A key property of both suffix tries and suffix tree [12] is that, once the data
structure is built on a text string x, the occurrences of a pattern y = y1 . . . ym
in x can be found by following the path labelled with y1 . . . ym from the root
of the tree. If such a path exists, the occurrences are given by the indexes of
the leaves of the subtree rooted at the node in which the path ends. Moreover,
being the suffix tree a compact version of a suffix trie, we have for it the further
property that all the strings corresponding to paths that end in the “middle” of
an arc between two nodes share the same set of occurrences. Figure 1 shows an
example of trie and suffix tree.

4.2 Preprocessing

For the computation of the values needed to obtain both the absolute and the
normalized values of entropy, we perform the same preprocessing procedure de-
scribed in [5]. We recall here the main steps as we will need the annotated suffix
tree for the subsequent description of the speed up to compute the mean and
the standard deviation.

Consider the suffix tree T built on the reverse of the input string x. In such
a tree, strings that are described from paths ending at the same locus share the
same set of ending positions in the original input string. Hence, they are exactly
the strings we need to consider when computing the values of entropy. Some care
needs to be taken to map the actual positions during the computation, but this
will not affect the time complexity. Therefore, in the following discussion we will
just refer to the standard association between strings and positions in a suffix
tree, keeping in mind they are actually reversed.
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Fig. 1. A suffix trie (left) and a suffix tree (right) built on the same string x =
ATTACAC$. The leaves correspond to positions in x. The internal nodes in the suffix
tree hold the number of occurrences of the strings that have the node as a locus.

The main observation in [5] is that in the reverse tree the absolute value of
the EP function for n− i is equal to:

fL,φ(xi) =
1 + 1

n

∑L
k=1 4

kφk · c([i, i+ k − 1])
∑L

k=0 φ
k

In the suffix tree T each node v is annotated with a variable count(v) which
stores the number of occurrences of the subwordw(v), given by the concatenation
of labels from the root to the node v. This can be done in linear time with a
bottom-up traversal by setting up the value of the leaves to 1, and the value of
the internal nodes to the sum of the values of their children.

Each node v is also annotated with the value of the main summation in the
entropy formula. Let i be the position at which occurs the string w(v):

main(v) =

L∑

k=1

4kφk · c([i, i+ k − 1])

Note that once this value is available the absolute value of entropy for w(v)
can be computed in constant time:

1 + 1
nmain(v)(1− φ)

1− φL+1

Now let h(v) be the length of w(v) and parent(v) be the parent node of v. The
annotation takes linear time with a pre-order traversal of the tree that passes
the contribution of shorter prefixes to the following nodes in the path:

main(v) = main(parent(v)) +

h(v)∑

k=h(parent(v))+1

(4φ)kcount(v)
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When main(parent(v)) is known, the value of main(v) can be computed in
constant time, since count(v) does not depend on k:

main(v) = main(parent(v)) + count(v)
(4φ)h(parent(v))+1 − (4φ)h(v)+1

1− 4φ

4.3 Efficient Computation of Entropy and Normalizing Factors

Once the annotation is complete, one can retrieve the entropy for a substring
x[i, i + L − 1] by following the path of length L from the root. If it ends at a
node v the value of main(v) is retrieved, and the absolute value of entropy is
computed, otherwise the additional factor:

L∑

k=h(parent(v))+1

(4φ)kcount(v) = count(v)
(4φ)h(parent(v))+1 − (4φ)L+1

1− 4φ

needs to be added to main(parent(v)).
In [5] each string of length L starting at each position one wants to analyze is

searched for in the suffix tree, and the value of entropy is computed as described
above (and normalized according to the maximum value of entropy for length
L). In discovery frameworks, where no information about the motif position is
known in advance, and there are potentially as many positions to analyze as the
length of the input string, this might not be the fastest solution.

On the other hand, by exploting well known properties of the suffix tree
[12] it is possible to propose a different approach that is as simple as powerful,
and allowed us to obtain linear time and space algorithms not only for the
computation of the absolute value of entropy, but also for its normalization
through mean and standard deviation.

Absolute Value of Entropy. We can collect the absolute value of entropy for
all positions in the input string with a simple traversal of the tree at depth L
(in terms of length of strings that labels the paths). The steps to follow when
computing the entropy once we reach the last node of the path are the same
we already described for computing the entropy of a given substring. Differently
from before, when we reach the last node of a path we also store the value
of entropy in an array of size n (or any other suitable data structure) at the
positions corresponding to the leaves of the subtree rooted at the node, which
are the occurrences of the string that labels the path.

Moreover, as a byside product of this traversal, we can also collect information
to compute the mean and the standard deviation in linear time.

The Mean. Consider the mean first. We need to sum up the values of entropy
over all possible substrings of length L in the input string. Indeed we can re-write
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the formula considering the contribution of all different subwords of length L.
Let w be one of such subwords, fL,φ(w) be the corresponding entropy, vw be its
locus and DL be the set containg all the different subwords of length L in x.
The mean can be rewritten as:

mL,φ =
1

n

n∑

i=1

f̂(xi) =
1

n

∑

w∈DL

count(vw)× f̂L,φ(w)

Therefore, when traversing the tree, we also keep a variable in which we add
the value of entropies found at length L, multiplied by the value of count(·)
stored at their locus.

The Standard Deviation. The standard deviation can be rewritten as:

SL,φ =

√
√
√
√ 1

n− 1

n∑

i=1

(f̂L,φ(xi)−mL,φ)2 =

√
√
√
√ 1

n− 1

(
n∑

i=1

(f̂2
L,φ(xi))− nm2

L,φ

)

Again we aggregate the contribution coming from the same subwords, so that∑n
i=1 f̂

2
L,φ(xi) becomes:

∑

w∈DL

(count(vw)× f̂2
L,φ(w))

To compute this sum, when traversing the tree we keep a variable in which
we add the square of the entropies we compute at length L, multiplied by the
value of count(·) stored at their locus.

Once the above summation and the mean have been computed with a single
traversal at depth L of our tree, we have all the elements needed to compute the
standard deviation in constant time.

The Maximum. As a side observation, one can also note as, in terms of asyn-
totic complexity, the maximum value of entropy can also be retrieved in linear
time with a tree traversal without need to compute the value of maxl, 1 ≤ l < L.

4.4 Practical Considerations

We described our algorithms in terms of suffix tree, but we do not really need
the entire tree. A truncated suffix tree [2, 13], with a truncation factor equal to
the maximum L one is willing to investigate, would be sufficient. Alternatively,
an enhanced suffix array [1] allowing a traversal of the virtual LCP tree could
also be used.

Note also that if we keep track of the frontier at depth L, i.e., the last nodes
of the paths we visit when traversing the tree to compute fL,φ, we can compute
the entropic profiles for longer L without starting from the root. Indeed, even in
the case we have to start from the root, the preprocessing step does not need to
be repeated.
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5 Experimental Analysis

In this section we present the results of the experimental analysis we performed
on the whole genome of Haemophilus influenzae, which is one of the most ex-
tensively analyzed in this context. For all the considered methods, the time
performance evaluations we show do not include the preprocessing step, i.e., the
construction of the exploited data structures (suffix trees or suffix tries), whereas
the time needed to annotate the tree is always included. All the tests were run
on a laptop with a 3.06GHz Core 2 Duo and 8Gb of Ram.

Figure 2 shows a comparison among the original EP function computation
by Vinga et al [18] (denoted by EP in the following), FastEP by Comin and
Antonello [5] and our approach, that is, LinearEP. In particular, the running
times in milliseconds are shown for φ = 10, L = 10 and increasing values of n.
As it is clear from the figure, LinearEP outperfomes the other two methods,
thus confirming the theoretic results.
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Fig. 2. Comparison among EP, FastEP and LinearEP (φ = 10, L = 10) for increas-
ing values of n. Total running time includes the computation of the normalizing factors,
and the normalized EP values for the whole sequence.

We recall that both EP and LinearEP compute the normalized EP func-
tion according to the same formulation, that is, with respect to the mean and
standard deviation (for a fixed lenght L), whereas FastEP computes a different
normalization with respect to the maximum value of the main EP function. We
then performed also a direct comparison between EP and LinearEP for the
computation of mean and standard deviation. Figure 3 shows that, except for
n = 1,000, LinearEP is faster than EP in such a computation (however, the
total time is lower for LinearEP also for n = 1,000, as shown in Figure 2).

We finally compared EP and LinearEP on a window of lenght 1,000, for
L varying between 3 and 15. Note that 15 is a technical limit imposed by the
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Fig. 3. Comparison between EP and LinearEP for the computation of mean and
standard deviation

software of EP. We do not have such limitation. Indeed we tested our algorithm
till L = 100 obtaining results close to those for L = 15. Figure 4 shows the
results for the time needed to compute the mean and the standard deviation.
The first observation is that, in both cases, the performances ofEP do not change
significantly for increasing values of L, whereas the running times of LinearEP
sensibly increase for increasing values of L. This is due to the fact that n is fixed
and L varies. To compute mean and standard deviation LinearEP traverses a
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Fig. 4. Computation of mean and standard deviation for EP and LinearEP (L ∈
[3, 15])
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portion of the tree that is dependent on L, while EP computation of mean and
standard deviation is mainly dependent on the sequence length, that is fixed.
The running times of LinearEP are from three magnitude order to three times
faster than those of EP.

For sake of completeness of the presented results, we add some details about
the preprocessing steps performed by each of the considered software tools. In
particular, both our prototype and the software of [5] build a full suffix tree
although they do not need it in principle. Moreover, the algorithm of [18] is
implemented in C, while the others are implemented in Java. The efficiency of
our linear algorithm for the extraction of entropic profiles overcomes the known
gap between these two languages, but this does not hold for the suffix tree
construction. Indeed, building the suffix trie needed to run EP took around 2.7
seconds, while building the full suffix tree, for both other software tools, took
around 12 seconds.

6 Concluding Remarks

The research proposed here includes two main contributions. The first contri-
bution is the study of possible relationships between two classes of motifs an-
alyzed in the literature and both effective in singling out significant biological
repetitions, that are, entropic profiles and maximal motifs. We proved that en-
tropic profiles are a subset of maximal motifs, and, in particular, that they are
left-maximal motifs of the input string. The second contribution of the present
manuscript is the proposal of a novel linear time linear space algorithm for the
extraction of entropic profiles, according to the original normalization reported
in [7]. Experimental validations confirmed that the algorithm proposed here is
faster than the others in the literature, including a recent approach where a
different normalization was introduced [5].

From these contributions interesting considerations emerge. First of all, we
observe that entropic profiles are related to a specific length which one can only
guess when doing de novo discovery. So one could think of extracting maximal
motifs first, and then investigate entropic profiles in the regions of the maximal
motifs and for values of L around the maximal reported length. The process
of discovery of the entropic profiles would be further improved then. Other im-
provements in the entropic profiles extraction could come from the exploitation
of more efficient data structures such as enhanced suffix arrays [1]. In this regard,
we note that the preprocessing step can also be speeded since, as already pointed
out in the previous section, a full suffix tree is not necessary for the computa-
tion. Finally, open challenges still remain open about further issues concerning
maximal motifs and entropic profiles. Notably among them, one may wonder if
entropic profiles do not recover the complete information, so maximal motifs are
more reliable when it comes to discovery problems or if, on the contrary, entropic
profiles cover the complete information, i.e., they are a refinement of maximal
motifs and should be preferred.
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Appendix

Let us start from the following two inequalities:

⎧
⎪⎨

⎪⎩

N+
∑L′

k=1 4kφkc([i−k+1,i])
∑L′

k=0 φk
≥ N+

∑L′+1
k=1 4kφkc([i−k+1,i])

∑L′+1
k=0 φk

N+
∑L′

k=1 4kφkc([i−k+1,i])
∑L′

k=0 φk
≥ N+

∑L′−1
k=1 4kφkc([i−k+1,i])

∑L′−1
k=0 φk

from which:

⎧
⎪⎨

⎪⎩

N+
∑L′

k=1 4kφkc([i−k+1,i])
∑L′

k=0 φk
≥ N+

∑L′
k=1 4kφkc([i−k+1,i])+4L

′+1φL′+1c([i−L′,i])
∑L′

k=0 φk+φL′+1

N+
∑L′−1

k=1 4kφkc([i−k+1,i])+4L
′
φL′

c([i−L′+1,i])
∑L′−1

k=0 φk+φL′ ≥ N+
∑L′−1

k=1 4kφkc([i−k+1,i])
∑L′−1

k=0 φk

Let us consider A = N +
∑L′

k=1 4
kφkc([i − k + 1, i]), B =

∑L′

k=0 φ
k, C =

4L
′+1φL′+1c([i − L′, i]), D = φL′+1; A′ = N +

∑L′−1
k=1 4kφkc([i − k + 1, i]),

B′ =
∑L′−1

k=0 φk, C′ = 4L
′
φL′

c([i − L′ + 1, i]) and D′ = φL′
. Then:

{
A
B ≥ A+C

B+D =⇒ A
B ≥ C

D
A′+C′
B′+D′ ≥ A′

B′ =⇒ A′
B′ ≤ C′

D′

The two inequalities above can be then rewritten as:

⎧
⎪⎨

⎪⎩

N+
∑L′

k=1 4kφkc([i−k+1,i])
∑

L′
k=0 φk

≥ 4L
′+1φL′+1c([i−L′,i])

φL′+1

N+
∑L′−1

k=1 4kφkc([i−k+1,i])
∑L′−1

k=0 φk
≤ 4L

′
φL′

c([i−L′+1,i])

φL′

⎧
⎪⎪⎨

⎪⎪⎩

N +
∑L′−1

k=1
4kφkc([i− k + 1, i]) ≥

∑L′
k=0

φk

φL′+1
4L

′+1φL′+1c([i− L′, i]) − 4L
′
φL′

c([i− L′ + 1, i])

N +
∑L′−1

k=1
4kφkc([i− k + 1, i]) ≤

∑L′−1
k=0

φk

φL′ 4L
′
φL′

c([i− L′ + 1, i])

Then:

∑
L′
k=0

φk

φL′+1
4L

′+1φL′+1c([i− L′, i]) − 4L
′
φL′

c([i− L′ + 1, i]) ≤
∑L′−1

k=0
φk

φL′ 4L
′
φL′

c([i− L′ + 1, i])

L′
∑

k=0

φk4c([i− L′, i])− φL′
c([i − L′ + 1, i])−

L′−1∑

k=0

φkc([i− L′ + 1, i]) ≤ 0

(φL′
+

L′−1∑

k=0

φk)c([i − L′ + 1, i]) ≥ 4

L′
∑

k=0

φkc([i − L′, i])

c([i − L′ + 1, i]) ≥ 4c([i− L′, i])
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