
GAML: Genome Assembly by Maximum

Likelihood

Vladimı́r Boža, Broňa Brejová, and Tomáš Vinař

Faculty of Mathematics, Physics, and Informatics, Comenius University,
Mlynská dolina, 842 48 Bratislava, Slovakia

Abstract. The critical part of genome assembly is resolution of repeats
and scaffolding of shorter contigs. Modern assemblers usually perform
this step by heuristics, often tailored to a particular technology for pro-
ducing paired reads or long reads. We propose a new framework that al-
lows systematic combination of diverse sequencing datasets into a single
assembly. We achieve this by searching for an assembly with maximum
likelihood in a probabilistic model capturing error rate, insert lengths,
and other characteristics of each sequencing technology.

We have implemented a prototype genome assembler GAML that
can use any combination of insert sizes with Illumina or 454 reads, as
well as PacBio reads. Our experiments show that we can assemble short
genomes with N50 sizes and error rates comparable to ALLPATHS-LG
or Cerulean. While ALLPATHS-LG and Cerulean require each a specific
combination of datasets, GAML works on any combination.

Data and software is available at http://compbio.fmph.uniba.sk/gaml

1 Introduction

The second and third generation sequencing technologies have dramatically de-
creased the cost of sequencing. Nowadays, we have a surprising variety of se-
quencing technologies, each with its own strengths and weaknesses. For example,
Illumina platforms are characteristic by low cost and high accuracy, but the reads
are short. On the other hand, Pacific Biosciences offer long reads at the cost of
quality and coverage. In the meantime, the cost of sequencing was brought down
to the point, where it is no longer a sole domain of large sequencing centers; even
small labs can experiment with cost-effective genome sequencing. In this setting,
it is no longer possible to recommend a single protocol that should be used to
sequence genomes of a particular size. In this paper, we propose a framework
for genome assembly that allows flexible combination of datasets from different
technologies in order to harness their individual strengths.

Modern genome assemblers are usually based either on the overlap–
layout–consensus framework (e.g. Celera by Myers et al. (2000), SGA by
Simpson and Durbin (2010)), or on de Bruijn graphs (e.g. Velvet by
Zerbino and Birney (2008), ALLPATHS-LG by Gnerre et al. (2011)). Both ap-
proaches can be seen as special cases of a string graph (Myers, 2005), in which

D. Brown and B. Morgenstern (Eds.): WABI 2014, LNBI 8701, pp. 122–134, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

GAML: Genome Assembly by Maximum Likelihood 123

we represent sequence fragments as vertices, while edges represent possible adja-
cencies of fragments in the assembly. A genome assembly is simply a set of walks
through this graph. The main difference between the two frameworks is how
we arrive at a string graph: through detecting long overlaps of reads (overlap–
layout–consensus) or through construction of de Bruijn graphs based on k-mers.

However, neither of these frameworks is designed to systematically handle
pair-end reads and additional heuristic steps are necessary to build larger scaf-
folds from assembled contigs. For example, ALLPATHS-LG (Gnerre et al., 2011)
uses libraries with different insert lengths for scaffolding of contigs assembled
without the use of paired read information, while Cerulean (Deshpande et al.,
2013) uses Pacific Biosystems long reads for the same purpose. Recently, the tech-
niques of paired de Bruijn graphs (Medvedev et al., 2011) and pathset graphs
(Pham et al., 2013) were developed to address paired reads systematically, how-
ever these approaches cannot combine several libraries with different insert sizes.

Combination of sequencing technologies with complementary strengths can
help to improve assembly quality. However, it is not feasible to design new algo-
rithms for every possible combination of datasets. Often it is possible to supple-
ment previously developed tools with additional heuristics for new types of data.
For example, PBJelly (English et al., 2012) uses Pacific Biosystems reads solely
to aid gap filling in draft assemblies. Assemblers like PacbioToCa (Koren et al.,
2012) or Cerulean (Deshpande et al., 2013) use short reads to “upgrade” the
quality of Pacific Biosystems reads so that they can be used within traditional as-
semblers. However, such approaches hardly use all information contained within
the data sets.

We propose a new framework that allows a systematic combination of diverse
datasets into a single assembly, without requiring a particular type of data for
specific heuristic steps. Recently, probabilistic models have been used very suc-
cessfully to evaluate the quality of genome assemblers (Rahman and Pachter,
2013; Clark et al., 2013; Ghodsi et al., 2013). In our work, we use likelihood of
a genome assembly as an optimization criterion, with the goal of finding the
highest likelihood genome assembly. Even though this may not be always feasi-
ble, we demonstrate that optimization based on simulated annealing can be very
successful at finding high likelihood genome assemblies.

To evaluate likelihood, we use a relatively complex model adapted from
Ghodsi et al. (2013), which can capture characteristics of each dataset, such
as sequencing error rate, as well as length distribution and expected orienta-
tion of paired reads (Section 2). We can thus transparently combine information
from multiple diverse datasets into a single score. Previously, there have been
several works in this direction in much simpler models without sequencing errors
(Medvedev and Brudno, 2009; Varma et al., 2011). These papers used likelihood
to estimate repeat counts, without considering other problems, such as how ex-
actly are repeats integrated within scaffolds.

To test our framework, we have implemented a prototype genome assembler
GAML (Genome Assembly by Maximum Likelihood) that can use any combina-
tion of insert sizes with Illumina or 454 reads, as well as PacBio reads. The starting

124 V. Boža, B. Brejová, and T. Vinař

point of the assembly are short contigs derived from Velvet (Zerbino and Birney,
2008) with very conservative settings in order to avoid assembly errors. We then
use simulated annealing to combine these short contigs into high likelihood as-
semblies (Section 3). We compare our assembler to existing tools on benchmark
datasets (Section 4), demonstrating that we can assemble genomes of up to 10MB
long with N50 sizes and error rates comparable to ALLPATHS-LG or Cerulean.
While ALLPATHS-LG and Cerulean each require a very specific combination of
datasets, GAML works on any combination.

2 Probabilistic Model for Sequence Assembly

Recently, several probabilistic models were introduced as a measure of the assem-
bly quality (Rahman and Pachter, 2013; Clark et al., 2013; Ghodsi et al., 2013).
All of these authors have shown that the likelihood consistently favours higher
quality assemblies. In general, the probabilistic model defines the probability
Pr(R|A) that a set of sequencing reads R is observed assuming that assembly A
is the correct assembly of the genome. Since the sequencing itself is a stochastic
process, it is very natural to characterize concordance of reads and an assembly
by giving a probability of observing a particular read. In our work, instead of
evaluating the quality of a single assembly, we use the likelihood as an optimiza-
tion criterion with the goal of finding high likelihood genome assemblies. We
adapt the model of Ghodsi et al. (2013), which we describe in this section.

Basics of the likelihood model. The model assumes that individual reads are
independently sampled, and thus the overall likelihood is the product of like-
lihoods of the reads: Pr(R|A) =

∏
r∈R Pr(r|A). To make the resulting value

independent of the number of reads in set R, we use as the main assembly
score the log average probability of a read computed as follows: LAP(A|R) =
(1/|R|)∑r∈R log Pr(r|A). Note that maximizing Pr(R|A) is equivalent to max-
imizing LAP(A|R).

If the reads were error-free and each position in the genome was sequenced
equally likely, the probability of observing read r would simply be Pr(r|A) =
nr/(2L), where nr is the number of occurrences of the read as a substring of the
assembly A, L is the length of A, and thus 2L is the length of the two strands
combined (Medvedev and Brudno, 2009). Ghodsi et al. (2013) have shown a dy-
namic programming computation of read probability for more complex models,
accounting for sequencing errors. The algorithm marginalizes over all possible
alignments of r and A, weighting each by the probability that a certain number
of substitution and indel errors would happen during sequencing. In particular,
the probability of a single alignment with m matching positions and s errors
(substitution and indels) is defined as R(s,m)/(2L), where R(s,m) = εs(1− ε)m

and ε is the sequencing error rate.
However, full dynamic programming is too time consuming, and in practice

only several best alignments contribute significantly to the overall probability.
Thus Ghodsi et al. (2013) propose to approximate the probability of observing
read r with an estimate based on a set Sr of a few best alignments of r to

GAML: Genome Assembly by Maximum Likelihood 125

genome A, as obtained by a standard fast read alignment tool:

Pr(r|A) ≈
∑

j∈Sr
R(sj ,mj)

2L
, (1)

where mj is the number of matches in the j-th alignment, and sj is the num-
ber of mismatches and indels implied by this alignment. The formula assumes
the simplest possible error model, where insertions, deletions and substitutions
have the same probability and ignores GC content bias. Of course, much more
comprehensive read models are possible (see e.g. Clark et al. (2013)).

Paired reads. Many technologies provide paired reads produced from the op-
posite ends of a sequence insert of certain size. We assume that the insert size
distribution in a set of reads R can be modeled by the normal distribution with
known mean μ and standard deviation σ. The probability of observing paired
reads r1 and r2 can be estimated from sets of alignments Sr1 and Sr2 as follows:

Pr(r1, r2|A) ≈ 1

2L

∑

j1∈Sr1

∑

j2∈Sr2

R(sj1 ,mj1)R(sj2 ,mj2) Pr(d(j1, j2)|μ, σ) (2)

As before, mji and sji are the numbers of matches and sequencing errors in
alignment ji respectively, and d(j1, j2) is the distance between the two alignments
as observed in the assembly. If alignments j1 and j2 are in two different contigs,
or on inconsistent strands, Pr(d(j1, j2)|μ, σ) is zero.
Reads that have no good alignment to A. Some reads or read pairs do not align
well to A, and as a result, their probability Pr(r|A) is very low; our approxi-
mation by a set of high-scoring alignments can even yield zero probability if set
Sr is empty. Such extremely low probabilities then dominate the log likelihood
score. Ghodsi et al. (2013) propose a method that assigns such a read a score
approximating the situation when the read would be added as a new contig to
the assembly. We modify their formulas for variable read length, and use score
ec+k� for a single read of length � or ec+k(�1+�2) for a pair of reads of lengths
�1 and �2. Values k and c are scaling constants set similarly as in Ghodsi et al.
(2013). These alternative scores are used instead of the read probability Pr(r|A)
whenever the probability is lower than the score.

Multiple read sets. Our work is specifically targeted at a scenario, where we have
multiple read sets obtained from different libraries with different insert lengths or
even with different sequencing technologies. We use different model parameters
for each set and compute the final score as a weighted combination of log average
probabilities for individual read sets R1, . . . , Rk:

LAP(A|R1, . . . , Rk) = w1LAP(A|R1) + . . .+ wkLAP(A|Rk) (3)

In our experiments we use weight wi = 1 for most datasets, but we lower the
weight for Pacific Biosciences reads, because otherwise they dominate the likeli-
hood value due to their longer length. The user could also increase or decrease
weights wi of individual sets based on their reliability.

126 V. Boža, B. Brejová, and T. Vinař

Penalizing spuriously joined contigs. The model of Ghodsi et al. (2013) does
not penalize obvious misassemblies when two contigs are joined together with-
out any evidence in the reads. We have observed that to make the likelihood
function applicable as an optimization criterion for the best assembly, we need
to introduce a penalty for such spurious connections. We say that a particular
base j in the assembly is connected with respect to read set R if there is a read
which covers base j and starts at least k bases before j, where k is a constant
specific to the read set. In this setting, we treat a pair of reads as one long read.
If the assembly contains d disconnected bases with respect to R, penalty αd is
added to the LAP(A|R) score (α is a scaling constant).

Properties of different sequencing technologies. Ourmodel can be applied to differ-
ent sequencing technologies by appropriate settings of model parameters. For ex-
ample, Illumina technology typically produces reads of length 75-150bpwith error
rate below 1% (Quail et al., 2012). For smaller genomes, we often have a high cov-
erage of Illumina reads. Using paired reads or mate pair technologies, it is possible
to prepare libraries with different insert sizes ranging up to tens of kilobases, which
are instrumental in resolving longer repeats (Gnerre et al., 2011). To align these
reads to proposed assemblies, we use Bowtie2 (Langmead and Salzberg, 2012).
Similarly, we can process reads by the Roche 454 technology, which are charac-
teristic by higher read lengths (hundreds of bases).

Pacific Biosciences technology produces single reads of variable length, with
median length reaching several kilobases, but the error rate exceeds 10%
(Quail et al., 2012; Deshpande et al., 2013). Their length makes them ideal for
resolving ambiguities in alignments, but the high error rate makes their use chal-
lenging. To align these reads, we use BLASR (Chaisson and Tesler, 2012). When
we calculate the probability Pr(r|A), we consider not only the best alignments
found by BLASR, but for each BLASR alignment, we also add probabilities of
similar alignments in its neighborhood. More specifically, we run a banded ver-
sion of the forward algorithm by Ghodsi et al. (2013), considering all alignments
in a band of size 3 around a guide alignment produced by BLASR.

3 Finding a High Likelihood Assembly

Complex probabilistic models, like the one described in Section 2, were pre-
viously used to compare the quality of several assemblies (Ghodsi et al., 2013;
Rahman and Pachter, 2013; Clark et al., 2013). In our work, we instead attempt
to find the highest likelihood assembly directly. Of course, the search space is
huge, and the objective function too complex to admit exact methods. Here,
we describe an effective optimization routine based on the simulated annealing
framework (Eglese, 1990).

Our algorithm for finding the maximum likelihood assembly consists of three
main steps: preprocessing, optimization, and postprocessing. In preprocessing,
we decrease the scale of the problem by creating an assembly graph, where ver-
tices correspond to contigs and edges correspond to possible adjacencies between

GAML: Genome Assembly by Maximum Likelihood 127

contigs supported by reads. In order to make the search viable, we will restrict
our search to assemblies that can be represented as a set of walks in this graph.
Therefore, the assembly graph should be built in a conservative way, where the
goal is not to produce long contigs, but rather to avoid errors inside them. In
the optimization step, we start with an initial assembly (a set of walks in the
assembly graph), and iteratively propose changes in order to optimize the as-
sembly likelihood. Finally, postprocessing examines the resulting walks and splits
some of them into shorter contigs if there are multiple equally likely possibilities
of resolving ambiguities. This happens, for example, when the genome contains
long repeats that cannot be resolved by any of the datasets.

In the rest of this section, we discuss individual steps in more detail.

3.1 Optimization by Simulated Annealing

To find a high likelihood assembly, we use an iterative simulated annealing
scheme. We start from an initial assembly A0 in the assembly graph. In each
iteration, we randomly choose a move that proposes a new assembly A′ similar
to the current assembly A. The next step depends on the likelihoods of the two
assemblies A and A′ as follows:

– If LAP(A′|R) ≥ LAP(A|R), the new assembly A′ is accepted and the algo-
rithm continues with the new assembly.

– If LAP(A′|R) < LAP(A|R), the new assembly A′ is accepted with prob-
ability e(LAP(A′|R)−LAP(A|R))/T ; otherwise A′ is rejected and the algorithm
retains the old assembly A for the next step.

Here, parameter T is called the temperature, and it changes over time. In gen-
eral, the higher the temperature, the more aggressive moves are permitted. We
use a simple cooling schedule, where T = T0/ ln(i) in the i-th iteration. The
computation ends when there is no improvement in the likelihood for a certain
amount of time. We select the assembly with the highest LAP score as the result.

To further reduce the complexity of the assembly problem, we classify all
contigs as either long (more than 500bp) or short and concentrate on ordering
the long contigs correctly. The short contigs are used to fill the gaps between
the long contigs.

Recall that each assembly is a set of walks in the assembly graph. A contig
can appear in more than one walk or can be present in a single walk multiple
times. In all our experiments, the starting assembly simply contains each long
contig as a separate walk. However, other assemblies (such as assemblies from
other tools) can easily serve as a starting point as long as they can be mapped
to the assembly graph.

128 V. Boža, B. Brejová, and T. Vinař

(a) (b) (c)

Fig. 1. Examples of proposal moves. (a) Walk extension joining two walks. (b)
Local improvement by addition of a new loop. (c) Repeat interchange.

Proposals of new assemblies are created from the current assembly using the
following moves:

– Walk extension. (Fig.1a) We start from one end of an existing walk and
randomly walk through the graph, at every step uniformly choosing one
of the edges outgoing from the current node. Each time we encounter the
end of another walk, the two walks are considered for joining. We randomly
(uniformly) decide whether we join the walks, end the current walk without
joining, or continue walking.

– Local improvement. (Fig.1b) We optimize the part of some walk connecting
two long contigs s and t. We first sample multiple random walks starting
from contig s. In each walk, we only consider nodes from which contig t is
reachable. Then we evaluate these random walks and choose the one that
increases the likelihood the most. If the gap between contigs s and t is too
big, we instead use a greedy strategy where in each step we explore multiple
random extensions of the walk (of length around 200bp) and pick the one
with the highest score.

– Repeat optimization. We optimize the copy number of short tandem repeats.
We do this by removing or adding a loop to some walk. We precompute the
list of all short loops (up to five nodes) in the graph and use it for adding
loops.

– Joining with advice. We join two walks that are spanned by long reads or
paired reads with long inserts. We fist select a starting walk, align all reads
to the starting walk and randomly choose a read which has the other end
outside the current walk. Then we find to which node this other end belongs
to and join appropriate walks. If possible, we fill the gap between the two
walks using the same procedure as in the local improvement move. Otherwise
we introduce a gap filled with Ns.

– Disconnecting. We remove a path through short contigs connecting two long
contigs in the same walk, resulting in two shorter walks.

GAML: Genome Assembly by Maximum Likelihood 129

– Repeat interchange. (Fig.1c) If a long contig has several incoming and out-
going walks, we optimize the pairing of incoming and outgoing edges. In
particular, we evaluate all moves that exchange parts of two walks through
this contig. If one of these changes improves the score, we accept it and
repeat this step, until the score cannot be improved at this contig.

At the beginning of each annealing step, the type of the move is chosen ran-
domly; each type of move has its own probability. We also choose randomly the
contig at which we attempt to apply the move.

Note that some moves (e.g. local improvement) are very general, while other
moves (e.g. joining with advice) are targeted at specific types of data. This does
not contradict a general nature of our framework; it is possible to add new moves
as new types of data emerge, leading to improvement when using specific data
sets, while not affecting the performance when such data is unavailable.

3.2 Preprocessing and Postprocessing

To obtain the assembly graph, we use Velvet with basic error correction and
unambiguous concatenation of k-mers. These settings will produce very short
contigs, but will also give a much lower error rate than a regular Velvet run.

The resulting assembly obtained by the simulated annealing may contain po-
sitions with no evidence for a particular configuration of incoming and outgoing
edges in the assembly graph (e.g., a repeat that is longer than the span of the
longest paired read). Such arbitrary joining of walks may lead to assembly er-
rors, since data give no indication which configuration of edges is correct. In the
postprocessing step, we therefore apply the repeat interchange move at every
possible location of the assembly. If the likelihood change resulting from such a
move is negligible, we break corresponding walks into shorter contigs.

3.3 Fast Likelihood Evaluation

The most time consuming step in our algorithm is evaluation of the assembly
likelihood, which we perform in each iteration of simulated annealing. This step
involves alignment of a large number of reads to the assembly. However, we can
significantly reduce required time by using the fact that only a small part of the
assembly is changed in each annealing step.

To achieve this, we split walks into overlapping windows, each window contain-
ing several adjacent contigs of a walk. Windows should be as short as possible,
but the adjacent windows should overlap by at least 2�r bases, where �r is the
length of the longest read. As a result, each alignment is completely contained
in at least one window even in the presence of extensive indels.

We determine window boundaries by a simple greedy strategy, which starts
at the first contig of a walk, and then extends the window by at least 2�r bases
beyond the boundary of the first contig. The next window always starts at the
latest possible location that ensures a sufficient overlap and extends at least 2�r
bases beyond the end of the previous window.

130 V. Boža, B. Brejová, and T. Vinař

For each window, we keep the position and edit distance of all alignments. In
each annealing step, we identify which windows of the assembly were modified.
We glue together overlapping windows and align reads against these sequences
using a read mapping tool. Finally, we use alignments in all windows to calculate
the probability of each read and combine them into the score of the whole as-
sembly. This step requires careful implementation to ensure that we count each
alignment exactly once.

To speed up read mapping even more, we use a simple prefiltering scheme,
where we only align reads which contain some k-mer (usually k = 13) from the
target sequence. In the current implementation, we store an index of all k-mers
from all reads in a simple hash map. In each annealing step, we can therefore
iterate over all k-mers in the target portion of the genome and retrieve reads that
contain them. We use a slightly different filtering approach for PacBio reads. In
particular, we take all reasonably long contigs (at least 100 bases) and align
them to PacBio reads. Since BLASR can find alignments where a contig and a
read overlap by only around 100 bases, we can use these alignments as a filter.

4 Experimental Evaluation

We have implemented the algorithm proposed in the previous section in a pro-
totype assembler GAML (Genome Assembly by Maximum Likelihood). At this
stage, GAML can assemble small genomes (approx. 10 Mbp) in a reasonable
amount of time (approximately 4 days on a single CPU and using 50GB of
memory). In future, we plan to explore efficient data structures to further speed
up likelihood computation and to lower the memory requirements.

To evaluate the quality of our assembler, we have adopted the methodology
of Salzberg et al. (2012) used for Genome Assembly Gold-Standard Evaluation,
using metrics on scaffolds. We have used the same genomes and libraries as in
Salzberg et al. (2012) (the S. aureus genome) and in Deshpande et al. (2013)
(the E. coli genome); the overview of the data sets is shown in Tab.1. An ad-
ditional dataset EC3 (long insert, low coverage) was simulated using the ART
software (Huang et al., 2012). We have evaluated GAML in three different sce-
narios:

1. combination of fragment and short insert Illumina libraries (SA1, SA2),
2. combination of a fragment Illumina library and a long-read high-error-rate

Pacific Biosciences library (EC1, EC2),
3. combination of a fragment Illumina library, a long-read high-error-rate Pa-

cific Biosciences library, and a long jump Illumina library (EC1, EC2, EC3)

In each scenario, we use the short insert Illumina reads (SA1 or EC1) in Velvet
with conservative settings to build the initial contigs and assembly graph. In the
LAP score, we give Illumina datasets weight 1 and PacBio dataset weight 0.01.

The results are summarized in Tab.2. Note that none of the assemblers con-
sidered here can effectively run in all three of these scenarios, except for GAML.

GAML: Genome Assembly by Maximum Likelihood 131

Table 1. Properties of data sets used

Insert Read Error
ID Source Technology len. (bp) len. (bp) Coverage rate

Staphylococus aureus (2.87Mbp)
SA1 Salzberg et al. (2012) Illumina 180bp 101bp 90 3%
SA2 Salzberg et al. (2012) Illumina 3500bp 37bp 90 3%

Escherichia coli (4.64Mbp)
EC1 Deshpande et al. (2013) Illumina 300bp 151bp 400 0.75%
EC2 Deshpande et al. (2013) PacBio 4000bp 30 13%
EC3 simulated Illumina 37,000bp 75bp 0.5 4%

In the first scenario, GAML performance ranks third among zero-error as-
semblers in N50 length. The best N50 assembly is given by ALLPATHS-LG
(Gnerre et al., 2011). A closer inspection of the assemblies indicates that GAML
missed several possible joins. One such miss was caused by a 4.5 kbp repeat, while
the longest insert size in this dataset is 3.5 kbp. Even though in such cases it
is sometimes possible to reconstruct the correct assembly thanks to small dif-
ferences in the repeated regions, the difference in likelihood between alternative
repeat resolutions may be very small. Another missed join was caused by a se-
quence coverage gap penalized in our scoring function. Perhaps in both of these
cases the manually set constants may have caused GAML to be overly conser-
vative. Otherwise, the GAML assembly seems very similar to the one given by
ALLPATHS-LG.

In the second scenario, Pacific Biosystems reads were employed instead of
jump libraries. These reads pose a significant challenge due to their high er-
ror rate, but they are very useful due to their long length. Assemblers such
as Cerulean (Deshpande et al., 2013) deploy special algorithms taylored to this
technology. GAML, even though not explicitly tuned to handle Pacific Biosys-
tems reads, builds an assembly with N50 size and the number of scaffolds
very similar to that of Cerulean. In N50, both programs are outperformed by
PacbioToCA (Koren et al., 2012), however, this is again due to a few very long
repeats (approx. 5000 bp) in the reference genome which were not resolved by
GAML or Cerulean. (Deshpande et al. (2013) also aim to be conservative in
repeat resolution.) Note that in this case, simulated annealing failed to give
the highest likelihood assembly among those that we examined, so perhaps our
results can be improved by tuning the likelihood optimization.

Finally, the third scenario shows that the assembly quality can be hugely
improved by including a long jump library, even if the coverage is really small
(we used 0.5× coverage in this experiment). This requires a flexible genome
assembler; in fact, only Celera (Myers et al., 2000) can process this data, but
GAML assembly is clearly superior. We have attempted to also run ALLPATHS-
LG, but the program could not process this combination of libraries. Compared
to the previous scenario, GAML N50 size increased approximately 7 fold (or
approx. 4 fold compared to the best N50 from the second scenario assemblies).

132 V. Boža, B. Brejová, and T. Vinař

Table 2. Comparison of assembly accuracy in three experiments. For all
assemblies, N50 values are based on the actual genome size. All misjoins were considered
as errors and error-corrected values of N50 and contig sizes were obtained by breaking
each contig at each error (Salzberg et al., 2012). All assemblies except for GAML and
conservative Velvet were obtained from Salzberg et al. (2012) in the first experiment,
and from Deshpande et al. (2013) in the second experiment.

Assembler Number
of scaffolds

Longest
scaffold
(kb)

Longest
scaffold
corr. (kb)

N50
(kb)

Err. N50
corr.
(kb)

LAP

Staphylococus aureus, read sets SA1, SA2
GAML 28 1191 1191 514 0 514 −23.45
Allpaths-LG 12 1435 1435 1092 0 1092 −25.02
SOAPdenovo 99 518 518 332 0 332 −25.03
Velvet 45 958 532 762 17 126 −25.34
Bambus2 17 1426 1426 1084 0 1084 −25.73
MSR-CA 17 2411 1343 2414 3 1022 −26.26
ABySS 246 125 125 34 1 28 −29.43
Cons. Velvet∗ 219 95 95 31 0 31 −30.82
SGA 456 286 286 208 1 208 −31.80

Escherichia coli, read sets EC1, EC2
PacbioToCA 55 1533 1533 957 0 957 −33.86
GAML 29 1283 1283 653 0 653 −33.91
Cerulean 21 1991 1991 694 0 694 −34.18
AHA 54 477 477 213 5 194 −34.52
Cons. Velvet∗ 383 80 80 21 0 21 −36.02

Escherichia coli, read sets EC1, EC2, EC3
GAML 4 4662 4661 4662 3 4661 −60.38
Celera 19 4635 2085 4635 19 2085 −61.47
Cons. Velvet∗ 383 80 80 21 0 21 −72.03

*: Velvet with conservative settings used to create the assembly graph in our method.

5 Conclusion

We have presented a new probabilistic approach to genome assembly, maximizing
likelihood in a model capturing essential characteristics of individual sequencing
technologies. It can be used on any combination of read datasets and can be
easily adapted to other technologies arising in the future.

Our work opens several avenues for future research. First, we plan to imple-
ment more sophisticated data structures to improve running time and memory
and to allow the use of our tool on larger genomes. Second, the simulated an-
nealing procedure could be improved by optimizing probabilities of individual
moves or devising new types of moves. The tool could also be easily adapted to
improve existing assemblies after converting a given assembly to a set of walks.
Finally, it would be interesting to explore even more detailed probabilistic mod-
els, featuring coverage biases and various sources of experimental error.

GAML: Genome Assembly by Maximum Likelihood 133

Acknowledgements. This research was funded by VEGA grants 1/1085/12
(BB) and 1/0719/14 (TV). The authors would like to thank Viraj Deshpande
for sharing his research data.

References

Chaisson, M.J., Tesler, G.: Mapping single molecule sequencing reads using basic lo-
cal alignment with successive refinement (BLASR): application and theory. BMC
Bioinformatics 13(1), 238 (2012)

Clark, S.C., Egan, R., Frazier, P.I., Wang, Z.: ALE: a generic assembly likelihood eval-
uation framework for assessing the accuracy of genome and metagenome assemblies.
Bioinformatics 29(4), 435–443 (2013)

Deshpande, V., Fung, E.D.K., Pham, S., Bafna, V.: Cerulean: A hybrid assembly using
high throughput short and long reads. In: Darling, A., Stoye, J. (eds.) WABI 2013.
LNCS, vol. 8126, pp. 349–363. Springer, Heidelberg (2013)

Eglese, R.: Simulated annealing: a tool for operational research. European Journal of
Operational Research 46(3), 271–281 (1990)

English, A.C., Richards, S., et al.: Mind the gap: upgrading genomes with Pacific
Biosciences RS long-read sequencing technology. PLoS One 7(11), e47768 (2012)

Ghodsi, M., Hill, C.M., Astrovskaya, I., Lin, H., Sommer, D.D., Koren, S., Pop, M.: De
novo likelihood-based measures for comparing genome assemblies. BMC Research
Notes 6(1), 334 (2013)

Gnerre, S., MacCallum, I., et al.: High-quality draft assemblies of mammalian genomes
from massively parallel sequence data. Proceedings of the National Academy of
Sciences 108(4), 1513–1518 (2011)

Huang, W., Li, L., Myers, J.R., Marth, G.T.: ART: a next-generation sequencing read
simulator. Bioinformatics 28(4), 593–594 (2012)

Koren, S., Schatz, M.C., et al.: Hybrid error correction and de novo assembly of single-
molecule sequencing reads. Nature Biotechnology 30(7), 693–700 (2012)

Langmead, B., Salzberg, S.L.: Fast gapped-read alignment with Bowtie 2. Nature
Methods 9(4), 357–359 (2012)

Medvedev, P., Brudno, M.: Maximum likelihood genome assembly. Journal of Compu-
tational Biology 16(8), 1101–1116 (2009)

Medvedev, P., Pham, S., Chaisson, M., Tesler, G., Pevzner, P.: Paired de Bruijn graphs:
a novel approach for incorporating mate pair information into genome assemblers.
Journal of Computational Biology 18(11), 1625–1634 (2011)

Myers, E.W.: The fragment assembly string graph. Bioinformatics 21(suppl 2), ii79–ii85
(2005)

Myers, E.W., Sutton, G.G., et al.: A whole-genome assembly of Drosophila.
Science 287(5461), 2196–2204 (2000)

Pham, S.K., Antipov, D., Sirotkin, A., Tesler, G., Pevzner, P.A., Alekseyev, M.A.:
Pathset graphs: a novel approach for comprehensive utilization of paired reads in
genome assembly. Journal of Computational Biology 20(4), 359–371 (2013)

Quail, M.A., Smith, M., Coupland, P., Otto, T.D., Harris, S.R., Connor, T.R., Bertoni,
A., Swerdlow, H.P., Gu, Y.: A tale of three next generation sequencing platforms:
comparison of Ion Torrent, Pacific Biosciences and Illumina MiSeq sequencers. BMC
Genomics 13(1), 341 (2012)

Rahman, A., Pachter, L.: CGAL: computing genome assembly likelihoods. Genome
Biology 14(1), R8 (2013)

134 V. Boža, B. Brejová, and T. Vinař

Salzberg, S.L., Phillippy, A.M., et al.: GAGE: a critical evaluation of genome assemblies
and assembly algorithms. Genome Research 22(3), 557–567 (2012)

Simpson, J.T., Durbin, R.: Efficient construction of an assembly string graph using the
FM-index. Bioinformatics 26(12), i367–i373 (2010)

Varma, A., Ranade, A., Aluru, S.: An improved maximum likelihood formulation for
accurate genome assembly. In: Computational Advances in Bio and Medical Sciences
(ICCABS 2011), pp. 165–170. IEEE (2011)

Zerbino, D.R., Birney, E.: Velvet: algorithms for de novo short read assembly using de
Bruijn graphs. Genome Research 18(5), 821–829 (2008)

	GAML: Genome Assembly by Maximum
Likelihood

	1 Introduction
	2 Probabilistic Model for Sequence Assembly
	3 Finding a High Likelihood Assembly
	3.1 Optimization by Simulated Annealing
	3.2 Preprocessing and Postprocessing
	3.3 Fast Likelihood Evaluation

	4 Experimental Evaluation
	5 Conclusion
	References

