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Abstract. The data volume generated by Next-Generation Sequencing
(NGS) technologies is growing at a pace that is now challenging the
storage and data processing capacities of modern computer systems. In
this context an important aspect is the reduction of data complexity by
collapsing redundant reads in a single cluster to improve the run time,
memory requirements, and quality of post-processing steps like assembly
and error correction. Several alignment-free measures, based on k-mers
counts, have been used to cluster reads.

Quality scores produced by NGS platforms are fundamental for vari-
ous analysis of NGS data like reads mapping and error detection. More-
over future-generation sequencing platforms will produce long reads but
with a large number of erroneous bases (up to 15%). Thus it will be fun-
damental to exploit quality value information within the alignment-free
framework.

In this paper we present a family of alignment-free measures, called
Dq-type, that incorporate quality value information and k-mers counts
for the comparison of reads data. A set of experiments on simulated and
real reads data confirms that the new measures are superior to other
classical alignment-free statistics, especially when erroneous reads are
considered. These measures are implemented in a software called QClus-
ter (http://www.dei.unipd.it/~ciompin/main/qcluster.html).

Keywords: alignment-free measures, reads quality values, clustering
reads.

1 Introduction

The data volume generated by Next-Generation Sequencing (NGS) technologies
is growing at a pace that is now challenging the storage and data processing
capacities of modern computer systems [1]. Current technologies produce over
500 billion bases of DNA per run, and the forthcoming sequencers promise to
increase this throughput. The rapid improvement of sequencing technologies
has enabled a number of different sequencing-based applications like genome
resequencing, RNA-Seq, ChIP-Seq and many others [2]. Handling and processing
such large files is becoming one of the major challenges in most genome research
projects.
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Alignment-based methods have been used for quite some time to establish sim-
ilarity between sequences [3]. However there are cases where alignment methods
can not be applied or they are not suited. For example the comparison of whole
genomes is impossible to conduct with traditional alignment techniques, because
of events like rearrangements that can not be captured with an alignment [4–6].
Although fast alignment heuristics exist, another drawback is that alignment
methods are usually time consuming, thus they are not suited for large-scale se-
quence data produced by Next-Generation Sequencing technologies (NGS)[7, 8].
For these reasons a number of alignment-free techniques have been proposed
over the years [9].

The use of alignment-free methods for comparing sequences has proved useful
in different applications. Some alignment-free measures use the patterns distri-
bution to study evolutionary relationships among different organisms [4, 10, 11].
Several alignment-free methods have been devised for the detection of enhancers
in ChIP-Seq data [12–14] and also of entropic profiles [15, 16]. Another applica-
tion is the classification of protein remotely related, which can be addressed with
sophisticate word counting procedures [17, 18]. The assembly-free comparison of
genomes based on NGS reads has been investigated only recently [7, 8]. For a
comprehensive review of alignment-free measures and applications we refer the
reader to [9].

In this study we want to explore the ability of alignment-free measures to
cluster reads data. Clustering techniques are widely used in many different ap-
plications based on NGS data, from error correction [19] to the discovery of
groups of microRNAs [20]. With the increasing throughput of NGS technologies
another important aspect is the reduction of data complexity by collapsing re-
dundant reads in a single cluster to improve the run time, memory requirements,
and quality of subsequent steps like assembly.

In [21] Solovyov et. al. presented one of the first comparison of alignment-
free measures when applied to NGS reads clustering. They focused on clustering
reads coming from different genes and different species based on k-mer counts.
They showed that D-type measures (see section 2), in particular D∗

2 , can effi-
ciently detect and cluster reads from the same gene or species (as opposed to
[20] where the clustering is focused on errors). In this paper we extend this study
by incorporating quality value information into these measures.

Quality scores produced by NGS platforms are fundamental for various anal-
ysis of NGS data: mapping reads to a reference genome [22]; error correction
[19]; detection of insertion and deletion [23] and many others. Moreover future-
generation sequencing technologies will produce long and less biased reads with
a large number of erroneous bases [24]. The average number of errors per read
will grow up to 15%, thus it will be fundamental to exploit quality value infor-
mation within the alignment-free framework and the de novo assembly where
longer and less biased reads could have dramatic impact.

In the following section we briefly review some alignment-free measures. In
section 3 we present a new family of statistics, called Dq-type, that take ad-
vantage of quality values. The software QCluster is discussed in section 4 and
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relevant results on simulated and real data are presented in section 5. In section
6 we summarize the findings and we discuss future directions of investigation.

2 Previous Work on Alignment-Free Measures

One of the first papers that introduced an alignment-free method is due to
Blaisdell in 1986 [25]. He proposed a statistic called D2, to study the correlation
between two sequences. The initial purpose was to speed up database searches,
where alignment-based methods were too slow. The D2 similarity is the correla-
tion between the number of occurrences of all k-mers appearing in two sequences.
Let X and Y be two sequences from an alphabet Σ. The value Xw is the number
of times w appears in X , with possible overlaps. Then the D2 statistic is:

D2 =
∑

w∈Σk

XwYw.

This is the inner product of the word vectors Xw and Yw, each one repre-
senting the number of occurrences of words of length k, i.e. k-mers, in the two
sequences. However, it was shown by Lippert et al. [26] that the D2 statistic can
be biased by the stochastic noise in each sequence. To address this issue another
popular statistic, called Dz

2 , was introduced in [13]. This measure was proposed
to standardize the D2 in the following manner:

Dz
2 =

D2 − E(D2)

V(D2)
,

where E(D2) and V(D2) are the expectation and the standard deviation of D2,
respectively. Although the Dz

2 similarity improves D2, it is still dominated by
the specific variation of each pattern from the background [27, 28]. To account
for different distributions of the k-mers, in [27] and [28] two other new statistics
are defined and named D∗

2 and Ds
2. Let X̃w = Xw − (n − k + 1) ∗ pw and

Ỹw = Yw−(n−k+1)∗pw where pw is the probability of w under the null model.
Then D∗

2 and Ds
2 can be defined as follows:

D∗
2 =

∑

w∈Σk

X̃wỸw

(n− k + 1)pw
.

and,

Ds
2 =

∑

w∈Σk

X̃wỸw√
X̃2

w + Ỹ 2
w

This latter similarity measure responds to the need of normalization of D2.
These set of alignment-free measures are usually called D-type statistics. All
these statistics have been studied by Reinert et al. [27] and Wan et al. [28]
for the detection of regulatory sequences. From the word vectors Xw and Yw

several other measures can be computed like L2, Kullback-Leibler divergence
(KL), symmetrized KL [21] etc.
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3 Comparison of Reads with Quality Values

3.1 Background on Quality Values

Upon producing base calls for a read x, sequencing machines also assign a quality
score Qx(i) to each base in the read. These scores are usually given as phred -
scaled probability [29] of the i-th base being wrong

Qx(i) = −10 log10 Prob{the base i of read x is wrong }.

For example, if Qx(i) = 30 then there is 1 in 1000 chance that base i of read
x is incorrect. If we assume that quality values are produced independently to
each other (similarly to [22]), we can calculate the probability of an entire read
x being correct as:

Px{the read x is correct} =

n−1∏

j=0

(1− 10−Qx(j)/10)

where n is the length of the read x. In the same way we define the probability
of a word w of length k, occuring at position i of read x being correct as:

Pw,i{the word w at position i of read x is correct} =

k−1∏

j=0

(1− 10−Qx(i+j)/10).

In all previous alignment-free statistics the k-mers are counted such that each
occurrence contributed as 1 irrespective of its quality. Here we can use the quality
of that occurrence instead to account also for erroneous k-mers. The idea is
to model sequencing as the process of reading k-mers from the reference and
assigning a probability to them. Thus this formula can be used to weight the
occurrences of all k-mers used in the previous statistics.

3.2 New Dq-Type Statistics

We extend here D-type statistics [27, 28] to account for quality values. By defin-
ing Xq

w as the sum of probabilities of all the occurrences of w in x:

Xq
w =

∑

i∈{i| w occurs in x at position i}
Pw,i

we assign a weight (i.e. a probability) to each occurrence of w. Now Xq
w can be

used instead of Xw to compute the alignment-free statistics. Note that, by using
Xq

w, every occurrence is not counted as 1, but with a value in [0, 1] depending of
the reliability of the read. We can now define a new alignment-free statistic as :

Dq
2 =

∑

w∈Σk

Xq
wY

q
w .
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This is the extension of the D2 measure, in which occurrences are weighted
based on quality scores. Following section 2 we can also define the centralized
k-mers counts as follows:

X̃q
w = Xq

w − (n− k + 1)pwE(Pw)

where n = |x| is the length of x, pw is the probability of the word w in the
i.i.d. model and the expected number of occurrences (n− k+1)pw is multiplied
by E(Pw) which represents the expected probability of k-mer w based on the
quality scores.

We can now extend two other popular alignment-free statistics:

D∗q
2 =

∑

w∈Σk

X̃q
wỸ

q
w

(n− k + 1)pwE(Pw)

and,

Dsq
2 =

∑

w∈Σk

X̃q
wỸ

q
w√

X̃q
w

2
+ Ỹ q

w

2

We call these three alignment-free measures Dq-type. Now, E(Pw) depends
on w and on the actual sequencing machine, therefore it can be very hard, if
not impossible, to calculate precisely. However, if the set D of all the reads is
large enough we can estimate the prior probability using the posterior relative
frequency, i.e. the frequency observed on the actual set D, similarly to [22].
We assume that, given the quality values, the error probability on a base is
independent from its position within the read and from all other quality values
(see [22]). We defined two different approximations, the first one estimates E(Pw)
as the average error probability of the k-mer w among all reads x ∈ D:

E(Pw) ≈
∑

x∈D
Xq

w∑
x∈D

Xw
(1)

while the second defines, for each base j of w, the average quality observed
over all occurrences of w in D:

Qw[j] =

∑
x∈D

∑
i∈{i| w occurs in x at position i} Qx(i+ j)

∑
x∈D

Xw

and it uses the average quality values to compute the expected word proba-
bility.

E(Pw) ≈
k−1∏

j=0

(1 − 10−Qw(j)/10) (2)

We called the first approximation Average Word Probability (AWP) and the
second one Average Quality Probability (AQP). Both these approximations are
implemented within the software QCluster and they will tested in section 5.
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3.3 Quality Value Redistribution

If we consider the meaning of quality values it is possible to further exploit it to
extend and improve the above statistics. Let’s say that the base A has quality
70%, it means that there is a 70% probability that the base is correct. However
there is also another 30% probability that the base is incorrect. Let’s ignore for
the moment insertion and deletion errors, if the four bases are equiprobable,
this means that with uniform probability 10% the wrong base is a C, or a G
or a T . It’s therefore possible to redistribute the “missing quality” among other
bases. We can perform a more precise operation by redistributing the missing
quality among other bases in proportion to their frequency in the read. For
example, if the frequencies of the bases in the read are A=20%, C=30%, G=30%,
T=20%, the resulting qualities, after the redistribution, will be: A=70%, C =
30%∗30%/(30%+30%+20%) = 11%,G = 30%∗30%/(30%+30%+20%) = 11%,
T = 30% ∗ 20%/(30%+ 30%+ 20%) = 7, 5%.

The same redistribution, with a slight approximation, can be extended to k-
mers quality. More in detail, we consider only the case in which only one base
is wrong, thus we redistribute the quality of only one base at a time. Given a
k-mer, we generate all neighboring words that can be obtained by substitution of
the wrong base. The quality of the replaced letter is calculated as in the previous
example and the quality of the entire word is again given by the product of the
qualities of all the bases in the new k-mers. We increment the corresponding
entry of the vector Xq

w with the score obtained for the new k-mer. This process
is repeated for all bases of the original k-mer. Thus every time we are evaluating
the quality of a word, we are also scoring neighboring k-mers by redistributing
the qualities. We didn’t consider the case where two or more bases are wrong si-
multaneously, because the computational cost would be too high and the quality
of the resulting word would not appreciably affect the measures.

4 QCluster: Clustering of Reads with Dq-Type Measures

All the described algorithms were implemented in the software QCluster. The
program takes in input a fastq format file and performs centroid-based clustering
(k-means) of the reads based on the counts and the quality of k-mers. The soft-
ware performs centroid-based clustering with KL divergence and other distances
like L2 (Euclidean), D2, D

∗
2 , symmetrized KL divergence etc. When using the

Dq-type measures, one needs to choose the method for the computation of the
expected word probability, AWP or AQP , and the quality redistribution.

Since some of the implemented distances (symmetrized KL, D∗
2) do not guar-

antee to converge, we implemented a stopping criteria. The execution of the
algorithm interrupts if the number of iterations without improvements exceeds
a certain threshold. In this case, the best solution found is returned. The maxi-
mum number of iterations may be set by the user and for our experiments we use
the value 5. Several other options like reverse complement and different normal-
ization are available. All implemented measures can be computed in linear time
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and space, which is desirable for large NGS datasets. The QCluster1 software
has been implemented in C++ and compiled and tested using GNU GCC.

5 Experimental Results

Several tests have been performed in order to estimate the effectiveness of the
different distances, on both simulated and real datasets. In particular, we had
to ensure that, with the use of the additional information of quality values, the
clustering improved compared to that produced by the original algorithms.

For simulations we use the dataset of human mRNA genes downloaded from
NCBI2, also used in [21]. We randomly select 50 sets of 100 sequences each
of human mRNA, with the length of each sequence ranged between 500 and
10000 bases. From each sequence, 10000 reads of length 200 were simulated
using Mason3 [30] with different parameters, e.g. percentage of mismatches, read
length. We apply QCluster using different distances, to the whole set of reads and
then we measure the quality of the clusters produced by evaluating the extent
to which the partitioning agrees with the natural splitting of the sequences. In
other words, we measured how well reads originating from the same sequence
are grouped together. We calculate the recall rate as follows, for each mRNA
sequence S we identified the set of reads originated from S. We looked for the
cluster C that contains most of the reads of S. The percentage of the S reads
that have been grouped in C is the recall value for the sequence S. We repeat
the same operation for each sequence and calculate the average value of recall
rate over all sequences.

Several clustering were produced by using the following distance types: D∗
2 ,

D2, L2, KL, symmetrized KL and compared with D∗q
2 in all its variants, us-

ing the expectation formula (1) AWP or (2) AQP , with and without quality
redistribution (q-red). In order to avoid as much as possible biases due to the
initial random generation of centroids, each algorithm was executed 5 times with
different random seeds and the clustering with the lower distortion was chosen.

Table 1 reports the recall while varying error rates, number of clusters and
the parameters k. For all distances the recall rate decreases with the number
of clusters, as expected. For traditional distances, if the reads do not contain
errors then D∗

2 preforms consistently better then the others D2, L2, KL. When
the sequencing process becomes more noisy, the KL distances appears to be
less sensitive to sequencing errors. However if quality information are used, D∗q

2

outperforms all other methods and the advantage grows with the error rate.
This confirms that the use of quality values can improve clustering accuracy.
When the number of clusters increases then the advantage of D∗q

2 becomes more
evident. In these experiments the use of AQP for expectation within D∗q

2 is more
stable and better performing compared with formula AWP . The contribution of

1 http://www.dei.unipd.it/~ciompin/main/qcluster.html
2 ftp://ftp.ncbi.nlm.nih.gov/refseq/H-sapiens/mRNA-Prot/
3 http://seqan.de/projects/mason.html

http://www.dei.unipd.it/~ciompin/main/qcluster.html
ftp://ftp.ncbi.nlm.nih.gov/refseq/H-sapiens/mRNA-Prot/
http://seqan.de/projects/mason.html
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Table 1. Recall rates of clustering of mRNA simulated reads (10000 reads of length
200) for different measures, error rates, number of clusters and parameter k

Distance No Errors 3% 5% 10%

2 clusters

D∗
2 0,815 0,813 0,810 0,801

D∗q
2 AQP 0,815 0,815 0,813 0,810

D∗q
2 AQP q-red 0,815 0,815 0,813 0,810

D∗q
2 AWP 0,809 0,806 0,805 0,802

D∗q
2 AWP q-red 0,809 0,806 0,805 0,802

L2 0,811 0,807 0,806 0,801
KL 0,812 0,809 0,807 0,802
Symm, KL 0,812 0,809 0,807 0,802
D2 0,811 0,807 0,806 0,801

3 clusters

D∗
2 0,695 0,689 0,683 0,662

D∗q
2 AQP 0,695 0,696 0,696 0,689

D∗q
2 AQP q-red 0,695 0,696 0,696 0,691

D∗q
2 AWP 0,653 0,646 0,646 0,638

D∗q
2 AWP q-red 0,653 0,646 0,645 0,637

L2 0,682 0,673 0,671 0,657
KL 0,694 0,687 0,685 0,672
Symm, KL 0,693 0,686 0,684 0,669
D2 0,675 0,668 0,662 0,654

4 clusters

D∗
2 0,623 0,613 0,606 0,574

D∗q
2 AQP 0,622 0,621 0,618 0,602

D∗q
2 AQP q-red 0,622 0,622 0,619 0,605

D∗q
2 AWP 0,580 0,563 0,566 0,535

D∗q
2 AWP q-red 0,580 0,560 0,565 0,533

L2 0,554 0,551 0,547 0,540
KL 0,555 0,548 0,545 0,536
Symm, KL 0,556 0,549 0,546 0,538
D2 0,553 0,547 0,547 0,538

5 clusters

D∗
2 0,553 0,539 0,532 0,500

D∗q
2 AQP 0,554 0,545 0,551 0,532

D∗q
2 AQP q-red 0,553 0,544 0,550 0,533

D∗q
2 AWP 0,483 0,475 0,470 0,463

D∗q
2 AWP q-red 0,483 0,475 0,470 0,461

L2 0,478 0,472 0,465 0,453
KL 0,498 0,488 0,484 0,468
Symm, KL 0,498 0,488 0,484 0,468
D2 0,470 0,464 0,457 0,449

No Errors 3% 5% 10%

2 clusters

0,822 0,819 0,814 0,794

0,822 0,822 0,820 0,809
0,822 0,822 0,820 0,807
0,809 0,807 0,805 0,802
0,809 0,807 0,805 0,802

0,810 0,806 0,805 0,801
0,812 0,809 0,807 0,802
0,812 0,808 0,806 0,802
0,809 0,806 0,805 0,800

3 clusters

0,717 0,707 0,697 0,668

0,717 0,711 0,705 0,679
0,717 0,712 0,704 0,681
0,668 0,662 0,655 0,646
0,668 0,662 0,655 0,644

0,685 0,677 0,674 0,663
0,696 0,689 0,687 0,675
0,695 0,688 0,685 0,673
0,675 0,671 0,665 0,655

4 clusters

0,627 0,616 0,591 0,551

0,628 0,617 0,602 0,572
0,628 0,617 0,603 0,573
0,582 0,571 0,572 0,555
0,582 0,570 0,570 0,555

0,568 0,565 0,553 0,543
0,566 0,558 0,547 0,537
0,562 0,554 0,547 0,539
0,556 0,549 0,548 0,540

5 clusters

0,560 0,534 0,512 0,462

0,560 0,544 0,524 0,489
0,561 0,545 0,531 0,487
0,509 0,494 0,485 0,470
0,509 0,494 0,482 0,470

0,500 0,495 0,486 0,465
0,507 0,501 0,492 0,476
0,507 0,500 0,491 0,474
0,488 0,482 0,476 0,455

k = 2 k = 3
(a) (b)
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quality redistribution (q-red) is limited, although it seems to have some positive
effect with the expectation AQP .

The future generation sequencing technologies will produce long reads with a
large number of erroneous bases. To this end we study how read length affects
these measures. Since the length of sequences under investigation is limited we
keep the read length under 400 bases. In Table 2 we report some experiments
for the setup with 4 clusters and k = 3, while varying the error rate and read
length. If we compare these results with Table 1, where the read length is 200,
we can observe a similar behavior. As the error rate increases the improvement
with respect to the other measures remains evident, in particular the difference in
terms of recall of D∗q

2 with the expectations AQP grows with the length of reads
when compared with KL (up to 9%), and it remains constant when compared
with D∗

2 . With the current tendency of the future sequencing technologies to
produce longer reads this behavior is desirable. These performance are confirmed
also for other setups with larger k and higher number of clusters (data not
shown).

Table 2. Recall rates for clustering of mRNA simulated reads (10000 reads, k = 3, 4
clusters) for different measures, error rates and read length

Distance No Errors 3% 5% 10%

4 clusters

D∗
2 0,680 0,667 0,658 0,625

D∗q
2 AQP 0,680 0,672 0,673 0,650

D∗q
2 AQP q-red 0,680 0,671 0,673 0,650

D∗q
2 AWP 0,616 0,610 0,608 0,601

D∗q
2 AWP q-red 0,616 0,610 0,607 0,602

L2 0,610 0,600 0,602 0,581
KL 0,617 0,604 0,601 0,577
Symm, KL 0,613 0,603 0,599 0,576
D2 0,601 0,593 0,588 0,575

No Errors 3% 5% 10%

4 clusters

0,713 0,700 0,697 0,672

0,713 0,712 0,710 0,693
0,713 0,711 0,711 0,694
0,643 0,636 0,632 0,623
0,643 0,635 0,631 0,622

0,638 0,630 0,624 0,614
0,649 0,632 0,628 0,618
0,647 0,632 0,627 0,616
0,626 0,618 0,615 0,604

read length=300 read length=400
(a) (b)

5.1 Boosting Assembly

Assembly is one of the most challenging computational problems in the field of
NGS data. It is a very time consuming process with highly variable outcomes for
different datasets [31]. Currently large datasets can only be assembled on high
performance computing systems with considerable CPU and memory resources.
Clustering has been used as preprocessing, prior to assembly, to improve memory
requirements as well as the quality of the assembled contigs [20, 21]. Here we test
if the quality of assembly of real read data can be improved with clustering. For
the assembly component we use Velvet [32], one of the most popular assembly
tool for NGS data. We study the Zymomonas mobilis genome and download
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as input the reads dataset SRR017901 (454 technology) with 23.5Mbases cor-
responding to 10× coverage. We apply the clustering algorithms, with k = 3,
and divide the dataset of reads in two clusters. Then we produce an assembly,
as a set of contigs, for each cluster using Velvet and we merged the generated
contigs. In order to evaluate the clustering quality, we compare this merged set
with the assembly, without clustering, using of the whole set of reads. Commonly
used metrics such as number of contigs, N50 and percentage of mapped contigs
are presented in Table 3. When merging contigs from different clusters, some
contig might be very similar or they can cover the same region of the genome,
this can artificially increase these values. Thus we compute also a less biased
measure that is the percentage of the genome that is covered by the contigs (last
column).

Table 3. Comparison of assembly with and without clustering preprocess (k = 3,
2 clusters). The assembly with Velvet is evaluated in terms of mapped contigs, N50,
number of contigs and genome coverage. The dataset used is SRR017901 (23.5M bases,
10x coverage) that contains reads of Zymomonas mobilis.

Distance Mapped Contigs N50 Number of Contigs Genome Coverage

No Clustering 93.55% 112 22823 0,828

D∗
2 93.97% 138 28701 0,914

D∗q
2 AQP 94.09% 141 29065 0,921

D∗q
2 AQP q-red 94.13% 141 29421 0,920

D∗q
2 AWP 94.36% 137 28425 0,907

D∗q
2 AWP q-red 94.36% 137 28549 0,908

L2 94.24% 135 28297 0,904
KL 94.19% 135 28171 0,903
Symm, KL 94.27% 134 27999 0,902
D2 94.33% 134 28019 0,903

In this set of experiments the introduction of clustering as a preprocessing
step increases the number of contigs and the N50. More relevant is the fact
that the genome coverage is incremented by 10% with respect to the assembly
without clustering. The relative performance between the distance measures is
very similar to the case with simulated data. In fact D∗q

2 with expectation AQP
and quality redistribution is again the best performing. More experiments should
be conducted in order to prove that assembly can benefit from the clustering
preprocessing. However this first preliminary tests show that, at least for some
configuration, a 10% improvement on the genome coverage can be obtained.

The time required to performed the above experiments are in general less than
a minute on a modern laptop with an Intel i7 and 8Gb of ram. The introduction of
quality values typically increases the running time by 4% compared to standard
alignment-free methods. The reads dataset SRR017901 is about 54MB and the
memory required to cluster this set is 110MB. Also in the other experiments the
memory requirements remain linear in the input size.
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6 Conclusions

The comparison of reads with quality values is essentials in many genome projects.
The importance of quality values will increase in the near future with the ad-
vent of future sequencing technologies, that promise to produce long reads, but
with 15% errors. In this paper we presented a family of alignment-free measures,
called Dq-type, that incorporate quality value information and k-mers counts for
the comparison of reads data. A set of experiments on simulated and real reads
data confirms that the new measures are superior to other classical alignment-free
statistics, especially when erroneous reads are considered. If quality information
are used, D∗q

2 outperforms all other methods and the advantage grows with the
error rate and with the length of reads. This confirms that the use of quality values
can improve clustering accuracy.

Preliminary experiments on real reads data show that the quality of assembly
can also improve when using clustering as preprocessing. All these measures are
implemented in a software called QCluster. As a future work we plan to explore
other applications like genome diversity estimation and meta-genome assembly
in which the impact of reads clustering might be substantial.
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