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Preface

This proceedings volume contains papers presented at the Workshop on Algo-
rithms in Bioinformatics 2014 (WABI 2014) that was held at the University of
Wroc�law, Poland, Institute of Computer Science, during September 8–12, 2014.
WABI 2014 was one of seven conferences that were organized as part of ALGO
2014. WABI is an annual conference series on all aspects of algorithms and data
structure in molecular biology, genomics, and phylogeny data analysis that was
first held in 2001. WABI 2014 was sponsored by the European Association for
Theoretical Computer Science (EATCS) and the International Society for Com-
putational Biology (ISCB).

In 2014, a total of 61 manuscripts were submitted to WABI from which 27
were selected for presentation at the conference, 26 of them full papers not previ-
ously published in journals, and one short abstract of a paper that was published
simultaneously in a journal. Papers were selected based on a thorough review-
ing and discussion process by the WABI Program Committee, usually involving
three reviewers per submitted paper. The selected papers cover a wide range
of topics from sequence and genome analysis through phylogeny reconstruction
and networks to mass spectrometry data analysis. As in previous years, extended
versions of selected WABI papers will be published in a Thematic Series in the
journal Algorithms for Molecular Biology (AMB), published by BioMed Central.

We thank all the authors of submitted papers and the members of the Pro-
gram Committee for their efforts that made this conference possible and the
WABI Steering Committee for help and advice. In particular, we are indebted
to the keynote speaker of the conference, Hélène Touzet, for her presentation.
Above all, we are most grateful to Marcin Bieńkowski and the local Organizing
Committee for their very professional work.

September 2014 Dan Brown
Burkhard Morgenstern
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QCluster: Extending Alignment-Free Measures

with Quality Values for Reads Clustering

Matteo Comin, Andrea Leoni, and Michele Schimd

Department of Information Engineering, University of Padova, Padova, Italy
comin@dei.unipd.it

Abstract. The data volume generated by Next-Generation Sequencing
(NGS) technologies is growing at a pace that is now challenging the
storage and data processing capacities of modern computer systems. In
this context an important aspect is the reduction of data complexity by
collapsing redundant reads in a single cluster to improve the run time,
memory requirements, and quality of post-processing steps like assembly
and error correction. Several alignment-free measures, based on k-mers
counts, have been used to cluster reads.

Quality scores produced by NGS platforms are fundamental for vari-
ous analysis of NGS data like reads mapping and error detection. More-
over future-generation sequencing platforms will produce long reads but
with a large number of erroneous bases (up to 15%). Thus it will be fun-
damental to exploit quality value information within the alignment-free
framework.

In this paper we present a family of alignment-free measures, called
Dq-type, that incorporate quality value information and k-mers counts
for the comparison of reads data. A set of experiments on simulated and
real reads data confirms that the new measures are superior to other
classical alignment-free statistics, especially when erroneous reads are
considered. These measures are implemented in a software called QClus-
ter (http://www.dei.unipd.it/~ciompin/main/qcluster.html).

Keywords: alignment-free measures, reads quality values, clustering
reads.

1 Introduction

The data volume generated by Next-Generation Sequencing (NGS) technologies
is growing at a pace that is now challenging the storage and data processing
capacities of modern computer systems [1]. Current technologies produce over
500 billion bases of DNA per run, and the forthcoming sequencers promise to
increase this throughput. The rapid improvement of sequencing technologies
has enabled a number of different sequencing-based applications like genome
resequencing, RNA-Seq, ChIP-Seq and many others [2]. Handling and processing
such large files is becoming one of the major challenges in most genome research
projects.

D. Brown and B. Morgenstern (Eds.): WABI 2014, LNBI 8701, pp. 1–13, 2014.
c© Springer-Verlag Berlin Heidelberg 2014
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Alignment-based methods have been used for quite some time to establish sim-
ilarity between sequences [3]. However there are cases where alignment methods
can not be applied or they are not suited. For example the comparison of whole
genomes is impossible to conduct with traditional alignment techniques, because
of events like rearrangements that can not be captured with an alignment [4–6].
Although fast alignment heuristics exist, another drawback is that alignment
methods are usually time consuming, thus they are not suited for large-scale se-
quence data produced by Next-Generation Sequencing technologies (NGS)[7, 8].
For these reasons a number of alignment-free techniques have been proposed
over the years [9].

The use of alignment-free methods for comparing sequences has proved useful
in different applications. Some alignment-free measures use the patterns distri-
bution to study evolutionary relationships among different organisms [4, 10, 11].
Several alignment-free methods have been devised for the detection of enhancers
in ChIP-Seq data [12–14] and also of entropic profiles [15, 16]. Another applica-
tion is the classification of protein remotely related, which can be addressed with
sophisticate word counting procedures [17, 18]. The assembly-free comparison of
genomes based on NGS reads has been investigated only recently [7, 8]. For a
comprehensive review of alignment-free measures and applications we refer the
reader to [9].

In this study we want to explore the ability of alignment-free measures to
cluster reads data. Clustering techniques are widely used in many different ap-
plications based on NGS data, from error correction [19] to the discovery of
groups of microRNAs [20]. With the increasing throughput of NGS technologies
another important aspect is the reduction of data complexity by collapsing re-
dundant reads in a single cluster to improve the run time, memory requirements,
and quality of subsequent steps like assembly.

In [21] Solovyov et. al. presented one of the first comparison of alignment-
free measures when applied to NGS reads clustering. They focused on clustering
reads coming from different genes and different species based on k-mer counts.
They showed that D-type measures (see section 2), in particular D∗

2 , can effi-
ciently detect and cluster reads from the same gene or species (as opposed to
[20] where the clustering is focused on errors). In this paper we extend this study
by incorporating quality value information into these measures.

Quality scores produced by NGS platforms are fundamental for various anal-
ysis of NGS data: mapping reads to a reference genome [22]; error correction
[19]; detection of insertion and deletion [23] and many others. Moreover future-
generation sequencing technologies will produce long and less biased reads with
a large number of erroneous bases [24]. The average number of errors per read
will grow up to 15%, thus it will be fundamental to exploit quality value infor-
mation within the alignment-free framework and the de novo assembly where
longer and less biased reads could have dramatic impact.

In the following section we briefly review some alignment-free measures. In
section 3 we present a new family of statistics, called Dq-type, that take ad-
vantage of quality values. The software QCluster is discussed in section 4 and
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relevant results on simulated and real data are presented in section 5. In section
6 we summarize the findings and we discuss future directions of investigation.

2 Previous Work on Alignment-Free Measures

One of the first papers that introduced an alignment-free method is due to
Blaisdell in 1986 [25]. He proposed a statistic called D2, to study the correlation
between two sequences. The initial purpose was to speed up database searches,
where alignment-based methods were too slow. The D2 similarity is the correla-
tion between the number of occurrences of all k-mers appearing in two sequences.
Let X and Y be two sequences from an alphabet Σ. The value Xw is the number
of times w appears in X , with possible overlaps. Then the D2 statistic is:

D2 =
∑

w∈Σk

XwYw.

This is the inner product of the word vectors Xw and Yw, each one repre-
senting the number of occurrences of words of length k, i.e. k-mers, in the two
sequences. However, it was shown by Lippert et al. [26] that the D2 statistic can
be biased by the stochastic noise in each sequence. To address this issue another
popular statistic, called Dz

2 , was introduced in [13]. This measure was proposed
to standardize the D2 in the following manner:

Dz
2 =

D2 − E(D2)

V(D2)
,

where E(D2) and V(D2) are the expectation and the standard deviation of D2,
respectively. Although the Dz

2 similarity improves D2, it is still dominated by
the specific variation of each pattern from the background [27, 28]. To account
for different distributions of the k-mers, in [27] and [28] two other new statistics
are defined and named D∗

2 and Ds
2. Let X̃w = Xw − (n − k + 1) ∗ pw and

Ỹw = Yw−(n−k+1)∗pw where pw is the probability of w under the null model.
Then D∗

2 and Ds
2 can be defined as follows:

D∗
2 =

∑
w∈Σk

X̃wỸw

(n− k + 1)pw
.

and,

Ds
2 =

∑
w∈Σk

X̃wỸw√
X̃2

w + Ỹ 2
w

This latter similarity measure responds to the need of normalization of D2.
These set of alignment-free measures are usually called D-type statistics. All
these statistics have been studied by Reinert et al. [27] and Wan et al. [28]
for the detection of regulatory sequences. From the word vectors Xw and Yw

several other measures can be computed like L2, Kullback-Leibler divergence
(KL), symmetrized KL [21] etc.
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3 Comparison of Reads with Quality Values

3.1 Background on Quality Values

Upon producing base calls for a read x, sequencing machines also assign a quality
score Qx(i) to each base in the read. These scores are usually given as phred -
scaled probability [29] of the i-th base being wrong

Qx(i) = −10 log10 Prob{the base i of read x is wrong }.

For example, if Qx(i) = 30 then there is 1 in 1000 chance that base i of read
x is incorrect. If we assume that quality values are produced independently to
each other (similarly to [22]), we can calculate the probability of an entire read
x being correct as:

Px{the read x is correct} =

n−1∏
j=0

(1− 10−Qx(j)/10)

where n is the length of the read x. In the same way we define the probability
of a word w of length k, occuring at position i of read x being correct as:

Pw,i{the word w at position i of read x is correct} =

k−1∏
j=0

(1− 10−Qx(i+j)/10).

In all previous alignment-free statistics the k-mers are counted such that each
occurrence contributed as 1 irrespective of its quality. Here we can use the quality
of that occurrence instead to account also for erroneous k-mers. The idea is
to model sequencing as the process of reading k-mers from the reference and
assigning a probability to them. Thus this formula can be used to weight the
occurrences of all k-mers used in the previous statistics.

3.2 New Dq-Type Statistics

We extend here D-type statistics [27, 28] to account for quality values. By defin-
ing Xq

w as the sum of probabilities of all the occurrences of w in x:

Xq
w =

∑
i∈{i| w occurs in x at position i}

Pw,i

we assign a weight (i.e. a probability) to each occurrence of w. Now Xq
w can be

used instead of Xw to compute the alignment-free statistics. Note that, by using
Xq

w, every occurrence is not counted as 1, but with a value in [0, 1] depending of
the reliability of the read. We can now define a new alignment-free statistic as :

Dq
2 =

∑
w∈Σk

Xq
wY

q
w .
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This is the extension of the D2 measure, in which occurrences are weighted
based on quality scores. Following section 2 we can also define the centralized
k-mers counts as follows:

X̃q
w = Xq

w − (n− k + 1)pwE(Pw)

where n = |x| is the length of x, pw is the probability of the word w in the
i.i.d. model and the expected number of occurrences (n− k + 1)pw is multiplied
by E(Pw) which represents the expected probability of k-mer w based on the
quality scores.

We can now extend two other popular alignment-free statistics:

D∗q
2 =

∑
w∈Σk

X̃q
wỸ

q
w

(n− k + 1)pwE(Pw)

and,

Dsq
2 =

∑
w∈Σk

X̃q
wỸ

q
w√

X̃q
w

2
+ Ỹ q

w

2

We call these three alignment-free measures Dq-type. Now, E(Pw) depends
on w and on the actual sequencing machine, therefore it can be very hard, if
not impossible, to calculate precisely. However, if the set D of all the reads is
large enough we can estimate the prior probability using the posterior relative
frequency, i.e. the frequency observed on the actual set D, similarly to [22].
We assume that, given the quality values, the error probability on a base is
independent from its position within the read and from all other quality values
(see [22]). We defined two different approximations, the first one estimates E(Pw)
as the average error probability of the k-mer w among all reads x ∈ D:

E(Pw) ≈
∑

x∈D
Xq

w∑
x∈D

Xw
(1)

while the second defines, for each base j of w, the average quality observed
over all occurrences of w in D:

Qw[j] =

∑
x∈D

∑
i∈{i| w occurs in x at position i} Qx(i + j)∑

x∈D
Xw

and it uses the average quality values to compute the expected word proba-
bility.

E(Pw) ≈
k−1∏
j=0

(1 − 10−Qw(j)/10) (2)

We called the first approximation Average Word Probability (AWP) and the
second one Average Quality Probability (AQP). Both these approximations are
implemented within the software QCluster and they will tested in section 5.
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3.3 Quality Value Redistribution

If we consider the meaning of quality values it is possible to further exploit it to
extend and improve the above statistics. Let’s say that the base A has quality
70%, it means that there is a 70% probability that the base is correct. However
there is also another 30% probability that the base is incorrect. Let’s ignore for
the moment insertion and deletion errors, if the four bases are equiprobable,
this means that with uniform probability 10% the wrong base is a C, or a G
or a T . It’s therefore possible to redistribute the “missing quality” among other
bases. We can perform a more precise operation by redistributing the missing
quality among other bases in proportion to their frequency in the read. For
example, if the frequencies of the bases in the read are A=20%, C=30%, G=30%,
T=20%, the resulting qualities, after the redistribution, will be: A=70%, C =
30%∗30%/(30%+30%+20%) = 11%, G = 30%∗30%/(30%+30%+20%) = 11%,
T = 30% ∗ 20%/(30% + 30% + 20%) = 7, 5%.

The same redistribution, with a slight approximation, can be extended to k-
mers quality. More in detail, we consider only the case in which only one base
is wrong, thus we redistribute the quality of only one base at a time. Given a
k-mer, we generate all neighboring words that can be obtained by substitution of
the wrong base. The quality of the replaced letter is calculated as in the previous
example and the quality of the entire word is again given by the product of the
qualities of all the bases in the new k-mers. We increment the corresponding
entry of the vector Xq

w with the score obtained for the new k-mer. This process
is repeated for all bases of the original k-mer. Thus every time we are evaluating
the quality of a word, we are also scoring neighboring k-mers by redistributing
the qualities. We didn’t consider the case where two or more bases are wrong si-
multaneously, because the computational cost would be too high and the quality
of the resulting word would not appreciably affect the measures.

4 QCluster: Clustering of Reads with Dq-Type Measures

All the described algorithms were implemented in the software QCluster. The
program takes in input a fastq format file and performs centroid-based clustering
(k-means) of the reads based on the counts and the quality of k-mers. The soft-
ware performs centroid-based clustering with KL divergence and other distances
like L2 (Euclidean), D2, D∗

2 , symmetrized KL divergence etc. When using the
Dq-type measures, one needs to choose the method for the computation of the
expected word probability, AWP or AQP , and the quality redistribution.

Since some of the implemented distances (symmetrized KL, D∗
2) do not guar-

antee to converge, we implemented a stopping criteria. The execution of the
algorithm interrupts if the number of iterations without improvements exceeds
a certain threshold. In this case, the best solution found is returned. The maxi-
mum number of iterations may be set by the user and for our experiments we use
the value 5. Several other options like reverse complement and different normal-
ization are available. All implemented measures can be computed in linear time
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and space, which is desirable for large NGS datasets. The QCluster1 software
has been implemented in C++ and compiled and tested using GNU GCC.

5 Experimental Results

Several tests have been performed in order to estimate the effectiveness of the
different distances, on both simulated and real datasets. In particular, we had
to ensure that, with the use of the additional information of quality values, the
clustering improved compared to that produced by the original algorithms.

For simulations we use the dataset of human mRNA genes downloaded from
NCBI2, also used in [21]. We randomly select 50 sets of 100 sequences each
of human mRNA, with the length of each sequence ranged between 500 and
10000 bases. From each sequence, 10000 reads of length 200 were simulated
using Mason3 [30] with different parameters, e.g. percentage of mismatches, read
length. We apply QCluster using different distances, to the whole set of reads and
then we measure the quality of the clusters produced by evaluating the extent
to which the partitioning agrees with the natural splitting of the sequences. In
other words, we measured how well reads originating from the same sequence
are grouped together. We calculate the recall rate as follows, for each mRNA
sequence S we identified the set of reads originated from S. We looked for the
cluster C that contains most of the reads of S. The percentage of the S reads
that have been grouped in C is the recall value for the sequence S. We repeat
the same operation for each sequence and calculate the average value of recall
rate over all sequences.

Several clustering were produced by using the following distance types: D∗
2 ,

D2, L2, KL, symmetrized KL and compared with D∗q
2 in all its variants, us-

ing the expectation formula (1) AWP or (2) AQP , with and without quality
redistribution (q-red). In order to avoid as much as possible biases due to the
initial random generation of centroids, each algorithm was executed 5 times with
different random seeds and the clustering with the lower distortion was chosen.

Table 1 reports the recall while varying error rates, number of clusters and
the parameters k. For all distances the recall rate decreases with the number
of clusters, as expected. For traditional distances, if the reads do not contain
errors then D∗

2 preforms consistently better then the others D2, L2, KL. When
the sequencing process becomes more noisy, the KL distances appears to be
less sensitive to sequencing errors. However if quality information are used, D∗q

2

outperforms all other methods and the advantage grows with the error rate.
This confirms that the use of quality values can improve clustering accuracy.
When the number of clusters increases then the advantage of D∗q

2 becomes more
evident. In these experiments the use of AQP for expectation within D∗q

2 is more
stable and better performing compared with formula AWP . The contribution of

1 http://www.dei.unipd.it/~ciompin/main/qcluster.html
2 ftp://ftp.ncbi.nlm.nih.gov/refseq/H-sapiens/mRNA-Prot/
3 http://seqan.de/projects/mason.html

http://www.dei.unipd.it/~ciompin/main/qcluster.html
ftp://ftp.ncbi.nlm.nih.gov/refseq/H-sapiens/mRNA-Prot/
http://seqan.de/projects/mason.html
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Table 1. Recall rates of clustering of mRNA simulated reads (10000 reads of length
200) for different measures, error rates, number of clusters and parameter k

Distance No Errors 3% 5% 10%

2 clusters

D∗
2 0,815 0,813 0,810 0,801

D∗q
2 AQP 0,815 0,815 0,813 0,810

D∗q
2 AQP q-red 0,815 0,815 0,813 0,810

D∗q
2 AWP 0,809 0,806 0,805 0,802

D∗q
2 AWP q-red 0,809 0,806 0,805 0,802

L2 0,811 0,807 0,806 0,801
KL 0,812 0,809 0,807 0,802
Symm, KL 0,812 0,809 0,807 0,802
D2 0,811 0,807 0,806 0,801

3 clusters

D∗
2 0,695 0,689 0,683 0,662

D∗q
2 AQP 0,695 0,696 0,696 0,689

D∗q
2 AQP q-red 0,695 0,696 0,696 0,691

D∗q
2 AWP 0,653 0,646 0,646 0,638

D∗q
2 AWP q-red 0,653 0,646 0,645 0,637

L2 0,682 0,673 0,671 0,657
KL 0,694 0,687 0,685 0,672
Symm, KL 0,693 0,686 0,684 0,669
D2 0,675 0,668 0,662 0,654

4 clusters

D∗
2 0,623 0,613 0,606 0,574

D∗q
2 AQP 0,622 0,621 0,618 0,602

D∗q
2 AQP q-red 0,622 0,622 0,619 0,605

D∗q
2 AWP 0,580 0,563 0,566 0,535

D∗q
2 AWP q-red 0,580 0,560 0,565 0,533

L2 0,554 0,551 0,547 0,540
KL 0,555 0,548 0,545 0,536
Symm, KL 0,556 0,549 0,546 0,538
D2 0,553 0,547 0,547 0,538

5 clusters

D∗
2 0,553 0,539 0,532 0,500

D∗q
2 AQP 0,554 0,545 0,551 0,532

D∗q
2 AQP q-red 0,553 0,544 0,550 0,533

D∗q
2 AWP 0,483 0,475 0,470 0,463

D∗q
2 AWP q-red 0,483 0,475 0,470 0,461

L2 0,478 0,472 0,465 0,453
KL 0,498 0,488 0,484 0,468
Symm, KL 0,498 0,488 0,484 0,468
D2 0,470 0,464 0,457 0,449

No Errors 3% 5% 10%

2 clusters

0,822 0,819 0,814 0,794

0,822 0,822 0,820 0,809
0,822 0,822 0,820 0,807
0,809 0,807 0,805 0,802
0,809 0,807 0,805 0,802

0,810 0,806 0,805 0,801
0,812 0,809 0,807 0,802
0,812 0,808 0,806 0,802
0,809 0,806 0,805 0,800

3 clusters

0,717 0,707 0,697 0,668

0,717 0,711 0,705 0,679
0,717 0,712 0,704 0,681
0,668 0,662 0,655 0,646
0,668 0,662 0,655 0,644

0,685 0,677 0,674 0,663
0,696 0,689 0,687 0,675
0,695 0,688 0,685 0,673
0,675 0,671 0,665 0,655

4 clusters

0,627 0,616 0,591 0,551

0,628 0,617 0,602 0,572
0,628 0,617 0,603 0,573
0,582 0,571 0,572 0,555
0,582 0,570 0,570 0,555

0,568 0,565 0,553 0,543
0,566 0,558 0,547 0,537
0,562 0,554 0,547 0,539
0,556 0,549 0,548 0,540

5 clusters

0,560 0,534 0,512 0,462

0,560 0,544 0,524 0,489
0,561 0,545 0,531 0,487
0,509 0,494 0,485 0,470
0,509 0,494 0,482 0,470

0,500 0,495 0,486 0,465
0,507 0,501 0,492 0,476
0,507 0,500 0,491 0,474
0,488 0,482 0,476 0,455

k = 2 k = 3
(a) (b)
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quality redistribution (q-red) is limited, although it seems to have some positive
effect with the expectation AQP .

The future generation sequencing technologies will produce long reads with a
large number of erroneous bases. To this end we study how read length affects
these measures. Since the length of sequences under investigation is limited we
keep the read length under 400 bases. In Table 2 we report some experiments
for the setup with 4 clusters and k = 3, while varying the error rate and read
length. If we compare these results with Table 1, where the read length is 200,
we can observe a similar behavior. As the error rate increases the improvement
with respect to the other measures remains evident, in particular the difference in
terms of recall of D∗q

2 with the expectations AQP grows with the length of reads
when compared with KL (up to 9%), and it remains constant when compared
with D∗

2 . With the current tendency of the future sequencing technologies to
produce longer reads this behavior is desirable. These performance are confirmed
also for other setups with larger k and higher number of clusters (data not
shown).

Table 2. Recall rates for clustering of mRNA simulated reads (10000 reads, k = 3, 4
clusters) for different measures, error rates and read length

Distance No Errors 3% 5% 10%

4 clusters

D∗
2 0,680 0,667 0,658 0,625

D∗q
2 AQP 0,680 0,672 0,673 0,650

D∗q
2 AQP q-red 0,680 0,671 0,673 0,650

D∗q
2 AWP 0,616 0,610 0,608 0,601

D∗q
2 AWP q-red 0,616 0,610 0,607 0,602

L2 0,610 0,600 0,602 0,581
KL 0,617 0,604 0,601 0,577
Symm, KL 0,613 0,603 0,599 0,576
D2 0,601 0,593 0,588 0,575

No Errors 3% 5% 10%

4 clusters

0,713 0,700 0,697 0,672

0,713 0,712 0,710 0,693
0,713 0,711 0,711 0,694
0,643 0,636 0,632 0,623
0,643 0,635 0,631 0,622

0,638 0,630 0,624 0,614
0,649 0,632 0,628 0,618
0,647 0,632 0,627 0,616
0,626 0,618 0,615 0,604

read length=300 read length=400
(a) (b)

5.1 Boosting Assembly

Assembly is one of the most challenging computational problems in the field of
NGS data. It is a very time consuming process with highly variable outcomes for
different datasets [31]. Currently large datasets can only be assembled on high
performance computing systems with considerable CPU and memory resources.
Clustering has been used as preprocessing, prior to assembly, to improve memory
requirements as well as the quality of the assembled contigs [20, 21]. Here we test
if the quality of assembly of real read data can be improved with clustering. For
the assembly component we use Velvet [32], one of the most popular assembly
tool for NGS data. We study the Zymomonas mobilis genome and download
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as input the reads dataset SRR017901 (454 technology) with 23.5Mbases cor-
responding to 10× coverage. We apply the clustering algorithms, with k = 3,
and divide the dataset of reads in two clusters. Then we produce an assembly,
as a set of contigs, for each cluster using Velvet and we merged the generated
contigs. In order to evaluate the clustering quality, we compare this merged set
with the assembly, without clustering, using of the whole set of reads. Commonly
used metrics such as number of contigs, N50 and percentage of mapped contigs
are presented in Table 3. When merging contigs from different clusters, some
contig might be very similar or they can cover the same region of the genome,
this can artificially increase these values. Thus we compute also a less biased
measure that is the percentage of the genome that is covered by the contigs (last
column).

Table 3. Comparison of assembly with and without clustering preprocess (k = 3,
2 clusters). The assembly with Velvet is evaluated in terms of mapped contigs, N50,
number of contigs and genome coverage. The dataset used is SRR017901 (23.5M bases,
10x coverage) that contains reads of Zymomonas mobilis.

Distance Mapped Contigs N50 Number of Contigs Genome Coverage

No Clustering 93.55% 112 22823 0,828

D∗
2 93.97% 138 28701 0,914

D∗q
2 AQP 94.09% 141 29065 0,921

D∗q
2 AQP q-red 94.13% 141 29421 0,920

D∗q
2 AWP 94.36% 137 28425 0,907

D∗q
2 AWP q-red 94.36% 137 28549 0,908

L2 94.24% 135 28297 0,904
KL 94.19% 135 28171 0,903
Symm, KL 94.27% 134 27999 0,902
D2 94.33% 134 28019 0,903

In this set of experiments the introduction of clustering as a preprocessing
step increases the number of contigs and the N50. More relevant is the fact
that the genome coverage is incremented by 10% with respect to the assembly
without clustering. The relative performance between the distance measures is
very similar to the case with simulated data. In fact D∗q

2 with expectation AQP
and quality redistribution is again the best performing. More experiments should
be conducted in order to prove that assembly can benefit from the clustering
preprocessing. However this first preliminary tests show that, at least for some
configuration, a 10% improvement on the genome coverage can be obtained.

The time required to performed the above experiments are in general less than
a minute on a modern laptop with an Intel i7 and 8Gb of ram. The introduction of
quality values typically increases the running time by 4% compared to standard
alignment-free methods. The reads dataset SRR017901 is about 54MB and the
memory required to cluster this set is 110MB. Also in the other experiments the
memory requirements remain linear in the input size.
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6 Conclusions

The comparison of reads with quality values is essentials in many genome projects.
The importance of quality values will increase in the near future with the ad-
vent of future sequencing technologies, that promise to produce long reads, but
with 15% errors. In this paper we presented a family of alignment-free measures,
called Dq-type, that incorporate quality value information and k-mers counts for
the comparison of reads data. A set of experiments on simulated and real reads
data confirms that the new measures are superior to other classical alignment-free
statistics, especially when erroneous reads are considered. If quality information
are used, D∗q

2 outperforms all other methods and the advantage grows with the
error rate and with the length of reads. This confirms that the use of quality values
can improve clustering accuracy.

Preliminary experiments on real reads data show that the quality of assembly
can also improve when using clustering as preprocessing. All these measures are
implemented in a software called QCluster. As a future work we plan to explore
other applications like genome diversity estimation and meta-genome assembly
in which the impact of reads clustering might be substantial.

Acknowledgments. M. Comin was partially supported by the Ateneo Project
CPDA110239 and by the P.R.I.N. Project 20122F87B2.
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Abstract. In this paper we present improved approximation results
for the max duo-preservation string mapping problem (MPSM)
introduced in [Chen et al., Theoretical Computer Science, 2014] that
is complementary to the well-studied min common string partition
problem (MCSP). When each letter occurs at most k times in each string
the problem is denoted by k-MPSM. First, we prove that k-MPSM is
APX-Hard even when k = 2. Then, we improve on the previous results
by devising two distinct algorithms: the first ensures approximation ra-
tio 8/5 for k = 2 and ratio 3 for k = 3, while the second guarantees
approximation ratio 4 for any bigger value of k. Finally, we address the
approximation of constrained maximum induced subgraph (CMIS,
a generalization of MPSM, also introduced in [Chen et al., Theoretical
Computer Science, 2014]), and improve the best known 9-approximation
for 3-CMIS to a 6-approximation, by using a configuration LP to get a
better linear relaxation. We also prove that such a linear program has
an integrality gap of k, which suggests that no constant approximation
(i.e. independent of k) can be achieved through rounding techniques.

Keywords: Polynomial approximation, Max Duo-Preserving String
Mapping Problem, Min Common String Partition Problem, Linear Pro-
gramming, Configuration LP.

1 Introduction

String comparison is a central problem in stringology with a wide range of ap-
plications, including data compression, and bio-informatics. There are various
ways to measure the similarity of two strings: one may use the Hamming dis-
tance which counts the number of positions at which the corresponding symbols
are different, the Jaro-Winkler distance, the overlap coefficient, etc. However in
computer science, the most common measure is the so called edit distance that
measures the minimum number of edit operations that must be performed to
transform the first string into the second. In biology, this number may provide
some measure of the kinship between different species based on the similarities
of their DNA. In data compression, it may help to store efficiently a set of similar
∗ Research supported by the Swiss National Science Foundation project
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yet different data (e.g. different versions of the same object) by storing only one
"base" element of the set, and then storing the series of edit operations that
result in the other versions of the base element.

The concept of edit distance changes definition based on the set of edit op-
erations that are allowed. When the only edit operation that is allowed is to
shift a block of characters, the edit distance can be measured by solving the min
common string partition problem.

The min common string partition (MCSP) is a fundamental problem in
the field of string comparison [7,13], and can be applied more specifically to
genome rearrangement issues, as shown in [7]. Consider two strings A and B,
both of length n, such that B is a permutation of A. Also, let PA denote a
partition of A, that is, a set of substrings whose concatenation results in A. The
MCSP Problem introduced in [13] and [19] asks for a partition PA of A and
PB of B of minimum cardinality such that PA is a permutation of PB. The
k−MCSP denotes the restricted version of the problem where each letters has at
most k occurrences. This problem is NP-Hard and even APX-Hard, also when the
number of occurrences of each letter is at most 2 (note that the problem is trivial
when this number is at most 1) [13]. Since then, the problem has been intensively
studied, especially in terms of polynomial approximation [7,8,9,13,15,16], but
also parametric computation [4,17,10,14]. The best approximations known so far
are an O(log n log∗ n)-approximation for the general version of the problem [9],
and an O(k)-approximation for k−MCSP [16]. On the other hand, the problem
was proved to be Fixed Parameter Tractable (FPT), first with respect to both k
and the cardinality φ of an optimal partition [4,10,14], and more recently, with
respect to φ only [17].

In [6], the maximization version of the problem is introduced and denoted
by max duo-preservation string mapping (MPSM). Reminding that a duo
denotes a couple of consecutive letters it is clear that when a solution (PA,PB)
for min common string partition partitions A and B into φ substrings, this
solution can be translated as a mapping π from A to B that preserves exactly
n − φ duos. Hence, given two strings A and B, the MPSM problem asks for a
mapping π from A to B that preserves a maximum number of duos (a formal
definition is given in Subsection 3.1). An example is provided in Figure 1.

A : a b c b a c

B : b a b c a c

Fig. 1. A mapping π that preserves 3 duos
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Considering that MCSP is NP-Hard [13], its maximization counterpart MPSM
is also NP-Hard. However, these two problems might have different behaviors
in terms of approximation, inapproximability, and parameterized complexity.
max independent set and min vertex cover provide a good example of
how symmetrical problems might have different characteristics: on the one hand,
max independent set is inapproximable within ratio nε−1 for a given ε ∈ (0, 1)
unless P = NP [18], and is W [1]-Hard [11]; and on the other hand min vertex
cover is easily 2-approximable in polynomial time by taking all endpoints of a
maximal matching [12], and is FPT [5].

The authors of [6] provide some approximation results for MPSM in the follow-
ing way: a graph problem called constrained maximum induced subgraph
(CMIS) is defined and proved to be a generalization of MPSM. Using a solution
to the linear relaxation of CMIS, it is proved that a randomized rounding pro-
vides a k2 expected approximation ratio for k-CMIS (and thus for k-MPSM),
and a 2 expected approximation ratio for 2-CMIS (and thus for 2-MPSM).

In what follows, we start by proving briefly that k-MPSM is APX-Hard, even
when k = 2 (Section 2). Then, we present some improved approximation results
for MPSM (Section 3), namely a general approximation algorithm that guar-
antees approximation ratio 4 regardless of the value of k (Subsection 3.2), and
an algorithm that improves on this ratio for small values of k (Subsection 3.3).
Finally, we improve on the approximation of 3-CMIS, by using a configuration
LP to get a better relaxed solution (Section 4), and analyze the integrality gap
of this relaxed solution.

2 Hardness of Approximation

We will show that MPSM is APX–hard, which essentially rules out any polyno-
mial time approximation schemes unless P = NP. The result follows with slight
modifications from the known approximation hardness result for MCSP. Indeed,
in [13] it is shown that any instance of max independent set in a cubic graph
(3–MIS) can be reduced to an instance of 2–MCSP (proof of Theorem 2.1 in
[13]). We observe that the construction used in their reduction also works as a
reduction from 3–MIS to 2–MPSM. In particular, given a cubic graph with n
vertices and independence number α, the corresponding reduction to 2–MPSM
has an optimum value of m = 4n + α.

Given a ρ–approximation to 2–MPSM, we will hence always find an inde-
pendent set of size at least ρm − 4n. It is shown in [3] that it is NP–hard to
approximate 3–MIS within 139

140 + ε for any ε > 0. Therefore, unless P = NP, for
every ε > 0 there is an instance I of 3–MIS such that:

APPI

OPTI
� 139

140
+ ε

where APPI is the solution produced by any polynomial time approximation
algorithm and OPTI the optimum value of I. Substituting here we get:

ρm− 4n

m− 4n
� 139

140
+ ε
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Solving for ρ yields:

ρ � 139

140
+

4n

m

(
1

140
− ε

)
+ ε � 139

140
+

16

17 · 140
+

1

17
ε

where the last inequality follows from noting that for any cubic graph the max-
imum independent set α is always at least of size 1

4n.

3 Approximation Algorithms for max duo-preservation
string mapping

In this section we present two different approximation algorithms. First, a simple
algorithm that provides a 4-approximation ratio for the general version of the
problem, and then an algorithm that improves on this ratio for small values of
k.

3.1 Preliminaries

For i = 1, ..., n, we denote by ai the ith character of string A, and by bi
the ith character in B. We also denote by DA = (DA

1 , ..., D
A
n−1) and DB =

(DB
1 , ..., D

B
n−1) the set of duos of A and B respectively. For i = 1, ..., n− 1, DA

i

corresponds to the duo (ai, ai+1), and DB
i corresponds to the duo (bi, bi+1).

A mapping π from A to B is said to be proper if it is bijective, and if,
∀i = 1, ..., n, ai = bπ(i). In other words, each letter of the alphabet in A must be
mapped to the same letter in B for the mapping to be proper. A couple of duos(
DA

i , D
B
j

)
is said to be preservable if ai = bj and ai+1 = bj+1. Given a mapping

π, a preservable couple of duos
(
DA

i , D
B
j

)
is said to be preserved by π if π(i) = j

and π(i + 1) = j + 1. Finally, two preservable couples of duos
(
DA

i , D
B
j

)
and(

DA
h , D

B
l

)
will be called conflicting if there is no proper mapping that preserves

both of them. These conflicts can be of two types, w.l.o.g., we suppose that i � h
(resp. j � l):

– Type 1: i = h (resp. j = l) and j �= l (resp. i �= h) (see Figure 2(a))
– Type 2: i = h− 1 (resp. j = l− 1) and j �= l− 1 (resp. i �= h− 1) (see Figure

2(b))

Let us now define formally the problem at hand:

Definition 1. max duo-preservation string mapping (MPSM):

– Instance: two strings A and B such that B is a permutation of A.
– Solution: a proper mapping π from A to B.
– Objective: maximizing the number of duos preserved by π, denoted by f(π).

Let us finally introduce the concept of duo-mapping. A duo-mapping σ is
a mapping, which - unlike a mapping π that maps each character in A to a
character in B - maps a subset of duos of DA to a subset of duos of DB. Having
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A : . . . a b . . .

B : . . . a b . . . a b . . .

DA
i (= DA

h )

DB
j DB

l

(a) Type 1

A: . . . a b c . . .

B: . . . a b . . . . b c . . .

DA
i DA

h

DB
j DB

l

(b) Type 2

Fig. 2. Different types of conflicting pairs of duos

σ(i) = j means that the duo DA
i is mapped to the duo DB

j . Again, a duo-mapping
σ is said to be proper if it is bijective, and if DA

i = DB
σ(i) for all duos mapped

through σ. Note that a proper duo-mapping might map some conflicting couple
of duos. Revisit the example of Figure 2(b): having σ(i) = j and σ(h) = l defines
a proper duo-mapping that maps conflicting couple of duos. Notice however that
a proper duo-mapping might generate conflicts of Type 2 only. We finally define
the concept of unconflicting duo-mapping, which is a proper duo-mapping that
does not map any pair of conflicting duos.

Remark 1. An unconflicting duo-mapping σ on some subset of duos of size f(σ)
immediatly derives a proper mapping π on the whole set of characters with
f(π) � f(σ): it suffices to map characters mapped by σ in the same way that σ
does, and map arbitrarily the remaining characters.

3.2 A 4-Approximation Algorithm for MPSM

Proposition 1. There exists a 4-approximation algorithm for MPSM that runs
in O(n3/2) time.

Proof. Consider the two strings A = a1a2...an and B = b1b2...bn that one wishes
to map while preserving a maximal number of duos, and let DA and DB de-
note their respective sets of duos. Also, denote by π∗ an optimal mapping that
preserves a maximum number f(π∗) of duos.

Build a bipartite graph G in the following way: vertices on the left and the
right represent duos of DA and DB, respectively. Whenever one duo on the right
and one on the left are preservable (same two letters in the same order), we add
an edge between the two corresponding vertices. Figure 3 provides an example
of this construction.

At this point, notice that there exists a one-to-one correspondence between
matchings in G and proper duo-mappings between DA and DB. In other words
there exists a matching in G with f(π∗) edges. Indeed, the set of duos preserved
by any solution (and a fortiori by the optimal one) can be represented as a
matching in G. Hence, denoting by M∗ a maximum matching in G, it holds that
:

f(π∗) � |M∗| (1)
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Unfortunately, a matching M∗ in G does not immediately translate into a
proper mapping that preserves |M∗| duos. However, it does correspond to a
proper duo-mapping that maps |M∗| duos, which, as noticed earlier, might gen-
erate conflicts of Type 2 only.

DA

ab

bc

ca

ab

bc

DB

ca

ab

ba

ab

bc

(a) A proper duo-mapping with 2 conflicts

DA

ab

bc

ca

ab

bc

DB

ca

ab

ba

ab

bc

(b) An unconflicting duo-mapping

Fig. 3. The graph G where A = abcabc and B = cababc

In G, a conflict of Type 2 corresponds to two consecutive vertices on one side
matched to two non-consecutive vertices on the other side. Hence, to generate
an unconflicting duo-mapping σ using a matching M∗, it suffices to partition
the matching M∗ in 4 sub-matchings in the following way : Let M(even, odd)
denote the submatching of M∗ containing all edges whose left endpoint have
even indices, and right endpoint have odd indices; and define M(odd, even),
M(even, even), and M(odd, odd) in the same way. Denote by M̂ the matching
with biggest cardinality among these 4. Obviously, remembering that the four
submatchings define a partition of M∗, it holds that |M̂ | � |M∗|/4. Consider-
ing that M̂ does not contain any pair of edges with consecutive endpoints, the
corresponding duo-mapping σ has no conflict. Following Remark 1, σ derives a
proper mapping π on the characters such that:

f(π) � f(σ) = |M̂ | � |M
∗|

4

(1)
� f(π∗)

4

A 4-approximate solution can thus be computed by creating the graph G from
strings A and B, computing an maximum matching M∗ on it, partitioning M∗

four ways by indices parity and return the biggest partition M̂ . Then map the
matched duos following the edges M̂ , and map all the other characters arbitrarily.
The complexity of the whole procedure is given by the complexity of computing
an optimal matching in G, which is O(n3/2). ��
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It is likely that the simple edge removal procedure that nullifies all conflicts
of Type 2 can be replaced by a more involved heuristic method in order to solve
efficiently real life problems.

3.3 An 8/5-Approximation for 2-MPSM

In the following, we make use of a reduction from MSPM to max independent
set (MIS) already pointed out in [13]. Given two strings A and B, consider
the graph H built in the following way: H has a vertex vij for each preservable
couple of duos ((DA

i ), (DB
j )), and H has an edge (vij , vhl) for each conflicting pair

of preservable couple of duos ((DA
i ), (DB

j )) ((DA
h ), (DB

l )). It is easy to see that
there is a 1 to 1 correspondence between independent sets in H and unconflicting
duo-mappings between A and B.

Notice that, for a given k, a couple of duos ((DA
i ), (DB

j )) can belong to at
most 6(k − 1) conflicting pairs: on the one hand, there can be at most 2(k − 1)
conflicts of Type 1 (one for each other occurrence of the duo DA

i in DA and
DB), and on the other hand at most 4(k − 1) conflicts of Type 2 (one for each
possible conflicting occurrence of DB

j−1 or DB
j+1 in DA, and one for each possible

conflicting occurrence of DA
j−1 or DA

j+1 in DB). This bound is tight.
Hence, for a given instance of k-MPSM, the corresponding instance of MIS is a

graph with maximum degree Δ � 6(k−1). Using the approximation algorithm of
[2] and [1] for independent set (which guarantees approximation ratio (Δ+ 3)/5
), this leads to obtaining approximation ratio arbitrarily close to (6k − 3)/5
for k-MPSM, which already improves on the best known 2-approximation when
k = 2, and also on the 4-approximation of Proposition 1 when k = 3.

We now prove the following result in order to further improve on the approx-
imation:

Lemma 1. In a graph H corresponding to an instance of 2-MPSM, there exists
an optimal solution for MIS that does not pick any vertex of degree 6.

Proof. Consider a vertex vij of degree 6 in such a graph H . This vertex corre-
sponds to a preservable couple of duos that conflicts with 6 other preservable
couples. There exists only one possible configuration in the strings A and B that
can create this situation, which is illustrated in Figure 4(a).

In return, this configuration always corresponds to the gadget illustrated in
Figure 4(b), where vertices vij , vhj , vil, and vhl have no connection with the rest
of the graph.

Now, consider any maximal independent set S that picks some vertex vij
of degree 6 in H . The existence of this degree-6 vertex induces that graph H
contains the gadget of Figure 4(a). S is maximal, so it necessarily contains vertex
vhl as well. Let S′ = S \ ({vij}, {vhl}) ∪ ({vil}, {vhj}). Reminding that vil and
vhj have no neighbor outside of the gadget, it is clear that S′ also defines an
independent set.

Hence, in a maximal (and a fortiori optimal) independent set, any pair of
degree-6 vertices (in such graphs, degree-6 vertices always appear in pair) can
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A: . . . a b c d . . . x b c y . . .

B: . . . x b c y . . . a b c d . . .

DA
i DA

h

DB
j DB

l

(a) Strings A and B

vij

vil

vhj

vhl

vi+1,l+1vi−1,l−1

vh+1,j+1vh−1,j−1

(b) Gadget in H

Fig. 4. A degree 6-vertex in graph H

be replaced by a pair of degree 2 vertices, which concludes the proof of Lemma
1. ��

Let H ′ be the subgraph of H induced by all vertices apart from vertices of
degree 6. Lemma 1 tells us that an optimal independent set on H ′ has the same
cardinality than an optimal independent set in H . However H ′ has maximum
degree 5 and not 6, which yields a better approximation when using the algorithm
described in [2] and [1]:

Proposition 2. 2-MPSM is approximable within ratio arbitrarily close to 8/5
in polynomial time.

Notice that the reduction from k-MPSM to 6(k − 1)-MIS also yields the fol-
lowing simple parameterized algorithm:

Corollary 1. k-MPSM can be solved in O∗((6(k − 1) + 1)ψ), where ψ denotes
the value of an optimal solution.

Consider an optimal independent set S in H , if some vertex v of H has no
neighbour in S then v necessarily belongs to S. Thus, in order to build an optimal
solution S, one can go through the decision tree that, for each vertex v that has
no neighbour in the current solution, consists of deciding which vertex among
v and its set of neighbours will be included in the solution. Any solution S will
take one of these 6(k−1)+1 vertices. Each node of the decision tree has at most
6(k− 1) + 1 branches, and the tree has obviously depth ψ, considering that one
vertex is added to S at each level.

4 Some Results on 3-constrained maximum induced
subgraph

In this section we consider the constrained maximum induced subgraph
problem (CMIS) which is a generalization of max duo-preservation string
mapping (MPSM). In [6] the CMIS served as the main tool to analyze its special
case, namely the MPSP problem. The problem is expressed as a natural linear
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program denoted by NLP , which is used to obtain a randomized k2 approxima-
tion algorithm. In this section we provide a 6-approximation algorithm for the
3-CMIS which improves on the previous 9-approximation algorithm. We do this
by introducing a configuration-LP denoted by CLP . Moreover we show that
both NLP and CLP have an integrality gap of at least k which implies that it
is unlikely to construct a better than k-approximation algorithm based on these
linear programs.

We start with a formal definition of the problem.

Definition 2. constrained maximum induced subgraph (CMIS):

– Instance: an m-partite graph G(V,E) with parts: G1, . . . , Gm. Each part Gi

has n2
i vertices organized in an ni × ni grid.

– Solution: a subset of vertices such that within each grid in each column and
each row at most one vertex is chosen.

– Objective: maximizing the number of edges in the induced subgraph.

In the constrained k-CMIS problem each grid consists of at most k× k vertices.
Let vijp be the vertex placed in position (i, j) in the pth grid. Consider the

linear program NLP as proposed in [6]. Let xij
p be the boolean variable which

takes value 1 if the corresponding vertex vijp is chosen, and 0 otherwise. Let
xpijqkl

be the edge-corresponding boolean variable such that it takes the value 1
if both the endpoint vertices vijp and vklq are selected and 0 otherwise. The task
is to choose a subset of vertices, such that within each block, in each column and
each row at most one vertex is chosen. The objective is to maximize the number
of edges in the induced subgraph. The LP formulation is the following:

NLP :

Max
∑

(vij
p vkl

q )∈E

xpijqkl

s.t. xpijqkl
� xij

p for i, j, k, l = [np], p, q = [m],
np∑
i=1

xij
p = 1 for j = [np], p = [m],

np∑
j=1

xij
p = 1 for i = [np], p = [m],

0 � xpijqkl
� 1 for i, j, k, l = [np], p, q = [m],

0 � xij
p � 1 for i, j = [np], p = [m].

(2)

Note that when the size of each grid is constant, the CLP is of polynomial size.
The first constraint ensures that the value of the edge-corresponding variable
is not greater than the value of the vertex-corresponding variable of any of its
endpoints. The second and the third constraints ensure that within each grid at
most one vertex is taken in each column, each row, respectively.

Notice that within each grid there are k! possible ways of taking a feasible
subset of vertices. We call a configuration, a feasible subset of vertices for a given
grid. Let us denote by Cp the set of all possible configurations for a grid p. Now,
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consider that we have boolean variable xCp for each possible configuration. The
variable xCp takes value 1 if all the vertices contained in Cp are chosen and 0
otherwise. The induced linear program is called Configuration-LP , (CLP ). The
CLP formulation for the CMIS problem is the following:

CLP (K) :

Max
∑

(vij
p vkl

q )∈E

xpijqkl

s.t. xpijqkl
� xij

p for i, j, k, l = [np], p, q = [m],

xij
p =

∑
vij
p ∈Cp∈Cp

xCp for i, j = [np], p,= [m],

∑
Cp∈Cp

xCp = 1 for p = [m],

0 � xpijqkl
� 1 for i, j, k, l = [np], p, q = [m],

0 � xCp � 1 for Cp ∈ Cp, p = [m],

(3)

The first constraint is the same as in NLP . The second one ensures that
the value of the vertex-corresponding variable is equal to the summation of the
values of the configuration-corresponding variables containing considered vertex.
The third constraint ensures that within each grid exactly one configuration can
be taken. Notice that the vertex variables are redundant and serve just as an
additional description. In particular the first and the second constraints could
be merged into one constraint without vertex variables.

One can easily see that the CLP is at least as strong as the NLP formulation:
a feasible solution to CLP always translates to a feasible solution to NLP.

Proposition 3. There exists a randomized 6-approximation algorithm for the
3-constrained maximum induced subgraph problem.

Proof. Consider a randomized algorithm that, in each grid Gp, takes the vertices
from configuration C with a probability

√
xC∑

Cp∈Cp

√xCp
.

Consider any vertex, w.l.o.g. v1,1p . Each vertex is contained in two configura-
tions, w.l.o.g. let v1,1p be contained in C1

p and C2
p . The probability that v1,1p is

chosen is:

Pr
(
v1,1p is taken

)
=

√xC1
p

+√xC2
p∑

Cp∈Cp

√
xCp

Optimizing the expression √xC1
p

+√xC2
p

under the condition xC1
p

+ xC2
p

= x1,1
p ,

we have that the minimum is when either xC1
p

= 0 or xC2
p

= 0 which implies
√xC1

p
+√xC2

p
=

√
x1,1
p . Thus:

Pr
(
v1,1p is taken

)
�

√
x1,1
p∑

Cp∈Cp

√
xCp



24 N. Boria et al.

Using a standard arithmetic inequality we can get that:

∑
Cp∈Cp

√
xCp

6
�

√∑
Cp∈Cp

xCp

6
=

√
1

6

which implies that:

Pr
(
v1,1p is taken

)
�

√
x1,1
p
√

6

Now let us consider any edge and the corresponding variable, xpijqkl
. The prob-

ability that the edge is taken can be lower bounded by:

Pr
(
xpijqkl

is taken
)

= Pr
(
vijp is taken

)
· Pr
(
vklq is taken

)
�

√
xij
p

√
6
·

√
xkl
q

√
6

�

1

6
min{xij

p , x
kl
q } �

1

6
xpijqkl

Since our algorithm takes in expectation every edge with probability 1
6 of the

fractional value assigned to the corresponding edge-variable by the CLP it is a
randomized 6-approximation algorithm. ��

4.1 Integrality Gap of NLP and CLP

We now show that the linear relaxation NLP has an integrality gap of at least k.
Consider the following instance of k-CMIS. Let the input graph G(V,E) consists
of two grids, G1, G2. Both grids consist of k2 vertices. Every vertex from one
grid is connected to all the vertices in the second grid and vice versa. Thus
the number of edges is equal to k4. By putting all the LP variables to 1

k one
can easily notice that this solution is feasible and the objective value for this
solution is k3. On the other hand any feasible integral solution for this instance
must return at most k vertices from each grid, each of which is connected to at
most k vertices from the other grid. Thus the integral optimum is at most k2.
This produces the intergality gap of k. Moreover by putting the configuration-
corresponding variables in CLP (K) to 1

k! we can construct a feasible solution to
CLP (K) with the same integrality gap of k.
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Abstract. Sorting by Transpositions is an NP-hard problem for which
several polynomial time approximation algorithms have been developed.
Hartman and Shamir (2006) developed a 1.5-approximation algorithm,
whose running time was improved to O(n log n) by Feng and Zhu (2007)
with a data structure they defined, the permutation tree. Elias and
Hartman (2006) developed a 1.375-approximation algorithm that runs
in O(n2) time. In this paper, we propose the first correct adaptation of
this algorithm to run in O(n log n) time.

Keywords: comparative genomics, genome rearrangement, sorting by
transpositions, approximation algorithms.

1 Introduction

By comparing the orders of common genes between two organisms, one may
estimate the series of mutations that occurred in the underlying evolutionary
process. In a simplified genome rearrangement model, each mutation is a trans-
position, and the sole chromosome of each organism is modeled by a permutation,
which means that there are no duplicated or deleted genes. A transposition is a
rearrangement of the gene order within a chromosome, in which two contiguous
blocks are swapped. The transposition distance is the minimum number of trans-
positions required to transform one chromosome into another. Bulteau et al. [3]
proved that the problem of determining the transposition distance between two
permutations – or Sorting by Transpositions (SBT) – is NP-hard.

Several approaches to handle the SBT problem have been considered. Our
focus is to explore approximation algorithms for estimating the transposition
distance between permutations, providing better practical results or lowering
time complexities.

Bafna and Pevzner [2] designed a 1.5-approximation O(n2) algorithm, based
on the cycle structure of the breakpoint graph. Hartman and Shamir [10], by
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c© Springer-Verlag Berlin Heidelberg 2014
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considering simple permutations, proposed an easier 1.5-approximation algo-
rithm and, by exploiting a balanced tree data structure, decreased the running
time to O(n

3
2

√
logn). Feng and Zhu [7] developed the balanced permutation

tree data structure, further decreasing the complexity of Hartman and Shamir’s
1.5-approximation algorithm to O(n log n).

Elias and Hartman [6] obtained, by a thorough computational case analysis
of cycles of the breakpoint graph, a 1.375-approximation O(n2) algorithm. Firoz
et al. [8] tried to lower the running time of this algorithm to O(n logn) via a
simple application of permutation trees, but we later found counter-examples [5]
that disprove the correctness of Firoz et al.’s strategy.

In this paper, we propose a new algorithm that uses the strategy of Elias and
Hartman towards bad full configurations, implemented using permutation trees
and achieving both a 1.375 approximation ratio and O(n log n) time complexity.
Section 2 contains basic definitions, Section 3 presents a strategy to find in linear
time a sequence of two transpositions in which both are 2-moves, if it exists, and
Section 4 describes our 1.375-approximation algorithm for SBT.

2 Background

For our purposes, a gene is represented by a unique integer and a chromo-
some with n genes is a permutation π = [π0 π1 π2 . . . πn πn+1], where π0 =
0, πn+1 = n+ 1 and each πi is a unique integer in the range 1, . . . , n. The
transposition t(i, j, k), where 1 ≤ i < j < k ≤ n+ 1 over π, is the permu-
tation π · t(i, j, k) where the product interchanges the two contiguous blocks
πi πi+1 . . . πj−1 and πj πj+1 . . . πk−1. A sequence of q transpositions sorts a per-
mutation π if π t1 t2 · · · tq = ι, where every ti is a transposition and ι is the
identity permutation [0 1 2 . . . nn+1]. The transposition distance of π, denoted
d(π), is the length of a minimum sequence of transpositions that sorts π.

Given a permutation π, the breakpoint graph of π is G(π)=(V,R∪D); the set of
vertices is V = {0,−1,+1,−2,+2, . . . ,−n,+n,−(n+1)}, and the edges are par-

titioned into two sets, the directed reality edges R = {−→i = (+πi, −πi+1) | i =
0, . . . , n} and the undirected desire edges D = {(+i, −(i + 1)) | i = 0, . . . , n}).
Fig. 1 shows G([0 10 9 8 7 1 6 11 5 4 3 212]), the horizontal lines represent the
edges in R and the arcs represent the edges in D.

Fig. 1. G([0 10 9 8 7 1 6 11 5 4 3 2 12]). The cycles C2 = 〈1 3 6〉 and C3 = 〈5 8 10〉
intersect, but C2 and C3 are not interleaving; the cycles C1 = 〈0 2 4〉 and C2 = 〈1 3 6〉
are interleaving, and so are C3 = 〈5 8 10〉 and C4 = 〈7 9 11〉.

Every vertex in G(π) has degree 2, so G(π) can be partitioned into disjoint
cycles. We shall use the terms a cycle in π and a cycle in G(π) interchangeably
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to denote the latter. A cycle in π has length 
 (or it is an 
-cycle), if it has
exactly 
 reality edges. A permutation π is a simple permutation if every cycle
in π has length at most 3.

Non-trivial bounds on the transposition distance were obtained by using the
breakpoint graph [2], after applying a transposition t, the number of cycles of
odd length in G(π), denoted codd(π), is changed such that codd(πt) = codd(π)+x,
where x ∈ {−2, 0, 2} and t is said to be an x-move for π. Since codd(ι) = n + 1,

we have the lower bound d(π)≥
⌈
(n+1)−codd(π)

2

⌉
, where the equality holds if, and

only if, π can be sorted with only 2-moves.
Hannenhalli and Pevzner [9] proved that every permutation π can be trans-

formed into a simple one π̂, by inserting new elements on appropriate positions of

π, preserving the lower bound for the distance,
⌈
(n+1)−codd(π)

2

⌉
=
⌈
(m+1)−codd(π̂)

2

⌉
where m is such that π̂ = [0π̂1 . . . π̂mm+1]. Additionally, a sequence that sorts π̂
can be transformed into a sequence that sorts π, which implies that d(π)≤d(π̂).
This method is commonly used in the literature, as in Hartman and Shamir’s [10]
and Elias and Hartman’s [6] approximation algorithms.

A transposition t(i, j, k) affects a cycle C if it contains one of the following

reality edges:
−−→
i + 1, or

−−−→
j + 1, or

−−−→
k + 1. A cycle is oriented if there is a 2-move

that affects it (name given by the relative order of such a triplet of reality edges),
otherwise it is unoriented. If there exists a 2-move that may be applied to π,
then π is oriented, otherwise π is unoriented.

A sequence of q transpositions in which exactly r transpositions are 2-moves
is a (q, r)-sequence. A q

r -sequence is a (x, y)-sequence such that x ≤ q and x
y ≤

q
r .

A cycle in π is determined by its reality edges, in the order that they appear,
starting from the leftmost edge. The notation C = 〈x1x2 . . . x�〉, where −→x1, −→x2,
. . . , −→x� are reality edges, and x1 = min{x1, x2, . . . , x�}, characterizes an 
-cycle.

Let −→x ,−→y ,−→z , where x < y < z, be reality edges in a cycle C, and −→a ,
−→
b ,−→c ,

where a < b < c be reality edges in a different cycle C′. The pair of reality edges
−→x ,−→y intersects the pair −→a ,

−→
b if these four edges occur in an alternating order in

the breakpoint graph, i.e. x < a < y < b or a < x < b < y. Similarly, two triplets

of reality edges −→x ,−→y ,−→z and −→a ,
−→
b ,−→c are interleaving if these six edges occur in

an alternating order, i.e. x < a < y < b < z < c or a < x < b < y < c < z. Two
cycles C and C′ intersect if there is a pair of reality edges in C that intersects
with a pair of reality edges in C′, and two 3-cycles are interleaving if their
respective triplets of reality edges are interleaving. See Fig. 1.

A configuration of π is a subset of the cycles in G(π). A configuration C is
connected if, for any two cycles C1 and Ck in C, there are cycles C1, ..., Ck−1 ∈ C
such that, for each i ∈ {1, 2, ..., k − 1}, the cycles Ci and Ci+1 are either inter-
secting or interleaving. If the configuration C is connected and maximal, then C
is a component. Every permutation admits a unique decomposition into disjoint
components. For instance, in Fig. 1, the configuration {C1, C2, C3, C4} is a com-
ponent, but the configuration {C1, C2, C3} is connected but not a component.

Let C be a 3-cycle in a configuration C. An open gate is a pair of reality edges
of C that does not intersect any other pair of reality edges in C. If a configuration
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C has only 3-cycles and no open gates, then C is a full configuration. Some full
configurations, such as the one in Fig. 2(a), do not correspond to the breakpoint
graph of any permutation [6].

A configuration C that has k edges is in the cromulent form1 if every edge

from
−→
0 to

−−−→
k − 1 is in C. Given a configuration C having k edges, a cromulent

relabeling (Fig. 2b) of C is a configuration C′ such that C′ is in the cromulent

form and there is a function σ satisfying that, for every pair of edges
−→
i ,
−→
j in

C such that i < j, we have that
−−→
σ(i),

−−→
σ(j) are in C′ and σ(i) < σ(j).

Given an integer x, a circular shift of a configuration C, which is in the cro-
mulent form and has k edges, is a configuration denoted C + x such that every

edge
−→
i in C corresponds to

−−−−−−−−−→
i + x(mod k) in C+ x. Two configurations C and K

are equivalent if there is an integer x such that C′ +x = K′, where C′ and K′ are
their respective cromulent relabelings.

(a) (b)

Fig. 2. (a) Full configuration {C1, C2, C3, C4} = {〈0 2 5〉, 〈1 3 10〉, 〈4 7 9〉, 〈6 8 11〉}. (b)
The cromulent relabeling of {C1, C2} is {〈0 2 4〉, 〈1 3 5〉}.

Elias and Hartman’s algorithm Elias and Hartman [6] performed a systematic
enumeration of all components having nine or less cycles, in which all cycles have
length 3. Starting from single 3-cycles, components were obtained by applying a
series of sufficient extensions, as described next. An extension of a configuration
C is a connected configuration C∪{C}, where C �∈ C. A sufficient extension is an
extension that either: 1) closes an open gate; or 2) extends a full configuration
such that the extension has at most one open gate. A configuration obtained by
a series of sufficient extensions is named sufficient configuration, which has an
(x, y)-, or x

y -, sequence if it is possible to apply such a sequence to its cycles.

Lemma 1. [6] Every unoriented sufficient configuration of nine cycles has an
11
8 -sequence.

Components with less than nine cycles are called small components. Elias and
Hartman showed that there are just five kinds of small components that do not
have an 11

8 -sequence; these components are called bad small components. Small
components that have an 11

8 -sequence are good small components.

Lemma 2. [6] The bad small components are: A = {〈0 2 4〉, 〈1 3 5〉}; B =
{〈0 2 10〉, 〈1 3 5〉, 〈4 6 8〉, 〈7 9 11〉}; C = {〈0 5 7〉, 〈1 9 11〉, 〈2 4 6〉, 〈3 8 10〉};
D = {〈0 2 4〉, 〈1 12 14〉, 〈3 5 7〉, 〈6 8 10〉, 〈9 11 13〉}; and E = {〈0 2 16〉, 〈1 3 5〉,
〈4 6 8〉, 〈7 9 11〉, 〈10 12 14〉, 〈13 15 17〉}.
1 cromulent : neologism coined by David X. Cohen, meaning “normal” or “acceptable.”
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If a permutation has bad small components, it is still possible to find 11
8 -

sequences, as Lemma 3 states.

Lemma 3. [6] Let π be a permutation with at least eight cycles and containing
only bad small components. Then π has an (11, 8)-sequence.

Corollary 1. [6] If every cycle in G(π) is a 3-cycle, and there are at least eight
cycles, then π has an 11

8 -sequence.

Lemmas 1 and 3, and Corollary 1 form the theoretical basis for Elias and
Hartman’s 11

8 = 1.375-approximation algorithm for SBT, shown in Algorithm 1.

Algorithm 1. Elias and Hartman’s Sort(π)

1 Transform permutation π into a simple permutation π̂.
2 Check if there is a (2, 2)-sequence. If so, apply it.
3 While G(π̂) contains a 2-cycle, apply a 2-move.
4 π̂ consists of 3-cycles. Mark all 3-cycles in G(π̂).
5 while G(π̂) contains a marked 3-cycle C do
6 if C is oriented then
7 Apply a 2-move to it.

8 else
9 Try to sufficiently extend C eight times (to obtain a configuration with

at most 9 cycles).
10 if sufficient configuration with 9 cycles has been achieved then
11 Apply an 11

8
-sequence.

12 else It is a small component
13 if it is a good component then
14 Apply an 11

8
-sequence.

15 else
16 Unmark all cycles of the component.

17 (Now G(π̂) has only bad small components.)
18 while G(π̂) contains at least eight cycles do
19 Apply an (11, 8)-sequence

20 While G(π̂) contains a 3-cycle, apply a (3, 2)-sequence.
21 Mimic the sorting of π using the sorting of π̂.

Feng and Zhu’s permutation tree Feng and Zhu [7] introduced the permutation
tree, a binary balanced tree that represents a permutation, and provided four
algorithms: to build a permutation tree in O(n) time, to join two permutation
trees into one in O(h) time, where h is the height difference between the trees, to
split a permutation tree into two in O(log n) time, and to query a permutation

tree and find reality edges that intersect a given pair
−→
i ,
−→
j in O(log n) time.
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Operations split and join allow applying a transposition to a permutation π
and updating the tree in time O(log n). Lemma 4 provides a way to determine,
in logarithmic time, which transposition should be applied to a permutation,
and serves as the basis for the query procedure. This method was applied [7]
to Hartman and Shamir’s 1.5-approximation algorithm [10], to find a (3, 2)-
sequence that affects a pair of intersecting or interleaving cycles.

Lemma 4. [2] Let
−→
i and

−→
j be two reality edges in an unoriented cycle C,

i < j. Let πk = maxi<m≤j πm, π� = πk +1, then
−→
k and

−−−→

− 1 belong to the same

cycle, and the pair
−→
k ,
−−−→

− 1 intersects the pair

−→
i ,
−→
j .

Firoz’s et al. use of the permutation tree Firoz et al. [8] suggested the use of
the permutation tree to reduce the running time of Elias and Hartman’s [6]
algorithm. In [5], we showed that this strategy fails to extend some full configu-
rations.

Firoz et al. [8] stated that extensions can be done in O(log n) time. To do that,
they categorized sufficient extensions of a configuration A into type 1 extensions
– those that add a cycle that closes open gates – and type 2 extensions – those
that extend a full configuration by adding a cycle C such that A ∪ {C} has at
most one open gate.

A type 1 extension can be performed in logarithmic time by running query
for an open gate. In a type 2 extension, since there are no open gates, Firoz et
al. claimed that it is sufficient to perform queries on all pairs of reality edges
belonging to the same cycle in a configuration that is being extended. But, as
shown in [5], there is an infinite family of configurations for which this strat-
egy fails; some instances are subsets of two cycles of [0 10 9 8 7 1 6 11 5 4 3 212]
(Fig. 1). Consider the configuration A = {C1}; try to sufficiently extend A (step
9 in Algorithm 1) using the steps proposed by Firoz et al.:

1. Configuration A has three open gates. Executing the query for an open gate
results in a pair of edges belonging the cycle C2. Therefore, we add this cycle
to the configuration A, which becomes A = {C1, C2}.

2. Configuration A has no more open gates. Executing the query for every pair
of edges in the same cycle of A, we observe that the query will return a pair
that is already in A. So far, Firoz et al.’s method has failed to extend A.

3 Finding a (2, 2)-Sequence in Linear Time

Elias and Hartman [6] proved that, given a simple permutation, a (2, 2)-sequence
can be found in O(n2) time. Firoz et al. [8] described a strategy for finding and
applying a (2, 2)-sequence in O(n log n) time using permutation trees and the
result in Lemma 5; see below. But, according to their strategy, it is still necessary
to search for an oriented cycle in O(n) time and, after applying the first 2-move,
checking for the existence of an oriented cycle, again in O(n) time. However,
these steps must be performed O(n) times in the worst case, which implies that
Firoz et al.’s strategy also takes O(n2) time.
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Algorithm 2. Search (2, 2)-sequence from K1

1 for i = minK1+1, . . . ,midK1−1 do

2 if
−→
i belongs to an oriented cycle Kj then

3 if midKj < midK1 or maxKj < maxK1 then
4 return (2, 2)-sequence that affects K1 and Kj .

5 if
−→
i belongs to an unoriented cycle Lj then

6 if midK1 < midLj < maxK1 < maxLj then
7 return (2, 2)-sequence that affects K1 and Lj .

8 for i = midK1+1, . . . ,maxK1−1 do

9 if
−→
i belongs to an oriented cycle Kj then

10 if midK1 < minKj then
11 return (2, 2)-sequence that affects K1 and Kj .

12 for i = maxK1+1, . . . , n−1 do

13 if
−→
i belongs to an oriented cycle Kj then

14 if maxK1 ≤ minKj then
15 return (2, 2)-sequence affecting K1 and Kj .

Algorithm 4 summarizes our approach towards finding and applying a (2, 2)-
sequence in O(n) time.

Lemma 5. [2,4,6] Given a breakpoint graph of a simple permutation, there ex-
ists a (2, 2)-sequence if any of the following conditions is met:

1. there are either four 2-cycles, or two intersecting 2-cycles, or two non inter-
secting 2-cycles, and the resulting graph contains an oriented cycle after the
first transposition is applied;

2. there are two non interleaving oriented 3-cycles;
3. there is an oriented cycle interleaving an unoriented cycle.

Our strategy to find a (2, 2)-sequence in linear time starts with checking
whether a breakpoint graph satisfies Lemma 5, as described in detail in Al-
gorithm 2. It differs from previous approaches [6,8] in that the leftmost oriented
cycle, dubbed K1, is fixed when verifying conditions 2 and 3, avoiding compar-
isons between every pair of cycles.

Given a simple permutation π, it is trivial to enumerate all of its cycles in lin-
ear time. The size of each cycle, and whether it is oriented, are both determined
in constant time.

Christie [4] proved that every permutation has an even number (possibly zero)
of even cycles; he also showed that, given a simple permutation, when the number
of even cycles is not zero, there exists a (2, 2)-sequence that affects those cycles
if, and only if, there are either four 2-cycles, or there are two intersecting even
cycles. Therefore, in these cases, a (2, 2)-sequence can be applied in O(log n)
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using permutation trees. If there is only a pair of non-intersecting 2-cycles, it
remains to check if there is a 3-cycle intersecting both even cycles: i) if the 3-
cycle is oriented, then first we apply the 2-move over the 3-cycle, and the second
2-move is over the 2-cycles; ii) if the 3-cycle is unoriented, then first we apply the
2-move over the 2-cycles, and the second 2-move is over the 3-cycle, which turns
oriented after the first transposition. There is also a (2, 2)-sequence if there is
an oriented cycle intersecting at most one even cycle.

However, if no even cycle satisfies the previous conditions, but there is an
oriented cycle, the 3-cycles must be scanned for the existence of a (2, 2)-sequence,
as required conditions 2 and 3 in Lemma 5.

To check, in linear time, for the existence of a pair of cycles satisfying either
condition 2 or 2 in Lemma 5, consider the oriented cycles of the breakpoint graph,
in the order K1 = 〈a1 b1 c1〉,K2 = 〈a2 b2 c2〉, . . . such that a1 < a2 < . . ., and
the unoriented cycles in the order L1 = 〈x1 y1 z1〉, L2 = 〈x2 y2 z2〉, . . . such that
x1 < x2 < . . .. Given any 3-cycle C = 〈a b c〉, let minC = a, midC = min{b, c}
and maxC = max{b, c}. The main idea is:

1. Check for the existence of an oriented cycle Kj non-interleaving K1 or an un-
oriented cycle Lj interleaving K1. Algorithm 2 solves that: between minK1

and midK1, between midK1 and maxK1, and to the right of maxK1, search
for an oriented cycle Ki non-interleaving K1 or an unoriented cycle Li in-
terleaving K1.

2. If every oriented cycle interleaves K1 and no unoriented cycle interleaves K1,
then check for the existence of two oriented cycles Ki,Kj that are intersect-
ing but not interleaving. Notice that if there is a pair of non-interleaving
oriented cycles, then the cycles intersect each other, otherwise one of the
cycles would be non-interleaving K1, and Algorithm 2 would have this case
already covered (see Fig. 3). Algorithm 3 describes how to verify the exis-
tence of two intersecting oriented cycles that are also interleaving K1.

Fig. 3. Oriented cycles represented by their reality edges. All oriented cycles interleave
K1, but Ki and Kj non-interleave each other.

4 Sufficient Extensions Using Query

At the end of Section 2, we discussed Firoz’s et al. use of the permutation tree,
and as proven in [5], their strategy does not account for configurations with less
than nine cycles that are not components, since successive invocations of the
query procedure may result in a full configuration with less than nine cycles
that is not a small component. Our proposed strategy generalizes the definitions
related to small components by defining a small configuration, a configuration
with less than nine cycles.
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Algorithm 3. Finding intersecting oriented cycles interleaving K1.

1 s1 = sequence of edges belonging to oriented cycles from left to right between
minK1 and midK1.

2 s2 = sequence of edges belonging to oriented cycles from left to right between
midK1 and maxK1.

3 if s1 and s2 are different then
4 There is a pair of intersecting oriented cycles, exists a (2, 2)-sequence.

5 else
6 All oriented cycles are mutually interleaving.

Algorithm 4. Find and Apply (2,2)-sequence

1 if there are four 2-cycles then
2 Apply (2, 2)-sequence.

3 else if there is a pair of intersecting 2-cycles then
4 Apply (2, 2)-sequence.

5 else if there is a 3-cycle intersecting a pair of 2-cycles then
6 Apply (2, 2)-sequence.

7 else if there is a pair of 2-cycles and an oriented 3-cycle intersecting at most
one of them then

8 Apply (2, 2)-sequence.

9 else if Search (2, 2)-sequence from K1 returns a sequence then
10 Apply (2, 2)-sequence.

11 else if Finding intersecting oriented cycles interleaving K1 then
12 Apply (2, 2)-sequence.

13 else
14 There are no (2, 2)-sequences to apply.

A small configuration is said to be full if it has no open gates. Small con-
figurations are also classified as good if they have an 11

8 -sequence, or as bad
otherwise.

Algorithm 1 applies an 11
8 -sequence to every sufficient unoriented configura-

tion of nine cycles, and also to every good small component. After that, the
permutation contains just bad small components, and Lemma 3 states the exis-
tence of an (11, 8)-sequence in every combination of bad small components with
at least 8 cycles.

By doing extensions using the query procedure, we can deal with bad small
full configurations, which may or may not be bad small components. The possible
bad small full configurations are the bad small components A, B, C, D and E,
from Lemma 2, and one more full configuration

F = {〈0 7 9〉, 〈1 3 6〉, 〈2 4 11〉, 〈5 8 10〉},
which is the only bad small full configuration that is not a component [6].
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Our strategy (Algorithm 5) is similar to Elias and Hartman’s (Algorithm 1):
we apply an 11

8 -sequence to every sufficient unoriented configuration of nine
cycles, and additionally to every good small full configuration; the main differ-
ence is that, whenever a combination of bad small full configuration is found, a
decision to apply an 11

8 -sequence is made according to Lemma 6.

Lemma 6. Every combination of F with one or more copies of either B, C, D
or E has an 11

8 -sequence.

Proof. Consider all breakpoint graphs of F and its circular shifts combined with
B, C, D, E, and their circular shifts. A combination of a pair of small full config-
urations is obtained by starting from one small full configuration and inserting
a new one in different positions in the breakpoint graph. Altogether, there are
324 such graphs. A computerized case analysis, in [1], enumerates every possible
breakpoint graph and provides an 11

8 -sequence for each of them. ��

Notice that Lemma 6 considers neither combinations of F with F , nor com-
binations of F with A. We have found that almost every combination of F with
F has an 11

8 -sequence. Let FiF
j be the configuration obtained by inserting the

circular shift F + j between the edges
−→
i and

−−→
i + 1 of F .

Lemma 7. There exists an 11
8 -sequence for FiF

j, if:

• i ∈ {0, 4} and j ∈ {0, 1, 2, 3, 4, 5};
• i ∈ {1, 2, 3} and j ∈ {1, 2, 3, 4, 5}; or
• i = 5 and j ∈ {1, 5}.

Proof. The 11
8 -sequences for the cases enumerated above were also found through

a computerized case analysis [1]. Note that FiF
j is equivalent to Fi+6F

j for
i = {0, 1, . . . , 5}, which simplifies our analysis. ��

The combinations of F with F for which our branch-and-bound case analysis
cannot find an 11

8 -sequence are: F1F
0, F2F

0, F3F
0, F5F

0, F5F
2, F5F

3 and
F5F

4.
All combinations of one copy of F and one of A have less than eight cycles.

It only remains to analyse the combinations of F and two copies of A, denoted
F−A−A. The good F−A−A combinations are the F−A−A combinations for which
an 11

8 -sequence exists. Out of 57 combinations of F−A−A, only 31 are good. The
explicit list of combinations is in [1].

Combinations of F and A, B, C, D, E that have an 11
8 -sequence are called

well-behaved combinations : the ones in Lemmas 6, 7 and the good F−A−A
combinations. The remaining combinations having F are called naughty.

For extensions that yield a bad small configuration, Algorithm 5 adds their
cycles to a set S (line 18). Later, if a well-behaved combination is found among
the cycles in S, an 11

8 -sequence is applied (line 21) and the set is emptied. The
set S may just contain naughty combinations and in the next iteration (line 6)
another bad small configuration may be obtained and added to S. We have
shown [1] that every combination of three copies of F is well-behaved, even if
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each pair of F is naughty; the same can also be said of every combination of F
and three copies of A such that each triple F−A−A is naughty. Therefore, at
most 12 cycles are in S, since there are in the worst case three copies of F ; or
one copy of F and three copies of A. In all these cases we apply 11

8 -sequences as
proved in [1].

New Algorithm. The previous results allow us to devise Algorithm 5, that basi-
cally obtains configurations using the query procedure, and applies 11

8 -sequences
to configurations of size at most 9. It differs from Algorithm 1 not only in the
use of permutation trees, but also because we continuously deal with bad small
full configurations instead of only at the end.

Algorithm 5. New algorithm based on Elias and Hartman’s algorithm

1 Transform permutation π into a simple permutation π̂.
2 Find and Apply (2,2)-sequence (Algorithm 4).
3 While G(π̂) contains a 2-cycle, apply a 2-move.
4 π̂ consists of 3-cycles. Mark all 3-cycles in G(π̂).
5 Let S be an empty set.
6 while G(π̂) contains at least eight 3-cycles do
7 Start a configuration C with a marked 3-cycle.
8 if the cycle in C is oriented then
9 Apply a 2-move to it.

10 else
11 Try to sufficiently extend C eight times.
12 if C is a sufficient configuration with 9 cycles then
13 Apply an 11

8
-sequence.

14 else C is a small full configuration
15 if C is a good small configuration then
16 Apply an 11

8
-sequence.

17 else C is a bad small configuration.
18 Add every cycle in C to S .
19 Unmark all cycles in C.
20 if S contains a well-behaved combination then
21 Apply an 11

8
-sequence.

22 Mark the remaining 3-cycles in S .
23 Remove all cycles from S .

24 While G(π̂) contains a 3-cycle, apply a (4, 3)-sequence or a (3, 2)-sequence.
25 Mimic the sorting of π using the sorting of π̂.

Theorem 1. Algorithm 5 runs in O(n log n) time.

Proof. Steps 1 through 5 can be implemented to run in linear time (proofs in
[6] and in Sect. 3). Step 11 runs in O(log n) time using permutation trees. The
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comparisons in Steps 12, 14, 15, 17 and 20 are done in constant time using
lookup tables of size bound by a constant. Updating the set S also requires
constant time, since it has at most 12 cycles. Every sequence of transpositions
of size bounded by a constant can be applied in time O(log n) due to the use
of permutation trees. The time complexity of the loop between Steps 6 to 23 is
O(n log n), since the number of 3-cycles is linear in n, and the number cycles
decreases, in the worst case, once in three iterations. In Step 24, the search for
a (4, 3) or a (3, 2)-sequence is done in constant time, since the number of cycles
is bounded by a constant. Steps 24 and 25 also run in time O(n log n). ��

5 Conclusion

The goal of this paper is to lower the time complexity of Elias and Hartman’s [6]
1.375-approximation algorithm down to O(n log n). Our new approach provides,
so far, both the lowest fixed approximation ratio and time complexity of any
non-trivial algorithm for sorting by transpositions.

We have previously shown that a simple application of permutation trees [7],
as claimed in [8], does not suffice to correctly improve the running time of Elias
and Hartman’s algorithm. In order to lower the time complexity, it is necessary
to add more configurations [1] to the original analysis in [6], and also to perform
some changes in the sorting procedure, as shown in Algorithm 5.
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Abstract. The double-cut-and-join operation (DCJ) is a fundamental
graph operation that is used to model a variety of genome rearrange-
ments. However, DCJs are only useful when comparing genomes with
equal (or nearly equal) gene content. One obvious extension of the DCJ
framework supplements DCJs with insertions and deletions of chromo-
somes and chromosomal intervals, which implies a model in which DCJs
receive unit cost, whereas insertions and deletions receive a nonnegative
cost of ω. This paper proposes a unified model finding a minimum-cost
transformation of one genome (with circular chromosomes) into another
genome for any value of ω. In the process, it resolves the open case ω > 1.

1 Introduction

Large scale chromosomal mutations were observed indirectly via the study of
linkage maps near the beginning of the 20th Century, and these genome rear-
rangements were first directly observed by Dobzhansky and Sturtevant in 1938
(see [8]). Yet only in the past quarter century has the combinatorial study of
genome rearrangements taken off, as researchers have attempted to create and
adapt discrete genomic models along with distance functions modeling the evo-
lutionary distance between two genomes. See [9] for an overview of the combi-
natorial methods used to compare genomes.

Recent research has moved toward multichromosomal genomic models as well as
distance functions that allow for mutations involving more than one chromosome.
Perhaps the most commonly used such model represents an ordered collection of
disjoint chromosomal intervals along a chromosome as either a path or cycle, de-
pending on whether the chromosome is linear or circular. For genomes with equal
gene content, the double cut and join operation (DCJ), introduced in [11], incor-
porates a wide class of operations into a simple graph operation. It has led to a
large number of subsequent results over the last decade, beginning with a linear-
time algorithm for the problem of DCJ sorting (see [3]), in which we attempt to
transform one genome into another using a minimum number of DCJs.

For genomes with unequal gene content, the incorporation of insertions and
deletions of chromosomes and chromosomal intervals (collectively called “in-
dels”) into the DCJ framework was discussed in [12] and solved in [5]. The latter
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authors provided a linear-time algorithm for the problem of DCJ-indel sorting,
which aims to find a minimum collection of DCJs and indels required to trans-
form one genome into another. An alternate linear-time algorithm for DCJ-indel
sorting can be found in [7].

We can generalize DCJ-indel sorting to the problem of finding a minimum cost
transformation of one genome into another by DCJs and indels in which DCJs
receive unit cost and indels receive a cost of ω, where ω is a nonnegative constant.
The case ω ≤ 1 was resolved by the authors in [10]. The current paper aims to
find a unifying framework that will solve the problem of DCJ-indel sorting for all
ω ≥ 0 when the input genomes have only circular chromosomes. In the process,
it resolves the open case ω > 1 for genomes with circular chromosomes.

In Section 2, we will discuss the theoretical foundation required to address
DCJ-indel sorting. In Section 3, we show that in any minimum-cost transforma-
tion with DCJs and indels (for any value of ω), each indel can be encoded and
thus amortized as a DCJ, which helps to explain why DCJ-indel sorting has the
same computational complexity as DCJ sorting. In Section 4, we will address the
problem of DCJ-indel sorting genomes with circular chromosomes for all ω ≥ 0
for a particular subclass of genome pairs. In Section 5, we generalize this result
to all pairs of genomes with circular chromosomes.

2 Preliminaries

A genome Π is a graph containing an even number of labeled nodes and com-
prising the edge-disjoint union of two perfect matchings: the genes1 of Π , de-
noted g(Π); and the adjacencies of Π , denoted a(Π). Consequently, each node
of Π has degree 2, and the connected components of Π form cycles that al-
ternate between genes and adjacencies; these cycles are called chromosomes.
This genomic model, in which chromosomes are circular, offers a reasonable and
commonly used approximation of genomes having linear chromosomes.

A double cut and join operation (DCJ) on Π , introduced in [11], forms
a new genome by replacing two adjacencies of Π with two new adjacencies on
the same four nodes. Despite being simply defined, the DCJ incorporates the
reversal of a chromosomal segment, the fusion of two chromosomes into one
chromosome, and the fission of one chromosome into two chromosomes (Fig. 1).2

For genomes Π and Γ with the same genes, the DCJ distance, denoted d(Π,Γ ),
is the minimum number of DCJs needed to transform Π into Γ .

The breakpoint graph of Π and Γ , denoted B(Π,Γ ) (introduced in [2]),
is the edge-disjoint union of a(Π) and a(Γ ) (Fig. 2). The line graph of the
breakpoint graph is the adjacency graph, which was introduced in [3] and is
also commonly used in genome rearrangement studies. Note that the connected
components of B(Π,Γ ) form cycles (of length at least 2) that alternate between
adjacencies of Π and Γ , and so we will let c(Π,Γ ) denote the number of cycles in

1 In practice, gene edges typically represent synteny blocks containing a large number
of contiguous genes.

2 When the DCJ is applied to circularized linear chromosomes, it encompasses a larger
variety of operations. See [5] for details.
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Fig. 1. DCJs replace two adjacencies of a genome and incorporate three operations on
circular chromosomes: reversals, fissions, and fusions. Genes are shown in black, and
adjacencies are shown in red.

B(Π,Γ ). A consequence of the definition of a DCJ as a rearrangement involving
only two edges is that if Π ′ is obtained from Π by a single DCJ, then |c(Π ′, Γ )−
c(Π,Γ )| ≤ 1. The authors in [11] provided a greedy algorithm for sorting Π into
Γ that reduces the number of cycles in the breakpoint graph by 1 at each step,
which implies that the DCJ distance is given by

d(Π,Γ ) = |g(Π)| − c(Π,Γ ) . (1)

The DCJ distance offers a useful metric for measuring the evolutionary dis-
tance between two genomes having the same genes, but we strive toward a ge-
nomic model that incorporates insertions and deletions as well. A deletion in Π
is defined as the removal of either an entire chromosome or chromosomal interval
of Π , i.e., if adjacencies {v, w} and {x, y} are contained in the order (v, w, x, y)
on some chromosome of Π , then a deletion replaces the path connecting v to y
with the single adjacency {v, y}. An insertion is simply the inverse operation
of a deletion. The term indels refers collectively to insertions and deletions.

To consider genomes with unequal gene content, we will henceforth assume
that any pair of genomes Π and Γ satisfy g(Π) ∪ g(Γ ) = G, where G is a
perfect matching on a collection of nodes V . A transformation of Π into Γ
is a sequence of DCJs and indels such that any deleted node must belong to
V − V (Γ ) and any inserted node must belong to V − V (Π).3

3 This assumption follows the lead of the authors in [5]. It prevents, among other
things, a trivial transformation of genome Π into genome Γ of similar gene content
in which we simply delete all the chromosomes of Π and replace them with the
chromosomes of Γ .
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Fig. 2. The construction of the breakpoint graph of genomes Π and Γ having the same
genes. First, the nodes of Γ are rearranged so that they have the same position in Π .
Then, the adjacency graph is formed as the disjoint union of adjacencies of Π (red)
and Γ (blue).

The cost of a transformation T is equal to the weighted sum of the number of
DCJs in T plus ω times the number of indels in T, where ω is some nonnegative
constant determined in advance. The DCJ-indel distance between Π and Γ ,
denoted dω(Π,Γ ), is the minimum cost of any transformation of Π into Γ . Note
that since a transformation of Π into Γ can be inverted to yield a transformation
of Γ into Π , the DCJ-indel distance is symmetric by definition. Yet unlike the
DCJ distance, the DCJ-indel distance does not form a metric, as the triangle
inequality does not hold; see [4] for a discussion in the case that ω = 1.

Although we would like to compute DCJ-indel distance, here we are interested
in the more difficult problem of DCJ-indel sorting, or producing a minimum
cost transformation of Π into Γ . The case ω = 1 was resolved by the authors
in [5]; this result was extended to cover all values 0 ≤ ω ≤ 1 in [10]. This
work aims to use the ideas presented in [7] as a stepping stone for a generalized
presentation that will solve the problem of DCJ-indel sorting for all ω ≥ 0, thus
resolving the open case that ω > 1.

3 Encoding Indels as DCJs

A chromosome of Π (Γ ) sharing no genes with Γ (Π) is called a singleton. We
use the notation singΓ (Π) to denote the number of singletons of Π with respect
to Γ and the notation sing(Π,Γ ) to denote the sum singΓ (Π) + singΠ(Γ ). We
will deal with singletons later; for now, we will show that in the absence of
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singletons, the insertion or deletion of a chromosomal interval is the only type
of indel that we need to consider for the problem of DCJ-indel sorting.

Theorem 1. If sing(Π,Γ ) = 0, then any minimum-cost transformation of Π
into Γ cannot include the insertion or deletion of entire chromosomes.

Proof. We proceed by contradiction. Say that we have a minimum-cost trans-
formation of Π into Γ in which (without loss of generality) we are deleting an
entire chromosome C. Because Π has no singletons, C must have been produced
as the result of the deletion of a chromosomal interval or as the result of a DCJ.
C cannot have been produced from the deletion of an interval, since we could
have simply deleted the chromosome that C came from. Thus, assuming C was
produced as the result of a DCJ, there are now three possibilities:

1. The DCJ could be a reversal. In this case, we could have simply deleted the
chromosome to which the reversal was appiled, yielding a transformation of
strictly smaller cost.

2. The DCJ could be a fission of a chromosome C′ that produced C along with
another chromosome. In this case, the genes of C appeared as a contiguous
interval of C′, which we could have simply deleted at lesser total cost.

3. The DCJ could be the fusion of two chromosomes, C1 and C2. This case is
somewhat more difficult to deal with and is handled by Lemma 2.

Lemma 2. If singΓ (Π) = 0, then any minimum-cost transformation of Π into
Γ cannot include the deletion of a chromosome that was produced by a fusion.

Proof. Suppose for the sake of contradiction that a minimum-cost transforma-
tion T of Π into Γ involves k fusions of k + 1 chromosomes C1, C2, . . . , Ck+1

to form a chromosome C, which is then deleted. Without loss of generality, we
may assume that this collection of fusions is “maximal”, i.e., none of the Ci is
produced as the result of a fusion.

Because Π has no singletons, each Ci must have been produced as a result
of a DCJ. Similar reasoning to that used in the main proof of Theorem 1 shows
that this DCJ cannot be a reversal, and by the assumption of maximality, it
cannot be the result of a fusion. Thus, each Ci is produced by a fission applied
to some chromosome C′

i to produce Ci in addition to some other chromosome
C∗

i .
Now, let Π ′ be the genome in T occurring immediately before these 2k + 2

operations. Assume that the k + 1 fissions applied to the C′
i replace adjacencies

{vi, wi} and {xi, yi} with {vi, yi} and {wi, xi}.4 Furthermore, assume that the
ensuing k fusions are as follows:

{v1, y1}, {v2, y2} → {y1, v2}, {v1, y2}
{y1, v2}, {v3, y3} → {y1, v3}, {v2, y3}
{y1, v3}, {v4, y4} → {y1, v4}, {v3, y4}

...
{y1, vk}, {vk+1, yk+1} → {y1, vk+1}, {vk, yk+1}

4 It can be verified that these 4k + 4 nodes must be distinct by the assumption that
T has minimum cost.
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The genome resulting from these 2k + 1 operations, which we call Π ′′
T

, is
identical to Π ′ except that for each i (1 ≤ i ≤ k + 1), it has replaced the
adjacencies {vi, wi} and {xi, yi} in C′

i with the adjacencies {wi, xi} ∈ C∗
i and

{vi, yi+1 mod (k+1)} ∈ C. In T, we then delete C from Π ′′
T

.
Now consider the transformation U that is identical to T except that when

we reach Π ′, U first applies the following k DCJs:

{v1, w1}, {x2, y2} → {v1, y2}, {w1, x2}
{v2, w2}, {x3, y3} → {v2, y3}, {w2, x3}
{v3, w3}, {x4, y4} → {v3, y4}, {w3, x4}

...
{vk, wk}, {xk+1, yk+1} → {vk, yk+1}, {wk, xk+1}

U then applies k subsequent DCJs as follows:

{x1, y1}, {w1, x2} → {y1, x2}, {w1, x1}
{y1, x2}, {w2, x3} → {y1, x3}, {w2, x2}
{y1, x3}, {w3, x4} → {y1, x4}, {w3, x3}

...
{y1, xk}, {wk, xk+1} → {y1, xk+1}, {wk, xk}

The resulting genome, which we call Π ′′
U

, has the exact same adjacencies as Π ′′
T

except that it contains the adjacencies {y1, xk+1} and {vk+1, wk+1} instead of
{vk+1, y1} and {wk+1, xk+1}. Because two genomes on the same genes are equiv-
alent if and only if they share the same adjacencies, a single DCJ on {y1, xk+1}
and {vk+1, wk+1} would change Π ′′

U
into Π ′′

T
. Furthermore, in Π ′′

T
, {vk+1, y1} be-

longs to C and {wk+1, xk+1} belongs to C∗
k+1, so that this DCJ in question must

be a fission producing C and C∗
k+1. In U, rather than applying this fission, we

simply delete the chromosomal interval containing the genes of C. As a result,
U is identical to T except that it replaces 2k + 1 DCJs and a deletion by 2k
DCJs and a deletion. Hence, U has strictly smaller cost than T, which provides
the desired contradiction. ��

Following Theorem 1, we recall the observation in [1] that we can view the dele-
tion of a chromosomal interval replacing adjacencies {v, w} and {x, y} with the
single adjacency as a fission replacing {v, w} and {x, y} by the two adjacencies
{w, x} and {v, y}, thus forming a circular chromosome containing {v, y} that is
scheduled for later removal. By viewing this operation as a DCJ, we establish a
bijective correspondence between the deletions of a minimum cost transforma-
tion of Π into Γ (having no singletons) and a collection of chromosomes sharing
no genes with Π . (Insertions are handled symmetrically.)

Therefore, define a completion of genomes Π and Γ as a pair of genomes
(Π ′, Γ ′) such that Π is a subgraph of Π ′, Γ is a subgraph of Γ ′, and g(Π ′) =
g(Γ ′) = G. Each of Π ′ − Π and Γ ′ − Γ is formed of alternating cycles called
new chromosomes; in other words, the chromosomes of Π ′ comprise the chro-
mosomes of Π in addition to some new chromosomes that are disjoint from Π .
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By our bijective correspondence, we use ind(Π ′, Γ ′) to denote the total number
of new chromosomes of Π ′ and Γ ′. We will amortize the cost of a deletion by
charging unit cost for the DCJ that produces a new chromosome, followed by
1−ω for the removal of this chromosome, yielding our next result. For simplicity,
we henceforth set N = |V|/2, the number of genes of Π and Γ .

Theorem 3. If sing(Π,Γ ) = 0, then

dω(Π,Γ ) = min
(Π′,Γ ′)

{d(Π ′, Γ ′) + (ω − 1) · ind(Π ′, Γ ′)} (2)

= N − max
(Π′,Γ ′)

{c(Π ′, Γ ′) + (1− ω) · ind(Π ′, Γ ′)} (3)

where the optimization is taken over all completions of Π and Γ . ��

A completion (Π∗, Γ ∗) is called optimal if it achieves the maximum in (3). We
plan to use Theorem 3 to construct an optimal completion for genomes lacking
singletons. Once we have formed an optimal completion (Π∗, Γ ∗), we can simply
invoke the O(N)-time sorting algorithm described in [3] to transform Π∗ into
Γ ∗ via a minimum collection of DCJs.

4 DCJ-Indel Sorting Genomes without Singletons

Define a node v ∈ V to be Π-open (Γ-open) if v /∈ Π (v /∈ Γ ). When forming
adjacencies of Π∗ (Γ ∗), we connect pairs of Π-open (Γ -open) nodes. Given
genomes Π and Γ with unequal gene content, we can still define the breakpoint
graph B(Π,Γ ) as the edge-disjoint union of a(Π) and a(Γ ); however, because
the adjacencies of Π and Γ are not necessarily perfect matchings on V , B(Π,Γ )
may contain paths (of positive length) in addition to cycles.

We can view the problem of constructing an optimal completion (Π∗, Γ ∗) as
adding edges to B(Π,Γ ) to form B(Π∗, Γ ∗). Our hope is to construct these edges
via direct analysis of B(Π,Γ ). First, note that cycles of B(Π,Γ ) must embed
as cycles of B(Π∗, Γ ∗), whereas odd-length paths of B(Π,Γ ) end in either two
Π-open nodes or two Γ -open nodes, and even-length paths of B(Π,Γ ) end in
a Π-open node and a Γ -open node. The paths of B(Π,Γ ) must be linked in
some way by edges in a(Π∗)− a(Π) or a(Γ ∗)− a(Γ ) to form cycles alternating
between edges of a(Π∗) and a(Γ ∗). Our basic intuition is to do so in such a way
as to create as many cycles as possible, at least when ω is small; this intuition
is confirmed by the following two results.

Proposition 4. If 0 < ω < 2 and sing(Π,Γ ) = 0, then for any optimal com-
pletion (Π∗, Γ ∗) of Π and Γ , every path of length 2k − 1 in B(Π,Γ ) (k ≥ 1)
embeds into a cycle of length 2k in B(Π∗, Γ ∗).

Proof. Let P be a path of length 2k − 1 in B(Π,Γ ). Without loss of generality,
assume that P has Π-open nodes v and w as endpoints. Suppose that for some
completion (Π ′, Γ ′), P does not embed into a cycle of length 2k in B(Π ′, Γ ′) (i.e.,
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{v, w} is not an adjacency of Π ′); in this case, we must have distinct adjacencies
{v, x} and {w, y} in Π ′ belonging to the same cycle of B(Π,Γ ).

Consider the completion Π ′′ that is formed from Π ′ by replacing {v, x} and
{w, y} with {v, w} and {x, y}. It is clear that c(Π ′′, Γ ′) = c(Π ′, Γ ′) + 1. Fur-
thermore, since we have changed only two edges of Π ′ to produce Π ′′, we have
increased or decreased the number of new chromosomes of Π ′′ by at most 1, and
so |ind(Π ′′, Γ ′)− ind(Π ′, Γ ′)| < 1. Thus, it follows from (3) that (Π ′, Γ ′) cannot
be optimal. ��

As a result of Proposition 4, when 0 < ω < 2, any cycle of B(Π∗, Γ ∗) that is
not induced from a cycle or odd-length path of B(Π,Γ ) must be a k-bracelet,
which contains k even-length paths of B(Π,Γ ), where k is even. We use the term
bracelet links to refer to adjacencies of a bracelet belonging to new chromo-
somes; each k-bracelet in B(Π∗, Γ ∗) contains k/2 bracelet links from Π∗ − Π
and k/2 bracelet links from Γ ∗−Γ . According to (3), we need to make c(Π∗, Γ ∗)
large, which means that when indels are inexpensive, we should have bracelets
containing as few bracelet links as possible.

Proposition 5. If 0 < ω < 2 and sing(Π,Γ ) = 0, then for any optimal com-
pletion (Π∗, Γ ∗) of Π and Γ , all of the even-length paths of B(Π,Γ ) embed into
2-bracelets of B(Π∗, Γ ∗).

Proof. Suppose that a completion (Π ′, Γ ′) of Π and Γ contains a k-bracelet
for k ≥ 4. This bracelet must contain two bracelet adjacencies {v, w} and {x, y}
belonging to a(Π ′), where these four nodes are contained in the order (v, w, x, y)
in the bracelet. Consider the genome Π ′′ that is obtained from Π ′ by replacing
{v, w} and {x, y} with {v, y} and {w, x}. As in the proof of Proposition 4,
c(Π ′′, Γ ′) = c(Π ′, Γ ′) + 1 and |ind(Π ′′, Γ ′) − ind(Π ′, Γ ′)| < 1, so that (Π ′, Γ ′)
cannot be optimal. ��

The conditions provided by the previous two propositions are very strong. To
resolve the case that 0 < ω < 2, note that if we must link the endpoints of any
odd-length path in B(Π,Γ ) to construct an optimal completion, then we may
first create some new chromosomes before dealing with the case of even-length
paths. Let kΓ (Π) be the number of new chromosomes formed by linking the
endpoints of odd-length paths of B(Π,Γ ) that end with Π-open nodes, and set
k(Π,Γ ) = kΓ (Π) + kΠ(Γ ). After linking the endpoints of odd-length paths, if
we can link pairs of even-length paths (assuming any exist) into 2-bracelets so
that one additional new chromosome is created in each of Π∗ and Γ ∗, then we
will have constructed an optimal completion. This construction is guaranteed by
the following proposition.

Proposition 6. If 0 < ω < 2 and sing(Π,Γ ) = 0, then any optimal completion
(Π∗, Γ ∗) of Π and Γ has the property that one new chromosome of Π∗ (Γ ∗)
contains all of the bracelet adjacencies of Π∗ (Γ ∗).

Proof. By Proposition 4, we may assume that we have started forming an op-
timal completion (Π∗, Γ ∗) by linking the endpoints of any odd-length paths in
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B(Π,Γ ) to each other. Given any even-length path P in B(Π,Γ ), there is ex-
actly one other even-length path P1 that would form a new chromosome in Γ ∗ if
linked with P , and exactly one other even-length path P2 in B(Π,Γ ) that would
form a new chromosome in Π∗ if linked with P (P1 and P2 may be the same).
As long as there are more than two other even-length paths to choose from, we
can simply link P to any path other than P1 or P2. We then iterate this process
until two even-length paths remain, which we link to complete the construction
of Π∗ and Γ ∗; each of these genomes has one new chromosome containing all of
that genome’s bracelet adjacencies. ��

It is easy to see that the conditions in the preceding three propositions are
sufficient (but not necessary) when constructing an optimal completion for the
boundary cases ω = 0 and ω = 2. We are now ready to state our first major
result with respect to DCJ-indel sorting.

Algorithm 7. When 0 ≤ ω ≤ 2 and sing(Π,Γ ) = 0, the following algorithm
solves the problem of DCJ-indel sorting Π into Γ in O(N) time.

1. Link the endpoints of any odd-length path in B(Π,Γ ), which may create
some new chromosomes in Π∗ and Γ ∗.

2. Arbitrarily select an even-length path P of B(Π,Γ ) (if one exists).
(a) If there is more than one additional even-length path in B(Π,Γ ), link P

to an even-length path that produces no new chromosomes in Π∗ or Γ ∗.
(b) Otherwise, link the two remaining even-length paths in B(Π,Γ ) to form

a new chromosome in each of Π∗ and Γ ∗.
3. Iterate Step 2 until no even-length paths of B(Π,Γ ) remain. The resulting

completion is (Π∗, Γ ∗).
4. Apply the O(N)-time algorithm for DCJ sorting from [11] to transform Π∗

into Γ ∗.

Let podd(Π,Γ ) and peven(Π,Γ ) equal the number of odd- and even-length paths
in B(Π,Γ ), respectively. The optimal completion (Π∗, Γ ∗) constructed by Al-
gorithm 7 has the following properties:

c(Π∗, Γ ∗) = c(Π,Γ ) + podd(Π,Γ ) +
peven(Π,Γ )

2
(4)

ind(Π∗, Γ ∗) = k(Π,Γ ) + min {2, peven(Π,Γ )} (5)

These formulas, when combined with Theorem 3, yield a formula for the DCJ-
indel distance as a function of Π , Γ , and ω alone.

Corollary 8. If 0 ≤ ω ≤ 2 and sing(Π,Γ ) = 0, the DCJ-indel distance between
Π and Γ is given by the following equation:

dω(Π,Γ ) = N−
[(

c(Π,Γ ) + podd(Π,Γ ) +
peven(Π,Γ )

2

)
+
(

1− ω
)
·

(
k(Π,Γ ) + min

{
2, peven(Π,Γ )

})] (6)

��
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We now turn our attention to the case ω > 2. Intuitively, as ω grows, we should
witness fewer indels. Let δΓ (Π) be equal to 1 if g(Π) − g(Γ ) is nonempty and
0 otherwise; then, set δ(Π,Γ ) = δΓ (Π) + δΠ(Γ ). Note that δ(Π,Γ ) is a lower
bound on the number of indels in any transformation of Π into Γ . The following
result shows that in the absence of singletons, this bound is achieved by every
minimum-cost transformation when ω > 2.

Theorem 9. If ω > 2 and sing(Π,Γ ) = 0, then any minimum-cost transfor-
mation of Π into Γ has at most one insertion and at most one deletion. As a
result,

dω(Π,Γ ) = N − max
ind(Π′,Γ ′)=δ(Π,Γ )

{c(Π ′, Γ ′) + (1 − ω) · δ(Π,Γ )} . (7)

Proof. Suppose for the sake of contradiction that T is a minimum-cost transfor-
mation of Π into Γ and that (without loss of generality) T contains two deletions
of chromosomal intervals P1 and P2, costing 2ω. Say that one of these deletions
replaces adjacencies {v, w} and {x, y} with {v, y} (deleting the interval connect-
ing w to x) and the other deletion replaces adjacencies {a, b} and {c, d} with
{a, d} (deleting the interval connecting b to c).

Consider a second transformation U that is otherwise identical to T, except
that it replaces the deletions of P1 and P2 with three operations. First, a DCJ
replaces {v, w} and {a, b} with {v, a} and {w, b}; the new adjacency {w, b} joins
P1 and P2 into a single chromosomal interval P . Second, a deletion removes P
and replaces adjacencies {c, d} and {x, y} with the single adjacency {d, y}. Third,
another DCJ replaces {v, a} and {d, y} with the adjacencies {v, y} and {a, d},
yielding the same genome as the first scenario at a cost of 2 + ω. Because U is
otherwise the same as T, U will have strictly lower cost precisely when ω > 2,
in which case T cannot have minimum cost. ��

One can verify that the condition in Theorem 9 is sufficient but not necessary to
guarantee a minimum-cost transformation when ω = 2. Furthermore, a conse-
quence of Theorem 9 is that the optimal completion is independent of the value
of ω. In other words, if a completion achieves the maximum in (7), then this
completion is automatically optimal for all values of ω ≥ 2.

Fortunately, Algorithm 7 already describes the construction of a completion
(Π ′, Γ ′) that is optimal when ω = 2. Of course, we cannot guarantee that this
completion has the desired property that ind(Π ′, Γ ′) = δ(Π,Γ ). However, if
ind(Π ′, Γ ′) > δ(Π,Γ ), then we can apply ind(Π ′, Γ ′) − δ(Π,Γ ) total fusions
to Π ′ and Γ ′ in order to obtain a different completion (Π∗, Γ ∗). Each of these
fusions reduces the number of new chromosomes by 1 and (by (3)) must also
decrease the number of cycles in the breakpoint graph by 1, since (Π ′, Γ ′) is
optimal for ω = 2. As a result, c(Π∗, Γ ∗)−ind(Π∗, Γ ∗) = c(Π ′, Γ ′)−ind(Π ′, Γ ′).
Thus, (Π∗, Γ ∗) is optimal for ω = 2, and since ind(Π∗, Γ ∗) = δ(Π,Γ ), we know
that (Π∗, Γ ∗) must be optimal for any ω > 2 as already noted. This discussion
immediately implies the following algorithm.
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Algorithm 10. If ω ≥ 2 and sing(Π,Γ ) = 0, then the following algorithm
solves the problem of DCJ-indel sorting Π into Γ in O(N) time.

1. Follow the first three steps of Algorithm 7 to construct a completion (Π ′, Γ ′)
that is optimal for ω = 2.

2. Apply a total of ind(Π ′, Γ ′) − δ(Π,Γ ) fusions to Π ′ and Γ ′ in order to
produce a completion (Π∗, Γ ∗) having ind(Π∗, Γ ∗) = δ(Π,Γ ).

3. Apply the O(N)-time algorithm for DCJ sorting from [11] to transform Π∗

into Γ ∗. Any DCJ involving a new chromosome can be viewed as an indel.

The optimal completion (Π∗, Γ ∗) returned by Algorithm 10 has the property
that

c(Π∗, Γ ∗) = c(Π,Γ )+podd(Π,Γ )+
peven(Π,Γ )

2
−
[
ind(Π ′, Γ ′)−δ(Π,Γ )

]
, (8)

where (Π ′, Γ ′) is the optimal completion for ω = 2 returned by Algorithm 7.
Combining this equation with (5) and (7) yields a closed formula for the DCJ-
indel distance when ω > 2 in the absence of singletons.

Corollary 11. If ω ≥ 2 and sing(Π,Γ ) = 0, then the DCJ-indel distance be-
tween Π and Γ is given by the following equation:

dω(Π,Γ ) = N −
[(

c(Π,Γ ) + podd(Π,Γ ) +
peven(Π,Γ )

2
− k(Π,Γ )−

min
{

2, peven(Π,Γ )
})

+ (2− ω) · δ(Π,Γ )

] (9)

��

5 Incorporating Singletons into DCJ-Indel Sorting

We have thus far avoided genome pairs with singletons because Theorem 1, which
underlies the main results in the preceding section, only applied in the absence
of singletons. Yet fortunately, genomes with singletons will be relatively easy
to incorporate into a single DCJ-indel sorting algorithm. As we might guess,
different values of ω produce different results.

Theorem 12. If Π∅ and Γ ∅ are produced from genomes Π and Γ by removing
all singletons, then

dω(Π,Γ ) =dω(Π∅, Γ ∅) + min {1, ω} · sing(Π,Γ ) + max {0, ω − 1}·[
(1− δΓ∅(Π∅)) ·min {1, singΓ (Π)}+

(1− δΠ∅(Γ ∅)) ·min {1, singΠ(Γ )}
] (10)
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Proof. Any transformation of Π∅ into Γ ∅ can be supplemented by the deletion of
each singleton of Π and the insertion of each singleton of Γ to yield a collection
of DCJs and indels transforming Π into Γ . As a result, for any value of ω,

dω(Π,Γ ) ≤ dω(Π∅, Γ ∅) + ω · sing(Π,Γ ) . (11)

Next, we will view an arbitrary transformation T of Π into Γ as a sequence
(Π0, Π1, . . . , Πn) (n ≥ 1), where Π0 = Π , Πn = Γ , and Πi+1 is obtained from
Πi as the result of a single DCJ or indel. Consider a sequence (Π∅

0 , Π
∅
1 , . . . , Π

∅
n),

where Π∅
i is constructed from Πi by removing the subgraph of Πi induced by

the nodes of the singletons of Π and Γ under the stipulation that whenever we
remove a path P connecting v to w, we replace adjacencies {v, x} and {w, y}
in Πi with {x, y} in Π∅

i . Certainly, Π∅
0 = Π∅ and Π∅

n = Γ ∅. Furthermore,
for every i in range, if Π∅

i+1 is not the result of a DCJ or indel applied to

Π∅
i , then Π∅

i+1 = Π∅
i . Thus, (Π∅

0 , Π
∅
1 , . . . , Π

∅
n) can be viewed as encoding a

transformation of Π∅ into Γ using at most n DCJs and indels. One can verify
that Π∅

i+1 = Π∅
i precisely when Πi+1 is produced from Πi either by a DCJ that

involves an adjacency belonging to a singleton or by an indel containing genes
that all belong to singletons. At least sing(Π,Γ ) such operations must always
occur in T; hence,

dω(Π,Γ ) ≥ dω(Π∅, Γ ∅) + min {1, ω} · sing(Π,Γ ) . (12)

In the case that ω ≤ 1, the bounds in (11) and (12) immediately yield (10).
Assume, then, that ω > 1. If δΓ∅(Π∅) = 0, then g(Π∅) ⊆ g(Γ ∅), meaning

that every deleted gene of Π must belong to a singleton of Π . In this case, the
total cost of removing any singletons of Π is trivially minimized by singΓ (Π)−1
fusions consolidating the singletons of Π into a single chromosome, followed by
the deletion of this chromosome. Symmetric reasoning applies to the singletons
of Γ if δΠ∅(Γ ∅) = 0.

On the other hand, assume that ω > 1 and that δΓ∅(Π∅) = 1, so that g(Π∅)−
g(Γ ∅) is nonempty. In this case, if Π has any singletons, then we can create a
minimum-cost transformation by applying singΓ (Π) − 1 fusions consolidating
the singletons of Π into a single chromosome, followed by another fusion that
consolidates these chromosomes into a chromosomal interval of Π that is about
to be deleted. Symmetric reasoning applies to the singletons of Γ if δΠ∅(Γ ∅) = 1.

Regardless of the particular values of δΓ∅(Π∅) and δΠ∅(Γ ∅), we will obtain
the formula in (10). ��

This proof immediately provides us with an algorithm incorporating the case of
genomes with singletons into the existing DCJ-indel sorting framework.

Algorithm 13. The following algorithm solves the general problem of DCJ-
indel sorting genomes Π and Γ for any indel cost ω ≥ 0 in O(N) time.

1. Case 1: ω ≤ 1.
(a) Delete any singletons of Π, then insert any singletons of Γ .
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(b) Apply Algorithm 7 to transform the resulting genome into Γ .

2. Case 2: ω > 1.
(a) If Π has any singletons, apply singΓ (Π) − 1 fusions to consolidate the

singletons of Π into a single chromosome CΠ .
i. If g(Π∅) ⊆ g(Γ ∅), delete CΠ .
ii. Otherwise, save CΠ for later.

(b) If Γ has any singletons, apply singΠ(Γ ) − 1 fusions to consolidate the
singletons of Γ into a single chromosome CΓ .
i. If g(Γ ∅) ⊆ g(Π∅), delete CΓ .
ii. Otherwise, save CΓ for later.

(c) Apply a sorting algorithm as needed to construct an optimal completion
(Π∗, Γ ∗) for Π∅ and Γ ∅.
i. If 1 < ω ≤ 2, apply the first three steps of Algorithm 7.
ii. If ω > 2, apply the first two steps of Algorithm 10.

(d) If g(Π∅) − g(Γ ∅) is nonempty, apply a fusion incorporating CΠ into a
new chromosome of Π∗. If g(Γ ∅) − g(Π∅) is nonempty, apply a fusion
incorporating CΓ into a new chromosome of Γ ∗.

(e) Apply the final step of Algorithm 7 or Algorithm 10, depending on the
value of ω.

6 Conclusion

With the problem of DCJ-indel sorting genomes with circular chromosomes uni-
fied under a general model, we see three obvious future applications of this work.

First, an extension of these results for genomes with linear chromosomes would
prevent us from having to first circularize linear chromosomes when comparing
eukaryotic genomes. This work promises to be extremely tedious (if it is indeed
possible) without offering dramatic new insights.

Second, we would like to implement the linear-time method for DCJ-indel
sorting described in Algorithm 13 and publish the code publicly. Evolutionary
study analysis on real data would hopefully determine appropriate choices of ω.

Third, we are currently attempting to extend these results to fully characterize
the space of all solutions to DCJ-indel sorting, which would generalize the result
in [6] to arbitrary values of ω.
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Abstract. Long read sequencers portend the possibility of producing
reference quality genomes not only because the reads are long, but also
because sequencing errors and read sampling are almost perfectly ran-
dom. However, the error rates are as high as 15%, necessitating an ef-
ficient algorithm for finding local alignments between reads at a 30%
difference rate, a level that current algorithm designs cannot handle or
handle inefficiently. In this paper we present a very efficient yet highly
sensitive, threaded filter, based on a novel sort and merge paradigm, that
proposes seed points between pairs of reads that are likely to have a sig-
nificant local alignment passing through them. We also present a linear
expected-time heuristic based on the classic O(nd) difference algorithm
[1] that finds a local alignment passing through a seed point that is ex-
ceedingly sensitive, failing but once every billion base pairs. These two
results have been combined into a software program we call DALIGN that
realizes the fastest program to date for finding overlaps and local align-
ments in very noisy long read DNA sequencing data sets and is thus a
prelude to de novo long read assembly.

1 Introduction and Summary

The PacBio RS II sequencer is the first operational “long read” DNA sequencer
[2]. While its error rate is relatively high (ε = 12-15% error), it has two incredibly
powerful offsetting properties, namely, that (a) the set of reads produced is a
nearly Poisson sampling of the underlying genome, and (b) the location of errors
within reads is truly randomly distributed. Property (a), by the Poisson theory
of Lander and Waterman [3], implies that for any minimum target coverage level
k, there exists a level of sequencing coverage c that guarantees that every region
of the underlying genome is covered k times. Property (b), from the early work of
Churchill and Waterman [4], implies that the accuracy of the consensus sequence
of k such sequences is O(εk) which goes to 0 as k increases. Therefore, provided
the reads are long enough that repetitive genome elements do not confound
assembling them, then in principle a (near) perfect de novo reconstruction of a
genome at any level of accuracy is possible given enough coverage c.

These properties of the reads are in stark contrast to those of existing technolo-
gies where neither property is true. All previous technologies make reproducible
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sequencing errors. A typical rate of occurrence for these errors is about 10−4 im-
plying at best a Q40 reconstruction is possible, whereas in principle any desired
reconstruction accuracy is possible with the long reads, e.g., a Q60 reconstruc-
tion has been demonstrated for E. coli [5]. All earlier technologies also exhibit
clear sampling biases, typically due to a biased amplification or selection step,
implying that many regions of a target genome are not sequenced. For exam-
ple, some PCR-based instruments often fail to sequence GC rich stretches. So
because their error and sampling are unbiased, the new long read technologies
are poised to enable a dramatic shift in the state of the art of de novo DNA
sequencing.

The questions then are (a) what level of coverage c is required for great assem-
bly, i.e. how cost-effectively can one get near the theoretical ideal above, and (b)
how does one build an assembler that works with such high error rates and long
reads? The second question is important because most current assemblers do
not work on such data as they assume much lower error rates and much shorter
reads, e.g. error rates less than 2% and read lengths of 100-250bp. Moreover,
the algorithms within these assemblers are specifically tuned for these operating
points and some approaches, such as the de-Bruijn graph [6] would catastrophi-
cally fail at rates over 10%.

Finding overlaps is typically the first step in an overlap-layout-consensus(OLC)
assembler design [7] and is the efficiency bottleneck for such assemblers. In this pa-
per, we develop an efficient algorithm and software for finding all significant local
alignments between reads in the presence of the high error rates of the long reads.
Finding local alignments is more general then finding overlaps, and we do so be-
cause it allows us to find repeats, chimers, undetected vector sequence and other
artifacts that must be detected in order to achieve near perfect assemblies. To this
authors knowledge, the only previous algorithm and software that can effectively
accommodate the level of error in question is BLASR [8] which was original designed
as a tool to map long reads to a reference genome, but can also be used for the as-
sembly problem. Empirically our program, DALIGN, is more sensitive while being
typically 20 to 40 times faster depending on the data set.

We make use of the same basic filtration concept as BLASR, but realize it
with a series of highly optimized threaded radix sorts (as opposed to a BWT
index [9]). While we did not make a direct comparison here, we believe the
cache coherence and thread ability of the simpler sorting approach is more time
efficient then using a more sophisticated but cache incoherent data structure
such as a Suffix Array or BWT index. But the real challenge is improving the
speed of finding local alignments at a 30-40% difference rate about a seed hit
from the filter, as this step consumes the majority of the time, e.g. 85% or more
in the case of DALIGN. To find overlaps about a seed hit, we use a novel method
of adaptively computing furthest reaching waves of the classic O(nd) algorithm
[1] augmented with information that describes the match structure of the last
p columns of the alignment leading to a given furthest reaching point. Each
wave on average contains a small number of points, e.g. 8, so that in effect an
alignment is detected in time linear in the number of columns in the alignment.
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In practice DALIGN achieved the following CPU and wall-clock times on 3
publicly available PacBio data sets [10]. The 48X E coli data set can be com-
pared against itself in less than 5.4 wall clock minutes on a Macbook Pro with
16Gb of memory and a 4-core i7-processor. The 89X Arabadopsis data set can
be processed in 71 CPU hours or 10 wall-clock minutes on our modest 480 core
HPC cluster, where each node is a pair of 6-core Intel Xeon E5-2640’s at 2.5GHz
with 128Gb (albeit only 50-60Gb is used per node). Finally on the 54X human
genome data set, 15,600 CPU hours or 32-33 wall-clock hours are needed. Thus
our algorithm and software enables the assembly of gigabase genomes in a “rea-
sonable” amount of compute time (e.g., compared to the 404,000 CPU hours
reported for BLASR).

2 Preliminaries: Edit Graphs, Alignments, Paths, and
F.R.-Waves

DALIGN takes as input a block A of M long reads A1, A2, . . . AM and another
block B of N long reads B1, B2, . . . BN over alphabet Σ = 4, and seeks read
subset pairs P = (a, i, g)× (b, j, h) such that len(P ) = ((g − i) + (h− j))/2 ≥ τ
and the optimal alignment between Aa[i+1, g] and Bb[j+1, h] has no more than
2ε · len(P ) differences where a difference can be either an insertion, a deletion,
or a substitution. Both τ and ε are user settable parameters, where we call τ the
minimum alignment length and ε the average error rate. We further will speak
of 1 − 2ε as the correlation or percent identity of the alignment. It will also be
convenient throughout to introduce ΣA =

∑M
a=1 |Aa|, the total number of base

pairs in A, and maxA = maxa |Aa| the length of the longest read in A.
Most readers will recall that an edit graph for read A = a1a2 . . . am versus B =

b1b2 . . . bn is a graph with an (m+1)×(n+1) array of vertices (i, j) ε [0,M ]×[0, N ]
and the following edges:

(a) deletion edges (i − 1, j)→ (i, j) with label
[
ai
-

]
if i > 0.

(b) insertion edges (i, j − 1)→ (i, j) with label
[

-
bj

]
if j > 0.

(c) diagonal edges (i− 1, j − 1)→ (i, j) with label
[
ai
bj

]
if i, j > 0

A simple exercise in induction reveals that the sequence of labels on a path from
(i, j) to (g, h) in the edit graph spells out an alignment between A[i + 1, g] and
B[j + 1, h]. Let a match edge be a diagonal edge for which ai = bj and otherwise
call the diagonal edge a substitution edge. Then if match edges have weight 0 and
all other edges have weight 1, it follows that the weight of a path is the number
of differences in the alignment it models. So our goal in edit graph terms is
to find read subset pairs P such that len(P ) ≥ τ and the lowest scoring path
between (i, j) and (g, h) in the edit graph of Aa versus Bb has cost no more than
2ε · len(P ).

In 1986 we presented a simple O(nd) algorithm [1] for comparing two se-
quences that centered on the idea of computing progressive “waves” of furthest
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reaching (f.r.) points. Starting from a point ρ = (i, j) in diagonal κ = i − j of
the edit graph of two sequences, the goal is to find the longest possible paths
starting at ρ, first with 0-differences, then with 1-differences, 2-differences, and
so on. Note carefully that after d differences, the possible paths can end in diag-
onals κ±d. In each of these 2d+1 diagonals we want to know the furthest point
on the diagonal that can be reached from ρ with exactly d differences which we
denote by Fρ(d, k). We call these points collectively the d-wave emanating from
ρ and formally Wρ(d) = {Fρ(d, κ − d), . . . Fρ(d, κ + d)}. We will more briefly
refer to Fρ(d, k) as the f.r. d-point on k where ρ will be implicit understood from
context. In the 1986 paper we proved that:

F (d, k) = Slide(k,max{F (d−1, k−1)+(1, 0), F (d−1, k)+(1, 1), F (d−1, k+1)+(0, 1)}
(1)

where Slide(k, (i, j)) = (i, j) + max{Δ : ai+1ai+2 . . . ai+Δ = bj+1bj+2 . . . bj+Δ}.
In words, the f.r. d-point on k can be computed by first finding the furthest
of (a) the f.r. (d − 1)-point on k − 1 followed by an insertion, or (b) the f.r.
(d − 1)-point on k followed by a substitution, or (c) the f.r. (d − 1)-point on
k + 1 followed by a deletion, and thereafter progressing as far as possible along
match edges (a “slide”). Formally a point (i, j) is furthest if its anti-diagonal,
i + j, is greatest. Next, it follows easily that the best alignment between A and
B is the smallest d such that (m,n) ∈ W(0,0)(d) where m and n are the length
of A and B, respectively. So the O(nd) algorithm simply computes d-waves from
(0, 0) in order of d until the goal point (m,n) is reached in the dth wave. It
can further be shown that the expected complexity is actually O(n + d2) under
the assumption that A and B are non-repetiitve sequences. In what follows we
will be computing waves adaptively and in both the forward direction, as just
described, and in the reverse direction, which is conceptually simply a matter of
reversing the direction of the edges in the edit graph.

3 Rapid Seed Detection: Concept

Given blocks A and B of long, noisy reads, we seek to find local alignments
between reads that are sufficiently long (parameter τ) and sufficiently stringent
(parameter ε). For our application ε is much larger than typically contemplated in
prior work, 10-15%, but the reads are very long, 10Kbp, so τ is large, 1 or 2Kbp.
Here we build a filter that eliminates read pairs that cannot possibly contain
a local alignment of length τ or more, by counting the number of conserved
k-mers between the reads. A careful and detailed analysis of the statistics of
conserved k-mers in the operating range of ε and τ required by long read data,
has previously been given in the paper about the BLASR program [8]. So here we
just illustrate the idea by giving a rough estimate assuming all k-mer matches are
independent events. Under this simplifying assumption, it follows that a given
k-mer is conserved with probability π = (1 − 2ε)k and the number of conserved
k-mers in an alignment of τ base pairs is roughly a Bernouilli distribution with
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rate π and thus an average of τ · π conserved k-mers are expected between
two reads that share a local alignment of length τ . As an example, if k = 14,
ε = 15%, and τ = 1500, then π ≈ .714 = .0067, we expect to have 10.0 14-
mers conserved on average, and only .046% of the sought read pairs have 1
or fewer hits between them and only .26% have 2 or fewer hits. Thus a filter
with expected sensitivity 99.74% examines only read pairs that have 3 or more
conserved 14-mers. BLASR and DALIGN effectively use this strategy where one
controls sensitivity and specificity by selecting k and the number of k-mers that
must be found. Beyond this point our methods are completely different.

First, we improve specificity by (a) computing the number of conserved k-
mers in bands of diagonals of width 2s between two reads (as opposed to the
entire reads) where a typical choice for s is 6, and (b) thresholding a hit on the
number of bases, h, in conserved k-mers (as opposed to the number of k-mers).
Condition (a) increases specificity as it limits the set of k-mers to be counted at a
potentially slight loss of sensitivity because an alignment can have an insertion or
deletion bias and so can drift across bands rather than staying in a single band.
To understand condition (b) note that 3 consecutive matching k-mers involve
a total of k + 2 matching bases, whereas 3 disjoint matching k-mers involve a
total of 3k matching bases. Under our simplifying assumption the first situation
happens with probability π1+2/k and the second with probability π3, i.e. one is
much more specific than the other. By counting the number of bases involved
in k-mer hits we ensure that all filters hits have roughly the same statistical
frequency.

There are many ways to find matching k-mers over an alphabet Σ, specifi-
cally of size 4 in this work, most involving indices such as Suffix Arrays [11] or
BWT indices [9]. We have found in practice that a much simpler series of highly
optimized sorts can similarly deliver the number of bases in k-mers in a given
diagonal band between two reads. Given blocks A and B we proceed as follows:

1. Build the list ListA = {(kmer(Aa, i), a, i)}a,i of all k-mers of the A block
and their positions, where kmer(R, i) is the k-mer, R[i− k + 1, i].

2. Similarly build the list ListB = {(kmer(Bb, j), b, j)}b,j.
3. Sort both lists in order of their k-mers.
4. In a merge sweep of the two k-mer sorted lists build ListM = {(a, b, i, j) :

kmer(Aa, i) = kmer(Bb, j)} of read and position pairs that have the same
k-mer.

5. Sort ListM lexicographically on a, b, and i where a is most significant and i
least.

To keep the following analysis simple, let us assume that the sizes of the two
blocks are both roughly the same, say N . Steps 1 and 2 are easily seen to take
O(N) time and space. The sorts of steps 3 and 5 are in theory O(LlogL) where
L is the list size. The only remaining complexity question is how large is ListM .
First note that there is a contribution (i) from k-mers that are purely random
chance, and (ii) from conserved k-mers that are due to the reads actually being
correlated. The first term is N2/Σk as we expect to see a given k-mer N/Σk
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times in each block. For case (ii), suppose that the data set is a c-fold covering
of an underlying genome, and, in the worst case, the A and B blocks are the
same block and contain all the data. The genome is then of size N/c and each
position of the genome is covered by c reads by construction. Because c/π k-
mers are on average conserved amongst the c reads covering a given position,
there are thus N/c · (c/π)2 = (Nc/π2) matching k-mer pairs by non-random
correlations. In most projects c is typically 50-100 whereas π is typically 1/100
(e.g. k = 14 and ε = 15%) implying somewhat counter-intuitively that the non-
random contribution is dominated by the random contributions! Thus ListM
is O(N2/Σk) in size and so in expectation the time for the entire procedure
is dominated by Step 5 which takes O(N2logN/Σk). Finally, suppose the total
amount of data is M and we divide it into blocks of size Σk all of which are
compared against each other. Then the time for each block comparison is O(kΣk)
using O(Σk) space, that is linear time and space in the block size. Finally, there
are M/Σk blocks implying the total time for comparing all blocks is O(kM ·
(M/Σk)). So our filter, like all others, still has a quadratic component in terms
of the number of occurrences of a given k-mer in a data set. With linear times
indices such as BWT’s the time can theoretically be improved by a factor of k.
However, in practice the k arises from a radix sort that actually makes only k/4
passes and is so highly optimized, threaded, and cache coherent that we believe
it likely outperforms a BWT approach by a considerable margin. At the current
time all we can say is that DALIGN which includes alignment finding is 20-40
times faster than BLASR which uses a BWT (see Table 6).

For the sorted list ListM , note that all entries involving a given read pair
(a, b) are in a single contiguous segment of the list after the sort in Step 5. Given
parameters h and s, for each pair in such a segment, we place each entry (a, b, i, j)
in both diagonal bands d = �(i−j)/2s� and d+1, and then determine the number
of bases in the A-read covered by k-mers in each pair of bands diagonal band,
i.e. Count(a, b, d) = | ∪ {w(Aa, a, i) : (a, b, i, j) ∈ ListM and �(i − j)/2s� = d
or d + 1}|. Doing so is easy in linear time in the number of relevant entries as
they are sorted on i. If Count(a, b, d) ≥ h then we have a hit and we call our
local alignment finding algorithm to be described, with each position (i, j) in the
bucket d unless the position i is already within the range of a local alignment
found with an index pair searched before it. This completes the description of
our filtration strategy and we now turn to its efficient realization.

4 Rapid Seed Detection: Algorithm Engineering

Todays processors have multiple cores and typically a 3-level cache hierarchy
implying memory fetch times vary by up to 100 for L1 cache hits versus a miss
at all three cache levels. We therefore seek a realization of the algorithm above
that is parallel over T threads and is cache coherent. Doing so is easy for steps
1, 2, and 4 and we optimize the encoding of the lists by squeezing their elements
into 64-bit integers. So the key problem addressed in the remainder of this section
is how to realize a threadable, memory coherent sort of an array src[0..N − 1]
of N 64-bit integers in steps 3 and 5.
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We chose a radix sort [12] where each number is considered as a vector of
P = �hbits/B�, B-bit digits, (xP , xP−1, . . . , x1) and B is a free parameter to
be optimally chosen empirically later. A radix sort sorts the numbers by stably
sorting the array on the first B-bit digit x1, then on the second x2, and so
on to xP in P sorting passes. Each B-bit sort is achieved with a bucket sort
[12] with 2B buckets. Often this basic sort is realized with a linked list, but a
much better strategy sequentially moves the integers in src into pre-computed
segments, trg[ bucket[b] .. bucket[b + 1] − 1 ] of an auxiliary array trg[0..N − 1]
where, for the pth pass, bucket[b] = {i : src[i]p < b} for each b ∈ [0, 2B − 1]. In
code, the pth bucket sort is:

for i = 0 to N-1 do

{ b = src[i]_p

trg[bucket[b]] = src[i]

bucket[b] += 1

}

Asymptotically the algorithm takes O(P (N + 2B)) time but B and P are fixed
small numbers so the algorithm is effectively O(N).

While papers on threaded sorts are abundant [13], we never the less present
our pragmatic implementation of a threaded radix sort, because it uses half the
number of passes over the array that other methods use, and accomplishing this
is non-trivial as follows. In order to exploit the parallelism of T threads, we let
each thread sort a contiguous segment of size part = �N/T � of the array src into
the appropriate locations of trg. This requires that each thread t ∈ [0, T −1] has
its own bucket array bucket[t] where now bucket[t][b] = {i : src[i] < b or src[i] =
b and i/part < t}. In order to reduce the number of sweeps over the arrays by
half, we produce the bucket array for the next pass while performing the current
pass. But this is a bit complex because each thread must count the number of
B-bit numbers in the next pass that will be handled by not only itself but every
other thread separately! That is, if the number at index i will be at index j and
bucket b in the next pass then the count in the current pass must be recorded
not for the thread i/part currently sorting the number, but for the thread j/part
that will sort the number in the next pass. To do so requires that we actually
count the number of such events in next[j/part][i/part][b] where now next is a
T × T × 2B array. It remains to note that when src[i] is about to be moved in
the pth pass, then j = bucket[src[i]p] and b = src[i]p+1. The complete algorithm
is presented below in C-style pseudo-code where unbound variables are assumed
to vary over the range of the variable. It is easily seen to take O(N/T +T 2) time
assuming B and P are fixed.

int64 MASK = 2^B-1

sort_thread(int t, int bit, int N, int64 *src, int64 *trg, int *bucket, int *next)

{ for i = t*N to (t+1)*N-1 do

{ c = src[i]

b = c >> bit

x = bucket[b & MASK] += 1

trg[x] = c



Efficient Local Alignment Discovery amongst Noisy Long Reads 59

next[x/N][(b >> B) & MASK] += 1

}
}

int64 *radix_sort(int T, int N, int hbit, int64 src[0..N-1], int64 trg[0..N-1])

{ int bucket[0..T-1][0..2^B-1], next[0..T-1][0..T-1][0..2^B-1]

part = (N-1)/T + 1

for l = 0 to hbit-1 in steps of B do

{ if (l != lbit)

bucket[t,b] = Sum_t next[u,t,b]

else

bucket[t,b] = | { i : i/part == t and src[i] & MASK == b } |

bucket[t,b] = Sum_u,(c<b) bucket[u,c] + Sum_(u<t) bucket[u,b]

next[u,t,b] = 0

in parallel: sort_thread(t,l,part,src,trg,bucket[t],next[t]])

(src,trg) = (trg,src)

}
return src

}

We conclude by emphasizing why this approach to sorting is a particularly
efficient realization of a very large array sort. Each bucket sort involves two
small arrays bucket and next that will typically fit in the fastest L1 cache. Each
bucket sort makes a single sweep through src while making 2B sweeps through
the bucket segments of trg. Thus 2B+1 cache-coherent sweeps occur during each
bucket sort pass. Each sweep can be prefetched as long as their number does not
exceed the interleaving of the cache architecture. So the smaller B is the better
the caching and prefetching behavior will be, but this is counter balanced by the
increasing number of passes hbit/B that are required. We found that on most
processors, e.g. an Intel i7, the minimum total time for our radix sort occurs
with B = 8 which conveniently is the number of bits in a byte.

The number of threads T to employ is a complex question despite the fact
that there is no communication or synchronization required between threads
in our algorithm and the non-parallel overhead is only O(T 2). The reason is
that every thread does not have its own set of caches. They generally have an
independent L1 cache, but then share the L2 and L3 caches. This means that
the actual number of sweeps taking place is T (2B + 1) which at the level of the
L2 cache begins to induce interleaving interference. Nonetheless, speed up is still
very good. For example, on a 4-core Intel i7, the speedup achieved was 3.6 !

5 Rapid Local Alignment Discovery from a Seed

We now turn to finding local alignments of length τ or more and correlation
1 − 2ε or better given a seed-hit (i, j) between two reads A and B reported by
the filter above. The basic idea is to compute f.r. waves in both the forward and
reverse direction from the seed point ρ = (i, j) (see Section 2). The problem of
course is that the d-wave from ρ spans 2d + 1 diagonals, that is, waves become
wider and wider as one progresses away from ρ in each direction. We know that
only one point in each wave will actually be in the local alignment ultimately
reported, but we only know these points after all the relevant waves have been
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computed. We use several strategies to trim the span of a wave by removing f.r.
points that are extremely unlikely to be in the desired local alignment.

A key idea is that a desired local alignment should not over any reasonable
segment have an exceedingly low correlation. To this end imagine keeping a bit
vector B(d, k) that actually models the last, say C = 60 columns, of the best
path/alignment from ρ to a given f.r. point F (d, k) in the d-wave. That is a
0 will denote a mismatch in a column of the alignment and a 1 will denote a
match. This is actually relatively easy to do: left-shift in a 0 when taking an
indel or substitution edge and then left-shift in a 1 with each matching edge
of a snake. One can further keep track of exactly how many matches M(d, k)
there are in the alignment by observing the bit that gets shifted out when a new
bit is shifted in. The pseudo-code below computes Wρ(d + 1)[low − 1, hgh + 1]
from Wρ(d)[low, hgh] assuming that [low, hgh] ⊆ [κ − d, κ + d] is the interval
of Wρ(d) that we have decided to retain (to be described below). Note that the
code computes the information for each wave in place within the arrays W, B,
and M where W simply records the B-coordinate, j, of each f.r. point (i, j) as we
know the diagonal k of the point, and hence that i = j + k.

MASKC = 1 << (C-1)

W[low-2] = W[hgh+2] = W[hgh+1] = y = yp = -1

for k = low-1 to hgh+1 do

{ (ym,y,yp) = (y,yp+1,W[d+1]+1)

if (ym = min(ym,y,yp))

(y,m,b) = (ym,M[k-1],B[k-1])

else if (yp = min(ym,y,yp)

(y,m,b) = (yp,M[k+1],B[k+1])

else

(y,m,b) = (y,M[k],B[k])

if (b & MASKC != 0)

m -= 1

b <<= 1

while (B[y] == A[y+k])

{ y += 1

if (b & MASKC == 0)

m += 1

b = (b << 1) | 1

}

(W[k],M[k],B[k]) = (y,m,b)

}

A very simple principle for trimming a wave is to remove f.r. points for which
the last C columns of the alignment have less than sayM matches, we call this
the regional alignment quality. For example, if ε = .15 then one almost certainly
does not want a local alignment that contains a C column segment for which
M[k] < .55C = 33 if C = 60. A second trimming principle is to keep only f.r.
points which are within L anti-diagonals of the maximal anti-diagonal reached
by its wave. Intuitively, the f.r. point (i, j) on diagonal k� on the desired path is
on a greater anti-diagonal i+ j than those of the points on either side of it in the
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same wave, and as one progresses away from diagonal k�, the anti-diagonal values
of the wave recede rapidly, giving the wave the appearance of an arrowhead. The
higher the correlation rate of the alignment, the sharper the arrow head becomes
and the points far enough behind the tip of the arrow are almost certainly not
points on an optimal local alignment. So for each portion of a wave computed
from the previous trimmed wave, we trim away f.r. points from [low−1, hgh+1]
that either have M[j] <M or (2W[k�] +k�)− (2W[j] + j) > L. In the experimental
section we show that L = 30 is a universally good value for trimming.

While not a formal proof per se, the following argument explains why in the
empirical results section we see that the average wave size hgh−low is a constant
for any fixed value of ε, and hence why the alignment finding algorithm is linear
expected time in the alignment length. Imagine the extension of an f.r. point
that is actually on the path of an alignment with correlation 1 − 2ε or better.
For the next wave, this point jumps forward one difference and then ”slides”
on average α = (1 − ε)2/(1 − (1 − ε)2) matching diagonals. Contrast this to
an f.r. point off the alignment path which jumps one difference and then only
slides β = 1/(Σ−1) diagonals, assuming every base is equally likely. On average
then, an entry d diagonals away from the alignment path, has involved d jumps
from f.r. points off the path, and hence is d(α− β) behind the f.r. point on the
alignment path in the same wave. Thus the average width of a wave trimmed
with lag cutoff L would be less than 2L/(α− β). This last step of the argument
is incorrect as the statistics of average random path length under the difference
model is more complex then assuming all random steps are the same, but there is
a definite expected value of path length with d-differences, and therefore the basis
of the argument holds, albeit with a different value for β. Since α increases as ε
decreases, it further explains why the wave becomes more pointy and narrower
as ε goes to zero.

The computation of successive waves eventually ends because either (a) the
boundary of the edit graph of A and B is reached, or (b) all the f.r. points fail
the regional alignment quality criterion in which case one can assume that the
two reads no longer correlate with each other. In case (b), one should not report
the best point in the last wave, as the trimming criterion is overly permissive
(e.g. the last 5 columns could all be mismatches!) Because we seek alignments
that have an average correlation rate of 1 − 2ε, we choose to end the path at
a polished point with greatest anti-diagonal for which the last E ≤ C columns
are such that every suffix of the last E columns have a correlation of 1− 2ε or
better. We call such alignments suffix positive (at rate ε) for reasons that will
become obvious momentarily. We must then keep track of the polished f.r. point
with greatest anti-diagonal as the waves are computed, which in turns means
that we must test the alignment bit-vector of the leading f.r. point(s) for the
suffix positive property in each wave.

One can in O(1) time determine if an alignment bit-vector e is suffix positive
by building a 2E-element table SP [e] as follows. Let Score(∈) = 0 and recursively
let Score(1b) = Score(b) + α and Score(0b) = Score(b) − β where α = 2ε and
β = 1 − 2ε. Note that if bit-vector b has m matches and d differences, then
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Score(b) = αm − βd and if this is non-negative then it implies that m/(m +
d) ≥ 1 − 2ε, i.e. b’s alignment has correlation 1 − 2ε or better. Let SP [e] =
min{Score(b) : b is a suffix of e}. Clearly SP [e] ≥ 0 if and only if e is suffix
positive (at rate ε). By computing Score over the trie of all length E bit vectors
and recording the minimum along each path of the trie, the table SP can be
built in linear time.

However if E is large, say 30 (as we generally prefer to set it), then the
table gets too big. If so, then pick a size D (say 15) for which the SP-table
size is reasonable and consider an E-bit vector e to consist of X = E/D, D-bit
segments eX · eX−1 · . . . · e1. Precompute the table SP, but for only D bits, and
a table SC for bit-vectors of the same size where SC[b] = Score(b). Given these
two 2D tables one can then determine if the longer bit-vector e is suffix positive
in O(X) time by calculating whether Polish(X) is true or not with the following
recurrences:

Score(x) =

{
Score(x−1) + SC[ex] if x ≥ 1
0 if x = 0

Polish(x) =

{
Polish(x−1) and Score(x−1) + SP [ex] ≥ 0 if x ≥ 1
true if x = 0

(2)

In summary, we compute waves of f.r. points keeping only those that are
locally part of a good alignment and not too far behind the leading f.r. point.
The waves stop either when a boundary is reached, in which case the boundary
point is taken as the end of the alignment, or all possible points are eliminated,
in which case the furthest polished f.r. point is taken as the end of the alignment
(in the given direction). The search takes place both in the forward direction and
the reverse direction from a seed tip ρ. The intervals of A and B at which the
forward and reverse searches end is reported as a local alignment if the alignment
has length τ or more.

Clearly the algorithm is heuristic: (a) it could fail to find an alignment by
virtue of eliminating incorrectly an f.r. point on the alignment, and (b) it could
over report alignments whose correlation is less than 1 − 2ε as local segments
of worse quality are permitted depending on the setting ofM. We will examine
the sensitivity and specificity of the algorithm in the Empirical Performance
section, but for the moment indicate that with reasonable choices of M and L
the algorithm fails less, than once in a billion base pairs, i.e. (a) almost never
happens. It is our belief that this heuristic variation of the O(nd) algorithm is
superior to any other filter verification approach for local alignments in the case
of identity matching over DNA while simultaneously being extremely sensitive.
Intuitively this is because the heuristic explores many fewer vertices of the edit
graph than dynamic programming based approaches because in expectation the
span hgh − low of trimmed waves is a small constant, that is, an alignment is
found in linear expected time with near certainty.
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6 Empirical Performance

All trials reported in this section were run on a Macbook Pro with a 2.7GHz
Intel Core i7 and the code was compiled with gcc version 4.2.1 with the -O4 level
of optimization set.

For a given setting of ε, we ran trials to determine the sensitivity of the local
alignment algorithm in terms of the trimming parametersM and L. Each trial
consisted of generating a 1Mbp random DNA sequence (with every base equally
likely) and then peppering in random differences at rate ε into two distinct
copies. The two perturbed copies were then given to the wave algorithm with
seed point (0, 0). For various settings of the trimming parameters and ε we ran
1000 trials and recorded (a) what fraction of the trials were successful in that
the entire 1Mbp alignment between the two copies was reported (Table 2), (b)
the average wave span (Table 3), and (c) the time taken.

Table 1. Perturbation versus Observed Correlation and Effective Perturbation

Observed Effective
Perturbation (ε) Correlation Perturbation

15.0% 76.1% 12.45%
10.0% 82.8% 8.60%
5.0% 90.7% 4.35%
2.5% 95.2% 2.40%
1.0% 98.0% 1.00%

The first thing we observed was that the perturbed copies of a sequence actu-
ally aligned with much better correlation than 1− 2ε and the larger ε the larger
the relative improvement. We thus define the effective perturbation as the value
ε� such that 1− 2ε� equals the observed correlation. Table 1 gives the observed
correlation and effective perturbation for a range of values of ε.

The success rate and wave span both increase monotonically as L increases
and as M decreases. In Table 2, we observe that achieving a 100% success
rate depends very crucially on M being small enough, e.g. M must be 55% or
less when the perturbation is ε = 15%, 60% or less for ε = 10%, and so on.
But one should further note in Table 3 that the average wave span is virtually
independent of M and really depends only on L, at least for the values of M
that are required to have a 100% success rate. One might then think that only
the lag threshold is important and trimming on M can be dropped, but one
must remember that in the general case, when two sequences stop aligning, it is
regional alignment quality that stops the extension beyond the end of the local
alignment.

So we then investigated how quickly the wave’s die off after the end of a local
alignment with trials where two sequences completely random with respect to
each other were generated and then the wave algorithm was called with seed
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Table 2. Success Rate of Heuristic on 1Mbp Alignments

L
1− 2ε M 15 20 25 30 35 40 45 50

70%
55% 0.68 0.97 1.00 1.00 1.00 1.00 1.00 1.00
60% 0.27 0.66 0.74 0.74 0.74 0.74 0.73 0.72
65% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

80%

55% 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00
60% 0.96 1.00 1.00 1.00 1.00 1.00 1.00 1.00
65% 0.86 0.93 0.94 0.92 0.94 0.95 0.95 0.94
70% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

90%
70% 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
75% 0.91 0.92 0.92 0.92 0.94 0.94 0.94 0.94
80% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

95%
80% 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99
85% 0.25 0.25 0.27 0.28 0.27 0.26 0.27 0.27

98% 85% 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table 3. Average Wave Span While Finding An Alignment

L
1− 2ε M 15 20 25 30 35 40 45 50

70%
55% 6.4 7.9 9.5 11.1 12.8 14.3 15.9 17.5
60% 6.4 7.9 9.5 11.1 12.8 14.3 15.9 17.5
65% 6.4 7.9 9.5 11.1 12.8 14.3 15.9 17.5

80%

55% 4.4 5.5 6.5 7.5 8.6 9.6 10.7 11.7
60% 4.4 5.5 6.5 7.5 8.6 9.6 10.7 11.7
65% 4.4 5.5 6.5 7.5 8.6 9.6 10.7 11.7
70% 4.4 5.5 6.5 7.5 8.6 9.6 10.7 11.7

90%
70% 2.7 3.2 3.7 4.2 4.7 5.2 5.7 6.2
75% 2.7 3.2 3.7 4.2 4.7 5.2 5.7 6.2
80% 2.7 3.2 3.7 4.2 4.7 5.2 5.7 6.2

95%
80% 1.8 2.1 2.3 2.6 2.8 3.1 3.3 3.6
85% 1.8 2.1 2.3 2.6 2.8 3.1 3.3 3.6

98% 85% 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

point (0, 0). We recorded the number of waves traversed in each trial, the av-
erage span of the waves, and the total number of furthest reaching (f.r.) points
computed all together before the algorithm quit. The results are presented in
Table 4. Basically the total time to terminate grows quadratically inM for large
values but as M moves towards the rate at which two random DNA sequences
will align (i.e. 48%) the growth in time begins to become exponential going to
infinity at 48%. One can begin to see this at M= 55% in the table.

We timed the local alignment algorithm on 15 operating points in Tables 2 and
3 for which the success rate was 100% so that each measurement involved exactly
1billion aligned base pairs. The points covered ε from 1% to 15% and L from 20
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Table 4. Termination Efficiency

Average Number Average Average Number
M of Waves Wave Span of F.R. Points

55% 38 24 910
60% 26 24 620
65% 23 22 510
70% 20 20 400
75% 17 17 290
80% 14 14 200
85% 11 11 120

to 50. The structure of the algorithm implies that the time it takes should be
a linear function of (a) the number of waves, D, (b) the number of f.r. points
computed, DW̄ where W̄ is the average span of a wave, and (c) the number of
non-random aligned bases followed in snakes, a. But D = ε�N and we know that
i+d+2s+2a = 2N where i, d, and s are the number of insertions, deletions, and
substitutions in the alignment found. The later implies a = N(1− (1 + σ)/2ε�)
were σ is the relative portion of the alignment that is substitutions versus indels.
Thus it follows that the time for the algorithm should be the linear function:

N(α + β · ε� + γ · ε�W̄ ) (3)

for some choice of α, β, and γ. A linear regression on our 15 timing values
gave a correlation of .9995 with the fit:

N(61 + 185ε� + 32ε�W̄ ) nano seconds (4)

For example, with L = 30, the algorithm takes 194s for ε = 15%, 134s for
ε = 10%, 91s for ε = 5%, 75s for ε = 2.5%, and 66s for ε = 1%.

To time and estimate the sensitivity of the filtration algorithm we generated
40X coverage of an 10Mbp synthetic genome. Every read was of length 10Kbp
and perturbed by ε = 15% and we sought overlaps of 1Kbp or longer. In Table 5
we present a number of statistics and timings for a few operating points around
our preferred choice of (14, 35, 6) for the parameters k, h, and s. The table
reveals that (a) the algorithm is very sensitive missing 1 in 5000 overlaps at the
standard operating point, (b) the false discovery rate is generally low but does
not have a large effect on the time taken by the filtration step, (c) the major
determiner of time taken is k, and (d) the time for the filter, e.g. 132 seconds,
is small compared to the time taken to find local alignments which was roughly
860 seconds.

For all the runs in Table 5, the speedup with 4 threads was 3.88 on average,
implying for example that the wall clock time for the standard operating point
was 256 seconds, or 4.25 minutes for comparing two 400Mb blocks. The 40X
synthetic data set constituted a single 400Mbp block in the trials, and when
compared against itself produced 1.23 million overlaps between the 37,000 reads



66 G. Myers

Table 5. DALIGN performance on a synthetic 40X dataset as a function of k, h, and s

Sensitivity False Discovery Filter Time Memory Total Time
(k, h, s) (TP/(FN+TP) (FP/(TP+FP) (sec.) (Gb) (sec.)

� (14,35,6) .020% 7.02% 132

11.92

995
(14,32,6) .014% 7.50% 132 1007
(14,30,6) .010% 9.51% 132 1014
(14,28,6) .006% 22.30% 139 1039

(14,35,5) .037% 6.87%

132 11.92

994
� (14,35,6) .020% 7.02% 995
(14,35,7) .015% 7.23% 996
(14,35,8) .013% 7.84% 998

(13,35,6) .004% 10.53% 341 12.85 1193
� (14,35,6) .020% 7.02% 132 11.92 995
(15,35,6) .109% 6.23% 90 8.22 933

Table 6. DALIGN versus BLASR

BLASR DALIGN

Block Size Sensitivity Time (sec.) Sensitivity Time (sec.)

100 87% 2463 98.7% 109
200 86% 5678 97.5% 222
400 85% 15334 97.3% 393

in the data set. One should note carefully, that for much bigger projects, the
time for alignment is considerably less. For example, a 40X dataset over a 1Gbp
synthetic genome, would produce 100 400Mb blocks, but comparing each block
against itself would typically find only 12.3 thousand overlaps. Another way to
look at it is that there will be 100 times more overlaps found, but the filter has
to be run on roughly 5000 block pairs.

Real genomes are highly repetitive, implying that the number of overlaps found
in practical situations is much higher. For example for the 218Mbp, 31,700 read
E. coli data set produced by PacBio found 1.44 million overlaps in 1256 total sec-
onds (5.36 wall clock minutes). Moreover, to obtain this result overly frequent k-
mers had to be suppressed and low-complexity intervals of reads had to be soft
masked. So while the synthetic results above characterize performance in a well
understood situation, performance on real data is harder to predict. As our last
result, we show in Table 6 the results of timing BLASR and DALIGN on blocks of
various sizes from the PacBio human data set. DALIGN was run with (k, h, s) =
(14, 35, 6) and k-mers occurring more than 20 times were suppressed. BLASR was
run with the parameters used by the PacBio team for their human genome assembly
(private communication, J. Chin) which were “−nCandidates 24 −minMatch 14
−maxLCPLength 15−bestn 12−minPctIdentity70.0−maxScore 1000−nproc 4
noSplitSubreads”. Reads in the block were mapped to the human genome refer-
ence in order to obtain the sensitivity numbers. It is clear that DALIGN is much more
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sensitive (despite the k-mer suppression) and 22 to 39 times faster depending on
the block size. In the introduction we gave our time, 15,600 core hours, for overlap-
ping the 54X PacBio human genome dataset, which has been informally reported
as 404,000 core hours on the Google ”Exacycle” platform using BLASRwith the pa-
rameters as above except−bestn 1 and−minPctIdentity75.0. This represents a
substantial 25X reduction in compute time and returns the problem to a manage-
able scale.

Acknowledgments. I would like to acknowledge Sigfried Schloissnig, who is my
partner in building a new assembler for long read data. Also Sigfried’s postdoc Mar-
tin Pippel produced the timing numbers for the big runs on Arabidopsis and Hu-
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Abstract. Since its emergence almost 20 years ago (Schwartz et al.,
Science 1995), optical mapping has undergone a transition from labora-
tory technique to commercially available data generation method. In line
with this transition, it is only relatively recently that optical mapping
data has started to be used for scaffolding contigs and assembly valida-
tion in large-scale sequencing projects — for example, the goat (Dong
et al., Nature Biotech. 2013) and amborella (Chamala et al., Science
2013) genomes. One major hurdle to the wider use of optical mapping
data is the efficient alignment of in silico digested contigs to an optical
map. We develop Twin to tackle this very problem. Twin is the first
index-based method for aligning in silico digested contigs to an opti-
cal map. Our results demonstrate that Twin is an order of magnitude
faster than competing methods on the largest genome. Most importantly,
it is specifically designed to be capable of dealing with large eukaryote
genomes and thus is the only non-proprietary method capable of com-
pleting the alignment for the budgerigar genome in a reasonable amount
of CPU time.

1 Introduction

With the cost of next generation sequencing (NGS) continuing to fall, the last
decade has been witness to the production of draft whole genome sequences
for dozens of species. However, de novo genome assembly, the process of recon-
structing long contiguous sequences (contigs) from short sequence reads, still
produces a substantial number of errors [25,1] and is easily misled by repetitive
regions [26].

One way to improve the quality of assembly is to use secondary informa-
tion (independent of the short sequence reads themselves) about the order and
orientation of contigs. Optical mapping, which constructs ordered genome-wide
high-resolution restriction maps, can provide such information. Optical mapping
is a system that works as follows [4,10]: an ensemble of DNA molecules adhered
to a charged glass plate are elongated by fluid flow. An enzyme is then used

D. Brown and B. Morgenstern (Eds.): WABI 2014, LNBI 8701, pp. 68–81, 2014.
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to cleave them into fragments at loci where the enzyme’s recognition sequence
occurs. Next, the remaining fragments are highlighted with fluorescent dye and
digitally photographed under a microscope. Finally, these images are analyzed
to estimate the fragment sizes, producing a molecular map. Since the fragments
stay relatively stationary during the aforementioned process, the images cap-
tures their relative order and size [23]. Multiple copies of the genome undergo
this process, and a consensus map is formed that consists of an ordered sequence
of fragment sizes, each indicating the approximate number of bases between oc-
currences of the recognition sequence in the genome [2].

The raw optical mapping data identified by the image processing is an ordered
sequence of fragment lengths. Hence, an optical map with x fragments can be
denoted as 
 = {
1, 
2, . . . , 
x}, where 
i is the length of the ith fragment in base
pairs. This raw data can then be converted into a sequence of locations, each
of which determines where a restriction site occurs. We denote the converted
data as follows: L(x) = {L0 < L1 < · · · < Ln}, where 
i = Li − Li−1 for
i = 1, . . . , n, and L0 and Ln are defined by the original molecule as a segment
of the whole genome by shearing. This latter representation is convenient for
algorithmic descriptions. The approximate mean and standard deviation of the
fragment size error rate for current data [31] are zero and 150 bp, respectively.
See Figure 1 for an illustration of the data produced by this technique. Each
restriction enzyme recognizes a specific nucleotide sequence so a unique optical
map results from each enzyme, and multiple enzymes can be used in combination
to derive denser optical maps. Optical maps have recently become commercially
available for mammalian-sized genomes1, allowing them to be used in a variety
of applications.

Although optical mapping data has been used for structural variation detec-
tion [28], scaffolding and validating contigs for several large sequencing projects
— including those for various prokaryote species [24,32,33], Oryza sativa (rice)
[35], maize [34], mouse [9], goat [11], Melopsittacus Undulatus (budgerigar) [16],
and Amborella trichopoda [8] — there exist few non-proprietary tools for ana-
lyzing this data. Furthermore, the currently available tools are extremely slow
because most of them were specifically designed for smaller, prokaryote genomes.

Our Contribution. We present the first index-based method for aligning contigs
to an optical map. We call our tool Twin to illustrate the association between
the assembly and optical map as two representations of the genome sequence.
The first step of our procedure is to in silico digest the contigs with the set
of restriction enzymes, computationally mimicking how each restriction enzyme
would cleave the short segment of DNA defined by the contig. Thus, in silico di-
gested contigs are miniature optical maps that can be aligned to the much longer
(sometimes genome-wide) optical maps. The objective is to search and align the
in silico digested contigs to the correct location in the optical map. By using a
suitably-constructed FM-Index data structure [12] built on the optical map, we

1 OpGen (http://www.opgen.com) and BioNano (http://www.bionanogenomics.com)
are commercial producers of optical mapping data.

http://www.opgen.com
http://www.bionanogenomics.com
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GCTCTTGTCGTCAATGTACTAGCTA
AGTCGTCTTAAGCATATGCTAGGTC
GCTTAAGATGCTGATCTTAAGGAGT
GCTAGCATCTGATGCTACCTAAGTT

GCTCTTGTCGTCAATCTTAAGGCTA
AGTCGTTGCTTAAGTATGCTAGGTC
GCGAGCTATGCTGCTTAAGTCGAGT
GCTTAAGTCTGATGCTAGTCTGAATT

Fig. 1. An illustration of
the data produced by opti-
cal mapping. Optical map-
ping locates and measures
the distance between re-
striction sites. Analogous
to sequence data, optical
mapping data is produced
for multiple copies of the
same genome, and overlap-
ping single molecular maps
are analyzed to produce a
map for each chromosome.

show that alignments between contigs and optical maps can be computed in time
that is faster than competing methods by more than two orders of magnitude.

Twin takes as input a set of contigs and an optical map, and produces a
set of alignments. The alignments are output in Pattern Space Layout (PSL)
format, allowing them to be visualized using any PSL visualization software,
such as IGV [29]. Twin is specifically designed to work on a wide range of
genomes, anything from relatively small genomes, to large eukaryote genomes.
Thus, we demonstrate the effectiveness of Twin on Yersinia kristensenii, rice,
and budgerigar genomes. Rice and budgerigar have genomes of total sizes 430 Mb
and 1.2 Gb, respectively. Yersinia kristensenii, a bacteria with genome size of 4.6
Mb, is the smallest genome we considered. Short read sequence data was assem-
bled for these genomes, and the resulting contigs were aligned to the respective
optical map. We compared the performance of our tool with available competing
methods; specifically, the method of Valouev et al. [30] and SOMA [22]. Twin has
superior performance on all datasets, and is demonstrated to be the only current
method that is capable of completing the alignment for the budgerigar genome in
a reasonable amount of CPU time; SOMA [22] required over 77 days of machine
time to solve this problem, whereas, Twin required just 35 minutes. Lastly, we
verify our approach on simulated E. coli data by showing our alignment method
found correct placements for the in silico digested contigs on a simulated optical
map. Twin is available for download at http://www.cs.colostate.edu/twin.

Roadmap. We review related tools for the problem in the remainder of this sec-
tion. Section 2 then sets notation and formally lays the data structural tools we
make use of. Section 3 gives details of our approach. We report our experimental
results in Section 4. Finally, Section 5 offers reflections and some potentially
fruitful avenues future work may take.

Related Work. The most recent tools to make use of optical mapping data in
the context of assembly are AGORA [19] and SOMA [22]. AGORA [19] uses
the optical map information to constrain de Bruijn graph construction with the
aim of improving the resulting assembly. SOMA [22] is a scaffolding method that

http://www.cs.colostate.edu/twin
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uses an optical map and is specifically designed for short-read assemblies. SOMA
requires an alignment method for scaffolding and implements an O(n2m2)-time
dynamic programming algorithm. Gentig [2], and software developed by Val-
ouev et al. [30] also use dynamic programming to address the closely related
task of finding alignments between optical maps. Gentig is not available for
download. BACop [34] also uses a dynamic programming algorithm and corre-
sponding scoring scheme that gives more weight to contigs with higher fragment
density. Antoniotti et al. [3] consider the unique problem of validating an optical
map by using assembled contigs. This method assumes the contigs are error-free.
Optical mapping data was produced for Assemblathon 2 [6].

2 Background

Strings. Throughout we consider a string X = X[1..n] = X[1]X[2] . . .X[n] of |X| =
n symbols drawn from the alphabet [0..σ − 1]. For i = 1, . . . , n we write X[i..n]
to denote the suffix of X of length n− i+ 1, that is X[i..n] = X[i]X[i+ 1] . . .X[n].
Similarly, we write X[1..i] to denote the prefix of X of length i. X[i..j] is the
substring X[i]X[i + 1] . . .X[j] of X that starts at position i and ends at j.

Optical Mapping. From a computational point of view, optical mapping is a
process that takes two strings: a genome A[1, n] and a restriction sequence B[1, b],
and produces an array (string) of integers M[1,m], such that M[i] = j if and only
if A[j..j + b] = B is the ith occurrence of B in A.

For example, if we let B = act and

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

A a t a c t t a c t g g a c t a c t a a a c t

then we would have
M = 3, 7, 12, 15, 20.

It will also be convenient to view M slightly differently, as an array of frag-
ment sizes, or distances between occurrences of B in A (equivalently differences
between adjacent values in M). We denote this fragment size domain of M, as
the array F[1,m], defined such that F[i] = (M[i]−M[i−1]), with F[1] = M[1]−1.
Continuing with the example above, we have

F = 2, 4, 5, 3, 5.

Suffix Arrays. The suffix array [20] SAX (we drop subscripts when they are clear
from the context) of a string X is an array SA[1..n] which contains a permutation
of the integers [1..n] such that X[SA[1]..n] < X[SA[2]..n] < · · · < X[SA[n]..n]. In
other words, SA[j] = i iff X[i..n] is the jth suffix of X in lexicographical order.

SA Intervals. For a string Y, the Y-interval in the suffix array SAX is the in-
terval SA[s..e] that contains all suffixes having Y as a prefix. The Y-interval is
a representation of the occurrences of Y in X. For a character c and a string Y,
the computation of cY-interval from Y-interval is called a left extension.
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BWT and backward search. The Burrows-Wheeler Transform [7] BWT[1..n] is a
permutation of X such that BWT[i] = X[SA[i]− 1] if SA[i] > 1 and $ otherwise.
We also define LF[i] = j iff SA[j] = SA[i] − 1, except when SA[i] = 1, in which
case LF[i] = I, where SA[I] = n.

Ferragina and Manzini [12] linked BWT and SA in the following way. Let
C[c], for symbol c, be the number of symbols in X lexicographically smaller than
c. The function rank(X, c, i), for string X, symbol c, and integer i, returns the
number of occurrences of c in X[1..i]. It is well known that LF[i] = C[BWT[i]] +
rank(BWT,BWT[i], i). Furthermore, we can compute the left extension using
C and rank. If SA[s..e] is the Y-interval, then SA[C[c] + rank(BWT, c, s),C[c] +
rank(BWT, c, e)] is the cY-interval. This is called backward search [12], and a
data structure supporting it is called an FM-index.

3 Methods

We find alignments in four steps. First, we convert contigs from the sequence
domain to the optical map domain through the process of in silico digestion.
Second, an FM-index is built from the sequence of optical map fragment sizes.
Third, we execute a modified version of the FM-index backward search algorithm
described in Section 2 that allows inexact matches. As a result of allowing inexact
matches, there may be multiple fragments in an optical map that could each be
a reasonable match for an in silico digested fragment, and in order to include all
of these as candidate matches, backtracking becomes necessary in the backward
search. For every backward search path that maintains a non-empty interval for
the entire query contig, we emit the alignments denoted by the final interval.

3.1 Converting Contigs to the Optical Map Domain

In order to find alignments for contigs relative to the optical map, we must first
convert the strings of bases into the domain of optical maps, that is, strings
of fragment sizes. We do this by performing an in silico digest of each contig,
which is performing a linear search over its bases, searching for occurrences of the
enzyme recognition sequence and then computing the distances between adjacent
restriction sites. These distances are taken to be equivalent to the fragment sizes
that would result if the contig’s genomic region underwent digestion in a lab.
Additionally, the end fragments of the in silico digested contig are removed,
as the outside ends are most likely not a result of the optical map restriction
enzyme digestion, but rather an artifact of the sequencing and assembly process.

3.2 Building an FM-index from Optical Mapping Data

We construct the FM-index for 
, the string of fragment sizes. The particular
FM-index implementation we use is the SDSL-Lite2 [14] library’s compressed
suffix array with integer wavelet tree data structure3.

2 https://github.com/simongog/sdsl-lite.
3 Theexact revisionweusedwas commit ae42592099707bc59cd1e74997e635324b210115.

https://github.com/simongog/sdsl-lite
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In preparation for finding alignments, we also keep two auxiliary data struc-
tures. The first is the suffix array, SAF, corresponding to our FM-index, which
we use to report the positions in 
 where alignments of a contig occur. While we
could decode the relevant entries of SA on demand with the FM-index in O(p)
time, where p is the so-called sample period of the FM-index, storing SA explic-
itly significantly improves runtime at the cost of a modest increase in memory
usage. The second data structure we store is M, which allows us to map from
positions in 
 to positions in the original genome in constant time.

3.3 Alignment of Contigs Using the FM-index

After constructing the FM-index of the optical map, we find alignments between
the optical map and the in silico digested contigs.

Specifically, we try to find substrings of the optical map fragment sequence 

that are similar to the string of each in silico digested contig’s non-end fragments
F satisfying an alignment goodness metric suggested by Nagarajan et al. [22] 4:

∣∣∣ t∑
i=s

Fi −
v∑

j=u


j

∣∣∣ ≤ Fσ

√√√√ v∑
j=u

σ2
j ,

where a parameter Fσ will affect the precision/recall tradeoff.
This computation is carried out using a modified FM-index backward search.

A simplified, recursive version of our algorithm for finding alignments is shown
in Algorithm 1. The original FM-index backward search proceeds by finding a
succession of intervals in the suffix array of the original text that progressively
match longer and longer suffixes of the query string, starting from the rightmost
symbol of the query. Each additional symbol in the query string is matched
in a process taking two arguments: 1) a suffix array interval, the Y-interval,
corresponding to the suffixes in the text, 
, whose prefix matches a suffix of the
query string, and 2) an extension symbol c. The process returns a new interval,
the cY-interval, where a prefix of each text suffix corresponding to the new
interval is a left extension of the previous query suffix. This process is preserved
in Twin, and is represented by the function BackwardSearchOneSymbol in the
Twin algorithm, displayed in Algorithm 1.

Since the optical map fragments include error from the measurement process,
it cannot be assumed an in silico fragment size will exactly match the optical
map fragment size from the same locus in the genome. To accomodate these dif-
ferences, we determine a set of distinct candidate match fragment sizes, D, each
similar in size to the next fragment to be matched in our query. These candidates
are drawn from the interval of the BWT currently active in our backward search.
We do this by a wavelet tree traversal function provided by SDSL-Lite, which
implements the algorithm described in [13] and takes O(|D| log(f/Δ)) time. This

4 N.B. Alternative goodness metrics could be substituted. They must satisfy the prop-
erty that pairs of strings considered to align well are composed of substrings that
are also considered to align well would also work.
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is represented by the function RestrictedUniqueRangeValues in Algorithm 1. We
emphasise that, due to the large alphabet of 
, the wavelet tree’s ability to list
unique values in a range efficiently is vital to overall performance. Unlike in other
applications where the FM-index is used for approximate pattern matching (e.g.
read alignment), we cannot afford a bruteforce enumeration of the alphabet at
each step in the backward search.

These candidates are chosen to be within a reasonable noise tolerance, t, based
on assumptions about the distribution of optical measurement error around the
true fragment length. Since there may be multiple match candidates in the BWT
interval of the optical map for a query fragment, we extend the backward search
with backtracking so each candidate size computed from the wavelet tree is eval-
uated. That is, for a given in silico fragment size (i.e. symbol) c, every possible
candidate fragment size, c′, that can be found in the optical map in the range
c− t . . . c+ t and in the interval s . . . e (of the BWT) for some tolerance t is used
as a substitute in the backward search. Each of these candidates is then checked
to ensure that a left extension would still satify the goodness metric, and then
used as the extension symbol in the backward search. So it is actually a set of
c′Y-intervals that is computed as the left extension in Twin. Additionally, small
DNA fragments may not adhere sufficiently to the glass surface and can be lost
in the optical mapping process, so we also branch the backtracking search both
with and without small in silico fragments to accomodate the uncertainty.

Each time the backward search algorithm successfully progresses throughout
the entire query (i.e. it finds some approximate match in the optical map for
each fragment in the contig query), we take the contents of the resulting interval
in the SA as representing a set of likely alignments.

3.4 Output of Alignments in PSL Format

For each in silico digested contig that has an approximate match in the optical
map, we emit the alignment, converting positions in the fragment string 
 to
positions in the genome using the M table. We provide a script to convert the
human readable output into PSL format.

4 Results

We evaluated the performance of Twin against the best competing methods
on Yersinia kristensenii, rice and budgerigar. These three genomes were chosen
because they have available sequence and optical mapping data and are diverse
in size. For each dataset, we compared the runtime, peak memory usage, and
the number of contigs for which at least one alignment was found for Twin,
SOMA [22], and the software of Valouev et al. [30]. Peak memory was measured
as the maximum resident set size as reported by the operating system. Runtime
is the user process time, also reported by the operating system. SOMA [22] v2.0
was run with example parameters provided with the tool and the software of
Valouev et al. [30] was run with its scoring parameters object constructed with
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Algorithm 1. Match(s, e, q, h) Provided a suffix array start index s and end
index e, query string q, and rightmost unmatched query string index h (initially
s = 1, e = m, h = |q| − 1), emit alignments of an in silico digested contig to an
optical map

procedure Match(s,e,q,h)
if h = −1 then

� Recursion base case. Suffix array indexes s..e denote original query matches.
Emit(s, e)

else
� The next symbol to match, c, is the last symbol in the query string.
c ← q[h]
� Find the approximately matching values in BWT[s . . . e], within tolerance t.
D ← RestrictedUniqueRangeValues(s, e, c+ t, c− t)
� Let c′ be one possible substitute for c drawn from D
for all c′ ∈ D do

� If Equation 1 is still satisified with c′ and c, ...

if
∣∣∣∑|q|−h

i=0 SA[s]i + c′ −
∑|q|−1

j=h qj − c
∣∣∣ ≤ Fσ

√∑|q|−h
j=0 σ2

j then

� ... determine the suffix array range of the left extension of c′.
s′, e′ ← BackwardSearchOneSymbol(s, e, c′)
� Recurse to attempt to match the currently unmatched prefix.
Match(s′, e′, q, h− 1)

arguments (0.2, 2, 1, 5, 17.43, 0.579, 0.005, 0.999, 3, 1). Twin was run with
Dσ = 4, t = 1000, and [250 . . .1000] for the range of small fragments. Gentig [2]
and BACop [34] were not available for download so we did not test the data
using these approaches.

The sequence data was assembled for Yersinia kristensenii, rice and budgeri-
gar by using various assemblers. The relevant assembly statistics are given in
Table 1. An important statistic in this table is the number of contigs that have
at least two restriction sites, since contigs with fewer than two are unable to be
aligned meaningfully by any method, including Twin. This statistic was com-
puted to reveal cases of ambiguity in placement from lack of information. Indeed,
Assemblathon 2 required there to be nine restriction sites present in a contig to
align it to the optical mapping data [6]. All experiments were performed on Intel
x86-64 workstations with sufficient RAM to avoid paging, running 64-bit Linux.

The experiments for Yersinia kristensenii, rice and budgerigar illustrate how
each of the programs’ running time scale as the size of the genome increases. How-
ever, due to the possibility of mis-assemblies in these draft genomes, comparing
the actual alignments could possibly lead to erroneous conclusions. Therefore,
we will verify the alignments using simulated E. coli data. See Subsection 4.4 for
this experiment.
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Table 1. Assembly and genome statistics for Yersinia kristensenii, rice and budgerigar.
The assembly statistics were obtained from Quast. [15].

Genome N50 Genome Size No. of Contigs with ≥ 2 restriction sties

Y. kristensenii 30,719 4.6 Mb 92
Rice 5,299 430 Mb 3,103
Budgerigar 77,556 1.2 Gb 10,019

4.1 Performance on Yersinia kristensenii

The sequence and optical map data for Yersinia kristensenii are described by
Nagarajan et al. [22]. The Yersinia kristensenii ATCC 33638 reads were gen-
erated using 454 GS 20 sequencing and assembled using SPAdes version 3.0.0
[5] using default parameters. Contigs from this assembly were aligned against
an optical map of the bacterial strain generated by OpGen using the AfIII re-
striction enzyme. There are approximately 1.4 million single-end reads for this
dataset, and they were obtained from the NCBI Short Read Archive (accession
SRX013205). Of the 92 contigs that could be aligned to the optical map, the soft-
ware of Valouev et al. aligned 91 contigs, SOMA aligned 54 contigs, and Twin

aligned 61 contigs. Thus, Twin found more alignments than SOMA, and did so
faster. It should be noted that, for this dataset, all three tools had reasonable
runtimes. However, while the software of Valouev et al. found more alignments,
our validation experiments (below) suggest these results may favor recall over
precision, and many of the additional alignments may not be credibled.

4.2 Performance on Rice Genome

The second dataset consists of approximately 134 million 76 bp paired-end reads
from Oryza sativa Japonica rice, generated by Illumina, Inc. on the Genome
Analayzer (GA) IIx platform, as described by Kawahara et al. [17]. These reads
were obtained from the NCBI Short Read Archive (accession SRX032913) and
assembled using SPAdes version 3.0.0 [5] using default parameters. The optical
map for rice was constructed by Zhou et al. [35] using SwaI as the restriction
enzyme. This optical map was assembled from single molecule restriction maps
into 14 optical map contigs, labeled as 12 chromosomes, with chromosome labels
6 and 11 both containing two optical map contigs.

Again, Twin found alignments for more contigs than SOMA on the rice
genome. SOMA and Twin found alignments for 2,434, and 3,098 contigs, re-
spectively, out of 3,103 contigs that could be aligned to the optical map. How-
ever, while SOMA required over 29 minutes to run, Twin required less than one
minute. The software of Valouev executed faster than SOMA (taking around
3 minutes), though still several times slower than Twin on this modest sized
genome.
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4.3 Performance on Budgerigar Genome

The sequence and optical map data for the budgerigar genome were generated
for the Assemblathon 2 project of Bradnam et al. [6]. Sequence data consists of
a combination of Roche 454, Illumina, and Pacific Biosciences reads, providing
16x, 285x, and 10x coverage (respectively) of the genome. All sequence reads
are available at the NCBI Short Read Archive (accession ERP002324). For our
analysis we consider the assembly generated using Celera [21], which was com-
pleted by the CBCB team (Koren and Phillippy) as part of Assemblathon 2 [6].
The optical mapping data was created by Zhou, Goldstein, Place, Schwartz, and
Bechner using the SwaI restriction enzyme and consists of 92 separate pieces.

As with the two previous data sets, Twin found alignments for more contigs
than SOMA on the budgerigar genome. SOMA and Twin found alignments
for 9,668, and 9,826 contigs, respectively, out of 10,019 contigs that could be
aligned to the optical map. However, SOMA required over 77 days of CPU time
and Twin required 35 minutes. The software of Valouev et al. returned 9,814
alignments and required over an order of magnitude (6.5 hours) of CPU time.
Hence, Twin was the only method that efficiently aligned the in silico digested
budgerigar genome contigs to the optical map. It should be kept in mind that
the competing methods were developed for prokaryote genomes and so we are
repurposing them at a scale for which they were not designed. Lastly, the amount
of memory used by all the methods on all experiments was low enough for them
to run on a standard workstation.

We were forced to parallelize SOMA due to the enormous amount of CPU
time SOMA required for this dataset. To accomplish this task, the FASTA file
containing the contigs was split into 300 different files, and then IPython Parallel
library was used to invoke up to two instances of SOMA on each machine from a
set of 150 machines. Thus, when using a cluster with up to 300 jobs concurrently,
the alignment for the budgerigar genome took about a day of wall clock time.
In contrast, we ran the software of Valouev et al. and Twin with a single thread
running on a single core. However, it should be noted that the same paralleliza-
tion could have been accomplished for both these software methods too. Also,
even with parallelization of SOMA, Twin is still an order of magnitude faster
than it.

4.4 Alignment Verification

We compared the alignments given by Twin against the alignments of the contigs
of an E. coli assembly to the E. Coli (str. K-12 substr. MG1655) reference
genome. Our prior experiments involved species for which the reference genome
may have regions that are mis-asssembled and therefore, contig alignments to
the reference genome may be inaccurate and cannot be used for comparison
and verification of the in silico digested contig alignment. The E. coli reference
genome is likely to contain the fewest errors and thus, is the one we used for
assembly verification. The sequence data consists of approximately 27 million
paired-end 100 bp reads from E. coli (str. K-12 substr. MG1655) generated by
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Table 2. Comparsion of the alignment results for Twin and competing
method. The performance of Twin was compared against SOMA [22] and the method
of Valouev et al. [30] using the assembly and optical mapping data for Yersinia Kris-
tensenii, rice, and budgerigar. Various assemblers were used to assemble the data for
these species. The relevant statistics and information concerning these assemblies and
genomes can be found in Table 1. The peak memory is given in megabytes (mb). The
running time is reported in seconds (s), minutes (m), hours (h), and days.

Genome Program Memory Time Aligned Contigs

Y. Kristensenii

Valouev et al. 1.81 .17 s 91
SOMA 1.71 7.32 s 54
Twin 18 .06 s 65

Rice

Valouev et al. 11.25 2 m 57 s 2,676
SOMA 7.94 29 m 38 s 2,434
Twin 18.25 50 s 3,098

Budgerigar

Valouev et al. 390 6.5 h 9,814
SOMA 380.95 77.2 d 9,668
Twin 127.112 35 m 9,826

Illumina, Inc. on the Genome Analayzer (GA) IIx platform, and was obtained
from the NCBI Short Read Archive (accession ERA000206), and was assembled
using SPAdes version 3.0.0 [5] using default parameters. This assembly consists
of 160 contigs; 50 of which contain two restriction sites, the minimum required
for any possible optical alignment, and complete alignments with minimal (<800
bp) total in/dels relative to the reference genome.

We simulated an optical map using the reference genome for E. coli (str. K-12
substr. MG1655) since there is no publicly available one for this genome.

The 50 contigs that contained more than two restriction sites were aligned to
the reference genome using BLAT [18]. These same contigs were then in silico
digested and aligned to the optical map using Twin. The resulting PSL files were
then compared. Twin found alignment positions within 10% of those found by
BLAT for all 50 contigs, justifying that our method is finding correct alignments.
We repeated this verification approach with both SOMA and the software from
Valouev. All of SOMA’s reported alignments had matching BLAT alignments,
while of the 49 alignments the software from Valuoev reported, only 18 could be
matched with alignments from BLAT.

5 Discussion and Conclusions

We demonstrated that Twin, an index-based algorithm for aligning in silico
digested contigs to an optical map, gave over an order of magnitude improve-
ment to runtime without sacrificing alignment quality. Our results show that we
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are able to handle genomes at least as large as the budgerigar genome directly,
whereas SOMA cannot feasibly complete the alignment for this genome in a
reasonable amount of time without significant parallelization, and even then is
orders of magnitude slower than Twin. Indeed, given its performance on the
budgerigar genome, and its O(m2n2) time complexity, larger genomes seem be-
yond SOMA. For example, the loblolly pine tree genome, which is approximately
20 Gb [36], would take SOMA approximately 84 machine years, which, even with
parallelization, is prohibitively long.

Lastly, optical mapping is a relatively new technology, and thus, with so few
algorithms available for working with this data, we feel there remains good op-
portunities for developing more efficient and flexible methods. Dynamic pro-
gramming optical map alignment approaches are still important today, as the
assembly of the consensus optical maps from the individually imaged molecules
often has to deal with missing or spurious restriction sites in the single molecule
maps when enzymes fail to digest a recognition sequence or the molecule breaks.
Though coverage is high (e.g. about 1,241 Gb of optical data was collected for
the 2.66 Gb goat genome), there may be cases where missing restriction site
errors are not resolved by the assembly process. In these rare cases (only 1% of
alignments reported by SOMA on parrot contain such errors) they will inhibit
Twin’s ability to find correct alignments. In essence, Twin is trading a small
degree of sensitivity for a huge speed increase, just as other index based aligners
have done for sequence data. Sirén et al. [27] recently extended the Burrows-
Wheeler transform (BWT) from strings to acyclic directed labeled graphs and
to support path queries. In future work, an adaptation of this method for op-
tical map alignment may allow for the efficient handling of missing or spurious
restriction sites.
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Abstract. The main challenge in de novo assembly of NGS data is
certainly to deal with repeats that are longer than the reads. This is
particularly true for RNA-seq data, since coverage information cannot
be used to flag repeated sequences, of which transposable elements are
one of the main examples. Most transcriptome assemblers are based on de
Bruijn graphs and have no clear and explicit model for repeats in RNA-
seq data, relying instead on heuristics to deal with them. The results of
this work are twofold. First, we introduce a formal model for representing
high copy-number repeats in RNA-seq data and exploit its properties to
infer a combinatorial characteristic of repeat-associated subgraphs. We
show that the problem of identifying in a de Bruijn graph a subgraph
with this characteristic is NP-complete. In a second step, we show that in
the specific case of a local assembly of alternative splicing (AS) events,
using our combinatorial characterization we can implicitly avoid such
subgraphs. In particular, we designed and implemented an algorithm to
efficiently identify AS events that are not included in repeated regions.
Finally, we validate our results using synthetic data. We also give an
indication of the usefulness of our method on real data.

1 Introduction

Transcriptomes can now be studied through sequencing. However, in the ab-
sence of a reference genome, de novo assembly remains a challenging task. The
main difficulty certainly comes from the fact that sequencing reads are short,
and repeated sequences within transcriptomes could be longer than the reads.
This short read / long repeat issue is of course not specific to transcriptome
sequencing. It is an old problem that has been around since the first algorithms
for genome assembly. In this latter case, the problem is somehow easier because
coverage can be used to discriminate contigs that correspond to repeats, e.g.
using Myer’s A-statistics [8] or [9]. In transcriptome assembly, this idea does
not apply, since the coverage of a gene does not only reflect its copy-number
in the genome, but also and mostly its expression level. Some genes are highly
expressed and therefore highly covered, while most genes are poorly expressed
and therefore poorly covered.

Initially, it was thought that repeats would not be a major issue in RNA-
seq, since they are mostly in introns and intergenic regions. However, the truth
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is that many regions which are thought to be intergenic are transcribed [3]
and introns are not always already spliced out when mRNA is collected to be
sequenced. Repeats, especially transposable elements, are therefore very present
in real samples and cause major problems in transcriptome assembly.

Most, if not all current short-read transcriptome assemblers are based on de
Bruijn graphs. Among the best known are Oases [14], Trinity [4], and to a
lesser degree Trans-Abyss [11] and IDBA-tran [10]. Common to all of them
is the lack of a clear and explicit model for repeats in RNA-seq data. Heuristics
are thus used to try and cope efficiently with repeats. For instance, in Oases

short nodes are thought to correspond to repeats and are therefore not used for
assembling genes. They are added in a second step, which hopefully causes genes
sharing repeats not to be assembled together. In Trinity, there is no attempt
to deal with repeats explicitly. The first module of Trinity, Inchworm, will try
and assemble the most covered contig which hopefully corresponds to the most
abundant alternative transcript. Then alternative exons are glued to this major
transcript to form a splicing graph. The last step is to enumerate all alternative
transcripts. If repeats are present, their high coverage may be interpreted as
a highly expressed link between two unrelated transcripts. Overall, assembled
transcripts may be chimeric or spliced into many sub-transcripts.

In the method we developed, KisSplice, which is a local transcriptome as-
sembler [12], repeats may be less problematic, since the goal is not to assemble
full-length transcripts. KisSplice instead aims at finding variations expressed
at the transcriptome level (SNPs, indels and alternative splicings). However, as
we previously reported in [12], KisSplice is not able to deal with large por-
tions of a de Bruijn graph containing subgraphs associated to highly repeated
sequences, e.g. transposable elements, the so-called complex BCCs.

Here, we try and achieve two goals: (i) give a clear formalization of the no-
tion of repeats with high copy-number in RNA-seq data, and (ii) based on it,
give a practical way to enumerate bubbles that are lost because of such re-
peats. Recall that we are in a de novo context, so we assume that neither a
reference genome/transcriptome nor a database of known repeats, e.g. Repeat-

Masker [15], are available.
First, we formally introduce a model for representing high copy-number re-

peats and exploit its properties to infer a parameter characterizing repeat-
associated subgraphs in a de Bruijn graph. We prove its relevance but we also
show that the problem of identifying, in a de Bruijn graph, a subgraph corre-
sponding to repeats according to such characterization is NP-complete. Hence,
a polynomial time algorithm is unlikely. We then show that in the specific case
of a local assembly of alternative splicing (AS) events, by using a strategy based
on that parameter, we can implicitly avoid such subgraphs. More precisely, it
is possible to find the structures (i.e. bubbles) corresponding to AS events in a
de Bruijn graph that are not contained in a repeat-associated subgraph. Finally,
using simulated RNA-seq data, we show that the new algorithm improves by a
factor of up to 2 the sensitivity of KisSplice, while also improving its precision.
For the specific tasks of calling AS events, we further show that our algorithm
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more sensitive, by a factor of 2, than Trinity, while also being slightly more
precise. Finally, we give an indication of the usefulness of our method on real
data.

2 Preliminaries

Let Σ be an alphabet of fixed size σ. Here we always assume Σ = {A,C, T,G}.
Given a sequence (string) s ∈ Σ∗, let |s| denote its length, s[i] the ith element
of s, and s[i, j] the substring s[i]s[i + 1] . . . s[j] for any 1 ≤ i < j ≤ |s|.

A k-mer is a sequence s ∈ Σk. Given an integer k and a set S of sequences
each of length n ≥ k, we define span(S, k) as the set of all distinct k-mers that
appear as a substring in S.

Definition 1. Given a set of sequences (reads) R ⊆ Σ∗ and an integer k, we
define the directed de Bruijn graph Gk(R) = (V,A) where V = span(R, k) and
A = span(R, k + 1).

Given a directed graph G = (V,A) and a vertex v ∈ V , we denote its out-
neighborhood (resp. in-neighborhood) by N+(v) = {u ∈ V | (v, u) ∈ A} (resp.
N−(v) = {u ∈ V | (u, v) ∈ A}), and its out-degree (resp. in-degree) by d+(v) =
|N+(v)| (d−(v) = |N−(v)|). A (simple) path π = s � t in G is a sequence of
distinct vertices s = v0, . . . , vl = t such that, for each 0 ≤ i < l, (vi, vi+1) is
an arc of G. If the graph is weighted, i.e. there is a function w : A → Q≥0

associating a weight to every arc in the graph, then the length of a path π is the
sum of the weights of the traversed arcs, and is denoted by |π|.

An arc (u, v) ∈ A is called compressible if d+(u) = 1 and d−(v) = 1. The intu-
ition behind this definition comes from the fact that every path passing through
u should also pass through v. It should therefore be possible to “compress”
or contract this arc without losing any information. Note that the compressed
de Bruijn graph [4,14] commonly used by transcriptomic assemblers is obtained
from a de Bruijn graph by replacing, for each compressible arc (u, v), the vertices
u, v by a new vertex x, where N−(x) = N−(u), N+(x) = N+(v) and the label is
the concatenation of the k-mer of u and the k-mer of v without the overlapping
part (see Fig. 1).

CTG

ACT

TCT

TGA

GAT

GAG

(a)

CTGA

ACT

TCT

GAT

GAG

(b)

Fig. 1. (a) The arc (CTG, TGA) is the only compressible arc in the given de Bruijn
graph (k = 3). (b) The corresponding compressed de Bruijn graph.
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3 Repeats in de Bruijn Graphs

Given a de Bruijn graph Gk(R) generated by a set of reads R for which we
do not have any prior information, our goal is to identify whether there are
subgraphs of Gk(R) that correspond each to a set of high copy-number repeats
in R. To this end, we identify and then exploit some of the topological properties
of the subgraphs that are induced by repeats. Starting with a formal model
for representing repeats with high-copy number, we show that the number of
compressible arcs, which we denote by γ, is a relevant parameter for such a
characterization. This parameter will play an important role in the algorithm
of Section 4. However, we also prove that, for an arbitrary de Bruijn graph,
identifying a subgraph G′ with bounded γ(G′) is NP-complete.

3.1 Simple Uniform Model for Repeats

We now present the model we adopted for representing high copy-number re-
peats, e.g. transposable elements, in a genome or transcriptome. Basically, our
model consists of several “similar” sequences, each generated by uniformly mu-
tating a fixed initial sequence. This model is a simple one and as such should be
seen as only a first approximation of what may happen in reality. It is important
to point out however that such model is realistic enough in some real cases. In
particular, it enables to model well recent invasions of transposable elements
which often involve high copy-number and low divergence rate (i.e. divergence
from their consensus sequence). Consider indeed as an example the recent sub-
families AluYa5 and AluYb8 with 2640 and 1852 copies respectively, which both
present a divergence rate below 1% [2] (see [6] for other subfamilies with high
copy-number and low divergence).

The model is as follows. First, due to mutations, the sequences s1, . . . , sm that
represent the repeats are not identical. However, provided that the number of
such mutations is not high (otherwise the concept of repeats would not apply),
the repeats are considered “similar” in the sense of having a small pairwise Ham-
ming distance between them. We recall that, given two equal length sequences
s and s′ in Σn, their Hamming distance, denoted by dH(s, s′), is the number
of positions i for which s[i] �= s′[i]. Indels are thus not consider in this model.
Mathematically, it is more convenient to consider substitutions only, but this is
not a crucial part of the model.

The model has then the following parameters: Σ, the length n of the repeat, the
number m of copies of the repeat, an integer k (for the length of the k-mers con-
sidered), and the mutation rate, α, i.e. the probability that a mutation happens
in a particular position. The sequences s1, . . . , sm are then generated by the fol-
lowing process. We first choose uniformly at random a sequence s0 ∈ Σn. At step
i ≤ m, we create a sequence si as follows: for each position j, si[j] = s0[j] with
probability 1 − α, whereas with probability α a value different from s[j] is chosen
uniformly at random for si[j]. We repeat the whole processm times and thus create
a set S(m,n, α) of m such sequences from s0 (see Fig. 2 for a small example). The
generated sequences thus have an expected Hamming distance of αn from s0.
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c1 c2 c3 c4 c5 c6 c7 c8 c9 c10⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

A A C T G T A T C C s0
A C C T G T A G C C s1
G A C T C A A T C C s2
A A C T C T A T C C s3
A A C A G T A T C A s4
A A T T G T A G C C s5
A G C T G T A T C A s6
...

...
...

...
...

...
...

...
...

...
A A G T G A A T C C s20

Fig. 2. An example of a set of repeats S(20, 10, 0.1)

3.2 Topological Characterization of the Subgraphs Generated by
Repeats

Given a de Bruijn graph Gk(R), if a is a compressible arc labeled by the sequence
s = s1 . . . sk+1, then by definition, a is the only outgoing arc of the vertex labeled
by the sequence s[1, k] and the only incoming arc of the vertex labeled by the
sequence s[2, k + 1]. Hence the (k − 1)-mer s[2, k] appears as a substring in R,
always preceded by the symbol s[1] and followed by the symbol s[k + 1]. We
refer to such (k − 1)-mers as being boundary rigid. It is not difficult to see that
the set of compressible arcs in a de Bruijn graph Gk(R) stands in a one-to-one
correspondence with the set of boundary rigid (k − 1)-mers in R.

We now calculate and compare among them the expected number of com-
pressible arcs in G = Gk(R) when R corresponds to a set of sequences that are
generated: (i) uniformly at random, and (ii) according to our model. We show
that γ is “small” in the cases where the induced graph corresponds to similar
sequences, which provides evidence for the relevance of this parameter.

Claim. Let R be a set of m sequences randomly chosen from Σn. Then the
expected number of compressible arcs in Gk(R) is Θ(mn).

Proof. The probability that a sequence of length k−1 occurs in a fixed position in
a randomly chosen sequence of length n is (1/4)k−1. Thus the expected number
of appearances of a sequence of length k − 1 in a set of m randomly chosen
sequences of length n is given by m(n − k + 2)(1/4)k−1. If m(n − k + 2) ≤ 4k,
then this value is upper bounded by 1, and all the sequences of length k − 1
are boundary rigid (as a sequence appears once). The claim follows by observing
that there are m(n− k + 1) different k-mers. ��

We consider now γ(Gk(R)) for R = S(m,n, α). We upper bound the expected
number of compressible arcs by upper bounding the number of boundary rigid
(k − 1)-mers.
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Theorem 1. Given integers k, n,m with k < n and a real number 0 ≤ α ≤ 3/4,
the de Bruijn graph Gk(S(m,n, α)) has o(nm) expected compressible arcs.

Proof. Let s0 be a sequence chosen randomly from Σn. Let S(m,n, α) be the
set {s1, . . . , sm} of m repeats generated according to our model starting from
s0. Consider now the de Bruijn graph G = Gk(S(m,n, α)). Recall that the
number of compressible arcs in this graph is equal to the number of boundary
rigid (k − 1)-mers in S(m,n, α). Let X be a random variable representing the
number of boundary rigid (k− 1)-mers in G. Consider the repeats in S(m,n, α)
in a matrix-like ordering as in Fig.2 and observe that the mutations from one
column to another are independent. Due to the symmetry and the linearity of
expectation, E[X ] is given by m(n − k − 1) (the total number of (k − 1)-mers)
multiplied by the probability that a given (k − 1)-mer is boundary rigid.

The probability that the (k−1)-mer ŝ = s[i, i+k−2] is boundary rigid clearly
depends on the distance from the starting sequence ŝ0 = s0[i, i + k − 2]. Let d
be the distance dH(ŝ, ŝ0).

Observe that if the (k − 1)-mer s[i] . . . s[k − 1] is not boundary rigid then
there exists a sequence y in S(m,n, α) such that y[j] = s[j] for all i ≤ j ≤
i + k − 2 and either y[i + k − 1] �= s[i + k − 1] or y[i − 1] �= s[i − 1]. It is
not difficult to see that the probability that this happens is lower bounded by
(2α− 4/3α2)(1− α)k−1−d(α/3)d. Hence we have:

Pr[ŝ is boundary rigid|dH(ŝ, ŝ0) = d] ≤
(

1−(2α−4/3α2)(1−α)k−1−d(α/3)d
)m−1

By approximating the above expression we therefore have that,

E[X ] ≤ (n− k − 1)m
k−1∑
d=0

Pr[ŝ is boundary rigid|dH(ŝ, ŝ0) = d] (1)

≤ (n− k − 1)me−(m−1)(2α−4/3α2)/(α
3 )k−1

For a sufficiently large number of copies (e.g. m =
(

k
αk

)
) and using the fact

that
(

k
αk

)
≥ (1/α)αk, we have that E[X ] is o(mn). This concludes the proof. ��

The previous result shows that the number of compressible arcs is a good
parameter for characterizing a repeat-associated subgraph.

3.3 Identifying a Repeat-Associated Subgraph

As we showed, a subgraph due to repeated elements has a distinctive feature:
it contains few compressible arcs. Based on this, a natural formulation to the
repeat identification problem in RNA-seq data is to search for large enough
subgraphs that do not contain many compressible arcs. This is formally stated
in Problem 1. In order to disregard trivial solutions, it is necessary to require
a large enough connected subgraph, otherwise any set of disconnected vertices



88 G. Sacomoto et al.

or any small subgraph would be a solution. Unfortunately, we show that this
problem is NP-complete, so an efficient algorithm for the repeat identification
problem based on this formulation is unlikely.

Problem 1 (Repeat Subgraph).
INSTANCE: A directed graph G and two positive integers m, t.
DECIDE: If there exists a connected subgraph G′ = (V ′, E′), with |V ′| ≥ m

and having at most t compressible arcs.

In Theorem 2, we prove that this problem is NP-complete for all directed
graphs with (total) degree, i.e. sum of in and out-degree, bounded by 3. The
reduction is from the Steiner tree problem which requires finding a minimum
weight subgraph spanning a given subset of vertices. It remains NP-hard even
when all arc weights are 1 or 2 (see [1]). This version of the problem is denoted by
STEINER(1, 2). More formally, given a complete undirected graph G = (V,E)
with arc weights in {1, 2}, a set of terminal vertices N ⊆ V and an integer B, it
is NP-complete to decide if there exists a subgraph of G spanning N with weight
at most B, i.e. a connected subgraph of G containing all vertices of N .

We specify next a family of directed graphs that we use in the reduction. Given
an integer x we define the directed graph R(x) as a cycle on 2x vertices numbered
in a clockwise order and where the arcs have alternating directions, i.e. for any
i ≤ x, (v2i, v2i+1) is an arc. Note that in R(x) all vertices in even positions, i.e.
all vertices v2i, have out-degree 2 and in-degree 0, while all vertices v2i+1, have
out-degree 0 and in-degree 2. Clearly, none of the arcs of R(x) is compressible.

Theorem 2. The Repeat Subgraph Problem is NP-complete even for directed
graphs with degree bounded by d, for any d ≥ 3.

Proof. Given a complete graph G = (V,E), a set of terminal vertices N and
an upper bound B, i.e. an instance of STEINER(1, 2), we transform it into an
instance of Repeat Subgraph Problem for a graph G′ with degree bounded by 3.
Let us first build the graph G′ = (V ′, E′). For each vertex v in V \ N , add a
corresponding subgraph r(v) = R(|V |) in G′ and for each vertex v in N , add a
corresponding subgraph r(v) = R(|E|+ |V |2 + 1) in G′. For each arc (u, v) in E
with weight w ∈ {1, 2}, add a simple directed path composed by w compressible
arcs connecting r(u) to r(v) in G′; these are the subgraphs corresponding to
u and v. The first vertex of the path should be in a sink of r(u) and the last
vertex in a source of r(v). By construction, there are at least |V | vertices with in-
degree 2 and out-degree 0 (sink) and |V | vertices with out-degree 2 and in-degree
0 (source) in both r(v) and r(u). It is clear that G′ has degree bounded by 3.
Moreover, the size of G′ is polynomial in the size of G and it can be constructed
in polynomial time.

In this way, the graph G′ has one subgraph for each vertex of G and a path
with one or two (depending on the weight of the corresponding arc) compressible
arcs for each arc of G. Thus, there exists a subgraph spanning N in G with
weight at most B if and only if there exists a subgraph in G′ with at least
m = 2|N |+ 2|E||N |+ 2|V |2|N | vertices and at most t = |B| compressible arcs.
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This follows from the fact that any subgraph of G′ with at least m vertices
necessarily contains all the subgraphs r(v), where v ∈ N , since the number
of vertices in all r(v), with v ∈ V \ N , is at most |E| + 2|V |2 and the only
compressible arcs of G′ are in the paths corresponding to the arcs of G. ��

We can obtain the same result for the specific case of de Bruijn graphs. The
reduction is very similar but uses a different graph family.

Theorem 3. The Repeat Subgraph Problem is NP-complete even for subgraphs
of de Bruijn graphs on |Σ| = 4 symbols.

4 Bubbles “Drowned” in Repeats

In the previous section, we showed that an efficient algorithm to directly iden-
tify the subgraphs of a de Bruijn graph corresponding to repeated elements,
according to our model (i.e. containing few compressible arcs), is unlikely to
exist since the problem is NP-complete. However, in this section we show that
in the specific case of a local assembly of alternative splicing (AS) events, based
on the compressible-arc characterization of Section 3.2, we can implicitly avoid
such subgraphs. More precisely, it is possible to find the structures (i.e. bub-
bles) corresponding to AS events in a de Bruijn graph that are not contained in
a repeat-associated subgraph, thus answering to the main open question of [12].

Fig. 3. An alternative splicing event in the SCN5A gene (human) trapped inside a
complex region, likely containing repeat-associated subgraphs, in a de Bruijn graph.
The alternative isoforms correspond to a pair of paths shown in red and blue.

KisSplice [12] is a method for de novo calling of AS events through the enu-
meration of so-called bubbles, that correspond to pairs of vertex-disjoint paths in
a de Bruijn graph. The bubble enumeration algorithm proposed in [12] was later
improved in [13]. However, even the improved algorithm is not able to enumerate
all bubbles corresponding to AS events in a de Bruijn graph. There are certain
complex regions in the graph, likely containing repeat-associated subgraphs but
also real AS events [12], where both algorithms take a huge amount of time. See
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Fig. 3 for an example of a complex region with a bubble corresponding to an AS
event. The enumeration is therefore halted after a given timeout. The bubbles
drowned (or trapped) inside these regions are thus missed by KisSplice.

In Section 3, the repeat-associated subgraphs are characterized by the pres-
ence of few compressible arcs. This suggests that in order to avoid repeat-
associated subgraphs, we should restrict the search to bubbles containing many
compressible arcs. Equivalently, in a compressed de Bruijn graph (see Section 2),
we should restrict the search to bubbles with few branching vertices. Indeed, in
a compressed de Bruijn graph, given a fixed sequence length, the number of
branching vertices in a path is inversely proportional to the number of com-
pressible arcs of the corresponding path in the non-compressed de Bruijn graph.
We thus modify the definition of (s, t, α1, α2)-bubbles in compressed de Bruijn
graphs (Def. 1 in [13]) by adding the extra constraint that each path should have
at most b branching vertices.

Definition 2 ((s, t, α1, α2, b)-bubbles). Given a weighted directed graph G =
(V,E) and two vertices s, t ∈ V , an (s, t, α1, α2, b)-bubble is a pair of vertex-
disjoint st-paths π1, π2 with lengths bounded by α1, α2, each containing at most
b branching vertices.

By restricting the search to bubbles with few branching vertices, we are able
to enumerate them in complex regions implicitly avoiding repeat-associated sub-
graphs. Indeed, in Section 5 we show that by considering bubbles with at most b
branching vertices in KisSplice, we increase both its sensitivity and precision.
This supports our claim that by focusing on (s, t, α1, α2, b)-bubbles, we avoid
repeat-associated subgraphs and recover at least part of the bubbles trapped in
complex regions.

4.1 Enumerating Bubbles Avoiding Repeats

In this section, we modify the algorithm of [13] to enumerate all bubbles with
at most b branching vertices in each path. Given a weighted directed graph
G = (V,E) and a vertex s ∈ V , let Bs(G) denote the set of (s, ∗, α1, α2, b)-bubbles
of G. The algorithm recursively partitions the solution space Bs(G) at every call
until the considered subspace is a singleton (contains only one solution), and in
that case it outputs the corresponding solution. In order to avoid unnecessary
recursive calls, it maintains the invariant that the current partition contains at
least one solution. The algorithm proceeds as follows.

Invariant: At a generic recursive step on vertices u1, u2 (initially, u1 = u2 = s),
let π1 = s � u1, π2 = s � u2 be the paths discovered so far (initially, π1, π2 are
empty). Let G′ be the current graph (initially, G′ := G). More precisely, G′ is
defined as follows: remove from G all the vertices in π1 and π2 but u1 and u2.
Moreover, we also maintain the following invariant (∗): there exists at least one
pair of paths π̄1 and π̄2 in G′ that extends π1 and π2 so that π1 · π̄1 and π2 · π̄2

belong to Bs(G).

Base case: When u1 = u2 = u, output the (s, u, α1, α2, b)-bubble given by π1

and π2.
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Recursive rule: Let Bs(π1, π2, G
′) denote the set of (s, ∗, α1, α2, b)-bubbles to be

listed by the current recursive call, i.e. the subset of Bs(G) with prefixes π1, π2.
It is the union of the following disjoint sets1.

– The bubbles of Bs(π1, π2, G
′) that use e, for each arc e = (u1, v) outgoing

from u1, that is Bs(π1 · e, π2, G
′ − u1), where G′ − u1 is the subgraph of G′

after the removal of u1 and all its incident arcs.
– The bubbles that do not use any arc from u1, that is Bs(π1, π2, G

′′), where
G′′ is the subgraph of G′ after the removal of all arcs outgoing from u1.

In order to maintain the invariant (∗), we only perform the recursive calls when
Bs(π1 · e, π2, G

′ − u) or Bs(π1, π2, G
′′) are non-empty. In both cases, we have to

decide if there exist a pair of (internally) vertex-disjoint paths π̄1 = u1 � t1
and π̄2 = u2 � t2, such that |π̄1| ≤ α′

1, |π̄2| ≤ α′
2, and π̄1, π̄2 have at most

b1, b2 branching vertices, respectively. Since both the length and the number
of branching vertices are monotonic properties, i.e. the length and the number
of branching vertices of a path prefix is smaller than this number for the full
path, we can drop the vertex-disjoint condition. Indeed, let π̄1 and π̄2 be a pair
of paths satisfying all conditions but the vertex-disjointness one. The prefixes
π̄∗
1 = u1 � t∗ and π̄∗

2 = u2 � t∗, where t∗ is the first intersection of the
paths, satisfy all conditions and are internally vertex-disjoint. Moreover, using a
dynamic programming algorithm, we can obtain the following result.

Lemma 1. Given a non-negatively weighted directed graph G = (V,E) and a
source s ∈ V , we can compute the shortest paths from s using at most b branching
vertices in O(b|V ||E|) time.

As a corollary, we can decide if Bs(π1, π2, G) is non-empty in O(b|V ||E|) time.
Now, using an argument similar to [13], i.e. leaves of the recursion tree and
solutions are in one-to-one correspondence and the height of the recursion tree
is bounded by 2n, we obtain the following theorem.

Theorem 4. The (s, ∗, α1, α2, b)-bubbles can be enumerated in
O(b|V |3|E||Bs(G)|) time. Moreover, the time elapsed between the output
of any two consecutive solutions (i.e. the delay) is O(b|V |3|E|).

5 Experimental Results

5.1 Experimental Setup

To evaluate the performance of our method, we simulated RNA-seq data using
the FluxSimulator version 1.2.1 [5]. We generated 100 million reads of 75
bp using its the default error model. We used the RefSeq annotated Human
transcriptome (hg19 coordinates) as a reference and we performed a two-step
pipeline to obtain a mixture of mRNA and pre-mRNA (i.e. with introns not

1 The same holds for u2 instead of u1.
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yet spliced). To achieve this, we first ran the FluxSimulator with the Refseq
annotations. We then modified the annotations to include the introns and re-ran
it on this modified version. In this second run, we additionally constrained the
expression values of the pre-mRNAs to be correlated to the expression values of
their corresponding mRNAs, as simulated in the first run. Finally, we mixed the
two sets of reads to obtain a total of 100M reads. We tested two values: 5% and
15% for the proportion of reads from pre-mRNAs. Those values were chosen so
as to correspond to realistic ones as observed in a cytoplasmic mRNA extraction
(5%) and a total (cytoplasmic + nuclear) mRNA extraction (15%) [16].

On these simulated datasets, we ran KisSplice [12] versions 2.1.0 (KsOld)
and 2.2.0 (KsNew, with a maximum number of branching vertices set to 5) and
obtained lists of detected bubbles that are putative alternative splicing (AS)
events. We also ran the full-length transcriptome assembler Trinity version
r2013 08 14 on both datasets, obtaining a list of predicted transcripts, from
which we then extracted a list of putative AS events.

In order to assess the precision and the sensitivity of our method, we com-
pared our set of found AS events to the set of true AS events. Following the
definition of Astalavista, an AS event is composed of two sets of transcripts,
the inclusion/exclusion isoforms respectively. An AS event is said to be true if at
least one transcript among the inclusion isoforms and one among the exclusion
isoforms is present in the simulated dataset with at least one read. We stress that
this definition is very permissive and includes AS events with very low coverage.
This means that our ground truth, i.e. the set of true AS events, contains some
events that are very hard, or even impossible, to detect. We chose to proceed in
this way as it reflects what happens in real data.

To compare the results of KisSplice with the true AS events, we propose
that a true AS event is a true positive (TP) if there is a bubble such that one
path matches the inclusion isoform and the other the exclusion isoform. If there
is no such bubble among the results of KisSplice, the event is counted as a false
negative (FN). If a bubble does not correspond to any true AS event, it is counted
as a false positive (FP). To align the paths of the bubbles to transcript sequences,
we used the Blat aligner [7] with 95% identity and a constraint of 95% of each
bubble path length to be aligned (to account for the sequencing errors simulated
by FluxSimulator). We computed the sensitivity TP/(TP+FN) and precision
TP/(TP+FP) for each simulation case and we report their values for various
classes of expression of the minor isoform. Expression values are measured in
reads per kilobase (RPK).

5.2 KsNew vs KsOld

The plots for the sensitivity of each version on the two simulated datasets are
shown in Fig. 4. On the one hand, both versions of KisSplice have similar sen-
sitivity in the 5% pre-mRNA dataset, with KsNew performing slightly better,
especially for highly expressed variants. The overall sensitivity in this dataset
is 32% and 37% for KsOld and KsNew, respectively. On the other hand, the
sensitivity of the new version is considerably better over all expression levels in



Navigating in a Sea of Repeats in RNA-seq without Drowning 93

●

●

●

●

●

−2 −1 0 1 2 3

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

5% pre−mRNA

RPK (log scale)

S
en

si
tiv

ity

● KsNew
KsOld
Trinity

●

●

●

●

●

●

●

●

●

●

●

−1 0 1 2 3

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

15% pre−mRNA

RPK (log scale)

S
en

si
tiv

ity

● KsNew
KsOld
Trinity

Fig. 4. Sensitivity of KsNew, KsOld and Trinity for several classes of expression
of the minor isoform. Each class (i.e. point in the graph) contains the same number of
AS events (250). It is therefore an average sensitivity on a potentially broad class of
expression.

the 15% pre-mRNA dataset. In this case, the sensitivity for KsNew and KsOld

are 24% and 48%, respectively. This represents an improvement of 100% over the
old version. The results reflect the fact that the most problematic repeats are
in intronic regions. A small unspliced mRNA rate leads to few repeat-associated
subgraphs, so there are not many AS events drowned in them (which are then
missed by KsOld). In this case, the advantage of using KsNew is less obvi-
ous, whereas a large proportion of pre-mRNA leads to more AS events drowned
in repeat-associated subgraphs which are identified by KsNew and missed by
KsOld.

Clearly, any improvement in the sensitivity is meaningless if there is also a
significant decrease in precision. This is not the case here. In both datasets,
KsNew improves the precision of KsOld. It increases from 95% to 98% and
from 90% to 99%, in the 5% and 15% datasets, respectively. The high precision
we obtain indicates that very few FP bubbles, including the ones generated by
repeats, are mistakenly identified as AS events. Moreover, both running times
and memory consumption are very similar for the two versions.

5.3 KsNew vs Trinity

The plots for the sensitivity of Trinity on the two simulated datasets are also
shown in Fig. 4. In both cases, KsNew performs considerably better than Trin-

ity over all expression levels, with a larger gap for highly expressed variants.
The overall sensitivity of Trinity for the 5% and 15% pre-mRNA datasets is
18% and 28%, whereas for KsNew we have 37% and 48%, respectively. Simi-
larly to both KsNew and KsOld, the specificity of Trinity improved from the



94 G. Sacomoto et al.

5% pre-mRNA to the 15% pre-mRNA dataset. However, this improvement was
coupled with a decrease of precision from 94% to 75%. This drop in precision is
actually mostly due to the prediction of a large number of intron retention, since
Trinity assembles both the mRNA and pre-mRNA. KisSplice does not have
this problem because most of these apparent intron retentions are bubbles with
more than 5 branches (KsNew) or drowned in complex regions of the graph
(KsOld). To summarize, KsNew is almost a factor of 2 more sensitive than
Trinity, while also being slightly more precise.

As it was already reported in [12], KisSplice (i.e. both KsNew and KsOld)
is faster and uses considerably less memory than Trinity. For instance, on these
datasets, KisSplice uses around 5GB of RAM, while Trinity uses more than
20GB. However, it should be noted that Trinity tries to solve a more general
problem than KisSplice, that is reconstructing the full-length transcripts.

5.4 On the Usefulness of KsNew

In order to give an indication of the usefulness of our repeat-avoiding bubble enu-
meration algorithm with real data, we also ran KsNew and KsOld on the SK-
N-SH Human neuroblastoma cell line RNA-seq dataset (wgEncodeEH000169,
total RNA). In Fig. 5, we have an example of a non-annotated exon skipping
event not found by KsOld. Observe that the intronic region contains several
transposable elements (many of which are Alu sequences), while the exons con-
tain none. This is a good example of a bubble (exon skipping event) drowned in
a complex region of the de Bruijn graph. The bubble (composed by the two alter-
native paths) itself contains no repeated elements, but it is surrounded by them.
In other words, this is a bubble with few branching vertices that is surrounded
by repeat-associated subgraphs. Since KsOld is unable to differentiate between
repeat-associated subgraphs and the bubble, it spends a prohibitive amount of
time in the repeat-associated subgraph and fails to find the bubble.

Fig. 5. One of the bubbles found only by KsNew with the corresponding sequences
mapped to the reference human genome and visualized using the UCSC Genome
Browser. The first two lines correspond to the sequences of, respectively, the short-
est (exon exclusion variant) and longest paths (exon inclusion variant) of the bubble
mapped to the genome. The blue line is the Refseq annotation. The last line shows the
annotated SINE and LINE sequences (transposable elements).
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6 Conclusion

Although transcriptome assemblers are now commonly used, their way to handle
repeats is not satisfactory, arguably because the presence of repeats in transcrip-
tomes has been underestimated so far. Given that most RNA-seq datasets corre-
spond to total mRNA extractions, many introns are still present in the data and
their repeat content cannot be simply ignored. In this paper, we first proposed
a simple formal model for representing high copy-number repeats in RNA-seq
data. Exploiting the properties of this model we established that the number
of compressible arcs is a relevant quantitative characteristic of repeat-associated
subgraphs. We proved that the problem of identifying in a de Bruijn graph a
subgraph with this characteristic is NP-complete. However, this characteristic
drove the design of an algorithm for efficiently identifying AS events that are not
included in repeated regions. The new algorithm was implemented in KisSplice

(KsNew), and by using simulated RNA-seq data, we showed that it improves
by a factor of up to 2 the sensitivity of the previous version of KisSplice, while
also improving its precision. In addition, we compared our algorithm with Trin-

ity and showed that for the specific tasks of calling AS events, our algorithm is
more sensitive, by a factor of 2, while also being slightly more precise. Finally,
we gave an indication of the usefulness of our method on real data.

Clearly our model could be improved, for instance by using a tree-like struc-
ture to take into account the evolutionary nature of repeat (sub)families. Indeed,
many TE families are composed by different subfamilies that can be divergent
from each other. Consider for instance the human ALU family of TEs that con-
tains at least 7 high copy-number subfamilies with intra-family divergence less
than 1% and substantially higher inter-family divergence [6]. In this model, the
repeats are generated through a branching process on binary trees. Starting from
the root to which we associate a sequence s0, the tree generation process follows
recursively the following rule: each node has probability γ to give birth to two
children and 1 − γ to give birth to a single child. In each case the node is as-
sociated to a sequence obtained by independently mutating each symbol of the
parent sequence with probability α. In this way, the height of the tree reflects the
passing of the time. Hence, the maximum height of the tree would correspond to
the time passed since the appearance of the first element of this repeat family.
The leaves will be associated to the set of repetitions of s0 in a genome. Beside
representing in a more realistic way the generation of copies of transposable ele-
ments, this would also allow to model subfamilies of repeats. Indeed, sequences
corresponding to leaves of the same subtree are more similar between them then
to sequences belonging to leaves outside the subtree.

However, a formal mathematical analysis on this model seems more difficult
to obtain. Observe that in the case α is sufficiently small, such model would
converge to the one presented in this paper.

Finally, an interesting open problem remains on how to efficiently enumerate
AS events for which their variable region (i.e. the skipped exon) is itself a high
copy number and low divergence repeat.
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Abstract. Reconstruction of the median genome consisting of linear
chromosomes from three given genomes is known to be intractable. There
exist efficient methods for solving a relaxed version of this problem, where
the median genome is allowed to have circular chromosomes. We propose
a method for construction of an approximate solution to the original
problem from a solution to the relaxed problem and prove a bound on
its approximation accuracy. Our method also provides insights into the
combinatorial structure of genome transformations with respect to ap-
pearance of circular chromosomes.

Keywords: DCJ, median genome, circular chromosome.

1 Introduction

One of the key computational problems in comparative genomics is the genome
median problem (GMP), which asks to reconstruct a median genome M from
three given genomes such that the total number of genome rearrangements be-
tween M and the given genomes is minimized. The GMP represents a particular
case of the more general ancestral genome reconstruction problem (AGRP) and
is often used as a building block for AGRP solvers [1–5]. The GMP is NP-hard
under several models of genome rearrangements, such as reversals only [6] and
DCJs [7]. While Double-Cut-and-Join (DCJ) operations [8] (also known as 2-
breaks [9]) mimic most common genome rearrangements (i.e., reversals, translo-
cations, fissions, and fusions) and simplify their analysis, they do not take into
account linearity of genome chromosomes. As a result, a solution to the GMP
under DCJ may contain circular chromosomes even if the given genomes are
linear (i.e., consist only of linear chromosomes). We will therefore distinguish
between DCJ genome median problem (DCJ-GMP) and linear genome median
problem (L-GMP), where the latter is restricted to linear genomes.

There exist some advanced DCJ-GMP solvers [10–12], which allow the median
genome to have circular chromosomes. To the best of our knowledge, there exist
no solvers for L-GMP, so we pose the problem of using the solution for DCJ-
GMP to obtain a linear genome approximating the solution to L-GPM. In the
present study, we propose an algorithm that linearizes chromosomes of the given
DCJ-GMP solution in some optimal way. Our method also provides insights into
the combinatorial structure of genome transformations with DCJs with respect
to appearance of circular chromosomes.
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Fig. 1. Graph representation of a gene sequence gi−1, gi, gi+1 and a DCJ that inverses
the gene gi

We remark that a similar Linearization Problem appears in adjacency-based
reconstructions of median genomes and is known to be intractable [13], forcing
the existing approaches [13–16] to solve its relaxation and allow the resulting
median genome to contain circular chromosomes.

2 Genome Median Problem under Various Models

Below we briefly describe the concepts of genome graphs and DCJs (2-breaks),
for further details we refer the reader to [9, 17].

We represent a circular chromosome on n genes as a cycle with n directed
edges (encoding genes and their strands) alternating with n undirected edges
connecting adjacent genes. A linear chromosome on n genes is represented as
a path of n directed edges alternating with n − 1 undirected edges (Fig 1). In
addition, we introduce an vertex ∞ and connect it to the chromosomal ends
(telomeres) with undirected edges. A genome is thus represented as a collection
of such paths (starting and ending at vertex ∞) and cycles. Since this does not
cause any confusion, we will not distinguish between a genome and its genome
graph.

In the genome graph, DCJ corresponds to replacement of a pair of undirected
edges with a different pair of undirected edges on the same set of four vertices
(Fig 1). A transformation from genome P into genome Q is a sequence of DCJs
that starts with P and results in Q. Transformations between the same two
genomes are called equivalent. We denote by |T | the length of the transformation
T (i.e., the number of DCJs in T ). We define the DCJ distance dDCJ(P,Q)
between genomes P and Q as the minimum length of transformations between
them. DCJ-GMP asks to construct a genome M from three given genomes G1,

G2, G3 such that the DCJ median score
3∑

i=1

dDCJ(M,Gi) is minimized.

Similarly, the genomic distance dg(P,Q) between genomes P and Q is defined
as the minimum number of genome rearrangements (reversals, translocations,
fissions, and fusions) required to transform P into Q. Since each genome rear-
rangement can be modelled by a DCJ, we trivially have dg(P,Q) ≥ dDCJ(P,Q).
However, in contrast to transformations with DCJs between linear genomes that
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may produce intermediate genomes with circular chromosomes, actual genome
rearrangements preserve linearity of genomes and may sometimes require more
steps than DCJs (i.e., resulting in dg(P,Q) > dDCJ (P,Q)). For given genomes
G1, G2, G3, L-GMP asks to construct a linear median genome M ′ with the min-

imum genomic median score
3∑

i=1

dg(M ′, Gi). While we are not aware of efficient

algorithms for solving L-GMP (let alone, software solvers), we pose the problem
of constructing an approximate solution for L-GMP from the given solution for
DCJ-GMP as follows.

Given linear genomes G1, G2, G3 and their DCJ median genome M (which
may contain circular chromosomes), construct a linear genome M ′ such that
3∑

i=1

dDCJ (M ′, Gi) is minimal. While genome M ′ may not necessarily represent a

solution to L-GMP, the DCJ distance gives a good approximation for genomic
distance [17] and simplifies the genome rearrangements analysis. As soon as the
genome M ′ is constructed, its transformations into the given genomes (or vice
versa) with genome rearrangements (preserving linearity along all intermediate
genomes) can be obtained with GRIMM [18].

We will measure the accuracy of constructed approximate solution M ′ by the

difference
3∑

i=1

dDCJ(M ′, Gi) −
3∑

i=1

dDCJ(M,Gi). We remark that an attempt to

arbitrarily cut some gene adjacency (in other words, apply arbitrary fissions)
in each circular chromosome of M to obtain genome M ′ may increase each of
the three distances dDCJ(Gi,M) by c(M) and thus the median score by up to
3 · c(M), where c(·) denotes the number of circular chromosomes. We will show
that we can get much better result, namely increase the median score by at most
c(M).

3 Construction of Approximate Solution for L-GMP

Suppose we are given linear genomes G1, G2, G3 and their DCJ median genome

M as well as shortest transformations1 M
Ti−→ Gi(i = 1, 2, 3). Our algorithm

will modify one of the transformations, say T1, to produce a transformation T1
′

of the form:
M

t0−→M ′ t1−→ G1,

where M ′ is a linear genome, |t0| = c(M) (i.e., each DCJ in t0 decreases the
number of circular chromosomes) and |t0|+ |t1| = |T1| (Fig. 2).

Below we will show that such genome M ′ suites our purposes and explain
details of its construction.

1 Transformations to the median genome may be produced by a DCJ-GMP solver or
constructed directly from the median genome and the given genomes, since finding
a shortest transformation between two genomes is polynomially solvable [19].
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t3

t1
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Fig. 2. Linear genomes G1, G2, G3 and their median genome M represented as ver-
tices and the corresponding shortest transformations T1, T2, T3 represented as directed
dashed edges. Under the assumption that M contains circular chromosomes, we con-
struct another shortest transformation from M to G1 (i.e., equivalent to T1) composed
of t0 and t1 such that t0 results in a linear genome M ′ and |t0| = c(M). The cor-
responding shortest transformations from M ′ to G2 and G3 are represented as bold
directed edges and denoted by t2 and t3.

3.1 Accuracy Estimation

We remark that dDCJ(G1,M
′) = |t1| = |T1| − c(M). Clearly, t1 represents a

shortest transformation from M ′ to G1. Let t2 and t3 be shortest transforma-
tions from M ′ to G2 and G3, respectively (Fig. 2). By the triangle inequality,
|ti| = dDCJ (Gi,M

′) ≤ dDCJ(Gi,M) + dDCJ (M,M ′) = |Ti|+ c(M) for i = 2, 3.
Therefore, we have

3∑
i=1

dDCJ(M ′, Gi)−
3∑

i=1

dDCJ(M,Gi) =

3∑
i=1

|ti| −
3∑

i=1

|Ti|

≤ (|T1|+ |T2|+ |T3|+ c(M))− (|T1|+ |T2|+ |T3|) = c(M).

3.2 Construction of Transformation T ′
1

Our construction of the transformation T ′
1 relies on the following theorem.

Theorem 1. Let P
z−→ Q be a transformation between genomes P and Q with

c(P ) > c(Q). Then there exists a transformation P
r−→ P ′ z′

−→ Q such that r is
a single DCJ, c(P ′) = c(P )− 1, and |z′| = |z| − 1.
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Applying Theorem 1 c(P )−c(Q) times, we easily get the following statement.

Corollary 1. Let P
z−→ Q be a transformation between genomes P and Q with

c(P ) > c(Q). Then there exists a transformation P
r1−→ P ′ r2−→ P ′′ r3−→ · · · rk−→

P (k) → Q of the same total length |z|, where k = c(P )− c(Q), r1, r2, . . . , rk are
DCJs, and c(P (k)) = c(Q).

We apply this corollary for z = T1 (with P = M and Q = G1) to obtain
M ′ = P (k) with c(M ′) = c(G1) = 0 chromosomes (i.e., M ′ is a linear genome).
The rest of this section is devoted to the proof of Theorem 1.

We find it convenient to view each DCJ as an operation that removes and
creates edges in the genome graph. Two adjacent DCJs α and β in a transfor-
mation are called independent if β removes edges that were not created by α.
Otherwise, when β removes edge(s) created by α, we say that β depends on α.

Lemma 1. Let ϑ be a DCJ that transforms genome P into genome Q. Then
c(P ) > c(Q) if and only if the two edges removed by ϑ in P belong to distinct
chromosomes, at least one of which is circular.

Proof. If c(P ) > c(Q), ϑ must either destroy one circular chromosome in the
genome graph P or combine two circular chromosomes into a new one. In either
case, the two edges removed by ϑ must belong to different chromosomes in P
and at least one of them is circular.

If the two edges removed by ϑ in P belong to distinct chromosomes, one of
which is circular, then ϑ destroys this circular chromosome. Thus, c(Q) < c(P )
unless ϑ creates a new circular chromosome in Q. However, in the latter case
ϑ must also destroy another circular chromosome in P (i.e., ϑ is a fusion on
circular chromosomes), implying that c(Q) < c(P ). ��

Theorem 2. Let P
ϑ1−→ Q

ϑ2−→ R be a transformation between genomes P,Q,R
such that ϑ1, ϑ2 are independent DCJs and c(P ) ≥ c(Q) > c(R). Then in the

transformation P
ϑ2−→ Q′ ϑ1−→ R, we have c(P ) > c(Q′).

Proof. Let a and b be the edges removed by ϑ2. Since ϑ1 and ϑ2 are independent,
the edges a and b are present in both P and Q. By Lemma 1, c(Q) > c(R)
implies that in Q one edge, say a, belongs to a circular chromosome, which does
not contain b.

Suppose that a belongs to a circular chromosome C in Q. Genome P can
be obtained from genome Q by a DCJ ϑ−1

1 that reverses ϑ1 (i.e., ϑ−1
1 replaces

the edges created by ϑ1 with the edges removed by it). We consider two cases,
depending on whether c(P ) > c(Q) or c(P ) = c(Q).

If c(P ) > c(Q), ϑ−1
1 must either split one circular chromosome in Q into two

or create a new circular chromosome from linear chromosome(s). In the former
case, the edge a belongs to a circular chromosome C′ in P even if ϑ−1

1 splits the
chromosome C. The set of vertices of C′ is a subset of the vertices of C and thus
does not contain b. In the latter case, C is not affected, while b remains outside it.
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If c(P ) = c(Q), C is either not affected by ϑ−1
1 or remains circular after ϑ−1

1

reverses its segment.
In either case, we get that a belongs to a circular chromosome in P , and this

chromosome does not contain b. By Lemma 1, ϑ2 will decrease the number of
circular chromosomes in P , i.e., c(P ) > c(Q′). ��

Suppose that DCJ β depends on DCJ α. Let k ∈ {1, 2} be the number of
edges created by α and removed by β. We say that β strongly depends on α
if k = 2 and weakly depends on α if k = 1. We remark that adjacent pair of
strongly dependent DCJs may not appear in shortest transformations between
genomes, since such pair can be replaced by an equivalent single DCJ, decreasing
the transformation length.

In a genome graph, a pair of dependent DCJs replaces three edges with three
other edges on the same six vertices (this operation is known as 3-break [9]). It
is easy to see that for a pair of weakly dependent DCJs, there exist exactly two
other equivalent pairs of weakly dependent DCJs (Fig. 3):

Lemma 2. A triple of edges {(x1, x2), (y1, y2), (w1, w2)} can be transformed
into a triple of edges {(x1, w2), (y1, w2), (w1, y2)} with two weakly dependent
DCJs in exactly three different ways:

1. {(x1, x2), (y1, y2), (w1, w2)} r1−→ {(x1, y2), (y1, x2), (w1, w2)} r2−→
{(x1, w2), (y1, w2), (w1, y2)};

2. {(x1, x2), (y1, y2), (w1, w2)} r3−→ {(x1, w2), (y1, y2), (w1, x2)} r4−→
{(x1, w2), (y1, w2), (w1, y2)};

3. {(x1, x2), (y1, y2), (w1, w2)} r5−→ {(x1, x2), (y1, w2), (w1, y2)} r6−→
{(x1, w2), (y1, w2), (w1, y2)}.

Theorem 3. Let P
ϑ1−→ Q

ϑ2−→ R be a transformation between genomes P,Q,R
such that ϑ2 depends on ϑ1 and c(P ) ≥ c(Q) > c(R). Then there exists a trans-

formation: P
ϑ3−→ Q′ ϑ4−→ R, where ϑ3 and ϑ4 are DCJs and c(P ) > c(Q′).

Proof. If DCJ ϑ2 strongly depends on ϑ1, then (ϑ1, ϑ2) is equivalent to a single
DCJ ϑ′ between genomes P and R. We let ϑ3 = ϑ′ and ϑ4 be any identity DCJ
(which removes and adds the same edges and thus does not change the genome)
in Q′ = R to complete the proof in this case.

For the rest of the proof we assume that ϑ2 weakly depends on ϑ1.
By Lemma 2, for a pair of DCJs (ϑ1, ϑ2), there exists another equivalent pair

(ϑ3, ϑ4), which also transforms P into R. Let Q′ be a genome resulting from ϑ3

in P . We will use Lemma 1 to prove c(P ) > c(Q′) and show that the two edges
removed by ϑ3 belong to distinct chromosomes, one of which is circular.

Let a, b be the edges removed by ϑ1 in P and c, d be the edges removed by
ϑ2 in Q. Since c(Q) > c(R), by Lemma 1, one of the edges removed by ϑ2, say
c, belongs to a circular chromosome C in Q, and C does not contain d. Since
ϑ2 weakly depends on ϑ1, either c or d is created by ϑ1. We consider these two
cases below.
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Fig. 3. Illustration of Lemma 2. a) Initial genome graph, where the dashed edges
represent some gene sequences. The dashed edge and black undirected edge between
w1 and w2 form a circular chromosome C. b-d) The intermediate genomes after first
DCJs in the three equivalent pairs of weakly dependent DCJs. e) The resulting genome
graph after the equivalent pairs of DCJs, where C is destroyed. Namely, C is destroyed
by DCJs r2, r3, and r5.

If d is created by ϑ1, then edge c exists in P and is removed by ϑ3. Let e
be the other edge created by ϑ1 in Q. If e belongs to circular chromosome C,
then by Lemma 1 ϑ−1

1 (transforming Q into P ) decreases the number of circular
chromosomes, i.e., c(P ) < c(Q), a contradiction. Therefore, neither of d, e belong
to C, implying that C also exists in P and does not contain edges a, b. Then the
edges removed by ϑ3 (i.e., c and one of a, b) belong to circular chromosome C
and some other chromosome, implying by Lemma 1 that c(P ) > c(Q′).

If c is created by ϑ1, then edge d exists in P and is removed by ϑ3. We
can easily see that the other edge created by ϑ1 must also belong to C, since
otherwise by Lemma 1 ϑ−1

1 (transforming Q into P ) would decrease the number
of circular chromosomes, i.e., c(P ) < c(Q), a contradiction. Thus, ϑ−1

1 replaces
two edges in C with edges a, b, resulting in either two circular chromosomes or
a single circular chromosome in P . In either case, edges a and b in P belong to
one or two circular chromosomes that do not contain edge d. Since ϑ3 operates
on d and one of a, b, by Lemma 1, c(P ) > c(Q′).

��
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Now we are ready to prove Theorem 1.

Proof (of Theorem 1). Let P
z−→ Q be a transformation between genomes P

and Q with c(P ) > c(Q). Suppose that z = (q1, q2, . . . , qn), where qi are DCJs,

i.e., z has the form: P = P0
q1−→ P1

q2−→ · · · qn−→ Q.
If c(P0) > c(P1), then we simply let r = q1, P ′ = P1, and z′ = (q2, q3, . . . , qn).
If c(P0) ≤ c(P1), we find the smallest index j = j(z) ∈ {2, 3, . . . , n} such that

c(Pj−2) ≥ c(Pj−1) > c(Pj). Using Theorem 2 or 3, we can obtain a new transfor-

mation z1 from z by replacing the pair of adjacent DCJs Pj−2
qj−1−→ Pj−1

qj−→ Pj

with an equivalent pair Pj−2

q′j−1−→ P ′
j−1

q′j−→ Pj such that c(Pj−2) > c(P ′
j−1)

in zj . We remark that j(z1) = j(z) − 1. Similarly, from transformation z1 we
construct a transformation z2. After j(z)−1 such steps, we get a transformation

zj−1 : P
q′1−→ P ′

1

q′2−→ · · ·
q′j−1−→ P ′

j−1

q′j−→ Pj
qj+1−→ · · · qn−→ Q such that c(P ) > c(P ′

1).
Now we let r = q′1 and z′ = (q′2, . . . , q

′
j , qj+1, . . . , qn) to complete the proof. ��

4 Discussion

For given three linear genomes G1, G2, G3 and their DCJ median genome M
(which may contain circular chromosomes), we described an algorithm that con-
structs a linear genome M ′ such that the approximation accuracy of M ′ (i.e.,
the difference in the DCJ median scores of M ′ and M) is bounded by c(M),
the number of circular chromosomes in M . In the Appendix we give an example,
where c(M) also represents the lower bound for the accuracy of any linearization
of M and thus our algorithm achieves the best possible accuracy in this case.
It was earlier observed by Xu [11] on simulated data that the number of cir-
cular chromosomes produced by their DCJ-GMP solver is typically very small,
implying that the approximation accuracy of M ′ would be very close to 0.

We remark that the proposed algorithm relies on a transformation between
M and one of the genomes G1, G2, G3. For presentation purposes, we chose
it to be G1 but other choices may sometimes result in better approximation
accuracy. It therefore makes sense to apply the algorithm for each of the three
transformations from M to Gi and obtain three corresponding linear genomes
M ′

i , among which select the genome M ′ with the minimum DCJ median score. At
the same time, we remark that the linear genomes M ′

i may be quite distant from
each other. In the Appendix, we show that the pairwise DCJ distances between
the linear genomes M ′

i may be as large as 2/3 ·N , where N = |G1| = |G2| = |G3|
is the number of genes in the given genomes.

The proposed algorithm can be viewed as c(M) iterative applications of The-
orem 1, each of which takes at most dDCJ(G1,M) < N steps. Therefore, the
overall time complexity is O(c(M) · N) elementary (in sense of Theorems 2
and 3) operations on DCJs. The algorithm is implemented in the AGRP solver
MGRA [20, 21].
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Appendix. An Extremal Example

In Fig. 4, each of the three linear genomes M ′
i on the same genes a, b, c can be

viewed as a result of a single fission in their circular unichromosomal median
genome M , while all the pairwise DCJ distances between M ′

i equal 2. If for each
i = 1, 2, 3, a genome Gk

i consists of k copies of M ′
i (on different triples of genes),

then their DCJ median genome Mk consists of k corresponding copies of M
and has c(Mk) = k circular chromosomes. We claim (and will prove elsewhere)
that the DCJ median score of Mk is 3k, while any linearization of Mk has the
DCJ median score at least 4k, implying that our algorithm on such genomes Gk

i

achieves the best possible accuracy equal c(Mk) = k. We also notice that the

three linearizations Mk′
i of Mk have pairwise DCJ distances equal 2k.
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Fig. 4. A circular median genome M of three unichromosomal linear genomes M ′
1, M

′
2,

M ′
3 on genes a, b, c with specified pairwise DCJ distances
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Abstract. In applications where a collection of similar sequences needs
to be amplified through PCR, degenerate primers can be used to improve
the efficiency and accuracy of amplification. Conceptually, a degenerate
primer is a sequence in which some bases are ambiguous, in the sense that
they can bind to more than one nucleotide. These ambiguous bases allow
degenerate primers to bind to multiple target sequences. When designing
degenerate primers, it is essential to find a good balance between high
coverage (the number of amplified target sequences) and low degeneracy.
In this paper, we propose a new heuristic, called RRD2P, for comput-
ing a pair of forward and reverse primers with near-optimal coverage,
under the specified degeneracy threshold. The fundamental idea of our
algorithm is to represent computing optimal primers as an integer lin-
ear program, solve its fractional relaxation, and then apply randomized
rounding to compute an integral solution. We tested Algorithm RRD2P

on three biological data sets, and our experiments confirmed that it pro-
duces primer pairs with good coverage, comparing favorably with a sim-
ilar tool called HYDEN.

1 Introduction

Polymerase Chain Reaction (PCR) is an amplification technique widely used in
molecular biology to generate multiple copies of a desired region of a given DNA
sequence. In a PCR process, two small pieces of synthetic DNA sequences called
primers, typically of length 15-30 bases, are required to identify the boundary of
amplification. This pair of primers, referred to as forward and reverse primers,
are obtained from the 5’ end of the target sequences and their opposite strand,
respectively. Each primer hybridizes to the 3’ end of another strand and starts
to amplify toward the 5’ end.

In applications where a collection of similar sequences needs to be amplified
through PCR, degenerate primers can be used to improve the efficiency and
accuracy of amplification. Degenerate primers [1] can be thought of, conceptually,
as having ambiguous bases at certain positions, that is bases that represent
several different nucleotides. This enables degenerate primers to bind to several
different sequences at once, thus allowing amplification of multiple sequences in
a single PCR experiment. Degenerate primers are represented as strings formed
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from IUPAC codes, where each code represents multiple possible alternatives for
each position in a primer sequence (see Table 1).

The degeneracy deg(p) of a primer p is the number of distinct non-degenerate
primers that it represents. For example, the degeneracy of primer p = ACMCM is 4,
because it represents the following four non-degenerate primers: ACACA, ACACC,
ACCCA, and ACCCC.

Table 1. IUPAC nucleotide code table for ambiguous bases

IUPAC nucleotide code M R W S Y K V H D B N

represented bases A A A A A A A

C C C C C C C

G G G G G G G

T T T T T T T

Figure 1 shows a simple example of a pair of primers binding to a target DNA
sequence. The forward primer TRTAWTGATY matches the substring TGGACTGATT

of the target sequence in all but two positions, illustrating that, in practice,
binding can occur even in the presence of a small number of mismatched bases.
The reverse primer AGAAAAGTCM matches the target sequence (or, more precisely,
its reverse complement) perfectly. This primer pair can produce copies of the
region ACCGATGACT of the target sequence, as well as its reverse complement.

5’--AGAAAAGTCM--3’ ⇒ reverse primer

||||||||||

5’--GATGGACTGATTACCGATGACTGGACTTTTCTG--3’ ⇒ target sequence

5’--CAGAAAAGTCCAGTCATCGGTAATCAGTCCATC--3’

|| | |||||

forward primer ⇐ 5’--TRTAWTGATY--3’

Fig. 1. A symbolic illustration of a pair of primers binding to a DNA sequence

Quite obviously, primers with higher degeneracy can cover more target se-
quences, but in practice high degeneracy can also negatively impact the quality
and quantity of amplification. This is because, in reality, degenerate primers are
just appropriate mixtures of regular primers, and including too many primers
in the mixture could lead to problems such as mis-priming, where unrelated
sequences may be amplified, or primer cross-hybridization, where primers may
hybridize to each other. Thus, when designing degenerate primers, it is essential
to find a good balance between high coverage and low degeneracy.

PCR experiments involving degenerate primers are useful in studying the
composition of microbial communities that typically include many different but
similar organisms (see, for example, [2,3]). This variant of PCR is sometimes
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referred to as Multiplex PCR (MP-PCR) [4], although in the literature the term
MP-PCR is also used in the context of applications where non-similar sequences
are amplified, in which case using degenerate primers may not be beneficial.
Designing (non-degenerate) primers for MP-PCR applications also leads to in-
teresting algorithmic problems – see, for example, [5] and references therein.

For the purpose of designing primers we can assume that our target sequences
are single-strain DNA sequences. Thus from now on target sequences will be
represented by strings of symbols A, C, T, and G.

We say that a (degenerate) primer p covers a target sequence s if at least
one of the non-degenerate primers represented by p occurs in s as a substring.
In practice, a primer can often hybridize to the target sequence even if it only
approximately matches the sequence. Formally, we will say that p covers s with
at most m mismatches if there exists a sub-string s′ of s of length |p| such some
non-degenerate primer represented by p matches s′ on at least |p|−m positions.
We refer to m as mismatch allowance.

Following the approach in [6], we model the task as an optimization problem
that can be formulated as follows: given a collection of target sequences, a desired
primer length, and bounds on the degeneracy and mismatch allowance, we want
to find a pair of degenerate primers that meet these criteria and maximize the
number of covered target sequences. We add, however, that, as discussed later in
Section 2, there are other alternative approaches that emphasize other aspects
of primer design, for example biological properties of primers.

As in [6], using heuristics taking advantage of properties of DNA sequences,
the above task can be reduced to the following problem, which, though concep-
tually simpler, still captures the core difficulty of degenerate primer design:

Problem: MCDPDmis.
Instance: A set of n target strings A =

{
a1, a2, . . . , an

}
over alphabet

Σ, each of length k, integers d (degeneracy threshold) and m (mismatch
allowance);
Objective: Find a degenerate primer p of length k and degeneracy at most
d that covers the maximum number of strings in A with up to m mis-
matches.

This reduction involves computing the left and right primers separately, as
well as using local alignment of target sequences to extract target strings that
have the same length as the desired primer. There may be many collections of
such target strings (see Section 4), and only those likely to produce good primer
candidates need to be considered. Once we solve the instance of MCDPDmis for
each collection, obtaining a number of forward and reverse primer candidates,
we select the final primer pair that optimizes the joint coverage, either through
exhaustive search or using heuristic approaches.

The main contribution of this paper is a new algorithm for MCDPDmis,
called SRRdna, based on LP-rounding. We show that MCDPDmis can be formu-
lated as an integer linear program. (This linear program actually solves a slightly
modified version of MCDPDmis – see Section 3 for details.) Algorithm SRRdna

computes the optimal fractional solution of this linear program, and then uses
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an appropriate randomized rounding strategy to convert this fractional solution
into an integral one, which represents a degenerate primer.

Using the framework outlined above, we then use Algorithm SRRdna to design
a new heuristic algorithm, called RRD2P, that computes pairs of primers for a
given collection of target DNA sequences. We implemented Algorithm RRD2P

and tested it on three biological data sets. The results were compared to those
generated by the existing state-of-the-art tool HYDEN, developed by Linhart
and Shamir [7]. Our experiments show that Algorithm RRD2P is able to find
primer pairs with better coverage than HYDEN.

2 Related Work

The problem of designing high-quality primers for PCR experiments has been
extensively studied and has a vast literature. Much less is known about designing
degenerate primers. The work most relevant to ours is by Linhart and Shamir [7],
who introduced the MCDPDmis model, proved that the problem is NP-hard,
and gave some efficient approximation algorithms.

In their paper [7], the ideas behind their approximation algorithms were in-
corporated into a heuristic algorithm HYDEN for designing degenerate primers.
HYDEN uses an efficient heuristic approach to design degenerate primers [7]
with good coverage. It constructs primers of specified length and with specified
degeneracy threshold. HYDEN consists of three phases. It first uses a non-gap
local alignment algorithm to find best-conserved regions among target sequences.
These regions are called alignments. The degree to which an alignment A is con-
served is measured by its entropy score:

HA = −
∑k

j=1

∑
σ∈Σ

DA(σ,j)
n · log2

DA(σ,j)
n ,

where k is the length of A, n is the number of target sequences, and DA(σ, j)
is the number of sequences in A that have symbol σ at the jth position. Matrix
DA() is called the column distribution matrix.

Then, HYDEN designs degenerate primers for these regions using two heuris-
tic algorithms called CONTRACTION and EXPANSION. Finally, it chooses a
certain number of best primer candidates, from which it computes a pair of
primers with good coverage using a hill-climbing heuristic.

HYDEN has a number of parameters that users can specify, including the
desired primer length, the preferred binding regions, the degeneracy threshold,
and the mismatch allowance. HYDEN has been tested in a real biological exper-
iment with 127 human olfactory receptor (OR) genes, showing that it produces
fairly good primer pairs [7].

Linhart and Shamir [7] also introduced another variant of degenerate primer
design problem, called MDDPD, where the objective is to find a degenerate
primer that covers all given target sequences and has minimum degeneracy. This
problem is also NP-hard. An extension of this model where multiple primers are
sought was studied by Souvenir et al. [8]. See also [9,10] for more related work.
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We briefly mention two other software packages for designing degenerate
primers. (See the full paper for a more comprehensive survey.) PrimerHunter
[11,12] is a software tool that accepts both target and non-target sequences on
input, to ensure that the selected primers can efficiently amplify target sequences
but avoid the amplification of non-target sequences. This feature allows Primer-
Hunter to distinguish closely related subtypes. PrimerHunter allows users to set
biological parameters. However, it does not provide the feature to directly con-
trol the primer degeneracy. Instead, it uses a degeneracy mask that specifies the
positions at which fully degenerate nucleotides are allowed.

iCODEHOP is a web application which designs degenerate primers at the
amino acid level [13,14]. This means that during the primer design process, it
will reverse-translate the amino acid sequences to DNA, using a user-specified
codon usage table. iCODEHOP does not explicitly attempt to optimize the
coverage.

3 Randomized Rounding

We now present our randomized rounding approach to solving the MCDPDmis

problem defined in the introduction. Recall that in this problem we are given a
collection A of strings over an alphabet Σ, each of the same length k, a degener-
acy threshold d, and a mismatch allowance m, and the objective is to compute
a degenerate primer p of length k and degeneracy at most d, that covers the
maximum number of strings in A with at most m mismatches.

An optimal primer p covers at least one target string ai ∈ A with at most m
mismatches. In other words, p can be obtained from ai by (i) changing at most
m bases in ai to different bases, and (ii) changing some bases in ai to ambiguous
bases that match the original bases, without exceeding the degeneracy limit d.
Let Tmplm(A) denote the set of all strings of length k that can be obtained
from some target string ai ∈ A by operation (i), namely changing up to m
bases in ai. By trying all strings in Tmplm(A), we can reduce MCDPDmis

to its variant where p is required to cover a given template string (without
mismatches). Formally, this new optimization problem is:

Problem: MCDPDmis
tmpl.

Instance: A set of n strings A = {a1, a2, . . . , an}, each of length k, a
template string p̂, and integers d (degeneracy threshold) and m (mismatch
allowance);
Objective: Find a degenerate primer p of length k, with deg(p) ≤ d that
covers p̂ and covers the maximum number of sequences in A with mis-
match allowance m.

We remark that our algorithm for MCDPDmis will not actually try all pos-
sible templates from Tmplm(A) – there are simply too many of these, if m is
large. Instead, we randomly sample templates from Tmplm(A) and apply the
algorithm for MCDPDmis

tmpl only to those sampled templates. The number of
samples affects the running time and accuracy (see Section 5).
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We present our algorithm for MCDPDmis
tmpl in two steps. In Section 3.1 that

follows, we explain the fundamental idea of our approach, by presenting the
linear program and our randomized rounding algorithm for the case of binary
strings, where Σ = {0, 1}. The extension to DNA strings is somewhat compli-
cated due to the presence of several ambiguous bases. We present our linear
program formulation and the algorithm for DNA strings in Section 3.2.

3.1 Randomized Rounding for Binary Strings

In this section we focus on the case of the binary alphabet Σ = {0, 1}. For this
alphabet we only have one ambiguous base, denoted by N, which can represent
either 0 or 1. We first demonstrate the integer linear program representation of
MCDPDmis

tmpl for the binary alphabet and then we give a randomized rounding
algorithm for this case, called SRRbin. The idea of SRRbin is to compute an
optimal fractional solution of this linear program and then round it to a feasible
integral solution.

Let p̂ = p̂1p̂2 · · · p̂k be the template string from the given instance of
MCDPDmis

tmpl. It is convenient to think of the objective of MCDPDmis
tmpl as

converting p̂ into a degenerate primer p by changing up to log d symbols in p̂ to
N. For each target string ai = ai1a

i
2 · · · aik, we use a binary variable xi to indicate

if ai is covered by p. For each position j, a binary variable nj is used to indicate
whether p̂j will be changed to N. To take mismatch allowance into consideration,
we also use binary variables μi

j , which indicate if we allow a mismatch between

p and ai on position j, that is, whether or not aij �⊆ pj .

With the above variables, the objective is to maximize the sum of all xi.
Next, we need to specify the constraints. One constraint involves the mismatch
allowance m; for a string ai, the number of mismatches

∑
j μ

i
j should not exceed

m. Next, we have the bound on the degeneracy. In the binary case, the degener-
acy of p can be written as deg(p) =

∏
j 2nj , and we require that deg(p) ≤ d. To

convert this inequality into a linear constraint, we take the logarithms of both
sides. The last group of constraints are the covering constraints. For each j, if
p covers ai and p̂j �= aij , then either pj = N or pj contributes to the number of

mismatches. This can be expressed by inequalities xi ≤ nj + μi
j , for all i, j such

that aij �= p̂j . Then the complete linear program is:

maximize
∑

i x
i

subject to
∑

j μ
i
j ≤ m ∀i∑

j nj ≤ log2 d

xi ≤ nj + μi
j , ∀i, j : aij �= p̂j

xi, nj , μ
i
j ∈ {0, 1} ∀i, j

(1)

The pseudo-code of our Algorithm SRRbin is given below in Pseudocode 1.
The algorithm starts with p = p̂ and gradually changes some symbols in p to N,
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solving a linear program at each step. At each iteration, the size of the linear
program can be reduced by discarding strings that are too different from the
current p, and by ignoring strings that are already matched by p. More precisely,
any ai which differs from the current p on more than m+log2 d positions cannot
be covered by any degenerate primer obtained from p, so this ai can be discarded.
On the other hand, if ai differs from p on at most m positions then it will
always be covered, in which case we can set xi = 1 and we can also remove it
from A. This pruning process in Algorithm SRRbin is implemented by function
FilterOut.

Pseudocode 1. Algorithm SRRbin(p̂, A, d,m)

1: p← p̂
2: while deg(p) < d do
3: FilterOut(p,A, d,m)
4: if A = ∅ then break � updates A
5: LP←GenLinProgram(p,A, d,m)
6: FracSol←SolveLinProgram(LP)
7: RandRoundingbin(p,FracSol, d) � updates p and d

8: return p

If no sequences are left in A then we are done; we can output p. Otherwise,
we construct the linear program for the remaining strings. This linear program
is essentially the same as the one above, with p̂ replaced by p, and with the
constraint xi ≤ nj +μi

j included only if pj �= N. Additional constraints are added
to take into account the rounded positions in p, namely we add the constraint
nj = 1 for all pj already replaced by N.

We then consider the relaxation of the above integer program, where all in-
tegral constraints xi, nj, μ

i
j ∈ {0, 1} are replaced by xi, nj, μ

i
j ∈ [0, 1], that is,

all variables are allowed to take fractional values. After solving this relaxation,
we call Procedure RandRoundingbin, which chooses one fractional variable nj ,
with probability proportional to its value, and rounds it up to 1. (It is suffi-
cient to round only the nj variables, since all other variables are uniquely deter-
mined from the nj’s.) To do so, let J be the set of all j for which nj �= 1 and
π =

∑
j∈J nj . The interval [0, π] can be split into consecutive |J | intervals, with

the interval corresponding to j ∈ J having length nj . Thus we can randomly
(uniformly) choose a value c from [0, π], and if c is in the interval corresponding
to j ∈ J then we round nj to 1.

If the degeneracy of p is still below the threshold, Algorithm SRRbin executes
the next iteration: it correspondingly adjusts the constraints of the linear pro-
gram, which produces a new linear program, and so on. The process stops when
the degeneracy allowance is exhausted.
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3.2 Randomized Rounding for DNA Sequences Data

We now present our randomized rounding scheme for MCDPDmis
tmpl when the

input consists of DNA sequences.
We start with the description of the integer linear program for MCDPDmis

tmpl

with Σ = {A, C, G, T}. Degenerate primers for DNA sequences, in addition to
four nucleotide symbols A, C, G and T, can use eleven symbols corresponding to
ambiguous positions, described by their IUPAC codes M, R, W, S, Y, K, V, H, D, B,
and N. The interpretation of these codes was given in Table 1 in Section 1. Let Λ
denote the set of these fifteen symbols. We think of each λ ∈ Λ as representing
a subset of Σ, and we write |λ| for the cardinality of this subset. For example,
we have |C| = 1, |H| = 3 and |N| = 4.

The complete linear program is given below. As for binary sequences, xi in-
dicates whether the i-th target sequence ai is covered. Then the objective of the
linear program is to maximize the primer coverage, that is

∑
i x

i.

maximize
∑

i x
i

mj + rj + wj + sj + yj + kj + vj + hj + dj + bj + nj ≤ 1 ∀j∑
j
μi
j ≤ m ∀i∑

j

[
(mj + rj + wj + sj + yj+kj) + log 3 · (vj + hj + dj + bj) + 2 · nj ] ≤ log d

xi ≤ mj + vj + hj + nj + μi
j ∀i, j : (p̂j = A, aij = C) ∨ (p̂j = C, aij = A)

xi ≤ rj + vj + dj + nj + μi
j ∀i, j : (p̂j = A, aij = G) ∨ (p̂j = G, aij = A)

xi ≤ wj + hj + dj + nj + μi
j ∀i, j : (p̂j = A, aij = T) ∨ (p̂j = T, aij = A)

xi ≤ sj + vj + bj + nj + μi
j ∀i, j : (p̂j = C, aij = G) ∨ (p̂j = G, aij = C)

xi ≤ yj + hj + bj + nj + μi
j ∀i, j : (p̂j = C, aij = T) ∨ (p̂j = T, aij = C)

xi ≤ kj + dj + bj + nj + μi
j ∀i, j : (p̂j = G, aij = T) ∨ (p̂j = T, aij = G)

xi,mj , rj , wj , sj , yj , kj ,vj , hj , dj , bj, nj , μ
i
j ∈ {0, 1} ∀i, j

To specify the constraints, we now have eleven variables representing the pres-
ence of ambiguous bases in the degenerate primer, namely mj , rj , wj , sj , yj ,
kj , vj , hj, dj , bj , and nj, denoted using letters corresponding to the ambigu-
ous symbols. Specifically, for each position j and for each symbol λ ∈ Λ, the
corresponding variable λj indicates whether p̂j is changed to this symbol in the
computed degenerate primer p. For example, rj represents the absence or pres-
ence of R in position j. For each j, at most one of these variables can be 1, which
can be represented by the constraint that their sum is at most 1.

Variables μi
j indicate a mismatch between p and ai on position j. Then the

bound on the number of mismatches can be written as
∑

j μ
i
j ≤ m, for each i.

The bound on the degeneracy of the primer p can be written as

deg(p) =
∏

j 2(mj+rj+wj+sj+yj+kj) × 3(vj+hj+dj+bj) × 4nj ≤ d,



An LP-Rounding Algorithm for Degenerate Primer Design 115

which after taking logarithms of both sides gives us another linear constraint.
In order for ai to be covered (that is, when xi = 1), for each position j

for which aij �= p̂j, we must either have a mismatch at position j or we need

aij ⊆ pj . Expressing this with linear constraints can be done by considering

cases corresponding to different values of p̂j and aij. For example, when p̂j = A

and aij = C (or vice versa), then either we have a mismatch at position j (that is,

μi
j = 1) or pj must be one of ambiguous symbols that match A and C (that is M,

V, H, or N). This can be expressed by the constraint xi ≤ mj + vj +hj +nj +μi
j .

We will have one such case for any two different choices of p̂j and aij , giving us
six groups of such constraints.

We then extend our randomized rounding approach from the previous section
to this new linear program. From the linear program, we can see that the integral
solution can be determined from the values of all variables λj , for λ ∈ Λ. In the
fractional solution, a higher value of λj indicates that pj is more likely to be the
ambiguous symbol λ. We thus determine ambiguous bases in p one at a time by
rounding the corresponding variables.

As for binary strings, Algorithm SRRdna will start with p = p̂ and gradually
change some bases in p to ambiguous bases, solving a linear program at each
step. At each iteration we first call function FilterOut that filters out target
sequences that are either too different from the template p̂, so that they cannot
be matched, or too similar, in which case they are guaranteed to be matched. The
pseudocode of Algorithm SRRdna is the same as in Pseudocode 1 except that
the procedure RandRoundingbin is replaced by the corresponding procedure
RandRoundingdna for DNA strings.

If no sequences are left in A then we output p and halt. Otherwise, we con-
struct a linear program for the remaining sequences. This linear program is a
slight modification of the one above, with p̂ replaced by p. Each base pj that was
rounded to an ambiguous symbol is essentially removed from consideration and
will not be changed in the future. Specifically, the constraints on xi associated
with this position j will be dropped from the linear program (because these
constraints apply only to positions where pj ∈ {A, C, G, T}). For each position j
that was already rounded, we appropriately modify the corresponding variables.
If pj = λ, for some λ ∈ Λ − Σ, then the corresponding variable λj is set to 1
and all other variables λ′

j are set to 0. If aij ∈ pj , that is, aij is already matched,

then we set μi
j = 0, and if aij /∈ pj then we set μi

j = 1, which effectively reduces

the mismatch allowance for ai in the remaining linear program.
Next, Algorithm SRRdna solves the fractional relaxation of such constructed

integer program, obtaining a fractional solution FracSol. Finally, the algorithm
calls function RandRoundingdna that will round one fractional variable λj to
1. (This represents setting pj to λ.) To choose j and the symbol λ for pj , we
randomly choose a fractional variable λj proportionally to their values among
undetermined positions. This is done similarly as in the binary case, by summing
up fractional values corresponding to different symbols and positions, and choos-
ing uniformly a random number c between 0 and this sum. This c determines
which variable should be rounded up to 1.
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3.3 Experimental Approximation Ratio

To examine the quality of primers generated by algorithm SRRdna, we compared
the coverage of these primers to the optimal coverage. In our experiments we
used the human OR gene [7] data set consisting of 50 sequences, each of length
approximately 1Kbps. For this dataset we computed 15 alignments (regions)
of length 25 with highest entropy scores (representing sequence similarity, see
Section 2). Thus each obtained alignment consists of 50 target strings of length
25. Then, for each of these alignments A, we use each target string in A as
a template to run SRRdna, which gives us 50 candidate primers, from which
we choose the best one. We then compared this selected primer to a primer
computed with Cplex using a similar process, namely computing an optimal
integral solution for each template and choosing the best solution.

Table 2. Algorithm SRRdna versus the integral solution obtained with Cplex. The
numbers represent coverage values for the fifteen alignments.

d = 10000, m = 0 d = 625, m = 2

Ai 1 2 3 4 5 6 7 8 9 10 11 12 13 1 2 3 4 5 6 7 8 9 10 11 12 13

Opt 26 24 24 24 26 26 24 24 24 26 24 24 24 43 42 42 42 43 43 42 42 42 43 42 42 42
SRR 26 24 23 23 26 26 23 24 23 26 24 23 23 42 40 42 42 43 43 40 41 42 43 42 42 40

This experiment was repeated for two different settings for m (the mismatch al-
lowance) and d (the degeneracy threshold), namely for (m, d) = (0, 1000), (2, 625).
The results are shown in Table 2. As can be seen from this table, AlgorithmSRRdna

computes degenerate primers that are very close, and often equal, to the values ob-
tained from the integer program. Note that for m = 0 the value obtained with the
integer program represents the true optimal solution for the instance of
MCDPDmis, because we try all target strings as templates. For m = 2, to com-
pute the optimal solution we would have to try all template strings in Tmpl2(Ah),
which is not feasible; thus the values in the first row are only close approximations
to the optimum.

The linear programs we construct are very sparse. This is because for any
given ai and position j, the corresponding constraint on xi is generated only
when p and ai differ on position j (see Section 3.2), and our data sets are very
conserved. Thus, for sufficently small data sets one could simply use integral
solutions from Cplex instead of rounding the fractional solution. For example,
the initial linear programs in the above instances had typically around 150 con-
straints, and computing each integral solution took only about 5 times longer
than for the fractional solution (roughly, 0.7s versus 0.15s). For larger datasets,
however, computing the optimal integral solution becomes quickly infeasible.

4 RRD2P – Complete Primer Design Algorithm

To assess the effectiveness of our randomized rounding approach, we have extended
Algorithm SRRdna to a complete primer design algorithm, called RRD2P, and
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we tested it experimentally on real data sets. In this section we describe Algo-
rithm RRD2P; the experimental evaluation is given in the next section.

Algorithm RRD2P (see Pseudocode 2) has two parameters: Sfvd and Srev,
which are, respectively, two sets of target sequences, one for forward and the
other for reverse primers. They are provided by the user and represent desired
binding regions for the two primers. The algorithm finds candidates for forward
primers and reverse primers separately. Then, from among these candidates, it
iterates over all primer pairs to choose primer pairs with the best joint coverage.

Pseudocode 2. Algorithm RRD2P(Sfvd, Srev, k, d,m)

1: PrimerListfvd ← DesignPrimers(Sfvd, k, d,m)
2: PrimerListrev ← DesignPrimers(Srev, k, d,m)
3: ChooseBestPairs(PrimerListfvd,PrimerListrev) � Find best primer pairs (f, r)

For both types of primers, we call Algorithm DesignPrimers (Pseudocode 3),
that consists of two parts. In the first part, the algorithm identifies conserved re-
gions within target sequences (Line 1). As before, these regions are also called
alignments, and they are denoted Ah. In the second part we design primers for
these regions (Lines 2-7).

Pseudocode 3. Algorithm DesignPrimers(S = {s1, s2, · · · , sn}, k, d,m)

1: A1, A2, · · ·AN ← FindAlignments(S, k)
2: for all alignments Ah, h = 1, · · ·N do
3: PLh ← ∅
4: Th ← set of templates � see explanation in text
5: for all p̂ ∈ Th do
6: p ← SRRdna(p̂, Ah, d,m)
7: Add p to PLh

8: PrimerList ← PL1 ∪ PL2 · · · ∪ PLN

9: return PrimerList (sorted according to coverage)

Finding alignments. Algorithm FindAlignments for locating conserved regions
(Pseudocode 4) follows the strategy from [7]. It enumerates over all sub-strings
of length k of the target sequences. For each k-mer, K, we align it against every
target sequence si without gaps, to find the best match ai of length k, i.e, ai has
the smallest Hamming distance with K. The resulting set A = {a1, a2, · · · , an} of
the n best matches, one for each target string, is a conserved region (alignment).
Intuitively, more conserved alignments are preferred, since they are more likely
to generate low-degeneracy primers. In order to identify how well-conserved an
alignment A is, the entropy score is applied.
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Pseudocode 4. Algorithm FindAlignments(S = {s1, s2 · · · , sn}, k)

1: AlignmentList ← ∅
2: for all k-mers, K, in S do
3: A ← ∅
4: for all si ∈ S do
5: ai ← substring of si that is the best match for K
6: Add ai to A
7: Add A to AlignmentList

8: return AlignmentList (sorted according to entropy)

Computing primers. In the second part (Lines 2-7), the algorithm considers all
alignments Ah computed by Algorithm FindAlignments. For each Ah, we
use the list Th of template strings (see below), and for each p̂ ∈ Th we call
SRRdna(p̂, Ah, d,m) to compute a primer p that is added to the list of primers
PLh. All lists PLh are then combined into the final list of candidate primers.

It remains to explain how to choose the set Th of templates. If the set
Tmplm(Ah) of all candidate templates is small then one can take Th to be the
whole set Tmplm(Ah). (For instance, when m = 0 then Tmpl0(Ah) = Ah.) In
general, we take Th to be a random sample of r strings from Tmplm(Ah), where
the value of r is a parameter of the program, which can be used to optimize the
tradeoff between the accuracy and the running time. Each p̂ ∈ Th is constructed
as follows: (i) choose uniformly a random ai ∈ Ah, (ii) choose uniformly a set
of exactly m random positions in ai, and (iii) for each chosen position j in ai,
set aij to a randomly chosen base, where this base is selected with probability
proportional to its frequency in position j in all sequences from Ah.

5 Experiments

We tested Algorithm RRD2P on three biological data sets, and we compared
our results to those from Algorithm HYDEN [7].
1. The first data set is a set of 50 sequences of human olfactory receptor (OR)
gene [7], of length around 1Kbps, provided along with the HYDEN program.
2. The second data set is from the NCBI flu database [15], from which we chose
Human flu sequences of lengths 900-1000 bps (dated from November 2013). This
set contains 229 flu sequences.
3. The third one contains 160 fungal ITS genes of various lengths, obtained from
NCBI-INSD [16]. Sequence lengths vary from 400 to 2000 bps.

We run Algorithm RRD2P with the following parameters: (i) Primer length =
25. (ii) Primer degeneracy threshold (forward, reverse) : (625,3750), (1250,7500),
(1875, 11250), (2500, 15000), (3750, 22500), (5000,30000), (7500,45000),
(10000,60000). Note that the degeneracy values increase roughly exponentially,
which corresponds to a linear increase in the number of ambiguous bases.The
degeneracy of the reverse primer is six times larger than that of the forward
primer (the default in HYDEN). (iii) Forward primer binding range : 0 ∼ 300,
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reverse primer binding range : −1 ∼ −350. (iv) Mismatch allowance : m = 0, 1, 2
( m represents the mismatch allowance for each primer separately). (v) Number
of alignments: N = 50. (vi) Number of template samples: r = 5.

We compare our algorithm to HYDEN in terms of the coverage of computed
primers. To make this comparison meaningful, we designed our algorithm to
have similar input parameters, which allows us to run HYDEN with the same
settings. For the purpose of these experiments, we use the best primer pair from
the list computed by Algorithm RRD2P.

The results are shown in Figures 2, 3 and 4, respectively. The x-axis represents
the degeneracy of the forward primer; the degeneracy of the reverse primer is six
times larger. The y-axis is the coverage of the computed primer pair. The results
show that RRD2P is capable to find better degenerate primers than HYDEN,
for different choices of parameters.
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Fig. 2. Comparison of RRD2P and HYDEN on human OR genes for m = 0 (left),
m = 1 (center) and m = 2 (right)
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Fig. 3. Comparison of RRD2P and HYDEN on flu sequences for m = 0 (left), m = 1
(center) and m = 2 (right)
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Fig. 4. Comparison of RRD2P and HYDEN on fungal sequences for m = 0 (left),
m = 1 (center) and m = 2 (right)
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Running time. The running time of Algorithm RRD2P is dominated by the
module running Cplex to solve the linear program, and it depends, roughly
linearly, on the number of times the LP solver is run. The above experiments
were performed for r = 5. For the third dataset above and m = 0, the running
times of Algorithm RRD2P varied from 110s for d = 625 to 164s for d = 10000
(on Windows 8 2.4 GHz CPU, 8.0 G memory). The respective run times of
HYDEN were lower, between 25s and 28s. The run time of Algorithm RRD2P

can be adjusted by using smaller values of r. For example, for r = 1, 2, RRD2P

is actually faster than HYDEN for small to moderate degeneracy values, and
the loss of accuracy is not significant.

6 Discussion

We studied the problem of computing a pair of degenerate forward and reverse
primers that maximizes the number of covered target sequences, assuming upper
bounds on the primer degeneracy and the number of mismatches. We proposed
an algorithm for this problem, called RRD2P, based on representing the problem
as an integer linear program, solving its fractional relaxation, and then rounding
the optimal fractional solution to integral values. We tested Algorithm RRD2P

on three biological datasets. Our algorithm usually finds solutions that are near
optimal or optimal, and it produces primer pairs with higher coverage than
Algorithm HYDEN from [7], regardless of the parameters.

Our work focussed on optimizing the coverage of the sequence data by de-
generate primers. Algorithm RRD2P does not consider biological parameters
that affect the quality of the primers in laboratory PCR, including the melting
temperature of the primers, GC content, secondary structure and other. In the
future, we are planning to integrate Algorithm RRD2P into our software tool,
called PRISE2 [17], that can be used to interactively design PCR primers based
both on coverage and on a variety of biological parameters.

The integrality gap of the linear programs in Section 3.1 can be shown to be
Ω(n(m+ log d)/k), where n is the number of target sequences, k is their length,
d is the degeneracy bound and m is the mismatch allowance. An example with
this integrality gap consists of n target binary sequences of length k such that
each two differ from each other on more than m + log2 d positions. When we
choose any target sequence as template, the optimal coverage can only be 1.
However, there is a fractional solution with value n(m + log d)/k, obtained by
setting nj = (log d)/k and μi

j = m/k, for all i, j.
Nevertheless, as we show, for real DNA datasets the solutions produced by

rounding the fractional solution are very close to the optimum. Providing some
analytical results that explain this phenomenon would be of considerable interest,
both from the theoretical and practical standpoint, and will be a focus of our
future work. This work would involve developing formal models for “conserved
sequences” (or adapting existing ones) and establishing integrality gap results,
both lower and upper bounds, for such datasets.
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Abstract. The critical part of genome assembly is resolution of repeats
and scaffolding of shorter contigs. Modern assemblers usually perform
this step by heuristics, often tailored to a particular technology for pro-
ducing paired reads or long reads. We propose a new framework that al-
lows systematic combination of diverse sequencing datasets into a single
assembly. We achieve this by searching for an assembly with maximum
likelihood in a probabilistic model capturing error rate, insert lengths,
and other characteristics of each sequencing technology.

We have implemented a prototype genome assembler GAML that
can use any combination of insert sizes with Illumina or 454 reads, as
well as PacBio reads. Our experiments show that we can assemble short
genomes with N50 sizes and error rates comparable to ALLPATHS-LG
or Cerulean. While ALLPATHS-LG and Cerulean require each a specific
combination of datasets, GAML works on any combination.

Data and software is available at http://compbio.fmph.uniba.sk/gaml

1 Introduction

The second and third generation sequencing technologies have dramatically de-
creased the cost of sequencing. Nowadays, we have a surprising variety of se-
quencing technologies, each with its own strengths and weaknesses. For example,
Illumina platforms are characteristic by low cost and high accuracy, but the reads
are short. On the other hand, Pacific Biosciences offer long reads at the cost of
quality and coverage. In the meantime, the cost of sequencing was brought down
to the point, where it is no longer a sole domain of large sequencing centers; even
small labs can experiment with cost-effective genome sequencing. In this setting,
it is no longer possible to recommend a single protocol that should be used to
sequence genomes of a particular size. In this paper, we propose a framework
for genome assembly that allows flexible combination of datasets from different
technologies in order to harness their individual strengths.

Modern genome assemblers are usually based either on the overlap–
layout–consensus framework (e.g. Celera by Myers et al. (2000), SGA by
Simpson and Durbin (2010)), or on de Bruijn graphs (e.g. Velvet by
Zerbino and Birney (2008), ALLPATHS-LG by Gnerre et al. (2011)). Both ap-
proaches can be seen as special cases of a string graph (Myers, 2005), in which
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we represent sequence fragments as vertices, while edges represent possible adja-
cencies of fragments in the assembly. A genome assembly is simply a set of walks
through this graph. The main difference between the two frameworks is how
we arrive at a string graph: through detecting long overlaps of reads (overlap–
layout–consensus) or through construction of de Bruijn graphs based on k-mers.

However, neither of these frameworks is designed to systematically handle
pair-end reads and additional heuristic steps are necessary to build larger scaf-
folds from assembled contigs. For example, ALLPATHS-LG (Gnerre et al., 2011)
uses libraries with different insert lengths for scaffolding of contigs assembled
without the use of paired read information, while Cerulean (Deshpande et al.,
2013) uses Pacific Biosystems long reads for the same purpose. Recently, the tech-
niques of paired de Bruijn graphs (Medvedev et al., 2011) and pathset graphs
(Pham et al., 2013) were developed to address paired reads systematically, how-
ever these approaches cannot combine several libraries with different insert sizes.

Combination of sequencing technologies with complementary strengths can
help to improve assembly quality. However, it is not feasible to design new algo-
rithms for every possible combination of datasets. Often it is possible to supple-
ment previously developed tools with additional heuristics for new types of data.
For example, PBJelly (English et al., 2012) uses Pacific Biosystems reads solely
to aid gap filling in draft assemblies. Assemblers like PacbioToCa (Koren et al.,
2012) or Cerulean (Deshpande et al., 2013) use short reads to “upgrade” the
quality of Pacific Biosystems reads so that they can be used within traditional as-
semblers. However, such approaches hardly use all information contained within
the data sets.

We propose a new framework that allows a systematic combination of diverse
datasets into a single assembly, without requiring a particular type of data for
specific heuristic steps. Recently, probabilistic models have been used very suc-
cessfully to evaluate the quality of genome assemblers (Rahman and Pachter,
2013; Clark et al., 2013; Ghodsi et al., 2013). In our work, we use likelihood of
a genome assembly as an optimization criterion, with the goal of finding the
highest likelihood genome assembly. Even though this may not be always feasi-
ble, we demonstrate that optimization based on simulated annealing can be very
successful at finding high likelihood genome assemblies.

To evaluate likelihood, we use a relatively complex model adapted from
Ghodsi et al. (2013), which can capture characteristics of each dataset, such
as sequencing error rate, as well as length distribution and expected orienta-
tion of paired reads (Section 2). We can thus transparently combine information
from multiple diverse datasets into a single score. Previously, there have been
several works in this direction in much simpler models without sequencing errors
(Medvedev and Brudno, 2009; Varma et al., 2011). These papers used likelihood
to estimate repeat counts, without considering other problems, such as how ex-
actly are repeats integrated within scaffolds.

To test our framework, we have implemented a prototype genome assembler
GAML (Genome Assembly by Maximum Likelihood) that can use any combina-
tion of insert sizes with Illumina or 454 reads, as well as PacBio reads. The starting
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point of the assembly are short contigs derived from Velvet (Zerbino and Birney,
2008) with very conservative settings in order to avoid assembly errors. We then
use simulated annealing to combine these short contigs into high likelihood as-
semblies (Section 3). We compare our assembler to existing tools on benchmark
datasets (Section 4), demonstrating that we can assemble genomes of up to 10 MB
long with N50 sizes and error rates comparable to ALLPATHS-LG or Cerulean.
While ALLPATHS-LG and Cerulean each require a very specific combination of
datasets, GAML works on any combination.

2 Probabilistic Model for Sequence Assembly

Recently, several probabilistic models were introduced as a measure of the assem-
bly quality (Rahman and Pachter, 2013; Clark et al., 2013; Ghodsi et al., 2013).
All of these authors have shown that the likelihood consistently favours higher
quality assemblies. In general, the probabilistic model defines the probability
Pr(R|A) that a set of sequencing reads R is observed assuming that assembly A
is the correct assembly of the genome. Since the sequencing itself is a stochastic
process, it is very natural to characterize concordance of reads and an assembly
by giving a probability of observing a particular read. In our work, instead of
evaluating the quality of a single assembly, we use the likelihood as an optimiza-
tion criterion with the goal of finding high likelihood genome assemblies. We
adapt the model of Ghodsi et al. (2013), which we describe in this section.

Basics of the likelihood model. The model assumes that individual reads are
independently sampled, and thus the overall likelihood is the product of like-
lihoods of the reads: Pr(R|A) =

∏
r∈R Pr(r|A). To make the resulting value

independent of the number of reads in set R, we use as the main assembly
score the log average probability of a read computed as follows: LAP(A|R) =
(1/|R|)

∑
r∈R log Pr(r|A). Note that maximizing Pr(R|A) is equivalent to max-

imizing LAP(A|R).
If the reads were error-free and each position in the genome was sequenced

equally likely, the probability of observing read r would simply be Pr(r|A) =
nr/(2L), where nr is the number of occurrences of the read as a substring of the
assembly A, L is the length of A, and thus 2L is the length of the two strands
combined (Medvedev and Brudno, 2009). Ghodsi et al. (2013) have shown a dy-
namic programming computation of read probability for more complex models,
accounting for sequencing errors. The algorithm marginalizes over all possible
alignments of r and A, weighting each by the probability that a certain number
of substitution and indel errors would happen during sequencing. In particular,
the probability of a single alignment with m matching positions and s errors
(substitution and indels) is defined as R(s,m)/(2L), where R(s,m) = εs(1− ε)m

and ε is the sequencing error rate.
However, full dynamic programming is too time consuming, and in practice

only several best alignments contribute significantly to the overall probability.
Thus Ghodsi et al. (2013) propose to approximate the probability of observing
read r with an estimate based on a set Sr of a few best alignments of r to
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genome A, as obtained by a standard fast read alignment tool:

Pr(r|A) ≈
∑

j∈Sr
R(sj ,mj)

2L
, (1)

where mj is the number of matches in the j-th alignment, and sj is the num-
ber of mismatches and indels implied by this alignment. The formula assumes
the simplest possible error model, where insertions, deletions and substitutions
have the same probability and ignores GC content bias. Of course, much more
comprehensive read models are possible (see e.g. Clark et al. (2013)).

Paired reads. Many technologies provide paired reads produced from the op-
posite ends of a sequence insert of certain size. We assume that the insert size
distribution in a set of reads R can be modeled by the normal distribution with
known mean μ and standard deviation σ. The probability of observing paired
reads r1 and r2 can be estimated from sets of alignments Sr1 and Sr2 as follows:

Pr(r1, r2|A) ≈ 1

2L

∑
j1∈Sr1

∑
j2∈Sr2

R(sj1 ,mj1)R(sj2 ,mj2) Pr(d(j1, j2)|μ, σ) (2)

As before, mji and sji are the numbers of matches and sequencing errors in
alignment ji respectively, and d(j1, j2) is the distance between the two alignments
as observed in the assembly. If alignments j1 and j2 are in two different contigs,
or on inconsistent strands, Pr(d(j1, j2)|μ, σ) is zero.

Reads that have no good alignment to A. Some reads or read pairs do not align
well to A, and as a result, their probability Pr(r|A) is very low; our approxi-
mation by a set of high-scoring alignments can even yield zero probability if set
Sr is empty. Such extremely low probabilities then dominate the log likelihood
score. Ghodsi et al. (2013) propose a method that assigns such a read a score
approximating the situation when the read would be added as a new contig to
the assembly. We modify their formulas for variable read length, and use score
ec+k� for a single read of length 
 or ec+k(�1+�2) for a pair of reads of lengths

1 and 
2. Values k and c are scaling constants set similarly as in Ghodsi et al.
(2013). These alternative scores are used instead of the read probability Pr(r|A)
whenever the probability is lower than the score.

Multiple read sets. Our work is specifically targeted at a scenario, where we have
multiple read sets obtained from different libraries with different insert lengths or
even with different sequencing technologies. We use different model parameters
for each set and compute the final score as a weighted combination of log average
probabilities for individual read sets R1, . . . , Rk:

LAP(A|R1, . . . , Rk) = w1LAP(A|R1) + . . . + wkLAP(A|Rk) (3)

In our experiments we use weight wi = 1 for most datasets, but we lower the
weight for Pacific Biosciences reads, because otherwise they dominate the likeli-
hood value due to their longer length. The user could also increase or decrease
weights wi of individual sets based on their reliability.
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Penalizing spuriously joined contigs. The model of Ghodsi et al. (2013) does
not penalize obvious misassemblies when two contigs are joined together with-
out any evidence in the reads. We have observed that to make the likelihood
function applicable as an optimization criterion for the best assembly, we need
to introduce a penalty for such spurious connections. We say that a particular
base j in the assembly is connected with respect to read set R if there is a read
which covers base j and starts at least k bases before j, where k is a constant
specific to the read set. In this setting, we treat a pair of reads as one long read.
If the assembly contains d disconnected bases with respect to R, penalty αd is
added to the LAP(A|R) score (α is a scaling constant).

Properties of different sequencing technologies. Our model can be applied to differ-
ent sequencing technologies by appropriate settings of model parameters. For ex-
ample, Illumina technology typically produces reads of length 75-150bp with error
rate below 1% (Quail et al., 2012). For smaller genomes, we often have a high cov-
erage of Illumina reads. Using paired reads or mate pair technologies, it is possible
to prepare libraries with different insert sizes ranging up to tens of kilobases, which
are instrumental in resolving longer repeats (Gnerre et al., 2011). To align these
reads to proposed assemblies, we use Bowtie2 (Langmead and Salzberg, 2012).
Similarly, we can process reads by the Roche 454 technology, which are charac-
teristic by higher read lengths (hundreds of bases).

Pacific Biosciences technology produces single reads of variable length, with
median length reaching several kilobases, but the error rate exceeds 10%
(Quail et al., 2012; Deshpande et al., 2013). Their length makes them ideal for
resolving ambiguities in alignments, but the high error rate makes their use chal-
lenging. To align these reads, we use BLASR (Chaisson and Tesler, 2012). When
we calculate the probability Pr(r|A), we consider not only the best alignments
found by BLASR, but for each BLASR alignment, we also add probabilities of
similar alignments in its neighborhood. More specifically, we run a banded ver-
sion of the forward algorithm by Ghodsi et al. (2013), considering all alignments
in a band of size 3 around a guide alignment produced by BLASR.

3 Finding a High Likelihood Assembly

Complex probabilistic models, like the one described in Section 2, were pre-
viously used to compare the quality of several assemblies (Ghodsi et al., 2013;
Rahman and Pachter, 2013; Clark et al., 2013). In our work, we instead attempt
to find the highest likelihood assembly directly. Of course, the search space is
huge, and the objective function too complex to admit exact methods. Here,
we describe an effective optimization routine based on the simulated annealing
framework (Eglese, 1990).

Our algorithm for finding the maximum likelihood assembly consists of three
main steps: preprocessing, optimization, and postprocessing. In preprocessing,
we decrease the scale of the problem by creating an assembly graph, where ver-
tices correspond to contigs and edges correspond to possible adjacencies between
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contigs supported by reads. In order to make the search viable, we will restrict
our search to assemblies that can be represented as a set of walks in this graph.
Therefore, the assembly graph should be built in a conservative way, where the
goal is not to produce long contigs, but rather to avoid errors inside them. In
the optimization step, we start with an initial assembly (a set of walks in the
assembly graph), and iteratively propose changes in order to optimize the as-
sembly likelihood. Finally, postprocessing examines the resulting walks and splits
some of them into shorter contigs if there are multiple equally likely possibilities
of resolving ambiguities. This happens, for example, when the genome contains
long repeats that cannot be resolved by any of the datasets.

In the rest of this section, we discuss individual steps in more detail.

3.1 Optimization by Simulated Annealing

To find a high likelihood assembly, we use an iterative simulated annealing
scheme. We start from an initial assembly A0 in the assembly graph. In each
iteration, we randomly choose a move that proposes a new assembly A′ similar
to the current assembly A. The next step depends on the likelihoods of the two
assemblies A and A′ as follows:

– If LAP(A′|R) ≥ LAP(A|R), the new assembly A′ is accepted and the algo-
rithm continues with the new assembly.

– If LAP(A′|R) < LAP(A|R), the new assembly A′ is accepted with prob-
ability e(LAP(A′|R)−LAP(A|R))/T ; otherwise A′ is rejected and the algorithm
retains the old assembly A for the next step.

Here, parameter T is called the temperature, and it changes over time. In gen-
eral, the higher the temperature, the more aggressive moves are permitted. We
use a simple cooling schedule, where T = T0/ ln(i) in the i-th iteration. The
computation ends when there is no improvement in the likelihood for a certain
amount of time. We select the assembly with the highest LAP score as the result.

To further reduce the complexity of the assembly problem, we classify all
contigs as either long (more than 500bp) or short and concentrate on ordering
the long contigs correctly. The short contigs are used to fill the gaps between
the long contigs.

Recall that each assembly is a set of walks in the assembly graph. A contig
can appear in more than one walk or can be present in a single walk multiple
times. In all our experiments, the starting assembly simply contains each long
contig as a separate walk. However, other assemblies (such as assemblies from
other tools) can easily serve as a starting point as long as they can be mapped
to the assembly graph.
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(a) (b) (c)

Fig. 1. Examples of proposal moves. (a) Walk extension joining two walks. (b)
Local improvement by addition of a new loop. (c) Repeat interchange.

Proposals of new assemblies are created from the current assembly using the
following moves:

– Walk extension. (Fig.1a) We start from one end of an existing walk and
randomly walk through the graph, at every step uniformly choosing one
of the edges outgoing from the current node. Each time we encounter the
end of another walk, the two walks are considered for joining. We randomly
(uniformly) decide whether we join the walks, end the current walk without
joining, or continue walking.

– Local improvement. (Fig.1b) We optimize the part of some walk connecting
two long contigs s and t. We first sample multiple random walks starting
from contig s. In each walk, we only consider nodes from which contig t is
reachable. Then we evaluate these random walks and choose the one that
increases the likelihood the most. If the gap between contigs s and t is too
big, we instead use a greedy strategy where in each step we explore multiple
random extensions of the walk (of length around 200bp) and pick the one
with the highest score.

– Repeat optimization. We optimize the copy number of short tandem repeats.
We do this by removing or adding a loop to some walk. We precompute the
list of all short loops (up to five nodes) in the graph and use it for adding
loops.

– Joining with advice. We join two walks that are spanned by long reads or
paired reads with long inserts. We fist select a starting walk, align all reads
to the starting walk and randomly choose a read which has the other end
outside the current walk. Then we find to which node this other end belongs
to and join appropriate walks. If possible, we fill the gap between the two
walks using the same procedure as in the local improvement move. Otherwise
we introduce a gap filled with Ns.

– Disconnecting. We remove a path through short contigs connecting two long
contigs in the same walk, resulting in two shorter walks.
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– Repeat interchange. (Fig.1c) If a long contig has several incoming and out-
going walks, we optimize the pairing of incoming and outgoing edges. In
particular, we evaluate all moves that exchange parts of two walks through
this contig. If one of these changes improves the score, we accept it and
repeat this step, until the score cannot be improved at this contig.

At the beginning of each annealing step, the type of the move is chosen ran-
domly; each type of move has its own probability. We also choose randomly the
contig at which we attempt to apply the move.

Note that some moves (e.g. local improvement) are very general, while other
moves (e.g. joining with advice) are targeted at specific types of data. This does
not contradict a general nature of our framework; it is possible to add new moves
as new types of data emerge, leading to improvement when using specific data
sets, while not affecting the performance when such data is unavailable.

3.2 Preprocessing and Postprocessing

To obtain the assembly graph, we use Velvet with basic error correction and
unambiguous concatenation of k-mers. These settings will produce very short
contigs, but will also give a much lower error rate than a regular Velvet run.

The resulting assembly obtained by the simulated annealing may contain po-
sitions with no evidence for a particular configuration of incoming and outgoing
edges in the assembly graph (e.g., a repeat that is longer than the span of the
longest paired read). Such arbitrary joining of walks may lead to assembly er-
rors, since data give no indication which configuration of edges is correct. In the
postprocessing step, we therefore apply the repeat interchange move at every
possible location of the assembly. If the likelihood change resulting from such a
move is negligible, we break corresponding walks into shorter contigs.

3.3 Fast Likelihood Evaluation

The most time consuming step in our algorithm is evaluation of the assembly
likelihood, which we perform in each iteration of simulated annealing. This step
involves alignment of a large number of reads to the assembly. However, we can
significantly reduce required time by using the fact that only a small part of the
assembly is changed in each annealing step.

To achieve this, we split walks into overlapping windows, each window contain-
ing several adjacent contigs of a walk. Windows should be as short as possible,
but the adjacent windows should overlap by at least 2
r bases, where 
r is the
length of the longest read. As a result, each alignment is completely contained
in at least one window even in the presence of extensive indels.

We determine window boundaries by a simple greedy strategy, which starts
at the first contig of a walk, and then extends the window by at least 2
r bases
beyond the boundary of the first contig. The next window always starts at the
latest possible location that ensures a sufficient overlap and extends at least 2
r
bases beyond the end of the previous window.
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For each window, we keep the position and edit distance of all alignments. In
each annealing step, we identify which windows of the assembly were modified.
We glue together overlapping windows and align reads against these sequences
using a read mapping tool. Finally, we use alignments in all windows to calculate
the probability of each read and combine them into the score of the whole as-
sembly. This step requires careful implementation to ensure that we count each
alignment exactly once.

To speed up read mapping even more, we use a simple prefiltering scheme,
where we only align reads which contain some k-mer (usually k = 13) from the
target sequence. In the current implementation, we store an index of all k-mers
from all reads in a simple hash map. In each annealing step, we can therefore
iterate over all k-mers in the target portion of the genome and retrieve reads that
contain them. We use a slightly different filtering approach for PacBio reads. In
particular, we take all reasonably long contigs (at least 100 bases) and align
them to PacBio reads. Since BLASR can find alignments where a contig and a
read overlap by only around 100 bases, we can use these alignments as a filter.

4 Experimental Evaluation

We have implemented the algorithm proposed in the previous section in a pro-
totype assembler GAML (Genome Assembly by Maximum Likelihood). At this
stage, GAML can assemble small genomes (approx. 10 Mbp) in a reasonable
amount of time (approximately 4 days on a single CPU and using 50GB of
memory). In future, we plan to explore efficient data structures to further speed
up likelihood computation and to lower the memory requirements.

To evaluate the quality of our assembler, we have adopted the methodology
of Salzberg et al. (2012) used for Genome Assembly Gold-Standard Evaluation,
using metrics on scaffolds. We have used the same genomes and libraries as in
Salzberg et al. (2012) (the S. aureus genome) and in Deshpande et al. (2013)
(the E. coli genome); the overview of the data sets is shown in Tab.1. An ad-
ditional dataset EC3 (long insert, low coverage) was simulated using the ART
software (Huang et al., 2012). We have evaluated GAML in three different sce-
narios:

1. combination of fragment and short insert Illumina libraries (SA1, SA2),
2. combination of a fragment Illumina library and a long-read high-error-rate

Pacific Biosciences library (EC1, EC2),
3. combination of a fragment Illumina library, a long-read high-error-rate Pa-

cific Biosciences library, and a long jump Illumina library (EC1, EC2, EC3)

In each scenario, we use the short insert Illumina reads (SA1 or EC1) in Velvet
with conservative settings to build the initial contigs and assembly graph. In the
LAP score, we give Illumina datasets weight 1 and PacBio dataset weight 0.01.

The results are summarized in Tab.2. Note that none of the assemblers con-
sidered here can effectively run in all three of these scenarios, except for GAML.
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Table 1. Properties of data sets used

Insert Read Error
ID Source Technology len. (bp) len. (bp) Coverage rate

Staphylococus aureus (2.87Mbp)
SA1 Salzberg et al. (2012) Illumina 180bp 101bp 90 3%
SA2 Salzberg et al. (2012) Illumina 3500bp 37bp 90 3%

Escherichia coli (4.64Mbp)
EC1 Deshpande et al. (2013) Illumina 300bp 151bp 400 0.75%
EC2 Deshpande et al. (2013) PacBio 4000bp 30 13%
EC3 simulated Illumina 37,000bp 75bp 0.5 4%

In the first scenario, GAML performance ranks third among zero-error as-
semblers in N50 length. The best N50 assembly is given by ALLPATHS-LG
(Gnerre et al., 2011). A closer inspection of the assemblies indicates that GAML
missed several possible joins. One such miss was caused by a 4.5 kbp repeat, while
the longest insert size in this dataset is 3.5 kbp. Even though in such cases it
is sometimes possible to reconstruct the correct assembly thanks to small dif-
ferences in the repeated regions, the difference in likelihood between alternative
repeat resolutions may be very small. Another missed join was caused by a se-
quence coverage gap penalized in our scoring function. Perhaps in both of these
cases the manually set constants may have caused GAML to be overly conser-
vative. Otherwise, the GAML assembly seems very similar to the one given by
ALLPATHS-LG.

In the second scenario, Pacific Biosystems reads were employed instead of
jump libraries. These reads pose a significant challenge due to their high er-
ror rate, but they are very useful due to their long length. Assemblers such
as Cerulean (Deshpande et al., 2013) deploy special algorithms taylored to this
technology. GAML, even though not explicitly tuned to handle Pacific Biosys-
tems reads, builds an assembly with N50 size and the number of scaffolds
very similar to that of Cerulean. In N50, both programs are outperformed by
PacbioToCA (Koren et al., 2012), however, this is again due to a few very long
repeats (approx. 5000 bp) in the reference genome which were not resolved by
GAML or Cerulean. (Deshpande et al. (2013) also aim to be conservative in
repeat resolution.) Note that in this case, simulated annealing failed to give
the highest likelihood assembly among those that we examined, so perhaps our
results can be improved by tuning the likelihood optimization.

Finally, the third scenario shows that the assembly quality can be hugely
improved by including a long jump library, even if the coverage is really small
(we used 0.5× coverage in this experiment). This requires a flexible genome
assembler; in fact, only Celera (Myers et al., 2000) can process this data, but
GAML assembly is clearly superior. We have attempted to also run ALLPATHS-
LG, but the program could not process this combination of libraries. Compared
to the previous scenario, GAML N50 size increased approximately 7 fold (or
approx. 4 fold compared to the best N50 from the second scenario assemblies).
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Table 2. Comparison of assembly accuracy in three experiments. For all
assemblies, N50 values are based on the actual genome size. All misjoins were considered
as errors and error-corrected values of N50 and contig sizes were obtained by breaking
each contig at each error (Salzberg et al., 2012). All assemblies except for GAML and
conservative Velvet were obtained from Salzberg et al. (2012) in the first experiment,
and from Deshpande et al. (2013) in the second experiment.

Assembler Number
of scaffolds

Longest
scaffold
(kb)

Longest
scaffold
corr. (kb)

N50
(kb)

Err. N50
corr.
(kb)

LAP

Staphylococus aureus, read sets SA1, SA2
GAML 28 1191 1191 514 0 514 −23.45
Allpaths-LG 12 1435 1435 1092 0 1092 −25.02
SOAPdenovo 99 518 518 332 0 332 −25.03
Velvet 45 958 532 762 17 126 −25.34
Bambus2 17 1426 1426 1084 0 1084 −25.73
MSR-CA 17 2411 1343 2414 3 1022 −26.26
ABySS 246 125 125 34 1 28 −29.43
Cons. Velvet∗ 219 95 95 31 0 31 −30.82
SGA 456 286 286 208 1 208 −31.80

Escherichia coli, read sets EC1, EC2
PacbioToCA 55 1533 1533 957 0 957 −33.86
GAML 29 1283 1283 653 0 653 −33.91
Cerulean 21 1991 1991 694 0 694 −34.18
AHA 54 477 477 213 5 194 −34.52
Cons. Velvet∗ 383 80 80 21 0 21 −36.02

Escherichia coli, read sets EC1, EC2, EC3
GAML 4 4662 4661 4662 3 4661 −60.38
Celera 19 4635 2085 4635 19 2085 −61.47
Cons. Velvet∗ 383 80 80 21 0 21 −72.03

*: Velvet with conservative settings used to create the assembly graph in our method.

5 Conclusion

We have presented a new probabilistic approach to genome assembly, maximizing
likelihood in a model capturing essential characteristics of individual sequencing
technologies. It can be used on any combination of read datasets and can be
easily adapted to other technologies arising in the future.

Our work opens several avenues for future research. First, we plan to imple-
ment more sophisticated data structures to improve running time and memory
and to allow the use of our tool on larger genomes. Second, the simulated an-
nealing procedure could be improved by optimizing probabilities of individual
moves or devising new types of moves. The tool could also be easily adapted to
improve existing assemblies after converting a given assembly to a set of walks.
Finally, it would be interesting to explore even more detailed probabilistic mod-
els, featuring coverage biases and various sources of experimental error.
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Abstract. Circularized RNAs have received considerable attention is
the last few years following the discovery that they are not only a rather
common phenomenon in the transcriptomes of Eukarya and Archaea but
also may have key regulatory functions. This calls for the adaptation of
basic tools of sequence analysis to accommodate cyclic sequences. Here
we discuss a common formal framework for linear and circular alignments
as partitions that preserve (cyclic) order. We focus on the similarities and
differences and describe a prototypical ILP formulation.

Keywords: cyclic sequence alignment, multiple sequence alignment,
cyclic orders, integer linear programming, circular RNAs.

1 Introduction

While only recently considered a rare oddity, circular RNAs have been identified
as a quite common phenomenon in Eukaryotic as well as Archaeal transcrip-
tomes. In Mammalia, thousands of circular RNAs are reported together with
evidence for regulation of miRNAs and transcription [1]; in Archaea, ”expected”
circRNAs like excised tRNA introns and intermediates of rRNA processing as
well as many circular RNAs of unknown function have been revealed [2]. Most
methods to comparatively analyze biological sequences require the computation
of multiple alignments as a first step. While this task has received plenty of
attention for linear sequences, comparably little is known for the corresponding
circular problem. Although most bacterial and archaeal genomes are circular, this
fact can be ignored for the purpose of constructing alignments, because genome-
wide alignments are always anchored locally and then reduce to linear alignment
problems. Even for mitochondrial genomes, with a typical size of 10-100kb, an-
chors are readily identified so that alignment algorithms for linear sequences are
applicable. This situation is different, however, for short RNAs such as viroid
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and other small satellite RNAs [3] or the abundant circular non-coding RNAs
in Archaea [2, 4].

Cyclic pairwise alignment problems were considered e.g. in [5–8], often with
applications to 2D shape recognition rather than to biological sequences. Cyclic
alignments obviously can be computed by dynamic programming by linearizing
the sequences at a given match, resulting in an quintic-time algorithm for general
gap cost functions by solving O(n2) general linear alignment problems in cubic
time [9]. For affine gap costs, the linear problem is solved in quadratic time by the
Needleman-Wunsch algorithm, resulting in a quartic-time solution for the cyclic
problem. For linear gap costs, a O(n2 logn) cyclic alignment algorithm exists,
capitalizing on the fact that alignment traces do not intersect in this case [7]. A
variant was applied to identify cyclically permuted repeats [10]. This approach
does not generalize to other types of cost functions, however. In [11], a cubic-
time dynamic programming solution is described for affine gap cost. Multiple
alignments of cyclic sequences have received very little attention. A progressive
alignment algorithm was implemented and applied to viroid phylogeny [11].

Since the multiple alignment problem is NP-hard for all interesting scoring
functions [12–14], we focus here on a versatile ILP formulation that can easily ac-
commodate both linear and circular input strings. To this end, we start from the
combinatorial characterization of multiple alignments of linear sequences [15, 16]
and represent multiple alignments as order-preserving partitions, a framework
that lends itself to a natural ILP formulation. This approach is not restricted
to pure sequence alignments but also covers various models of RNA sequence-
structure alignments, requiring modifications of the objective function only.

2 Cyclic Multiple Alignments

2.1 Formal Model of Linear Sequence Alignments

Morgenstern and collaborators [15, 16] introduced a combinatorial framework
characterizing multiple alignments, which we recapitulate slightly paraphrasing.
While multiple alignments are often viewed as matrices of sequence letters (and
gaps) or –less frequently– as graphs, where sequence positions in the same align-
ment column are connected by aligmnent edges, this framework defines align-
ments in terms of a “multiple alignment partition”. The connection between
these concepts being that the sets of sequence positions in the same column (or
mutually connected by alignment edges) form the classes of the partition.

We are given a set {s(1), . . . , s(M)} of M sequence strings with lengths na =
|s(a)| for a = 1, . . . ,M . For the moment, we need only the structure of the
sequence strings as finite, totally ordered sets. The actual letters sak impact only
the scoring function, which we largely consider as given. For convenience, we
refer to the sequence index a ∈ {1, . . . ,M} of the sequence string s(a) simply as
sequence. The tuple (a, k) denotes sequence position k in sequence a. We denote
the set of sequence positions by X = {(a, k)|1 ≤ a ≤ M, 1 ≤ k ≤ na}. Each
sequence carries a natural order < on its sequence position. The order < on the



Cyclic and Linear MSAs 137

A B C A'

a
b
c

A

B

A

a
b
c

B C A' D E

Fig. 1 Linear and cyclic conflicts. A Linear. The classes
A,B,C, and A′ are ordered by ≺. ≺ is not transitive, since
e.g. A and C are not comparable by ≺. From A ≺ B, B ≺ C
and C ≺ A′ follows (A ∪ A′)≺(A ∪ A′); this shows ≺ is not
irreflexive on {(A∪A′), B,C}. B Cyclic. For example, �EAB
and �EBC hold, but E, A, and C are not comparable by
�; thus � is not transitive. A valid cMSA cannot contain
(A∪A′), B, C, D, and E, since then � is not antisymmetric:
�EAB and �EBC imply �E(A ∪ A′)C, while �CA′D and
�CDE lead to the contradiction �C(A ∪A′)E.

individual sequence positions then naturally extends to a relation ≺ on 2X by
setting A ≺ B if

(IR) A �= B

(NC) (a, i), (b, j) ∈ A and (a, k) ∈ B then, for every (b, l) ∈ B holds i < k
implies j < l and i > k implies j > l.

(C) There is a ∈ {1, . . . ,M} such that (a, i) ∈ A, (a, j) ∈ B and i < j.

By definition, ≺ is irreflexive (IR) and antisymmetric (i.e., A ≺ B implies not
B ≺ A). As the example in Fig. 2.1 shows, ≺ is not transitive. Note that A ≺ B
implies A ∩ B = ∅. We say that A and B are non-crossing if (NC) holds.
We say that A and B are comparable if A = B, A ≺ B, or B ≺ A. The
example in Fig. 2.1 shows that the transitive closure ≺ of ≺ is not irreflexive
(and consequently, not antisymmetric) in general.

A multiple sequence alignment (X,A,≺) on X is a partition A of X such
that, for all A,B ∈ A, holds

(A1) If (a, i) ∈ A and (a, j) ∈ A implies i = j

(A2) A and B are non-crossing

(A3) The transitive closure ≺ of ≺ is a partial order on A.

The elements of A are the alignment columns. Two positions (a, i) and (b, j)
are aligned if they appear in the same column. Note that A may also contain
singletons, i.e., positions that are not aligned to any other position.

Condition (A1) ensures that each column contains at most one position from
each sequence. This condition could be relaxed to obtain a block model of align-
ments, see e.g. [17]. This model relates to the usual picture of an alignment as
a rectangular display of sequences with gaps in the following manner. A display
D(A) of A is a total ordering ≺′ of A. To see that this definition simply para-
phrases the usual concept of MSAs we can argue as follows: Every partial order
can be extended to a total order, thus ≺′ exists. The restriction of D(A) to a
sequence a contains all sequence positions (a, i) of a because A is a partition.
Condition (C) guarantees that the partial order ≺, and hence also its completion
≺′, preserves the original order < on the sequences, i.e., any choice of ≺′ equals
< when restricted to a single sequence.
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2.2 Cyclic Orders

The above construction critically depends on the existence of the linear order
< on the input sequences. On circular sequences, however, such a linear order
exists only locally. Instead there is a natural cyclic order. A ternary relation
� i j k on a set V is a cyclic order [18] if for all i, j, k ∈ V holds

(cO1) � i j k implies i, j, k pairwise distinct. (irreflexive)
(cO2) � i j k implies � k i j. (cyclic)
(cO3) � i j k implies ¬� k j i (antisymmetric)
(cO4) � i j k and � i k l implies � i j l. (transitive)
(cO5) If i, j, k are pairwise distinct then � i j k or � k j i. (total)

If only (cO1) to (cO4) hold, CO is a partial cyclic order. A pair of points (p, q)
is adjacent in a total cyclic order on V if there is no h ∈ V such that � p h q.

In contrast to recognizing partial (linear) orders, i.e., testing for acyclicity
of (the transitive closure of) (X,≺), the corresponding problem for cyclic or-
ders is NP-complete [19]. The conditions (CO1) through (CO4), however, are
easy enough to translate to ILP constraints. Furthermore, the multiple sequence
alignment problem is NP-complete already for linear sequences; thus, the extra
complication arising from the cyclic ordering problem is irrelevant.

Cyclic orders can be linearized by cutting them at any point resulting in
a linear order with the cut point as its minimal (or maximal) element [20]. A
trivial variation on this construction is to insert an additional cut point 0 between
adjacent points to obtain a linearized order that has one copy of the artificial
cut point as its minimal and maximal element, respectively. Formally, let � be a
total cyclic order on V ; furthermore, let p and q be adjacent points in this order
on V. Then, the relation � ∪ {p, 0, q} is a total cyclic order on the set V ∪ {0}.
The corresponding linearization is (V,<p0q) with i <p0q j and j <p0q k iff � i j k
for all i, j, k ∈ V . Of course, this can be extended by adding a (distinct) copy of
0 as both the minimal and maximal elements, i.e. V ∪ {0−, 0+} is also totally
ordered, if we set 0− <p0q k and k <p0q 0+ for all k ∈ V .

2.3 Cyclic Multiple Alignments

Given a cyclic order � instead of a linear order < on the sequence positions we
can define a relation � on 2X such that, for A,B,C ∈ 2X , we have �ABC if

(IR) A, B, and C are pairwise distinct
(CNC) If (a, i) ∈ A, (a, j) ∈ B, (a, k) ∈ C, (b, p) ∈ A, (b, q) ∈ B, and (b, r) ∈ C

then � i j k implies � p q r.
(CC) There exist a ∈ {1, . . . ,M} and (a, i) ∈ A, (a, j) ∈ B, (a, k) ∈ C such

that � i j k.

We call three sets A,B,C cyclically non-crossing if (CNC) is satisfied. Three non-
crossing sets are cyclically comparable if (CC) is true. Note that � is irreflexive
and antisymmetric but not transitive in general.
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Definition 1. A cyclic MSA (cMSA) (X,A) is a partition A of X such that
the following conditions are satisfied for all A,B,C ∈ A
(A1) (a, i) ∈ A and (a, j) ∈ A implies i = j
(cA2) A,B,C are cyclically non-crossing for all A,B,C ∈ A
(cA3) The transitive closure � of � is a partial cyclic order of A.

The restriction of (A,�) to an individual sequence is just {1, . . . , na} with its
cyclic order �. Cyclic MSAs can be extended to totally ordered displays D(A,�).

Since the columns of cMSA can be cyclically ordered, we can find a cut (in
any of its totally cyclically ordered extensions).

Definition 2. A cMSA with cut ∅ = {(a, 0a)|1 ≤ a ≤ M} is a cMSA on
X∅ := X ∪ {(a, 0a)|1 ≤ a ≤ M} such that, for each a, 0a is a cut point in
sequence a, i.e., there is an adjacent pair pa, qa ∈ Va w.r.t. � such that � pa 0a qa.

Note that ∅ by definition contains a cut point 0a in every sequence a = 1, . . . ,M .
If there is an alignment column that touches every sequence, i.e., |A| = M ,

we can place a cut either to its left (cutting the incoming adjacency) or to the
right (cutting the outgoing adjacency). Such a column need not exist, however.

A subset B ⊆ X is contiguous w.r.t. A if

(1) (a, i), (a, j) ∈ B implies (a, k) ∈ B for all k such that � i k j, i.e. the
projection of B onto sequence a is an interval.

(2) If A ∈ A and A ∩B �= ∅ then A ⊆ B, i.e. B is a union of classes of A.

A contiguous set of sequence positions is therefore a collection of consecutive
alignment columns. We say that B is an anchor if, in addition,

(3) For every two sequences a and a′ in {1, . . . ,M}, there is a path a = b1,. . . ,
bk = a′ over {1, . . . ,M}, such that for all i ∈ {1, . . . , k − 1} there exist
A, j, j′ such that {(ai, j), (ai+1, j

′)} ⊆ A ∈ A.

Let P and Q be classes in A, such that P,Q �⊆ B. Then, as an immediate
consequence of the definition, for any A ⊆ B, �PAQ implies �PBQ. Further-
more, let (a, i) ∈ P and (a, k) ∈ Q. Then, either �PBQ or �QBP , i.e. any pair
of alignment columns that touch a common sequence is circularly comparable
with every anchor. Of course, anchors can be defined for linear MSAs as well
(with analogous properties.)

An cMSA is irreducible if it contains an anchor. Otherwise, there is a non-
trivial partition of the set {1, . . . ,M} of sequences such that the alignment can
be split into alignments with anchors on these sub-sets. More visually, this simply
means that subsets are not connected by any alignment edge.

For our purposes, the importance of anchors is that they define natural posi-
tions for cuts, namely as either the incoming edges or the outgoing edges of B.
A simple consequence of this fact is

Lemma 1. If (X∅,A ∪ {∅}) is a cMSA with cut ∅ then (X,A) is a cMSA.
Conversely, for every cMSA (X,A) there is a cut ∅ such that (X∅,A∪{∅}) is
a cMSA with cut.



140 S. Will and P.F. Stadler

Proof. By construction, A ∪ {∅} is a partition of X∅ and (A1) holds, hence A
is a partition of X . The properties of being non-crossing and cyclically partially
ordered are inherited by subsets, hence (X,A) is a cMSA. Conversely, if (X,A) is
irreducible, there is an anchor, which in turn provides us a with a cut to left and
to right of it. If (X,A) is reducible, we can find an anchor for each irreducible
subset of sequences. Their disjoint union provides a cut in (X,A).

Cyclic alignments thus can, as the intuition would tell us, equivalently, be char-
acterized as linear alignments with cut. The virtue of the technicalities above
is that we do not have to make the cut explicit by renumbering but instead by
specifying its positions in terms of the circular orders on the input sequences.

3 Partition-Based ILP for MSA and cMSA

ILP approaches to (linear) MSAs so far were based on variables for individual
alignment edges, i.e., xai,bj = 1 if position i of sequence a is aligned with position
j in sequence b. In this picture, an alignment is viewed as a graph on X . The
correspondence between partitions A of X and the graph Γ (X,A, <) is very
simple: {(a, i), (b, j)} is an alignment edge if and only if a �= b and there is
A ∈ A such that (a, i) ∈ A, (b, j) ∈ A. It is customary to view Γ (X,A, <) by
connecting consecutive positions of the same sequence by a directed arc [21, 22].
A cycle Z in Γ (X,A, <) is called mixed if it contains at least one directed arc
and all arcs are oriented along the cycle. Z is critical if all vertices in the same
sequence occur consecutively along Z.

Proposition 1 ([21, 22]). A partition (X,A,≺) satisfying (A1) is a MSA if
and only if Γ (X,A,≺) contains no critical mixed cycle.

This observation forms the basis for the current ILP-based MSA implementa-
tions. Circular alignments, of course, have an analogous graph representation
Γ (X,A, �). The discussion of the previous section immediately implies

Proposition 2. A partition A of X is a cyclic MSA if and only if there is a cut
∅ for A such that the graph Γ (X∅,A

⋃
{∅}) contains no critical mixed cycle

that does not intersect ∅.

The only extra complication for cMSAs is that an explicit representation of the
cut is required and only mixed cycles that do not cross the cut are inconsistent
with axioms (cA1), (cA2), and (cA3).

The main difficulty of using the mixed cycle condition in an ILP framework is
that there are exponentially many potential critical mixed cycles. While, concep-
tually, the Maximum Weight Trace (MWT) ILP formulation includes all critical
mixed cycle inequalities, it is strictly infeasible to feed all those constraints to an
ILP solver and apply branch-and-bound. This dilemma was resolved in [21] by
means of the branch and cut scheme: Starting without mixed cycle constraints,
selected inequalities are iteratively added on demand during the branch-and-
bound optimization. A polynomial separation algorithm works at the core of
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this approach: given a solution of the LP corresponding to the current ILP in-
stance, it selects a critical mixed cycle inequality that removes this solution. This
inequality is added to the current ILP and the process is iterated.

Instead of constructing the cyclic MSA ILP based on the graph formalization
of MSA as MWT, we devise here novel ILP formulations that directly build
on the partition formalization of MSAs. Remarkably, this model required only
polynomially many variables and constraints, whereas the MWT formulation
required an exponential number of constraints. Our formulation is based exclu-
sively on Boolean variables; consequently, we omit the constraints of all variables
to domains {0, 1} for brevity.

Partition. A MSA (or cMSA) is represented by at most N =
∑M

a=1 na =
|X | classes α of positions x ∈ X . As before, we denote the set of classes by
A; we use Greek letters α, β, γ, . . . to denote single classes (where we used
A,B,C,. . . before.) The classes are modeled by membership variables Pxα = 1
if x ∈ α. The simple constraint

∑
α Pxα = 1 for all x ∈ X ensures that this

describes a partition of X ;
∑

1≤i≤na
P(a, i)α ≤ 1 for all α ∈ A and sequences

1 ≤ a ≤ M guarantees that each partition contains at most one position per
sequence.

Linear Order. Next, we model the partial ordering relation between classes;
in the linear case, this is the transitive closure of relation ≺. For this purpose,
we introduce ordering variables Oαβ for α �= β ∈ A, value 1 indicating α≺β.

First, the ordering variables are related to the membership variables and re-
lation < on positions(

∀α �= β ∈ A,
1 ≤ a ≤M, 1 < j ≤ na

) ∑
i<j

P(a, i)α +
∑
i≥j

P(a, i)β ≤ Oαβ + 1. (CI)

This corresponds to condition (C). Furthermore, we constrain the ordering vari-
ables to describe a partial order, implementing (A3), by

(∀α ∈ A) Oαα = 0 (OI1)

(∀α �= β ∈ A) Oαβ = 1−Oβα (OI2)

(∀α, β, γ ∈ A) Oαβ + Oβγ ≤ Oαγ + 1. (OI3)

Together with (CI), the constraints (OI1)-(OI3), which model the properties
antireflexive, antisymmetric, and transitive of the order relation, guarantee that
the modeled classes are non-crossing (A2).

Cyclic Order. As immediate benefit of the partition-based formulation, we can
move from the linear model to the cyclic model by redefining the order relation.
The partial cyclic ordering relation � on classes can be expressed analogously
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by variables COαβγ, which are first related to the membership variables and
relation � by⎛
⎝∀α �= β �= γ ∈ A,

1 ≤ a ≤M,
1 < j < k ≤ na

⎞
⎠ ∑

1≤i<j

P(a, i)α +
∑

i≤i<k

P(a, j)β +
∑

j≤i≤na

P(a, k)γ

≤ COαβγ + 2. (CCI)

Note that it is indeed sufficient to specify the above implication for 1 ≤ i < j <
k ≤ na (instead of all i,j,k, where � i j k), due to the cyclic implications in (cOI2)
below. Secondly, we guarantee to describe a partial cyclic order by

(∀α, β, γ ∈ A, |{α, β, γ}| < 3) COαβγ = 0 (cOI1)

(∀α �= β �= γ ∈ A) COαβγ �= COγβα (cOI2)

(∀α �= β �= γ ∈ A) COαβγ = COγαβ (cOI3)

(∀α �= β �= γ �= δ ∈ A) COαβγ + COαγδ ≤ COαβδ + 1 (cOI4)

These inequalities guarantee that the described relation is irreflexive (cOI1),
antisymmetric (cOI2), cyclic (cOI3), and transitive (cOI4), which amounts to
(cA3). Analogously to the linear case, (cA2) follows together with (CCI).

Consequently, even in the ILP formulations we can simply change the type of
ordering (linear versus circular) to switch between linear and circular alignments.

Objective Function. A sum-of-pairs alignment score sums up weights (i.e.,
match and mis-match scores) wxy for positions x, y ∈ X in the same partition.
For this purpose, we introduce variables Exy and auxiliary variables Exyα with
inequalities

(∀x ∈ X, y ∈ X,α ∈ A) 2Exyα ≤ Pxα + Pyα (EI1)

(∀x ∈ X, y ∈ X,α ∈ A) Pxα + Pyα ≤ Exyα + 1 (EI2)

(∀x ∈ X, y ∈ X) Exy =
∑
α∈A

Exyα (EI3)

Note that without the linearity requirement, the same relation could be ex-
pressed by Exy =

∑
α∈A PyαPyα. In the simplest case, the objective function

is therefore given by the linear expression∑
x,y∈X

wxyExy. (OF)

Linear gap costs. We model linear gap cost with cost g per gap by introducing
gap variables G(a, i)b together with the equalities

(∀(a, i) ∈ X, 1 ≤ b ≤M, b �= a) G(a, i)b +
∑

j:(b,j)∈X

E(a, i)(b, j) = 1. (GI1)
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Notably, we introduce gap variables for sequence a w.r.t. sequence b, so that
we can model a sum-of-pairs score on gaps. To this end, we add the term∑

(a,i)∈X,1≤b≤M,b
=a gG(a, i)b to the objective function. Note that GI1 serves
the dual purpose of defining clique inequalities, which speed up the optimization
(as known from branch-and-cut approaches, e.g. [21].)

Affine gap costs. Affine gap penalties of the form h + kg for gaps of length k
can be introduced by further variables GO(a, i)b together with

(∀(a, i) ∈ X, 1 ≤ b ≤M, b �= a) GO(a, i)b ≥G(a, i)b−G(a, i + 1)b

GO(a, i)b ≤G(a, i)b

GO(a, i)b ≤ 1−G(a, i + 1)b (GI2)

By (GI2), GO(a, i)b equals one, if and only if there is a gap (w.r.t. b) at (a, i) and
no gap at (a, i + 1), i.e. GO(a, i)b = 1 signals gap opening (at the right end of
each gap). For (GI2), we define G(a, na + 1)b := 0 to penalize (right) end gaps, in
the linear case, and G(a, na + 1)b := G(a, 1)b to avoid double counting of gaps,
in the circular case. Finally, we model the additional gap opening penalties by∑

(a,i)∈X,1≤b≤M,b
=a hGO(a, i)b.

Further preliminary tuning of the model. To allow more effective evalua-
tion we extend our elementary model. First, we break permutation symmetries
of partition classes by assigning the positions (a, i) of one of the sequences to the
first na partition classes α by setting the corresponding Pxα to 1. Then, we add
simple clique inequalities to allow at most one of several conflicting alignment
edges. Moreover, the number of modeled partition classes can be reasonably lim-
ited. In the case of linear alignment it is furthermore common to model only a
subset of the alignment edges, e.g. only edges where |i − j| ≤ Δ. Note that the
same restriction usually does not make sense in the case of circular alignment.

4 Multiple RNA Secondary Structure Alignment

The extension of sequence alignments to alignment of general contact structures
is straightforward in the partition-based ILP framework. It suffices to extend the
objective function to reward matches of pairwise contacts.

Denote the set of base pairs to describe the secondary structure information
of sequence a by Ba. We define weights w(a,i,i′)(b,j,j′) for the match of secondary
structure base pairs (i, i′) ∈ Ba and (j, j′) ∈ Bb. For the purpose of simultaneous
alignment and folding, informative weights can be derived from the probabilities
of base pairs in the RNAs Boltzmann ensemble (c.f. [23–25]). The corresponding
score contribution is modeled based on variables Baii′bjj′, indicating the match
of base pairs (i, i′) of a with (j, j′) of b and inequalities(

∀1 ≤ a < b ≤M,
(i, i′) ∈ Ba, (j, j′) ∈ Bb

)
2Baii′bjj′ ≤ E(a, i)(b, j) + E(a, i′)(b, j′) (SI)
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The structure contribution to the objective functions is therefore expressed by∑
1≤a<b≤M,
1≤i<i′≤na,
1≤j<j′≤nb

w(a,i,i′)(b,j,j′)Baii′bjj′. (OFS)

Again straightforwardly, the above elementary structure alignment model can
be extended to prevent the matching of crossing base pairs or more than one base
pair per base, since those events are commonly considered conflicts in simulta-
neous folding and alignment. For this purpose, we introduce auxiliary variables
Baii′, indicating that a base pair (i, i′) in sequence a is matched, are introduced
together with constraints(

∀1 ≤ a ≤M,
(i, i′) ∈ Ba

)
Baii′ ≤

∑
1≤b≤M,
(j,j′)∈Bb

Baii′bjj′ ≤ |Bb|Baii′

(SI2)⎛
⎜⎜⎝

∀1 ≤ a ≤M,
(i, i′) ∈ Ba, (j, j′) ∈ Ba,

i < j < i′ < j′ or |{i, i′, j, j′}| < 4,
(i, i′) �= (j, j′)

⎞
⎟⎟⎠ 1 ≥ Baii′ + Bajj′. (SINC)

By the inequalities (SI2), for each base pair (i,i’) of a sequence a, Baii′=1
if and only if there exists a base pair (j,j’) second sequence b, s.t. Baii′bjj′=1.
Given the variables Baii′, we can simply forbid all conflicts by pairwise con-
straints in (SINC). Only (SINC) is specific to linear alignment; in the circular
case, the only necessary modification is to replace, in the all-quantor of (SINC),
the linear ordering condition i < j < i′ < j′ for the base pairs (i,i’) and (j,j’) by
the corresponding expression for circular order � i′ j j′ ∧ � j i′ j′.

5 Preliminary Computational Results

Our prototypical implementation generates models (in several variants) from
multiple input sequences, writes them to CPLEX LP format, and runs them
with the IBM CPLEX linear programming solver. For preliminary experiments,
we manually designed several small input instances of multiple sequences, such
that the sequences form typical pseudoknots that are hard to align by dynamic
programming algorithms (e.g., [26]); furthermore, we introduce sequence muta-
tions, such that pure sequence alignment programs fail to derive the (by design
known) structurally correct alignment. We designed several instances of linear
sequences, which let us evaluate the linear MSA model and compare to the cyclic
model. Furthermore, we rotated the sequences to mimic the effect of decircular-
izing cyclic sequences at arbitrary (non-homologous) positions to obtain typical
inputs for cyclic alignment.

We generated several models based on a simple made-up scoring scheme of
invariant scores for base matches (4) and mismatches (−4), linear cost of gaps
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Table 1. Preliminary results. See text and the electronic appendix† for details.

Instance Model Solving Time
ID #Seqs Length PK-type Type Delta 5% Tolerance Optimal

1 3 10 2-knot lin 3 0.6 0.6
1 3 10 2-knot lin - 1.4 1.4
1 3 10 2-knot cyc - 170 176
1R 3 10 2-knot cyc - 229 273
2 3 15 3-knot lin 3 2.4 2.7
2 3 15 3-knot lin - 143 129
3 3 20 3-knot lin 3 8.4 8.4
3 3 20 3-knot lin - 287 -
4 4 10 2-knot lin 3 4.8 6.4
4 4 10 2-knot lin - 10 28

† http://www.bioinf.uni-leipzig.de/publications/supplements/14-006

(−3), and constant contributions per arc match (32). Subsequently, we applied
the standalone CPLEX solver essentially out-of-the-box1. The features of our
test instances and results are summarized in Table 1. The actual instances and
alignments are reported in the Appendix. All tests were performed on a Lenovo
T431s notebook; time-out was set to 10 minutes. Run-times are reported for solv-
ing to proven optimality and within 5% tolerance of the LP-relaxation bound
(CPLEX configuration: tolerance mipgap 0.02). The found optimal alignments
have been structurally correct. Linear alignments were performed with and with-
out a “diagonal” restriction of alignment edges (i, j) to |i − j| < Δ. The cyclic
alignment failed for all instances but the one of three sequences of length 10.
Whether the sequences are given in the correct rotation (ID 1) or rotated to
each other (ID 1R) does not seem to make a large difference in this case.

6 Discussion

We have explored here a simple mathematical framework for multiple sequence
alignments that highlights the similarities of circular and linear multiple sequence
alignments. The key ingredient is, as in early work of Dress, Morgenstern, and
collaborators [15, 16], the view of MSAs as set systems, more precisely as (cyclic)
order preserving partitions. As it turns out, replacing the familiar linear order
by a cyclic one suffices to obtain a full characterization of cyclic MSAs. Further-
more, the mathematical structure directly translates to a generic ILP formula-
tions detailed in sect. 3. Remarkably, in contrast to previous ILP models, which
define an exponential number of constraints, this model requires only polynomi-
ally many variables and constraints. A prototypical implementation indicates,

1 We used the default solving strategy, but turned off the generation of Gomory cuts;
this slightly sped up the calculations in our experiments.

http://www.bioinf.uni-leipzig.de/publications/supplements/14-006
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however, that in this näıve form even highly efficient commercial solvers such a
CPLEX cannot accommodate instances large enough to be of practical interest.
We therefore also investigated the cyclic analog of the “critical mixed cycle”,
which form the basis for branch and cut and Lagrangian relaxation approaches
[21, 22]. Reassuringly, it can be phrased in terms of a cut linearizing the cyclic
MSA and critical mixed cycles not interfering with the cut. Although our contri-
bution does not immediately provide a production-grade software, it points out
many promising directions for future work. Furthermore, it is – to our knowledge
– the first systematic analysis of the cyclic multiple sequence alignment problem.
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Abstract. The degree of predictability of a sequence can be measured
by its entropy and it is closely related to its repetitiveness and com-
pressibility. Entropic profiles are useful tools to study the under- and
over-representation of subsequences, providing also information about
the scale of each conserved DNA region. On the other hand, compact
classes of repetitive motifs, such as maximal motifs, have been proved
to be useful for the identification of significant repetitions and for the
compression of biological sequences. In this paper we show that there is
a relationship between entropic profiles and maximal motifs, and in par-
ticular we prove that the former are a subset of the latter. As a further
contribution we propose a novel linear time linear space algorithm to
compute the function Entropic Profile introduced by Vinga and Almeida
in [18], and we present some preliminary results on real data, showing
the speed up of our approach with respect to other existing techniques.

1 Introduction

Sequence data is growing in volume with the availability of more and more pre-
cise, as well as accessible, assaying technologies. Patterns in biological sequences
is central to making sense of this exploding data space, and its study continues to
be a problem of vital interest. Natural notions of maximality and irredundancy
have been introduced and studied in literature in order to limit the number of
output patterns without losing information [3, 4, 6, 10, 11, 14–17]. Such notions
are related to both the length and the occurrences of the patterns in the input
sequence. Maximal patterns have been successfully applied to the identification
of biologically significant repetitions, and compressibility of biological sequences,
to list a few areas of use.

Different flavors of patterns, based either on combinatorics or statistics, can
usually be shown to be a variation on this basic concept of maximal patterns. In
particular, it is well known that the degree of predictability of a sequence can be
measured by its entropy and, at the same time, it is also closely related with its
repetitiveness and compressibility [9]. Entropic profile was introduced [7, 8, 18]
to study the under- and over-representation of segments, and also the scale of
each conserved DNA region.
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Due to the fundamental nature of maximality, a natural question arises about
a possible relationship between maximal patterns and entropic profiles. We ex-
plore this question in the paper and show that entropic profiles are indeed a
subset of maximal patterns. Based on this inshight, we improve the running
time of the detection of entropic profiles by proposing an efficient algorithm to
extract entropic profiles in O(n) time and space. The algorithm exploits well
known properties of the suffix tree to group together the subwords that are
needed to compute the entropy for a specific position and for the input sequence
as a whole.

Finally, we present an experimental validation of the proposed algorithm per-
formed on the whole genome of Haemophilus influenzae, showing that our ap-
proach outperforms the other existing techniques in terms of time performance.

The manuscript is organized as follows. In the next section we recall some
basic notions about DNA sequence entropic profiles and maximal motifs, while
in the next section we show the relationship occurring between them. Section 4
presents our linear time linear space algorithms, and some preliminary experi-
mental comparisons are discussed in Section 5. The paper ends with a summary
of results and some further considerations.

2 Background

Let x = x1 . . . xn be a string defined over an alphabet Σ. We denote by xi . . . xj

the subword of x starting at position i and ending at position j > i, and by
c([i, j]) the number of occurrences of xi . . . xj in x.

2.1 Maximal Motifs

Among all the candidate over-represented subwords of an input string, those
presenting special properties of maximal saturation have been proved to be a
special compact class of motifs with high informative content, and they have
been shown to be computable in linear time [12]. We next recall some basic
definitions.

Definition 1. (Left-maximal motif) The subword x′ = xi . . . xj of x is a left-
maximal motif if it does not extist any other subword x′′ = xi−h . . . xj (0 < h ≤ i)
such that c([i, j]) = c([i − h, j]).

Definition 2. (Right-maximal motif) The subword x′ = xi . . . xj of x is a right-
maximal motif if there exist no subword x′′′ = xi . . . xj+k (0 < k < n− j) such
that c([i, j]) = c([i, j + k]).

Definition 3. (Maximal motif) The subword x′ is a maximal subword if it is
both left- and right- maximal.

Maximal motifs are those subwords of the input string which cannot be ex-
tended at the left or at the right without loosing at least one of their occurrences.
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2.2 Entropic Profiles

Entropic profiles may be estimated according to different entropy formulations.
The definitions on entropic profiles recalled here are taken from the seminal
papers [7, 8, 18], where the Rényi entropy of probability density estimation and
the Parzen’s window method applied to Chaos Game Representation/Universal
Sequence Maps are exploited.

Let L be the chosen length resolution and φ be a smoothing parameter.

Definition 4. (Main EP function) The main EP function is given by:

f̂L,φ(xi) =
1 + 1

n

∑L
k=1 4kφk · c([i− k + 1, i])∑L

k=0 φ
k

Definition 5. (Normalized EP) Let mL,φ be the mean and SL,φ be the standard
deviation using all positions i = 1 . . . n. The normalized EP is:

EPL,φ(xi) =
f̂L,φ(xi)−mL,φ

SL,φ

where:

mL,φ =
1

n

n∑
i=1

f̂L,φ(xi) and SL,φ =

√√√√ 1

n− 1

n∑
i=1

(f̂L,φ(xi)−mL,φ)2

The main entropy function f̂ is shown to be computable in linear time in [5].
In that work, however, the normalized entropy as defined in the original papers
is not considered. A different normalization is defined instead:

FastEPL,φ =
fL,φ(i)

max0≤j<n[fL,φ(j)]

3 Entropic Profiles vs Maximal Motifs

We now discuss the relationship between entropic profiles and maximal motifs.
The following theorem holds.

Theorem 1. The entropic profiles scoring maximum values of the main EP
function f̂ are left-maximal motifs of the input string.

Proof. Let i be a generic position of the input string and L′ be the length of
the subword x′ starting at i − L′ + 1 and ending at i, such that x′ scores the
maximum value of entropy at the position i. Then the following inequalities hold,
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with respect to the two subwords x′′ and x′′′ of length L′ + 1 and L′− 1, ending
at i and starting at i− L′ and at i− L′ + 2, respectively:

⎧⎪⎨
⎪⎩

n+
∑L′

k=1 4kφkc([i−k+1,i])∑
L′
k=0 φk

≥ n+
∑L′+1

k=1
4kφkc([i−k+1,i])∑L′+1
k=0 φk

n+
∑L′

k=1 4kφkc([i−k+1,i])∑
L′
k=0 φk

≥ n+
∑L′−1

k=1 4kφkc([i−k+1,i])∑L′−1
k=0 φk

As shown in the Appendix, the two inequalities above can be rewritten as:

⎧⎪⎨
⎪⎩

n+
∑L′

k=1 4kφkc([i−k+1,i])∑
L′
k=0 φk

≥ 4L
′+1φL′+1c([i−L′,i])

φL′+1

n+
∑L′−1

k=1 4kφkc([i−k+1,i])∑L′−1
k=0

φk
≤ 4L

′
φL′

c([i−L′+1,i])

φL′

leading to the following relation between the number of occurrences of x′ and
x′′:

c([i− L′ + 1]) ≥ 4 c([i− L′, i]).

Let us now suppose that x′ is not left-maximal. From Definition 3, it follows
that all the occurrences of x′ should be covered from another subword x′′ extend-
ing x′ at the left of at least one character. This would mean that c([i− L′ + 1])
should be equal to c([i− L′, i]), that is, a contraddiction. ��

Note that not necessarily a left-maximal motif corresponds to a peak of en-
tropy, as shown by the following example.

Example 1. Let φ = 10 and consider the following input string:

0 1 2 3 4 5 6 7 8 9 10 11
T C A A C G G C G G C T

We wonder if the maximal motif CGGC, ending at positions 7 and 10, corre-
sponds to a peak of entropy at one of those positions. We have that f̂3,10(7) =

9.85, f̂4,10(7) = 39.38 and f̂4,10(7) = 76.8, therefore CGGC has not a peak of f̂
at that position. The same values occur for the position i = 10.

4 Methods

In this section the available algorithms to compute entropic profiles are discussed,
and faster algorithms for entropic profiles computation and normalization are
presented. We recall that we want to analyze an input string x of length n by
means of entropic profiles of resolution L and for a fixed φ.
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4.1 Existing Algorithms

There are two algorithms available in literature that compute entropic profiles.
The algorithm described in [8] is a faster version of the original algorithm

proposed by Fernandes et al. [7]. It relies on a truncated suffix trie data structure,
which is quadratic both in time and space occupation, enhanced with a list of
side links that connect all the nodes at the same depth in the tree. This is needed
to speed up the normalization because, in the formulas used to compute mean
and standard deviation [7], the counting of subwords of the same length is a
routine operation. With this approach the maximum value of L had to be set to
15.

The other method, presented in [5], uses a suffix tree on the reverse string to
obtain linear time and space computation of the absolute values of entropy for
some paramethers L and φ. These values are then normalized with respect to the
maximum value of entropy among all the substrings of length L. To obtain the
maximum value maxL, in correspondence of a given L, all values maxl, where
1 ≤ l < L, are needed. The algorithm has a worst case complexity O(n2), but
being guided by a branch-and-cut technique in practice substantial savings are
possible.

A key property of both suffix tries and suffix tree [12] is that, once the data
structure is built on a text string x, the occurrences of a pattern y = y1 . . . ym
in x can be found by following the path labelled with y1 . . . ym from the root
of the tree. If such a path exists, the occurrences are given by the indexes of
the leaves of the subtree rooted at the node in which the path ends. Moreover,
being the suffix tree a compact version of a suffix trie, we have for it the further
property that all the strings corresponding to paths that end in the “middle” of
an arc between two nodes share the same set of occurrences. Figure 1 shows an
example of trie and suffix tree.

4.2 Preprocessing

For the computation of the values needed to obtain both the absolute and the
normalized values of entropy, we perform the same preprocessing procedure de-
scribed in [5]. We recall here the main steps as we will need the annotated suffix
tree for the subsequent description of the speed up to compute the mean and
the standard deviation.

Consider the suffix tree T built on the reverse of the input string x. In such
a tree, strings that are described from paths ending at the same locus share the
same set of ending positions in the original input string. Hence, they are exactly
the strings we need to consider when computing the values of entropy. Some care
needs to be taken to map the actual positions during the computation, but this
will not affect the time complexity. Therefore, in the following discussion we will
just refer to the standard association between strings and positions in a suffix
tree, keeping in mind they are actually reversed.
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Fig. 1. A suffix trie (left) and a suffix tree (right) built on the same string x =
ATTACAC$. The leaves correspond to positions in x. The internal nodes in the suffix
tree hold the number of occurrences of the strings that have the node as a locus.

The main observation in [5] is that in the reverse tree the absolute value of
the EP function for n− i is equal to:

fL,φ(xi) =
1 + 1

n

∑L
k=1 4kφk · c([i, i + k − 1])∑L

k=0 φ
k

In the suffix tree T each node v is annotated with a variable count(v) which
stores the number of occurrences of the subword w(v), given by the concatenation
of labels from the root to the node v. This can be done in linear time with a
bottom-up traversal by setting up the value of the leaves to 1, and the value of
the internal nodes to the sum of the values of their children.

Each node v is also annotated with the value of the main summation in the
entropy formula. Let i be the position at which occurs the string w(v):

main(v) =

L∑
k=1

4kφk · c([i, i + k − 1])

Note that once this value is available the absolute value of entropy for w(v)
can be computed in constant time:

1 + 1
nmain(v)(1− φ)

1− φL+1

Now let h(v) be the length of w(v) and parent(v) be the parent node of v. The
annotation takes linear time with a pre-order traversal of the tree that passes
the contribution of shorter prefixes to the following nodes in the path:

main(v) = main(parent(v)) +

h(v)∑
k=h(parent(v))+1

(4φ)kcount(v)
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When main(parent(v)) is known, the value of main(v) can be computed in
constant time, since count(v) does not depend on k:

main(v) = main(parent(v)) + count(v)
(4φ)h(parent(v))+1 − (4φ)h(v)+1

1− 4φ

4.3 Efficient Computation of Entropy and Normalizing Factors

Once the annotation is complete, one can retrieve the entropy for a substring
x[i, i + L − 1] by following the path of length L from the root. If it ends at a
node v the value of main(v) is retrieved, and the absolute value of entropy is
computed, otherwise the additional factor:

L∑
k=h(parent(v))+1

(4φ)kcount(v) = count(v)
(4φ)h(parent(v))+1 − (4φ)L+1

1− 4φ

needs to be added to main(parent(v)).
In [5] each string of length L starting at each position one wants to analyze is

searched for in the suffix tree, and the value of entropy is computed as described
above (and normalized according to the maximum value of entropy for length
L). In discovery frameworks, where no information about the motif position is
known in advance, and there are potentially as many positions to analyze as the
length of the input string, this might not be the fastest solution.

On the other hand, by exploting well known properties of the suffix tree
[12] it is possible to propose a different approach that is as simple as powerful,
and allowed us to obtain linear time and space algorithms not only for the
computation of the absolute value of entropy, but also for its normalization
through mean and standard deviation.

Absolute Value of Entropy. We can collect the absolute value of entropy for
all positions in the input string with a simple traversal of the tree at depth L
(in terms of length of strings that labels the paths). The steps to follow when
computing the entropy once we reach the last node of the path are the same
we already described for computing the entropy of a given substring. Differently
from before, when we reach the last node of a path we also store the value
of entropy in an array of size n (or any other suitable data structure) at the
positions corresponding to the leaves of the subtree rooted at the node, which
are the occurrences of the string that labels the path.

Moreover, as a byside product of this traversal, we can also collect information
to compute the mean and the standard deviation in linear time.

The Mean. Consider the mean first. We need to sum up the values of entropy
over all possible substrings of length L in the input string. Indeed we can re-write
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the formula considering the contribution of all different subwords of length L.
Let w be one of such subwords, fL,φ(w) be the corresponding entropy, vw be its
locus and DL be the set containg all the different subwords of length L in x.
The mean can be rewritten as:

mL,φ =
1

n

n∑
i=1

f̂(xi) =
1

n

∑
w∈DL

count(vw)× f̂L,φ(w)

Therefore, when traversing the tree, we also keep a variable in which we add
the value of entropies found at length L, multiplied by the value of count(·)
stored at their locus.

The Standard Deviation. The standard deviation can be rewritten as:

SL,φ =

√√√√ 1

n− 1

n∑
i=1

(f̂L,φ(xi)−mL,φ)2 =

√√√√ 1

n− 1

(
n∑

i=1

(f̂2
L,φ(xi))− nm2

L,φ

)

Again we aggregate the contribution coming from the same subwords, so that∑n
i=1 f̂

2
L,φ(xi) becomes: ∑

w∈DL

(count(vw)× f̂2
L,φ(w))

To compute this sum, when traversing the tree we keep a variable in which
we add the square of the entropies we compute at length L, multiplied by the
value of count(·) stored at their locus.

Once the above summation and the mean have been computed with a single
traversal at depth L of our tree, we have all the elements needed to compute the
standard deviation in constant time.

The Maximum. As a side observation, one can also note as, in terms of asyn-
totic complexity, the maximum value of entropy can also be retrieved in linear
time with a tree traversal without need to compute the value of maxl, 1 ≤ l < L.

4.4 Practical Considerations

We described our algorithms in terms of suffix tree, but we do not really need
the entire tree. A truncated suffix tree [2, 13], with a truncation factor equal to
the maximum L one is willing to investigate, would be sufficient. Alternatively,
an enhanced suffix array [1] allowing a traversal of the virtual LCP tree could
also be used.

Note also that if we keep track of the frontier at depth L, i.e., the last nodes
of the paths we visit when traversing the tree to compute fL,φ, we can compute
the entropic profiles for longer L without starting from the root. Indeed, even in
the case we have to start from the root, the preprocessing step does not need to
be repeated.
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5 Experimental Analysis

In this section we present the results of the experimental analysis we performed
on the whole genome of Haemophilus influenzae, which is one of the most ex-
tensively analyzed in this context. For all the considered methods, the time
performance evaluations we show do not include the preprocessing step, i.e., the
construction of the exploited data structures (suffix trees or suffix tries), whereas
the time needed to annotate the tree is always included. All the tests were run
on a laptop with a 3.06GHz Core 2 Duo and 8Gb of Ram.

Figure 2 shows a comparison among the original EP function computation
by Vinga et al [18] (denoted by EP in the following), FastEP by Comin and
Antonello [5] and our approach, that is, LinearEP. In particular, the running
times in milliseconds are shown for φ = 10, L = 10 and increasing values of n.
As it is clear from the figure, LinearEP outperfomes the other two methods,
thus confirming the theoretic results.
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Fig. 2. Comparison among EP, FastEP and LinearEP (φ = 10, L = 10) for increas-
ing values of n. Total running time includes the computation of the normalizing factors,
and the normalized EP values for the whole sequence.

We recall that both EP and LinearEP compute the normalized EP func-
tion according to the same formulation, that is, with respect to the mean and
standard deviation (for a fixed lenght L), whereas FastEP computes a different
normalization with respect to the maximum value of the main EP function. We
then performed also a direct comparison between EP and LinearEP for the
computation of mean and standard deviation. Figure 3 shows that, except for
n = 1,000, LinearEP is faster than EP in such a computation (however, the
total time is lower for LinearEP also for n = 1,000, as shown in Figure 2).

We finally compared EP and LinearEP on a window of lenght 1,000, for
L varying between 3 and 15. Note that 15 is a technical limit imposed by the
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Fig. 3. Comparison between EP and LinearEP for the computation of mean and
standard deviation

software of EP. We do not have such limitation. Indeed we tested our algorithm
till L = 100 obtaining results close to those for L = 15. Figure 4 shows the
results for the time needed to compute the mean and the standard deviation.
The first observation is that, in both cases, the performances of EP do not change
significantly for increasing values of L, whereas the running times of LinearEP
sensibly increase for increasing values of L. This is due to the fact that n is fixed
and L varies. To compute mean and standard deviation LinearEP traverses a
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Fig. 4. Computation of mean and standard deviation for EP and LinearEP (L ∈
[3, 15])
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portion of the tree that is dependent on L, while EP computation of mean and
standard deviation is mainly dependent on the sequence length, that is fixed.
The running times of LinearEP are from three magnitude order to three times
faster than those of EP.

For sake of completeness of the presented results, we add some details about
the preprocessing steps performed by each of the considered software tools. In
particular, both our prototype and the software of [5] build a full suffix tree
although they do not need it in principle. Moreover, the algorithm of [18] is
implemented in C, while the others are implemented in Java. The efficiency of
our linear algorithm for the extraction of entropic profiles overcomes the known
gap between these two languages, but this does not hold for the suffix tree
construction. Indeed, building the suffix trie needed to run EP took around 2.7
seconds, while building the full suffix tree, for both other software tools, took
around 12 seconds.

6 Concluding Remarks

The research proposed here includes two main contributions. The first contri-
bution is the study of possible relationships between two classes of motifs an-
alyzed in the literature and both effective in singling out significant biological
repetitions, that are, entropic profiles and maximal motifs. We proved that en-
tropic profiles are a subset of maximal motifs, and, in particular, that they are
left-maximal motifs of the input string. The second contribution of the present
manuscript is the proposal of a novel linear time linear space algorithm for the
extraction of entropic profiles, according to the original normalization reported
in [7]. Experimental validations confirmed that the algorithm proposed here is
faster than the others in the literature, including a recent approach where a
different normalization was introduced [5].

From these contributions interesting considerations emerge. First of all, we
observe that entropic profiles are related to a specific length which one can only
guess when doing de novo discovery. So one could think of extracting maximal
motifs first, and then investigate entropic profiles in the regions of the maximal
motifs and for values of L around the maximal reported length. The process
of discovery of the entropic profiles would be further improved then. Other im-
provements in the entropic profiles extraction could come from the exploitation
of more efficient data structures such as enhanced suffix arrays [1]. In this regard,
we note that the preprocessing step can also be speeded since, as already pointed
out in the previous section, a full suffix tree is not necessary for the computa-
tion. Finally, open challenges still remain open about further issues concerning
maximal motifs and entropic profiles. Notably among them, one may wonder if
entropic profiles do not recover the complete information, so maximal motifs are
more reliable when it comes to discovery problems or if, on the contrary, entropic
profiles cover the complete information, i.e., they are a refinement of maximal
motifs and should be preferred.
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Appendix

Let us start from the following two inequalities:⎧⎪⎨
⎪⎩

N+
∑L′

k=1 4kφkc([i−k+1,i])∑L′
k=0 φk

≥ N+
∑L′+1

k=1 4kφkc([i−k+1,i])∑L′+1
k=0 φk

N+
∑L′

k=1 4kφkc([i−k+1,i])∑L′
k=0 φk

≥ N+
∑L′−1

k=1 4kφkc([i−k+1,i])∑L′−1
k=0 φk

from which:

⎧⎪⎨
⎪⎩

N+
∑L′

k=1 4kφkc([i−k+1,i])∑L′
k=0 φk

≥ N+
∑L′

k=1 4kφkc([i−k+1,i])+4L
′+1φL′+1c([i−L′,i])∑L′

k=0 φk+φL′+1

N+
∑L′−1

k=1 4kφkc([i−k+1,i])+4L
′
φL′

c([i−L′+1,i])∑L′−1
k=0 φk+φL′ ≥ N+

∑L′−1
k=1 4kφkc([i−k+1,i])∑L′−1

k=0 φk

Let us consider A = N +
∑L′

k=1 4kφkc([i − k + 1, i]), B =
∑L′

k=0 φ
k, C =

4L
′+1φL′+1c([i − L′, i]), D = φL′+1; A′ = N +

∑L′−1
k=1 4kφkc([i − k + 1, i]),

B′ =
∑L′−1

k=0 φk, C′ = 4L
′
φL′

c([i − L′ + 1, i]) and D′ = φL′
. Then:{

A
B ≥

A+C
B+D =⇒ A

B ≥
C
D

A′+C′
B′+D′ ≥ A′

B′ =⇒ A′
B′ ≤ C′

D′

The two inequalities above can be then rewritten as:⎧⎪⎨
⎪⎩

N+
∑L′

k=1 4kφkc([i−k+1,i])∑
L′
k=0 φk

≥ 4L
′+1φL′+1c([i−L′,i])

φL′+1

N+
∑L′−1

k=1 4kφkc([i−k+1,i])∑L′−1
k=0 φk

≤ 4L
′
φL′

c([i−L′+1,i])

φL′

⎧⎪⎪⎨
⎪⎪⎩

N +
∑L′−1

k=1
4kφkc([i− k + 1, i]) ≥

∑L′
k=0

φk

φL′+1
4L

′+1φL′+1c([i− L′, i]) − 4L
′
φL′

c([i− L′ + 1, i])

N +
∑L′−1

k=1
4kφkc([i− k + 1, i]) ≤

∑L′−1
k=0

φk

φL′ 4L
′
φL′

c([i− L′ + 1, i])

Then:

∑
L′
k=0

φk

φL′+1
4L

′+1φL′+1c([i− L′, i]) − 4L
′
φL′

c([i− L′ + 1, i]) ≤
∑L′−1

k=0
φk

φL′ 4L
′
φL′

c([i− L′ + 1, i])

L′∑
k=0

φk4c([i− L′, i])− φL′
c([i − L′ + 1, i])−

L′−1∑
k=0

φkc([i− L′ + 1, i]) ≤ 0

(φL′
+

L′−1∑
k=0

φk)c([i − L′ + 1, i]) ≥ 4

L′∑
k=0

φkc([i − L′, i])

c([i − L′ + 1, i]) ≥ 4c([i− L′, i])
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Abstract. Alignment-free methods are increasingly used to estimate
distances between DNA and protein sequences and to reconstruct phylo-
genetic trees. Most distance functions used by these methods, however,
are heuristic measures of dissimilarity, not based on any explicit model
of evolution. Herein, we propose a simple estimator of the evolutionary
distance between two DNA sequences calculated from the number of
(spaced) word matches between them. We show that this distance func-
tion estimates the evolutionary distance between DNA sequences more
accurately than other distance measures used by alignment-free meth-
ods. In addition, we calculate the variance of the number of (spaced)
word matches depending on sequence length and mismatch probability.

1 Introduction

Alignment-free methods are increasingly used for DNA and protein sequence
comparison since they are much faster than traditional alignment-based ap-
proaches [1]. Most alignment-free algorithms compare the word or k-mer compo-
sition of the input sequences [2]. They use standard metrics such as the Euclidean
or the Jensen-Shannon (JS) distance [3] on the relative word frequency vectors
of the input sequences to estimate their distances.

Recently, we proposed an alternative approach to alignment-free sequence
comparison. Instead of considering contiguous subwords of the input sequences,
our approach considers spaced words, i.e. words containing wildcard or don’t
care characters at positions defined by a pre-defined pattern P , similar as the
spaced seeds that are used in database searching [4]. As in existing alignment-
free methods, the (relative) frequencies of these spaced words are compared using
standard distance measures [5]. In [6], we extended this approach by using whole
sets P = {P1, . . . , Pm} of patterns and calculating the spaced-word frequencies
with respect to all patterns in P . In this multiple-pattern approach, the distance
between two sequences is defined as the average of the distances between by the

D. Brown and B. Morgenstern (Eds.): WABI 2014, LNBI 8701, pp. 161–173, 2014.
c© Springer-Verlag Berlin Heidelberg 2014
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spaced-word frequency vectors with respect to the individual patterns Pi ∈ P ,
see also [7].

Phylogeny reconstruction is one of the main applications of alignment-free
sequence comparison. Consequently, most alignment-free methods were bench-
marked by applying them to phylogeny problems. The distance metrics used by
these methods, however, are only rough measures of dissimilarity, not derived
from any explicit model of molecular evolution. This may be one reason why the
distances calculated by alignment-free algorithms are usually not directly eval-
uated, but they are used as input for distance-based phylogeny methods such
as Neighbour-Joining [8]. The resulting tree topologies are than compared to
trusted reference topologies.

Obviously, this is only a very rough way of evaluating these methods since
the resulting trees do not only depend on the calculated distance values but
also on the tree-reconstruction method that is used. Also, comparing topolo-
gies ignores branch lengths, so the results of these benchmark studies depend
only indirectly on the distance values calculated by the alignment-free meth-
ods that are to be evaluated. A remarkable exception is the paper by Haubold
et al. [9]. The program Kr developed by these authors estimates evolutionary
distances based on a probabilistic model of evolution, and the authors compare
the estimated distances directly to the known distances of simulated sequences.
To our knowledge, Kr is the only alignment-free method that aims to estimate
distances in a rigorous way. The authors of Kr have shown that this program
can correctly estimate evolutionary distances between DNA sequences up to a
distance of around 0.5 mutations per site.

In previous papers, we have shown, that our spaced-word approach is useful
for phylogeny reconstruction. Tree topologies calculated with Neighbour-Joining
based on spaced-word frequency vectors are usually superior to topologies calcu-
lated from the contiguous word frequency vectors that are used by traditional
alignment-free methods [6]. Moreover, the ‘multiple-pattern approach’ led to
much better results than the ‘single-pattern approach’. We also showed experi-
mentally that the distance values and tree topologies produced by spaced words
are statistically more stable than distances and trees produced using contigu-
ous subwords of the sequences. In fact, the main difference between our spaced
words and the contiguous words used by established methods is that spaced word
matches at neighbouring positions are statistically less dependent on each other.

In these previous papers, we investigated the difference between spaced word
frequencies and on contiguous word frequencies. Therefore, we applied the same
distance metrics to our spaced-word frequencies that are applied by standard
methods to k-mer frequencies, namely Jensen-Shannon and the Euclidean dis-
tance. In the present paper, we propose a new distance measure on DNA se-
quences that estimates their distances from the number N of space-word matches
based on a probabilistic model. We show that this distance measure is more accu-
rate and works for more distantly related sequences than existing alignment-free
distance measures. Secondly, we calculate the variance of N for contiguous k-
mers that are used in standard approaches, as well as to spaced words with the
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single and multiple pattern approach. We show that the variance of N is lower
for spaced words than for contiguous words and that the variance is further
reduced in our multiple pattern approach.

2 Motifs and Spaced Words

As usual, for an alphabet Σ and 
 ∈ N, Σ� denotes the set of all sequences of
length 
 over Σ. For a sequence S ∈ Σ� and 0 < i ≤ 
, S[i] denotes the i-th
character of S. A pattern of length 
 is a word P ∈ {0, 1}�, i.e. a sequence over
{0, 1} of length 
. A position i with P [i] = 1 is called a match position while a
position i with P [i] = 0 is called a don’t care position. The number of all match
positions in a patterns P is called the weight of P . For a pattern P of weight k,
P̂ = {P̂1, . . . P̂k}, P̂i < P̂i+1, denotes the set of all match positions.

A spaced word w of weight k over an alphabet Σ is a pair (P,w′) such that P
is a pattern of weight k and w′ is a word of length k over Σ. We say that a spaced
word (P,w′) occurs at position i in a sequence S over Σ, if S[i+P̂r−1] = w′[r−1]
for all 1 ≤ r ≤ k. For example, for

Σ = {A, T,C,G}, P = 1101, w′ = ACT,

we have P̂ = {1, 2, 4}, and the spaced word w = (P,w′) occurs at position 2 in
sequence S = CACGTCA since

S[2]S[3]S[5] = ACT = w′.

A pattern is called contiguous if it consists of match positions only, a spaced
word is called contiguous if the underlying pattern is contiguous.

For a pattern P of weight k and two sequences S1 and S2 over an alphabet
Σ, we say that there is a spaced-word match with respect to P at (i, j) if

S1[i + P̂r − 1] = S2[j + P̂r − 1]

holds for all 1 ≤ r ≤ k. For example, for sequences S1 = ACTCTAA and
S2 = TATAGG and P as above, there is a spaced-word match at (3, 1) since
one has S1[3] = S2[1], S1[4] = S2[2] and S1[6] = S2[4].

3 The Number N of Spaced-Word Matches for a Pair of
Sequences with Respect to a Set P of Patterns

We consider sequences S1 and S2 as above and a fixed set P = {P1, . . . , Pm}
of patterns. For simplicity, we assume that all patterns in P have the same
length 
 and the same weight k. For now, we use a simplified model of sequence
evolution without insertions and deletions, with a constant mutation rate and
with different sequence positions evolving independently of each other. Moreover,
we assume that we have the same substitution rates for all substitutions a →
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b, a �= b. We therefore consider two sequences S1 and S2 of the same length L
with match probabilities

P (S1[i] = S2[j]) =

{
p for i = j
q for i �= j

where q =
∑

a∈A q2a is the background match probability with qa denoting the
relative frequency of a single character a ∈ A and p ≥ q is the match probability
for a pair of ‘homologous’ positions.

We want to study the number N = N(S1, S2,P) of P-matches between S1

and S2, i.e. the number of spaced-word matches with respect to patterns P ∈ P .
N can be seen as the inner product of the count vectors for spaced words with
respect to the set of patterns P . In the special case where P consists of a single
contiguous pattern, N is also called the D2 score [10]. The statistical behaviour
of the D2 score has been studied under the null model that S1 and S2 are
unrelated [11,12]. By contrast, we want to investigage the number N of spaced-
word matches for evolutionarily related sequence pairs under a model as specified
above. To this end, we define XP

i,j to be the Bernoulli random variable that is 1
if there is a P -match between S1 and S2 at (i, j), P ∈ P , and 0 otherwise, so N
can be written as

N =
∑
P∈P
i,j

XP
i,j

If we want to calculate the expectation value and variance of N , we have to
distinguish between ‘homologue’ spaced-word matches, that is matches that are
due do ‘common ancestry’ and ‘background matches’ due to chance. In the sim-
plest case where we do not consider insertions and deletions in our model of
evolution, a P -match at (i, j) is homologue if and only if i = j holds. So in this
special case, we can define

XHom =
{
XP

i,i|1 ≤ i ≤ L− 
 + 1, P ∈ P
}
,

XBG =
{
XP

i,j |1 ≤ i, j ≤ L− 
 + 1, i �= j, P ∈ P
}
.

Note that if sequences do not contain insertions and deletions, every spaced-
word match is either entirely a homologous match or entirely a background match.
If indels are considered, a spaced-word match can cover both, homologous and
background regions, and the above definitions need to be adapted. The set X of
all random variables XP

i,j can then be written as X = XHom ∪ XBG, the total
sum N of spaced-word matches with respect to the set P of patterns is

N =
∑
X∈X

X

and the expected number of spaced-word matches is

E(N) = E

(∑
X∈X

X

)
=

∑
X∈XHom

E(X) +
∑

X∈XBG

E(X),
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where the expectation value of a single random variable X ∈ X is

E(X) =

{
pk if X ∈ XHom

qk if X ∈ XBG (1)

There are L− 
 + 1 positions (i, i) and (L− 
) · (L− 
+ 1) positions (i, j), i �= j
where spaced-word matches can occur, so we obtain

E(N) = m ·
[
(L− 
 + 1) · pk + (L− 
) · (L− 
 + 1) · qk

]
(2)

4 Estimating Evolutionary Distances from the Number
N of Spaced-Word Matches

If the weight of the patterns – i.e. the number of match positions – in the
spaced-words approach is sufficiently large, random space-word matches can be
ignored. In this case, the Jensen-Shannon distance between two DNA sequences
approximates the number of (spaced) words that occur in one of the compared
sequences, but not in the other one. Thus, if two sequences of length L are
compared and N is the number of (spaced) words that two sequences have in
common, their Jenson-Shannon distance can be approximated by L−N . (Sim-
ilarly, the Euclidean distances between two sequences can be approximated by
the square root of this value if the distance is small and k is large enough.)
For small evolutionary distances, the Jensen-Shannon distance grows therefore
roughly linearly with the distance between two sequences, and this explains why
it is possible to produce reasonable phylogenies based on this metric. It is clear,
however, that the Jensen-Shannon distance is far from linear to the real distance
for larger distances. We therefore propose an alternative estimator of the evolu-
tionary distance between two sequences in terms of the number N of spaced-word
matches between them. Again, we first consider sequences without insertions and
deletions.

From the expected number E(N) of spaced words shared by sequences S1 and
S2 with respect to a set of patterns P as given in equation (2), we obtain

p̂ = k

√
N

m · (L− 
 + 1)
− (L − 
) · qk (3)

as an estimator for the match probability p for sequences without indels, and
with Jukes-Cantor [13] we obtain

d̂ = −3

4
· ln
[

4

3
k

√
N

m · (L− 
 + 1)
− (L− 
) · qk − 1

3

]
(4)

as an estimator for the distance d between the sequences S1 and S2.
Equation (2) for the expected number N of spaced-word matches between

two sequences S1 and S2 can be easily generalized to the case where S1 and S2

have different lengths and contain insertions and deletions. Let L1 and L2 be the
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lengths of S1 and S2, respectively and LHom ≤ min{L1, L2} the length of the
’homologous’ part of the sequences consisting u un-gapped pairs of segments.
Ignoring spaced-word matches that cover both homologous and random regions,
we can estimate the expectation value of the number of spaced-word matches as

E(N) ≈ m ·
[(
LHom − u(l + 1)

)
· pk +

(
(L− 
)2 − LHom

)
· qk
]

and equations (3) and (4) can be adapted accordingly.

5 The Variance of N

To calculate the variance of N , we adapt results on the occurrence of words
in a sequence as outlined in [14]. First, we calculate the joint probability of
overlapping spaced-word matches for (different or equal) patterns from P at
different sequence positions. Note that an overlap between a P -match at i, j and
a P ′-match at (i′, j′) can occur only if i′ − i = j′ − j (and for non-overlapping
P -matches, their joint probability is, of course, the product of their individual
probabilities). We therefore consider a P -match at (i, j) and a P ′ match at
(i + s, j + s) for some s ≥ 0.

For patterns P, P ′ and s ∈ N we define n(P, P ′, s) to be the number of integers
that are match positions of P or match positions of P ′ shifted by s positions to
the right (or both). Formally, if

P̂s = {P̂1 + s, . . . , P̂k + s}

denotes the set of match positions of a pattern P shifted by s positions to the
right, we define

n(P, P ′, s) = |P̂ ∪ P̂ ′
s| = |P̂ |+ |P̂ ′

s| − |P̂ ∩ P̂ ′
s|

For example, for P = 101011, P ′ = 111001 and s = 2, there are 6 positions that
are match positions of P or of P ′ shifted by 2 positions to the right, namely
positions 1, 3, 4, 5, 6, 8:

P : 1 0 1 0 1 1
P ′ : 1 1 1 0 0 1

so one has n(P, P ′, s) = 6. In particular, one has n(P, P, 0) = k for all patterns
P of weight k, and

n(P, P, s) = k + max{s, k}
for all contiguous patterns P of weight (or length) k. With this notation, we can
write

E
(
XP

i,j ·XP ′
i+s,j+s

)
=

{
pn(P,P ′,s) if i = j

qn(P,P ′,s) else
(5)

for all XP
i,j , X

P ′
i+s,j+s
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To calculate the covariance of two random variables from X , we distinguish
again between homologue and random matches. Note that the covariance of two
non-overlapping random variables X and X ′ is always zero (in particular, the
covariance Cov(X,X ′) is zero for a ‘homologue’ X ∈ XHom and a ‘random’
X ′ ∈ XBG). We first consider ’homologue’ pairs XP

i,i, X
P ′
i+s,i+s ∈ XHom. Here,

we obtain with (5)

Cov
(
XP

i,i, X
P ′
i+s,i+s

)
= pn(P,P ′,s) − p2k (6)

Similarly, for a pair of ’background’ variables XP
i,j , X

P ′
i+s,j+s ∈ XBG, one obtains

Cov
(
XP

i,j , X
P ′
i+s,j+s

)
= qn(P,P ′,s) − q2k. (7)

Since ‘homologue’ and ‘background’ variables are uncorrelated, the variance
of N can be written as

V ar(N) = V ar

(∑
X∈X

X

)
= V ar

( ∑
X∈XHom

)
+ V ar

( ∑
X∈XBG

)

We express the variance of these sums of random variable as the sum of all of
their covariances, so for the ’homologue’ random variables we can write

V ar

( ∑
X∈XHom

X

)
=
∑

P,P ′∈P

L−l+1∑
i,i′=1

Cov
(
XP

i,i, X
P ′
i′,i′

)

Since the covariance for non-correlated random variables vanishes, we can ignore

the covariances of all pairs
(
XP

i,i, X
P ′
i′,i′

)
with |i− i′| ≥ l so, ignoring side effects,

we can write the above sum as

V ar

( ∑
X∈XHom

X

)
≈

L−�+1∑
i=1

∑
P,P ′∈P

�−1∑
s=−�+1

Cov
(
XP

i,i, X
P ′
i+s,i+s

)

and since the above covariances depend only on s but not on i, we can use (5)
and (7) and obtain

V ar

( ∑
X∈XHom

X

)
≈ (L− 
 + 1) ·

∑
P,P ′∈P

�−1∑
s=−�+1

(
pn(P,P ′,s) − p2k

)

and similarly

V ar

( ∑
X∈XBG

X

)
≈ (L− 
 + 1) · (L− 
) ·

∑
P,P ′∈P

�−1∑
s=−�+1

(
qn(P,P ′,s) − q2k

)
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Together, we get

V ar(N) ≈ (L− 
 + 1) ·
∑

P,P ′∈P

�−1∑
s=−�+1

(
pn(P,P ′,s) − p2k

)

+ (L− 
 + 1) · (L− 
) ·
∑

P,P ′∈P

�−1∑
s=−�+1

(
qn(P,P ′,s) − q2k

) (8)

6 Test Results

To evaluate the distance function defined by equation (4), we simulated pairs of
DNA sequences with an (average) length of 100,000 and with an average of d sub-
stitutions per sequence position. We varied d between 0 and 1 and compared the
distances estimated by our distance measure and by various other alignment-free
programs to the ‘real’ distance d. We performed these experiments for sequence
pairs without insertions and deletions and for sequence pairs where we included
insertions and deletions with a probability of 1% at every position. The length
of indels was randomly chosen between 1 and 50 with uniform probability.

Figure 1 shows the results of these experiments. Our new distance measure
applied to spaced-word frequencies is well in accordance with the real distances d
for values of d ≤ 0.8 on sequence pairs without insertions and deletions if the
single-pattern version of our program is used. For the multiple-pattern version,
our distance function estimates the real distances correctly for all values of d ≤ 1.
If indels are added as specified above, our distance functions slightly overesti-
mates the real distance d. By contrast, the Jensen-Shannon distance applied to
the same spaced-word frequencies increased non-linearly with d and flattened for
values of around d ≥ 0.4.

As mentioned, the only other alignment-free method that estimates evolu-
tionary distances on the basis of a probabilistic model of evolution is Kr [15].
In our study, Kr correctly estimated the true distance d for values of around
d ≤ 0.6, this precisely corresponds to the results reported by the authors of the
program. For larger distances, Kr grossly overestimates the distance d, though.
The distance values calculated by the program k mismatch average common
substring (kmacs) that we previously developed [16] are roughly linear to the
real distances d for values of up to around d = 0.3. From around d = 0.5 on,
the curve becomes flat. With k = 30 mismatches, the performance of kmacs
was better than with k = 0, in which case kmacs corresponds to the Average
Common Substring (ACS) approach [17].

Next, we applied various distance measures to a set of 27 mitochondrial
genomes from primates that were previously used by [15] to evaluate alignment-
free approaches. We used our multiple spaced-words approach with the parame-
ters that we used in [6], that is with a pattern weight (number of match positions)
of k = 9 and with pattern lengths 
 between 9 and 30, i.e. with up to 30 don’t
care positions in the patterns. For each value of 
, we randomly generated sets P
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Fig. 1. Distances calculated by different alignment-free methods for pairs of simulated
DNA sequences plotted against their ‘real’ distances d measured in substitutions per
site. Plots on the left-hand side are for sequence pairs without insertions and deletions,
on the right-hand side the corresponding results are shown for sequences with an indel
probability of 1% for each site and an average indel length of 25. From top to bottom,
the applied methods were: (1) spaced words with the single-pattern approach and the
Jensen-Shannon distance and the distance defined in this paper, (2) the multiple-
pattern version of spaced words using sets P of m = 100 patterns with the same
distance functions, (3) Kr and (4) kmacs and ACS.

of m = 100 patterns. In addition, we used the competing approaches FFP [18],
CVTree [19], Kr [9], kmacs [16] and ACS [17].

For each method, we calculated a distance matrix for the input sequences, and
we compared the obtained distance matrices to a reference distance matrix that
we calculated with the program Dnadist from the PHYLIP package [20] based on
a reference multiple alignment. For comparison with the reference matrix, we used
a software program based on the Mantel test [21] that was also used in [22]. Figure
2 shows the results of this comparison. As can be seen, our new distance measure,
applied to multiple spaced-word frequencies, produced distance matrices close to
the reference matrix and outperformed theJenson-Shannondistance for all pattern
lengths 
 that we tested. Our new distance also outperformed some of the existing
alignment-free methods, with the exception of Kr and kmacs.
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As a third sequence set, we used a set of 112 HIV-1 genomes from the HIV-
1/SIVcpz database at Los Alamos National Laboratory [23]. Again, we compared
the distance matrices produced by various alignment-free methods to a reference
matrix calculated with Dnadist from a trusted reference alignment from the HIV
database. Here, the Jenson-Shannon distance applied to multiple spaced-word
frequencies was slightly superior to our new distance function if the length 

(and therefore the number of don’t care positions of the underlying patterns)
was small. Only for larger values of 
, our new distance was superior to Jensen-
Shannon. As in the previous example, kmacs was among the best performing
methods. On the HIV sequences, we could also apply a multiple-alignment pro-
gram. We used CLUSTAL Ω [24] and applied Dnadist to the resulting align-
ment. Not surprisingly, this slow but accurate method of sequence comparison
performed better than all alignment-free approaches that we tested.
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Fig. 2. Evaluation of distance matrices calculated with various alignment-free methods
for a set of 27 primate mitochondrial genomes. Each distance matrix was compared to a
trusted reference distance matrix based on the Mantel test. The similarity between the
calculated matrices and the reference matrix is plotted. We evaluated our new distance
measure defined by equation (4) using sets P of 100 randomly calculated patterns with
k = 9 match positions and varying length (yellow), as well as the Jensen-Shannon dis-
tance applied to the same spaced-word frequency vectors (green). In addition, distance
matrices calculated by various other alignment-free methods were evaluated.

Fig. 1 shows not only striking differences in the shape of the distance functions
used by various alignment-free programs. There are also remarkable differences in
the variance of the distances calculated with the new distance measure that we de-
fined in equation (4). This distance is defined in terms of the number N of (spaced)
wordmatches between two sequences. As mentioned above, the establishedJensen-
Shannon and Euclidean distances on (spaced) word frequency vectors also depend
on N , as they can be approximated by L−N and

√
L−N , respectively. Thus, the

variances of these three distance measures directly depend on the variance of N .
As can be seen in Fig. 1, the variance of the distances calculated with our new dis-
tance function increases with the frequency of substitutions. Also, the variance is
higher for the single-pattern approach than for the multiple-pattern approach. To
explain this observation, we calculated the variance of the number N of spaced-
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Fig. 3. Evaluation of distance matrices calculated with various alignment-free methods
for a set of 112 HIV-1 genomes. Similarities between calculated matrices and a reference
matrix were calculated as in Figure2. In addition, we evaluated a distance matrix based
on a multiple alignment calculated by CLUSTAL Ω.
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Fig. 4. Variance of the normalized number N
m

of spaced-word matches where m = |P|
is the number of patterns in the multiple-pattern approach. Formula (8) was applied
to contiguous and to single and multiple spaced words for un-gapped sequence pairs of
length 16,000 nt with a mismatch frequency of 0.7 (left) and 0.25 (right)

word matches using equation 8. Fig. 4 summarizes the results for a sequence length
of L = 16.000 and mismatch frequencies of 0.7 and 0.25, respectively.

7 Discussion

In this paper, we proposed a new estimator for the evolutionary distance between
two DNA sequences based on the number N of spaced-word matches between
them. While most alignment-free methods use ad-hoc distance measures, the
distance function that we defined is based on a probabilistic model of evolution
and seems to be a good estimator for the number of substitutions per site that
have occurred since two sequences have evolved separately. For simplicity, we
used a model of evolution without insertions and deletions. Nevertheless, our test
results show that our distance function is still a reasonable estimator if the input
sequences contain a moderate number of insertions and deletions. Obviously, our
distance function would drastically overestimate the distances between sequence



172 B. Morgenstern et al.

pairs that share only local homologies. This seems to be a major limitation of
our approach. However, as indicated in section 4, our distance measure can be
adapted to the case of local homologies if the length of these homologies and
the number of gaps in the homologous regions can be estimated. In principle,
it should therefore be possible to apply our method to locally related sequences
by first estimating the extent of their shared homologies and then adapting our
distance measure accordingly.

The distance introduced in this paper and other distance measures that we
previously used for our spaced words approach depend on the number N of
space-word matches between two sequences with respect to a set P of patterns
of ‘match’ and ‘don’t care’ positions. This is similar for more traditional, k-
mer based distance measures where P consists of one single contiguous pattern
P = 1 . . . 1. Obviously, the expected number of (spaced) word matches is essen-
tially the same for contiguous and for spaced words of the corresponding weight.
Herein, we showed how the variance of N can be calculated and demonstrated
that this variance is considerably lower for our spaced-words approach than for
the standard approach that is based on contiguous words, and that our multiple-
pattern approach further reduces the variance of N/m where m is the number of
patterns in P . This seems to be the main reason why our multiple spaced words
approach outperforms the single-pattern approach that we previously introduced
as well as the classical k-mer approach when used for phylogeny reconstruction.

As we have shown, the variance of N depends on the number of overlapping
‘match’ positions if patterns from P are shifted against each other. Consequently,
in our single-pattern approach, the variance of N is higher for periodic patterns
than for non-periodic patterns, and if a pattern like 101010 . . . is used, the
variance is equal to the variance of the contiguous pattern with the same weight.
In our benchmark studies, we could experimentally confirm that on phylogeny
benchmark data, spaced words performs worse with periodic patterns than with
non-periodic patterns. Therefore, the theoretical results of this study may be
useful to find patterns or sets of patterns that minimize the variance of N and
thereby improve our spaced-words approach.

Acknowledgements. We would like to thank Marcus Boden, Sebastian Lind-
ner, Alec Guyomard and Claudine Devauchelle for help with the program evalu-
ation and Gilles Didier for help with the software to compare distance matrices.
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Abstract. Structural variation in genomes can be revealed by many
(dis)similarity measures. Rearrangement operations, such as the so called
double-cut-and-join (DCJ), are large-scale mutations that can create
complex changes and produce such variations in genomes. A basic task in
comparative genomics is to find the rearrangement distance between two
given genomes, i.e., the minimum number of rearragement operations
that transform one given genome into another one. In a family-based
setting, genes are grouped into gene families and efficient algorithms
were already proposed to compute the DCJ distance between two given
genomes. In this work we propose the problem of computing the DCJ
distance of two given genomes without prior gene family assignment, di-
rectly using the pairwise similarity between genes. We propose a new
family-free DCJ distance, prove that the family-free DCJ distance prob-
lem is APX-hard, and provide an integer linear program to its solution.

1 Introduction

Genomes are subject to mutations or rearrangements in the course of evolution.
Typical large-scale rearrangements change the number of chromosomes and/or
the positions and orientations of genes. Examples of such rearrangements are
inversions, translocations, fusions and fissions. A classical problem in compara-
tive genomics is to compute the rearrangement distance, that is, the minimum
number of rearrangements required to transform a given genome into another
given genome [14].

In order to study this problem, one usually adopts a high-level view of genomes,
in which only “relevant” fragments of the DNA (e.g., genes) are taken into con-
sideration. Furthermore, a pre-processing of the data is required, so that we can
compare the content of the genomes.

One popular method, adopted for more than 20 years, is to group the genes
in both genomes into gene families, so that two genes in the same family are
said to be equivalent. This setting is said to be family-based. Without gene
duplications, that is, with the additional restriction that each family occurs
exactly once in each genome, many polynomial models have been proposed to
compute the genomic distance [3,4,12,17]. However, when gene duplications are
allowed, the problem is more intrincate and all approaches proposed so far are
NP-hard, see for instance [1, 7, 8, 15, 16].

D. Brown and B. Morgenstern (Eds.): WABI 2014, LNBI 8701, pp. 174–186, 2014.
c© Springer-Verlag Berlin Heidelberg 2014
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It is not always possible to classify each gene unambiguously into a single
gene family. Due to this fact, an alternative to the family-based setting was
proposed recently and consists in studying the rearrangement distance without
prior family assignment. Instead of families, the pairwise similarity between genes
is directly used [5, 10]. This approach is said to be family-free. Although the
family-free setting seems to be at least as difficult as the family-based setting
with duplications, its complexity is still unknown for various distance models.

In this work we are interested in the problem of computing the distance of
two given genomes in a family-free setting, using the double cut and join (DCJ)
model [17]. The DCJ operation, that consists of cutting a genome in two distinct
positions and joining the four resultant open ends in a different way, represents
most of large-scale rearrangements that modify genomes. After preliminaries and
a formal definition of the family-free DCJ distance, we present in Section 4 a
hardness result, before giving a linear programming solution and showing its
feasibility for practical problem instances in Section 5. Section 6 concludes.

2 Preliminaries

Let A and B be two distinct genomes and let A be the set of genes in genome
A and B be the set of genes in genome B.

Each gene g in a genome is an oriented DNA fragment that can be repre-
sented by the symbol g itself, if it has direct orientation, or by the symbol −g,
if it has reverse orientation. Furthermore, each one of the two extremities of a
linear chromosome is called a telomere, represented by the symbol ◦. Each chro-
mosome in a genome can be represented by a string that can be circular, if the
chromosome is circular, or linear and flanked by the symbols ◦ if the chromosome
is linear. For the sake of clarity, each chromosome is also flanked by parentheses.
As an example, consider the genome A = {(◦ 3 −1 4 2 ◦), (◦ 5 −6 −7 ◦)} that is
composed of two linear chromosomes.

Since a gene g has an orientation, we can distinguish its two ends, also called
its extremities, and denote them by gt (tail) and gh (head). An adjacency in a
genome is either the extremity of a gene that is adjacent to one of its telomeres,
or a pair of consecutive gene extremities in one of its chromosomes. If we consider
again the genome A above, the adjacencies in its first chromosome are 3t, 3h1h,
1t4t, 4h2t and 2h.

2.1 Adjacency Graph and Family-Based DCJ Distance

In the family-based setting we are given two genomes A and B with the same
content, that is, A = B. When there are no duplications, that is, when each
family is represented by exactly one gene in each genome, the DCJ distance can
be easily computed with the help of the adjacency graph AG(A,B), a bipartite
multigraph such that each partition corresponds to the set of adjacencies of one
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of the two input genomes and an edge connects the same extremities of genes in
both genomes. In other words, there is a one-to-one correspondence between the
set of edges in AG(A,B) and the set of gene extremities. Vertices have degree
one or two and thus an adjacency graph is a collection of paths and cycles. An
example of an adjacency graph is given in Figure 1.

1h 1t3t 3h4t 4h2t 2h

2h 2t1t 1h4t 4h3t 3h

Fig. 1. The adjacency graph for the two unichromosomal and linear genomes A =
{(◦ −1 3 4 2 ◦)} and B = {(◦ −2 1 4 3 ◦)}

The family-based DCJ distance ddcj between two genomes A and B without
duplications can be computed in linear time and is closely related to the number
of components in the adjacency graph AG(A,B) [4]:

ddcj(A,B) = n− c− i/2 ,

where n = |A| = |B| is the number of genes in both genomes, c is the number of
cycles and i is the number of odd paths in AG(A,B).

Observe that, in Figure 1, the number of genes is n = 4 and AG(A,B) has
one cycle and two odd paths. Consequently the DCJ distance is ddcj(A,B) =
4− 1− 2/2 = 2.

The formula for ddcj(A,B) can also be derived using the following approach.
Given a component C in AG(A,B), let |C| denote the length, or number of
edges, of C. From [6,11] we know that each component in AG(A,B) contributes
independently to the DCJ distance, depending uniquely on its length. Formally,
the contribution d(C) of a component C in the total distance is given by:

d(C) =

⎧⎪⎪⎨
⎪⎪⎩

|C|
2 − 1 , if C is a cycle ,
|C|−1

2 , if C is an odd path ,
|C|
2 , if C is an even path .

The sum of the lengths of all components in the adjacency graph is equal
to 2n. Let C, I, and P represent the sets of components in AG(A,B) that
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are cycles, odd paths and even paths, respectively. Then, the DCJ distance can
be calculated as the sum of the contributions of each component:

ddcj(A,B) =
∑

C∈AG(A,B)

d(C)

=
∑
C∈C

(
|C|
2
− 1

)
+
∑
C∈I

(
|C| − 1

2

)
+
∑
C∈P

(
|C|
2

)

=
1

2

( ∑
C∈AG(A,B)

|C|
)
−
∑
C∈C

1−
∑
C∈I

1

2

= n− c− i/2 .

2.2 Gene Similarity Graph for the Family-Free Model

In the family-free setting, each gene in each genome is represented by a distinct
symbol, thus A∩B = ∅ and the cardinalities |A| and |B| may be distinct. Let a
be a gene in A and b be a gene in B, then their normalized similarity is given
by the value σ(a, b) that ranges in the interval [0, 1].

We can represent the similarities between the genes of genome A and the
genes of genome B with respect to σ in the so called gene similarity graph [5],
denoted by GSσ(A,B). This is a weighted bipartite graph whose partitions A
and B are the sets of genes in genomes A and B, respectively. Furthermore, for
each pair of genes (a, b), such that a ∈ A and b ∈ B, if σ(a, b) > 0 there is
an edge e connecting a and b in GSσ(A,B) whose weight is σ(e) := σ(a, b). An
example of a gene similarity graph is given in Figure 2.
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Fig. 2. A possible gene similarity graph for the two unichromosomal linear genomes
A = {(◦ 1 2 3 4 5 ◦)} and B = {(◦ 6 −7 −8 −9 10 11 ◦)}

3 Reduced Genomes and Family-Free DCJ Distance

Let A and B be two genomes and let GSσ(A,B) be their gene similarity graph.
Now let M = {e1, e2, . . . , en} be a matching in GSσ(A,B) and denote by w(M) =∑

ei∈M σ(ei) the weight of M , that is the sum of its edge weights. Since the
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endpoints of each edge ei = (a, b) in M are not saturated by any other edge of M ,
we can unambiguously define the function s(a,M) = s(b,M) = i. The reduced
genome AM is obtained by deleting from A all genes that are not saturated by
M , and renaming each saturated gene a to s(a,M), preserving its orientation.
Similarly, the reduced genome BM is obtained by deleting from B all genes
that are not saturated by M , and renaming each saturated gene b to s(b,M),
preserving its orientation. Observe that the set of genes in AM and in BM is
G(M) = {s(g,M) : g is saturated by the matching M} = {1, 2, . . . , n}.

3.1 The Weighted Adjacency Graph of Reduced Genomes

Let AM and BM be the reduced genomes for a given matching M of GSσ(A,B).
The weighted adjacency graph of AM and BM , denoted by AGσ(AM , BM ), is
obtained by constructing the adjacency graph of AM and BM and adding weights
to the edges as follows. For each gene i in G(M), both edges itit and ihih inherit
the weight of edge ei in M , that is, σ(itit) = σ(ihih) = σ(ei). Observe that,
for each edge e ∈ M , we have two edges of weight σ(e) in AGσ(AM , BM ), thus
w(AGσ(AM , BM )) = 2w(M) (the weight of AGσ(AM , BM ) is twice the weight
of M). Examples of weighted adjacency graphs are shown in Figure 3.
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Fig. 3. Considering the same genomes A = {(◦ 1 2 3 4 5 ◦)} and B =
{(◦ 6 −7 −8 −9 10 11 ◦)} as in Figure 2, let M1 (dotted edges) and M2 (dashed
edges) be two distinct matchings in GSσ(A,B), shown in the upper part. The two re-
sulting weighted adjacency graphs AGσ(A

M1 , BM1), that has two odd paths and three
cycles, and AGσ(A

M2 , BM2), that has two odd paths and two cycles, are shown in the
lower part.
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3.2 The Weighted DCJ Distance of Reduced Genomes

Based on the weighted adjacency graph, in [5] a family-free DCJ similarity mea-
sure has been proposed. To be more consistent with the comparative genomics
literature, where distance measures are more common than similarities, here we
propose a general family-free DCJ distance. Moreover, edge weights are treated
in a way that, when all weights are equal to 1, the definition falls back to the
(unweighted) family-based DCJ distance.

To define the distance measure, we consider the components of the graph
AGσ(AM , BM ) separately, similarly to the approach described in Section 2.1 for
the family-based model. Now, the contribution of each component C is denoted
by dσ(C) and must include not only the length |C| of the component, but also
information about the weights of the edges in C. Basically, we need a function
f(C) to use instead of |C| in the contribution function dσ(C), such that: (i)
when all edges in C have weight 1, f(C) = |C|, that is, the contribution of
C is the same as in the family-based version; (ii) when the weights decrease,
f should increase, because smaller weights mean less similarity, or increased
distance between the genomes.

The simplest linear function f that satisfies both conditions is f(C) = 2|C| −
w(C), where w(C) =

∑
e∈C σ(e) is the sum of the weights of all the edges in C.

Then, the weighted contribution dσ(C) of the different types of components is:

dσ(C) =

⎧⎪⎪⎨
⎪⎪⎩

2|C|−w(C)
2 − 1 , if C is a cycle ,

2|C|−w(C)−1
2 , if C is an odd path ,

2|C|−w(C)
2 , if C is an even path .

Let C, I, and P represent the sets of components in AGσ(AM , BM ) that are
cycles, odd paths and even paths, respectively. Summing the contributions of all
the components, the resulting distance for a certain matching M is computed as
follows:

dσ(A
M , BM ) =

∑
C∈AGσ(AM ,BM )

dσ(C)

=
∑
C∈C

(
2|C|−w(C)

2
− 1

)
+
∑
C∈I

(
2|C|−w(C)−1

2

)
+

∑
C∈P

(
2|C|−w(C)

2

)

=
∑

C∈AGσ(AM ,BM )

|C| − 1

2

( ∑
C∈AGσ(AM ,BM )

w(C)

)
−

∑
C∈C

1−
∑
C∈I

1

2

= 2|M | − w(AGσ(A
M , BM ))/2− c− i/2

= ddcj(A
M , BM ) + |M | − w(M) ,

since the number of genes in G(M) is equal to the size of M .
In Figure 3, matching M1 gives the weighted adjacency graph with more

components, but whose distance dσ(AM1 , BM1) = 1 + 5− 2.7 = 3.3 is larger. On
the other hand, M2 gives the weighted adjacency graph with less components,
but whose distance dσ(AM2 , BM2) = 2 + 5− 3.9 = 3.1 is smaller.
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3.3 The Family-Free DCJ Distance

Our goal in the remainder of this paper is to study the problem of computing
the family-free DCJ distance, i.e., to find a matching in GSσ(A,B) that min-
imizes dσ. First of all, it is important to observe that the behaviour of this
function does not correlate with the size of the matching. Often smaller match-
ings, that possibly discard gene assignments, lead to smaller distances. genomes
with any gene similarity graph, a trivial empty matching leads to the minimum
distance, equal to zero.

Due to this fact we restrict the distance to maximal matchings only. This
ensures that no pairs of genes with positive similarity score are simply discarded,
even though they might increase the overall distance. Hence we have the following
optimization problem:

Problem ffdcj-distance(A,B): Given genomes A and B and their
gene similarities σ, calculate their family-free DCJ distance

dffdcj(A,B) = min
M∈M

{dσ(AM , BM )} ,

where M is the set of all maximal matchings in GSσ(A,B).

4 Complexity of the Family-Free DCJ Distance

In order to assess the complexity of ffdcj-distance, we use a restricted version
of the family-based exemplar DCJ distance problem [8, 15]:

Problem. (s, t)-exdcj-distance(A,B): Given genomes A and B, where
each family occurs at most s times in A and at most t times in B, obtain
exemplar genomes A′ and B′ by removing all but one copy of each family
in each genome, so that the DCJ distance ddcj(A

′, B′) is minimized.

We establish the computational complexity of the ffdcj-distance problem
by means of a polynomial time and approximation preserving (AP-) reduction
from the problem (1, 2)-exdcj-distance, which is NP-hard [8]. Note that the
authors of [8] only consider unichromosomal genomes, but the reduction can
be extended to multichromosomal genomes, since an algorithm that solves the
multichromosomal case also solves the unichromosomal case.

Theorem 1. Problem ffdcj-distance(A,B) is APX-hard, even if the maxi-
mum degrees in the two partitions of GSσ(A,B) are respectively one and two.

Proof. Using notation from [2] (Chapter 8), we give an AP-reduction (f, g, β)
from (1, 2)-exdcj-distance to ffdcj-distance as follows:

Algorithm f receives as input a positive rational number δ and an instance
(A,B) of (1, 2)-exdcj-distance where A and B are genomes from a set of genes
G and each gene in G occurs at most once in A and at most twice in B, and
constructs an instance (A′, B′) = f(δ, (A,B)) of ffdcj-distance as follows.
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Let the genes of A be denoted a1, a2, . . . , a|A| and the genes of B be denoted
b1, b2, . . . , b|B|. Then A′ and B′ are copies of A and B, respectively, except that
symbol ai in A′ is relabeled by i, keeping its orientation, and bj in B′ is relabeled
by j + |A|, also keeping its orientation. Furthermore, the similarity σ for genes
in A′ and B′ is defined as σ(i, k) = 1 for i in A′ and k in B′, such that ai is in
A, bj is in B, ai and bj are in the same gene family, and k = j + |A|. Otherwise,
σ(i, k) = 0. Figure 4 gives an example of a GSσ(A′, B′) for this construction.

1 2 −3 4

−5 6 7 8 9 −10

Fig. 4. Gene similarity graph GSσ(A
′, B′) constructed from the input genomes A =

{(◦ a c −b d ◦)} and B = {(◦ −c d a c b −b ◦)} of (1, 2)-exdcj-distance, where all
edge weights are 1. Highlighted edges represent a maximal matching in GSσ(A

′, B′).

Algorithm g receives as input a positive rational number δ, an instance (A,B)
of (1, 2)-exdcj-distance and a solution M ′ of ffdcj-distance, and trans-
forms M ′ into a solution (Ax, Bx) of (1, 2)-exdcj-distance. This is a sim-
ple construction: for each edge (i, k) in M ′ we add symbols ai to Ax and bj
to Bx, where j = k − |A|. For the example of Figure 4, a matching M ′ =
{(1, 7), (2, 8), (−3,−10), (4, 6)}, which is a solution to ffdcj-distance(A′, B′),
is transformed by g into the genomes Ax = {(◦ a1 a2 a3 a4 ◦)} = {(◦ a c −b d ◦)}
and Bx = {(◦ b2 b3 b4 b6 ◦)} = {(◦ d a c −b ◦)}, which is a solution to (1, 2)-
exdcj-distance(A,B).

Notice that for any positive rational number δ, functions f and g are poly-
nomial time algorithms on the size of their respective instances. Let Ax := A
and let Bx be an exemplar genome of B, such that (Ax, Bx) = g(δ, (A,B),M ′).
Denote by cAG and iAG the number of cycles and odd paths in AG(Ax, Bx),
and by cAGσ and iAGσ the number of cycles and odd paths in AGσ(AM ′

, BM ′
).

Observe that we have |Ax|= |Bx|= |M ′|, cAG =cAGσ , iAG= iAGσ , and thus

dσ(A′, B′) = 2|M ′| − w(M ′)− cAGσ − iAGσ/2

= |Ax| − cAG − iAG/2

= d(Ax, Bx) ,

that is, opt(ffdcj-distance(A′, B′)) = opt((1, 2)-exdcj-distance(A,B)) .
Therefore, dσ(A′, B′) ≤ (1+δ) opt((1,2)-exdcj-distance(A,B)) for any pos-

itive δ, and the last condition for the AP-reduction holds by setting β := 1:

d(Ax, Bx) ≤ (1 + βδ) opt((1, 2)-exdcj-distance(A,B)) .

��
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Corollary 2. There exists no polynomial-time algorithm for ffdcj-distance

with approximation factor better than 1237/1236, unless P = NP.

Proof. As shown in [8], (1, 2)-exdcj-distance is NP-hard to approximate within
a factor of 1237/1236− ε for any ε > 0. Therefore, the result follows immediately
from [8] and from the AP-reduction in the proof of Theorem 1. ��

Since the weight plays an important role in dσ, a matching with maximum
weight, that is obviously maximal, could be a candidate for the design of an ap-
proximation algorithm for ffdcj-distance. However, we can demonstrate that
it is not possible to obtain such an approximation, with the following example.

Consider an integer k ≥ 1 and let A = {(◦ 1 −2 · · · (2k−1) −2k ◦)} and
B = {(◦ −(2k+1) (2k+2) · · · −(2k+2k−1) (2k+2k) ◦)} be two unichromosomal
linear genomes. Observe that A and B have an even number of genes with
alternating orientation. While A starts with a gene in direct orientation, B starts
with a gene in reverse orientation. Now let σ be the normalized similarity measure
between the genes of A and B, defined as follows:

σ(i, j) =

⎧⎨
⎩

1, for each i ∈ {1, 2, . . . , 2k} and j=2k+i ;
1−ε, for each i ∈ {1, 3, . . . , 2k−1} and j=2k+i+1,with ε ∈ [0, 1);
0, otherwise.

Figure 5 shows GSσ(A,B) for k = 3 and σ as defined above.

1 −2 3 −4 5 −6

−7 8 −9 10 −11 12

1 1 1 1 1 1
1−ε 1−ε 1−ε

Fig. 5. Gene similarity graph GSσ(A,B) for k = 3

There are several matchings in GSσ(A,B). We are interested in two particular
maximal matchings:

– M∗ is composed of all edges that have weight 1− ε. It has weight w(M∗) =
(1−ε)|M∗|. Its corresponding weighted adjacency graph AGσ(AM∗

, BM∗
) has

|M∗| − 1 cycles and two odd paths, thus ddcj(A
M∗
, BM∗

) = 0. Consequently,
we have dσ(AM∗

, BM∗
) = |M∗| − (1− ε)|M∗| = ε|M∗|.

– M is composed of all edges that have weight 1. It is the only matching with
the maximum weight w(M) = |M |. Its corresponding weighted adjacency
graph AGσ(AM , BM ) has two even paths, but no cycles or odd paths, giving
ddcj(A

M , BM ) = |M |. Hence, dσ(AM , BM ) = 2|M | − |M | = |M |.
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Notice that dffdcj(A,B) ≤ dσ(AM∗
, BM∗

). Furthermore, since |M | = 2|M∗|,

dσ(AM , BM )

dσ(AM∗ , BM∗)
=
|M |
ε|M∗| =

2

ε

and 2/ε→ +∞ when ε→ 0.
This shows that, for any genomes A and B, a matching of maximum weight

in GSσ(A,B) can have dσ arbitrarily far from the optimal solution and cannot
give an approximation for ffdcj-distance(A,B).

5 ILP to Compute the Family-Free DCJ Distance

We propose an integer linear program (ILP) formulation to compute the family-
free DCJ distance between two given genomes. This formulation is a slightly
different version of the ILP for the maximum cycle decomposition problem given
by Shao et al. [16] to compute the DCJ distance between two given genomes with
duplicate genes. Besides the cycle decomposition in a graph, as was made in [16],
we also have to take into account maximal matchings in the gene similarity graph
and their weights.

Let A and B be two genomes with extremity sets XA and XB, respectively,
and let G = GSσ(A,B) be their gene similarity graph. The weight w(e) of an
edge e in G is also denoted by we. Let M be a maximal matching in G. For the
ILP formulation, a weighted adjacency graph H = AGσ(AM , BM ) is such that
V (H) = XA ∪XB and E(H) has three types of edges: (i) matching edges that
connect two extremities in different extremity sets, one in XA and the other in
XB, if there exists one edge in M connecting these genes in G; the set of matching
edges is denoted by Em; (ii) adjacency edges that connect two extremities in
the same extremity set if they are an adjacency; the set of adjacency edges is
denoted by Ea; and (iii) self edges that connect two extremities of the same gene
in an extremity set; the set of self edges is denoted by Es. All edges in H are in
Em ∪Ea ∪Es = E(H). Matching edges have weights defined by the normalized
similarity σ, all adjacency edges have weight 1, and all self edges have weight 0.
Notice that any edge in G corresponds to two matching edges in H .

Now we describe the ILP. For each edge e in H , we create the binary variable
xe to indicate whether e will be in the final solution. We require first that each
adjacency edge be chosen:

xe = 1 , ∀ e ∈ Ea .

We require then that, for each vertex in H , exactly one incident edge to it be
chosen:∑

uv∈Em∪Es

xuv = 1 , ∀ u ∈ XA , and
∑

uv∈Em∪Es

xuv = 1 , ∀ v ∈ XB .
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Then, we require that the final solution be consistent, meaning that if one
extremity of a gene in A is assigned to an extremity of a gene in B, then the
other extremities of these two genes have to be assigned as well:

xahbh = xatbt , ∀ ab ∈ E(G) .

We also require that the matching be maximal. It can be easily ensured if
we garantee that at least one of the vertices connected by an edge in the gene
similarity graph be chosen, which is equivalent to not allowing both of the cor-
responding self edges in the weighted adjacency graph be chosen:

xahat + xbhbt ≤ 1 , ∀ ab ∈ E(G) .

To count the number of cycles, we use the same strategy as described in [16].
We first give an arbitrary index for each vertex in H such that V (H) = {v1, v2,
. . . , vk} with k = |V (H)|. For each vertex vi, we define a variable yi that labels
vi such that

0 ≤ yi ≤ i , 1 ≤ i ≤ k .

We also require that all vertices in the same cycle in the solution have the same
label:

yi ≤ yj + i · (1 − xe) , ∀ e = vivj ∈ E(H) ,

yj ≤ yi + j · (1 − xe) , ∀ e = vivj ∈ E(H) .

And we create a binary variable zi, for each vertex vi, to verify whether yi is
equal to its upper bound i:

i · zi ≤ yi , 1 ≤ i ≤ k .

Notice that the way as variables zi were defined, they count the number of cycles
in H [16].

Finally, we set the objective function as follows:

minimize 2
∑
e∈Em

xe −
∑

e∈Em

wexe −
∑

1≤i≤k

zi ,

which is exactly the family-free DCJ distance dffdcj(A,B) as defined in Section 3.

We performed some initial simulated experiments of our integer linear pro-
gram formulation. We produced some datasets using the Artificial Life Simulator
(ALF) [9]. Genome sizes varied from 1000 to 3000 genes, where the gene lengths
were generated according to a gamma distribution with shape parameter k = 3
and scale parameter θ = 133. A birth-death tree with 10 leaves was generated,
with PAM distance of 100 from the root to the deepest leaf. For the amino
acid evolution, the WAG substitution model with default parameters was used,
with Zipfian indels at a rate of 0.000005. For structural evolution, gene dupli-
cations and gene losses were applied with a 0.001 rate, with a 0.0025 rate for
reversals and translocations. To test different ration of rearrangement events, we
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also simulated datasets where the structural evolution ratios had a 2- and 5-fold
increase.

To solve the ILPs, we ran the CPLEX Optimizer1 on the 45 pairwise compar-
isons of each simulated dataset. All simulations were run in parallel on a cluster
consisting of machines with an Intel(R) Xeon(R) E7540 CPU, with 48 cores and
as many as 2 TB of memory, but for each individual CPLEX run only 4 cores
and 2 GB of memory were allocated. The results are summarized on Table 1.

Table 1. ILP results for datasets with different genome sizes and evolutionary rates.
Each dataset has 10 genomes, totalling 45 pairwise comparisons. Maximum running
time was set to 20 minutes. For each dataset, it is shown the number of runs that found
an optimal solution in time and their average running time. For the runs that did not
finish, the last row shows the gap between the upper bound and the current solution.
Rate r = 1 means the default rate for ALF evolution, and r = 2 and r = 5 mean 2-fold
and 5-fold increase for the gene duplication, gene deletion and rearrangement rates.

1000 genes 2000 genes 3000 genes

r = 1 r = 2 r = 5 r = 1 r = 2 r = 5 r = 1 r = 2 r = 5

Finished 45/45 22/45 6/45 45/45 9/45 1/45 45/45 7/45 3/45

Avg. Time (s) 0.66 11.09 24.26 1.29 2.76 16.97 2.24 16.36 36.01

Avg. Gap (%) 0 1.08 3.9 0 1.93 12.4 0 3.9 6.03

6 Conclusion

In this paper, we have defined a new distance measure for two genomes that is
motivated by the double cut and join model, while not relying on gene annota-
tions in form of gene families. In case gene families are known and each family
has exactly one member in each of the two genomes, the distance equals the
family-based DCJ distance and thus can be computed in linear time. In the gen-
eral case, however, it is NP-hard and even hard to approximate. Nevertheless, we
could give an integer linear program for the exact computation of the distance
that is fast enough to be applied to realistic problem instances.

The family-free model has many potentials when gene family assignments are
not available or ambiguous, in fact it can even be used to improve family assign-
ments [13]. The work presented in this paper is another step in this direction.
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the NP-hardness of ffdcj-distance could be proven via a reduction from the
exemplar distance problem. FVM and MDVB are funded from the Brazilian
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Abstract. A common problem that appears in many case studies in
ecology is the following: given a rooted phylogenetic tree T and a subsetR
of its leaf nodes, we want to compute the distance between the elements
in R. A very popular distance measure that can be used for this reason
is the Phylogenetic Diversity (PD), which is defined as the cost of the
minimum weight Steiner tree in T that spans the nodes in R. To analyse
the value of the PD for a given set R it is important also to calculate the
variance of this measure. However, the best algorithm known so far for
computing the variance of the PD is inefficient; for any input tree T that
consists of n nodes, this algorithm has Θ(n2) running time. Moreover,
computing efficiently the variance and higher order statistical moments
is a major open problem for several other phylogenetic measures. We
provide the following results:

• We describe a new algorithm that computes efficiently in practice the
variance of the PD. This algorithm has O(SI(T )+DSSI2(T )) running
time; here SI(T ) denotes the Sackin’s Index of T , and DSSI(T ) is a
new index whose value depends on how balanced T is.

• We provide for the first time exact formulas for computing the mean
and the variance of another popular biodiversity measure, the Mean
Nearest Taxon Distance (MNTD). These formulas apply specifically
to ultrametric trees. For an ultrametric tree T of n nodes, we show
how we can compute the mean of the MNTD in O(n) time, and its
variance in O(SI(T ) + DSSI2(T )) time.

• We introduce a new measure which we call the Core Ancestor Cost
(CAC). A major advantage of this measure is that for any
integer k > 0 we can compute all first k statistical moments of
the CAC in O(SI(T ) +nk+ k2) time in total, using O(n+ k) space.

We have implemented the new algorithms for computing the variance
of the PD and of the MNTD, and the statistical moments of the CAC.
We conducted experiments on large phylogenetic datasets and we show
that our algorithms perform efficiently in practice.
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1 Introduction

Researchers in the field of ecology, but also from other disciplines in biology,
are frequently confronted with the following problem: given a set of species,
they want to measure if these species are close evolutionary relatives. The most
common way to measure this is to use a phylogenetic tree T , where each leaf
of the tree corresponds to a species, and the weights of the tree edges represent
some concept of distance e.g. time since the last speciation event. From T we
select a subset of leaves R which correspond to the species that we want to
examine. The next step is then to choose a method for computing the distance
between the leaves in R based on the structure of T . In the related literature,
such methods are refered to as phylogenetic biodiversity measures. Two measures
of this kind that are widely used are the Phylogenetic Diversity (PD) and the
Mean Nearest Taxon Distance (MNTD). For a given tree T and a subset R of its
leaves, the value of the PD is equal to the cost of the minimum-weight Steiner
tree in T that spans the nodes in R. The value of the MNTD is the average path
cost in T between any node v ∈ R and its closest neighbour in R \ {v}.

Whichever method we choose for computing the distance between the elements
in R, we need to know if the returned distance value is relatively small or large
compared to other sets of leaves in T . More specifically, we need to compare the
distance value that we got for R with the distance values of all possible subsets
of leaves in T that have exactly the same number of elements. In several case
studies in biology this is done by computing the mean and the variance of the
distance values among all those subsets of species [10,4,9,8]. We can then use
these to calculate a standardized index; from the distance value that we got
for R we subtract the mean and divide by the standard deviation. Depending
on the distance measure that we choose, we can use this method to produce
several indices. Some of the most widely used indices of this kind are the Net
Relatedness Index (NRI), the Nearest Taxon Index (NTI, based on the MNTD)
and the Phylogenetic Diversity Index (PDI, based on the PD) [15,17].

In a previous paper we introduced algorithms that compute the values for
the mean and the variance the PD [15]. For a tree T that consists of n nodes in
total, and for a non-negative integer r, we introduced an algorithm that computes
in O(n) time the mean value of the PD among all possible subsets that consist
of r leaves. We also introduced an algorithm that computes the variance of
the PD in Θ(n2) time. The latter algorithm is quite inefficient since it takes Θ(n2)
time to execute, not only in the worst case but for every input tree. This makes
the use of this algorithm limited in practice, since in some applications it is
required to calculate the variance of some measure for a large number of different
trees (for example, constructed algorithmically by slightly changing the structure
of a given reference tree).

On the other hand, there are no known algorithms for computing the exact
value of the mean and the variance of the MNTD. So far, researchers try to
estimate these values using a random sampling technique; for a given subset
size r, a few subsets of exactly r leaves in T are selected at random. Then,
the mean and the variance of the MNTD is calculated using the values of this
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measure only for the selected subsets. The number of the sampled subsets is
usually around a thousand. For sufficiently large values of r and n, this is a very
small number of samples compared to the number of all possible subsets of r
leaves in T . This implies that the sampling approach is inexact, and may yield
estimated values for the mean and the variance that are very different from the
original ones. Hence, there is need to introduce exact and efficient algorithms
for computing these statistics for the MNTD, which are required to derive the
commonly used NTI [11].

Furthermore, in some studies it is required to compute not only the mean
and the variance, but also the higher order moments of a given measure [3].
Unfortunately, for the most popular phylogenetic biodiversity measures
computing the higher order statistics appears to be a difficult task. For the PD
and the MNTD, any preliminary attempts that we made to compute the higher
order moments lead to algorithms with running time that scales exponentially
as the order of the moment increases. Yet, to this point we have not proven
that designing more efficient algorithms is impossible; this is a conjecture. On
the other hand, the skewness of another popular measure, the Mean Pairwise
Distance (MPD), can be computed in O(n) time [14]. However, the analytical
expression that yields the value of the MPD skewness is particularly involved.
Worse than that, it appears that deriving an expression for the higher order
moments of the MPD may be overwhelmingly complicated. Therefore, there
is the need for a non-trivial biodiversity measure for which we can efficiently
compute its higher order moments.

Our Results. In this paper we present several results that have to do with
the efficient computation of the statistical moments of certain phylogenetic
biodiversity measures. Given a phylogenetic tree T and a positive integer r, we
describe an algorithm that computes the variance of the PD among all subsets
of r leaves in O(SI(T ) + DSSI2(T )) time, using O(n) space. Here, we use SI(T )
to denote the Sackin’s Index of T which is equal to the sum of the numbers
of leaves that appear at the subtree of each node in T [2]. We use DSSI(T ) to
denote a new index that we introduce, which we call the Distinct Subtree Sizes
Index. We provide a formal definition of this new index later in this paper. The
values of both the SI(T ) and the DSSI(T ) depend on the structure of the tree T .
When T is relatively balanced, the new algorithm has a very good performance,
and is much more efficient in practice than the already known Θ(n2) algorithm.
It is only in the worst case, when T has Ω(n) height, that the new algorithm runs
in Θ(n2) time. Moreover, we present for the first time algorithms for computing
the exact value of the mean and the variance of the MNTD for ultrametric trees;
a tree is called ultrametric if any simple path from its root to a leaf node has
the same cost. Given an ultrametric tree T of n nodes and a positive integer r,
we provide an algorithm that runs in O(n) time, and computes the mean of
the MNTD among all subsets of r leaves in T . We also present an algorithm that
computes the variance of the MNTD in O(SI(T ) + DSSI2(T )) time, using O(n)
space. This algorithm is based on the on the same method as our new algorithm
that computes the variance of the PD.
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Furthermore, we present a new phylogenetic biodiversity measure which we
call the Core Ancestor Cost (CAC). For a phylogenetic tree T , a subset R of r
leaves in T , and a real χ ∈ (0.5, 1], the CAC of R is equal to the cost of the simple
path that connects the root of T with the deepest common ancestor node of at
least χr of the nodes in R. Among the many existing measures for phylogenetic
diversity (for a review of such measures, see the work of Vellend et al. [16])
the CAC has the following advantage; we can compute efficiently in practice any
of its statistical moments. In particular, we prove that for any integer k > 0 we
can compute all of the first k moments of the CAC in O(SI(T )+nk+k2) time in
total, using O(n + k) space. At the same time, the CAC is conceptually related
to existing measures such as the Net Relatedness Index (NRI), which seeks to
assess the degree to which species in a community are aggregated in particular
sections of the tree.

We have implemented all the algorithms that we introduce in this paper, and
we have measured their efficiency using large phylogenetic tree datasets that
are publicly available. We show that all of the new algorithms have a very good
performance in practice; the new algorithm that computes the variance of the PD
appears to clearly outperform its predecessor that runs in Θ(n2) time.

Related literature. The definition of the PD that we provide in this paper (that
is the cost of the min-weight Steiner tree of a subset of leaves) is known in the
related literature as the unrooted version of the PD. Steel was the first to provide
a formula for the exact computation of the mean of the PD over all subsets of r
leaves of a tree T [13]. This formula describes the value of the mean for the rooted
variant of the PD; in this variant, for a given subset of leaves R ∈ T the value of
the PD is equal to the value of the unrooted PD, plus the cost of the path that
connects the root of T with the deepest common ancestor of all elements in R.
In a previous paper we introduced exact expressions for computing the mean
and the variance of the unrooted PD, and we examined issues related to their
efficient computation [15]. Nipperess and Matsen [12] yield a related result for
a more general version of the problem. They derive formulas for the mean and
the variance of the PD for subsets of nodes in T that may also include internal
nodes. They provide such formulas both for the rooted and the unrooted version
of the PD. Faller et al. [6] and O’Dwyer et al. [5] consider several probability
distributions for sampling subsets of leaves from a tree. In the version of the
problem that they examine, formulas for the mean and the variance of the PD are
derived among subsets of leaves that do not have the same number of elements.

To our knowledge, except our previous work, none of the above papers is
concerned with analysing the running time of an algorithm that evaluates the
derived formulas. Unlike these works, in the current paper we do not provide
a new formula for the variance of the PD. Instead, among other results, we
describe a novel non-trivial method for speeding up significantly the evaluation
of the existing formula.
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2 Computing Efficiently the Variance of Known
Biodiversity Measures

Preliminaries. For a phylogenetic tree T we denote the set of the edges of T
by E. For any edge e ∈ E we use w(e) to represent the weight of e. We consider
that w(e) > 0 for every e ∈ E. We use V to denote the set of nodes of T , and
we use S to denote the set of leaf nodes of T . We use n to indicate the total
number of nodes in T , and we use s to indicate the number of leaves in T . For
any node v ∈ V we use Ch(v) to indicate the set of the child nodes of v. In this
paper we consider only phylogenetic trees that are rooted. We denote the root
node of T by root(T ). Hence, in the rest of this work, whenever we use the term
“phylogenetic tree” we mean a rooted tree with edges that have positive weights.
We use h(T ) to denote the height of the tree, that is the maximum number of
edges that appear on a simple path between the root of T and a leaf. Since T
is a rooted tree, for any edge e ∈ E we can distinguish the two nodes adjacent
to e into a parent node and a child node. Here, the child node of e is the one for
which the simple path between this node and the root contains e.

Let v be a node in T and let e be the edge whose child node is v. We use
interchangeably S(e) and S(v) to denote the set of leaves that appear in the
subtree of v. We denote the number of these leaves by s(e) and s(v). We call
this number the subtree size of v. For a tree edge e ∈ E, we denote the set of the
edges that appear in the subtree of e by Off(e). For any tree edge e we denote
the set of the edges that appear on the simple path between root(T ) and the
child node of e by Anc(e). From this definition we get that e ∈ Anc(e). We also
use Ind(e) to denote the set E \ (Off(e) ∪ Anc(e)). For a given node v ∈ V , we
use Anc(v) to represent the set Anc(e) where e is the edge whose child node is v.

We use Sub(S, r) to denote the set whose elements are all the subsets of S that
have cardinality exactly r. For an edge e ∈ E and a subset R of the leaves of T ,
we use SR(e) to denote the elements of S(e) that are also elements of R, that is
SR(e) = S(e)∩R. We indicate the number of these leaves by sr(e). Let u, v ∈ S
be two leaves in T and let p be the simple path that connects these leaves. We
refer to the sum of the weights of the edges in p as the cost of this path. We
represent this cost as cost(u, v).

A tree T is ultrametric if all simple paths between the root and the leaves
have the same cost. This means also that for every internal node x ∈ T any
simple path that connects x with a leaf in S(x) has the same cost.

For a given tree T the Sackin’s index of T is defined as the sum of the number
of leaves that appear at the subtree of each node in T . More formally, the Sackin’s
index of T is defined as:

SI(T ) =
�
v∈V

s(v).

Alternatively, in the related literature the Sackin’s index is described as the
sum of the depths of all leaf nodes in T . Both definitions are equivalent since
they lead to exactly the same value. The Sackin’s index is mainly used in the
literature as a function for measuring how balanced a phylogenetic tree is [2].
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Let T be a phylogenetic tree, and let R be a subset of r leaves in T . Let f(T , R)
be a function that maps the pair T , R to a non-negative real. Let r be a positive
integer such that r ≤ s. The expected value of f over all subsets that consist of
exactly r leaves is equal to:

μ(T , r) = ER∈Sub(S,r) [f(T , R)] .

The variance of f over all subsets of r leaves is equal to:

var(T , r) = ER∈Sub(S,r)

�
(f(T , R)− μ(T , r))2

�
.

We call the expected value and the variance of f the lower order moments of f .
Let γ be a positive integer such that γ ≥ 3. We define the γ order moment of f
to be the normalised γ-th central moment of f , which is equal to the following
quantity:

ER∈Sub(S,r) [(f(T , R)− μ(T , r))γ ]

varγ/2(T , r) .

We call the moments that are described by the last expression the higher
order moments of f . In the present work, whenever we refer to calculating a
statistical moment of some measure for a leaf subset size r, we consider a uniform
probability distribution for selecting any subset of exactly r leaves in T . In
other words, all subsets of exactly r leaves in T are considered with the same
probability when computing a statistical moment of a given measure.

2.1 A New Algorithm for Calculating the Variance of the PD

In a previous paper, we provided a formal expression for the exact value of the
standard deviation of the PD [15]. Based on that expression, for a tree T and a
sample size of r leaves, the variance of the PD is equal to:

varPD(T , r) =
�
e∈E

�
l∈E

w(e) · w(l) · (1−F(S, e, l, r))− μ2
PD(T , r), (1)

where:

F(S, e, l, r) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

FOff(S, e, l, r) =
(s(e)

r )+(s−s(l)
r )−(s(e)−s(l)

r )
(s
r)

if l ∈ Off(e).

FOff(S, l, e, r) =
(s(l)

r )+(s−s(e)
r )−(s(l)−s(e)

r )
(s
r)

if e ∈ Off(l).

FInd(S, e, l, r) =
(s−s(e)

r )+(s−s(l)
r )−(s−s(e)−s(l)

r )
(s
r)

otherwise.

and where μPD(T , r) is the mean value of the PD over all possible subsets of
exactly r leaves of T . In our previous paper we showed how we can compute this
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mean value for a given r in O(n) time. Hence, the bottleneck for calculating the
variance of this metric is the computation of the following quantity:

�
e∈E

�
l∈E

w(e) · w(l) · (1−F(S, e, l, r)) (2)

Given that we can evaluate function F in constant time1, the expression
in (1) leads to a trivial algorithm that runs in O(n2) time; for every pair of
edges in e, l ∈ E we calculate explicitly the value of F(S, e, l, r). However, as we
mentioned earlier, the large size of recent phylogenetic datasets makes the use
of this algorithm infeasible. Next we show how we can design an algorithm that
can be much more efficient in practice, depending on how balanced the input
tree T is. To describe this better, first we introduce a new concept that has to
do with the structure of a rooted tree. In particular, let D(T ) denote the set of
all subtree sizes that are observed in the tree T , that is D(T ) = {s(e) : e ∈ E} .

We call this set the distinct subtree sizes set of T . We represent the size of
this set by DSSI(T ), that means DSSI(T ) = |D(T )|. We call this value the
Distinct Subtree Sizes Index of the tree T . Based on this definition, we provide
the following theorem.

Theorem 1. Let T be a phylogenetic tree that consists of n nodes, and let r
be a positive integer such that r ≤ n. The variance of the Phylogenetic Diversity
over all subsets of r leaves in T can be computed in O(SI(T ) + DSSI(T )2) time,
using O(n) memory.

Proof. Based on the description that we provided earlier in this section, to
prove the time bound it suffices to describe how we can evaluate efficiently the
expression in (2). We can rewrite this expression as follows:�
e∈E

�
l∈E

w(e) · w(l) · (1− F(S, e, l, r)) (3)

=

��
e∈E

w(e)

�2

−
�
e∈E

w(e)2 · FOff(S, e, e, r)− 2
�
e∈E

�
l∈Off(e)

w(e) · w(l) · FOff(S, e, l, r)

(4)

− 2
�
e∈E

�
l∈Ind(e)

w(e) · w(l) · FInd(S, e, l, r) . (5)

It is easy to show that the first and the second sum in (4) consist of Θ(n)
terms, and therefore they can be computed in O(n) time. The third sum in (4)

1 In the definition of F , all the required values that involve binomial coefficients can
be precomputed in O(n) time in total in the RAM model. Each of the precomputed
values can then be accessed in constant time each time we have to evaluate this
expression.
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consists of SI(T ) terms since for every edge e ∈ E there exist s(e) terms in this
sum. Since we can evaluate each of these terms in constant time, the expression
in (4) can be evaluated in O(SI(T )) time in total.

The two nested sums of the quantity in (5) can be analysed as follows:

�
e∈E

�
l∈Ind(e)

w(e) · w(l) · FInd(S, e, l, r) =
�
e∈E

�
l∈E

w(e) · w(l) · FInd(S, e, l, r)

− 2
�
e∈E

�
l∈Off(e)

w(e) · w(l) · FInd(S, e, l, r)−
�
e∈E

w(e)2 · FInd(S, e, e, r) . (6)

Based on the same arguments as for the expression in (4), the two last sums
in (6) can be evaluated in O(SI(T )) time in total. Let α

be a positive integer such that α ∈ D(T ). Recall that D(T ) is the set of all
values s(e) that we can observe among the edges of T . Let ζ(α) denote the sum
of the weights of all the edges e ∈ E for which it holds s(e) = α, that means:

ζ(α) =
�
e∈E

s(e)=α

w(e)

Using this notation, the first sum in (6) can be written as:

�
e∈E

�
l∈E

w(e) · w(l) · FInd(S, e, l, r) =
�

α∈D(T )

�
β∈D(T )

ζ(α) · ζ(β) · FInd(S, α, β, r) .

(7)

In the last expression, we abuse slightly the notation for function FInd; for two
integers α, β ∈ D we imply that FInd(S, α, β, r) = FInd(S, e, l, r), where s(e) = α
and s(l) = β. The sum in (7) consists of Θ(DSSI2(T )) terms. Each of these
terms can be evaluated in constant time given that we have precomputed the
values ζ(α), ∀α ∈ D(T ). The values ζ(α) can be precomputed trivially in Θ(n)
time altogether, hence the expression in (7) can be evaluated in Θ(DSSI2(T ))
time in total. Given the description that we provided for evaluating the
expressions from (4) to (7), we conclude that the variance of the PD can be
computed in O(SI(T ) + DSSI(T )2) time overall. To do this, we need to store the
values of the functions FOff , and FInd, and the values ζ(α) for every α ∈ D(T ).
These require O(n) memory in total, and the theorem follows. ��

According to Theorem 1, we can compute the variance of the PD using an
algorithm whose performance depends on the parameters SI(T ) and DSSI(T ).
For every tree T it holds that DSSI(T ) ≥ h(T ) and DSSI(T ) ≥ SI(T )/n .
In the best case, when the input tree is balanced and has height Θ(log n), the
new algorithm runs in Θ(n logn) time. But when it comes to the worst case
performance, the new approach is not better than the trivial algorithm that was
previously known; if SI(T ) = Θ(n2) or DSSI(T ) = Θ(n) then the computation of



New Algorithms for Computing Phylogenetic Biodiversity 195

the variance takes O(n2) time. In Section 4 we present experimental results that
indicate that the new approach is much more efficient in practice. For different
tree data sets that we use there, the values of SI(T ) and DSSI(T ) are much
smaller than in the worst case scenario. In fact, we can prove a non-trivial tight
worst case bound for DSSI(T ); this bound depends on the number of nodes and
the height of T . The bound that we provide applies to trees that have a height
that is at least logarithmic to the number of tree nodes (for example, trees where
the nodes have constant maximum degree). The proof of the following lemma
appears in the full version of this paper.

Lemma 1. Let T be a phylogenetic tree that consists of n nodes and has height

h(T ). In the worst case, the value of DSSI(T ) can be as large as Θ(
�
n · h(T )).

2.2 Computing the Mean Nearest Taxon Distance

Next we show how we can use the main result of the previous section in order
to efficiently compute the variance of another popular phylogenetic measure.
Let T be a phylogenetic tree, and let R be a subset of its leaves that consists
of |R| = r elements. The Mean Nearest Taxon Distance(MNTD) of the leaves
in R is equal to the average distance between an element in R and its closest
neighbour in R [17]. More formally, the MNTD is defined as:

MNTD(T , R) =
1

r

�
v∈R

min
u∈R/{v}

cost(u, v) . (8)

Like with other phylogenetic measures, in order to analyse the value of the
MNTD for a set of leaves R it is important to compute the mean and the variance
of this measure for all possible subsets of |R| leaves in T . Next we provide for
the first time formal expressions that lead to the efficient computation of the
exact value of the mean and the variance of the MNTD. The expressions that
we provide hold only for ultrametric phylogenetic trees; recall that a tree T is
ultrametric if all simple paths between the root and the leaves of T have the
same cost. Ultrametric tree datasets are very common in phylogenetic research;
for instance, ultrametric trees are produced for a given set of taxa when the
weights of the tree edges represent specific notions of distance, such as time
between speciation events. In the next lemma we show how we can simplify the
expression in (8) when we specifically consider ultrametric trees.

Lemma 2. Let T be an ultrametric phylogenetic tree and let R ⊆ S be a subset
of r leaves. The value of the MNTD for this subset is equal to:

MNTD(T , R) =
2

r

�
e∈E

sr(e)=1

w(e) . (9)

Proof. Let v be a leaf in R, and let u be the closest leaf to v in R/{v}. That
means cost(u, v) = minx∈R/{v} cost(v, x). Let p(u, v) be the simple path that



196 C. Tsirogiannis, B. Sandel, and A. Kalvisa

connects u and v in T . We can partition p(u, v) into two subpaths p(u, a)
and p(v, a), where a is the deepest node in T that is a common ancestor of u
and v. Since T is ultrametric, for every internal node x ∈ T any simple path
that connects x with a leaf in S(x) has the same cost. Therefore, it holds
that cost(u, a) = cost(v, a) = cost(u, v)/2. Also, for any edge e that appears
in the path p(v, a) we have that sr(e) = 1. If that was not the case then there
would exist an edge e in p(v, a) and a leaf u′ in S(e) such that u′ /∈ {u, v}
and cost(u′, v) < cost(u, v), which contradicts the assumption that u is the
closest leaf to v in R. From the above, we conclude that:

MNTD(T , R) =
1

r

�
v∈R

min
u∈R/{v}

cost(u, v) =
2

r

�
v∈R

�
e∈Anc(v)
sr(e)=1

w(e) =
�
e∈E

sr(e)=1

w(e) .

��

Next we use the expression in (9) to obtain expressions for efficiently computing
the mean and the variance of the MNTD for ultrametric trees.

Theorem 2. Let T be an ultrametric phylogenetic tree that has s leaves and
consists of n nodes in total. Let r be a non-negative integer with r ≤ s. The
expected value of the MNTD for a subset of exactly r leaves in T is equal to:

μMNTD(T , r) =
2

r

�
e∈E

w(e) · s(e) ·
�s−s(e)

r−1

�
�s
r

� , (10)

and can be computed in Θ(n) time in the RAM model.

Proof. Let R be a subset of r leaves in T , and let e be any edge in T . We
use SP (e,R) to denote the function that has value 1 when sr(e) = 1, otherwise
it has value zero. Based on Lemma 2, the expectation of the MNTD for a subset
of r leaves in T is equal to:

EMNTD(T , r) = ER∈Sub(S,r)

	

�2

r

�
e∈E

sr(e)=1

w(e)

�

� = ER∈Sub(S,r)

�
2

r

�
e∈E

w(e) · SP (e,R)

�

(11)

=
2

r

�
e∈E

w(e) · ER∈Sub(S,r) [SP (e,R)] . (12)

Considering that every subset R of exactly r leaves is picked with the same
probability, the expected value of the function SP (e,R) is equal to:

ER∈Sub(S,r) [SP (e,R)] =
s(e) ·

�s−s(e)
r−1

�
�s
r

� , (13)

which leads to the expression in (10).
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To compute the value of this expression, we first precompute values
� x
r−1

�
/
�s
r

�
for every integer x ∈ [r − 1, s]. This can be done alltogether in O(n) time in
the RAM model. Given these values, the rest of the expression (10) can be
straightforwardly evaluated in O(n) time. ��

The proofs of the next theorem appears in the full version of this paper.

Theorem 3. Let T be an ultrametric phylogenetic tree that has s leaves and
consists of n nodes in total. Let r be a natural number with r ≤ s. The variance
of the MNTD for a sample of exactly r leaves in T is equal to:

varMNTD(T , r) =
4

r2

�
e∈E

�
l∈E

w(e) · w(l) · G(S, e, l, r)− μ2
MNTD(T , r), (14)

where:

G(S, e, l, r) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

GOff(S, e, l, r) =
s(l)·(s−s(e)

r−1 )
(s
r)

if l ∈ Off(e).

GOff(S, l, e, r) =
s(e)·(s−s(l)

r−1 )
(s
r)

if e ∈ Off(l).

GInd(S, e, l, r) =
s(e)·s(l)·(s−s(e)−s(l)

r−2 )
(s
r)

otherwise.

The variance of the MNTD can be computed in O(SI(T ) + DSSI(T )2) time,
using O(n) memory.

3 A New Biodiversity Measure

Earlier in this paper, we indicated that in several case studies there is the need
to compute the higher order moments of a phylogenetic biodiversity measure.
Yet, we argued that for a few popular measures this appears to be infeasible.
Next we introduce a new non-trivial measure, for which we prove that we can
calculate any of its statistical moments efficiently in practice.

Let T be a phylogenetic tree and let R be a subset of its leaves. Let χ be a any
real in the interval (0.5, 1]. We use vanc(R,χ) to denote the deepest node in the
tree that has at least χr elements of R in its subtree. We call this node the core
ancestor of R given χ. We call the cost of the simple path that connects vanc(R,χ)
with the root of T the Core Ancestor Cost of R given χ (CAC), and we denote
this cost by CAC(T , R, χ).

We consider that the CAC can be a useful tool for phylogenetic analyses;
the CAC can be used to measure whether a sample of leaves R consists mostly
of a single group of closely related species, or R is made of several small unrelated
groups. For example, if CAC(T , R, 0.8) is relatively large and comparable to the
average path cost between the root and any leaf in T then about 80% of the
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species in R have a common ancestor which is deep in the tree, and they are
closely related. On the other hand, if CAC(T , R, 0.51) is zero then R consists
of at least two main unrelated groups of species. Early experiments that we
conducted have demonstrated that the CAC is strongly positively related to
the NRI and weakly negatively related to the PD, relationships which we intend
to explore further in a future publication. In the present paper we focus on
the computational aspects of this measure; we examine how we can compute
efficiently the CAC and the values of its statistical moments.

For a given sample of leaves R and an integer χ ∈ (0.5, 1], value CAC(T , R, χ)
can be computed in O(n) time in the following way; first, we compute bottom-up
the values sr(e) for every e ∈ E. Then, we start from the root of T and we
compute CAC(T , R, χ) by constructing incrementally the path that connects
the root with vanc(R,χ).

The major advantage of using the CAC in phylogenetic analysis is that, for
a given χ and size of R, we can efficiently compute in practice the value of any
statistical moment of this measure. To describe how can do this, we define the
following quantity:

Cχ(T , r, k) = ER∈Sub(S,r)

�
CACk(T , R, χ)

�
.

We can compute any of the moments of CAC by using the values Cχ(T , r, k).
In particular, The expectation of CAC for r leaves is equal to Cχ(T , r, 1), and the
variance is equal to Cχ(T , r, 2)− C2χ(T , r, 1). Using a standard formula from the
mathematical literature, for any integer k > 3 the k-th order moment of CAC
for r leaves can be expressed as:

�k
i=0

�k
i

�
(−Cχ(T , r, 1))i Ck−i

χ (T , r, i)
(Cχ(T , r, 2)− Cχ(T , r, 1))k/2

. (15)

Therefore, computing the k-th order moment of CAC boils down to calculating
values Cχ(T , r, i) for every i = 1, 2, . . . , k. In the next lemma we show that this
can be done efficiently in practice. The proof of this lemma is provided in the
full version of this paper.

Lemma 3. Let T be a phylogenetic tree that has s leaves and consists of n
nodes in total. Let r ≤ s be a positive integer and let χ be real number such
that χ ∈ (0.5, 1] . For any positive integer k it holds that:

Cχ(T , r, k) = ER∈Sub(S,r)

�
CACk(T , R,χ)

�

=
�
v∈V

cost(v, root(T )) ·
�s(v)

i=�rχ�
�
s(v)
i

��
s−s(v)
r−i

�
−
�

u∈Ch(v)

�s(u)

j=�rχ�
�
s(u)
j

��
s−s(u)
r−j

�
�
s
r

� .

(16)

We can compute the values Cχ(T , r, t) for all t = 1, 2, . . . , k in O(SI(T ) + kn)
time, using O(n + k) space.
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The following theorem follows directly from combining Lemma 3 with
Equation (15).

Theorem 4. Let T be a phylogenetic tree that consists of n nodes and s leaves.
Let r, k be two non-negative integers such that r ≤ s, and let χ be a real such
that χ ∈ (0.5, 1]. We can compute the k first statistical moments of the Core
Ancestor Cost among all possible subsets of exactly r leaf nodes of T given χ
in O(SI(T ) + kn + k2) time, using O(n + k) space.

4 Experiments and Benchmarks

We have implemented all of the algorithms that we introduced in the previous
sections, and we have conducted experiments in order to measure their
performance. In these experiments we also used an implementation of the old
approach for computing the variance of the PD; this is the algorithm that always
takes quadratic time to execute with respect to the size of the input tree. We use
this implementation as a point of reference for our new algorithm that computes
the variance of the PD. All of the implementations were developed in C++. The
experiments were executed on an Intel i7-3770 eight-core CPU where each core
is a 3.40 GHz processor. The main memory of this computer is 16 Gigabytes.
The operating system that we used on this computer is Microsoft Windows 7.

In all the experiments that we conducted, we observed that the algorithm
that computes the variance of the MNTD had an almost identical performance
with the new algorithm that computes the variance of the PD. Therefore, for
the sake of brevity, we chose not to illustrate the running times of the MNTD
algorithm in this version of the paper.

We performed two sets of experiments; in the first set of experiments we
used phylogenetic trees that were produced based on real-world biological data,
representing the phylogenetic relations between existing species. We used two
datasets of this kind; one dataset is a phylogenetic tree that represents the
phylogeny of all mammal species [1]. This tree has 4510 leaf nodes and 6618
nodes in total. We refer to this tree as the mammals dataset. The other real-world
dataset that we used is a tree that was constructed by Goloboff et. al [7]. This
is the largest evolutionary tree of eukaryotic organisms that has been so far
constructed from molecular and morphological data. It consists of 71181 leaves
and 83751 nodes in total. This tree is unrooted; for the needs of our experiments
we picked arbitrarily an internal node and used this as the root. We call this
dataset the eukaryotes dataset. In the first set of experiments we ran our three
new algorithms plus the old algorithm that computes the PD variance using as
input the mammals and the eukaryotes datasets. We executed each algorithm
several times on each dataset and we measured the total running time of the
algorithm for all these executions. We did this because for the three algorithms
that we introduce in this paper the time taken for a single execution was quite
short, and comparable to the time spent by our software to read the input
dataset. Hence, we executed each of the algorithms on each of the datasets
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ninety-nine times, each time using a different value of r, ranging from two to one
hundred. Preliminary measurements showed that the value of r does not affect in
practice the performance of any of the examined algorithms. This is also the case
with the value of the χ parameter and the performance of the CAC algorithm. In
the experiments we ran this algorithm with parameter values χ = 0.6 and k = 3.
We also calculated the values of the SI and the DSSI for each dataset. These
results are presented in Table 1.

Table 1. The results of the experiments that involve trees which represent relations
between species in the real-world. The running time of each algorithm is measured over
ninety-nine consecutive executions on the same dataset (PD Old = the old approach
for computing the PD variance, PD New = the new algorithm for computing the PD
variance, CAC = the algorithm that computes the k first moments of the CAC for k = 3
and χ = 0.6). Running times are presented in seconds.

Dataset n PD Old PD New CAC SI DSSI2

eukaryotes 83751 > 3 hours 38.9 14.8 998850 109561

mammals 6618 1672 3.6 1.0 79984 26569

According to the results of these experiments, it becomes evident that the
new algorithm that computes the variance of the PD outperforms clearly the old
approach. For the two datasets that we considered, the new algorithm appears
to be hundreds of times faster than the old one. Given that the running times
are measured over ninety-nine executions, it appears that the new algorithm for
the PD can process a tree of more than 80, 000 nodes in less than half a second.
The algorithm that computes the first three moments of the CAC appears to be
even faster than that. As it comes to the values of the SI and the DSSI, we see
that the Sackin’s Index is larger than the square of the DSSI. This may be an
indication that, in practice, the SI is the dominating quantity in the analysis of
the running time of the new algorithm. For both datasets, the SI appears to be
equal to roughly twelve times the size of the input.

In the second set of experiments we used trees of various sizes that we generated
algorithmically. These trees were created in the following manner; first wegenerated
twenty trees using a randomised pure birth process. In this process, a tree is grown
in a series of steps from a single root node; at each step we choose a leaf node v, and
we add two child nodes to v. Node v is chosen uniformly at random among all the
leaves of the current tree. Using this process we generated twenty binary trees, each
having exactly 4, 000 leaves. From each of these trees we extracted sixteen subtrees;
these subtrees have 250k leaves with k ranging from one to sixteen. The subtrees
were produced by successively pruning chunks of 250 leaves from the original tree
of 4, 000 leaves. In this way we produced 320 trees in total. We denote the set of
these trees by U .

We ran each of the implemented algorithms using as input the trees in U .
As we did in the previous set of experiments, we executed each algorithm
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ninety-nine times for each input tree, and we measured the total time taken
for these executions. Figure 1 illustrates the running times of the old and the
new algorithm that compute the variance of the PD, and the running times
of the algorithm that computes the first k moments of the CAC for χ = 0.6
and k = 3. Also, for each T ∈ U we measured the values of the SI and the DSSI.
Furthermore, we measured the running time of the algorithm that computes the
moments of the CAC for a fixed tree of 4, 000 leaves and for different values
of k–see Figure 2.

Fig. 1. The running times of three of the implemented algorithms using as input
randomly generated trees. For each algorithm, the continuous line segments connect
the median values of the measured running times for input trees that have the same
number of leaves. Left: The running times of the old and the new algorithms that
compute the variance of the PD. For each algorithm, the running times for input trees
of the same number of leaves have very small difference in value, and hence they are
almost indistinguishable. Right: The running time of the algorithm that computes the
first k moments of the CAC for k = 3 and χ = 0.6.

Again, as can be seen in Figure 1, the new algorithm for the PD variance has
a much better performance than the old one. We see also that the algorithm that
computes the moments of the CAC runs very fast, processing almost a hundred
trees of a few thousand nodes in less than 1.5 seconds. In Figure 2 we see that
the SI is evidently larger the DSSI for the randomly generated trees. Still, the
value of the SI is not much larger the size of the input trees; given that the
total number of nodes of a binary tree is roughly at most twice the number of
its leaves, the SI in this set of experiments is not larger than ten times the size
of the input. This possibly explains the very good performance of all the new
algorithms that we introduce in this paper. Also, as expected, in Figure 2 we can
see that the running time of the algorithm that calculates the moments CAC
scales almost linearly as the value of k increases.
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Fig. 2. Left: The values of the SI and of the square of the DSSI for the trees that we
generated using a pure birth process. For each number of leaves, we illustrate only the
median of these values. The rest of the values are quite close to this median, having at
most an absolute difference of roughly two thousand units. Right: The running time of
the algorithm that computes the first k moments of the CAC for a single tree of 4, 000
leaves and for k ranging from one to twenty.
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Abstract. Motivated by load balance issues in parallel calculations of
the phylogenetic likelihood function we address the problem of distribut-
ing divisible items to a given number of bins. The task is to balance the
overall sum of (fractional) item sizes per bin, while keeping the maximum
number of unique elements in any bin to a minimum. We show that this
problem is NP-hard and give a polynomial time approximation algorithm
that yields a solution where the sums of (possibly fractional) item sizes
are balanced across bins. Moreover, the maximum number of unique ele-
ments in the bins is guaranteed to exceed the optimal solution by at most
one element. We implement the algorithm in two production-level paral-
lel codes for large-scale likelihood-based phylogenetic inference: ExaML
and ExaBayes. For ExaML, we observe best-case runtime improvements
of up to a factor of 5.9 compared to the previously implemented data
distribution algorithms.

1 Introduction

Maximizing the efficiency of parallel codes by distributing the data in such a way
as to optimize load balance is one of the major objectives in high performance
computing.

Here, we address a specific case of job scheduling (data distribution) which,
to the best of our knowledge, has not been addressed before. We have a list of N
divisible jobs, each of which consists of si atomic tasks, where 1 ≤ i ≤ N , and B
processors (or bins). All jobs have an equal, constant startup latency α, and each
task, regardless of the job it appears in, requires a constant amount of time β to
be processed. Although these times are constant, they depend on the available
hardware architecture, and hence are not known a priori. Moreover, the jobs are
independent of one another. We also assume that processors are equally fast.
Therefore, any task takes time β to execute, independently of the processor it is
scheduled to run on. Any job can be partitioned (or decomposed) into disjoint
sets of its original tasks, which can then be distributed to different processors.
However, each such set incurs its own startup latency α on the processor on
which it is scheduled to run. Thus, a job of k tasks takes time k ·β+α to execute
on any processor. The tasks (even of the same job) are independent of each
other, that is, they can be executed in any order, and the sole purpose of the job
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configuration is to group together the tasks that require the same initialization
step and hence minimize the overall startup latency.

Our work is motivated by parallel likelihood computations in phylogenetics
(see [4,9] for an overview). There, we are given a multiple sequence alignment
that is typically subdivided into distinct partitions (e.g., gene partitions; jobs
in our context). Given the alignment and a partition scheme, the likelihood on
a given candidate tree can be calculated. To this end, transition probabilities
for the statistical nucleotide substitution model need to be calculated (start-up
cost α in our context) for each partition separately because they are typically
considered to evolve under different models. Note that, all alignment sites (job
size) that belong to the same partition have identical model parameters.

The partitions are the divisible jobs to be distributed among processors. Each
partition has a fixed number of sites (columns from the alignment), which de-
note the size of the partition. The sites represent the independent tasks a job
(partition) consists of. Since alignment sites are assumed to evolve independently
in the likelihood model, the calculations on a single site can be performed inde-
pendently of all other sites. Thus, a single partition can easily be split among
multiple processors. Finally, note that, parallel implementations of the phylo-
genetic likelihood function now form part of several widely-used tools and the
results presented in this paper are generally applicable to all tools.

Related Work. A related problem is bin-packing with item fragmentation.
Here, items may be fragmented, which can potentially reduce the total number
of bins needed for packing the instance. However, since fragmentation incurs
overhead, unnecessary fragmentations should be avoided. The goal is to pack
all items in a minimum number of bins. For an overview of the fractional bin
packing problem see [5, Chapter 33]. However, in contrast to our problem, the
number of bins is not part of the input but is the objective function. The most
closely related domain of research is divisible load theory (DLT). Here, the goal
is to distribute optimal fractions of the total load among several processors such
that the entire load is processed in a minimal amount of time. For a review on
DLT, see [1]. However, in general DLT can accommodate more complex models,
taking into account a number of factors, such as network parameters or proces-
sor speeds. Our problem falls into the category of scheduling divisible loads with
start-up costs (see for instance [2,8]). To our knowledge the problem we present
has not been solved before. Finally, there exists previous work by our group
on improving the load-balance in parallel phylogenetic likelihood calculations.
There, we considered, mostly for the sake of code simplicity, that single par-
titions/jobs are indivisible. Thus, the scheduling problem we addressed in this
work was equivalent to the “classic” multi-processor scheduling problem. The
paper also provides a detailed rationale as to why the calculation of transition
probabilities (the overhead α) can become performance-critical [10].

Overview. In Section 2 we formally define two variations of the problem. We
then prove that the problem is NP-hard (Section 3). The main contribution of
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this paper can be found in Section 4, where we give a polynomial-time approx-
imation algorithm which yields solutions that assign at most one element more
to any processor (or bin) than the optimal solution. We analyze the algorithm
complexity and prove the OPT+1 approximation in (Section 5). Unless P = NP
[3,6], no polynomial time algorithm can guarantee a better worst case approxi-
mation. Finally, in Section 6, we present the performance gains we obtain, when
employing our algorithm for distributing partitions in ExaML1 [7]

2 Problem Definition

Assume we have N divisible items of sizes s1, s2, . . . , sN , and B available bins.
Our task is to find an assignment of the N items to the B bins, by allowing an
item to be partitioned into several sub-items whose total size is the size of the
original item, in order to achieve the following two goals:

1. The sum of sizes of the (possibly partitioned) items assigned to each bin is
well-balanced.

2. The maximum load over all bins is minimal with respect to the number of
items added.

In the rest of the text we will use the term solid for the items that are not
partitioned, and fractional for those that are partitioned.

We can now formally introduce two variations of the problem; one where we
only allow items of integer sizes, and one where the sizes can be represented
by real numbers. In the case of integers, the problem can be formulated as the
following integer program.

Problem 1 (LBN). Given a sequence of positive integers s1, s2, . . . , sN and a
positive integer B,

minimize max{
∑N

j=1 xi,j | i = 1, 2, . . . , B }

subject to ∑B
i=1 qi,j = sj, 1 ≤ j ≤ N∑N
j=1 qi,j ≥ �σ/B�, 1 ≤ i ≤ B

∑N
j=1 qi,j ≤ �σ/B�, 1 ≤ i ≤ B

σ =
∑N

i=1 si

0 ≤ qi,j ≤ xi,j · sj, 1 ≤ i ≤ B, 1 ≤ j ≤ N

q ∈ N
B×N
≥0

x ∈ {0, 1}B×N

1 Available at http://www.exelixis-lab.org/web/software/examl/index.html.

http://www.exelixis-lab.org/web/software/examl/index.html
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Variable xi,j is a boolean value indicating whether bin i contains part of item
j and if it does, qi,j denotes the amount. By removing the imposed restriction
of integer sizes, and hence allowing for positive real values as the sizes of both
solid and fractional items, we obtain the following mixed integer program.

Problem 2 (LBR). Given a sequence of positive real values s1, s2, . . . , sN and
a positive integer value B,

minimize max{
∑N

j=1 xi,j | i = 1, 2, . . . , B }

subject to ∑B
i=1 qi,j = sj, 1 ≤ j ≤ N∑N
j=1 qi,j = σ/B, 1 ≤ i ≤ B

σ =
∑N

i=1 si

0 ≤ qi,j ≤ xi,j · sj, 1 ≤ i ≤ B, 1 ≤ j ≤ N

q ∈ R
B×N

x ∈ {0, 1}B×N

If for some bin i and element j we get a solution with qi,j < sj , we say that
element j is only assigned to bin i partially, or that only a fraction of element j
is assigned to bin i. If qi,j = sj we say that element j is fully assigned to bin i.

3 NP-hardness

We now show that problems LBN and LBR are NP-hard by reducing the well-
known Partition [6] problem. We reduce it to another decision problem called
Equal Cardinality Partition (ECP) that decides whether a set can be broken into
disjoint sets of equal cardinality and equal sum of elements (see Def. 2), which
can be solved by the two flavors of our problem.

Definition 1 (Partition). Is it possible to partition a set S of positive integers
into two disjoint subsets Q and R, such that Q ·∪R = S and

∑
q∈Q q =

∑
r∈R r?

Definition 2 (ECP). Let p, k be two positive integers and S a set of p·k positive
integers. Can we partition S into p disjoint sets S1, S2, . . . , Sp of k elements each,
such that

⋃
· pi=1 Si = S and

∑
s∈Si

s =
∑

s∈Sj
s, for all 1 ≤ i, j ≤ p?

Clearly, if we can solve our original optimization problems LBN and LBR for
any S exactly, we can also answer whether ECP returns true or false for the
same set S. Thus, if we can show that ECP is NP-Complete we know that the
original problems are NP-hard.

To show that ECP is NP-Complete, it is sufficient to show that ECP is in NP,
that is the set of polynomial time verifiable problems, and some NP-Complete
problem (here Partition) reduces to it.
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Lemma 1. ECP is NP-Complete.

Proof. The first part, i.e., ECP ∈ NP, is trivial. Given a solution (that is, the
sets S1,. . .,Sp), we are able to verify, in polynomial time to p, that the conditions
for problem ECP hold, by summing the elements of each set.

For the reduction of Partition to ECP consider the set S to be an instance
of Partition. We derive an instance Ŝ of ECP from S, such that Partition(S)
is true iff ECP(Ŝ) is true for 2 bins (that is p = 2). We define Ŝ = S ∪ (a · S) a
set of integers, with a = (1 +

∑
s∈S s) and (a · S) = { a · s | s ∈ S }. Clearly, if

there is a solution for Partition given S, there must also be a solution for ECP
given Ŝ. If Q,R ⊂ S is a solution for Partition, then Q∪ (a ·R), R ∪ (a ·Q) is
a solution for ECP.

Similarly, let Q̂, R̂ be a solution for ECP given Ŝ. Let Q = Q̂∩S, R = R̂∩S,
(a · Q) = Q̂ ∩ (a · S) and (a · R) = R̂ ∩ (a · S). Trivially, it holds that Q =
{ q ∈ Q̂ | q < a }, R = {r ∈ R̂ | r < a} and (a · Q) = Q̂ \ Q, (a · R) = R̂ \ R.
Thus, we obtain Q ∪ R = S and (a ·Q) ∪ (a · R) = (a · S). We also obtain that∑

q∈Q q =
∑

r∈R r (and
∑

q∈(a·Q) q =
∑

r∈(a·R) r). We prove that the equations
hold by contradiction: suppose this was not the case for some solution of ECP,
that is

∑
q∈Q q �=

∑
r∈R r and hence

∑
q∈(a·Q) q �=

∑
r∈(a·R) r. By definition,

(a · Q) and (a · R), q/a and r/a are integer values for any q ∈ (a · Q) and
r ∈ (a ·R), and therefore:

|
∑

q∈(a·Q)

q −
∑

r∈(a·R)

r| = |
∑

q∈(a·Q)

a · q/a−
∑

r∈(a·R)

a · r/a|

= a · |

≥1︷ ︸︸ ︷∑
q∈(a·Q)

q/a−
∑

r∈(a·R)

r/a| ≥ a

However,
∑

s∈S s < a. Thus,
∑

q∈Q̂ q �=
∑

r∈R̂ r which contradicts the assump-

tion of Q̂, R̂ being a solution for ECP(Ŝ,2). Therefore, Partition reduces to
ECP, which means that ECP is NP-Complete. ��

Corollary 1. The optimization problems LBN and LBR are NP-hard.

This follows directly from Lemma 1 and the fact that an answer for ECP can be
obtained by solving the optimization problem.

4 Algorithm

As seen in Section 3, finding an optimal solution to this problem is hard. To
overcome this hurdle, we propose an approximation algorithm running in poly-
nomial time that guarantees a near-optimal solution. For an in-depth analysis
of the complexity of the algorithm, see Section 5.

The input for the algorithm is a list S of N integer weights and the number
of bins B these elements must be assigned to. The idea of the algorithm can be
explained by the following three steps:
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1. Sort S in ascending order.

2. Starting from the first (solid) element in the sorted list S, assign elements
from S to the B bins in a cyclic manner (at any time no two bins can have
a difference of more than one element) until any bin can not entirely hold
the proposed next item.

3. Break the remaining elements from S to fill the remaining space in the bins.

Fig. 1 presents the pseudocode for the first two phases, while Fig. 2 illustrates
phase 3. The output of this algorithm is an assignment, list = (list[1], . . . , list[p]),
of –possibly fractional– elements to bins. Each entry in list is a set of triplets
that specify which portion of an integer sized element is assigned to a bin. Let
(j, i, k) ∈ list[l] be one such triplet for bin number l. We interpret this triplet as
follows: bin l is assigned the fraction of element j that starts at i and ends at k
(including i and k).

For the application in phylogenetics, each triplet specifies which portion (how
many sites) of a partition is assigned to which processor. Again, let (j, i, k) ∈
list[l] be one such triplet for some processor l. We interpret this triplet as follows:
processor l is assigned sites i through k of partition j.

If i �= 1 or k �= sj (recall sj is the size of element j), we say that element j
is partially assigned to bin i, that is, only a fraction of element j is assigned to

LoadBalance(N,B, S)
� Phase 1 — Initialization
1. Sort S in ascending order and let S = (s1, s2, . . . , sN )

2. σ =
∑N

i←1 si
3. c ← �σ/B�
4. r ← c ·B − σ
5. for i ← 1 to B do
6. size[b] ← 0; items[b] ← 0; list[b] ← ∅
7. full bins ← 0; b ← 0;
� Phase 2 — Initial filling
8. for i ← 1 to N do
9. if size[b] + si ≤ c then
10. size[b] ← size[b] + si
11. items[b] = items[b] + 1
12. Enqueue(list[b], (i, 1, si))
13. if size[b] = c then
14. full bins ← full bins+ 1
15. if full bins = B − r then c ← c− 1
16. else
17. add ← si
18. break
19. b ← (b+ 1) mod B

Fig. 1. The algorithm accepts three arguments N,B and S, where N is the number of
items in list S, and B is the number of bins
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� Phase 3 — Partitioning items into bins
20. low ← B; � ← B; high ← 1; h ← 1
21. while i ≤ N do
22. while size[�] ≥ c do
23. low ← low− 1; � ← low
24. while size[h] ≥ c do
25. high ← high+ 1; h ← high
26. if size[h] + add ≥ c then
27. items[h] ← items[h] + 1
28. Enqueue(list[h], (i, si − add+ 1, si − add− size[d] + c))
29. add ← size[h] + add− c
30. size[h] ← c
31. full bins ← full bins+ 1
32. if full bins = B − r then c ← c− 1
33. else
34. items[�] ← items[�] + 1
35. if size[�] + add < c then
36. size[�] ← size[�] + add
37. Enqueue(list[�], (i, si − add+ 1, si))
38. add ← 0
39. high ← high− 1; h ← �
40. low ← low− 1; � ← low
41. else
42. Enqueue(list[�], (i, si − add+ 1, si − add− size[d] + c))
43. add ← size[�] + add− c
44. size[�] ← c
45. full bins ← full bins+ 1
46. if full bins = B − r then c ← c− 1
47. if add = 0 then
48. i ← i+ 1; add ← si

Fig. 2. Phase 3 of the algorithm

bin i. Otherwise, if i = 1 and k = sj, then the triplet represents a solid element,
i.e., element j is fully assigned to bin i.

For applications that allow any fraction of an integer to be assigned to a bin,
not just whole integer values (that is, problem LBR), we redefine the variable
c, i.e. the maximum capacity of the bins, to be exactly σ/B, without rounding.
Additionally, the output (list) must correctly state which ranges of the elements
are assigned to which bin and not give integer lower and upper bounds.

We give two examples of how algorithm LoadBalance works on a specific
set of integers.

Example 1. Consider the set {2, 2, 3, 5, 9} and three bins. During initialization
(phase 1) we have c = 7 and r = 0. Phase 2 makes the following assignments:
list[1] = {(1, 1, 2), (4, 1, 5)}, list[2] = {(2, 1, 2)}, list[3] = {(3, 1, 3)}. Adding the
next element of size 9 is not possible since size[2] + 9 = 2 + 9 = 11 > c.
Thus, phase 2 ends. Phase 3 splits the last element of size 9 among bins 2 and
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3, and the solution is list[1] = {(1, 1, 2), (4, 1, 5)}, list[2] = {(2, 1, 2), (5, 1, 5)},
list[3] = {(3, 1, 3), (5, 6, 9)}. With max{|list[1]|, |list[2]|, |list[3]|} = 2. This is also
an optimal solution.

Example 2. Consider the set {1, 1, 2, 3, 3, 6} and two bins. During the initial-
ization (phase 1) we have c = 8 and r = 0. Phase 2 generates the following
assignments: list[1] = {(1, 1, 1), (3, 1, 2), (5, 1, 3)}, list[2] = {(2, 1, 1), (4, 1, 3)}.
The last element of size 6 can not be fully assigned to bin 2, thus phase
2 terminates. Finally, phase 3 splits the last element of size 6 among the
two bins, and the solution is list[1] = {(1, 1, 1), (3, 1, 2), (5, 1, 3), (6, 1, 2)},
list[2] = {(2, 1, 1), (4, 1, 3), (6, 3, 6)}. We get max{|list[1]|, |list[2]|} = 4.
However, an optimal solution list�1 = {(1, 1, 1), (2, 1, 1), (6, 1, 6)}, list�2 =
{(3, 1, 2), (4, 1, 3), (5, 1, 3)} with max{|list�1|, |list�2|} = 3 exists.

As we can see in Example 2, algorithm LoadBalance fails to find the optimal
solution in certain cases. However in the next section we show that the difference
of 1, as observed in Example 2, already represents the worst case scenario.

5 Algorithm Analysis

We now show that the score obtained by algorithm LoadBalance, for any
given set of integers and any number of bins, is at most one above the optimal
solution. We then give the asymptotic time and space complexities.

5.1 Near-Optimal Solution

Before we start with the proof, we make three observations associated with the
algorithm that facilitate the proof. We use the same notation as in the description
of the algorithm. That is, items[i] indicates the number of items in bin i, size[i]
the sum of sizes of items in bin i, and list[i] is a list of records per item in bin i,
describing which fraction of the particular item is assigned to bin i.

Observation 1. During phase 2 of algorithm LoadBalance, it holds that

size[i] > size[j]

for any two bins j and i, such that items[i] = items[j] + 1.

The list of integers was sorted in Phase 1 of the algorithm to a non-decreasing
sequence. Hence, any item added to a bin during the i-th cyclic iteration over
bins, must be smaller or equal to an item that is added during iteration i + 1.

Observation 2. For all bins i and j during phase 2 of algorithm
LoadBalance, it holds that

items[j] ≤ items[i] + 1.

This follows directly from Observation 1.
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Observation 3. Phase 3 appends at most 2 more (fractional) items to a bin.

Any remaining (unassigned) item of size s in this phase satisfies the condition
size[j]+s > c, for any bin j and capacity c as computed in Fig. 1. Therefore, each
bin will be assigned at most one fractional item that does not fill it completely,
and one new element that is guaranteed to fill it up.

Lemma 2. Let OPT(S,B) be the score for the optimal solution for a set S dis-
tributed to B bins. Let list be the solution produced by algorithm LoadBalance

for the same set S and B bins. Then:

max{ |list[i] | i = 1, 2, . . . , B } ≤ OPT(S,B) + 1

Proof. Let ĵ be the bin that terminates phase 2. That is, ĵ is the last bin con-
sidered for any assignment in phase 2. After phase 2, if there exists a bin j with
items[j] = items[ĵ]+1 we get, by Observation 1 and the pigeonhole principle, that
OPT(S,B) ≥ items[ĵ]+1. Otherwise, if no such bin exists, OPT(S,B) ≥ items[ĵ].
Let K be the number of unassigned elements at the beginning of phase 3. Let
J be the number of bins j with items[j] = items[ĵ]. We distinguish between
three cases. First assume that items[j] = items[ĵ] (after phase 2) for all bins
j and K > 0. Clearly, OPT(S,B) ≥ items[ĵ] + 1. By observation 3 we know
that items[j] ≤ items[ĵ] + 2 (after phase 3). Thus the lemma holds for this case.
Now consider K > J and items[j] �= items[ĵ] for some bin j, that is, there
are more unassigned elements than there are bins with only items[ĵ] elements
assigned to them. By the pigeonhole principle, OPT(S,B) ≥ items[ĵ] + 2. By
observation 3 we get that items[j] ≤ items[ĵ] + 1 + 2 = items[ĵ] + 3 for all j.
Thus the lemma holds for this case as well. For the last case assume K ≤ J and
items[j] �= items[ĵ] for some bin j. After a bin is assigned a fractional element
that does not fill it completely, it is immediately filled up with the next element.
Since preference is given to any bin j with items[j] = items[ĵ] and there are at
least as many such bins as remaining elements to be added (K ≤ J), we get that
items[j] ≤ items[ĵ]+2. Since we have seen above that OPT(S,B) ≥ items[ĵ]+1,
the lemma holds. As this covers all cases, the lemma is proven. ��

5.2 Run-Time

The runtime analysis is straight forward. Phase 1 of the algorithm consists
of initializing variables, sorting N items by size in ascending order and com-
puting their sum. Using an algorithm such as Merge-Sort, Phase 1 requires
O(N log(N)) time. Phase 2 requires O(N) time to consider at most N items,
and assign them to B bins in a cyclic manner. Phase 3 appends at most 2 items
to a bin (see Observation 3), and hence has a time complexity of O(B). This
yields an overall asymptotic run-time complexity of O(N log(N)+B). Note that,
if we are already given a sorted list of partitions, the algorithm runs in linear
time O(N + B). Finally, LoadBalance requires O(B) space due to the arrays
items, size and list, that are each of size B.
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Fig. 3. Number of characters/sites in each partition for the partitioning schemes

6 Practical Application

As mentioned before, the scheduling problem arises for parallel phylogenetic like-
lihood calculations on large partitioned multi-gene or whole-genome datasets.
This type of partitioned analyses represent common practice at present. The
number of multiple sequence alignment partitions, the number of alignment sites
per partition, and the number of available processors are the input to our algo-
rithm. The production-level maximum likelihood based phylogenetic inference
software ExaML for supercomputers implements two different data distribution
approaches: The cyclic data distribution scheme that does not balance the num-
ber of unique partitions per processor, but just assigns single sites to processors
in a cyclic fashion. The second approach is the whole-partition data distribution
scheme. Here, the individual partitions are not considered divisible and are as-
signed monolithically to processors using the longest processing time heuristic
for the ’classic’ multi-processor scheduling problem [10]. This ensures that the
total and maximum number of initialization steps (substitution matrix calcula-
tions) is minimized, at the cost of not being balanced with respect to the sites
per processor. Nonetheless, using this scheme instead of the cyclic distribution
already yielded substantial performance improvements. In order to evaluate the
new distribution scheme, we compare it to these two previous schemes, in terms
of total ExaML runtime. Note that, our algorithm has also been implemented
in ExaBayes2 which is a code for large-scale Bayesian phylogenetic inference.

6.1 Methods

We performed runtime experiments on a real-world alignment. The alignment
consists of 144 species and 38 400 amino acid characters3 used the alignment to

2 Available at http://www.exelixis-lab.org/web/software/exabayes/index.html
3 Data from the 1KITE (www.1kite.org) project.

http://www.exelixis-lab.org/web/software/exabayes/index.html
www.1kite.org
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Fig. 4. Runtime comparison for ExaML employing algorithm LoadBalance, the
cyclic data distribution scheme, or the whole-partition data distribution scheme

create 9 distinct partitioning schemes with an increasing number of partitions.
For each scheme, partition lengths were drawn at random, while the number of
partitions per scheme was fixed to 24, 36, 48, 72, 96, 144, 192, 288, 384, and
768, respectively. To generate n partition lengths, we drew n random numbers
x1, . . . , xn from an exponential distribution exp(1) + 0.1. For a partition p, the
value of xp/

∑
i=1..n xi then specifies the proportion of characters that belong to

partition p. The offset of 0.1 was added to random numbers to prevent partition
lengths from becoming unrealistically small, since the exponential distribution
strongly favors small values. Fig. 3 displays the distributions of the partition
lengths for each of the 9 partition schemes. As expected, partition lengths are
distributed uniformly on the log-scale.

We executed ExaML using 24 and 48 processes, respectively, to assess per-
formance with our new data distribution algorithm and compare it with the
cyclic site and whole-partition data distribution performance. We used a cluster
equipped with Intel SandyBridge nodes (2×6 cores per node) and an Infiniband
interconnect. Thus, a total of 2 nodes was needed for runs with 24 processes and
4 nodes for runs with 48 processes (inducing higher inter-node communication
costs). In Fig. 4.b, the run-times for the whole-partition distribution approach
with less than 48 partitions are omitted, since they are identical to executing the
runs on 24 processes. The reason is that this method does not divide partitions
and thus, in case the number of partitions is smaller than the number of available
processors, the extra processors will remain unused.

6.2 Results

As illustrated by Fig. 4, with algorithm LoadBalance ExaML always runs at
least as fast as the two previous data distribution strategies with one minor ex-
ception. Compared to the cyclic data distribution, LoadBalance is 3.5× faster
for 24 processes and up to 5.9× faster for 48 processes. Using LoadBalance,
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ExaML requires up to 3.6× less runtime than with the whole partition distribu-
tion scheme for 24 processes and for 48 processes the runtime can be improved by
a factor of up to 3.9×. For large numbers of partitions, the runtime of the whole
partition distribution scheme converges against the runtime of LoadBalance.
This is expected, since by increasing the number of partitions we break the align-
ment into smaller chunks and the chance of any heuristic to attain a near-optimal
load/data distribution increases. However, if the same run is executed with more
processes (i.e., 48 instead of 24), this break-even point shifts towards a higher
number of partitions, as shown in Fig. 4.

The results show that, cyclic data distribution performance is acceptable for
many processes and few partitions, whereas monolithic whole-partition data dis-
tribution is on par with our new heuristic for analyses with few processes and
many partitions. Both figures show, that there exists a region where neither of the
previous strategies exhibits acceptable performance compared to LoadBalance

and that this performance gap widens, as parallelism increases.
Finally, employing LoadBalance, ExaML executes twice as fast with 48

processes than with 24 processes and thus exhibits an optimum scaling factor
of about 2.07 in all cases. For comparison, under the cyclic data distribution,
scaling factors ranged from 1.24 to 1.75 and under whole partition distribution,
scaling factors ranged from 1.00 (i.e., no parallel runtime improvement) to 2.04.
The slight superlinear speedups are due to increased cache efficiency.

7 Conclusion

We have introduced an approximation algorithm for solving a NP-hard scheduling
problem with an acceptable worst-case performance guarantee. This theoretical
work was motivated by our efforts to improve parallel efficiency of phylogenetic
likelihood calculations. By implementing the approximation algorithm in ExaML,
a dedicated code for large-scale maximum likelihood-based phylogenetic analy-
ses on supercomputers, we show that (i) the data distribution is near-optimal,
irrespective of the number of partitions, their lengths, and the number of pro-
cesses used and (ii) substantial run time improvements can be achieved, thus sav-
ing scarce supercomputer resources. The data distribution algorithm is generally
applicable to any code that parallelizes likelihood calculations.
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Abstract. Mass spectrometry (MS) in combination with a fragmenta-
tion technique is the method of choice for analyzing small molecules
in high throughput experiments. The automated interpretation of such
data is highly non-trivial. Recently, fragmentation trees have been in-
troduced for de novo analysis of tandem fragmentation spectra (MS2),
describing the fragmentation process of the molecule. Multiple-stage MS
(MSn) reveals additional information about the dependencies between
fragments. Unfortunately, the computational analysis of MSn data using
fragmentation trees turns out to be more challenging than for tandem
mass spectra.

We present an Integer Linear Program for solving the Combined Col-

orful Subtree problem, which is orders of magnitude faster than the
currently best algorithm which is based on dynamic programming. Using
the new algorithm, we show that correlation between structural similar-
ity and fragmentation tree similarity increases when using the additional
information gained from MSn. Thus, we show for the first time that using
MSn data can improve the quality of fragmentation trees.

Keywords: metabolomics, computational mass spectrometry,
multiple-stage mass spectrometry, fragmentation trees, Integer Linear
Programming.

1 Introduction

Studying metabolites and other small biomolecules with mass below 1000 Da, is
relevant, for example, in drug design and the search for new signaling molecules
and biomarkers [14]. Since such molecules cannot be predicted from the genome
sequence, high-throughput de novo identification of metabolites is highly sought.
Mass spectrometry (MS) in combination with a fragmentation technique is com-
monly used for this task. In liquid chromatography MS, a selected molecule
can be fragmented in a second step typically using collision-induced dissociation
(CID). The resulting fragment ions are recorded in tandem mass spectra (MS2

spectra). For metabolites, the understanding of CID fragmentation is still in its
infancy.
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Multiple-stage MS (MSn) allows to select the product ions of the initial frag-
mentation step (manually or automatically) and subject them to another frag-
mentation reaction. This reveals additional information about the dependencies
between the fragments. The resulting fragment ions can, in turn, again be se-
lected as precursor ions for further fragmentation. Typically, with each additional
fragmentation reaction, the quality of mass spectra is reduced and measuring
time increases. Thus, analysis is usually limited to a few fragmentation reac-
tions beyond MS2.

CID mass spectra (both MS2 and MSn) are limited in their reproducibility
on different instruments, making spectral library search a non-trivial task [16].
Furthermore, spectral libraries are vastly incomplete. Recent approaches tend to
replace searching in spectral libraries by searching in the more comprehensive
molecular structure databases [1, 9–11, 26, 31]. However, many metabolites even
remain uncharacterized with respect to their structure and function [17].

For the de novo interpretation of tandem mass spectra of small molecules,
Böcker and Rasche [5] introduced fragmentation trees to identify the molecu-
lar formula of an unknown and its fragments. Moreover, fragmentation trees
are reasonable descriptions of the fragmentation process and hence can also be
used to derive further information about the unknown molecule [19]. Scheubert
et al. [23,24] adjusted the fragmentation tree concept to MSn data to reflect the
succession of fragmentation reactions.

Adjusting the fragmentation tree concept to MSn data, results in the NP-hard
Colorful Subtree Closure problem [24] which has to be solved in conjunc-
tion with the original NP-hard Maximum Colorful Subtree problem [5],
resulting in the Combined Colorful Subtree problem [24]. To solve this
problem, Scheubert et al. [24] presented a fixed-parameter algorithm based on
dynamic programming (DP) with worst-case running time depending exponen-
tially on the number of peaks in the spectrum.

To compare two molecules based on their fragmentation spectra, Rasche
et al. [18] introduced fragmentation tree alignments. By this, similar fragmen-
tation cascades in the two trees are identified and scored. This allows us to use
fragmentation trees in applications such as database searching, assuming that
structural similarity is inherently coded in the CID spectra fragments. Improving
the quality of the fragmentation trees using the additional information provided
by MSn, may improves this downstream analysis.

Here, we present a novel exact algorithm for solving the Combined Color-

ful Subtree problem. This Integer Linear Program (ILP) is faster than the
DP algorithm. Further, we demonstrate the impact of the additional informa-
tion from MSn data for the downstream analysis: We compute fragmentation
tree alignments [18] and find that correlation between the similarity score of
two fragmentation trees and the structural similarity score of the correspond-
ing molecules increases when using the additional information gained from the
succession of fragments in multiple MS.
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2 Constructing Fragmentation Trees

Given the molecular structure of a molecule and the measured fragmentation
spectrum, an MS expert can assign peaks to fragments of the molecule and
derive a “fragmentation diagram”. Fragmentation trees are similar to experts’
“fragmentation diagrams” but are extracted directly from the data, without
knowledge about a molecule’s structure. A fragmentation tree consists of vertices
annotated with the molecular formulas of the precursor ion and fragment ions,
and directed edges representing the fragmentation steps. Fragmentation trees
must not be confused with spectral trees for multiple stage mass spectrometry
[22,25]. Spectral trees are a formal representation of the MS setup and describe
the relationship between the MSn spectra, but do not contain any additional
information.

For the computation of fragmentation trees [5], a fragmentation graph is con-
structed (see Fig. 1): vertices represent all fragment molecular formulas with
mass sufficiently close to the peak mass [3, 4]; and weighted edges represent the
fragmentation steps leading to those formulas. Two vertices u, v are connected
by a directed edge if the molecular formula of v is a sub-molecule of the molec-
ular formula of u. We assume the molecular formula of the full molecule to be
given (see [19] for details). The resulting graph is a directed acyclic graph (DAG)
G = (V,E), since fragments can only lose, never gain, weight. Vertices in the
graph are colored c : V → C, such that vertices that explain the same peak receive
the same color. Edges are weighted, reflecting that some fragmentation steps are
more likely. Common fragmentation steps get a higher weight than implausible
fragmentation steps. Also peak intensities and mass deviations are taken into ac-
count in these weights. The resulting fragmentation graph contains all possible
fragmentation trees as subgraphs. The weight of an induced tree T = (VT , ET )
is defined as the sum of its edge weights: w(T ) :=

∑
(u,v)∈ET

w
(
u, v
)
.

The MSn data does not only hint to direct but also to indirect successions,
that is a fragment is not only scored based on its direct ancestor (its parent
node), but also on indirect ancestors (grandparent node etc). Thus, we also
have to score the transitive closure of the induced subtrees [24]. The transitive
closure G+ = (V,E+) of a DAG G = (V,E) contains the edge (u, v) ∈ E+

if and only if there is a directed path in G from u to v. As MSn data does
not differentiate between different explanations of the peaks, we score pairs of
colors: w+ : C2 → R. The transitive weight of an induced tree T = (VT , ET ) with
transitive closure T+ = (VT , E

+
T ) is defined as

w+(T ) :=
∑

(u,v)∈E+
T

w+
(
c(u), c(v)

)
(1)

Scheubert et al. [24] introduced three parameters σ1, σ2 and σ3 to score the
transitive closure. Parameter σ1 rewards fragments of an MSn spectrum that
are successors of its parent fragment (σ1 ≥ 0). Parameter σ2 penalizes frag-
ments that are successors of a parent fragment of an MSn spectrum although
the corresponding peak is not contained in this spectrum (σ2 ≤ 0). Parameter
σ3 penalizes direct and indirect fragmentation steps that occur at high collision
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Fig. 1. (1) As input we use MSn spectra that contain additional information on the
succession of fragments. (2) For each peak, we compute all fragment molecular for-
mulas with mass sufficiently close to the peak mass. (3) A fragmentation graph is
constructed with vertices for all fragment molecular formulas and edges (grey) for all
possible fragmentation steps. Explanations of the same peak receive the same color.
The transitive closure of the graph is scored based on pairs of colors. To simplify the
drawing, we only show non zero edges of the transitive closure (black). (4) The colorful
subtree with maximum combined weight of the edges and the transitive closure is the
best explanation of the observed fragments.

energy but not at low collision energy (σ3 ≤ 0). For a more detailed description
of the parameters see [24].

Now, each subtree of the fragmentation graph corresponds to a possible frag-
mentation tree. Considering trees, every fragment is explained by a unique frag-
mentation pathway. To avoid the case that one peak is explained by more than
one molecular formula, we limit our search to colorful trees, where each color is
used at most once. In practice, it is very rare that a peak is indeed created by two
different fragments. Searching for a colorful subtree of maximum sum of edge
weights is known as the Maximum Colorful Subtree problem, which is NP-
hard [5,8]. Searching for a colorful subtree of maximum weight of the transitive
closure is known as the Colorful Subtree Closure problem, which is again
NP-hard (even for unit weights) [24]. In addition, both problems are even hard
to approximate [6, 24, 27]. The problem we are interested in combines the two
above problems, that is searching for a colorful subtree of maximum combined
weight of the edges and the transitive closure, which is the best explanation of
the observed fragments [24]:

Combined Colorful Subtree Problem. Given a vertex-colored DAG G =
(V,E) with colors C, edge weights w : E → R, and transitive weights w+ :
C2 → R. Find the induced colorful subtree T of G of maximum weight w∗(T ) =
w(T ) + w+(T ).

3 Integer Linear Programming for Fragmentation Trees

For the computation of fragmentation trees from tandem MS data, several exact
and heuristic algorithms to solve the Maximum Colorful Subtree problem
have been proposed and evaluated [5, 19, 20], inter alia a fixed-parameter algo-
rithm using dynamic programming (DP) over vertices and color subsets [5, 7],
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and an Integer Linear Program (ILP) [20] (see below) – both computing an exact
solution. For multiple MS data, Scheubert et al. [24] presented an exact DP algo-
rithm for the Combined Colorful Subtree problem, which is parameterized
by the number of colors k in the graph. Here, we present an ILP for solving
the Combined Colorful Subtree problem. ILPs are a classical approach for
finding exact solutions of computationally hard problems.

3.1 ILP for Tandem MS

We first repeat the ILP introduced by Rauf et al. [20] for tandem MS data. By
mapping all peaks into a single “pseudo tandem MS” spectrum we can also use
this ILP to find a fragmentation tree for multiple MS data. However, by doing
so, we ignore the additional information gained from the succession of fragments
in multiple MS.

Let G = (V,E) be the input graph, and let C : V → C denote the vertex
coloring of G. We assume that G has a unique source r that will be the root of
the subtree. For each color c ∈ C let V (c) be the set of all vertices in G which are
colored with c. We introduce binary variables xuv for each edge uv ∈ E, where
xuv = 1 if and only if uv is part of the subtree.

max
∑
uv∈E

w(u, v) · xuv (2)

s.t.
∑

u with uv ∈ E

xuv ≤ 1 for all v ∈ V \ {r}, (3)

xvw ≤
∑

u with uv ∈ E

xuv for all vw ∈ E with v �= r, (4)

∑
uv ∈ E with v ∈ V (c)

xuv ≤ 1 for all c ∈ C, (5)

xuv ∈ {0, 1} for all uv ∈ E. (6)

Constraints (3) ensure that the feasible solution is a tree, whereas constraints
(5) make sure that there is at most one vertex of each color present in the so-
lution. Finally, constraints (4) require the solution to be connected. Note that
in general graphs, we would have to ensure for every cut of the graph to be
connected to some parent vertex. That would require an exponential number of
constraints [15]. But since our graph is directed and acyclic, a linear number
of constraints suffice. White et al. [30] pointed out that constraints (3) are re-
dundant due to constraints (5). However, in the following we will refer to the
original ILP from [20].

3.2 ILP for Multiple MS Allowing Transitivity Penalties Only

A rather simple ILP for solving the Combined Colorful Subtree problem
extends the ILP from Rauf et al. [20] by adding constraints similar to [2] to
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capture the transitivity of the closure. To this end, we will introduce additional
variables that capture the edges of the transitive closure of the tree. Unfortu-
nately, this simple approach is only working for negative weights for all edges of
the transitive closure and cannot be generalized to arbitrary transitivity scores.

Let G+ = (V,E+) be the transitive closure of the input graph G. We assume
that w+(c(u), c(v)) ≤ 0 holds for all edges uv of the transitive closure. Let us
define binary variables xuv for each edge uv ∈ E, and zuv for each edge uv ∈ E+.
We assume xuv = 1 if and only if uv is part of the subtree; and zuv = 1 if uv is
part of the closure of the subtree. We can formulate the following ILP:

max
∑
uv∈E

w(u, v) · xuv +
∑

uv∈E+

w+(c(u), c(v)) · zuv (7)

satisfying constraints (3), (4), (5) and, in addition:

xuv ≤ zuv for all uv ∈ E, (8)

zuv + zvw − zuw ≤ 1 for all uv, vw ∈ E+, (9)

xuv ∈ {0, 1} for all uv ∈ E, (10)

zuv ∈ {0, 1} for all uv ∈ E+. (11)

As w+(c(u), c(v)) ≤ 0 for all uv ∈ E+ we may assume that zuv = 0 holds unless
required otherwise by (8) or (9). Constraint (8) requires that all edges of the
subtree are also edges of the closure; constraint (9) results in the transitivity of
the closure.

Unfortunately, the above ILP cannot be generalized to arbitrary transitivity
scores, demonstrated by the example that zuv = 1 for all uv ∈ E+ satisfies both
constraints (8) and (9), independently of the actual assignment of variables xuv.

3.3 ILP for Multiple MS Using General Transitivity Scores

Here, we present an ILP for solving the Combined Colorful Subtree prob-
lem using general transitivity scores. Let G = (V,E) be the input graph, and
let C : V → C denote the vertex coloring of G. For each color c ∈ C let V (c) be
the set of all vertices in G which are colored with c. Let H = (U, F ) be the color
version of G with

U := C(V ) and F := {C(u)C(v) : uv ∈ E}.

We may assume U = C, but for the sake of clarity we will use U whenever we
refer to the vertices of the color graph H .

Let us define binary variables xuv for each edge uv ∈ E, and zab and yab for
each edge ab ∈ F . We assume xuv = 1 if and only if uv is part of the subtree,
and yab = 1 if there exist u ∈ V (a) and v ∈ V (b) such that uv is part of the
subtree, that is, xuv = 1. Variables yab are merely helper variables that map the
subtree to the color space. Finally, we assume zab = 1 if ab is part of the closure
of the subtree in color space. The following ILP captures the maximum colorful
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subtree problem as well as the Colorful Subtree Closure problem using
arbitrary transitivity scores:

max
∑
uv∈E

w(u, v) · xuv +
∑
ab∈F

w+(a, b) · zab (12)

satisfying constraints (3), (4), (5) and, in addition:

xuv ≤ yC(u)C(v) for all uv ∈ E, (13)

yab ≤
∑

u∈V (a),v∈V (b)

xuv for all ab ∈ F , (14)

yab ≤ zab for all ab ∈ F , (15)

zab + ybc − 1 ≤ zac for all bc ∈ F , a ∈ U, (16)

zab − ybc + 1 ≥ zac for all bc ∈ F , a ∈ U, (17)

zac ≤
∑

b ∈ U with
bc∈F

ybc for all ac ∈ F , (18)

xuv ∈ {0, 1} for all uv ∈ E, (19)

yab, zab ∈ {0, 1} for all ab ∈ F . (20)

Constraints (13) and (14) ensure that there is an edge in the color version
of the tree if and only if there is an edge between vertices of the corresponding
colors. Constraints (15) guarantee that for each edge that is part of the solution,
also its transitive edge is part of the solution. Constraints (16) and (17) ensure
the transitivity of the transitive closure of the solution: For a given edge ybc in
the color version of the tree and an arbitrary color a, a is either an ancestor of b
(and thus also of c), or not. The first case implies that there must be transitive
edges from a to b as well as from a to c. In the second case, transitive edges
from a to b as well as from a to c are prohibited. Constraints (18) guarantee
that only the transitive closure of the solution tree is part of the solution, and
not the transitive closure of other subgraphs.

4 Correlation with Structural Similarity

Rasche et al. [18] presented the comparison of fragmentation trees using fragmen-
tation tree alignments. One important application of this approach is searching
in a database for molecules that are similar to the measured unknown molecule.
Two structurally similar molecules have similar fragmentation trees and vice
versa [18]. Hence, the similarity of high quality fragmentation trees correlates
with the structural similarity of the corresponding molecules. We will use the
correlation coefficient to optimize the parameters of the transitivity score and
to evaluate the benefit of MSn data compared to MS2 data.

Fragmentation tree similarity is defined via edges, representing fragmentation
steps, and vertices, representing fragments. A local fragmentation tree alignment
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contains those parts of the two trees where similar fragmentation cascades oc-
curred [18]. To compute fragmentation tree alignments we use the sparse DP
introduced by Hufsky et al. [12] which is very fast in practice.

For the comparison of molecular structures, many different similarity scores
have been developed [13]. Molecular structures can be represented as binary fin-
gerprints. Here, we use two of those fingerprint representations, that is the fin-
gerprints from PubChem database [29] accessed via the Chemistry Development
Toolkit version 1.3.37 [28]1, and Molecular ACCess System (MACCS) finger-
prints implemented in OpenBabel2. We use Tanimoto similarity scores (Jaccard
indices) [21] to compare those binary vectors.

To assess the correlation between fragmentation tree similarity and structural
similarity, we use the well-known Pearson correlation coefficient r which mea-
sures the linear dependence of two variables, as well as the Spearman’s rank
correlation coefficient ρ that is the Pearson correlation coefficient between the
ranked variables. The coefficient of determination, r2, measures how well a model
explains and predicts future outcomes. Fragmentation tree alignment scores and
structural similarity scores are two measures where one would not expect a linear
dependence. This being said, we argue that any Pearson correlation coefficients
r > 0.5 (r2 > 0.25) can be regarded as strong correlation.

5 Results

To evaluate our work, we analyze spectra from a dataset introduced in [24]. It
contains 185 mass spectra of 45 molecules, mainly representing plant secondary
metabolites. All spectra were measured on a Thermo Scientific Orbitrap XL
instrument using direct infusion. For more details of the dataset see [24].

For the construction of the fragmentation graph, we use a relative mass er-
ror of 20 ppm and the standard alphabet – that is carbon, hydrogen, nitrogen,
oxygen, phosphorus, and sulfur – to compute the fragment molecular formulas.
For weighting the fragmentation graph, we use the scoring parameters from [19].
For scoring the transitive closure, we evaluate the influence of parameters σ1, σ2

and σ3 on the quality of fragmentation trees. We assume the molecular formula
of the unfragmented molecule to be given (for details, see [18, 19, 24]).

For the computation of fragmentation trees from tandem MS data, we use the
DP algorithm from [5] (called DP-MS2 in the following) and the ILP from [20]
(ILP-MS2). Recall, that we can convert MSn data to “pseudo MS2” data by
mapping all peaks into a single spectrum and ignoring the additional informa-
tion gained from the succession of fragments in MSn. For the computation of
fragmentation trees from multiple MS data, we use the DP algorithm from [24]
(DP-MSn) as well as our novel ILP (ILP-MSn). Both DP algorithms are re-
stricted by memory and time consumptions. Thus, exact calculations are limited
to the k′ most intense peaks. The remaining peaks are added in descending inten-
sity order by a greedy heuristic (see the tree completion heuristic from [20,24]).

1 https://sourceforge.net/projects/cdk/
2 http://openbabel.sourceforge.net/

https://sourceforge.net/projects/cdk/
http://openbabel.sourceforge.net/
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For solving the ILPs we use Gurobi 5.63. The experiments were run on a cluster
with four nodes each containing 2x Intel XEON 6 Cores E5645 at 2.40 GHz with
48 GB RAM. Each instance is started on a single core.

For computing fragmentation tree alignments, we use the sparse DP from [12]
and the scoring from [18]. Estimation of Pearson and Spearman correlation co-
efficients was done using the programming language R.

Running Time Comparison. For the evaluation of running times depending on
the number of peaks in the spectrum, we calculate the exact solution (using all
four algorithms) for the k′ most intense peaks for each molecule. Afterwards,
remaining peaks are added heuristically. For each k′, we exclude instances with
less than k′ peaks in the spectrum. For very small instances, the DP algorithms
are slightly faster than the ILPs (see Fig. 2 (left)). On moderate large instances
(e.g. k′ = 17), the ILPs clearly outperform the DP algorithms. For k′ > 20 it is
not possible to calculate fragmentation trees with the DP due to memory and
time constraints. On huge instances (k′ > 30) the ILP-MSn is slower than the
ILP-MS2.

To get an overview of differences in the running times between hard and easy
fragmentation tree computations for tandem MS and multiple MS data, we sort
the instances by their running times in increasing order. This is done separately
for the ILP-MS2 and the ILP-MSn algorithm (see Fig. 2 (right)). We find that
solving the Combined Colorful Subtree problem using the ILP-MSn is still
very fast on most instances. Further, we find that for the ILP-MSn, there is
one molecule for which the calculation of the fragmentation tree takes nearly as
much time as for the remaining 39 molecules together.

Parameter Estimation. In [24] the estimation of parameters was based on the
assumption that fragmentation trees change when using the additional scoring
of the transitive closure. Here, we want to optimize the scoring of the transitive
closure by maximizing the correlation of fragmentation tree alignment scores
and the structural similarity scores of the corresponding molecules. For three of
the 45 molecules, it was not possible to calculate fragmentation tree alignments
due to memory and time constraints. Those compounds were excluded from the
analysis.

For estimating the optimal scoring parameters σ1, σ2 and σ3 of the tran-
sitive closure, we compute exact fragmentation trees using the k′ = 20 most
intense peaks and attach the remaining peaks by the tree completion heuris-
tic. For scoring the transitive closure of the fragmentation graph, we separately
vary 0 ≤ σ1 ≤ 6, −3 ≤ σ2 ≤ 0 and −3 ≤ σ3 ≤ 0. We compute fragmenta-
tion tree alignments and analyze the resulting PubChem/Tanimmoto as well
as MACCS/Tanimoto Pearson correlation coefficients (see Fig. 3). Increasing σ1

the correlation coefficient increases and converges at approximately σ1 = 3. For
σ2 and σ3 the highest correlation is reached around −0.5. For the further evalu-
ation, we set σ1 = 3, σ2 = −0.5 and σ3 = −0.5. We find, that this result agrees

3 Gurobi Optimizer 5.6. Houston, Texas: Gurobi Optimization, Inc.
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Fig. 2. Running times for calculating fragmentation trees. Times are averaged on 10
repetitive evaluations and given in seconds. Note the logarithmic y-axis. Left: Average
running times for calculating one fragmentation tree with exact solution for the k′

most intense peaks. The remaining peaks are attached by tree completion heuristic.
Right: Total running times for instances of size k′ = 35. Again, the remaining peaks
are attached heuristically. We calculate the total running time of the x instances for
which the tree was computed faster than for any of the remaining instances. For each
algorithm, instances were sorted separately.

with the original scoring parameters from [24]. Although they were chosen ad
hoc, they seem to work very well in practice. We further find, that σ1 has a
larger effect on the correlation than σ2 and σ3 (see Fig. 3). This was expected,
as the requirement that a fragments is placed below its parent fragment is very
strong.

Further, we evaluate the effect of using more peaks for the exact fragmentation
tree computation on the correlation. We set σ1 = 3, σ2 = −0.5 and σ3 = −0.5,
and vary the number of peaks from 10 ≤ k′ ≤ 35. We find that the highest
PubChem/Tanimoto correlation coefficient r = 0.5643137 (r2 = 0.31844500) is
achieved for k′ = 21 (see Fig. 4).

Note that the DP-MSn is not able to solve problems of size k′ = 21 with
acceptable running time and memory consumption. Thus, only by help of the
ILP-MSn it is possible to compute trees with best quality.

The optimum of k′ remains relatively stable in a leave-one-out validation
experiment: For each compound, we delete the corresponding fragmentation tree
from the dataset and repeat the former analysis to determine the best k′. For 30
of the 42 sub-datasets k′ = 21 achieves the best correlation. For the remaining
11 sub-datasets k′ = 14, k′ = 20 or k′ = 25 are optimal.

Due to the small size of the dataset, it is hard to determine best parameters
without overfitting. Hence, these analyzes should not be seen as perfect param-
eter estimation, but more as a rough estimation until a bigger dataset becomes
available.

Comparison between Trees from MS2, Pseudo-MS2 and MSn Data. To evaluate
the benefit of scoring the additional information from MSn data, we compare the
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Fig. 3. Pearson correlation coefficients of PubChem/Tanimoto (left) and
MACCS/Tanimoto (right) scores with fragmentation tree alignment scores, sep-
arately varying the scoring parameters σ1, σ2 and σ3 of the transitive closure for
fragmentation tree computation. When varying σ1, we set σ2 = 0 and σ3 = 0 and vice
versa

correlation coefficients of using only the MS2 spectra, using Pseudo-MS2 data,
and using MSn data. As mentioned above, Pseudo-MS2 data means mapping all
peaks into a single spectrum and ignoring the additional information gained from
the succession of fragments in MSn, that is not scoring the transitive closure. For
fragmentation tree computation from MS2 and Pseudo-MS2 data we use the ILP-
MS2, for MSn data we use the ILP-MSn. For a fair evaluation, we again vary the
number of peaks from 10 ≤ k′ ≤ 35 to choose the k′ with the highest correlation
coefficient. The highest Pearson correlation coefficient with PubChem/Tanimoto
fingerprints for MS2 data is r = 0.3860874 (r2 = 0.1490635) with k′ = 21 and
for Pseudo-MS2 data r = 0.5477199 (r2 = 0.2999970) with k′ = 25 (see Fig. 4).

Further, we compare the Pearson correlation coefficients between the three
datasets MS2, Pseudo-MS2 and MSn (see Table 1). We find that the benefit of
MSn data is huge in comparison to using only MS2 data, which is expected since
the MS2 spectra contain too few peaks. The question that is more intriguing is
whether scoring the transitive closure improves correlation results. Comparing
Pseudo-MS2 with MSn data, we get an increase in the coefficient of determination
r2 by up to 6.7 % for PubChem fingerprints and 6.3 % for MACCS fingerprints.
The results for Spearman correlation coefficients look similar. When restricting
the evaluation to large trees (at least three edges, five edges, seven edges), we
cannot observe an increase in correlation.

When fragmentation trees are used in database search the relevant accuracy
measure is not Pearson correlation, but identification accuracy. The dataset used
in this paper is small and there is only one measurement per compound. Thus
we cannot evaluate the identification accuracy. Instead we analyze the Tanimoto
scores T (h) of the first h hits with h ranging from one to the number of com-
pounds (see Fig. 5). We exclude the identical compound from the hitlist and then
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Fig. 4. Correlation and regression line for the complete datasets. Fragmentation
tree similarity (x-axis) plotted against structural similarity measured by Pub-
Chem/Tanimoto score (y-axis). (a) Fragmentation trees for MS2 data (k′ = 21). Pear-
son correlation is r = 0.386. Spearman correlation is ρ = 0.364 (b) Fragmentation trees
for Pseudo-MS2 data (k′ = 25). Pearson correlation is r = 0.548. Spearman correlation
is ρ = 0.615 (c) Fragmentation trees for MSn data (k′ = 21). Pearson correlation is
r = 0.564. Spearman correlation is ρ = 0.624.

Table 1. Pearson correlation r and coefficient of determination r2 (in brackets) of
structural similarity (PubChem/Tanimoto and MACCS/Tanimoto) with fragmenta-
tion tree similarity, for all three datasets and different minimum tree sizes (at least
one edge, three edges, five edges, seven edges). We report the number of alignments
(molecule pairs) N for each set. The subsets with different minimum tree sizes are de-
termined by the tree sizes of the MSn trees (that is, the MS2 and Pseudo-MS2 subsets
contain the same molecules).

only molecules with at least
fingerprint dataset 1 edge 3 edges 5 edges 7 edges

PubChem MS2 0.386 (0.149) 0.386 (0.149) 0.374 (0.140) 0.384 (0.147)
Pseudo-MS2 0.548 (0.300) 0.549 (0.301) 0.530 (0.281) 0.549 (0.301)
MSn 0.564 (0.318) 0.567 (0.321) 0.547 (0.299) 0.565 (0.319)

MACCS MS2 0.379 (0.143) 0.371 (0.138) 0.371 (0.138) 0.373 (0.139)
Pseudo-MS2 0.453 (0.206) 0.445 (0.198) 0.438 (0.192) 0.439 (0.193)
MSn 0.466 (0.217) 0.456 (0.210) 0.449 (0.202) 0.449 (0.201)

no. molecule
pairs N

861 820 630 561

average over the hitlists of all compounds in the dataset. We compare the results
from MS2, Pseudo-MS2 and MSn data with pseudo hitlists containing randomly
ordered compounds (minimum value, RANDOM) and compounds arranged in
descending order in accordance with the Tanimoto scores (upper limit, BEST).
There is a significant increase of average Tanimoto scores from MS2 data to MSn

data, and a slight increase from Pseudo-MS2 data to MSn data especially for
the first h = 5 compounds.
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Fig. 5. Average Tanimoto scores T (h) between query structures and the first h struc-
tures from hitlists obtained by FT alignments (MS2, Pseudo-MS2, MSn data), pseudo
hitlists containing the structures with maximum Tanimoto score to query structure
(BEST) and randomly selected pseudo hitlists (RANDOM)

6 Conclusion

In this work, we have presented an Integer Linear Program for the Combined

Colorful Subtree problem, that outperforms the Dynamic Programming
algorithm that has been presented before [24]. Solving this problem is relevant
for calculating fragmentation trees from multistage mass spectrometry data.

Quality of fragmentation trees is measured by correlation of tree alignment
scores with structural similarity scores of the corresponding compounds. Ex-
periments on a dataset with 45 compounds revealed that trees computed with
transitivity scores σ1 = 3, σ2 = −0.5 and σ3 = −0.5 achieve the best quality. The
highest correlation of r = 0.564 was achieved when computing exact fragmenta-
tion trees for the k′ = 21 most intense peaks and attaching the remaining peaks
heuristically. Using the additional information provided by multiple MS data,
the coefficient of determination r2 increases by up to 6.7 % compared to trees
computed without transitivity scores. Thus, we could show for the first time that
additional information from MSn data can improve the quality of fragmentation
trees.

For the computation of those trees with highest quality (k′ = 21), our ILP
needs 1.3 s on average. In contrast, the original DP is not able to solve those
instances with acceptable running time and memory consumption. The ILP for
MSn is, however, slower than the ILP for MS2 that has been presented before [20].
This is due to the number of constraints which increases by an order of magnitude
from MS2 to MSn. White et al. [30] suggested rules to speed up computations
for the ILP on MS2 data. These rules may also improve the running time of our
algorithm.
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S.: Identifying the unknowns by aligning fragmentation trees. Anal. Chem. 84(7),
3417–3426 (2012)
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Abstract. Ion mobility (IM) spectrometry (IMS), coupled with multi-
capillary columns (MCCs), has been gaining importance for biotechno-
logical and medical applications because of its ability to measure volatile
organic compounds (VOC) at extremely low concentrations in the air
or exhaled breath at ambient pressure and temperature. Ongoing minia-
turization of the devices creates the need for reliable data analysis on-
the-fly in small embedded low-power devices. We present the first fully
automated online peak extraction method for MCC/IMS spectra. Each
individual spectrum is processed as it arrives, removing the need to store
a whole measurement of several thousand spectra before starting the
analysis, as is currently the state of the art. Thus the analysis device can
be an inexpensive low-power system such as the Raspberry Pi.

The key idea is to extract one-dimensional peak models (with four
parameters) from each spectrum and then merge these into peak chains
and finally two-dimensional peak models. We describe the different algo-
rithmic steps in detail and evaluate the online method against state-of-
the-art peak extraction methods using a whole measurement.

1 Introduction

Ion mobility (IM) spectrometry (IMS), coupled with multi-capillary columns
(MCCs), MCC/IMS for short, has been gaining importance for biotechnologi-
cal and medical applications. With MCC/IMS, one can measure the presence
and concentration of volatile organic compounds (VOCs) in the air or exhaled
breath with high sensitivity; and in contrast to other technologies, such as mass
spectrometry coupled with gas chromatography (GC/MS), MCC/IMS works at
ambient pressure and temperature. Several diseases like chronic obstructive pul-
monary disease (COPD) [1], sarcoidosis [4] or lung cancer [20] can potentially
be diagnosed early. IMS is also used for the detection of drugs [11] and ex-
plosives [9]. Constant monitoring of VOC levels is of interest in biotechnology,
e.g., for watching fermenters with yeast producing desired compounds [12] and
in medicine, e.g., monitoring propofol levels in the exhaled breath of patients
during surgery [15].

IMS technology is moving towards miniaturization and small mobile devices.
This creates new challenges for data analysis: The analysis should be possible
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within the measuring device without requiring additional hardware like an ex-
ternal laptop or a compute server. Ideally, the spectra can be processed on a
small embedded chip or small device like a Raspberry Pi or similar hardware
with restricted resources. Algorithms in small mobile hardware face constraints,
such as the need to use little energy (hence little random access memory), while
maintaining prescribed time constraints.

The basis of each MCC/IMS analysis is peak extraction, by which we mean
a representation of all high-intensity regions (peaks) in the measurement by
using a few descriptive parameters per peak instead of the full measurement
data. State-of-the-art software (like IPHEx [3], Visual Now [2], PEAX [5]) only
extracts peaks when the whole measurement is available, which may take up
to 10 minutes because of the pre-separation of the analytes in the MCC. Our
own PEAX software in fact defines modular pipelines for fully automatic peak
extraction and compares favorably with a human domain expert doing the same
work manually when presented with a whole MCC/IMS measurement. However,
storing the whole measurement is not desirable or possible when the memory
and CPU power is restricted. Here we introduce a method to extract peaks and
estimate a parametric representation while the measurement is being captured.
This is called online peak extraction, and this article presents the first algorithm
for this purpose on MCC/IMS data.

Section 2 contains background on the data produced in an MCC/IMS ex-
periment, on peak modeling and on optimization methods used in this work.
A detailed description of the novel online peak extraction method is provided
in Section 3. An evaluation of our approach is presented in Section 4, while
Section 5 contains a concluding discussion.

2 Background

We primarily focus on the data generated by an MCC/IMS experiment
(Section 2.1) and related peak models. Ion mobility spectrometers and their
functions are well documented [7], and we do not go into technical details. In
Section 2.2 we describe a previously used parametric peak model, and in Sec-
tion 2.3 we review two optimization methods that are being used as subroutines
in this work.

2.1 Data from MCC/IMS Measurements

In an MCC/IMS experiment, a mixture of several unknown volatile organic com-
pounds (VOCs) is separated in two dimensions: first by retention time r in the MCC
(the time required for a particular compound to pass through the MCC) and sec-
ond by drift time d through the IM spectrometer. Instead of the drift time itself, a
quantity normalized for pressure and temperature called the inverse reducedmobil-
ity (IRM) t is used to compare spectra taken under different or changing conditions.
Thus we obtain a time series of IM spectra (one each 100 ms at each retention time
point), and each spectrum is a vector of ion concentrations (measured by voltage
change on a Faraday plate) at each IRM.
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Fig. 1. Visualization of a raw measurement (IMSC) as a heat map; X-axis: inverse
reduced mobility 1/K0 in Vs/cm2; y-axis: retention time r in seconds; signal: white
(lowest) < blue < purple < red < yellow (highest). The constantly present reactant ion
peak (RIP) with mode at 0.48Vs/cm2 and exemplarily one VOC peak are annotated.

Let R be the set of (equidistant) retention time points and let T be the set of
(equidistant) IRMs where a measurement is made. If D is the corresponding set
of drift times (each 1/250000 second for 50 ms, that is 12 500 time points), there
exists a constant fims depending on external conditions such that T = fims·D [7].
Then the data is an |R|×|T |matrix S = (Sr,t) of measured ion intensities, which
we call an IM spectrum-chromatogram (IMSC). The matrix can be visualized as
a heat map (Figure 1). A row of S is a spectrum, while a column of S is a
chromatogram.

Areas of high intensity in S are called peaks, and our goal is to discover these
peaks. Comparing peak coordinates with reference databases may reveal the
identity of the corresponding compound. A peak caused by a VOC occurs over
several IM spectra. We have to mention some properties of MCC/IMS data that
complicate the analysis.

– An IM spectrometer uses a carrier gas, which is also ionized. The ions are
present in every spectrum, which is referred to as the reactant ion peak
(RIP). In the whole IMSC it is present as high-intensity chromatogram at
an IRM between 0.47 and 0.53 Vs/cm2. When the MCC/IMS is in idle mode,
no analytes are injected into the IMS, and the spectra contain only the RIP.
These spectra are referred to as RIP-only spectra.

– Every spectrum contains a tailing of the RIP, meaning that it decreases
slower than it increases; see Figure 2. To extract peaks, the effect of both
RIP and its tailing must be estimated and removed.

– At higher concentrations, compounds can form dimer ions, and one may
observe both the monomer and dimer peak from one compound. This means
that there is not necessarily a one-to-one correspondence between peaks
and compounds, and our work focuses on peak detection, not compound
identification.

– An IM spectrometer may operate in positive or negative mode, depending
on which type of ions (positive or negative) one wants to detect. In either
case, signals are reported in positive units. All experiments described here
were done in positive mode.
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2.2 Peak Modeling

Peaks can be described by parametrized distribution functions, such as shifted
Inverse Gaussian distributions g in both retention time and IRM dimension [13]
with

g(x;μ, λ, o) := [x > o] ·
√

λ

2π(x− o)3
· exp

(
−

λ
(
(x− o)− μ

)2
2μ2(x− o)

)
, (1)

where o is the shift, μ+o is the mean and λ is a shape parameter. A peak is then
given as the product of two shifted Inverse Gaussians, scaled by a volume factor v,
i.e., by seven parameters, namely P (r, t) := v · g(r, μr, λr, or) · g(t, μt, λt, ot) for
all r ∈ R, t ∈ T .

Since the parameters μ, λ, o of a shifted Inverse Gaussian may be very differ-
ent, although the resulting distributions have a similar shape, it is more intuitive
to describe the shifted Inverse Gaussian in terms of three different descriptors,
the mean μ′, the standard deviation σ and the mode m. There is a bijection
between (μ, λ, o) and (μ′, σ,m), described in [13] and shown in Appendix A.

2.3 Optimization Methods

The online peak extraction algorithm makes use of non-linear least squares
(NLLS) parameter estimation and of the EM algorithm, summarized here.

Non-linear Least Squares. The non-linear least squares (NLLS) method
is an iterative method to estimate parameters θ = (θ1, . . . , θq) of a supposed
parametric function f , given n observed data points (x1, y1), . . . , (xn, yn) with
yi = f(xi; θ). The idea is to minimize the quadratic error

∑n
i=1 ei(θ) between

the function and the observed data with ei(θ) := ri(θ)2 and ri(θ) := yi−f(xi; θ)
is the residual. The necessary optimality condition is

∑
i ri(θ) · ∂ri(θ)/∂θj = 0

for all j. If f is linear in θ (e.g., a polynomial in x with θ being the polynomial co-
efficients, a setting called polynomial regression), then the optimality condition
results in a linear system, which can be solved in closed form. However, often f
is not linear in θ and we obtain a non-linear system, which is solved iteratively,
given initial parameter values, by linearizing it in each iteration. Details and
different algorithms for NLLS can be found in [18, Chapter 10].

The EM Algorithm for Mixtures with Heterogeneous Components.
The idea of the expectation maximization (EM) algorithm [6] is that the ob-
served data x = (x1, . . . , xn) is viewed as a sample from a mixture of prob-
ability distributions, where the mixture density is specified by f(xi |ω, θ) =∑C

c=1 ωc fc(xi | θc). Here c indexes the C different component distributions fc,
where θc denotes the parameters of fc, and θ = (θ1, . . . , θC) is the collection of all
parameters. The mixture coefficients satisfy ωc ≥ 0 for all c, and

∑
c ωc = 1. Un-

like in most applications, where all component distributions fc are multivariate
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Gaussians, here the fc are of different types (e.g., uniform and Inverse Gaus-
sian). The goal is to determine the parameters ω and θ such that the probability
of the observed sample is maximal (maximum likelihood paradigm). Since the
resulting optimization problem is non-convex in (ω, θ), the EM algorithm is an
iterative method that converges towards a local optimum that depends on the
initial parameter values. The EM algorithm consists of two repeated steps: The
E-step (expectation) estimates the expected membership of each data point in
each component and then the component weights ω, given the current model
parameters θ. The M-step (maximization) estimates maximum likelihood pa-
rameters θc for each parametric component fc individually, using the expected
memberships as hidden variables that decouple the model.

E-Step. To estimate the expected membership Wi,c of data point xi in each com-
ponent c, the component’s relative probability at that data point is computed,
such that

∑
c Wi,c = 1 for all i. Then the new component weight estimates ω+

c

are the averages of Wi,c across all n data points.

Wi,c =
ωc fc(xi | θc)∑
k ωk fk(xi | θk)

, ω+
c =

1

n

n∑
i=1

Wi,c, (2)

Convergence. After each M-step of an EM cycle, we compare θc,q (old parameter
value) and θ+c,q (updated parameter value), where q indexes the elements of θc,
the parameters of component c. We say that the algorithm has converged when
the relative change κc,q := |θ+c,q − θc,q| / max

(
|θ+c,q|, |θc,q|

)
drops below a given

threshold ε for all c, q. (If θ+c,q = θc,q = 0, we set κc,q := 0.)

3 An Algorithm for Online Peak Extraction

The basic idea of our algorithm is to process each IM spectrum as soon as
it arrives (and before the next one arrives) and convert it into a mixture of
parametric one-dimensional peak models, described in Section 3.1. The resulting
models of consecutive spectra then have to be aligned to each other to track peaks
through time; this step is explained in Section 3.2. Finally, we discuss how the
aligned models are merged into two-dimensional peak models (Section 3.3).

3.1 Single Spectrum Processing

The idea of processing a single IM spectrum S is to deconvolute it into its single
components. Several components appear in each spectrum besides the peaks,
namely the previously described RIP, the tailing described in Section 2.1 and
background noise. We first erase background noise, then determine and remove
the tailing function and finally determine the peak parameters.
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Erasing Background Noise. Background noise intensities are assumed to
follow a Gaussian distribution at small intensity values. We can determine its
approximate mean μR and standard deviation σR by considering the ranges
between 0 and 0.2175 Vs/cm2 and between 1.2345 and 1.45 (end of a spectrum)
Vs/cm2 from a RIP-only spectrum (cf. Section 2.1) since these ranges typically
contain only background noise. We now apply an idea that we previously used on
the whole IMSC [14] to each single spectrum S = (St): We use the EM algorithm
to determine (a) the mean μn and standard deviation σn of the background noise,
and (b) for each t the fraction of the signal intensity St that belongs to noise.
We then correct for both quantities.

The EM algorithm receives a smoothed spectrum A = (At) averaged with
window radius ρ as input, At := 1

2ρ+1 ·
∑t+ρ

t′=t−ρ St′ and deconvolves it into three

components: noise (n), data (d), and background (b) that can be described by
neither noise nor data. The noise intensities follow a Gaussian distribution with
parameters (μn, σn), whereas the data intensities follow an Inverse Gaussian
model with parameters (μd, λd). The background is uniformly distributed. The
initial parameters for the noise are estimated from all data points whose intensity
lies within [μR− 3σR, μR + 3σR]. The initial parameters for the data component
are analogously estimated from all points whose intensity exceeds μR + 3σR.
The weights ωn and ωd are set according to the number of data points inside
and outside the interval, respectively, times 0.999, and the background model
initially has ωb = 0.001, hence the sum over all three weights equals 1. The
choice of the precise background weight is not critical, since the EM algorithm
re-estimates its optimal value, but the initial conditions should suggest a low
value, so the background explains only those of the 12 500 points which cannot
be explained by the two other components.

The EM algorithm alternates between E-step (Eq. (2)) and M-step, where the
new parameters for the non-uniform component are estimated by the maximum
likelihood estimators

μ+
c =

∑
t Wt,c · At∑

t Wt,c
, σ+

n =

√∑
t Wt,n · (At − μ+

n )2∑
t Wt,n

, λ+
d =

∑
t Wt,d∑

t Wt,dαt

for c ∈ {n, d}, where αt = 1/At − 1/μ+
d . These computations are repeated until

convergence as defined in Section 2.3.
The denoised signal vector S+ is computed as S+

t := max(0, (St − μn) · (1 −
Wt,n)) for all t ≤ |T |, thus setting mean noise level to zero and erasing data
points that belong exclusively to noise.

Determining the Tailing Function. The tailing function appears as a base-
line in every spectrum (see Figure 2 for an example). Its shape and scale changes
from spectrum to spectrum; so it has to be determined in each spectrum and
subtracted in order to extract peaks from the remaining signal in the next step.
Empirically, we observe that the tailing function f(t) can be described by a
scaled shifted Inverse Gaussian, f(t) = v · g(t;μ, λ, o) with g given by (1). The
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Fig. 2. A spectrum and its estimated tailing function

goal is to determine the parameters θ = (v, μ, λ, o) such that fθ(t) under-fits the
given data S = (St), as shown in Figure 2.

Let rθ(t) := S(t) − fθ(t) be the residual function for a given choice θ of pa-
rameters. As we want to penalize r(t) < 0 but not (severely) r(t) > 0, maximum
likelihood estimation of the parameters is not appropriate. Instead, we use a
modified version of non-linear least squares (NLLS) estimation. In the standard
NLLS method, the error function to be minimized is e(θ) =

∑
t et(θ), where

et(θ) := rθ(t)2. Instead, we use

et(θ) :=

{
rθ(t)2/2 if rθ(t) < ρ ,

ρ · rθ(t)− ρ2/2 if rθ(t) ≥ ρ .

That is, the error is the residual squared when it has a negative or small positive
value less than a given ρ > 0, but becomes a linear function for larger residuals.
We refer to this modification (and corresponding algorithms) as the modified
NLLS (MNLLS) method. To estimate the tailing function,

1. we determine reasonable initial values for the parameters (v, μ, λ, o); see
below,

2. we use MNLLS to estimate the scaling factor v with ρ = σ2
R, leaving the

other parameters fixed,
3. we use MNLLS to estimate all four parameters with ρ = σ2

R,
4. we use MNLLS to re-estimate the scaling factor v with ρ = σ2

R/100.

The initial parameter values are determined as follows. The initial σ is set to
the standard deviation of the whole RIP-only spectrum. An additional offset o′

is set to the largest IRM left of the RIP mode where the signal is below σR.
Having determined the IRM of the RIP mode TR, the initial μ′ can only range
within the interval ]TR, TR + 0.7σ]. To obtain appropriate model parameters, μ′

is being increased in small steps within the interval. The descriptor set (μ′, σ, TR)
is being recomputed into the parameter set (μ, λ, o) until o ≥ o′. This parameter
set contains the initial parameter values. For the scaling factor, we initially set
v = (1/2)

∑
t≤|T | St.
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Extracting Peak Parameters from a Single Spectrum. To extract all
peaks from a spectrum (from left to right), we repeat three sub-steps:

1. scanning for a potential peak, starting where the previous iteration stopped
2. determining peak parameters (Inverse Gaussian distribution)
3. subtracting the peak from the spectrum and continuing with the remainder

Scanning. The algorithm scans for peaks, starting at the left end of S, by sliding
a window of width ρ across S and fitting a quadratic polynomial to the data
points within the window. Assume that the window starts at index β and ends
at β + ρ, the latter being not included. The value of ρ is determined by the
grid opening time dgrid, the maximum drift time of the spectrum Dlast and the
number of data points in the spectrum, ρ := dgrid/Dlast · |D| data point units.
Let f(x; θ) = θ2x

2 + θ1x+ θ0 be the fitted polynomial. We call a window a peak
window if the following conditions are fulfilled:

– the extreme drift time Dx = θ1/(2θ2) ranges within the interval [Dβ , Dβ+ρ].
– f(Dx; θ) ≥ 2 σR

– There is a maximum at Dx, i.e., f(Dx; θ) > f(Dβ; θ)

The first condition can be more restricted to achieve more reliable results, by
shrinking the interval towards the center of the window. When no peak is found,
the moving window is shifted one index forward. If a peak is detected, the window
is shifted half the window length forward before the next scan begins, but first
the peak parameters and the reduced spectrum are computed.

Determining Peak Parameters. Given the drift time Dx of maximal intensity in
the window, the mode descriptor of the peak is simply m = Dx ·fims, where fims

is the scaling constant that converts drift times (in ms) into IRMs (in Vs/cm2;
see Section 2.1). Given the mode, the other peak parameters can be inferred.
Spangler et al. [19] empirically derived that the width w1/2 of the drift time in-
terval between the point of maximal intensity and the point of half the maximum

intensity (assuming peak symmetry) is w1/2 =
√

(11.09D d)/V 2
d + d2grid, where

D is the diffusion coefficient, d the mean drift time of the compound, Vd the drift
velocity. Using the Einstein relation [8], D can be computed as D = kKBT /q,
where k is the ion mobility, KB the Boltzmann constant, T the absolute temper-
ature and q the electric charge. From this, we can derive the standard deviation
σ = ω1/2/2.3548 · fims, remark that in a Gaussian curve ω1/2 ≈ 2.3548σ. Empir-

ically, the mean is found to be μ′ =
(
d +
√

(4.246 · 10−5)2 + d2/585048.1633
)
·

fims.
Having computed the peak descriptors, we convert them into the parameters

(μ, λ, o) of the Inverse Gaussian parameterization (see Appendix A). The scaling
factor v for the peak is v = f(d; θ)/g(d · fims;μ, λ, o). The model function is
subtracted from the spectrum, and the next iteration is started with a window
shifted by ρ/2 index units. For each spectrum, the output of this step is a reduced
spectrum, which is a set of parameters for a mixture of weighted Inverse Gaussian
models describing the peaks.
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3.2 Aligning Two Consecutive Reduced Spectra

We now have, for each spectrum, a set of peak parameters, and the question arises
how to merge the sets P = (Pi) and P+ = (P+

j ) of two consecutive spectra. For
each peak Pi, we have stored the Inverse Gaussian parameters μi, λi, oi, the
peak descriptors μ′

i, σi,mi (mean, standard deviation, mode) and the scaling
factor vi, and similarly so for the peaks P+

j . The idea is to compute a global

alignment similar to the Needleman-Wunsch method [17] between P and P+.
We need to specify how to score an alignment between Pi and P+

j and how to

score leaving a peak unaligned (i.e., a gap). The score Sij for aligning Pi to P+
j

is chosen proportionally to the Pi’s Inverse Gaussian density at the mode m+
j ,

since we want to align new peaks to the current and not vice versa. The score
γi in comparison to align Pi to a gap is proportional to Pi’s density at mi + δ,
where δ := dgrid/2.3548 · fims corresponds approximate to a minimal standard
deviation width in IRM units. In other words, with g(x;μ, λ, o) as in Eq. (1), let

S′
ij := g(m+

j ; μi, λi, oi) , γ′
i := g(mi + δ; μi, λi, oi) , Z := γ′

i +
∑

j
S′
ij ,

Sij := S′
ij/Z , γi := γ′

i/Z .

Accordingly, γ+
j refers to the corresponding value for P+

j .
Computing the alignment now in principle uses the standard dynamic pro-

gramming approach with an alignment matrix E, such that Eij is the optimal
score between the first i peaks of P and the first j peaks of P+. However, while
we use γi for deciding whether to align Pi to a gap, we score it as zero. Thus we
initialize the borders of (Eij) to zero and then compute, for i ≥ 1 and j ≥ 1,

ζi,j = max(Ei−1,j−1 + Si,j , Ei−1,j + γi, Ei,j−1 + γ+
j ),

Ei,j =

⎧⎪⎨
⎪⎩
ζi,j if ζi,j = Ei−1,j−1 + Si,j ,

Ei−1,j if ζi,j = Ei−1,j + γi,

Ei,j−1 if ζi,j = Ei,j−1 + γ+
j .

The alignment is obtained with a traceback, recording the optimal case in each
cell, as usual. There are three cases to consider.

– If P+
j is not aligned with a peak in P , potentially a new peak starts at this

retention time. Thus model P+
j is put into a new peak chain.

– If P+
j is aligned with a peak Pi, the chain containing Pi is extended with P+

j .

– All peaks Pi that are not aligned to any peak in P+ indicate the end of a
peak chain at the current retention time.

All completed peak chains are forwarded to the next step, two-dimensional peak
model estimation.

3.3 Estimating 2-D Peak Models

Let C = (P1, . . . , Pn) be a chain of one-dimensional Inverse Gaussian models.
The goal of this step is to estimate a two-dimensional peak model (product of two
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one-dimensional Inverse Gaussians) from the chain, as described in Section 2.2,
or to reject the chain if the chain does not fit such a model well. Potential
problems are that a peak chain may contain noise 1-D peaks, or in fact consist
of several consecutive 2-D peaks at the same drift time and successive retention
times.

Empirically, we find that the retention time interval where a peak has more
than half the height of its maximum height is at least 2.5 s. (This depends on the
settings at the MCC and has been found for temperature 40◦C and throughput
150 mL/min.) The time between two spectra is 0.1 s; so for a peak the number
of chain entries should be ≥ 2.5 s/ 0.1 s = 25. If it is lower, then the chain is
discarded immediately.

We first collect the peak height vector h = (hi)i=1,...,n at the individual modes;
hi := vi · g(mi;μi, λi, oi) and in parallel the vector r = (ri) of corresponding
retention times of the models.

To identify noise chains, we fit an affine function of r to h by finding (θ′0, θ
′
1)

to minimize
∑

i (hi − θ′1ri − θ′0)2 (linear least squares). We then compute the
cosine similarity between 
 = (
i) with 
i := θ′1ri + θ′0 and h, which is defined
as normalized inner product 〈h, 
〉/(‖h‖ ‖
‖) ∈ [−1, 1]. If it exceeds 0.99, there
is no detectable concave peak shape and the chain is discarded as noise.

Otherwise we proceed similarly to the paragraph “Extracting Peak Param-
eters from A Single Spectrum” in Section 3.1 by fitting quadratic polynomials
hi ≈ θ2r

2
i + θ1ri + θ0 to appropriately sized windows of retention times. We

record the index i∗ := arg maxi(hi) of the highest signal and check the peak
conditions: (1) As a minimum peak height, we require hi∗ ≥ 5σR/2. (2) As a
minimum peak width ρ (size of the moving window), we use ρ = (25+0.01 ·Ri∗).
The lower bound of 25 was explained above, but with increasing retention time
Ri, the peaks become wider. This was found empirically by manually examining
about 100 peaks in several measurements and noting a linear correlation of peak
retention time and width.

When the peak conditions are satisfied, we compute the descriptors for an
Inverse Gaussian as follows: v = −θ2(θ1/(2θ2))

2 + θ0, σ =
√
v/(2|θ2|), m =

−θ1/(2a), μ′ = m + 0.1
√
m. Having computed the descriptors, we compute the

model parameters (μ, λ, o). Ideally, we have now obtained a single shifted Inverse
Gaussian model from the chain and are done. However, to optimize the model
fit and to deal with the possibility of finding several peak windows in the chain,
we use the EM algorithm to fit a mixture of Inverse Gaussians to (hi) and finally
only take the dominant model from the mixture as the resulting peak. To achieve
descriptors in IRM dimension and the volume v, we take the weighted average
over all models within the chain for every descriptor.

4 Evaluation

We tested different properties of our online algorithm: (1) the execution time,
(2) the quality of reducing a single spectrum to peak models, (3) the correlation
between manual annotations on full IMSCs by a computer-assisted expert and
our automated online extraction method.
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Table 1. Average processing time of both spectrum reduction and consecutive align-
ment on two platforms with different degrees of averaging

Platform Average 1 Average 2 Average 5

Desktop PC 7.79ms 3.10ms 1.52ms
Raspberry Pi 211.90ms 85.49ms 37.82ms

Execution time. We tested our method on two different platforms, (1) a desk-
top PC with Intel(R) Core(TM) i5 2.80GHz CPU, 8GB memory, Ubuntu 12.04
64bit OS and (2) a Raspberry Pi1 type B with ARM1176JZF-S 700MHz CPU,
512 MB memory, Raspbian Wheezy 32bit OS. The Raspberry Pi was chosen
because it is a complete credit card sized low-cost single-board computer with
low CPU and power consumption (3.5 W). This kind of device is appropriate for
data analysis in future mobile measurement devices.

Recall that each spectrum contains 12 500 data points. It is current practice
to analyze not the full spectra, but aggregated ones, where five consecutive
values are averaged. Here we consider the full spectra, slightly aggregated ones
(av. over two values, 6 250 data points) and standard aggregated ones (av. over
five values, 2 500 data points). We measured the average execution time of the
spectrum reduction and consecutive alignment. Table 1 shows the results. At
the highest resolution (Average 1) only the desktop PC satisfies the time bound
of 100 ms between consecutive spectra. At lower resolutions, the Raspberry Pi
satisfies the time restrictions.

We found that in the steps that use the EM algorithm, on average 25–30
EM iterations were necessary for a precision of ε := 0.001 (i.e., 0.1%) (see Con-
vergence in Section 2.3). Relaxing the threshold from 0.001 to 0.01 halved the
number of iterations without noticeable difference in the results.

Quality of single spectrum reduction. In a second experiment we tested quality
of the spectrum reduction method using an idea by Munteanu and Wornow-
izki [16] that determines the agreement between an observed set of data points,
interpreted as an empirical distribution function F and a model distribution G
(the reduced spectrum in our case). The approach works with the fairly general
two-component mixture model F = s̃ · G + (1 − s̃) ·H with s̃ ∈ [0, 1], where H
is a non-parametric distribution whose inclusion ensures the fit of the model G
to the data F . If the weight s̃ is close to 1.0, then F is a plausible sample
from G. We compare the original spectra and reduced spectra from a previously
used dataset [10]. This set contains 69 measurements preprocessed with a 5× 5
average. Every measurement contains 1200 spectra. For each spectrum in all
measurements, we computed the reduced spectrum model and determined s̃.
Over 92% of all 82 000 models achieved s̃ = 1 and over 99% reached s̃ ≥ 0.9.
No s̃ dropped below 85%.

1 http://www.raspberrypi.org/

http://www.raspberrypi.org/
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Fig. 3. Time series of discovered intensities of two peaks. Left: A peak with agreement
between manual and automated online annotation. Right: A peak where the online
method fails to extract the peak in several measurements. If one treated zeros as missing
data, the overall trend would still be visible.
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Fig. 4. Comparison of peak intensity time series from manual annotation of full mea-
surements vs. our online algorithm. Each cross corresponds to a time series of one peak.
Ideally, the online algorithm finds the peak in all measurements where it was manually
annotated (high recall, x-axis), and the time series has a high cosine similarity (y-axis).

Similarity of online extracted peaks with manual offline annotation. The third
experiment compares extracted peaks on a time series of measurements between
expert manual annotation and our algorithm. Here 15 rats were monitored in 20
minute intervals for up to a day. Each rat resulted in 30–40 measurements (a time
series) for a total of 515 measurements, all captured in positive mode. To track
peaks within a single time series, we used the previously described EM clustering
method [14] as well as the state-of-the-art software, namely VisualNow. As an
example, Figure 3 shows time series of intensities of two peaks detected by
computer-assisted manual annotation and using our online algorithm. Clearly,
the sensitivity of the online algorithm is not perfect.

To obtain an overview over all time series, we computed the cosine similarity
γX,Y ∈ [−1,+1] between the intensities over time as discovered by manual an-
notation (X) and our online algorithm (Y ). We also computed the recall of the
online algorithm for each time series, that is, the relative fraction of measure-
ments where the peak was found by the algorithms among those where it was
found by manual annotation.

In summary, we outperform VisualNow in terms of sensitivity and computa-
tion time. Almost 27% of the points extracted by the online method exceed 90%
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recall and 95% cosine similarity whereas only 7% of the time series extracted
by VisualNow achieve that values. The peak detection of one measurement took
about 2 seconds on average (when the whole measurement is available at once)
with the online method and about 20 seconds with VisualNow on the previous
described desktop computer. VisualNow only provides the position and signal
intensity of the peak’s maximum, whereas our method additionally provides
shape parameters. Figure 4 shows generally good agreement between the online
method and the manual one, and similarly good agreement between Visual-
Now and the manual annotation. Problems of our online method stem from
low-intensity peaks only slightly above the detection threshold, and resulting
fragmentary or rejected peak chains.

5 Discussion and Conclusion

We presented the first approach to extract peaks from MCC/IMS measurements
while they are being captured, with the long-term goal to remove the need for
storing full measurements before analyzing them in small embedded devices.
Our method is fast and satisfies the time restrictions even on a low-power CPU
platform like a Raspberry Pi.

While performing well on single spectra, there is room for improvement in
merging one-dimensional peak models into two-dimensional peak models. We
currently ignore the fact that a peak chain may contain more than one peak.
Our method has to be further evaluated in clinical studies or biotechnological
monitoring settings. It also has not been tested with the negative mode of an
IMS for lack of data. In general, the robustness of the method under adver-
sarial conditions (high concentrations with formation of dimer ions, changes in
temperature or carrier gas flow in the MCC) has to be evaluated and probably
improved.
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A Peak Descriptors and Parameters of Shifted Inverse
Gaussian

The shifted Inverse Gaussian distribution with parameters dimension with pa-
rameters o (shift), μ (mean minus shift) and λ (shape) is given by (1). There is
a bijection between (μ, λ, o) and (μ′, σ,m) that is given by

μ′ = μ + o, σ =
√
μ3/λ, m = μ

(√
1 + (9μ2)/(4λ2)− (3μ)/(2λ)

)
+ o.

in the forward direction and in the backward direction as follows [13]:

o = −p/2−
√
p2/4− q, μ = μ′ − o, λ = μ3/σ2, where

p :=
(
−m(2μ′ + m) + 3 · (μ′2 − σ2)

)
/
(
2(m− μ′)

)
,

q :=
(
m(3σ2 + μ′ ·m)− μ′3)/(2(m− μ′)

)
.
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Abstract. Constructing populations with pre-specified characteristics is a fun-
damental problem in population genetics and other applied areas. We present a
novel non-generative approach that deconstructs the desired population into es-
sential local constraints and then builds the output bottom-up. This is achieved
using primarily best-fit techniques from discrete methods, which ensures accu-
racy of the output. Also, the algorithms are fast, i.e., linear, or even sublinear, in
the size of the output. The non-generative approach also results in high sensitivity
in the algotihms. Since the accuracy and sensitivity of the population simulation
is critical to the quality of the output of the applications that use them, we believe
that these algorithms will provide a strong foundation to the methods in these
studies.

1 Introduction

In many studies, it is important to work with an artificial population to evaluate the
efficacy of different methods or simply generate a founder population for an in-silico
breeding regimen. The populations are usually specified by a set of characteristics such
as minimum allele frequency (MAF) and linkage disequilibrium (LD) distributions. A
generative model simulates the population by evolving a population over time [1, 2].
Such an approach uses different parameters such as ancestor population characteristics
and their sizes, mutation and recombination rates, and breeding regimens, if any. The
non-generative models [3–5], on the other hand, do not evolve the population and often
start with an exemplar population and perturb it either by a regimen of recombinations
between the samples or other local perturbations.

We present a novel non-generative approach that first breaks up the specified (global)
constraints into a series of local constraints. We map the problem onto a discrete frame-
work by identifying subproblems that use best-fit techniques to satisfy these local con-
straints. The subproblems are solved iteratively to give an integrated final solution using
techniques from linear algebra, combinatorics, basic statistics and probability. Using
techniques from discrete methods, the algorithms are optimized to run in time linear
with the size of the output, thus extremely time-efficient. In fact, for one of the prob-
lems, the algorithm completes the task in sublinear time.
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The first problem we address is that of constructing a deme (population) with pre-
specified characteristics [6] More precisely, the problem is defined as:

Problem 1. (Deme Construction). The task is to generate a population (deme) of n
diploids (or 2n haploids) with m SNPs that satisfy the following characteristics: MAF
distribution p, LD distribution r2.

Our approach combines algebraic techniques, basic quantitative genetics and discrete
algorithms to best fit the specified distributions. The second problem we address is
that of simulating crossovers with interference in a population. Capturing the crossover
events in an individual chromosome as it is transmitted to its offspring, is a fundamen-
tal component of a population evolution simulator where the population may be under
selection or not (neutral). The expected number of crossovers is d, also called the the ge-
netic map distance (in units of Morgans). Let the recombination fraction be be denoted
by r. Then:

Problem 2. (F1 Population with Crossover Interference). The task is to generate a
F1 hybrid population with the following crossover interference models for a pair of
parents:

1. Complete interference (Morgan [7]) model defined by the relationship d = r.
2. Incomplete interference (Kosambi [8]) model defined by the relationship

d = 0.25 ln
1 + 2r

1− 2r
or r = 0.5 tanh 2d.

3. No interference (Haldane [7, 8]) model defined by the relationship

d = −0.5 ln(1− 2r) or r = e−d sinh d.

Again, we use combinatorics and basic probability to design a sub-linear time algorithm
to best fit the distribution of the three different crossover interference models.

2 Problem 1: Deme Construction

Background. We recall some basic definitions here. Let p1 and p2 be the MAF at locus
1 and locus 2 and let r2 be the LD between the two loci. Then D is defined as follows
([9, 10]):

D = ±r
√
p1(1− p1)p2(1− p2). (1)

Equivalently, the LD table of the pairwise patterns, 00, 01, 10, 11, of the two loci, is
written as:

0 1
0 (1− p1)(1 − p2) + D (1− p1)p2 −D 1− p1
1 p1(1− p2)−D p1p2 + D p1

1− p2 p2 1

(2)

With a slight abuse of notation we call D the LD between two loci, with the obvious
interpretation.
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The output deme (population) is a matrix M where each row is a haplotype and each
column is a (bi-allelic) marker. Recall that the input is the MAF and LD distributions.
By convention, the MAF of marker j, pj , is the proportion of 1’s in column j of M . Our
approach to constructing the deme is to work with the markers one at a time and without
any backtracking. We identify the following subproblem, which is used iteratively to
construct the population.

Problem 3 (k-Constrained Marker Problem (k-CMP)). Given columns j0, j1, ., jk−1

and target values r0, r1, ..., rk−1 and pk, the task is to generate column jk with MAF
pk such that the pairwise LD with column jl is rl, l = 0, 1, .., k − 1.

Outline of our approach to solving k-CMP. The 1’s in column jk are assigned at random
respecting MAF pk. Let Dl(jl, jk) denote the LD between markers jl and jk. Then let
the expected value, in the output matrix M , be Dl(·, ·). When both the columns fulfill
the MAF constraints of pl and pk respectively, let the observed value be Dobs

l (·, ·). In
other words, if Q10 is the number of times pattern 10 is seen in these two markers in
M with n rows (after the random initialization),

Dobs
l =

1

n
(npl(1− pk+1)−Q10.) . (3)

Next, we shuffle the 1’s in column jk , such that it simultaneously satisfies k conditions.
Thus we get a best-fit of Dobs

l (jl, jk) to D(jl, jk). To achieve this, we compare column
jk with columns jl, l = 0, 1, 2, .., k− 1, that have already been assigned. Thus, first, for
each pair of markers jl, jk, compute the target deviation, Dtarget

l , based on input p and
r values. Then, shuffle the 1’s in column jk of the output matrix, to get a best-fit to the
targets Dtarget

0 , Dtarget
1 , ..., Dtarget

k−1 simultaneously.

3 k-CMP: Linear Algebraic Method

Given pl, pk and rl, the following 4 values can be computed, for each l:

Plk = n((1− pl)(1− pk) +Dl) (number of rows with 0 in column l and 0 in column k),
Qlk = n(pl(1− pk)−Dl) (number of rows with 1 in column l and 0 in column k),
Clk = n((1− pl)pk −Dl) (number of rows with 0 in column l and 1 in column k),
Blk = n(plpk +Dl) (number of rows with 1 in column l and 1 in column k),

where
Dl = +rl

√
pl(1− pl)pk(1 − pk).

Strictly speaking, the number of unknowns is 2×2k, written as yi,0, yi,1, where 1 ≤ i ≤
2k. Let Xi denote the binary k-pattern corresponding to binary pattern of the number
i − 1. For example when k = 3, X1 = 000 and X8 = 111. Then in the solution, the
number of rows with binary (k + 1)-pattern Xi0 is yi,0 and the number of rows with
binary (k + 1)-pattern Xi1 is yi,1. Thus

yi,0 + yi,1 = #Xi where #Xi is the number of rows in the input M with k-pattern Xi in the given k columns.

Since the right hand side of the above 2k equations can be directly obtained from the
existing input data, the effective number of unknowns are 2k, re-written as yi = yi,0,
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1 ≤ i ≤ 2k (since yi,1 = #Xi − yi). Hence we focus on the computing the non-trivial
2k unknowns yi. We set up k + 1 linear equations in 2k unknowns using P1k, P2k, ..,
P(k−1)k and Q(k−1)k. For this we define the following (0 ≤ l < k):

Lk
l =

{
i | 1 ≤ i ≤ 2k and the (l + 1)th entry is 0 in k-pattern Xi

}
.

For example, L3
1 = {1, 2, 3, 4} and L3

3 = {1, 3, 5, 6} (see Fig 1 for the binary patterns).
Then the k + 1 linear equations are:∑

i∈Lk
l

yi = Plk, for l = 0, 1, .., k − 1,

∑
i
∈Lk

k−1

yi = Q(k−1)k.

This under-constrained system is solved using Gauss-Jordan elimination and we look
for non-negative (integer) solutions, so that the results can be translated back to the
number of 0’s (and 1’s) in column jk. It is possible to save the solution space for each
k-CMP problem and when a non-negative solution is not found, to backtrack and pick
an alternative solution from the solution space. However, we did not experiment with
the backtracking approach (instead we iteratively reduced the number of constraints to
fit a subproblem with fewer columns, when necessary).

3.1 A Concrete Example

Consider the following concrete example where k = 3. We use the following conven-
tion: the given (constraint) columns are 0, 1 2 and the column under construction is
3. We solve for the eight variables y1, .., y8 and the conditions are derived below. Let
p3 = 0.26 with the three pairwise LD tables as:

r203 = 0.27
D0 = 0.0714
0 1

0 73 16 89
1 1 10 11

74 26 100

r213 = 0.29
D1 = 0.1178
0 1

0 51 2 53
1 23 24 47

74 26 100

r223 = 0.37
D2 = 0.133
0 1

0 54 1 55
1 20 25 45

74 26 100 (4)

Exact Solution with Gauss-Jordan Elimination. Based on Equation 4, four linear
equations are captured as:

y1 + y2 + y3 + y4 = 73 (using P03), (5)

y1 + y2 + y5 + y6 = 51 (using P13), (6)

y1 + y3 + y5 + y7 = 54 (using P23), (7)
y2 + y4 + y6 + y8 = 20 (using Q23). (8)
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Fig. 1. The problem set up for k = 3 showing effectively 8 unknowns in the rightmost column.
The different numbers of the concrete example are shown on the right.

Recall from linear algebra that a column (or variable yi) is pivotal, if it is the leftmost
as well as the top-most non-zero element (which can be converted easily to 1). In the
reduced row echelon form, a column is pivotal, if all elements to its left, all elements
above it and all below are it zero. If the augmented column (the very last one with
P s and Qs) is also pivotal, then the system has no solution in R

8. The different row
transformations give the following:

input constraitns

y1 y2 y3 y4 y5 y6 y7 y8
1 0 1 0 1 0 1 0 P23

0 1 0 1 0 1 0 1 Q23

1 1 1 1 0 0 0 0 P03

1 1 0 0 1 1 0 0 P13

⇒

row echelon form;

pivotal columns are y1..y4
y1 y2 y3 y4 y5 y6 y7 y8
1 0 1 0 1 0 1 0 P23 ⇒

0 1 0 1 0 1 0 1 Q23

0 0 1 1 -1 -1 0 0 P03-P13

0 0 0 1 0 0 1 1 P23-P13+Q23

reduced row echelon form;

pivotal columns are y1..y4
y1 y2 y3 y4 y5 y6 y7 y8
1 0 0 0 2 1 2 1 2P23-P03+Q23

0 1 0 0 0 1 -1 0 P13-P23

0 0 1 0 -1 -1 -1 -1 P03-P23-Q23

0 0 0 1 0 0 1 1 P23 − P13 +Q23

All possible solutions are given by using constants c1, c2, c3 and c4:⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y1
y2
y3
y4
y5
y6
y7
y8

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2P23 − P03 + Q23

P13 − P23

P03 − P23 −Q23

P23 − P13 + Q23

0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+c1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2
0
1
0
1
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+c2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1
−1
1
0
0
1
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+c3

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2
1
1
−1
0
0
1
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+c4

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1
0
1
−1
0
0
0
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (9)
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Thus for this concrete example, the solution space is captured as:⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y1 ≤ 27
y2 ≤ 21
y3 ≤ 22
y4 ≤ 19
y5 ≤ 4
y6 ≤ 1
y7 ≤ 2
y8 ≤ 4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

55
−3
−1
23
0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+
c1
≤ 4

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2
0
1
0
1
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+
c2
≤ 1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1
−1
1
0
0
1
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+
c3
≤ 2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2
1
1
−1
0
0
1
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+
c4
≤ 4

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1
0
1
−1
0
0
0
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Fig 2 shows an example of applying the algebraic technique to a data set based on real
human MAF and r2 data provided by the International HapMap Project [11], from chr
22 in the LD data collection of Japanese in Tokyo (JPT) population.

Fig. 2. Population construction using algebraic techniques, for HapMap JPT population. Here
k = 10. (A) LD fit, (B) MAF fit, and (C) LD for each pair of columns, upper left triangle is the
target and lower right triangle the constructed.

4 k-CMP: Single-Step Hill Climbing

One of the shortcomings of the linear algebraic approach is that, it is not obvious how
to extract an approximate solution, when the exact solution does not exist. Recall that
in the original problem the LD (rlk values) are drawn from a distribution with non-
zero variance. A single-step hill climbing algorithm is described here and the general
hill-climbing (with compound-steps) will be presented in the full version of the paper.
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Note that the cost function in the hill climbing process is crucial to the algorithm.
Here we derive the cost function. To keep the exposition simple, we use k = 3 in the
discussion. Let the column under construction be j3 and in the pairwise comparison this
column is being compared with, e.g., jl = j0. Then Q03 represents the number of rows
with 1 in column j0 and 0 in column j3. A flip is defined as updating an entry of 0 to
1 (or 1 to 0). Further, in column j3, we will exchange the position of 0 and 1, say at
rows ifrom and ito respectively. This is equivalent to a flip at row ifrom and at row ito,
in column j3 (called Flip1 and Flip2 in the algorithm). Two flips are essential since the
number of 1’s (and 0’s) in column j3 must stay the same so as not to affect the allele
frequency in column j3. When ifrom at column j3 is 0 and ito at column j3 is 1, these
two flips lead to a change in the LD between columns j0 and j3 as follows:

Scenario I: The entry in row ifrom of column j0 is 0 and the entry in row ito of
column j0 is 1. Then there is a negative change in the LD value D0 since the count
of the pattern 00 (and 11) went down by 1 and the count of pattern 01 (and 10)
went up by 1.
Scenario II: The entry in row ifrom of column j0 is 1 and the entry in row ito of
column j0 is 0. Then there is a positive change in the LD value D0 since the count
of the pattern 00 (and 11) went up by 1 and the count of pattern 01 (and 10) went
down by 1.
Scenario III: The entry in row ifrom of column j0 is 0 and the entry in row ito of
column j0 is 0. Then there is no change in the LD value D0 since the count of the
pattern 00 does not change and the count of pattern 01 does not change.
Scenario IV: The entry in row ifrom of column j0 is 1 and the entry in row ito of
column j0 is 1. Then there is no change in the LD value D0 since the count of the
pattern 11 does not change and the count of pattern 10 does not change.

The four scenarios and the effect on the LD is summarized below:

Cost function based on Q

[from]
0 1

0 P00 C01

1 Q10
Flip1−→ B11

[to]
0 1

0 P00
Flip2←− C01

1 Q10 B11

Q represents the observed 10s
from

to
00
11
⇒ 01

10
−change in D

Scenario I

10
01
⇒ 11

00
+change in D

Scenario II

00
01
⇒ 01

00
no change in D

Scenario III

10
11
⇒ 11

10
no change in D

Scenario IV

Time complexity. The cost function is pre-computed for binary k-patterns and the data
is sorted in a hash table (details in the full version of the paper). Based on this an entry
of 1 in column j is processed no more than once. The number of such 1’s is npj . Thus
for the k-CMP problem, the algorithm takes O(knpj) time. Hence to to compute the
entire matrix it takes O(knmpj) time.
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Fig. 3. Hill-climbing algorithm for ASW HapMap population with k = 6. (A) LD fit, (B) MAF
fit, and (C) LD for each pair of columns, upper left triangle is the target and lower right triange
is the constructed. The main figure (A) shows the target ”o” and constructed ”*” mean r2 per
distance, while the black dots show target and cyan dots constructed r2 distribution per distance.

ALGORITHM: (k = 3)

1. Assign 1 to each column j3 of M , written as Mj3 , with probability p3 (the rest are
assigned 0).

2. At column j3 of matrix with the 3 constraints based on columns j0, j1, j2:
(a) Compute targets Dtarget

l , using rl3, Gtarget
l = n(Dtarget

l −Dobs
l ), for l = 0, 1, 2.

(b) Initialize
i. Gt

0 = Gt
1 = Gt

2 = 0.
ii. distance =

∑
l(G

target
l −Gt

l)
2.(goal of the LOOP is to minimize distance)

(c) LOOP
i. Move(Z1 → Z2, 1) in the following five steps:

(1-from) Pick ifrom in column j, with its k-neighbor pattern as Z1, so
that Mj3 [ifrom] is 0.
(2-to) Pick ito in column j, with its k-neighbor pattern as Z2, such that
Mj3 [ito] is 1 and the resulting distance decreases.
(3-Update) For columns l = 0, 1, 2 (corresponding to G0, G1, G2)

IF Z1l = 1 and Z2l = 0 THEN Gt
l will go up by 1 (Scenario II)

IF Z1l = 0 and Z2l = 1 THEN Gt
l will go down by 1 (Scenario I)

(IF (Z1l = Z2l) then no change) (Scenarios III & IV)
(4-Flip1) Flip Mj3 [ifrom]. (to maintain pj)
(5-Flip2) Flip Mj3 [ito]. (to maintain pj)

ii. Update Gt
0, G

t
1, G

t
2 and the distance

WHILE the distance decreases
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Fig. 4. Haplotype blocks in the simulated ASW HapMap population data, defined by HapBlock
software. For each of the 7 identified blocks, three most frequent haplotype sequences are shown
as white to gray horizontal lines. The remaining marker values are shown in darker gray/black.

Fig 3 shows an example of applying the hill climbing technique to a data set based
on real human MAF and r2 data provided by the International HapMap Project [11],
from chr 22 in the LD data collection of the African ancestry in Southwest USA (ASW)
population. Fig 4 shows the haplotype blocks in the simulated population, defined by the
HapBlock [15] software. The results demonstrate reasonable haplotype block lengths
in the simulated population.

5 Problem 2: F1 Population with Crossover Interference

An individual of a diploid population draws its genetic material from its two parents
and the interest is in studying this fragmentation and distribution of the parental mate-
rial in the progeny. The difference in definition between recombinations and crossovers
is subtle: the latter is what happens in reality, while the former is what is observable.
Hence a simulator that reflects reality must simulate the crossover events. However, it
is a well known fact that the there appears to be some interference between adjacent
crossover locations. The reality of plants having large population of offsprings from the
same pair of parents poses more stringent condition on the crossover patterns seen in the
offspring population than is seen in humans or animals. Thus capturing the crossover
events accurately in an individual chromosome as it is transmitted to its offspring, is a
fundamental component of a population evolution simulator. Since the crossover event
often dominates a population simulator, it determines both the accuracy as well as ulti-
mately controls the execution speed of the simulator [16].

Various crossover models in terms of their overall statistical behavior have been pro-
posed in literature. However, it is not obvious how they can be adapted to generating
populations respecting these models since the distributions are some (indirect) non-
trivial functions of the crossover frequencies. In Section 5.5, we present an utterly sim-
ple two-step probabilistic algorithm that is not only accurate but also runs in sublinear
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time for three interference models. Not surprisingly, the algorithm is very cryptic. The
derivation of the two steps, which involves mapping the problem into a discrete frame-
work, is discussed below. We believe that this general framework can be used to convert
other such “statistical” problems into a discrete framework as well.

5.1 Background on Crossovers

Note that an even number of crossovers between a pair of loci goes unnoticed while an
odd number (1, 3, 5, ..) is seen as a single crossover between the two loci.

Two point crosses. Let rij be the recombination fraction between loci i and j on the
chromosome. Consider three loci 1, 2 and 3, occurring in that order in a closely placed
or linked segment of the chromosome. Then:

r13 = r12 + r23 − 2r12r23. (10)

Using combinatorics, and the usual interpretation of double frequency r12r23, we derive
this as follows (1 is a crossover and · is an absence of crossover with the 4 possible
distinct samples marked i− iv):

i
ii
iii
iv

r12
1
1
·
·

r23
·
1
1
·

⇒

r13
1 odd x1

· even x2

1 odd x3

· even x4

r12r23
·
1
·
·

r13 = x1 + x3 = (x1 + x2) + (x2 + x3)− 2x2 = r12 + r23 − 2r12r23.

If C is the interference factor [8, 10, 12, 13], then

r13 = r12 + r23 − 2Cr12r23, (11)

5.2 Progeny as a 2D Matrix (Combinatorics)

The intent is to simulate N samples of expected length Z Morgans by generating a
binary N × L matrix M where each row i corresponds to a sample and each column j
corresponds to a position along the chromosomal segment (at the resolution of 1 cM).
Each M [i, j] of the matrix is also called a cell. For 1 ≤ i ≤ N and 1 ≤ j ≤ L, let:

M [i, j]=

{
0, if no crossover at j cM distance from the left end of the chr in sample i,
1, if a crossover at j cM distance from the left end of the chr in sample i.

Then,

Definition 1 (Progeny Matrix M ). M represents a sample of N chr segments of ex-
pected length L cM if and only if

(i) Expected number of 1’s along a row = pL,
(ii) Expected number of 1’s along a column = pN,

where p = 0.01, based on the convention, there is a 1% chance of crossover in a chr
segment of length 1 cM. Such a matrix M is called a progeny matrix.
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The above also suggests an algorithm for simulating N chr segments of expected
length L cM: M can be traversed (in any order) and at each cell a 1 is introduced with
probability p (or 0 with probability 1 − p). This results in a matrix M satisfying the
conditions in Definition 1. In fact, when L is large and p is small, as is the case here,
a Poisson distribution can be used with mean λ = pL, along a row to directly get the
marker locations (the j’s) with the crossovers.

Let M [i1, j1] = x and M [i2, j2] = y then M [i1, j1]  � M [i2, j2] denotes the ex-
change of the two values. In other words, after the  � operation, M [i1, j1] = y and
M [i2, j2] = x. The following is the central lemma of the section:

Lemma 1 (Exchange Lemma). Let j be fixed. Let I1, I2 �= φ be random subset of
rows, and for random i1 ∈ I1, i2 ∈ I2, let M ′ be obtained after the following exchange
operation:

M [i1, j]  � M [i2, j].

Then M ′ is also a progeny matrix.

This follows from the fact that each value in cell of M is independent of any other
cell. �

Note that, given a progeny matrix M , if the values in some random cells are toggled
(from 0 to 1 or vice-versa), the resulting matrix may not be a progeny matrix, but if a
careful exchange is orchestrated respecting Lemma 1, then M continues to be a progeny
matrix.

5.3 Approximations Based on Statistical Models

Recall Equation 11 that uses the two point cross model (with interference):

r13 = r12 + r23 − 2Cr12r23.

Conjecture 1 ((ε, t)-Interference Conjecture). For a (1) given interference function
C = f(r), (2) p and (3) a small small ε > 0, there exists progeny matrix M satisfying
the following conditions called the interference condition:

|rj1j2 + rj2j3 − 2f(r)rj1j2rj2j3 − rj1j3 | < ε, ∀j2, (12)
j3∑

l=j1

M [i, l] ≤ 2, (13)

where j1 = j2 − t and j3 = j2 + t and t is a small integer based on ε.

When C = 1 then t = 0 following the arguments presented in Section 5.1. Recall that
C = 1 for the Haldane model and C = 0 for the Morgan model. For the Kosambi
model, where C = 2r, we determine, t, the distance between the two points of the two
point cross model empirically, for ε = 0.001.

Definition 2 (MC Respecting an Interference Model C). For a given interference
function C = f(r), if a progeny matrix satisfies the interference conditions (of Equa-
tions 12 and 13) for some ε then it is said to respect the interference model C = f(r)
and is written as MC .
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Fig. 5. (a) The distribution of the fragment length when t and a are fixed, compared with when
they are picked at random from a small neighbourhood, in the Kosambi model. The latter gives
a smoother distribution than the former (notice the jump at fragment length 20 in the fixed case).
(b) Distance d (cM) versus recombination fraction r, for closed form solutions according to the
Kosambi, Haldane, and Morgan models, and for observed data in the simulations. The results
show average values from constructing a 5 Morgan chromosome 2, 000 times for each model.
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5.4 Some Probability Calculations

Assume submatrix Mj1j3 of M from columns j1 to j3 of Conjecture 1 and let t = t.
Then,

Lemma 2

Fraction of samples with (M [i, j2] = 1) = p = β, (14)

fraction of samples with

⎛
⎝ j3∑

l=j1,l 
=j2

M [i, l] = 0

⎞
⎠ ≈ (1− p)at = α, (15)

where a is a correction factor. When the crossovers are assigned randomly and inde-
pendently in M , due to the interference model C, the fraction with M [·, j2] = 1 that
are in violation, are

(1− α)× β × (1 − C).

Also fraction that could potentially be exchanged with the violating i’s while respecting
the interference model are

α× (1 − β).

Thus for Kosambi model, C = 2r ≈ 2p:

Violating fraction with (M [·, j2] = 1) ≈ (1− (1− p)at)× p× (1− 2p) = γ,(16)

potential exchange fraction ≈ (1− p)at × (1− p) = η. (17)

The correction factor a is empirically estimated. Thus an iterative procedure can ex-
change the violating fraction (γ) randomly with the values in the potential exchange
fraction (η). Thus based on Lemma 1, M continues to be a progeny matrix. Since condi-
tions of Conjecture 1 hold, the transformed matrix also respects the interference model.
Thus the ”interference adjustment” probability p′ in Kosambi model is defined as:

p′ ≈ γ

η
= p(1− 2p)

1− (1− p)
at

(1 − p)at+1
. (18)

For Morgan model C = 0:

γ = (1− α)β, η = α(1 − β), p′ = p
1− (1− p)at

(1− p)at(1− p)
.

For Haldane model C = 1: η = 0, p′ = 0. Now, we are ready for the details of
the algorithm where each row of MC can be computed independently using the two
probabilities p and p′.

5.5 Algorithm

We encapsulate the above into a framework to generate crossovers based on the mathe-
matical model of Eqn 11 and the generic interference function of the form C = f(r).
In this general framework a and t of Eqn 19 are estimated empirically, to match the
expected r curves with ε = 0.001 (of Conjecture 1). We present these estimated values
for the C = 2r, C = 1 and C = 0 models in Eqn 19.
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Crossover probability p. For historical reasons, the lengths of the chromosome may be
specified in units of Morgan, which is the expected distance between two crossovers.
Thus in a chromosomal segment of length 1 centiMorgan (cM), i.e., one-hundredth
of M, there is only 1% chance of a crossover. Thus, in our representation each cM
is a single cell in the matrix representation of the population leading to a crossover
probability p at each position as p = 0.01 and this single cell may correspond to 1
nucleotide base [9, 10, 14].
INPUT: Length of chromosome: Z Morgans or Z × 100 centiMorgans (cM).
ASSUMPTION: 1 cM is the resolution, i.e., is a single cell in the representation vec-
tor/matrix.
OUTPUT: Locations of crossover events in a chromosome.
ALGORITHM: Let

L = Z × 100, (specified input length)

p = 0.01,

(a, t) =

⎧⎨
⎩

(−, 0) if C = 1 (Haldane model),
(X1.1, X16) if C = 2r (Kosambi model),
(X1.65, X50) if C = 0 (Morgan model),

(19)

q =

⎧⎨
⎩

0 if C = 1 (Haldane model),
1− 2p if C = 2r (Kosambi model),
1 if C = 0 (Morgan model),

(20)

p′ = pq
1− (1− p)

at

(1− p)at+1
,

where Xc is a random variable drawn from a uniform distribution on [b, d], for some
b < d, where c = (b + d)/2. For example, uniform discrete distribution on [1, 31] for t
and uniform continuous distribution on [1.0, 1.2] for a.
For each sampled chromosome:

Step 1. Draw the number of positions from a Poisson distribution with λ = pL. For
each randomly picked position j, introduce a crossover. If crossovers in any of
the previous t or next t positions (in cM) then the crossover at j is removed
with probability q. [Interference]

Step 2. Draw the number of positions from a Poisson distribution with λ′ = p′L. For
each randomly picked position j′, if no crossovers in the previous t and next t
positions then a crossover is introduced at j′. [Interference adjustment]

Fragment lengths. Note that the careful formulation does not account for the follow-
ing summary statistic of the population: the distribution of the length of the fragments,
produced by the crossovers. It turns out that the fragment length is controlled by the
choice of the empirical values of Xt and Xa in Eqn 19. In Fig 5 (a), we show the frag-
ment length distribution where two values are fixed at t = 16 and a = 1.1 respectively
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in the Kosambi model. However, when the t and a are picked uniformly from a small
neighborhood around these values, we obtain the distribution which is more acceptable
by practitioners.

Running time analysis. The running time analysis is rather straightforward. Let cp be
the time associated with a Poisson draw and cu with a uniform draw. Ignoring the
initialization time and assuming t is negligible compared to L, the expected time taken
by the above algorithm for each sample is 2cp+(Z+1)cu. Since the time is proportional
to the number of resulting crossovers, the running time is optimal.

6 Discussion and Open Problems

We achieved linearity in the method for simulating the demes by showing that a fairly
small number of constraints, k, is sufficient for producing excellent results. In the full
version of the paper, we report the comparison studies, where it not only gives a better
fit than all the other methods, but additionally also is more sensitive to the input. Most
methods are insensitive to the nuanced changes in the input while our non-generative
method detects them, which is reflected in the output. We hypothesize that effectiveness
of the small value of k is due to the fact that it avoids overfitting and is suitable for this
problem setting since the input parameters are in terms of distributions, with non-zero
variances.

With the availability of resequencing data, in plants as well as humans, the density
of SNP markers continues to increase. However, this is not likely to affect the overall
LD distributions already seen in the data with less dense markers. Under higher density
markers, but similar LD distributions, a larger number of constraints (k) can be satisfied
exactly by the algebraic method. But larger values of k would increase the running time.
An option is to maintain the current density of markers and do a best-fit of the markers
between a pair of adjacent low-density markers. Note that the hardest part of the deme
problem is to fit high values of LD between a pair of markers. The theoretical upper
limit on the LD between a pair of markers (as a function of the two MAFs) can be
computed and we are currently already handling these values quite successfully. Based
on this observation, we hypothesize that a simple best-fit interpolation between low
density markers will be very effective. It is an interesting open question to devise such
linear time methods that scale the core algorithms presented here.

A natural question arises regarding the specification of a deme: What are the other
characteristics, independent of the MAF and LD? Further, can they be quantified? The
latter question helps in measuring and evaluating the accuracy of a simulator. Although,
somewhat non-intuitive, we find that MAF and LD distribution very effectively define
the desired characteristics of a deme. We also studied the fragmentation by haplotype
blocks of the population constructed by the non-generative approach. The problem of
characterizing the fragmentation of the haplotypes in a deme and its exact relationship
to the LD distribution is an interesting open problem.

Acknowledgments. We are very grateful to the anonymous reviewers for their excel-
lent suggestions which we incorporated to substantially improve the paper.
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Abstract. As a revolutionary tool, the Hi-C technology can be used to
capture genomic segments that have close spatial proximity in three di-
mensional space and enable the study of chromosome structures at an un-
precedentedly high throughput and resolution. However, during the ex-
perimental steps of Hi-C, systematic biases from different sources are of-
ten introduced into the resultant data (i.e., reads or read counts). Several
bias reduction methods have been proposed recently. Although both sys-
tematic biases and spatial distance are known as key factors determining
the number of observed chromatin interactions, the existing bias reduc-
tion methods in the literature do not include spatial distance explicitly in
their computational models for estimating the interactions. In this work,
we propose an improved Poisson regression model and an efficient gradient
descent based algorithm, GDNorm, for reducing biases in Hi-C data that
takes spatial distance into consideration. GDNormhas been tested on both
simulated and real Hi-C data, and its performance compared with that of
the state-of-the-art bias reductionmethods.The experimental results show
that our improved Poisson model is able to provide more accurate normal-
ized contact frequencies (measured in read counts) between interacting ge-
nomic segments and thus a more accurate chromosome structure predic-
tion when combined with a chromosome structure determination method
such as ChromSDE. Moreover, assessed by recently published data from
human lymphoblastoid and mouse embryonic stem cell lines, GDNorm
achieves the highest reproducibility between the biological replicates of the
cell lines. The normalized contact frequencies obtained byGDNorm is well
correlated to the spatial distance measured by florescent in situ hybridiza-
tion (FISH) experiments. In addition to accurate bias reduction, GDNorm
has the highest time efficiency on the real data. GDNorm is implemented in
C++ and available at http://www.cs.ucr.edu/∼yyang027/gdnorm.htm

Keywords: chromosome conformation capture,Hi-Cdata, systematic bias
reduction, Poisson regression, gradient descent.

1 Introduction

Three dimensional (3D) conformation of chromosomes in nuclei plays an im-
portant role in many chromosomal mechanisms such as gene regulation, DNA
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replication, maintenance of genome stability, and epigenetic modification [1]. Al-
terations of chromatin 3D conformations are also found to be related to many
diseases including cancers [2]. Because of its importance, the spatial organiza-
tion of chromosomes has been studied for decades using methods of varying scale
and resolution. However, owing to the high complexity of chromosomal struc-
tures, understanding the spatial organization of chromosomes and its relation to
transcriptional regulation is still coarse and fragmented [3].

An important approach for studying the spatial organization of chromosomes
is florescent in situ hybridization (FISH) [4]. In FISH-based methods, florescent
probes are hybridized to genomic regions of interests and then the inter-probe
distance values on two dimensional fluorescence microscope images are used as
the measurement for spatial proximity of the genomic regions. Because FISH-
based methods rely on image analysis involving a few hundred cells under the
microscope, they are generally considered to be of low throughput and resolu-
tion [2]. Recently, the limitation of throughput and resolution was alleviated
by the introduction of the 3C technology that is able to capture the chromatin
interaction of two given genomic regions in a population of cells by using PCR
[5]. Combining this with microarray and next generation sequencing technolo-
gies has yielded more powerful variants of the 3C methods. For example, 4C
methods [6,7] can simultaneously capture all possible interacting regions of a
given genomic locus in 3D space while 5C methods can further identify com-
plete pairwise interactions between two sets of genomic loci in a large genomic
region of interests [8]. However, when it comes to genome-wide studies of chro-
matin interactions, 5C methods require a very large number of oligonucleotides
to evaluate chromatin interactions for an entire genome. The cost of oligonu-
cleotide synthesis makes the 5C methods unsuitable for genome-wide studies [2].
To overcome this issue, another NGS-based variant of the 3C technology, called
Hi-C, was proposed to quantify the spatial proximity of the conformations of
all the chromosomes [3]. By taking advantages of the NGS technology, Hi-C can
quantify the spatial proximity between all pairs of chromosomal regions at an
unprecedentedly high resolution. As a revolutionary tool, the introduction of
Hi-C facilitates many downstream applications of chromosome spatial organiza-
tion studies such as the discovery of the consensus conformation in mammalian
genomes [9], the estimation of conformational variations of chromosomes within
a cell population [10], and the discovery of a deeper relationship between genome
spatial structures and functions [11].

The Hi-C technology involves the generation of DNA fragments spanning ge-
nomic regions that are close to each other in 3D space in a series of experimental
steps, such as formaldehyde cross-linking in solution, restriction enzyme diges-
tion, biotinylated junctions pull-down, and high throughput paired-end sequenc-
ing [3]. The number of DNA fragments spanning two regions is called the contact
frequency of the two regions. The physical (spatial) distance between a pair of
genomic regions is generally assumed to be inversely proportional to the contact
frequency of the two regions and hence the chromosome structure can in princi-
ple be recovered from the contact frequencies between genomic regions [10,12].
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However, during the experimental steps of Hi-C, systematic biases from different
sources are often introduced into contact frequencies. Several systematic biases
were shown to be related to genomic features such as number of restriction en-
zyme cutting sites, GC content and sequence uniqueness in the work of Yaffe and
Tanay [13]. Without being carefully detected and eliminated, these systematic
biases may distort many down-stream analyses of chromosome spatial organiza-
tion studies. To remove such systematic biases, several bias reduction methods
have been proposed recently. These bias reduction methods can be divided into
two categories, the normalization methods and bias correction methods accord-
ing to [2]. The normalization methods, such as ICE [14] and the method in [15],
aims at reducing the joint effect of systematic biases without making any specific
assumption on the relationships between systematic biases and related genomic
features. Their applications are limited to the study of equal sized genomic loci
[2]. In contrast, the bias correction methods, such as HiCNorm [16] and the
method of Yaffe and Tanay (YT) [13], build explicit computational models to
capture the relationships between systematic biases and related genomic features
that can be used to eliminate the joint effect of the biases.

Although it is well known that observed contact frequencies are determined
by both systematics biases and spatial distance between genomic segments, the
existing bias correction methods do not take spatial distance into account explic-
itly. This incomplete characterization of causal relationships for contact frequen-
cies is known to cause problems such as poor goodness-of-fitting to the observed
contact frequency data [16]. In this paper, we build on the work in [16] and
propose an improved Poisson regression model that corrects systematic biases
while taking spatial distance (between genomic regions) into consideration. We
also present an efficient algorithm for solving the model based on gradient de-
scent. This new bias correction method, called GDNorm, provides more accurate
normalized contact frequencies and can be combined with a distance-based chro-
mosome structure determination method such as ChromSDE [12] to obtain more
accurate spatial structures of chromosomes, as demonstrated in our simulation
study. Moreover, two recently published Hi-C datasets from human lymphoblas-
toid and mouse embryonic stem cell lines are used to compare the performance
of GDNorm with the other state-of-the-art bias reduction methods including
HiCNorm, YT and ICE at 40kb and 1M resolutions. Our experiments on the
real data show that GDNorm outperforms the existing bias reduction methods in
terms of the reproducibility of normalized contact frequencies between biological
replicates. The normalized contact frequencies by GDNorm are also found to be
highly correlated to the corresponding FISH distance values in the literature.
With regard to time efficiency, GDNorm achieves the shortest running time on
the two real datasets and the running time of GDNorm increases linearly with
the resolution of data. Since more and more high resolution (e.g., 5 to 10kb)
data are being used in the studies of chromosome structures [17], the time effi-
ciency of GDNorm makes it a valuable bias reduction tool, especially for studies
involving high resolution data.
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The rest of this paper is organized as follows. Section 2.1 presents several
genomic features that are used in our improved Poisson regression model. The
details of the model as well as the gradient descent algorithm are described
in Section 2.2. Several experimental results on simulated and real human and
mouse data are presented in Section 3. Section 4 concludes the paper.

2 Methods

2.1 Genomic Features

A chromosome g can be binned into several disjoint and consecutive genomic seg-
ments. Given an ordering to concatenate the chromosomes, let S = {s1, s2, ..., sn}
be a linked list representing all n genomic segments of interest such that the lin-
ear order of the segments in S is consistent with the sequential order in the
concatenation of the chromosomes. For each genomic segment si, the number of
restriction enzyme cutting sites (RECSs) within si is represented as Ri. The GC
content Gi of segment si is the average GC content within the 200 bps region
upstream of each RECS in the segment. The sequence uniqueness Ui of segment
si is the average sequence uniqueness of 500 bps region upstream or downstream
of each RECS. To calculate the sequence uniqueness for a 500 bps region, we
use a sliding window of 36bps to synthesize 55 reads of 35 bps by taking steps
of 10bps from 5′ to 3′ as done in [16]. After using the BWA algorithm [18] to
align the 55 reads back to the genome, the percentage of the reads that is still
uniquely mapped in the 500 bps region is considered as the sequence uniqueness
for the 500 bps region. These three major genomic features have been shown to
be either positively or negatively correlated to contact frequencies in the litera-
ture [13]. In the following, we will present a new bias correction method based on
gradient search to eliminate the joint effect of the systematic biases correlated to
the three genomic features, building on the Poisson regression model introduced
in [16].

2.2 A Bias Correction Method Based on Gradient Descent

Let F = {fi,j|1 ≤ i ≤ n, 1 ≤ j ≤ n} be the contact frequency matrix for
the genomic segments in S such that each fi,j denotes the observed contact
frequency between two segments si and sj . HiCNorm [16] assumes that the ob-
served contact frequency fi,j follows a Poisson distribution with rate determined
by the joint effect of systematic biases and represents the joint effect as a log-
linear model of the three genomic features mentioned above (i.e., the number
of RECSs, GC content and sequence uniqueness). In other words, if the Poisson
distribution rate of fi,j is θi,j , then

log(θi,j) = β0 + βrecslog(RiRj) + βgcclog(GiGj) + βseq log(UiUj), (1)

where β0 is a global constant, βrecs, βgcc and βseq are coefficients for the sys-
tematic biases correlated to RECS, GC content and sequence uniqueness, and
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Ri, Gi and Ui are the number of RECSs, GC content and sequence uniqueness
in segment si, respectively. The coefficient βseq was fixed at 1 in [16] so the term
log(UiUj) acts as the Poisson regression offset when estimating θi,j .

However, this log-linear model does not capture all known causal relationships
that affect the observed contact frequency fi,j , because the spatial distance di,j
is not included in the model. To characterize more comprehensive causal rela-
tionships for observed contact frequencies, in a recently published chromosome
structure determination method BACH [10], the spatial distance was modeled
explicitly such that

log(θi,j) = β0 + βdistlog(di,j) + βrecslog(RiRj) + βgcclog(GiGj) + βseq log(UiUj), (2)

where β = {βrecs, βgcc, βseq} again represents the systematic biases, βdist rep-
resents the conversion factor and D = {di,j |1 ≤ i ≤ n, i < j} are variables
representing the spatial distance values to be estimated. However, without any
constraint or assumption on spatial distance, the model represented by Eq. 2 is
non-identifiable, because for any constant k, βdistlog(di,j) = k×βdistlog(di,j

1/k).
BACH solved this issue by introducing some spatial constraints from previously
predicted chromosome structures. (Eq. 2 was used by BACH to iteratively refine
the predicted chromosome structure.) Hence, Eq. 2 is infeasible for bias correc-
tion methods that do not rely on any spatial constraint. To get around this, we
introduce a new variable zi,j = β0 + βdistlog(di,j) and rewrite Eq. 2 as follows:

log(θi,j) = zi,j + βrecslog(RiRj) + βgcclog(GiGj) + βseqlog(UiUj), (3)

where the systematic biases β and Z = {zi,j|1 ≤ i ≤ n, i < j} are the vari-
ables to be estimated. Note that applying a Poisson distribution on read count
data sometimes leads to the overdispersion problem, i.e., underestimation of the
variance [19], which is generally solved by using a negative binomial distribution
instead. However, the results in [16] suggest that there is usually no significant
difference in the performance of bias correction methods when a negative bi-
nomial distribution or a Poisson distribution is applied to Hi-C data. For the
mathematical simplicity of our model, we use Poisson distributions.

Let θ denote the set of θi,j , 1 ≤ i ≤ n, 1 ≤ j ≤ n. Given the observed contact
frequency matrix F and genomic features of S, the log-likelihood function of the
observed contact frequencies over the Poisson distribution rates can be written
as:

log(Pr(F |β,Z)) = log(Pr(F |θ)) = log(

n∏
i=1,i<j

Pr(fi,j |θi,j)) = log(

n∏
i=1,i<j

e−θi,j θfi,j

fi,j !
)

=

n∑
i=1,i<j

−θi,j + fi,j log(θi,j)− log(fi,j !). (4)

We can estimate the variables Z and systematic biases β by finding parame-
ters x∗ = {β∗, Z∗} to maximize the log-likelihood function in Eq. (4), which is
equivalent to solving the following multivariate optimization problem:

x∗ = argmin
x

−log(Pr(F |β,Z)) = argmin
x

−log(Pr(F |θ)) = argmin
x

n∑
i=1,i<j

θi,j − fi,j log(θi,j) (5)
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However, without any constraint on the variables Z, the above model is still
generally non-identifiable since for any β, we can always choose a zi,j such that
fi,j = θi,j and the likelihood function is maximized. Therefore, we require that
for any i, j, |zi,i+1 − zj,j+1| ≤ ε for some threshold ε, since we expect that the
distance between neighboring segments is roughly the same across a chromosome.

Observe that Eq. 5 cannot be solved by using the same Poisson regression
fitting method as in HiCNorm, because Eq. 5 is no longer a standard log-linear
model like Eq. 1. A popular technique for solving multivariate optimization prob-
lems is gradient descent. Gradient descent searches the optimum of a minimiza-
tion problem with an objective function g(x) from a given initial point x1 at
the first iteration and then iteratively moves toward a local minimum by fol-
lowing the negative of the gradient function −∇g(x). In other words, at every
iteration i, we compute xi ← xi−1−α∇g(x), where α is a constant. In our case,
the objective function to be minimized is the negative of the above log-likelihood
function g(x) = g(β, Z) = −log(Pr(F |β, Z)). By taking partial derivatives of the
objective function with respect to the variables β and Z, we have the gradient

function −∇g(x) = {∂g(x)∂β , ∂g(x)∂Z } as

∂g(β, Z)

∂zi,j
= θi,j − fi,j

∂g(β, Z)

∂βrecs
=

n∑
i=1,i<j

log(RiRj)(θi,j − fi,j)

∂g(β,D)

∂βgcc
=

n∑
i=1,i<j

log(GiGj)(θi,j − fi,j)

∂g(β,D)

∂βseq
=

n∑
i=1,i<j

log(UiUj)(θi,j − fi,j)

To initialize x1 = {β1, Z1}, we first set the variable zi,i+1 as a uniform con-
stant z for every two neighboring segments, si and si+1, because we assume
that the distance between every pair of neighboring segments is similar. The
systematic biases are then initialized as β1 by solving Eq. 1, with z = β0, on
neighboring segments only. To obtain initial variables zi,j, where j − i > 1, θi,j
is sampled from the conjugate prior of Poisson distribution Γ (1, fi,j + 1) and
then zi,j is calculated by using Eq. 3 with the fixed parameter β1. After the con-

vergence of the gradient descent search, the normalized contact frequency f̂i,j
is computed by f̂i,j = fi,j/{(RiRj)

βrecs(GiGj)
βgcc(UiUj)

βseq}. Our complete al-
gorithm for GDNorm is summarized in Algorithm 1. Here, Nmax denotes the
maximum number of iterations allowed and its default is set to be 10 based on
our empirical observation that the gradient descent search usually converges in
no more than 10 iterations.
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Input : Contact frequency matrix F and genomic features R, G and U
Output: Normalized contact frequency F̂
begin

Spatial Distance and Systematic Bias Estimation:
Initialize x1 = {β1, Z1};
for i from 2 to Nmax do

xi ← xi−1 − α∇g(x);
if(g(xi) > g(xi−1))
Go to Contact Frequency Normalization;

Contact Frequency Normalization:
for i < j do

f̂i,j = fi,j/{(RiRj)
βrecs(GiGj)

βgcc (UiUj)
βseq}

return F̂ ;

Algorithm 1. Bias Reduction Based on Gradient Descent

3 Experimental Results

We assess the performance of GDNorm in terms of (i) the accuracy of its normal-
ized contact frequencies and (ii) the accuracy of structure determination using
the normalized contact frequencies. The latter will be done by simulating bi-
ased Hi-C read count data from some simple reference chromosome structures
and then trying to recover the reference structures from normalized contact
frequencies in combination with the most recent chromosome structure determi-
nation algorithm, ChromSDE [12]. In other words, we will consider the impact
of normalized contact frequencies on the chromosome structures predicted by
ChromSDE. To measure the quality of bias correction, we consider the repro-
ducibility of normalized contact frequencies between biological replicates of an
mESC line [9] and the correlation between normalized contact frequencies and
FISH distance values in the literature. The performance of GDNorm will be
compared with the state-of-the-art bias reduction algorithms HiCNorm [16], YT
[13] and ICE [14].

3.1 Simulation Studies

To evaluate the accuracy of chromosome structure prediction, two reference 3D
structures, a helix and an arbitrary random walk, are constructed as shown in
Fig. 1. In order to be close to the real chromosome structure prediction practice,
each of the reference 3D structures consists of 44 segments, where the number 44
was determined by the average size of the chromosomal structure units studied
in [10] (i.e., conserved domains). Let Bi denote the systematic bias in a seg-
ment si and Ti,j the true (unbiased) contact frequency between segments si and
sj . To synthesize observed contact frequencies fi,j , we follow the assumption
fi,j = Ti,jBiBj as in [14]. Here, Ti,j is assumed to be inversely proportional to
the spatial distance di,j . That is, Ti,j = dρi,j , where ρ < 0 is called the con-
version factor between the unbiased contact frequency and its corresponding
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Fig. 1. Alignment between the reference chromosome 3D structures and structures
predicted by GDNormsde, HiCNormsde and BACH on simulated data. The red curves
indicate the predicted structures and blue curves the reference structures. The results
of GDNormsde, HiCNormsde and BACH are shown from left to right. The top row is
for the helix and bottom for the random walk. The quality of each structural alignment
is evaluated by an RMSD value.

spatial distance. The value of BiBj is estimated by using the log-linear function
log(BiBj) = β0 + βrecslog(RiRj) + βgcclog(GiGj) + βseq log(UiUj) introduced in
[16]. The coefficient βseq is set to 1 as in [16] while ρ is set to −1.2 as estimated
from a mouse cell line by ChromSDE [12]. To determine the coefficients β0, βrecs

and βgcc, HiCNorm is run on the mm9 mESC data to form a pool of coefficients.
A set of coefficients β0, βrecs and βgcc are then randomly drawn from the pool
and used throughout the simulation study.

Because currently there is no tool to synthesize Hi-C reads reasonably from
a given 3D structure and the methods YT and ICE require actual Hi-C reads
as input, they are excluded from this simulation study but will be discussed in
the real data experiments in the section 3.2. The method GDNorm and HiC-
Norm are run on the simulated contact frequencies and their normalized contact
frequencies are then used to predict chromosome 3D structures. Two structure
prediction software, MCMC5C and ChromSDE, in the literature use normalized
contact frequencies to predict chromosome 3D structures [20,12]. Here, we choose
ChromSDE, instead of MCMC5C, as the structure prediction method because
MCMC5C is not specific to Hi-C data and ChromSDE significantly outper-
formed MCMC5C in the most recent study [12]. The combination of HiCNorm
and ChromSDE is denoted as HiCNormsde while the combination of GDNorm
and ChromSDE is called as GDNormsde in the following discussion. To further
study the performance of GDNormsde and HiCNormsde as chromosome structure
prediction tools on biased Hi-C data, another independent prediction method,
BACH [10], is also included in our comparisons. Note that BACH always nor-
malizes the size of its predicted structure by fixing the distance between the first
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and the last segments to be 1 while ChromSDE does not perform this normal-
ization. To obtain a fair comparison, we calibrate the predicted structure sizes in
GDNormsde and HiCNormsde such that the distance between the first and last
segment is fixed at 100. Finally, the accuracy of structure prediction is assessed
using the root mean square difference (RMSD) measure after optimally aligning
a predicted structure to the reference structure by Kabsch’s algorithm [21].

GDNorm Provides the Most Accurate Chromosome Structure Pre-
diction on Noise-Free Data. The optimal alignments of the predicted and
reference chromosome structures are shown together with their RMSD values
in Figure 1. In the structure predictions for both the helix and random walk,
GDNormsde predicted the chromosome structures with the minimum RMSDs.
In the structure prediction for the helix, GDNormsde obtained a structure that
can be almost perfectly aligned with the reference structure with a very small
RMSD value of 0.3. This is because GDNorm was able to significantly reduce the
effect of systematic bias and the semi-definite programming method employed
by ChromSDE can guarantee perfect recovery of a chromosome structure when
the given distance values between segments are noise-free.

GDNorm Reduces Systematic Biases Significantly in Noise-Free Data.
To examine how much the effect of systematic biases can be reduced by the se-
lected bias reduction methods, we further analyze the predicted spatial distance
values between neighboring segments in the structure prediction for the helix.
Because the spatial distance between neighboring segments si and si+1 in the
reference structure of the helix is the same for all i, the difference in the ob-
served contact frequency between si and si+1, for different i, is mainly a result
of the systematic biases. If the systematic biases are correctly estimated and
eliminated, the distance between any two consecutive segments in the predicted
structure is expected to be the same. The spatial distance values between 10
pairs of consecutive segments with the greatest systematic biases are compared
with the distance values between 10 pairs with the smallest systematic biases for
each of the chromosome structures predicted by GDNormsde, HiCNormsde and
BACH. The box plots in Figure 2 summarizes the comparison results. The abso-
lute differences between the means of the two sets of 10 distance values obtained
by GDNormsde, HiCNormsde and BACH are 0.045, 3.47 and 2.61, respectively.
The statistical significance of the difference between two sets of 10 distance val-
ues obtained by each method is also examined by a two-tailed t-Test [22], which
yielded a non-significant p-value of 0.42 for GDNormsde and significant p-values
of 1.3× 10−12 and 1.56× 10−6 for HiCNormsde and BACH, respectively.

GDNorm Provides the Most Accurate Chromosome Prediction on
Noisy Data. We have demonstrated the superior performance of GDNormsde on
Hi-C data without noise (but with systematic biases). To test its performance on
noisy data, a uniformly random noise δi,j is injected into every contact frequency

fi,j such that the noisy frequency f̃ ij = fi,j(1+δi,j). In this test, we consider two
noise levels, 30% and 50%. Table 1 summarizes the RMSD values of the optimal
alignments between the predicted structures and the reference structures. The
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Table 1. RMSD values of the predicted structures on noisy data

Reference Structure Noise Level GDNormsde HiCNormsde BACH

Helix
30% 2.65 3.33 14.9
50% 4.19 4.26 20.0

Random Walk
30% 4.26 6.40 5.26
50% 5.17 7.11 6.43

results show GDNormsde still outperforms the other two methods by achieving
the overall smallest RMSD values at both noise levels. Note that BACH failed
to predict the helix structure at both noise levels in this test, perhaps because
its MCMC algorithm could sometimes be trapped in a local optimum when the
input data contains a significant level of noise.

Fig. 2. Comparison of the predicted spatial distance values with the 10 greatest and 10
smallest systematic biases. For each structure prediction method studied, two sets of
10 distance values form the two boxes in a comparison group. The left box depicts the
distribution of the distance values for contacts with the greatest systematic biases while
the right shows the distribution of the distance values for contacts with the smallest
systematic biases. Clearly, GDNormsde produced the most consistent distance values
and HiCNormsde the least.

3.2 Performance on Real Hi-C Data

In addition to the simulation study, several experiments on real Hi-C data are
conducted to evaluate the bias reduction capability of GDNorm, in comparison
with other state-of-the-art bias reduction methods, HiCNorm, YT and ICE. Un-
like the assessment in the previous simulation study, the reference structures
for real Hi-C datasets are hardly obtainable because of the complexity of chro-
mosome structures. To compare the performance of the studied bias reduction
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methods on real Hi-C data, a commonly used evaluation criterion is the simi-
larity (or reproducibility) between normalized contact frequency matrices from
biological replicates using different enzymes. Since these replicates are derived
from the same chromosomal structures in the cell line, the contact frequencies
normalized by a robust bias reduction algorithm using one enzyme are expected
to be similar to those using another enzyme. However, a high reproducibility is
a necessary but not sufficient condition for robust bias reduction algorithms. As
suggested in [2], we further compare the correlation between normalized contact
frequencies and the corresponding spatial distance values measured by FISH
experiments. Both the similarity between the normalized contact frequency ma-
trices and the correlation to FISH data will be measured in terms of Spearman’s
rank correlation coefficient that is independent to the conversion between nor-
malized contact frequencies and spatial distance values.

To prepare benchmark datasets for the performance assessment, we use two
recently published Hi-C data from human lymphoblastoid cells (GM06990) [3]
and mouse stem cells (mESC) [9]. For the GM06990 dataset, the Hi-C raw reads,
SRR027956 and SRR027960, of two biological replicates using restriction en-
zymes HindIII and NcoI, respectively, were downloaded from NCBI (GSE18199).
Each of the chromosomes in the GM06990 cell line is binned into 1M bps seg-
ments and the pre-computed observed frequency matrices at 1M resolution were
obtained from the publication website of [13]. For the mESC dataset, the mapped
reads, uniquely aligned by the BWA algorithm [18], were downloaded from NCBI
(GSE35156). Because of the enhanced sequencing depth in the mESC dataset,
the Hi-C data can be analyzed at a higher resolution, i.e., 40kb. In other words,
the 20 chromosomes in the mESC cell line are binned into 40kb bps segments.
To calculate observed contact frequencies from the mapped reads, the prepro-
cessing protocols used in the literature [3,13] are followed. For every paired-end
read, its total distance to the two closest RECSs is calculated. Any read with
a total distance greater than 500 bps is defined as a non-specific ligation and
thus removed to prevent reads from random ligation being used, as suggested
in [13]. Reads from RECSs with low sequence uniqueness (smaller than 0.5) are
also discarded. The remaining paired-end reads over the 20 chromosome, chr1
to chr20 (chrX), are used for calculating the observed contact frequencies.

The contact frequencies are derived from a cell population that may consist of
several subpopulations of different chromosome structures. Without fully under-
standing the structural variations in a cell population, any structural inference
from the Hi-C data can be distorted [10]. A recent single-cell sequencing study
found that interchromosome (or trans) contacts have much higher variability
among cells of the same cell line than intra-chromosome (or cis) contacts [23].
To avoid potential uncertainty that may be caused by significant variations in
a cell line, we follow suggestions in the literature [9,2] and focus on cis contacts
within a chromosome.

To obtain normalized frequencies of the bias reduction methods, we run both
GDNorm and HiCNorm on the contact frequencies and ICE on the raw Hi-C
reads. The normalized frequencies by the YT method are downloaded from the
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publication websites of the literature [9,13]. Note that although the primary
objective of BACH is to predict chromosome structures, it also estimates sys-
tematic biases in the prediction of chromosome structures, using the log-linear
regression model given in Eq. 2.

Hence, BACH can be regarded as a bias reduction method if we divide each
observed contact frequency by its estimated systematic biases and use the quo-
tient as the normalized frequency. To study the accuracy of bias estimation
by BACH, we also include BACH in the comparison of bias correction meth-
ods. The reproducibility between the two biological replicates and correlation to
FISH data achieved by the compared methods are discussed below.

Fig. 3. Comparison of the reproducibility between two biological replicates achieved
by GDNorm, HiCNorm, YT, ICE, and BACH on the 23 chromosomes, chr1 to chr23
(chrX), in the GM06990 cell line at 1M resolution. The distribution of Spearman’s
correlation coefficients achieved by a bias reduction method is represented as a solid
curve over the 23 chromosomes. Plot (a) illustrates the overall reproducibility and plot
(b) shows the reproducibility of high contact frequencies (RHCF).

GDNormAchieves the Best Reproducibility on the Two Real Datasets.
The reproducibility between biological replicates is measured by Spearman’s cor-
relation coefficient. To prevent the assessment biased by background noise, when
calculating Spearman’s correlation coefficient, 2% of bins with lowest read counts
in the matrices are deleted as done in [14]. The reproducibility over the remain-
ing 98% of the bins is referred to as the overall reproducibility. Some recent stud-
ies in the literature using Hi-C data focused on high contact frequencies, e.g.,



An Improved Poisson Regression Model for Reducing Biases 275

Fig. 4. Comparison of the reproducibility in the mESC dataset. Plots (a) and (b)
illustrate the overall reproducibility and RHCF of GDNorm, HiCNorm, YT, and ICE
on the 20 chromosomes, chr1 to chr20 (chrX), in the mESC cell line at 40kb resolution,
respectively. Here, the distribution of Spearman’s correlation coefficients achieved by
each bias reduction method is represented as a solid curve over the 20 chromosomes.
Plots (c) and (d) show the overall reproducibility and RHCF of GDNorm and BACH
at 1M resolution, respectively.

studies concerning gene promoter-enhancer contacts [17] and spatial gene-gene in-
teraction networks [24]. To assess the capability of reducing systematic biases in
high contact frequencies, we calculate another Spearman’s correlation coefficient,
called the reproducibility of high contact frequencies (RHCF), by using only the
top 20% of bins with the highest observed contact frequencies.

The Spearman’s correlation coefficients over the 23 chromosomes in the
GM06990 dataset are summarized in Figure 3. The average overall reproducibil-
ity of the observed (i.e., raw) contact frequencies is 0.711 and GDNorm achieves
the best overall reproducibility 0.811 on average while HiCNorm, YT, BACH,
and ICE obtain 0.799, 0.789, 0,761, and 0.721, respectively. GDNorm improves
the average overall reproducibility by up to 0.04 on an individual chromosome,
over the second best method, HiCNorm. In terms of RHCF, the improvement
by GDNorm over the second best method (HiCNorm) is more striking, 0.02 on
average and up to 0.13 on an individual chromosome.

In the experiments on the mESC dataset, all the selected methods are run
on the data at 40kb resolution except for BACH. The running time of BACH
is prohibitive for performing chromosome-wide bias correction on the mESC
dataset at the 40kb resolution, because it requires 5000 iterations to refine the
predicted structure by default and each iteration takes about 30 minutes on av-
erage on our computer. So, we excluded BACH from the experiments at 40kb
resolution, but will compare it with GDNorm at 1M resolution separately. The
comparisons over the 20 chromosomes in the mESC dataset at 40kb resolution
are summarized in Figure 4 (a) and (b). The average overall reproducibility
of the observed (raw) contact frequencies is 0.734. The average overall repro-
ducibility provided by GDNorm is 0.865, which is about 0.02 higher than the
average overall reproducibility (0.846) obtained by HiCNorm and 0.03 higher
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Table 2. Correlation between normalized contact frequencies at 40kb resolution and
spatial distance measured by FISH experiments in the two biological replicates of the
mESC data

Replicates Raw GDNorm HiCNorm YT ICE

HindIII -0.49 -0.66 -0.60 -0.66 -0.25
NcoI -0.25 -0.37 -0.14 -0.37 0.31

than the third best (0.83) obtained by YT. Although ICE can eliminate system-
atic biases without assuming their specific sources, it achieves the lowest average
overall reproducibility, 0.783, which is significantly lower than the average re-
producibilities obtained by the other three methods. GDNorm achieves similar
improvements in terms of RHCF, which is also 0.02 higher than the second best
by HiCNorm on average and up to 0.04 on an individual chromosome. The com-
parisons between BACH and GDNorm at 1M resolution are shown in Figure 4
(c) and (d). GDNorm significantly outperforms BACH on both average overall
reproducibility (0.02) and average RHCF (0.07). In the tests on individual chro-
mosomes, the maximum improvement on RHCF by GDNorm is up to 0.15. This
result shows that, although GDNorm and BACH both include spatial distance
explicitly in their models, the gradient descent method of GDNorm can estimate
the systematic biases more accurately than the MCMC based optimization pro-
cedure of BACH. These experimental results demonstrate that GDNorm is able
to consistently improve on the reproducibility between biological replicates at
both high (40kb) and low (1M) resolutions.

The Normalized Contact Frequencies Obtained by GDNorm are well
Correlated to the FISH Data. To further validate the quality of normalized
contact frequencies, we use an mESC 2d-FISH dataset that contains distance
measurement for six pairs of genomic loci as our benchmark data. The six pairs of
genomic loci are distributed on chromosomes 2 and 11 of the mESC genome, with
three pairs on chromosome 2 and the other three on chromosome 11. The distance
between each pair of the genomic loci is measured by inter-probe distance on 100
cell images from 2d-FISH experiments and normalized by the size of cell nucleus
such that any change in the distance measurement is attributed solely to altered
nucleus size on the images as described in the literature [4]. The average of
the 100 normalized distance values for each pair of the genomic segments is
used to correlate with the normalized contact frequency corresponding to the
pair. The normalized frequencies are expected to be inversely correlated to the
corresponding spatial distance values. Table 2 compares Spearman’s correlation
coefficients obtained by all four methods. The correlation coefficient between
the 2d-FISH distance values and observed contact frequencies is low, −0.45 and
−0.25 in the HindIII and NcoI replicates, respectively. YT and GDNorm are
able to improve both correlation coefficients and achieve a strong correlation
(smaller than −0.6) in the HindIII replicate while HiCNorm and ICE fail to
deliver strongly correlated normalized frequencies in either replicate.
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Table 3. The running time on the GM06990 and mESC datasets

Datasets GDNorm HiCNorm BACH ICE

GM06990 0.8 s 2.0 s 2 hr 17 m 5 hr 45 m
mESC 37 s 15 m 58 s - 8 hr 36 m

The Time Efficiency of GDNorm. We evaluate the time efficiency of the
selected methods by comparing their running time on the two real datasets. Our
computing platform is a high-end compute server with eight 2.6GHz CPUs and
256GB of memory, but a single thread is used for each method. Because the
normalized frequencies of YT were downloaded from the publication website, we
did not run YT (in fact, we were unable to make YT run on our server) and will
exclude YT from the comparison. The running time of the other four methods
is summarized in Table 3. Due to the intensive computation requirement of the
MCMC algorithm for refining chromosome structures, BACH is more than 10
time slower than HiCNorm and GDNorm on the 1M dataset (i.e., GM06990).
As mentioned before, the running time of BACH increases drastically with the
number of genomic segments and becomes prohibitive when BACH is applied
to the 40kb dataset (i.e., mESC). ICE is significantly slower HiCNorm and
GDNorm because it starts from raw Hi-C reads (instead of read counts) and
requires additional time for iteratively mapping and processing the raw reads.
Note that YT also uses raw Hi-C reads as its input and was found to be more than
1000 times slower than HiCNorm on the 1M dataset [16]. On both real datasets,
GDNorm runs faster than HiCNorm. The standard iteratively reweighted least
squares (IRIS) algorithm [25] was implemented in the software of HiCNorm
to solve its log-linear regression model. In every iteration, the running time
of the IRIS algorithm is quadratic in the number of genomic segment pairs.

Fig. 5. The running time of GDNorm and HiCNorm on the mESC data at four different
resolutions. The Y-axis shows the running time in seconds and the X-axis indicates the
number of genomic segments at each resolution.
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However, in our gradient descent method, the execution time of each iteration is
only linear in the number of segment pairs, which makes GDNorm faster than
HiCNorm. As illustrated in Figure 5, a simple experiment on the mESC data
with resolutions at 40kb, 80kb, 200kb, and 1M shows that, when the number of
genomic segments increases, the running time of HiCNorm grows much faster
than that of GDNorm.

4 Conclusion

The reduction of systematic biases in Hi-C data is a challenging computational
biology problem. In this paper, we proposed an accurate bias reduction method
that takes advantage of a more comprehensive model of causal relationships
among observed contact frequency, systematic biases and spatial distance. In
our simulation study, GDNorm was able to provide more accurate normalized
contact frequencies that resulted in improved chromosome structure prediction.
Our experiments on two real Hi-C datasets demonstrated that GDNorm achieved
a better reproducibility between biological replicates consistently at both high
and low resolutions than the other state-of-the-art bias reduction methods and
provided stronger correlation to published 2d-FISH data. The experiments also
showed GDNorm’s high time efficiency. With the rapid accumulation of high
throughput genome-wide chromatin interaction data, the method could become
a valuable tool for understanding the higher order architecture of chromosome
structures.
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Abstract. The universally observed conservation of the distribution of
evolution rates across the complete sets of orthologous genes in pairs of
related genomes can be explained by the model of the Universal Pace-
maker (UPM) of genome evolution. Under UPM, the relative evolution-
ary rates of all genes remain nearly constant whereas the absolute rates
can change arbitrarily. It was shown on several taxa groups spanning the
entire tree of life that the UPM model describes the evolutionary process
better than the traditional molecular clock model [26,25]. Here we extend
this analysis and ask: how many pacemakers are there and which genes
are affected by which pacemakers? The answer to this question induces
a partition of the gene set such that all the genes in one part are affected
by the same pacemaker. The input to the problem comes with arbitrary
amount of statistical noise, hindering the solution even more. In this
work we devise a novel heuristic procedure, relying on statistical and ge-
ometrical tools, to solve the pacemaker partition identification problem
and demonstrate by simulation that this approach can cope satisfactorily
with considerable noise and realistic problem sizes. We applied this pro-
cedure to a set of over 2000 genes in 100 prokaryotes and demonstrated
the significant existence of two pacemakers.

Keywords: Molecular Evolution, Genome Evolution Pacemaker, Dem-
ing regression, Partition Distance, Gap Statistics.

1 Introduction

Comparative analysis of the rapidly growing collection of genomes of diverse
organisms shows that the distribution of the evolutionary distances between or-
thologous genes remains remarkably constant across the entire history of life. All
such distributions, produced for pairs of closely related genomes from different
taxa, from bacteria to mammals, are approximately lognormal, span a range
of three to four order of magnitude and are nearly identical in shape, up to a
scaling factor [12,8,31]. Apparently, the simplest model of evolution that would
imply the conservation of the shape of distance is that all genes evolve at ap-
proximately constant rates relative to each other. In other words, the changes in
the gene-specific rates of evolution can be arbitrarily large (at least in principle)
but are strongly correlated genome-wide. We denote this model of evolution the
Universal PaceMaker (UPM) of genome evolution. Under the UPM, all genes in
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each evolutionary lineage adhere to the pace of a pacemaker (PM), and change
their evolutionary rate (approximately) in unison although the pacemaker’s pace
at different lineages may differ. The UPM model is compatible with the large
amount of data on fast-evolving and slow-evolving organismal lineages, primar-
ily different groups of mammals [5]. An obvious alternative to the UPM is the
Molecular Clock (MC) model of evolution under which genes evolved at roughly
constant albeit different (gene-specific) rates [32] that implies the constancy of
gene-specific relative evolution rates.

In a line of works [26,30,25] we established the superiority of the UPM model
over the MC by explaining a larger fraction of the variance in the branch lengths
of thousands of gene trees spanning the entire tree of life. Although highly sta-
tistically significant, in absolute terms however, the advantage of UPM over MC
was small, and both models exhibited considerable evolution rate overdispersion.
A plausible explanation to the latter is that instead of a single, apparently weak
(overdispersed) PM, there are independent multiple pacemakers that each affect
a (different) subset of genes and are less dispersed than the single pacemaker.
Throughout, we use the notation UPM to refer to the model and the PM term
for the pacemaker as an object.

Primarily, we investigate the requirements for the identification of distinct
PMs and assignment of each gene to the appropriate PM. Such an assignment
forms a partition over the set of genes and hence we denote this task as the
PM partition identification (PMPI) problem. PM identification depends on the
number of analyzed genes, the number of target PMs, the intrinsic variability of
the evolutionary rate for each gene and the intrinsic variability of each PM. The
PMPI problem is theoretically and practically hard as it concerns dealing with
a lot of data obscured by a massive amount of noise. A possible direction to
pursue is to exploit the signal from the data themselves in order to reduce the
search space and focus only on relevant partitions.

In this work, a first attempt in this direction is made by devising and em-
ploying a novel technique using a series of analytic tools to solve the PMPI
problem, and assess the quality of the derived solution. We tackle theoretical
computational and statistical issues, as well as challenging engineering obstacles
that arise along the way. These include guarantying homoschedasticity [29] by
working in the log space, removing gene order dependency [1] by employing the
Deming regression [6,10], and graph completion through most reliable paths.
The result is the partial gene correlation graph where edge lengths represent
(inversely) correlation, that we subsequently embed into the Euclidean space
while preserving the distances. We apply standard clustering tools to this data
and assess the significance of the result. We next formulate the PMPI problem
as a recoloring problem [22,21] where a gene’s PM is perceived as its color and
the (set of) genes associated with a certain PM form a color class. To measure
the quality of partition reconstruction, one may look for the minimum number
of genes that need to be recolored in order that every part in the reconstructed
partition is monochromatic. This number (the recolored genes) is denoted the
partition distance [14] and can be solved by a matching algorithm. We however
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use a greedy maximum weighted matching algorithm, that is practically simpler
for implementation and provided very good results empirically. Although theo-
retically this algorithm provides a 1/2-approximation guarantee for any input,
under some statistical conditions the we note, with high probability the correct
partition distance is returned.

The simulation results obtained using this approach are highly significant
under a random model that we devise. The latter is significant as it implies
that we were successful in both extracting the signal from the (noisy) data, and
our technique is plausible. Finally, using insights from the simulation analysis,
we analyzed the large set of phylogenetic trees of prokaryotic genes that was
previously studied in [26]. Because the actual PM partition is unknown, we
used the gap statistics criterion of Tibshirani et al. [27] to determine clustering
significance and resulting in identification of two distinct genome evolution PMs.

2 The Evolutionary Model

Evolutionary history is described by a tree T = (V,E) which is a combinatorial
object composed of nodes representing (extant and extinct) species, and edges
connecting these nodes such that there are no cycles in T . The edges are directed
from an ancestor to its descendant nodes and also correspond to the time period
between the respective nodes. There is one node with no ingoing edges, the root,
and nodes with no outgoing edges are the leaves that are labeled by the species (or
taxa) set. Therefore, the topology of T indicates the history of speciation events
that led to the extant species at the leaves of T . Internal nodes correspond
to ancestral forms existed at speciation events, and edges indicate ancestral
relationships. A node (or a species) is a set of genes G = {gi} where a gene is a
sequence of nucleotides of some given length. A gene evolves through a process
in which mutations change its nucleotides from one state to another. In our
model, all extant and extinct species possess the same set of genes G = {gi} and
all genes gi evolve along T according to an evolutionary model that is assumed
to follow a continuous time Markov process. This process is represented by a
given rate of mutations r per unit of time. In particular, every gene gi evolves
at an intrinsic rate ri ∈ r that is constant along time but deviates randomly
along the time periods (i.e. tree edges). Let ri,j be the actual (or observed) rate
of gene i at period j. Then ri,j = rie

αi,j where 0 < eαi,j is a multiplicative error
factor. The number of mutations in gene gi along period tj is hence 
i,j = ri,jtj ,
commonly denoted as the branch length of gene gi at period j. Throughout, we
will use i to identify genes gi and j for time periods tj . As the topology of T is
constant and assumed to be known, we will not make any reference to the tree
and regard the edges only as independent time periods tj for 1 ≤ j ≤ τ where
τ = |E|.

We now extend this model to include a pacemaker that accelerates or decel-
erates a gene gi, relative to its intrinsic rate ri. Formally, a pacemaker PMk is
a set of τ paces βk,j , 1 ≤ j ≤ τ where βk,j is the relative pace of PM k during
time period tj and −∞ < β < ∞. Under the UPM model, a gene gi that is
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associated with PM Pk has actual rate at time tj : ri,j = rie
αi,jeβk,j . Hence, for

β < 0 the PM slows down its associated genes, for β > 0 genes are accelerated
by their PM, and for β = 0, the PM is neutral. Assume every gene is associated
with some PM and let PM(gi) be the PM of gene gi. Then the latter defines a
partition over the set of genes G, where genes gi and gi′ are in the same part if
PM(gi) = PM(gi′).

Comment 1. It is important to note that gene rates, as well as pace makers
paces, are hidden and that we only see for each gene gi, its set of edge lengths

i,j.

Comment 2. The presence of two genes in the same part (PM) does not imply
anything about their magnitude of rates, rather on their unison of rate divergence.

The above gives rise to the PM Partition identification Problem:

Problem 1 (Pacemaker Partition Identification). Given a set of n genes gi, each
with τ branch lengths {
i,j}, the Pacemaker Partition Identification (PMPI)
problem is to find for each gene gi, its pace maker PM(gi).

We first observe the following:

Observation 1. Assume gene gi has error factor αi,j = 0 for all time periods
tj, 1 ≤ j ≤ τ and let P ′ = PM(gi) be the pace maker of gene gi with relative
paces eβj . Then at all periods tj, ri,j = rie

βj .

Observation 1 implies that if genes gi and gi′ belong to the same pace maker,
and both genes have zero error factor at all periods, then at all periods, the ratio
between the edge lengths at each period is constant and equals to ri/ri′ . This
however is not necessarily true if one of the error factor is not zero or genes gi
and gi′ do not belong to the same pace maker. Recall that we do not see the
gene intrinsic rates (and hence also the ratio between them). However if we see
the same ratio between edge lengths across all time periods, we can conclude
about the error factors and possibly their belonging to the same PM.

In order to tackle the PM identification problem, we impose some statistical
structure (as observed in real data [12]) on the given setting. The goal is to
assume that the error factor of each gene is small enough at every period, so
that all genes belonging to the same PM, change their actual rate in unison.

Similarly, we assume that βk varies so that genes from different PMs (parts)
can be distinguished (otherwise, no difference except their random error factor
exists)

Assumption 1.

1. For all genes gi and periods tj, the gene error factors αi,j follow a normal
distribution αi,j ∼ N(0, σ2

G),

2. For all PMs Pk and periods tj, the PM paces βk,j follow a normal distribution
βk,j ∼ N(0, σ2

P ),
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3 The Pacemaker Partition Identification Procedure

Here we devise a procedure to solve the PMPI problem that entails a technique
to infer distances between genes, constructing the gene correlation graph, em-
bed reliably this graph in the plain and apply partitioning algorithms to this
embedding. We now describe each of these steps.

3.1 Inferring Gene Distance

As outlined above, our first task is to infer gene pairwise distances from the raw
data, which is gene edge lengths 
i,j for every time period (edge) j. In particular,
as the relevant information is encompassed in the random component of that
value, the task of extracting that component is even more challenging.

We now proceed as follows: Given two sets of edge lengths 
i,j and 
i′,j corre-
sponding to genes gi and gi′ , and time periods tj for 1 ≤ j ≤ τ , we draw τ points
on a plain (
i,j , 
i′,j). Now, if the error factors, αi,j = αi′,j = 0 for all 1 ≤ j ≤ τ
and we connected all these points, we would obtain a straight line. The slope of
that line is the multiplicative factor representing the ratio between the rates of
evolution of the corresponding genes - rgi/rgi′ ; we denote it ρi,i′ . Obviously, the
above description refers to an idealized case. With real data, we never expect to
find such a perfect correlation because the characteristic variance σ2

G is always
non zero. Thus, we expect to find the points scattered around a trend line repre-
senting the rate ratio. The density of points around the trend line represents the
level of correlation. Our goal is to obtain both the rate ratio ρi,i′ and the level
of correlation where the latter will be used to classify between the genes. The
method of choice to pursue here is to apply linear regression [29] between the
points representing the two edge lengths. There are several outstanding issues
that need to be addressed in such a task.

1. Zero Intercept Requirement: Linear regression, when applied to a set
of points on a plane, finds a line y = ax + b minimizing the sum of square
distances of that line to all the points. As we deal with a multiplicative
factor, the trend line has to cross the origin, i.e. b = 0. Hence we need to
modify the standard procedure for regression.

2. Homoschedasticity Requirement: homoschedasticity is the property
that the error in the dependent variable (y) is identically and indepen-
dently distributed (IID) along the trend line. However, by our formulation

i,j = tjri,j = tjrie

αi,j and the expected value (the value on the trend line)
is tjri. The deviation then is tjri(e

αi,j − 1). As ri is constant for all time
period, we see that the longer the time period tj , the larger the influence of
αi,j . That is, assume two time periods j and j′ with the same error factor
αi,j = αi,j′ but different period lengths, WLOG 
j < 
j′ . We obtain differ-
ent deviations tjri(e

αi,j − 1) < tj′ri(e
αi,j′ − 1), creating a bias toward longer

periods. The following observation follows immediately from the definition
of αi,j

Observation 2. If we take the log 
i′,j = log tjri′ + αi′,j we arrive at Ho-
moschedasticity.
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We denote this as the log transformation and also observe the following:

Observation 3. Under the log transformation the trend line log 
i′,j =
a log 
i,j + b has slope one (a = 1) and intercept b = log ρi,i′ .

We will use these properties in our calculations.
3. Gene Order Independence: The final problem with the linear regression

has to do with the basic assumptions in least squares analysis. In standard
least squares, the assumption is that the independent variable x is error-
free while only the dependent variable y deviates from its expected val-
ues. In our case, however, the choice between the variables is arbitrary and
both are subjected to deviation, according to their characteristic variance
σ2
G. Handling this case with standard least squares would cause arbitrary

bias due to the selection of the variables [1]. To handle this case, we apply
Deming Regression [6,10]. This approach assumes an explicit probabilistic
model for the variables and extracts closed forms expressions (in the ob-
served variables) for the sought expected values. To adjust to our specific
case, we will use the observations drawn above. The linear model assumed is
of type η = αξ+β where the observations of both η and ξ , (x1, . . . , xn) and
(y1, . . . , yn), respectively, have normally distributed errors: (i) xi = ξi + εxi ,
and (ii)yi = ηi + εyi = α + βξi + εyi . As can be seen, this is exactly our
case. The likelihood function of this model is:

f = Πn
1 (2πσ2)−1/2 exp

(
− (xi − ξi)

2

2σ2

)
(2πσ2)−1/2 exp

(
− (yi − α− βξi)

2

2σ2

)
(1)

Under the general formulation, the ML value for α is: α = x̄ + ȳβ where x̄
and ȳ are the average values for xi and yi. However, in our formulation we have
β = 1 and hence α = x̄+ ȳ. Having α at hand, we can reconstruct the trend line
and obtain the deviation of every point from it. Finally, by our formulation, ρi,i′

is given by exp(α) and the correlation between the rates is the standard sample
Pearson correlation coefficient r(X,Y ) [29]:

r =

∑
i=1(Xi − X̄)(Yi − Ȳ )√∑

i=1(Xi − X̄)2
√∑

i=1(Yi − Ȳ )2
. (2)

3.2 The Gene Correlation Graph

After we inferred all pair-wise correlations, we can build the Gene Correlation
Graph G = (V,E,w) aiming at representing the correlation between the pairs of
genes. V = {gi} and an edge (i, i′) ∈ E if r(i, i′) from Eq (2) is greater than some
threshold δr, maintaining a minimal level of correlation in the graph. Hence we
set w(i, i′) = r(i, i′) and as −1 ≤ r ≤ 1 we are guaranteed no negative weighted
edges exist. Note that we are not interested in r2 which may reflect high negative
correlation, rather only in high positive correlation.

Recall that our initial goal was to partition genes into clusters (PMs) accord-
ing to correlation. Perhaps the most commonly used technique is k-means [15,19]
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that aims at minimizing the within-cluster sum of squares (WCSS). These tech-
niques operate in the Euclidean space and hence some distance preserving
technique is required to embed the correlation graph G in the space. Multi-
dimensional Scaling [17] (also Euclidean embedding) is a family of approaches
for this task. Kruskal’s iterative algorithm [16] for non-metric multidimensional
scaling (MDS) receives as input a (possibly partial) set of distances and the de-
sired embedding should preserve the order of the original distances. It requires
however a full matrix as a starting guess.

Our approach here is to join every two nodes by the most reliable connection
and with the highest correlation. This translates to finding the path with the
minimum number of nodes (hops) and that the multiplication of the correspond-
ing weights is minimal. This distance measure, min hop min weight (MHMW),
is also useful in communication networks, where hop distance corresponds to re-
liability [13]. While the naive algorithm for the latter runs in time O(n3) it can
be easily seen that we can solve the problem in time O(n2 log diam(G)) where
diam(G) is the diameter of G. The completed graph Ĝ serves as input to the
Classical multidimensional scaling (CMDS) [4] whose output serves as the initial
guess to the Kruskal’s non-metric MDS. Once we have the embedding, we can
apply k-means and obtain the desired clustering.

Below is the complete formal procedure PMPI:

Procedure PMPI(G, δr):

1. Set the correlation graph G = (V,E) with V = ∅, E = ∅
2. V = {g|g is a gene in G}
3. for all gi, gj ∈ G

– apply the Deming regression between gi and gj to determine r(gi, gj)
– if r(gi, gj) ≥ δr, then add {(gi, gj)} to E and set w(gi, gj)← r(gi, gj)

4. Ĝ←MHMW (G)
5. apply Classical Multidimensional Scaling (cmdscale) to the full graph Ĝ
6. apply Kruskal’s iterative algorithm (isoMDS) to the original distance

matrix, starting from cmdscale output
7. apply kmeans to the resulted embedding

4 Simulation Analysis

In order to evaluate the PMPI procedure described in Section 3 and derive
practical intuition over our model, we performed simulation according to the
basic lines described above.

In a simulation study, a crucial part involves the assessment of the reconstruc-
tion quality with respect to the model on which the input was generated. As the
PMPI is targeted at reconstruction of the original PM partition, we chose to use
the partition distance measure.
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4.1 Partition Distance

Once we obtain the reconstructed clustering, it should be compared to the orig-
inal, model clustering. The task of comparing two clusterings can be casted as a
partition distance where every clustering is a partition over the element set. We
now define it formally. For two sets si and sj , the distance d(si, sj) is the size
of their symmetric difference set si " sj = (si \ sj) ∪ (sj \ si). Analogously, the
similarity s(si, sj) is the size of their intersection set si ∩ sj and it is easy to see
that given the sizes of the two sets, one is derived from the other. A partition P
over a ground element set N is a set of parts {pi} where every part is a subset
of N , {pi} are pairwise disjoint (i.e. pi ∩ pj = ∅ for every i �= j), and their union
is N . The cardinality of P , denoted as |P| is the number of parts. A partition
can also be perceived as a coloring function C from N to a set of colors C (the
color classes) where C(x) is the part of element x ∈ N under partition P (or
equivalently C). henceforth we will use the notions of PM identity and a color
interchangeably. Given two partitions P and P ′ over the same element set N
(or equivalently C and C′), denoted as the source and target partitions, we are
interested in their partition distance d(P ,P ′) as some measure of similarity. The
simplest approach is naturally the number of elements with different colors at
the two partitions, i.e., x ∈ N s.t. C(x) �= C′(x), and we call it the identity sim-
ilarity. Under this approach, the partition distance between P and P ′, d(P ,P ′),

is defined as: d(P ,P ′) =
∑

x∈N δ̄(C(x), C′(x)) where δ̂ is the inverse Kronecker
delta: δ̄(i, j) = 1 if i �= j and 0 otherwise.

This of course is simple and is an upper bound on a more accurate approach:
colors can be permuted between the two partitions, in the sense that a color is
mapped by a function f to another color in C and now d(P ,P ′) is defined as
d(P ,P ′) =

∑
x∈N δ̄(f(C(x)), C′(x)). It is easy to see that under this definition,

f in the first approach is simply the identity function f(c) = c for every c ∈ C.
This essentially defines a recoloring problem[22] where the goal is to recolor the
least number of elements in P ′ (or C′) such that f(C(x)) = C′(x) for every
element. Hence the cost of f is the number of elements x s.t. f(C(x)) �= C′(x).

Now, since the mapping is from C to C, f is a bijection or simply a matching
between the set of colors. In [14] Gusfield noted that the partition distance
problem can be casted as an assignment problem [18] and hence be solved by
a maximum flow in a bipartite graph in time O(mn + n2 logn) [2]. Matching
problems are among the most classical and well investigated in theoretical, as
well as in practical, computer science [28]. Although it has a polynomial time
exact algorithms with many flavors [2], a host of works on approximated solutions
were introduced. For its very simple implementation and empirically accurate
results that are based on theoretical properties we show below, we chose to
use a very simple greedy algorithm, named Greedy PartDist. The algorithm
works recursively and, at each recursion, chooses the heaviest edge (u, v) in the
graph, adds it to the matching M and removes from the graph all other edges
(u, v′) and (u′, v) for u′, v′ ∈ V . It is easy to see that the algorithm runs in
time O(m log n) where the complexity of the sorting operation dominates. This
algorithm provides a 1/2-approximation guarantee [23] for a general input and
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the same approximation guarantee can be obtain by the generic recursive analysis
of the local ratio technique[3].

The Greedy Algorithm under the Stochastic Models. It is interesting
to analyze the performance of the greedy algorithm under our stochastic model.
It is easy to see (even simply for symmetry arguments) that under our model
assumption, every gene remains in its part with probability α (that depends on
the two variances σP and σG) and with probability 1 − α chooses uniformly a
partition (including its own partition). The expected identity similarity here is
the sum over the elements maintaining their part plus those randomly chose that
same (original) part.

Definition 1. We say that a PM P is correctly clustered if most of the genes
associated with P as a source PM, choose P as their target PM.

Definition 1 implies that under a correctly clustered PM, a significant core set
of genes stay together is the target PM (part). It is easy to see that, under our
stochastic model, if enough genes are associated with every source PM, then all
PMs are correctly clustered.

Claim. Assume every color is correctly clustered. Then Algorithm Greedy Part-
Dist returns the correct result.

Proof. The proof follows by induction on the number of PMs |P|. For a single
PM, there is a single edge in the bipartite graph and this edge is chosen. For
|P| > 1, note that by the assumption, the heaviest edge emanating from each
PM (node) in P to its corresponding color in the partition P ′. In particular,
this is true for the heaviest edge in the bipartite graph, linking between the
nodes corresponding to some PM P . Then the algorithm chooses that edge and
remove all edges adjacent to it. Therefore, PM P was correctly chosen and by
the induction hypothesis the algorithm returns the correct result.

4.2 Simulation Results

To asses the effectiveness of our PM partitioning identification procedure PMPI,
we conducted the following simulation study. Number of genes n was held con-
stant n = 100 giving rise to

(
100
2

)
= 4950 pairs of correlation tests. The number

of edges per a gene tree was set to 25, reflecting the average size of the agreement
tree among our real data trees. To simulate low agreement similarly to our real
data (low MAST value) we discarded every pair with probability 2/3 maintain-
ing approximately 1/3 of the pairs (see more details in Section 5). Every PM
Pk was associated with an intrinsic variance σ2

P that sets its relative pace to
eβk,j where βk,j ∼ N(0, σ2

P ). Similarly, every gene sets its rate at period j to
ri,j = rie

αi,jeβk,j where αi,j ∼ N(0, σ2
G) (See Model Section 2 for full details).

Every gene was associated with a source PM, same number of genes for each
PM. Number of PMs k varied from 2 to 10 (i.e. 10 to 50 genes per PM). Dis-
tance between genes was set as 1 − r from the regression line where the latter
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was derived by the Deming regression. This has defined our correlation graph
described above.

In order to apply clustering algorithms on the elements, the elements need to
be embedded in some Euclidean space. Multidimensional scaling takes a set of
dissimilarities (over a set of elements) and returns a set of points in a Euclidean
space, such that the distances between the points are approximately equal to
the dissimilarities. A set of Euclidean distances on n points can be represented
exactly in at most n−1 dimensions. The procedure cmdscale follows the analysis
of Mardia [20], and returns the best-fitting k-dimensional representation, where
k may be less than the argument k (and by definition smaller than n). In our
implementation, in order to avoid any distortion, we set k to the maximum value
as determined by the data (and is found and returned by the method). We used
a version of cmdscale that is implemented in R. As cmdscale requires a complete
graph, we used the min-hop-min-weight (MHMW) algorithm. The output of the
MHMW is a complete graph where the weight between any two points is the
lightest (min weight) path among all min hop reliable paths (paths between trees
for which correlation was derived). At this point we can use cmdscale to map
this graph to the Euclidean space. Note however, that this mapping corresponds
not to the original graph, rather to some approximation of it derived by the out-
put of the MHMW algorithm. This mapping however serves as an initial guess
to the iterative mapping of the original, partial, distance matrix. This iterative
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versus the gene/pacemaker variance ratio; the plots are shown for 2, 4, 6 and 8 clusters
(PMs)
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process is done by the function isoMDS implemented in R. This mapping will
serve us for the clustering operation. Now, as opposed to real data, here we know
the original number of clusters, we can just set this as the number of clusters
required. We used kmeans implemented by R to obtain the optimal clustering.
Our results appear in Figure 1. The measured quantity is (normalized) partition
distance as measured by our greedy PartDist. The independent variable is the
ratio between σG and σP . The larger σP the more dispersed are the PMs and
hence farther from one another. Equivalently, the smaller σG, the more concen-
trated around their PM are the genes. Therefore, we expect that the smaller the
ratio σG/σP is, i.e. PMs are spaced away from each other while their associated
genes are more concentrated, we get better results in the sense that more genes
remain in their original cluster and successfully identified. Also, we expect that
the larger the number of PMs, the greater the mixing between them with genes
end up in PMs that are neighboring to their original PMs. Indeed it can be seen
that for two and four PMs, for any ratio of σG/σP ≤ 1 a very accurate recon-
struction is achieved and so as to six clusters, but for ratio a little less than 1. It
is also shown that for every number of PMs, at some critical σG/σP ratio (that
depends on #PMs) the reconstruction curve reaches a saturation that tends to
the random similarity as we computed above.

5 Results on Real Data

Working with real data poses some other serious problems requiring solution.
The first, is that we don’t have here exactly τ periods with edge length 
i,j for
every gene gi rather a set of trees with loose pairwise agreement. This loose
agreement is due to vast discordance between the histories of the various genes
as a result of phenomena such as horizontal gene transfer (HGT) or incomplete
lineage sorting (ILS, see more details below). However, discordance can arise
even from the simple fact that some gene is missing in some specific species,
resulting in a contraction of internal nodes.

To cope with this problem, we employ the idea of Maximum Agreement Sub-
trees (MAST) [9], that seeks for the largest subset of species under which the
two trees are the same. Under MAST (or in general, any subset of the leaf set),
edges not connecting any species to the induced tree, are removed, and internal
nodes with degree two are contracted, while maintaining the original length of
the path. Hence for every pair of genes (trees) we need to find the MAST and
compare lengths of corresponding edges.

Additionally, here as opposed to a simulation study, we do not know the “real”
partition and cannot compare the resultant clustering to it. Therefore, another
method for assessing the results should be employed. Here we need to compare
the result to the probability of being obtained under a random model. Recall
that at the final stage of the PMPI procedure we employ the kmeans algorithm
which seeks to minimize some error measure WK . This error measure holds the
sum of all pairwise distances between members of the same cluster, across all
clusters in the partition. It is clear that the more clusters, the smaller WK is.
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Fig. 2. The deltaGap function for 2755 analyzed genes, k from 1 to 10. According to
Tibshirani et al [27], the smallest k producing a non-negative value of deltaGap[k] =
Gap[k]-Gap[k+1]+sigma[k+1] indicates the optimal number of clusters.

However, the decrease in WK is the largest near the real value of the number of
clusters k = K, and vanishes slowly for k > K. Therefore, a threshold for the
improvement (decrease) in WK must be defined as a stopping condition, above
which we don’t increase the number of clusters k. The gap statistics analysis [27]
compares the improvement in WK under the real data, to that of a random
model. The gap (between the improvements) forms an “elbow” at the optimal
(real) K and this is the stopping condition.

The real data we chose to analyze is the one used by us [26] previously, of
a set of gene trees that covers 2755 orthologous families from 100 prokaryotic
genomes [24]. Prokaryotic evolution is characterized by the pervasive phenomena
of horizontal gene transfer (HGT) [7,11], resulting in different topologies for al-
most any two gene trees. To account for this we employed the MAST procedure
for every gene pair and considered this pair only if the MAST contained at least
10 leaves (species). Branch lengths of the original trees were used to compute
the branch lengths of the corresponding MAST components (by computing path
lengths). The variant of Deming regression in the log space as described in Sec-
tion 4 was performed on the logarithms of the lengths of equivalent branches in
both MAST components. The standard sample Pearson correlation coefficient
was used as the measure of correlation between the branch lengths. The graph
of correlations between the gene trees contained a giant connected component
containing 2755 genes and 1,250,972 edges, 33% of the maximum possible num-
ber (an edge in the graph exists only when the MAST for the corresponding pair
of trees consists of at least 10 species). To cluster these genes according to the
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correlation between their branch lengths, the data were projected using isoMDS
into a 30-dimensional space based on the sparse matrix where 1− r (correlation
coefficient) was used as a distance. We ran k-means for k spanning the range from
2 to 30. The random model we chose to consider is the fully random uniform
model (i.e., α = 0, no advantage to source PM) and we compared the results
to this model. Grouping these 2755 genes in two clusters containing 1550 and
1205 members, respectively, yields the optimal partitioning according to the gap
function statistics (Figure 2). We see the typical “elbow” at the value of k = 2.
The absolute results were 5, 587, 960 for the total graph weight, 2, 686, 914 and
2, 285, 921 weight within each of the clusters, and 615, 125 between them. Anal-
ysis of the cluster membership reveals small albeit significant differences in the
representation of functional categories of genes but no outstanding biologically
relevant trends were detected. Therefore, we can hypothesize that if indeed the
data gives rise to multiple PMs, this signal is completely obscured by the amount
of noise produced by the genes themselves (i.e. loose adherence to the associated
PM), and noise introduced by artificial factors such as MAST, multiple sequence
alignment, and phylogenetic reconstruction.

6 Conclusions

The universal pacemaker (UPM) model provides a more general framework to
analyze genome evolution than the MC model as it makes no assumptions of
the absolute evolutionary rates of gene, only on the relative rates. This provides
a better explanation to the data observed at extant species. However, similarly
to the MC, the UPM is extremely over-dispersed, with the noise complicating
detailed analysis. The difficulty in PM analysis is caused both by the weak
informative signal and by the large volume of the data.

A natural expectation, however, is for different gene groups, to adhere to
different PMs, characterized by different functions. This classification imposes
a partition over the gene set where each gene is associated with its own PM.
The inference of such a partition is challenging twofold; first from information
perspective, as it needs to overcome a high level of “noise”, both biological, as
well as artificial. Next, the computational task of solving the PMPI problem
requires investigating all possible partitions over the gene set.

In this work we provide the first heuristic procedure for detecting such a par-
titioning that is based on theoretical ground. We use the Deming regression to
infer correlation between pairs of genes, and represent this correlation relation-
ship in a graph. Subsequently, we embed this graph in the Euclidean space and
apply a clustering procedure to it.

We also provide simulation and empirical results of the application of this
procedure. In the simulation study, we have shown that the proposed procedure
is sound and is capable of detecting the original partition with high accuracy
for a fairly small (up to 6) number of PMs as long as the intrinsic gene rate
variance is at the size of the PM variance. In the real data realm, we succeed in
showing that the analyzed genome-wide set of gene trees is optimally partitioned
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between two PMs, and the improvement in the statistical explanation is small al-
beit highly significant. The partition of different functional gene groups between
the two PMs is also statistically significant (WRT random partitioning of each
group) however the biological interpretation of this partitioning is challenging
and remained for future research.

Acknowledgments. We thank Eugene Koonin and Yuri Wolf for helpful discus-
sions, in particular in interpretation of the biological significance of the resulted
clustering of the real data in Section 5.
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Abstract. Genome assembly is usually abstracted as the problem of
reconstructing a string from a set of its k-mers. This abstraction natu-
rally leads to the classical de Bruijn graph approach—the key algorith-
mic technique in genome assembly. While each vertex in this approach
is labeled by a string of the fixed length k, the recent genome assem-
bly studies suggest that it would be useful to generalize the notion of
the de Bruijn graph to the case when vertices are labeled by strings of
variable lengths. Ideally, we would like to choose larger values of k in
high-coverage regions to reduce repeat collapsing and smaller values of
k in the low-coverage regions to avoid fragmentation of the de Bruijn
graph. To address this challenge, the iterative de Bruijn graph assembly
(IDBA) approach allows one to increase k at each iterations of the graph
construction. We introduce the Manifold de Bruijn (M-Bruijn) graph
(that generalizes the concept of the de Bruijn graph) and show that it
can provide benefits similar to the IDBA approach in a single iteration
that considers the entire range of possible k-mer sizes rather than varies
k from one iteration to another.

1 Introduction

The de Bruijn graphs are the key algorithmic technique in genome assembly [1–3]
that resulted in dozens of software tools [4–10]. In addition, the de Bruijn graphs
have been used for repeat classification [11], de novo protein sequencing [12],
synteny block construction [13], multiple sequence alignment [14], and other
applications in genomics and proteomics. In fact, the de Bruijn graphs have
become so ubiquitous in bioinformatics that one rarely questions what are the
intrinsic limitation of this approach.

We argue that the original definition of the de Bruijn graph is far from being
optimal for the challenges posed by the assembly problem. We further propose
a new notion of the Manifold de Bruijn (M-Bruijn) graph (that generalizes the
concept of the de Bruijn graph) and show that it has advantages over the classical
de Bruijn graph in assembly applications.

The disadvantages of the de Bruijn graphs became apparent when bioinfor-
maticians moved from assembling cultivated bacterial genomes (with rather uni-
form read coverage) to assembling genomes from single cells (with 4 orders of
magnitude variations in coverage [15]). In such projects, selecting a fixed k-mer
size is detrimental since k should be small in low-coverage regions (otherwise the
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Fig. 1. (A) A circular string String =CATCAGATAGGA. The de Bruijn graphs (B)
DB(Reads, 3) and (C) DB(Reads, 4) on a set of Reads = {CATC, ATCA, TCAG,
CAGA, AGAT, GATA, TAGG, GGAC, ACAT } drawn from that circular genome.
Small value of k = 3 “glues” many repeats and makes DB(Reads, 3) tangled, while
larger value of k = 4 fails to detect overlaps and makes DB(Reads, 4) fragmented.

graph becomes fragmented) and large in high-coverage regions (otherwise the
graph becomes tangled). Figure 1 illustrates the tradeoff.

Since the standard de Bruijn graph does not allow one to vary k, the leading
single cell assemblers SPAdes [10] and IDBA-UD [16] use a heuristic called an
Iterative De Bruijn Assembly (IDBA) proposed by Peng et al. [6]. IDBA starts
from small k (resulting in a tangled de Bruijn graph), uses contigs from the
resulting graph as pseudoreads, and mixes pseudoreads with original reads to
construct the de Bruijn graph for larger k. The recent benchmarking studies
demonstrated that SPAdes and IDBA-UD improve on other assemblers not only
in single cell but also in standard multi-cell projects [17, 18].

However, the IDBA approach, while valuable, remains a heuristic that requires
manual parameter setup (no automated parameter learning approach for IDBA
has been proposed yet). Moreover, the running time for t iterations increases
by a factor of t, forcing researchers to jump between various values of k (e.g.,
21→ 33→ 55→ 77→ 99→ 127 for reads of length 250bp in the default setting
of SPAdes [10] for multicell data) rather than increasing k by 1 in each iteration,
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a more accurate but impractical strategy. The question thus arises whether one
can provide benefits similar to the IDBA approach in a single iteration that
considers the entire range of possible k-mer sizes rather than varies it from one
iteration to another. The Manifold de Bruijn (M-Bruijn) graph achieves this
goal by automatically varying k-mer sizes according to the input data.

2 From the de Bruijn Graph to the A-Bruijn Graph

To introduce the Manifold de Bruijn (M-Bruijn) graph, we first need to depart
from the classical definition of the de Bruijn graph (edges coded by k-mers
and vertices coded by (k-1)-mers). We will use the concept of the A-Bruijn
graph [11, 19] to provide an equivalent definition of the de Bruijn graph. In the
A-Bruijn graph framework, the classical de Bruijn graph DB(String, k) of a
string String is defined as follows. Let Path(String, k) be a path consisting of
|String| − k + 1 edges, where the i-th edge of this path is labeled by the i-th
k-mer in String and the i-th vertex of the path is labeled by the i-th (k-1)-mer
in String. The de Bruijn graph DB(String, k) is formed by gluing identically
labeled vertices in Path(String, k) as described in [11] (Figure 2). Note that
this somewhat unusual definition results in exactly the same de Bruijn graph
as the standard definition. In the case when instead of a string String, we are
given a set of reads Reads, the definition of DB(String, k) naturally generalizes
to DB(Reads, k) by constructing a path for each read and further gluing all
identically labeled vertices in all paths.

We have defined Path(String, k) as a path through all (k-1)-mers occurring
in String = s1s2 . . . sn, i.e., all substrings sisi+1 . . . si+k−1 ∈ Σk−1, where Σk−1

is the set of all (k-1)-mers in alphabet Σ. We will thus change the notation from
Path(String, k) to Path(String,Σk−1).

We now consider an arbitrary substring-free set V where no string in V is
a substring of another string in V . V consists of words (of any length) in the
alphabet Σ and the new concept Path(String, V ) is defined as a path through all
words from V appearing in String (in order) as shown in Figure 3. We further
assign integer i (called the shift) to the edge (v, w) if the start of v precedes
the start of w by i symbols in String. If i > |v|, we also assign a shift tag
(the characters between the end of v and the start of w in String) to the edge
(v, w). Afterwards, we glue identically labeled vertices as before to derive the
A-Bruijn graph AB(String, V ) as shown in Figure 3. Clearly, DB(String, k) is
AB(String,Σk−1) with shifts of all edges equal to 1.

The definitions of AB(String,Σk−1) and AB(String, V ) naturally generalize
to AB(Reads,Σk−1) and AB(Reads, V ) by constructing a path for each read
and further gluing all identically labeled vertices in all paths. Figure 4 illustrate
the construction of AB(Reads, V ). Note that when strings from V do not cover
the first (last) symbol of a read, we add an additional prefix (suffix) tag to the
first/last node of the read. For example, the read TCAG in Figure 4 contains
two strings from V (TC and CA) that do not cover the last symbol G of this
read. We have thus added a suffix tag ”G” to the last node of the corresponding
tag.
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A

TAG
AGG
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Fig. 2. A circular String =CATCAGATAGGA (A) and Path(String, 3) (B). Bringing
identically labeled vertices (in (B)) closer to each other (in (C)) to eventually glue them
into a single vertex in DB(String, 3) (in (D)).
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Fig. 3. A circular String =CATCAGATAGGA (A) and Path(String, V ), where where
V = {CA, AC, TC, AGA, AT, TA, AGG} (B). Bringing identically labeled vertices
(in (B)) closer to each other (in (C)) to eventually glue them into a single vertex in
AB(String, V ) (in (D)).
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CATC: CA AT TC
1 1

ATCA: AT TC CA
1 1
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G
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1
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GGAC: ACGG

ACAT: AC CA AT
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(C)
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AGG

TA
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2
1

1

1
1

GG

Fig. 4. (A) A set of Reads = {CATC, ATCA, TCAG, CAGA, AGAT, GATA, TAGG,
GGAC, ACAT }. (B) All paths corresponding to reads from Reads and V = {CA, AC,
TC, AGA, AT, TA, AGG } (C) AB(Reads,V ).

Below we address the question of how to choose V so that the resulting as-
sembly AB(Reads, V )) improves on the classical assembly approach represented
by AB(Reads,Σk−1) = DB(Reads, k).

3 From the A-Bruijn Graph to the Manifold de Bruijn
Graph

A word is called irreducible with respect to a string String if it appears once
in String but all its substrings appear multiple times in String. The irre-
ducible words with respect to a string String are also known as the minimum
unique substrings [20]. Let Irreducible(String) be the set of all irreducible words
with respect to String, e.g., Irreducible(CAGGCA) = {AG,GG,GC}. The set
Irreducible(String) can be constructed in linear time [20] using the suffix ar-
rays [21].

The Manifold de Bruijn (M-Bruijn) graph MB(String) is defined as
AB(String, Irreducible(String)). Please note that there is no parameter k in
the definition of the M-Bruijn graph of a string. Obviously, no vertices are glued
in the M-Bruijn graph (see Figure 5).

A word is called right irreducible (r-irreducible) with respect to String if
it appears exactly once in String but all its prefixes appear multiple times in
String. A word is called left irreducible (l-irreducible) with respect to String if
it appears once in String but all its suffixes appear multiple times in String.
For example {CAG,AG,GG,GC} and {AG,GG,GC,GCA} are the sets of r-
irreducible and l-irreducible words for CAGGCA. Obviously, each irreducible
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Fig. 5. A circular string String =CATCAGATAGGA with Irreducible(String) =
{ CAT, TC, CAG, AGA, GAT, TA, GG, AC}, and the M-Bruijn graph MB(String)

word is both r-irreducible and l-irreducible. Below we describe how to efficiently
construct the sets of r-irreducible/l-irreducible/irreducible words.

While the linear time algorithm for constructing the set Irreducible(String)
has been described by Ilie et al. [20], we describe a different approach that is
better suited for the Manifold de Bruijn graph and its generalization to a set of
reads described in the next section. Given a string String = s1s2 . . . sn, we add
a special termination character $ to the end of String, define Suf [i] as its suffix
sisi+1 . . . sn$, and define T (String) as the suffix tree on s1s2 . . . sn$ [21]. An
edge in T (String) is called trivial if it is labeled by a single special character $.

Given a string String = s1s2 . . . sn, a word w(i, j) represents the substring
sisi+1 . . . sj. Consider a root-to-leaf path in T (String) that corresponds to
Suf [i] = sisi+1 . . . sn$. If this path “ends” in a non-trivial edge labeled by
sjsj+1 . . . sn$, we define the word w(i, j) = sisi+1 . . . sj as an outpost with re-
spect to String (Figure 6).

Proposition 1. A word is r-irreducible if and only if it is an outpost with respect
to String.

Through a depth-first search of the suffix tree, we can derived the set of all r-
irreducible words, represented by pairs of indices {(i1, j1), (i2, j2), . . . , (im, jm)}
with respect to String, e.g., each r-irreducible word w(i, j) is denoted as a pair of
indices (i, j). This set contains all the irreducible words with respect to String.
To construct Irreducible(String), we need to find all r-irreducible words that
are also l-irreducible. Below we show how to do it in linear time.

Lemma 1. If an r-irreducible word v is a substring of another r-irreducible word
w then v is a suffix of w.

Proof. If v is not a suffix of w, then it is contained in a prefix of w. Since w is
r-irreducible, each prefix of w appears multiple times in String, and thus v also
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appears multiple times in String, implying that it can not be r-irreducible, a
contradiction. ��

The corollary below reduces the search for irreducible words to the search for
r-irreducible words:

Corollary 1. An r-irreducible word w(i, j) with respect to String is irreducible
with respect to String if it is the shortest among all r-irreducible words ending
at position j.

Thus a simple linear time algorithm that scans the set of pairs of indices of
all r-irreducible words reveals the set of irreducible words.

1 2 3 4 5 6
String C A G G C A

A

CA

G

$
GGCA$

$
GGCA$

CA$
GCA$

Fig. 6. The suffix tree (right) for a string String =CAGGCA. The four outposts (GG,
GC, CAG, and AG) end in symbols colored in red in the suffix tree. While CAG and AG
are two r-irreducible words ending at position 3, only one of them (AG) is irreducible
with respect to String.

Theorem 1. The set Irreducible(String) can be constructed in linear time.

Proof. The suffix tree for String can be constructed in linear time [21], the set of
r-irreducible words (outposts, represented by pairs of indices) can be computed
in linear time by a depth-first search of this suffix tree, and all irreducible words
can be derived from the r-irreducible words in linear time (Corollary 1). ��

4 Manifold de Bruijn Graphs: From a Single String to a
Set of Reads

We have defined the notion of an irreducible word with respect to a single string
String. We now define the notion of an irreducible word with respect to a set of
strings Reads.
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4.1 Consistent and Irreducible Words with Respect to a Set of
Reads

Let Reads be a substring-free set of reads {read1, read2, . . . , readm} and
w(x, i, j) be the substring spanning positions from i to j in readx. We refer
to all substrings of reads as words from Reads. A string is Reads-consistent if it
contains all strings from Reads as substrings.

A word from Reads is irreducible (with respect to Reads) if there exists a
Reads-consistent string where this word is irreducible. Let Irreducible(Reads)
be the set of all irreducible words with respect to Reads.

A word from Reads is consistent (with respect to Reads) if there exists a
Reads-consistent string where this word appears exactly once.

To check whether a word w is consistent with respect to Reads, consider
all reads containing w and represent each such read readt as a three-part con-
catenate of affixt(w), w, and postfixt(w), where affixt(w) (postfixt(w)) are
formed by symbols preceding (following) w in readt. We further select the longest
affix and postfix among all reads containing w and form the three-part concate-
nate of the longest affix, w, and the longest postfix (denoted by Superstring(w)).
For example, for a set of reads {CAGCA, AGATT, ATTGC} and a word w=AG,
the reads CAGCA and AGATT are represented as C-AG-CA and -AG-ATT in
the affix-w-postfix notation. Therefore, Superstring(AG)=CAGATT.

The following proposition (illustrated in Figure 7) describes how to check if
a word is consistent and implies that the word AG is not consistent because
Superstring(AG) does not contain one of the reads (CAGCA) containing AG.
Using this proposition, one can verify that for a set of reads Reads = {CAGCA,
AGATT, ATTGC}, Irreducible(Reads) = {AGC, AT, CAG, GA, GCA, TG,
TT}.

w
w
w

w w
w

w�=
w

w �=

(i) (ii) (iii) (iv)

Fig. 7. Illustration of a consistent word (i) and an inconsistent word (ii),(iii) and (iv)
with respect to Reads. Perfectly aligned symbols are shown by the same color (marked
by dotted lines) while misalignments are shown by different colors (shown with �= sign).

Proposition 2. A word w is consistent with respect to Reads if and only if w
appears at most once in each read and each read containing w is a substring of
Superstring(w).

4.2 Generalized Suffix Trees

Given the set Reads = {read1, read2, . . . , readm}, we add special termination
character $x to the end of each readx, i.e. there will be m different termina-
tion characters overall. We define T (Reads) as the generalized suffix tree [21]
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for Reads and define Suf [x, i] as the suffix starting at position i of readx$x.
In T (Reads), each Suf [x, i]$x corresponds to a root-to-leaf path. An edge in
T (Reads) is called trivial if it is labeled by $x for 1 ≤ x ≤ m (see Figure 8). A
vertex in T (Reads) is called a branching vertex if it has at least two non-trival
outgoing edges in T (Reads). Given an edge from vertex u to vertex v, we say
that all suffixes (leaves) in the subtree rooted at v are after v in T (Reads).

Reads 1 2 3 4 5

read1 C A G C A
read2 A G A T T
read3 A T T G C

C

A

T
G

$3

A

TT

G

$
1

$
2

GC$3

T

CATT$2

A
TT$

2

CA$1

$
2

GC$3

$
2

GC$3

$1
G

CA$1

$3
A$1

Fig. 8. The generalized suffix tree T (Reads) (right) for Reads = {CAGCA, AGATT,
ATTGC } (left). Trivial edges are shown by dotted lines in T (Reads). If an outpost
appears only in one read, the outpost ends in a symbol colored in the color of that read;
if an outpost appears in multiple reads, the outpost ends in a symbol colored in red.
The three outposts (CAG, AGC, GC) in Read1 end in symbols colored in brown (or
red), the four outposts (AGA, GA, AT, TT) in Read2 end in symbols colored in blue
(or red), and the four outposts (AT, TT, TG, GC) in Read3 end in symbols colored in
green (or red) in T (Reads).

Consider a path from the root to a leaf in T (Reads) that corresponds to
Suf [x, i] = w(x, i, |readx|)$x. We find the first edge, denoted by (u, v), in the
path such that all the suffixes after vertex v belong to distinct reads, and there is
no branching vertices in the subtree rooted at v (including v). If such edge exists
and is labeled by w(x, j, l) (if l < |readx|) or w(x, j, |readx|)$x, we define the
word w(x, i, j) as an outpost in Readx (see Figure 8), and define Rightx(i) = j;
otherwise Rightx(i) = |readx|+ 1. Note that if we ignore the differences in the
indices and treat each outpost as a string, then the set of outposts are defined
uniquely with respect to T (Reads), although the same outpost may appear in
multiple reads. Thus the positions of all outposts in T (Reads) can be computed
by the depth-first search of T (Reads).
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We define the reverse of string String = s1s2 . . . sn as the string String =
snsn−1 . . . s1. We further define the reverse of a set Reads = {read1, read2, . . . ,
readm} as the set of reads Reads = {read1, read2, . . . , readm} (see Figure 8 for
Reads and T (Reads)).

Reads 1 2 3 4 5

read1 A C G A C

read2 T T A G A

read3 C G T T A

C
A

T
G

$1

G

C
GA$2

$
2

$
3

A

TA

A
TTA$3

AC$1

T
TA

$ 3

$
1

GAC$1

$
3

GA$2

$
3

GA$2

C$
1

$2

Fig. 9. The generalized suffix tree T (Reads) (left) for Reads = {ACGAC, TTAGA,
CGTTA } (top). Trivial edges are shown by dotted lines in T (Reads). The three
outposts (ACG, CGA, GA) in read1 end in symbols colored in brown (or red), the
four outposts (TT, TA, AG, GA) in read2 end in symbols colored in blue (or red), and
the four outposts (CGT, GT, TT, TA) in to read3 end in symbols colored in green (or
red) in T (Reads).

Consider a path from the root to a leaf in T (Reads) that corresponds to
word(x, 1, j)$x. We find the first edge, denoted by (u, v), in the path such that
all the suffixes after v belong to distinct reads, and there is no branching vertices
in the subtree rooted at v (including v). If such edge exists and is labeled by
w(x, l, i) (if l > 1) or w(x, 1, i)$x, we define the word w(x, i, j) as an outpost in
Readx (see Figure 9), and define Leftx(j) = i; otherwise Leftx(j) = 0.

Given a word w(x, i, j), if j ≥ Rightx(i), all postfixes of w(x, i, j) in different
reads are prefixes of the longest postfix among them and w(x, i, j) appears at
most once in each read; if i ≤ Leftx(j), all affixes of w(x, i, j) in different reads
are suffixes of the longest affix among them. Thus the two conditions, (j ≥
Rightx(i)) and (i ≤ Leftx(j)), imply that there exists Superstring(w(x, i, j))
such that each read containing w(x, i, j) is a substring of Superstring(w(x, i, j))
and w(x, i, j) appears at most once in each read. From Proposition 2 we have

Proposition 3. A word w(x, i, j) is consistent with respect to Reads if and only
if j ≥ Rightx(i) and i ≤ Leftx(j).
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A word is right irreducible (r-irreducible) with respect to Reads if it is con-
sistent but all its prefixes are inconsistent with respect to Reads. A word is left
irreducible (l-irreducible) with respect to Reads if it is consistent but all its suf-
fixes are inconsistent with respect to Reads. Obviously, a word is irreducible if
and only if it is both r-irreducible and l-irreducible. This observation implies

Proposition 4. A word w(x, i, j) is irreducible with respect to Reads, if and
only if
(i) j ≥ Rightx(i) and i ≤ Leftx(j) (the consistent condition),
(ii) j < Rightx(i + 1) or i + 1 > Leftx(j) (the l-irreducible condition),
(iii) i > Leftx(j − 1) or j − 1 < Rightx(i) (the r-irreducible condition).

The proposition 4 reduces the construction of Irreducible(Reads) to checking
3 conditions for each triple of indices (x, i, j). We further note that if both
w(x, i, j) and w(x, i+ 1, j′) are irreducible then j < j′. This observation leads to
the linear time Algorithm 1 for computing Irreducible(Reads) (see Figure 10,
Figure 11 and Figure 12).

Algorithm 1. Computing irreducible words in readx

INPUT: Arrays Rightx(i) (1 ≥ i ≥ |readx|) and Leftx(j) (1 ≥ j ≥ |readx|)
OUTPUT: Array Irreduciblex represented as pairs of indices {(a, b)|w(x, a, b) is an
irreducible word}
INITIAL: i = 1, j = Rightx(1), Irreduciblex = ∅
while j ≤ |readx| do

if (i, j) satisfy all three conditions in Proposition 4 then
add (i, j) to Irreduciblex
i = i+ 1; j = j + 1;

else
if (i, j) violates condition (i) in Proposition 4 then

j = j + 1
else

i = i+ 1
end if

end if
end while

Theorem 2. The set Irreducible(Reads) can be constructed in linear time.

Proof. The generalized suffix trees for Reads and Reads can be constructed
in linear time [21]. We can then compute all Rightx(i) and Leftx(i) for any i
(1 ≤ i ≤ |readx|) of readx in linear time through the depth-first search of each
trees. Then Algorithm 1 derives all the irreducible words in linear time. ��

TheM-Bruijn graphMB(Reads) is defined asAB(Reads, Irreducible(Reads)).
Similar to MB(String), the construction of MB(Reads) does not specify the k-
mer size. Note that in the “gluing” process, if two vertices are connected by multiple
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read1 C A G C A

i 1 2 3 4 5

Right1(i) 3 4 4 6 6

read1 C A G C A

j 1 2 3 4 5

Left1(j) 0 0 2 2 3 i

j

(1, 3)

(2, 4)

(3, 5)

0 1 2 3 4 5
0

1

2

3

4

5

Fig. 10. Algorithm 1 identifies three irreducible words in read1: w(1, 1, 3) = CAG,
w(1, 2, 4) = AGC and w(1, 3, 5) = GCA (shown as red points)

read2 A G A T T

i 1 2 3 4 5

Right2(i) 3 3 4 5 6

read2 A G A T T

j 1 2 3 4 5

Left2(j) 0 1 2 3 4 i

j

(2, 3)

(3, 4)

(4, 5)

(1, 3)×

0 1 2 3 4 5
0

1

2

3

4

5

Fig. 11. Algorithm 1 identifies three irreducible words in read2: w(2, 2, 3) = GA,
w(2, 3, 4) = AT and w(2, 4, 5) = TT (shown as red points)

read3 A T T G C

i 1 2 3 4 5

Right3(i) 2 3 4 5 6

read3 A T T G C

j 1 2 3 4 5

Left3(j) 0 1 2 3 3 i

j

(1, 2)

(2, 3)

(3, 4)

(4, 5)×

0 1 2 3 4 5
0

1

2

3

4

5

Fig. 12. Algorithm 1 identifies three irreducible words in read3: w(3, 1, 2) = AT,
w(3, 2, 3) = TT and w(3, 3, 4) = TG (shown as red points)
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“parallel” edges, all these edges have the same shift and the same shift tag. We thus
substitute all such edges by a single edge. It is easy to see that MB(Reads) is a set
of paths (including paths consisting of a single vertex) or cycles. Each cycle spells
a sequence that we refer to as a cyclic contig. Each path spell a sequence that we
refer to as a linear contig after concatenating it with the longest prefix tag of its
first vertex and the longest suffix tag of its last vertex.

Figure 13 shows an example of an M-Bruijn graph on a set of reads.

CAT

TC

CAG

AGA

GAT
TA

GG

AC

2
1

1
1

2

2

2

1

Fig. 13. The M-Bruijn graph MB(Reads), where Reads = {CATC, ATCA, TCAG,
CAGA, AGAT, GATA, TAGG, GGAC, ACAT } drawn from a circular string
String =CATCAGATAGGA, and Irreducible(Reads) = {CAT, TC, CAG, AGA,
GAT, TA, GG, AC}. Compared to Figure 5, MB(Reads) reconstructs MB(String)
and thus the circular string String. MB(Reads) is neither tangled (like DB(Reads,3)
in Figure 1(B)) nor fragmented (like DB(Reads, 4) in Figure 1(C)).

5 Conclusion

The Iterative de Bruijn graph Assembly (IDBA) approach starts from small k,
uses contigs from the de Bruijn graph on k-mers as pseudoreads, and mixes
pseudoreads with original reads to construct the de Bruijn graph for larger k.
The key step in IDBA is to maintain the accumulated de Bruijn graph (Hk) to
carry the contigs forward as k increases [6].

We have proposed a notion of the Manifold de Bruijn (M-Bruijn) graph that
does not require any parameter setup, e.g., it does not require one to specify
the k-mer size. The M-Bruijn graph provides an alternative way to generate
pseudoreads (as its contigs) that incorporate information for k-mers of varying
sizes.

Our introduction of M-Bruijn graph is merely a preliminary theoretical con-
cept that may seem impractical since we have not addressed various challenges
posed by the real datasets in genome assembly. When Idury and Waterman [2]
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introduced the de Bruijn graph approach for genome assembly, the high error rates
in Sanger reads also made that approach seem impractical. Pevzner et al. [3] later
removed this obstacle by introducing an error correction procedure that made the
vast majority of reads error-free. Thus, our ability to handle errors in reads is crucial
for future applications of the M-Bruijn graph approach.
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Abstract. In this paper we present an efficient external memory algo-
rithm to compute the string graph from a collection of reads, which is a
fundamental data representation used for sequence assembly.

Our algorithm builds upon some recent results on lightweight Burrows-
Wheeler Transform (BWT) and Longest Common Prefix (LCP) construc-
tion providing, as a by-product, an efficient procedure to extend intervals
of the BWT that could be of independent interest.

We have implemented our algorithm and compared its efficiency
against SGA—the most advanced assembly string graph construction
program.

1 Introduction

De novo sequence assembly is a fundamental step in analyzing data from Next-
Generation Sequencing (NGS) technologies. NGS technologies produce, from a
given (genomic or transcriptomic) sequence, a huge amount of short sequences,
called reads—the most widely used current technology can produce 109 reads
with average length 150. The large majority of the available assemblers [1,10,15]
are built upon the notion of de Bruijn graphs where each k-mer is a vertex and
an arc connects two k-mers that have a k − 1 overlap in some input read. Also
in transcriptomics, assembling reads is a crucial task, especially when analyzing
RNA-seq in absence of a reference genome.

Alternative approaches to assemblers based on de Bruijn graphs have been
developed recently, mostly based on the idea of string graph, initially proposed
by Myers [9] before the advent of NGS technologies and further developed [13,14]
to incorporate some advances in text indexing, such as the FM-index [7]. This
method builds an overlap graph whose vertices are the reads and where an arc
connects two reads with a sufficiently large overlap. For the purpose of assembling
a genome some arcs might be uninformative. In fact an arc (r1, r2) is called
reducible if its removal does not change the strings that we can assemble from
the graph, therefore reducible arcs can be discarded. The final graph, where all
reducible arcs are removed, is called the string graph. More precisely, an arc
(r1, r2) of the overlap graph is labeled by a suffix of r2 so that traversing a path
r1, · · · , rk and concatenating the first read r1 with the labels of the arcs of the
path gives the assembly of the reads along the path [9].

The näıve way of computing all overlaps consists of pairwise comparisons of all
input reads, which is quadratic in the number of reads. A main contribution of [13]
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is the use of the notion of Q-interval to avoid such pairwise comparisons. More pre-
cisely, for each read r in the collection R, the portion of BWT (Q-interval), iden-
tifying all reads whose overlap with r is a string Q, is computed in time linear in
the length of r. In a second step, Q-intervals are extended to discover irreducible
arcs. Both steps require to keep the whole FM-index and BWT for R and for the
collection of reversed reads in main memory since the Q-intervals considered cover
different positions of the whole BWT. Notice that the algorithm of [13] requires to
recompute Q-intervals a number of times that is equal to the number of different
reads in R whose suffix is Q, therefore that approach cannot be immediately trans-
lated into an external memory algorithm. For this reason, an open problem of [13]
is to reduce the space requirements by developing an external memory algorithm
to compute the string graph.

Recently, an investigation of external memory construction of the Burrows-
Wheeler Transform (BWT) and of related text indices (such as the FM-index)
and data structures (such as LCP) has sprung [2,3,6] greatly reducing the amount
of RAM necessary. In this paper, we show that two scans of the BWT, LCP and
the generalized suffix array (GSA) for the collection of reads are sufficient to
build a compact representation of the overlap graph, mainly consisting of the
Q-intervals for each overlap Q.

Since each arc label is a prefix of some reads and a Q-interval can be used
to represent any substring of a read, we exploit the above representation of
arcs also for encoding labels. The construction of Q-intervals corresponding to
labels is done by iterating the operation of backward σ-extension of a Q-interval,
that is computing the σQ-interval on the BWT starting from a Q-interval. The
idea of backward extension is loosely inspired by the pattern matching algorithm
using the FM-index [7]. A secondary memory implementation of the operation of
backward extension is a fundamental contribution of [5]. They give an algorithm
that, with a single scan of the BWT, reads a lexicographically sorted set of
disjoint Q-intervals and computes all possible σQ-intervals, for every symbol σ
(the original algorithm extends all Q-intervals where all Qs have the same length,
but it is immediate to generalize that algorithm to an input set of disjoint Q-
intervals). Our approach requires to backward extend generic sets of Q-intervals.
For this purpose, we develop a procedure (ExtendIntervals) that will be a crucial
component of our algorithm to build the overlap and string graph.

Our main result is an efficient external memory algorithm to compute the
string graph of a collection of reads. The algorithm consists of three different
phases, where the second phase consists of some iterations. Each part will be
described as linear scans and/or writes of the files containing the BWT, the
GSA and the LCP array, as well as some other intermediate files. We strive to
minimize the number of passes over those files, as a simpler adaptation of the
algorithm of [13] would require a number of passes equal to the number of input
reads in the worst case, which would clearly be inefficient.

After building the overlap graph, where each arc consists of two reads with
a sufficiently large overlap, the second phase iteratively extends the Q-intervals
found in the first phase, and the results of the previous iterations to compute
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an additional symbol of some arc labels (all labels are empty at the end of the
first phase). At the end of the second phase, those labels allow to reconstruct
the entire assembly (i.e. the genome/transcriptome from which the reads have
been extracted). Finally, the third phase is devoted to testing whether an arc is
reducible, in order to obtain the final string graph, using a new characterization
of reducible arcs in terms of arc labels, i.e. prefixes of reads.

The algorithm has O(d
2n) time complexity, where 
 and n are the length and
the number of input reads and d is the indegree of the string graph. We have
developed an open source implementation of the algorithm, called LightString-
Graph (LSG), available at http://lsg.algolab.eu/. We have compared LSG
with SGA [13] on a dataset of 37M reads, showing that LSG is competitive (its
running time is 5h 28min while SGA needed 2h 19min) even if disk accesses are
much slower than those in main memory (SGA is an in-memory algorithm).

2 Preliminaries

We briefly recall the standard definitions of Generalized Suffix Array and
Burrows-Wheeler Transform on a set of strings. Let Σ be an ordered finite
alphabet and let S a string over Σ. We denote by S[i] the i-th symbol of S, by

 = |S| the length of S, and by S[i : j] the substring S[i]S[i + 1] · · ·S[j] of S.
The reverse of S is the string Srev = S[
]S[
 − 1] · · ·S[1]. The suffix and prefix
of S of length k are the substrings S[
− k + 1 : 
] and S[1 : k], respectively. The
k-suffix of S is the suffix of length k. Given two strings (Si, Sj), we say that Si

overlaps Sj iff a nonempty suffix Z of Si is also a prefix of Sj , that is Si = XZ
and Sj = ZY . In that case we say that Sj extends Si by |Y | symbols, that Z is
the overlap of Si and Sj , denoted as ovi,j , that Y is the extension of Si with Sj ,
denoted as exi,j , and X is the prefix-extension of Si with Sj , denoted as pei,j .

In the following of the paper we will consider a collection R = {r1, . . . , rn}
of n reads (i.e., strings) over Σ. As usual, we append a sentinel symbol $ /∈ Σ
to the end of each string ($ lexicographically precedes all symbols in Σ). Then,
let R = {r1$, . . . , rn$} be a collection of n strings (or reads), where each ri is a
string over Σ; we denote by Σ$ the extended alphabet Σ ∪ {$}. Moreover, we
assume that the sentinel symbol $ is not taken into account when computing
overlaps between two strings.

The Generalized Suffix Array (GSA) [12] of R is the array SA where each
element SA[i] is equal to (k, j) if and only if the k-suffix of string rj is the i-th
smallest element in the lexicographic order of the set of all the suffixes of the
strings in R. In the literature (as in [2]), the relative order of two elements (k, i)
and (k, j) of the GSA such that reads ri and rj share their k-suffix is usually
determined by the order in which the two reads appear in the collection R (i.e.,
their indices). However, starting from the usual definition of the order of the
elements of the GSA, it is possible to compute the GSA with the order of their
elements determined by the lexicographic order of the reads with two sequential
scans of the GSA itself. The first scan extracts the sequence of pairs (k, j) where
k is equal to the length of rj , hence obtaining the reads of R sorted lexicograph-
ically. The second scan uses the sorted R to reorder consecutive entries of the

http://lsg.algolab.eu/
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GSA sharing the same suffix. This ordering will be essential in the following since
a particular operation (namely, the backward $-extension, as defined below) is
possible only if this particular order is assumed. The Longest Common Prefix of
R, denoted by LCP , is an array of size equal to the total length of the strings
in R and such that LCP [i] is equal to the length of the longest prefix shared
by the suffixes pointed to by GSA[i] and GSA[i − 1] (excluding the sentinel $).
For convenience, we assume that LCP [1] = 0. Notice that no element of LCP is
larger than the maximum length of a read of R.

The Burrows-Wheeler Transform (BWT) of R is the sequence B such that
B[i] = rj [|rj |−k], if SA[i] = (k, j) and k < |rj |, or B[i] = $, otherwise. Informally,
B[i] is the symbol that precedes the k-suffix of string rj where such suffix is the
i-th smallest suffix in the ordering given by SA. Given a string Q, all suffixes of
the GSA whose prefix is Q appear consecutively in GSA, therefore they induce
an interval [b, e) which is called Q-interval [2] and denoted by q(Q). We define
the length and width of the Q-interval [b, e) as |Q| and the difference (e − b),
respectively. Notice that the width of the Q-interval is equal to the number of
occurrences of Q as a substring of some string r ∈ R. Whenever the string Q
is not specified, we will use the term string-interval to point out that it is the
interval on the GSA of all suffixes having a common prefix. Since the BWT
and the GSA are closely related, we also say that [b, e) is a string-interval (or
Q-interval for some string Q) on the BWT. Let Brev be the BWT of the set
Rrev = {rrev | r ∈ R}, let [b, e) be the Q-interval on B for some string Q, and let
[b′, e′) be the Qrev -interval on Brev . Then, [b, e) and [b′, e′) are called linked. The
linking relation is a 1-to-1 correspondence and two linked intervals have same
width and length, hence (e− b) = (e′ − b′).

Given a Q-interval and a symbol σ ∈ Σ, the backward σ-extension of the Q-
interval is the σQ-interval (that is, the interval on the GSA of the suffixes sharing
the common prefix σQ). We say that a Q-interval has a nonempty (empty, re-
spectively) backward σ-extension if the resulting interval has width greater than
0 (equal to 0, respectively). Conversely, the forward σ-extension of a Q-interval
is the Qσ-interval. Given the BWT B, the FM-index [7] is essentially composed
of two functions C and Occ: C(σ), with σ ∈ Σ, is the number of occurrences
in B of symbols that are alphabetically smaller than σ, while Occ(σ, i) is the
number of occurrences of σ in the prefix B[1 : i− 1] (hence Occ(·, 1) = 0). These
two functions can be used to efficiently compute a backward σ-extension on B
of any Q-interval [7] and the corresponding forward σ-extension of the linked
Qrev -interval on Brev [8]. The same procedure can be used also for computing
backward σ-extensions only thanks to the property that the first |R| elements
of the GSA corresponds to R in lexicographical order. Notice that the order we
assumed on the elements of the GSA allows us to compute also the backward $-
extension of a Q-interval (hence determining the set of reads sharing a common
prefix Q), whereas this operation is not possible according to the usual order
of the elements of the GSA. The backward $-extension will be used in several
parts of our algorithms in order to compute and represent such a set of reads.
Moreover, for the purpose of computing σ-extensions, notice that the BWT can
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be obtained assuming any order for equal suffixes in different reads, since there
not exists any string-interval including only some of them.

3 The Algorithm

Since short overlaps are likely to appear by chance, they are not meaningful for
assembling the original sequence. Hence, we will consider only overlaps at least
τ long, where τ is a positive constant. For simplicity, we assume that the set R
of the reads is substring-free, that is, there are no two reads r1, r2 ∈ R such that
r1 is a substring of r2. The overlap graph of R is the directed graph GO = (R,A)
whose vertices are the strings in R, and two reads ri, rj form the arc (ri, rj) if
they overlap. Moreover, each arc (ri, rj) of GO is labeled by the extension exi,j

of ri with rj . Each path (r1, · · · , rk) in GO represents a string that is obtained by
assembling the reads of the path. More precisely, such string is the concatenation
r1ex1,2ex2,3 · · · exk−1,k [9, 14]. An arc (ri, rj) of GO is called reducible if there
exists another path from ri to rj representing the same string of the path (ri, rj)
(i.e., the string riexi,j). Notice that reducible arcs are not helpful in assembling
reads, therefore we are interested in removing (or in avoiding computing) them.
The resulting graph is called string graph [9].

Let us denote by Rs(Q) and Rp(Q) the set of reads whose suffix (prefix,
resp.) is a given string Q. If |Q| ≥ τ , then each pair of reads rs ∈ Rs(Q),
rp ∈ Rp(Q) forms an arc (rs, rp) of GO. Conversely, given an arc (rs, rp) of GO,
then rs ∈ Rs(ovs,p) and rp ∈ Rp(ovs,p). Therefore, the arc set of the overlap
graph is the union of Rs(Q) × Rp(Q) for each Q at least τ characters long.
Observe that a $Q-interval represents the set Rp(Q) of the reads with prefix Q,
while a Q$-interval represents the set Rs(Q) of the reads with suffix Q. As a
consequence, we can represent the sets Rs(Q) and Rp(Q) as two string-intervals.

Our algorithm for building the string graph is composed of three steps. The
first step computes a compact representation of the overlap graph in secondary
memory, the second step computes the prefix-extensions of each arc of the overlap
graph that will be used in the third step for removing the reducible arcs from the
compact representation of the overlap graph (hence obtaining the string graph).
In the first step, since the cartesian product Rs(S) × Rp(S) represents all arcs
whose overlap is S, we compute the (unlabeled) arcs of the overlap graph by
computing all S-intervals (|S| ≥ τ) such that the two sets Rs(S), Rp(S) are
both nonempty. We compactly represent the set of arcs whose overlap is S as
a tuple (q(S$), q($S), 0, |S$|), that we call basic arc-interval. We will use S for
denoting a string that is an overlap among some reads.

The three steps of the algorithm work on the three files—B, SA and L—
containing the BWT, the GSA, and the LCP of the set R, respectively. We first
discuss the ideas used to compute the overlap graph, while we will present the
other steps in the following parts of the section. Observe that the arcs of the over-
lap graph correspond to nonempty S$-intervals and $S-intervals for every overlap
S of length at least τ . As a consequence, the computation of the overlap graph
reduces to the task of computing the set of S-intervals that have a nonempty
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backward and forward $-extension (along with the extensions themselves). We
first show how to compute in secondary memory all such S-intervals and their
nonempty $-extensions with a single sequential scan of L and SA. Then, we will
describe the procedure ExtendIntervals that computes, in secondary memory
and with a single scan of files B and L, the backward σ-extensions of a collection
of string-intervals (in particular, those computed before). Such a collection is
not necessarily composed of pairwise-disjoint string-intervals, hence the proce-
dure of [5] cannot be applied since it stores only a couple of Occ entry, called Π
and π, while extending multiple nested intervals requires to store multiple values
of Π . We point out that ExtendIntervals is of more general interest and, in
fact, it will be also used in the second step of the algorithm.

An S-interval [b, e) corresponds to a maximal portion LCP [b + 1 : e − 1] of
values greater than or equal to |S|, that we call |S|-superblock. Moreover, if S is
an overlap between at least two reads, the width of such superblock is greater
than 1. Notice that for each position i of the LCP and for each integer j, there
exists at most one j-superblock containing i. During a single scan of the LCP,
for each position i, we can maintain the list of j-superblocks for all possible j
(i.e., all the string-intervals for some string S such that |S| = j) that contain i.
Such a list of superblocks represents the list of possible string-intervals that need
to be forward and backward $-extended to compute Rs(S) and Rp(S). Since the
GSA contains all suffixes in lexicographic order, the S$-interval (if it exists) is
the initial portion [b, e1) of the S-interval [b, e) such that, for each b ≤ i < e1,
we have SA[i] = (|S|, ·). Thus, by a single scan of the LCP file and of the GSA
file, we complete the computation of all the S$-intervals. This first scan can
also maintain the corresponding S-intervals. Then, a backward $-extension of
this collection of S-intervals determines if the $S-interval is nonempty. As noted
before, the S-intervals might not be disjoint, therefore the procedure of [5] can-
not be applied. However, we produce this collection of S-intervals ordered by
their end boundary. We developed the procedure ExtendIntervals (illustrated
below) that, given a list of string-intervals ordered by their end boundary on the
BWT, with a single scan of the files B and L, outputs the backward σ-extensions
of all the string-intervals given in input. Moreover, if pairs of linked intervals (i.e.,
pairs composed of an S-interval on B and the linked Srev -interval on Brev ) are
provided as input of ExtendIntervals, then it simultaneously computes the
backward extensions of the intervals on B and the forward extensions of the
intervals on Brev . Consequently, if we give as input of ExtendIntervals the
collection of all S-intervals that have a nonempty forward $-extension, then we
will obtain the collection of $S-intervals, that, coupled with the S$-intervals com-
puted before, provide the desired compact representation of the overlap graph.
Finally, we remark that the same procedure ExtendIntervals will be also cru-
cial for computing the prefix-extensions in the second step of our algorithm.

Backward Extending Q-Intervals. In this section, we will describe a proce-
dure for computing the backward extensions of a generic set I of string-intervals.
Differently from the procedure in [5], which is only able to backward extend
sets of pairwise disjoint string-intervals, we exploit the LCP array in order to
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efficiently deal with the inclusion between string-intervals (in fact, any two string-
intervals are either nested or disjoint). Each Q-interval [b, e) in I is associated to
a record (Q, [b, e), [b′, e′)) such that [b, e) is the Q-interval on B and [b′, e′) is the
Qrev -interval on Brev , that is, the intervals in each record are linked. Moreover,
a set x([b, e)) of symbols are associated to each string-interval [b, e) in I, and
x([b, e)) contains the symbols that must be used to extend the record. For each
string-interval and for each character σ in the associated set of symbols, the re-
sult must contain a record (σQ, [bσ, eσ), [b′σ, e

′
σ)) where [bσ, eσ) is the backward

σ-extension of [b, e) on B and [b′σ, e
′
σ) is the forward σ-extension of [b′, e′) on

Brev . Notice that also the intervals in the output records are linked.
The algorithm ExtendIntervals performs only a single pass over the BWT

B and the LCP L, and maintains an array Π [·] which stores for each symbol in
Σ$ the number of its occurrences in the prefix of the BWT preceding the cur-
rent position. In other words, when the first p symbols of B have been read, the
array Π gives the number of occurrences of each symbol in Σ$ in the first p− 1
characters of B. The procedure also maintains some arrays EΠj [·] so that, for
each symbol σ and each integer j, EΠj[σ] = Occ(σ, pj) where pj is the starting
position of the Q-interval containing the current position of the BWT such that
(1) |Q| = j and (2) the width of the Q-interval is larger than 1. Notice that,
for each position p and integer j, at most one such Q-interval exists. If no such
Q-interval exists then the value of EΠj is undefined. We recall that Occ(σ, p)
is the number of occurrences of σ in B[0 : p − 1] [7]. Since ExtendIntervals
accesses sequentially the arrays B and LCP , it is immediate to view the proce-
dure as an external memory algorithm where B and LCP are two files. Notice
also that line 3, that is finding all Q-intervals whose end boundary is p, can be
executed most efficiently if the intervals are already ordered by end boundary.
Lemmas 1 and 2 show the correctness of Alg. 1.

Lemma 1. At line 3 of Algorithm 1, for each c ∈ Σ (1) Π [c] is equal to the
number of occurrences of c in B[1 : p− 1] and (2) EΠk[c] = Occ(c, pk) for each
Q-interval [pk, ek) of width larger than 1 which contains p and such that |Q| = k.

Proof. We prove the lemma by induction on p. When p = 1, there is no symbol
before position p, therefore Π must be made of zeroes, and the initialization
of line 1 is correct. Moreover all string-intervals containing the position 1 must
start at 1 (as no position precedes 1), therefore line 1 sets the correct values of
EΠk.

Assume now that the property holds up to step p − 1 and consider step p.
The array Π is updated only at line 16, hence its correctness is immediate. Let
[pk, ek) be the generic Q-interval [pk, ek) containing p and such that (1) |Q| = k,
and (2) the width of the Q-interval is larger than 1, that is ek − pk ≥ 2. Since
all suffixes in the interval [pk, ek) of the GSA have Q as a common prefix and
|Q| = k, LCP [i] ≥ k for pk < i ≤ ek.

If pk < p, then [pk, ek) contains also p − 1, that is Q is a prefix of the suffix
pointed to by SA[p− 1]. Hence LCP [p] ≥ k and the value of EΠk at iteration p
is the same as at iteration p− 1. By inductive hypothesis EΠk = Occ(c, pk). The
value of EΠk is correct, since the line 15 of the algorithm is not executed.
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Algorithm 1. ExtendIntervals

Input : The BWT B and the LCP array L of a set R of strings. A set I of
Q-intervals, each one associated with a record and with a set x(·) of
characters driving the extension.

Output : The set of extended Q-intervals.
1 Initialize Π and each EΠj (for 1 ≤ j ≤ maxi{L[i]}) to be |Σ|-long vectors 0̄;
2 for p ← 1 to |B| do
3 foreach Q-interval [b, e) in I such that e = p do
4 (Q, [b, e), [b′, e′)) ← the record associated to [b, e) // p = e
5 foreach character c ∈ x([b, e)) do
6 if b = e− 1 then
7 if B[p− 1] = c then
8 t ← 0
9 else

10 t ← 1;
11 Output (cQ, [C[c] +Π [c] + t, C[c] +Π [c] + 1),

[b′ +
∑

σ<c

(
Π(σ)− EΠ|Q|(σ)

)
, b′ +

∑
σ<c

(
Π(σ)− EΠ|Q|(σ)

)
+

(1− t)));

12 else
13 Output (cQ, [C[c] + EΠ|Q|[c] + 1, C[c] +Π [c] + 1),

[b′ +
∑

σ<c

(
Π(σ)− EΠ|Q|(σ)

)
, b′ +

∑
σ<c

(
Π(σ)− EΠ|Q|(σ)

)
+(

Π [c]− EΠ|Q|[c]
)
));

14 foreach j such that L[p] ≤ j < L[p + 1] do
15 EΠj ← Π // a Q-interval with |Q| = j begins at position p
16 Π [B[p]] ← Π [B[p]] + 1;

Consider now the case pk = p, that is p is the beginning of the Q-interval,
for some Q with |Q| = k. In this case LCP [p] < k. Therefore EΠk is updated at
line 15 and, by the correctness of Π , is set to Occ(·, p). ��

Lemma 2. Let (Q, [b, e), [b′, e′)) be a record and let c ∈ x([b, e)) be a character.
Then Algorithm 1 outputs the correct c-extension of such record.

Proof. When the algorithm reaches position p = e, it outputs a c-extension of
the record (Q, [b, e), [b′, e′)). Therefore we only have to show that the computed
extension is correct. The backward c-extension of [b, e) is [C(c) + Occ(c, b) +
1, C(c) + Occ(c, e) + 1) [7], while the forward c-extension of its linked interval
[b′, e′) has starting point b′ plus the number of occurrences in B[b : e − 1] of
the symbols smaller than c [8]. Moreover two linked intervals have the same
width [8].

These observations, together with Lemma 1 and the fact that Π and EΠ are
not modified in lines 5–13, establish the correctness for the case b < e− 1.

Let us now consider the case b = e− 1. Notice that Occ(c, p) = Occ(c, p− 1)
unless B[p−1] = c, and Occ(c, p) = Occ(c, p−1)+1 if B[p−1] = c. Therefore the
assignment of t at lines 7–10 guarantees that, at line 11, Occ(c, p) = Occ(c, p−
1)+(1−t). Together with Lemma 1, we get Π [c]+t = Occ(c, p)+t = Occ(c, p−1).

��
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Computing Arc Labels. In this part, we describe how the compact represen-
tation of the overlap graph computed in the first step can be further processed
in order to easily remove reducible arcs without resorting to (computationally
expensive) string comparisons. First, we give an easy-to-test characterization of
reducible arcs of overlap graphs in terms of string-intervals (Lemmas 3 and 4).
Then, we show how such string-intervals (that we call arc-labels) can be efficiently
computed in external memory starting from the collection of basic arc-intervals
computed in the first step.

Lemma 3. Let GO be the overlap graph for R and let (ri1 , ri2 , . . . , rik ) be a path
of GO. Then, such a path represents the string pei1,i2pei2,i3 · · · peik−1,ikrik .

Proof. We will prove the lemma by induction on k. Let (rh, rj) be an arc of
GO. Notice that the string represented by such arc is peh,jovh,jexh,j . Since
rh = peh,jovh,j and rj = ovh,jexh,j, applying the property to the arc (ri1 , ri2)
settles the case k = 2. Assume now that the lemma holds for paths of length
smaller than k and consider the path (ri1 , . . . , rik ). By definition, the string rep-
resented by such path is ri1exi1,i2 · · · exik−1,ik which, by inductive hypothesis on
the path (ri1 , ri2 , . . . , rik−1

), is equal to pei1,i2 · · · peik−2,ik−1
rik−1

exik−1,ik . But
rik−1

exik−1,ik = peik−1,ikovik−1,ikexik−1,ik which can be rewritten as peik−1,ikrik .
Hence pei1,i2 · · · peik−2,ik−1

rik−1
exik−1,ik = pei1,i2 · · · peik−2,ik−1

peik−1,ikrik . ��

Lemma 4. Let GO be the overlap graph for a substring-free set R of reads and
let (ri, rj) be an arc of GO. Then, (ri, rj) is reducible iff there exists another arc
(rh, rj) such that peh,j is a proper suffix of pei,j (or, equivalently, that perevh,j is a
proper prefix of perevi,j ).

Proof. By definition, (ri, rj) is reducible if and only if there exists a second
path (ri, rh1 , . . . , rhk

, rh, rj) representing the string XY Z, where X , Y and
Z are respectively the prefix-extension, the overlap and the extension of ri
with rj (notice that (rh1 , . . . , rhk

) might be empty). Assume that such a path
(ri, rh1 , . . . , rhk

, rh, rj) exists, hence rhk
is a substring of XY Z. Since rhk

over-
laps with rj , rhk

= X1Y Z1 where X1 is a suffix of X and Z1 is a proper prefix of
Z. Notice that X1 = pehk,j and R is substring free, hence X1 is a proper suffix
of X , otherwise ri would be a substring of rhk

, completing this part of the proof.
Assume now that there exists an arc (rh, rj) such that peh,j is a proper suffix

of pei,j . Again, rh = X1Y1Z1 where X1, Y1 and Z1 are respectively the prefix-
extension, the overlap and the extension of rhk

with rj . By hypothesis, X1 is
a suffix of X . Since rh is not a substring of ri, the fact that X1 is a suffix of
X implies that Y is a substring of Y1, therefore ri and rh overlap and |ovi,h| ≥
|Y | ≥ τ , hence (ri, rh) is an arc of GO. The string associated to the path ri, rh, rj
is riexi,hexh,j . By Lemma 3, riexi,hexh,j = pei,hpeh,jrj . At the same time the
string associated to the path ri, rj is riexi,j = pei,jrj by Lemma 3, hence it
suffices to prove that pei,hpeh,j = pei,j . Since peh,j is a proper suffix of pei,j, by
definition of prefix-extension, pei,hpeh,j = pei,j , completing the proof. ��

A corollary of Lemma 4 is that an arc (ri, rj) is reducible iff there exists
another arc (rh, rj) such that the pirevh,j -interval strictly contains the pirevi,j -interval.
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As a consequence, it would be useful to compute and store the prefix-extensions
of the arcs, obtaining a partition of each set Rs(S)× Rp(S) (i.e., of each basic
arc-interval) in classes with the same prefix-extension P . More precisely, for each
of those classes, we need the PS$-interval as well as the P -interval to represent
all arcs (ri, rj) with ovi,j = S and label pei,j = P . However, in order to perform
the reducibility test, the pei,j-interval alone is not sufficient, and we also need the
perevi,j -interval. All these concepts are fundamental for describing our algorithm
and are formally defined as follows.

Definition 5. Let B be a BWT for a collection of reads R and let Brev be
the BWT for the reversed reads Rrev . Let S and P be two strings. Then, the
arc-interval associated to (P, S) is the tuple (q(PS$), q($S), |P |, |PS$|), where
q(PS$) and q($S) are the PS$-interval and the $S-interval on B. Moreover,
|PS$|, S and P are respectively called the length, the overlap-string, and the
prefix-extension of the arc-interval.

An arc-interval is terminal if the PS$-interval has a nonempty backward $-
extension. The triple (q(P ), qrev (P rev ), |P |) is called the arc-label of the arc-
interval associated to (P, S).

To obtain the labels of the arcs we need to compute the terminal arc-intervals,
that is the arc-intervals where P is the (complete) prefix-extension of an arc, since
q(PS$) (in a terminal arc-interval) has a nonempty backward $-extension. If R
is a substring-free set of strings, q(PS$) represents a unique read r = PS. The
associated arc-labels are used to test efficiently whether an arc is reducible.

Terminal arc-intervals are computed by procedure ExtendArcIntervals (Al-
gorithm 2) that extends string-intervals q(PS$) of arc-intervals by increasing
length |PS|. This step is done by modifying the approach in [5] to deal, at each
iteration of backward extension, with string-intervals that can be disjoint or du-
plicated. In fact, we may have two arc-intervals, associated to the pairs (P1, S1)
and (P2, S2), which correspond to the same string-interval q(P1S1$) = q(P2S2$),
where P1S1 = P2S2 but S1 �= S2. Such duplicated arc-intervals will occur con-
secutively in the input list.

Arc-labels are computed by incrementally backward extending with Extend-
Intervals the linked intervals q(P ) and qrev(P rev) at the same iteration where
interval q(PS$) of the associated arc-interval has been extend. In fact, we main-
tain a link between an arc-interval and its arc-label. While at each iteration all
string-intervals originating from arc-intervals have the same length, the string-
intervals associated to arc-labels can have different lengths. However, in each file
they are ordered by their end boundary, hence we can apply directly the Ex-
tendIntervals procedure. By maintaining a suitable organization of the files, we
are able to keep a 1-to-1 correspondence between arc-intervals and arc-labels.

When we compute an extension, we test if the arc-interval (q(PS$), q(S$), |P |,
|PS$|) is terminal, that is if q(PS$) has a nonempty backward $-extension. In
that case we have found the set {r}×Rp(S) of arcs of the overlap graph outgoing
from the read r = PS and with overlap S.

Managing Q-Intervals Using Files. During the first step, the algorithm
computes a file BAI(σ, 
1), for each symbol σ ∈ Σ and for each integer 
1, such
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Algorithm 2. ExtendArcIntervals

Input : Two files B and SA containing the BWT and the GSA of the set R,
respectively. A set of files AI(·, �1) containing the arc-intervals of
length �1. A set of files BAI(·, �1) containing the basic arc-intervals of
length �1.

Output : A set of files AI(·, �1 + 1) containing the arc-intervals of length �1 + 1.
The arcs of the overlap graph coming out from reads of length �1 − 1.

1 Π(σ) ← 0, for each σ ∈ Σ;
2 π(σ) ← 0, for each σ ∈ Σ;
3 [bprev, eprev) ← null;
4 foreach σ ∈ Σ do
5 foreach ([b, e), q($S), le, �1) ∈ SortedMerge(AI(σ, �1),BAI(σ, �1)) do

// If the PS$-interval [b, e) is different from the one previously processed,

then vectors Π and π must be updated, otherwise [b, e) is extended using the

values previously computed.

6 if ([b, e) �= [bprev, eprev) then
7 Π(σ) ← Π[σ] + π[σ], for each σ ∈ Σ;
8 Update Π while reading B until the BWT position b− 1;
9 π(σ) ← 0, for each σ ∈ Σ;

10 r ← null;
11 while reading B from the BWT position b to e− 1 do
12 σ ← symbol of the BWT at the current position p;
13 if σ �= $ then
14 π[σ] ← π[σ] + 1;
15 else

// The arc-interval is terminal and r is the read equal to PS

16 r ← the read pointed to by GSA at position p;

17 if r �= null then
// Update the file A of the output arcs, since the arc-interval is terminal

18 Append {r} ×Rp(S) to A|�e|;
19 else
20 foreach σ ∈ Σ do
21 if π[σ] > 0 then
22 b′ ← C[σ] +Π[σ] + 1;
23 e′ ← b′ + π[σ];
24 Append ([b′, e′), q(S$), le + 1, �1 + 1) to AI(σ, �1 + 1);

25 [bprev, eprev) ← [b, e);

that τ + 1 ≤ 
1 ≤ 
max, where 
max is the maximum length of a read in R. More
precisely, the file BAI(σ, 
1) contains the basic arc-intervals of length 
1, whose
overlap-string begins with the symbol σ (observe that the overlap-string has
length 
1− 1). The basic arc-intervals are stored (in each file) by non-decreasing
values of the start boundary e of the interval q(S$) = [b, e).

The algorithm also uses a file AI(σ, 
1) and a file AL(σ, 
1, 
2) for each symbol
σ ∈ Σ, for each integer 
1, such that τ + 1 < 
1 ≤ 
max, and for each integer

2 such that 1 ≤ 
2 ≤ 
max − τ . The file AI(σ, 
1) consists of the arc-intervals
of length 
1, whose prefix-extension P begins with the symbol σ, while the file
AL(σ, 
1, 
2) contains the arc-labels related to arc-intervals of length 
1 whose
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2-long prefix-extension P begins with the symbol σ. These files are tightly cou-
pled, since there is a 1-to-1 correspondence between records of AI(σ, 
1) and
records of AL(σ, 
1, ·), where those records refer to the same pair (P, S) of prefix-
extension (of length 
2) and overlap-string. Each of the BAI(·, ·), AI(·, ·) and
AL(·, ·, ·) files contains string-intervals of the same length and ordered by start
boundary, hence those intervals are also sorted by end boundary.

Computing Terminal Arc-Intervals and Arc-Labels. After the first step,
the algorithm computes terminal arc-intervals and arc-labels. The first funda-
mental observation is that an arc-interval of length 
1 +1 (that is an arc-interval
that will be stored in BAI(·, 
1 + 1)), and corresponding to a pair (P, S) with
|PS$| = 
1 + 1, can be obtained by extending a basic arc-interval of length

1 (taken from BAI(·, 
1)) or a non-basic arc-interval of length 
1 (taken from
AI(·, 
1)). Since all those files are sorted, we can assume to have a SortedMerge
procedure which receives two sorted files and returns their sorted union. No-
tice that we do not actually need to write a new file, as SortedMerge basically
consists in choosing the file from which to read the next record.

The algorithm performs some extension steps, each mainly backward
σ-extending string-intervals. In fact, at each extension step i (to simplify some
formulae, the first step is set to i = τ + 1), the algorithm scans all files BAI(·, i),
AI(·, i), AL(·, i, j) and computes the files AI(·, i+ 1), AL(·, i + 1). At iteration
i, for each σ1 ∈ Σ, all records in SortedMerge(BAI(σ1, i), AI(σ1, i)) are σ2-
extended, for each σ2 ∈ Σ, via the procedure ExtendArcIntervals, outputting
the results in the file AI(·, i+ 1). We recall that σ-extending a record means, in
this case of the procedure ExtendArcIntervals, to backward σ-extend the q(PS$)
of the arc-interval (or the q(S$) of the basic arc-interval). If the record to σ2-
extend is read from a file BAI(·, i) (i.e., it is a basic arc-interval), when the
algorithm writes a record of AI(·, i + 1) (i.e., the σ2-extension of those record),
it also writes the corresponding record of AL(·, i+ 1), that is an arc-label where
the prefix-extension is equal to the symbol σ2. On the other hand, if the current
record to σ2-extend is read from a file AI(·, i), we consider also the correspond-
ing record of AL(·, i) to write a record of AI(·, i + 1) and the corresponding
record of AL(·, i + 1) which is the σ2-extension of the record in AL(·, i). Each
time a terminal arc-interval associated to (P, S) is found, the arcs {r} ×Rp(S),
where r = PS, are written in the file A|P |.

Testing Irreducible Arcs. The algorithm reads the arcs of the overlap graph,
stored in the files Ai, for increasing values of i. Each arc a is added to the set A of
the arcs of the string graph if there is no arc already in A reducing a. Notice that
A is stored in main memory in the current implementation. Lemma 4 implies
that an arc (of the overlap graph) associated to a pair (P1, S1) can be reduced
only by an arc associated to a pair (P2, S2), such that |P1| > |P2|. Hence, an arc
in Ai can be reduced by an arc in Aj only if j < i. Since we examine the files
Ai by increasing values of i, either an arc a is reduced by an arc that is already
in A, or no subsequently read arc of the overlap graph can reduce a. Notice also
that, by the reducibility test of Lemma 4, an arc associated to a pair (P1, S1)
is reduced by an arc associated to (P2, S2) if and only if P rev

2 is a proper prefix
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of P rev
1 . Thus, the test is equivalent to determine whether the P rev

2 -interval on
Brev properly contains the P rev

1 -interval. The latter test can be easily performed
by outputting in the files Aj a representation of the prefix-interval of each arc.

On the Complexity. Notice that Algorithm 1 scans once B and L and recall
the total length of B is 
n where 
 is the length of the reads and n is number of
reads. Since the input Q-intervals are nested or disjoint, there are at most O(
n)
distinct Q-intervals, that is, block at lines 6–10 and line 12 are executed O(
n)
times. A stack-based data structure allows to store the distinct EΠ arrays while
requiring O(1) time for each iteration, hence the time complexity of Algorithm 1
is O(
n), while its space complexity is O(
|Σ|) since it stores at most 
 arrays
of |Σ| elements (plus a constant space). The second phase of our algorithm
consists of (
 − τ) iterations, each requiring a call to ExtendIntervals and
ExtendArcIntervals, therefore the overall time complexity to compute the
overlap graph is O(
2n), which is also an upper bound on the number of arcs of
the overlap graph. The time complexity of the third phase is O(de), where e and
d are respectively the number of arcs of the overlap graph and the maximum
indegree of the resulting string graph, as each arc must be tested for reducibility
against each adjacent vertex.

4 Experimental Analysis

We performed a preliminary experimental comparison of LSG with SGA, a state-
of-the-art assembler based on string-graphs [13], on the dataset of the Human
chromosome 14 used in the recent Genome Assembly Gold-standard Evaluation
(GAGE) project [11]. We used a slightly modified version of BEETL 0.9.0 [2] to
construct the BWT, the GSA, and the LCP of the reads needed by LSG. Note
that BEETL is able to compute the GSA by setting a particular compilation flag.
Since the current version of BEETL requires all input reads to have the same
length, we harmonized the lengths of the reads (∼36M) of the GAGE dataset
to 90bp: we discarded shorter reads (∼6M), whereas we split longer reads into
overlapping substrings with a minimum overlap of 70bp. We further preprocessed
and filtered the resulting ∼50M reads according to the workflow used for SGA in
GAGE [11]: no reads were discarded by the preprocess step, while ∼13M reads
were filtered out as duplicated. As a result, the final dataset was composed of
∼37M reads of length 90bp.

We generated the index of the dataset using sga-index and beetl-bwt and we
gave them as input to SGA and LSG requiring a minimum overlap (τ) of 65. We
performed the experimental analysis on a workstation with 12GB of RAM and
standard mechanical hard drives, as our tool is designed to cope with a limited
amount of main memory. The workstation has a quad-core Intel Xeon W3530
2.80GHz CPU running Ubuntu Linux 12.04. To perform a fair comparison, we
slightly modified SGA to disable the computation of overlaps on different strands
(i.e., when one read is reversed and complemented w.r.t. the other).

For the comparison, we focused on running times and main memory allocation.
During the evaluation of the tools we do not consider the index generation step
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because such part is outside the scope of this paper. Regarding the running
times, SGA built the string graph in 2 hours and 19 minutes, whereas LSG built
the string graph in a total time of 5 hours and 28 minutes (9min were required
for computing the basic arc-intervals with 98% CPU time, 5h and 13min for arc
labeling with 76% CPU time, 4min for graph reduction with 60% CPU time,
and 2min for producing the final output with 59% CPU time). Regarding the
main memory usage, SGA had a peak memory allocation of 3.2GB whereas LSG
required less than 0.09GB for basic arc-interval computation and for arc labeling,
and less than 0.25GB for graph reduction.

We chose to write the output in ASQG format (the format used by SGA)
to allow processing the results obtained by LSG by the subsequent steps of the
SGA workflow (such as the assembly and the alignment steps). In the current
straightforward implementation of this part, we store the whole set of read IDs
in main memory, which pushes the peak memory usage of this part to 2.5GB.
However, more refined implementations (that, for example, store only part of
the read IDs in main memory) could easily reduce the memory usage for this
(non-essential) part. We also want to point out that the memory required by the
reduction step can be arbitrarily reduced by reducing iteratively arcs incident
to subsets of nodes with only a small penalty in running times.

Furthermore, we point out that this experimental part was performed on
commodity hardware equipped with mechanical hard disks. As a consequence,
the execution of LSG on systems equipped with faster disks (e.g., SSDs) will
significantly decrease its running time, especially when compared with SGA.

5 Conclusions and Future Work

We have proposed an external memory algorithm for building a string graph
from a set R of reads and we have shown that our approach is efficient in the-
ory (the time complexity is not much larger than that of the lightweight BWT
construction, which is a necessary step) and in practice (the time required by
LSG is less than 3 times that of SGA, while memory usage in all the most com-
putationally expensive steps is less than 12 times that of SGA) on a regular
PC.

Since LSG potentially scales on very large datasets, we expect to be able to
use our approach to assemble RNA-seq reads even when the entire transcriptome
is sequenced at high coverage. In fact, an important research direction is to face
the problem of assembling RNA-seq data and building graph models of gene
structures (such as splicing graphs [4]) in absence of a reference genome.
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Abstract. We design a probabilistic trajectory synthesis algorithm for
generating time-varying sequences of geometric configuration data. The
algorithm takes a set of observed samples (each may come from a differ-
ent trajectory) and simulates the dynamic evolution of the patterns in
O(n2 log n) time. To synthesize geometric configurations with indistinct
identities, we use the pair correlation function to summarize point dis-
tribution, and α-shapes to maintain topological shape features based on
a fast persistence matching approach. We apply our method to build a
computational model for the geometric transformation of the cone mo-
saic in retinitis pigmentosa — an inherited and currently untreatable
retinal degeneration.

Keywords: trajectory, pair correlation function, alpha shapes, persis-
tent homology, retinitis pigmentosa.

1 Introduction

The work presented in this paper is motivated from the investigation of a retinal
disease called retinitis pigmentosa [18]. In this disease, a mutation kills the rod
photoreceptors in the retina. A consequence of this death is that the geometry
of the mosaic of cone photoreceptors deforms in an interesting way. Normally,
cones form a relatively homogeneous distribution. But after the death of rods,
the cones migrate to form an exquisitely regular array of holes.

Our central goal is to build a dynamic evolution model for the point distri-
butions that arise from the cone mosaic in retinitis pigmentosa. In physics, the
most classical method for modeling cell motions is to solve a system of differ-
ential equations from Newton’s laws of motion with some predefined force field
which specifies cell-to-cell interactions. However, in many cases it is difficult to
understand how different types of cells (for example cones and rods) interact
with each other. There are also mathematical models that do not presume much
prior biological knowledge, such as flocking which has been widely used to sim-
ulate coordinated animal motions [16]. But as with all model-based approaches,
the method is limited by the model chosen in the first place.
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Instead of fitting a predefined model, we propose an alternative approach
which relies only on geometric and topological multi-scale summaries. The input
is a set of geometric configurations, each of which may come from a different
trajectory of a cone migration. We design a probabilistic algorithm to synthesize
trajectories from observed data. In short, we let the points move randomly and
check whether the transformation brings them “closer” to our next observation.
To define closeness, we combine two high-level distance measures: firstly, we
employ the pair correlation function (PCF) which extracts pairwise correlations
in the point cloud data by measuring how density varies as a function of distance
from a reference point. The PCF is widely accepted as an informative statistical
measure for point set analysis, and has been used for trajectory synthesis in
previous work [14]. As major novelty, we propose to combine the PCF with a
topological distance measure: we compare persistence diagrams of alpha-shape
filtrations which capture the evolution of holes that arise when the points are
thickened to disks with increasing radius. Persistence diagrams are currently a
popular research topic with many theoretical and practical contributions; we
refer to the surveys [1,6] for contemporary overviews. We demonstrate that the
combination of PCF and persistence diagrams results in trajectories with a much
cleaner hole structure than for trajectories obtained only by PCF (see Figure 6).
We believe the problem of trajectory synthesis for very sparse data to be of more
general importance in biological and medical contexts, and hope that our model-
free methodology can be applied to other contexts. Moreover, our approach
provides evidence that topological methods are useful in the analysis of point
distributions which have been extensively studied in computer graphics and point
processes [7,15,17].

2 Biological Background: Retinitis Pigmentosa

The retina is a light-sensitive layer of tissue that lines the inner surface of the
eye. It contains photoreceptor cells that capture light rays and convert them
into electrical impulses. These impulses travel along the optic nerve to the brain
where they are turned into images of the visual world.

There are two types of photoreceptors in the retina: cones and rods. In adult
humans, the entire retina contains about 6 million cones and 120 million rods.
Cones are contained in the macula, the portion of the retina responsible for
central vision. They are most densely packed within the fovea, the very center
portion of the macula. Cones function best in bright light and support color
perception. In contrast, rods are spread throughout the peripheral retina and
function best in dim light. They are responsible for peripheral and night vision.

Retinitis pigmentosa is one of the most common forms of inherited retinal
degeneration. This disorder is characterized by the progressive loss of photore-
ceptor cells and may lead to night blindness or tunnel vision. Typically, rods
are affected earlier in the course of the disease, and cone deterioration occurs
later. In the progressive degeneration of the retina, the peripheral vision slowly
constricts and the central vision is usually retained until late in the disease.
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Fig. 1. Cone mosaic rearrangement in retinitis pigmentosa. The confocal micrographs
in the top row show middle (red) and short (green) wavelength sensitive cones in whole
mount retinas. Enlarged micrographs of marked regions are shown in the bottom row.
This figure is taken from [8].

At present, there is no cure for retinitis pigmentosa. Researchers around the
world are constantly working on development of treatments for this condition.

There have been some recent studies on the spatial rearrangement of the cone
mosaic in retinitis pigmentosa [8,13]. These experiments are performed on a rat
model in which a mutation in the retina triggers the cell death of rods, simi-
lar to those causing symptoms in humans. Figure 1 shows an example for the
morphology and distribution of cones at postnatal days 15, 30, 180, and 600.
In healthy retinas, the mosaic of cones exhibits a spatially homogeneous distri-
bution. However, the death of rods causes cones to rearrange themselves into a
mosaic comprising an orderly array of holes. These holes first begin to appear
at random regions of the retina at day 15 and become ubiquitous throughout
the entire tissue at day 30. Holes start to lose their form at day 180 and mostly
disappear at day 600, at which time the cones are almost all dead.

Furthermore, it has been observed that both cones and rods follow the same
retinal distribution. But the mechanisms of formations of holes of cones are
different from those of rods. In fact, retinitis pigmentosa is caused by the initial
loss of rods in the center of these holes, and then the death of rods tends to
propagate as circular waves from the center of the holes outward. In contrast,
the number of cones in normal and retinitis pigmentosa conditions do not show
significant differences at stages as late as day 180. Therefore, holes of cones do
not form by cell death at their centers, but by cell migration.

Since cones take a long time to die out, understanding whether and how these
hole structures improve the survival of cones would provide scientific and clinical
communities with better knowledge of how to preserve day and high acuity vision
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Fig. 2. Distribution of cones in normal (7523 cells in 1mm2) and retinitis pigmentosa
(6509 cells in 1mm2) retinas at day 25

in retinitis pigmentosa. This motivated us to build a model for the geometric
transformation of the cone mosaic in the retinal degeneration. The challenge
in building such a model is that we only have access to one snapshot per rat,
because the animals are killed before their retinas can be dissected. Therefore,
we have very limited data and there is no correspondence between the cells in
different snapshots.

3 Synthesis Algorithm

Suppose we are given a point set X = {x1, x2, . . . , xn} at time t and we want
to simulate the time evolution from t to t + Δt. Since we do not presume any
biological knowledge about the system, in each step we simply move a point xi to
some random location x′

i within its neighborhood. We then compare both the old
configuration {x1, . . . , xi, . . . , xn} and the new configuration {x1, . . . , x

′
i, . . . , xn}

after this point update to the real data at time t + Δt. If the new configuration
is closer to the data than the old configuration, we accept this movement for xi,
otherwise we accept it with some probability which depends on their difference.
We iteratively repeat this process for each point in X until the result converges.

The details of the trajectory synthesis algorithm are shown in Algorithm 1. It
can be seen as a variant of the simulated annealing algorithm [9], in which the
acceptance probability also depends on a temperature parameter to avoid local
minima in optimization. There are two questions we have not addressed:

– how do we compare synthetic configurations to the real data at time t+Δt?
– what happens if we do not have observation at time t + Δt?

In fact, we have reduced the problem of motion modeling to quantifying some
kind of distances between point sets in the synthetic and real data. Note that the
number of points n in the synthesis algorithm is kept constant during simulation,
but the point sets in the observed data may have different cardinalities (see
Figure 2). Furthermore, since we only have access to one snapshot per animal,
there is no correspondence between point sets in different snapshots. In the next
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Algorithm 1. Trajectory synthesis

Input: sample point sets {Xt0 , Xt1 , . . . , XtM | t0 = 0 < t1 < . . . < tM−1 < tM = 1},
number of frames N .

Output: synthesis point sets {Y t | t = 0, 1/N, . . . , (N − 1)/N, 1}.
Procedure:

1: set time t = 0, point set Y 0 = X0.
2: while t < 1 do
3: set t = t+ 1/N , initialize Y t = Y t−1/N .
4: find time interval ti < t ≤ ti+1.
5: interpolate target pair correlation function gXt between gXti and g

X
ti+1 .

6: interpolate target persistence diagram PXt between PXti and P
X

ti+1 .
7: pick three random directions for persistence matching.
8: set iteration k = 0, select initial temperature T0.
9: repeat
10: set k = k + 1, T = T0/k.
11: for each point y in Y t do
12: replace y by a random neighbor y′ to form a new point set Y ′.
13: compute distance d1 between pair correlation functions gXt and gY t .
14: compute distance d2 between persistence diagrams PXt and PY t based on

their three 1D projections.
15: define distance between Xt and Y t as d = d1 + λd2.
16: repeat lines 13–15 to compute distance d′ between Xt and Y ′.
17: if d′ < d then
18: accept new point set Y t = Y ′.
19: else
20: accept Y ′ with probability exp( d−d′

T
).

21: end if
22: end for
23: until Y t converges.
24: end while

two sections, we will describe how to define distances on configurations with
indistinct identities and use them to interpolate missing data.

4 Geometry: Pair Correlation Function

Given a point set X = {x1, x2, . . . , xn} in R
d with number density ρ, the pair

correlation function is defined as

gX(r) =
1

Sd−1(r)ρn

n∑
i=1

n∑
j=1

G(||xi − xj || − r), ∀r ≥ 0 (1)

where Sd−1(r) is the surface area of a ball of radius r in R
d, and G is a 1D

Gaussian kernel G(x) = 1√
2πσ

exp(− x2

2σ2 ).

The PCF provides a compact representation for the characteristics of point
distribution. Note that in (1) there are two normalization factors ρ and Sd−1(r).
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Fig. 3. Pair correlation function

The number density ρ is an intensive quantity to describe the degree of concen-
tration of points in the space, and is typically defined as ρ = n/V where V is
the volume of the observation region. Since it is more likely to find two points
with a given distance in a more dense system, this factor is used for comparing
point sets with different cardinalities. The other inverse weighting factor Sd−1(r)
is the surface area of a ball of radius r in R

d (for example S1(r) = 2πr). This
accounts for the fact that as r gets larger, there will be naturally more points
with the given distance from a reference point. After these normalizations, it
can be shown that lim

r→∞
gX(r) = 1 for any infinite point set X , and hence most

information about the point set is contained in gX(r) for the lower values of r.
For a finite point set, we can apply periodic boundary conditions to remove the
window edge effects.

Figure 3 shows the PCF for the photoreceptor point sets in Figure 2 with σ =

0.1rmax, where rmax =
√

1
2
√
3n

is the maximum possible radius for n identical

circles that can be packed into a unit square [12]. For the normal point set, we see
that the density is almost 1 everywhere except for r < 0.005mm, which is about
the diameter of cone cell bodies — such a pattern is called blue-noise where
points are distributed randomly with a minimum distance between each pair.
For healthy primate retinas, it is well-known that photoreceptor distributions
may follow a blue-noise-like arrangement to yield good visual resolution [19].
In contrast, for the retinitis pigmentosa point set, the high densities at small
distances show the clustering of cones in the sick retina, implying the cells become
closer by migration. After we have computed the PCFs, it is natural to define
their distance as

d(gX , gY ) = (

∫
r

(gX(r) − gY (r))2 dr)1/2 (2)
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It is obvious that computing the PCF for a point set X = {x1, x2, . . . , xn}
takes O(n2) time in (1). However, when we move a point xi to x′

i in the synthesis
algorithm, it only takes O(n) time to update the PCF for the new point set X ′:

gX′(r) = gX(r) +
2

Sd−1(r)ρn

∑
j 
=i

(G(||x′
i − xj || − r) −G(||xi − xj || − r))

Of course since we compute the densities at different distances, the running
time may also depend on the range and discretization of the distance r. But
for Gaussian kernels we can set a cutoff threshold δ, so that for each pairwise
distance ||xi − xj || we only need to update gX(r) at distance ||xi − xj || − δ <
r < ||xi − xj ||+ δ, which contains O(1) discretized values of r.

Data Interpolation. Now we answer the two questions proposed at the end
of Section 3. Consider we have a set of observed samples {Xt0, Xt1 , . . . , XtM}.
Without loss of generality, we can assume the observation time t0 = 0 < t1 <
. . . < tM−1 < tM = 1. We start with Y 0 = X0 as the initial point set, and run
the synthesis algorithm to simulate its time evolution. By matching the PCFs of
{Xt1, Xt2 , . . . , XtM}, we can obtain a sequence of point sets {Y t1 , Y t2 , . . . , Y tM }
at all observation time. For each sample Xti , the goal is to minimize the distance
between gXti and gY ti defined in (2). Furthermore, if there is more than one
sample observed at time ti, we can extend the objective function in standard
ways, by taking the minimum or average distance from the synthetic point set
to all samples at that time.

Note that in the above approach we can only synthesize point sets at the ob-
servation time {t0, t1, . . . , tM}. But how do we simulate during the time intervals
between successive observations? Suppose we want to generate a point distribu-
tion at time ti < t < ti+1. Although there is no real data Xt, it is possible to
approximate the PCF gXt by linear interpolation

gXt =
ti+1 − t

ti+1 − ti
gXti +

t− ti
ti+1 − ti

gXti+1

It has been shown that such a simple linear interpolation can generate valid
PCFs from which distributions can be synthesized [14]. Thus, we can use the
synthesis algorithm to generate data at any time t0 ≤ t ≤ tM .

5 Topology: Distance of Persistence Diagrams

In Section 4, we have seen that the PCF can be used to characterize the distribu-
tions of photoreceptor point sets. However, this function only considers pairwise
correlations and misses higher-order information in the data. As we will show in
Section 6, there are point sets with almost same PCF but very different shape
features. In this section, we present another way to summarize point distribution
without correspondence from a topological perspective.
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Fig. 4. Alpha shapes

Alpha Shapes. Suppose we are given a point set and we want to understand the
shape formed by these points. Of course there are many possible interpretations
for the notion of shape, the α-shape being one of them [4]. In geometry, α-shapes
are widely used for shape reconstruction, as they give linear approximations of
the original shape.

The concept of α-shapes is generally applicable to point sets in any Euclidean
space R

d, but for our application we will illustrate in the 2D case. Given a point
set S in R

2, the α-shape of S is a straight line graph whose vertices are points in
S and whose edges connect pairs of points that can be touched by the boundary
of an open disk of radius α containing no points in S. The parameter α controls
the desired level of detail in shape reconstruction. For any value of α, the α-
shape is a subgraph of the Delaunay triangulation, and thus it can be computed
in O(n logn) time.

Figure 4 shows the α-shapes for the photoreceptor point sets in Figure 2 with
different values of α. As α increases, we see that edges appear in the graph
and some of them form cycles. For the normal point set, these edges and cycles
disappear very quickly since there is no space for empty disks of large radius α.
In contrast, for the retinitis pigmentosa point set, some cycles can stay for long
time in the large empty regions. Therefore, α-shapes can successfully capture
the hole structures formed by cone migration.

In Figure 4, we see that α = 0.02mm gives a nice example to distinguish be-
tween the two photoreceptor point sets. However, in general how do we choose
the right value of α? Indeed, what we are more interested in is to summarize
information of α-shapes at different scale levels. So, we next turn to its topo-
logical definition — the α-complex. Given a point set in R

d, the α-complex is
a simplicial subcomplex of its Delaunay triangulation. For each simplex in the
Delaunay triangulation, it appears in the α-complex K(α) if its circumsphere is
empty and has a radius less than α, or it is a face of another simplex in K(α).

Although we can choose infinite numbers for α, there are only finite many α-
complexes for a point set S. They are totally ordered by inclusion giving rise to
filtration of the Delaunay triangulation K0 = φ ⊂ K1 = S ⊂ ... ⊂ Km = Del(S).
For a point set in R

2, α-complexes consist of vertices, edges, and triangles.



334 C. Gu, L. Guibas, and M. Kerber

Fig. 5. Persistence diagram

The first non-empty complex K1 is the point set S itself. As α increases, edges
and triangles are added into K(α) until we eventually arrive at the Delaunay
triangulation. The relation between α-shape and α-complex is that the edges in
the α-shape make up the boundary of the α-complex.

Persistence. In Figure 4, we have seen that cycles appear and disappear in the
α-complexes during the filtration. The cycles that stay for a while are important
ones since they characterize major shape features of the data set. In algebraic
topology, the cycles are defined based on homology groups: there is one group of
cycles Hd per dimension d, and the rank of Hd is called the d-th Betti number βd

which can be considered as the number of d-dimensional holes in the space [5].
For example in the 2D case, β0 is the number of connected components and β1

is the number of holes in the plane. In the evolution from K0 to Km, adding
an edge will create a new hole (except for n− 1 edges in a spanning tree which
change β0 by merging connected components), while adding a triangle will fill a
hole. The persistence of a hole is the difference between its birth time and death
time which are paired by following the elder rule.

Given a point set S, the information about persistence of holes can be encoded
into a two-dimensional persistence diagram PS . As depicted in Figure 5, each
point in the diagram represents a hole (or a class of cycles) during the filtration,
where the x and y coordinates are the birth time and death time respectively. In
the normal case all cycles have short persistence, while in the retinitis pigmentosa
case some cycles have very long persistence and they capture the large hole
features in the point set. Note that there are also some cycles with large birth
time and very short persistence (the points near the diagonal). This is because
the holes in the point set may not be perfectly round (such as ellipses), and thus
some cycles can be split by adding long edges at large α. These cycles of short
persistence can be considered as noise and ignored in the analysis of the data.

For a Delaunay triangulation with m simplicies, the persistence diagram can
be computed using a matrix reduction in O(m3) time. In the 2D case, m = O(n)
and the running time can be reduced to O(nα(n)) using the union-find data
structure [5], where α(n) is the inverse of Ackermann function which grows very
slowly with n. We also apply periodic boundary conditions by computing the
periodic Delaunay triangulation of a point set [2,10].



Topology-Driven Trajectory Synthesis 335

There are two distances often used to measure the similarity between persis-
tence diagrams: the bottleneck and Wasserstein distances [5]. Computing both
distances reduces to the problem of finding the optimal matching in a bipartite
graph. With the optimal matching, we can also interpolate between two persis-
tence diagrams by linearly interpolating between the matched pairs of points.
However, solving a minimum cost perfect matching problem in non-Euclidean
spaces takes O(n3) time [11], so we should avoid recomputing this matching
distance after each point update in the synthesis algorithm.

Matching. In this section, we present a faster algorithm to measure the similar-
ity between persistence diagrams from their 1D projections. Instead of computing
the optimal matching between 2D persistence diagrams, we take several direc-
tions and match their 1D projections in each direction independently. Given
two persistence diagrams X,Y and k directions w1, w2, . . . , wk, we define the
distance between X and Y as the sum of their 1D matching costs

d(X,Y ) =
k∑

i=1

( min
fi:Xwi

→Ywi

∑
x∈Xwi

|x− fi(x)|) (3)

where Xwi is the projection of X onto direction wi, and fi is a bijection between
Xwi and Ywi (for simplicity we first assume that X and Y have same cardinality).
It is easy to verify that the minimal matching cost over all bijections between
Xwi and Ywi can be computed in O(n logn) time by sorting Xwi and Ywi , and
matching pairs in ascending order. Furthermore, by randomly choosing three
directions, we can uniquely reconstruct a point set from its three 1D projections
with high probability.

Theorem 1. Given a 2D multiset of points P = {(x1, y1), (x2, y2), . . . , (xn, yn)}
in general position1, the set of directions x + cy such that P cannot be uniquely
reconstructed from its 1D projections Px, Py, and Px+cy has measure zero.

Proof. Assuming there is another multiset of points P ′ �= P with the same three
1D projections. We take a point p ∈ P ′−P which consists of points that appear
more times in P ′ than P . We first claim that p /∈ P , otherwise since P is in
general position there is no point other than p in P with the same y-coordinate,
and thus the y-coordinate of p will appear more times in P ′

y than Py.
Let p be reconstructed from projection lines x = xi, y = yj , and x + cy =

xk+cyk where (xi, yi), (xj , yj), and (xk, yk) are all in P . So xi+cyj = xk+cyk. If
yj = yk, then xi = xk. Thus p = (xi, yj) = (xk, yk) is also in P — a contradiction.
So yj �= yk and c = (xk−xi)/(yj−yk). Therefore, there are at most O(n3) values
of c without a unique reconstruction. ��
1 We define a 2D multiset of points P = {(x1, y1), (x2, y2), . . . , (xn, yn)} to be in
general position if two points in P cannot have same y-coordinate unless they are
coincident (yi = yj ⇒ xi = xj). If a multiset of points is not in general position,
we can always rotate the point set by some angle ω clockwise to make it in general
position. This is equivalent to reconstruct the original point set if we rotate directions
x, y, and x+ cy by angle ω counter-clockwise.
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To focus on major shape features of point sets, we choose the projections as
follows: we randomly select three directions x + cy, where c = tan θ and the
angle θ is uniformly chosen from (0, π/2) ∪ (π/2, 3π/4). For each direction, we
project all points (x, y) to fn(x, y) = ((x cos θ+y sin θ)n−(x cos θ+x sin θ)n)1/n,
where n is a large positive number. It is easy to verify that lim

y→x
fn(x, y) =

0 and lim
n→∞

fn(x, y) =

{
x cos θ + y sin θ , if x < y

0 , if x = y
. As n → ∞, the function

fn(x, y) captures the projection of persistence diagram onto direction x + cy,
while it ignores noise near the diagonal. In practice, we find that n = 8 is usually
good enough to serve as ∞. Finally, when comparing persistence diagrams with
different cardinalities, we may assume that there exist infinitely many extra
points on the diagonal — which all map to zero after projection.

6 Experimental Results: Cone Mosaic Rearrangement

We first test the performance of the synthesis algorithm using PCF only [14]. In
this case, the distance between two point sets measures the difference between
their pairwise correlations in (2). For point update, in each step we move a point
to a random location within its neighborhood of radius rmax (as defined in Sec-
tion 4). We generate N = 16 frames to simulate the cone mosaic rearrangement
in retinitis pigmentosa. In Figure 6(a), we have labeled some points in red color
to show their correspondences in different snapshots. By matching PCFs, we
see that the algorithm creates several sparse regions in the point set. However,
the synthetic point set (t = 1) looks very different from the real data shown in
Figure 2 — there are many outliers inside the sparse regions by the synthesis
algorithm, while the holes of cones in retinitis pigmentosa seem to be very clean.
If we compare the shape features for these two point sets, their PCFs are almost
well-matched (see Figure 3). On the other hand, there is a big difference between
their persistence diagrams because these outliers would significantly shorten the
persistence of cycles in the α-complex (see Figure 5).

So, we next incorporate α-shapes to maintain the topological features. In this
case, the distance function involves two parts: let d1 be the distance between
PCFs of two point sets in (2), and d2 be the distance between their persistence
diagrams in (3). We define the new distance as d = d1 + λd2, where λ > 0
is a weight parameter and in our implementation we set the two parts to be
equally weighted. The synthesis result using both PCF and α-shapes is shown in
Figure 6(b). We see that holes appear in random positions and grow gradually
in size as time increases. At the end of simulation, the points labeled in red color
move close to the boundaries of holes. In Figures 3 and 5 we can see that the
shape features for the synthetic point set match the targets very well. There are
only some small differences between persistence diagrams near the diagonal, but
they are considered as noise.

Figure 6(c) shows the simulation result in the reverse direction where we
start with a retinitis pigmentosa distribution and move points towards a normal
distribution. Actually the synthesis in this direction is much easier because we



Topology-Driven Trajectory Synthesis 337

(a) Pair correlation function only

(b) Pair correlation function + α-shapes

(c) Reverse direction

Fig. 6. Simulation results

already know the hole positions. After filling the holes we end up with a blue-
noise pattern. By reversing the sequence of snapshots in Figure 6(c), it gives
another example on retinal cell motions in retinitis pigmentosa. Furthermore,
we can start with a point set at any time t and run bidirectional simulations to
synthesize trajectories for the time evolution of this sample.

Running Time. There are four main components of the trajectory synthesis
algorithm (see Table 1). For PCF, we only need to compute it for the initial and
target point sets, which takes O(n2) time. After that, it takes O(n) time per
point update. For α-shapes, it takes O(n log n) time for Delaunay triangulation
and persistence matching, as well as O(nα(n)) time for persistence diagram.
Therefore, the running time for all these four parts is almost linear per point
update, and hence the algorithm runs in O(n2 logn) time per iteration.

We have also tested the real running time for each part of the synthesis algo-
rithm on the photoreceptors data set. The experiment is performed on a com-
puter with Intel R© CoreTM 2 Quad Processor Q6600 and 4GB Memory. In the
current implementation, the periodic Delaunay triangulation is the slowest part
which takes about half of the computation time. However, for each point update
there is no need to recompute the whole Delaunay triangulation, and indeed it
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Table 1. Running time of trajectory synthesis algorithm

Algorithm Computation Update Real time

Pair correlation function O(n2) O(n) 8 %
Delaunay triangulation (periodic) O(n log n) [O(log n)] 46 %

Persistence diagram O(nα(n)) — 27 %
Persistence matching O(n log n) — 18 %

can be maintained in O(log n) expected time per point update [3]. So, by using
dynamic Delaunay triangulation we can improve the real running time by almost
a factor of 2, but theoretically the algorithm still takes O(n log n) time per point
update — for persistence matching the input is the persistence diagram and it
is not clear how to bound its change after we move a point.

Note that in the initialization part, we may need to interpolate the target
persistence diagram at time t if we do not have the real data at that time. As
mentioned in Section 5, this would take O(n3) time. Therefore, if we synthesize
N frames and run L iterations per frame, the total running time is bounded by
O(N(n3 + Ln2 logn)). Although the initialization part has a larger theoretical
cost O(n3), in practice the main synthesis part O(Ln2 logn) may take longer
time because its unit cost O(1) is more expensive. For the simulation results
shown in Figure 6(b–c), they take about 3450 seconds for initialization and
290 seconds per iteration, with L = 20 iterations for each frame. Furthermore,
since the synthesis algorithm is probabilistic, we can use it to generate multiple
trajectories from a data set, while the initialization can be considered as a pre-
processing step and only needs to be computed once.
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Abstract. The core–periphery model for protein interaction (PPI) net-
works assumes that protein complexes in these networks consist of a
dense core and a possibly sparse periphery that is adjacent to vertices
in the core of the complex. In this work, we aim at uncovering a global
core–periphery structure for a given PPI network. We propose two ex-
act graph-theoretic formulations for this task, which aim to fit the input
network to a hypothetical ground truth network by a minimum number
of edge modifications. In one model each cluster has its own periphery,
and in the other the periphery is shared. We first analyze both models
from a theoretical point of view, showing their NP-hardness. Then, we
devise efficient exact and heuristic algorithms for both models and finally
perform an evaluation on subnetworks of the S. cerevisiae PPI network.

1 Introduction

A fundamental task in the analysis of PPI networks is the identification of protein
complexes and functional modules. Herein, a basic assumption is that complexes
in a PPI network are strongly connected among themselves and weakly connected
to other complexes [22]. This assumption is usually too strict. To obtain a more
realistic network model of protein complexes, several approaches incorporate the
core–attachment model of protein complexes [12]: In this model, a complex is
conjectured to consist of a stable core plus some attachment proteins, which only
interact with the core temporally. In graph-theoretic terms, the core thus is a
dense subnetwork of the PPI network. The attachment (or: periphery) is less
dense, but has edges to one or more cores.

Current methods employing this type of modeling are based on seed grow-
ing [18, 19, 23]. Here, an initial set of promising small subgraphs is chosen as
cores. Then, each core is separately greedily expanded into cores and attach-
ments to satisfy some objective function. The aim of these approaches was to
predict protein complexes [18, 23] or to reveal biological features that are corre-
lated with topological properties of core–periphery structures in networks [19].
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In this work, we use core–periphery modeling in a different context. Instead
of searching for local core–periphery structures, we attempt to unravel a global
core–periphery structure in PPI networks.

To this end, we hypothesize that the true network consists of several core–
periphery structures. We propose two precise models to describe this. In the
first model, the core–periphery structures are disjoint. In the second model, the
peripheries may interact with different cores, but the cores are disjoint. Then,
we fit the input data to each formal model and evaluate the results on several
PPI networks.

Our approach. In spirit, our approach is related to the clique-corruption model
of the CAST algorithm for gene expression data clustering [1]. In this model, the
input is a similarity graph where edges between vertices indicate similarity. The
hypothesis is that the objects corresponding to the vertices belong to disjoint
biological groups of similar objects, the clusters. In the case of gene expression
data, these are assumed to be groups of genes with the same function. Assuming
perfect measurements, the similarity graph is a cluster graph, that is, a graph in
which each connected component is a clique.

Because of stochastic measurement noise, the input graph is not a cluster
graph. The task is to recover the underlying cluster graph from the input graph.
Under the assumption that the errors are independent, the most likely cluster
graph is one that disagrees with the input graph on a minimum number of
edges. Such a graph can be found by a minimum number of edge modifications
(that is, edge insertions or edge deletions). This paradigm directly leads to the
optimization problem Cluster Editing [3, 4, 21].

We now apply this approach to our hypothesis that there is a global core–
periphery structure in the PPI networks. In both models detailed here, we assume
that all proteins of the cores interact with each other; this implies that the cores
are cliques. We also assume that the proteins in the periphery interact only with
the cores but not with each other. Hence, the peripheries are independent sets.

In the first model, we assume that ideally the protein interactions give rise
to vertex-disjoint core–periphery structures, that is, there are no interactions
between different cores and no interactions between cores and peripheries of
other cores. Then each connected component has at most one core which is a
clique and at most one periphery which is an independent set. This is precisely
the definition of a split graph.

Definition 1. A graph G = (V,E) is a split graph if V can be partitioned
into V1 and V2 such that G[V1] is an independent set and G[V2] is a clique.

The vertices in V1 are called periphery vertices and the vertices in V2 are called
core vertices. Note that the partition for a split graph is not always unique. Split
graphs have been previously used to model core–periphery structures in social
networks [5]. There, however, the assumption is that the network contains exactly
one core–periphery structure. We assume that each connected component is a
split graph; we call graphs with this property split cluster graphs. Our fitting
model is described by the following optimization problem.
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Split Cluster Editing
Input: An undirected graph G = (V,E).
Task: Transform G into a split cluster graph by applying a minimum
number of edge modifications.

In our second model, we allow the vertices in the periphery to be attached to an
arbitrary number of cores, thereby connecting the cores. In this model, we thus
assume that the cores are disjoint cliques and the vertices of the periphery are
an independent set. Such graphs are called monopolar .

Definition 2. A graph is monopolar if its vertex set can be two-partitioned
into V1 and V2 such that G[V1] is an independent set and G[V2] is a cluster
graph. The partition (V1, V2) is called monopolar partition.

Again, the vertices in V1 are called periphery vertices and the vertices in V2 are
called core vertices. Our second fitting model now is the following.

Monopolar Editing
Input: An undirected graph G = (V,E).
Task: Transform G into a monopolar graph by applying a minimum
number of edge modifications and output a monopolar partition.

Clearly, both models are simplistic and cannot completely reflect biological
reality. For example, subunits of protein complexes consisting of two proteins
that first interact with each other and subsequently with the core of a protein
complex are supported by neither of our models. Nevertheless, our models are
less simplistic than pure clustering models that attempt to divide protein interac-
tion networks into disjoint dense clusters. Furthermore, there is a clear trade-off
between model complexity, algorithmic feasibility of models, and interpretability.

Further related work. The related optimization problem Split Editing asks to
transform a graph into a (single) split graph by at most k edge modifications.
Split Editing is, somewhat surprisingly, solvable in polynomial time [13]. An-
other approach of fitting PPI networks to specific graph classes was proposed
by Zotenko et al. [25] who find for a given PPI network a close chordal graph,
that is, a graph without induced cycles of length four or more. The modification
operation is insertion of edges.

Preliminaries. We consider undirected simple graphs G = (V,E) where n := |V |
denotes the number of vertices and m := |E| denotes the number of edges. The
open neighborhood of a vertex u is defined as N(u) := {v | {u, v} ∈ E}. We
denote the neighborhood of a set U by N(U) :=

⋃
u∈U N(u) \ U . The subgraph

induced by a vertex set S is defined as G[S] := (S, {{u, v} ∈ E | u, v ∈ S}).

2 Combinatorial Properties and Complexity

Before presenting concrete algorithmic approaches for the two optimization prob-
lems, we show some properties of split cluster graphs and monopolar graphs
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2K2 C4 C5 bowtienecktieP5

Fig. 1. The forbidden induced subgraphs for split graphs (2K2, C4, and C5) and for
split cluster graphs (C4, C5, P5, necktie, and bowtie)

which will be useful in the various algorithms. Furthermore, we present compu-
tational hardness results for the problems which will justify the use of integer
linear programming (ILP) and heuristic approaches.

Split Cluster Editing. Each connected component of the solution has to be a
split graph. These graphs can be characterized by forbidden induced subgraphs
(see Fig. 1).

Lemma 1 ([10]). A graph G is a split graph if and only if G does not contain
an induced subgraph that is a cycle of four or five edges or a pair of disjoint
edges (that is, G is (C4, C5, 2K2)-free).

To obtain a characterization for split cluster graphs, we need to characterize the
existence of 2K2’s within connected components.

Lemma 2. If a connected graph contains a 2K2 as induced subgraph, then it
contains a 2K2 = (V ′, E′) such that there is a vertex v /∈ V ′ that is adjacent to
at least one vertex of each K2 of (V ′, E′).

Proof. Let G contain the 2K2 {x1, x2}, {y1, y2} as induced subgraph. With-
out loss of generality, let the shortest path between any xi, yj be P = (x1 =
p1, p2, . . . , pk = y1). Clearly, k > 2. If k = 3, then x1 and y1 are both adjacent
to p2. Otherwise, if k = 4, then {x2, x1 = p1}, {p3, p4 = y1} is a 2K2 and x1

and p3 are both adjacent to p2. Finally, if k > 4, then P contains a P5 as induced
subgraph. The four outer vertices of this P5 induce a 2K2 whose K2’s each con-
tain a neighbor of the middle vertex. ��

We can now provide a characterization of split cluster graphs.

Theorem 1. A graph G is a split cluster graph if and only if G is a (C4, C5, P5,
necktie, bowtie)-free graph.

Proof. Let G be a split cluster graph, that is, every connected component is a
split graph. Clearly, G does not contain a C4 or C5. If a connected component
of G contains a P5, then omitting the middle vertex of the P5 yields a 2K2, which
contradicts that the connected component is a split graph. The same argument
shows that the graph cannot contain a necktie or bowtie.

Conversely, let G be (C4, C5, P5, necktie, bowtie)-free. Clearly, no connected
component contains a C4 or C5. Assume for a contradiction that a connected
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component contains a 2K2 consisting of the K2’s {a, b} and {c, d}. Then accord-
ing to Lemma 2 there is a vertex v which is, without loss of generality, adjacent
to a and c. If no other edges between the 2K2 and v exist, then {a, b, v, c, d} is
a P5. Adding exactly one of {b, v} or {d, v} creates a necktie, and adding both
edges results in a bowtie. No other edges are possible, since there are no edges
between {a, b} and {c, d}. ��

This leads to a linear-time algorithm for checking whether a graph is a split
cluster graph.

Theorem 2. A forbidden subgraph for a split cluster graph can be found in
O(n + m) time.

Proof. For each connected component, we run an algorithm by Heggernes and
Kratsch [14] that checks in linear time whether a graph is a split graph, and if
not, produces a 2K2, C4, or C5. If the forbidden subgraph is a C4 or C5, we are
done. If it is a 2K2, we can find in linear time a P5, necktie, or bowtie, using the
method described in the proof of Lemma 2. ��

In contrast, Split Cluster Editing is NP-hard even in restricted cases. We
reduce from Cluster Editing which has as input an undirected graph G =
(V,E) and an integer k, and asks whether G can be transformed into a cluster
graph by applying at most k edge modifications. Cluster Editing is NP-
hard even if the maximum degree of the input graph is five [11] and it cannot be
solved in 2o(k) · nO(1) time assuming the so-called exponential-time hypothesis
(ETH) [11, 17]. The reduction simply attaches to each vertex u an additional
degG(v) many new degree-one vertices; we omit the correctness proof.

Theorem 3. Split Cluster Editing is NP-hard even on graphs with maxi-
mum degree 10. Further, it cannot be solved in 2o(k) · nO(1) or 2o(n) · nO(1) time
if the exponential-time hypothesis (ETH) [15] is true.

This hardness result motivates the study of algorithmic approaches such as
fixed-parameter algorithms or ILP-formulations. For example, Split Cluster
Editing is fixed-parameter tractable for the parameter number of edge mod-
ifications k by the following search tree algorithm: Check whether the graph
contains a forbidden subgraph. If this is the case, branch into the possibilities
to destroy this subgraph. In each recursive branch, the number of allowed edge
modifications decreases by one. Furthermore, since the largest forbidden sub-
graph has five vertices, at most ten possibilities for edge insertions or deletions
have to be considered to destroy a forbidden subgraph. By Theorem 2, forbidden
subgraphs can be found in O(n+m) time. Altogether, this implies the following.

Theorem 4. Split Cluster Editing can be solved in O(10k · (n +m)) time.

This result is purely of theoretical interest. With further improvements of the
search tree algorithm, practical running times might be achievable.
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Monopolar Graphs. The class of monopolar graphs is hereditary, and thus it is
characterized by forbidden induced subgraphs, but the set of minimal forbidden
induced subgraphs is infinite [2]; for example among graphs with five or fewer
vertices, only the wheel W4 ( ) is forbidden, but there are 34 minimal forbidden
subgraphs with six vertices. In contrast to the recognition of split cluster graphs,
which is possible in linear time by Theorem 2, deciding whether a graph is
monopolar is NP-hard [9]. Thus Monopolar Editing is NP-hard already for
k = 0 edge modifications.

3 Solution Approaches

Integer Linear Programming. We experimented with a formulation based di-
rectly on the forbidden subgraphs for split cluster graphs (Theorem 1). How-
ever, we found a formulation based on the following observation to be faster in
practice, and moreover applicable also to Monopolar Editing: If we correctly
guess the partition into clique and independent set vertices, we can get a simpler
characterization of split cluster graphs by forbidden subgraphs.

Lemma 3. Let G = (V,E) be a graph and C ∪̇I = V a partition of the vertices.
Then G is a split cluster graph with core vertices C and periphery vertices I if
and only if it does not contain an edge with both endpoints in I, nor an induced
P3 with both endpoints in C.

Proof. “⇒”: Clearly, if there is an edge with both endpoints in I or an induced
P3 with both endpoints in C, then I is not an independent set or C does not
form a clique in each connected component, respectively.

“⇐”: We again use contraposition. If G is not a split cluster graph with core
vertices C and periphery vertices I, then it must contain an edge with both
endpoints in I, or C ∩ H does not induce a clique for some connected compo-
nent H of G. In the first case we are done; in the second case, there are two
vertices u, v ∈ C in the same connected component with {u, v} /∈ E. Consider
a shortest path u = p1, . . . , pl = v from u to v. If it contains a periphery ver-
tex pi ∈ I, then pi−1, pi, pi+1 forms a forbidden subgraph. Otherwise, p1, p2, p3
is one. ��

With a very similar proof, we can get a simpler set of forbidden subgraphs for
annotated monopolar graphs.

Lemma 4. Let G = (V,E) be a graph and C ∪̇I = V a partition of the vertices.
Then G is a monopolar graph with core vertices C and periphery vertices I if
and only if it does not contain an edge with both endpoints in I, nor an induced
P3 whose vertices are contained in C.

Proof. “⇒”: Easy to see as in Lemma 3.
“⇐”: If G is not monopolar with core vertices C and periphery vertices I, then

it must contain an edge with both endpoints in I, or C does not induce a cluster
graph. In the first case we are done; in the second case, there is a P3 with all
vertices in C, since that is the forbidden subgraph for cluster graphs. ��
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From Lemma 3, we can directly derive an integer linear programming formula-
tion for Split Cluster Editing. We introduce binary variables euv indicating
whether the edge {u, v} is present in the solution graph and binary variables cu
indicating whether a vertex u is part of the core. Defining ēuv := 1 − euv and
c̄u := 1− cu, and fixing an arbitrary order on the vertices, we have

minimize
∑

{u,v}∈E

ēuv +
∑

{u,v}/∈E

euv subject to (1)

cu + cv + ēuv ≥ 1 ∀u, v (2)
ēuv + ēvw + euw + c̄u + c̄w ≥ 1 ∀u �= v, v �= w > u. (3)

Herein, Eq. (2) forces that the periphery vertices are an independent set and
Eq. (3) forces that core vertices in the same connected component form a clique.
For Monopolar Editing, we can replace Eq. (3) by

ēuv + ēvw + euw + c̄u + c̄v + c̄w ≥ 1 ∀u �= v, v �= w > u (4)

which forces that the graph induced by the core vertices is a cluster graph.

Data Reduction. Data reduction (preprocessing) proved very effective for solv-
ing Cluster Editing optimally [3, 4]. Indeed, any instance can be reduced
to one of at most 2k vertices [7], where k is the number of edge modifications.
Unfortunately, the data reduction rules we devised for Split Cluster Editing
were not applicable to our real-world test instances. However, a simple observa-
tion allows us to fix the values of some variables of Eqs. (1) to (3) in the Split
Cluster Editing ILP: if a vertex u has only one vertex v as neighbor and
deg(v) > 1, then set cu = 0 and euw = 0 for all w �= v. Since our instances have
many degree-one vertices, this considerably reduces the size of the ILPs.

Heuristics. The integer linear programming approach is not able to solve the hard-
est of our instances. Thus, we employ the well-known simulated annealing heuris-
tic, a local searchmethod. ForSplitCluster Editing, we startwith a clustering
where each vertex is a singleton. As random modification, we move a vertex to a
cluster that contains one of its neighbors. Since this allows only a decrease in the
number of clusters, we also allow moving a vertex into an empty cluster. For a fixed
clustering, the optimal number of modifications can be computed in linear time by
counting the edges between clusters and computing for each cluster a solution for
Split Editing in linear time [13]. For Monopolar Editing, we also allow mov-
ing a vertex into the independent set. Here, the optimal number of modifications
for a fixed clustering can also be calculated in linear time: all edges in the indepen-
dent set are deleted, all edges between clusters are deleted, and all missing edges
within clusters are added.

4 Experimental Results

We test exact algorithms and heuristics for Split Cluster Editing (SCE) and
Monopolar Editing (ME) on several PPI networks, and perform a biological
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Table 1. Network statistics. Here, n is the number of proteins, without singletons, andm
is the number of interactions; nlcc andmlcc are the number of proteins and interactions in
the largest connected component; C is the number of CYC2008 complexes with at least
50% and at least three proteins in the network, p is the number of network proteins that
do not belong to these complexes, and AC is the average complex size. Finally, ig is the
number of genetic interactions between proteins without physical interaction.

n m nlcc mlcc C p AC ig

cell cycle 196 797 192 795 7 148 21.8 1151
transcription 215 786 198 776 11 54 28.0 1479
translation 236 2352 186 2351 5 88 29.8 174

evaluation of the modules found. We use two known methods for comparison. The
algorithm by Luo et al. [19] (“Luo” for short) produces clusters with core and pe-
riphery, likeSCE,but the clustersmayoverlapandmightnot cover thewhole graph.
The SCAN algorithm [24], like ME, partitions the graph vertices into “clusters”,
which we interpret as cores, and “hubs” and “outliers”, which we interpret as
periphery.

4.1 Experimental Setup

Data. We perform all our experiments on subnetworks of the S. cerevisiae (yeast)
PPI network from BioGRID [6], version 3.2.101. Our networks contain only phys-
ical interactions; we use genetic interactions only for the biological evaluation.
From the complete BioGRID yeast network with 6377 vertices and 81549 edges,
we extract three subnetworks, corresponding to three essential processes: cell cycle,
translation, and transcription. These are important subnetworks known to contain
complexes. To determine the protein subsets corresponding to each process, we se-
lect all yeast genes annotated with the relevantGO terms: GO:0007049 (cell cycle),
GO:0006412 (translation), and GO:0006351 (DNA-templated transcription). Ta-
ble 1 shows some properties of these networks.

Implementation details. The integer linear program and simulated annealing
heuristic were implemented in C++ and compiled with the GNU g++ 4.7.2
compiler. As ILP solver, we used CPLEX 12.6.0. For the ILP, we use the heuris-
tic solution found after one minute as MIP start, and initially add all independent
set constraints (2). In a cutting plane callback, we add the 500 most violated con-
straints of type (3) or (4).

The test machine is a 4-core 3.6 GHz Intel Xeon E5-1620 (Sandy Bridge-E) with
10 MB L3 cache and 64 GB main memory, running Debian GNU/Linux 7.0.

Biological evaluation. We evaluate our results using the following measures. First,
we examine the coherence of the GO terms in our modules using the semantic sim-
ilarity score calculated by G-SESAME [8]. We use this score to test the hypothesis
that the cores are more stable than the peripheries. If the hypothesis is true, then
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the pairwise similarity score within the core should be higher than in the periph-
ery. We test only terms relating to process, not function, since proteins in the same
complex play a role in the same biological process. Since Monopolar Editing
and SCAN return multiple cores and only a single periphery, we assign to each
cluster C its neighborhood N(C) as periphery. We consider only clusters with at
least two core vertices and one periphery vertex.

Next, we compare the resulting clusters with known protein complexes from
the CYC2008 database [20]. Since the networks we analyze are subnetworks of the
larger yeast network, we discard for each network the CYC2008 complexes that
have less than 50% of their vertices in the current subnetwork, restrict them to
proteins contained in the current subnetwork, and then discard those with fewer
than three proteins. We expect that the cores mostly correspond to complexes and
that the periphery may contain complex vertices plus further vertices.

Finally,weanalyze the genetic interactionsbetweenandwithinmodules. Ideally,
we would obtain significantly more genetic interactions outside of cores than within
them. This is supported by the between pathways model [16], which proposes that
different complexes can back one another up, thus disabling one would not harm
the cell, but disabling both complexes would reduce its fitness or kill it. Here, when
counting genetic interactions, we are interested only in genetic interactions that
occur between proteins that do not physically interact.

4.2 Results

Our results are summarized in Table 2. For Split Cluster Editing, the ILP ap-
proach failed to solve the cell cycle and transcriptionnetwork, and forMonopolar
Editing, it failed to solve the transcription network, with CPLEX running out of
memory in each case. The fact that for the “harder” problem ME more instances
were solved could be explained by the fact that the number k of necessarymodifica-
tions is much lower, which could reduce the size of the branch-and-bound tree. For
the three optimally solved instances, the heuristic also finds the optimal solution
after one minute for two of them, but for the last one (ME transcription) only after
several hours; after one minute, it is 2.9% too large. This indicates the heuristic
gives good results, and in the following, we use the heuristic solution for the three
instances not solvable by ILP.

Table 3 gives an overview of the results. We say that a cluster is interesting if it
contains at least two vertices in the core and at least one in the periphery. In the
cell cycle network (see Fig. 2), the SCE solution identifies ten interesting clusters,
along with four clusters containing only cores, and some singletons. Only for one of
the ten clusters is the GO term coherence higher in the periphery than in the core,
as expected (for two more the scoring tool does not return a result).

Following our hypothesis, we say that a complex is detected by a cluster if at least
50% of the core belongs to the complex and at least 50% of the complex belongs to
the cluster. Out of the seven complexes, three are detected without any error, and
one is detected with an error of two additional proteins in the core that are not in
the complex. The periphery contains between one and eight extra proteins that are
not in the complex (which is allowed by our hypothesis).
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Table2.Experimental results. Here,K is the number of clusters with at least two vertices
in the core and at least one in the periphery, p is the size of the periphery, k is the number
of edge modifications, and ct, cc, and cp is the average coherence within the cluster, core,
and periphery, respectively.

cell-cycle transcription translation

K p k ct cc cp K p k ct cc cp K p k ct cc cp

SCE 10 108 321 0.60 0.64 0.40 13 112 273 0.54 0.54 0.57 6 94 308 0.63 0.73 0.69
ME 24 75 126 0.46 0.58 0.39 26 78 106 0.55 0.61 0.54 11 129 240 0.52 0.58 0.53
SCAN 28 48 — 0.42 0.62 0.34 26 58 — 0.53 0.51 0.47 2 25 — 0.59 0.59 0.76
Luo 16 84 — 0.34 0.50 0.31 12 125 — 0.40 0.52 0.38 4 137 — 0.72 0.84 0.67

Table 3. Experimental results for the complex test. Here, D is the number of detected
complexes (≥ 50% of core contained in complex and ≥ 50% of complex contained in
cluster), core% is among the detected complexes the median percentage of core vertices
that are in this complex and comp% is the median percentage of complex proteins that
are in the cluster.

cell-cycle transcription translation

D core% comp% D core% comp% D core% comp%

SCE 4 100 100 7 89 100 4 100 96
ME 5 100 100 11 100 100 4 100 96
SCAN 4 91 100 8 84 100 0 — —
Luo 5 81 100 6 87 100 4 92 96

The Monopolar Editing result contains more interesting clusters than SCE
(24).Compared to SCE, clusters are on average smaller andhave a smaller core, but
aboutthesameperipherysize (recall thataperipheryvertexmayoccur inmorethan
one cluster). ME detects the same complexes as SCE, plus one additional complex.

SCAN identifies 7 hubs and 41 outliers, which then comprise the periphery.
SCAN fails to detect one of the complexes ME finds. It also has slightly more er-
rors, for example having three extra protein in the core for the anaphase-promoting
complex plus one missing. Luo identifies only large clusters (this is true for all sub-
networkswe tested). It detects the same complexes asME, but also findsmore extra
vertices in the cores.

In the transcription network, for GO-Term analysis, we see a similar pattern
here that Luo has worse coherence, but all methods show less coherence in the
peripheries than in the cores. The ME method comes out a clear winner here with
detecting all 11 complexes and generally fewer errors.

In the translation network, SCEand MEfind about the same number of interest-
ing clusters (22 and 24) and detect the same four complexes. The SCAN algorithm
does not seem to deal well with this network, since it finds only two interesting
clusters and does not detect any complex. Luo finds only four interesting clusters,
corresponding to the four complexes also detected by SCE and ME; this might also
explain why it has the best coherence values here.
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(a) Complexes (b) SCE cores (c) Monopolar (d) SCAN (e) Luo

Fig. 2. Results of the four algorithms on the cell-cycle network. The periphery is in white,
remaining vertices are colored according to their clusters.

Counting genetic interactions. Since the identified clusters largely correspond to
known protein complexes, it is not surprising that we identify a higher than ex-
pected number of genetic interactions between these complexes. For SCE, the bi-
nomial test to check whether the frequency of genetic interactions within the pe-
riphery is higher than the frequency in the entire network gives p-values lower than
4 · 10−7 for all networks, thus the difference is significant.

Experiments conclusion. The coherence values for cores and peripheries indicate
that a division of clusters into core and periphery makes sense. In detecting com-
plexes, theMEmethoddoesbest (20detected), followedbySCEandLuo (15 each),
and finally SCAN (12). This indicates that the model that peripheries are shared
is superior. Note however that SCE is at a disadvantage in this evaluation, since it
can use each protein as periphery only once, while having large peripheries makes
it easier to count a complex as detected.

5 Outlook

There are many further variants of our models that could possibly yield better bio-
logical results or have algorithmic advantages. For instance, one could restrict the
cores to have a certain minimum size. Also, instead of using split graphs as a core–
periphery model, one could resort to dense split graphs [5] in which every periphery
vertex is adjacent to all core vertices. Finally, one could allow some limited amount
of interaction between periphery vertices.
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Abstract. Over the past decades, biology has transformed into a high
throughput research field both in terms of the number of different mea-
surement techniques as well as the amount of variables measured by
each technique (e.g., from Sanger sequencing to deep sequencing) and is
more and more targeted to individual cells [3]. This has led to an un-
precedented growth of biological information. Consequently, techniques
that can help researchers find the important insights of the data are be-
coming more and more important. Molecular measurements from cancer
patients such as gene expression and DNA methylation are usually very
noisy. Furthermore, cancer types can be very heterogeneous. Therefore,
one of the main assumptions for machine learning, that the underlying
unknown distribution is the same for all samples in training and test
data, might not be completely fulfilled.

In this work, we introduce a method that is aware of this potential bias
and utilizes an estimate of the differences during the generation of the
final prediction method. For this, we introduce a set of sparse classifiers
based on L1-SVMs [1], under the constraint of disjoint features used by
classifiers. Furthermore, for each feature chosen by one of the classifiers,
we introduce a regression model based on Gaussian process regression
that uses additional features. For a given test sample we can then use
these regression models to estimate for each classifier how well its fea-
tures are predictable by the corresponding Gaussian process regression
model. This information is then used for a confidence-based weighting
of the classifiers for the test sample. Schapire and Singer showed that
incorporating confidences of classifiers can improve the performance of
an ensemble method [2]. However, in their setting confidences of classi-
fiers are estimated using the training data and are thus fixed for all test
samples, whereas in our setting we estimate confidences of individual
classifiers per given test sample.

In our evaluation, the new method achieved state-of-the-art perfor-
mance on many different cancer data sets with measured DNA methy-
lation or gene expression. Moreover, we developed a method to visualize
our learned classifiers to find interesting associations with the target la-
bel. Applied to a leukemia data set we found several ribosomal proteins
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associated with leukemia that might be interesting targets for follow-up
studies and support the hypothesis that the ribosomes are a new frontier
in gene regulation.

Keywords: machine learning, cancer biomarkers, supervised prediction,
ensemble methods, support vector machines, Gaussian processes.
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Abstract. High-throughput sequencing of cancer genomes have moti-
vated the problem of inferring the ancestral history of somatic mutations
that accumulate in cells during cancer progression. While the somatic
mutation process in cancer cells meets the requirements of the classic
Perfect Phylogeny problem, nearly all cancer sequencing studies do not
sequence single cancerous cells, but rather thousands-millions of cells in
a tumor sample. In this paper, we formulate the Perfect Phylogeny Mix-
ture problem of inferring a perfect phylogeny given somatic mutation
data from multiple tumor samples, each of which is a superposition of
cells, or “species.” We prove that the Perfect Phylogeny Mixture problem
is NP-hard, using a reduction from the graph coloring problem. Finally,
we derive an algorithm to solve the problem.

Keywords: DNA sequencing, Cancer genomics, perfect phylogeny,
Graph coloring.

1 Introduction

Cancer is an evolutionary process, where somatic mutations accumulate in a
population of cells during the lifetime of an individual. The clonal theory of
cancer posits that all cells in a tumor are descended from a single founder cell,
and that selection for advantageous mutations and clonal expansions of cells
containing these mutations leads to uncontrolled growth of a tumor [16]. Tradi-
tional genome-wide profiling, using comparative genomic hybridisation (CGH),
initially shed light on cancer progression. Using CGH for the purpose of analy-
sis, mathematical models such as oncogenetic tree models [2], were developed to
describe the pathways and the order of somatic alterations in cancer genomes. In
recent years, high-throughput DNA sequencing technologies has enabled large-
scale measurement of somatic mutations in many cancer genomes [4,12,14,22].
This new data has led to much interest in modeling the mutational process
within a tumor, and reconstructing the history of somatic mutations [10,20].

At first glance, the problem of reconstructing the history of somatic mutations
is a phylogenetic problem, where the “species” are the individual cells in the
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tumor, and the “characters” are the somatic mutations. Since the number of
single-nucleotide mutations in a tumor is a very small percentage of the number
of positions in the genome, one may readily assume that somatic mutations
follow the infinite sites assumption whereby a mutation occurs at a particular
locus only once during the course of tumor evolution. Moreover, we may assume
that mutations have one of two possible states: 0 = normal, and 1 = mutated.
Under these assumptions the mutational process in a tumor follows a perfect
phylogeny (Figure 1(a)). Reconstructing perfect phylogenies has been extensively
studied, and many algorithms to construct perfect phylogenies from data have
been developed. See [6] for a survey.

Nearly all cancer sequencing studies to date do not measure somatic muta-
tions in single cells, but rather sequence DNA from a tumor sample containing
thousands-millions of tumor cells. This is because of technological and cost is-
sues in single cell sequencing [23,11,5]. Reconstructing the history of somatic
mutations from a single sample is very different from a traditional phylogenetic
problem, as the data is not from individual species, but rather from a mixture of
all species. Thus, researchers have instead focused on identifying subpopulations
of tumor cells that share somatic mutations by clustering mutations according to
their inferred frequencies within the tumor [3,15,19,10]. In contrast with the tra-
ditional perfect phylogeny problems, these works instead solve a deconvolution
problem.

A few recent studies have sequenced multiple spatially distinct samples from
the same tumor [7,18]. This data presents an interesting intermediate between
the perfect phylogeny problem – where characters are measured in individual
species – and the single sample problem – where the goal is to deconvolve a
mixture. Other related recent studies include computational methods to infer
tumor phylogenies, with the goal of improving single nucleotide variant (SNV)
calling [17].

In this paper, we formulate a hybrid problem, the Perfect Phylogeny Mixture
problem. In this problem, we are given a collection of samples, each of which
is a superposition of the characters from a subset of species. The problem is
to reconstruct the state of each character in each species so that the resulting
species satisfies a perfect phylogeny. Note that, similiar to some of the studies we
mentioned above (e.g. [3,15,19,10]), we also restrict our problem formulation to
single nucleotide variant (SNV) markers. Although consideration of additional
somatic events such as copy number variations (CNVs) might be informative, the
perfect phylogeny assumptions do not apply to CNVs. We demonstrate that one
instance of this problem, using a cost function based on parsimony, is NP-hard,
by using a reduction from the problem of finding the minimum vertex coloring
of a graph. Finally, we develop an algorithm to solve the problem.

2 Preliminaries and Problem Definition

In this section, we first define the Perfect Phylogeny Mixture problem, and then
formulate the Minimum Split Row problem as a specific optimization version of
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Perfect Phylogeny Mixture. We assume that we measure the state (mutated or
not mutated) at each of n positions in the genome for m tumor samples. Thus,
the sequencing data from the m tumor samples is represented by an m×n binary
(0/1) matrix M , where each row represents a sample and each column represents
a mutation. The value 1 in the entry (i, j) of the matrix shows that the mutation
j is present in the sample i. Without loss of generality, we assume there is no
duplicated columns in the matrix.

Our goal is to reconstruct the phylogenetic tree that describes the relationship
between these samples. If each sample consists of a single tumor cell, then by
the infinite sites assumption (a mutation occurs at a position at most once)
the samples satisfy a perfect phylogeny. Because we also know that the normal,
unmutated genome (all characters are 0) is the ancestral state, we can describe
the relationship between the samples using a rooted perfect phylogeny tree [8]:
each cell corresponds to a leaf in the tree, and each edge is labeled by the
character(s) that change state from 0 → 1 on the edge of the tree. Figure 1(a)
shows a perfect phylogeny tree (on the left), where three mutations m1, m2 and
m3 occurred on its branches. The leaves, each of them assigned with a binary
representation of their mutation sets, correspond to distinct subpopulations.

Now, because each sample from the tumor consists of more than one tumor
cell, we do not measure the sequences at individual leaves of the tree. Rather,
each sample is a mixture of cells, some of which share common mutations. Thus,
each sample corresponds to a superposition, or union, of mutations in the subset
of leaves from the perfect phylogeny tree of the cells. Figure 1(b) shows an
example of four different samples, shown in different colors. Each sample contains
a mixture of cells and the we measure the union of the mutation sets belonging
to the cells in the sample.

Recall by the Perfect Phylogeny Theorem [9] that a (0/1) matrix M exhibits
a perfect phylogeny if and only if no pair of columns conflict, according to the
following definition.

Definition 1. Columns Ci and Cj in M conflict if and only if there exists three
rows r1, r2 and r3 in M such that their (i, j) positions are (1, 1), (0, 1), (1, 0),
respectively.

For example, consider a (0/1) matrix M with 4 rows corresponding to each
sample in Figure 1, and 3 columns corresponding to each of the mutations m1,
m2 and m3. For each entry (i, j) of this matrix, we place a 1, if the sample i
contains the mutation j. It is easy to see that a perfect phylogeny does not exists
for matrix M since m2 and m3 conflict.

Since we assume that the cells in the tumor exhibit a perfect phylogeny, then
any conflicts in the matrix M result from either errors in the data or from the fact
that each row represents the mutations in a multiple cells in the tumor. Thus,
assuming no errors we formulate the Perfect Phylogeny Mixture problem
as deconvolving each row in the matrix M into one or more rows (representing
individual cells in the tumor) such that the resulting matrix has no conflicts.

Before formally defining this problem, we recall a few more facts about the
perfect phylogeny models.
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(a) A perfect phylogeny with 3
mutations m1, m2 and m3. The
leaves are assigned binary repre-
sentations 110, 010, 001, repre-
senting mutation sets {m1,m2},
{m2}, {m3}, respectively
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(b) Taking 4 different samples from the tu-
mor phylogeny. The binary representation
of the mutations sets in samples 1,2,3 and 4
will be 111, 110, 010 and 001, respectively.

Fig. 1. This figure shows a tumor phylogeny with 3 mutations. Multiple samples are
taken from the tumor which overlap and may create conflicts in observed mutations.

Definition 2. A mutation matrix M is conflict-free if and only if it has no
pairs of conflicting columns.

Note that following the Perfect Phylogeny Theorem [8] with the assumption that
an all-zero ancestral sequence is present at the root, a conflict-free mutation
matrix corresponds to a perfect phylogeny tree [8].

Also, recall the following alternative statement of the Perfect Phylogeny The-
orem [8], which was proved in [9]:

Theorem 1. [9] There is a perfect-phylogeny for a mutation matrix M if and
only if for every pair of columns, either one column is contained in the other
(i.e. the mutation set corresponding to one column is a subset of the mutations
of the other column) or the intersection of the mutation sets corresponding to
the columns is empty.

Using the above theorem, it is solvable in polynomial time to check whether
a (0/1) mutation matrix has a perfect phylogeny. However, the more general
perfect phylogeny problem where characters may have arbitrary integer values
as their states, is NP-hard. The general perfect phylogeny problem reduces to the
graph-theoretic problem of finding a chordal completion of a colored graph (also
known as the triangulating colored graphs problem) [1]. See [21] for a survey on
combinatorial optimization problems related to perfect phylogeny.

We formally define the deconvolution of a row (a sample containing two or
more subpopulations of tumor cells), as the following operation on the row, and
then define the Perfect Phylogeny Mixture problem.
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Definition 3. Given a row r of a mutation matrix M , a split-row operation
Sr on M is the following transformation: replace r by k rows r̂1, . . . , r̂k such that
and for every i, where the ith position in r is equal to 0, all rows r̂i has a 0 in
that position. In other words, r equals the bitwise OR of the rows r̂1, . . . , r̂k.

The Perfect Phylogeny Mixture Problem Given a binary matrix M with m
rows and n columns, find a binary matrix M ′ with m′ rows and n columns
such that: (1) M ′ is conflict-free. (2) For every row r in M , there exists k
rows r̂1, . . . , r̂k in M ′ such that r can be replaced by r̂1, . . . , r̂k, using an
Split-Row operation.

Note that for any given binary matrix M with m rows and n columns, the
identity matrix In is always a trivial solution for the Perfect Phylogeny Mix-
ture problem. In what follows, we consider optimization versions of the Perfect
Phylogeny Mixture problem and define the Minimum-Split-Row problem.

We use Split-Row operations, to distinguish distinct leaves in a Perfect Phy-
logeny model whose corresponding subpopulations were mixed with each other in
one sample. This mixture may cause conflicts in the input mutation matrix, and
we ask to perform Split-Row operations to convert the input mutation matrix
to a conflict-free one. For a split row operation Sr, we define the cost function
γ(M, r) = k − 1, the number of additional rows to M . An alternative cost func-
tion η(M, r) is the number of additional unique rows that were not identical 1 to
any of the original rows in M , after the Split-Row operation on Sr. Note that,
we only discuss the problem under the cost function γ. We leave the study of
the problem under the cost function η to a future work.

The following matrix on the left shows an example where a conflict exists
between columns m2 and m3. After performing an Split-Row operation on the
first row of the matrix (shown in blue), two new rows are created (shown in
red). The resulting matrix on the right is conflict-free and thus corresponds to
a perfect phylogeny tree. In this example γ(M, 1) = 1, while η(M, 1) = 0.

⎛
⎜⎜⎝

m1 m2 m3

Split-Row operation 1 1 1
1 1 0
0 0 1
0 1 0

⎞
⎟⎟⎠⇒

⎛
⎜⎜⎜⎜⎝

m1 m2 m3

First new row 1 1 0
Second new row 0 0 1

1 1 0
0 0 1
0 1 0

⎞
⎟⎟⎟⎟⎠

In order to transform a matrix with conflicts to a conflict-free matrix using
Split-Row operations, one has to be very careful:

1 Two rows in the mutation matrix are identical, if their entries are identical at every
position.
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Observation 2. Performing the Split-Row operation on a row may introduce
new conflicts.

Proof. See the following example in which the Split-Row operation on the first
row creates new conflicts between the first and second columns, if (1, 1, 1, 1) is
replaced by (1, 0, 1, 0) and (0, 1, 0, 1). In this case, to avoid creating new conflicts,
the Split-Row operation must replace (1, 1, 1, 1) with (0, 0, 1, 1) and (1, 1, 0, 0).

M =

⎛
⎜⎜⎜⎜⎝

1 1 1 1
1 1 0 0
0 0 1 1
1 1 1 0
0 1 1 1

⎞
⎟⎟⎟⎟⎠

Given a matrix mutation M , our aim is to find a series of Split-Row operations
that transforms M into a conflict-free matrix. Note that since a conflict-free
matrix gives a perfect phylogeny tree, the Split-Row operations help distinguish
tumor sub-populations in each sample. In an ideal case, if rows correspond to
individual leaves of the tree, the resulting mutation matrix will be conflict-free.

Following the principle of maximum parsimony, we consider an optimization
problem:

The Minimum-Split-Row Problem Given a binary matrix mutation M , per-
form split-row operations on a subset S its rows, such that the resulting
matrix is conflict-free and

∑
r∈S γ(M, r) is minimized.

Given a mutation matrix M with n rows and m columns, there is an elegant
way of obtaining a conflict-free mutation matrix from M , using Split-Row op-
erations on each row (we will discuss further). We conclude this section with a
definition and a lemma statement. Corresponding to each row r of M , we con-
struct a graph GM,r as follows: For each entry 1 in r, we put a node in GM,r and
two nodes in GM,r are connected with an edge if and only their corresponding
columns in M are in conflict (See the definition of Conflicting Columns above).

It is clear that in order to transform a matrix M to a conflict-free matrix with
a series of Split-Row operations, we need to perform an independent Split-Row
operation on every row r which has a corresponding non-empty graph GM,r (i.e.
a graph with at least one edge). Moreover the following lemma shows each row
r must be replaced by at least χ(GM,r) rows, where χ is the chromatic number2

of the graph.

Lemma 1. Given a mutation matrix M with n rows and m columns, in a series
of Split-Row operations that transfer M to a conflict-free mutation matrix M ′,

2 The smallest number of colors needed to color nodes of a graph G such that adjacent
nodes are assigned distinct colors, is called its chromatic number.
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each row r in M must be (independently) replaced by at least χ(GM,r) rows,
where G is the corresponding graph for row r as defined above.

Proof. First note that, in the given mutation matrix, if the corresponding graph
for a particular row r is not empty, then we have to perform the Split-Row
operation on r. If two columns of r are in conflict, then performing the Split-
Row operation on other rows does not affect the conflicts in r. Moreover, if r is
replaced by less than χ(GM,r) rows, then due to the pigeonhole principle, there
would still be a row with conflicting columns.

3 Complexity of the Minimum-Split-Row Problem

In this section, we prove the following theorem.

Theorem 3. The Minimum-Split-Row problem is NP-Compete.

The proof of this theorem is by a reduction from the minimum vertex coloring
problem. To prove Theorem 3, we first show that for any simple graph G, there
exists a mutation matrix M whose first row is all 1’s and such that conflict graph
of the first row is exactly G. Using this construction and Lemma 1, we show that
it is NP-hard to find the minimum number of new rows in a series of Split-Row
operations that lead to a conflict-free matrix.

Theorem 4. Given a simple graph G with n vertices and m edges, there exists
a binary matrix M with n columns and 2m+ 1 rows, such that all entries of its
first row are equal to 1 and GM,1 = G.

Proof. Let V (G) = {v1, · · · , vn} be the vertex set of G, and E(G) = {e1, · · · , em}
be the edge set of G. Assume for any 1 ≤ k ≤ m, ek = (xk, yk). That is the
edge ek connects vertices xk and yk (See Figure 2(a)) for an example of such
a conflict graphs with 5 vertices and 4 edges). We construct a mutation matrix
with n columns and 2m + 1 rows such that each column corresponds a vertex
in G. All entries in the first row are equal to 1, and corresponding to each edge
ek(1 ≤ k ≤ m), we have two rows (i.e. rows 2k and 2k + 1) in M . For each
k(1 ≤ k ≤ m), the entries of rows 2k and 2k + 1 are determined as follows. For
row 2k of the matrix, we place a 0 at entry xk and we place a 1 at entry yk,
while for row 2k + 1, we place a 1 at entry xk and we place a 0 at entry yk.
Since all the entries of the first row are equal to 1, this configuration leads to a
conflict between any pairs of columns xk and yk that correspond to an edge ek
in G. We name the above as Step 1 of our construction.

Now, we fill the rest of the matrix with 0’s and 1’s such that we do not create
new conflicts among the columns that were not originally in conflict. In order to
guide filling of the other entries of the matrix so that no new conflict is created,
we maintain a principle that if two columns are not in conflict (i.e. there is no
edge between the corresponding vertices in G) then the column on the right must
contain the column on the left. That is, for each row, the entry of the column
on the right is greater or equal to the entry of the column on the left. In other



Reconstructing Mutational History 361

c1 c2 c3 c4 c5 

(a) A conflict graph G.

c1 c2 c3 c4 c5 cccc11 cccc cccc2 2 cc3 3 cc5 5cc44

(b) An underlying containment
graph G′ is shown. All edges of G′

are oriented from left to right.

Fig. 2. This figure shows a conflict graph G (on the left) and an underlying containment
graph G′ (on the right) corresponding to a row of a mutation matrix that is known to
be all 1’s. Hence, the edge set of G′ is the complement of the edge set of G.

words, if we consider an underlying containment graph G′ on the columns of the
matrix M , we fill the entries of the matrix such that the order of columns from
left to right implies a topologically sorted containment graph.

Corresponding to each column, there is a vertex in G′, and the column Ci

is connected to the column Cj with a directed edge, if and only if Cj contains
Ci. Note that since all entries of the first row of M are equal to 1, the edge
set of G′ is the complement of the edge set of G. An example of an underlying
containment graph is shown in Figure 2 (b).

We fill the empty cells of the matrix column by column, and from the left-
most column to the right-most one. During this process and while at column

(1 ≤ 
 ≤ n), we fill each entry (
, p) of the matrix, which was not originally
filled due to a conflict, as follows We fill the entry (
, p) with a 1, if there exists
an edge in the underlying conflict graph of the matrix from any column 
′ < 

and the value of the entry (
′, p) is already set to 1. Otherwise, we fill the entry
(
, p) with a 0.

We call the above process, Step 2 of the construction. Figure 3 provides an
example.

Note that the above construction does not lead to new conflicts. For the
purpose of our argument, we distinguish the entries which received their values
due to a connected pair of vertices in the conflict graph (shown in black color
in the example matrix) with those which received their values in Step 2 of the
algorithm (shown in color red in the example).

Assume after filling the matrix, there exists a pair of conflicting columns
whose their corresponding vertices are not connected in the conflict graph. Let
i and j(i < j) be a new conflicting pairs of columns, in which j is the smallest
index among all the new conflicting pairs of conflicting columns. Since columns i
and j are now in conflict, there exists a row r in the matrix in which the entries
(r, i) = 1 and (r, j) = 0, respectively. The entry (r, j) could not be empty after we
initially planted (0/1) in the matrix based on the original conflicts (i.e. Step 1 of
the algorithm). In other words, the zero at (r, j) must have been planted similar
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M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c1 c2 c3 c4 c5

Step 1 1 1 1 1 1
1 0
0 1

1 0
0 1

1 0
0 1
1 0
0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⇒

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c1 c2 c3 c4 c5

Step 2 1 1 1 1 1
1 0 1 1 1
0 1 0 1 1
0 1 0 1 1
0 0 1 0 0
0 0 1 0 0
0 0 0 1 1
0 0 1 0 0
0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Fig. 3. The partially-filled matrix on the left shows the mutation matrix after Step 1
of the construction described in the proof of Theorem 4, while the matrix on the right
shows the mutation matrix after Step 2

to the (0/1) entries shown in black. Because the entry (r, i) value is equal to 1
and vertices corresponding to i and j are not connected in the conflict graph (and
thus connected in the underlying containment graph, oriented from i to j), filling
(r, j) with a 0 would be a contradiction. Now, if the 0 was originally planted in
the entry(r, j), the value 1 at the entry (r, j) cannot also be an originally planted
1 in the row r. Because in this scenario the pair must have been already a conflict
in the graph. Thus the entry (r, j) must have been filled with 1 during Step 2 of
the algorithm, essentially from a chain of containment relationships edges which
starts from an entry on row r which has an originally planted 1. Note that the
containment relationships are transitive. This is also a contradiction, and thus
no new conflicting pairs of columns exists in the filled mutation matrix. ��

Using this result, we now prove Theorem 3.

Proof (of Theorem 3). We use a reduction from the minimum vertex coloring
problem (one of Karp’s 21 NP-hard problems [13]). Given a simple graph G, by
Theorem 4 there exists a mutation matrix M whose conflict graph of the first
row is G and whose size is polynomially bounded. If we solve the Minimum-
Split-Row problem for M , then by Lemma 1, the first row of M is replaced by at
least χ(G) rows, each of which defines a color for a vertex of G. Thus, we obtain
a vertex coloring for G. Furthermore, given an instance of the Minimum-Split-
Row problem, we can show that minimum vertex colorings of the conflict graphs
corresponding to each row, will lead to a solution for the Minimum-Split-Row
problem.

4 A Graph-Theoretic Algorithm

In this section, we provide an algorithm for the Minimum-Split-Row problem.
Our algorithm achieves the lower bound given in Lemma 1: i.e. for a muta-
tion matrix M , we replace each row r by exactly χ(GM,r) rows, where χ is the
chromatic number of the graph χ(GM,r).
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To state our algorithm, we first make the following definitions.

Definition 4. Given a binary matrix M , we say column i contains j (or j is
smaller than i), if and only if, for every row k, Mk,i ≥Mk,j.

Definition 5. Given a binary matrix M , the containment graph HM is the
directed graph whose vertices are the columns of M and such that there is an
directed edge i→ j if and only if column j contains column i.

Note that HM is a directed acyclic graph (DAG). Further note that if column
i contains column j then there is no conflict between i and j in the original
mutation matrix [9].

As we discussed earlier (Observation 2), performing a Split-Row operation on
a row may introduce new conflicts. Informally, a Split-Row operation may affect
pairs of columns i and j, where j contains i, in a way that a new conflict arises.
Thus, any series of Split-Row operations that aim to make the mutation matrix
M conflict free, must be aware of the underlying containment graph of M . In
what follows, we describe an algorithm that uses what we call Containment-
Aware series of Split-Row operations and achieves the lower bound of χ(GM,r)
additional rows.

Algorithm. Without loss of generality, we permute the columns of the mutation
matrix M such that the corresponding vertices of the underlying containment
graph of M are topologically sorted. We remind the reader that the underlying
containment graph is always a DAG. Let k = χ(GM,r). We assign k colors (from
the set {1, . . . , k}) to the vertices of GM,r such that two vertices whose corre-
sponding columns are in conflict receive different colors. We now replace the row
r of the matrix M with exactly k rows as follows. In the ith row among these k
rows (1 ≤ i ≤ k), we place 1 in all corresponding columns of the vertices which
received i as their color in the proper coloring. We place 0 in all other entries.
It is easy to observe that, after this Split-Row operation, conflicting pairs of the
columns corresponding to vertices in GM,r are no longer in conflict.

However, placing 0’s in the new rows may affect the containment edges and
create new conflicts elsewhere in the matrix. We avoid this problem as follows.
Without loss of generality, consider the first new row after the split-Row oper-
ation and call that row r′1. If there exists a pair of columns c and d such that
corresponding vertex vc in the underlying containment graph is connected to
vd, but the new entry at r′1, c is 1 and the new entry at r′1, d is 0, then a new
conflict may arise. To prevent this situation, we perform a Depth-first search
(DFS), starting from the leftmost column, on the underlying containment graph
and if we traverse an edge which connects 1 to 0 in corresponding entries in the
matrix, we change the 0 to 1.

Note that fliping some of the 0 entires in the new rows to 1, as described above,
guarantees that no new conflict will be created. Because, after the DFS and
fliping the zeros accordingly, every containment relationship will be maintaied
and thus no new conflict would arise.
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Since the above algorithm depends on proper vertex coloring in graphs, in
the worst case the runtime of the algorithm is exponential. If the optimal vertex
coloring of GM,r is given, for each row r of the matrix, the rest of the algorithm
is very efficient and can be executed in O(n (n + m)), where n is the number
of rows and m is the number of columns. Note that once every row r, with a
non-empty GM,r is split, the DFS step will be done for the whole matrix. Thus
a fast vertex graph coloring heuristic leads to an efficient algorithm, in practice.

5 Discussion and Future Work

In this paper, we provide a rigorous formulation of the Perfect Phylogeny Mix-
ture problem and an optimization version of the problem. Given a collection of
samples taken from the same tumor and the set of somatic mutations present
in each of those samples, the Perfect Phylogeny Mixture problem asks for a
deconvolution of the samples such that the mutational history can be recon-
structed, using a perfect phylogeny model. Following the maximum parsimony
principle, we introduce a novel cost function and discuss the NP-hardness of the
Perfect Phylogeny Mixture problem under the cost function. We also present
an algorithm to solve an optimization version of the Perfect Phylogeny Mix-
ture problem using graph coloring to resolve conflicts in an appropriately sorted
mutation matrix.

The novel problem formulated in this paper provides additional areas for
further investigation, both theoretical and applied. One immediate open problem
is to consider the Perfect Phylogeny Mixture problem under alternative cost
functions that are independent of the Split-Row operations. One alternative is
to use the cost function η(M, r) that does not penalize the creation of rows
that are identical to a current row of the matrix (i.e. contain the exact same
mutations). In other words, given a mutation matrix M , the problem under
this cost function asks for construction of a conflict-free matrix M ′ with the
minimum number of rows (irrespective of the Split-Row operations) such that
for each row in M , the set of mutations of the row is identical to the union of
the mutations in a subset of rows in M ′.

In the applied direction, it will be interesting to apply our algorithm for the
Perfect Phylogeny Mixture problem to real cancer sequencing data, and to see
how often deconvolution of a mixture will resolve conflicts in the data. As more
datasets of genome sequencing from multiple samples of a tumor become avail-
able, there will be increasing need for computational models to infer mutational
history of the data. Handling errors in sequencing data, while using our model,
is another important future direction. The Perfect Phylogeny Mixture problem
ignores the complications due to errors in real data sets. Finally, as single cell
sequencing technologies continue to improve [5], new opportunities to develop
and validate models based on the Perfect Phylogeny Mixture problem will arise.
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