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Abstract. In the study of financial phenomena, multi-agent market
order-driven simulators are tools that can effectively test different eco-
nomic assumptions. Many studies have focused on the analysis of adap-
tive learning agents carrying on prices. But the prices are a consequence
of the matching orders. Reasoning about orders should help to anticipate
future prices.

While it is easy to populate these virtual worlds with agents analyz-
ing “simple” prices shapes (rising or falling, moving averages, ...), it is
nevertheless necessary to study the phenomena of rationality and influ-
ence between agents, which requires the use of adaptive agents that can
learn from their environment. Several authors have obviously already
used adaptive techniques but mainly by taking into account prices his-
torical. But prices are only consequences of orders, thus reasoning about
orders should provide a step ahead in the deductive process.

In this article, we show how to leverage information from the order
books such as the best limits, the bid-ask spread or waiting cash to adapt
more effectively to market offerings. Like B. Arthur, we use learning clas-
sifier systems and show how to adapt them to a multi-agent system.

Keywords: Agent based computational economics · Artificial stock
market · Market microstructure · Learning classifier systems · Multi-
agent simulation

1 Introduction

In recent years, advances in computer research have provided powerful tools
for studying complex economic systems. Individual-based approaches, for their
benefits and the level of detail they provide, are becoming increasingly popular
within industries and even for policy makers. It is now possible to simulate com-
plex economic systems to study the effects of new regulations, or the influence
of new policies at the individual and not only at the group level.

Among these economic systems, artificial financial markets now offer a cred-
ible alternative to mathematical finance and econometrical finance. Thanks to
multi-agent systems, decision-making as the actions taken can be individualized,
macroscopic phenomena becomes consequences of microscopic interactions.
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1.1 An Artificiel Agent-Based Stock Market

One can found many artificial markets in the literature, but they are mostly built
at the macroscopic level, with prices defined through equations [1,15]. Agents
reason on price alone and send simple signals to the market to buy or sell an
asset. The market contains no order book and sets the price only on the dif-
ferential between asks and bids signals. This approach ignores the complexity
of real markets and is insufficient to test sophisticated behavioural assumptions
like reasoning on types of orders, prices or quantities. Thus, to evaluate possible
consequences of regulatory rules on individuals, or to study societies social wel-
fares [7] or even speculators influences within traders population, a granularity
at the individual is required.

The ATOM multi-agent platform [8] implements an order-driven market
that reproduce the main features of the microstructure of marketplaces like
EuroNEXT-NYSE , including its system of double book of orders for each asset.
In ATOM, agents rely on their own strategies to send orders on different assets.
ATOM is built on classic agent design-patterns [17] to allow the enforcement of
equity between agents and to conduct experimentations at several scales: from
an intra-day level (intraday) by reasoning on each fixed price to multi-day scale
(extraday) by reasoning only on the closing prices. Although ATOM supports
multi-assets negotiation, this article focuses on the reasoning on a single order
book. Unlike macroscopic market models, agents do not emit a simple signal to
buy or sell but can send real orders consistent with those allowed on EuroNEXT.
However, in this paper, we limit ourselves to the two most common types: limit
and market orders.

In this paper, we use only the best known and most widely used order, the
LimitOrder which is defined by:

– the order issuer,
– the asset’s name to be exchanged,
– the desired direction (bid or sell),
– the number of asset to be exchanged,
– the price limit (i.e. the maximum accepted price for a purchase order and the

minimum accepted price for a sell order).

By its relevance to the real market mechanisms, ATOM provides access to numer-
ous data. Among these, there is the price history (Table 2), but also and espe-
cially the orders history (Table 1). Double order books that reflect the state of
the offer at time t is also accessible, with information on all orders its contains
(Table 3).

These information are significant and allow a measure definition of how easily
an agent will find a counterpart to his orders (so called market liquidity) or detect
an imbalance between supply and demand that suggests a future price curve
slope. Historically, economic theories claimed the importance to take advantage
of these information [4,10,14], but so far nobody to our knowledge had high-
lighted this fact experimentally.
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Table 1. Chronological history of sent orders.

Id. Sender Direction Price Quantity

o1 Agent2 sell 111.5 8

o2 Agent1 sell 111.1 10

o3 Agent1 bid 110.6 6

o4 Agent3 sell 111.0 10

o5 Agent1 sell 110.9 8

o6 Agent2 bid 110.9 8

o7 Agent2 bid 111.0 7

o8 Agent4 bid 110.9 2

o9 Agent3 sell 110.9 2

o10 Agent4 bid 110.8 7

o11 Agent2 sell 110.8 5

Table 2. Chronological prices history, along with quantities exchanged and agents
involved in the transaction.

Price Quantity Bid order Sell order

110.9 8 o6 o5

111.0 7 o7 o4

110.9 2 o8 o9

110.8 5 o10 o11

Table 3. Order book state after matching orders from Table 1.

Direction Order Sender Quantity Price

Vente o1 Ag2 8 111.5

o2 Ag1 10 111.1

o4 Ag3 3 111.0

bid-ask spread �
Achat o10 Ag4 2 110.8

o3 Ag1 6 110.6

This paper main purpose is to demonstrate that it is possible to design trad-
ing behaviours that take advantage of all these information and offer a most
efficient and effective trading behaviour.

1.2 Learning Trading Agents

As multi-agent systems, machine learning techniques have experienced a
real boom in recent years. Main learning families (supervised, unsupervised,
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reinforcement) are based on different algorithms, the best known and most used
are probably [12]:

– genetic algorithms,
– neural networks,
– Bayesian networks,
– support vector machines.

These techniques have been used in artificial markets with more or less success
[2,11]. However, they all suffer the same explanatory default: once learning is
achieved, it is difficult to understand why decisions are made, to highlight the
cause of the outbreak of specific behaviors, and thus to avoid biases in learning
contexts.

Different learning agent types have appeared within the literature in recent
years. Even if these agents are designed to perform well on artificial markets,
theirs learning is only focused on past prices to predict the possible future prices
evolution.

As B. Arthur [1], we have chosen another learning technique that may be
less common, but is much better adapted to the need of explanation: classifier
systems or Learning Classifier Systems (LCS) [6]. These systems use a popula-
tion of binary rules set by the designer that a reinforcement algorithm sort and
that can possibly be modified by a genetic algorithm. Other techniques, such as
those mentioned above would probably also work but our purpose here is not to
make a comparison, but above all to show how to design an adaptive model and
yet explanatory using the data set of one market to obtain varied and relevant
behaviours.

One of the first artificial market, the SF-ASM (Santa Fe Artificial Stock
Market, [1,15]), already used LCS for its reasoning agents, but this market is
equational, and thus its agents could only take into account price history.

We show in this paper how to take advantage not only of past prices, but of all
the available information in an order-driven multi-agent stock market simulator.

1.3 LCS Solely Based on Prices

Before discussing the overall complexity of a stock market, let’s first describe the
principle of a classical classifier system [1,9] by showing its usage in a macroscopic
context where agents only study past prices to define their orders.

A LCS is initialized with a set of conditions on market state called indicators.
These are the “sensors” used by the LCS to perceive market dynamic. Therewith,
it is possible to derive a binary sequence whose length is equal the number of
indicators used to characterize the current market state. Table 4 shows some
indicators examples that can be used.

The first indicator Ind1 is satisfied if the current price is higher than the
previous price. Ind2 is satisfied if the current price is higher than the average of
the last 5 price, while ind3 is satisfied when the current price is less than 100.

These indicators being fixed, each LCS has a set of rules (or classifier) con-
sisting of a triplet (condition, score, action)
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Table 4. Technical indicators based on past prices

Market indicator name Market indicator definition

Ind1 pt > pt−1

Ind2 pt > 1/5 ×∑t−5
i=t−1 pi

Ind3 pt < 100

Table 5. A LCS example using 5 rules

Rule State S Action A Score F

R1 #10 bid 5

R2 1#0 sell 18

R3 00# bid 12

R4 110 hold 4

R5 #11 sell 9

– the state S of a rule is a sequence of trit (tr inary digits) that determines
whether the rule can be activated given the current situation. These trit can
be 0, 1 or #. In this sequence, each trit is an indicator. If a trit is 1 (resp.
0), the corresponding indicator must be true (resp. false) to enable the rule.
The sign # means that the indicator is not be taken into account for rule
activation.

– the ability to score F is the confidence we can have in this rule, based on its
previous success prediction. The higher it is, the better is the rule.

– A action (bid or sell) to be performed if the rule is triggered. This choice is
equivalent to a prediction on prices. Deciding to buy when we predict that
prices will rise, and deciding to sell when we believe that prices will fall.

An LCS can have at most 3n rules, where n is the number of indicators.
Table 5 is an example of LCS with 5 rules using three indicators. For example,
the first rule R1 can be activated if the current market situation is the state
010 or 110. This rule allows the LCS to select a purchase order, and his score is
currently 5.

The LCS works as follows: every time he has to make a decision, it selects
a rule among the activated rules with a probability proportional to the score of
each rule. Then, the LCS performs the action associated with the selected rule
(sending a signal to buy or sell). In the next activation of the LCS, the score of
each activated rule will be corrected up or down depending on the accuracy of
the prediction made.

In addition to the reinforcement system, it is common for a LCS to use also
a genetic algorithm to renew its set of rules during simulation. It is applied
regularly on the set of rules, using the score of each rule to produce natural
selection within the classifier system. Rules whose score is below a threshold
are eliminated, we cross and mute the best rules to regenerate the population.
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The rules are not activated over time (due to conflicting indicators) are automati-
cally eliminated. The combination of system update scores and genetic algorithm
allows the LCS to achieve an effective learning.

There are other learning agents derived from LCS systems. For example, it
is possible to make a social learning (information and learning are shared by
multiple agents), or perform a hierarchical learning process multi-agents (HXCS
[20]). However, LCS agents used here are agents of type XCS (eXtended Classifier
System, [5,19]) realizing a simple reinforcement learning by updating the score
of each rule.

2 An Order Based LCS

Adapting an LCS to an order-driven market poses several problems: temporal
references within indicators may have different interpretations, in an order-driven
market defining the direction (bid or sell) alone is not sufficient because it is
necessary to also produce a proposal price and quantity, and finally, the agents
must take advantage of information from pending orders contained in order
books.

2.1 LCS and Temporal References

By adapting a classifier agent to a multi-agent system, the questions of the unity
of time should be considered, because several indicators rely on this notion.
Indeed, all agents can express themselves during a time step (in real time or
turn to speak), but not always in the same order, and several prices may be
fixed within one simulation step.

For example, if we want to know if the price has increased or decreased, the
condition pt > pt−1 may not have the same meaning for each agent. In fact,
agents have their own rhythms to place an order and a reference to past prices
can be absolute or relative.

More precisely, to check the condition pt > pt−1, the agent can consider that t
refers to either the known sequence of events by the market (the agent compares
the current price at the last price fixed by the market), or the sequence of events
known by the agent (the agent compares the current price at which prevailed the
last time he made a decision, knowing that many prices have since been fixed).

We choose in this study to consider that the time is “the agent time”, that
is to say the sequence of events known by the agent, because it allows agents to
reason about values spaced in time according to their need.

2.2 LCS and Order-Driven Stock Markets

When an agent send an order to the market, the direction of the order is deter-
mined by enabled rule, but it is also necessary set a price limit and a quantity.
For a fair comparison between agents, we propose to use the same policy of
pricing and quantity for all agents.
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For pricing strategies, we have decided to rely on the best prices contained
in the order book. For example, for the order book presented within Table 3, the
values are:
PBestBid = 110.8 and PBestAsk = 111.0

Using these best prices, we propose two different strategies:

– fixing the price to place the order at the top of the order book:
PBid = PBestBid + ε
PAsk = PBestAsk − ε

– launch an order that will be immediately matched (at least in part), with a
price equal to the best opposite order:
PBid = PBestBid

PAsk = PBestAsk

Pour fixer la quantit, nous proposons deux stratgies: soit une quantit con-
stante (Q = kc), soit une quantit proportionnelle au score de la rgle active
(Q = kpF ).

By combining these two types of strategy, it is possible to design four dif-
ferent policies, we compare them in Sect. 4. Thus, the agent LCS allows him to
determine the direction while policies set a price and a quantity. An agent with
these two elements is able to send orders to the market.

2.3 Leveraging Order Books State Information

To show that the learning agents can be improved by taking into account mar-
ket microstructure, we propose to give to previous agents the ability to access
order books information. To this aim, we add several indicators based on orders
waiting within order books and show that these indicators give agents relevant
information that improve their trading behaviour.

In macroscopic systems, the usual reasoning is to perform a technical analysis
of historical prices to derive a future increase or decrease. This is typically the
case strategies chartist that seek specific forms within price curves.

To show the contribution of order book information for agents reasoning,
we propose in this paper to start with a reference LCS agent called PriceLCS,
reasoning only on past prices, and improve it by adding agents called OrderLCS
which rely on prices but also use market microstructure indicators. Then, we
show through a set of experiments that these indicators provide relevant and
useful information to agents to improve their trading performances.

The PriceLCS only uses technical analysis indicators presented in Table 6
that can take into account price change on both short and long term on three
types of simple criteria: price evolution compared to previous price (indicator 1),
the average compared to previous price n (indicators 2–4), or from the middle
of the range of values of n previous prices (indicators 5 and 6).

We now want to compare PriceLCS with better informed agents, OrderLCS
that benefit not only from prices but also from pending orders.

Indeed, order books contain a lot of information, in particular, the gap
between the best bid and best ask, called bid-ask spread (see Table 3). This
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Table 6. Technical analysis indicators shared by PriceLCS and OrderLCS

Id Market indicator definition

1 pt > pt−1

2 pt > 1/5 ×∑t−5
i=t−1 pi

3 pt > 1/10 ×∑t−10
i=t−1 pi

4 pt > 1/100 ×∑t−100
i=t−1 pi

5 pt > 1/2[Minpi + Maxpi]i∈[t−1,t−10]

6 pt > 1/2[Minpi + Maxpi]i∈[t−1,t−100]

Table 7. Technical market indicators based on bid-ask spread

Id Market indicator definition

7 bestPAsk − bestPBid < k7

8 rt < k8

value can be related to an asymmetry of information, or a uncertainty about the
value of the security. Moreover, it is a common market liquidity measure, the
higher is the spread, the higher is the risk for an agent to sell or buy an asset in
a short time frame.

To effectively leverage information from order books, we propose to add new
indicators to OrderLCS agents: those concerning the value and evolution of the
bid-ask spread and those related to an imbalance between supply and demand.
The indicators proposed here are examples of criteria based on the orders that
may be used by agents and are used in the evaluation Sect. 4.

Bid-ask spread. One can argue about the use of the bid-ask spread absolute
value (indicator 7 in Table 7), but we propose to use instead the following ratio:
r = bestPAsk

bestPBid
(indicator 8).

One can for example compare the current value of this ratio to previous
value (indicator 9), or the average of k10 previous values (indicator 10), or in
the middle of the range of k11 previous values of r (indicator 11), to determine
if the current bid-ask spread value is rather high or low (Table 8).

Table 8. Market indicators based on ration evolution r = meilleurPV ente
meilleurPAchat

Id Market indicator definition

9 rt > rt−k9

10 rt > 1/k10 ×∑t−k10
i=t−1 ri

11 rt > 1/2[Minri + Maxri]i∈[t−1,t−k11]
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Table 9. Market indicators based on relative size of bid and ask pending orders

Id Market indicator definition

12 No bid orders pending

13 No ask orders pending

14 nbAsk
nbBid

> k14

Indicators Based on Imbalance Between Supply and Demand. The
relative size in number of orders on both sides of the order book is also a useful
information because it may reflect an imbalance between supply and demand
(Table 9). This imbalance in a way or the other, may announce an upcoming
change price that the agent could benefit. Indicators 12 and 13 check if there
are buy and sell orders in the order book, and indicator 14 reasons on the ratio
nbAsk
nbBid .

However, the relative size of the two parts of the order book is not the best
way to assess the imbalance between supply and demand. In fact, if 10 assets
are sold at the same price p0, the offer is better than if only one asset is on sale
for p0 and 9 others have a higher price, yet nbAsk

nbBid ratio remains the same. We
should therefore also take into account the price differences in the calculation of
supply and demand.

offer =
∑

order∈Ask

Quantity(order)
Price(order) − bidAskMid

demand =
∑

ordre∈Bid

Quantity(order)
bidAskMid − Price(order)

with:

bidAskMid =
bestPAsk + bestPBid

2
bidAskMid is the average of the best ask price and the best bid price. By

dividing the quantity of each order by the difference between its price and
bidAskMid, taking into account the fact that some orders have a price limit
too high or too low to constitute an interesting offer or demand. We are then
interested in the ratio q = offer

demand (indicator 15) and its evolution (indicators
16–18).

OrderLCS agents use indicators 1–6 as PriceLCS agents, but they also use
indicators based on orders (indicators 7–18). These order based indicators are
only examples and many other indicators could be relevant. Nevertheless, the
proposed indicators cover many aspects of order books and are widely accepted in
finance. Indicators using a constant k have been implemented in several versions
with several values of this constant.
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Table 10. Market indicators based on imbalance within bid ask pending orders

Id Market indicator definition

15 qt > k15

16 qt > qt−k16

17 qt > 1/k17 ×∑t−k17
i=t−1 qi

18 qt > 1/2[Minqi + Maxqi]i∈[t−1,t−k18]

3 Methodology

Our study has two goals: to show that price based LCS are effective and that
order based LCS are more effective. To do this, we first compare PriceLCS to
various chartist agents to check that their learning mechanism allow them to
get better results (first stage on the horizontal axis of the Fig. 1). In a second
step, we want to demonstrate that indicators based on orders can improve LCS
agents. For this, we compare PriceLCS with several OrderLCS agents (second
stage on the horizontal axis in Fig. 1).

Market
complexity

Agent
complexity

Price
driven

Order
driven

Chartist
agents

(price)
LCS

agents

(order)
LCS

agents

chartist
agents

PriceLCS

OrderLCS

Classical
approach

SFASM

ATOM

Fig. 1. Using a more complex market model allow the definition of better informed
agents. We seek to demonstrate that LCS agents efficiency is better than chartists
agents and then, that order based LCS agents outperforms price based LCS agents.
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Evaluating and comparing agent behaviours is a difficult art. Firstly because,
like voting systems, there are always methods that promote particular agents,
and secondly because an agent is rarely good in absolute terms but often in rela-
tion to its opponents and the environment. Thus, we distinguish two problems:
estimate an agent gain, that is to say its performance in a specific simulation,
and to evaluate the agent, that is to say, estimating its performance being as
general as possible.

3.1 Estimate Agents Performances

To compare agents, we must define a method to compute agents’ gains, regardless
of the type of evaluation selected. Two main criteria are possible here: either
liquidity (cash) possessed by an agent or the richness of it (wealth), sum of its
liquidity and the estimated portfolio value.

wealth = cash +
i<=assets∑

i=1

prixi × nbAssetsi

Although this estimation is questionable because it is approximative, it has
the advantage of taking into account all the agent assets.

3.2 Evaluation Method

It is very difficult to say that an agent is better than another in absolute terms.
In order to achieve the highest possible objective measures, it is important to
test the agent in a sufficiently rich and representative selection to avoid potential
biases due to a favorable or unfavorable environment. Moreover, the variation of
the comparison set improves the objectivity of the measure. However, when an
agent performs better than another in several sufficiently varied environments,
then this agent demonstrated better robustness and we can assume that this
agent is generally best.

Agent Comparison. Comparing agents by inserting them into a single envi-
ronment is a major problem. It can exist specific relationship between two agents
called “predator-prey” relationships, when these agents are in the presence of
each other, the predator will maximize its results at the expense of prey. This,
however, tells us nothing about the quality of each agent. If there is a relation-
ship between two such agents that you want to evaluate, then the results for
the two agents are distorted. This is why we use in our experiments a method
that evaluates independently different agents to compare, based on the use of
agents other than those to be evaluated. Finally, each type of agent should not
be represented by a single individual, but by an agents population.
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Populate Simulations. A good way to compare agents is to test their robust-
ness to the variety of possible environments, and to average their performances.
The performance obtained by an agent depends mainly on other competing
agents, which is why it is necessary to vary types of agents encountered. To
obtain diversified situations, simulations are populated with other agents types
than those being evaluated. We call E all of these agents types, and S the set of
agent types to evaluate. Some agents may be in S and E, if we try to evaluate
them while they are also used to populate simulations. Agents that constitute
E can be:

– chartist agents (moving average, RSI, momentum, variation, indicators and
mixed moving average) using simple conditions on prices to predict price
changes and decide whether to buy or to sell,

– periodic agents who buy and sell periodically
– Zero Intelligence Traders (ZIT, [13]) that send orders in a random direction

with a random limit price,
– LCS agents based solely on price. These agents use simple market indicators

(all of the form pt > ptX). These agents perform quite badly, but it seems
important to us to have a minimum of adaptive agents within E.

Agent Families. To evaluate a trading behaviour, it is preferable to perform
experiments with multiple instances of each agent instead of only one. In a real
environment, it is rare that an individual is the only one to use a given strategy.
So the concept of agent family, which is a set of agents using the same strategy
and the same parameters has to be introduced. The use of agents families and
the scaling that it induces has several consequences, including a better temporal
distribution of the round of talk, possible interactions between multiple agents
of the same type, or the smoothing of result for non deterministic agents.

3.3 Evaluation Methods

Once the measurement of individual performance is fixed, there are many ways
to evaluate the performance of an agent in a community of n agents. Two main
types of evaluation coexist [3]: evaluations in which n agents are placed in the
same environment and compete with each other, and evaluations in which n
agents are classified with respect to the same set of opponents. For each of these
two types of evaluation, it is still possible to evaluate agents individually or with
agents families (agents with the same type and parameters).

Various performance measures are then possible:

– n agents are evaluated in the same simulation. Agents are classified according
to their exact gains at the end of the simulation.

– n agents families are evaluated in the same simulation. Agents are ranked
on the average earnings of their families at the end of the simulation. Using
agents families, results variability due to agents stochasticity is attenuated.
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– each agent family is evaluated separately from the other by running it against
a common reference population. The n agents are then classified on the aver-
age earnings of their families. Separating families that are compared avoids
introducing a bias in the evaluation due to the dominance of one agent over
another.

– agent families are evaluated against a common reference population within an
ecological competition. At the beginning, all families have the same number
of instances but at the end of the simulation, instances are adjusted according
to their family score.

These different simulations are ranked on their pertinence, indeed each proto-
col is superseded by its followers. For example, the use of reference families avoids
distorting the comparison between families who would have dominance relation-
ships between them even if one is not better than the other. In this article, we
have chosen the most complete of them, the ecological competition, because it
introduces a variation of population that avoids mutual support between families
of agents and thus ensures a better robustness of the results.

3.4 Ecological Competition

Ecological competition is a selection method inspired by biology and the natural
selection phenomenon [16,18]. In such context, several families evolve in the same
environment, such as animal or plant species sharing the same environment. As
in nature, their populations vary over time, in such a way that the best families
see their populations increase, while the others decline.

In our case, a competition is a series of simulations on the market. Each
family begins with an identical number of individuals, the total population of
the competition remains constant throughout the competition. After each gen-
eration, the population of each family is revalued based on its gain. After each
generation a proportionality rule on the score of each family is applied to keep
the total population constant.

A family score is the total gain of its instances during the simulation. But,
in ATOM, as in real markets, traders have the opportunity to borrow money
to purchase assets. The agent cash can then be negative as well as its wealth.
It is therefore possible that a family has a negative total gain, which is a bit
problematic to apply a proportionality rule. To solve this problem, we propose
to subtract the gain of the worst agent p (gain of p are most often negative, then
it will be an addition) to the gain of all agents a.

gaina ≥ gainp ⇒ gaina − gainp ≥ 0

In this way, the gain of p agent is reduced to 0 and that of all others is positive
(as the total gain of each family). The total gain of a family f is the sum of the
modified wealth of its agents. It is then possible to apply a proportionality rule
for calculating populations of the various agent families.
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The population volume of a given agent family at the end of an ecological
competition represents its adaptation to a particular environment (other families
competing agents) and its effectiveness in this environment.

It may seem surprising at first that ecological competition is preferred to a
more classic economic competition, where an agent leaves the competition when
it is ruined. However, this approach presents several problems:

– with the ability to borrow, it is difficult to determine whether an agent is
ruined, this choice is arbitrary.

– an agent can decide to leave the market before going broke on it.
– this approach does not allow the opportunity for new agents to enter the

market by playing a strategy they observed success.

Ecological competition has the advantage of presenting a dynamic environ-
ment that adapts itself to agents performances. This allows to experience a
robustness against evolving environments.

3.5 Experimental Protocol

When an agent performs better than another in several various ecological com-
petitions, we can assume that this agent is generally best. This is the method
we used to evaluate our agents.

For each agent type to be evaluated s ∈ S, the following procedure is per-
formed. 500 ecological competitions populated with one agent family of type s
and various families of agents (5–20) from E (which contains currently forty
agents), randomly selected each competition. 50 generations competition are
generally sufficient to reach stable populations volumes in most cases. Each gen-
eration is composed of a trading day made of 2000 decisions per agent, which is
necessary for learning agents to adapt themselves to their environment.

The average population of each family obtained after 500 competitions is
a good measure of the performance of an agent, because it takes into account
the robustness of the variety of possible environments, and the robustness to
adaptive environments.

The first experiments consists in assessing the effectiveness of price bases
LCS agents before comparing them to order based LCS agents.

3.6 Price and Quantity Policies Evaluation

The first experiment is to determine which pricing and quantity policy should
be used with our LCS agents. To this aim, we compare a price based LCS with
all policies variation against a reference population. As shown in Fig. 2, this
experiment shows that the policy giving the best results is the policy that sends
orders placed at the top of the order book, with a constant quantity. Thus, these
policies are used throughout all other experiments.
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Fig. 2. Average PriceLCS family proportion with respect to the price and quantity
fixing mechanisms: Limit to be at the top of the order book, Market for an immdiate
execution, Const for a constant quantity and Prop for a proportional quantity.

4 Simulations Results

4.1 Price Based LCS Agents

The second experiment assesses the quality of price based learning. Figure 3 rep-
resents the average proportion of the population of various agents in an ecolog-
ical competition. One of these families is PriceLCS and other agents are simple
chartists (moving average, RSI, momentum ...) or agents with basic behaviours
(periodic ZIT). It should be noted that price based LCS agents outperforms other
families. Thus, this experiments demonstrates the effectiveness of the learning
process achieved on prices analysis.

4.2 Order Based LCS Agents

The third experiment check that order based LCS agents perform better than
LCS agents based solely on prices. Figure 4 represents the average population of
a few agent families in an ecological competition. The PriceLCS uses indicators
based on prices described in Table 6. For others families, these same price based
indicators are used, but some order based indicators described in Tables 9 and
10 are added. 298 different agent types based on these additional descriptors
have been tested, the Fig. 4 gathers only those that have obtain the best results.
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Fig. 3. Average population volume for each family: the PriceLCS graph is for price
based LCS agents

It was found that the best families use 1–3 indicators taken from instances of
indicators 10, 11, 16 and 17 (see Table 11). Other indicators have little influence
or none at all on results. Indicators used by each family are described in Table 11.
Each bit corresponds to a line. For example, agents of the family OrderLcs 10001
use indicator 10 with k = 100 (first line table) and the indicator 17 with k = 100
(fifth row of the table).

We also observe that many of these families do better than the base agent.
Agents using these good indicators have an average population at the end of the
competition of about 100 % that of the base agent. This experiments demon-
strates that LCS agents can be improved by the addition of order based
indicators.

4.3 Assessing an Indicator Utility

We propose an utility measure ui of an indicator i as the average score of rules
for which the trit question is not undetermined (i.e. #). This score is calculated
on all the rules of agents of a family at the end of a simulation.

If more indicators are used, the average utility of an indicator is small. To
compare the usefulness of two indicators, we use the following ratio:

sind =
uind × nbIndicateurs∑

i∈indicateurs

ui
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Fig. 4. Average volume population in an ecological competition: the OrderLCS graph
is for order based LCS agents.

Table 11. Order based indicators that improve PriceLCS agents

Id. k Indicator instantiation

10 100 rt > 1/100 ×∑t−100
i=t−1 ri

11 100 rt > 1/2[Minri + Maxri]i∈[t−1,t−100]

16 5 qt > qt−5

17 10 qt > 1/10 ×∑t−10
i=t−1 qi

17 100 qt > 1/100 ×∑t−100
i=t−1 qi

If sind > 1, then uind is higher than the average useful indicators of the
observed LCS. Otherwise, if sind is less than 1, it means that uind is below
the average. Therefore an indicator of quality maximizes the ratio s. We note
on the Table 12 that this ratio is less than 1 for an indicator randomly returning
true or false (line 1), less than 1 for indicators based solely on prices (line 2),
but greater than 1 for several indicators based on orders (line 3), in particular
those listed Table 11.
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Table 12. Ratio value s for several kind of indicators

Market indicator definition s

1 Random 0.860

2 pt > 1/5 ×∑t−5
i=t−1 pi 0.961

3 rt > 1/100 ×∑t−100
i=t−1 ri 1.034

4.4 Learning Mechanism Saturation

The more information an agent has, the greater is its potential to achieve good
prediction on price evolution. Nevertheless, the addition of an indicator expands
the search space, and makes the learning process slower and sometimes less
effective. All information are not relevant or pertinent. For example, one can
think that pt > pt−1 is more relevant than pt−100 > 101−pt for many situations.

Indeed, the expansion of the search space is the same regardless of the indi-
cator added, so the information provided by an indicator must be significant
enough to compensate for this expansion. In addition, if two indicators provide
similar information, the added value of the second is low. We found that our
LCS agents must therefore have a limited number of indicators (between 6 and
9), sufficiently differentiated from each other.

5 Conclusion

To achieve realistic financial simulations, it is important to populate artificial
markets with adaptive agents. It allows to obtain price curves or price histories
that are more realistic and consistent with stylized facts found in computational
finance. It also enhances the experience of human agent who participates in a
simulation with agents more intelligent and robust. It finally allows you to test
the rules of market regulation in richer and more lifelike environments.

However, until now, the lack of software platforms both running orders driven
markets and implementing a multi-agent approach, this type of simulation was
done only on the price curve generated through equational models, as done by
B. Arthur with SF-ASM. The ATOM platform, by its fidelity to order driven
markets like EuroNEXT-NYSE, helps to push learning agents much further.

Learning in the context of a agent based artificial stock market is a com-
plex process. It is often believed to one can learn from the behaviour of other
agents. Recognizing other agent behaviour is a difficult thing, trying to adapt
itself to an evolving environment is even more complex. It is also often believed
that there is nothing to learn from stochastic agents and that only agents with
deterministic behavior can bring more information. These suppositions do not
take into account interesting information that are brought by the microstruc-
ture of double order books who sets prices in order driven markets. They plays a
role similar to an accumulator. These are not necessarily the last orders to arrive
that will be executed first, but the best deals. It is then possible make effective
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use of the information contained in these order books and have an edge on price
trends. From these information can be found the best bid or best offer for sale
of course, but also the size of the bid-ask spread or available quantity available,
weighted or not by its distance.

In this article, after detailing the various possibilities to reason about orders
and their consequences, we have shown how to set up learning classifier systems
that take into account the information present in the market microstructure,
that is to say pending orders in order books. To compare these agents, we have
implemented an original adaptation of the principle of ecological competition
that allows us to measure an agent performance and also its robustness to envi-
ronmental changing. We were able to show that an agent who studies pending
orders in order books is far more efficient than agents chartist or as his counter-
part that reason solely on prices.

Further work is certainly needed in this direction, by varying the learning
methods used and also by introducing indicators that attempt to recognize typi-
cal trading behaviours by studying orders evolution from a specific agents within
order books. This, we consider this work as a first step towards more complete
adaptive learning behaviours for artificial agents.
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