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Abstract. Decision making under stressful circumstances, e.g., during evacuation,
often involves strong emotions and emotional contagion from others. In this paper
the role of emotions in social decision making in large technically assisted crowds
is investigated. For this a formal, computational model is proposed, which inte-
grates existing neurological and cognitive theories of affective decision making.
Based on this model several variants of a large scale crowd evacuation scenario
were simulated. By analysis of the simulation results it was established that
(1) human agents supported by personal assistant devices are recognised as leaders
in groups emerging in evacuation; (2) spread of emotions in a crowd increases the
resistance of agent groups to opinion changes; (3) spread of emotions in a group
increases its cohesiveness; (4) emotional influences in and between groups are,
however, attenuated by personal assistant devices, when their number is large.

Keywords: Crowd evacuation � Cognitive modelling � Ambient intelligence �
Multi-agent simulation

1 Introduction

Decision making under stressful circumstances, e.g., during evacuation, often involves
strong emotions and emotional contagion from others [1, 6]. More generally, it is
widely recognised in cognitive and neurological literature that emotions influence
human decision making [2, 9, 12]. However, quantifying this influence is a challenging
task. Previously, human decision making has been considered as entirely rational and
has been modelled using economic utility-based theories [19, 20]. Purely rational
decision making models were disapproved by many empirical studies (see e.g., [20]).
However, devising a better alternative addressing the limitations of these models by
combining cognitive (rational) and affective (emotional) aspects still remains a big
challenge.

To address this challenge several computational models were proposed [10, 27, 29],
which use variants of the OCC model developed by Ortony, Clore and Collins [23] as a
basis. The OCC model postulates that emotions are valenced reactions to events,
agents, and objects, where valuations are based on similarities between achieved states
and goal states. Thus, emotions in this model have a cognitive origin. In contrast to
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these approaches, we employ a neurological fundament, on which a model of social
decision making is built. This model exploits some of the principles underlying the
OCC model but embeds them in a neurological context. By taking a neurological
perspective and incorporating cognitive and affective elements in one integrated model,
a more realistic and deeper understanding of the internal processing underlying human
decision making in social situations can been achieved. This gives a richer type of
model than models purely at the cognitive level, or diffusion (contagion) models at the
social level abstracting from internal processing, for example, as addressed in [17].
More specifically, options in decision making involving sequences of actions are
modelled using the neurological theory of simulated behaviour (and perception) chains
proposed by Hesslow [16]. Moreover, the emergence of emotional states in these
behavioural chains is modelled using emotion generation principles described by
Damasio [7–9]. Evaluation of sensory consequences of actions in behavioural chains,
also uses elements borrowed from the OCC model. Different types of emotions can be
distinguished and their roles in the decision making clarified. Two types of emotions –
hope and fear – are particularly relevant in the context of crowd evacuation.
The emergence and dynamics of these two emotions are addressed in the model pre-
sented in the paper.

Evaluation of decision options and the emotions involved in it usually have a strong
impact from the human’s earlier experiences. In the proposed model for social decision
making, this form of adaptivity to past experiences is also incorporated based on
neurological principles. In such a way elements from neurological, affective and
cognitive theories were integrated in the adaptive agent model proposed.

Usually decision making occurs in a social context (e.g., a group of people). People
influence others and are influenced by others. In many studies on emotional decision
making the social context is either ignored [27, 29] or comprises a small group of
individuals [17]. In this paper we investigate social decision making in large crowds of
people. The effects of emotional decision making on a large scale (a crowd) may differ
significantly from the ones on a small scale (an individual or a small group).

Due to the ubiquitous use of personal communication devices (e.g., mobile
phones), which often play a prominent role in emergency situations, also such devices
need to be included in the model as information sources. Both researchers and
authorities envision an important contribution of such and more intelligent assistant
devices to monitoring and control of large mass events [13]. Thus, in the model some
of the human agents are equipped with technical devices called personal assistants, able
to receive information relevant for decision options from other devices.

In the literature [1, 26, 28, 30] it is indicated that people often form spontaneous
groups during evacuation. On the one hand, dynamic formation of groups is recognised
as a prerequisite for efficient evacuation [1, 30]. On the other hand, large uncontrolled
groups may cause clogging of paths and increase panic [1, 26]. In this paper, a group is
defined by a set of human agents, supporting the same decision option and located
closely to each other in the physical space. To investigate the role of emotions in the
formation and dynamics of groups, 5 hypotheses were formulated, which are discussed
in the following.
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In [24] the possession of knowledge is identified as a strong power basis in social
groups, especially when they are situated in environments with scarce and uncertain
information. In line with this argument, the following hypothesis is formulated:

Hypothesis 1: Human agents equipped with personal assistants, who obtain up-to-date
information about the environment, are recognised as leaders in groups emerging in
evacuation.

The next hypothesis is a known observation from the social psychology literature
confirmed by empirical studies (see e.g., [22]):

Hypothesis 2: Emotions increase the consistency of social decision making and the
robustness of a group against external perturbations (e.g., receipt of inconsistent
information from strangers).

The third hypothesis follows from the second one.

Hypothesis 3: Emotions arising in social decision making increase the group
cohesiveness.

Hypothesis 4: The higher the penetration rate of personal assistants, the less the
influence of emotions on the group dynamics.

The last hypothesis is related to the large group effect known for social emergency
systems [1]:

Hypothesis 5: Evacuation with larger groups proceeds more slowly (less efficiently)
than with smaller groups.

The hypotheses were tested by agent-based simulation based on the proposed
emotional decision making model in the context of a large scale crowd evacuation
scenario. To validate the hypotheses the two-sample t-test was applied [32]. By anal-
ysis of the simulation results all the hypotheses were confirmed.

The paper is organised as follows. A case study is introduced in Sect. 2. The
general modelling principles on which the proposed model is based are described in
Sect. 3. A detailed formalisation of the proposed model for the evacuation scenario is
provided in Sect. 4. The simulation and verification results for the hypotheses are
presented in Sect. 5. Finally, Sect. 6 concludes the paper.

2 Case Study

In the simulation study we focussed on evacuation of a train station. To ensure that the
simulation setting is a true representative of reality, a real CAD design of an existing
Austrian main railway station was incorporated to generate the space along with
observed population statistics.

The station in the simulation model had 3 exits with different flow capacities. Exit
E13 has largest capacity equal to a width of 7 cells followed by Exit E15 consisting of
width equal to 5 cells. Exit SC1 has least width equal to 2 cells. The station was
populated randomly with 1000 agents representing humans, from which a number of
agents depending of the simulation trial (1 %, 5 % or 10 %) were equipped with
personal assistants (see Fig. 1). In Fig. 1, three different colours representing agents
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heading towards three exits respectively (blue towards Exit E15, green towards Exit
E13 and yellow towards Exit SC1) are shown. Out of a total population of 1000 agents,
1 % (with red labels) are equipped with personal assistants.

All personal assistants constantly received information about the degree of clogging
of each exit from a global ‘evacuation control unit’. This information was assumed to
be measured by a technology mounted on each exit. Furthermore, it is assumed that the
global control unit provides reliable, up-to-date information to all personal assistants
without any noise.

Each personal assistant had a location map used to transform the coordinates of an
exit to the desired orientation to move. Thus, agents with personal assistants had direct
access to information essential for successful evacuation, which they could propagate
further by interaction with other agents.

Agents can interact with each other non-verbally by spreading emotions and
intentions to choose particular exits, and verbally by communicating information about
the states of the exits. The agents without devices were free to decide whether or not to
follow agents with personal assistants or to rely on their own beliefs and exit choices.
It is important to stress that the grouping effect is not encoded in our model explicitly,
but emerges as a result of complex decision making by agents.

To verify the hypotheses formulated in the introduction, three variants of the
scenario were introduced, which were simulated:

Variant 1: Agents generate and exchange both information and emotions during the
social decision making.

Fig. 1. A train station represented in the simulation environment with coloured dots representing
agents heading towards three exits (Color figure online)
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Variant 2: Agents generate both emotions and information, but exchange only
information.
Variant 3: Agents generate and exchange only information.
The simulation of all variants of the scenario is based on a social decision making
model described in Sect. 4, which relies on a neurological fundament described in
Sect. 3.

3 Theoretical Basis

Considering options and evaluating them is viewed as a central process in human
decision making. An option is a sequence of actions to achieve a goal, as in planning.
To model considering such sequences, from the neurological literature the simulation
hypothesis proposed by Hesslow [16] was adopted. Based on this hypothesis, chains of
behaviour can be simulated as follows: some situation elicits activation of s1 in the
sensory cortex that leads to preparation for action r1. Then, associations are used such
that r1 will generate s2, which is the most connected sensory consequence of the action
for which r1 was generated. This sensory state serves as a stimulus for a new response,
and so on. In such a way long chains of simulated responses and perceptions repre-
senting plans of action can be formed. These chains are simulated by an agent inter-
nally as follows:

‘An anticipation mechanism will enable an organism to simulate the behavioural chain by
performing covert responses and the perceptual activity elicited by the anticipation mechanism.
Even if no overt movements and no sensory consequences occur, a large part of what goes on
inside the organism will resemble the events arising during actual interaction with the envi-
ronment.’ [16]

As reported in [16], behavioural experiments have demonstrated a number of
striking similarities between simulated and actual behaviour.

Hesslow argues in [16] that the simulated sensory states elicit emotions, which can
guide future behaviour either by reinforcing or punishing simulated actions. However,
specific mechanisms for emotion elicitation are not provided. This gap can be filled by
combining the simulation hypothesis with a second source of knowledge from the
neurological area: Damasio’s emotion generation principles based on (as-if) body
loops, and the principle of somatic marking [2, 8]. These principles were adopted to
model evaluation of options.

Damasio [7–9] argues that sensory or other representation states of a person often
induce emotions felt within this person, according to a body loop described by the
following causal chain:

sensory state → preparation for the induced bodily response → induced bodily response → sens-

ing the bodily response → sensory representation of the bodily response → induced feeling

As a variation, an as if body loop uses a direct causal relation as a shortcut in
the causal chain: preparation for the induced bodily response → sensory representation of the

induced bodily response. The body loop (or ‘as if body loop’) is extended to a recursive
body loop (or recursive ‘as if body loop’) by assuming that the preparation of the
bodily response is also affected by the state of feeling the emotion as an additional
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causal relation: feeling → preparation for the bodily response. Thus, agent emotions are
modelled based on reciprocal causation relations between emotion felt and body states.
Following these emotion generation principles, an ‘as if body’ loop can be incorporated
in a simulated behavioural chain as shown in Fig. 2 (left). Note that based on the
sensory states different types of emotions may be generated.

In the OCC model [23] a number of cognitive structures for different types of
emotions are described. By evaluating sensory consequences of actions s1, s2, …, sn
from Fig. 2 using cognitive structures from the OCC model, different types of emotions
can be distinguished. More specifically, the emergence of hope and fear in agent
decision making in an emergency scenario will be considered in Sect. 4. The OCC
model has been extensively used for representing emotions in diverse ambience
intelligence frameworks. For example, in [33], using the OCC model emotions are
generated that influence decision making of and negotiation between agents in a group.
No neurological or psychological validity of the model is asserted in this work.
Moreover, the knowledge about emotional influences on social processes in ambient
intelligence environments is still rather limited. To the best of our knowledge, influence
of emotions on such aspects as group cohesiveness and robustness of social decision
making in an ambient intelligence setting has not been studied before.

Hesslow argues in [16] that emotions may reinforce or punish simulated actions,
which may transfer to overt actions, or serve as discriminative stimuli. Again, specific
mechanisms are not provided. To fill this gap the Damasio’s Somatic Marker
Hypothesis was adopted. This hypothesis provides a central role in decision making to
emotions felt. Within a given context, each represented decision option induces (via an
emotional response) a feeling which is used to mark the option. For example, a strongly
negative somatic marker linked to a particular option occurs as a strongly negative
feeling for that option. Similarly, a positive somatic marker occurs as a positive feeling
for that option. Damasio describes the use of somatic markers in the following way:

‘the somatic marker (..) forces attention on the negative outcome to which a given action may
lead, and functions as an automated alarm signal which says: beware of danger ahead if you
choose the option which leads to this outcome. The signal may lead you to reject, immediately,

Fig. 2. Simulation of a behavioural chain extended with an ‘as if body’ loop with emotional
state bem (left) and with emotional influences on preparation states (right)
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the negative course of action and thus make you choose among other alternatives. (…) When a
positive somatic marker is juxtaposed instead, it becomes a beacon of incentive.’
[9, pp. 173–174]

To realise the somatic marker hypothesis in behavioural chains, emotional influ-
ences on the preparation state for an action are defined as shown in Fig. 2 (right).
Through these connections emotions influence the agent’s readiness to choose the
option. From a neurological perspective, the impact of a sensory state to an action
preparation state via the connection between them in a behavioural chain will depend
on how the consequences of the action are felt emotionally.

As neurons involved in these states and in the associated ‘as if body’ loop will often
be activated simultaneously, such a connection from the sensory state to the preparation
to action state may be strengthened based on a general Hebbian learning principle
[14, 15] that was adopted as well. It describes how connections between neurons that
are activated simultaneously are strengthened, similar to what has been proposed for
the emergence of mirror neurons; e.g., [18, 25]. Roughly spoken this principle states
that connections between neurons that are activated simultaneously are strengthened.
From a Hebbian perspective, strengthening of connections as mentioned in case of
positive valuation may be reasonable, as due to feedback cycles in the model structure,
neurons involved will be activated simultaneously.

Thus, by these processes an agent differentiates options to act based on the strength
of the connection between the sensory state of an option and the corresponding
preparation to an action state, influenced by its emotions. The option with the highest
activation of preparation is chosen to be performed by the agent.

As also used as an inspiration in [17], in a social context, the idea of somatic
marking can be combined with recent neurological findings on the mirroring function
of certain neurons (e.g., [18, 25]). Mirror neurons are neurons which, in the context of
the neural circuits in which they are embedded, show both a function to prepare for
certain actions or bodily changes and a function to mirror similar states of other
persons. They are active not only when a person intends to perform a specific action or
body change, but also when the person observes somebody else intending or per-
forming this action or body change. This includes expressing emotions in body states,
such as facial expressions. The mirroring function relates to decision making in two
different ways. In the first place mirroring of emotions indicates how emotions felt in
different individuals about a certain considered decision option mutually affect each
other, and, assuming a context of somatic marking, in this way affect how by indi-
viduals decision options are valuated in relation to how they feel about them. A second
way in which a mirroring function relates to decision making is by applying it to the
mirroring of intentions or action tendencies of individuals (i.e., preparation states for
an action) for the respective decision options. This may work when by verbal and/or
nonverbal behaviour individuals show in how far they tend to choose for a certain
option. In the computational model introduced below in Sect. 4 both of these (emotion
and preparation) mirroring effects are incorporated.
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4 Modelling Emotional Decision Making

First, in Sect. 4.1 a modelling language is described used for formalisation of the
model. Then, the formal model is provided in Sect. 4.2.

4.1 The Modelling Language

To specify dynamic properties of a system, the order-sorted predicate logic-based
language called LEADSTO is used [4]. This language satisfies essential demands for
dynamic modelling of agent systems in natural domains. In particular, it allows the
possibility of both discrete and continuous modelling of a system at different aggre-
gation levels. Furthermore, it has numerical expressivity for modelling systems with
explicitly defined quantitative relations presented by difference or differential equa-
tions. Moreover, for specifying qualitative aspects of a system, LEADSTO is able to
express logical relationships between parts of a system.

Dynamics in LEADSTO is represented as evolution of states over time. A state is
characterized by a set of properties that do or do not hold at a certain point in time.
To specify state properties for system components, ontologies are used which are
defined by a number of sorts, sorted constants, variables, functions and predicates (i.e.,
a signature). For every system component A a number of ontologies can be distin-
guished: the ontologies IntOnt(A), InOnt(A), OutOnt(A), and ExtOnt(A) are used to express
respectively internal, input, output and external state properties of the component
A. Input ontologies contain elements for describing perceptions of an agent from the
external world, whereas output ontologies describe actions and communications of
agents. For a given ontology Ont, the propositional language signature consisting of all
state ground atoms based on Ont is denoted by APROP(Ont). State properties are
specified based on such ontology by propositions that can be made (using conjunction,
negation, disjunction, implication) from the ground atoms. Then, a state S is an indi-
cation of which atomic state properties are true and which are false: S: APROP

(Ont) → {true, false}.
LEADSTO enables modeling of direct temporal dependencies between two state

properties in successive states, also called dynamic properties. A specification of
dynamic properties in LEADSTO is executable and can be depicted graphically. The
format is defined as follows. Let α1 and α2 be state properties of the form ‘conjunction
of atoms or negations of atoms’, and e, f, g, h non-negative real numbers. In the
LEADSTO language the notation α1 ↠e, f, g, h α2 means: if state property α1 holds for a
certain time interval with duration g, then after some delay (between e and f) state
property α2 will hold for a certain time interval of length h (Fig. 3). When e = f = 0 and
g = h = 1, called standard time parameters, we shall write α1↠ α2. To indicate the type of
a state property in a LEADSTO property we shall use prefixes input(c), internal(c) and
output(c), where c is the name of a component. Consider an example dynamic property:
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input(A)|observation_result(fire) ↠ output(A)| performed(runs_away_from_fire)

Informally, this example expresses that if agent A observes fire during some time
unit, then after that A will run away from the fire during the following time unit.

In addition, LEADSTO allows expressing mathematical operations, e.g., has_value
(x, v) ↠ e, f, g, h has_value(x, v*0.25).

Next, a trace or trajectory γ over a state ontology Ont is a time-indexed sequence of
states over Ont (where the time frame is formalised by the real numbers). A LEADSTO
expression α1 ↠e, f, g, h α2, holds for a trace γ if:

8t1 ½8t½t1�g� t\t1 ) a1 holds in c at time t�
) 9d½e� d� f & 8t0 ½t1þ d� t0 \t1þ dþ h ) a2 holds in c at time t0�

To specify the fact that a certain event (i.e., a state property) holds at every state (time
point) within a certain time interval a predicate holds_during_interval(event, t1, t2) is
introduced. Here event is some state property, t1 is the beginning of the interval and t2 is
the end of the interval.

An important use of the LEADSTO language is as a specification language for
simulation models. As indicated above, on the one hand LEADSTO expressions can be
considered as logical expressions with a declarative, temporal semantics, showing what
it means that they hold in a given trace. More details on the semantics of the
LEADSTO language can be found in [4].

4.2 The Computational Model

Depending on a situational context an agent determines a set of applicable options to
satisfy its goal. In the case study the goal of each agent is to get outside of the train
station in the fast possible way. This is achieved by an agent by moving towards the
exit that provides for fastest evacuation as it perceived by the agent. Evacuation options
are represented internally in agents by one-step simulated behavioural chains, based on
the neurological theory by Hesslow [16] (see Fig. 4). Note that if more than one exit is
known to the agent, then in each option representation the preparation state corre-
sponding to the option’s exit is generated. Computationally, alternative options con-
sidered by an agent are being generated and evaluated in parallel.

According to the Somatic Marker Hypothesis [8], each represented decision option
induces (via an emotional response) a feeling(s) which is used to mark the option. For
example, a strongly positive somatic marker linked to a particular option occurs as a

Fig. 3. Timing relationships for LEADSTO expressions.
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strongly positive feeling for that option. The decision options from our study evoke two
types of emotions - fear and hope, which are often considered in the emergency
context. To realise the somatic marker hypothesis in behavioural chains, emotional
influences on the preparation state for an action are defined as shown in Fig. 4. Through
these connections emotions influence the agent’s readiness to choose the option.

In Fig. 4 the burning station situation elicits activation of the state srs(evacua-

tion_required) in the agent’s sensory cortex that leads to preparation for action prepara-

tion_for(move_to(E)). Here E is one of the exits of the station. Furthermore, this
preparation state is affected by the sensory representations of the perceived preparation
of the neighbouring agents for the action and of the emotions felt towards the option.

Formally:

srs(evacuation_required, V1) & srs(fear, V2) & srs(hope, V5) & srs(G(move_to(E)), V3) & prepa-

ration_for(move_to(E), V4)

↠ preparation_for(move_to(E), V4 + γ(h(V1, V2, V3, V5) – V4)Δt),

where G(move_to(E) is the aggregated preparation of the neighbouring agents to action
move_to(E), h(V1, V2, V3, V5) is a combination function:

h(V1, V2, V3, V5) = β (1 − (1 − V1)V2(1 − V3)(1 − V5)) + (1 − β) V1 V3 V5(1 − V2)

Here β is a parameter that reflects the agent’s predisposition to think positively
(β > 0.5) or negatively (β < 0.5). Parameter γ reflects the agent’s rate of change of its state.

The option with the highest activation of preparation is chosen to be performed by
the agent.

Then, associations are used such that preparation_for(move_to(E)) will generate srs

(is_at(E)), which is the most connected sensory consequence of the action move_to(E).
The strength of the link between a preparation for an action and a sensory

Fig. 4. The emotional decision making model for the option to move to exit E.

Understanding the Role of Emotions in Group Dynamics in Emergency Situations 37



representation of the effect of the action (see Fig. 4) is used to represent the confidence
value of the agent’s belief that the action leads to the effect. This is modelled by the
following formal property:

preparation_for(move_to(E), V) & connection_between_strength(preparation_for(move_to(E)), srs

(is_at(E)), ω) ↠ srs(is_at(E), ωV)

The simulated sensory states elicit emotions, which guide agent behaviour either by
reinforcing or punishing simulated actions. By evaluating sensory consequences of
actions in simulated behavioural chains using cognitive structures from the OCC model
[23], different types of emotions can be distinguished. As a simulated behavioural chain
is a kind of a behavioural projection, cognitive structures of prospect-based emotions
(e.g., fear, hope, satisfaction, disappointment) from [23] are particularly relevant for the
evaluation process. In our study two types of emotions - fear and hope – are distin-
guished. According to [23], the intensity of fear induced by an event depends on the
degree to which the event is undesirable and on the likelihood of the event. The
intensity of hope induced by an event depends on the degree to which the event is
desirable and on the likelihood of the event. Thus, both emotions are generated based
on the evaluation of a distance between the effect states for the action from an option
and the agent’s goal state.

In particular, the evaluation function for hope in the evacuation scenario is
specified as

eval g; is at Eð Þð Þ ¼ x;

where ω is the confidence value for the belief about the accessibility of exit E, which is
an aggregate of the agent’s estimation of the distance to the exit and the degree of
clogging of the exit. Although it is assumed that the distances to the exits are known to
the agents, the information about the degree of clogging of the exits is known only to
technology-equipped agents.

Emotions emerge and develop in dynamics of reciprocal relations between cog-
nitive and body states of a human [7, 8]. These relations, omitted in the OCC model,
are modelled from a neurological perspective using Damasio’s principles of ‘as-if
body’ loops and somatic marking described in Sect. 3. The ‘as-if body’ loops for hope
and fear emotions are depicted in Fig. 4 by thick solid arrows. These loops are for-
malised by the properties provided below.

The evaluation properties for fear and for hope of the effect of action move_to(E)

compared with the goal state goal is specified formally as:

srs(goal, V1) & srs(is_at(E), V2) & srs(fear, V3) &

connection_between_strength(preparation_for(move_to(E)), srs(is_at(E)), V4) &

srs(eval_for(is_at(E), bfear), V5)

↠ srs(eval_for(is_at(E), bfear), V5 + γ(h(V4*f(goal, is_at(E)), V3) – V5) Δt),

where f(goal,is_at(E)) = |V1-V6|, V6 = eval(goal, is_at(E), and
h(V1, V2) = β (1-(1-V1)(1-V2)) + (1-β) V1 V2.
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srs(goal, V1) & srs(is_at(E), V2) & srs(hope, V3) &

connection_between_strength(preparation_for(move_to(E)), srs(is_at(E)), V4) &

srs(eval_for(is_at(E), bhope), V5)

↠ srs(eval_for(is_at(E), bhope), V5 + γ(h(V4* f(goal, is_at(E)), V3) – V5) Δt),

where f(goal, is_at(E)) = 1-|V1-V6|, and V6 = eval(goal, is_at(E)).

The evaluation of the effects of the action for a particular emotional response to an
option determines the intensity of the emotional response:

srs(eval_for(is_at(E), bhope), V1) ↠ preparation_for(bhope, V1)

srs(eval_for(is_at(E), bfear), V1) ↠ preparation_for(bfear, V1)

The agent perceives its own emotional response and creates the sensory repre-
sentation state for it:

preparation_for(bhope, V) ↠ srs(bhope, V)

preparation_for(bfear, V) ↠ srs(bfear, V)

Finally the dynamics of the emotional states are formalised as follows:

srs(bhope, V1) & srs(G(bhope), V2) & srs(hope, V3) ↠ srs(hope, V3 + γ(h(V1, V2) – V3) Δt)),

where h(V1,V2) is a combination function defined above.

srs(bfear, V1) & srs(G(bfear), V2) & srs(fear, V3) ↠ srs(fear, V3 + γ(h(V1, V2) – V3) Δt)),

The social influence on the individual decision making is modelled based on the
mirroring function [18] of preparation neurons in humans. It is assumed that
the preparation states of an agent for the actions and for emotional responses for the
options are body states that can be observed with a certain intensity or strength by other
agents from the neighbourhood. Furthermore, it is assumed that an agent is able to
observe preparation states of other agents in its neighbourhood specified by radius
r. Note that the agent’s neighbourhood changes while the agent moves.

The contagion strength of the interaction from agent A2 to agent A1 for a preparation
state p is defined as follows:

cpA2A1
¼ epA2

� trustðA1;A2Þ � apA2A1 � dpA1

Here εpA2 is the personal characteristic expressiveness of the sender (agent A2) for p,
δpA1 is the personal characteristic openness of the receiver (agent A1) for p.

Trust is an attitude of an agent towards an information source that determines the
extent to which information received by the agent from the source influences agent’s
belief(s). The trust to a source builds up over time based on the agent’s experience with
the source. In particular, when the agent has a positive (negative) experience with
the source, the agent’s trust to the source increases (decreases). Currently experiences
are restricted to information experiences only. An information experience with a source
is evaluated by comparing the information provided by the source with the agent’s
beliefs about the content of the information provided. The experience is evaluated as
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positive (negative), when the information provided by the source is confirmed by
(disagree with) the agent’s beliefs. The following property describes the update of trust
of agent Ai to agent Aj based on information communicated by Aj to Ai about the degree
of clogging of exit E:

trust(Ai, Aj, V1) & communicated_from_to(Aj, Ai, clogging(E, V2)) & belief(Ai, clogging(E, V3))

↠ trust(Ai, Aj, V1 + γtr*(V3/(1 + eα) – V1)),

here α = –ω1*(1–|V2–V3|), parameter ω1 determines the steepness of change of the
trust state.

An agent Ai perceives the joint attitude of the crowd towards each option by
aggregating the input from all agents in its neighbourhood ℵ:
(a) the aggregated neighbourhood’s preparation to each action p is expressed by the
following dynamic property:

∧Aj∈ℵ internal(Aj)|preparation_for(p, Vj) ↠ internal(Ai)|srs(G(p), Σ j≠i γpAjAi Vj /Σ j≠i γpAjAiεpAj)

(b) the aggregated neighbourhood’s preparation to the emotional responses (hope and
fear) for each option:

∧Aj∈ℵinternal(Aj)|preparation_for(bhope,Vj)↠internal(Ai)|srs(G(bhope),Σj≠I γbeAjAi Vj/Σ j≠i γbeAjAiεbeAj)

∧Aj∈ℵinternal(Aj)|preparation_for(bhope,Vj)↠internal(Ai)|srs(G(bhope),Σj≠I γbeAjAi Vj/Σ j≠i γbeAjAiεbeAj)

The Hebbian learning principle for links connecting the sensory representation of
options with preparation states for subsequent actions in the simulation of a behavioural
chain is formalised as follows (cf. [14, 15]):

connection_between_strength(srs(evacuation_required), preparation_for(move_to(E)), V1) & srs

(srs(evacuation_required), V2) & preparation_for(move_to(E), V3)

↠ connection_between_strength(srs(evacuation_required), preparation_for(move_to(E)), V1 + (η

V2 V3 (1 – V1) – ξV1)Δt),

where η is a learning rate and ξ is an extinction rate.

5 Simulation Results

The model was implemented in the Netlogo simulation tool [31] by cellular automata.
In this tool the environment is represented by a set of connected cells, where moveable
agents (turtles) reside. Cells can be walkable (open space and exits) and not-walkable
(concrete, partitions, walls). Each cell of the environment is accessible from all the
exits.

The three variants of the model described in Sect. 2 were implemented as 3 sim-
ulation conditions:

Condition 1: Agents generate and exchange both information and emotions during the
social decision making.
Condition 2: Agents generate both emotions and information, but exchange only
information.
Condition 3: Agents generate and exchange only information.
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Since the model contains stochastic elements, 50 trials were performed for each
simulation setting with 1000 heterogeneous agents with the parameters drawn from the
ranges of uniformly distributed values as indicated in Table 1 below to represent a
diversity of agent types that may occur in real emergency situations. It is assumed that
the agents have average to high expressiveness and openness. The agents do not have a
strong predisposition to think positively or negatively (β) in the simulation. The agents
have an average to high rate of change of their states (γ). The agents have an average
learning rate (η) and a low extinction rate (ξ), as often assumed in neurological models.
It is assumed that humans trust technology in the same manner as to human strangers.
A human agent has a low initial trust value to all other agents; it increases (decreases)
slowly (ω1 = 9) its trust to an agent after a positive (negative) experience with the
agent.

In the following simulation results and testing of the hypotheses formulated in
Sect. 1 are discussed. To test the hypotheses, the simulation traces generated for each
condition were analysed using the TTL Checker Tool [5].

To evaluate Hypothesis 1 two evaluation metrics were introduced: following index
(fi), which reflects the degree of following of technology-assisted agents by other
agents, and group size (gs). As shown below, the metrics are defined per a technology-
assisted agent L (i.e., fiL, gsL) and by taking the mean over all technology-assisted agents
(i.e., fi, gs). The following index is defined as follows:

fiL¼ 1= Nj j �
X

A2N FA;L
�� ��= t last� t firstAð Þ; fi =

X
i2LEAD fii= LEADj j;

where t_firstA is such that
∃o1:INFO at(communicated_from_to(L, A, inform, o1), t_firstA) & ∀t:TIME, o:INFO t < t_firstA &

¬at(communicated_from_to(L, A, inform, o), t);

N = {a | t_firstA is defined}; FA,L = {t | t ≥ t_firstA & ∃d1,d2: DECISION at(has_preference_for(A, d1),

t) & at(has_preference_for(L, d2), t) & d1 = d2 & at(distance_between(A, L) < dist_threshold, t) },

t_last is the time point when L is evacuated, LEAD is the set of all technology-assisted
agents.

The group size is defined as follows:

gsL ¼
X

t¼1::t last
FTL;t=t last; gs ¼

X
i2LEAD gsL= LEADj j;

Table 1. Ranges and values of the agent parameters used in the simulation.

ε for all
states
from all
agents

δ for all
states
from all
agents

β γ η ξ Δt r ω1 Initial
trust to all
agents

[0.7, 1] [0.7, 1] [0.55, 0.7] [0.7, 1] 0.6 0.1 1 10 9 [0.1, 0.3]
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where FTL,t = {ag | t ≥ t_firstag & ∃d1,d2: DECISION at(has_preference_for(ag, d1), t) & at

(has_preference_for(L, d2), t) & d1 = d2 & at(distance_between(A, L) < dist_threshold, t) }.

The obtained results are summarised in Table 2. As one can see from the table, the
emergence of groups with agents equipped with personal assistants as guiding leaders
occurs in all conditions (fi > 0), thus, the hypothesis 1 is confirmed.

In Condition 1 the most clogged exit throughout the simulation is Exit SC1, as it is
the closest exit to most of the agents (Fig. 5a). As information about clogging of other
exits spreads through the population of agents, the clogging of Exit SC1 decreases, but
still remains higher than the clogging of other exits. Agents react to the change of
clogging of the exits by changing their preferred exits (Fig. 5b). The amount of agents
aiming at exit SC1 decreases throughout the simulation, whereas the numbers of agents
choosing E15 and E13 fluctuate depending on the situation around these exits.

Information about the exits received by the agents influences their emotional states
(Fig. 6). The technology-assisted agents, who receive information about exits first,
change their emotions more rapidly than the agents without such devices (cf. the
dynamics of hope in Fig. 6a and b). Furthermore, information provided by the tech-
nology-assisted agents spreads rapidly and is readily accepted by other agents, as can
be seen from the similarity of the dynamics of the emotions in Fig. 6a and b.

To verify Hypothesis 2 a smoothness degree of the preparation for each action (i.e.,
move to exit E) averaged over all agents is determined in each simulation trial
(smoothness index (siE)):

siE ¼
X

t¼1...t last�1; a2Npt ;E;a= Nj j;

with pt;E;a ¼ vtþ1;E;a�vt;E;a
�� ��; when vtþ1;E;a�vt;E;a

�� ��� e

0; when vtþ1;E;a�vt;E;a
�� ��\e

(

Here N is the set of all agents, vt,E,a is the value of preparation_for(move_to(E)) for
agent a at time point t; ε is a threshold for distinguishing small changes from large
changes; ε is taken 0.1 for the analysis.

Thus, the smoothness index depends on the rate of change of the agent’s opinion
based on incoming information. This index indicates the robustness of a group of
agents to messages provided by agents outside the group, which support a decision

Table 2. The simulation results for 50 simulation trials for three simulation conditions.
Standard deviation is provided in brackets.

Coefficient Condition 1 Condition 2 Condition 3

fi 0.42 (0.15) 0.33 (0.11) 0.21 (0.11)

gs 27 (8.1) 15 (5.5) 11(3.2)

siexit1 0.12 (0.03) 0.32 (0.04) 0.65 (0.07)

siexit2 0.12 (0.04) 0.23 (0.05) 0.45 (0.08)

siexit3 0.13 (0.04) 0.21 (0.07) 0.29 (0.07)

ci 1.5 (0.4) 1.9 (0.7) 7.1 (0.7)
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option different from the one currently supported by the group. Note that a group is
defined by a set of human agents, supporting the same decision option and located
closely to each other in the physical space. In the evacuation scenario this occurs when
the situation around an exit(s) changes. Then, the agents with personal assistants
receive new information, based on which they may change their decisions. Further,
these agents spread new information to other agents in their neighbourhood. If besides
information also emotions are being spread (see Table 2, condition 1 and Fig. 7a), the
population of agents change their decisions gradually. When emotions are generated,
but are not being spread, the group becomes less robust to changes and reacts more
abruptly to incoming messages (see Table 2, condition 2 and Fig. 7b).

In the situation when emotions are not generated, the agents in a group change their
decisions frequently, rapidly and drastically (see Table 2, condition 2 and Fig. 7b).
Such a form of behaviour is highly unrealistic for human beings.

(a) (b) 
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300

400

500

time

Exit E15
Exit E13
Exit SC1

Fig. 5. (a) The change of the degree of clogging of each exit over time in Condition 1; (b) The
change of numbers of agents heading to each exit in Condition 1.
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Fig. 6. The emotional response toward the option to follow exit E13 averaged over technology-
assisted agents (a) and over the agents without devices (b).
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Thus, the outcomes of the simulation support Hypothesis 2 that generation and
spread of emotions increase the consistency of social decision making.

To verify Hypothesis 3 the metrics called change index (ci), reflecting the frequency
of group change by an agent, was introduced.

It is defined by:

ciL ¼ 1= Nj j
X

A2N SA;L

�� ��; ci ¼
X

i2LEAD cii= LEADj j;

where LEAD is the set of all agents with personal assistants,

SA,L = {t | (t∈ FA,L & (t + 1) ∉ FA,L) OR ((t + 1)∈ FA,L & t ∉ FA,L) }, and
FA,L = {t | t ≥ t_firstA & ∃d1,d2:DECISION at(has_preference_for(A, d1), t) & at(has_preference_for

(L, d2), t) & d1 = d2 & at(distance_between(A, L) < dist_threshold, t)}, at(X,t) denotes that X holds
at time point t, and

t_firstA is such that ∃o1:INFO at(communicated_from_to(L, A, inform, o1), t_firstA) & ∀t:TIME, o:

INFO t < t_firstA & ¬at(communicated_from_to(L, A, inform, o), t), and

N = {a | t_firstA is defined}.

The average change index in Condition 3 was 4.7 and 3.7 times higher than in
Conditions 1 and 2 respectively (Table 2, ci row). Thus, when emotions are not
generated, agents are significantly less attached to their group than in the case when
emotions are generated and being spread. The two-sample t-test performed on the
outcomes of Condition 3 and Condition 1 and on the outcomes of Condition 3 and
Condition 2 confirms Hypothesis 3 with 95 % confidence.

To test Hypothesis 4, Conditions 1 and 2, with and without spread of emotions
correspondingly, with the penetration rates of personal assistant devices equal to 1, 5
and 10 % were simulated 50 times each. Then, for each simulation case the mean
values of the coefficients siexit1, siexit2, siexit3, ci, fi, describing the dynamics of emerging
groups, were determined. After that, the differences between the corresponding
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Fig. 7. The change of the preparation to move to exit E15 averaged over the whole population of
agents (solid line; left vertical axis), and the change of the degree of clogging of exit E15 (dotted
line; right vertical axis) in condition 1(a), condition 2(b) and condition 3(c); the horizontal line is
time.
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coefficients for Conditions 1 and 2 were calculated averaged over 50 simulations
(Table 3), which can be seen as measures of similarity of the group dynamics between
the conditions.

The results in Table 3 indicate that with an increase of the number of personal
assistant devices, the differences between Conditions 1 and 2 become smaller. This can
be explained as follows: Personal assistant devices support the consistency of social
decision making by providing uniform information to human agents. When the number
of the personal assistant devices becomes high, most of the human agents will be
situated within the reach of such devices. In this case, the devices will (partially)
overtake the role of emotions by providing information to human agents, which will
increase the cohesiveness of groups and the consistency of their decision making.
Because of this, the role of emotional influences, and thus differences between the
Conditions 1 and 2, will be diminished. This supports Hypothesis 4.

To test Hypothesis 5, Condition 1 was simulated 50 times with two more propa-
gation radii: r = 5 and r = 20. It can be observed in Table 4 that the mean group size and
the overall evacuation time grow with the increase of the interaction range. The two-
sample t-test performed on the outcomes of two pairs of conditions - with the inter-
action range 5 and 10, and with the interaction range 10 and 20 - confirms Hypothesis 5
with 95 % confidence.

6 Conclusion

Many empirical studies indicated [7, 9, 19, 22] that emotions play an important role in
social decision making. In this paper the role of emotions in group dynamics in large
crowds has been investigated. To this end, based on the literature from social

Table 3. The differences between the group dynamics coefficients for Conditions 1 and 2 for
different penetration rates averaged over 50 simulations

Penetration rate, % 1 5 10

<siexit1
cond2 − siexit1

cond1> 0.35 0.2 0.05

<siexit2
cond2 − siexit2

cond1> 0.25 0.11 0.03

siexit3
cond2 − siexit3

cond1> 0.21 0.08 0.03

<cicond2 − cicond1> 0.9 0.4 0.1

<ficond2 − ficond1> 0.12 0.09 0.04

Table 4. The mean overall evacuation time and the mean size of the groups emerging in the
simulation of Condition 1 with different interaction ranges. Standard deviation is provided in
brackets.
Interaction range, r 5 10 20

Mean group size, gs 17 (4.8) 27 (8.1) 54 (10.2)

Mean overall evacuation time in seconds 156.2 (24.3) 164.1 (31.6) 201.4 (32.2)
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psychology and domain knowledge five hypotheses were formulated. To verify these
hypotheses a computational model for social decision making was developed. This
model is based on a number of neurological theories and principles supplementing each
other in a consistent manner. By simulation based on this model and performing the
two-sample t tests on the results all these hypotheses were confirmed. In particular,
human agents equipped with personal assistants were recognised as leaders in groups
emerging in evacuation. Evacuation with larger groups proceeded more slowly than
with smaller groups. Spread of emotions in a crowd increased resistance of agent
groups to opinion changes. Acceptance of a different decision option occurred grad-
ually, as also described in the literature [21, 22]. Furthermore, spread of emotions in a
group increased its cohesiveness. This result is also supported by the literature (e.g., see
[22]). Emotional influences were, however, attenuated by an increasing number of
personal assistant devices.

The modelling perspective followed aims at a cognitive and affective modelling
level, but takes inspiration from the underlying mechanisms as described at a neuro-
logical level. Modeling causal relations discussed in neurological literature in a cog-
nitive/affective level model does not take specific neurons into consideration but uses
more abstract mental states. This is a way to use results from the large and more and
more growing amount of neurological literature for the cognitive/affective modelling
level. This method can be considered as lifting neurological knowledge to a higher
level of description. In a more detailed manner, in [3], such a perspective is discussed:
‘… we can expect that injection of some neurobiological details back into folk psy-
chology would fruitfully enrich the latter, and thus allow development of a more fine-
grained folk-psychological account that better matches the detailed functional profiles
that neurobiology assigns to its representational states.’ [3]. Here Bickle suggests that
by relating a (folk) psychological to a neurobiological account, the psychological
account can be enriched. The type of higher level model that results from adopting
principles from the neurological level may inherit some characteristics from the neu-
rological level. In particular this holds for the Hebbian learning principle adopted here.
Another, even more basic element inherited from this ‘lifting’ perspective is the use of
numbers to indicate the strength of the considered states. This is more common in
neural modelling perspectives, but here also applied at a higher level. Such a gradual
way of modelling allows for the type of cyclic and adaptive processes addressed here,
which would be impossible using an approach based on a binary states.

To generate emotions the OCC model has been used in the paper. However, there
also exist other approaches to emotional modelling, such as the basic emotions
approach [34] and the dimensional approach [35]. The former approach is similar to the
OCC model in distinguishing a set of basic emotions (e.g., happiness, anger). The latter
approach distinguishes a few dimensions (e.g., valence and arousal) to characterise
different emotions; e.g., fear is characterised by a negative valence and a high arousal.
Both these approaches can be incorporated in our model by defining appropriate
evaluation functions, as discussed in Sect. 4.2.

In the literature [11] it is recognized that humans often employ diverse emotion
regulation mechanisms (e.g., to cope with fear and stress). These mechanisms involve
interplay between cognitive and affective processes. In the future the proposed model
will be extended with an emotion regulation component.
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Furthermore, in real evacuation communication lines might be broken and infor-
mation relay may be significantly delayed. Such scenarios were not considered in this
paper and are left for future work.
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