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Abstract. Differential uniformity and nonlinearity are two basic prop-
erties of S-boxes, which measure the resistance of S-boxes to differential
and linear attack respectively. Besides these two properties, the hardware
cost of S-boxes is also an important property which should be consid-
ered primarily in a limited resource environment. By use of Feistel struc-
ture, we investigate the problem of constructing S-boxes with excellent
cryptographic properties and low hardware implementation cost in the
present paper. Feistel structure is a widely used structure in the design
of block ciphers, and it can be implemented easily in hardware. Three-
round Feistel structure has been used to construct S-boxes in symmetric
algorithms, such as CS-Ciper, CRYPTON and ZUC. In the present pa-
per, we investigate the bounds on differential uniformity and nonlinearity
of S-boxes constructed with three-round Feistel structure. By choosing
suitable round functions, we show that for odd k, differential 4-uniform
S-boxes over F

2
2k with the best known nonlinearity can be constructed

via three-round Feistel structure. Some experiment results are also given
which show that optimal 4-bit S-boxes can be constructed with 4 or 5
round unbalanced Feistel structure.

Keywords: lightweight cryptography, S-boxes, Feistel structure, differ-
ential uniformity, nonlinearity.

1 Introduction

S-box is an important component of symmetric cryptography algorithms since it
provides “confusion” for algorithms and in most cases is the only nonlinear part
of round functions. S-boxes used in cryptography should posses good properties
to resist various attacks. As a nonlinear part, an S-box usually takes a relative
high cost in hardware implementation. Thus the cost of hardware implementa-
tion of an S-box is also of significant importance in lightweight cryptography
algorithms, which are aiming to provide security in a limited resource environ-
ment. With the rapid development of lightweight cryptography, it is of particular
interest to investigate the problem of constructing S-boxes with excellent cryp-
tographic properties and low cost hardware implementation.
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Feistel structure is a well-known and widely used structure in symmetric cryp-
tography. There are too many block ciphers designed with the scheme, and the
most famous one among them is Data Encryption Standard (DES). Feistel struc-
ture is also used for constructing components of block ciphers. For example,
MISTY used three-round Feistel structure to construct its nonlinear part FI
[20]. The S-boxes in CS-Ciper [24], CRYPTON [18] and ZUC [25] are also
constructed with three-round Feistel structure.

In general, the cost of hardware implementation of nonlinear functions is in
direct proportion to its input and output size. For example, the 8-bit S-box
of AES cost around 200 gates [5], and optimal 4-bit S-boxes cost less than 40
gates [17]. Thus, implementing functions on F2k often cost much less area than
implementing functions on F22k . An advantage of constructing S-boxes over F2

2k

with Feistel structure is that it only need to implement round functions on F2k .
Therefore, comparing with 2k-bit S-boxes constructed directly with permutation
polynomials over F22k , S-boxes over F

2
2k constructed via Feistel structure with

round functions on F2k cost much less area in hardware implementation.
However, the best cryptographic performance of S-boxes constructed with

Feistel structure is not known clearly. Differential uniformity and nonlinearity
are two basic properties of S-boxes, which measure the resistance of S-boxes to
differential and linear attack respectively. S-boxes with lower differential unifor-
mity and higher nonlinearity posses better resistance to differential and linear
attack. Then it is interesting to investigate the lower bound and upper bound
of differential uniformity and nonlinearity of S-boxes constructed with Feistel
structure respectively.

There are already some work on the provable security of Feistel structure,
such as [19,21]. Based on the assumption that round keys are independent and
uniformly random, it is proven that the average differential uniformity of all
permutations constructed via r-round (r ≥ 3) Feistel structure with round per-
mutation f and all possible round keys is less than or equal to Δ(f)2 [21]. Note
that the bound is an average bound over all round keys, then for some fixed
round keys, the differential uniformity of the corresponding permutation may
larger than the above bound. This has been verified with experiment results in
[1].

In the present paper, we mainly investigate the problem of constructing S-
boxes with low differential uniformity, high nonlinearity and easy hardware im-
plementation by use of Feistel structure. Without any statistical assumptions,
we investigate the lower bound and upper bound of S-boxes constructed with
three-round Feistel structure. We show that differential 4-uniform permutations
with the best known nonlinearity can be constructed with three-round Feistel
structure. It is also shown that optimal 4-bit S-boxes can be constructed with 4
and 5 round unbalanced Feistel structure.

The paper is organized as follows. In Sect. 2, some preliminaries are given.
In Sect. 3, the bound on differential uniformity and nonlinearity of S-boxes
constructed with three-round Feistel structure is characterized. In Sect. 4, a
class of differential 4-uniform permutations with the best known nonlinearity
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over F22k for odd k is constructed via three-round Feistel structure. In Sect. 5, it
is shown that optimal 4-bit S-boxes can be constructed with unbalanced Feistel
structure. A conclusion is given in Sect. 6.

2 Preliminaries

An S-box with n-bit input and output can be represented by a polynomial on
the finite field F2n . First, we introduce the definitions of differential uniformity,
nonlinearity and algebraic degree.

Definition 1. [22] Let F (x) ∈ F2n [x]. The differential uniformity of F (x) is
defined as

Δ(F ) = max{|RF (a, b)| : a ∈ F
∗
2n , b ∈ F2n},

where RF (a, b) means the set of solutions of equation F (x) + F (x + a) = b in
F2n .

F (x) is called differential δ-uniform when Δ(F ) = δ. It is easy to see that
the lower bound on differential uniformity of F (x) ∈ F2n [x] is 2. Differential
2-uniform functions are called almost perfect nonlinear (APN). The differential
spectrum is the set {|RF (a, b)| : a ∈ F

∗
2n , b ∈ F2n}.

Definition 2. Let F (x) ∈ F2n [x]. The minimum distance of the components of
F (x) and all affine Boolean functions on n variables is called the nonlinearity of
F (x). It is denoted by NL(F ) and can be computed as follows

NL(F ) = 2n−1 − 1

2
Λ(F ),

whereΛ(F )=max{|λF (a, b)| :a ∈ F2n , b ∈ F
∗
2n}andλF (a, b)=

∑

x∈F2n

(−1)Tr(bF (x)+ax).

For odd n and F (x) ∈ F2n [x], it holds that NL(F ) ≤ 2n−1 − 2
n−1
2 [10]. For

even n and F (x) ∈ F2n [x], the upper bound on the nonlinearity of F (x) is still
open, and the best known nonlinearity is 2n−1 − 2

n
2 [11].

Definition 3. The algebraic degree of G(x) =
2n−1∑

j=0

cjx
j ∈ F2n [x], which is de-

noted by d◦(G), equals the maximum hamming weight of binary expansion of j
with cj �= 0. In other words, d◦(G) = maxj,cj �=0{ω2(j)}, where ω2(j) means the
number of nonzero terms in the binary expansion of j.

For other cryptographic properties of Boolean functions and vectorial Boolean
functions, one can see [8,9] for more details.
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Fig. 1. An S-box constructed with three-round Feistel structure

3 On Properties of S-boxes Constructed with
Three-Round Feistel Structure

Throughout this section, we consider S-boxes constructed with three-round Feis-
tel structure as in Figure 1. Let Pi(x) ∈ F2k [x], 1 ≤ i ≤ 3. Then an S-box over
F
2
2k constructed as in Figure 1 can be characterized as

F (x, y) = (x+ P1(y) + P3(y + P2(x+ P1(y))), y + P2(x+ P1(y))).

We also write F (x, y) as FP1,P2,P3(x, y) when the sequence of round transforma-
tions P1, P2 and P3 is emphasized. It is easy to see that F (x, y) is a permutation
over F2

2k and

FP1,P2,P3(x, y)
−1 = FP3,P2,P1(x, y),

where FP1,P2,P3(x, y)
−1 means the compositional inverse of FP1,P2,P3(x, y).

This construction has been used in CS-Ciper [24], CRYPTON [18] and ZUC
[25]. In this section, we mainly investigate the bound on differential uniformity
and nonlinearity of F (x, y).

First, it needs the following result. Remember that for F (x) ∈ F2n [x], a ∈ F
∗
2n

and b ∈ F2n , RF (a, b) means {y ∈ F2n | F (y) + F (y + a) = b}.
Lemma 1. [6,1] Suppose Pi(x) ∈ F2k [x], 1 ≤ i ≤ 3, and F (x, y) be the S-box
constructed as in Figure 1. Then the following statements hold.

(1) Let a, b, c ∈ F2k and (a, b) �= (0, 0). Then the equation F (x, y)+F (x+ a, y+
b) = (c, 0) has |RP1(b, c + a)| · |RP2(c, b)| roots in F

2
2k . Furthermore, these

roots are (zi + P1(yj), yj), where yj ∈ RP1(b, c+ a) and zi ∈ RP2(c, b).
(2) Let a, b ∈ F2k and c ∈ F

∗
2k . Then λF ((a, b), (0, c)) = λP1 (c+ b, a)λP2(a, c).

Theorem 1. Suppose Pi(x) ∈ F2k [x], 1 ≤ i ≤ 3, and F (x, y) be the S-box con-
structed as in Figure 1. Then the following statements hold.
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(1) If P2(x) is not a permutation over F2k , then Δ(F ) ≥ 2k+1.
(2) If P2(x) is a permutation over F2k , then Δ(F ) ≥ 2Δ(P2).

Proof. (1). Since P2(x) is not a permutation over F2k , then there exists a ∈ F
∗
2k

such that
P2(x) + P2(x+ a) = 0

has at least 2 roots in F2k , which means |RP2(a, 0)| ≥ 2. Notice that RP1(0, 0) =
F2k , Then according to (1) of Lemma 1, F (x, y) + F (x + a, y) = (a, 0) has at
least

|RP1(0, 0)| · |RP2(a, 0)| = 2k+1

roots in F
2
2k , which implies Δ(F ) ≥ 2k+1.

(2). Firstly, we choose b, c ∈ F
∗
2k , such that |RP2(c, b)| = Δ(P2). Then we

choose a ∈ F2k , such that RP1(b, c+a) is nonempty. This means |RP1(b, c+a)| ≥
2. Therefore, according to (1) of Lemma 1,

F (x, y) + F (x+ a, y + b) = (c, 0)

has 2Δ(P2) roots in F2k . Hence Δ(F ) ≥ 2Δ(P2). ��
Let

λk =

{
2

k+1
2 k odd,

2
k
2+1 k even.

For F (x) ∈ F2k [x], we assume it holds

Λ(F ) ≥ λk,

which is a bound accepted widely for F (x) ∈ F2n [x] with n even, although it is
not proven yet. Then we have the following result concerning the nonlinearity of
F (x, y).

Theorem 2. Suppose Pi(x) ∈ F2k [x], 1 ≤ i ≤ 3, and F (x, y) be the S-box con-
structed as in Figure 1. If for any a ∈ F

∗
2k , there exists b ∈ F

∗
2k such that

|λP2(a, b)| ≥ λk, then NL(F (x, y)) ≤ 22k−1 − λ2
k

2 .

Proof. We only need to prove Λ(F (x, y)) ≥ λ2
k. Choose a ∈ F

∗
2k , c ∈ F2k such

that
|λP1 (c, a)| = Λ(P1).

According to the condition of P2, there exists b ∈ F
∗
2k such that |λP2 (a, b)| ≥ λk.

Then according to (2) of Lemma 1, it holds

λF ((a, b + c), (0, b)) = λP1 (c, a)λP2(a, b).

Note that

Λ(F (x, y))=max{|λF ((u1, u2), (v1, v2))| : (u1, u2), (v1, v2) ∈ F
2
2k , (v1, v2) �=(0, 0)},
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Table 1. Properties of known 8-bit S-boxes constructed with three-round Feistel
structure

Algorithm/S-box Differential uniformity Nonlinearity Algebraic degree

CS-Ciper/P 16 96 5

CRYPTON/S0, S1 8 96 5

ZUC/S0 8 96 5

then it holds

Λ(F (x, y)) ≥ |λF ((a, b+ c), (0, b))|
= |λP1(c, a)| × |λP2(a, b)|
≥ Λ(P1)λk

≥ λ2
k,

and we complete the proof. ��
As for 8-bit S-boxes, which are the most often usage size in real applications,

we have the following result.

Theorem 3. Suppose FP1,P2,P3(x, y) is an S-box over F
2
24 constructed by three-

round Feistel structure with round functions Pi(x) ∈ F24 [x], 1 ≤ i ≤ 3. Then the
following statements hold.

(1) Δ(FP1,P2,P3) ≥ 8.
(2) If Δ(FP1,P2,P3) = 8, then NL(FP1,P2,P3) ≤ 96.

Proof. Notice that there are no APN permutations over F24 [16], then the dif-
ferential uniformity of any permutation over F

2
24 constructed with three-round

Feistel structure is larger than or equal to 8.
If Δ(FP1,P2,P3) = 8, then P2(x) is a differential 4-uniform permutation over

F24 according to Theorem 1. By an exhaustive search, it can be checked that
the condition of Theorem 2 is satisfied by all differential 4-uniform permutations
over F24 . Then according to Theorem 2, we have NL(FP1,P2,P3) ≤ 96. ��

The permutation P in CS-Ciper, S-boxes S0, S1 in CRYPTON and an S-box
S0 in ZUC are constructed by three-round Feistel structure. The properties of
these 8-bit S-boxes are listed in Table 1.

The permutation P in CS-Ciper is an involution over F
2
24 , which means

P (P (x, y)) = (x, y) for (x, y) ∈ F
2
24 . The differential uniformity of the permuta-

tion P in CS-Ciper does not achieve the bound in Theorem 3. In Example 1,
we give an involution over F2

24 , which achieves the bound in Theorem 3 and has
a better algebraic degree.

According to Theorem 3, the differential uniformity and nonlinearity of S-
boxes in CRYPTON and ZUC can not be improved by choosing different round
transformations. However, the following example shows that the algebraic degree
of S-boxes constructed with three-round Feistel structure can be improved to 6.
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Example 1. Let P1(x) = x3, P2(x) = x + g6x10 + g3x13, where g is a root of

x4 + x + 1 = 0, and P3(x) = x3 + (x2 + x + 1)Tr(x3) =
14∑

i=4

xi. P1(x) is a case

of Gold function [12,22], which is an APN polynomial. P2(x) is a differential
4-uniform permutation over F24 got by computer searching. P3(x) is an APN
polynomial which is CCZ-equivalent and EA-inequivalent to P1(x) [3].

It is easy to check that FP1,P2,P3 and FP3,P2,P3 are S-boxes over F
2
24 with

differential uniformity 8, nonlinearity 96 and algebraic degree 6. Furthermore,
FP3,P2,P3 is an involution over F2

24 .

4 Optimal S-boxes Constructed with Three Round
Feistel Structure

When k is odd, the upper bound on nonlinearity of F (x, y) in Theorem 2 is
22k−1 − 2k, which is the best known nonlinearity of functions on F

2
2k . Further-

more, there exist APN permutations over F2k with k odd. Thus, it is possible
to get differential 4-uniform permutations over F2

2k with the best known nonlin-
earity.

Suppose k is an odd integer, gcd(i, k) = 1. Then x2i+1 is an APN permutation

over F2k and denote its compositional inverse by x
1

2i+1 . Let F (x, y) be the S-
box over F2

2k constructed by three-round Feistel structure with round functions

P1(x) = P3(x) = x2i+1 and P2(x) = x
1

2i+1 . Then

F (x, y) = (x+ y2
i+1 + (y + (x+ y2

i+1)
1

2i+1 )2
i+1, y + (x+ y2

i+1)
1

2i+1 )

= (y2
i+1 + y2

i

(x + y2
i+1)

1

2i+1 + y(x+ y2
i+1)

2i

2i+1 , y + (x + y2
i+1)

1

2i+1 ).

In this section, we show that F (x, y) constructed as above is a differential
4-uniform permutation over F2

2k with the best known nonlinearity.
In order to characterize the differential uniformity and nonlinearity of F (x, y),

we need the following lemmas firstly.

Lemma 2. Suppose k is an odd integer and gcd(i, k) = 1. Then for any (b, d) ∈
F
2
2k with (b, d) �= (0, 0), the following system of equations

{
dy2

i

+ d2
i

y + b2
i

z + bz2
i

= 0,

by2
i

+ b2
i

y + (b+ d)z2
i

+ (b + d)2
i

z = 0

has exactly 4 roots in F
2
2k . Furthermore, the following statements hold.

(1) If bd(b + d) = 0, then the 4 roots are (0, 0), (0, β), (β, 0) and (β, β), where
β ∈ {b, d} with β �= 0.

(2) If bd(b+ d) �= 0, then the 4 roots are (0, 0), (d, b), (b, b+ d) and (b+ d, d).
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Proof. To solve the following system of equations
{

dy2
i

+ d2
i

y + b2
i

z + bz2
i

= 0, (1)

by2
i

+ b2
i

y + (b + d)2
i

z + (b + d)z2
i

= 0, (2)

we have the following cases.
First, if b = 0, then d �= 0 and the above system of equations becomes

{
dy2

i

+ d2
i

y = 0,

dz2
i

+ d2
i

z = 0.

It is easy to see that the above systems of equations has exactly 4 roots in F
2
2k ,

which are
(0, 0), (0, d), (d, 0), (d, d).

This is because αx2i + α2ix is a linear mapping on F2k with kernel {0, α} for
any α ∈ F

∗
2k , since gcd(i, k) = 1.

The case of d = 0, b �= 0, and b = d ∈ F
∗
2k can be proved similarly.

Next, we prove the case of bd(b+ d) �= 0, which is equivalent to b, d ∈ F
∗
2k and

b �= d. Let
A = b2 + bd+ d2,

and
B = b2

i

d+ bd2
i

.

Notice that k is odd, gcd(i, k) = 1, b, d ∈ F
∗
2k and b �= d, then A �= 0 and B �= 0.

We add equation (1) multiplied by b + d to equation (2) multiplied by b, from

which we eliminate z2
i

and get

z =
1

B
(Ay2

i

+ (b2
i+1 + bd2

i

+ d2
i+1)y).

Substitute the above equality to equation (1) and multiply both sides by B2i+1,
then we have

0 = dB2i+1y2
i

+ d2
i

B2i+1y + (bB)2
i

(Ay2
i

+ (b2
i+1 + bd2

i

+ d2
i+1)y)

+bB(Ay2
i

+ (b2
i+1 + bd2

i

+ d2
i+1)y)2

i

= bBA2iy2
2i

+ (dB2i+1 + (bB)2
i

A+ bB(b2
i+1 + bd2

i

+ d2
i+1)2

i

)y2
i

+(d2
i

B2i+1 + (bB)2
i

(b2
i+1 + bd2

i

+ d2
i+1))y

= bBA2iy2
2i

+ bA2i(b2
2i

d+ bd2
2i

)y2
i

+ bA2iB2iy, (3)

where the coefficients of y2
i

and y is computed as follows. First, we have

dB2i+1 = d(b2
i

d+ bd2
i

)2
i+1

= b2
2i+2id2

i+2 + b2
2i+1d2

i+1+1 + b2
i+1

d2
2i+2 + b2

i+1d2
2i+2i+1,

(bB)2
i

A = (b2
2i+2id2

i

+ b2
i+1

d2
2i

)(b2 + bd+ d2)

= b2
2i+2i+2d2

i

+ b2
2i+2i+1d2

i+1 + b2
2i+2id2

i+2

+b2
i+1+2d2

2i

+ b2
i+1+1d2

2i+1 + b2
i+1

d2
2i+2,
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and

bB(b2
i+1 + bd2

i

+ d2
i+1)2

i

= (b2
i+1d+ b2d2

i

)(b2
2i+2i + b2

i

d2
2i

+ d2
2i+2i)

= b2
2i+2i+1+1d+ b2

i+1+1d2
2i+1 + b2

i+1d2
2i+2i+1

+b2
2i+2i+2d2

i

+ b2
i+2d2

2i+2i + b2d2
2i+2i+1

,

then it holds

dB2i+1 + (bB)2
i

A+ bB(b2
i+1 + bd2

i

+ d2
i+1)2

i

= b2
2i+1d2

i+1+1 + b2
2i+2i+1d2

i+1 + b2
i+1+2d2

2i

+b2
2i+2i+1+1d+ b2

i+2d2
2i+2i + b2d2

2i+2i+1

= b(b2
2i

d(d2
i+1

+ b2
i

d2
i

+ b2
i+1

) + bd2
2i

(b2
i+1

+ b2
i

d2
i

+ d2
i+1

))

= bA2i(b2
2i

d+ bd2
2i

).

The computation of the coefficient of y is easy.

d2
i

B2i+1 + (bB)2
i

(b2
i+1 + bd2

i

+ d2
i+1)

= B2i(d2
i

(b2
i

d+ bd2
i

) + b2
i

(b2
i+1 + bd2

i

+ d2
i+1))

= B2i(bd2
i+1

+ b2
i+1+1 + b2

i+1d2
i

)

= bA2iB2i .

Note that b �= 0 and A �= 0, then equation (3) is equivalent to

0 = (b2
i

d+ bd2
i

)y2
2i

+ (b2
2i

d+ bd2
2i

)y2
i

+ (b2
2i

d2
i

+ b2
i

d2
2i

)y.

Divid both sides by d2
2i+2i+1, then we have

0 = (
b

d
+ (

b

d
)2

i

)(
y

d
)2

2i

+ (
b

d
+ (

b

d
)2

2i

)(
y

d
)2

i

+ ((
b

d
)2

i

+ (
b

d
)2

2i

)
y

d

= (
b

d
+ (

b

d
)2

i

)((
y

d
)2

i

+ (
y

d
))2

i

+ ((
b

d
) + (

b

d
)2

i

)2
i

((
y

d
)2

i

+
y

d
).

Notice that gcd(i, k) = 1, then αx2i + α2ix is a linear polynomial on F2k with

kernel {0, α} for any α ∈ F
∗
2k . Note that b

d + ( bd )
2i �= 0, since b, d ∈ F

∗
2k and

b �= d. Therefore, it holds

(
y

d
)2

i

+
y

d
= 0

or

(
y

d
)2

i

+
y

d
=

b

d
+ (

b

d
)2

i

,

form which we get the roots of equation (3) are y = 0, y = d and y = b, b + d
respectively.

Substitute the values of y into equation (1) and equation (2), then one can
solve and check that the roots of system of equation (1) and equation (2) are

(0, 0), (d, b), (b, b+ d), (b + d, d).

Then we complete the proof. ��
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Let a ∈ F
∗
2k , denote La(x) = ax2i + a2

i

x and take α · β = Tr(αβ) for inner
product in F2k , where Tr(x) is the trace function from F2k to F2. The adjoint
linear mapping of La(x), which is denoted by L∗

a(x), is a linear mapping such
that

Tr(βLa(α)) = Tr(L∗
a(β)α)

for all α, β ∈ F2k . It is easy to see that

L∗
a(x) = a2

i

x+ (ax)2
n−i

.

Lemma 2 means that

L(y, z) = (Ld(y) + Lb(z), Lb(y) + Lb+d(z))

is a linear mapping on F
2
2k with kernel dimension equals 2. Take (α, β) · (y, z) =

Tr(αy + βz) for inner product in F
2
2k , then we have

(α, β) · L(y, z) = (α, β) · (Ld(y) + Lb(z), Lb(y) + Lb+d(z))

= Tr(αLd(y) + αLb(z) + βLb(y) + βLb+d(z))

= Tr(L∗
d(α)y + L∗

b(β)y + L∗
b(α)z + L∗

b+d(β)z)

= (L∗
d(α) + L∗

b(β), L
∗
b (α) + L∗

b+d(β)) · (y, z).

Hence it holds

L∗(y, z) = (L∗
d(y) + L∗

b(z), L
∗
b(y) + L∗

b+d(z)),

where L∗ is the adjoint mapping of L. By an elementary knowledge of linear
algebra, we have

dim(ker(L∗)) = dim(ker(L)) = 2.

Then the following result holds.

Lemma 3. Suppose k is an odd integer and gcd(i, k) = 1. Then for any (b, d) ∈
F
2
2k with (b, d) �= (0, 0), the following system of equations

{
d2

i

y + (dy)2
n−i

+ b2
i

z + (bz)2
n−i

= 0,

b2
i

y + (by)2
n−i

+ (b+ d)2
i

z + ((b + d)z)2
n−i

= 0

has exactly 4 roots in F
2
2k .

Theorem 4. Suppose k is odd and gcd(i, k) = 1. Let F (x, y) be the S-box over
F
2
2k constructed by three-round Feistel structure with round functions P1(x) =

P3(x) = x2i+1 and P2(x) = x
1

2i+1 . Then the differential uniformity of F (x, y)
equals 4. Furthermore, the differential spectrum of F (x, y) is {0, 4}.
Proof. Let a, b, c, d ∈ F2k and (a, b) �= (0, 0). Then we need to prove that

F (x, y) + F (x+ a, y + b) = (c, d)
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has 0 or 4 roots in F
2
2k .

First, it is easy to see that the above equation is equivalent to the following
system of equations

{
by2

i

+ b2
i

y + F
′
(x, y) + F

′
(x+ a, y + b) = b2

i+1 + c, (4)

(x + y2
i+1)

1

2i+1 + (x+ a+ (y + b)2
i+1)

1

2i+1 = b+ d, (5)

where

F
′
(x) = y2

i

(x+ y2
i+1)

1

2i+1 + y(x+ y2
i+1)

2i

2i+1 .

Let
z = (x+ y2

i+1)
1

2i+1 .

Then according to equation (5), we have

(x+ a+ (y + b)2
i+1)

1
2i+1 = (x+ y2

i+1)
1

2i+1 + b+ d = z + b+ d. (6)

Raise both sides to the (2i + 1)th power, then we have

by2
i

+ b2
i

y + (b+ d)2
i

z + (b+ d)z2
i

= a+ b2
i+1 + (b + d)2

i+1.

Furthermore, according to equality (6), it also holds

F
′
(x, y) + F

′
(x+ a, y + b) = y2iz + yz2

i

+ (y + b)2
i

(z + b+ d) + (y + b)(z + b+ d)2
i

= (b+ d)y2i + (b+ d)2
i

y + b2
i

z + bz2
i

+ b2
i

d+ bd2
i

.

Thus equation (4) implies

dy2
i

+ d2
i

y + bz2
i

+ b2
i

z = b2
i+1 + b2

i

d+ bd2
i

+ c.

Therefore, (x0, y0) is a root of equation

F (x, y) + F (x+ a, y + b) = (c, d)

if and only if (y0, z0), where z0 = (x0 + y2
i+1

0 )
1

2i+1 , is a root of the following
system of equations

{
dy2

i

+ d2
i

y + bz2
i

+ b2
i

z = b2
i+1 + b2

i

d+ bd2
i

+ c,

by2
i

+ b2
i

y + (b+ d)2
i

z + (b + d)z2
i

= a+ b2
i+1 + (b+ d)2

i+1.

Notice that (a, b) �= (0, 0), then a �= 0 when b = 0. Note that x
1

2i+1 is a per-
mutation over F2k , then (5) does not has solutions on F

2
2k when (b, d) = (0, 0).

Therefore, we have (b, d) �= (0, 0) when the system of equation (4) and equation
(5) has solutions in F

2
2k .

Hence according to Lemma 2, the above system of equations has 0 or 4 root
in F

2
2k . Then we complete the proof. ��
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Theorem 5. Suppose k is odd and gcd(i, k) = 1. Let F (x, y) be the S-box over
F
2
2k constructed by three-round Feistel structure with round functions P1(x) =

P3(x) = x2i+1 and P2(x) = x
1

2i+1 . Then the nonlinearity of F (x, y) equals
22k−1 − 2k, which is the best known nonlinearity over F

2
2k . Furthermore, the

Walsh spectrum of F (x, y) is {0,±2k+1}.

Proof. Let a, b, c, d ∈ F2k , and (c, d) �= (0, 0). Then we have

λF ((a, b), (c, d))

=
∑

x,y∈F
2k

(−1)Tr(c(y2i+1+y2i (x+y2i+1)
1

2i+1 +y(x+y2i+1)
2i

2i+1 )+d(y+(x+y2i+1)
1

2i+1 )+ax+by).

Let z = (x + y2
i+1)

1

2i+1 . Then x = y2
i+1 + z2

i+1 and z runs over F2k when x
runs over F2k . Therefore, we have

λF ((a, b), (c, d)) =
∑

y,z∈F
2k

(−1)Tr(c(y
2i+1+y2iz+yz2i )+d(y+z)+a(y2i+1+z2i+1)+by)

=
∑

y,z∈F
2k

(−1)f(y,z),

where

f(y, z) = Tr((a+ c)y2
i+1 + az2

i+1 + c(y2
i

z + yz2
i

) + (b + d)y + dz).

Firstly, if a = c = 0, then d �= 0 since (c, d) �= (0, 0). Hence it holds

λF ((0, b), (0, d)) =
∑

y,z∈F
2k

(−1)Tr((b+d)y+dz)

=
∑

y∈F
2k

(−1)Tr((b+d)y)
∑

z∈F
2k

(−1)Tr(dz)

= 0.

Next, we suppose (a, c) �= (0, 0). Note that

f(y, z) + f(y + u, z + v)

= Tr((a+ c)(y2
i+1 + (y + u)2

i+1) + a(z2
i+1 + (z + v)2

i+1))

+Tr(c(y2
i

z + yz2
i

+ (y + u)2
i

(z + v) + (y + u)(z + v)2
i

) + (b + d)u+ dv)

= Tr((a+ c)(u2iy + uy2
i

+ u2i+1) + a(v2
i

z + vz2
i

+ v2
i+1))

+Tr(c(y2
i

v + u2iz + u2iv + yv2
i

+ uz2
i

+ uv2
i

) + (b+ d)u + dv)

= Tr(((a + c)u2i + (au + cu)2
n−i

+ cv2
i

+ (cv)2
n−i

)y)

+Tr((av2
i

+ (av)2
n−i

+ cu2i + (cu)2
n−i

)z) + f(u, v),
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then it holds that

λF ((a, b), (c, d))
2 =

∑

y,z∈F
2k

(−1)f(y,z) ×
∑

u,v∈F
2k

(−1)f(y+u,z+v)

=
∑

y,z,u,v∈F
2k

(−1)f(y,z)+f(y+u,z+v)

=
∑

y∈F
2k

(−1)Tr((cv
2i+(cv)2

n−i
+(a+c)u2i+(au+cu)2

n−i
)y)

×
∑

z∈F
2k

(−1)Tr((cu
2i+(cu)2

n−i
+av2i+(av)2

n−i
)z)

×
∑

u,v∈F
2k

(−1)f(u,v)

= 22k
∑

u,v∈R(a,c)

(−1)f(u,v),

where R(a, c) is the solution set of the following system of equations with vari-
ables u and v

{
av2

i

+ (av)2
n−i

+ cu2i + (cu)2
n−i

= 0,

cv2
i

+ (cv)2
n−i

+ (a+ c)u2i + (au+ cu)2
n−i

= 0.

Note that (a, c) �= (0, 0), then according to Lemma 3, the above system of equa-
tions has exactly 4 roots in F

2
2k . Denote

R(a, c) = {(ui, vi) | 0 ≤ i ≤ 3}.
Notice that f(y, z)+f(y+u, z+v) = f(u, v) for (u, v) ∈ R(a, c) and (y, z) ∈ F

2
2k ,

which means f(u, v) is linear on R(a, c). Therefore, f(u, v) is a balanced function
or a constant 0 on R(a, c). Note that (0, 0) ∈ R(a, c), then it holds

λF ((a, b), (c, d))
2 =

{
22k+2 f(ui, vi) = 0 for all 0 ≤ i ≤ 3,
0 otherwise.

Hence
λF ((a, b), (c, d)) ∈ {0,±2k+1},

and we complete the proof. ��
At the end of this section, we investigate the algebraic degree of F (x, y). The

following results are needed.

Lemma 4. [22] Suppose k is odd and gcd(i, k) = 1. Then the compositional

inverse of x2i+1 over F2k is xt, where t =

k−1
2∑

j=0

22ij mod (2k − 1). Its algebraic

degree is k+1
2 .



140 Y. Li and M. Wang

Lemma 5. [4,7] Suppose F (x) ∈ F2n [x]. If λF (a, b) ∈ {0,±2
n+s
2 } for all b ∈ F

∗
2n

and a ∈ F2n , then d◦(F ) ≤ n−s
2 + 1.

Theorem 6. Suppose k is odd and gcd(i, k) = 1. Let F (x, y) be the S-box over
F
2
2k constructed by three-round Feistel structure with round functions P1(x) =

P3(x) = x2i+1 and P2(x) = x
1

2i+1 . Then the algebraic degree of F (x, y) equals k.

Proof. Firstly, according to Theorem 5 and Lemma 5, we have

d◦(F (x, y)) ≤ 2k − 2

2
+ 1 = k.

Next, let S = {2ij mod k | 0 ≤ j ≤ k−1
2 } and for s ⊆ S, define

2s =

{
0 s = ∅,∑

j∈s

2j mod (2k − 1) s �= ∅.

Then according to Lemma 4, the compositional inverse of x2i+1 is x2S . Hence
we have

(x+ y2
i+1)

1

2i+1 = (x+ y2
i+1)2

S

=
∑

s1⊆S

x2s1 y(2
i+1)2S\s1

= xy
(2i+1)

k−1
2∑

j=1

22ji mod (2k−1)

+
∑

{0}�=s1⊆S

x2s1 y(2
i+1)2S\s1

= xyd1 + F
′
(x, y),

where F
′
(x, y) =

∑

{0}�=s1⊆S

x2s1 y(2
i+1)2S\s1

and

d1 = (2i + 1)

k−1
2∑

j=1

22ji mod (2k − 1) =

k∑

j=2

2ji mod (2k − 1).

We claim that ω2(d1) = k − 1. Otherwise there exist 2 ≤ j1 < j2 ≤ k, such
that 2ij1 = 2ij2 mod (2k − 1). This is equivalent to ij1 = ij2 mod k, since for an

integer r ∈ Z, 2r mod (2k − 1) = 2r
′
, where 0 ≤ r

′ ≤ k − 1 and r
′
= r mod k.

Thus k|i(j2− j1). Note that gcd(i, k) = 1, then j1 = j2, which is a contradiction.
Therefore, it holds

ω2(d1) = k − 1,

and hence
d◦(xyd1) = k.

Notice that xyd1 does not appear in the terms of F
′
(x, y), then the algebraic

degree of y + (x + y2
i+1)

1

2i+1 equals k. This means F (x, y) has a component
function with algebraic degree k. Thus d◦(F (x, y)) ≥ k. Then we complete the
proof. ��

According to the above results, we have the following result.
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Theorem 7. Suppose k is an odd integer and gcd(i, k) = 1. Let

F (x, y) = (x+ y2
i+1 + (y + (x+ y2

i+1)
1

2i+1 )2
i+1, y + (x+ y2

i+1)
1

2i+1 ),

which is the S-box over F
2
2k constructed by three-round Feistel structure with

round functions P1 = P3 = (x)2
i+1 and P2 = P1(x)

−1 = x
1

2i+1 . Then the
following statements hold.

(1) F (x, y) is an involution over F
2
2k , which means F (F (x, y)) = (x, y).

(2) The differential uniformity of F (x, y) equals 4 and its differential spectrum
is {0, 4}.

(3) The nonlinearity of F (x, y) equals 22k−1 − 2k and its Walsh spectrum is
{0,±2k+1}.

(4) The algebraic degree of F (x, y) equals k.

Remark 1. When k = 3, i = 1, it can be checked that F (x, y) in Theorem 7
is CCZ-equivalent to x5. In general, we do not know whether F (x, y) is CCZ-

equivalent to the Gold type permutations over F22k , i.e., x
2i+1 with gcd(i, 2k) =

2. However, the permutations in Theorem 7 are still interesting due to their
efficient hardware implementation.

The following result also holds, whose proof is similar to the proof of above
results.

Theorem 8. Suppose k is an odd integer and gcd(i, k) = 1, α, β, γ ∈ F2k . Let

F (x, y) = (x + (y + α)
2i+1

+ (y + γ + (x + β + (y + α)
2i+1

)
1

2i+1 )
2i+1

, y + (x + β + (y + α)
2i+1

)
1

2i+1 ),

which is the S-box over F
2
2k constructed by three-round Feistel structure with

round functions P1(x) = (x + α)2
i+1, P2(x) = (x + β)

1

2i+1 and P3(x) = (x +

γ)2
i+1. Then the following statements hold.

(1) F (x, y) is an involution over F
2
2k when α = γ.

(2) The differential uniformity of F (x, y) equals 4 and its differential spectrum
is {0, 4}.

(3) The nonlinearity of F (x, y) equals 22k−1 − 2k and its Walsh spectrum is
{0,±2k+1}.

(4) The algebraic degree of F (x, y) equals k.

Remark 2. “Characterizing the F -functions whose maximum differential prob-
ability with keys is small” is an open problem proposed in [1]. In that pa-
per, the i-th round of Feistel structure is a transformation as (Li, Ri) →
(Ri, Li + f(Li + ki)). F -function means f(x + ki), where f is a permutation
and ki is the i-th round key. Theorem 8 means that for any fixed round keys,
the three-round Feistel scheme with round functions P1 = P3 = x2i+1 and

P2 = x
1

2i+1 always posses the best differential uniformity and nonlinearity.
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5 Constructing Optimal 4-bit S-boxes with Unbalanced
Feistel Structure

Four bit S-boxes are always chosen for lightweight cryptography because of their
less hardware implementation cost. It has been shown that, the best differential
uniformity and nonlinearity of 4-bit S-boxes both equal 4 [17]. These S-boxes
are called optimal 4-bit S-boxes.

In order to reduce hardware implementation cost, a method of constructing
recursive diffusion layers is proposed in PHONTON [14] and LED [15], and
further studied in [26]. We use a similar idea to construct recursive S-boxes in
this section. We show that some optimal 4-bit S-boxes can be constructed with
4 or 5 round unbalanced Feistel structure.

Construction 1. Suppose f is a nonlinear Boolean function with three vari-
ables, and xi ∈ F2, 1 ≤ i ≤ 4. One round unbalanced Feistel structure is a
transformation as follows

Pf (x1, x2, x3, x4) = (x2, x3, x4, x1 + f(x2, x3, x4)).

Then an S-box over F
4
2 can be constructed with t round unbalanced Feistel struc-

ture as follows

F (x1, x2, x3, x4) = P t
f (x1, x2, x3, x4),

where t = 4 or 5, P j
f defined as Pf (P

j−1
f ) for j ≥ 2 and P 1

f = Pf .

It is easy to see that P t
f is a permutation over F4

2 for t ≥ 1. In order to update
every bit of the output of the S-boxes constructed as above, t should larger than
or equal to 4. Considering the efficiency of S-boxes, it is better to construct
S-boxes with not too many rounds. Thus, we choose t = 4 or 5 in the above
construction. P t

f can be implemented with nonlinear feedback register (NLFSR)
as shown in Figure 2. It also can be implemented similarly as the implementation
of S-boxes in Piccolo [23] and LS-design [13].

x1 x2 x3 x4

f⊕

Fig. 2. Constructing S-box with NLFSR
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Table 2. Boolean functions such that P 4
f are optimal 4-bit S-boxes

f Operations Gi f Operations Gi

x2x3 (1, 1, 0) 8 x2x3 + 1 (1, 1, 1) 8
x3x4 (1, 1, 0) 8 x3x4 + 1 (1, 1, 1) 8
(x3 + 1)x4 (1, 1, 1) 8 (x3 + 1)x4 + 1� (1, 1, 2) 8
x2(x3 + 1) (1, 1, 1) 8 x2(x3 + 1) + 1� (1, 1, 2) 8
x3(x4 + 1) (1, 1, 1) 8 x3(x4 + 1) + 1� (1, 1, 2) 8
(x2 + 1)x3 (1, 1, 1) 8 (x2 + 1)x3 + 1� (1, 1, 2) 8
(x2 + 1)(x3 + 1) + 1 (1, 1, 3) 8 (x2 + 1)(x3 + 1) (1, 1, 2) 8
(x3 + 1)(x4 + 1) + 1 (1, 1, 3) 8 (x3 + 1)(x4 + 1) (1, 1, 2) 8
x2x3 + x4 (2, 1, 0) 8 x2x3 + x4 + 1� (2, 1, 1) 8
x2 + x3x4 (2, 1, 0) 8 x2 + x3x4 + 1� (2, 1, 1) 8
x2 + (x3 + 1)x4 (2, 1, 1) 8 x2 + (x3 + 1)x4 + 1 (2, 1, 2) 8
(x2 + 1)x3 + x4 (2, 1, 1) 8 (x2 + 1)x3 + x4 + 1 (2, 1, 2) 8
x2 + x3(x4 + 1) (2, 1, 1) 8 x2 + x3(x4 + 1) + 1 (2, 1, 2) 8
x2(x3 + 1) + x4 (2, 1, 1) 8 x2(x3 + 1) + x4 + 1 (2, 1, 2) 8
x2 + (x3 + 1)(x4 + 1) + 1 (2, 1, 3) 8 x2 + (x3 + 1)(x4 + 1)� (2, 1, 2) 8
(x2 + 1)(x3 + 1) + x4 + 1 (2, 1, 3) 8 (x2 + 1)(x3 + 1) + x�

4 (2, 1, 2) 8
x2(x3 + x4) + x3x4 (3, 2, 0) 1 x2(x3 + x4) + x3x4 + 1 (3, 2, 1) 1
x2(x4 + x3 + 1) + (x3 + 1)x4 (3, 2, 1) 1 x2(x4 + x3 + 1) + (x3 + 1)x4 + 1 (3, 2, 2) 1
x2(x3 + x4 + 1) + x3(x4 + 1) (3, 2, 1) 1 x2(x3 + x4 + 1) + x3(x4 + 1) + 1 (3, 2, 2) 1
(x2 + 1 + x4)x3 + (x2 + 1)x4 (3, 2, 1) 1 (x2 + 1 + x4)x3 + (x2 + 1)x4 + 1 (3, 2, 2) 1

Let Qf(x1, x2, x3, x4) = (x4 + f(x1, x2, x3), x1, x2, x3), which is also a trans-
formation that can be implemented easily. Then it is easy to verify that

P (Q(x1, x2, x3, x4)) = (x1, x2, x3, x4).

Hence the compositional inverse of P t
f equals Qt

f . It should be noticed Qt
f also

can be implemented with nonlinear shift register.
By an exhaustive searching, we list all Boolean functions f such that P 4

f ,

P 5
f are optimal 4-bit S-boxes in Table 2 and Table 3 respectively. The cost

of hardware implementation of one round transformations of P t
f , i.e. x1 + f ,

is estimated in the two tables. An element “(r1, r2, r3)” in the “Operations”
columns of the two tables means that the number of operations “+” (XOR), “∗”
(AND) and “+1” (NOT) in x1 + f is r1, r2 and r3 respectively.

According to [17], there are exactly 16 classes of optimal 4-bit S-boxes up to
affine equivalence. An element “j” in the columns “Gi” in Table 2 (resp. Table
3) means the P 4

f (resp. P 5
f ) is CCZ-equivalent to Gj in [17]. It can be checked

that the S-box used in PRESENT [2] is affine equivalent to G1.
The functions with a “
” in the superscript, such as “f�”, in Table 2 (resp.

Table 3) means that P 4
f (resp. P 5

f ) does not have fixed points. For other functions
in the two tables, it can be checked that there always exists nonzero constant
(a1, a2, a3, a4) ∈ F

4
2, such that P 4

f (x1+a1, x2+a2, x3+a3, x4+a4) (resp. P
5
f (x1+

a1, x2 + a2, x3 + a3, x4 + a4)) does not have fixed points. Note that adding a
constant to input does not change the differential uniformity and nonlinearity,
then for any function f in the two tables, optimal 4-bit S-boxes with no fixed
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Table 3. Boolean functions such that P 5
f are optimal 4-bit S-boxes

f Operations Gi f Operations Gi

x2(x3 + x4) + 1 (2, 1, 1) 7 (x2 + x4)x3 + 1� (2, 1, 1) 4
(x2 + x3)x4 + 1 (2, 1, 1) 7 (x2 + x4)(x3 + 1) + 1� (2, 1, 2) 4
(x2 + x3)(x4 + 1) + 1 (2, 1, 2) 7 (x2 + 1)(x3 + x4) + 1 (2, 1, 2) 7
x2x3 + (x2 + 1)x4 (2, 2, 1) 13 x2(x4 + 1) + x3x4 (2, 2, 1) 13
x2x4 + x3(x4 + 1) + 1 (2, 2, 2) 13 x2(x3 + 1) + x3(x4 + 1) (2, 2, 2) 4
(x2 + 1)x3 + x2x4 + 1 (2, 2, 2) 13 x2x4 + (x3 + 1)(x4 + 1)� (2, 2, 2) 13
x2x3 + (x2 + 1)(x4 + 1)� (2, 2, 2) 13 (x2 + 1)(x4 + 1) + x3x

�
4 (2, 2, 2) 13

(x2 + 1)(x3 + 1) + x2x
�
4 (2, 2, 2) 13 (x2 + 1)x3 + (x3 + 1)x4 (2, 2, 2) 4

x2((x3 + 1)x4 + 1) + x3(x4 + 1) (2, 3, 3) 11 (x2(x4 + 1) + 1)x3 + (x2 + 1)x4 (2, 3, 3) 11
(x2x3 + 1)x4 + (x2 + 1)(x3 + 1) (2, 3, 3) 11 x2(x3x4 + 1) + (x3 + 1)(x4 + 1) (2, 3, 3) 11
(x2x3 + 1)x4 + (x2 + 1)(x3 + 1) + 1 (2, 3, 4) 11 (x2x4 + 1)x3 + (x2 + 1)(x4 + 1) + 1 (2, 3, 4) 3
x2(x3x4 + 1) + (x3 + 1)(x4 + 1) + 1 (2, 3, 4) 11 x2(x3(x4 + 1) + 1) + (x3 + 1)x4 + 1 (2, 3, 4) 3
(x2(x4 + 1) + 1)x3 + (x2 + 1)x4 + 1 (2, 3, 4) 11 x2((x3 + 1)x4 + 1) + x3(x4 + 1) + 1 (2, 3, 4) 11

points can also be constructed by adding a constant to the input. For example,
let f = x2x3, by adding (1, 0, 1, 0) to the input of P 4

f , we have P
4
f (x1+1, x2, x3+

1, x4) is a optimal 4-bit S-boxes which does not have fixed points.
With the method in this section, it can only use 1 XOR, 1 AND and 2 NOT

for one round transformation to construct an 4-bit optimal S-box with no fixed
points by 4 round unbalanced Feistel structure, see Table 2.

6 Conclusion

In the present paper, we investigate cryptographic properties of S-boxes con-
structed with three-round Feistel structure. A class of differential 4-uniform S-
boxes with the best known nonlinearity over F

2
2k for k odd is given. It is also

shown that optimal 4-bit S-boxes can be constructed with unbalanced Feistel
structure and some experiment results are given in the paper. The problem of
constructing new, which means CCZ-inequivalent to known ones, differential 4-
uniform permutations over F2

2k with the best known nonlinearity is an interesting
problem that needs further study.
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